
Institute for Computer Graphics and Vision

Graz University of Technology

Graz

Towards a Collaborative
Information Visualization System
in a Multi-Display Environment

Diploma Thesis

Werner Puff

werner.puff@student.tugraz.at

September 2009

Supervision:

Univ. Prof. DI Dr. techn. Dieter Schmalstieg

DI Marc Streit, DI Alexander Lex, Manuela Waldner, MSc

Abstract

Visual data analysis often operates on a vast amount of data. The size of data sets as well
as the knowledge related to it raises, among others, two problems. On the one hand display
areas and resolutions of standard workplaces are often insufficient to visualize the data in
a proper proper manner. On the other hand the knowledge and collaboration of experts
from multiple domains is needed for an efficient data analysis process but the collaborative
tasks are not supported by the utilized systems.

This work proposes an approach to counter these problems, based on the information vi-
sualization software Caleydo. The approach introduces extensions to the existing software
in order to connect multiple Caleydo applications for the collaborative analysis of one data
set. In addition, Caleydo is integrated into the Multi-Display Environment Deskotheque.
This integration provides larger and more flexible display areas and also enables co-located
collaboration for small groups. The extensions presented here include a communication
layer to provide synchronization and data exchange between the applications. Visual
Links are used to make users aware of changes, an important aspect in a setup consisting
of multiple displays and multiple users.

Keywords: Information visualization, computer supported collaborative work,
multi-display environment, visual links

Zusammenfassung

Auf Informationsvisualisierung basierende Analysen operieren oftmals auf sehr großen
Datensätze auf. Sowohl die pure Menge der Daten als auch die damit verbundenen Wissens-
gebiete führen unter anderem zu zwei Problemstellungen. Einerseits sind Anzeigefläche und
Auflösung von Standardarbeitsplätzen unzureichend, um eine durchwegs zufriedenstellende
Arbeitsweise zu ermöglichen. Andererseits wird das Wissen von Experten aus verschiede-
nen Fachbereichen benötigt, um die Daten effizient analysieren zu können.

Diese Arbeit zeigt einen Lösungsweg aufbauend auf Caleydo, einer Informationsvisual-
isierungs Software, auf. Es werden Erweiterungen vorgestellt, um die Mehrbenutzertauglichkeit
der Software zu erreichen. Des weiteren wird Caleydo in das Multi-Display Environment
Deskotheque integriert. Durch diese Integration werden nicht nur größere und flexiblere
Anzeigeflächen zur Verfügung gestellt, sondern auch die direkte gemeinsame Zusammenar-
beit von Kleingruppen ermöglicht. Die aufgezeigten Erweiterungen umfassen eine Kommu-
nikationsschicht, um Synchronisation und Datenaustausch zwischen den Instanzen einer
verteilt laufende Applikation zu gewährleisten, als auch visuelle Hilfen, damit beim Einsatz
von mehreren Anzeigesystemen und bei Mehrbenutzerbetrieb der einzelne Benutzer Än-
derungen immer noch zufriedenstellend wahrnehmen kann.

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

4

Danksagung

An erster Stelle danke ich meinen Eltern, Friederike und Walter Puff für das Ermöglichen
meiner Ausbildung. Ebenfalls meinen Eltern als auch meinen Geschwistern Beate, Di-
etmar und Gerhard danke ich dafür, dass sie mich immer wieder auf unterschiedlich-
ste Art und Weise motiviert haben, mein Ausbildungsziel nicht aus den Augen zu ver-
lieren.

Weiters möchte ich mich ganz herzlich bei meinen Betreuern bedanken. Dieter Schmalsteig
möchte ich für die Möglichkeit danken, am Institut zu arbeiten. Marc Streit, Alexander
Lex und Manuela Waldner danke ich für die durchgehend konstruktive Zusammenarbeit
in den letzten Monaten, und dass sie immer Zeit für meine Fragen gefunden haben und
mir mit Rat und Tat zur Seite standen.

Danke auch an alle meine Arbeitskollegen und Freunde von new10, mit denen ich einen
großen Teil meiner bisherigen Zeit in Graz verbringen durfte. Ganz besonders danke ich
Erwin Greimeister, der mir in vielen wichtigen Momenten immer eine Stütze war, und An-
dreas Schneider für seine sprachlichen Tipps und Hilfestellungen.

Ganz besonders danke ich meiner lieben Freundin Petra, vor allem dafür, dass sie mir auch
in den stressigsten Zeiten meiner Ausbildung zur Seite stand.

5

Contents

1 Introduction 8

2 Related Work 11
2.1 Information Visualization . 11

2.1.1 Multiple Views . 13
2.1.2 Caleydo InfoVis Framework . 14
2.1.3 Visual Links . 17
2.1.4 Composite Views . 19

2.2 Computer Supported Collaborative Work 20
2.2.1 Co-located Synchronous Collaboration 23
2.2.2 Distributed Synchronous Collaboration 23
2.2.3 Co-located and Distributed Asynchronous Collaboration 24
2.2.4 CSCW System Architectures . 24
2.2.5 CSCW and InfoVis . 25

2.3 Multi-Display Environments . 27
2.4 Software Engineering . 30

2.4.1 Distributed Applications . 30
2.4.2 Serialization . 33
2.4.3 Remote Method Invocation and Remote Procedure Calls 35
2.4.4 User Interaction . 35

3 System Architecture 37
3.1 Single User Caleydo . 37

3.1.1 Modules . 38
3.1.2 Communication . 38

3.1.2.1 Commands . 39
3.1.2.2 Events . 39
3.1.2.3 Method Calls . 40
3.1.2.4 Compound Communication 40

3.1.3 Views . 41
3.1.4 Visual Links . 41
3.1.5 Serialization . 42
3.1.6 Multi Selection Support . 43

3.2 Multi User Caleydo . 43
3.2.1 Event System . 44
3.2.2 Synchronization . 45
3.2.3 Serialization . 46
3.2.4 Network Stack . 47
3.2.5 Persistence . 48

Contents 6

3.2.6 Visual Links . 50
3.2.7 Deskotheque Interface . 51

4 Implementation 55
4.1 Used Technologies . 55
4.2 Event System . 57
4.3 Serialization . 58

4.3.1 Event Serialization . 59
4.3.2 View Serialization . 59

4.4 Network Stack . 61
4.5 Visual Links . 62
4.6 Deskotheque Interface . 64

5 Results 68
5.1 Event System . 68
5.2 Synchronization . 69
5.3 Application State Persistence . 69
5.4 Single User Experiences . 70
5.5 Deskotheque . 71
5.6 Co-located and Distributed Collaboration 71

6 Conclusion and Future Work 74

List of Figures 76

List of Tables 77

Bibliography 79

Contents 7

Chapter 1

Introduction

In recent years, Caleydo1, an Information Visualization tool for biomedical pathways and
gene expression data, has been developed in a cooperation of the Institute for Computer
Graphics and Vision of Graz University of Technology and the Institute for Pathology at
the Medical University of Graz [Streit2007, Streit2008, Lex2008]. The tool is still under
development and and is continuously extended with new features requested by medical
researchers and test users [Streit2009, Schlegl2009, Partl2009]. Caleydo supports a vari-
ety of different visualization methods which are presented as multiple coordinated views.
Figure 1.1 shows Caleydo running in a dual monitor setup with multiple views on each
display.

Figure 1.1: Caleydo displaying multiple views in dual monitor setup.

This simultaneous use often calls for more display area than a standard single or dual mon-
itor setup can typically provide. Support for Multi-Display Environments would therefore
be more than welcome.

Multi-Display Environments also counter another issue related to the analysis of biomed-
ical pathways and gene expression data. The manifold and vast amount of data and
the associated knowledge can hardly be handled by a single person. It is necessary for
researchers from various domains to share their knowledge and work together during the
analysis process. Projection walls and tabletop displays are specifically designed to be used
by more than one person simultaneously. The Multi-Display Environment Deskotheque2,
another development of the Institute for Computer Graphics and Vision of Graz Uni-
versity of Technology, is able to embed multiple displays of such kind [Pirchheim2009].

1http://www.caleydo.org/
2http://studierstube.icg.tu-graz.ac.at/deskotheque/

Chapter 1 Introduction 8

http://www.caleydo.org/
http://studierstube.icg.tu-graz.ac.at/deskotheque/

Deskotheque provides a continuous interactive space across multiple heterogenous discon-
tinuous displays for multiple users operating this environment simultanously. In addition
to projection walls and tabletop displays Deskotheque also embeds standard monitor dis-
plays intended for users’ private workplaces. A typical Deskotheque setup consists of
several large displays spatially arranged around private workplaces, providing an envi-
ronment suitable for the collaboration of small groups consisting of two to five people.
Figure 1.2 shows an example setup for two users.

Figure 1.2: Example setup of Deskotheque. The setup contains two standard TFT moni-
tors, three projection wall displays and one table top display, forming a con-
tiunous interaction space for two users [Pirchheim2009].

Problem Statement and Contribution

This work’s motivation is to fill the gap between Information Visualization systems and
Multi-Display Environments designed for collaborative work. The focus lies on the existing
Caleydo framework and its successful integration into Deskotheque. The combination of
an Information Visualization framework and a collaborative Multi-Display Environment
provides new possibilities to aid users in their tasks. Some of these features are examined
in detail including the possible impact on the development of single user applications. The
part of this work that is related to the implementation of the Caleydo framework consists
of the following tasks:

• Data structures for concurrent access issues

• Application state serialization

• Application state persistence

• Establishing a common communication layer

• Network communication module

• Sending and receiving of selected entities over network

• Deskotheque interface

Chapter 1 Introduction 9

Deskotheque provides a network communication layer that is used in the implementation
of the Caleydo-Deskotheque interface. Deskotheque extensions needed for this work are
implemented by another research group. Implementation details of these extensions are
not explained in detail here.

In addition to the integration of Caleydo into Deskotheque, a spatially distributed collabo-
rative use case for Caleydo is investigated. Collaboration in a small group of two to five re-
searchers, each using Caleydo as analysis tool, is achieved by the provided network commu-
nication and synchronization of the respective Caleydo applications.

After this introduction, work in related research fields is discussed in Chapter 2. The pre-
sentation of the major topics Information Visualization, Computer Supported Collaborative
Work and Multi-Display Environments is followed by examinations related to software en-
gineering. Advantages and disadvantages of application communication related methods
and a human interaction design pattern are discussed there. An analysis of the state of
the Caleydo framework at the start of this work and derived changes and additions to its
software architecture are covered by Chapter 3. The focus lies on the needed application
communication layer and the calculation and rendering of visual cues, which should provide
an improved change awareness compared to the existing system. Application state persis-
tence and changes to improve the general application stability are covered as well. Details
about the resulting implementations are given in Chapter 4. Results and experiences are
outlined in Chapter 5. Beside a presentation of the new application state persistence fea-
ture the influence of the implemented extensions to the overall application performance
and stability is outlined. No results for Caleydo running in a Deskotheque Multi-Display
Environment are reported yet, but experiences and measurements for a co-located setup
of 2 workstations are presented. Finally the results are discussed in Chapter 6 and solu-
tions for limitations like for example concurrent editing issues with multiple users as well
as a new perspective for user interaction design using cross application Visual Links are
outlined there.

Chapter 1 Introduction 10

Chapter 2

Related Work

This thesis uses and extends knowledge particularly from three domains. Information Vi-
sualization, Computer Supported Collaborative Work and Multi-Display Environments.

General Concepts of Information Visualization and their application within the pathway
and gene expression visualization framework Caleydo are shown in Section 2.1. Due to
awareness requirements of collaborative system a special emphasize is put on Visual Links
in Section 2.1.3. Section 2.2 covers findings related to Computer Supported Collabo-
rative Work in general. Multi-Display Environments and especially the implementation
Deskotheque are presented in Section 2.3.

Distributed Applications and Serialization issues are directly involved when using collabo-
rative setups and Multi-Display Environment build upon distributed systems. Section 2.4.1
and Section 2.4.2 outline previous work on problems related to distributed applications
and serialization.

2.1 Information Visualization

Information Visualization (InfoVis) is the computer science field that relates to the usage
of visualization techniques for the presentation of abstract data. InfoVis can clearly be
differentiated from Scientific Visualization which focuses on the natural visualization of
spatial data.

Most of today’s Information Visualization systems follow the visualization pipeline archi-
tecture as outlined in [Card1999]. The visualization pipeline is a stepwise process. Each
step defines operations to refine the data which is used as input for the next step. The
output of the pipeline is the image resulting from the visualization process. The steps of
the pipeline are illustrated in Figure 2.1.

Data Analysis: Operations like smoothing or interpolation are applied on the raw data to
prepare it for the visualization process. This operations are performed automatically
and only little user input is utilized. This step can be performed only once right after
loading the data set as a preprocessing step.

Filtering: This operation applies mainly user defined filter operations on the data set.
The data set is reduced to a subset according to the current visualization needs of
the user.

Mapping: The data is transformed to geometric primitives. The chosen visualization
technique is applied during this step.

Chapter 2 Related Work 11

Data
AnalysisRaw

Data

Filtering Rendering
Image
Data

Prepared
Data

Focus
Data

Mapping

Geometric
Data

Figure 2.1: Visualization pipeline. The stepwise process from raw data to a rendered image.
Adapted from [Card1999] .

Rendering: The geometrical information is rendered as an image ready for displaying it
on an output device.

The pipeline is the basis for the appliance of the Visual Information Seeking Mantra of
[Shneiderman1996]: Overview first, zoom and filter, then details on demand. The role of
this mantra is discussed in [Craft2005] by Craft and Cairns. On the one hand, the mantra
is criticized for not being formally evaluated, on the other hand [Craft2005] emphasizes the
importance and influence of it for today’s InfoVis researchers and InfoVis systems. The
filtering operation utilizes the input of the user, that results from supported possibilities
of interaction according to the mantra. The mapping and rendering steps are needed to
display the results to user.

Overview First: If a human investigates something, it is a natural way to get an overview
of the investigated entity in a first glance. An InfoVis application should give an overview
of the visualized dataset right after application-start. For instance, Google Earth1 shows
the terrestrial globe at start. On the other hand it can make sense to start with some
kind of initial input, as for example in pathway visualization as discussed in [Streit2007],
[Streit2008].

Zoom and Filter: Following the natural way of a human to explore new things, the next
step after getting an overview is to get more detailed information on a selected subset
of the data. Filtering means to show only data that meets attributes specified by the
user. Zooming is a modification of the viewpoint. Zooming-in means a reduction in the
distance between the viewpoint and the examined object while zooming-out means an
increase.

Details on Demand: Due to the often large datasets InfoVis is based on, it is not
practical if even possible to show always all details on each information element. When
looking on a GIS world map on a computer monitor it would not be possible to show all
cities of the world including their number of inhabitants at once. Therefore such details are
only displayed on demand of the user, for example by hovering the mouse over a selected
entity.

The processes defined by the mantra is not static and can be applied individually according
to the requirements of the analysis process.

1http://earth.google.com/

Chapter 2 Related Work 12

http://earth.google.com/

2.1.1 Multiple Views

With larger display areas using two or more views on one or more given datasets simul-
taneously is an established way in many different kind of visualization software like GIS,
CAD, or InfoVis systems.

The same type of view rendered multiple times with different datasets is a visual com-
parison method of datasets to find similarities or differences. A special form of multiple
views on different datasets is for instance the scatterplot matrix [Cleveland1993]. The
scatterplot matrix spatially arranges a number of scatterplots in a matrix form. Each
scatterplot is based on the selection of two attributes of the source data set. Each line of
the matrix shows the combination of one attribute with all other attributes of the data set.
Scatterplot matrices provide a complete visualization of the dataset in combination with
the intuitive perception of correlations when using scatterplot views. Figure 2.2 shows a
scatterplot matrix of Iris Data.

Figure 2.2: Scatterplot Matrix for Iris Data [Cleveland1993].

Another utilization of the multiple view approach uses different type of views on the
same dataset. This method focuses on multiple aspects of the dataset simultanously by
combining the visualization and interaction strengths of the particular views. For example
SimVis [Doleisch2007] uses multiple views for interactive and feature-based analysis of
large and high-dimensional data (see Figure 2.3).

GIS and real time strategy games visualize world maps or a part of it. The typical approach
that can be found in most of that kind of software is to show a large detailed view for
focused exploration of the data and a smaller view with a low zoom level for context
information and overall navigation. Examples of GIS systems using two views can be seen
in Figure 2.4.

[Plumlee2006] approved the usability of a multiple view approach by evaluating multiple
views in comparison with zooming mechanics. They showed that approaches using one
overview window for navigation and another window for detailed focus view has a better
user acceptance than the ability to dynamically zoom in and out.

[Baldonado2000] published guidelines for using multiple views in InfoVis systems. They
formalized eight rules which tell a InfoVis system designer when and how multiple views
should be used to achieve usability goals. The rules are listed in Table 2.1.

Chapter 2 Related Work 13

Figure 2.3: A sample SimVis scenario: simulated flow through a diesl particle filter is
visualized [Doleisch2007].

Figure 2.4: Screenshots from three GIS systems using multiple views, from left to right:
Online Stadtplan Graz (http: // www. graz. at/ stadtplan), map24 (http: // www. map24. at)

and googleMaps (http: // www. googlemaps. com); all three are using a small overview
map-view and a large focused view.

2.1.2 Caleydo InfoVis Framework

Caleydo is a framework focused on the visualization of genetic data. Its major goal is
to support life science experts to understand the role of genes in diseases. The frame-
work is constantly extended by using findings of recent research. Details are described in
[Streit2007, Streit2008, Lex2008, Streit2009]. The approach to achieve this goal is to find
similarities and differences between data of healthy persons and persons with a diagnosed
disease. This means that the measured data of thousands of gene-expressions of multiple
individuals have to be compared in the context of existent knowledge on pathways, which
are models of processes in cells [Streit2007, Streit2008]. Caleydo provides a variety of
views to the researchers.

Hierarchical Heat Map: The heat map visualization method was introduced by Eisen
et al. [Eisen1998]. Data sets in matrix format with different gene data represented by
rows and the different experiments on individuals represented by the columns are a com-

Chapter 2 Related Work 14

http://www.graz.at/stadtplan
http://www.map24.at
http://www.googlemaps.com

Rule Summary
Diversity Use multiple views when there is a diversity of attributes, models,

user profiles, levels of abstraction, or genres.
Complementarity Use multiple views when different views bring out correlations

and/or disparities.
Decomposition Partition complex data into multiple views to create manage-

able chunks and to provide insight into the interaction among
different dimensions.

Parsimony Use multiple views minimally.
Space/Time Re-
source Optimization

Balance the spatial and temporal costs of presenting multiple
views with the spatial and temporal benefits of using the views.

Self-Evidence Use perceptual cues to make relationships among multiple views
more apparent to the user.

Consistency Make the interfaces for multiple views consistent, and make the
states of multiple views consistent.

