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Abstract

By means of 2D/3D registration, high-quality CT patient scans can be
integrated into medical interventions, which allows surgery to be guided by
images and additional information, such as the location of tumorous tissues,
to be stored and recovered during operations. For this purpose the exact
pose of the patient in the operating room has to be established. This can be
accomplished by digitally reconstructing radiographs from the patient scan
in an emulated imaging setting and comparing them to intraoperative X-ray
images. Once aligned with the patient, the CT data can be used to augment
the information available to the surgeon, thus facilitating minimally-invasive
surgery. However, the registration has to be fast, accurate, and reliable to
be useful for medical application.

The method proposed in this work is based on an intensity-based simi-
larity measure which is inoffensive to the patient and does not require any
user interaction. The automatic or algorithmic differentiation technique is
used to generate the derivative of the volume rendering and similarity mea-
suring code. The resulting program evaluates the gradient with respect to
the transformation parameters on execution. As opposed to the numeri-
cal approximation of the gradient, its performance is virtually insensitive to
the number of transformation parameters. Additionally, all computation-
ally and memory intensive parts of the program are computed by means of
programmable graphics hardware, which is laid out to perform simple and
repetitive tasks very efficiently.

The quality of the method was assessed by means of a standardized eval-
uation method involving target registration error, capture range, and time
measurements. An approach based on numerical approximation served as
reference for comparisons. For a 512 × 512 × 346 voxels scan of a human
abdomen and three corresponding 512× 512 pixels X-ray images, a speed-up
factor of 2.4, which resulted in a mean registration time of 28.5 seconds, was
observed. The mean target registration error averaged 0.6 millimeters for
successful alignments. Although the reference approach proved more accu-
rate, both methods were about equally robust. For a maximum initial error
of 33 millimeters, the presented approach converged successfully in 90 per-
cent of all cases. The concept, which still leaves a lot of room for further
improvement, is thus considered as qualified for medical application.
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Zusammenfassung

Mit Hilfe von 2D/3D Registrierung kann ein hochqualitatives CT Bild des
Patienten in chirurgische Eingriffe einbezogen werden. Dies ermöglicht einer-
seits die bildgesteuerte Navigation, und andererseits das Speichern und Ab-
rufen von Information, wie etwa die Lage von tumorösem Gewebe, während
der Operation. Dazu muss jedoch die genau Lage des Patienten im Operati-
onssaal bestimmt werden. Dies kann anhand einer digitalen Rekonstruktion
von Röntgenbildern aus einem CT Bild innerhalb der nachgebildeten Auf-
nahmekulisse und eines anschließenden Vergleichs mit Röntgenbildern, die
während der Operation aufgenommen werden, erreicht werden. Sobald die
Bilder in Deckung gebracht wurden, kann das CT-Volumen dazu verwendet
werden, den Informationsgehalt, der dem Chirurgen zur Verfügung steht, zu
vergrößern und so minimal-invasive Eingriffe erleichtern. Um für eine medi-
zinische Anwendung geeignet zu sein, muss die Registrierung jedoch schnell,
genau und zuverlässig funktionieren.

In der vorliegenden Arbeit wird eine Methode vorgestellt, die auf einem
intensitätsbasierten Ähnlichkeitsmaß, das unschädlich für den Patienten ist
und keine Interaktion mit Anwendern erfordert, beruht. Zur Ableitung der
Prozedur, die das Volumen rendert und das Ähnlichkeitsmaß bestimmt, wird
das Verfahren der automatischen Differenzierung verwendet. Das resultie-
rende Programm wertet den Gradienten bezüglich der Transformationspa-
rameter aus. Im Gegensatz zur numerischen Approximation des Gradienten
ist die Laufzeit dieses Programms praktisch unabhängig von deren Anzahl.
Zusätzlich werden alle rechen- und speicherintensiven Teile des Programms
mit Hilfe von programmierbarer Grafikhardware, die für die effiziente Verar-
beitung von einfachen und repetetiven Aufgaben ausgelegt ist, ausgeführt.

Die Qualität der Methode wurde anhand eines standardisierten Evaluie-
rungsverfahrens unter Einbeziehung des Registrierungsfehlers, des Einfang-
bereichs und der Laufzeit bewertet. Als Referenz für Vergleiche diente ein
auf der numerischen Annäherung des Gradienten basierender Ansatz. Für
ein 512 × 512 × 346 CT Bild eines menschlichen Unterleibs und drei dazu-
gehörige Röntgenbilder mit je 512× 512 Bildelementen wurde ein Beschleu-
nigungsfaktor von 2.4 gemessen, was eine mittlere Registrierungsdauer von
28.5 Sekunden ergab. Der mittlere Registrierungsfehler betrug 0.6 Millimeter
für erfolgreiche Registrierungen. Obwohl sich der Referenzansatz als genauer
erwies, funktionierten beide Methoden etwa gleich robust. Bei einem maxi-
malen Anfangsfehler von 33 Millimetern konvergierte der vorgestellte Ansatz
in 90 Prozent aller Fälle. Die Methode, die noch reichlich Raum für weitere
Verbesserungen lässt, wird deshalb als geeignet für die medizinische Anwen-
dung erachtet.
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Chapter 1

Introduction

1.1 Motivation

Medical interventions often cause serious operative traumata to the patient.
In many cases, however, the body is affected to a larger extent than is actually
required to achieve the desired outcome of the intervention. Immoderate
damage to the body as a byproduct of surgery has many causes. One of the
key problems is the inability to locate positions and regions of interest, such
as tissue that has been priorly diagnosed with tumor, precisely. Additionally,
the surgeon has a limited field of view when performing invasive interventions.
Above all, the applicability of automatic tools assisting the operation such
as surgical robots is limited when no reliable information on locations within
the patient’s body is available.

Medical imaging provides more and more insight into the human body.
The quality of the images that can be acquired is ever growing. On one
hand, this allows one to draw more accurate conclusions about the condition
of the patient. On the other hand, the computational requirements to process
these data is increasing along with the images’ resolution. Three-dimensional
datasets such as produced by computed tomography (CT) or magnetic reso-
nance imaging (MRI) represent highly accurate models of the patient’s body.
They may act as a reference for tagging points and regions of interest, thus
augmenting the information conveyed by the original data. When visualized,
they provide very realistic images of the body which can be used for diagno-
sis and to guide surgery. However, as long as there is no reliable means to
make them available during interventions without impeding the work flow of
medical stuff either physically or by delays, they are useless in the context of
minimally-invasive operations.

1



2 CHAPTER 1. INTRODUCTION

Minimally-invasive surgery is a very promising field in medicine. It aims
at causing less traumata to the patient by limiting both the region that is
affected while accessing the operation target and the region where surgery
is applied. Hence, interventions are more accurate and have less adverse
effects and complications arising afterwards. Although the operations may be
more complicated to conduct, the patient is strained less and recovers faster.
Minimally-invasive surgery thus encourages a trend towards ambulant routine
interventions, which often total to lower treatment costs. An example for a
minimally invasive operation is the local treatment or removal of tumorous
tissue without removing the whole organ affected. This reduces the trauma
caused by surgery and may allow the organ to keep up its function.

To enable a broad range of minimal-invasive surgery, the exact pose of
the patient within a common frame of reference in the operating room has
to be known. This allows positions within the body to be filed, retrieved,
and referred to by all participants, be it humans or machines. Furthermore,
the visualization of patient data may be used in order to virtually extend the
field of view and the amount of information available to the surgeon.

This work aims at building a reliable basis for minimally-invasive and
image-guided surgery by presenting a method to efficiently integrate high-
quality preoperative information into the operation. The task consists in
establishing a relationship between the patient and a three-dimensional scan
serving as a model of the their body. Given this relationship, any point
in the volume can be mapped to a location in the patient and vice versa.
This enables the use of the scan as a reference for filing locations of interest
within the body, for example, positions where tissue samples where taken,
and recovering them at a later point of time, for example, to treat regions
diagnosed with tumor. Additionally, the image can be integrated visually
to guide or assist the intervention. However, the procedure does not only
align the model with the patient, but also yields the pose of the patient in
the operating room with respect to some predefined coordinate system. It
may serve as a common frame of reference for all devices involved in the
procedure.

X-ray images taken during the intervention reflect the current pose of the
patient. In order to establish the alignment, the whole X-ray imaging setting
in the operating room is emulated with a three-dimensional scan acting as
a model of the patient. The result of simulating the acquisition of an im-
age is a so-called digitally reconstructed radiograph (DRR), which constitutes
the virtual counterpart of an X-ray image. The model is placed into the
emulated operating room and its pose is adapted until an optimal match be-
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tween the original and the reconstructed radiograph(s) has been found. Once
established, the patient and the scan share the same pose within the prede-
fined coordinate system. The entire process of identifying a transformation
in three-dimensional space by means of two-dimensional images is referred to
as 2D/3D registration.

Since we are dealing with a medical application that is aimed at minimally
harming the patient, speed, accuracy, reliability, and ease of use constitute
the main criteria for success. Additionally, the procedure has to be inoffensive
to the patient, which is an absolute necessity considering the fact that the
application is supposed to be used in the course of routine examinations.

To achieve a major speedup of the alignment, we want to exploit the
computational power of modern graphic processing units (GPUs), which are
optimized for performing repetitive tasks on large amounts of data. The use
of high-resolution data, in turn, promotes accuracy. Moreover, algorithmic
or automatic differentiation (AD), which is novel in the context of medi-
cal image registration, is to be used to guide the search towards an optimal
match between the original and the reconstructed radiographs in an efficient
and accurate manner. This work acts on the assumption that 2D/3D regis-
tration still provides a lot of room for improvement, particularly in terms of
speed and robustness. GPU-based computation and algorithmic differenti-
ation are promising approaches to significantly reduce the registration time
while not impairing the application’s accuracy, robustness, and ease of use,
thus qualifying it for the use in minimally-invasive surgery.

1.2 Thesis Outline

In Chapter 2, selected work in the field of 2D/3D registration is presented and
shortly discussed. The focus lies on different approaches to DRR generation
and GPU-based methods.

Chapter 3 elaborates on the nature of rigid-body transformation and sub-
sumes the typical steps of 2D/3D registration, namely the generation of dig-
itally reconstructed radiographs (Section 3.3), the calibration of the X-ray
camera (Section 3.4), measuring similarity between the original and the re-
constructed radiographs (Section 3.5), and finding a set of transformation
parameters that minimizes the cost function (Section 3.6).

In Chapter 4 the capabilities of modern graphics hardware and its use
for general purpose programming (Section 4.3) are discussed. Section 4.4
presents the GPU-based implementation of the registration algorithm and
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describes how programming concepts are mapped to the GPU.

Chapter 5 provides an overview of the algorithmic differentiation tech-
nique. First its methodology is established theoretically (Section 5.2), then
it is applied to the registration algorithm (Section 5.3). Eventually the GPU-
based evaluation of the derivative code is presented.

Chapter 6 presents the results of an experimental evaluation conducted
with the implemented algorithm. First it shortly describes the implementa-
tion and the operational environment of the registration application, then it
presents the results with respect to convergence and accuracy (Section 6.3),
as well as performance (Section 6.4).

In the concluding Chapter 7 the presented work is summarized. Then
the relevance of the findings and the meaning of the experimental results is
discussed. Eventually the work will be provided with a future perspective.



Chapter 2

Related Work

2.1 Rigid-Body 2D/3D Registration

Rigid-body 2D/3D registration was extensively dealt with in scientific litera-
ture. Although there is a number of different approaches to the alignment of
preoperative volume data and intraoperative images, no method combining
speed, accuracy, robustness, inoffensiveness, and ease of use in a satisfac-
tory manner has been found. Usually, the presented work focuses on some
of these aspects while disregarding others. A general survey of medical im-
age registration including a classification by nine distinctive criteria can be
found in [Maintz and Viergever, 1998]. In order to make a direct comparison
of different methods possible, a standardized evaluation schema for 2D/3D
registration was proposed in [Van de Kraats et al., 2004]. It elaborates on
a common definition of the registration error, starting positions, and the
capture range.

According to the typical tasks within the rigid-body 2D/3D registration
process, we state the following list of potential optimization targets:

• DRR generation

• Similarity measuring

• Optimization

where the former usually constitutes the most costly task because of po-
tentially high memory and computational requirements. Since similarity
measuring and optimization are fairly well-established, DRR generation is
frequently the most promising target for registration enhancements.

5
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2.1.1 DRR Generation

From work that has been presented in the field of rigid-body 2D/3D regis-
tration, we extracted the following classes of approaches to enhancing DRR
generation, which are not mutually exclusive:

GPU-based approaches These approaches try to exploit the arithmetic
power and bandwidth of modern graphics hardware. Essentially, DRR gen-
eration is reduced to a volume rendering task. In [LaRose, 2001] one of the
first consumer-level GPU-based DRR generation applications is presented.
It uses the two-dimensional texture mapping feature to render the DRRs.
Similar approaches, yet with three-dimensional textures, are described in
[Gong et al., 2006, Ino et al., 2006]. The latter additionally computes gradi-
ent images and the normalized cross correlation similarity measure on the
GPU.

Programmable kernels in the rendering pipeline allowed for more com-
plex volume rendering techniques to be performed on consumer-level graph-
ics boards. In [Wein, 2003, Khamene et al., 2006a] DRRs are generated on
the GPU using fragment shaders. In [Chisu, 2005, Kubias et al., 2007b]
intensity-based similarity measures are evaluated on the GPU in addition.
Both use texture mipmapping to reduce the pixel-wise results to single val-
ues. They observed a speed-up factor of around 4.5 compared to CPU-based
rendering approaches. For a combination of eight similarity measures, a
mean target registration error (TRE) of about 1.4 millimeters was measured
in [Kubias et al., 2007b].

In [Khamene et al., 2006b] a general registration approach that reduces
the number of image dimensions by means of a projection step is presented.
Both the projection and similarity measuring are performed with the help
of shaders in order to speed up computation. One approach averaging the
pixel-wise results directly on the GPU, one averaging them on the CPU, and
a completely CPU-SSE-based approach are compared. Experiments with a
CT scan of the pelvis showed that the former was more than four times
faster than the latter for certain similarity measures while being significantly
less accurate. Yet, the hybrid approach could keep up with the CPU-based
approach in terms of accuracy and still perform considerably better.

Another approach which does not deal with DRR generation yet is still
worth mentioning is described in [Köhn et al., 2006]. For a registration in
two or three dimensions the presented algorithm computes the derivative
of the simple sum of squared differences (SSD) similarity measure, which
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is subsequently used for a gradient descent optimization procedure, on the
GPU. Insofar, the underlying idea is similar to ours, yet the differentiation
is performed symbolically, which is limited to very simple expressions such
as the SSD formulation. Eventually, the volume of derivatives (for the three-
dimensional case) is reduced by first rendering all slices to one texture with
blending enabled and then reducing the texture by means of GPU-based
image pyramid creation.

Gradient-based approaches This class of approaches uses volume gra-
dients to produce some sort of gradient DRRs, thus incorporating spatial
information. In [Wein et al., 2005] a gradient volume is used to render the
DRRs both with raycasting and splatting. The resulting DRRs are then fed
directly to the gradient correlation similarity measure. With additional opti-
mizations like empty space skipping, they achieve a speed-up factor of about
ten compared to normal raycasting and the same similarity measure. For
real patient data, however, the standard deviation of the estimated transfor-
mation parameters as a measure of registration accuracy strongly increased.

In [Livyatan et al., 2003] a gradient projection approach is presented. The
method is based on the observation that X-ray image gradients are linearly
proportional to the weighted volume gradients along the viewing rays. It tries
to find the correct alignment by maximizing the volume gradient projection at
edge pixels of the radiographs. The experimental evaluation of the three step
algorithm conducted with a human pelvis dataset and an initial displacement
of 9.8 millimeters yielded a surface TRE of 1.7 millimeters.

In [Tomaževič et al., 2003], on the other hand, X-ray image gradients are
projected back towards the X-ray source. The cost function then calculates
the correspondence between the volume’s surface normals, which are com-
puted from the CT coefficients, and the back-projected image gradients. A
registration of single vertebrae yielded mean TREs below 0.5 millimeters
counting only successful registrations, that is, ragistrations with a TRE be-
low 2 millimeters, and success rates above 91 percent when displacing the
volume by a maximum of 6 millimeters and 17.2 degrees.

Alternative rendering approaches Raycasting is a popular rendering
technique that provides a good tradeoff between accuracy and speed. Yet,
several other approaches to rendering DRRs have been proposed. A splat-
ting-based technique is presented in [Birkfellner et al., 2005]. However, splat
rendering outperformed raycasting only when a majority of voxels was dis-
carded and efficient anti-aliasing techniques were used. In [Weese et al., 1999]
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volume rendering based on shear-warp factorization combined with their pat-
tern intensity similarity measure is used. Comparing their application to
raycasting, they report a speed-up factor in the range between 3 and 7, de-
pending on the resolution of the intermediate images, where the accuracy is
still acceptable.

To address the DRR generation bottleneck, the light field rendering tech-
nique, which reduces the common runtime complexity from O(n3) to O(n2) by
performing most calculation in a preprocessing step, is used in
[Russakoff et al., 2003]. The approach is combined with the mutual infor-
mation similarity measures and best neighbor search optimization.

