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Abstract

This thesis describes the combination of a projector-camera system and a robot manip-

ulator to form a three-dimensional measurement system for industrial applications. One

of the central observations is, that this combination is more than just a movable vision

sensor. In an integrated system, the cameras support the robot in automated calibration,

the projectors support the cameras through automated illumination optimization and the

robot supports the cameras by effectively enhancing the measurement range.

A prototype of such a system is constructed and evaluated against real-world require-

ments in terms of flexibility, robustness and accuracy. In contrast to previous work in

industrial quality inspection, the resulting measurement cell can solve a large variety of

measurement problems without changing the underlying hardware and mechanical configu-

ration. Applications range from three-dimensional (3D) measurement over two-dimensional

(2D) image processing to recognition problems.

The methodological focus lies on optimization of geometrical accuracy and radiometric

image quality. State-of-the-art calibration methods for cameras and projectors are inte-

grated in a fully automatic procedure, which is enhanced by a novel method for robot cali-

bration. The problem of structure estimation from multi-view measurements is addressed

and a novel method is proposed, which is more accurate than traditional triangulation.

Radiometric limitations of cameras and projectors are improved by exploiting the princi-

ple of high-dynamic range imaging and automatic illumination adaption on the projector

side.

The underlying methods and the integrated system are extensively evaluated to prove

the practical applicability and the increase in accuracy and robustness. It is demonstrated

that geometrically complex measurement problems can be solved, even on objects with

difficult surface properties, which would be infeasible or very expensive to solve with

state-of-the-art systems.
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Kurzfassung

Durch die Kombination von Projektor-Kamera Systemen und Industrierobotern ist es

möglich, eine optische 3D Messzelle zu konstruieren. Die zentrale Beobachtung dabei ist,

dass diese Kombination mehr darstellt, als nur ein bewegliches Bildverarbeitungssystem.

In einem integrierten System ist es einerseits möglich, die kinematische Kette des Roboters

mit Hilfe des Kamerasystems automatisiert zu kalibrieren, den Messbereich des Bildver-

arbeitungssystems auf den Bewegungsbereich des Roboters zu erweitern, sowie die Auf-

nahmesituation sowohl geometrisch durch Bewegen des Roboters, als auch radiometrisch,

durch Adaptieren des Projektionsmusters, zu beeinflussen.

In dieser Arbeit wird der Prototyp eines solchen Systems vorgestellt und auf

Genauigkeit, Robustheit und Flexibilität evaluiert. Die so entstandene Messzelle

erlaubt es, eine große Bandbreite von messtechnischen Problemstellungen zu lösen,

ohne die darunterliegende Hardware des Systems zu verändern. Die Bandbreite der

lösbaren Messaufgaben reicht dabei von 3D-Oberflächenmessungen über ”klassische”

2D-Bildverarbeitungsaufgaben bis hin zu Aufgaben der optischen Objekterkennung.

Der Fokus dieser Arbeit liegt aus methodischer Sicht auf der Optimierung

von geometrischer Genauigkeit und radiometrischer Bildqualität. Methoden zur

geometrischen Kalibrierung von Kameras, Projektoren und Industrierobotern werden

in einer vollautomatischen Prozedur kombiniert und um eine neue Methode zur

kinematischen Kalibrierung von Industrierobotern erweitert. Eine neue Methode zur

Berechnung von 3D-Struktur aus mehreren Bildmessungen wird vorgestellt, die, speziell

unter teilweisen Verdeckungen, genauer als die klassische optische Triangulierung

ist. Die radiometrische Beschränkung von bestehenden Projektor-Kamerasystemen

wurde durch Anwendung von radiometrischer Optimierung auf Projektorseite, und

High-Dynamic-Range-Imaging auf Kameraseite verbessert.

Die Methoden werden in einem Forschungsprototyp extensiv evaluiert, um die praktis-

che Anwendbarkeit, Genauigkeit und Robustheit zu zeigen. Die Lösung von geometrisch
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komplexen Messaufgaben wird auf optisch schwierigen Oberflächen demonstriert.

Keywords. digitale Bildverarbeitung, optische Messtechnik, Musterprojektion, Muster-

anpassung, kinematische Kalibrierung
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In the last decades, industrial automation has seen a strong trend towards outsourced

manufacturing and production. This process, accompanied by the ever increasing complex-

ity of manufactured goods, led to an increasing demand in quality inspection. Especially

parts critical for an end-product’s functionality require 100% inspection, which is a time

consuming process. In this field of automated quality control, vision-based measurement

systems are becoming key components. They provide the ability of non-tactile measure-

ment, and are able to solve a large variety of measurement problems with one hardware

device. The traditional domain of computer-vision devices are hereby two-dimensional

inspection problems, e.g. reading characters or codes, measuring geometric properties like

distances and hole diameters, or analyzing object color and texture.

The problem of measuring three-dimensional properties of machined objects is classical

the domain of tactile sensors and point- or line-scanners, based on the laser triangulation

principle. In the first case, the probe of a tactile sensor is moved towards the object until

it makes contact. The nominal probe position, in combination with the local probe dis-

placement, gives an accurate and very robust measurement of the contact point’s location.

The advantage of tactile methods is their outstanding robustness. Measurement quality is

independent of optical properties like specularity or transparency. Measurements are easy

to perform, because the probe position relative to the object can be directly observed and

controlled. On the downside, accuracy requirements demand precision engineering of the

1



2 Chapter 1. Introduction

probe and motion system, which makes these methods expensive. The method returns

point measurements only, so surface scanning at high resolution is time consuming and

points not reachable by the probe cannot be measured.

A triangulation based sensor on the other side, projects a laser line or laser point on the

object surface. The reflection is captured by a camera system which is rigidly connected

to the light source. Three-dimensional information is calculated by optical triangulation.

This method is non-tactile, which allows the measurement of non-rigid objects. If laser

lines are projected, a profile scanner can be realized, which reduces measurement time for

surface areas. The disadvantage of this approach is its inherent dependence on optical

surface properties. Specular reflecting objects as well as transparent objects can not be

measured by off-the-shelf triangulation sensors.

Vision systems, which provide three-dimensional measurements, are fundamentally

based on the multi-view principle: if several (central-) perspective images of an object

from different viewpoints are available and surface point correspondences and camera ge-

ometry are known, the three-dimensional location of features can be determined by optical

triangulation. This measurement principle is inherently area-based, which makes object

surface scanning fast. High flexibility and applicability to a large variety of measurement

problems make this method a viable alternative to classical methods in industrial metrol-

ogy, but no real replacement by itself, due to several shortcomings. It is arguably the least

robust method and needs to be fine-tuned for most applications. Hardware requirements

are similar to laser triangulation methods, but assembled in custom setups, which makes

the approach relatively expensive. Measurement volume is limited by camera resolution,

spatial constraints and the requirement that each measured point must be observable by

at least two cameras from different viewpoints.

In this work, three principal drawbacks of vision based three-dimensional (3D) measure-

ment systems are addressed: the need for customization to specific measurement tasks,

the necessity to fine-tune illumination and camera parameters to specific measurement

problems, and the limited measurement volume. This work contributes to the evolution

of a ”Plug and Play” industrial sensor, capable of performing a wide range of optical

inspection tasks within a large measurement volume, by mounting the vision sensor on a

mobile platform. The ability of automatic system calibration and the adaption of illumi-

nation, viewpoint and camera parameters, increases the flexibility of the system beyond

that known from state-of-the-art vision solutions.
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1.1 Problem Domain

                         
 

R, T 

d1 

d2 π 

(a) 

(b) (c) 

Figure 1.1: Typical measurement problem in industrial quality inspection. An exhaust
pipe needs to be checked for dimensional accuracy of inlet and outlet flange (a), borehole
accuracy (diameter d1 and distance d2) need to be checked, as well as flange planarity π
(b). Measurement results need to be assigned to a code embossed in the pipe (c).

Quality inspection of medium scale machined parts (e.g. exhaust pipes) often requires

multiple accurate geometric measurements spread across a large workspace. A typical ex-

ample is shown in Figure 1.1. According to the user specification, a number of geometrical

properties need to be checked:

• Borehole accuracy on inlet and outlet flanges. Distances between borehole centers

and borehole diameter to an accuracy of 0.05mm.

• Flange planarity. The planarity of inlet and outlet flanges to an accuracy of 0.05mm.

• Dimensional accuracy of inlet and outlet flange. The relative position of inlet and

outlet flange to an accuracy of 0.5mm.
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• Part Identification. Read the embossed DataMatrix code.

To fulfill the requirements, a measurement solution has to be constructed which is able

to perform geometric measurements in a volume of 1000 × 500 × 500mm3. The type of

measurement reaches from two-dimensional image processing tasks for code reading, to

three-dimensional measurements like surface planarity and position of feature points. The

required measurement accuracy is up to 0.05mm for distinct tasks.

In a purely theoretical consideration, a single camera would require a resolution of

800megapixels to resolve an area of 0.5m2 at 0.025× 0.025mm2 per pixel, and would not

be able to handle the occlusions on a geometrically complex object.

A state-of-the-art solution would incorporate a number of specialized components,

assembled in a measurement cell. For example, one laser triangulation sensor per flange,

with motorized linear drive, one camera system per flange and one DataMatrix code

reader. The relative position of all sensors has to be known, either by means of precise

construction or some kind of calibration method. Furthermore, the sensors must be rigidly

mounted, to avoid degradation of geometric calibration over time.

The main drawbacks of such a solution are costs and the lack of flexibility. Even a slight

change in the measurement procedure or type of object would require reconstruction of

the measurement cell, probably requiring additional sensor components and making others

obsolete. Applying different sensors in a custom setup is expensive, especially when they

have to be maintained over several years.

In the proposed solution, a single sensor head, which is capable of performing all

required tasks in the previous example, is designed and evaluated. A vision system,

consisting of multiple cameras and projection systems, is mounted on a moving platform,

in this case an industrial manipulator. The construction resembles a measurement cell,

where a single sensor is able to perform a variety of measurement tasks in a large workspace.

The measurement volume is limited only by the robot workspace. Within this workspace,

the sensor can be placed at various positions and perform a measurement within its local

range. Several such measurements can be combined in a global coordinate frame (CF)

using accurate knowledge of the manipulator motion.

While this idea is not new, few such systems were actually applied, mainly because:

• Retrieval of sensor motion requires accurate calibration and high stability of the

manipulator. Usually, manipulator calibration is hardware intensive and time con-

suming.
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• For most types of non-visual 3D sensors, accurate tool-hand calibration is not

straightforward.

• Recalibration is part of the system maintenance process, often incurring prohibitive

costs.

• Planning and implementation of inspection tasks is still hard, and often specific

problems can not be solved with a single sensor device.

The proposed sensor is capable of measuring three-dimensional geometric features (sur-

face planarity, angle, area, borehole diameter, position, circularity, edge length, linearity,

etc.) in a volume of 180×120×80mm3. Implicitly, the sensor also acts as a position mea-

surement device, enabling it to perform self-calibration, tool-hand calibration and kine-

matic calibration in a single framework. Only one accurate reference target (150×150mm2)

is required. For kinematic calibration, a novel procedure based on self-inspection through

a mirror is proposed, which only requires a planar mirror as an external reference.

1.2 Contributions

Compared to the state-of-the-art in vision based industrial metrology, the proposed system

combines a variety of methods, which contribute to more precise, more robust, and easier

to implement measurement tasks.

At first, the concept of a robot mounted structured light sensor, based on multiple

projectors and multiple cameras is proposed. The sensor by itself allows to perform 3D

and two-dimensional (2D) measurement in a limited volume, but with high accuracy. State-

of-the-art micro-projectors with a modified light source are hereby combined with multiple

industrial cameras to form a small, lightweight and rugged sensor, which can be mounted

on an industrial manipulator.

Projector-camera systems are capable of performing 3D measurements by applying the

well known structured light principle, a method which suffers in robustness, if metallic,

shiny objects are measured. The following enhancements are discussed and evaluated:

enhancement of sensor dynamic range through high dynamic range (HDR) imaging, and

alternatively through automatic adaption of the projected illumination pattern. Scene

interreflections cannot be eliminated by controlling only the light source and camera.

Here, a method to robustly identify and mask out interreflection regions is introduced.

All these methods are based on a simple radiometric self-calibration method, which can

be conducted automatically by the sensor system.
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After radiometry, the second most important portion of a 3D sensor is geometry. It is

shown that the sensor by itself can be automatically calibrated, including camera, projec-

tor and multi-view calibration. Structure estimation, i.e. the problem of calculating 3D

structure from known correspondences in image space, is hereby solved by a novel method,

which increases accuracy at least by a factor of two. Robot geometry is only reliable, if

it can be re-calibrated after installation on a frequent basis. Eye-hand calibration and

kinematic optimization can hereby also be performed automatically. A novel method for

kinematic calibration using only an external mirror is proposed in this course.

1.3 Outline

The thesis is organized as follows. In Chapter 2, the theoretical foundations for the

proposed methods are discussed. Topics hereby range from projective geometry and ge-

ometrical image formation to barycentric interpolation, robot kinematics and parameter

estimation. The overall concept of the proposed measurement system, and a possible hard-

ware layout, are described and evaluated in Chapter 3. Chapter 4 contains the proposed

radiometric image optimization techniques using active vision systems. Redundancy in

the number of views, and number of images per view, as well as automatically control-

lable illumination are used to optimize illumination conditions for further measurement

problems. Geometrical concepts, like the sensor model and methods for calibration and

structure estimation are covered by Chapter 5. The introduced methods allow to generate

a robust 3D sensor based on the structured light principle, which is discussed in Chapter

6. Flexibility in the measurement range and poses comes from the combination with an

accurately calibrated robot. A mirror-based calibration method is proposed in Chapter

7. In Chapter 8, the complete sensor system is applied to the measurement problem in-

troduced in this chapter, and evaluated. A summary of the presented work is given in

Chapter 9.
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2.1 Introduction

Theoretical foundations which are used throughout the work are reviewed in this chapter.

Most of the topics, ranging from image-based metrology over three-dimensional metrology

to robot calibration, are based on a closely related set of fundamental problems. All

operate on geometric entities and many tasks finally result in inverse problems which need

to be solved in an efficient way, so it is sensible to summarize the concepts of Euclidean

geometry, parameter estimation and error modeling under a common notation to facilitate

further reading.

First, the fundamentals of projective geometry are reviewed. The notation used in this

work is closely related to the book of Hartley & Zisserman [42]. Because the notation used

by photogrammetrists (see Atkinson [3] and Luhmann [71]) and robotics engineers (see

Zhuang [118] and Sciavicco [95]) differs to a large extent, it was tried to find a common

framework to express the basic concepts of geometry.

7
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The following section is concerned with advanced projection models, especially those

describing the deviation of real image sensors from the ideal pinhole model.

Kinematic manipulator models allow to describe robot geometry, pose and motion in

a Euclidean world coordinate frame (WCF). The most popular models are reviewed, with a

focus on the suitability for robot calibration.

Finally, the concepts of parameter estimation in Euclidean geometry are reviewed. Cal-

ibration procedures in computer vision and robotics almost inevitably lead to optimization

problems, which are traditionally solved in a least squares manner. The problems of for-

mulating the error metric, calculating the estimate and issues regarding parametrization

and evaluation are discussed.

2.2 Projective Geometry

In dealing with geometric entities, rigid transformations and perspective projections, pro-

jective geometry provides a useful and elegant algebraic formulation. Purpose of this

chapter is to introduce the basic concepts and define the notation. For an in-depth treat-

ment, refer to the introductory chapters of [42], [26], [71] and [95].

In the first section geometrical entities and their representations in 2D and 3D are

presented, followed by geometrical transformations and their hierarchy. The basic central

perspective camera model is introduced in the final section.

2.2.1 Geometric Primitives

 
(a) (b) 

 
(c) 

 
Figure 2.1: Geometric Primitives. Point, lines and conics (a) can be expressed as linear
entities in P2. Planes, points and lines (b), as well as quadrics (c) are linear entities in P3.

Geometric primitives are elementary entities like points, lines or planes. Algebraically,

these can be represented as vectors or matrices in projective space. Together with geo-

metric transformations, they form the basis of projective geometry.
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2.2.1.1 Points and Lines in 2D

Points and lines in the two-dimensional Euclidean space R2 (see Figure 2.1 (a)) are rep-

resented by column vectors xEuc = (x1, x2)T . Note that boldface symbols always indicate

vectors or matrices. Consequently, xEuc has two degrees of freedom (DOF), namely its

Cartesian coordinates. A line in R2 is naturally represented by the coefficient vector of

the line equation l1x1 + l2x2 + l3 = 0: l = (l1, l2, l3)T . With three coefficients, the line

is overparametrized and every vector lk = k(l1, l2, l3)T with non-zero scalar k is a repre-

sentation of the same line. Hence the set of all lk forms an equivalence class. A point

x, defined as the intersection of two non-identical lines la and lb, must satisfy Mx = 0,

where

M =

[
lTa
lTb

]
. (2.1)

Because M has rank two, the right null-space of M is also an algebraic representation

of points, with three coefficients and two DOF. Due to the freedom of scale, all xk = kx

form an equivalence class, representing a single point. This representation is commonly

denoted as a homogeneous coordinate vector. Division by the last coefficient gives again

the Euclidean representation (see Table 2.1).

Vectors l and x are commonly denoted as homogeneous representations of lines and

points, defined in the projective space P2 = R3\(0, 0, 0)T . Algebraic properties are sum-

marized in Table 2.1.

An important property is the duality principle, stating that in any theorem regard-

ing points and lines in P2, another theorem can be derived by interchanging points and

lines. This principle also holds for points in P3, conics, quadrics and their respective dual

representations.

2.2.1.2 Points and Planes in 3D

Points and planes in P3 are a straightforward generalization from points and lines in

P2. The role of lines is taken over by planes, which are algebraically represented as four

dimensional vectors p = (p1, p2, p3, p4)T , and, dual to planes, points are represented as

x = (x1, x2, x3, x4)T . Algebraic properties are summarized in Table 2.2.
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Relation Algebraic formulation

Homogeneous point x = (x1, x2, x3)T

Homogeneous line l = (l1, l2, l3)T

Euclidean point xEuc = (x1
x3
, x2
x3

)T

Intersection of two lines x = la × lb

Line joining two points l = xa × xb

Line normal n = (l1, l2)T

Points at infinity (ideal points) x∞ = (x1, x2, 0)T

Line at infinity l∞ = (0, 0, 1)T

Table 2.1: Algebraic relations of points and lines in P2.

Relation Algebraic formulation

Homogeneous point x = (x1, x2, x3, x4)T

Homogeneous plane p = (p1, p2, p3, p4)T

Euclidean point xEuc = (x1
x4
, x2
x4
, x3
x4

)T

Intersection of three planes




pa
T

pb
T

pc
T


x = 0

Plane joining three points




xa
T

xb
T

xc
T


p = 0

Plane normal n = (p1, p2, p3)T

Points at infinity (ideal points) x∞ = (x1, x2, x3, 0)T

Plane at infinity p∞ = (0, 0, 0, 1)T

Table 2.2: Algebraic relations of points and planes in P3.
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2.2.1.3 Conics and Quadrics

Conic sections, such as ellipses, hyperbola and parabola, are expressed in P2 as second

order polynomials in three parameters:

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0. (2.2)

The equation holds for all points lying on the conic. Combining coefficients a to f in a

symmetric 3× 3 matrix C, (2.2) can be formulated in matrix notation:

xTCx = 0, (2.3)

where

C =




a b/2 d/2

b/2 c e/2

d/2 e/2 f


 . (2.4)

For a tangent line l to conic C in conic point x, the following relation holds:

l = Cx. (2.5)

If xpole is a point lying outside C, (2.5) is generalized to the pole-polar relationship

lpolar = Cxpole. (2.6)

Here, line lpolar is denoted polar line with respect to the pole xpole. An intuitive

explanation of this relation is shown in Figure 2.2. If xpole is outside C, there exist exactly

two lines through xpole and tangent to C. The two resulting tangent points uniquely define

the polar line lpolar.

In equivalence to points and lines in P2, there exists a dual entity for a point conic,

namely the dual conic C∗. In the non-degenerate case C∗ may be computed as the inverse

of C:

C∗ = C−1. (2.7)

The dual conic imposes a constraint on tangent lines l, and defines a conic as the set

of all lines satisfying
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Figure 2.2: Pole-polar relationship. For a point xpole outside conic C, there exist exactly
two tangent lines going through xpole. The line lpolar going through both tangent points
is called polar to xpole.

Figure 2.3: Conic representations. A conic may either be defined as the set of points
satisfying xTCx = 0, or as the set of lines satisfying lTC∗l = 0. C∗ is hereby the dual
conic.

lTC∗l = 0. (2.8)

In P3, quadrics are the three-dimensional counterparts to conics, for example ellipsoids,

cones or hyperboloids. Algebraically they are represented by a symmetric 4× 4 matrix Q.

A point lying on a quadric satisfies

xTQx = 0, (2.9)

and a tangent plane p satisfies

pTQ∗p = 0, (2.10)

where Q∗ is the dual quadric. In analogy to the two-dimensional case, constraints on

tangent planes and the pole-polar relationship also hold:
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p = Qx, (2.11)

where p is the plane tangent to Q in x, if x lies on Q, and the polar plane, if x is

outside Q. Note that the polar plane intersects Q in a conic, and each line through a

conic point and the pole gives a line tangent to Q.

2.2.2 Geometric Transformations

A special class of geometric transformations F : Pn → Pn can be conveniently expressed as

linear mappings. Here, linear transformations in P3 are reviewed, including their geometric

invariants and DOF. Special emphasis is on the set of Euclidean, or rigid transformations

and their parametrization, because these play a central role in multi-view geometry as well

as robotics.

Generally, a mapping F : P3 → P3 is a projective transformation, if it is invertible

and preserves collinearity. The algebraic representation is a left-multiplication with an

invertible 4× 4 matrix H.

Under this mapping, a transformed point is given by F(x) = Hx. Because the scale of x

is arbitrary, so is the scale of H, and consequently the most general projective mapping has

16 DOF. There exist a number of specializations of this mapping which have fewer DOF and

leave certain geometrical properties unchanged. As shown in Figure 2.4, the specializations

form a hierarchy, with the metric transform as the most special one, leaving only rotational

and translational freedom (6 DOF), whereas the most general transformation has 15 DOF.

2.2.2.1 Projective Transformations

In the most general case, transformation matrix H has fifteen DOF. One parameter is free

due to the scale freedom (see Figure 2.4). A collinear set of points is always mapped to a

collinear set of points. Furthermore, the cross ratio, i.e. the ratio of length ratios of any

four collinear points is preserved:

d(xa,xb)
d(xa,xd)

:
d(xb,xc)
d(xb,xd)

=
d(x′a,x

′
b)

d(x′a,x′d)
:
d(x′b,x

′
c)

d(x′b,x
′
d)

. (2.12)

Here, d(x,y) denotes the Euclidean distance between points x and y, xi are original

points and x′i are transformed points.
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Projective (15 dof)

Affine (12 dof)

Metric (7 dof)

Euclidean (6 dof)
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Figure 2.4: Hierarchy of Projective Transformations. Depending on the number of DOF in
the transformation matrix H, certain geometric properties are left unchanged, resulting
in a hierarchy of increasingly specialized transformations.

2.2.2.2 Affine Transformations

Affine transformations restrict the projective transform by setting the last row of H to

(0, 0, 0, λ), where λ is an arbitrary scalar. As shown in Figure 2.4, this leaves twelve DOF,

representing anisotropic scaling (6 DOF), rotation (3 DOF) and translation (3 DOF). The most

important invariant geometric property is parallelity of lines. As a consequence, the point

of intersection of parallel lines, lying at infinity, remains at infinity after transformation.

Further invariants include volume ratios, centroids and length ratios on parallel lines.

2.2.2.3 Similarity Transformations

Similarity transforms only change object rotation, translation and isotropic scale (7 DOF).

The upper left 3×3 matrix becomes an orthogonal matrix, multiplied with the scale factor.
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Angles and length ratios are preserved under affine transformations.

2.2.2.4 Metric Transformations

A metric transformation with six DOF changes rotation and translation. As a specialization

of similarities, the scale factor is one. This class of transformations naturally describes

the relative position of objects and CF, as well as relative movements in P3. As depicted

in Figure 2.4, the rotation is represented by a 3× 3 orthogonal matrix R, the translation

by a 3× 1 translation vector t.

Elementary rotations about the three coordinate axes take on special forms:

Rx =




1 0 0

0 cϕ −sϕ
0 sϕ cϕ


 Ry =




cϕ 0 sϕ

0 1 0

−sϕ 0 cϕ


 Rz =




cϕ −sϕ 0

sϕ cϕ 0

0 0 1


 , (2.13)

where sϕ, cϕ are sine and cosine of rotation angle ϕ.

2.2.2.5 Representation of Rotations

As shown in the previous section, a rotation in projective geometry is represented by a

3× 3 orthogonal matrix, so three DOF are encoded in nine parameters with orthogonality

and norm constraints. This representation has disadvantages in several applications, like

parameter estimation, as will be shown in Section 2.5.

It would be favorable to have a representation which is more intuitive, locally continu-

ous, differentiable and one-to-one. For parameter estimation, it should be locally approx-

imately linear. Popular representations in this respect are Euler angles, unit quaternions

and axis-angle representations.