Attention Manage-
ment

Use perceptual techniques to focus the user’s attention on the
right view at the right time.

Table 2.1: Summary of the rules to use multiple views published by [Baldonado2000].

mon form of gene expression data files. Heat maps use a matrix format of this kind for
visualization. Each cell of the matrix is colored on the basis of the measured fluorescence
ratio. The expressiveness of heat maps is strengthened when special orderings are applied,
on rows or columns or both. With applied clustering on the genes, as proposed by Eisen et
al., genes are grouped by its functions. This results from the observation, that genes with
similar expression regulation often have similar functions.

When trying to visualize the thousands of gene-expressions with heat maps, the main
limitation of heat maps, the screen space, becomes obvious. Even the largest available
display devices would not be capable of displaying that vast amount of rows. The Hierar-
chical Clustering Explorer was introduced in [Seo2002]. This tool uses an overview of the
heatmap data for overall navigation in combination with a more detailed view similar to
the GIS tools shown earlier in Figure 2.4. The overview is rendered by taking the average
values of adjacent cells to calculate the display color. The detailed view can be zoomed in
the range of using two to ten pixels for each data cell.

Caleydo supports a Hierarchical Heatmap view with up to three simultaneously displayed
detail levels with adjustable zoom [Schlegl2009]. The user may apply one of a variety of
cluster algorithms to the gene expression data on rows, columns or both. Hierarchical
cluster information is shown in a dendogram directly related to the heatmap view with
the highest detail level. Figure 2.5 shows the Hierarchical Heatmap view with and without
clustering.

Pathways: The cellular processes can be represented as a huge and complex network. A
pathway is a small subsection of this network that describes for example chemical reaction
cascades in cells by modeling the cellular functions in a graph. A metabolic network formed
by interconnected metabolic pathways is defined in [Bourqui2006]. Biomedical databases

Chapter 2 Related Work 15

Figure 2.5: Hierarchical Heatmap view of Caleydo without clustering on the left side and
with applied clustering and dendogram on the right side.

try to organize the steadily increasing amount of data. The existing databases focus on
different objectives like correctness or completeness.

Caleydo supports automatic pathway-download from KEGG2 and BioCarta3 (Figure 2.6).
Information contained within the downloaded pathways are set into relation with each
other and the analyzed gene expression data and other meta information displayed in the
various views of Caledyo [Streit2007, Streit2008].

Figure 2.6: BioCarta sample pathway for Free Radical Induced Apoptosis (taken from http:

// www. biocarta. com/ pathfiles/ h_ freePathway. asp).

Parallel Coordinates: The parallel coordinates visualization method is a way to present
multidimensional data in a 2D view originally introduced in [Inselberg1985]. This kind
of view builds upon a number of parallel axes, one for each dimension in the multidi-
mensional source data set. One point in the data set is a polyline with vertices on each
of the axes according to the coordinate value of the point for the related dimension.
[Siirtola2006] presents a survey of interaction techniques for parallel coordinates. Further-
more [Siirtola2006] underlines the usability beyond beeing an experts-only representation
with a user study that compared database related tasks performed with the standard query
language compared with a parallel coordinates based browser.

As described in [Lex2008], Caleydo uses parallel coordinates by using data of one gene

2http://www.genome.jp/kegg
3http://www.biocarta.com

Chapter 2 Related Work 16

http://www.biocarta.com/pathfiles/h_freePathway.asp
http://www.biocarta.com/pathfiles/h_freePathway.asp
http://www.genome.jp/kegg
http://www.biocarta.com

expression as point in the coordinate system of the individual experiments or vice versa.
Caleydo’s parallel coordinate view supports filtering based on 1D-selection and by the

Figure 2.7: Caleydo’s parallel coordinates (left) and the same view with applied 1D selection
filter (middle) and with an angular brush filter (right).

definition of angular brushes [Hauser2002, Doleisch2002]. 1D-selection filters polylines ac-
cording to a specified range on one of the axis. Angular brushes allow the definition of a
relative change of the values between adjacent axes. Figure 2.7 shows the parallel coor-
dinate views with applied filters and brushes. Furthermore the view supports reordering,
duplicating or removing of axes.

Radial Hierarchy: [Andrews1998] and [Chuah1998] introduced the first radial space
filling hierarchy visualization. This visualization method draws circular rings for each
hierarchy level with an angular area of space for each element on that hierarchy according
to a measureable value of the element. A radial hierarchy view is available in Caleydo and
is used for exploration of hierarchies resulting from the appliance of clustering algorithms
on the gene expression data.

2.1.3 Visual Links

Highlighting an element as response to its selection is a well known computer-human-
interaction behavior. The same element might be visible in different views at the same
time. It could be beneficial for the user if the highlighting would not only concern
about the view the user currently interacts with but would also be visible in the other
views.

Visual Links extend this idea by not only highlighting the elements in the different views
but also drawing edges or curves between related elements. Early works about Visual Links
include [Fekete2003], treemaps with overlayed graph links, or [Neuman2005], relations
within hierarchical data with edges between related data elements. [Shneiderman2006,
Aris2007] used Visual Links to interconnect semantic subtrates of large networks (see
Figure 2.8). Semantic subtrates are non-overlapping sub-divisions of the whole data set.
They followed their observations that in network visualizations of 10 to 50 nodes and
20 to 100 links the user can still count the number of links and nodes and follow each
link from source to destination in opposite to visualizations showing a larger data set
at once. In the proposed visualization system the users are able to filter connections
in and between semantic subtrates by a number of immediately applicable filter defini-
tions.

Chapter 2 Related Work 17

Figure 2.8: Two semantic subtrates views of a network. Each, the green and red area, is
a semantic subtrate of one large network. Visual Links connect elements with
the views itself and beyond view boundaries [Shneiderman2006].

Collins and Carpendale [Collins2007] extended the visualization tool prefuse [Heer2005].
They render the provided views of the visualization toolkit composed as planes within a
3D scene. They draw edges between related items in adjacent views. The user is allowed
to arrange the view-planes in the scene. Instead of drawing multiple lines from elements
in one view that are all related to one element in another view, the connection lines are
bundled. This avoids some visual clutter.

NodeTrix, introduced in [Henry2007] is a tool for the visualization of social networks. The
tool utilizes the fact, that social networks are globally sparse but locally dense. Therefore
it uses matrices to visualize local communities and Visual Links to connect the matrices.
The user has the possibility to switch between three options for visual link representation.
Aggregated links show simply general connections between the matrices as a whole, not
showing the interactions of individuals. Underlying links connect the individuals of each of
the matrices. Detailed interaction information is shown at the cost of many more links and
possible crossings. The third option is a combination of the aggregated and the underlying
links options. Attributes of the network may be mapped to visual variables like color or
line width, providing the user additional visual information about the network. Figure 2.9
illustrates different visualization methods of NodeTrix.

Figure 2.9: Different types of Visual Links in the social network visualization tool NodeTrix
[Henry2007]. From left to right: Aggregated links, underlying links, underlying
links with full thickness, underlying links with attributes.

Chapter 2 Related Work 18

2.1.4 Composite Views

Bucket and Jukebox: Caleydo’s Bucket and Jukebox views are composite views con-
sisting of a variable number of other views. The jukebox view (see Figure 2.10) got its
name for working similar to an audio-jukebox where records are selected from a list and
loaded onto the turntable. By selecting an entry from a list of pathways, the pathway
graph is loaded to the intermediate level, a 2.5D stacked layer view. A third stage shows
a large view of a pathway for close investigation.

Figure 2.10: Jukebox view [Streit2008] combining a textual list menu for browsing related
pathways by name (1) with an interconnected pathway stack (2), an area
designated for a detailed examination of a graph (3), and a memo pad (4)
[Lex2008].

The Bucket is also a 2.5D view, but contrary to the Jukebox the intermediate stack
layer view is replaced by positioning the contained views around the large view, com-
parable to the walls of a Bucket (see Figure 2.11). This placement leads to a closer
arrangement on the screen and results also in a closer relationship between the views.

[Streit2008, Streit2009a] used a similar approach as [Shneiderman2006, Aris2007, Collins2007]
to interconnect the individual views in Caleydo’s Jukebox and Bucket view. On the one
hand Visual Links are used to connect elements of the same kind in different views. On the
other hand they are used to link pathway graphs (see Figure 2.10), subsets of the cellular
network as explained in Section 2.1.2.

The described composite views try to solve the problem of limited display space by
arranging views in a 3D scene. This is only possible for the price of a lower detail
level and perspective distortion, which handicaps the analysis process [Robertson2000].

Chapter 2 Related Work 19

Figure 2.11: Bucket view composed of 5 different views and Visual Links.

2.2 Computer Supported Collaborative Work

In the life sciences the growth of information in the recent years has been exponential
[Streit2007]. This results in a vast amount of available information that can hardly be
handled by single persons. It is required to combine the knowledge of experts with spe-
cializations in different research fields to fully understand the data. Multiple experts have
to work tightly together to master the information and achieve new findings. This kind of
team work on a given problem is called collaboration.

As described in Section 2.1.2, computer support is already a common need to visualize the
available information. We have computer based tools, like Information Visualization soft-
ware, for helping problem solving on the one hand. On the other hand, we have the need for
collaboration of multiple users and well established computer networks. The research field
Computer Supported Collaborative Work (CSCW) describes and analyzes ways, how people
work together to achieve a common goal with the support of associated hard- and software
infrastructure. CSCW investigates the possibility for general collaboration support and the
support of collaboration within tools for specialized tasks.

Examples for general collaboration support are instant messengers or conferencing systems.
[Nardi2000] discusses an ethnographic study of instant messaging in the workplace. They
investigated the support and possibilities of instant messengers in today’s working envi-
ronment and working behavior. They outline the importance of informal communication
processes outside of the information exchange, which they call Outeraction. Moreover the
influence on the overall information exchange process is discussed. [Isaacs2002] found that
the primary use was for complex work discussions by logging and investigating thousands
of workplace instant messaging conversations. Moreover they pointed out that instant
messaging in a group of people working together are used for a range of collaborative

Chapter 2 Related Work 20

activities.

As a matter of fact that computer based tools and software engineering go hand in hand,
tools for distributed software engineering are a very common topic when looking into task
specialized collaboration tools. Versioning systems like subversion4 are state of the art in
today’s software industry. Beside well established technologies and tools, software engi-
neering in combination with CSCW is still an important research topic. [Boulila2004] pro-
posed a solution for distributed software modeling. They built a prototype of a distributed
UML modeling software with multi user support based on a floor control mechanism,
an integrated chat client, and a knowledge management module. [Cook2005] introduced
CAISE, a prototype of an integrated development environment (IDE) with collaboration
support that exceeds the common interface to the source control system (see Figure 2.12).
CAISE keeps the programmers action synchronized in real time. Beside other features
CAISE also supports tele-cursors, remote modification highlighting and visual awareness
aspects.

Figure 2.12: CAISE development tools with CSCW awareness support, collaborative code
editor on the left side and collaborative UML class diagrammer on the right
side [Cook2005].

CSCW is also an important topic offside software engineering. [Kaplan1992] pointed out
the state of the art CSCW support of operating systems in 1992 like networking features.
Furthermore they discussed requirements and possibilities of operating systems to support
CSCW and suggested four major features for operating systems:

• Objects, not files,

• awareness & object sharing,

• flexible, dynamic groups, and

• multimedia & casual interaction support.

4http://subversion.tigris.org

Chapter 2 Related Work 21

http://subversion.tigris.org

Some of those features have already made their way into today’s IT-landscape. For example
when managing music libraries used on multiple computers and portable music players,
the users have to deal with songs, albums and playlists and do not have to care about files
within the file-system of the different devices.

Looking at temporal and spatial aspects of CSCW, it can be divided into different fields.
Examining the geographic arrangement of the team members, collaboration can be classi-
fied in distributed and co-located. When looking into the timeline of work processes, a dif-
ferentiation into synchronous and asynchronous collaboration becomes visible. This classi-
fications and its combinations are visualized in Figure 2.13 introduced by [Johansen1988].

Continous task
team rooms,

large public display,
shift work groupware,

project management, ...

Remote interactions
video conferencing,
instance messaging,

chats/MUDs/virtual worlds,
shared screens, ...

Communication + coordination
email, bulletin boards, blogs,
asynchronous conferencing,
group calendars, workflow,

version control, wikis, ...

synchronous

Face to face interactions
decision rooms, single

display groupware,
shared table,

wall displays, roomware, ...

asynchronous

same time different time

d
is

tr
ib

u
te

d
co

-l
o

ca
te

d

di
ffe

re
n t

 p
la

ce
sa

m
e

p l
ac

e

Figure 2.13: The CSCW Matrix shows differentiation of collaborative work along the di-
mensions, time and place [Johansen1988].

As collaboration means an ongoing communication and getting along with each other is a
must, social aspects come side by side with collaboration. [Ocker2009] describes the advan-
tage of students that are educated in advance before participating in CSCW.

[Linebarger2005] shows that during synchronous collaboration with appropriate applica-
tion support the team members are more likely to form common mental models of the
analyzed problems. The direct influence of shared mental models to the effectiveness of
a team has been empirically analyzed by [Mathieu2000]. Outcomes of work of teams are
of better quality if not only their knowledge overlaps but also the knowledge organization
has synergies.

Chapter 2 Related Work 22

2.2.1 Co-located Synchronous Collaboration

Collocated synchronous collaboration means that the team members share a room or
a comparable workspace and they can see and speak to each other. This kind of col-
laboration can be seen as its natural form as it typically happens when two or more
people come together at one place at the same time to work on the same problem. A
simple example for synchronous collaboration is two people discussing a problem face-
to-face. More complex co-located synchronous collaboration could embrace more team
members and the usage of additional tools like pen and paper, flip-charts or projection
walls.

A popular approach for co-located collaborative environments are tabletop displays. [Hornecker2008]
investigated the difference of using touch input versus mice input during co-located col-
laboration. They found out, that with touch input the interactions are more fluid and
interferences have been solved quicker. The main reason for this is the higher aware-
ness factor of touch input over mice input. Furthermore this study shows the importance
of change awareness in collaboration software not only for the co-located synchronous
case.

To support mixed-focus situations, several researchers (for example [Rekimoto1999] and
[Scott2003]) recommended the usage of public display spaces in combination with pri-
vate displays for individual work. Deskotheque adopted this concept by the definition
of private and public usage for each display area within the Multi-Display Environment
[Pirchheim2009].

2.2.2 Distributed Synchronous Collaboration

Distributed synchronous collaboration means that each team member works at the same at
spatially distributed workplaces. All communication has to be done via the tools provided
by the CSCW environment.

The global activities of today’s companies shows already the importance of distributed
collaboration. It is hardly possible for a worldwide active company to arrange face-to-face
meetings for all collaborative tasks, as travel costs and time would be enormous. In fact
today’s global activites would not be possible without the help of communication tools like
phones, which are already one form of collaboration tools. More complex examples would
be instant messengers and video conferencing systems.

[Nardi2000, Churchill1999] show the importance of instant messaging and other light
weight communication tools in distributed CSCW in comparison with face-to-face com-
munication. Some advantages of instant messaging are:

• Less interruptive initiation of conversation than phone calls,

• persistence of textual conversation,

• showing negotiating availability, and

• encourages informal conversation.

[Greenberg2001] investigate the usage of the groupware system Notification Collage. They

Chapter 2 Related Work 23

found out, that the users showed an obvious curiosity related to all changes within the
groupware software. Especially when used within a multi monitor setup, it was very com-
mon to use one monitor exclusively for the groupware software (see Figure 2.14).

Figure 2.14: The Notification Collage on a second monitor in a personal setting
[Greenberg2001].

2.2.3 Co-located and Distributed Asynchronous
Collaboration

Asynchronous collaboration means that the team members work at different times. One
reason for that is, that team members are from different time zones. Visualization tools
like Many Eyes [Fernanda2008] or sense.us [Heer2007] focus on asynchronous collabora-
tion. As there is no real time communication between the team members in asynchronous
collaboration, change awareness must be handled differently and annotating the available
information is a very important aspect.

However this thesis does not concern asynchronous collaboration issues.

2.2.4 CSCW System Architectures

In many cases, CSCW needs to connect multiple computer systems and applications run-
ning on those computer systems over a network. Two used architectural designs can be dif-
ferentiated, client-server or peer-to-peer architecture (see Figure 2.15).

In client-server based models, one system takes the role of the server, that is the only
responsible instance for overall management and synchronization tasks. A typical repre-
sentative of client-server software can be seen in the world wide web, with the web-server in
the role of the server and the web-browsers as clients. [Beca1999] introduces Tango Beans,

Chapter 2 Related Work 24

Server

Client 2 Client 3 Client 4Client 1

Peer 1

Peer 2Peer 5

Peer 4 Peer 3

Figure 2.15: System architecture of image client-server on the left side and peer-to-peer
architecture on the right side.

software components designed for the use within collaboration services in client-server
based models.

With the availability of internet connection for the mass market, the possibility of sharing
each connected computer resources with each other came along. In opposite to the classical
client-server models, peer-to-peer computing sees each computer within a network as a
equal usable resource for running an application. In [Osais2006] a peer-to-peer framework
for synchronous collaboration support is introduced and possible performance benefits are
outlined.

Deskotheque uses a mixed architecture. A central master application coordinates the
particular computer nodes, while the window manager related communication uses a peer-
to-peer approach.

2.2.5 CSCW and InfoVis

Combining InfoVis and CSCW could either result into using general, separated CSCW
tools side by side with the InfoVis tools or by dedicated collaboration support built into
the InfoVis software. Using a version control systems to store the data or using messengers
to communicate are examples for general CSCW tools. Synchronizing views of different
team members or annotating the analyzed data with sticky notes visible for all team
members are typical examples for built in CSCW support.

[Mark2002] compared collaboration teams and individuals on finding answers by using in-
formation visualization systems. The user study compared individuals’ and collaboration

Chapter 2 Related Work 25

groups’ findings of question and discovery tasks, either using InfoZoom5 or Spotfire6 as in-
formation visualization software. Using Spotfire users must plan in advance what variables
to use and how to visualize them. Users of InfoZoom, in contrast, can rely much more
often on visual cues when accessing both data and system functionality. InfoZoom can
therefore be seen as more transparent compared to Spotfire, where transparency means to
invoke an easy-to-understand system image in users [Sharp2002]. The results showed an
advantage of collaboration groups over individuals when using a transparent information
visualization system. In question tasks the collaboration-group had a higher probability
of finding the correct answer. In the data discovery task the group showed a higher ac-
curacy, because groups are more likely to locate and correct errors in their findings than
individuals.

[Isenberg2008] analyzed collaborative tasks on paper based visualizations and made impli-
cations for the needs of a collaboration framework:

Support flexible temporal sequence of work processes: Individuals have unique infor-
mation analysis practices. Allow group members to be engaged in different types of
processes at the same time.

Support changing work strategies: Team-member switch dynamically from closely cou-
pled and more independent work. Support individual and shared views of and inter-
actions on the data.