Precomputation-based approaches Precomputation is a way to ratio-
nalize the DRR computation while entailing an increased memory complex-
ity. A great part of the workload is shifted to a precomputation step, whose
results are used to generate the actual DRRs during the online procedure.

Apart from [Russakoff et al., 2003] a precomputation-based approach is
presented in [Freund et al., 2004]. Projection fields are used to store a certain
range of prototype values for every DRR image pixel, which stem from a
discrete variation of two rotational parameters. The actual DRRs are then
computed using quadri-linear interpolation. This rendering approach showed
to be about one hundred times faster than raycasting, while requiring 256
MB of RAM per radiograph (512 × 512) to align. It entailed only a minor
loss of accuracy, yet is limited to a relatively small transformation parameter
space.

Another interesting approach to DRR generation can be found in
[Rohlfing et al., 2002]. Instead of computing deterministic DRRs, thus deter-
mining one scalar value per pixel, probabilistic DRRs (pDRRs), which record
the distribution of volume intensities along the rays, are generated. This
procedure conserves information on intermediate tissues, which is otherwise
merged into a single intensity value. The probabilistic mutual information
measure showed a promising convergence behavior when matching pDRRs
and deterministic DRRs.

Yet, there are also approaches that get by without DRR generation, such
as the method described in [Tomaževič et al., 2006]. Instead of projecting
the patient scan to image space, a volume is reconstructed from a set of
about 100 X-ray images. To cope with the poor quality of the reconstructed
volume and the fact that the registration is multimodal, a novel similarity
measure called asymmetric multi-feature mutual information is used. For a
CT scan of a vertebra the results exhibited a mean TRE of 0.37 millimeters
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for successful registrations and a capture range, defined as the distance for
which 95 percent of registrations are successful, of 7 millimeters.

2.1.2 Similarity Measuring and Optimization

Comparative studies on similarity measuring in the context of 2D/3D regis-
tration can be found in [Penney et al., 1998, Kim et al., 2007]. In order to
solve the 2D/3D registration task, new similarity measures were developed,
for example, pattern intensity [Weese et al., 1997], and the use of known mea-
sures from other fields was proposed, for example, the correlation ratio from
probability theory [Roche et al., 1998].

In the nineties mutual information from information theory evolved as a
very promising similarity measure for multi-modal image registration (for ex-
ample, [Maes et al., 1997]). Recently, there has been an effort to enhance the
robustness of the measure by incorporating spatial information using energy
minimization based on Markov random fields [Zheng, 2007]. For the registra-
tion of a spine segment, the mean TRE generally amounted to 0.8 millimeters.
For a maximum displacement from ground truth of 12 millimeters and de-
grees respectively, a success rate, that is, the percentage of registrations with
a TRE below 1.5 millimeters, of 85 percent could be achieved.

Since we are carrying out an intensity-based registration, we do not con-
sider feature-based approaches here. However, a hybrid approach to similarity
measuring involving one fiducial marker is proposed in [Russakoff et al., 2003].
For spine images and a maximum initial TRE of 14 millimeters, the marker
was capable of reducing the mean TRE by 0.2 millimeters and increasing the
success rate (TRE below 2.5 millimeters) by 13 percent points to 99 percent.

Optimization strategies for use in image registration are evaluated in
[Maes et al., 1999]. Different methods are compared with respect to their
capability to maximize the mutual information of two images. Additionally,
the benefit of multi-resolution strategies is evaluated. It was found that Pow-
ell’s direction set method was most accurate and that the downhill-simplex,
the conjugate-gradient, and the Levenberg-Marquardt method were most ef-
ficient.

In [Kubias et al., 2007a] an optimization strategy with three variable com-
ponents, namely the optimizer (local or global), the scale and resolution, and
the type of transformation parameters to estimate (in-plane or out-of-plane),
which are parameterized according to the optimization stage, is presented. In
the beginning, a global adaptive random search optimizer is used to estimate
the in-plane parameters, which particularly affect the DRR, using a lower
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DRR resolution and CT scale. At later stages a local best neighbor search is
used to estimate the out-of-plane parameters at higher resolutions and scales.



Chapter 3

2D/3D Registration

3.1 Introduction

In medical imaging a number of modalities, which differ in the data they pro-
duce and the way it is gained, is used to acquire images of the human body.
For medical applications it is often desirable to combine the capabilities of
more than one imaging modality capturing one and the same object. Like-
wise, one may want to integrate images that were acquired at different points
of time into the intervention in order to augment the information available
to the surgeon. The process of spatially aligning two images is referred to as
registration. It aims at establishing a correspondence between the coordinate
systems of the respective datasets.

In [Maintz and Viergever, 1998] the following classification of registration
methods is presented:

1. Dimensionality: The number of dimensions of the datasets involved
(2D/2D, 2D/3D and 3D/3D). These depend on the modalities the
images were acquired with.

2. Nature of registration basis: The image information that the align-
ment is based on. Essentially, there are intrinsic and extrinsic methods,
where the former rely on information as arising solely from the patient’s
body, and the latter involve artificial objects which are mounted such
that they appear on the resulting images. These objects comprise fidu-
cial markers attached during invasive (e.g. screw markers applied to the
bone) as well as non-invasive (e.g. skin markers) interventions. Intrin-
sic features can be divided into salient objects (landmarks), structures

11
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obtained by segmentation (mostly surfaces), and voxel-based proper-
ties.

3. Nature of transformation: The simplest transformation is called
rigid. It consists merely of translation and rotation. Adding scale and
shear yields the affine transformation. If the transformation is capable
of aligning parallel lines regardless of perspective distortion, it is called
projective. The transformation with the most degrees of freedom is
called curved or elastic, mapping curves to lines.

4. Domain of transformation: Specifies whether the transformation is
applied to the whole image (global) or only parts of it (local).

5. Interaction: The level of interaction quantifies the amount of interac-
tion of the user with the registration application. It comprises interac-
tive, semi-automatic, and automatic.

6. Optimization procedure: This criteria tells whether the transfor-
mation parameters that are to be recovered can be computed directly
or have to be searched for.

7. Modalities involved: Registering two images of the same modality is
referred to as monomodal. If different devices are involved, it is called
multimodal. Other options comprise the registration from modality to
model and patient to modality.

8. Subject: Defines the origin of the images, where intrasubject (subject
A to subject A), intersubject (subject A to subject B), and atlas regis-
trations (subject A to an image generated from more than one subject)
are possible options.

9. Object: The area of the imaged subject used to carry out the regis-
tration (e.g. head, lung, or abdomen).

The problem at hand can be broken down into a global rigid 2D/3D reg-
istration of the abdomen based on intrinsic (voxel-based) features. Due to
differing dimensionality it is inherently multimodal (X-ray to CT). The trans-
formation parameters are to be searched for during a preferably automatic
procedure. This classification will be justified in the next sections.
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3.1.1 Medical Imaging Modalities

Medical imaging modalities produce images of the human body. Maintz and
Viergever distinguish anatomical and functional modalities
[Maintz and Viergever, 1998]. The former capture mainly the morphology
of the human body whereas the latter focus on metabolism. This second
group includes SPECT (single photon emission computed tomography), PET
(positron emission tomography), and fMRI (functional MRI). Since our in-
terest lies in salient and rigid objects of the abdomen, we will restrict our
considerations to anatomical modalities. These include CT (computed to-
mography), MRI (magnetic resonance imaging), X-ray (fluoroscopy), and ul-
trasonography. CT and MRI produce three-dimensional scans whereas X-ray
and ultrasonography produce two-dimensional images of the human body.

Medical ultrasonography is used to visualize primarily non-rigid struc-
tures like organs, foetuses, and muscles by means of acoustic energy. Acous-
tic impedance of the tissue accounts for the resulting sonograph, which arises
from a measurement of the reflected sound. Because of its low resolution and
high level of noise, it does not satisfy our accuracy requirements. However,
ultrasonography is a popular image acquisition technique since it is widely
considered to be harmless for the human body.

Fluoroscopy devices use electromagnetic radiation to obtain information
about rigid, but also non-rigid parts of the patient’s body. If a region exhibits
a certain amount of radio-density, it is detectable in the acquired data since
there is a direct correlation between the radiation attenuation of material
and the resulting image. Modern fluoroscopes use X-ray image intensifiers,
which convert the X-ray radiation into a visible image allowing the use of
lower X-ray doses. The voltage typically applied ranges from 50 to 150 kilo-
volts (kV ) depending on the examination [Seibert, 2004]. Figure 3.1 shows
a C-arm X-ray camera. The X-ray source of such cameras can be rotated
around the patient’s body to a certain extent, which adds great flexibility to
intraoperative image acquisition. For the experiments described in this work
a mobile C-arm camera was used to obtain different views of the patient.

Computed tomography is closely related to X-ray since the three-dimen-
sional CT images are reconstructed from multiple scans produced by pairs of
opposite X-ray sources and sensors rotating around the patient’s body. The
tube voltage is usually set to a single value between 80 and 140 kilovolts.
The resulting three-dimensional dataset is a regular grid of real values, which
represents a discretization of the imaged object’s radiodensity and spans the
volume coordinate system. These values are usually expressed by means of
the Hounsfield scale, which refers to the radiodensity of water, being defined
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Figure 3.1: A C-arm X-ray camera



3.1. INTRODUCTION 15

as zero (see Chapter 1 of [Jackson and Thomas, 2004] for details). A CT
scanner is shown in Figure 3.2.

Figure 3.2: A CT scanner.

Magnetic resonance imaging derives images of the human body from the
relaxation properties of hydrogen nuclei. The patient is exposed to a magnetic
field which causes the nuclei to align in a defined manner. The relaxation
of the nuclei, that is, the transition to the static condition, can be detected
and forms the basis of the resulting MRI scans. In contrast to computed
tomography, which is particularly suitable to acquire images of radio-dense
structures of the body, such as bones and cartilages, magnetic resonance
imaging provides a better means to capture tissues.

The registration task described in this work is carried out with CT scans
and X-ray images and is thus multimodal. On one hand, the respective data
can be acquired in many modern hospitals, on the other hand, a good reg-
istration result may be expected. CT scanning inherently produces high-
resolution and high-contrast images with different types of tissue clearly dis-
tinguishable. Radio-dense structures, which are usually time-invariant and
thus particularly suited for our registration task, are salient. By now no
three-dimensional scan of the patient whose quality is similar to that of CT
or MRI volumes can be produced during medical interventions. The Siemens
ARCADIS Orbic 3D [Siemens, 2007] is capable of producing intraoperative
volumes, yet the size (12×12×12cm) of the scans is still too small to be use-
ful for our purposes. Additionally, it would take too long to acquire a full CT
scan, for example, to determine the current position of a surgical instrument,
and the radiation exposure for both the patient and the surgeon would be
excessively high. Hence, the registration has to be based on two-dimensional
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images of the patient which can be produced without unnecessarily impeding
the intervention. Modern C-arm X-ray cameras satisfy this condition. Fur-
thermore, the aforementioned close relation between X-ray and CT in terms
of image acquisition promises an inherently sound registration.

3.1.2 Intensity-Based Versus Feature-Based Registra-
tion

In contrast to [Maintz and Viergever, 1998], we draw a distinction between
feature-based and intensity-based registrations. These terms are more com-
mon in recent literature on medical image registration.

Feature-based methods rely on the presence of salient features in the im-
ages to align. These features may be of an inherent or an artificial nature.
Natural features comprise points, lines, surfaces, and contours. Artificial
features include fiducial markers applied during invasive and non-invasive in-
terventions, stereotactic frames, and the like. To recover salient objects from
the images, some kind of segmentation is required. As soon as the desired
features have been extracted from both images, they can be aligned poten-
tially faster than when using the whole image information. However, it is
necessary to carefully plan the image acquisition, the segmentation may in-
troduce additional errors, and the user interaction often required is generally
not desirable during medical interventions [Zöllei, 2001]. Yet, what even-
tually keeps us from using feature-based registration methods is our need
for accuracy and robustness, which necessitates the use of invariant fiducial
markers applied to the patient’s body, for example, their bones, during an
invasive intervention. Bearing in mind that the registration algorithm is to
be used mainly in the context of routine examinations, the burden on the
patient that the application of these markers involves is not justifiable with
the registration speed-up and accuracy it may entail. In addition, such an
intervention conflicts with our demand for a method that is inoffensive to the
patient.

Intensity-based methods rely on the whole information conveyed by the
raw pixel or voxel data of both datasets or parts of it. Their basic principle is
to maximize a criterion measuring the intensity similarity [Roche et al., 1999].
In contrast to feature-based registration, there is no need for a segmentation
step prior to the alignment. Hence, the registration can be conducted with-
out any user interaction. Before assessing the similarity of both images and
therefrom inferring the quality of the alignment, the dimensionality of the
images has to be matched (see Section 3.3), involving a prior calibration of
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the imaging system (see Section 3.4). Thereafter objective functions provide
a quantitative measure of the similarity of both images (see Section 3.5). An
optimization procedure is used to find a minimizer or a maximizer of the
objective function (see Section 3.6).

3.1.3 User Interaction

As mentioned in Section 3.1.2, user interaction with the registration system
is generally undesirable. It may delay the intervention or require additional
staff. The choice of an intensity-based approach to carry out the registration
supports the request for a system which gets by with as little user interaction
as possible. However, a successful registration is only feasible when the initial
estimation of the images’ correlation is sufficiently accurate. Hence, an initial
adaption of the volume’s pose by the user may have a significant influence
on the convergence behavior of the registration application. Moreover, a
coarse user-driven segmentation of regions that impair the registration may
be beneficial. This leads us to not categorically ruling out user interaction
and aiming at a maximal robustness of the registration instead.

3.2 Rigid-Body 2D/3D Registration

Since we use bones and rigid parts of the human body as a reference for the
alignment and these structures are nearly invariant with respect to time, we
can consider our task a rigid-body registration. Hence, the set of variable
transformation parameters reduces to six, three parameters tx, ty, and tz
defining the translation along the x, y, and z axis in millimeters and three
parameters rx, ry, and rz, which define the rotation around the x, y, and
z-axis and represent Euler angles in radians. Thus, the aim of this work is
to find the translation matrix:

T =


1 0 0 tx
0 1 0 ty
0 0 1 tx
0 0 0 1

 (3.1)
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and the rotation matrices:

Rx =


1 0 0 0
0 cos(rx) −sin(rx) 0
0 sin(rx) cos(rx) 0
0 0 0 1

 (3.2)

Ry =


cos(ry) 0 sin(ry) 0

0 1 0 0
−sin(ry) 0 cos(ry) 0

0 0 0 1

 (3.3)

Rz =


cos(rz) −sin(rz) 0 0
sin(rz) cos(rz) 0 0

0 0 1 0
0 0 0 1

 (3.4)

Since the application of the rotations around the three coordinate axis is not
commutative, we define their order to be roll (x-axis), pitch (y-axis), and yaw
(z-axis). The complete rotation matrix R can thus be computed as follows:

R = RzRyRx (3.5)

To establish a common frame of reference, we introduce a world coordi-
nate system which originates somewhere in the operating room. In our case
this coordinate system is defined during camera calibration, where the pose
of the X-ray camera is determined (see Section 3.4).

The operators T and R place the volume into the world coordinate sys-
tem, thus mapping a point p̃vol ∈ R4 from the coordinate system defined by
the CT volume (in millimeters), that is, the object coordinate system, to a
point p̃world ∈ R4 in the world. Note that vectors with a tilde are given in
homogeneous coordinates. The volume should be rotated around a defined
point, by default its center. Hence, we translate the volume’s center of ro-
tation into the world coordinate system’s origin using the inverse of matrix
C before we carry out the rotation. Only when the volume has been rotated
and its original position has been restored using C, we apply the actual
translation T. We refer to this chain of transformations as model transfor-
mation, which stems from the classical rendering pipeline. It is described as
a whole by the matrix M, which represents the rigid-body transformation in
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three-dimensional space:

p̃world = Mp̃vol (3.6)

= TCRC−1p̃vol (3.7)

Now each point in the world is mapped to the coordinate system established
at the X-ray camera’s source. We call this process viewing transformation.
The matrix V encodes the position and orientation of the camera while it
produced the radiograph to be aligned.

p̃cam = Vp̃world (3.8)

Subsequently, we make use of the knowledge about the internal camera pa-
rameters gained during camera calibration (see Section 3.4) and packed into
the perspective projection matrix P. It is the perspective transformation
followed by the perspective division that realizes the mapping of a point in
camera space into image space:

p̃img = Pp̃cam (3.9)

pimg =

(
p̃img.x/p̃img.w
p̃img.y/p̃img.w

)
(3.10)

where pimg represents a point in Cartesian image coordinates.

The whole chain of transformations from a point in the CT volume to a
point in the X-ray image can thus be represented as follows:

p̃img = PVTCRC−1p̃vol (3.11)

followed by the perspective division shown in (3.10).

The only transformation that is considered as variable, thus not being
trivial to recover, is the model transformation M. The others are treated as
constants in the course of aligning one X-ray image and a CT volume.