Euler Angles Euler angles are a minimal representation of rotation with three angles.

Based on the observation that any rotation in 3D can be represented by three consecutive

rotations about non-parallel axes, one defines a vector Φ = (ϕ, ϑ, ψ)T , where each angle

specifies a rotation about one coordinate axis. Since the exact sequence of axis rotations is

not defined, and the only constraint is that consecutive rotations are not about the same

axis, twelve distinct Euler representations are possible. Although no common agreement

exists on what representation to use, two of the more popular examples are the ZYZ

representation and the roll-pitch-yaw (RSC) angles.
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The ZYZ Euler vector Φ = (ϕ, ϑ, ψ)T contains three angles, where ϕ represents a

rotation angle around the z-axis, ϑ is a rotation angle around the current y-axis (i.e. y-

axis after the first rotation) and ψ is a rotation angle about the current z-axis (after the

first two rotations):

RΦ = Rz(ϕ)Ry′(ϑ)Rz′′(ψ). (2.14)

A formula for direct computation of RΦ is given by

RΦ =




cϕcϑcψ − sϕsψ −cϕcϑsψ cϕsϑ

sϕcϑcψ − cϕsψ −sϕcϑsψ sϕsϑ

−sϑcψ sϑsψ cϑ


 , (2.15)

and for the inverse mapping:

ϕ = arctan
(
r23

r13

)

ϑ = arctan

(√
r2

13 + r2
23

r33

)

ψ = arctan
(
r32

−r31

)
.

The representation has a singularity if ϑ is zero or a multiple of π, which would lead

to a double rotation about the identical z-axis.

The second representation, RPY angles, is commonly chosen for ease of understanding.

Here, similar to the motion of an airplane, the angle vector Φ = (ϕ, ϑ, ψ)T represents a

sequence of rotations about fixed reference axes:

RΦ = Rx(ψ)Ry(ϑ)Rz(ϕ), (2.16)

or equivalently about current axes

RΦ = Rz(ϕ)Ry′(ϑ)Rx′′(ψ). (2.17)

The forward mapping is hereby given by:
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RΦ =




cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ

sϕcϑ sϕsϑsψ − cϕcϑ sϕsϑcψ − cϕsψ
−sϑ cϑsψ cϑcψ


 . (2.18)

For the inverse mapping, the following equations hold:

ϕ = arctan
(
r21

r11

)

ϑ = arctan

(
−r31√
r2

32 + r2
33

)
(2.19)

ψ = arctan
(
r32

r33

)
.

This representation degenerates if cϑ = 0, leading again to a double rotation about

identical axes.

Unit Quaternions Unit quaternions are a four parameter representation of rotations,

also denoted as Euler parameters. A quaternion vector Q = (η, εx, εy, εz)T consists of a

scalar part and a three element vector:

η = cos
ϑ

2
(2.20)

ε = sin
ϑ

2
t,

where ϑ is the rotation angle and t is the rotation axis. While the parameter space is

essentially four-dimensional, the unit quaternion is constrained to lie on the unit sphere:

‖Q‖2 = 1. The corresponding rotation matrix is of the form:

R(η, ε) =




2(η2 + ε2x)− 1 2(εxεy − ηεz) 2(εxεz + ηεy)

2(εxεy + ηεz) 2(η2 + ε2y)− 1 2(εyεz − ηεx)

2(εxεz)− ηεy 2(εyεz + ηεx) 2(η2 + ε2z)− 1


 . (2.21)

The following result allows to compute a unit quaternion from a given rotation matrix:
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η =
1
2
√
r11 + r22 + r33 + 1 (2.22)

ε =
1
2




sgn(r32 − r23)
√
r11 − r22 − r33 + 1

sgn(r13 − r31)
√
r22 − r33 − r11 + 1

sgn(r21 − r12)
√
r33 − r11 − r22 + 1




Quaternions as rotation representations have several nice properties. They are easy to

construct from rotation matrices or axis-angle representations, do not have singularities or

discontinuities and behave approximately linear for small changes in rotation. Additional

algebraic properties are rotation inversion, which is computed as

Q−1 = (η,−ε), (2.23)

the composition of two rotations R1 ·R2 as

Q1 ∗Q2 = (η1η2 − εT1 ε2, η1ε2 + η2ε1 + ε1 × ε2). (2.24)

The identity element for quaternion multiplication ∗ is given by Qi = (1,0).

Axis-Angle Representation Clearly, a rotation in 3D can also be represented by the

rotation axis t3×1 and the rotation angle ϑ around this axis, leading to a four parameter

representation. A minimal parametrization however can be reached by encoding ϑ in the

norm of t: t = ϑt̂, where t̂ is the unit vector in direction of the rotation axis.

Calculation of the rotation matrix is done via the Rodrigues formula for a rotation

matrix:

R(ϑ, t̂) = I + sinϑ[t̂]× + (1 + cosϑ)[t̂]2×. (2.25)

Conversion of t to a unit quaternion is given by

Q = (sinc(‖t‖/2)t, cos(‖t‖)/2)T . (2.26)

2.2.3 Central Perspective Camera Model

In addition to geometric primitives and their transformations, projective geometry also

allows an elegant formulation of image formation by central perspective projection. As-
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suming the ideal pinhole camera model, a 2D image is formed by intersection of a ray

through a world point X and the center of projection C with an image plane πi (see also

Figure 2.5). This mapping from P3 to P2 has a total of eleven DOF, six for the relative

orientation between camera and scene, and five for transformations in the image space.

Figure 2.5: Central perspective image formation. The mapping from world point X to
image point x is algebraically described by eleven parameters, six of which describe the
pose of the CCF, and five describe transformations in the image plane [42].

At first, one defines a local CCF, which coincides with the WCF. The CCF is defined such

that the origin lies in the projection center, the z-axis is perpendicular to the image plane

and the camera looks in positive z-direction. To fix the remaining rotation ambiguity, the

xz-plane intersects the image plane in the image x-axis, where world x-axis and image

x-axis look in the same direction. Such a configuration allows for a simple algebraic

formulation of central perspective projection:

[
x

y

]
=

[
f XZ

f YZ

]
, (2.27)

where the image point x = (x, y)T , world point X = (X,Y, Z)T (compare also Figure

2.5). The scalar f , commonly denoted as the focal length, defines the perpendicular

distance between image plane an projection center. It is an intrinsic camera parameter,

because it specifies an isotropic scaling in image space.

A projective formulation of (2.27) is even simpler, leading to a linear relationship:




x1

x2

x3


 =




f 0

f 0

1 0







X1

X2

X3

X4




, (2.28)

or, equivalently:
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x =




f

f

1




3×3

[
I3×3 | 03×1

]
3×4

X. (2.29)

The first 3 × 3 matrix, currently containing only f , will further be denoted as the

calibration matrix K. Multiplying K with the 3 × 4 matrix [I|0], where I is the 3 × 3

identity matrix and 0 a three element null vector, gives the projection matrix P3×4:

x = PX, P = K
[

I3×3 | 03×1

]
. (2.30)

All intrinsic camera parameters, describing transformations in image space, are con-

tained in K, which is upper triangular and defined up to scale. So a total of five intrinsics

is possible:

K =




fx s px

fy py

1


 . (2.31)

According to Figure 2.6, the five intrinsic parameters have a geometric interpretation.

The focal length is a scaling of the image coordinate frame (ICF) relative to the WCF.

This can be achieved by leaving the ICF constant and changing f , which moves the image

plane relative to the projection center. So f , or fx in (2.31), is the perpendicular distance

between image plane and projection center. If the scaling is different along the coordinate

axes, e.g. by using rectangular pixels or in scanned images, fy differs from fx by an aspect

ratio a = fy/fx.

The ICF origin lies at the principal point p = (px, py)T , which is the orthogonal

projection of C onto the image plane πi (see Figure 2.5). The origin is translated to some

other place for convenience reasons, e.g. to the upper-left pixel position of a charge coupled

device (CCD) array. This translation is modeled by the principal point offset (px, py)T . In

the rare case when one has to deal with non-rectangular pixels, a non-zero skew factor

may be applied, leading to a pixel shear of angle α, as shown in Figure 2.6:

s = fx/py tanα. (2.32)

The projection model from (2.30) can also be interpreted in a different way. First, X

is mapped to a canonical image point
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Figure 2.6: Intrinsic camera parameters [87]. The calibration matrix K contains a set
of five linear transformations in image space P2. Focal lengths fx, fy correspond to
anisotropic scaling, the principal point coordinates px, py define a translational offset
and the skew parameter s specifies a pixel shear.

xc = [I|0]X = (X1/X3, X2/X3, 1)T . (2.33)

Final image coordinates are calculated as x = Kxc, so K is equivalent to a 2D projec-

tive transformation in the image plane, containing a translation (px, py)T , shearing s and

anisotropic scaling (fx, fy)T .

For notational reasons it is desirable to split K into two transformations K = KiKm:

x = KiKmxc =




d−1
x si px

d−1
y py

1







fm

fm

1


xc. (2.34)

As such, Km is a transformation from canonical images space to metric image space

xm = Kmxc, (2.35)

where fm is the camera focal length in metric units (e.g. millimeters). Point xm is also

given in metric units and may be further transformed to pixel units through xi = Kixm,

where (dx, dy)T are the metric pixel dimensions and si = s(fdy)−1.

Until now, the WCF coincided with the CCF. To realize a different camera pose, a six

DOF Euclidean transformation is defined, which aligns WCF and CCF before projection:

x = K
[

I | 0
] [ R t

0 1

]
X ⇔ x = K

[
R | t

]
X, (2.36)
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where R and t represent the rotation and translation necessary to transform points

from the WCF to the CCF. The position of the projection center in world coordinates is

given by inverse transformation of (0, 0, 0, 1)T : Cworld = −RT t.

To summarize, the projection matrix

P = K
[

R | t
]

(2.37)

describes a linear mapping from P3 to P2 and has eleven DOF. Inversely, every 3 × 4

matrix represents a finite projective camera, as long as the left 3 × 3 submatrix is non-

singular. While the coefficients of P do not have a direct geometric interpretation, the

matrix can be dissected in an upper triangular matrix K containing five intrinsic param-

eters, an orthogonal matrix R and a vector t containing six extrinsic or pose parameters.

2.3 Advanced Projection Models

Although the central perspective camera model described in Section 2.2.3 perfectly de-

scribes a pinhole camera, it is less useful for modeling real cameras. The reason is the

presence of systematic deviations when using optical components like lenses and mechan-

ical imperfections.
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Figure 2.7: Typical lens distortion curves. The Figures show distortion curves of an 8mm
C-mount lens mounted on a 1/1.8” CCD sensor. Displacement in x-direction (∆x) is given
over x, with the origin at the center of distortion. Radial lens distortion (a) is larger by
an order of magnitude than decentering distortion (b).

The largest amount of distortion is a radial symmetric displacement in radial direction
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(Figure 2.7 (a)), with distortion center close to the principal point. Commonly known

as barrel or pincushion distortion, this effect is caused by lenses in the optical path.

Mechanical deficiencies, like inaccurate alignment of lenses and distortions of the image

plane, cause additional displacements which are usually smaller by at least one order

of magnitude. Lens misalignment, as shown in Figure 2.8, is modeled by decentering

distortion, the other effects are usually neglected.

 
 

Figure 2.8: Reason for decentering lens distortion. Decentering distortion originates from
misaligned lenses. The optical effect is comparable to inserting a thin prism in the optical
path.

The gold standard in modeling these effects has been established by Brown [13] [14],

who explicitly modeled distortion displacement by a radial component and a decentering

component:

xcorr = xmeas + ∆rad(xmeas, κ1, ..., κn) + ∆tan(xmeas, p1, ..., pn), (2.38)

where xmeas is the measured (i.e. distorted) image point and xcorr is the corrected

point, corresponding to an ideal central perspective projection.

The radial displacement ∆rad, specified by a set of radial distortion parameters

κ1, ..., κn, is given by

∆rad = x̄(κ1r
2 + κ2r

4 + ...+ κnr
2n), x̄ = xmeas − p. (2.39)

The displacement function is symmetric around p and a function of radius r = ‖x̄‖, so

the center of distortion coincides by definition with the principal point. In practice, the

number of radial distortion parameters is at most three.

Tangential or decentering displacement ∆tan is given by

∆tan =

[
p1(r2 + 2x̄2) + 2p2x̄ȳ

p2(r2 + 2ȳ2) + 2p1x̄ȳ

]
(1 + p3r

2 + ...). (2.40)
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Only the first two distortion parameters are considered in practice. To model defi-

ciencies of the sensor plane, Brown [16] later introduced two more additive displacement

models, which are purely empirical, polynomial descriptions. First the in-plane distortion

∆ip =

[
a1x̄+ a2ȳ + a3x̄ȳ + a4ȳ

2 + a5x̄
2ȳ + a6x̄ȳ

2 + a7x̄
2ȳ2

a8x̄ȳ + a9x̄
2 + a10x̄

2ȳ + a11x̄ȳ
2 + a12x̄

2ȳ2

]
, (2.41)

to model displacements in the image plane, and second the out-of-plane distortion

∆op =

[
a13sx(x̄2 − ȳ2) + a14sxx̄

2ȳ2 + a15sx(x̄4 − ȳ4)

a13sy(x̄2 − ȳ2) + a14syx̄
2ȳ2 + a15sy(x̄4 − ȳ4)

]
, (2.42)

sx = − x̄

fm
, sy = − ȳ

fm

to model sensor plane unflatness. Theoretically, all distortion components can be added

to form a very general distortion model. This approach is not feasible in practice, because

of redundancy in the parameters and lack of observability. Exact values of the distortion

parameters are typically identified in a calibration process, by minimizing the observation

error of known 3D reference features. This is only possible if the parameters are sufficiently

constrained by the error function, so a minimal set of parameters is desired which describes

the distortion at hand. Although the presented distortion models have been originally

designed for photogrammetric, analog film cameras, they have been adopted to digital

pixel cameras with almost no change.

Radial lens distortion is reportedly the most dominant factor [30], but also behaves

nicely during calibration, regarding robustness and repeatability. Usually one or two

parameters are sufficient, three radial parameters are only required for wide angle lenses

and high accuracy applications. It is a known fact that radial distortion varies with

focusing and object depth [34] [31] [10]. With fixed focus setting, only the change of

distortion with depth is of interest and a significant influence has been reported for object

depths below thirty times the focal length.

Decentering distortion is small compared to the radial component, rarely exceeding

one pixel. There is also an insignificant variation with focusing, which can be ignored [30].

Regarding calibration, decentering is highly correlated with the principal point offset, so

for low to medium accuracy requirements it should be ignored for sake of robustness.

Out-of-plane distortion effects are due to focal plane unflatness and are a limiting factor

for measurement accuracy [32]. Bending of the focal plane may be due to manufacturing

defects, or due to elastic deformation during mounting (Figure 2.9). The amount of
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Figure 2.9: Image plane deformation. An uneven sensor plane causes a radial displacement
∆r as a function of the ray incidence angle φ and height displacement ∆r.

distortion for a single pixel is a function of the incidence angle. Clearly, the smaller the

incidence angle between sensor plane and imaging ray, the larger the displacement on a

deformed sensor plane, so the distortion is a function of the image radius. The problematic

thing about this type of distortion is that it is hard to model and calibrate without explicit

measurement of sensor plane topology. Explicit measurement of surface unflatness, like

it is possible with analog film, is also impractical for digital cameras, since one would

have to measure on the mounted sensor plane inside the camera housing. Measurements

on the physical chip surface have shown a peak height difference of 1.7µm over a sensor

area of 14 × 9mm2 [30]. Assuming a relative height difference of 1.7µm between image

center and the sensor border, and assuming further a wide angle lens where the outermost

imaging rays have an incidence angle of 45◦, a distortion of 1.7µm or 0.12pixels would be

the consequence, which is significant only in high accuracy measurements.

In-plane distortion is of lesser concern when using digital pixel sensors. The pixel grid

layout on the semiconductor typically is accurate in the nanometer scale and scaling effects

due to asynchronous clocks or line jitter, as observed in [7], are obsolete due to on-board

A/D conversion. Even if such effects are prominent, they typically manifest as anisotropic

pixel scaling and shear, which can be modeled by reducing (2.41) to

∆ip =

[
a1x̄+ a2ȳ

0

]
. (2.43)

The remaining coefficients are redundant to dx, dy and si in (2.34).

Although Brown’s photogrammetric distortion model has been adopted by the com-

puter vision community as the gold standard also for CCD and complementary metal oxide

semiconductor (CMOS) cameras, there exists some confusion on how to apply the correction
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function (2.38). Denoting the correction mapping x′ = F(x) as

F(x) = x+∆rad(x, κ1, ..., κn)+∆tan(x, p1, ..., pn)+∆ip(x, a1, ..., a12)+∆op(x, a13, ..., a15),

(2.44)

photogrammetrists typically apply the function in metric image space, with different

subsets of distortion parameters, so (2.34) is modified to

F(K−1
i x) = Kmxc. (2.45)

Beyer [7] and Fraser [30] applied three radial parameters and two decentering pa-

rameters. The intrinsic parameters contained focal length, principal point, skew and a

scale factor in x-direction. Tsai [102] modeled a CCD camera using two radial distortion

components and fixed skew, whereas Heikkila [45] applied the opposite mapping

x = KiF(Kmxc), (2.46)

taking two radial and two decentering distortion components into account. Zhang [116]

also applied the reversed distortion mapping, but in the canonical image space:

x = KiKmF(xc). (2.47)

The direction of the correction mapping does not make much of a difference in accuracy.

The main problem lies in its nonlinearity. It is hard to find the inverse of the correction

mapping, so distortion parameters based on different models are practically incompatible.

In this work, the correction mapping from (2.46) is used, mainly for historical reasons

and compatibility to existing software components.

2.4 Kinematic Manipulator Models

Industrial robot arms are modeled as serial kinematic chains. These consist of a number of

joints with one degree of motion (DOM) each, which are connected by rigid links, as sketched

in Figure 2.10. The base CF Cb stands at the beginning of the kinematic chain and is rigidly

attached to the ground, whereas the hand CF Ch is moved by manipulating the joint

excitations. The pose of Ch relative to Cb is given by a Euclidean point transformation
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(a) (b)

Figure 2.10: Serial kinematic chain. An industrial manipulator (example shown in (a)), is
geometrically modeled by a series of joints, connected by rigid links (b) [95].

Hh→b,b i with six DOF. Clearly, Hh→b is constrained by the geometry of the links and

parameterized by the position of the joints:

Hh→b = F(p, s). (2.48)

Vector p = [p1, ..., pm] contains the joint positions, whereas vector s contains the set of

constant parameters used to describe link geometry. During operation only p changes, so

F : Rm → R6 constitutes a nonlinear mapping from m joint positions to the six parameters

of Hh→b.

One central problem is parametrization of the links. For the purpose of calibration,

the model should have the following properties:

• easy construction from robot blueprints,

• singularity-free,

• unambiguous, i.e. minimal parametrization,

• complete, i.e. can describe all possible manipulator structures.

Considering only p as the set of free parameters, these requirements are relatively easy

met, except freedom of singularities. During calibration of a robotic manipulator, however,

iHa→b,c defines a Euclidean transformation from CF a to b, given in reference CF c. For convenience, if
c = a, the reference frame is omitted.
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p as well as s are free parameters. In this section, the three most popular manipulator

models are reviewed and their properties regarding robot calibration discussed.

2.4.1 Denavit Hartenberg Notation

Figure 2.11: DH parameters. A set of four parameters and constraints on the joint CFs
comprise the DH model.

DH parameters [24] are among the oldest and most popular methods for kinematic

modeling. A total of four parameters are used to describe the Euclidean transformation

between consecutive joints. Additional constraints on the CF pose for each joint account

for the remaining two parameters. The DH model for one revolute joint is illustrated in

Figure 2.11. Each joint comes with a unique axis, which is the axis of rotation for a

revolute (rotational), or the axis of translation for a prismatic (translational) joint. As

long as consecutive axes are not parallel, the line of shortest distance between them, also

known as common perpendicular, is uniquely defined. The origin of the i-th joint CF

Ci is constrained to lie at the intersection point of the i-th joint axis and the common

perpendicular between joint axes i and i + 1. The axes directions are constrained such

that xi looks in direction of the common perpendicular and zi is aligned with the joint

axis. Rotation direction of the joint determines whether the z-axis looks in positive or

negative direction along the joint axis.

Hereby, the relative pose of two consecutive joint CF is determined by four parameters:

1. The shortest distance between consecutive joint axes: a.

2. The angle between consecutive joint axes around the common perpendicular: α.
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3. The perpendicular distance d between the previous common perpendicular and the

coordinate origin.

4. The angle of rotation θ around the joint axis (= zi).

The rigid transformation from joint CF i+ 1 to frame i is consequently defined by two

rotations and two translations:

Hi+1→i =




cos θi+1 − sin θi+1 0 0

sin θi+1 cos θi+1 0 0

0 0 1 di+1

0 0 0 1







1 0 0 ai

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1




, (2.49)

or written in different notation

Hi+1→i = Trans(0, 0, di+1)Rot(zi+1, θi+1)Trans(ai, 0, 0)Rot(xi, αi), (2.50)

where Rot(a, b) denotes a rotation of angle b around axis a, and Trans(a, b, c) denotes

a translation by vector (a, b, c)T .

The Euclidean transformation for a serial kinematic chain (i.e. a set of joints, connected

by links, without loops) is finally created by concatenating the joint transformations to

Hn→0 = Hn→n−1...Hi→i−1...H1→0. (2.51)

The result is a highly nonlinear function of the DH parameters. For revolute joints, the

vector of free parameters p consists of the rotations (θ0, ..., θn)T , whereas for prismatic

joints, p = (d0, ..., dn)T . Any combination of prismatic and revolute joints is possible. The

remaining DH parameters specify link geometry and thereby are contained in s.

The DH model is easily constructed from robot blueprint data, but suffers from singular-

ities in case of parallel joints. Consecutive parallel joints leave the common perpendicular

undefined and therefore allow an infinite set of consecutive displacements di and di+1. To

overcome this problem, Hayati [43] proposed a different parametrization for parallel and

close-to-parallel revolute joints:

Hi+1→i = Rot(zi+1, θi+1)Trans(ai, 0, 0)Rot(xi, αi)Rot(yi, βi). (2.52)

The common perpendicular is replaced by a plane, perpendicular to joint axis i+1 and



30 Chapter 2. Theory and Background

going through the origin of CF Ci. The plane intersects both joint axes and hereby defines

a connector line, which is not necessarily perpendicular to joint axis i. To account for this

angular offset, an additional rotation angle β around yi is introduced. The displacement

d is zero by definition and therefore omitted.

2.4.2 CPC Model

(a) (b)

Figure 2.12: The CPC kinematic model [117]. The CPC model is based on a singularity-free
line representation (a) to parameterize consecutive joints (b).

Zhuang and Roth introduced the CPC model [117] to improve numerical stability in

robot calibration. According to the authors, completeness is the ability of a model to fully

describe geometry and motion of a robot. The model has enough parameters to describe

the slight geometric deviations caused by manufacturing inaccuracies. Continuity is given

if continuous changes in the robot joint axes imply continuous changes in the robot joint

parameters.

The central step towards continuity is the singularity free modeling of lines in 3D,

which ultimately represent the joint axes. Zhuang adopted the line representation of

Roberts [92], which is minimal (four parameters) and singularity-free. To make the model

complete, three more parameters are added for each joint. For revolute joints, a total of

seven parameters describe one joint, which is a redundant representation, but allows for

arbitrary placement of the local joint CF. The only restriction is, that the z-axis must be

parallel to the joint axis.
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To discuss the particular joint parameters, one starts with a review of the underlying

line representation (Figure 2.12(a)). The orientation of a line is given by the direction

cosine vector b = (bx, by, bz)T . One parameter is redundant, as bz =
√

1− b2x − b2y, and

can be omitted in a minimal parametrization. The direction cosines specify a rotation

matrix

R = Rot(z× b, arccos(zb)) =




1− b2x
1+bz

−bxby
1+bz

bX
−bxby
1+bz

1− b2y
1+bz

by

−bx −by bz


 , (2.53)

which rotates the reference CF C to a local frame C′, where the z′-axis is parallel to

the line direction. Consequently the xy-plane π′xy is perpendicular to it. The line position

is specified by the coordinates (lx, ly)T of the intersection point of line and local xy-plane.

The four line parameters form the basis of the CPC parametrization. The only con-

straints on the link CFs are, that the z-axes must be parallel to the joint axes and that the

CFs are right-handed. Based on the CF of one joint Ci, the following CF Ci+1 is specified

by its joint axis (four parameters), and, in case of a revolute joint, by a rotation Θ around

the joint axis. The origin of Ci+1 lies at (lx, ly, 0)T , relative to the local CF C′i.

To allow for arbitrary positioning of CFs, e.g. for modeling WCF, base and tool, two

more parameters are added, which are zero for link frames. Rotation βi around the z-axis

allows to set the joint ”zero” position, translation lz allows arbitrary positioning along the

joint axis.

2.4.3 Robinson’s Notation

The kinematic modeling convention by Robinson [93], shown in Figure 2.13, incorporates

six parameters for each link. A homogeneous transformation from joint i to i+1 is defined

by parameter vector pi = (p1, p2, ..., p6)T in the following way:

Hi→(i−1) = Rot(p1, z)Trans(p2, z)Trans(p3, x)Rot(p4, x)Rot(p5, y)Rot(p6, z). (2.54)

Six elementary transformations allow to form a complete and continuous model, but it

is not minimal. During kinematic calibration, minimality is achieved by fixing redundant

parameters and optimizing only a subset.
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Figure 2.13: Robinson’s kinematic model convention. A particularly simple joint
parametrization was introduced by Robinson et al. [93].