Support flexible workspace organization: Individuals have different preferences to the
workspace layout. Allow users to impose a spatial organization of the information
artifacts.

[Isenberg2007] designed a system for collaborative tree comparison on radial views and
cladograms. Their system supports free workspace organization. So team members
can switch fluidly from independent to more collaborative work. Furthermore the sys-
tem supports interactive sticky notes and free annotations within the view (see Fig-
ure 2.16). Sticky notes and annotations support communication between the collabo-
rators.

Figure 2.16: Sticky notes and free annotation supported by the collaborative information
visualization system of [Isenberg2007].

5http://www.infozoom.com
6http://www.spotfire.com

Chapter 2 Related Work 26

http://www.infozoom.com
http://www.spotfire.com

[Park2000] deployed a collaborative environment for visualizing scientific data using a
CAVE [Cruz-Neira1992, Cruz-Neira1993] (see Figure 2.17). The user studies showed that
most researchers had a common behavior. They used private views to test out small
individual hypotheses then used global views to present their findings to the collabo-
ration partners. This behavior also resulted in the user-request to directly share their
visualization parameters which requires support for recording and restoring visualization
parameters.

Figure 2.17: CAVE based environment for scientific data visualization [Park2000].

2.3 Multi-Display Environments

An often seen setup of a single user computer-workplace is one computer with a single
display device. Onward development made larger display devices affordable for standard
users. Anyways, the display area of a single display device is rather limited, by physi-
cal dimension as well as by the number of used pixels. This often results into the need
of temporarily hiding required information while looking at another window which pro-
vides also useful information. Enhancing the computer-workplace with more than only
one display device is an approach to encounter the lack of display area. As soon as a
second display device is used for a computer workplace, it can be called a Multi-Display
Environment.

As today’s state of the art graphics adapters have two independent connections for display
devices, dual-monitor setups are already very popular. Typical seen setups are either a
standard display connected to a notebook and used side by side with the notebook’s built in
display or two separated displays connected to a desktop computer.

Beside multi monitor setups for single user workplaces, the research field of MDEs addresses
the combination of different kinds of displays like standard monitors, projection walls and
tabletop displays. Also, the interoperability of displays connected to different computers
and multi-user interaction is analyzed. Furthermore MDEs open broad new possibilities
in conjunction with CSCW and InfoVis.

Chapter 2 Related Work 27

A spatially continuous work space was set up by [Rekimoto1999]. Within this environment
the user could smoothly interchange data between their personal portable computers, a
tabletop and a wall display by using the so-called hyperdragging feature. Hyperdragging
made it possible to move content over the edge of a display onto another display. The
location of the portable computer’s display and the related user were determined by camera
based fiducial marker tracking.

The iRoom interactive collaboration workspace with its iROS software infrastructure was
setup by [Johanson2002]. They used their experimental setup during each day’s work for
themselves. The setup itself followed a few fundamental design principles:

• Practice what we preach by using iRoom during our own work,

• emphasize co-location,

• rely on social conventions,

• aim for wide applicability, and

• keep it simple.

The daily work of the research team and experiments with teams from different working
fields brought a positive feedback. The environment supports team meetings with collabo-
rative features. Team members are able to adjust the environment according to the needs
and proceeding of the user’s tasks. Different devices of individuals like PDAs, workstation
and laptops can be integrated within the environment. Figure 2.18 shows the floor plan
and a photo of the meeting room of the iRoom.

Figure 2.18: Floor plan and meeting room of the iRoom [Johanson2002].

Existing software needs to be adopted for integration within the iRoom environment.
Therefore the iROS meta-operating system was developed. This software ties together
devices, each with its own low-level OS. iROS is diavided into three subsystems. The
Event Heap subsystems forwards and stores messages, known as events, and provides a
central event repository for all applications. The Data Heap is a central data storage
system where all applications may store to or obtain data from. Finally the iCrafter
provides a system for service advertisement and invocation.

Chapter 2 Related Work 28

[Convertino2005] build up prototypes for geo-collaborative tasks for user studies. In their
setup the collaborators were seperated in different rooms able to communicate over phone
and the collaboration software. They identified three important areas of interaction be-
tween MDE and CSCW:

• role differentiation using diverse and complementary views,

• distinction between private and public space or content, and

• cognitive resources that are involved in using multiple views visualizations in indi-
vidual vs. collaborative work contexts.

[Biehl2008] introduced IMPROMPTU, an interaction framework for collaboration in MDEs.
Their focus in the user studies was on collaborative software development. The teams in-
volved have been working together over several years. The goal was to to support their
well established collaboration behavior with collaboration tools. Therefore the framework
supported showing and sharing windows to other individuals or on public displays, tele-
pointers and concurrent editing. Figure 2.19 shows screenshots of user interaction elements
of IMPROMPTU.

Figure 2.19: Closeups of IMPROMPTU’s window-share-controls and collaboration drawer
[Biehl2008].

The study showed, that the user utilized the framework for many collaboration tasks.
The users’ feedback was, that they wanted to continue using the collaborative features for
teamwork.

Deskotheque

[Pirchheim2009] introduced Deskotheque7, an MDE to combine personal and projected dis-
plays into a continuous teamspace. Deskotheque supports geometric display compensation
for distorted and overlapping projections, seamless mouse pointer navigation, and window
redirection. Furthermore, the display areas are distinguished into private and public with
appropriate restrictions for the users.

Dekotheque setups consist of multiple workstations with one or more connected displays
and a Deskotheque master application. The Deskotheque master application is the central
control instance for the workstations. The master application receives and distributes
events, triggered by the workstations.

Deskotheque manages a 3D-model of the working environment. This 3D-model is built with
the help of structured light and cameras. The 3D-model contains the geometrical and topo-

7http://studierstube.icg.tu-graz.ac.at/deskotheque/

Chapter 2 Related Work 29

logical information about all the displays. An example setup and its 3D model is shown in
Figure 2.20. This information is used for two components of Deskotheque:

Geometric Compensation : A 3D compositing window manager is used to compensate
distorted and tiled projection areas. This component is implemented as plugin to
the window manager and therefore transparent for applications running in the MDE.

Continuous Workspace : A modified version of the Synergy8 mouse pointer sharing tool
utilizes the 3D model to provide a spatially consistent mouse pointer navigation.
Window sharing is supported by xmove [Solomita1994], a pseudo-server implemen-
tation.

Each of the workstations may be assigned to a user. Each user might have one private
displays, which cannot be operated by other users. All other displays are public displays
which can be used without restrictions. Users are able to open windows and move windows
from or to any display they have access to. For example might User A ask his or her co-
worker, to have a look at a document and drags this document from User A’s private
display to a public projection wall. User B retrieves the document from the projection
wall by dragging it to his or her private display. Exchanging documents in this form might
be seen less abstract and closer to used behavior as for example sending an email with
the document as attachment. Furthermore the application state of the application that is
used for displaying the document does not change during the movement operations across
display boundaries. This means that the currently displayed page of a document is not
changed when moving it from one to another display.

The implementation of the continuous workspace mainly builds upon modifications and
add-ons to the windowing system of the workstations. Therefore no need for modification
of the employed applications is necessary. On the other hand, some drawbacks come
along with this approach. The most noticeable disadvantage is, that all windows of one
application can only exist onto one single display. For example it is not possible that an
office application displays its document on one display while the toolbars are displayed on
another. Another disadvantage is the close binding to the window manager. This makes
the installation of updates of the window manager and the underlying operating system
rather difficult and often results in additional modifications of the source code of the used
components.

2.4 Software Engineering

2.4.1 Distributed Applications

Requirements to the responsiveness of applications makes it necessary that within dis-
tributed groupware applications, each application holds a copy of the current data state.
It is not tolerated by users that they would have to wait on network requests when per-
forming, for example, a single scroll operation. Groupware software running on multiple
computers used by multiple users and synchronized over network rises the problem of con-
currency. Let us consider a groupware application running at two sites. Each of the site

8http://synergy2.sourceforge.net/

Chapter 2 Related Work 30

http://synergy2.sourceforge.net/

Figure 2.20: Example setup of Deskotheque [Waldner2009] and 3D model of this setup
including mouse pointer paths[Pirchheim2009].

holds the whole state of the application. All changes at a site are applied immediately
and also transmitted over the network to the other site. At each site a change is triggered
nearly at the same time. Because of the network latency, each site applies its own change
on the data state first and the remote change later. If those changes are not completely
independent the two applications might have different states from now on. In the example
of a distributed text editor in Figure 2.21.

There are a number of approaches to encounter this problem. Most of them rely on locking
or event ordering mechanisms.

Locking means to lock data for exclusive usage by one user before any editing operations
may be applied. Locking is a very common method to provide data consistency in dis-
tributed database management system (DBMS). For example, [Singhal1997] investigates
the locking behavior of three DBMSs.

In collaborative systems locking methods have to be combined with the user behavior.
Users with active locks may be temporarily inactive, users must wait for other users to
release locks [Greif1986, Stefik1987]. In many cases it could be hard to determine which
objects have to be locked before a user operation is performed. For example, inserting a
character into a word processor does not influence only one word, it may change multiple
lines or even multiple pages [Ellis1989].

Events are communication objects used within the common publish/subscribe design pat-
tern [Gamma1995]. The pattern is used to provide a loose coupling of publisher (sender)
and subscribers (receivers) of messages. Events are the data objects that encapsulate all
data of one single message. There are various possible sources that trigger events, for ex-
ample a mouse click of a user or the termination of a timer.

Event Ordering approaches have their common root in Lampport’s work on virtual clocks
[Lamport1978]. During event ordering mechanics, changes on the data are ordered using
a global timeline. An instance of the application may execute user operation immediately,
but information is kept so changes may be undone. If a new incoming remote operation
has a timestamp, that signals that it has to be performed before the recent and already
executed operations, those operations are undone. Then the newly arrived operation is

Chapter 2 Related Work 31

Groupware Text Editor

Groupware Text Editor

Some Text.
More Text.
|

Groupware Text Editor

|

Some Text.
|

Groupware Text Editor

Some Text.
|

Groupware Text Editor

More Text.
|

Groupware Text Editor

|

Add Text
“More Text.”

Delete All

Delete All

Add Text
“More Text.”

Site A Site B
Data State Data StateEvent Timeline Event Timeline

Figure 2.21: Groupware text editor used at two sites and a concurrent editing problem
resulting in different data states, adapted from [Mauve2004].

performed, and again the previously undone operations are executed. The main disadvan-
tage of this system is, that the result of an operation may already be recognized by a user
and afterwards it is undone automatically and replaced with something else which in turn
confuses the user.

Varieties of event ordering proposes the idea of local-lag [Mauve2004] or user interaction
[Li2000]. Local-lag means that the user operations are never executed immediately. All
operations are distributed to all groupware application instances immediately but are
delayed to some point within the global valid timeline in the near future. This should
ensure, that each operation is executed on all instances at the same time. Figure 2.22
adapts the example from Figure 2.21 by applying a local lag algorithm. In particular the
local-lag method has its strength in continuous applications like computer games. In most
cases the local-lag time is used to show an animation to the player that simulates the
needed actions before a result can be achieved.

User interaction is the idea to let the user interact with the system in case of conflicts
instead of solving the conflicts mechanically. If automated event ordering is applied, a
user operation might be based on a data state that is completely different than the data
state after the event ordering was applied. Therefore the operation might be undesired by
the user. The result in Figure 2.21 with applied event ordering is the same as shown for
Site A, as the Delete All operation is the last triggered operation. However, the user at
Site B might have canceled the operation if he or she would have been informed by the

Chapter 2 Related Work 32

Groupware Text Editor

Groupware Text Editor

Some Text.
More Text.
|

Groupware Text Editor

|

Some Text.
|

Groupware Text Editor

Some Text.
|

Groupware Text Editor

|

Groupware Text Editor

Some Text.
More Text.
|

Add Text
“More Text.”

Delete All

Add Text
“More Text.”

Site A Site B
Data State Data StateEvent Timeline Event Timeline

Add Text
“More Text.”

Delete AllDelete All

lo
ca

l-l
ag

Operation Trigger Operation Execution

Figure 2.22: A Groupware text editor with Local-Lag mechanics to counter concurrency
problems, adapted from [Mauve2004].

system that another user has entered some additional text. Therefore [Li2000] proposed
to detect and report conflicts to the user and let him or her decide how to resolve the
conflict.

2.4.2 Serialization

During the runtime of an application the application’s data in memory is usually stored
in an object representation. Serialization is the process to transform data from its object
representation into a sequence of bits so it can be written to stream oriented media like files
or transmitted over the network. The reverse process, converting data from its serialized
representation to is called deserialization. The terms marshalling and unmarshalling are
also often used instead of serialization and deserialization.

In fact serialization of data is an important part within distributed systems to send objects
across application and computer boundaries. Within the Java9 programming language two
major serialization approaches are directly supported:

• Binary Serialization

• XML Serialization (see [JAXB2.0])

In binary serialization the serialized data is basically a byte-by-byte copy from the object

9http://java.sun.com

Chapter 2 Related Work 33

http://java.sun.com

representation plus some structural information. Nevertheless the serialization framework
has to care about system specific differences like, for example, big or low endian represen-
tations of numbers.

@XmlRootElement
@XmlAccessorType (XmlAccessType . FIELD)
public class Address implements S e r i a l i z a b l e {

St r ing s t r e e t ;
int housenumber ;
S t r ing c i t y ;

}

Figure 2.23: Example of an address class including annotations for XML serialization and
the interface for binary serialization.

0000 ac ed 00 05 73 72 00 07 41 64 64 72 65 73 73 75 | s r . . Addressu |
0010 6b cd 7e 19 c6 71 46 02 00 03 49 00 0b 68 6 f 75 | k . ˜ . . qF . . . I . . hou |
0020 73 65 6e 75 6d 62 65 72 4c 00 04 63 69 74 79 74 | senumberL . . c i t y t |
0030 00 12 4c 6a 61 76 61 2 f 6c 61 6e 67 2 f 53 74 72 | . . Ljava / lang / Str |
0040 69 6e 67 3b 4c 00 06 73 74 72 65 65 74 71 00 7e | ing ; L . . s t r e e t q . ˜ |
0050 00 01 78 70 00 00 00 10 74 00 04 47 72 61 7a 74 | . . xp t . . Grazt |
0060 00 0b 49 64 6c 68 6 f 66 67 61 73 73 65 | . . I d l h o f g a s s e |

Figure 2.24: Binary serialized representation of an address-object.

XML serialization converts the data into an XML-representation. For each field of the
object that has to be serialized, an XML-element or XML-attribute must exist in the
corresponding XML document.

<?xml ve r s i o n=”1 .0 ” standa lone=”yes ”?>
<address>

<s t r e e t >I d lh o f g a s s e </s t r e e t >
<housenumber>16</housenumber>
<c i ty >Graz</c i ty >

</address>

Figure 2.25: XML serialized representation of an address-object in hexadecimal and ASCII
format.

The major advantage of XML serialization is that XML documents and so the XML se-
rialized form of the objects are human readable. Therefore development and debugging
might be more difficult with binary serialization compared to XML serialization. On
the other hand XML generation and parsing is a rather expensive process and so binary
serialization is much faster than XML serialization. [Hericko2003] compared the perfor-
mance of Java’s and Microsoft .NET’s XML and binary serialization. Their measurements
showed that binary serialization in Java is five to nine times faster than XML serializa-
tion.

Chapter 2 Related Work 34

With binary serialization in Java the programmer has either to rely completely on the seri-
alization implementation of Java, or the programmer can provide a self written serialization
method that is fully responsible for the serialization. Figure 2.23 shows a simple address-
class example, the serialized representations are illustrated in Figure 2.24 for binary seri-
alization and Figure 2.25 for XML serialization. Using [JAXB2.0] XML serialization the
programmer has more distinct ways to influence the serialization process on different levels.
Figure 2.23 shows the most simple way to annotate a Java class for being serializable into
an XML document. Moreover the programmer can specify annotations on the whole class
or single fields. For example, to specify if a field should end up as an XML-attribute or
XML-element in the resulting XML-document the XMLAttribute or XMLElement annotations
are used. Furthermore the programmer can even specify a serialization method for each of
the fields. Beside human readability this flexibility of Java’s XML serialization framework
is another advantage compared to binary serialization.

2.4.3 Remote Method Invocation and Remote Procedure
Calls

The execution of tasks on remote computer is anything else than a recent problem.
[Emmerich2008] provides an overview of commonly used communication middleware tech-
nologies and their role within today’s IT landscape. Well known specifications are the
Common Object Request Broker Architecture (CORBA)10 - a successful industry standard
- and SOAP11 - a common protocol for web services.

Java Remote Method Invocation12 [JavaRMI] is the native RMI implementation of the Java
programming language. The Internet Communications Engine (Ice)13 is an open source
RMI framework available for multiple programming languages. Support for communication
of applications written in different programming languages is one important feature of Ice.
For the development with Ice, the programmer has to write descriptors in an Ice specific
language. Programming language specific code generators generates the interface classes
from these descriptors.

2.4.4 User Interaction

The model view controller (MVC) design pattern was introduced in [Krasner1988]. This
design pattern for object oriented programming languages describes a possible separation
into different classes with clearly defined fields of responsibility.

Model: The model is the application’s central data structure. It is responsible for the
domain specific software simulation.

View: The view is the part that deals with graphical issues. It is the representation layer
that is responsible to render the data obtained from the model.

10http://www.omg.org/technology/documents/corba_spec_catalog.htm
11http://www.w3.org/TR/SOAP/
12http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
13http://www.zeroc.com/

Chapter 2 Related Work 35

http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.w3.org/TR/SOAP/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://www.zeroc.com/

Controller: Controllers are the interface between the model and the view and its input
devices. They are responsible to deal with user interactions and handle resulting
operations on the model.

Each of model, view and controller should be in a separate class. Typical systems will
have multiple models, views, and controller classes.

The MVC design pattern is a broadly used architecture. [Heer2006] underlines the im-
portance of this design patterns for today’s object oriented software and information vi-
sualization system development. Spring14 and Struts15 are very common frameworks for
J2EE web applications, that are fully based on this design pattern for any user interaction.
The pureMVC 16 framework provides MVC implementations for several programming lan-
guages. The framework’s conceptual architecture is illustrated in Figure 2.26.

AUTHOR: Cliff Hall <cliff@puremvc.org> LAST MODIFIED: 3/05/2008
PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source code downloaded from Futurescale’s websites is
provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of fitness for a purpose, or the warranty of non-infringement.

Figure 2.26: Conceptual diagram of the pureMVC framework (http: // puremvc. org/ pages/ docs/

current/ PureMVC_ Conceptual_ and_ Intro. pdf).