3.3 Digitally Reconstructed Radiographs

3.3.1 Introduction

In order to align the coordinate systems of a CT volume and an X-ray image,
their dimensionality has to be matched. From (3.11) we know how a point
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within the CT volume maps to a point in X-ray image space as well as all
intermediate steps. If we use the CT scan as a model of the patient’s body
and emulate the X-ray image acquisition by applying the known chain of
transformations to points in the volume, we obtain a virtual X-ray image
commonly referred to as digitally reconstructed radiograph (DRR).

If the viewing transformation and the perspective transformation are con-
sidered to be constant, namely in accordance with the effective attributes of
the X-ray camera, only the model transformation remains variable. Hence,
the nature of the DRR depends on the choice of the translation parameters
tx, ty, and tz and the rotation parameters rx, ry, and rz. Assuming a bijection
between these parameters and a DRR within certain bounds1, we can state
the following: If we succeed in aligning the X-ray image and the DRR, we
have found the set of model transformation parameters sought-after.

To adequately simulate the process of X-ray acquisition, we have to under-
stand what the image intensities of the radiograph result from. The X-ray
intensity I reaching the detector plane or the image intensifier at a point
(u, v) ∈ Ω in image space can be expressed by means of the following equa-
tion [Wein et al., 2005]:

I(u, v) =

∫ Emax

0

I0(E) exp

(
−
∫
r(u,v)

µ(x, y, z, E)dr

)
dE (3.12)

where I0(E) denotes the incident X-ray energy spectrum, r(u, v) a ray from
the X-ray source to the image point (u, v), and µ(x, y, z, E) the energy depen-
dent attenuation at a point (x, y, z) in space. The second integral represents
the attenuation of an incident energy I0(E) along the ray r(u, v). The inte-
gral over E incorporates the energy spectrum of X-ray cameras. For the sake
of efficient computation, the X-ray source is mostly modeled to be monochro-
matic and the attenuation to act upon an effective energy Eeff :

I(u, v) ≈ I0(Eeff) exp

(
−
∫
r(u,v)

µ(x, y, z, Eeff)dr

)
(3.13)

Taking into account that X-ray devices usually provide the logarithm of the
measured X-ray intensities, we can state the following correlation:

xray(u, v) ≈ ln(I0(Eeff))−
∫
r(u,v)

µ(x, y, z, Eeff)dr (3.14)

In other words, the intensities of the final X-ray image can be mapped linearly
to a simple accumulation of the energy attenuation along the ray. More

1E.g. rx and rx+360◦ will produce the same DRR. Yet, such rotations can be neglected.



3.3. DIGITALLY RECONSTRUCTED RADIOGRAPHS 21

elaborate similarity measures do not require an identity relationship between
the two signals and are thus insensitive to global additions and multiplications
applied to one of the signals (see Section 3.5). Hence, the basis for the DRR
generation can be formulated as follows:

drr(u, v) =

∫
r(u,v)

µ(x, y, z, Eeff)dr (3.15)

A DRR intensity has now become a quantitative measure for the total atten-
uation of the incident energy along one viewing ray.

When mapping the highest measured X-ray intensity to the maximum
intensity value (e.g. white) and clamping the other intensities to the range
of available intensity values, the DRR, according to the above formulation,
represents the inverted version of the X-ray image.

3.3.2 DRR Rendering

Digitally reconstructing a radiograph is tantamount to rendering a volume,
thus producing a two-dimensional view of a three-dimensional model. How-
ever, we are dealing with a greatly simplified version of the rendering equation
[Kajiya, 1986] since lighting can be generally neglected. There are essentially
two approaches to volume rendering: Image-order and object-order render-
ing.

Image-order approaches iterate through the image space and try to find
all contributions of the volume to single pixels. The most widely used tech-
nique is volume raycasting (described in more detail in Section 3.3.3). The
performance is more dependent on the number of pixels in the image than on
the resolution of the volume. This may be an advantage for volumes with a
high number of voxels as well as a drawback for sparsely populated volumes.
Image-order approaches are particularly suited for GPU-based rendering by
means of fragment shaders since they inherently pursue a pixel-based com-
putation strategy (see Section 4.4).

Object-order approaches, on the other hand, iterate through the elements
of the volume and determine their contribution to the intensities of certain
image pixels. A popular object-order technique is splatting [Westover, 1991],
where the volume’s voxels are splatted onto the image plane, thus leaving a
footprint in the image to produce. In contrast to image-order rendering, the
performance of these approaches is more sensitive to the number of volume
elements. However, sequential access to the voxels in memory may speedup
the computation.
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3.3.3 DRR Raycasting

Volume raycasting is a direct image-based volume rendering technique. It is
based on the work of James F. Blinn on the interaction of light and matter
[Blinn, 1982] and James T. Kajiya [Kajiya and Herzen, 1984]. Marc Levoy
lay the foundation for volume raycasting as it is known today [Levoy, 1988].

A viewing ray is cast from the observer eyepoint through every pixel in the
image. The volume it penetrates is sampled at certain points along the ray
to produce a final color value for the pixel. A raycasting algorithm typically
involves the following steps:

• Interpolation

Volumes are usually represented by a discrete regular grid of color or
density values. To obtain such a value for an arbitrary point within
the volume, a set of voxels in the neighborhood and their respective
distance from the sampling position are used to generate, that is to say,
interpolate a new value. Common methods comprise nearest neighbor
and linear interpolation.

• Classification

Classification describes the phase of assigning material properties to
a point in the volume. Typically every sampling position is provided
with an opacity or a color value. Most often so-called transfer functions
serve as a look-up table for these values. Levoy initially proposed a
classification prior to interpolation (pre-classification), which is known
to produce faulty colors and is most often replaced by a classification
after the interpolation step (post-classification).

• Shading

During shading a color value is assigned to a sampling point in the
volume. This color represents the light which is reflected at that point
into the direction of the observer. One of the most popular shading
techniques is Phong’s reflection model [Phong, 1973].

• Composition

The process of computing a final color value for one image pixel from
the samples is referred to as composition. It is the step where a discrete
version of the rendering equation is evaluated, either from front to back
or from back to front.
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As already mentioned, we are dealing with a greatly simplified version of
volume rendering. There is only one point light source, namely at X-ray
camera’s source, whose light is attenuated along the viewing rays.

To compute the total attenuation of the initial energy, we need to ac-
cumulate the attenuation coefficients µworld for every ray by evaluating the
discrete version of (3.15). According to [Rohlfing et al., 2002] we formulate:

s(u, v) = δ
pdest(u, v)− psrc

‖pdest(u, v)− psrc‖
(3.16)

pi(u, v) = psrc + (i+ 0.5)s(u, v) (3.17)

N(u, v) =
‖pdest(u, v)− psrc‖

δ
(3.18)

drr(u, v) = δ

N(u,v)∑
i=0

µworld(pi(u, v)) (3.19)

where s(u, v) is the step vector (of length δ) on the ray from the X-ray
source psrc through a discrete point pdest(u, v) on the image plane. The set of
sampling positions on that ray is denoted by pi(u, v) with i = 0, . . . , N(u, v).
Note that all vectors and lengths refer to the Cartesian world coordinate
system.

To get the radiodensity for an arbitrary sampling position pi(u, v) within
the volume tri-linear interpolation of the eight nearest voxels’ density values
is used. It was mentioned earlier that the same principles underlie the acquisi-
tion of X-ray and CT data. The elements of both resulting datasets attribute
to the radio-density of the imaged object, which means that the voxels’ radio-
densities provide a good approximation of the local relative attenuation of
radiation. Consequently, the value obtained from the interpolation step can
be classified as-is. Shading can be generally neglected. Ultimately, the final
pixel intensity is composed as the sum of the samples’ attenuation coefficients
times the step length.

In order to simulate the acquisition of an X-ray image correctly, the whole
chain of transformations in (3.11) has to be reflected in the raycasting algo-
rithm. Figure 3.3 shows a schematic X-ray imaging setting for acquiring
radiographs of one patient for three different camera poses. It was recon-
structed from the three radiographs that can be seen in the image during
camera calibration (see Section 3.4). The six translation and rotation pa-
rameters we are trying to recover are incorporated by the position and orien-
tation of the volume in the frame of reference, that is, the world coordinate



24 CHAPTER 3. 2D/3D REGISTRATION

Figure 3.3: The schematic setting of X-ray image acquisition that is emulated
in order to generate the DRRs.

system. Likewise, the position of the ray source and the normal vector of
the image plane take into account the pose of the X-ray camera whereas
the distance between them considers the characteristics of the perspective
projection. Hence, we reformulate:

drr(x, u, v) = δ

N(u,v)∑
i=0

µvol(M(x)−1p̃i(u, v)) (3.20)

where the vector x contains the six rigid-body transformation parameters
incorporated by the inverse model matrix M−1, which maps any point in the
world to a point in the coordinate system of the volume. The function µvol
provides the attenuation coefficients for these points. The pose as well as the
projection properties of the camera are reflected in p̃i, which is considered
a constant within the function drr. Figure 3.4 depicts the DRRs produced
by the setting in Figure 3.3, the corresponding X-ray images, and the color-
coded addition of the respective original (red channel) and reconstructed
(green channel) radiographs.
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Figure 3.4: A comparison of the DRRs (shown in the upper row) and the
X-ray images (shown in the middle row) produced by the setting in Fig-
ure 3.3. The last row depicts the addition of the DRRs (red channel) and the
radiographs (green channel). Yellow hints at a good match between them.
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3.4 Camera Calibration

In order to simulate the acquisition of a radiograph, the exact characteristics
of the imaging setting have to be known. These characteristics comprise:

• The pose (position and orientation) of the camera source with respect
to the common frame of reference, referred to as extrinsic camera pa-
rameters.

• The perspective projection and distortion properties of the camera,
referred to as intrinsic camera parameters.

The extrinsic parameters are incorporated by the viewing transformation
matrix V. They define a rigid-body transformation from the world coor-
dinate system to the coordinate system established at the X-ray camera’s
source. The intrinsic parameters are reflected by the projection matrix P,
thus specifying the transformation from camera coordinates to image coor-
dinates. While those parameters can be determined during an off-line proce-
dure, that is, before any intervention, the extrinsic parameters usually have
to be recovered ad hoc, that is, for every X-ray image acquired and used
for the registration. They can only be retrieved beforehand if the camera’s
position is fixed relative to the world or it can be moved in a predefined
way during the operation. In other words, we have to be able to reproduce
certain camera poses which correspond to known sets of extrinsic parame-
ters. Since portal X-ray cameras are usually mobile and subject to potential
bumps against them, we carry out an online calibration for each image ac-
quired. Alternatively, the pose of camera can be determined by means of a
C-arm tracking setup.

The implementation of camera calibration was not part of this thesis. In-
stead, we use a calibration procedure which essentially relies on the methods
described in [Tsai, 1992]. A set of coplanar points visible on the image is used
to compute the camera parameters. To obtain these points, a radio-opaque
board with spheric metal markers applied to it on both sides is introduced
to the image space. The positions of the markers on the board are known,
that is, determined from a CT scan of the board. The respective positions of
the markers on the X-ray images can be recovered by means of segmentation
since they stand out clearly from the rest of the image, as can be seen in Fig-
ure 3.5(a). It is conducted using variational methods [Chan and Shen, 2005].
First a total variation L1 filter (TV-L1) which is capable of extracting ho-
mogeneous regions of a certain scale, that is, the size of the markers on the
image, is applied. To find all circle-like regions and discard other objects
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(a) (b)

Figure 3.5: The left image shows a radiograph with the spheric calibration
markers clearly visible. The right image shows the result of the marker
segmentation.

such as surgical needles, the Eigenvalues of the image’s Hessian are taken
into account. An absolute value of the smaller Eigenvalue which is still large
suggests a circular structure in the image. A final thresholding step yields
an image as shown in Figure 3.5(b). As soon as the correspondence between
the markers in the image and in the world has been established, the chain of
transformations between them can be recovered.

In order to obtain the intrinsic parameters, a set of views of the calibra-
tion board at different poses, that is, not being fixed to the operating table,
is used. First the parameters are approximated by a closed-form solution
which disregards lens distortion. Then the reprojection error is minimized
using gradient descent yielding the final values for the intrinsic parameters.
These are used to undistort the X-ray images and to compute the extrinsic
parameters for single radiographs, which are determined in a similar manner
as above. To do so, the calibration board is mounted under the operation
table. Since the board is fixed during the entire intervention, we use it as a
reference for setting up the world coordinate system in the operating room.
Hence, the positions of the markers in the world are known too. Initially
an approximation of the mapping between the markers’ positions in the CT
scan of the board, that is, world coordinates, and the respective positions
in the camera coordinate system, which is represented by the viewing trans-
formation matrix V, is calculated. This is possible since the mapping from
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points in the world to points in the image, that is, the result of the matrix
multiplication PV, and the projection from camera coordinates to image
coordinates, that is, the projection matrix P, are known. Eventually the
reprojection error is again minimized using gradient descent optimization.

3.5 Intensity-Based Similarity Measuring

3.5.1 Introduction

Similarity measures or objective functions provide a means to assess the
similarity of two signals. They are of the following form:

y = f(x) f : RN → R (3.21)

The dependent variable y, sometimes referred to as energy, is a dimensionless
quantity expressing the similarity of the signals. The vector x contains the
set of variables that is known to have an influence on the similarity. Usually
the graph of f is not known and only local evaluations are available. During
optimization (Section 3.6) parts of the objective function are recovered to find
extrema of y. We will refer to our task as a minimization problem throughout
this work. Hence, we define f to be positive and to decrease towards zero
for an increasing similarity of the signals. To emphasize this, we will use the
term cost function when referring to f .

For the registration problem at hand, f can be considered as follows:

f(x) = sm(drr(x), xray) (3.22)

with sm being the similarity measure. While drr is dependent on the model
transformation parameters x, the original radiograph xray is a constant in
the context of f .

The choice of the similarity measures is dependent on the nature of the
registration basis (see 3.1.2). Since we rely on intensity-based methods, we
have to use cost functions that process essentially the whole information con-
veyed by the two images in order to compute their similarity. Furthermore,
the imaging modalities involved in the registration play a key role in the
choice of similarity measure. The physical model implemented by a modal-
ity is reflected in the resulting images. These models may vary greatly for
different imaging devices (see Section 3.1.1). Each intensity-based similarity
measure represents a certain type of relationship between the image inten-
sities. These relationships reflect different interpretations of similarity. A
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similarity measure will perform the better the more the images actually ex-
hibit the assumed relationship. Hence, it is crucial to the success of the
registration to find a similarity measure which adequately incorporates the
peculiarities of the imaging modalities involved and their interrelationship.

Roche et al. distinguish the following hypotheses underlying known sim-
ilarity measures [Roche et al., 1999]:

• Identity relationship

These measures assume the images I and J to be identical when they
are perfectly aligned: I = J . Most of them are also insensitive to a
global offset, though: I = J+β (β ∈ R). Popular examples of this class
are sum of squared differences (SSD) and sum of absolute differences
(SAD).

• Affine relationship

Measures based on an affine relationship assess images I and J to
be similar when they are related by a linear mapping: I ≈ αJ + β
(α, β ∈ R). This assumption usually holds for images acquired by one
imaging modality. Normalized cross correlation (NCC) is a widely used
measure of this class.

• Functional relationship

The term functional relationship comprises any kind of functional map-
ping between the two images: I ≈ f(J). This is a very general defini-
tion containing the two hypotheses above.

• Statistical relationship

Similarity measures based on statistical relationship involve methods
from information theory and the computation of image statistics. For
example, mutual information provides a quantitative measure of the
amount of information an image I, considered a random variable, re-
veals about an image J . It proved reliable also for multimodal registra-
tion [Maes et al., 1997, Zöllei, 2001].

Since similarity measures that are evaluated in a pixel-wise fashion such
as SSD and NCC inherently match the GPU programming model well and
are thus not affected by its limitations (see Chapter 4), we will focus on these
measures in the following.
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3.5.2 Sum of Differences

This class of similarity measures is based on a per-pixel computation of inten-
sity differences. It assumes an identity relationship between the intensities of
two correctly aligned images. This assumption hardly holds for images pro-
duced by different imaging modalities, but may be adequate for monomodal
registrations.

To prevent differences with different signs from cancelling each other out,
they have to be provided with an uniform sign, which ensures a proper accu-
mulation of differences. The sum of squared differences (SSD) measure does
so by squaring the intensity difference of each pair of pixels at a position
(u, v) ∈ Ω in image space:

SSD (I, J) =
1

N

∑
(u,v)∈Ω

(I(u, v)− J(u, v))2 (3.23)

where N denotes the total number of pixels.

To reduce the impact of single outliers, for example, salt and pepper noise,
on the measure, the sum of absolute differences (SAD) may be used:

SAD (I, J) =
1

N

∑
(u,v)∈Ω

|I(u, v)− J(u, v)| (3.24)

A simple example shall demonstrate the limited applicability of these
measures. Let us consider a hypothetical imaging modality producing binary
images. We may want to align it with a reconstructed image. For the sake
of simplicity, the emulation procedure produces the inverse of the original
image for a congruent setting, as it is the case for our DRR formulation in
Section 3.3. When aligned, the two images will exhibit the highest possible
intensity difference. Hence, the similarity measure will report a better match
for any emulated image other than the correctly aligned one.