2.5 Parameter Estimation

Photogrammetric measurement problems are traditionally ill-posed. Based on observa-

tions in image space and a functional relation, one seeks to estimate the measurement

result. The exact parametrization of this functional is unknown, so one faces the problem

of estimating the model parameters and the measurement result, either simultaneously,

which is also termed bundle adjustment, or parameters only, which is termed calibration.

Camera calibration is a practical example in this context. A set of reference points

with known world coordinates (Figure 2.14(a)) is observed by the camera. Features are

measured in image space, which correspond to the reference points (Figure 2.14(b)). The

functional relation between reference and measurements is given by central perspective pro-

jection, the unknowns are the camera intrinsic and extrinsic parameters (Figure 2.14(b)),

which are identified in a parameter estimation procedure.

More generally, a measurement vector x is given in measurement space Rm, and one

searches a parameter vector p, given in parameter space Rn. The values of p are con-

strained by a functional relation F : Rn → Rm, such that F(p) = x. The set of all

measurement vectors x = F(p) forms a subspace in Rm where all x satisfy the model. In

most practical cases, a measurement vector will be corrupted by noise, so in an estimation

procedure the goal is to find a vector x̂ which satisfies the model exactly and is as close to

x as possible. Closeness is hereby defined as minimal distance with respect to some error
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metric in measurement space.

Parameter estimation is governed by four problems: choosing the mathematical model,

choosing the error metric to optimize, choosing the method for optimization and efficient

implementation.

Providing an optimal solution to the wrong problem is of limited value, so the correct

choice of the model to estimate forms the basis for a successful parameter estimation task.

In most geometric estimation problems, the model is closely related to the real world

(e.g. central perspective model for a real camera) and hence relatively easy to derive.

Important issues in choosing a valid model are the number of parameters, observability of

parameters and the degree of redundancy during estimation. The model parameters should

be sufficiently general to describe all systematic variations, but it has to be specific enough

to prevent over-fitting to noisy measurements. A practical example is shown in Figure 2.15,

where the regression curve to a set of noisy measurements has to be found. The measured

points are approximately collinear, except for the upper part, where a slight curvature is

noticeable. Based on knowledge about the physical nature of these measurements, one has

to decide whether this curvature is due to a systematic measurement error (e.g. saturation

effects or similar), or whether it is part of the model. In the first case, a linear model

would be preferred, coupled with a robust method to handle systematic outliers, while in

the second case, using a more general model, e.g. a higher order polynomial, would be the

better choice.

Observability of the parameters is another issue and is related to the nature of possible

measurements. For example, to estimate a general 3D regression plane through a set of

measured points, the points should not be collinear. The reachable degree of redundancy

should also be taken in to account. A too general model coupled with sparse measurements

easily leads to over-fitting of the data.

Error metrics and estimation methods differ in their physical motivation, numerical

properties and computational complexity during estimation. In the following sections

popular error metrics for geometric parameter estimation are reviewed, using conic fitting

as a practical example. Following the argumentation of [114] and [42], conic fitting is

sufficiently complex to demonstrate the properties of estimation methods, but still intuitive

enough to visualize.
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… 

Pixel Error  = [0.08993, 0.09315] 
Focal Length  = [1889.85, 1889.85]  
 +/- [0.2105, 0.2105] 
Principal Point  = [841.028, 623.291]  
 +/- [0.1285, 0.106] 
Radial Coefficients  = [-0.1367, 0.1647]  
 +/- [0.189, 0.663]e-3 
Tangential Coefficients  = [-0.5516, 0.1707] e-3 
 +/- [1.368, 1.572]e-5 

(a) 

(b) 

(c) 

Figure 2.14: Parameter estimation example. Monocular camera calibration is performed
by observing a reference target from a number of views (a). Measured image features (b)
are related to the reference by a function F . A number of model parameters (c) specify
F . These are determined in an estimation procedure.
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Figure 2.15: Line fit to noisy data. A set of measured points lies approximately on a line.
In the upper right region, a systematic deviation can be noticed.

2.5.1 Error Metrics

Choice of the error metric ultimately determines the function to minimize. Considering

a measurement vector x and an estimated vector x̂ = F(p), one seeks to minimize the

distance between them. The distance metric can be defined in several ways. One intuitive

option would be to choose Euclidean distance. Another option would be the Mahalanobis

distance, leading to a maximum likelihood estimation (MLE) of p. The cross-product of

vectors leads to a particularly simple, algebraic error metric. In homogeneous notation,

this metric can also be used to express point-point distances by taking the cross product

of homogeneous vectors.

In the context of conic fitting, measurements are given by a set of points x = {xi} =

{(x1i, x2i, x3i)T }. The underlying model is a second order curve, as given in (2.3):

xTCx = 0, C =




a b/2 d/2

b/2 c e/2

d/2 e/2 f


 , (2.55)

with parameter vector p = (a, b, c, d, e, f)T . p is defined up to scale and has five DOF.

Given five point measurements, it is possible to find an exact solution. For more than

five points, measurement noise will prevent finding an exact solution and one will seek an

approximation.
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2.5.1.1 Algebraic Error

Directly substituting a point measurement into (2.55) leads to a particularly simple error

metric which is linear in p. This algebraic error measure however, has no geometric

justification, and, although easy to minimize, causes a number of problems, like bad

numerical conditioning and dependency on the underlying CF.

Stacking the measurements into a measurement matrix A leads to a homogeneous

linear equation system of the form Ax = 0:




x2
11 x11x21 x2

21 x11x31 x21x31 x2
31

...

x2
1n x1nx2n x2

2n x1nx3n x2nx3n x2
3n




n×6

p = 0. (2.56)

Matrix A must be of rank five to give a non-trivial and non-degenerate solution. To

obtain a non-trivial solution, the solution space is constrained, e.g. by providing a minimal

parametrization (setting f = 1), or by constraining the norm of p. The resulting algebraic

error metric is F(p) = |Ap| under the constraint |p| = 1.

One central problem of the algebraic error is its dependency on the underlying CF. To

demonstrate this, the problem is transferred to a different CF by an arbitrary similarity

transformation H:

F̂(p̂) = |x̂T Ĉx̂|, under |p̂| = 1, (2.57)

where x̂ = Hx and Ĉ = H−TCH−1. The values of F and F̂ are identical except for

scale, as one easily computes:

F̂(p̂) = |x̂T Ĉx̂| = |xTHTH−TCH−1Hx| = |xTCx| = F(p). (2.58)

While the error vector remains identical up to scale under arbitrary homographies H,

the norms of p and p̂ are not simply related, even for similarity transformations, giving rise

to different solutions. As a consequence, selection of the underlying CF is not arbitrary and

some sort of normalization is required to bring the optimization problem into an ‘optimal´

frame.

The algebraic distance between point and a normalized ellipse (center at origin, axes

aligned with CF) can be rewritten to:

F(p) = ax2
1 + cx2

2 + fx2
3 = −f(d2

x/c
2
x − 1), (2.59)
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� A point may contribute di�erently to the parameter estimation depending on its position
on the conic. If a priori all points are corrupted by the same amount of noise, it is
desirable for them to contribute the same way. (The problem with data points corrupted
by di�erent noise will be addressed in section 8.)

O

Q

x

y

i i

ic

di
( )x   , y 

Fig. 1: Normalized conic

To understand the second point, consider a conic in the normalized system (see Fig. 1):

Q(x; y) = Ax2 + Cy2 + F = 0 :

The algebraic distance of a point (xi; yi) to the conic Q is given by [7]:

Q(xi; yi) = Ax2i + Cy2i + F = �F (d2i =c2i � 1) ;

where di is the distance from the point (xi; yi) to the center O of the conic, and ci is the
distance from the conic to its center along the ray from the center to the point (xi; yi). It is
thus clear that a point at the high curvature sections contributes less to the conic �tting than
a point having the same amount of noise but at the low curvature sections. This is because a
point at the high curvature sections has a large ci and its jQ(xi; yi)j2 is small, while a point at
the low curvature sections has a small ci and its jQ(xi; yi)j2 is higher with respect to the same
amount of noise in the data points. Concretely, methods based on algebraic distances tend
to �t better a conic to the points at low curvature sections than to those at high curvature
sections. This problem is usually termed as high curvature bias.

5.2 Orthogonal distance �tting

To overcome the problems with the algebraic distances, it is natural to replace them by the
orthogonal distances which are invariant to transformations in Euclidean space and which do
not exhibit the high curvature bias.

The orthogonal distance di between a point xi = (xi; yi) and a conic Q(x; y) is the smallest
Euclidean distance among all distances between xi and points in the conic. The tangent at
the corresponding point in the conic (denoted by xt = (xti; yti)) is orthogonal to the line
joining xi and xt (see Fig. 2). Given n points xi (i = 1; : : : ; n), the orthogonal distance �tting

9

Figure 2.16: Algebraic distance of point and conic.

where dx is the distance from point x to the ellipse center and cx is the distance from

intersection point xc to the ellipse center, as shown in Figure 2.16. Clearly, for the same

orthogonal distance from the ellipse, the ratio dx/cx will be larger in regions of small

curvature, so measurements there will be weighted stronger than high-curvature points, a

problem which is also addressed as high curvature bias.

To overcome the problem of high curvature bias, the cost function can be weighted

with its gradient, as proposed by several authors [19] [68] [35] [115]:

F ′(p) = F(p)/∇F(p), (2.60)

which leads to a nonlinear cost function and a good approximation of the orthogonal

distance metric.

As stated before, algebraic error is not invariant to similarity transformations of the

underlying CF, so the question arises, which frame is the ‘best´ for estimation. Taking

a closer look at (2.56), one notices that the coefficients of A are multilinear in the mea-

sured point coordinates. Since pixel-coordinates are roughly in the range of 500, and the

homogeneous coordinate is usually one, the columns of A will differ by several orders of

magnitude. Hartley investigated in [41] the effects of isotropic and anisotropic normal-

ization. A normalizing transformation, which translates the CF origin to the centroid of

all measured points, and scaling, which sets the average distance from the origin to
√

2

brought significantly better estimation results. Mühlich and Mester [80] proposed normal-

ization based on statistical analysis of the error model, where inherently noise-free parts of

A, i.e. parts depending on the homogeneous coordinate only, should receive much higher

weight than noise-corrupted parts. Slightly better results than anisotropic scaling have
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been reported.

2.5.1.2 Euclidean Error

(xi; yi)

di

(xti; yti)

(x0; y0)

Fig. 2: Orthogonal distance of a point (xi; yi) to a conic. Point (xti; yti) is the point on the
conic which is closest to point (xi; yi)

is to estimate the conic Q by minimizing the following function

F(p) =
nX

i=1

d2i : (8)

However, as the expression of di is very complicated (see below), an iterative optimization
procedure must be carried out. Many techniques are readily available, including Gauss-
Newton algorithm, Steepest Gradient Descent, Levenberg-Marquardt procedure, and simplex
method. A software ODRPACK (written in Fortran) for weighted orthogonal distance regression
is public domain and is available from NETLIB (netlib@ornl.gov). Initial guess of the conic
parameters must be supplied, which can be obtained using the techniques described in the
last section.

Let us now proceed to compute the orthogonal distance di. The subscript i will be omitted
for clarity. Refer again to Fig. 2. The conic is assumed to be described by

Q(x; y) = A(x� xo)2 + 2B(x� xo)(y � yo) + C(y � yo)2 � 1 = 0 :

Point xt = (xt; yt) must satisfy the following two equations:

A(xt � xo)2 + 2B(xt � xo)(yt � yo) +C(yt � yo)2 � 1 = 0 (9)

(y � yt) @
@x
Q(xt; yt) = (x� xt) @

@y
Q(xt; yt) (10)

Equation (9) merely says the point xt is on the conic, while (10) says that the tangent at xt
is orthogonal to the vector x� xt.

10

Figure 2.17: Orthogonal distance of point and conic.

From geometric intuition, a good error metric is Euclidean distance. In the conic

fitting example, this would be the orthogonal distance between conic and measured point.

Least-squares fitting of a conic requires minimization of the error function:

F(p) =
∑

i

d⊥(xi,C)2 =
∑

i

d(xi,xti)2. (2.61)

Orthogonal distance d(xi,C) is equivalent to the Euclidean distance between measured

point xi and the closest point on the conic xti (see Figure 2.17). The line through xi and

xti must be orthogonal to the tangent of C in xti.

Computation of orthogonal distance is a nonlinear problem and rather complex. A

detailed derivation of d⊥(xi,C) for elliptic conics is given in [114]. The algorithm includes

finding the roots of a fourth order polynomial to find xti and taking the solution with

minimum distance to xi.

Orthogonal distance does not show the problems of algebraic error. It is independent

of the underlying CF and does not show curvature bias. One possibility to avoid explicit

computation of d(xi,C) is to over-parameterize the problem and add the closest tangent

points xti to the set of parameters. These points are constrained to lie on the conic to

estimate and the resulting error metric is:
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F(p) =
∑

i

d(xi,xti)2. (2.62)

Since each point xti lies on the conic, it adds one free parameter - the position on

the conic - to the set of unknowns. The number of parameters to estimate is thereby

drastically increased, and requires some care during implementation to solve the problem

efficiently.

2.5.1.3 Statistical Error

Parameter estimation is inherently based on noisy measurements, so it is favorable to

incorporate knowledge on uncertainty. A standard assumption in least squares estimation

is that measurement error follows a Gaussian distribution with zero mean and covariance

Σ. The probability density function (PDF) is given by

P (x) = (2π)N−2det
(
Σ−1

)1/2 exp(−(x− x̄)TΣ−1(x− X̄)/2), (2.63)

where x̄ is the mean vector. In the simpler case of an isotropic Gaussian distribution,

covariance Σ is diagonal with identical entries Σ = σ2I and the PDF is given by

P (x) = (
√

2πσ)−N exp(−
N∑

i=1

(xi − x̄i)2/(2σ2)), (2.64)

where, xi are the elements of vector x. An important observation is that P (x) is a

function of (
∑N

i=1(xi− x̄i)2)1/2, which is the Euclidean distance between x and x̄. A joint

Gaussian distribution is equivalently a function of (x − x̄)TΣ−1(x − X̄), which leads to

the definition of the Mahalanobis distance metric between x and y [42]:

|x− y|Σ =
√

(x− y)TΣ−1(x− y). (2.65)

The Gaussian PDF is given by:

P (x) = (2π)N−2det
(
Σ−1

)1/2 exp(|x− x̄|2Σ(−1/2)). (2.66)

Thus, for a joint Gaussian distribution P (x) is a function of the Mahalanobis distance

between x and x̄.

We now return to the Euclidean error metric (2.61). Assuming that point measure-

ments x = {xi} are independently and uniformly distributed around the true ellipse points
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x̄ = {xti}, the probability of x, given the true points x̄, is

P (x|x̄) =
∏

(2πσ2)−1 exp (−d(xi, xit)2/(2σ2)). (2.67)

Maximizing P (x|x̄) is equivalent to maximizing logP (x|x̄) and hence is equivalent to

minimizing

∑

i

d(xi,xti)2. (2.68)

Minimal Euclidean distance is equivalent to the MLE of the true values, of course only

under the assumption of Gaussian measurement error.

2.5.1.4 Robust Cost Functions

In the last section, Euclidean distance as a cost function was statistically motivated for

Gaussian measurement noise with no gross outliers. This error model is reasonable only

if explicit blunder detection has been carried out to remove outliers, e.g. by a random

sample consensus (RANSAC) procedure. If the cost function itself should tolerate a certain

amount of outliers, the Gaussian error model should be replaced by a more robust one.

Examples are given in Figure 2.18. To handle outliers implicitly, the tails of robust PDFs

are considerably wider than the in Gaussian case, i.e. largely wrong measurements are

expected with a comparatively large probability.

To derive the cost function from a probability distribution p(x), in case of independent

measurements, one accumulates the probability of a set of measurements as p(x1, ..., xn) =
∏n
i=1 p(xi). Taking the negative logarithm leads to a cost function which is suitable for

further minimization:

e(x1, ..., xn) = − log(p(x1, ..., xn)) = −
n∑

i=1

log(p(xi)). (2.69)

Several robust cost functions have been proposed in literature, some of them are shown

in Figure 2.18, according to [42]. In contrast to Gaussian error distribution, which results

in a quadratic cost function, robust PDFs attenuate the importance of gross outliers. As

such, the cost function is much flatter for large values than the quadratic function.

A typical example is the Blake-Zisserman error distribution, where equally distributed

outliers are assumed. Consequently, p(x) is a Gaussian distribution with an added con-

stant:
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Figure 2.18: Robust cost functions (first column), corresponding PDFs (second column)
and attenuation factors (last column) [42].
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p(x) = exp(−x2) + ε, (2.70)

with

e(x) = − log(exp(−x2) + ε). (2.71)

For large values of x, the error is approximately constant, whereas in close vicinity

to 0, it has approximately quadratic behavior. It is important to note that (2.70) is not

strictly a PDF, because its integral equals ∞.

Another statistically motivated PDF would be a mixture of two Gaussians, one with

small variance to model measurement error, and the second with larger variance to cope

with gross outliers.

Cost functions like the L1 norm or total variation

e(x) = |x|, (2.72)

or the Huber function

e(x) =

{
x2 for |x| < b

2b|x| − b2 for |x| ≥ b

}
(2.73)

are heuristic in nature and do not have a statistical or physical motivation, but have

the property of being convex, which allows to find a global optimum of the problem.

2.5.2 Minimization

Apart from its statistical and geometrical motivation, least squares optimization has ad-

ditional advantages, which make it applicable especially to photogrammetric problems.

Among them are its flexibility and ease of use. The role of coefficients as model parame-

ters, constants or measurements an easily be interchanged, an important property when

estimation procedures need to be tuned to specific problems. Constraints on measure-

ments can incorporated in the estimation process, and a large software basis exists for

solving least squares problems. In this section, least squares estimation methods for linear

and nonlinear problems are reviewed.

2.5.2.1 Linear Least Squares

Given is a linear equation system
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arg min
p
‖F(p)‖22, F(p) = Ap− b, (2.74)

where matrix Am×n and vector b are specified by the measurement vector x, with

m ≥ n. In case of rank-deficient systems, where rankA < m, the function to minimize

becomes 0 for an infinite number of possible parameter values, so one is interested in

a family of minima, where the number of free parameters c = n − rankA. In case of

rankA = n there exists exactly one parameter vector for which F(P) = 0. In most

practical cases, rankA = n if m > n, as measurement noise prohibits finding exact

solutions of overdetermined problems. Here, a least squares solution can be found using

singular value decomposition or by means of the normal equations.

Singular value decomposition allows to reformulate the original problem, according to

‖Ap− b‖ = ‖UDVTp− b‖ = ‖DVTP−UTb‖. (2.75)

The last equality is due to the orthogonal columns of U. According to [42] one writes

arg min
y

∥∥∥∥∥∥∥∥∥∥∥∥∥∥




d1

. . .

dn

0
...




y − b′

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⇔ arg min
y

∥∥∥∥∥∥∥∥




d1

. . .

dn


y − b′n

∥∥∥∥∥∥∥∥
. (2.76)

The vector of parameters is now y = VTp, b′ = UTb, and b′n consists of the first n

elements of b′. Setting the elements of y to yi = b′i/di gives the minimal solution to (2.76)

in a least squares sense. The minimal solution for p is calculated using p = Vy.

A different approach to solving linear least squares problems is based on the normal

equations

ATAP = ATb. (2.77)

The argumentation is as follows: if p is the correct solution, Ap must be the vector

in the column space of A, which is closest to b. The residual vector Ap − b must be

orthogonal to the column space of A, and consequently:
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AT (Ap− b) = 0, (2.78)

which is equivalent to 2.77. A solution for p is found by inverting ATA, leading to

P = (ATA)−1ATb, (2.79)

where A+ = (ATA)−1AT is the pseudo-inverse of A.

The presented method, also addressed as ordinary least squares estimator, gives an

optimal estimate of p, where ‘optimal´ means minimum covariance of p if the coefficients

of residual vector e = Ap − b are uncorrelated and have constant variance. If this is

not the case, it is favorable to provide a means for weighting residuals according to their

covariance, leading to a weighted linear least squares problem of the form

ATCAp = ATCb. (2.80)

Matrix C is symmetric and positive definite and applies a weight to the residuals in

e. Usually the weighting is proportional to the error covariance, which is probably known

a priori. A new inner product is defined by C, as x ∗ y = xTCy, and a new vector norm

‖x‖C =
√

xTCx. Again one argues that the residual vector must be orthogonal to the

column space of A with respect to the new inner product, leading to

ATC(AP− b) = 0, (2.81)

which is equivalent to (2.80).

2.5.2.2 Nonlinear Least Squares

The most popular least-squares iteration schemes, namely the Newton and Gauss-Newton

method, as well as Levenberg-Marquardt (LM) iteration, will be reviewed in this section.

In many estimation problems, the error function is explicit in x:

arg min
p
‖e‖, e = F(p)− x. (2.82)

Newton iteration starts from an initial parameter estimate p0, close to the true value

p̄, and iteratively refines the solution, under the assumption that F(p) is locally linear:

F(p +4) = F(p) + J4. (2.83)
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The Jacobian matrix J represents the approximated linear mapping from Rn to Rm

as the local gradient J = ∂F/∂p. One seeks to estimate an improved parameter vector

p1 = p0 +4 by minimizing ‖F(p1)− x‖, which is a linear problem:

F(p1)− x = F(p0) + J4− x = e0 + J4. (2.84)

Solving

arg min
4i+1

(ei + Ji4i+1) (2.85)

using normal equations gives an estimate for 4i+1 = −J+
i ei. As such, Pi+1 = Pi +

4i+1, and one iteration step is finished. Convergence depends on the problem structure,

its convexity, and the choice of the initial parameter estimate.

Applying different weights to measurements is achieved by introducing a covariance

matrix C and solving the linear problem according to (2.80).

More general, Newton iteration seeks to minimize an arbitrary function G(p), which is

scalar valued. An initial guess p0 of the solution is provided which is close to the actual

minimum. The function is approximated locally around p0 by a Taylor series, which is

terminated after the third term

G(p0 +4) = G(p0) + G(p0)′4+4TG(p0)′′4/2 + .... (2.86)

The first and second derivatives of G with respect to p are given by gradient G′ and

Hessian G′′ respectively. A minimum with respect to 4 is found by setting the derivative

to zero:

∂G(p0 +4)
∂4 = G(p0)′ + G(p0)′′4 = 0. (2.87)

Newton iteration consists of calculating G′ and G′′ in each step, calculation of 4 and

updating p as pi+1 = pi +4i.

In the special case of least-squares optimization, G(p) has a special form:

G(p) = e(p)T e(p), (2.88)

with e(p) = F(p) − x. The first derivative is given by G′ = JT e, where J is the

Jacobian of F . The second derivative would be G′′ = JTJ + e′′T e. If the Hessian of e is

hard to compute, one may assume that F is linear, which leads to G′′ = JTJ. Substitution

into (2.87) gives
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∂G(p0 +4)
∂4 = JT e+ JTJ4 = 0, (2.89)

which is equivalent to the normal equations (2.77). This linear approximation is termed

Gauss-Newton iteration. It avoids explicit computation of the Hessian and gives reasonable

results, especially close to the actual minimum.

Gradient descent is the third iteration procedure. In each iteration it follows the

direction of steepest negative gradient to reach the minimum:

4 = −λG′ = −λJT e, (2.90)

where λ controls the step size. Gradient descent generally has slower convergence than

Gauss-Newton iteration, due to zig-zagging around the desired optimum, but it may be

preferred if far away from the optimum.

LM iteration is a hybrid method which seeks to combine the advantages of gradient

descent and Gauss-Newton iteration. The normal equations from (2.89) are replaced by

JT e+ (JTJ + λI)4 = 0, (2.91)

where scalar λ is a weighting factor, and is updated in each step. Starting from a

typical value of 10−3, λ is decreased (e.g. λi+1 = λi/10), if the error has decreased. If the

error has increased, λ is repeatedly increased (e.g. λi+1 = 10λi), until the error decreases

again. As a consequence, small λ favors Gauss-Newton like iteration, and large λ favors

gradient descent-like iteration.

2.6 Estimation Evaluation

In most parameter estimation problems it is not sufficient to retrieve a parameter estimate.

Some information about precision and confidence of the result is also required, which leads

to the problem of evaluation.

From intuition it is clear that the quality of an estimated parameter vector p̂, defined in

parameter space Rm, depends on the set of noisy measurements x, defined in measurement

space Rn. The more measurements are available, and the smaller the measurement error,

the better the result will be. Further, configuration of the measurement vector is of

interest, i.e. if all model parameters are sufficiently constrained by measurements.

If only the estimated parameter vector p̂, measurement vector x, and the model func-
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tion x = F(p) : Rm → Rn are available, one can evaluate the difference between noisy

measurements and the estimated model x−F(p̂), also termed residual error.