14http://www.springsource.org/
15http://struts.apache.org/
16http://puremvc.org/

Chapter 2 Related Work 36

http://puremvc.org/pages/docs/current/PureMVC_Conceptual_and_Intro.pdf
http://puremvc.org/pages/docs/current/PureMVC_Conceptual_and_Intro.pdf
http://www.springsource.org/
http://struts.apache.org/
http://puremvc.org/

Chapter 3

System Architecture

Levering Caleydo from a single user application to a distributed multi user application run-
ning in an MDE comes hand in hand with a considerable amount of software re-engineering.
Therefore Section 3.1 attends on necessary refactoring within the existing framework. The
analysis focuses on extensions needed for a distributed application but also outlines general
issues of the current architecture. Section 3.2 builds upon the insights of Section 3.1 and
covers needed changes to achieve the goal of this work.

3.1 Single User Caleydo

Caleydo is a Java application based on the Eclipse RCP1 framework. The RCP framework
bases on the open source Standard Widget Toolkit (SWT)2 which is used for the standard
2D graphical user interface. The main Information Visualization related tasks are imple-
mented in views rendered with the implementation of the Java Binding for the OpenGL
API (JOGL)3. A screenshot containing both, JOGL and SWT rendered sections is shown
in Figure 3.1. See Section 4.1 for a more detailed description on used technologies and
their role within Caleydo.

(A) (B)

Figure 3.1: 2D GUI-elements and 3D GUI- and InfoVis-elements and InfoVis of Caleydo.
(A) SWT provides the overall user interface like windows and widgets, (B)
JOGL/OpenGL is used for sophisticated Information Visualization tasks.

The combination of SWT and JOGL results in two main rendering and execution threads
within the application: One for the SWT event-handling and rendering loop and one for

1http://www.eclipse.org/home/categories/rcp.php
2http://www.eclipse.org/swt/
3http://www.jcp.org/en/jsr/detail?id=231

Chapter 3 System Architecture 37

http://www.eclipse.org/home/categories/rcp.php
http://www.eclipse.org/swt/
http://www.jcp.org/en/jsr/detail?id=231

the OpenGL display and event-listening loop. Both threads are executed simultanouesly
within a running Caleydo application.

3.1.1 Modules

The Caleydo framework consists of several distinct modules.

Application Startup: This module is responsible for retrieving and utilizing the initial
start parameters from the user, like the data set to load and the application mode to
run. Furthermore this module loads pathway data from supported internet pathway
databases and stores it in a local disk cache. After all the module initializes the
SWT and JOGL frameworks and starts the other Caleydo modules.

View Manager: The View Manager is capable of adding and removing views from and
to the application and manages resources needed by the views. Each view is a sep-
arated sub-module. Views are divided into 2D-SWT views and 3D-OpenGL views.
Additional views can be added to the Caleydo framework by fulfilling the provided
view API. The most important supported view types of Caleydo are described in
detail in Section 2.1.2.

Pathway Manager : The Pathway Manager loads the locally cached pathway data and
manages the references among them. This includes the mapping of different IDs of
distinct databases (see also the description of metabolic pathways in Section 2.1.2).

Event System : This module is responsible for event distribution of events received by
registered event triggers to registered event receivers.

Command System : The Command System is capable of executing actions in form of
serializable commands. Furthermore commands have the option to be undo-able.

Data Management : This module holds the loaded gene expression data set and is re-
sponsible for changes performed on the data and its distribution to the other modules.

Selection Manager : This is the central instance to store user selections and publish
them to visualization modules.

Connected-Element Manager : This module stores view related coordinates of selected
elements for Visual Link rendering.

3.1.2 Communication

As Caleydo is divided into modules, communication between the modules is a must. Se-
lections performed within one view should be propagated to all views holding entities
directly related to the selection. Filters, that are applied by using the interface of one
particular view, have to be propagated to all views. Three different ways of inter-module-
communication are used by the current implementation: commands, events and method
calls.

Chapter 3 System Architecture 38

3.1.2.1 Commands

Caleydo’s commands are implementations of the Command Pattern [Gamma1995]. Ac-
cording to this design pattern, a command object represents and holds the information
for a method call. Bundling the information of a method call in one command object
facilitates the implementation of a multi-level-undo feature. This is achieved by storing
a history of all executed commands and an additional undo-method for each of the com-
mands. For each undo step one command is taken from the command history and its undo
method is executed.

Commands are heavily used during the startup process of Caleydo. According to the cho-
sen application mode a file holding all related commands is loaded and the commands are
performed. The undo-feature in Caleydo is not implemented. Because of the complexity of
the executed processes of some commands they do not implement the needed undo-method
for this feature. Furhermore some of the commands implement execution-methods with a
rather complex degree of execution-logic which exceeds the idea of the original command
pattern.

3.1.2.2 Events

Events are the communication objects used within in the publish/subscribe design pattern
(see Section 2.4.1). The propagation of events is performed by so called event systems.
Each, SWT and JOGL/OpenGL provide an event system of their own. These event
systems focus on the events needed and triggered by the frameworks. Because of the
need of asynchronous inter-module communication, Caleydo cannot rely on only one of
the event systems provided by these frameworks. Caleydo features its own event system
implementation for asynchronous communication between the modules. This event system
supports multiple event divisions. Each event sender and receiver has to register explicitly
for one or more of the event divisions. According to this registration, events from one
sender are only distributed to the receivers which are registered at the same event division
and of course for the particular subscribed event types.

Events are handled by the event system immediately in the thread of the event trigger.
As mentioned at the beginning of this section, two main execution threads are running
within a Caleydo application, one for the SWT framework and one for JOGL. Each of
these threads manages data that does not provide any synchronizing mechanism. Trig-
gering an event from one execution thread that has a module with data related to the
other execution thread raises the problem of access restriction failures. The SWT frame-
work forbids external thread access by threads other than SWT’s main execution thread,
attempts result in ThreadAccessExceptions. Accessing data related to the JOGL thread is
more sophisticated. There is no detection mechanism to avoid data access from other
threads. The resulting possible concurrent modification of data might result into a hard
reproduceable ConcurrentModificationException or simply undesired behavior of the applica-
tion.

Chapter 3 System Architecture 39

3.1.2.3 Method Calls

Method calls are the standard way of communication between objects in object oriented
programming languages like Java. Thus it is not a big surprise that in Caleydo as a single
user application method calls are used frequently for communication between different
modules.

3.1.2.4 Compound Communication

Beside the use of the three described communication methods, Caleydo uses compositions
of subsets of them.

Event-commands are commands that are encapsulated within an event-object and dis-
tributed to other modules via the event system. The receiver unpacks the command
object from the event and triggers its execution. As command objects contain execution
method for performing the related task, the usage of commands within events puts execu-
tion logic into events, even events were originally designed as message entities only. Thus
the sender and receiver of such an object are tighter coupled compared to the usage of
standard events.

The data update mechanism uses both, method calls and events. One module, for example
a view, publishes updated data using method calls to the data management module. Af-
terwards the module sends a data update event to inform other modules that the existing
dataset has undergone a manipulation. The receivers retrieve the updated data again by
method calls from the data management module (Figure 3.2).

View A

Data

Event
Publisher

write

View B View C

update

notify

read
1

2 3

4

Figure 3.2: Caleydo data update mechanism. After updating the data with a direct
method call other subsystems are informed of the update by sending an event
[Streit2007].

The weakness of this architecture lies in the possible coincidental access to the data set.
One module might be in the middle of the update process while another module processes
a data update event and starts reading the data set in its currently undefined state. One
might argue, that this cannot happen in an application designed running on a single
workstation with one single user. However, using this architecture in a distributed multi

Chapter 3 System Architecture 40

user system landscape, running into undesired behavior or system failures is inevitable.
Another problem that comes hand in hand with a distributed system is that simple method
calls are not possible beyond the boundaries of the application without using extensions
like remote method invocation (RMI).

3.1.3 Views

The various existing views utilize and combine knowledge and experience from multiple
InfoVis research topics. Views like pathways, heatmap, parallel coordinates or radial hier-
archy provide the user with the possibility to analyze the data from different perspectives.
Each of the specialized views focuses on particular tasks. The compound views, Bucket and
Jukebox, set information from multiple views in direct relationship and encourages the user
to use the most appropriate view for each of his analysis tasks.

Most of the currently existing views encapsulate display related program logic and data
manipulation logic in one single class, except a few tasks that are performed with the
help of command objects. This results not only in very huge classes with thousands
of lines of code which are rather hard to maintain. The Model-View-Controller (MVC)
design pattern [Krasner1988, Gamma1995, Heer2006] demands that objects from differ-
ent classes take over the operations related to the application domain, the display and
the user interaction. Thus it can be stated that Caleydo’s classes do not completely
follow the MVC design pattern. With regard of a distributed application architecture
this means that it is not possible to apply changes only at the level of controllers and
exchange of the model as underlying data set. The needed changes have to be applied
directly within the view classes and might have side effects on the entire behavior of the
view.

3.1.4 Visual Links

Caleydo supports Visual Links in the compound views like the Bucket view [Lex2008,
Streit2009]. In these views, Visual Links are a major aid for the user in finding relation-
ships between the entities in the different views. Whenever the user selects an entity in
one view, by either hovering the mouse pointer over or clicking it, the view publishes the
selection information in combination with view related coordinates of the selected entity
to the connected-element manager. Other views are informed of the selection via the event
system and also provide their selection coordinates to the connected-element manager. Af-
terwards the Bucket view retrieves the coordinates from the connected-element manager to
render connection lines between all the selected entities of the contained views. Figure 3.3
illustrates the rendering process of Visual Links.

This implementation only works, as long as the visual connection lines are drawn within
one single drawing area, in particular the OpenGL canvas of the view. At the start of this
work, there is no support to draw connection lines between several independent views. In
addition, for currently being a single workstation and single user application Caleydo does
not provide any interface for an external application to draw Visual Links across multiple
applications.

Chapter 3 System Architecture 41

Bucket ViewBucket View

1 User Selection

3 Selection notification

View CView D

View A

View B

Connected
Element
Manager

4 Visual Link Calculation

2

Selection
Propa-
gation

2 2

Figure 3.3: Selection propagation and rendering of Visual Links in Caleydo. A user se-
lection (1) is propagated to all standard views (2) via the event system. Each
view delivers the selection related coordinates to the connected-element man-
ager (3). The Bucket view retrieves the visual link information (4) and renders
connection lines and contained views.

3.1.5 Serialization

The data set is read from a serialized representation at startup, in particular from a
file from disk. During this process unneeded information is dropped according to the
data analysis step of the visualization pipeline (see Section 2.1). Currently there is no
possibility to serialize the data set again after it has been read. Furthermore none of the
modules supports any kind of serialization to its data. Therefore it is not possible to store
a snapshot of the current application state, which could be used for example to continue
work later. Command objects are the only entities that can be serialized and deserialized
on demand. Therefore, a specialized XML-format exists, the same for all kinds of command
objects. Parameters of the command are stored with attribute names attrib1, . . . , attrib4.
This means that the number of attributes is limited by the syntax of the XML-format.
Currently the limit is four. Furthermore, the files are not easily human readable because
the original naming of the attributes is lost.

Figure 3.4 shows an example of a serialized command object. An interpretation of the at-
tribute attrib2=”600 600”, as it can be seen in this example, could be the size of the view in
pixels but also the position of the view on the screen. A valid statement about the meaning
of this attribute cannot be made without examination of the source code.

Chapter 3 System Architecture 42

<Cmd
mementoId=”0 ”
proce s s=”RUN CMD NOW”
type=”CREATE VIEW SWT GLCANVAS”
cmdId=”69991 ”
uniqueId=”16401 ”
g l canvas=”99075 ”
parent=”10331 ”
label=”Canvas ”
a t t r i b 2=”600 600 ”
d e t a i l=”1077991 ”

/>

Figure 3.4: XML serialized command object.

3.1.6 Multi Selection Support

The existing selection manager is not restricted to handle only one selection. Actually
it handles any number of selections. The single user use case is supported by mouse
over and mouse click selections. Figure 2.11 shows a Bucket view with two selections
- the selection resulting from the recent mouse click colored in purple and the current
mouse over selection in yellow. The same differentiation mechanism can be used to dis-
tinguish between selections of multiple users within a distributed Caleydo application
landscape.

3.2 Multi User Caleydo

The major goal of this work is to support a distributed version of the Information Visual-
ization system Caleydo. Support for

• distributed synchronous collaboration

• co-located synchronous collaboration within the Multi-Display Environment Deskotheque

should be achieved. Asynchronous collaboration is not directly supported. However asyn-
chronous collaboration is possible with external tools for communication and synchroniza-
tion of persisted data.

For a distributed synchronous application each user owns a workstation and runs a Ca-
leydo application instance. Displaying the different windows of a single application on
displays controlled by different workstation is not possible with Deskotheque due to im-
plementation limitations (see Section 2.3). Each workstation has to run its own applica-
tion instance for co-located synchronous collaboration. Both use cases require multiple
application instances that have to be synchronized over network to support collabora-
tion.

This section covers refactoring and streamlining needs of existing modules and the design
of two new modules according to the requirements of multiple synchronized application
instances and multi-display support. One of the new modules is the network stack (see

Chapter 3 System Architecture 43

Section 3.2.4). This module takes care of all network related communication tasks between
multiple Caleydo applications. The second new module is the Deskotheque interface, which
is described in Section 3.2.7. Central part of this module is the groupware manager. The
groupware manager is the interface between the main application and the Multi-Display
Environment. Currently the groupware manager focuses on the interface supported by
Deskotheque. A second implementation of the groupware manager provides distributed
synchronous collaboration support. As this implementation merely is a simplified version
of the Deskotheque related groupware manager, it is also covered by Section 3.2.7. The
integration to other collaboration and Multi-Display Environments is possible by additional
specialized implementations of the groupware manager.

Generally the system architecture enforces the goal to identify possible independent sub-
systems within the application and replace existing tight coupling with loose coupling.
The major requirement to this new kind of coupling is that all involved communication
has to be accomplished via serializable objects. This is necessary to allow modules running
on different workstations with communication using a network connection. Following this
guideline consequently and thinking of a Multi-Display Environment with consisting of
several workstations, a possible setup could be having each of Caleydo’s views running on
an individual display.

3.2.1 Event System

In a distributed Caleydo application setup, it must be possible to send events over a
network. On the one hand this requires that all events that are needed for inter-module
communication must be serializeable. Section 3.2.3 deals with this requirement. On the
other hand this implies that there must not be any direct dependencies between events and
the environment they are processed in. Compound Communication (see Section 3.1.2.4)
between modules has to be strictly avoided.

Therefore all data that has to be transported between modules is part of the payload of
events. Execution logic based on event processing is part of the receiving entity.

Event
Publisher

Event
Trigger

Event
Trigger

Event
Trigger

Event
Receiver

Event
Receiver

Event Queue

Event Queue

Figure 3.5: Redesigned Event processing in Caleydo. Events are put into event-queues.
Receivers fetch the events from the queues when they are ready for event pro-
cessing.

Chapter 3 System Architecture 44

Event queues are introduced for thread safety on data structures that are not designed
to provide thread safe access. Each event receiver owns a thread queue, a simple first-in
first-out storage data structure. The event system puts the events into this queue. Each
receiver gets the events from this queue at a convenient time in its execution. This not
only avoids concurrent write access on data structures, but also avoids that data structures
are modified in the midst of rendering a view based on this data. Events also provide a
sender-attribute. This attribute holds the triggering instance of the event. This is used to
avoid possible endless circular event distribution. The overall architecture of the redesigned
event system is illustrated in Figure 3.5.

The previously known event divisions (see Section 3.1.2.2) have all been used as a distinc-
tive feature of events. Therefore it is replaced by more specific events and additional
parameters within the according event classes. For the explicit definition of particu-
lar module groups, where each module of one group should not be directly connected
via the event system to any other group, the usage of multiple event publisher is pro-
posed.

Module Group

Module Module Module

Event
Publisher

Module Group

Module Module

Event
Publisher

Event
Publisher

Event
Bridge

Event
Bridge

Figure 3.6: Multiple event publisher instances and module groups.

Two connected module groups are illustrated in Figure 3.6. The communication within a
module group is handled via an event publisher dedicated to the module group. An addi-
tional event publisher establishes the communication between the two module groups. An
event bridge dedicated to each of the module groups is the main communication interface
between its module group and other sub-systems. The event bridge forwards events be-
tween the module related and the inter-group-communication event publishers, depending
on the subscribed events of each of the event publishers. This design allows to distinguish
between events being only of interest within a specific group of modules and events that
are of interest for the whole application. For example, a user selection should only be
visible within a group of views while the application shutdown should be propagated to
all parts of the application.

3.2.2 Synchronization

Because of the introduction of event queues, all receivers need their own execution time
frame. In particular this affects manager modules that are not dedicated to one of the main

Chapter 3 System Architecture 45

execution threads (see Section 3.1). Therefore a special OpenGL component is introduced.
This component is called during OpenGL’s display loop and calls the execution methods
of all registered manager classes.

OpenGL related modules are registered and executed within the display loop and can make
use of this for processing the event queue. SWT related modules utilize the asynchronous
execution features of SWT.

3.2.3 Serialization

Serialization is needed to address three issues:

• Module communication across application boundaries

• Application state

• View state

As described in Section 3.2.1, all communication between modules is done by sending
and receiving events. Therefore all events that are needed for inter-module communi-
cation must be serializeable. Of course this includes the event’s data payload as well.
As serialization subsystem the JAXB 2.0 (see [JAXB2.0]) implementation included in
the Java Runtime Environment 6 is used. There are only few implementation tasks and
refactoring issues on existing classes to support JAXB 2.0 serialization. This method of
serialization also provides much better human readability compared to binary serialization
(Section 2.4.2 provides a comparison).

Furthermore XML formats ensure an easier upward compatibility. With binary serializa-
tion, particular code has to be provided to support compatibility across different Java
Runtime Environment versions. Another issue when using binary serialization arises
with changes related to the serializable classes. For each particular version of an im-
plementation a mapping possibility to the current version has to be provided. Using
XML as serialization format version changes can be performed directly on the serial-
ized representation. For example by applying an XSL stylesheet4 to the XML docu-
ment.

New Caleydo application clients should be able to connect to a running application cluster
at any time. That is why it is important to serialize the application state and send this
information to new connected clients for initialization. Beside this direct requirement, an
application state serialization feature is a basis for persisting the application state to disk,
which is a basic requirement of a save-project mechanism. The initialization based on a
serialized application state (as needed by the connecting client application) can be used
for a load-project mechanism. The only difference is the data source. For distributed
application initialization it is the network, whereas for a load-project feature a file on disk
has to be chosen by the user.

Caleydo’s startup mechanism uses XML based bootstrap files, which hold a various number
of commands. Different bootstrap files exist for different application modes supported

4http://www.w3.org/Style/XSL/

Chapter 3 System Architecture 46

http://www.w3.org/Style/XSL/

by Caleydo. More detailed parameters of the application modes are evaluated by these
commands during startup.

The application state consists of the application mode, its parameters and a CSV input
data file. As used with events, the JAXB 2.0 implementation is used to serialize the
aggregated application state.