Despite the aforementioned constraints, the use of sums of differences is
popular since they are easy to implement and quick to compute. In particular,
these measures can be evaluated along with an image-order generation of
DRRs (see Section 3.3.2).

3.5.3 Normalized Cross Correlation

Normalized cross correlation (NCC) or the correlation coefficient verifies the
existence of an affine relationship between images. It provides information
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about the extent and the sign by which two random variables are linearly
related:

NCC (I, J) =
1

σIσJ

1

N

∑
(u,v)∈Ω

(I(u, v)− µI) (J(u, v)− µJ) (3.25)

=

∑
(u,v)∈Ω (I(u, v)− µI) (J(u, v)− µJ)√∑

(u,v)∈Ω (I(u, v)− µI)2
√∑

(u,v)∈Ω (J(u, v)− µJ)2
(3.26)

It has two extrema occurring if I(u, v) = αJ(u, v) + β for all (u, v) ∈ Ω with
α, β ∈ R, where a positive value of α, that is, an increasing linear relationship
yields a maximum of 1 and a negative value of α, that is, a decreasing linear
relationship yields a minimum of −1. Both extrema attest to a full linear
relationship between the images I and J . Hence, normalized cross correlation
is insensitive to global variations of brightness and contrast between the input
images. What is more, even an inversion of an image’s intensities does not
prevent the measure from detecting a potential relationship, which is the
condition for the applicability of the inverse DRR formulation in Section 3.3.

In contrast to a simple summation of pixel differences, NCC, according
to formulation (3.26), requires the pixel data to be considered at least twice,
once for the computation of the arithmetic means µI and µJ and again for
the computation of the distances from the means. Note that the expressions
in the numerator and the denominator can be evaluated in a parallel manner.
The following alternative formulation can prevent this:

NCC (I, J) =

∑
(u,v)∈Ω I(u, v)J(u, v)−NµIµJ√∑

(u,v)∈Ω I(u, v)2 −Nµ2
I

√∑
(u,v)∈Ω J(u, v)2 −Nµ2

J

(3.27)

The pixel intensities can be summed up along with the summations above
and beneath the slash, which again can be evaluated simultaneously, to even-
tually compute the means and evaluate the whole formula. Yet, the potential
proximity of the minuends and the subtrahends may introduce an additional
roundoff error (cp. Sections 1.3 and 14.1 of [Press et al., 1992]), especially
when I and J are largely homogeneous.

When assessing the similarity of a DRR and an X-Ray image, we usually
want to exclude certain regions that would impair the result, that is, parts
that are only visible on the X-ray image, such as the camera’s aperture
around the edges, calibration targets, and medical instruments. This can be
achieved by using pixel weights which specify the contribution that an image
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position makes to the measure. Hence, we reformulate

NCC (I, J, w) =
1

σwIσwJ

1

Σw

∑
(u,v)∈Ω

w(u, v) (I(u, v)− µwI) (J(u, v)− µwJ)

(3.28)
where w may be a binary mask on every pair of corresponding pixels, that is,
w(u, v) ∈ {1, 0}, or a weight function, that is, w(u, v) ∈ [0, 1]. For the sake of
flexibility we chose the latter, even though it may be less efficient to compute.
However, we may want to reduce the impact of certain image regions without
completely discarding them. Σw denotes the sum of all weights in Ω:

Σw =
∑

(u,v)∈Ω

w(u, v) (3.29)

Naturally, the use of pixel weighting also influences the mean and standard
deviation of the X-ray and DRR intensities:

µwI =
1

Σw

∑
(u,v)∈Ω

w(u, v)I(u, v) (3.30)

σwI =

√
1

Σw

∑
(u,v)∈Ω

w(u, v) (I(u, v)− µwI)2 (3.31)

To make the formulation of normalized cross correlation comply with the
definition of the cost function f in the beginning of this section, we introduce:

NCC′ (I, J, w) = 1 + NCC (I, J, w) (3.32)

which maps NCC to the range [0, 2] and yields lower values for more similar,
that is, stronger correlated images whose intensities vary inversely, as it is
the case for the X-ray images and the DRRs according to our formulation in
Section 3.3.1.

When dealing with more than one X-ray view, which is virtually always
the case, we calculate one common similarity measure as follows:

NCC′nviews

([
Ii Ji wi

]nviews

i=1

)
= 1 +

∑nviews

i=1 NCC′ (Ii, Ji, wi)

nviews

(3.33)

In fact, we are not dealing with a monomodal registration, what cross
correlation usually proofs useful for [Roche et al., 1999]. However, the same
principles underlie the acquisition of CT scans and X-ray images, where the
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effective energies used by tomographs and fluoroscopes differ. This may cause
different ratios between the recorded attenuation of bones and soft-tissue.
One way to address this is to discard all attenuation coefficients within the
CT volume beneath a certain threshold [Penney et al., 1998].

What particularly encourages the use of the NCC measure apart from
its speed is the pixel-wise evaluation it is based on. For reasons qualified in
Chapter 4, this kind of measure can be evaluated very efficiently by means
of programmable graphics hardware.

3.5.4 Image Region of Interest

There are parts in the X-ray image whose intensities are not related to those
of the DRRs, even if both images are perfectly aligned. Those parts distort
the similarity measure and may thus impair the accuracy and robustness
of the registration. Hence, we use the weight function w to mask out the
following sources of imprecision:

Aperture of the X-ray camera The aperture visible on the edges of the
images is almost the same for all radiographs we used. Hence, one mask for
the aperture and the writings on the radiographs can be used for all X-ray
images if it grants a little tolerance.

Medical instruments We are currently working on the automatic seg-
mentation of medical instruments that are visible on the radiographs, such
as surgical needles and ultrasonic probes. For the time being, a mask is
drawn manually for each radiograph.

Calibration targets An image showing the calibration targets is a byprod-
uct of camera calibration, where the positions of these markers have to be
determined. After inverting, thresholding, and dilating the images, they can
be used to mask out the calibration targets from one radiograph each.

Large areas of deformable tissue Currently we do not have a way to
automatically identify areas containing merely soft tissues such as intestines,
whose pose may vary over time and which are not reliable to guide the regis-
tration. In the future we want to evaluate the effect of completely excluding
tissues below a certain radio-density threshold. Furthermore, these areas
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might be segmented automatically. For now, however, masks for these areas
are drawn manually.

The final weight mask intensities w(u, v) constitute the minimum inten-
sity of all four masks at position (u, v). Pixels that are discarded by w neither
contribute to the mean of the image intensities nor to the final NCC mea-
sure. Figure 3.6(a) shows an exemplary radiograph including the artifacts
discussed above. The result of masking all potential sources of imprecision
out of the image by means of w can be seen in Figure 3.6(b).

(a) (b)

Figure 3.6: The left image shows a radiograph containing different kinds of
artifacts such as an ultrasonic probe, a surgical needle, calibration targets,
and the camera’s aperture. The right image shows the radiograph after the
application of w.

3.6 Optimization

3.6.1 Introduction

Optimization describes the process of seeking a set of model transformation
parameters x which induces the cost function f to take on a minimum. The
requirement of finding the global minimum is usually over-optimistic, yet it
is mostly sufficient to find the smallest value of f in a subset X ⊂ RN of the
independent parameter space, which is then referred to as the minimizer of
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f in X:

arg min
x∈X

sm (drr(x), xray) (3.34)

The subset X can be considered as a limited range of poses that the patient
may take in a surgical setting.

Unfortunately, the cost function’s graph can not by retrieved easily and
it is too complex to compute the extrema directly, that is, computing the
zeros of the derivative ∂f

∂x
obtained by symbolic differentiation. Hence, the

progression of the cost function has to be partly reconstructed from a set of
local function evaluations. Evaluating f at a position x is potentially costly
since it involves computing a DRR and determining its similarity to the X-ray
image. Hence, it is crucial to choose an optimization strategy that heads for
the desired minimum quickly and terminates at the right time, according to
a good tradeoff between registration time and accuracy. Most optimization
approaches allow for a user-definition of the so-called tolerance, for example,
by setting a threshold for f or ‖∆x‖. If f drops beneath a lower bound
or the changes that are to be applied to x are too small, the optimization
algorithm terminates.

When stepping through the parameter space X of a non-smooth cost
function, that is, a function that does not decrease monotonically towards
its minimum, there is always the risk of getting trapped in a local minimum
xlm:

f(xlm) < f(x) ∀x ∈ X : ‖x− xlm‖ < δ (3.35)

for some δ ∈ R. One way to address this is to smooth the cost function as
discussed in Section 3.6.4.

There are essentially two classes of optimization strategies, namely gradient-
based and non-gradient-based. Approaches from the former group use local
derivatives of the cost function as a hint for the direction towards the min-
imum, while the latter rely solely on values of f . Non-gradient methods
used for image registration include the Powell-Brent direction set method
[Powell, 1964, Brent, 1973], the downhill simplex method
[Nealder and Mead, 1965], and a best neighbor search. The first two proved
to be robust but did not keep up with gradient-based methods in terms of
speed [Wein, 2003, Zöllei, 2001]. Methods involving gradients include the
Levenberg-Marquardt method [Levenberg, 1944, Marquardt, 1963] as well as
the popular gradient descent and steepest descent strategies.

In this work we will restrict our focus to gradient-based methods since we
consider the computation of gradients one of the main targets for the opti-
mization of the registration in terms of speed. In algorithmic differentiation
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(see Chapter 5) we found a means to compute the cost function’s gradient
both accurately and efficiently.

3.6.2 Gradient Descent and Steepest Descent

Gradient descent is based on the fact that the gradient vector at a point xi
always points in the direction of the steepest increase of f . Consequently, the
parameter vector is updated proportionally to the negative gradient vector
at that point in order to approach the next local minimum:

xi+1 = xi − λ
∂f

∂x
(xi) (3.36)

where λ ∈ R+ denotes the step-size or learning rate. It controls the size
of the steps to be taken according to the local gradient. The choice of this
value is crucial to the success of the optimization procedure. If chosen too
small, the search may easily get stuck in a local minimum or take excessively
long to converge. If chosen too large, the algorithm may repeatedly miss or
oscillate around the minimum sought-after. Possible approaches to deal with
this situation are a local adaption or a gradual decrease of the learning rate
at later stages (annealing). The algorithm is usually specified to terminate
when the length of ∂f

∂x
drops beneath a certain threshold, and hence no major

enhancements may be expected anymore. An alternative is to compute f
at the updated position xi+1 and decide whether the alignment is accurate
enough.

The principle of the steepest descent method is similar to gradient descent,
yet it works without learning rate, which relieves us from the awkward sit-
uation of choosing an adequate value for λ. The method is based on a line
search along the direction defined by the gradient vector:

φ (v) = f

(
xi − v

∂f

∂x
(xi)

)
(3.37)

arg min
v∈[a,b]

φ (v) (3.38)

where a and b are defined such that

xi − v
∂f

∂x
(xi) ∈ X (3.39)

where the bounds of X may be defined by the user. For determining the
scalar v which minimizes f , for example, the bisection method may be used.
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It first finds a middle point c ∈ (a, b) such that φ(c) is smaller than φ(a) and
φ(b). This is the invariant of the algorithm. If such a point can be found,
the algorithm is guaranteed to converge linearly. Then it iteratively narrows
down the interval defined by a and b by evaluating φ at v = c−a

2
or v = b−c

2

and updating a, b, and c such that the invariant is not violated. That is
to say, the scalar v takes the place of the middle point c if φ(v) < φ(c).
Otherwise, it is assigned to a or b depending on the side of c on which it
lies. The respective other interval boundary remains unchanged. A slightly
modified algorithm is the golden section method which uses the golden ratio
to define a new value for v.

A more elaborate algorithm is Brent’s line minimization method
[Brent, 1973], which combines the stability of the bisection method with the
speed of inverse parabolic interpolation. The latter is known to converge
super-linearly under optimal conditions, but it is not guaranteed to converge
for non-smooth functions. It is based on the observation that the graph of a
function near an extremum can be approximated by a parabola.

The algorithm first computes the minimum of the parabola fitting f at the
positions a, b, and c defined above. This minimum, b, and a or c (whatever
produces a smaller value of f) define the new interval. The function values
at these points are again fitted by a parabola. This procedure is repeated
until the interval is narrow enough.

In Brent’s method, if parabolic interpolation does not progress fast enough,
that is, the size of the current step is less than half the size of then step before
the last, or steps out of the boundary interval (a, b), the algorithm falls back
to the reliable bisection method in order to ensure convergence. It usually
converges super-linearly, yet linearly in the worst case, that is, if only the
bisection method is applied.

3.6.3 The L-BFGS-B Algorithm

L-BFGS-B is a limited memory algorithm for solving large nonlinear opti-
mization problems subject to simple bounds on the variables
[Zhu et al., 1997]. It uses a limited memory BFGS matrix B to approxi-
mate the Hessian of the cost function. The matrix is used to define a local
quadratic model of f :

mi(x) = f(xi) +
∂f

∂x
(xi)

T (x− xi) +
1

2
(x− xi)

TBi(x− xi) (3.40)

This model is minimized with respect to the free variables. Eventually, the
line search described in [Moré and Thuente, 1994] is performed along the
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direction defined by the vector from the current position xi to the minimizer
of mi.

The algorithm expects the following user inputs:

• The number of input variables

• The number of corrections to the BFGS matrix saved

• An initial estimation of x

• Upper and lower bounds on x

• The cost function’s value and gradient on demand

• The tolerance used as termination criteria

We chose the L-BFGS-B algorithm to accomplish the optimization task
because it is easy to use, does not depend on the computation of second order
derivatives, and does not require any knowledge about the structure of the
cost function. Moreover, it is possible to set explicit bounds on the subset X
of the parameter space to search for the optimum.

3.6.4 Cost Function Smoothing

It is generally beneficial for optimization strategies if the cost function pro-
gresses smoothly towards its minimum. In that case the local gradient pro-
vides a good approximation of the direction in which to advance. When
smoothing out extrema of smaller extents, the probability of getting trapped
or being mislead by local minima decreases. In addition, optimization al-
gorithms tend to converge faster when applied to smoother functions (for
example, steepest descent in Section 3.6.2). Naturally, the smoothness of the
cost function is dependent on the similarity measure itself, but it can also be
influenced by methods addressing the DRR generation.

One way to obtain a smoother cost function is the use of image pyramids
of the X-ray image and the CT volume for rendering the DRRs
[Maes et al., 1999, Wein, 2003, Kubias et al., 2007a]. An image pyramid is
the representation of an image at different resolutions. Usually the number
of image elements per dimension is halved from one level of the pyramid to
the next. This results in a down-sizing factor of 2−d for d image dimensions,
which is achieved by means of sub-sampling. First the image is convoluted
with a filter kernel, such as a four-element box filter or a Gaussian filter.
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Then every second image element in each dimension is taken to form the
image at the next coarser pyramid level. The filter kernel causes a smooth-
ing of the image. It removes higher frequencies, such as noise, which are
otherwise reflected in the DRR and the similarity measure. It makes sense
to scale down the images as well, thus rendering lower-resolution DRRs and
comparing them to similarly down-sized X-ray images.

The optimization algorithm starts at the coarsest resolution level. Af-
ter convergence the optimizer is initialized with the parameters found in the
precedent pass and operates on the next higher level of resolution. The pro-
cedure is repeated until the highest level of resolution is reached. It is evident
that a multi-scale approach does not only smooth out the cost function, but
may also effect a tremendous registration speed-up [Maes et al., 1999]. Since
less pixel intensities have to be computed from smaller volumes and similar-
ity is evaluated by means of a smaller amount of pixels, both the potentially
expensive DRR generation and similarity measuring are economized.

We use five global pyramid levels, where 0 represents the highest level of
detail with CT volumes of around 512× 512× 300 voxels and X-ray images
with 512 × 512 or 1024 × 1024 pixels. The respective level controls the
resolution of the CT volume used for rendering, the number of samples used
during raycasting, the resolution of the generated DRR, and the resolution of
the X-ray image used for similarity measuring. It defines the coarseness of the
current optimization pass and is decremented once the optimizer converges.
The parameters found at pyramid level 0 represent the final approximation
of the model transformation parameters sought-after.
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Chapter 4

GPU-Based Computation

4.1 Introduction

Over the past years modern graphical processing units (GPUs) have become
extremely powerful computation engines. Until a few years ago they were
fast but lacking the flexibility to be useful for fields other than computer
graphics and rendering, which they were originally designed for. With the
rise of programmable shading units GPUs have become a real alternative to
the CPU. The computation speed and memory bandwidth of modern GPUs,
which are by far superior to those of the CPU, can now be exploited for a
diverse field of scientific applications, such as signal and audio processing,
simulations, data compression, and solving linear equations. The use of the
GPU for applications other than graphics is commonly referred to as general
purpose computation on GPU (GPGPU).

4.2 GPU Capabilities

As opposed to CPUs, which follow a serial programming model, GPUs are
highly efficient stream processors [Owens, 2005]. All data, for example, ver-
tices, triangles, or fragments, is considered a stream which is processed by
kernels that implement different functionalities. Since the processing of one
stream element within a kernel is never dependent on computations on other
stream elements, it can be conducted in parallel. GPUs exploit parallelism
in three ways:

• Task parallelism. Several kernels, that is, kernels performing different

41
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tasks, can process different data at the same time. In other words, there
is no need for the processing units to wait until the precedent task has
been completed. As soon as a kernel has processed some data, the
subsequent kernel can start to work in parallel.