The residual error does not allow to assess model accuracy, but it measures precision,

i.e. how well the model fits the data. This type of measure should be used only if

no external reference information is available, because a small residual error does not

necessarily imply a good model estimate. For example, if a 2D line is estimated from a

set of nearly identical points, or from exactly two points, the residual error might be low,

but the line estimate is not very good. In the first case, the model will not be sufficiently

constrained and has essentially one undetermined parameter. In the second case, the

residual will always be exactly zero and model accuracy will depend on the accuracy of

the two measured points.

If information on the measurement accuracy of x is available, the covariance of p̂ can

be calculated by backpropagation. Under the assumption that x = [x1, ..., xn]T is chosen

according to a Gaussian distribution with mean at the true value x̄ and covariance Σ, the

covariance Σp of p̂ can be calculated. This allows for further diagnostics. Considering the

problem from above, where a line is estimated from nearly identical points, the resulting

variance of one line parameter would be high, indicating that the parameter is not well

constrained. Parameter covariance further contains information about parameter correla-

tions. Especially in estimation problems, where the number of necessary model parameters

may not be determined in advance, strong correlations are a hint for over-parametrization.

A more concise evaluation of accuracy is possible, if external reference data is available,

which is the case in most calibration procedures, and in synthetic experiments. The

difference between true values x̄ and model leads to the estimation error x̄−F(p̂), which

allows to assess estimation accuracy in absolute measures.

In the remainder of this section the above presented concepts are stated more formally.

An estimation problem consists of estimating an m-dimensional parameter vector pm×1

from n measurements xm×1. The measurements follow independent Gaussian distributions

with mean at the true values x̄ and identical variance σ2. The model is given by a

functional relation x = F(p).

The root mean square (RMS) residual error for a maximum likelihood (ML) estimator is

then given by

εres = E[‖x̂− x‖2/n]1/2 = σ(1−m/n)1/2, (2.92)

where x̂ = F(p̂).
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The RMS estimation error for a ML estimator is

εest = E[‖x̂− x̄‖2/n]1/2 = σ(m/n)1/2. (2.93)

A geometric proof is sketched in [42]. If the measurement error is not independent,

‖A‖ may be replaced by the Mahalanobis distance ‖A‖Σ.

With increasing number of measurements, the residual error also increases and asymp-

totically reaches the measurement σ. At the same time, the parameter estimate will

become better, and the estimation error decreases. The expected average error of the MLE

forms the gold standard for estimation algorithms, because it is the best that may be

achieved without further prior information.

While the above error measures capture the dependency of a parameter estimate on

the number of measurements, the covariance matrix captures dependencies of the mea-

surements. In the following, rules for forward and backward propagation of covariances

under affine and nonlinear mappings are given. These rules are taken without proof from

[42].

Definition 1 (Affine forward propagation.) Let v be a random vector in RM with

mean v̄ and covariance matrix Σ, and suppose that F : RM → RN is an affine mapping

defined by F(v) = F(v̄) + A(v − v̄). Then F(v) is a random variable with mean F(v̄)

and covariance matrix AΣAT .

Definition 2 (Non-linear forward propagation.) Let v be a random vector in RM

with mean v̄ and covariance matrix Σ, and let F : RM → RN be differentiable in a

neighborhood of v̄. Then up to a first order approximation, F(v) is a random variable

with mean F(v̄) and covariance JΣJT , where J is the Jacobian matrix of F , evaluated at

v̄.

Definition 3 (Affine backward propagation.) Let F : RM → RN be an affine map-

ping of the form F(P) = F(P̄) + J(P − P̄), where J has rank M . Let X be a random

variable in RN with mean X̄ = F(P̄) and covariance matrix Σ. Let F−1 ◦ η : RN → RM

be a mapping that maps a measurement X to a set of parameters corresponding to the MLE

X̂. Then P̂ = F−1 ◦ η(X) is a random variable with mean P̄ and covariance matrix

ΣP = (JTΣ−1
X J)−1. (2.94)
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Definition 4 (Non-linear backward propagation.) Let F : RM → RN be a differen-

tiable mapping and let J be its Jacobian matrix evaluated at a point P̄. Suppose that J

has rank M . Then F is one-to-one in a neighborhood of P̄. Let X be a random variable

in RN with mean X̄ = f(P̄) and covariance matrix ΣX. Let F−1 ◦ η : RN → RM be the

mapping that maps a measurement X to a set of parameters corresponding to the MLE X̂.

Then to first order, P̂ = F−1 ◦ η(X) is a random variable with mean P̄ and covariance

matrix (JTΣ−1
X J)−1.

In the non-linear case these rules allow to propagate covariance matrices forward and

backward, under the assumption that J is invertible and that the MLE has been computed.

Another method of evaluating a parameter estimate is Monte Carlo simulation, where

several measurements are drawn from an assumed noise distribution, or are effectively

measured. The parameter covariance is then calculated statistically from several trials.

This method is computationally expensive and only feasible for small estimation problems,

but it is independent of the underlying measurement noise distribution.

2.7 Conclusion

In this chapter, the theoretical foundation for this work has been laid out. The principles

of projective geometry are used to develop the sensor system proposed in Chapter 3. The

multi-view geometrical layout and structure estimation method as proposed in Chapter 5

also utilize projective geometry and especially the linear and nonlinear central perspective

projection model. The theory of rigid motions plays an important role in kinematic robot

modeling and calibration (Chapter 7).

To summarize, the different fields of application used in this work, ranging from com-

puter vision over photogrammetry to robotics and calibration, are based on a common

set of theoretical foundations. Differences in notation make it often difficult to use this

common basis in a single framework.
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3.1 Introduction

Industrial quality inspection and process control require the ability to conduct a large

variety of measurement tasks on machined parts. A typical example is the inspection

of a freshly produced motor block for compliance with given quality constraints. The

motor block would be moved to an inspection station, where numerous object parameters

like borehole diameters, planarity of flange surfaces and relative position of parts are

measured. Furthermore, recognition tasks like reading data object codes, barcodes or

engraved characters would be performed. The result would be a decision whether the

object fulfills predefined quality requirements or not.

Currently, such inspection problems are solved by combining a number of specialized

sensor systems in one measurement station. Each sensor solves one measurement problem

at a single location and the results are combined by a central controller to form a decision

on object quality.

Implementation of such a measurement cell is difficult. Automation companies em-

ploy experts in mechanical engineering, electrical engineering, robotics and measurement

51
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instrumentation to build automated systems dedicated to a given task. As a result there

is an economic need to simplify construction and task planning. It would be desirable to

have a single measurement system, capable of performing a number of various measure-

ment tasks at different positions within a given workspace, and relate the measurements

to each other in one global CF. Type and position of the measurements should be easy to

program, and the system should be applicable to many inspection tasks without changing

its hardware configuration.

In this chapter, the concept of an automated, highly flexible sensor is introduced. It

is movable within a medium scale workspace, capable of performing a large variety of

measurements and combining them in a common CF. The system is composed of a vision

sensor, which is rigid and lightweight enough to be mounted on a robot manipulator. The

vision sensor can perform measurements ranging from 3D inspection to ‘traditional’ image

processing tasks. The included projection system allows to optimally illuminate the object

for a given tasks, and also acts as the signal source for coded light 3D reconstruction.

In the following section, the position of the proposed system within the range of ex-

isting measurement principles is discussed. The concept of the proposed sensor system

is introduced next, followed by a short overview of the hardware architecture. Thereby,

scalability of the system is demonstrated through the construction of two prototypes with

different fields of view, size, and price.

3.2 Competing Technologies

The market of industrial 3D surface metrology is traditionally shared among coordinate

measuring machines (CMMs) and systems based on signaling and recording of light waves. In

a market survey from Quality Digest Magazine in 2004 [25], 16% of dimensional metrology

equipment in use by respondents was 3D inspection equipment. A qualitative comparison

of the capabilities of industrial metrology tools is given in Figure 3.1. CMMs typically

cover the accuracy range from 1µm to 15µm over a range up to 1000mm. Laser trackers

and light detection and ranging (LIDAR) devices offer a measurement range up to 100m.

Measurement accuracy is as low as 10µm for laser trackers and in the millimeter range for

LIDAR devices. Sensors based on the triangulation principle, including photogrammetric

systems, laser triangulation and coded light systems, typically offer relative measurement

accuracies of up to 1 : 3000 in a range of several millimeters up to few meters.

In the following sections, an overview of the working principles of these measurement

principles and their realizations is given.
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Figure 3.1: Qualitative overview of the accuracy range of industrial metrology tools in the
above-millimeter range.

3.2.1 Tactile Coordinate Measuring Machines

Tactile coordinate measurement machines are arguably the most widespread means for ac-

quiring dimensional information of 3D objects in industrial use. The measurement principle

is simple: a dimensional measuring probe is mounted on a highly accurate electromechan-

ical actuator and moved to measurement positions on the target object. The actuator

records its current position, and the probe records its position relative to the object. The

combination of these two measurements gives the 3D position of a measured point.

Figure 3.2: Schematic and Images of a CMM Measuring Probe. Figure by courtesy of [112].

While the type of measurement probe is not predetermined by the measurement prin-

ciple, most CMMs use tactile sensors. The probe is moved until it touches the object
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surface. To increase accuracy and enable dynamic measurements like surface profiling

and contour following, displacement sensors are included to record bending as the probe

needle touches the object (see Figure 3.2). Other possible types of probe would be laser

sensors for non-tactile measurements or fringe-projection devices for area measurements.

The electromechanical actuator is usually built in a bridge, cantilever, column or gantry

configuration.

Comparing the specifications of state-of-the-art CMMs, measurement accuracy lies be-

tween 1µm and 20µm within a measurement range of up to 1m. Accuracy evaluation of

tactile CMMs is evaluated subject to ISO10360-4 [51], or in older specifications VDI2617

[104].

3.2.2 Optical 3D Imaging Systems

Figure 3.3: Summary of optical 3D imaging techniques. Diagram by courtesy of [6].

Optical 3D measurement systems are fundamentally based on signaling and recording

of light waves (wavelengths from 300nm to 3000nm). Geometric information is derived

either by measuring time (travel time or wave coherence), or by measuring geometric

displacement (triangulation of rays). In [6] a survey of optical 3D measurement methods

is given, as depicted in Figure 3.3.

The travel time measurement principle is commonly realized in form of LIDAR systems.

A pulsed or modulated light beam, typically generated by a laser source, is pointed to-

wards a target. The receiver, being at the same location as the source, records the reflected

signal and measures travel time of light pulses, or the phase shift of modulated signals.
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With known speed of light, the relative displacement between sender/receiver unit and

target point can be calculated. The target point may be either an artificial retroreflective

target or a natural surface point. To reference multiple point measurements in one CF,

the sender/receiver is mounted on a pan/tilt unit which precisely records rotational sensor

motion. In principle such a sensor gives point measurements in a common CF. To perform

profile or area measurements, the beam may be automatically swept over the target using

mirrors or mechanical motion devices. A measurement range of up to 100m and mea-

surement accuracy in the order of millimeters allows applications in geodesy and in the

industrial field for displacement measurements of large parts, and safety applications like

laser curtains. Recently, area based time of flight (TOF) sensors became available, using

infrared light emitting diode (IR-LED) arrays as light source and dedicated pixelated CMOS

sensors as receivers (Figure 3.4). This way, 2.5D depth maps with approximate resolutions

of 200× 200pixels are generated, covering a depth range of approximately 20m. Accuracy

is comparatively poor and lies in the range of a few millimeters up to several centimeters.

Figure 3.4: Realization of a PMD sensor, including emitter (IR-LED) and receiver in one
package [85].

Laser trackers utilize the interferometric measurement principle to determine the rela-

tive displacement between sensor and an artificial retroreflective marker to a high level of

accuracy. The tracker consists of an interferometric distance sensor (Schematic shown in

Figure 3.5) mounted on a high resolution motorized pan/tilt unit. It is able to automat-

ically follow a marker during movement or consecutively scan a high number of markers,

providing 3D measurement accuracies as low as 10µm.

Laser triangulation sensors (Figure 3.6) offer a limited measuring range as compared

to TOF sensors. Based on the principle of geometrical triangulation of rays emitted by the

sender, and rays back projected to the receiver, both sender and receiver need to be placed

at different positions in space. The emitter is realized as a point or line laser, whereas

the receiver is an area sensor like a CCD or CMOS chip. Depending on the type of emitter,
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Figure 3.5: Laser interferometry. Distance to an object is determined to high accuracy by
comparing the phase of an emitted light beam to the reflection [70].

the sensor gives point or profile measurements. Its range and theoretical accuracy are

determined primarily by the baseline (i.e. offset between sender and receiver).

(a) Triangulation based
point scanner.

(b) Triangulation based line scanner.

Figure 3.6: Industrial triangulation based scanners [61].

Area triangulation sensors are also based on the triangulation principle. There exist

passive realizations, where at least two area based receivers observe a common volume

from different positions, or active ones, where an area based emitter signals the object

and at least one receiver observes part of the signaled volume. Accuracy and observed

volume are functions of the relative emitter and receiver positions. This measurement

principle is applied in the proposed measurement system. A detailed introduction is given

in Chapter 6.

Traditionally, projection systems have limited applicability in industrial metrology.

The reason for this is mainly the technological limitation imposed by projectors, which are

usually large, heavy and vibration sensitive devices. As a consequence, projector-camera
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metrology systems are applied to medium-scale measurements with a measurement range

between 100mm and 1m in a well conditioned environment. Sensors typically consist of

one projector and one or two cameras. In the last few years the applicability of projector-

camera systems has improved due to the emerging market of light emitting diode (LED)

projectors based on digital light processing (DLP) or liquid crystal on silicon (LCoS) tech-

nology. These projectors are smaller, lighter and can sustain considerable forces, which

makes them suitable for mounting on a robot manipulator. The underlying measurement

principle, however, is still mostly limited to medium-scale 3D measurement using coded

light projection, following a conservative and proven measurement scheme based on signal

processing theory.

Projector-camera systems for medium scale measurement have become popular in qual-

ity inspection. The KOLIBRI System by Fraunhofer-Institut für Angewandte Optik und

Feinmechanik (Fraunhofer IOF) (Figure 3.7(a)) is a dedicated 3D geometry sensor, which

may also be mounted on a robot manipulator and, according to the specification sheet,

offers relative 3D measurement accuracies between 1 : 10000 and 1 : 20000, depending on

measurement range and surface properties. Measurement time is between 30 seconds and

several minutes. The robot is primarily used as a carrier device and not integrated in the

measurement chain.

(a) (b) (c)

Figure 3.7: Various structured light systems. The Kolibri system (a), a miniature version
(b), the ATOS system (c).

A miniaturized version of the sensor is the Kolibri CORDLESS (Figure 3.7(b)), a

miniature structured light 3D sensor equipped with two cameras, a digital micromirror

device (DMD) projector and a WLAN adapter. The system acts as a pure 3D sensor and

offers relative measurement accuracies of 1 : 5000 over a measurement range of 220 ×
170mm2, at an acquisition time of 150ms. Total measurement time is not specified. A
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comparable system is also offered by Vialux.

The ATOS System by GOM (Figure 3.7(c)) is also a pure 3D Sensor based on the

structured light principle. It offers a variable measurement range from 150 × 150mm2 to

2000 × 2000mm2, 4 million measurement points are generated in a measurement time of

2s.

3.3 System Concept

Goal of the proposed measurement system is to combine the high accuracy and medium

measurement range of a triangulation sensor with the lower accuracy and high working

range of an industrial manipulator. In principle, a comparably cheap and more flexible

CMM is constructed. Apart from pure 3D measurements, the included camera system is able

to cover the whole range of image processing problems. The included projection system

allows adaption of active illumination to a given problem.

In theory, if one would build a vision system to cover a measurement area of 1000 ×
500mm2, at a spatial resolution of 0.025×0.025mm2, a camera resolution of 800megapixels

would be necessary. If measurements at occluded parts are also required, several cameras at

different locations would have to be applied, and if 3D measurements need to be performed,

additional sensors need to be used as well. All these systems would have to be rigidly

mounted in a common frame, and geometrically calibrated with respect to each other.

A robot mounted vision system on the other hand is able to solve two fundamental

types of measurement problems: local measurements with high accuracy within a limited

field of view, and global measurements with lower accuracy in the robot workspace.

In accordance with user requirements for industrial quality inspection tasks, a local

measurement accuracy of < 50µm is desired, within a volume of 150 × 100 × 80mm3.

Measurement problems to solve within this range include surface inspection, borehole

detection and dimensional measurement, distance measurements and existence checks.

Pointwise scanners would not be able to scan the desired volume in a reasonable time, and

lack the flexibility for performing different measurements, so a vision based sensor with

active illumination by projectors is applied.

Global measurements are performed by moving the sensor using a robot. If relative

displacement over a larger distance has to be measured, the robot is moved from one

measurement position to the next. Two local measurements, e.g. the position of boreholes,

are combined with the relative robot motion to calculate relative displacement of the

boreholes. Measurement accuracy and range are ultimately determined by the robot used.
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The proposed local sensor must be sufficiently small and lightweight to be carried by

an industrial manipulator. It should be scalable to different measurement volumes, and

sufficiently rigid to be carried about at high speed by a robot. For this reason, a structured

light sensor has been constructed. Consisting of at least one projector and two cameras,

it is able to autonomously calibrate itself, perform simple 2D inspection tasks using the

projector as a simple light source, as well as 3D measurements by means of structured

light. The measurement volume can be enhanced by employing more projectors and

cameras, or simply by changing the sensor baseline, at the cost of accuracy. With ongoing

miniaturization of projection systems - the smallest sensor constructed in this work was

only 150× 50× 50mm3 - the measurement principle can be used also with small and fast

manipulators.

3.4 Hardware Architecture

To demonstrate flexibility of the principle, two prototypes of the sensor have been con-

structed.

The first prototype is a miniature version, consisting of a micro-projector, two cameras

and a small scale manipulator with a working range of roughly 1.5m. The effective local

measurement range is 50 × 30 × 10mm3. The small scale sensor, shown in Figure 3.8,

utilizes a micro-projector based on the LCoS principle for signalling and two cameras in a

verged stereo configuration for measurement. Because part of the infrastructure for data

transfer and control needs to be mounted on the robot hand, image data transfer is done

via gigabit ethernet (GigE), over a single cable. A schematic is shown in Figure 3.10(a).

GigE has been applied for the reason of cable length and scalability. Using a switch on the

manipulator, all cameras are connected to the PC workstation using a single cable. The

small-scale prototype can be moved by a comparably small manipulator with a maximum

load as low as 1kg.

The second prototype, consisting of four cameras, two projectors and a large scale

manipulator with a working range of 4m, features a local measurement range of 150 ×
100× 80mm3. Because, at the time of construction, small scale projectors have a modest

resolution of 800× 600pixels, two projectors have been combined over a mirror system as

shown in Figure 3.9. The cameras are arranged circularly around the projection system,

as shown in Figure 3.10(b).

Hardware architecture is comparable to the small prototype, with the difference that

four cameras and two projectors are used (Figure 3.10(a)). Projector light sources have to
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Figure 3.8: Small scale sensor prototype constructed with two industrial cameras and a
micro-projector (center).

Figure 3.9: Combination of two projector images using a mirror system. Mirrors M1, M2
and M3) are used to align the image rays of projectors P1 and P2.

resist vibrations and high acceleration forces during robot movements. The standard pro-

jector light emitting diodes (LEDs) are replaced by blue high power LEDs, which enhances

robustness under stray light and color aberration in combination with color filters on the

camera. The weight of the second prototype is higher (∼ 12kg), but still well within the

load capacity of a medium scale manipulator.

3.5 Conclusion

Considering the flexibility of triangulation based vision sensors in terms of measurement

range, accuracy and construction layout, they are among the best choices for a generic
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measurement setup. The realization in form of a camera-projector setup adds the benefit

that cameras can be used for more measurement applications than just 3D reconstruction.

The constructed prototypes are primarily meant as research prototypes to demonstrate

the system concept. For a production prototype, issues like temperature stability and

long-term robustness against high acceleration forces need to be considered as well.

The small-scale prototype was employed in a laboratory environment, while the

medium-scale prototype was employed as a demonstrator in a manufacturing hall, and

was used to solve measurement tasks as the one described in Chapter 8.
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(a) Hardware architecture of the medium scale proto-
type. Four cameras, controlled by a common trigger,
are connected via a dedicated LAN to the processing unit.
The projectors receive their signals via a VGA connec-
tion.

(b) Sensor prototype. The four cameras are equipped with
color filters and arranged circularly around the projection
unit, consisting of two projectors. The aluminium chassis
allows to adjust sensor baseline and mounting to the ma-
nipulator.

Figure 3.10: Hardware architecture of the proposed 3D vision sensor.
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4.1 Introduction

Industrial computer vision applications obtain much of their robustness and accuracy from

problem specific image acquisition. Camera and light source are selected and adjusted

in a way that the resulting image is ideally suited for further measurement. While the

engineer typically has tight control of the camera, control of the light source is limited. The

type of illumination (diffuse, directional, ...) is controlled by selecting a specific source.

Illumination direction, time and intensity are controlled globally by mechanical mounting

and programming.

Replacing the classical light source by one or more projection systems adds a consid-

erable amount of flexibility. Color, intensity and exposure time can be controlled on a

per-pixel basis, so small patches of the scene may be illuminated independently. In the

simplest case, projectors may be used as ideal point light sources. They may also be

used to project specific patterns for the purpose of geometric measurements, or they may

project scene specific dampening functions to suppress specular reflections and effectively

enhance the dynamic range of an image acquisition system.

63
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In this section, first the process of radiometric calibration of projector-camera systems

is reviewed. Knowledge of the radiometric mapping from grey level intensities to physical

light intensities is mandatory to perform low-level image enhancement, such as HDR imag-

ing, or local illumination adaption. Methods for enhancing the camera dynamic range are

discussed in the next section. A different method of dealing with high scene dynamics is

the local adaption of illumination intensity, which is shown in the final section.

4.2 Radiometric Calibration

A digital camera system is a passive sensor which captures the amount of incoming light

intensity over a specified amount of time and returns a proportional, dimension-less digital

value. The camera response function (CRF) typically is approximately linear, but unknown.

Projectors work in a similar way, but in opposite direction, mapping a digital value to a

proportional radiant flux.
5.2. The Radiometric Camera- Projector Chain 41

Figure 5.1: A schematic of the camera- projector setup. Every camera pixel can be mapped
to a projector image plane region if the related 3D scene point is known.

Figure 5.2: The radiometric camera- projector chain. Every camera pixel value is linked
to a projector pixel value through the reflectance, the camera response function, and the
projector response function

C ... Camera image plane, P ... Projector image plane

xp, yp ... projector pixel coordinates, xc, yc ... camera pixel coordinates

Fp ... Projector response Function, Fc ... Camera response Function

∆t... Exposure time, R ... Reflectance

Figure 4.1: Geometry of the projector-camera chain. A point on the object surface is
observed by a camera pixel and illuminated by a projector pixel [62].

For a camera, the linear mapping is a consequence of the sensor response function,

which is characteristic for photodiodes or photogates. For projectors, nonlinearity is more

on purpose, to compensate for the nonlinear response of the human eye and boost visual

quality.

In machine vision, it is desirable to have a linear transfer function. A linear relation

between physical illumination intensity, projector intensity, camera intensity and exposure

time allows an easy fusion of several measurements with different exposure, or different

projector intensity. If, for example, the entire scene cannot be captured at once, due to

the limited dynamic range of the camera, several images may be acquired, with different
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exposure times. Even if in each image a part of the scene is saturated, a weighted linear

combination of all images would lead to a complete result.

5.2. The Radiometric Camera- Projector Chain 41

Figure 5.1: A schematic of the camera- projector setup. Every camera pixel can be mapped
to a projector image plane region if the related 3D scene point is known.

Figure 5.2: The radiometric camera- projector chain. Every camera pixel value is linked
to a projector pixel value through the reflectance, the camera response function, and the
projector response function

C ... Camera image plane, P ... Projector image plane

xp, yp ... projector pixel coordinates, xc, yc ... camera pixel coordinates

Fp ... Projector response Function, Fc ... Camera response Function

∆t... Exposure time, R ... Reflectance

Figure 4.2: Radiometric relations of the projector-camera chain [62].

Geometric light transfer is sketched in Figure 4.1. Light emitted from a single pixel

at projector coordinates P is approximated by a ray, which intersects the object at a

scene point S, where the incoming light energy is reflected according to a bidirectional

reflectance distribution function (BRDF). The amount of light reflected towards the camera

is captured on the image plane at point C.