An important feature for applications running in Multi-Display Environments is that the
elements the user interacts with - usually the windows and views - can freely be placed
anywhere in the environment. The Deskotheque setup features a workstation cluster.
Each workstation is connected and responsible for only a subset of the existing display
devices. Therefore, moving a Caleydo view from one display to another requires the
support to move views between individual Caleydo applications. See Section 3.2.7 for a
more detailed description of the interaction between Caleydo and Deskotheque. This is
achieved by the possibility to serialize each of Caleydo’s views and sending it over the
network as payload of an appropriate event. Moreover, view serialization mechanism can
be used in conjunction with application state serialization within the load- and save-project
feature. See Section 3.2.5 for a more detailed description of loading and saving of project
files.

3.2.4 Network Stack

For keeping the particular instances of a distributed application environment, synchronized
network communication is inevitable. Caleydo is based on a client-server network architec-
ture (see Figure 2.15). One Caleydo application (the server) is the central communication
node for all other applications (the clients) in the network. Application data is completely
redistributed to all running instances and synchronized according to user operations. The
server is responsible to distribute all events to the clients.

The network module itself is initialized on demand by the user. A running Caleydo appli-
cation can be switched to server mode at any time. The data set to work with is loaded
during the startup and initialization of the application. This startup behavior requires to
choose the client application mode already during application start. The client applica-
tion mode causes Caleydo to connect to the server and retrieve application mode and the
dataset from the server.

Client and server architecture is very similar. Each connection between two Caleydo
applications depends on two threads, one to handle incoming and one to handle outgoing
network traffic. Of course, a client only opens one connection, while the server holds one
connection to each of the connected clients. Furthermore the server starts a dedicated
thread to listen for incoming connections.

The network stack utilizes the architecture of the event system by using multiple event
publisher instances. A global network related event bridge listens for events, that might
be of interest for remote applications and delivers them to an event publisher dedicated
to network connections. Connection specific event bridges listen to events on the network
dedicated event publisher and pass them to the connection specific network thread. This
is how local events are propagated to remote applications. A similar architecture provides

Chapter 3 System Architecture 47

reception of remote events. The connection specific network thread related to incoming
traffic receives an event from the network. The event is passed via a connection specific
event bridge to the network related event publisher. Another event bridge listens to this
network event publisher and passes received events to the global event publisher to which
other modules are connected to. On the server, incoming events are also propagated to the
outgoing network event publisher and thus passed to all connected clients. See Figure 3.7
for the overall design of the network stack.

Event bridges support an event filtering mechanism. This filter is parametrized to not
bridge events back to their sender. This avoids endless circular event propagation. The
different event bridges may subscribe to a different set of events. While the global network
event bridges subscribe to all events that might be of interest for remote applications,
the connection specific event bridges can have client specific event subscription sets. In
a Multi-Display Environment a client connected to a touch display device can be used
to display toolbars only. Accordingly, this client only needs to listen to view activation
and selection events to display related buttons and options for context sensitive manipu-
lation.

3.2.5 Persistence

This section outlines the requirements and mechanics to save and load an application state
of Caledyo. This feature can be easily achieved as a side effect of the serialization support
needed for network communication. To store and rebuild a snapshot of a running Caleydo
application, the aggregated application state has to be serialized and written to a file. This
aggregation consists of four major parts:

• application mode parameters

• data set

• data transformation

• view states

The application mode and its parameters describe the general usage of the Caleydo applica-
tion. Section 3.2.3 describes the aggregation and serialization possibility of the application
mode parameters in detail.

The data set, as for example the gene expression information of a number of experiments,
is stored in tabular form, usually as a comma separated values (CSV) file [Streit2007].
These files provide a lot more information than currently needed by Caleydo, hence the
information has to be filtered in a preprocessing step. Possible future features of Caleydo
might utilize currently unneeded information. If the filtered data would be stored within
project files, the additional information would be lost for the future. This is one reason
why the data set as provided by the original file is stored within project files. Another
reason is that by storing the same file, the same and already existing reading processes
can be reused to load the data set again.

During the runtime of Caleydo the user can apply various transformation operations onto
the data set. For example the application of brushes or manual reordering and duplication
of experiments. [Lex2008] describes that the results of such operations do not manipulate

Chapter 3 System Architecture 48

Connection 1

Incoming
Network
Event

Publisher

Global
Incoming

Event
Bridge

Connection 2

Module A Module B Module C

Event
Publisher

Global
Outgoing

Event
Bridge

Outgoing
Network

Event
Publisher

Network
Event

Receiver

Network
Event

Receiver

Network
Event

Sender

Network
Event

Sender

Client 1Client 2

Incoming
Event
Bridge

Incoming
Event
Bridge

Outgoing
Event
Bridge

Outgoing
Event
Bridge

Figure 3.7: Network stack using multiple event publishers. Two remote clients are con-
nected in this example. Network event senders and receivers each run as sep-
arated threads.

the original data set. So called virtual arrays map the original data sets to the form visible
and utilized by the application (see Figure 3.8).

[Schlegl2009] introduced clustering algorithms for a reordering of the data set. Clustering
is a calculated reordering of the data rows, columns, or both, based on the gene expression
data itself. Cluster algorithms try to reorder the data in a way, that similar kind of
data rows, respectively columns, are grouped close to each other. Moreover some of the
supported algorithms provide additional hierarchical information on the data set. Both,
the virtual array information and the hierarchical cluster information are stored within
project files.

Each of the provided views has a number of attributes defining its state. Examples are
the arrangement of the particular sub-views within the Bucket, used brushes within the
parallel coordinates and the currently displayed level within the hierarchical cluster in-
formation in a radial view. Window position, size and arrangement within the Eclipse

Chapter 3 System Architecture 49

a b c d e f g h i ...

2 0 7 ...Selection
Set

Data Set

0 1 2 3 4 5 6 7 8

0 1 2
0
3

Figure 3.8: A virtual array maps data from the original data set to a selection set [Lex2008].

RCP environment are also important parameters that characterize views. The Eclipse
RCP framework supports software developers with an API for view serialization and re-
construction of the views on application restart. Unfortunately, the provided mechanism
focuses on one single application state only and is therefore not feasible for loading and
saving project files. Anyway, this might not be a major drawback as we assume that
a single user prefers to work within the same view arrangement independently from the
investigated data set. Hence, general view parameters like position, size and arrangement
are reused across multiple Caleydo sessions with the help of Eclipse RCP features, while
the more specific and usually data set related view information is stored with the data
sets.

All four kinds of application state information are stored within separated files of a zip
archive.

3.2.6 Visual Links

As described in Section 2.2, change and activity awareness are major aspects of collabo-
ration systems to establish a shared mental model of the collaborators. An MDE offers a
much larger display area than single displays and therefore multiple different high resolu-
tion views on the data set can be displayed simultaneously. On the other hand, a user might
not be aware of changes and relationships of entities within the different views. Out hy-
pothesis is that Visual Links support the user in finding relationships that might be unrec-
ognized or only recognized at a later time without their aid.

Rendering Visual Links within a single view of one application can be done directly in the
view or in a separated render step. Visual Links in a distributed environment rise an ad-
ditional technical challenge. Lines have to be rendered across application and workstation
boundaries. Deskotheque already supports line rendering across multiple displays. This
feature is currently used to show mouse pointer paths and display relationships. The same
feature can be used to draw connection lines between multiple Caleydo applications, each
one running on one of the displays provided by Deskotheque. Therefore Caleydo has to
deliver screen coordinates to Deskotheque.

Chapter 3 System Architecture 50

Caleydo’s connected-element representation manager is the central instance to collect user
selections. A single view receives selection events that may either be the result of process-
ing an appropriate user interaction or by retrieving a selection update event from another
module. Each time a view receives such an event, the view looks up possible entities dis-
played by the view and calculates their view coordinates. These coordinates are passed to
the connected-element representation manager, which stores them along with the selection
information. Compound views apply additional 3D transformations on the views, to place
them on their appropriate place within the compound views. Therefore the compound
views also apply these transformations to the stored selection coordinates of the particular
views. After processing all needed 3D transformations the views are projected onto the
2D canvas. The same projection is applied to the selection coordinates. The 2D canvas
coordinates are transformed into screen coordinates. At this step of the process, a selection
is stored with a number of 2D screen coordinates.

In a distributed environment these actions are not limited to one application. Each selec-
tion is parameterized with a unique identifier and therefore each selection can be clearly
identified independent of the application instance. Each client within a distributed appli-
cation environment sends these screen coordinates to the server application. The server
application delivers the aggregated selection coordinates to Deskotheque, which is re-
sponsible for drawing the connection lines. Figure 3.9 illustrates the overall process in
a chart.

3.2.7 Deskotheque Interface

The MDE Deskotheque consists of a variable number of workstations (Deskotheque mod-
ules), each with one or more connected displays. All workstations are registered at the
central Deskotheque master application, that works as a supervisor within a Deskotheque
setup. A so called Deskotheque server application is running on each of the worksta-
tions as local managing instance. Deskotheque uses the Ice middleware (see Section 2.4.3)
for communication between applications. Therefore, Deskotheque provides methods for
communication with applications like Caleydo also via Ice.

The main part of Caleydo’s Deskotheque interface is the groupware manager, which pro-
vides a communication interface between Caleydo and the Multi-Display Environment.
The groupware manager is responsible for setting up and shutting down the network
stack.

During the initial registration process each Caleydo instance establishes a connection to
the local Deskotheque module. A connection to the master application is available through
each of the Deskotheque modules and the registration of the Caleydo application as group-
ware application is performed. During registration each application is assigned a unique
identifier, which has to be provided with subsequent interface method invocations. This
process is passed by each of the application instances of Caleydo because it is required by
the interface provided by Deskotheque. Figure 3.10 shows the system architecture with
a setup of three Caleydo applications. The Caleydo applications operate in client-server
mode, while Deskotheque has a mixed setup of peer-to-peer Deskotheque modules and an
additional master application as control instance.

Chapter 3 System Architecture 51

S
er

ve
rC
lie

nt
 1

Deskotheque

C
lie

nt
 2

User
Interaction

Selection

Trans-
formation

2D Canvas
Projection

2D Screen
Projection

3D Coord.
Calculation

Coordinate
Sending

Selection

Trans-
formation

2D Canvas
Projection

2D Screen
Projection

3D Coord.
Calculation

Coordinate
Retrieval

Selection

Trans-
formation

2D Canvas
Projection

2D Screen
Projection

3D Coord.
Calculation

Coordinate
Sending

Visual Link
Drawing

Identified
Entities

View Related
3D Coordinates

Compound
View Related

3D Coordinates

Window
Related

2D Coordinates

Screen Related
2D Coordinates

Visual Links

Screen Related
2D Coordinates

with MDE
Screen-ID

Figure 3.9: Visual Link processing within three connected Caleydo applications. The pro-
cess starts with the User Interaction at the top which causes a selection. The
selection is propagated to all application instances which individually calculate
the resulting screen coordinates of the selected entities within visible views. The
screen coordinates are collected at the server and sent to Deskotheque for Visual
Link visualization. The left part of the diagram shows the available information
at the appropriate state of the process.

The groupware manager provides methods for the registration process and differentiates be-
tween client and server mode. The Deskotheque registration process is the same for clients
and servers. However, the network stack has to be setup in a different way and a client has
to retrieve the application state from the server (see Section 3.2.4).

Furthermore, the groupware manager also provides the methods for the collaboration re-
lated tasks for view sending between connected Caleydo applications. Each display in the
Deskotheque MDE is classified as either public or private. In usual setups, the private
displays are the monitors directly in front of each user’s workplace and the public displays
are various projected and tabletop displays in the near spatial environment of the user
workplaces. See Figure 2.20 for an example setup. The classification in public and private

Chapter 3 System Architecture 52

Caleydo
Server

Caleydo
Server

Caleydo
Client

Deskotheque
Module

Deskotheque
Module

Deskotheque
Module

Deskotheque
Master

-
Central
Control

Instance

Application Layer Deskotheque
User Interface Layer

Deskotheque
Administration Layer

Figure 3.10: Overall system architecture of three Caleydo applications in a Deskotheque
setup.

displays provides desired private areas for users when working in a collaborative working
spaces.

Two use cases related to Caleydo views are derived from the display classifications:

Publish View: A user may publish a view currently displayed on one of his private views.
The environment takes care of finding a free public display area. Caleydo closes the
source view and opens a view with identical view parameters within the destination
application that is related to the free public display.

Retrieve View: A user requests a view displayed on a public display to be sent to his
private display. The view is moved from its current place to one of the users private
views.

These use cases are considered high level, as the implementation has to evaluate the en-
vironment setup and its current state. Beside these use cases users are offered a low
level move view to specific display option. This option lets the users directly specify the
target display for a chosen view. The three different view sending methods provided by
Deskotheque are directly available by methods of the groupware manager.

As described in Section 3.2.6 Deskotheque is responsible for visual link rendering across
application and display boundaries. Before Deskotheque is advised to draw the connection
lines, the screen coordinates and display identifiers from views of all application instances
have to be collected by the server application. The groupware manager of each of the appli-
cations collects the screen coordinates of the views within the application and sends them to
the groupware manager running on the server application. Afterwards the groupware man-
ager on the server passes the coordinates to Deskotheque.

Beside co-located synchronous collaboration with MDE support Caleydo provides support
for a distributed synchronous setup. This setup differs from an MDE in the spatial ar-
rangement of the workstations and that using the particular displays as one continuous
workspace does not make sense, because the user cannot see each other’s displays. Fur-
thermore, the distributed setup has no public displays devices. Therefore the publish view

Chapter 3 System Architecture 53

and retrieve view options are not supported by this groupware manager implementation,
but the direct sending of a view to a chosen client is still possible. Rendering of visual
links is also not possible in distributed setups and not supported by the related groupware
manager implementation.

Chapter 3 System Architecture 54

Chapter 4

Implementation

This chapter explains the particular implementation tasks performed on the Caleydo
framework. Section 4.1 describes the libraries and tools that are directly related to the
implementations. The subsequent sections describe the changed classes and developed
implementations in detail. Beside describing their overall way of operation and interaction
within the framework also its usage and role in future extensions are explained. The com-
plete framework constis of about 1000 classes, thus unchanged existing implementations
are omitted.

Note: As Caleydo’s classnames are unambiguous, all Caleydo related classnames are de-
noted without their package-path. Described classes from other libraries contain the full
package path to clearly outline their framework membership. Most of the time parameter
types and names of methods are omitted, as they usually do not provide explicit infor-
mation to understand the implementation itself. However, detailed documentation about
methods and their required parameters and return values can be looked up within the
source code or Javadoc1 documentation.

4.1 Used Technologies

Java Development Kit 6

The Caleydo framework is completely written in the Java programming language2. The
current Caleydo implementation uses version 6 of Java. As for the concept of Java to
execute the programs in a portable Runtime Environment, Caleydo can be executed inde-
pendently of operating system versions of different kind as long as the workstation comes
with an installed Java Runtime Environment. This results in an easier roll-out of the
application to test users, as no operating system issues have to be concerned about by the
development team.

SWT, Eclipse RCP and RCP Plugins

The current Caleydo implementation makes use of Eclipse’ Rich Client Platform (Eclipse
RCP)3. This framework provides a set of modules for the implementation of classic desktop

1Javadoc is a tool for automated HTML documentation generation out of Java source code, http:
//java.sun.com/j2se/javadoc/

2http://java.sun.org
3http://www.eclipse.org/home/categories/rcp.php

Chapter 4 Implementation 55

http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://java.sun.org
http://www.eclipse.org/home/categories/rcp.php

applications. It is completely based on Eclipse’ Standard Widget Toolkit (SWT)4. The
open source SWT library is a portable toolkit for user-interface facilities of different oper-
ating systems. Implementations exist for all common operating systems and they are still
maintained. Eclipse RCP provides the programmer with a window management system
that supports typical features of today’s GUI based applications like window tabs and ar-
rangement. Caleydo’s view management is based on Eclipse RCP’s window management.
Another important feature of RCP is the possibility to separate modules into so called
Plugins. Plugins are function sets with a well defined interface to the main application or
to other plugins and can be loaded dynamically on demand.

Eclipse IDE

One of the most popular applications built onto the RCP framework is the Eclipse In-
tegrated Development Environment (IDE)5. Originally developed as a Java IDE, Eclipse
IDE meanwhile supports a broad range of programming languages and software engineer-
ing tools, as for example subversion. In most cases the particular tools are realized by the
the implementations of a RCP plugin. Caleydo is completely developed with the Eclipse
IDE.

JOGL

Java Binding for the OpenGL API (JOGL)6 is a wrapper between Java and the OpenGL
3D API. It provides direct access to OpenGL functions from inside Java programs and
therefore does not suffer from performance issues that might come with Java programs for
not being native executables.

Ice

Ice7 (Internet Communications Engine) is an open source RMI implementation with sup-
port for serveral programming languages including C++ and Java. A comparison between
Ice and other RMI technologies can be found in (see Section 2.4.3). As Deskotheque is
already implemented using Ice for communication between applications, Ice is used as com-
munication framework for the Caleydo-Deskotheque interface.

JAXB

An implementation of the Java Architecture for XML Binding (JAXB) 2.0 specification
[JAXB2.0] comes along with Java 6. A more detailed description of the advantages
of using JAXB compared to other possible serialization methods can be found in Sec-
tion 3.2.3.

4http://www.eclipse.org/swt/
5http://www.eclipse.org
6http://www.jcp.org/en/jsr/detail?id=231
7http://www.zeroc.com

Chapter 4 Implementation 56

http://www.eclipse.org/swt/
http://www.eclipse.org
http://www.jcp.org/en/jsr/detail?id=231
http://www.zeroc.com

4.2 Event System

The event system follows the publish/subscribe design pattern, which is explained in Sec-
tion 3.1.2.2. The core classes are:

EventPublisher: This is the central class which is responsible to process triggered events
by propagating them to subsribed listeners. The main EventPublisher instance is
obtained via the GeneralManager, the central singleton hub to obtain access to the
particular modules. The EventPublisher holds a list of subscribed event listeners,
each one directly mapped to the events it is listening to. Listeners have to register
themself with the addListener() method. To unsubscribe from a particular event
or from all events one of the removeListener() methods has to be used. Listeners
must unsubscribe from the event system, when they are not needed anymore. This
happens for example during the disposal of a recently closed view. The propagation
of an event is performed by calling the triggerEvent() method.

AEvent: This is the abstract parent class for all kind of events that should be distributed
via the event system. It is policy that the publishing class of an event sets the
AEvent’s sender attribute. The sender attribute is evaluated by the EventPub-

lisher to prohibit, that events are sent back to its creator. The creationTime

attribute is set on event creation. Events should not be reused. A new event class
for each event has to be created to avoid undefined behavior. Event classes should
always be JAXB-serializable, so they can be serialized and sent to remote applica-
tions via network. To guarantee data integrity, derived event classes may provide a
checkIntegrity method that validates the event’s payload.