• Data parallelism. One kernel can process several stream elements at
the same time, applying the same calculations to them. For example,
the fragment processor can process a large number of fragments at a
time.

• Instruction parallelism. Within the complex evaluation of a sin-
gle data element, usually a vector, several simple operations may be
evaluated in a single-instruction multiple-data (SIMD) fashion.

Another concept which sets GPUs apart from CPUs is task specialization.
Where CPUs are laid out for flexibility and to execute a maximal variety of
different applications, GPUs optimize certain computation units for specific
tasks. Implementing computations such as triangle rasterization or texture
filtering by means of dedicated hardware entails an enormous efficiency bene-
fit compared to general-purpose hardware. However, graphics hardware offers
more and more programmability, which allows for user-defined programs to
be executed on certain kernels in the stream, currently the vertex and the
fragment processor. It is these programmable kernels that enable advanced
rendering as well as the execution of a broad class of general-purpose appli-
cations.

Modern technology allows more and more transistors to be put on one
chip. They can be roughly divided into three categories: control, datapath,
and storage. During CPU design many transistors are dedicated to complex
control functionality such as branch prediction and to multi-level caching
techniques decreasing memory latency. In contrast, GPUs maximize the
number of transistors in the datapath. Since there is less need to control high
level program features, they can focus on achieving peak performances for
simple and repetitive tasks. Additionally, high-end GPUs have a higher total
of transistors than consumer-level CPUs1.

1A total of about 582 million transistors for the Intel R© Core
TM

2 Extreme QX6800
[Chiappetta, 2007], compared to 681 million for the NVidia R© GeForce R© 8800 GTX
[ComputerBase, 2007].
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The density of transistors has made GPUs extremely capable arithmetic
engines that are by far superior to high-end consumer level CPUs2. However,
technology trends show that memory bandwidth can not keep pace with the
rapid growth of computation power. This can be determined by calculating
the number of floating point operations that can be carried out per word
of off-chip GPU memory bandwidth3. Hence, applications with a higher
arithmetic density, that is, more arithmetic operations per word of memory,
are better suited to exploit the capabilities of modern graphics hardware.

Memory latency, on the other hand, is decreasing slower than memory
bandwidth is growing. Where CPUs implement sophisticated multi-level
caching techniques to minimize latency, GPUs are optimized for through-
put4. Modern GPUs address this discrepancy by continuing to work while
waiting for off-chip data, which is consequently stored in the texture cache,
to arrive.

Figure 4.1: The NVidia R© GeForce R© 8800 GTX graphics board.

2Under optimal conditions the GeForce R© 8800 GTX performs 518 GFLOPS
[ComputerBase, 2007], in contrast to about 37 GFLOPS for the Intel R© Core

TM
2 Extreme

QX6800 [Schmid and Töpelt, 2007].
3The GeForce R© FX 5800 (2002) could perform 2, the GeForce R© 6800 (2004) 6, and

the GeForce R© 8800 GTX (2007) 24 floating point operations per word of off-chip GPU
memory bandwidth (computed from the respective GFLOPS and the sequential off-chip
memory bandwidth).

4The GeForce R© 8800 GTX comes up with a bandwidth of 86.4 GB/s for se-
quential memory reads [ComputerBase, 2007], compared to about 13.5 GB/s for the
Intel R© Core

TM
2 Extreme QX6800 [Freeman, 2007].
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4.3 General Purpose GPU Programming

The observation that the programming model of modern GPUs is not only
applicable for computer graphics and the introduction of fully programmable
vertex and fragment processors gave rise to a variety of general-purpose ap-
plications that experienced a tremendous speed-up on the GPU. High-level
programming languages, such as Cg (see [NVidia, 2007a]), which allows de-
velopers to implement custom functionality with a C-like syntax, have been
introduced to facilitate the development of so-called shader programs.

Fragment processors are particularly interesting for the use in GPGPU
because they leave more control over the output to the programmer. The
output of a fragment shader is written to the render target as-is, that is,
without any further processing, and can be used as input for further ren-
dering passes. The GeForce R© 8800 GTX graphics board (see Figure 4.1),
which we use for our experiments, has 128 stream processors, each capable of
performing one scalar operation at a time. Eight stream processors together
form one multiprocessor, which can perform fragment, vertex, or geometry
processing according to the current computation requirements. Such archi-
tectures are referred to as implementing the unified shader model. Within one
multiprocessor a warp of 32 threads carries out the same scalar instruction
on different data (SIMD), as opposed to older GPU generations, which actu-
ally carry out calculations on vectors of four. As many as 24 warps can run
concurrently on one multiprocessor [NVidia, 2007b]. Hence, a multiprocessor
can physically process 8 scalars at a time, yet is capable of virtually pro-
cessing much more data in parallel due to time-slicing, which is used to hide
memory latency. However, only when using the NVidia R© CUDA

TM
technol-

ogy (see [NVidia, 2007b]), one has full control over these features. By the
time writing, CUDA

TM
did not provide support for three-dimensional tex-

tures. Therefore, we stick to the Cg shading language (see [NVidia, 2007a])
for the time being since it meets our demands on functionality well with-
out requiring major code re-engineering. Note that some of the constraints
of GPU-based computation discussed in the following may become obsolete
with future GPU technologies, such as CUDA

TM
.

With different processors at the same task level being unable to com-
municate, we can state the key attributes of GPU computations to be data
parallelism and independence [Harris, 2005]. Ultimately, the success of port-
ing an application to the GPU and optimally exploiting its capabilities is
dependent on how well it matches these concepts. The following list provides
an overview of implications of performing general-purpose programming on
the GPU:
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Arithmetic intensity As mentioned earlier, it quantifies the ratio between
the number of arithmetic operations and the amount of data loaded from off-
chip GPU memory in a program. We have seen that the arithmetic intensity
must get higher for every GPU generation in order to reach peak perfor-
mances. If the arithmetic intensity is high enough, processors may continue
to work while waiting for requested data, if not, the arithmetic units are
forced to enter an idle state. Hence, recomputing values should be preferred
to storing them, unless the cost of computing is higher than for fetching them.
Not least is arithmetic power the feature where GPUs are clearly superior to
CPUs.

Locality Locality here refers to the way memory is accessed. Similarly
to CPUs, sequential memory access is much faster than random access and
should thus be generally preferred. The GPU’s texture cache does not play
the same role as cache on CPUs. It is used primarily to accelerate texture
filtering, thus providing locality in two dimensions. Figure 4.2 depicts the re-
sults of a memory bandwidth benchmark carried out on the GeForce R© 8800
GTX graphics board (see [Houston, 2007]). Additionally, neither cache nor

Figure 4.2: Memory performance benchmark of the GeForce R© 8800 GTX.
The left bar represents the cache bandwidth, the middle bar the sequential
off-chip memory access bandwidth, and the right bar the random off-chip
memory access bandwidth.

memory on GPUs are writable. The only place where output can be stored
is one predefined and unchangeable pixel position in the render target. How-
ever, multiple render targets allow the programmer to write to a maximum of
four four-channeled targets, which amounts to a total of 16 scalar outputs (18
when including the stencil and the depth buffer). Consequently, programs
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performing sequential array reads and writes are very likely to profit from
GPU-based computation.

Gather vs. scatter As just mentioned, the stream model implemented
by GPUs is capable of gathering several inputs from arbitrary memory lo-
cations, that is, x = a[i], yet is not intended to scatter outputs to any
location desired, that is, a[i] = x. Convolving an image with a Gaussian
kernel, for example, is a classical gather algorithm. It does not only gather
inputs, but also accesses memory in a sequential and 2D-local manner. Such
algorithms generally perform very well on the GPU. The CUDA

TM
technol-

ogy also provides support for scattering, that is, writing to arbitrary locations
within a dedicated part of GPU memory, but synchronization techniques are
not yet as elaborate as for CPUs. However, the techniques we chose for our
registration approach do not rely on scattering since rendering and similarity
measuring are performed in a per-pixel fashion.

Value precision and range NVidia R© GPUs currently support the IEEE
single-precision floating point format, where in the end of 2007 AMD R© pre-
sented the first GPU supporting the double-precision floating-point format
[AMD, 2007]. Hence, precision might not be an issue anymore in the fu-
ture. However, until double-precision processors are largely established, GPU
programmers must be aware of the limitations that lower-precision floating-
point values may entail. Scientific applications may depend on high-precision
data types. It was shown that double-precision floating point types can be
emulated on the GPU [Göddeke et al., 2005]. Additionally, GPUs have no
built-in integer data types. Shader languages might provide them for rea-
sons of convenience, yet their range is smaller than true integer data types
with the same number of bytes. For example, the IEEE four-byte floating
point type can represent the contiguous zero-centered range of ±16, 777, 216
[Harris, 2005] where a signed four-byte integer type can hold values from
−2, 147, 483, 648 to +2, 147, 483, 647.

Control flow As mentioned earlier, GPUs are not laid out for complex
control requirements. Therefore, conditional statements are to be used with
precaution since their use incurs a certain overhead, especially when used
in inner loops. For example, for the GeForce R© 6 Series an if/endif-block
causes a loss of 4 clock cycles [Kilgariff and Fernando, 2005]. Additionally,
older GPU generations only support static branching, which executes both
conditional branches anyway. This is because hundreds of pixels are processed
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in an uniform way and conditional statements are allowed for by writing
registers only in the branch that the predicate defines to take. However,
newer GPUs such as the GeForce R© 8 series support dynamic branching as an
alternative to predicated instructions. Because of smaller blocks of fragments
being processed concurrently within one multiprocessor, it may be beneficial
to evaluate only one branch per fragment. Since the instruction unit still
caters one instruction for all processors at a time, some threads have to be
stopped until the end of the branch they are not supposed to take. The use of
dynamic branching pays off only if the cost for synchronization is lower than
for the evaluation of the skipped branches. Our GPU computation gets by
with one for-loop, which is required to sample the volume along the viewing
rays.

Download and readback One of the biggest bottlenecks in GPU-based
computing is the data communication between GPU and main memory. On-
board memory bandwidths are by far superior to off-board bandwidths. Fig-
ure 4.3(a) and Figure 4.3(b) show the results of a respective download and
readback bandwidth benchmark carried out on the GeForce R© 8800 GTX
graphics board (see [Houston, 2007]). When developing GPU programs, it is
crucial to bear in mind the cost of transferring large amounts of data to and
from GPU memory. Yet, there are many cases where it is not even necessary
to transfer whole textures. For example, texture reduction, which we use to
sum up image intensities (see Section 4.4.2), reduces the amount of data to
be read back from an arbitrary amount of texels to one single element. Also,
in many cases it may be much faster to (re)compute values on the GPU than
to download them to GPU memory. Our application requires the CT and
X-ray data to be downloaded and only about a dozen of values to be read
back.

4.4 GPU-Based Registration

4.4.1 GPU-Based DRR rendering

DRR raycasting as discussed in Section 3.3.3 represents a standard image-
order volume rendering approach and can thus be ported naturally to the
GPU. Image-order rendering approaches inherently match the stream pro-
gramming model implemented by GPUs very well since they are performed
in a pixel-wise fashion. Within a fragment shader, an intensity value is com-
puted for every screen pixel independently, where data is gathered from a



48 CHAPTER 4. GPU-BASED COMPUTATION

(a) (b)

Figure 4.3: Off-board communication benchmark of the GeForce R© 8800
GTX. The left chart subsumes the results for data transfers from main to
GPU memory (download), where the right chart shows the bandwidths for
transferring data from GPU memory back to main memory (readback).

three-dimensional texture representing the CT dataset. Algorithm 1 depicts
the algorithm as implemented by the fragment shader, where f̃win and b̃win

denote the front and back intersection of the ray with the volume in window
coordinates. The tilde marks homogeneous vectors. The first and the last
sampling position are given by s and e. The step vector, whose length is δ, is
referred to as x. The subscripts ”cam”, ”world”, and ”obj” assign the vectors
respectively to the camera, the world, or the object coordinate system, that
is, the coordinate system of the volume in metric units. The function vol
returns the interpolated radiodensity at sampling positions pobj within the
CT volume. The transformation matrix H, which maps window coordinates
to camera coordinates, is defined as follows:

H = (WP)−1 (4.1)

where W transforms normalized device coordinates into window coordinates.

In fact, the volume is sampled at fixed positions in the camera coordinate
system. Choosing the sampling positions to be independent of the model
transformation parameters considerably facilitates the computation of the
algorithm’s gradient with respect to these parameters. For, if we define the
sampling positions in an object-based manner, the computations performed
by the rasterizer in the rendering pipeline, which are beyond the influence of
the fragment shader, have to be considered during the differentiation. Since
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Algorithm 1 The original DRR algorithm

Require: C,R,T,H ∈M4 (R) ; nsmpl ∈ N
1: for all (u, v) ∈ Ω do
2: f̃cam = Hf̃win

3: b̃cam = Hb̃win

4: fcam = f̃cam.xyz

f̃cam.w

5: bcam = b̃cam.xyz

b̃cam.w

6: xcam = δnormalize (bcam − fcam)

7: scam =
⌈
‖fcam‖
δ

⌉
xcam

8: ecam =
⌊
‖bcam‖

δ

⌋
xcam

9: nsmpl = 1 + ‖ecam−scam‖
δ

10: sworld = V−1scam

11: xworld = V−1xcam

12: sobj = CR−1T−1C−1sworld

13: xobj = R−1xworld

14: pobj = sobj

15: I(u, v) = 0
16: for i = 1 to nsmpl do
17: I(u, v) = I(u, v) + vol (pobj)
18: pobj = pobj + xobj

19: end for
20: end for
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the discrete intersection points of the rays with the volume’s surface it com-
putes are dependent on the model transformation parameters, the rasterizer
can not be considered constant with respect to the model transformation.
Choosing fixed sampling positions in camera space, on the other hand, allows
one to differentiate the DRR rendering statements in Algorithm 1 exclusively.
At the same time, this is the reason why we do not use the elegant GPU-based
raycasting method proposed in [Krüger and Westermann, 2003]. It encodes
the texture coordinates of the volume’s front and back faces by means of
colors to let the rasterizer compute the pixel-wise intersection points of the
ray with the volume’s surface. Instead, we use a slightly modified version of
the algorithm.

Since the volume takes up only a small part of the window space, the frag-
ment shader implementing Algorithm 1 does not sample it completely from
front to back. Instead, the first and the last sample are derived from the inter-
section points with the volume’s front and back faces, namely f̃win and b̃win.
In Cg programs the window coordinates of single fragments is semantically
bound to the WPOS parameter. In our case it reflects the pose of the volume
and the camera (incorporated by means of the OpenGL MODELVIEW_MATRIX),
as well as the perspective projection properties of the camera (considered by
PROJECTION_MATRIX). The z-coordinates of the front faces are obtained dur-
ing a preliminary rendering pass, where the depth component is rendered to
texture using back-face culling. This texture is passed as an argument to
the main rendering pass, which is triggered by drawing only the back faces
of the volume. Within the DRR rendering shader, the intersections are first
transformed into homogeneous camera space and converted back to Carte-
sian coordinates. The first and the last sampling position scam and ecam in
the camera coordinate system are determined as follows:

scam =

⌈
‖fcam‖
δ

⌉
xcam (4.2)

ecam =

⌊
‖bcam‖
δ

⌋
xcam (4.3)

which determines the first and the last constant sampling position on the ray
that is still located within the volume. From these values the minimal number
of samples nsmpl can be derived. Next the starting position and the step vector
are transformed to world coordinates by means of the inverse viewing matrix
V−1. To recover their counterparts in object space, the remaining chain of



4.4. GPU-BASED REGISTRATION 51

transformations is applied in reversed order:

sobj = (TCRC−1)−1sworld (4.4)

= CR−1C−1T−1sworld (4.5)

where for the step vector only the rotation is relevant:

xobj = R−1xworld (4.6)

Within the inner loop the sampling positions pobj are fed to vol, which per-
forms tri-linear interpolation of the eight nearest neighboring voxels in object
space. When the loop has finished, I(u, v) contains the accumulated radio-
densities for the image pixel (u, v). Eventually, the weighted DRR intensities
w(u, v)I(u, v) and the weighted squares w(u, v)I(u, v)2 (see Section 4.4.2)
are written to the render target, that is, to texture. The weight mask w is
available in the form a two-dimensional input texture which is passed to the
DRR rendering shader (and subsequent shaders) as an argument.

To speed up rendering and to obtain smoother DRRs in earlier stages of
the optimization procedure, the CT data accessed by vol is made available
at different levels of detail. Additionally, the sampling distance δ is increased
and the size of the DRRs to generate is reduced when a lower level is requested
(see Section 3.6.4).