The radiometric transfer function is shown in Figure 4.2. Illumination intensity for

a projector pixel (x, y)T is specified by a dimension-less value P(x, y), which is typically

digital, and eight bits wide. Projector irradiance is then given by a nonlinear mapping

FP (P). The object surface, which reflects the incoming projector ray, acts as an amplitude

modulator and generates reflected irradiance towards the camera according to a reflectance

function R. Surface reflectance is typically isotropic and nonlinear. The distribution of

reflected light intensity as a function of incoming intensity is modeled by the BRDF. A

classical model including specular reflections is given by Phong [86] as

RPhong(L,V) = kd + ks
(R ·V)ns

N · L IL, (4.1)

where L is the unit vector pointing from S to the light source with incoming light
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Einige BRDF Modelle

Nikolaus Gebhardt∗

Zusammenfassung

Bidirektionale Reflektionsverteilungsfunktionen
(BRDFs, bidirectional reflection distribution functi-
ons) sind eine Klasse von Funktionen zur Beschrei-
bung der Reflektionseigenschaften von Materialien,
die vor allem Anwendung in der Computergrafik fin-
det. In dieser Seminararbeit wird die Funktionsweise
von BRDFs kurz beschrieben, und anschließend wird
auf einige spezielle Modelle eingegangen.
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1 Grundlagen

In der Natur interagieren verschiedene Materialien
unter gleichen Beleuchtungsverhältnissen unterschied-
lich mit dem auf sie eintreffenden Licht. Sie zerstreu-
en die auf sie eintreffende Strahlung auf verschiede-
ne Art. Dabei erscheinen manche Oberflächen dif-
fus, andere zum Beispiel als Spiegel. Dieses unter-
schiedliche Reflektionsverhalten von Materialien kann

∗niko@code3d.com

durch eine bidirektionale Reflektionsverteilungsfunk-
tion beschrieben werden, die als BRDF (bidirectio-
nal reflection distribution function) 1977 amtlich vom
National Bureau of Standards (USA) definiert wur-
de um Reflektionsdarstellungen und -berechnungen
zu vereinheitlichen [Wei02]. Es handelt sich hierbei
um eine vierdimensionale Funktion für eine gegebene
Wellenlänge, die zurückliefert, wieviel Licht von ei-
ner Oberfläche reflektiert wird und die wie in [Wat00]
aufgeschrieben werden kann:

BRDF = f(θin, φin, θref , φref ) = f(L,V) (1)

Die vier Variablen θin, φin, θref , und φref be-
schreiben die Azimut- und Deklinationswinkel von
Lichteinfalls- und Reflektionsrichtung. Um dies zu
verkürzen bezeichnen hier L die Richtung zum Licht
und V Richtung des Beobachters auf die Oberfläche.
Die aus [May00] adaptierte Abbildung 1 veranschau-
licht diese Eingabevariablen.

Abbildung 1: Die Eingabevariablen θin, φin, θref , und
φref der bidirektionalen Reflektionsverteilungsfunkti-
on.

1.1 Radiometrische Größen

Um genauer auf die Funktionsweise der bidirek-
tionalen Reflektionsverteilungsfunktion eingehen zu

Figure 4.3: Geometric variables of the reflectance function. Surface normal N, direction
L towards the light source, and direction V towards the camera [76].

intensity IL, V is the unit vector pointing towards the camera and R is given by L,

mirrored over the surface normal N (see Figure 4.3). The second term describes specular

surface reflections, ks and ns are object surface properties specifying the intensity and

crispness of the specular component. The first term models diffuse reflection properties,

where incident light is reflected uniformly in all directions. Diffuse reflection is modeled

by the Lambertian model

kd = L ·NρIL. (4.2)

For radiometric calibration, a planar, homogeneously colored object with approxi-

mately Lambertian reflection properties is observed. Surface reflectance is nearly linear

and constant over the surface area. Incoming irradiance on the camera side is mapped

to a digital value C(xp, yp) = FC(P). Thus, C(xc, yc) can be expressed as a function of

projector pixel intensity P (xp, yp) as follows:

C(xp, yp) = F−1
c (∆t R Fp(P (xp, yp))). (4.3)

Estimation of Fc and Fp are related problems. Debevec and Malik [23], as well as

Mann et al. [74] proposed methods for recovering Fc. Following the method of [23],

camera exposure X[∼Wsm−2] defines the light energy captured by a camera. The value

is proportional (hence the ∼ sign) to incoming light irradiance E[∼Wm−2] and exposure

time ∆t: X = E∆t. Camera output is a digital value Z(xc, yc) for each pixel, and the
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exposure time. The desired mapping Fc is estimated from

Z = Fc(X) = Fc(E∆t). (4.4)

Fc is a discrete function, defined for all possible values of Z, Sz = {zj , j = 1...n}. If a

single image is acquired by an uncalibrated camera, each pixel contributes a measurement

Z(x, y), x = 1...m, y = 1...n, where m,n are the number of image columns and rows,

respectively. Exposure time ∆t is known and identical for all pixels, incoming irradiance

is unknown and possibly different for each pixel. As such, (4.4) is ill-posed. Adding more

images of the same (rigid) scene with different exposure times and constant irradiance

adds redundancy and allows to compute a MLE of Fc and E(x, y):

(pmin, Emin) = arg min
∑

x,y,∆t

(Z(x, y,∆t)−Fc(p, E(x, y)∆t))2, (4.5)

where p = [p1, ..., pn] is the parameter vector of model Fc. Reformulating the error

function and taking the logarithm of both terms gives

Z −Fc(E∆t)⇒ F−1
c (Z)− E∆t⇒ G(Z)− lnE − ln ∆t, (4.6)

where the new function G : Z → (lnE + ln ∆t), is parameterized by a new vector p̂.

The minimization problem is finally given by

(p̂min, Emin) = arg min
∑

x,y,∆t

(G(p̂, Z(x, y,∆t))− lnE(x, y)− ln∆t)2 + λ
∑

j

G′′(p̂, zj)2.

(4.7)

The last term, weighted by a scalar λ, punishes large second derivatives of G to reach

a smooth curve, especially if some values zj are not observed by measurements. A least

squares method as described in Section 2.5 can be used to estimate a solution. In Figure

4.4 a typical correction curve G is shown. The correction mapping is a typical smooth

gamma correction curve, therefore the use of a smoothing constraint is justified.

The capability of on-scene calibration is an advantage, especially in industrial man-

ufacturing inspection, where the same type of object is observed in a repeated manner.

Gray values and exposure times observed during calibration will most likely occur also

during measurement. Further, with known G and ∆t, it is possible to calculate the in-

coming irradiance per pixel, which further allows to create HDR images and to calibrate a
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Figure 4.4: Calibrated CRF. Digital intensity values are mapped to camera exposure. If no
ground truth information on light intensity is available, exposure is also dimension-less,
but approximately linear in incoming light intensity and exposure time [62].

projection system.

Radiometric projector calibration is closely related to camera calibration in terms of

methodology. A calibrated camera is required to close the radiometric chain as depicted

in Figure 4.2. If the projector illuminates a uniform, Lambertian surface, which is ob-

served by the camera, the relation between camera irradiance and projector irradiance is

approximately linear. Further, intensity values zj on the projector side can be set manu-

ally, allowing tighter control of the observations. Similar to (4.5) the goal is to obtain a

solution for

(pmin)p = arg min
∑

xp,yp

(Zp(xp, yp)−Fp(pp, Ep(xp, yp)))2. (4.8)

In contrast to camera calibration, projector gray values Zp(x, y) are not a function

of the time integral over irradiance, but related directly. Emitted irradiance Ep is lin-

early related to camera irradiance Ec = R(Ep) = ρaEp + ρb. In case of a homogeneous,

Lambertian object surface, constant stray light and no light attenuation through optical

components, reflectance is identical for all projector and camera pixels.

Zp(x, y) can be controlled by the user, so a simple calibration procedure would be

to subsequently set all possible values zj,p, acquire an image and estimate Gp(zj,p) by

combining (4.3) and (4.7):
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(p̂min)p = arg min
∑

x,y

(
Gp(p̂p, Zp(x, y))−R−1(G(Z)− ln∆t)

)2 + λ
∑

j

G′′p (p̂p, zj,p)2.

(4.9)

Looking at the data term of (4.9), the linear components of Gp and R−1 are redundant

and can not be calibrated simultaneously. If the reflectance function is unknown, it may

be set to fixed values, e.g. ρa = 1 and ρb = 0. This allows to determine Gp, but only

up to scale. Setting ρb = 0 is reasonable, if no stray light is present. In practice, setting

ρa = 1 does not make much of a difference, because the main interest lies in calibrating

the nonlinearities of Gp. If projector gray values can be mapped to a linear space of

irradiance values, relative intensities can be set to high accuracy, which is important e.g.

for projecting phase shift gray value patterns.

Figure 4.5: Calibrated PRF. Digital intensity values are mapped to projector irradiance
[62].

An example of a PRF is shown in Figure 4.5. The complete radiometric calibration

procedure is fully automatic. External constraints are the availability of a uniform, flat,

Lambertian surface and the absence of stray light. Both constraints can be fulfilled fairly

easy by providing a closed chamber and a calibration target.

4.3 High Dynamic Range Imaging

Measurement accuracy and robustness of image processing methods depend on image con-

trast (radiometric resolution) and camera dynamic range (radiometric range). Considering

a scene with shadow regions and specular highlights, it is practically impossible to avoid

under- or over-saturation with state-of-the-art camera equipment.
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Figure 4.6: Scene with high dynamic range. Objects with different reflectance properties
enlarge the dynamic range. Here, a ceramic cup, a teaspoon and two metal workpieces are
shown on planar cardboard with a black/white checkerboard pattern printed on it [62].

One solution to the problem is to tune illumination and avoid shadows and speckles

in the first place. This may not always be possible, because diffuse illumination is hard to

implement, bulky and expensive. In some metrology applications the light source has to

fulfill geometric constraints, too. For example in structured light metrology or photometric

stereo.

Another possibility to cope with a high dynamic range of the scene would be to ex-

pand the dynamic range of the camera. According to a review tutorial of El Gamal [36],

illumination intensities in a scene may vary over 100dB and more. Consumer CMOS sen-

sors feature a dynamic range of 54dB, whereas high-end CCD sensors give 78dB and more.

The imaging problem is illustrated in Figure 4.6, where the shadow parts of the scene are

under-saturated, while specular highlights exceed the sensor dynamic range.

4.3.1 Basic Definitions

To quantify sensor dynamics, basic definitions regarding the sensor noise model, signal

to noise ratio (SNR) and dynamic range (DR) are required. The classical image sensor

is a photodiode, which linearly converts incident light into photocurrent iph in range of

few femtoamperes. Photocurrent is integrated over time, resulting in a charge, which is

converted to voltage, digitized, and read out. The entire process is subject to noise, which

ultimately limits contrast and dynamic range. Figure 4.7 gives a model of photocurrent

to charge conversion [36].

Photocurrent iph is added to the dark current idc, which is a result of junction leak-
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Image Sensor Model

• Photocurrent to output charge model:

iph

idc

i
Q(i)

QResetQShot QFPNQReadout

Qo

– Q(i) is the sensor transfer function and is given by:

Q(i) =

{
1
q(itint) electrons for 0 < i < qQsat

tint

Qsat for i ≥ qQsat
tint

– QShot is the noise charge due to integration (shot noise) and has

average power 1
q(iph + idc)tint electrons2

– QReset is the reset noise (KTC noise)

– QReadout is the readout circuit noise

– QFPN is the offset FPN (we ignore gain FPN)

• All noise components are independent

ISSCC’02 17

Figure 4.7: Photocurrent to charge conversion [36].

ages. The sensor transfer function Q(i) linearly integrates current over time and gives a

proportional charge, which is limited by sensor saturation:

Q(i) =

{
1/q(itint) for 0 < i < qQsat/tint

Qsat for i ≥ qQsat/tint
(4.10)

Well capacity Qsat imposes an upper limit to the effective signal range. Further, several

independent noise functions are added to the signal charge:

• Qshot: zero mean integration noise (shot noise),

• Qreset: reset noise,

• Qreadout: zero mean readout noise, including quantization noise,

• QFPN : systematic fixed pattern noise (offset and gain) due to device mismatches,

resulting in an equivalent additive input noise current In (see Figure 4.8) with power

σ2
In = (q/tint)2(1/q(iph + idc)tint + σ2

r ), (4.11)

where σ2
r = σ2

reset + σ2
readout + σ2

FPN . Modern CMOS pixels allow for correlated double

sampling (CDS), which is a relative measurement of dark pixel value and exposed pixel

value. Systematic noise components, like σreset in CCD and σFPN in CMOS sensors, are

hereby eliminated, whereas random noise powers are doubled.

Input Referred Noise Power

• To calculate SNR and dynamic range we use the model with equivalent

input referred noise current

iph

idc

Q(.)

In

Qo

• Since Q(.) is linear we can readily find the average power of the

equivalent input referred noise r.v. In, i.e., average input referred noise

power, to be

σ2
In

=
q2

t2int

(
1

q
(iph + idc)tint + σ2

r) A2,

where

σ2
r = σ2

Reset + σ2
Readout + σ2

FPN electron2,

is the read noise power

ISSCC’02 18

Figure 4.8: Equivalent additive noise [36].
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Signal to noise ratio (SNR) is the ratio of input signal power to input noise power. It

is given by

SNR(iph) = 10 log10

i2ph
(q/tint)2(1/q(iph + idc)tint + σ2

r )
. (4.12)

In Figure 4.9 an example of SNR versus iph is given for three levels of dark current.

Dark current idc effectively determines the lower bound for a usable signal.
SNR Versus iph (for three idc values)
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Figure 4.9: SNR over photocurrent for three levels of dark current [36].

Dynamic range quantifies the ability of a sensor to adequately image highlights and

dark shadows in a scene, and is defined as the ratio of largest non-saturating input signal

to lowest detectable input signal DR = 20 log10(imax/imin) [36]. From (4.10), the largest

signal is given by

imax = q
Qsat
tint
− idc. (4.13)

The smallest detectable signal must exceed the noise level under dark conditions, and

is hence given by σIn with iph = 0:

imin =
q

tint

√
1
q
idctint + σ2

r . (4.14)

In Figure 4.10 a typical DR curve over integration time is shown. Because dark current

is integrated over time, DR must decrease with growing tint.
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Dynamic Range Versus Integration Time
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Figure 4.10: Dynamic range over integration time [36].

4.3.2 HDR Imaging Principles

An increase in sensor dynamic range can be achieved by increasing imax, decreasing imin,

or changing the measurement principle. Looking at the physical parameters in (4.13) and

(4.14), the tunable parameters are Qsat and tint.

Integration time is most easy to adapt, but a global change in tint shifts imin, as well as

imax, resulting in constant DR. The algorithm proposed in [23] produces a combination of

temporal multiplexed images with different tint. If the sensor transfer function is calibrated

(see Section 4.2), the input signals can be linearized and transferred to a global radiance

map by

lnEi = g(Zij)− ln∆tj . (4.15)

A weighted linear combination of the signals produces the resulting image:

lnEi =

∑P
j=1w(Zij)(g(Zij)− ln ∆tj)

∑P
j=1w(Zij)

, (4.16)

where w is a weighting function which decreases the influence of signals near the

saturation levels. Hardware implementations use a simpler combination scheme, e.g. by

taking the largest sample before saturation. Multiple image capture increases DR by

raising imax, the lower bound stays fixed. A possibility to lower imin would be redundant

image capture. Calculating the mean of several images with identical tint decreases the

influence of random noise, again at the cost of capture time.
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Essentially the same principle may be applied in spatial multiplex, where neighboring

pixels are exposed differently. Nayar et al. [84] proposed to apply light blocking filters in

front of a sensor array, e.g. constant density filters, DMD or liquid crystal display (LCD)

panels. Here, the gain in radiometric resolution of course comes at the cost of spatial

resolution and sampling artifacts, if filters and pixels are not well aligned.

Sensor Transfer Function

• The current to charge transfer function is compressed resulting in higher

maximum nonsaturating current i′max:

Qsat

Q(i)

i
imax i′max

ISSCC’02 30

Figure 4.11: Well capacity adjustment progressively flattens the charge transfer function
to increase imax [36].

Well capacity Qsat is predetermined by electrical characteristics of the photodetector.

Yet, the charge transfer function (4.10) can be flattened to increase imax, as shown in

Figure 4.11. This flattening can be achieved by providing controlled drain from the well,

e.g. through a half-open reset signal in a CMOS pixel. The increased input current range

is still mapped to a constant output charge range, which leads to decreased SNR and a

compression of the input signal. Dynamic compression of Q(t) during integration gives

a nonlinear sensor response curve with increased DR, at the cost of lower SNR for bright

pixels. Fixed pattern noise also increases, as the drain output becomes an integral part of

the measurement process.

In a different approach, pixel intensity is created by measuring the saturation time

instead of iph. Saturation time is given from (4.10) as

tsat = qQsat/iph, (4.17)

and is 1/n proportional to iph. The minimum input current is hereby determined by

the maximum allowed integration time. Maximum current is limited by the precision to

which tsat can be measured. One difficulty with this approach is precise detection of sensor

saturation.
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4.3.3 Experiments

In the following, the applicability of HDR imaging to industrial measurement applications

will be evaluated. While the improvement of SNR and DR in general has been shown

before, we focus on projector-camera systems in industrial settings, i.e. working volumes

of approximately 200×200×80mm3, containing objects with glossy surface (metal parts),

as well as dark, diffuse reflecting surfaces. As a reference measurement task, the problem of

3D reconstruction using a structured light method with subsequent refinement using phase-

shifting has been chosen. Focus of the experiments is not to evaluate the reconstruction

procedure itself, therefore the reader is referred to Chapter 6, but to design experiments,

where radiometric inaccuracies, in this case inaccuracies of the acquired sinusoidal pattern,

can be related to ground truth information, in this case 3D surface planarity. As quality

measures for a set of reconstructed points, the standard deviation σ of point normal

distance to the best-fit plane (in a least-squares sense) has been chosen. If applicable,

spatial resolution of the reconstruction is given in terms of point density ρ, the number of

reconstructed points per surface area.

(a) (b) (c) (d) 
 
Figure 4.12: HDR image stack. Four images of a scene, with different exposure time settings:
5000µs (a), 20000µs (b), 100000µs (c), 350000µs (d) [62].

The result of a classical HDR experiment using multiple exposure times is shown in

Figure 4.13. The test scene contains a ceramic coffee cup, a diffuse reflecting checkerboard

pattern (printed paper), one teaspoon and two shiny metal parts. The scene is illuminated

by a LED video beamer and observed by an industrial CCD camera.

It is shown in Figures 4.12 (a)-(d), that no exposure setting allows to capture the full

dynamic range of the scene. Combination of the differently exposed images, according to

the method described in Section 4.3.2, results in a HDR image as shown in Figure 4.13.

The simultaneously obtained CRF is shown in Figure 4.14. One problem which is inherent

to the HDR approach can be observed on the teaspoon. Exposure time can not be chosen

deliberately small, so there may still remain saturated regions in the image. Further, to

resolve dark regions, exposure time must be high, resulting in a large number of saturated
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Figure 4.13: HDR image. An image stack of four differently exposed images allows to cover
the dynamic range of the test scene in one image. Gray values are scaled for visualization
[62].
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Figure 4.14: Mapping from camera gray values to exposure [62].

Image Exposure time Oversaturated Undersaturated
[ms] [%] [%]

Plain, Fig.4.15(a) 80 0.0 0.0
Over, Fig.4.15(c) 150 7.1 0.3
Under, Fig.4.15(e) 50 0.2 17.7
HDR, Fig.4.15(g) [1.5, 20, 80, 150, 250]

Table 4.1: Amount of saturation on checkerboard images.

pixels and corresponding artifacts, like blooming. Noise in the optical path, like dirt on

the lens, become also more prominent when using long exposure times.

In general it is difficult to obtain ground truth information in the scene dynamic range,

so evaluation is to some extent qualitative, with a focus on the benefit for subsequent

image processing tasks. Two experiments are conducted using HDR imaging. First, a

planar checkerboard pattern (printed paper) is illuminated by a projector with a sinusoidal
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Figure 4.15: HDR image of a checkerboard pattern. A checkerboard pattern printed on
paper is observed by a CCD camera (image in (a)), horizontal gray value profile (b)). A
projector illuminates the object with a sinusoidal signal (c), (e). Regardless of the exposure
time, the gray value profile runs into saturation (d), (f). Combination of five exposure
times allows to capture the scene dynamic range (g), (h) [62].

signal. The resulting signal exceeds the camera dynamic range (see Figure 4.15). Using

a combination of five exposures it is possible to cover the complete signal and recover

the sinusoidal phase over the entire image, as given in Table 4.1. The same experiment

is applied to a shiny metal plane (Figure 4.16). Due to the point light source, a direct

specular reflection occurs in the image center, saturating the sinusoidal signal on roughly

30% of the surface area. A combination of four exposure times allows to cover the complete

dynamic range of the scene, as given in Table 4.2.

The recovered sinusoidal signals are further used to perform 3D reconstruction on the

two reference objects, based on structured light with phase-shift refinement. It is assumed

that both objects are perfectly planar, so the difference between measured points and the
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 Figure 4.16: HDR image of a sinusoidal pattern. A shiny metal plate is observed by a
CCD camera. A projector illuminates the object with a sinusoidal signal (image in (a),
horizontal gray value profile (b)). Combination of five exposure times allows to capture
the scene dynamic range and recover the sinusoidal pattern (c), (d) [62].

Image Exposure time Oversaturated
[ms] [%]

Over, Fig.4.16(a) 5 29.8
HDR, Fig.4.16(c) [0.5, 1.5, 3, 9] N/A

Table 4.2: Amount of saturation on a planar metal surface.

best-fit plane (using a least-squares fit), is taken as a measure for reconstruction quality.

Results are given in Table 4.3. A significant increase in point density ρ on the checker-

board pattern, and a slight increase for the metal surface are visible. Standard deviation

of the point normal distances from the best-fit plane is significantly improved in both

cases.
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Scene σ ρ σHDR ρHDR
[mm] [numpoints/mm2] [mm] [numpoints/mm2]

Checkerboard 0.074 78 0.038 115
Shiny 0.085 113 0.045 124

Table 4.3: Structured light reconstruction results on HDR images.

4.4 Radiometric Illumination Adaption

A projection system offers the possibility to adapt light intensity locally on the emitter

side. The goal is to illuminate a region on the object surface, which projects to one camera

pixel, with sufficient intensity to stay within the sensor dynamic range. Bimber and Iwai

[9] exploited this principle for contrast enhancement on planar scenes and reported an

effective dynamic range of more than 150db (see Figure 4.17).

 

Figure 4.17: Contrast enhancement using projectors [9]. A projector pattern is iteratively
adapted to surface texture (here the printout of an X-ray image). The initial contrast
ratio of 100db is hereby increased to over 150db.

If a non-planar, textured scene is observed, the amount of light captured by a single

pixel is a function of projector parameters, surface geometry, reflectance, and camera

parameters. The goal is to adapt projector intensity, which is a local property of each

projector pixel, and camera exposure time, which is a global property of all camera pixels,

to maximize the dynamic range over the scene. Grossberg et. al. [39] performed pattern

adaption under known object geometry to virtually change object appearance. Konickx

and Van Gool [64] [63] recently proposed radiometric projector pattern adaption in the

context of structured light reconstruction.

In measurement problems, surface geometry, texture and reflectance are usually un-

known, which makes the problem of pattern adaption ill-posed. Known surface geometry

provides correspondence information between projector and camera pixels. Known surface
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orientation allows to calculate incidence angles to account for specularity. If rough geome-

try information can be obtained without radiometric adaption, an iterative procedure can

be applied to alternatively refine geometry and the adaption pattern.

4.4.1 Iterative Pattern Adaption

To establish a unique correspondence between projector and camera pixels, scene geom-

etry must be known. In case of limited saturated regions in the image, scene geometry

can still be measured partially, and interpolated in saturated regions. As such, rough

correspondence between projector and camera pixels is established which allows adaption

of local illumination intensity. The adapted intensity pattern in turn allows to refine scene

geometry, which closes the iteration loop.

In the following, we assume the projector and the camera to be radiometrically and

geometrically calibrated. A rough estimate of scene geometry is also known. A uniform

intensity pattern in the middle of the projector DR (e.g. gray value 128) is projected and

the response is acquired by the camera. The surface reflectance map R can be calculated

according to (4.3) as:

R =
Fp(P (xp, yp))∆t
Fc(C(xc, yc))

. (4.18)

Based on (4.18) and (4.3), measured camera pixel intensities z(xc, yc) are mapped to

projector pixel intensities zp(xp, yp), as shown in Figure 4.18 (a). In regions where no 3D

information is available, zp is interpolated (Figure 4.18(b)). Because an estimate of R is

also available, the desired camera gray value zi,c is also mapped to a desired projector

intensity zi,p. The compensation mask (Figure 4.18 (c)) in projector image space is given

by ∆z(xp, yp) = zi,p − zp(xp, yp).
The resulting mask might be wrong, because the correspondence of projector and

camera pixels is not known precisely and exact ∆z(xc, yc) could not be calculated due to

saturation. However, if the scene geometry estimate does not contain gross outliers, the

correspondence error is local. Saturation effects typically cover a significant image area,

so it is likely that the dampening of a slightly wrong pixel still gives an improvement.

In the next iteration, surface geometry is known with more detail, again improving the

compensation mask, until it converges to a stable state. The iteration ends, if either the

camera shows an ideal response to the projection, or the limits of projector dynamics are

reached.
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(a) (b) (c)

Figure 4.18: Pattern adaption iteration. With an initial 3D reconstruction, camera gray
values are mapped back to projector gray values (a). Where no reconstruction is possible,
values are interpolated (b). A compensation mask (c) is given by the difference of ideal
projector intensity and measured intensity [62].

4.4.2 Light Source Separation

An active computer vision system consists of a carefully selected light source and one

or more cameras. Arguably, most measurement errors in vision systems are caused by

unexpected illumination conditions, due to stray light and reflections in the scene.

To avoid stray light, the best solution would be to carefully shield the measurement

volume from external influences. If this is not possible, e.g. in robotic applications with a

large working area, it is favorable to work with relative measurements, as shown in Figure

4.19. A pair of images is acquired, one with active illumination switched on, the second

one with stray light only. In the difference image, stray light is effectively suppressed.