AEventListener: Classes that register at the EventPublisher to listen to events have
to be derived from this abstract parent class. Each event listening module has a
number of such listeners to listen to particular events. The controllerSection 2.4.4 of
the module must be assigned with the setHandler() method of AEventListeners.
Controllers have to implement the IListenerOwner interface, which is described in
the next paragraph. This attribute is compared with the AEvent’s sender attribute
to avoid that events are sent back to its source class. Derived classes must provide
a handleEvent() method that is responsible for decoding the event and calling
appropriate event handling methods of the assigned handler.

IListenerOwner: This interface has to be implemented by event handling controllers of
modules. Its only method, queueEvent(), must be implemented to put events into a
thread safe queue for later processing. Eclipse SWT related controllers perform this
processing with the help of the org.eclipse.swt.widgets.Display.asyncExec()

method to execute code within the SWT execution thread. The usual implementa-
tion for OpenGL related controllers can be found in AGLEventListener. All JOGL
based views are derived from this abstract parent class. Special event handling
classes might have a non queueing implementation of the queueEvent() method.
For example the EventFilterBridge of the network stack directly passes events to
a connected EventPublisher instance.

The overall event handling process across the involved classes is illustrated in Figure 4.1.

Chapter 4 Implementation 57

AEventPublisher AEventListener IListenerOwnerEvent-Trigger

Creates and
initializes an

event
Looks up

listeners for the
triggered event

E
ve

nt
 T

rig
ge

r E
xe

cu
tio

n
Th

re
ad

Passes the event
to the related
controller for

queueing
 Queues the

event for later
processing

triggerEvent()

queueEvent()

queueEvent()

Decodes the
event and calls
an appropriate
method on the

handler

Looks up
listeners for the
triggered event

doSomething()

Takes event
from the queue
and passes it to

the related
listener

processEvents()

handleEvent()

IL
is

te
ne

rO
w

ne
r E

xe
cu

tio
n

Th
re

ad

Figure 4.1: Event processing across classes. The x-axis shows the particular classes in-
volved during event processing. The y-axis corresponds to processing time and
is separated in two sections related to specific threads.

4.3 Serialization

To serialize a class to its XML representation one of the different marshal() methods of a
javax.xml.bind.Marshaller has to be called. An appropriate instance of this class has
to be obtained with javax.xml.bind.JAXBContext.createMarshaller(). The JAXB-

Context instance has to be created with its static newInstance() method, which gets
a list of classes as parameter. This list contains all classes that should be serializable
by the created JAXBContext instance. Referenced classes of the serializable root-classes
are not needed within this list, as those references are resolved by the JAXB framework
automatically.

The SerializationManager takes care about serializable classes within the framework.
The manager support getter-methods that deliver JAXBContext instances for three use
cases:

getEventContext() : Gets the context that is utilized for network communication (see
Section 4.4).

getProjectContext() : Gets the context that is needed for loading and saving projects.

Chapter 4 Implementation 58

getViewContext() : Gets the context that is needed to serialize views for Eclipse’ au-
tomated view persistence mechanism. This mechanism is explained later in this
section.

The ProjectSaver class provides the methods to save the aggregated application state.
The saveRecentProject()-method saves to a predefined position in the user’s home di-
rectory. It is called automatically on application shutdown but also in definable intervals.
The ProjectSaver provides a second method to save to a specified file (save()). The file
name is obtained via a standard file-dialog.

The counterpart of the ProjectSaver is the ProjectLoader class. It can be utilized
during application startup to rebuild a previously saved application state. This works
by using the contained startup parameters for bootstrapping, the gene expression data
as data set and the serialized view information to reopen and initialize views. There-
fore the ProjectLoader class provides the load() and loadRecentProject() meth-
ods.

The Eclipse RCP framework features also a view persistence mechanism. The framework
uses a callback method on each RCP-view which is called during shutdown. This callback
method may return a various number of serializable key-value pairs. This pairs are stored
in the user’s home directory along with unique identifiers that RCP requires from its view
anyways. On application startup this information is again read from the user’s home
directory and all views that were been displayed during the last shutdown are reopened
and reinitialized with the provided key-value-pairs. Caleydo has an implementation for
these alternate application persistence mechanism.

4.3.1 Event Serialization

Events are simple classes that may hold some data payload. Holding execution logic or ref-
erences to complex and not serializable data structures is prohibited for events. Because of
this policy on events it is sufficient to add the appropriate JAXB-annotations8 to them and
their payload holding classes to provide JAXB serialization of events.

4.3.2 View Serialization

Each of Caleydo’s views consists of several classes with more or less high complexity, exe-
cution logic, display logic and references to managers and centrally stored data structures.
This is why separated classes for serialization of views are introduced. This separates
the complexity of views from their serializable representation. To make views serializable,
three implementation steps have to be performed.

ASerializedView: Each serializable view gets his own ASerializedView-derived class.
This class contains all fields that characterize the state of the view. Its no-argument
default constructor must initialize the object with the default view parameters. They
are used for opening a new view of this kind. The getViewGUIID()-implementation

8javax.xml.bind.annotation package

Chapter 4 Implementation 59

must return the view-identifier as it is needed by the RCP-framework. Finally, appro-
priate JAXB-annotations have to be added to provide JAXB serialization support.
Furthermore the class has to be added to the list of classes in the ASerializedView’s
@XMLSeeAlso-annotation. This is necessary for the JAXB-framework to resolve the
class hierarchy.

@XmlType
@XmlRootElement
public class Ser ia l i zedBrowserView {

public stat ic f ina l St r ing GUI ID = ”org . ca leydo . rcp . views . swt .
HTMLBrowserView” ;

private St r ing u r l ;
public Ser ia l i zedBrowserView () {

u r l = ”http ://www. ca leydo . org ” ;
}
public St r ing getUr l () {

return u r l ;
}
public void s e tUr l (S t r ing u r l) {

this . u r l = u r l ;
}
@Override
public St r ing getViewGUIID () {

return GUI ID ;
}

}

Figure 4.2: ASerializedView implementation of a browser view. The only attribute used
here to characterize the browser is the URL of the currently displayed web-page
which is stored in the url-attribute.

getSerializableRepresentation(): The AGLEventListener of the view has to imple-
ment this method. It has to create an instance of the previously described ASeri-

alizedView-implementation of the view and initialize it with its current state.

initFromSerializableRepresentation(): The AGLEventListener of the view has to
implement this method. This method is the counterpart of getSerializableRep-

resentation(). It initializes the view from a provided ASerializedView object.

The resulting implementation are used for all kind of view creation within Caleydo. There
are various possibilities when and how an application is requested to open a view:

• The default views are opened on startup of the application.

• The user chooses to open a view with the view-menu.

• A project file containing serialized views is loaded.

• A view is reopened with the help of Eclipse RCP view persistence mechanism

• An open-view event containing a serialized view is retrieved from the network

All this use cases for opening views are handled with the implementations described above.
First, the view’s state is obtained as an ASerializedView instance, either with the default

Chapter 4 Implementation 60

initialization from its constructor or from its XML-serialized form from disk or network.
Then the view is created and initialized with the obtained view state.

4.4 Network Stack

The network stack is responsible for establishing connections between particular appli-
cation instances and for communication via existing connections. The core class is the
NetworkManager. This manager class is the central access point for networking related
issues. Its main methods are:

startNetworkServices(), stopNetworkServices(): The network framework is not started
by default on startup of the application. Caleydo is currently mainly used as single
user application. Initialization of network related classes would only slow down the
startup process and consume additional resources. The start-method is called on
demand to initialize the network framework. The tasks performed during the start
of the network services are:

• Create the network related event publishers.

• Create event bridges between the central and the network related event systems.

• Create the JAXB related objects for serialization purposes.

The role of the network related event bridges and publishers are described in Sec-
tion 3.2.4. The stop-method is called to close all possibly open connections and
dispose all resources and is usually called on application shutdown.

startServer(): One instance of a distributed Caleydo application has to be used as
server. This method has to be called only on the server to start a thread that listens
for incoming connections. Any incoming connection are passed to the createCon-

nection(java.net.Socket) method, which is described below.

createConnection(java.net.Socket): This method performs a handshake with a con-
necting client on the provided socket. The handshake includes the validation of
application versions and the assignment of a client-identifier. Running Caleydo in
a Deskotheque setup the client-identifier is retrieved from Deskotheque. Otherwise
the client-identifier is created by the Caleydo server application. On a successful
handshake, the current application state is sent to the client. This includes the ap-
plication startup parameters and the used data set. No view information is provided
to clients, as clients have to arrange and initialize their views for themself according
to the available display area.
The initialization of the connection specific event bridges and the network event
sender and receiver are also triggered by this method. The network event sender
and receivers are provided with their own threads they are running in. If the sender
would not be provided with its own thread, the sending of events over the network
would have to be done within the thread of the sender. If two sender would send
events at the same time, the resulting two events would be merged into one and
such undefined network traffic cannot be evaluated by the receiver. The receiver
uses a blocking read on the socket, which demands also an own thread. Serialization

Chapter 4 Implementation 61

issues are also executed by these threads. Therefore possible available CPU-cores
are utilized for serialization tasks without slowing down the main application.

createConnection(java.net.IndetAddress): This method is called on client applica-
tions at the beginning of the application startup. The difference to the createCon-

nection(java.net.Socket) method described above is, that this method initiates
the connection to a running server application and works as counterpart for the
handshake process. It delivers the ApplicationInitData object received from the
server as return parameter, which is needed to perform a similar application startup
as on the server.

getEventBridgeConfiguration(): This method retrieves the global or a connection spe-
cific configuration of an event bridge by delivering all event classes the particular
event bridge is listening to. This method can be used in combination with the global
or central network event publisher instances to reconfigure the events which are
received and transmitted to either all or specific remote applications.

Figure 4.3: Dialog shown on startup to connect the application to a running Caleydo server.

Each established connection between two Caleydo applications results in one Connection

object. This object is a collection of all needed resources of one particular client-server
connection. This includes the client specific event bridges as well as sender and receiver
threads. As each client can only be connected to one server, there can only exist one
Connection instance on each client. However, one instance exists on the server application
for each of the connected clients. This instances are also managed by the NetworkManager
and a java.util.List<Connection> containing all existing Connection objects can be
obtained via its getConnections() method.

4.5 Visual Links

The implementation of Visual Links across multiple applications is split into multiple
calculation steps. These steps are described in Section 3.2.6 and shown in detail in Fig-
ure 3.9.

In the first step a particular view is informed of a selection. The source of the selection can
either be an interaction of the user with the view or a selection event received from another

Chapter 4 Implementation 62

view. In either case the selected entities have to be identified and located. The associated
view related 3D coordinates in object space are provided to the ConnectedElementRep-

resentationManager, the central object of each application instance to store Visual Link
information. This object stores the source connection point coordinates in conjunction
with the unique selection identifier, which is determined during the originally performed
user interaction.

The next step is the transformation of the 3D point from the coordinate system of the
source view to the coordinate system of the rendering view. This is only relevant if a view
is rendered in a composition of multiple views, like it is done in the Bucket or Hierar-
chical Heatmap view. The transformation is performed by particular implementations of
ISelectionTransformer. Currently, two implementations of this interface exist. The Re-
moteRenderingTransformer performs this operations for Bucket and Jukebox view. The
StandardTransformer performs the copy operations for planar views that does not need
to transform their connection points. An implementation for the Hierarchical Heatmap
view is currently not supported. The results of this step are directly used to render the 3D
connection lines within the Bucket and Jukebox view. The following steps involve rather
expensive 3D projection operations. Therefore, they are only executed if the Caleydo
application is running within a Multi-Display Environment that can take use of the 2D
connection line information.

In step three on the way to get 2D screen coordinates the 3D coordinates have to be pro-
jected to the OpenGL canvas of the view. This is done with OpenGL’s GLU.gluProject().
The results are 2D window related coordinates.

All previously described calculation steps feature OpenGL as 3D API. Therefore each
transformation or projection is based on the appropriate state of OpenGL’s transfor-
mation stack and must be executed within the OpenGL display thread during the cor-
rect OpenGL state. The final step is to calculate the screen coordinates from their
window coordinates. As for being SWT the utilized window and widget toolkit, the
projection from window to screen coordinates involves SWT related resources. These
cannot be accessed from outside the SWT execution thread. The calculation is per-
formed with org.eclipse.swt.widgets.Display.asyncExec(), which executes a given
java.lang.Runnable() at a convenient time within the SWT execution thread. The
projection itself is done using the SWT method Composite.toDisplay(). This method
converts 2D coordinates related to a Composite to its screen coordinates. The drawing
area of SWT windows are of type Composite. Thus the related composite of the OpenGL
canvas has to be determined and the toDisplay() method invoked delivers the desired
screen coordinates.

After their calculation, the screen coordinates and the associated application identifiers are
sent to the server application, encapsulated within an AddConnectionLineVerticesEvent.
The calculation on the server triggers the sending of the same event. However, instead of
sending it over the network it is evaluated within the application itself. The server collects
all retrieved AddConnectionLineVerticesEvents and passes them to Deskotheque for
Visual Link rendering.

Due to network behavior and differences of the calculation speed of different workstations,
the arrival time of the events cannot be determined in advance. Thats why the Visual

Chapter 4 Implementation 63

Link coordinates are checked once during each pass of the display loop. Every time ad-
ditional coordinates are retrieved or a selection is canceled, an update of the Visual Link
information is sent to Deskotheque.

4.6 Deskotheque Interface

This section describes the implemented Caleydo-Deskotheque interface to use Caleydo
for co-located synchronous collaboration. As the distributed synchronous implementation
is merely a subset of the features of the co-located case, it is described in this section,
too.

Beside being a separate module the Deskotheque interface is also implemented as a sep-
arated RCP-plugin (see Section 4.1). This makes it possible to release Caleydo versions
with or without Deskotheque support or even load Deskotheque support during the run-
time of the application. RCP plugins can either be completely independent or they can
use a dedicated plugin interface to enhance an application on defined extension points. As
the Deskotheque interface provides specialized multi-user features that have to interact
with the main application, the latter is needed.

IGroupwareManager interface is the extension point used by the Deskotheque interface plu-
gin. This interface has one implementation contained within the main application for the
multi user support without MDE support. This is the StandardGroupwareManager class.
The second implementation is provided by the Deskotheque plugin. This is the Deskothe-
queManager class. This implementation uses the Ice interface provided by Deskotheque
(see Figure 4.4). Data structures used during Ice method calls are also defined within the
Ice configuration files (see Figure 4.5).

The IGroupwareManager interface defines the following methods:

startServer() and startClient(): These methods are called to use the application as
server or client. They perform all required tasks like for example the initialization
of the network stack as described in Section 4.4.

stop(): This is the counterpart to startServer() and startClient(). It stops all group-
ware services and frees the related resources.

getInitData(): This method is only used on clients. It returns an ApplicationInitData

object as it is retrieved from the server, required to startup the client similar to the
server.

getNetworkManager() and setNetworkManager(): Getter and setter methods for the
NetworkManager. As described in the Section 4.4, the NetworkManager plays an
important role for collaboration. Access to it is required for communication config-
uration issues.

getHomeGroupwareClient(): Retrieves the client identifier of the Caleydo application
of the user that performed the most recent user interaction. This information is
provided by Deskotheque and can only be used with the DeskothequeManager im-
plementation.

Chapter 4 Implementation 64

interface MasterAppl i cat ionI extends App l i ca t i on I {

. . .

// r e g i s t e r s a groupware app l i c a t i on , f o r example one Caleydo ins tance
GroupwareInformation reg i s t e rGroupwareCl i ent (

GroupwareClientAppI∗ c l i e n t , s t r i n g id ,
S e rve rApp l i c a t i on I ∗ serverApp , int x , int y , int w, int h) ;

// draws VisLinks between the g iven 2D screen coord ina t e s
void drawConnectionLine (Connect ionLineVert i ce s v e r t i c e s , int s e l e c t i o n I D) ;

} ;

interface ResourceManagerI {

. . .

// Re t r i e v e s a l l a v a i l a b l e groupware c l i e n t IDs
S t r i n g L i s t getAvai lab leGroupwareCl ients (s t r i n g c l i e n t I D) ;

// g e t s an ID of a c l i e n t running on the curren t user ’ s p r i v a t e d i s p l a y
s t r i n g getHomeGroupwareClient (s t r i n g c l i e n t I D) ;

// g e t s a f r e e p u b l i c d i s p l a y to move a view to
s t r i n g getPubl icGroupwareCl ient (s t r i n g c l i e n t I D) ;

// l o g s o f f the g iven groupware c l i e n t
void unreg i s terGroupwareCl ient (s t r i n g c l i e n t I D) ;

} ;

Figure 4.4: Ice descriptor of the groupware interface provided by Deskotheque.The ”. . . ”
denotes additional methods not involved in the groupware application interface.

getPublicGroupwareClient(): Retrieves one client identifier of an Caleydo application
that uses a public display. This information is provided by Deskotheque and can
only be used with the DeskothequeManager implementation.

getAvailableGroupwareClients(): Retrieves a list of all Caleydo applications connected
to the system. This information is either provided by Deskotheque if the Deskothe-

queManager is used or the by network manager if the StandardGroupwareManager

is used.

isGroupwareConnectionLinesEnabled(): Returns a boolean variable that tells if the
used IGroupwareManager implementation supports the drawing of connection lines.
This information is evaluated in advance of 3D-view-related to 2D-screen-related
coordinate transformation.

sendConnectionLines(): This method delivers a list of 2D screen coordinates including
their related client identifier to a possibly connected Multi-Display Environment. In
case of the DeskothequeManager this is, of course, the Deskotheque.

The collaboration related view control widgets are implemented as Eclipse RCP chevron

Chapter 4 Implementation 65

// s i n g l e v e r t e x f o r v i s u a l l i n k render ing
s t r u c t ConnectionLineVertex {

// groupware c l i e n t t h a t p rov ide s t h i s v e r t e x
s t r i n g c l i e n t I D ;

// screen x−coord ina te
int x ;

// screen y−coord ina te
int y ;

} ;

// r e g i s t r a t i o n in format ion prov ided to groupware c l i e n t s
s t r u c t GroupwareInformation {

// unique d i s p l a y ID in Deskotheque
int disp layID ;

// i n d i c a t e s whether the d i s p l a y i s p r i v a t e
bool i s P r i v a t e ;

// i d e n t i f i c a t i o n s t r i n g o f the groupware
s t r i n g groupwareID ;

// Deskotheque unique XID con s i s t i n g o f server−hostname + window−X−ID
s t r i n g deskoXID ;

} ;

Figure 4.5: Ice descriptor of the data transport classes utilized by the Deskotheque interface.

menu. This menu is intended for context sensitive actions on views (see Figure 4.6).

Figure 4.6: Eclipse RCP’s so called chevron menu is used for the initiation of view related
collaboration tasks.