4.4.2 GPU-Based Similarity Measuring

From the definition of normalized cross correlation (equation (3.25) in Sec-
tion 3.5.3) it is clear that the measure can not be evaluated along with DRR
generation, that is, within one rendering pass. To compute the pixel-wise
correlation, the mean DRR intensity has to be known. Note that the mean
and standard deviation of the X-ray image to be aligned can be computed
beforehand. To obtain the mean over the DRR without transferring it back
to CPU main memory a texture reduction technique is applied. For this
purpose, two textures are alternately read from and written to, where the
viewport is gradually scaled down by a factor of two in each dimension. The
information of four pixels each is gathered from the read-texture to com-
pute one pixel value of the downscaled image written to the write-texture.
Then their roles are swapped and the part of the texture just written to is
processed. This is done until the viewport has reduced to one single pixel
constituting the result. Reading four texels, filtering them, and writing the
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result to the render target is implemented by means of a simple fragment
shader program.

In order to compute the mean DRR intensity, the four pixel values are
summed up to form the new value to write. Eventually, one pixel contains
the sum of all DRR intensities. This value is read back to main memory
in order to compute the mean. Figure 4.4 shows an example of reducing
a texture to its sum. In practise, not only one scalar, but all four texture
channels are summed up simultaneously.

Figure 4.4: An example of texture reduction used to sum up the intensities
of an image. The viewport written to is scaled down to a forth of its current
size at every step.

In order to save an additional rendering pass, the standard deviation is
calculated as follows:

σwI =

√
1

Σw

∑
(u,v)∈Ω

w(u, v)I(u, v)2 − µ2
wI (4.7)

where the weighted intensity squares w(u, v)I(u, v)2 are computed during the
DRR rendering pass and subsequently summed up along with the weighted
intensities w(u, v)I(u, v). Since both values represent scalars, they fit into
one texture. Indeed, this formulation of standard deviation is susceptible
to round-off errors, yet the computation is carried out on the CPU, where
double-precision floating point types are available.

The DRR texture and the X-ray texture, as well as their mean intensities
and the weight mask texture are then fed to the next rendering pass, where
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the pixel-wise correlations

corr(u, v) = w(u, v)(I(u, v)− µwI)(J(u, v)− µJ,w) (4.8)

are computed and written to texture. Their sum is obtained by texture
reduction, read back, and used to compute the final NCC measure:

NCC(I, J, w) =
1

σwIσwJ

1

Σw

∑
(u,v)∈Ω

corr(u, v) (4.9)

The whole similarity measuring algorithm is depicted in Algorithm 2. Note
that the use of for-loops over Ω always hints at the use of GPU-based com-
putation by means of fragment shaders.

Algorithm 2 The similarity measuring algorithm.

Require: I, J, w ∈Mn (R) ; µwJ , σwJ ,Σw ∈ R
1: ΣwI = 0,ΣwI2 = 0
2: for all (u, v) ∈ Ω do
3: ΣwI = ΣwI + w(u, v)I(u, v)
4: ΣwI2 = ΣwI2 + w(u, v)I(u, v)2

5: end for
6: µwI = ΣwI

Σw

7: σwI =
√

ΣwI2

Σw
− µ2

wI

8: Σcorr = 0
9: for all (u, v) ∈ Ω do

10: Σcorr = Σcorr + w(u, v)(I(u, v)− µwI)(J(u, v)− µwJ)
11: end for
12: NCC = Σcorr

ΣwσwIσwJ
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Chapter 5

Algorithmic Differentiation

5.1 Introduction

Algorithmic differentiation (AD) is a method that allows for an automatic
computation of exact derivatives for vector-valued functions of the form

y = f(x) f : RN → RM (5.1)

consisting of an arbitrary number of elementary sub-statements. The alter-
native and more commonly used term automatic differentiation emphasizes
the automatic generation and evaluation of derivative code by means of com-
puter programs. AD represents an alternative to the traditional calculation
of derivatives using numerical approximation and symbolic differentiation. It
overcomes the drawbacks of both methods.

5.1.1 Symbolic Differentiation

Symbolic differentiation takes as input an algebraic expression and generates
a derivative expression with respect to one of its input parameters. Thus,
the cost of computing a function’s gradient depends on the size of the input.

Yet, it is inherently hard to map whole computer programs to mathemat-
ical expressions. This becomes apparent when taking into account control
structures like conditional statements or loops. Furthermore, the size of the
resulting expressions tends to grow excessively large for an increasing number
of independent input parameters and higher order derivatives. This results
in an inefficient computation and evaluation of derivative code, high memory
requirements, and hardly maintainable code [Griewank, 1989], which leads

55
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to the conclusion that symbolic differentiation is not applicable for our ac-
celerated registration algorithm.

5.1.2 Numerical Approximation

Numerical approximation is based on Newton’s difference quotient. It ap-
proximates the derivative of a function f with respect to xn at a point x by
evaluating the function at two nearby points x + hvn and x− hvn (h ∈ R):

∂f

∂xn
(x) ≈ f(x + hvn)− f(x− hvn)

2h
(5.2)

where vn ∈ Rn is the unit vector codirectional with xn.

The accuracy of the approximation depends on the size of h. If chosen too
large, the approximation of the gradient will get worse, if chosen too small,
the subtraction may cause a loss of significance when using finite-precision
floating-point arithmetic. The dilemma is to find a tradeoff between trunca-
tion error and cancellation error [Bischof and Bücker, 2000]. However, nu-
merical approximation of the derivative allows the function f to be treated as
a black-box, which does not require any processing or potentially error-prone
modifications of the original function’s code.

The cost of numerically approximating the whole gradient vector is lin-
early dependent on the number of variable input parameters. The ratio be-
tween the cost of calculating the gradient and evaluating the function is 2N
(two function evaluations per input parameter) using central differences, and
N + 1 using forward or backward differences, where the function evaluation
at point x can be reused for all elements of the gradient vector. Approxi-
mating the registration algorithm’s gradient with respect to the six model
transformation parameters thus requires either twelve or seven evaluations
of f . Numerical approximation serves as the reference for comparing our
approach in terms of performance, accuracy, and convergence.

5.2 Algorithmic Differentiation

Algorithmic differentiation is a mathematical concept that automatically gen-
erates the derivative of a vector-valued function f represented by a computer
program. To do so, it takes the original program’s statements, interlaces
them with derivative statements, and produces a new program which eval-
uates the function and its derivative at the position defined by the input



5.2. ALGORITHMIC DIFFERENTIATION 57

parameter vector x. The accuracy of the resulting gradient is only limited
by machine precision.

Essentially, algorithmic differentiation corresponds to a gradual appli-
cation of the chain rule from differential calculus to a program. Let si
(si : R → R, i = 1, . . . , I) be a list of consecutive statements of the sim-
ple program p (p : R→ R), each referencing the output of its predecessor:

vi = si (vi−1) (5.3)

p (v0) = (sI ◦ sI−1 ◦ . . . ◦ s1) (v0) (5.4)

where v0 is an input parameter, then

p′ (v0) = s′I (sI−1 (sI−2 (. . .))) s′I−1 (sI−2 (. . . )) . . . s′1 (v0) (5.5)

Note that we need the program variable’s intermediate value vi−1 to com-
pute the derivative

∂si
∂vi−1

(5.6)

if the chain rule applies for the elementary statement si, that is, a statement
implementing a nonlinear function, for example, si(vi−1) = v2

i−1.

Likewise, a subsequent program evaluation induces the program to evalu-
ate the chain rule. The two basic modes of algorithmic differentiation, namely
reverse or adjoint mode and forward or tangent-linear mode, differ in the di-
rection the chain rule is evaluated. The implications of the way derivative
information is propagated through the program are fundamental. In the fol-
lowing we will generalize (5.5) for N inputs and M outputs and establish the
prerequisites for a well-founded description of the basic modes of algorithmic
differentiation.

Following the notation of [Pock et al., 2006], we define v = [vq]
Q
q=1 to be

the vector of all program variables, including input parameters, intermediate
variables, and output variables. We split up the original program into L
sequential blocks, each modifying every variable at most once and referencing
only variables modified in preceding blocks. The global operator S (S : RQ →
RQ) maps the initial variable vector v(0) to the final variable vector v(L). The
local operators S(l) (S(l) : RQ → RQ, l = 1, . . . , L) map the variable vector
at the beginning of block l to the vector at the end of that block:

v(L) = S(v(0)) (5.7)

v(l) = S(l)(v(l−1)) (5.8)
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with l = 1, . . . , L.

We can now define the input parameter vector x = [xn]Nn=1 and the func-
tion vector y = [ym]Mm=1 as follows:

x =
[
v

(0)
p

]N
p=1

(5.9)

y =
[
v

(L)
r

]Q
r=Q−M+1

(5.10)

In addition, we define Sq (q = 1, . . . , Q) to be the set of statements out of

S that accounts for v
(L)
q , the final value of variable vq, and require it to be

differentiable in RQ. Consequently, S
(l)
q constitutes the definition of variable

vq in block l. Note that we can add an imaginary self-assignment for every
vq that is not defined in l.

5.2.1 Forward Mode

In the forward or tangent-linear mode of automatic differentiation the deriva-
tive information is propagated along the flow of the original program. When
regarding equation (5.5), this corresponds to an evaluation of the chain rule
from right to left. During the automatic differentiation process the input
program is augmented by derivative statements resulting from the differen-
tiation of the program’s statements with respect to the program’s variables.
A subsequent evaluation of the resulting program yields the function values
as well as the derivative along a predefined direction.

Let us now introduce the Jacobian matrices related to the global operator
S and the local operators S(l):

J =
[
∂Si

∂v
(0)
j

]Q
i,j=1

=

[
∂v

(L)
i

∂v
(0)
j

]Q
i,j=1

(5.11)

J(l) =

[
∂S

(l)
i

∂v
(l−1)
j

]Q
i,j=1

=

[
∂v

(l)
i

∂v
(l−1)
j

]Q
i,j=1

(5.12)

which are populated by the derivatives of all program variables with respect
to these variables respectively for the whole program and a certain block l.
For a block l of self-assignments (including imaginary ones) the corresponding
Jacobian J(l) equals the identity matrix. It should be noted that in practise
we don’t need to compute the whole Jacobian matrix J(l) since we are only
interested in the program variables that are actually defined in block l.
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Similarly to (5.7) and (5.8), the Jacobian matrices operate on tangent-

linear variable vectors w
(l)
tl (l = 0, . . . , L):

w
(L)
tl = J(v(0))w

(0)
tl (5.13)

w
(l)
tl = J(l)(v(l−1))w

(l−1)
tl (5.14)

According to [Pock et al., 2006], we can record the following relationship:

J =
1⊙
l=L

J(l) (5.15)

In other words, recursively applying the block-wise derivatives J(l), which is
tantamount to applying the chain rule along the program flow, yields the
global derivative J. Now if we set the tangent-linear variable vector w

(0)
tl

to be a unit vector ŵ
(0)
tl in RQ, we induce the algorithm to compute the

directional derivative
∂v(L)

∂w
(0)
tl

= J(v(0))ŵ
(0)
tl (5.16)

along the direction defined by ŵ
(0)
tl .

The initial tangent-linear vector wtl
(0) is also referred to as weight or

seed vector because it weights the influence of the input parameters on the
directional derivative. Our primary interest lies in the directional derivative
of f :

∂f

∂s
=
[
∂v

(L)
r

∂w
(0)
tl

]Q
r=Q−m+1

(5.17)

where s is a vector in the input parameter space of f .

If, for example, the weight vector is chosen to be the unit vector co-
directional with xn, the differentiated program is induced to yield the n-
th column of the Jacobian J. These values represent the derivatives of all
program variables (including the function values) with respect to the input
parameter xn. Consequently, N evaluations of the differentiated program are
required to compute the whole gradient of the program f . This means that
there exists a linear relationship between the number of input parameters and
the cost of computing the gradient, as it is the case for symbolic differentiation
(Section 5.1.1) and numerical approximation of the gradient (Section 5.1.2).
Yet, the forward mode of algorithmic differentiation is superior to the latter
in terms of accuracy and to the former in terms of efficiency for most N
[Griewank, 1989].
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5.2.2 Reverse Mode

In the reverse or adjoint mode of automatic differentiation the derivative
information is propagated against the flow of the original program. When
regarding equation (5.5), this corresponds to an evaluation of the chain rule
from left to right. Again the original program is augmented by derivative
statements, but in contrast to the forward mode, the program flow is re-
versed. This fact brings up new challenges, especially when dealing with
constraints posed by a GPU-based programming model. However, the re-
verse mode comes up with a reward that leaves no doubt about the funda-
mental usefulness of the algorithm: The program’s derivatives with respect
to all input parameters can be computed with only one evaluation of the
differentiated program, where the derivative program’s performance is not
linearly dependent on the dimensionality of the gradient vector. Instead, the
ratio between the cost of evaluating the gradient and evaluating the original
function has a constant upper bound of five [Griewank, 1989].

Trivially speaking, we are interested in the last M rows of the Jaco-
bian matrix J, which contain the derivatives of the function values v

(L)
r

(r = Q −M + 1, . . . , Q) with respect to all program variables v(0). Equa-
tion (5.16) revealed that the forward mode can only produce a weighted sum
of the Jacobian’s columns. Hence, we transpose the Jacobian and observe
the implications on the algorithm. The transpose of the global Jacobian can
be obtained as the result of multiplying the transposed block-wise Jacobian
matrices in reversed order:

JT =
L⊙
l=1

J(l)T

(5.18)

Hence, the transposition entails a reversal of the original block-order. As a
consequence, the derivative information flows from the end of the program
up to the beginning:

w
(0)
ad = JT (v(0))w

(L)
ad (5.19)

wad
(l−1) = J(l)T

(v(l−1))w
(l)
ad (5.20)

where w
(l)
ad (l = 0, . . . , L) denotes the adjoint variable vector.

Since the derivatives of one final program variable with respect to the ini-
tial program variables are now arranged in the columns of J, we can retrieve
them by initializing the adjoint variable vector w

(L)
ad appropriately. Regard-

ing (5.12) and bearing in mind the nature of matrix-vector multiplications,
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we can state the following:

∂v
(L)
q

∂v(0)
= JT (v(0))ŵ

(L)
ad (5.21)

where ŵ
(L)
ad is defined as the unit vector along the vq-axis. It can be considered

as a seed vector controlling the program variable for which to compute the
gradient, namely the variable v

(L)
q . As a matter of fact, we are not interested

in all columns of JT , but only the M rightmost ones, which contain the
gradients of the function values ym (m = 1, . . . ,M). In addition, we can
limit our consideration to the N upper rows, which are populated by the
derivatives with respect to the input parameters xn (n = 1, . . . , N):

∂ym
∂x

=

[
∂v

(L)
Q−M+m

∂v
(0)
p

]N
p=1

(5.22)

Until now we did not discuss the implications of propagating derivative
information against the original program flow. In Section 5.2 we observed
that we need the program variables’ intermediate values v(l) in order to com-
pute the derivatives of statements implementing nonlinear functions. While
in the forward mode the tangent-linear variables evolve along with the orig-
inal program variables, we are facing the contrary situation in the reverse
mode. That is to say, for the derivative of a nonlinear operator S(l) we need
the intermediate variable vector v(l−1), which attributes to the evaluation of
the blocks 1 to l− 1, as can be seen in equation (5.20). By virtue of program
flow reversal, these blocks have not been evaluated yet.

There are two complementary approaches to solving this problem. The
first option is to recompute the intermediate values v

(l)
q whenever they are

needed by evaluating the blocks 1 to l, which is inherently computationally
intense. The second approach computes all intermediate values during a so-
called forward sweep and stores them before they are over-written or go out
of scope. Naturally, this may require a vast amount of memory, which can
pose a big drawback for GPU-based computations, where off-chip communi-
cation is costly and buffering is only possible to a very limited extent (see
Section 4.3). The main challenge consists in finding an optimal tradeoff be-
tween storage and recomputation for a problem at hand and a given set of
constraints. A lot of research has been done on how to recompute variables
efficiently [Giering and Kaminski, 2002] and keep memory requirements low
[Grimm et al., 1996], yet the optimal solution is often dependent on the re-
spective field of application.
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5.2.3 Algorithmic Differentiation Implementations and
Tools

Implementations of algorithmic differentiation take the source code of a com-
puter program as input and produce a new program which evaluates the
original program as well as some kind of derivative at a certain point in the
input parameter space. There are two classical types of implementations:

• Operator overloading

This approach exploits the overloading concept of modern program lan-
guages, which enables the custom redefinition of functions and certain
built-in operators like +, ∗, and =, such as function and operator over-
loading in C++. This capability is used to extend the implementation
of mathematic functions and operators by their derivatives or by state-
ments which keep a runtime log virtually without changing the code of
the original program. The evaluation of the derivatives and the logging,
which may be used to buffer intermediate values, subsequently takes
place “in the background”.

The advantages of operator overloading are the terseness and flexibility
of the code and the availability of a runtime log of the program. Yet, it
lacks transparency, comes up with a certain runtime overhead and is not
supported by all programming languages [Bischof and Bücker, 2000].
However, the major drawback is the lack of context, which is inherent
in operator overloading. It prevents many source code optimizations as
well as the exploitation of the chain rule’s associativity
[Bischof et al., 1997].

Popular tools implementing this technique comprise: ADOL-C (C,
C++) [Griewank et al., 1996], ADOL-F (Fortran), ADC03 (C, C++),
and ADF03 (Fortran).