Figure 4.19: Relative intensity measurement. In the presence of stray light, active illumi-
nation provides the possibility to subtract the scene with stray light only from the actively
illuminated scene [70].

The second source of unwanted illumination comes from interreflection. Depending on

the illumination direction and scene geometry, one part of the object may reflect light to

other parts, leading to false pattern decoding in structured light, or saturation effects in 2D

image processing. Interreflections are harder to suppress, or even to identify. Especially
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measurement principles like pattern projection, which are based on geometric constraints

on the light source, are severely hampered by reflection. Nayar et al. [83] proposed a

method, based on projection of high spatial frequency patterns, to identify interreflections.

Xu et al [113] applied the method to 3D reconstruction. Although these methods do not

allow to separate the original signal from an overlaid reflection, they allow to robustly

detect and mask out such regions and prevent false measurements.

If no stray light is present in the observed scene, the total radiance L emitted from a

surface patch has two components, depending on their origin:

L = Ld + Lg. (4.19)

Figure 4.20: Direct and global reflection. Light intensity captured by a camera pixel may
be caused by direct reflection of a projected ray at the observed surface patch, or by
multiple interreflections [62].

Figure 4.21: High frequency pattern for light source separation [62].

Radiance Ld is caused by direct illumination, whereas Lg originates from reflection. A

projector allows to emit a binary pattern with high spatial frequency, e.g. by switching off

every second pixel. An example is shown in Figure 4.21. Assuming that global radiance

for a surface patch is caused by reflected light rays which are distributed over a larger

surface area (large w. r. t. the applied spatial frequency, see Figure 4.20), the camera
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receives radiance

L+ = Ld + Lg/2 (4.20)

from directly illuminated regions, and

L− = Lg/2 (4.21)

from regions corresponding to a switched off pixel. Ld and Lg may be identified by

changing the high frequency pattern, such that every surface region is observed at least

once with and without direct illumination. A minimum of two pattern projections are

necessary to reach this condition, but in practice two problems arise: the object surface is

sampled in finitely large intervals by the camera, and the projector may be slightly defo-

cused, producing rays with medium intensity at the pixel transitions. As a consequence,

on- and off-pixels may cancel out in some surface regions. Nayar tried to overcome the

problem using a checkerboard pattern for projection. Shifting the pattern several times

in small steps, L+ and L− are identified by taking the maximum and minimum intensity

for every pixel over all images:

L+
m,n = max{xim,n}L−m,n = min{xim,n} (4.22)

for all images i = 1...n. The size of the checkerboard patches is defined externally. One

needs to find a compromise between violation of (4.20) and (4.21) for too large patches,

and artifacts due to low projector and camera resolution.

4.4.3 Experiments

4.4.3.1 Pattern Adaption

A projector-camera system allows local adaption of illumination intensity to avoid satu-

ration. For evaluation, several test objects are used, with surface properties which are

common in industrial inspection. The feasibility of the general approach is evaluated on

a planar checkerboard (printed paper). Because a non-saturated image can only be an

intermediate result in the measurement chain, the applicability to structured light recon-

struction is also evaluated.

Radiometric calibration of the projector-camera system is conducted as described in

Section 4.2. The results are sensor response functions for camera (CRF, Figure 4.22(a)) and
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projector (PRF, Figure 4.22(b)). The CRF shows approximately linear behaviour between

ray levels 5 and 250, whereas the PRF is clearly nonlinear. All irradiance values are

normalized to the maximum projector irradiance.

(a) (b) 
 

Figure 4.22: Camera and projector response functions. The camera response to incom-
ing irradiance is approximately linear, while the projector clearly shows approximately
quadratic behavior [62].

The feasibility of the proposed procedure is demonstrated on a planar checkerboard

pattern, shown in Figure 4.23(a). A compensation pattern shall be obtained, which com-

pensates the black and white pattern to obtain a uniform camera image with gray level

128. The result after one iteration is shown in Figure 4.23(b), the final result, after two

iterations, in Figure 4.23(c). The original pattern, approximately 100 × 100mm2, has

a bimodal grey level histogram under uniform illumination. The bright regions have a

larger scatter, due to non-uniform illumination by the point light source, as shown in

Figure 4.24(a). After compensation, the grey level histogram shows a significant peak at

the desired gray level (Figure 4.24(b)). The compensated image shows only slight arti-

facts, especially at the pattern edges, which originate from the limited spatial projector

resolution, it is not possible to reach an ideal compensation.

The pattern adaption process is further evaluated on a planar metal surface (Figure

4.25). Hereby, the goal is to compensate for specular reflections and modulate the result-

ing compensation pattern with a sinusoidal signal. As such, the signal is visible over the

entire object surface. The sinusoidal signal is further used to obtain a sub-pixel accurate

3D reconstruction by means of a structured light procedure with phase-shifting refinement.

Point density and scatter around the best-fit plane are given in Table 4.5 as quality mea-

sures for the adaption process. The procedure was repeated for different specimen (see

Figure 4.26): the checkerboard pattern on printed paper (d), a chromed metal object (a),

an anodized (b), and a black-finished object (c). In comparison to a standard structured
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Figure 4.23: Pattern adaption on a checkerboard. The radiometric compensation method
is demonstrated on a planar checkerboard (a). After one iteration, the printed pattern is
effectively suppressed (b), and reaches a nearly uniform distribution after two iterations
(c) [62].

 
(a) 

 
(b)

 

Figure 4.24: Histogram of adapted image. The original checkerboard image (Figure 4.23
(a)) shows a bimodal intensity histogram. After two iterations of pattern adaption, the
checkerboard is effectively eliminated (b), see also Figure 4.23 (c) [62].

Iteration σPAT ρPAT
[mm] [%]

1 0.319 0.74
2 0.129 0.93
3 0.064 0.99
4 0.063 1.0

Table 4.4: Pattern adaption for structured light reconstruction on a shiny metal plane
(Figure 4.25), with an observed area of 2300mm2. After four iterations, a total of 188602
points have been reconstructed.

light procedure, the adaption methods using HDR imaging and pattern adaption lead to

improved accuracy in terms of point scatter. Extreme surface properties, like black fin-

ished steel, show the limits of both adaption procedures. Camera and projector dynamics

fail to cover the scene dynamic range and result in little or no improvement compared to

the standard structured light procedure.
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Figure 4.25: Pattern adaption on a metal surface. A planar object with a shiny metal
surface is illuminated with a stripe pattern. Iterative adaption of the projector signal
decreases the amount of reflection ((a), (c), (e), (g)). The decrease of saturated regions is
clearly seen along the intensity profile ((b), (d), (f), (h)) [62].

Object σ σHDR σPAT
[mm] [mm] [mm]

Chromed 0.039 0.035 0.021
Anodized 0.012 0.010 0.012
Black 0.017 0.016 0.020
Checkerboard 0.022 0.014 0.012

Table 4.5: Structured light results using raw image acquisition, HDR imaging and pat-
tern adaption. Planar objects with different surface properties were reconstructed. The
numbers give the standard deviation in mm for all reconstructed points from the best-fit
plane.
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 Figure 4.26: Reference objects for pattern adaption. A chromed metal object (a), an

anodized object (b), a black-finished object (c) and a printed checkerboard (d) were used
to evaluate pattern adaption [62].

Experiment σ1 sum1 φ1

[mm] [numpoints] [deg]

Standard 5.3 29821 99.81
Masked 0.023 1603 89.68

Table 4.6: Light source separation experiment. Without masking out invalid patterns, the
top plane in Figure 4.27 shows considerably more point scatter than after masking.

4.4.3.2 Light Source Separation

The ability to mask out interreflections according to section 4.4.2 is evaluated on the

test scene shown in Figure 4.27(a). A metal prism is positioned on a metal cube and

illuminated by a projector. Directional illumination by a projector causes interreflections,

especially from the prism onto the upper cube plane. The goal is to perform a structured

light reconstruction of the cube planes in two regions, shown in Figure 4.27(b). Without

identifying and masking out interreflection regions, the top plane shows a considerable

amount of point scatter, as given in Table 4.6. After masking out invalid regions, the

remaining valid measurements on the object surface (Figure 4.27(c)) give more precise

results, of course with less point density.
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Figure 4.27: Reference scene for light source separation. A metal prism lies on a metal
cube (a). Light source separation is performed on the scene. Valid regions are shown in
red (c). The planar regions of interest for structured light reconstruction are shown in (b)
[62].

4.5 Conclusion

In this chapter, the problem of limited dynamic range in image based measurement is

discussed. Saturation effects and low radiometric resolution impose a physical limit to

all subsequent image processing tasks. Consequently, artificially increasing the sensor

dynamic range can be considered as lowest level image enhancement. On the other hand,

methods like the one proposed in Section 4.4 utilize some very high-level concepts like

structured light reconstruction to solve this problem.

The HDR imaging uses a temporary sequence of acquired images to cover the scene

dynamics. While this method is theoretically appealing - no projector and no offline cali-

bration is required - it has some shortcomings in practice, compared to pattern adaption.

In pattern adaption, excessive illumination intensity is avoided, where it is generated,

while in HDR imaging, it is always present in the scene and always reaches the camera and

sensor chip. Unwanted artifacts are the consequence, e.g. interreflections and stray light

in the scene, blooming in the camera and interreflections in the optical path, creating

ghost images. Further, acquisition time is a problem. If the goal is a 3D reconstruction

of the scene, HDR imaging requires temporal multiplexing to apply structured light, and

also for HDR imaging. The number of patterns is multiplied, leading sometimes to a pro-

hibitively large number of required images. Nonetheless, experiments showed that both

methods are capable of increasing signal quality for structured light, and image quality

for 2D measurements.

Light source separation is a way to effectively cope with interreflections. Image regions

showing reflections from multiple sources are practically worthless for robust structured

light metrology, so the choice is to identify them and mask them out. In industrial inspec-

tion, where objects of rather simple shape are considered, there is a high probability that
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interreflections on an object point are caused by only one (planar) object region. It would

be an interesting future problem to identify such reflectors and consequently optimize

reconstruction quality in a limited region of interest.
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5.1 Introduction

Measurement accuracy of triangulation based sensors depends on exact knowledge of the

radiometric and geometric relations between sender and emitter. This knowledge can

either be given by exact machining of the sensor components, by an offline calibration

procedure, or by determining these relations online, from the measured data.

Exact machining of sensor components has the advantage that sensors are identical

within the given requirements and hence can be freely interchanged during operation or

maintenance. High production costs, sensitivity to environmental conditions like temper-

ature, and the inability to recover from even small geometric defects make this approach

less favorable in practice.

Offline calibration is by far the most widely applied approach to increase sensor ac-

curacy at tractable costs. Each sensor undergoes a defined calibration procedure, either

directly after production or during installation. The acquired calibration data becomes

part of the sensor and is tightly coupled to it, usually by storing it internally. Hereby,

a sensor is able to recover from minor defects by recalibration as part of a maintenance

procedure.
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Self calibration approaches have the advantage that calibration data is extracted from

measurement data itself. Hence, there is no time difference between measurement and

calibration and the sensor does not need to remain consistent with offline data. On

the downside, self calibration results, and consequently measurement accuracy, depend

by definition on the available measurement data, so no accuracy specifications of the

sensor can be given without knowing the exact measurement object and measurement

configuration.

All these approaches require exact modeling of the underlying sensor system. The

parametric model of sensor components and relative geometry has to be general enough

to describe the components with sufficient accuracy, but still sufficiently constrained to

allow calibration from a small set of reference data.

This chapter is divided into two parts. First, the model applied in this work is mo-

tivated, and methods for calibration are reviewed and evaluated. The model is further

used for computation of 3D structure from point correspondences. Hereby, two alternative

methods are presented, one relying on explicit modeling of camera geometry, the other,

being a model-free approach, relying on a dense grid of 3D reference data and correspond-

ing image measurements. It is shown that the model-free approach produces significantly

more accurate results, at the cost of higher calibration effort.

5.2 The Multi-View Sensor Model

The multi-view system for the purpose of 3D measurement, as it is presented here, consists

of a number of cameras and projectors. The theory of modeling a central perspective cam-

era has been covered in Chapter 2. In this chapter, methods for automatic calibration to

high accuracy are reviewed. Further, the consistency of an off-the-shelf projector system

with the camera model is experimentally evaluated. The complete calibration framework,

consisting of monocular camera calibration, projector calibration and multi-view calibra-

tion, is presented and experimentally evaluated.

5.2.1 Monocular Camera Calibration

The central perspective camera model, including some type of nonlinear lens distortion,

is the de-facto standard model for close-range cameras (see Chapter 2). It is applied in

photogrammetry and computer vision to model film cameras, digital consumer cameras

and industrial cameras. The necessity of calibrating the geometric configuration of a single
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camera is about as old as aerial photogrammetry, where cameras were used as measuring

instruments for the first time.

5.2.1.1 Related Work

Monocular camera calibration is an active research topic for over 100 years. A historical

survey of methods and their development is given in [21]. The camera and lens distortion

model by Brown [15] is, with minor variations, still the fundamental mathematical model.

State-of-the-art camera calibration relies on highly redundant reference information,

which is acquired by observing three dimensional reference entities like points or lines. The

projective mapping between reference points and their observation is found by optimization

of an error function, usually in image space. Recently, little progress has been made in

increasing calibration accuracy. Rather, much emphasis has been laid on ease of use,

modeling of cheap consumer cameras and non-standard optics like fisheye lenses.

Roger Tsai [102] [101] initiated the shift in methodology from expensive photogram-

metric laboratory calibration to more versatile methods. In two variants the camera either

observes a planar or non-planar reference grid. In a two-stage procedure, the relevant cali-

bration parameters are estimated, which are the effective focal length, one radial distortion

coefficient and the camera extrinsics.

Heikkilä and Silveri presented a method for camera calibration from 3D reference points

and a single observation [45] [46]. The projection model included focal length, principal

point, radial and tangential lens distortion. They addressed the problem of feature loca-

tion under perspective distortion, especially for circle centers and proposed an iterative

procedure, where feature locations are re-estimated once an initial calibration and camera

pose is known.

Sturm and Maybank proposed a calibration framework closely related to

self-calibration techniques [98]. They rely on reference information from known points on

a planar target, and are flexible in the projection model, where parameters can be known

a priori and others may vary from one observation to another. Degenerate cases under

certain configurations of the projection model are discussed.

The method of Zhengyou Zhang [116] arguably reached the highest popularity in the

computer vision community. Using several (at least two non-degenerate) observations of

a planar checkerboard pattern with known corner coordinates, the projection model is

determined in a two stage approach. At first, the linear intrinsic parameters are estimated

using constraints on the pattern to image homography, followed by an estimation of the
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nonlinear distortion parameters and a complete MLE.

Kannala and Brandt give an overview of the state-of-the-art in fisheye lens calibration

and propose a generic projection model for these types of lenses [59]. They address the

problem that cameras with a 180 degree field of view can not be modeled simply by a

distorted pinhole model. So, while in the pinhole model the radial distance of an image

point from the image center is a function of tan(θ), where θ is the incoming ray angle,

the authors model the radial distance as a Taylor series expansion of θ. Additionally a

calibration procedure relying on a planar reference target is presented.

Wang et al. proposed a new projection model for pinhole cameras to handle the various

distortion effects [108]. Instead of modeling decentering distortion, thin prism distortion

and skewness, they introduce an out-of-plane rotation of the sensor plane with respect to

the ideal image plane. The model has fewer parameters than the conventional approach

and experiments showed comparable results in distortion correction.

A lot of research effort has been put into method evaluation and quality studies.

Salvi et al. gave a non-complete survey of calibration methods [94]. They tried to unify

the different notations used by the authors and compared the calibration methods on a

common test set. The findings confirm the general assumption that nonlinear methods are

more accurate than linear ones. Gonzalez et al. evaluated calibration methods in terms

of stability and accuracy [37]. Their results mainly confirm the fact that highly correlated

parameters, like focal length and translation in viewing direction, become unstable if their

counterpart is unstable. Furthermore, according to their findings, calibration results highly

depend on the choice of reference views.

Kopparapu and Corke examined the effect of measurement noise on the calibration

parameters [65]. Their results show that Gaussian measurement error almost linearly

propagates to Gaussian error in the calibration parameters, except for the principal point,

which turned out to be more sensitive to noise levels above 0.5pixels. However, the authors

did not do a MLE of camera parameters, which should cope well with Gaussian noise.

Mallon and Whelan studied biasing of feature extraction methods due to perspective,

lens distortion and defocusing effects [73]. Four popular extraction methods, namely blob

centroid, ellipse center, saddle point and edge fitting are evaluated. The authors show

that distortion bias, followed by perspective bias, are the main sources of error in feature

extraction and that edge fitting and saddle point methods are more robust than ellipse

based methods.

Remondino and Fraser evaluated camera calibration methods against photogrammetric
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bundle adjustment [90]. They showed that the linear direct linear transform (DLT) method

performs worst, while the nonlinear methods give comparable results in terms of image

space residual error. The authors’ conclusion that bundle adjustment methods are superior

due to the lower 3D RMS error is questionable, since no ground truth evaluation of the actual

3D points has been conducted.

Sun did an empirical comparison of camera calibration methods [99] [110]. The plane

based calibration methods showed to be superior in versatility with a low calibration error.

Yet, no evaluation on accurate ground truth data was given.

5.2.1.2 Methodology

Feature points extracted from images of a planar reference target form the input data for

intrinsic camera calibration. A planar reference has been chosen, because it gives a viable

compromise between accuracy and ease of implementation, although more care has to be

taken in choosing camera poses, as will be discussed at the end of the section.

A projective model as described in Chapter 2.3 has been adopted to describe the world

to image mapping. An empirical evaluation showed that two radial and two tangential

lens distortion parameters, aspect ratio of one and zero skew are sufficient to model the

cameras.

Because the projective mapping, including distortion, is nonlinear, parameter estima-

tion leads to a nonlinear least squares problem. Such a method requires a good initial

guess of the solution, for not to get stuck in a local minimum.

Initialization requires the determination of camera intrinsics and the relative pose of

the cameras with respect to the reference target. Initialization of the intrinsic camera

parameters can be done automatically using images of orthogonal vanishing points, which

can be easily calculated from a square grid of planar reference points. Setting the principal

point initially to the image center, assuming zero skew, square pixels, no distortion and

a canonical camera pose (projection center at origin looking in positive z-direction), the

projection model is reduced to

x =




f 0 0

0 f 0

0 0 1







X1

X2

X3


 , (5.1)

where x is the image point, f is the focal length and [X1X2X3]T are the first three

coordinates of the world point. Inversely, the direction vector d of a backprojected ray
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[x1x2x3]T becomes

d =




f−1 0 0

0 f−1 0

0 0 1







x1

x2

x3


 (5.2)

.

Now, if the images v1, v2 of at least two orthogonal vanishing points are available,

their backprojected ray directions also have to be orthogonal, leading to the constraint




f−1 0 0

0 f−1 0

0 0 1


v1




f−1 0 0

0 f−1 0

0 0 1


v2 = 0 (5.3)

and simplified

[
f−2f−21

]
v1v2 = 0, (5.4)

which can be solved for f . This method is fairly robust and works for a large variety

of cameras. However, when large distortions occur in the images, or the principal point is

located far off the image center, the initialization may fail, sometimes leading to a complex

solution for the focal length. In an industrial environment, where the sensor geometry is

approximately known in advance, the parameters may be initialized straightforward from

the sensor specification sheet.

For parameter refinement, assuming normal distribution of the residuals, a MLE problem

can be formulated, according to Equation 2.1:

Φ̂ = arg min
Φ

N∑

i=1

(ximg(Φ)− xmeas)2, (5.5)

where xmeas denotes the measured feature coordinates, N denotes the number of mea-

sured reference points and Φ denotes the unknown parameter vector. This is equivalent to

the classical bundle adjustment problem, where Φ holds the camera intrinsics and extrin-

sics, or, in the case of unknown reference geometry, also holds reference point locations.

Assuming that the reference target is planar and the in-plane reference point locations

are known, a reference coordinate system Oref is assigned to the target. As a consequence,

the projection of Xref to an image point ximg is formulated as follows:
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ximg = KFlens([I|0]Hworld→camHref→worldXref ), (5.6)

where Href→world is a rigid transformation from the reference CF to the WCF, and

Hworld→cam is a mapping from world to CCF, resembling the camera extrinsics. Conse-

quently, for each camera the set of intrinsic and extrinsic parameters has to be estimated,

and for each observation the unknown rotation and translation in Href→world has to be

estimated. The number of unknowns nΦ sums up to nΦ = 14n + 6m, where n is the

number of cameras and m the number of observations, whereas the number of equations

nequ grows approximately with nequ = nptnm, npt being the average number of observed

reference points per camera.

The large degree of redundancy makes the calibration process more robust and com-

putationally tractable than in the complete bundle adjustment case. A nonlinear least

squares solver, such as the LM algorithm, can be used to compute a ML estimate of the

solution, making use of the sparseness of the system Jacobian.

There are, however, some issues influencing calibration accuracy. By using a planar

reference target, all camera poses relative to the reference plane and the camera intrinsics

need to be estimated simultaneously. Therefore, one needs to take care, what sensor poses

to choose in order to reduce correlations between extrinsic and intrinsics parameters. Usu-

ally a tradeoff has to be found between extremely slanted camera views, which considerably

improve the geometric configuration, and frontoparallel views, which improve visibility of

the feature pattern and give increased segmentation accuracy. In Section 5.3.5, an exper-

imental comparison of plane-based calibration and calibration from a three-dimensional

reference target is given.

5.2.2 Projector Calibration

The optical setup of a DLP projection system is comparable to that of a central perspective

camera. A point light source illuminates a micro-mirror array situated in the focal plane

of the optical system. The amplitude of reflection is modulated by the mirrors and passes

through a lens system.

This leads to the assumption that the projector can be modeled as an inverse camera

system, which backprojects image points to light rays according to the central perspective

projection model. If the same projection model is applicable, also the same calibration

methods as in Section 5.2.1 can be used. In contrast to camera calibration however, it is

more difficult to generate the necessary reference information. Reference information is
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based on some kind of known 3D structure, directly related to identifiable features in image

space. In the case of forward projection, this correspondence is generated relatively easy,

as salient 3D points directly project to image features. The inverse case is harder, because

3D reference information must be assigned to given image features. One option would

be to align a projected pattern to some known reference target, for which an accurate

reference target would be required, and an external measurement device, which measures

the misalignment between projected pattern and reference. The measurement device only

performs relative measurement, so it needs to be precise, but does not have to give abso-

lutely accurate measurements. Typically, a camera system is used for this purpose, as it

is anyway required for reconstruction purposes in a structured light measurement setup.

It is clear that the residual alignment error directly affects the calibration result, whereas

inaccurate camera calibration does not, due to the relative measurement. Another option

is to impose a number of constraints on the projected features instead of generating 3D

reference information.

The method applied in this work is related to the second option. Because a camera

network is available anyway, it is possible to do a 3D reconstruction of projected features on

reference objects, without knowing the projector calibration or the object structure. This

way, 3D reference information is assigned to projected image features and the methodology

of the previous chapter can be applied, resulting in a bundle adjustment problem where the

reprojection error in the cameras and the projector are minimized in a least squares sense.

The parameter set to be optimized contains the scene structure, as well as the projector

intrinsics and extrinsics. The camera parameters are kept constant, because these are

already optimized with respect to known 3D reference information. It is clear that camera

calibration inaccuracies adversely affect the quality of the projector calibration. On the

other hand, no external reference is required, which makes the proposed method flexible

and contributes to the practical applicability.

5.2.3 Experiments

Two questions need to be answered when analyzing camera calibration results. First,

the consistency of the applied projection model with the physical imaging process needs

to be evaluated, and second, precision and accuracy of the calibrated model needs to be

evaluated. Although related, these two questions cannot be answered in one go, because

of differences in the degree of redundancy. A projection model with more DOF might give

more precise calibration results, while describing the projection process less accurately,
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due to overfitting to the available reference information.

The first question, regarding consistency of the projection model, arises primarily in

monocular camera calibration, due to the freedom of choice in the lens distortion model.

Here, a number of experiments have been conducted with varying number of distortion

parameters, as presented in the first section. Second, after motivating the choice of a

suitable distortion model, the geometric uncertainty under measurement noise in image

space is evaluated.

The experimental setup is sketched in Figure 5.1. Four cameras observe a common

volume of 150 × 150 × 40mm3. The cameras are positioned at a distance of roughly

∆z = 180mm to the measurement volume. The camera viewing angles relative to the

volume z-direction range between ϑ = 15◦ and ϑ = 30◦. Exact values are given in Table

5.1.

 

150mm

150mm 

40mm 

∆z = 180mm

c1 

c2 c3

C4

O

θ=20°

Figure 5.1: Experimental setup. Four cameras observe a common volume of 150× 150×
40mm3 from a distance of roughly 180mm. The cameras are manually mounted and
aligned so exact geometric relation may vary.

Ground truth information was generated, using a planar glass target with circular

reference markers, aligned in a rectangular grid (grid-spacing is 2mm). The markers have

a nominal positioning accuracy of 900nm. To generate 3D reference, the target was moved

vertically in 2mm steps, using a mechanical stage with nominal accuracy of 1µm (see

Figure 5.2).