The Deskotheque environment supports currently only Ubuntu 7.04 as operating system.
A meaningful setup consists of several workstation. One setup is established in a laboratory
at the Institute for Computer Graphics and Vision of the University of Technology in Graz.
The development of an application in this environment involves deployment, start and
shutdown on each of the workstations for each turnaround cycle. Furthermore, the setup is
needed by other researchers as well. To make development easier and for being independent
from the operating system a mock-up implementation of Deskotheque featuring only the
required parts of the interface is introduced with this work. Same as Deskotheque this
mock-up application uses also Ice for RMI access. In contrast to Deskotheque it does not
support multiple workstations or multiple users. Multiple displays connected to a single

Chapter 4 Implementation 66

workstation can be used, but cannot be differentiated as separated display areas. The
whole display area of the workstation is used as one single display area. A workplace
with a dual monitor setup was used most times during the development phase. The
arrangement of multiple applications across the provided display area was sufficient for all
the development tasks.

The implementation of the view related methods of the mock-up deliver predefined re-
turn values. The server application is always taken as the client for the home display
(getHomeGroupwareClient()), while the first connected client is returned as available
public display (getPublicGroupwareClient()). Visual Links are supported with the help
of an transparent overlay window on the workspace. The mock-up does not use any line
bundling algorithm. Visual connection lines are rendered as red lines from the first to each
of the other provided screen coordinates.

Chapter 4 Implementation 67

Chapter 5

Results

In this chapter the findings of this work are presented. Section 5.1 and Section 5.2 describe
the benefits resulting from the applied refactoring process of components of the Caleydo
framework implementation. Experiences with newly provided features are covered by
Section 5.3 and Section 5.4. The two sections at the end of this chapter concern themselves
with resulting collaboration possibilities.

Caleydo is being developed in cooperation with the Institute of Pathology at the Medical
University of Graz. Feedback from researchers of this institute are a major source for user
experience analysis for the development. The development results of this work are not
yet part of a Caleydo release. Therefore, we have no user feedback from domain specific
researchers. The feedback provided in the following sections are given by the developers
of the Caleydo application.

5.1 Event System

The new implementation of the event system forces developers to strictly seperate events
for different processes. The seperation in different event distribution divisions has been
dropped. This makes it easier for a developer who inspects the application’s runtime be-
havior for example for debugging reasons. The occurrance of a particular event implicates
directly to the triggered workflows. Event sources or different event trigger mechanisms
by choosing a particular event division do not have any side effects on the workflow any-
more.

A simple event visualization tool is available for testing and development purposes (see
Figure 5.1). Events can be visualized in its serialized XML representation. The input of
user-defined XML documents is also possible, to trigger desired events on demand without
the use of according user interface elements. For example, this feature makes it possible
to seperate the development of GUI elements and execution workflows in two tasks, that
can be achieved by different development teams. The teams have to agree on an interface
definition, based on the event system and the event’s XML representation. Afterwards both
can fulfill their part of the development and test it with the provided event investigation
tool.

Chapter 5 Results 68

Figure 5.1: Event investigation user interface showing an XML representation of a
ViewActivationEvent. The input field is used to display the most recent
event and to enter user defined events that can be propagated to the application
by pressing the send event button.

5.2 Synchronization

Recent Caleydo releases suffered from the problem of concurrent access to data structures
that are not thread safe. The introduction of event queueing together with the thread
dependent processing of events within views is the first step to a stable application. The
second step is adding event queues that move the event processing to defined threads for
all data managing classes. Because of these changes concurrent modification exceptions
are a matter of the past.

5.3 Application State Persistence

The addition of new features to the application often comes along with some new bugs.
Some of them result in an undefined application state that the application cannot recover
from. This was often criticized in recent users’ feedback. For the users to be able to save
the current state and continue at a later time by loading it again, data sets and views of
the application need to be serialized. This feature is expected to lead to a much higher user
acceptance of Caleydo, as there is no more frustration for restarting an analysis process
from scratch after an application failure. The auto save feature provides an even higher
safety for the current project. As the overall save process does not take more than 50ms
on standard workstations1, the auto saving of the project in the background will not be
noticed by the user.

1measured on a system with an Intel Core2Duo 2.4GHz processor

Chapter 5 Results 69

5.4 Single User Experiences

During most of the development phase, standard setup was to use one or more con-
nected Caleydo applications run by a single user (the developer) on a single worksta-
tion. In setups with multiple applications on a single workstation no additional latency
due to the sending of events over network was experienced. There were two excep-
tions:

Heatmap: When hovering the mouse over the tiles in a heatmap a selection update event
was sent on each mouse move event received from the GUI. This behavior was not
necessary at all, as a selection update event is only necessary if the mouse pointer
hovers over an element other than the currently selected one. The vast amount
of events did not only result in lag when using a distributed application setup,
higher response times were experienced while using a single application as well. This
unintentional behavior of the application concerning these selection update events
could be tracked down by using the event investigation tool described in Section 5.1.
The application was changed to only send events when a selection change occurred.

Parallel Coordinates: The parallel coordinates view provides brushing functions. Apply-
ing a brush leads to a filtering of the data set. As Caleydo is capable of handling
thousands of gene expressions, a brush that selects all but a few genes from the
current view results in the filtering of thousands of data entities. The current imple-
mentation calculates the visibility state for each data single entity and puts it in one
single event. The resulting XML representation of such an event has a size of multiple
kilobytes containing thousands of XML nodes. The serialization and deserialization
of XML documents of that size can take up to several seconds. The usage of brushes
in the parallel coordinate view of a distributed application setup produces a latency
that is usually not tolerated by users. This is especially true when a user tries to
manipulate the parameters of a brush. In a single application setup the parameters
are applied in real time. On a distributed system the operation leads to a latency
of a few seconds per view update on the local as well as on the remote applications.
The serialization process slows down the local application while the deserialization
process slows down the remote applications.
We suggest to alter the information payload of the event resulting from the brush
operation. Not the result of the calculation should be sent but the parameters defin-
ing the brush. The calculation itself would then be performed by the respective
applications. The filter calculation would be executed after sending or receiving the
event and would take a similar amount of execution time on similar workstations.
The effort to serialize and deserialize events with thousands of data entities would
not be needed anymore.

Visual Links and their rendering within the Deskotheque mock-up has been tested with
one and two Caleydo applications on a single workstation with a dual monitor setup.
Views have been distributed over the entire display area2 of 3360x1050 pixels and spatial
dimension of 100x30cm. Figure 5.3 shows a screenshot of two Caleydo instances and the
mock-up rendering Visual Links. Users reported a better awareness of related entities

2using two 22” TFT displays placed side by side

Chapter 5 Results 70

especially on views placed far away from the current mouse pointer position. This state-
ment is underlined by an experience during a testing phase. During tests of the cross
application Visual Links, a bug was detected, related to the selection of entities within the
pathway view. It was detected, because Visual Links resulting from a specific selection in
the heatmap were not always drawn to the pathway view.

Against our expectations, the 2D to 3D projection of Visual Link coordinates does not
take unreasonable time. The time consumed for projecting 20 vertices to their 2D position
in the OpenGL canvas is below the measurement resolution of 1ms. Based on this fact it
can be stated that the calculation of Visual Link coordinates will not have any reasonable
impact on the overall performance of the application.

5.5 Deskotheque

At the time of the final state of this thesis, Deskotheque did not yet provide the required
support of the defined Caleydo-Deskotheque interface. Deskotheque development is not
within the range of this work, but is assigned to a different research team. Therefore no
experiences and user studies of Caleydo running in a multi-user Multi-Display Environment
can be provided here. Because of the good experiences concerning improved awareness in
dual monitor setups (see Section 5.4) we are looking forward to the full integration of the
Caleydo application within Deskotheque.

5.6 Co-located and Distributed Collaboration

To test the influence of network transmission time, a setup with two workstations in a
100MBit cable local area network was chosen (see Figure 5.2). One Caledyo application
was started at workstation A. This Caleydo application was configured as a server. Two
Caleydo applications have been started on workstation B, both configured as a client
application connected to the server on workstation A.

The first test focused on the user and on feedback concerning the responsiveness of the
different applications in the setup. Against our expectations, there was a slight but notice-
able amount of latency in updates of the view resulting from user interaction on remote
applications.

The second test focused on measurements of the network latency. 20 selection update
events triggered from the parallel coordinate views were sent from one of the applications
on workstation B, and the time it took until the particular events were retrieved at the
second application on that workstation was measured. As both applications were config-
ured as client, the events were sent to the server application on workstation A and then
sent back again to the second application on workstation B. As the measured timestamps
of sending and receiving the events were taken on the same workstation, no time syn-
chronization was necessary. The average measured event transmission time was 362ms.
Considering that two hops were needed to transport the event from one client application
to the other, a single transmission from one application to another takes 181ms in average.

Chapter 5 Results 71

Figure 5.2: Test setup with two workstations. The left workstation (workstation A) runs
the Caleydo server application. The right workstation (workstation B) runs
two clients connected to the server. Each application runs in full screen mode
on an individual display.

In our opinion, this is too long within a local area network, so we decided to investigate
further.

We repeated the test with a slightly different setup. The heatmap view was used to select
elements. Each selection within a heatmap view results in the subsequent propagation of
four events. Instead of again taking a number of measurements and calculating the average
we decided to inspect the events related to one selection operation in detail. The result of
this experiment is presented in Table 5.1. The times measured for the first three events
are within our expectations and are far from being noticed by users. But the time until
the fourth event was received took considerably longer.

Event type time
1 Clear gene selection 16ms
2 Set Gene Selection 31ms
3 Clear Experiment Selection 31ms
4 Set Experiment Selection 187ms

Table 5.1: Time needed between sending and receiving the four events involved in the se-
lection of one element in a heatmap view.

After a further investigation of the source code and some additional time recordings the
problem could be tracked down to the code section within the NetworkEventReceiver

class, which is responsible for reading from the network. Whenever a complete XML
document of a serialized event cannot be received within the return of the first blocking
read on the socket, another blocking read is initiated. The minimum time for another call
of the blocking read was measured to be at least 150ms. We assume that an optimization
of the network related part would solve this problem.

Chapter 5 Results 72

F
ig

u
re

5.
3:

V
is

u
al

L
in

ks
in

a
du

al
m

on
it

or
se

tu
p

re
n

de
re

d
by

th
e

D
es

ko
th

eq
u

e
m

oc
k-

u
p.

O
n

e
C

al
ey

do
ap

pl
ic

at
io

n
is

pl
ac

ed
on

ea
ch

of
th

e
m

on
it

or
s.

T
he

ap
pl

ic
at

io
n

on
th

e
le

ft
ru

n
s

in
fu

ll
sc

re
en

m
od

e.
T

he
ap

pl
ic

at
io

n
on

th
e

ri
gh

t
ha

s
a

de
ta

ch
ed

pa
ra

ll
el

co
or

di
n

at
e

vi
ew

.
V

is
u

al
L

in
ks

co
n

n
ec

ti
n

g
el

em
en

ts
fr

om
al

l
vi

si
bl

e
vi

ew
s

ar
e

re
n

de
re

d
by

th
e

D
es

ko
th

eq
u

e
m

oc
k-

u
p

ap
pl

ic
at

io
n

.

Chapter 5 Results 73

Chapter 6

Conclusion and Future Work

Distributed systems and collaboration are topics that today’s workers and researchers face
nearly every day. Workplaces with more than one display device are getting common. This
thesis shows how the InfoVis system Caleydo can make beneficial use of MDE and CSCW
concepts. The implemented extensions to the framework are the basis for a distributed
and collaborative InfoVis environment. The ability to serialize views and process related
data structures makes it possible to run parts of the software synchronized on multiple
workstations. The implementation of a groupware interface to Deskotheque enables the
support for co-located collaboration.

Synchronization features that were absolutely needed for the distributed use case also
brought more stability when running it as single workstation application. In our opin-
ion a consistent use of the MVC design pattern, especially in view related parts of the
application, would not only provide a better structuring of the source code. It would
also make parts of the software less coupled and easier to distribute on multiple worksta-
tions.

The current Visual Link implementation of the mock-up runs into undesired behavior,
when view windows overlap or the user switches to other applications. The reason for this
is that neither the Caleydo application nor the mock-up is currently aware of overlapping
windows. An integration of Visual Links to the window manager or closer interaction of
the Visual Link generating software with the window manager could solve this problem.
The introduction of Visual Links counters awareness problems that come along with larger
display areas. Visual Links across application and window borders open up new vistas for
any kind of visualization software.

There is no feedback yet for the new features from users from the biological and medical
domain. The usability of Caleydo, as a software which uses multiple views for data visual-
ization, is limited by the display area. Especially during the use of single monitor setups,
it is often necessary to switch views and thereby losing the direct visual relationship to
entities in hidden views. Although dual monitor setups are an advantage, they are not
always sufficient for the desired look and feel. The compound views, Bucket and Jukebox
try to counter the problem of limited display space with the price of lower detail level in
each particular view. In contrast, a Multi-Display Environment would make it possible to
build up a ”real” Bucket with multiple display devices.

First steps in using Caleydo as collaboration software showed that Caleydo is not capable
yet to handle multiple user interactions. Especially the behavior when hovering the mouse
over views and selecting entities always leads to conflicts. The support of multiple selec-
tions, one for each user would be beneficial and brings a higher awareness of user actions

Chapter 6 Conclusion and Future Work 74

into the application.

The tests performed on distributed setups did not lead to conflicting and unrecoverable
application states among the particular applications. However, this might happen during
a more intensive collaborative usage. Especially for co-located collaboration we propose
to adopt the local-lag mechanism. Response times in local area networks are usually
very small, so the local-lag delay can be set to a very small value. That is why we do
not expect that the user will experience any penalties because of the of the application’s
responsiveness.

For spatially distributed collaboration setups, especially when using internet connections,
local-lag will not be adequate. The integration of an event ordering algorithm could be
interesting for this case. The necessity to keep a history of events could also be used
to introduce a multi-level undo, an often desired feature request in recent user feed-
backs.

The current implementation does not provide any communication aids. In spatially dis-
tributed setups the collaborators have to use conferencing tools and messengers. If a
user does not announce the sending of a view to his or her co-worker, the view suddenly
pops up at the receiver. This behavior of the application might confuse the user as the
source triggered actions is not obvious for him or her. For this issue, we propose the
integration of a chat tool. Similar to a feature messengers use for sending files, the re-
ceiver will get a dialog where he or she can decide whether a received view should be
displayed.

We are currently looking forward to the integration of the Caleydo-Deskotheque interface
into Deskotheque. This will provide an interesting setup for user studies with MDEs and
Visual Links. The continuous workspace of Deskotheque could also lead to a drag and
drop feature for views. The currently supported view publishing feature distinguishes only
between private and public views. We think that it would be beneficial for the user not
need to think about the display characteristics and the requirements of a particular view.
By delivering requirements parameters to the MDE software, the MDE software would be
able to choose an appropriate view. This might be a high resolution view for the finely
grained lines of a parallel coordinate view or the table touch top display for a toolbar.
More details about this kind of support for InfoVis systems are covered in [Waldner2009]
and [Streit2009b].

Chapter 6 Conclusion and Future Work 75

List of Figures

1.1 Caleydo in a Dual Monitor Setup . 8
1.2 Multi-Display Environment . 9

2.1 Visualization Pipeline . 12
2.2 Scatterplot Matrix . 13
2.3 SimVis . 14
2.4 Multiple Views in GIS Systems . 14
2.5 Hierarchical Heatmap Views . 16
2.6 Pathway . 16
2.7 Parallel Coordinates . 17
2.8 Network Visualization by Semantic Subtrates 18
2.9 Link Types in NodeTrix . 18
2.10 Jukebox View . 19
2.11 Bucket View . 20
2.12 Caise Development Tools . 21
2.13 CSCW Matrix . 22
2.14 Notification Collage . 24
2.15 CSCW System Architectures . 25
2.16 Sticky notes for tree comparison . 26
2.17 Cave6D . 27
2.18 iRoom . 28
2.19 IMPROMPTU . 29
2.20 Deskotheque . 31
2.21 Concurrent Editing Problem . 32
2.22 Local-Lag . 33
2.23 Serializable Address Class . 34
2.24 Binary Serialized Address . 34
2.25 XML Serialized Address . 34
2.26 pureMVC . 36

3.1 2D and 3D GUI-Elements in Caleydo . 37
3.2 Caleydo Data Update Mechanism . 40
3.3 Selection Propagation and Visual Links . 42
3.4 XML Serialized Command . 43
3.5 Event Processing . 44
3.6 Multiple Event Publishers . 45
3.7 Network Stack . 49
3.8 Virtual Array . 50
3.9 Visual Link Process . 52
3.10 Caleydo-Deskotheque System Architecure 53

List of Figures 76

4.1 Event Processing across Classes . 58
4.2 ASerializedView Implementation . 60
4.3 Client Connection Dialog . 62
4.4 Deskotheque Interface . 65
4.5 Deskotheque Interface Data Transport Classes 66
4.6 Chevron Menu . 66

5.1 Event Investigation . 69
5.2 Test Setup with Two Workstations . 72
5.3 Visual Links in a Dual Monitor Setup . 73

List of Figures 77

List of Tables

2.1 Rules for Using Multiple Views . 15

5.1 Heatmap Selection Event Measurements 72

List of Tables 78

Bibliography

[Andrews1998] Keith Andrews and Helmut Heidegger. Information slices: visualising
and exploring large hierarchies using cascading, semicircular discs. In
InfoVis’98: Proc. IEEE Information Visualization Symposium, Car-
olina, USA, pp. 9–12. 1998.

[Aris2007] Aleks Aris and Ben Shneiderman. Designing semantic substrates for
visual network exploration. Information Visualization, volume 6(4):pp.
281–300, 2007. ISSN 1473-8716.

[Baldonado2000] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchin-
sky. Guidelines for using multiple views in information visualization.
In AVI ’00: Proceedings on Advanced visual interfaces, pp. 110–119.
ACM Press, New York, NY, USA, 2000.

[Beca1999] L. Beca, G.C. Fox, and M. Podgorny. Component architecture for
building web-based synchronous collaboration systems. In Enabling
Technologies: Infrastructure for Collaborative Enterprises, 1999.
(WET ICE ’99) Proceedings. IEEE 8th International Workshops on,
pp. 108–113. 1999.

[Biehl2008] Jacob T. Biehl, William T. Baker, Brian P. Bailey, Desney S. Tan,
Kori M. Inkpen, and Mary Czerwinski. Impromptu: a new interac-
tion framework for supporting collaboration in multiple display envi-
ronments and its field evaluation for co-located software development.
In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference
on Human factors in computing systems, pp. 939–948. ACM, New
York, NY, USA, 2008. ISBN 978-1-60558-011-1.

[Boulila2004] N. Boulila, B. Bruegge, and A.H. Dutoit. Computer supported coop-
erative software engineering: a framework for supporting distributed
concurrent group modeling of software. In Proceedings of the Interna-
tional Conference on Applied Computing, pp. 11–15. Lisbon, Portugal,
2004.