• Source transformation

This approach transforms the input source code such that it explicitly
computes the derivative information, thus augmenting the program by
derivative statements. As opposed to operator overloading, it is not
bound to any predefined code structure. Therefore, and since infor-
mation on context is available, source transformation can make use of
a wide range of optimization techniques including code restructuring
and compile-time optimizations. On the other hand, it is consider-
ably harder to implement tools based on source transformation than
on operator overloading.
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Popular tools implementing this technique comprise: ADIC (C, C++)
[Bischof et al., 1997], ADIFOR (Fortran), TAMC (Fortran), OpernAD
(Fortran), and Tapenade (Fortran).

5.3 Differentiation of the Registration Algo-

rithm

In order to obtain the derivative of the cost function with respect to all six
model transformation parameters, the reverse mode of algorithmic differenti-
ation has to be applied to the whole DRR generation (Algorithm 1) and sim-
ilarity measuring code (Algorithm 2). Since Cg does not support high level
language concepts, an operator overloading approach is out of question. In-
stead, an implementation of source transformation, which additionally leaves
room for optimization by means of code-restructuring, is used to obtain an
initial version of the differentiated algorithm. A custom-built parser traverses
the code’s parse tree produced by the GNU C compiler1 and generates the
derivative statements for every node. To handle symbols and expressions the
GiNaC library [Bauer et al., 2002] is used.

By virtue of reverse mode AD, the flow of the whole program is reversed.
Hence, we first consider the similarity measuring algorithm. Algorithm 3
depicts the derivatives of the statements in Algorithm 2 as produced by the
reverse mode algorithm.

The ad -prefixes mark the adjoint counterparts of the original program
variables. Note that statements which do not affect the result, that is, adjoint
variables of constants, are not included. Furthermore, we did not consider
the original program variables whose intermediate values are requested before
they have been evaluated. For example, the value of σwI is already needed
in the first line, where in the original algorithm it is computed only in the
seventh line, which in turn accounts for the derivative statements in line 7
and 8. What is more, the values of Σcorr, σwI , ΣwI2 , ΣwI , and µwI depend
directly on the DRR intensities I(u, v), which are the most expensive to
obtain. It is out of question to recompute them for every use, which leads us
to considering a pre-computation strategy.

The result of applying the reverse mode AD to Algorithm 1 is depicted
in Algorithm 4. Note that this time we partly included the statements which
evaluate the original program variables’ values as required by the adjoint

1http://gcc.gnu.org/

http://gcc.gnu.org/


64 CHAPTER 5. ALGORITHMIC DIFFERENTIATION

Algorithm 3 The reverse mode of AD applied to the similarity measuring
algorithm.

Require: ad ∗ = 0; ad NCC = 1
1: ad Σcorr = ad Σcorr + 1

ΣwσwIσwJ
ad NCC

2: ad σwI = ad σwI + −Σcorr

Σwσ2
wIσwJ

ad NCC

3: for all (u, v) ∈ Ω do
4: ad I(u, v) = ad I(u, v) + w(u, v)(J(u, v)− µwJ)ad Σcorr

5: ad µwI = ad µwI − w(u, v)(J(u, v)− µwJ)ad Σcorr

6: end for
7: ad µwI = ad µwI − µwIr

Σ
wI2
Σw
−µ2

wI

ad σwI

8: ad ΣwI2 = ad ΣwI2 +
ΣwI2

2ΣwI

r
Σ

wI2
Σw
−µ2

wI

ad σwI

9: ad ΣwI = 1
Σw

ad µwI
10: for all (u, v) ∈ Ω do
11: ad I(u, v) = ad I(u, v) + 2w(u, v)I(u, v)ad ΣwI2

12: ad I(u, v) = ad I(u, v) + w(u, v)ad ΣwI

13: end for

statements. Due to the inversion of the program flow, the volume is tra-
versed from back to front in the adjoint algorithm. The derivative of vol is
numerically approximated by central differences in the following way:

∂vol

∂pobj

=


vol

„
pobj+

“
1 0 0

”T
«
−vol

„
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“
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”T
«

2
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„
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“
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“
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”T
«

2

 (5.23)

The (partly omitted) statements computing ad r in Algorithm 4 stem from
the elements of the rotation matrix R, whose calculation is dependent on the
rotation parameters r.

In order to calculate the gradient in (5.23), the volume has to be sampled
again. In Section 4.3, however, we discussed that loading data from memory
is strongly unfavorable compared to computing it. To exploit the efficiency of
contiguous memory reads, it would be desirable to traverse the volume only
once to sample the rays and compute the derivatives of vol. This, in turn,
requires the differentiated DRR rendering code to be evaluated along with
the calculation of the DRR intensities I(u, v). Yet, line 11 of Algorithm 4
is dependent on ad I(u, v), which constitutes the outcome of Algorithm 3,
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Algorithm 4 The reverse mode of AD applied to the DRR rendering algo-
rithm.
Require: C,R,T,H ∈M4 (R) ; nsmpl ∈ N; ad t, ad r = ∅

1: for all (u, v) ∈ Ω do
2: f̃cam = Hf̃win

3: b̃cam = Hb̃win

4: . . .
5: sobj = CR−1T−1C−1sworld

6: xobj = R−1xworld

7: pobj = sobj + (nsmpl − 1)xobj

8: ad pobj = ad xobj = ad R = ∅
9: for i = 1 to nsmpl do

10: ad xobj = ad xobj + ad pobj

11: ad pobj = ad pobj + ∂vol
∂pobj

(pobj) ad I(u, v)
12: pobj = pobj − xobj

13: end for
14: ad sobj = ad pobj

15: ad t = ad t−Rad sobj

16: ad R[1,:] = ad R[1,:] + sworld.xad xobj

17: ad R[2,:] = ad R[2,:] + sworld.yad xobj

18: ad R[3,:] = ad R[3,:] + sworld.zad xobj

19: ad R[1,:] = ad R[1,:] + (T−1C−1xworld) .xad sobj

20: ad R[2,:] = ad R[2,:] + (T−1C−1xworld) .yad sobj

21: ad R[3,:] = ad R[3,:] + (T−1C−1xworld) .zad sobj

22: ad ry = ad ry + (−sin(ry)cos(rz))ad R[1,1]

23: ad rz = ad rz + (−cos(ry)sin(rz))ad R[1,1]

24:
25: . . .
26:
27: ad rx = ad rx + (−sin(rx)cos(ry))ad R[3,3]

28: ad ry = ad ry + (−cos(rx)sin(ry))ad R[3,3]

29: end for
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thus producing a circular dependency. When closely inspecting Algorithm 4,
though, one can observe that its results ad t and ad r, that is, the adjoints of
the translation and rotation parameters we are trying to recover, are linearly
dependent on ad I since all intermediate adjoint variables are the result of
either a scalar multiplication or a dot product involving their adjoint prede-
cessors. We make use of this observation by omitting ad I in the evaluation
of Algorithm 4, which yields the modified Algorithm 5. Instead of accu-
mulating ad t and ad r while iterating through Ω, we store their pixel-wise
preliminary values in the two-dimensional arrays ad t(u, v) and ad r(u, v).
Furthermore, we add the statements accumulating the DRR intensities (line
17 and 18 in Algorithm 1) to the derivative code in order to obtain the in-
tensities I(u, v). Therewith we can calculate Σcorr, σwI , ΣwI2 , ΣwI , and µwI
(see Section 4.4.2). This provides the basis for evaluating Algorithm 3, which
yields the pixel-wise adjoints ad I(u, v). We incorporate these values by mul-
tiplying the preliminary gradients ad t(u, v) and ad r(u, v) with ad I(u, v)
on a per-pixel basis. Summing up the arrays ad tx, ad ty, ad tz, ad rx, ad ry,
and ad rz over Ω eventually yields the six-valued gradient sought-after (see
Algorithm 6).

5.3.1 GPU-Based Evaluation

The calculation of the gradients as described above can be ported to the GPU
as-is, where blocks within loops over Ω are evaluated by means of fragment
shader programs. Pixel-wise values to be filed for future use, that is, array
writes with index (u, v), are rendered to textures which are subsequently
provided as shader inputs. Wherever arrays are summed up over Ω, texture
reduction as described in Section 4.4.2 is used. However, there is still room
for optimizations. An as-is implementation would require five rendering and
four texture reduction passes:

• Computing I(u, v), I(u, v)2, and the preliminary values of ad t(u, v)
and ad r(u, v) omitting ad I(u, v) (Algorithm 5).

• Reducing w(u, v)I(u, v) and w(u, v)I(u, v)2 to sum yielding ΣwI and
ΣwI2 .

• Computing corr(u, v) (equation 4.8). Note that corr is not required for
the gradient itself, but to compute the similarity measure required by
the optimizer.

• Reducing corr(u, v) to sum yielding Σcorr.
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Algorithm 5 The modified version of Algorithm 4 omitting ad I(u, v).

Require: C,R,T,H ∈M4 (R) ; nsmpl ∈ N; ad t, ad r = ∅
1: for all (u, v) ∈ Ω do
2: f̃cam = Hf̃win

3: b̃cam = Hb̃win

4: . . .
5: sobj = CR−1T−1C−1sworld

6: xobj = R−1xworld

7: pobj = sobj + (nsmpl − 1)xobj

8: ad pobj = ad xobj = ad R = ∅
9: for i = 1 to nsmpl do

10: I(u, v) = I(u, v) + vol (pobj)
11: ad xobj = ad xobj + ad pobj

12: ad pobj = ad pobj + ∂vol
∂pobj

(pobj)
13: pobj = pobj − xobj

14: end for
15: ad sobj = ad pobj

16: ad t(u, v) = ad t(u, v)−Rad sobj

17:
18: . . .
19:
20: ad ry(u, v) = ad ry(u, v) + (−sin(ry)cos(rz))ad R[1,1]

21: ad rz(u, v) = ad rz(u, v) + (−cos(ry)sin(rz))ad R[1,1]

22:
23: . . .
24:
25: end for

Algorithm 6 Computing the final pixel-wise gradients with respect to the
transformation parameters

1: for all (u, v) ∈ Ω do
2: ad tx = ad tx + ad tx(u, v)ad I(u, v)
3: ad ty = ad ty + ad ty(u, v)ad I(u, v)
4: ad tz = ad tz + ad tz(u, v)ad I(u, v)
5: ad rx = ad rx + ad rx(u, v)ad I(u, v)
6: ad ry = ad ry + ad ry(u, v)ad I(u, v)
7: ad rz = ad rz + ad rz(u, v)ad I(u, v)
8: end for
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• First loop in Algorithm 3.

• Reducing −w(u, v)(J(u, v)− µwJ)ad Σcorr to sum to obtain ad µwI .

• Second loop in Algorithm 3.

• Computing the final values of ad t(u, v) and ad r(u, v) (Algorithm 6).

• Reducing ad t(u, v) and ad r(u, v) to sum.

(a) (b)

Figure 5.1: A sample X-ray image w(u, v)J(u, v) and a masked DRR
w(u, v)I(u, v)

By means of some code restructuring, we reduce the cost to three render-
ing and texture reduction passes each. Computing only the NCC measure,
for example, to approximate the gradient numerically, on the other hand, re-
quires two rendering passes (one to compute w(u, v)I(u, v) and w(u, v)I(u, v)2,
and one to compute corr(u, v)) and two texture reduction passes. However,
to obtain the whole six-valued gradient by means of central differences, the
NCC computation routine has to be invoked twelve times. The restructured
algorithm looks as follows:

1. First rendering pass: Compute w(u, v)I(u, v) (see Figure 5.1(b)),
w(u, v)I(u, v)2, and the preliminary values of ad t(u, v) and ad r(u, v)
(see Figure 5.2(a) and 5.2(b))

2. First reduction pass: Reduce w(u, v)I(u, v) and w(u, v)I(u, v)2 to
sum.
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(a) (b)

Figure 5.2: The preliminary translation and rotation gradient images
ad t(u, v) and ad r(u, v) as returned by the first rendering pass of the re-
structured algorithm. They encode the potential change of the DRR in Fig-
ure 5.1(b) when t or r vary.

3. Host: Read ΣwI and ΣwI2 back to CPU main memory and compute
µwI as well as σwI

4. Second rendering pass: Compute corr(u, v) and w(u, v)(J(u, v) −
µwJ) (see Figure 5.3(a) and 5.3(b)).

5. Second texture reduction: Reduce corr(u, v) and w(u, v)(J(u, v)−
µwJ) to sum.

6. Host. Read Σcorr and the sum of weighted X-ray differences from mean
back to CPU main memory. Compute the NCC measure, ad Σcorr,
ad σwI , ad µwI (using the sum of X-ray differences), ad ΣwI2 , and
ad ΣwI .

7. Third rendering pass: Compute ad I(u, v) using ad Σcorr, ad ΣwI2 ,
and ad ΣwI . Multiply ad t(u, v) and ad r(u, v) with ad I(u, v) to get
the pixel-wise gradients (see Figure 5.4(a) and 5.4(b)).

8. Third reduction pass: Reduce ad t(u, v) and ad r(u, v) to sum.

9. Host: Read ad tx, ad ty, ad tz, ad rx, ad ry, and ad rz back to CPU
main memory.
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These values constitute the elements of the cost function’s gradient with
respect to the six model transformation parameters x at the position xi in
parameter space:

∂f

∂x
(xi) =

(
ad tx ad ty ad tz ad rx ad ry ad rz

)T
(5.24)

(a) (b)

Figure 5.3: The correlation image corr(u, v), which provides the basis for
computing the NCC measure, and an image depicting the X-ray differences
from mean w(u, v)(J(u, v)− µwJ).

The final gradient images in Figure 5.4(a) and 5.4(b) show the pixel-wise
gradients with respect to t and r encoded by colors. They were calculated on
the basis of the X-ray image in Figure 5.1(a) and the DRR in Figure 5.1(b).
Note that the values of ad t(u, v) and ad r(u, v) are mapped to the intensity
range such that the null vector is represented as the grey tone equidistant
to white (255, 255, 255) and black (0, 0, 0). Hence, an intensity of 128 and
above represents a positive gradient, an intensity below a negative one. The
red channel contains the gradients in x, that is, either the translation along
or the rotation around the x-axis, which corresponds to the axis through the
patient’s shoulders. The green channel contains the gradients with respect to
the axis from the back to the front side of the patient, that is, the y-axis. The
z-axis, which progresses from the patient’s head to their feet, is represented
by the blue channel. The blue and yellow regions in Figure 5.4(a), which
stem from a respectively high and low intensity in the blue channel, indicate
a rapid change of the cost function in the tz dimension. Figure 5.4(b), on the
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other hand, suggests a strong dynamics in ry since magenta and green are
salient. Indeed, the DRR in Figure 5.1(b) was generated with a translation
of −10 millimeters in z and a rotation of 5 degrees in y.

(a) (b)

Figure 5.4: The final translation and rotation gradient images ad t(u, v) and
ad r(u, v) computed from the preliminary gradient images in Figure 5.2(a)
and 5.2(b), and ad I(u, v). The R, G, and B channel correspond to the x, y,
and z-coordinate respectively.

When using more than one X-ray views to conduct the registration, the
above procedure is carried out for every X-ray/weight mask pair and the
resulting gradient vectors are summed up to form the actual step vector
required by the optimization routine.

Performing the evaluation of derivative code on the GPU entails a tremen-
dous registration speedup compared to approaches based on CPU-computation
or numerical approximation of the gradient and code restructuring can ad-
ditionally boost efficiency. However, both measures trade the flexibility of
algorithmic differentiation for performance. One of the major advantages of
AD is the automatic generation of derivative code, which greatly benefits the
maintainability of the program. After applying changes to the original code,
a rerun of the AD algorithm ensures the integrity of the program. When
porting parts of the calculation to the GPU and performing more complex
optimizations, on the other hand, it is currently indispensable for the pro-
grammer to engage with the derivative code. However, since efficient com-
putation is one of our main goals and we consider the registration algorithm
to be largely invariant, we accept that fact and focus on maximizing speed.
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Chapter 6

Results

6.1 Implementation and Operation

The registration algorithm was implemented on a Linux machine using C++
as the host programming language, the OpenGL graphics library
[OpenGL, 2007] to communicate with the GPU, and the Cg language
[NVidia, 2007a] to implement the fragment shader programs. A Fortran im-
plementation of the L-BFGS-B algorithm (see Section 3.6.3 and
[Zhu et al., 1997]) is used for optimization. The camera calibration proce-
dure is currently not integrated in the main application. It is implemented
by a set of Matlab programs which compute the intrinsic camera parameters
from multiple views of the calibration target, undistort the X-ray images,
and determine the pose of the camera for each image (see Section 3.4). The
programs are similar to those presented in [Bouguet, 2007], yet refined by
some methods from robust statistics.

The experiments were carried out on a Linux machine, which is equipped
with an Intel R© Core

TM
2 Quad processor running at 2.66 GHz and a

NVidia R© GeForce R© 8800 GTX graphics board with 768 MB of GPU mem-
ory.

6.2 Validation

In order to assess the quality of the alignment, a standardized method to de-
termine the registration error has to be applied. The mean target registration
error (mTRE) is a common measure when no salient features are available

73
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in the images. In [Van de Kraats et al., 2004], the evaluation of the mTRE
by means of a set of evenly distributed points pi inside a region of interest P
within the volume is proposed. It is calculated as the mean distance between
the points pi mapped to the world by the estimated transformation Treg and
the ground truth transformation Tground respectively:

mTRE(P,Treg,Tground) =
1

n

n∑
i=0

||Tregpi −Tgroundpi|| (6.1)

We define our region of interest to be a cube of size 10× 10× 10 centimeters,
where we evenly distribute 1000 points on a regular grid.