As such, a nearly rectangular reference grid R of 59250 points has been generated,

covering a volume of 144 × 132 × 40mm3. The fact that the reference grid is

not exactly rectangular, results from a slight misalignment of the stage motion
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Camera ∆z ϑ
[mm] [deg]

1 185.27 16.95
2 183.56 29.26
3 174.96 24.07
4 176.28 20.16

Table 5.1: Vertical distance and angle for the four camera views. According to Figure 5.1,
the vertical offset ∆z and angle ϑ between viewing direction and vertical axis are given.

 

c1 

c2 c3

C4

O

Figure 5.2: Acquisition of ground truth data. A planar reference target is moved vertically
to cover the measurement volume. For evaluation, the target is also shifted horizontally,
to generate different points for testing.

direction to the glass-target normal direction. The y-motion direction in the target

reference frame was dy = (−0.27e−3, 1, 0.16e−3)T , and the z-motion direction

dz = (−4.49e−3,−0.57e−3, 999.99e−3)T .

To provide reference information for projector calibration, another set of images was

acquired, exchanging the reference pattern by a planar, white surface and moving it in

2mm intervals in z-direction. A DLP projector (800 × 600pixels) was used to project the

reference pattern onto the surface. A total of 16 calibration images were acquired.
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Lens Model Residual Err. f error T error
[pixels] [%] [mm]

1rad (0.13, 0, 12) 0.09 (0.03, 0.08, 0.2)
2rad (0.05, 0.06) 0.04 (0.01, 0.03, 0.09)
2rad2tan (0.04, 0.05) 0.04 (0.01, 0.03, 0.08)

Table 5.2: Residual error after monocular calibration. Different lens distortion models
have been used. One radial coefficient (1rad), two radial coefficients (2rad) and two radial
with two tangential coefficients (2rad2tan). The residual reprojection error is given, as
well as the propagated relative 3σ error of focal length, and the mean translational error
relative to the reference target.

5.2.3.1 Monocular Camera Calibration

Monocular camera calibration has been performed on four cameras, using the 21 distinct

planes of the reference data (see previous section) as calibration normals. The relative

plane poses are assumed to be unknown, as well as the relative camera poses and camera

intrinsics. Residual error in image space, as well as propagated 3σ bounds on the intrinsic

parameters were used as precision measures. Because no ground truth information on

camera and lens parameters is available, a ground truth evaluation has been done on the

3D reference points, by comparing points reconstructed from the calibration data to the

ground truth points.

Monocular calibration results for a single camera (1680 × 1220pixels, CCD, f = 8mm

lens), are given in Figure 5.3 and Table 5.2. Results are given for different lens distortion

models, one radial component only (Figures 5.3(a), (b)), two radial components (Figures

5.3(c), (d)), and two radial plus two tangential components (Figures 5.3(e), (f)).

Figures 5.3(a),(c),(e) show the lens distortion curve along the image radius, measured

from the principal point as the image center. The curve is normalized to a maximum

of one, and reprojection errors of all image points are given as a function of radius. For

a single radial distortion component, a systematic characteristic of reprojection errors is

visible in the images. By adding a second radial distortion component, the residual error

is distributed more or less randomly, with small residual systematic component, which is

obviously not radially symmetric. Two additional tangential distortion parameters give a

minor improvement in precision, as shown in Table 5.2.
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Figure 5.3: Residual error after camera calibration. One radial component (a)(b), two
radial components (c)(d), two radial and two tangential components (e)(f). The left figures
show the distortion curve, normalized to a maximum of one, and the residual reprojection
error (blue dots) for all reference points over the image radius. In the right figures, the
distribution of residual errors over the image area is shown.
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Camera Residual Err. f error T error
[pixels] [%] [mm]

1 (0.038, 0.041) 0.005 (0, 0, 0)
2 (0.038, 0.048) 0.005 (0.005, 0.007, 0.017)
3 (0.039, 0.049) 0.0047 (0.004, 0.007, 0.015)
4 (0.038, 0.037) 0.0048 (0.004, 0.003, 0.014)

Table 5.3: Calibration result after bundle adjustment. The error figures include mean
reprojection error, relative focal length error, and translational errors of the projection
centers w. r. t. the first camera.

5.2.3.2 Multi View Calibration

Monocular camera calibration was done for our cameras on the same reference information,

from different view angles. All precalibrated cameras have been refined together in a bun-

dle adjustment procedure. Multi-View calibration results are given in Table 5.3, in terms

of accuracy of reference points and reprojection error. Results for intrinsic parameters are

comparable to the monocular results.

5.2.3.3 Projector Calibration

(a)
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Figure 5.4: Residual error of projector calibration. The DLP projector has been calibrated
under the assumption, that its optics comply with the projection model introduced in
Section 2.3, using one radial component and two tangential distortion components (c)(d).
The left figure shows the distortion curve, normalized to a maximum of one, and the
residual reprojection error (blue dots) for all reference points over the image radius. In
the right figure, the distribution of residual errors over the image area is shown.

Features of the projected calibration pattern were reconstructed using the previously
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Lens Model Residual Err. f error T error
[pixels] [%] [mm]

2rad2tang (0.04, 0.02) 0.013 (0.01, 0.02, 0.04)

Table 5.4: Residual error after projector calibration. Two radial with two tangential
coefficients were used to model lens optics. The residual reprojection error is given, as
well as the propagated relative 3σ error of focal length, and the mean translational error
relative to the reference target.

calibrated multi-view setup. Calibration results and precision in terms of reprojection

error are given in Table 5.4. The projector’s viewing frustum is essentially a half cone, so

the principal point lies in the lower image area, at y = 647pixels on an 800 × 600pixels

projector image. At 0.04pixels, the reprojection error is moderately low, so the camera

model is consistent with the projector hardware. In Figure 5.4, the reprojection error is

shown over the radius. Errors are evenly distributed over the radius, which also suggests

consistency. Due to the high pixel size of the projector (13µm compared to 4.8µm of the

camera), the metric error of the projection unit is considerably higher.

It is important to note that a slight aspect ratio of the projector pixels could be noticed.

At 1.04pixels, this aspect can not be neglected and must be included in the parameter set.

5.2.4 Conclusion

Calibration of multiview systems and projector-camera systems have been studied ex-

tensively before. In this work it is shown, how such a sensor can be calibrated to high

accuracy with a minimum of external devices. Using a planar reference pattern, and an

approximately planar, white board for projector calibration, the entire system can be cal-

ibrated bottom up, a property which is important especially in industrial, day to day use.

A robot mounted sensor may recalibrate itself as part of a daily maintenance process and

continuously check for calibration consistency on the reference target.

The often tricky part of projector calibration is solved by providing geometric refer-

ences by the camera-system. The calibration process hereby becomes simple, because the

projector is treated like any other camera, but inaccuracies in determining the reference

points influence projector calibration accuracy. Nonetheless it was shown that an off-the-

shelf DLP projector is consistent with the central perspective camera model and applicable

also to high accuracy measurement tasks.
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5.3 Structure Estimation

The problem of structure estimation is to identify the set of world points, which projects to

sets of measured and corresponding points in two or more views. Due to measurement noise

and other factors, the projection will not be exact (Figure 5.5), leading to an estimation

problem.

Traditionally, the error measure is defined in image space, either as an algebraic error

or as Euclidean reprojection error. The projection mapping from P3 to P2 is defined by the

central perspective camera model as described in Chapter 2.3. Least squares estimation

leads to a solution for the three DOF per world point.
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Figure 5.5: Triangulation in a multi-view setup. In the noise-free case (a), all image rays
intersect exactly in the respective world point. Noisy image features, or systematic errors
in image space (b), make an exact intersection infeasible.

This approach has two shortcomings in terms of accuracy. First, the central perspective

camera model will never be complete. Effects like depth dependent lens distortion, image

plane unflatness, and optical effects other than decentering or radial distortion are hard

to model and calibrate. As a consequence, back-projected world rays will be affected by

segmentation errors, as well as systematic errors originating from overly restricted camera

models.

The second problem arises in multi-view configurations with more than two cameras.

Redundancy in the number of views clearly increases reconstruction accuracy, yet, in

practice, a world point will not necessarily be visible in all views. A partial occlusion

causes a considerable degradation of reconstruction accuracy, especially in least squares

estimation. The problem is sketched in Figure 5.6. If, due to occlusion, image ray n is
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Figure 5.6: Effect of occlusion. If u3 is omitted from the triangulation, the estimated
point X′ might experience considerable shift.

omitted, the reconstructed world point X will move towards the intersection of rays 1 and

2.

In this section, a different approach to structure estimation is introduced, which is

especially applicable for rigid multi-view setups which observe a limited volume. The

mapping from the scene space to image space is no longer described by an algebraic model,

but by a dense grid of reference world points and their projections in each camera view.

Intuitively it is obvious that this information implicitly encodes all systematic errors of

the projective mapping. A world point is expressed through barycentric coordinates with

respect to its closest reference points. It is shown in Section 5.3.1 that central perspective

projection of barycentric coordinates does not involve any intrinsic camera parameters.

As a consequence, the structure estimate is directly related to the reference point and not

influenced by model parameters. An obvious drawback of the approach is the necessary

effort for calibration.

After introducing the classical triangulation approach and barycentric reconstruction,

it is shown that the barycentric approach gives considerably higher measurement accuracy,

and that accuracy remains high under partial occlusions. Further, it is shown that the pro-

posed method is robust, even if the reconstructed point lies at the border or slightly outside

its enclosing reference points. As an alternative to least-squares estimation, barycentric

structure estimation may be formulated as a quasi-convex problem, where a global solution

can be found with respect to the L∞ norm. Finally, a concluding experimental comparison

between the different reconstruction approaches is given.
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5.3.1 Barycentric Coordinates

Expressing a point inside a polyhedron as a weighted combination of the vertices of the

polyhedron is a fundamental problem in computational geometry. Applications include

surface parametrization, free-form deformation and interpolation.

In particular, given a convex polytope P with vertices vi, an interior point x may be

written as a convex combination [55]

∑

i

bivi = x where bi ≥ 0 and
∑

i

bi = 1. (5.7)

The weights bi are called barycentric coordinates of x on polytope P . Barycentric

coordinates are easily constructed on a simplex (triangle in R2 or tetrahedron in R3). For

each vi, one calculates the volume of the simplex formed by x and the opposite face of vi,

divided by the total volume of P . An example in 2D is shown in Figure 5.7, where P is a

triangle, defined by points v1 . . . v3.

 

x

v1

v2

v3 

V1

V2
V3

Figure 5.7: Classical barycentric coordinates in a 2D triangle.

This construction has some drawbacks. It is not defined outside P , and it can not be

generalized to more complex polytopes, because the opposite face is no longer defined.

Wachspress [106] introduced a new barycentric coordinate representation, which is

valid also for convex polygons in 2D. Warren [109] later generalized the concept to convex

polytopes of any dimension. The resulting functions are smooth, positive inside P and

conicide with multilinear Cartesian interpolation. Yet, no practical formulation for the

construction of Wachspress coordinates in dimensions higher than R2 have been given.

Floater [27] introduced mean value coordinates in 2D to express points in the kernel of a
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star-shaped polygon. He later generalized the concept to convex polyhedra and the kernels

of star shaped polyhedra [28]. Ju et al. [54] generalized mean value coordinates from closed

2D polygons to closed triangular meshes. They showed that mean value coordinates are

smooth inside P and continuous everywhere. In 2007, Ju et al. [53] provided a unified

geometric framework to construct Wachspress coordinates, mean value coordinates and

discrete harmonic coordinates in a convex 2D polygon and 3D triangular polyhedra.

Figure 5.8: Planar interpolation using Wachspress coordinates (a), (b), and mean value
coordinates (c), (d) [54].

In Figure 5.8, the interpolation of hue values around a convex and concave polygon

are shown.

In order to construct mean value coordinates for a point X in a closed triangular mesh,

one first computes the mean vector for each spherical triangle (i.e. the projection a mesh

triangle onto the unit sphere centered at X):

m =
∑

i

1
2
θini. (5.8)

The spherical triangle is hereby sketched in Figure 5.9.

Weights per triangle vertex are further calculated as
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Figure 5.9: Spherical triangle. Normals ni and angles θi used for mean vector computation.

wi =
nTi m

nTi (ri −X)
. (5.9)

This construction method may become numerically unstable if the area of the spherical

triangle becomes small, i.e. the mesh triangle plane is nearly parallel to the mean vector.

For a more robust construction scheme, the reader is referred to [54].

5.3.2 Triangulation

A multi-view camera system, as depicted in Figure 5.5(a), is modeled by a number of

central perspective cameras ci, i = 1 . . . n. A single camera c is described by intrinsic

parameters, lens distortion parameters and extrinsics, which relate the camera poses to

a common WCF Cw. During triangulation, the goal is to estimate the location of a world

point X from a set of known projections u1, . . . ,un. If lens distortion has been removed,

the problem may be solved using DLT, resulting in a linear equation system of the form:




[u1]×P1

...

[un]×Pn


X = 0, (5.10)

where [a]× designates the cross-matrix of a, and Pi is the i-th projection matrix. Due

to measurement noise and systematic distortion effects, it will not be feasible to find an

exact solution (see Figure 5.5(b)). Rather, a linear least-squares approximation will be

sought.

A geometrically more intuitive problem is given by least-squares minimization of the

reprojection error in image space, which leads to a bundle adjustment problem of the form
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X̂ = arg min
n∑

i=1

d(PiX,ui)2, (5.11)

where d(a,b) designates Euclidean distance between vectors a, b. Other possible error

measures include angular error between projected rays and measured rays, or orthogonal

distance between X and projected rays.

5.3.3 A Least-Squares Model-Free Approach

A rigidly connected multi-view system, consisting of at least two cameras, can only observe

a limited volume in world space. We propose to observe a dense three-dimensional grid

of reference points, equally distributed in this volume. The reference point locations ri,

i = 1 . . . n, as well as their projections in each camera view vi,j , i = 1 . . . n, j = 1 . . .m are

saved.
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Figure 5.10: Projection of 3D barycentric coordinates. A world point X can be expressed
as a linear combination of a set of enclosing points ri. The corresponding image point u
can again be expressed as a linear combination of vi, the projections or ri.
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To project a world point X to image space, first the closest set of enclosing reference

points ri, i = 1 . . . k is searched. The location of X is then expressed by barycentric

coordinates W = (W1, . . . ,Wk)T , such that X = [r1, ..., rk] W. The 3D barycentric coor-

dinate vector W is then projected to a camera view as wj = (w1,j , . . . , wk,j)T , where the

Euclidean image point is reconstructed as uj = [v1,j , ...,vk,j ] wj . The geometric relations

are sketched in Figure 5.10. Hereby, the important observation is made, that W projects

to wj without knowledge of the intrinsic camera parameters, as will be shown in Section

5.3.3.1. Structure estimation is further done in analogy to traditional triangulation, by

minimizing the reprojection error in image space.

To make this procedure feasible, the following assumptions are made:

• Nonlinear image distortions can be approximated linearly within a small image patch.

This is necessary, because nonlinearities are essentially interpolated between refer-

ence points.

• Barycentric coordinates need to be well defined inside the set of basis points, at

the border, and outside border within a small neighborhood. This is necessary,

because an initial estimate for X may lie close to the border and move outside

during optimization.

Both prerequisites can be fulfilled in practice. Smooth behaviour of image distortions

is assumed also in the traditional lens distortion models, and generalized 3D barycentric

coordinates, which have smooth behavior in border regions have been introduced recently.

Further, model accuracy can be controlled by changing the density of the available image

points.

5.3.3.1 Barycentric Projection

In the Section 5.3.1 it has been shown that a world point X can be expressed as the

weighted sum of a set of enclosing vertices ri, as long as these are connected by a closed

triangle mesh with no self-intersections. The weight vector W = (w1, . . . , wk)T is ad-

dressed as barycentric coordinate vector. Among the possible barycentric representations,

mean values have been chosen in this work, mainly for ease of construction and smoothness

at the border of a polytope P . The general concept in this work however applies to any

kind of barycentric representation.

Now, the problem of central perspective projection is addressed. Without loss of

generality, a one-dimensional camera with focal length f , as shown in 5.11, is given. The
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camera is canonical, with projection center at the world coordinate origin, looking in

positive z-direction.
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r2=(y2, z2) 
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Figure 5.11: Projection of barycentric reference points to image space.

A world point X in P2 is expressed in barycentric coordinates W with respect to a set

of enclosing vertices r1, . . . , rk. The projections of X and ri are given by

u =
yf

z
=
f
∑

i yiwi∑
i ziwi

and vi =
yif

zi
, (5.12)

respectively. Now, a barycentric coordinate vector w = (w′1, . . . , w
′
k)
T in image space

is sought, such that

u = (v1, . . . , vk)w, (5.13)

which is equivalent to

f
∑

i yiwi∑
i ziwi

= f
y1

z1
, . . . , f

yk
zk

T
w. (5.14)

As a consequence, w is given by

w =
1∑
i ziwi

(z1w1, . . . , zkwk)T . (5.15)

An important observation is that w does not depend on f , so camera intrinsics are

practically eliminated, as long as image skew is zero.
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5.3.3.2 Reconstruction

In analogy to model based reconstruction, structure computation based on barycentric

coordinates can be formulated as a nonlinear least-squares estimation problem, which min-

imizes the reprojection error in image space. Given a function W = Fb(X, {rj , . . . , rk}),
which converts 3D Cartesian coordinates to barycentric coordinates, and a function w =

Fp(W,X), which projects 3D barycentric coordinates to their 2D equivalents, a least-

squares optimal estimate for X can be found by

X̂ = arg min
n∑

i=1

d(
[
vij , . . . ,v

i
k

]
Fp(Fb(X, {rj , . . . rk}),X),ui)2, (5.16)

where n is the number of views and aij designates the jth vector w. r. t. the ith view.

An initial solution X0 can be easily found by linear triangulation. An additional

problem is the efficient identification of {rj , . . . , rk}. In an industrial setting, the reference

points may be aligned in a rectangular grid, allowing identification in constant time, once

X0 is known. In an irregular grid, techniques like space partitioning may be applied to

find the enclosing references in logarithmic time.

5.3.4 Barycentric Reconstruction Under the L∞ Norm

The structure estimation problem may be formulated differently, estimating Ŵ instead of

X̂. This leads to a considerably simpler optimization task. The number of DOF increases

with the number of reference points, so at least four DOF need to be estimated in case

of an enclosing tetrahedron. Under perspective projection, one DOF is lost due to scale

invariance, so w4 can be fixed to one and W = (w1, w2, w3, 1)T .

The least-squares optimization problem 5.16 then becomes

X̂ = arg min
n∑

j=1

d

(∑4
i=1 vji z

j
iwi∑4

i=1 z
j
iwi

, uji

)2

. (5.17)

Note that zji , is also specified w. r. t. a camera view, because it designates projective

depth, which is equivalent to the z-coordinate only for canonical cameras.

The error function for a single camera view j can be rewritten to

Fj(W) =
∥∥∥∥

(v11z1, v21z2, v31z3, v41z4)W
(z1, z2, z3, z4)W

− u1,
(v12z1, v22z2, v32z3, v42z4)W

(z1, z2, z3, z4)W
− u2

∥∥∥∥
2

,

(5.18)
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where vik designates the kth coordinate of the ith reference image point.

View index j is omitted for ease of reading. Setting V1 = (v11z1, v21z2, v31z3)T ,

V2 = (v12z1, v22z2, v32z3)T , Z = (z1, z2, z3)T and rewriting (5.18), gives

Fj(W) =

∥∥∥∥∥

(
VT

1 − ZTu1

VT
2 − ZTu2

)
W1...3 +

(
v41z4 − u1z4

v42z4 − u2z4

)∥∥∥∥∥
2

ZW1...3 + z4
. (5.19)

Equation 5.19 has the form of a second order cone function

Fj(x) =
‖Ajx + bj‖2

cTj x + dj
, (5.20)

which is a quasi-convex function [57]. A global solution to the minimax (L∞) opti-

mization problem

min
x

max
j
Fj(x) (5.21)

can be found by second order cone programming (SOCP). The equivalent SOCP minimax

problem is hereby

min
x

max
j

‖Ajx + bj‖2
cTj x + dj

, cTj x + dj ≥ 0, (5.22)

which can be solved by bisectioning and solving the SOCP feasibility problem

‖Ajx + bj‖2 ≤ cTj x + dj . (5.23)

For a more in-depth treatment of the problem, the reader is referred to [57].

5.3.5 Experiments

To experimentally prove robustness and increased accuracy of the proposed method, a

multi-view setup consisting of four cameras has been constructed. Absolute accuracy

(i.e. deviation of of reconstructed points to ground truth points) has been evaluated for

the triangulation method and the barycentric approach. To evaluate robustness against

partial occlusions, the experiment has been repeated by omitting measurements from two

views. Further, the barycentric approach allows to incorporate more than four enclosing

reference points, which potentially reduces the influence of random noise in the reference

image measurements. Reconstruction accuracy was therefore evaluated using an enclosing
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Camera MRE
[pixels]

1 0.064
2 0.057
3 0.064
4 0.051

Table 5.5: Calibration result. The four-view camera system was calibrated using the
reference grid as ground truth data. Bundle adjustment on camera motion was performed,
including lens distortion, to retrieve intrinsic and extrinsic parameters. The MRE for the
four views is shown here.

tetrahedron (four points), and an enclosing triangle mesh which approximately forms a

cube (eight points).

5.3.5.1 Experimental Setup

The experimental setup is identical to the one used in Section 5.2.3.

For evaluation, another set of 21592 ground truth points E, covering a volume of

144 × 118 × 1.2mm3 inside the reference volume was generated. The evaluation points

were laid out within two z-layers of the reference grid. Because the behavior should

be identical for different references, evaluation of different barycentric coordinates w. r. t.

identical reference points was more of interest, than similar barycentric coordinates w. r. t.

different reference points.

5.3.5.2 Results

The multi-view system was calibrated by estimating camera motion and camera intrinsics

using a bundle adjustment procedure on the reference grid R. Lens distortion was modeled

by two radial and two tangential distortion parameters, according to chapter 2.3. Residual

error in terms of mean reprojection error (MRE) was roughly 0.06pixels, as given in Table

5.5.

Triangulation of the evaluation set E was done in four ways: linear triangulation using

four views (Lin4), linear triangulation from views 1 and 2 (Lin2), least squares bundle

adjustment using four views (Bun4), and least squares bundle adjustment using views 1

and 2 (Bun2). Results are shown in Figure 5.12 and Table 5.6.

The average distance to ground truth points for the four-view triangulation is in

the range of 9µm, the difference between linear triangulation and bundle adjustment is
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Figure 5.12: Histograms of model based reconstruction errors. Results are given in Eu-
clidean distance to ground truth point (DG) and reprojection error in view 1 (RE). Linear
triangulation in 4 views (Lin4) DG (a), RE (b). Linear triangulation in 2 views (Lin2) DG
(c), RE (d). Structure bundle adjustment in 4 views (Bun4) DG (e), RE (f). Structure
bundle adjustment in 2 views (Bun2) DG (g), RE (h).
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marginal. One important property is also visualized: a small reprojection error does not

necessarily imply high reconstruction accuracy, especially when redundancy is missing,

like in the two-view case.

Barycentric reconstruction was also performed in two ways. First, standard barycentric

coordinates based on volume ratios in a tetrahedron were used in four views (BarT4) and

two views (BarT2). Second, mean value coordinates were used on an enclosing cube in

four views (Bar4) and two views (Bar2). Results are shown in 5.13 and Table 5.6. 
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Figure 5.13: Histograms of barycentric reconstruction errors. Results are given in Eu-
clidean distance to ground truth point (DG). Refinement in 4 views, tetrahedron (BarT4)
(a). Refinement in 4 views, cube (Bar4) (b). Refinement in 2 views, tetrahedron (BarT2)
(c). Refinement in 2 views, cube (Bar2) (d).

The residual error in terms of Euclidean distance to ground truth points is about 50%

lower compared to model based reconstruction. While standard barycentric coordinates

give roughly the same accuracy, these are considerably less robust. Roughly 30% of points

had to be rejected during reconstruction, as these were moved to the tetrahedron boundary

during optimization.

Reconstruction based on the L∞ norm was evaluated, using an enclosing tetrahedron

(4D weight vector) and four views (BarSOCP). Results are shown in 5.14 and Table 5.6.

The global solution is comparable to the least-squares solution in terms of accuracy and

robustness, and is also considerably better than the model-based approach.
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Figure 5.14: Histograms of barycentric reconstruction error based on the L∞ norm. Re-
sults are given in Euclidean distance to ground truth point (DG).

Method Mean error # points Mean RE
[µm] [pixels]

Lin4 8.85 21592/21592 0.032
Lin2 11.24 21592/21592 0.02
Bun4 9.02 21592/21592 0.032
Bun2 11.22 21592/21592 0.018
BarT4 2.80 14467/21592 N/A
Bar4 4.16 21592/21592 N/A
BarT2 5.66 14950/21592 N/A
Bar2 4.86 21592/21592 N/A
BarSOCP 3.4 21472/21592 N/A

Table 5.6: Average reconstruction errors. Mean Euclidean error (DG), number of recon-
structed points relative to total number of points, and MRE in view1.