[Bourqui2006] Romain Bourqui, David Auber, Vincent Lacroix, and Fabien Jourdan.
Metabolic network visualization using constraint planar graph drawing
algorithm. In IV ’06: Proceedings on Information Visualization, pp.
489–496. IEEE Computer Society, Washington, DC, USA, 2006.

[Card1999] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors.
Readings in information visualization: using vision to think. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. ISBN
1-55860-533-9.

Bibliography 79

[Chuah1998] Mei C. Chuah. Dynamic aggregation with circular visual designs. In
INFOVIS ’98: Proceedings of the 1998 IEEE Symposium on Informa-
tion Visualization, pp. 35–43. IEEE Computer Society, Washington,
DC, USA, 1998. ISBN 0-8186-9093-3.

[Churchill1999] Elizabeth F. Churchill and Sara Bly. It’s all in the words: supporting
work activites with lightweight tools. In GROUP ’99: Proceedings of
the international ACM SIGGROUP conference on Supporting group
work, pp. 40–49. ACM, New York, NY, USA, 1999. ISBN 1-58113-
065-1.

[Cleveland1993] William S. Cleveland. Visualizing Data. Hobart Press, 1993. ISBN
0963488406.

[Collins2007] Christopher Collins and Sheelagh Carpendale. Vislink: Revealing rela-
tionships amongst visualizations. IEEE Transactions on Visualization
and Computer Graphics, volume 13(6):pp. 1192–1199, 2007. ISSN
1077-2626.

[Convertino2005] G. Convertino, C.H. Ganoe, W.A. Schafer, B. Yost, and J.M. Carroll.
A multiple view approach to support common ground in distributed
and synchronous geo-collaboration. In Coordinated and Multiple Views
in Exploratory Visualization, 2005. (CMV 2005). Proceedings. Third
International Conference on, pp. 121–132. July 2005.

[Cook2005] C. Cook, W. Irwin, and N. Churcher. A user evaluation of synchronous
collaborative software engineering tools. In Software Engineering Con-
ference, 2005. APSEC ’05. 12th Asia-Pacific, pp. 6 pp.–. Dec. 2005.
ISSN 1530-1362.

[Craft2005] Brock Craft and Paul Cairns. Beyond guidelines: What can we learn
from the visual information seeking mantra? In IV ’05: Proceedings
on Information Visualisation, pp. 110–118. IEEE Computer Society,
Washington, DC, USA, 2005.

[Cruz-Neira1993] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti.
Surround-screen projection-based virtual reality: the design and imple-
mentation of the cave. In SIGGRAPH ’93: Proceedings on Computer
graphics and interactive techniques, pp. 135–142. ACM Press, New
York, NY, USA, 1993.

[Cruz-Neira1992] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V.
Kenyon, and John C. Hart. The cave: audio visual experience auto-
matic virtual environment. Commun. ACM, volume 35(6):pp. 64–72,
1992. ISSN 0001-0782.

[Doleisch2007] Helmut Doleisch. Simvis: interactive visual analysis of large and time-
dependent 3d simulation data. In WSC ’07: Proceedings of the 39th
conference on Winter simulation, pp. 712–720. IEEE Press, Piscat-
away, NJ, USA, 2007. ISBN 1-4244-1306-0.

Bibliography 80

[Doleisch2002] Helmut Doleisch and Helwig Hauser. Smooth brushing for fo-
cus+context visualization of simulation data in 3d. In WSCG, pp.
147–154. 2002.

[Eisen1998] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Bot-
stein. Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Academy of Science USA, volume 95(25):pp. 14863–14868,
December 1998. ISSN 0027-8424.

[Ellis1989] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware sys-
tems. In SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD inter-
national conference on Management of data, pp. 399–407. ACM, New
York, NY, USA, 1989. ISBN 0-89791-317-5.

[Emmerich2008] Wolfgang Emmerich, Mikio Aoyama, and Joe Sventek. The impact of
research on the development of middleware technology. ACM Trans.
Softw. Eng. Methodol., volume 17(4):pp. 1–48, 2008. ISSN 1049-
331X.

[Fekete2003] J.D Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant. Overlaying
graph links on treemaps. In Proc. of IEEE Symp. on Information
Visualization, Poster Session. 2003.

[Gamma1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN
0-201-63361-2.

[Greenberg2001] Saul Greenberg and Michael Rounding. The notification collage: post-
ing information to public and personal displays. In CHI ’01: Pro-
ceedings of the SIGCHI conference on Human factors in computing
systems, pp. 514–521. ACM, New York, NY, USA, 2001. ISBN 1-
58113-327-8.

[Greif1986] Irene Greif, Robert Seliger, and William E. Weihl. Atomic data ab-
stractions in a distributed collaborative editing system. In POPL ’86:
Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pp. 160–172. ACM, New York, NY,
USA, 1986.

[Hauser2002] Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular
brushing of extended parallel coordinates. In INFOVIS ’02: Proceed-
ings on Information Visualization, pp. 127–130. IEEE Computer So-
ciety, Washington, DC, USA, 2002.

[Heer2006] Jeffrey Heer and Maneesh Agrawala. Software design patterns for
information visualization. IEEE Transactions on Visualization and
Computer Graphics, volume 12(5):pp. 853–860, 2006. Student
Member-Jeffrey Heer.

[Heer2005] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit
for interactive information visualization. In CHI ’05: Proceedings of

Bibliography 81

the SIGCHI conference on Human factors in computing systems, pp.
421–430. ACM, New York, NY, USA, 2005. ISBN 1-58113-998-5.

[Heer2007] Jeffrey Heer, Fernanda B. Viégas, and Martin Wattenberg. Voyagers
and voyeurs: supporting asynchronous collaborative information visu-
alization. In CHI ’07: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pp. 1029–1038. ACM, New York,
NY, USA, 2007. ISBN 978-1-59593-593-9.

[Sharp2002] Jenny Preece Helen Sharp, Yvonne Rogers. Interaction Design: Be-
yond Human-Computer Interaction. John Wiley & Sons, 2002. ISBN
0470018666.

[Henry2007] N. Henry, J.-D. Fekete, and M.J. McGuffin. Nodetrix: a hybrid vi-
sualization of social networks. Visualization and Computer Graph-
ics, IEEE Transactions on, volume 13(6):pp. 1302–1309, Nov.-Dec.
2007. ISSN 1077-2626.

[Hericko2003] Marjan Hericko, Matjaz B. Juric, Ivan Rozman, Simon Beloglavec,
and Ales Zivkovic. Object serialization analysis and comparison in
java and .net. SIGPLAN Not., volume 38(8):pp. 44–54, 2003. ISSN
0362-1340.

[Hornecker2008] Eva Hornecker, Paul Marshall, Nick Sheep Dalton, and Yvonne
Rogers. Collaboration and interference: awareness with mice or touch
input. In CSCW ’08: Proceedings of the ACM 2008 conference on
Computer supported cooperative work, pp. 167–176. ACM, New York,
NY, USA, 2008. ISBN 978-1-60558-007-4.

[Inselberg1985] Alfred Inselberg. The plane with parallel coordinates. The Visual
Computer, volume 1(4):pp. 69–91, 1985.

[Isaacs2002] Ellen Isaacs, Alan Walendowski, Steve Whittaker, Diane J. Schiano,
and Candace Kamm. The character, functions, and styles of instant
messaging in the workplace. In CSCW ’02: Proceedings of the 2002
ACM conference on Computer supported cooperative work, pp. 11–20.
ACM, New York, NY, USA, 2002. ISBN 1-58113-560-2.

[Isenberg2007] P. Isenberg and S. Carpendale. Interactive tree comparison for co-
located collaborative information visualization. Visualization and Com-
puter Graphics, IEEE Transactions on, volume 13(6):pp. 1232–1239,
Nov.-Dec. 2007. ISSN 1077-2626.

[Isenberg2008] Petra Isenberg, Anthony Tang, and Sheelagh Carpendale. An ex-
ploratory study of visual information analysis. In CHI ’08: Proceeding
of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems, pp. 1217–1226. ACM, New York, NY, USA, 2008.
ISBN 978-1-60558-011-1.

[Johansen1988] Robert Johansen. GroupWare: Computer Support for Business
Teams. The Free Press, New York, NY, USA, 1988. ISBN
0029164915.

Bibliography 82

[Johanson2002] B. Johanson, A. Fox, and T. Winograd. The interactive workspaces
project: experiences with ubiquitous computing rooms. Pervasive Com-
puting, IEEE, volume 1(2):pp. 67–74, Apr-Jun 2002. ISSN 1536-
1268.

[Kaplan1992] S.M. Kaplan and K.D. Swenson. Operating systems support for col-
laborative work. In Object Orientation in Operating Systems, 1992.,
Proceedings of the Second International Workshop on, pp. 360–363.
Sep 1992.

[Krasner1988] Glenn E. Krasner and Stephen T. Pope. A description of the model-
view-controller user interface paradigm in the smalltalk-80 system.
Journal of Object Oriented Programming, volume 1(3):pp. 26–49,
1988.

[Lamport1978] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, volume 21(7):pp. 558–565, 1978.
ISSN 0001-0782.

[Lex2008] Alexander Lex. Exploration of Gene Expression Data in a Visually
Linked Environment. Master’s thesis, Graz University of Technology,
2008.

[Li2000] D. Li, L. Zhou, and R.R. Muntz. A new paradigm of user intention
preservation in realtime collaborative editing systems. In Parallel and
Distributed Systems, 2000. Proceedings. Seventh International Confer-
ence on, pp. 401–408. 2000.

[Linebarger2005] John M. Linebarger, Andrew J. Scholand, Mark A. Ehlen, and
Michael J. Procopio. Benefits of synchronous collaboration support for
an application-centered analysis team working on complex problems: a
case study. In GROUP ’05: Proceedings of the 2005 international
ACM SIGGROUP conference on Supporting group work, pp. 51–60.
ACM, New York, NY, USA, 2005. ISBN 1-59593-223-2.

[Mark2002] G. Mark, A. Kobsa, and V. Gonzalez. Do four eyes see better than two?
collaborative versus individual discovery in data visualization systems.
In Information Visualisation, 2002. Proceedings. Sixth International
Conference on, pp. 249–255. 2002. ISSN 1093-9547.

[Mathieu2000] John E. Mathieu, Gerald F. Goodwin, Tonia S. Heffner, Eduardo
Salas, and Janis A. Cannon-Bowers. The influence of shared mental
models on team process and performance. Journal of Applied Psychol-
ogy 85(2), pp. 273–283, 2000.

[Mauve2004] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and time-
warp: providing consistency for replicated continuous applications.
Multimedia, IEEE Transactions on, volume 6(1):pp. 47–57, Feb.
2004. ISSN 1520-9210.

[Nardi2000] Bonnie A. Nardi, Steve Whittaker, and Erin Bradner. Interaction and
outeraction: instant messaging in action. In CSCW ’00: Proceedings

Bibliography 83

of the 2000 ACM conference on Computer supported cooperative work,
pp. 79–88. ACM, New York, NY, USA, 2000. ISBN 1-58113-222-0.

[Neuman2005] Petra Neumann, Stefan Schlechtweg, and Sheelagh Carpendale. Arc-
Trees: Visualizing Relations in Hierarchical Data. In Ken W. Brodlie,
David J. Duke, and Ken I. Joy, editors, Data Visualization 2005,
Eurographics/IEEE VGTC Symposium on Visualization Symposium
Proceedings, pp. 53–60. The Eurographics Association, Aire-la-Ville,
Switzerland, 2005.

[Ocker2009] Rosalie Ocker, Mary Beth Rosson, Dana Kracaw, and S. Roxanne
Hiltz. Training students to work effectively in partially distributed
teams. Trans. Comput. Educ., volume 9(1):pp. 1–24, 2009.

[Osais2006] Yahya Osais, Souhail Abdala, and Ashraf Matrawy. A multilayer peer-
to-peer framework for distributed synchronous collaboration. IEEE In-
ternet Computing, volume 10(6):pp. 33–41, 2006. ISSN 1089-7801.

[Park2000] Kyoung S. Park, Abhinav Kapoor, and Jason Leigh. Lessons learned
from employing multiple perspectives in a collaborative virtual environ-
ment for visualizing scientific data. In CVE ’00: Proceedings of the
third international conference on Collaborative virtual environments,
pp. 73–82. ACM, New York, NY, USA, 2000. ISBN 1-58113-303-0.

[Partl2009] Christian Partl. Visualizing a Cluster Hierarchy using a Radial Layout.
Master’s thesis, Graz University of Technology, 2009.

[Pirchheim2009] Christian Pirchheim, Manuela Waldner, and Dieter Schmalstieg.
Deskotheque: Improved spatial awareness in multi-display environ-
ments. Proceedings of IEEE Virtual Reality Conference, 2009, 2009.

[Plumlee2006] Matthew D. Plumlee and Colin Ware. Zooming versus multiple win-
dow interfaces: Cognitive costs of visual comparisons. ACM Trans.
Comput.-Hum. Interact., volume 13(2):pp. 179–209, 2006. ISSN 1073-
0516.

[JAXB2.0] Java Community Process. Jsr-000222 java architecture for xml binding
(jaxb) 2.0, 2006.

[Rekimoto1999] Jun Rekimoto and Masanori Saitoh. Augmented surfaces: a spatially
continuous work space for hybrid computing environments. In CHI ’99:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 378–385. ACM, New York, NY, USA, 1999. ISBN 0-201-
48559-1.

[Robertson2000] George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Cz-
erwinski, Ken Hinckley, Kirsten Risden, David Thiel, and Vadim
Gorokhovsky. The task gallery: a 3d window manager. In CHI ’00:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pp. 494–501. ACM, New York, NY, USA, 2000. ISBN
1-58113-216-6.

Bibliography 84

[Schlegl2009] Bernhard Schlegl. Visual Analytics for Gene Expression Data. Mas-
ter’s thesis, Graz University of Technology, 2009.

[Scott2003] Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System
guidelines for co-located, collaborative work on a tabletop display. In
ECSCW’03: Proceedings of the eighth conference on European Confer-
ence on Computer Supported Cooperative Work, pp. 159–178. Kluwer
Academic Publishers, Norwell, MA, USA, 2003.

[Seo2002] Jinwook Seo and Ben Shneiderman. Interactively exploring hierarchical
clustering results. Computer, volume 35(7):pp. 80–86, 2002. ISSN
0018-9162.

[Shneiderman1996] Ben Shneiderman. The eyes have it: A task by data type taxonomy
for information visualizations. In VL ’96: Proceedings on Visual Lan-
guages. IEEE Computer Society, 1996. ISBN 081867508X.

[Shneiderman2006] Ben Shneiderman and Aleks Aris. Network visualization by semantic
substrates. IEEE Transactions on Visualization and Computer Graph-
ics, volume 12(5):pp. 733–740, 2006. ISSN 1077-2626.

[Siirtola2006] Harri Siirtola and Kari-Jouko Räihä. Discussion: Interacting with
parallel coordinates. Interact. Comput., volume 18(6):pp. 1278–1309,
2006. ISSN 0953-5438.

[Singhal1997] Vigyan Singhal and Alan Jay Smith. Analysis of locking behavior in
three real database systems. The VLDB Journal, volume 6(1):pp. 40–
52, 1997. ISSN 1066-8888.

[Solomita1994] Ethan Solomita, James Kempf, and Dan Duchamp. Xmove: a pseu-
doserver for x window movement. X Resour., (11):pp. 143–170, 1994.
ISSN 1058-5591.

[Stefik1987] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan
Lanning, and Lucy Suchman. Beyond the chalkboard: computer sup-
port for collaboration and problem solving in meetings. Commun.
ACM, volume 30(1):pp. 32–47, 1987. ISSN 0001-0782.

[Streit2007] Marc Streit. Metabolic Pathway Visualization Using Gene-Expression
Data. Master’s thesis, Graz University of Technology, 2007.

[Streit2008] Marc Streit, Michael Kalkusch, Karl Kashofer, and Dieter Schmal-
stieg. Navigation and exploration of interconnected pathways. Com-
puter Graphics Forum (EuroVis 2008), volume 27(3):pp. 951–958(8),
May 2008.

[Streit2009a] Marc Streit, Alexander Lex, Michael Kalkusch, Kurt Zatloukal, and
Dieter Schmalstieg. Caleydo: Connecting pathways with gene expres-
sion. Bioinformatics, 2009.

[Streit2009] Marc Streit, Alexander Lex, Heimo Müller, and Dieter Schmalstieg.
Gaze-based interaction for information visualization. In Proceedings
of web3DW 2009 Conference, Algarve, Portugal. 2009.

Bibliography 85

[Streit2009b] Marc Streit, Hans-Jörg Schulz, Dieter Schmalstieg, and Heidrun
Schumann. Towards multi-user multi-level interaction. In Work-
shop on Collaborative Visualization on Interactive Surfaces (part of
VisWeek’09). 2009.

[JavaRMI] Inc. Sun Microsystems. Java remote method invocation (rmi) specifi-
cation, 2006.

[Fernanda2008] Fernanda Viégas and Martin Wattenberg. Shakespeare, god, and
lonely hearts: transforming data access with many eyes. In JCDL
’08: Proceedings of the 8th ACM/IEEE-CS joint conference on Dig-
ital libraries, pp. 145–146. ACM, New York, NY, USA, 2008. ISBN
978-1-59593-998-2.

[Waldner2009] Manuela Waldner, Alexander Lex, Marc Streit, and Dieter Schmal-
stieg. Design considerations for collaborative information workspaces
in multi-display environments. In Workshop on Collaborative Visual-
ization on Interactive Surfaces. 2009.

Bibliography 86

	Introduction
	Related Work
	Information Visualization
	Multiple Views
	Caleydo InfoVis Framework
	Visual Links
	Composite Views

	Computer Supported Collaborative Work
	Co-located Synchronous Collaboration
	Distributed Synchronous Collaboration
	Co-located and Distributed Asynchronous Collaboration
	CSCW System Architectures
	CSCW and InfoVis

	Multi-Display Environments
	Software Engineering
	Distributed Applications
	Serialization
	Remote Method Invocation and Remote Procedure Calls
	User Interaction

	System Architecture
	Single User Caleydo
	Modules
	Communication
	Commands
	Events
	Method Calls
	Compound Communication

	Views
	Visual Links
	Serialization
	Multi Selection Support

	Multi User Caleydo
	Event System
	Synchronization
	Serialization
	Network Stack
	Persistence
	Visual Links
	Deskotheque Interface

	Implementation
	Used Technologies
	Event System
	Serialization
	Event Serialization
	View Serialization

	Network Stack
	Visual Links
	Deskotheque Interface

	Results
	Event System
	Synchronization
	Application State Persistence
	Single User Experiences
	Deskotheque
	Co-located and Distributed Collaboration

	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