To determine the capture range of the registration algorithm, the criteria
for a successful registration and the percentage of allowed failures has to
be defined. We consider registrations with a mTRE below 1.5 millimeters
as successful and require 90 percent of all registrations to be successful in
order for a certain initial displacement to be within the capture range. The
evaluation method presented in [Van de Kraats et al., 2004] uses the mTRE
as a measure for the initial displacement. Random starting positions are
uniformly divided into a set of initial mTRE intervals in the following way:

1. Define a set of mTRE intervals, for example, 0 − 1, 1 − 2, . . . , 69 − 70
millimeters in our case.

2. Determine the value range that produces a maximum mTRE of 1 mil-
limeter for each transformation parameter separately. For the transla-
tion parameters, this is always 1 millimeter. For the sake of simplicity,
a linear relationship between the rotation parameters and the resulting
mTRE is assumed. For our choice of P , however, this yields an angle
of 1.5 degrees, which amounts to a maximum variation of 105 degrees
for the highest initial mTRE interval. As opposed to a displacement
of 70 millimeters, such an orientation of the patient is far from being
feasible, though. Hence, we use the angle that produces a mTRE of 0.3
millimeter instead, which yields a maximum deviation of 30.6 degrees
from ground truth.

3. For each interval generate random starting positions from the trans-
formation parameter ranges that produce a maximum mTRE of the
intervals upper bound. Discard those starting positions which yield a
mTRE beyond the current interval’s bounds. This is done until each
interval contains the same predefined number of starting positions, in
our case 5 or 10 respectively.
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In order to evaluate our registration approach, we use two CT scans with
corresponding X-ray images. The first dataset represents the image of a
cadaveric pelvic bone with 512×512×346 voxels and a voxel spacing of 0.602×
0.602× 0.600 millimeters. Ground truth was calculated from metal markers,
which were applied to the bone before being imaged. The corresponding X-
ray images were acquired for three different camera poses and have 1024 ×
1024 pixels. The second dataset is the image of a patient’s abdomen with
512×288×512 voxels and a voxel spacing of 0.713×1×0.713 millimeters. X-
ray images with 512×512 pixels are available for three different camera poses.
For the latter dataset no exact ground truth information is available. Hence,
we first estimate it as the mean of some final parameter vectors obtained
for registrations with small initial displacements. Then we carry out the
registration evaluation as described above and approximate ground truth by
the mean of all final parameter vectors that have a lower mTRE from our
estimate than 2.5 millimeters. Eventually, we calculate the mTRE of the
final parameter vectors with the updated approximation of ground truth and
determine the capture ranges.

To make the algorithmic differentiation results comparable, we carried out
the same validation procedure with a custom-built registration application
based on numerical approximation of the gradient. Like for the algorithmic
differentiation approach, all computationally and memory intensive parts,
namely DRR rendering, similarity measuring, and texture reduction, were
computed on the GPU. The gradient was determined by means of central
differences around the current position in transformation parameter space,
where each parameter was varied by a fixed δ separately.

In the following two sections the results of our experimental evaluation of
both gradient calculation approaches in terms of convergence and accuracy
(Section 6.3) and performance (Section 6.4) are presented. The results are
subsequently discussed in Section 7.2.

6.3 Convergence and Accuracy

For the pelvic bone registrations were carried out for 70 initial mTRE inter-
vals containing 5 random starting positions. Our approach achieved a mean
final mTRE of 0.24 millimeters for all successful registrations, that is, regis-
trations with a final mTRE below 1.5. A total of 257 (73.4%) registrations
were successful. Figures 6.1 and 6.2 show the relationship between the initial
and the final mTRE of single registration passes by means of scatter plots.
Each marker represents one experimental registration. Its x-coordinate spec-
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ifies the initial mTRE, where the y-coordinate depicts the respective final
mTRE. Figure 6.3 shows the progression of the percentage of successful reg-
istrations. Each discrete position on the x-axis represents an upper bound
for the initial mTRE. The corresponding y-coordinate states the percentage
of registrations within the initial mTRE range [0, x] which converged suc-
cessfully. We will refer to it as capture range plot. Using the 90 percent
criteria, the algorithmic differentiation approach reaches a capture range of
49 millimeters, which means that 90 percent of all registrations within the
initial mTRE interval [0,49] (490 in number) had a final mTRE below 1.5
millimeters.

The numerical approximation approach converged successfully 260 times
(74.3%), yielding a mean final mTRE of 0.1 millimeters for the pelvic bone
data. The capture range amounted to 48 millimeters. Figures 6.4 and 6.5
show mTRE scatter plots. The capture range plot is depicted in Figure 6.3.

The same evaluation procedure was performed with the CT scan of a pa-
tient’s abdomen and three corresponding X-ray images, yet with 10 starting
positions per initial mTRE interval. The algorithmic differentiation approach
converged 338 times (48.3%), yielding a mean final mTRE of 0.6 millimeters
and a capture range of 33 millimeters. Figures 6.7 and 6.8 show scatter plots
of the mTRE, where Figure 6.9 depicts the capture range plot.

For the approach based on numerical approximation of the gradient, 381
(54.4%) registrations were successful. The mTRE of this registrations aver-
aged at 0.2 millimeters and the capture range amounted to 35 millimeters.
Figures 6.10, 6.11, and 6.12 show mTRE scatter and capture range plots for
these experiments.

The results of the convergence and accuracy measurements are summa-
rized in Table 6.1.

Accuracy (mm) Success (%) Capture range (mm)
Dataset NA AD NA AD NA AD
Pelvis 0.1 0.24 74.3 73.4 48 49
Abdomen 0.2 0.6 54.4 48.4 35 33

Table 6.1: Summary of the convergence and accuracy results for both
datasets. The accuracy is given as the mean final mTRE of successful reg-
istrations in millimeters. The capture range represents the maximum initial
mTRE for which 90 percent of all registrations are successful. All values are
provided for numerical approximation of the gradient (NA) and algorithmic
differentiation (AD).
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Figure 6.1: mTRE scatter plot of the registration experiments carried out
with the pelvic bone data using algorithmic differentiation. (all values given
in millimeters).

Figure 6.2: Detail of Figure 6.1 showing only a limited range of initial dis-
placements (in millimeters).
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Figure 6.3: The capture range plot for the pelvic bone data and algorith-
mic differentiation depicting the percentage of registrations within the initial
mTRE range [0, x] which was successful

Figure 6.4: The mTRE scatter plot for the experiments conducted with the
pelvic bone data using numerical approximation of the gradient.
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Figure 6.5: Detail of Figure 6.4 showing only a limited range of initial dis-
placements (in millimeters).

Figure 6.6: The capture range plot for the pelvic bone data and numerical
approximation of the gradient.
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Figure 6.7: The mTRE scatter plot for the experiments conducted with the
human abdomen data using algorithmic differentiation.

Figure 6.8: Detail of Figure 6.7 showing only a limited range of initial dis-
placements (in millimeters).
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Figure 6.9: The capture range plot for the human abdomen data and algo-
rithmic differentiation.

Figure 6.10: The mTRE scatter plot for the experiments conducted with the
human abdomen data using numerical approximation of the gradient.
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Figure 6.11: Detail of Figure 6.10 showing only a limited range of initial
displacements (in millimeters).

Figure 6.12: The capture range plot for the human abdomen data and nu-
merical approximation of the gradient.
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6.4 Performance

To determine the performance of our registration, we evaluated both the
mean gradient calculation time and the mean registration time for the algo-
rithmic differentiation and the numerical approximation approach. The lat-
ter uses central differences to approximate the gradient, thus requiring twelve
evaluations of the cost function for the six model transformation parameters.
Since both approaches include the local evaluation of the similarity measure,
the number of cost function evaluations totals to thirteen. In order to get
points in parameter space to calculate the gradient for, 700 random starting
positions were generated as described in Section 6.2. For every position the
gradient calculation procedure used in the above registration experiments was
evoked. Eventually, the mean calculation time per gradient was calculated.

For the human abdomen data the numerical approximation approach
yielded a mean gradient calculation time of 0.70 seconds, where the algorith-
mic differentiation took 0.29 seconds on average. For the registration series
presented in Section 6.3 the numerical approximation approach required a
mean time of 68.72 seconds to converge. Calculating the gradient by means
of algorithmic differentiation, on the other hand, yielded a mean registration
time of 28.52 seconds.

For the pelvic bone data computing a gradient required a mean of 1.87
seconds when approximating it numerically, and 0.88 seconds when using
algorithmic differentiation. A mean registration took 199.35 seconds to con-
verge for the former, and 96.35 seconds for the latter gradient computation
approach.

Table 6.2 summarizes the time measurements carried out with the pelvic
bone and the human abdomen data.

Gradient (sec) Registration (sec)
Dataset NA AD NA/AD AD/f NA AD NA/AD
Pelvis 1.87 0.88 2.13 6.12 199.35 96.35 2.07
Abdomen 0.70 0.29 2.41 5.39 68.72 28.52 2.41

Table 6.2: Mean time (in seconds) required to calculate a gradient and carry
out a registration using both numerical approximation (NA) and algorithmic
differentiation (AD). The NA/AD columns depict the ratio between the
time required for numerical approximation and algorithmic differentiation.
The column AD/f states the ratio between the runtime of evaluating the
gradient using AD and evaluating the similarity measure f .



84 CHAPTER 6. RESULTS



Chapter 7

Conclusion

7.1 Summary

This work addresses the problem of integrating high-quality preoperative
patient scans into surgical interventions by means of intraoperative radio-
graphs in an efficient, accurate, robust, and unobtrusive manner to facilitate
minimally-invasive surgery. We presented a method to compute the gradi-
ent of an intensity-based similarity measure with respect to the rigid-body
transformation parameters which is virtually insensitive to the size of the
gradient in terms of performance. What is novel over prior art is the use
of algorithmic differentiation to determine the exact gradient of the similar-
ity measure efficiently. Moreover, the arithmetic power of modern graphics
hardware is not only exploited to compute digitally reconstructed radiographs
from the patient scans, but also to evaluate the objective function and to
compute its gradient at the positions defined by the optimization procedure.
Hence, all computationally and memory intensive parts of the registration
are performed on the GPU, which represents a highly efficient computation
engine for repetitive and parallelizable tasks. The optimization strategy was
chosen to allow wide capture ranges and explicit bounds on the parameter
space.

The set of registration experiments carried out with human abdomen and
pelvic bone data showed a registration speed-up factor in the range between
2.1 and 2.4 for algorithmic differentiation compared to numerical approxima-
tion of the gradient. While both approaches performed about equally as far
as capture ranges are concerned, the latter turned out to be superior in terms
of accuracy. The registrations performed with a pelvic bone dataset, which
does not contain any soft tissue, were generally more accurate and robust.
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7.2 Discussion

The experimental evaluation of the presented 2D/3D registration method
showed that the algorithmic differentiation approach is superior to numerical
approximation in terms of speed. It could be shown that the ratio between
the cost of evaluating the gradient and evaluating the cost function amounted
to a maximum of about six, which approximately verifies the upper bound
of five stated in [Griewank, 1989]. The evaluation of the derivatives within
the inner volume sampling loop, such as the numerical approximation of the
volume’s gradient, turned out to be the main reason why this ratio could
not be reduced further. We are confident, however, that a pre-computation
of the volume’s gradient will remove this bottleneck. Likewise, the benefit
of reverse mode algorithmic differentiation might become more obvious for
higher-dimensional gradients.

It turned out that 2D/3D registration based on algorithmic differentiation
currently suffers a loss of accuracy compared to numerical approximation of
the gradient. We ascribe that partly to the sensitivity of an exact gradient
computation to noise, which may mislead the descent towards the minimum.
Blurring the volume with a Gaussian filter might solve this problem, yet its
effect has not been investigated yet. However, the final mean target registra-
tion error for successful registrations generally amounted to 0.6 millimeter
and below on average, which we consider as satisfactory for targeting loca-
tions within the human body. As far as robustness, that is, the extent of
the initial displacement for which registrations still converge reliably, is con-
cerned, both approaches resemble. The capture ranges are superior to most
of those stated in related literature (see Chapter 2), yet they are inherently
hard to compare when stemming from different experimental settings. For
example, we did not conduct experiments with the data provided by the Im-
age Science Institute1 since major modifications to our application in terms
of masking would be required.

Additionally, the ratio between the mean registration times of both ap-
proaches roughly reflected the speed-up factor for single gradient compu-
tations, which we interpret as the gradient from algorithmic differentiation
guiding the search towards an optimal match about as efficiently as a numer-
ically approximated gradient.

The fact that the experiments carried out with the pelvic bone data exhib-
ited higher accuracy and capture ranges suggests that the non-rigid structures
present in the human abdomen data impair the NCC measure. We expect

1http://www.isi.uu.nl/Research/Databases/
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similarity measures which are less strict about the nature of the underlying
relationship between the images such as mutual information to perform bet-
ter for patient data. However, the limited region of interest, which stems
from certain parts of the images being masked out, is also likely to have an
impact on the success of the registration, especially when salient features,
such as bones, are covered by the mask.

It should be noted that the robustness and the accuracy of the registration
are strongly dependent on the optimization strategy and its parameterization,
which leaves a lot of room for further improvement. Likewise, there is a broad
range of techniques that may considerably accelerate volume rendering and
has not been investigated yet. However, what we regard as the focus of this
work is the evidence that accurate gradients of the similarity measure can
be computed in a much shorter period of time, which could be supplied.
Hence, we consider our approach a solid basis for the implementation of a
fast, accurate, and reliable application performing 2D/3D registration, yet
also for related problems, such as 3D/3D or non-rigid registrations, to which
the presented concept can be transferred.

7.3 Future Perspectives

The development of programmable graphics processors and technologies such
as CUDA

TM
are very promising to facilitate the porting of general purpose

applications to the GPU. As soon as native support for three-dimensional
textures will be available, more elaborate similarity measures, that is, mea-
sures that do not rely on a pixel-wise evaluation such as mutual information
can be implemented by means of GPU programs effortlessly. Additionally,
it will be easier to evaluate the derivative code produced by reverse mode
algorithmic differentiation on the GPU since the programming paradigm is
becoming more flexible and features that are currently missing such as buffer-
ing intermediate values will be available. Therewith, the automatic creation
and optimization of derivative GPU code, which would greatly improve the
maintainability and extendibility of the application, will be more straightfor-
ward to implement.

As far as the registration itself is concerned, there is lot of room for
improvement. As mentioned above, the accuracy and performance of the
approach is strongly dependent on the optimization strategy itself. A thor-
ough investigation of different gradient-based optimization strategies and the
influence of their parameterization is to be carried out. For example, the per-
formance and robustness benefit of supplying the data to the optimizer at
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several levels of detail and applying a low-pass filter before sub-sampling is
to be closely evaluated. Future development will be also aimed at further
speeding up the inner rendering loop. This may be realized by implementing
acceleration techniques such as empty space skipping or by pre-computing
the volume gradient.

Ongoing work in the context of automatic segmentation of medical in-
struments is to be completed, potentially extended by soft-tissue recognition
and masking, and integrated into the application. Additionally, the effect of
defining a threshold for the CT intensities in order to generally exclude non-
rigid structures, whose influence on the similarity measure is to be evaluated
beforehand, should be investigated.
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[Wein et al., 2005] Wein, W., Röper, B., and Navab, N. (2005). 2D/3D Reg-
istration Based on Volume Gradients. In Proceedings of SPIE: Medical
Imaging 2005: Image Processing, volume 5747.

[Westover, 1991] Westover, L. A. (1991). Splatting: A Parallel, Feed-Forward
Volume Rendering Algorithm. PhD thesis, UNC Chapel Hill.

[Zheng, 2007] Zheng, G. (2007). Unifying Energy Minimization and Mutual
Information Maximization for Robust 2D/3D Registration of X-Ray and
CT Images. In LNCS: Pattern Recognition, volume 4713, pages 547–557.
Springer.

[Zhu et al., 1997] Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). L-
BFGS-B: Fortran subroutines for large-scale bound-constrained optimiza-
tion. ACM Transactions on Mathematical Software, 23(4):550–560.

[Zöllei, 2001] Zöllei, L. (2001). 2D-3D Rigid-Body Registration of X-Ray
Fluoroscopy and CT Images. Master’s thesis, MIT AI Lab.


	Introduction
	Motivation
	Thesis Outline

	Related Work
	Rigid-Body 2D/3D Registration

	2D/3D Registration
	Introduction
	Rigid-Body 2D/3D Registration
	Digitally Reconstructed Radiographs
	Camera Calibration
	Intensity-Based Similarity Measuring
	Optimization

	GPU-Based Computation
	Introduction
	GPU Capabilities
	General Purpose GPU Programming
	GPU-Based Registration

	Algorithmic Differentiation
	Introduction
	Algorithmic Differentiation
	Differentiation of the Registration Algorithm

	Results
	Implementation and Operation
	Validation
	Convergence and Accuracy
	Performance

	Conclusion
	Summary
	Discussion
	Future Perspectives