5.3.6 Conclusion

Structure estimation based on barycentric coordinates requires considerably more hard-

ware effort for calibration. A dense 3D grid of reference points has to be created, and

the corresponding image projections measured to high accuracy. Yet, the procedure has

a number of advantages which should not be neglected. First, any type of projection

and any type of distortion effect can be implicitly modeled. Even cameras which do not

follow the central perspective model can be used without changing the method, a nice

property, if projector devices are used. Second, reconstruction results are directly related

to ground truth data. Systematic errors due to incomplete modeling of the camera system

are eliminated. Accuracy is also directly related to ground truth accuracy. The denser

the reference grid, and the more accurate the reference measurement, the more accurate

the result will be.
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During experiments, the usage of mean value coordinates proved to be useful, as these

allow also extrapolation of data in the close vicinity of reference points.

The globally optimal solution based on SOCP showed similar results in terms of accuracy

as the least-squares solution. Because the parameter vector linearly grows with the number

of reference points, the problem was limited to an enclosing tetrahedron.
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6.1 Introduction

Among the measurement principles presented in Chapter 3, the coded-light measurement

principle is industry-proven and one of the most versatile principles. It has been chosen

in this work for the following reasons: active illumination makes it robust against object

surface properties like color and texture. Area based reconstruction saves time during

measurement, which reduces cycle times in industrial inspection and reduces the risk

of false measurements due to sensor motion. Camera and projector optics and relative

position are adjustable, which allows to change field of view and accuracy easily. A

structured light system requires one or more cameras, which can be reused also for other

inspection tasks, like 2D image processing, passive stereo or object recognition. With

the advent of rugged micro projectors based on DLP or LCoS technology, structured light

systems can be miniaturized such that they easily fit on an industrial manipulator, and

are sufficiently robust to sustain the acceleration forces during motion.

In this chapter, a review on the state-of-the-art in structured light metrology is given.

While no direct contribution to the measurement principle itself is proposed, several en-

121
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hancement methods of the input signal are discussed in Chapter 4, which allow to cope

with surface specularity and high scene dynamics. Further, the volumetric triangulation

method proposed in Chapter 5 may also be directly applied.

The chapter is structured as follows: a review of the state-of-the-art in structured light

metrology is given in the next section, followed by a detailed introduction to the principle

of time multiplexed structured light. Experiments validate the choice of structured light as

a robust and accurate measurement technique. The chapter is closed by a short discussion.

6.2 Related Work

In structured light metrology, the correspondence problem is solved by actively signalling

each point on the object surface with a unique code, usually by using a projector. A

passive sensor, traditionally a camera, records the signal, and decodes it to obtain unique

correspondence between projector and camera pixels. If camera and projector are in-

trinsically and extrinsically calibrated, it is sufficient to encode each column instead of

each pixel, and compute the 3D reconstruction from epipolar geometry or directly from

ray-plane intersection.

Over the past 30 years, a considerable amount of scientific work has been published

in this field. According to the survey paper of Salvi [94], reconstruction methods are best

categorized by the applied multiplexing technique.

6.2.1 Direct Coding

If each projector pixel column carries a unique code at every time instance, e.g. rep-

resented by color or intensity, one speaks of direct coding. Hereby, high temporal and

spatial resolution may be obtained, at the cost of robustness, because the distance be-

tween codewords is small and easily distorted by surface texture or stray light. An early

depth sensor based on intensity ratios has been proposed by Carrihill and Hummel [17],

with poor results. Color patterns have been applied by Tajima and Iwakawa [100].

6.2.2 Spatial Neighborhood

The second approach relies on pattern coding in a spatial neighborhood. Hereby one loses

spatial resolution, because for each measured point a local neighborhood is required to

carry its codeword. High speed reconstructions are possible, as this is a one-shot technique.

Maruyama et al. [75] proposed a non-formal coding technique using a pattern with vertical
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slits of random length. The correspondence of one slit is decoded by the length ratios of

of at least six neighboring slits. Mathematical coding techniques apply spatial codes like

De Bruijn sequences and M-arrays.

6.2.3 Time Multiplexing

By far the most popular codification strategy is temporal multiplexing. Here, a unique

code for each pixel column is generated by a temporal sequence of binary images. Spatial

resolution is high, at the cost of temporal resolution. In the simplest case, the image

sequence resembles a binary counter, which assigns a unique number to each column

(Posdammer et al. [88]). A more robust codification technique through gray code patterns

has been introduced later by Inokuchi et al. [49]. Using phase-shifting techniques, spatial

accuracy can be boosted to sub-pixel level, at the cost of additional analogous patterns to

be projected. As an example, see the work of Gühring [40].

6.2.4 Recent Developments

The work of Caspi et al. in 1998 [18] was one of the first who considered the radiometric

camera-projector chain to get an improved structured light system. The main focus of

this work was robust color coding in single shot patterns. In the paper of Je et al. [52],

also pattern adaption is applied, but with the focus of optimizing the number of patterns

for rapid range sensing of moving objects. In the recent work of Koninckx [64][63], scene

adapted structured light is introduced. There, not only intensities, but also the shape of

the pattern is optimized. Through a crude estimation of the geometry, the shape of the

pattern is adapted to scene geometry to avoid aliasing caused by sampling foreshortened

patterns. In [64] pattern adaption is used for single frame coded light techniques as well

as for time based coding. Also the work of Grossberg et al. [39], where a projector is used

to control an objects appearance in a camera, can be related to the problem of pattern

adaption in structured light.

Novel ideas for pattern creation and analysis are mainly triggered by technological

advances. In [82], the authors present a framework for fast active vision using DLP projec-

tors. They take advantage of the temporal dithering of illumination, caused by the mirror

flicker, which can be observed with high speed cameras. Each brightness value can be

encoded uniquely due to dithering. When using this kind of technique, only one image

is projected by the DLP projector, while an image sequence is acquired with a high speed

camera.
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Figure 6.1: Structured light codification strategies. The three main approaches are time
multiplexed coding, spatial neighborhood coding, and direct coding [94].
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Work on fast 3D scanning and automatic motion compensation is presented in [111]. A

phase shift pattern sequence is rapidly projected and analyzed on the graphics processing

unit (GPU) to obtain real-time performance, at 17 measurements per second. Due to the

tracking capabilities of a fast system, the authors do not need to continuously project long

code sequences. With the help of an additional color camera, textured depth maps are

created. A method for dense shape reconstruction using a single structured light pattern

is presented in [60]. The pattern consists of horizontal and vertical lines forming a grid. A

number of coplanarity constraints are imposed on the grid connections and solved. Results

have shown that reconstructions with a RMS error of half a millimeter can be obtained when

using a coded structured light reconstruction as ground truth. In [12], a new method for

the indexing problem of uncoded stripe patterns is presented using a maximum spanning

tree of a graph to obtain possible connectivity and adjacencies of stripes. When using a

0.5megapixel camera, a reconstruction of the full image can be done within 0.17 seconds.

6.3 Methodology

In this section the reconstruction method based on time-multiplexed structured light is

explained in detail. The coding strategy relies on a gray-code pattern. Accuracy is finally

enhanced by employing a phase-shift technique for sub-pixel refinement.

6.3.1 Structured Light Using Gray Code Patterns

In time multiplexed structured light, each projector pixel column carries sufficient infor-

mation to uniquely identify it in the camera image. The information is hereby contained

in a temporal sequence of bits, which are mapped to intensity values, e.g. bright and dark

(see Figure 6.3). The projector-camera setup is geometrically calibrated, so it is sufficient

to decode the corresponding column for each camera pixel. Intersection of the epipolar

line with the column finally gives a unique point correspondence (see Figure 6.4).

The temporal bit sequence resembles a gray-code binary counter, counting from 0

for the first column, to n − 1 for the final, n-th column. Equal to a standard binary

counter, a total of n bits are required to encode 2n columns, but it has the advantage that

the Hamming distance is minimal for neighboring columns, which increases robustness.

Wrong decoding of a bit will result in an error of only one resolution unit. Further, the

width of the smallest pattern is always two resolution units, which facilitates detection

and correct decoding, especially on slanted surfaces. An example of 16 gray code patterns
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is shown in Figure 6.2.

Figure 6.2: Structured light code sequence. Binary encoding of 16 columns using a Gray-
code sequence. Each column consists of a pair of pixels [62].

Figure 6.3: Binary pattern projection. Each column of the projector image is identified
by a temporal sequence of binary stripe patterns to resolve the correspondence problem
[62].

6.3.2 Phase Shifting

Discrete encoding of pixel positions limits the theoretically reachable measurement ac-

curacy and introduces quantization noise. Projection of a continuous function helps to

overcome this limitation and allows to determine a sub-pixel accurate correspondence in

projector space for each camera pixel. In practice, several issues need to be considered

when selecting a suitable continuous function. The function value for a single camera pixel

should be determined from the intensity values at this pixel. No spatial neighborhood

should be taken into account, as this would destroy the advantages of a time multiplexed

method. Further, the function should be robust against stray light, slight defocusing of

the projector, and properties of the object surface.

The phase shifting method can be considered as the gold standard in the field of optical,
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Figure 6.4: Point correspondence from column correspondence. Intersection of epipolar
line and pixel column. Codification only establishes a correspondence of camera pixel to
projector column. A unique point to point correspondence is established by intersecting
the column with the respective epipolar line [62].

area based 3D reconstruction. A temporal sequence of a sinusoidal signal is projected, and

sampled at each camera pixel. From the relative intensities of at least four samples, it is

possible to reconstruct the signal phase. Assuming that projector defocus is equivalent to

a low-pass filter, it will not distort the sinusoidal signal phase, and, because only intensity

ratios are considered, the method is robust against surface properties like texture and

color [94][11].

Consider four sinusoidal stripe patterns which are shifted in steps of π/2, as shown

in Figure 6.5. In the simplest case, the pattern is generated by a binary sequence and

projector defocus.

Figure 6.5: Phase shift sequence over 32 columns. A sinusoidal signal with a wavelength
of four columns is desired. If the projector image is defocused, the signal may be approx-
imated by a rectangular signal [62].

Using the following equation, the signal phase Φ0 is obtained per pixel from the four
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samples p1 . . . p4:

Φ0 = arctan

(
p2 − p4

p1 − p3

)
(6.1)

Figure 6.6: Reconstructed pixel phase. Pixel phase as calculated with (6.1), normalized
to a range of 0 . . . 1 [62].

The resulting phase is depicted in Figure 6.6. In combination with the binary code

(Figure 6.2), which determined the absolute phase as a multiple of 2π, a sub-pixel accurate

column position can be calculated.

6.4 Experiments

Accuracy and robustness of a structured light technique is best evaluated by means of 3D

reconstruction of known reference objects. To facilitate the generation of reliable ground

truth information, planar reconstruction evaluation is used, where a planar surface is

reconstructed as a point-cloud, and the deviation from the best-fit plane is calculated.

6.4.1 Theoretical Considerations

To provide a foundation for the practical evaluation, a few theoretical considerations

on measurement accuracy in case of error-free geometrical calibration are presented. The

workflow of a structured light algorithm starts with image acquisition, followed by a search

for correspondences. In this course, a pixel in camera image space is selected and its

correspondence in projector image space is sought. Location in camera image space is

consequently considered noise-free, while the location in projector space is affected by

radiometric effects like projection noise, image acquisition noise and external effects like

changing stray light. Noise finally results in a location error. A schematic example is

depicted in Figure 6.7. It is important to note that accuracy is ultimately determined

by the recovered phase, not by the binary code, and phase accuracy is determined by

the SNR. While the noise power depends on ambient light, object surface properties and
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exposure time, the signal power is determined by the projector/camera radiometric range,

radiometric resolution and the object surface. If one considers projector quantization noise

as the principal source of error, the expected geometrical error is given by

E =
2×N
S

, (6.2)

where N is the projector radiometric range and S the signal wavelength in pixels. A

range of S/2pixels is subdivided into a maximum of N sub-pixel positions. As an example,

one may set S = 8 and N = 256, and gets a maximal sub-pixel resolution of 0.0156pixels.

With a typical geometric configuration, as sketched in Figure 6.7, the location error σp in

the projector image plane is related to a geometric error of σr = 9.7µm along the noise-free

camera ray. Any other geometric error due to projector/camera noise can be derived in

the same manner.

Figure 6.7: Relation of projector noise and location error. A location error in projector
image space σp corresponds to a geometric reconstruction error σr in object space [62].

Apart from quantization noise, the recovered phase is subject to a variety of random

distortions. According to experiments conducted in this work, phase information could

be obtained with an average deviation of σg = 0.5 in units of grey values, leading to an

error of σp = 0.0078pixels in the projector image plane and an error of σr = 4.8µm in the
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reconstruction.

Summing up the quantization error and the error due to noise, one gets

σr =
√
σ2
r1 + σ2

r2 = 10.8µm (6.3)

In comparison, the measurements in Figure 6.10 show an error of 13.5µm at the angle

of 90◦ (the plane was fronto-parallel to the projector image plane, which is equal to the

measurement at 90◦ in Figure 6.10).

6.4.2 Planar Reconstruction

Reconstruction accuracy was primarily evaluated with plane-fitting experiments on a num-

ber of reference objects with different surface properties. The shape of the reference is

shown in Figure 6.8, and the dimensional drawing is shown in Figure 6.9. For the plane-

fitting experiments, the backside of the object is used. The standard deviation of recon-

structed points from the best fitting plane in a least-squares sense has been calculated as

a measure for planarity.

In a first step, accuracy under different orientations has been evaluated. An area of

10cm2 on the reference object was reconstructed from different orientations, by rotating

the object around its axis in steps of 10◦ between −80◦ and +40◦. Results are shown in

Figure 6.10.

Figure 6.8: Anodized aluminum reference object. Dimensions are 30 × 70 × 120 mm3

[62].

As shown in Figure 6.10, an accuracy between 7µm and 35µm is reached within an

angular range of 120◦ on the anodized aluminum workpiece. Reconstruction accuracy

changes with orientation, which is due to perspective foreshortening and the resulting

change of spatial resolution in object space. The problem is sketched in Figure 6.11.

Projector stripes are narrow if the plane is nearly fronto-parallel to the projector. With
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Figure 6.9: Dimensional drawing of the reference object [62].

Figure 6.10: Reconstruction accuracy under changing orientation. The best-fit plane was
calculated from all reconstructed points, without outlier detection [62].
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increasing slant angle, a single stripe has to cover more object surface area, and noise in

phase reconstruction increases.

Figure 6.11: Effect of perspective foreshortening on reconstruction accuracy. On a nearly
fronto-parallel surface (left), spatial resolution of the projector stripes is higher than on
slanted planes (right) [62].

Second, reconstruction accuracy on different surface types was evaluated. Six reference

objects with identical shape but different surface finish, as shown in Table 6.1, have been

reconstructed. The experimental setup is identical to the previous one. Each object is

rotated around its axis in 10◦ intervals, and a planar area of 10cm2 is reconstructed in

each step. The results, shown in Table 6.2, give the average error over all orientations, as

well as the error of the best reconstruction between −80◦ and +40◦ of rotation angle.

6.4.3 Angle Measurement

The plane-fitting experiments presented in the previous section evaluate accuracy for a

single plane at a given time. In a second experiment, several planes on a known reference

object have been reconstructed simultaneously. The angular error between the planes

serves as a quality measure.

The reference object shape resembles a prism with dimensions as shown in Figure

6.12. Three surface patches have been reconstructed. The same reference object has

been constructed using three different materials, as shown in Figure 6.3. The ideal values

for the angles are: α = 155◦ (angle between surface 1 and2), β = 120◦ (angle between

surface 2&3), γ = 116.9◦(angle between surface 1 and 3). Due to an unknown production

tolerance, the objects have been checked by a CMM. CMM measurement results are shown in
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Workpiece 1 Workpiece 2

anodized aluminum chromed steel
Workpiece 3 Workpiece 4

black steel black PVC
Workpiece 5 Workpiece 6

blue PVC white PVC

Table 6.1: All reference objects. Reference objects with different surface finish for evalu-
ation of system robustness [62].

Workpiece Average reconstruction results Best reconstruction results
σ [mm] σ [mm]

1 0.0135 0.0061
2 0.0724 0.0319
3 0.0235 0.0119
4 0.0359 0.0177
5 0.0467 0.0194
6 0.0962 0.0462

Table 6.2: Planar reconstruction under different surface properties. Using the reference
objects from Table 6.1, every object was reconstructed under 12 different slant angles over
a range of 120◦ in steps of 10◦. An area of 10cm2 was reconstructed. All reconstructed
points (including outliers) were used for the computation of the standard deviation σ from
the least-squares plane [62].
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Table 6.4, and the structured light reconstruction results are shown in Table 6.5.

Figure 6.12: Prismatic reference object dimensions [62].

6.4.4 Effective Measurement Volume

The effective measurement volume of a structured light sensor is limited by the intersection

of camera and projector fields of view, as well as depth of focus of both devices. In this

experiment, the effective measurement volume for the medium scale sensor prototype,

proposed in Chapter 3, is evaluated.

A planar surface was reconstructed over the possible reconstruction area at different

depths. The hardware has been adjusted to get a field of view of approximately 120 ×
180mm2 when projector and camera are in focus. From there, the plane has been moved

along the sensor viewing direction, until the nearest and farthest position has been reached.

The measurements are shown in Figures 6.13, 6.14 and 6.15. Between 170mm and 280mm

distance to the sensor, the planar reconstruction gives reasonable results. Due to the

central perspective nature of the sensor, spatial resolution is higher close to the sensor,

and the field of view is higher at larger distances. In Figure 6.16, a sketch of the working

volume is shown. Closest to the sensor, one has a reconstruction area of 150cm2 and

a point density of 220points/mm2. Figure 6.13 shows that a reconstruction accuracy of

40µm can be obtained within the whole depth range as sketched in Figure 6.16.
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Prism 1 Prism 2

brushed aluminum chromed steel
Prism 3 Prism 4

black steel black PVC
Prism 5 Prism 6

blue PVC white PVC

Table 6.3: Prismatic reference objects with identical shape but different surface properties
[62].

α β γ
[deg] [deg] [deg]

Prism 1 155.094 119.939 116.866
Prism 2 155.106 120.335 116.943
Prism 3 155.042 120.421 117.293
Prism 4 155.231 120.257 116.526
Prism 5 154.985 119.914 116.952
Prism 6 155.135 119.915 116.837

Table 6.4: Ground truth measurement results of surface angles on the reference objects
shown in Table 6.3. A CMM was used for this purpose. Nominal accuracy of the measure-
ment system is 2.7µm over a range of 300mm.
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α Eα β Eβ γ Eγ
[deg] [%] [deg] [%] [deg] [%]

Prism 1 154.942 0.098 120.516 0.481 117.318 0.386
Prism 2 155.134 0.018 120.407 0.059 116.560 0.327
Prism 3 155.055 0.008 120.664 0.208 117.297 0.003
Prism 4 154.976 0.164 119.808 0.373 116.723 0.169
Prism 5 155.102 0.075 120.412 0.415 117.165 0.182
Prism 6 154.821 0.202 119.298 0.514 116.971 0.114

Table 6.5: Angular measurement results on the prisms shown in Table 6.3. The angles be-
tween the three surface patches, labeled 1,2 and 3 in Figure 6.12, are computed. The error
is computed as the relative deviation between this measurement and the measurements
performed with the CMM, as shown in Table 6.4.

Figure 6.13: Planar reconstruction accuracy under varying depth. Due to limited depth
of field of the projector and the camera, the working range is limited as well. A reasonable
reconstruction accuracy is achievable within a depth range of about 100mm [62].

Figure 6.14: Planar reconstruction accuracy under varying depth [62].
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Figure 6.15: Maximal reconstructed area under varying depth [62].

Figure 6.16: Sensor depth range. Depth range, limited by depth of focus and intersection
of the fields of view, the sensor prototype is limited to a depth range of roughly 100mm.
The maximal reconstruction area is 150cm2 at minimum depth and 300cm2 at maximum
depth [62].

6.5 Conclusion

The structured light 3D reconstruction approach has been discussed in this chapter. The

method, consisting of time-multiplexed binary coding, and sub-pixel refinement by phase-

shifting, can be considered the gold standard in this field. The realization of the method on

the measurement system proposed in Chapter 3 has been evaluated in terms of accuracy,

robustness and measurement range. Experiments showed that under good environmental

conditions, the method reaches an accuracy level close to the theoretical limit.

One issue not addressed in this chapter is geometry. The way from known correspon-

dence to the 3D point includes intersection of the respective projector column with the
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epipolar line and subsequent triangulation. Many different methods exist in literature,

including ray-plane intersection and pure table lookup. With the method proposed in

Chapter 5, effects like nonlinear lens distortion may also be handled, which is not possible

if the projector column is modeled as a 3D plane.

Robustness of the codification method suffers from external effects like stray light,

specular reflections on shiny objects, interreflections, and high scene dynamics. Some of

these problems are addressed in Chapter 4, where solutions are presented based on HDR

imaging and pattern adaption.
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The measurement concept introduced in Chapter 3 incorporates an industrial manipu-

lator in the measurement chain. Robotic manipulators, typically articulated arms with six

DOF, show high repeatability in 3D position and orientation (pose), but may be inaccurate

in absolute positioning. As stated in [56] and [8], errors in the kinematic parameters are

among the main causes of positioning inaccuracy. If a manipulator is hereby used as a

measurement device, its kinematic parameters should be accurately determined, which

leads to a parameter estimation problem, commonly addressed as kinematic calibration

or kinematic identification.

Part of this estimation problem is to determine the robot tool-hand transformation,

which is also called eye-hand transformation for robot mounted cameras. The unknown

Euclidean transformation from the robot hand CF to the tool CF depends on sensor geom-

etry and mounting accuracy. So, if it has to be known accurately, it should be determined

after mounting.

In this chapter, a short review of existing approaches to kinematic calibration are given,

as well as a novel method for calibration of a robotic manipulator. The robot kinematic

139
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chain and its tool are thereby observed by a hand mounted camera through a mirror.

This enables hand-eye, hand-tool, and kinematic robot calibration without incorporating

accurate external references, except a mirror. Using this particularly simple setup, hand-

eye calibration becomes independent of the kinematic chain and parameter observability

constraints in kinematic calibration become more relaxed, which makes pose planning for

robot calibration more convenient.

7.1 Introduction

In this work, two novel contributions to the problem of robot calibration are presented.

Both are based on the same principle: Observing the mechanical robot structure by a

hand mounted vision system through a mirror (see Fig. 7.1).

 
 

 

B 

πm 

Xm,i 

Li 

Figure 7.1: Mirror based kinematic calibration. A hand mounted camera observes refer-
ence markers, mounted on the kinematic chain, through a mirror.

The advantages of this configuration are as follows: for hand-eye calibration, the robot

kinematic chain is eliminated from the estimation procedure and hence does not contribute

to the final error. Additionally, besides determining the hand-eye transformation, any hand

mounted tool, that is visible in the mirror, may be calibrated for relative pose as well.

Only one mirror is required as an external device, it does not even need to be fixed during

calibration.

In kinematic calibration, the motion of each robot link is observed by attaching ref-

erence markers to it and tracking their motion. This results in a considerably better

conditioned estimation problem, compared to the state-of-the-art. The mirror can be ar-

bitrarily placed to provide a good overview of the robot hand and body. In contrast to
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hand-eye calibration, it must remain fixed during calibration.

The chapter is structured as follows: in Section 7.2, related work in the field of robot

calibration is discussed. An automated method for mirror-based hand-eye calibration is

presented in Section 7.3. Kinematic calibration is discussed in Section 7.4. In Section

7.5, experimental results on synthetic data are presented, and practical feasibility of the

proposed method is validated. The chapter is concluded by a discussion in Section 7.6.

7.2 Related Work

7.2.1 Hand-eye Calibration

Most hand-eye calibration methods share one common principle: estimation of hand-eye

pose, based on kinematic and optical measurements. On one side, hand motion Ai is

calculated using the manipulator joint readings. On the other side, camera motion Bi is

estimated relative to a reference target, using a pose estimation algorithm. The principle

is depicted in Fig. 7.2. The problem may either be formulated in relative motions, as

AiX = XBi, where X is the unknown hand-eye transformation, or in terms of absolute

poses, incorporating also the position of the reference target Z as AiX = ZBi.

Shiu and Ahmad [96] derived a system of linear equations from which the angles of

rotation, and subsequently the rotation matrices are determined. Tsai and Lenz [103]

derived a closed-form solution from two relative pose measurements based on constraints

on the eigenvectors of RX , RA, RB. Chou and Kamel [20] used unit quaternions to

represent rotations and solved for qX using algebraic, linear constraints and singular value

decomposition (SVD). Wang [107] presented a survey of these methods and favored Tsai’s

method in terms of accuracy.

One argument against separately solving for RX and tX is error propagation. An

uncertain estimate of the rotation negatively influences translation accuracy. To overcome

this limitation, nonlinear methods to solve for rotation and translation simultaneously were

introduced by Horaud and Dornaika [48], who also introduced an additional formulation

of the calibration problem in terms of projection matrices, and Zhuang and Shiu [120],

who put more emphasis on parameter observability through measurements. Daniilidis [22]

proposed to model the rigid transformation as a dual quaternion, which represents the

screw of motion in an elegant way, leading to a linear, simultaneous solution for RX and

tX .

More recently, Strobl and Hirzinger [97] addressed the problem of formulating a physi-
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Figure 7.2: Hand-eye parameter estimation. The Euclidean transformation X is estimated
by closing a loop of relative pose measurements (a), or absolute pose measurements (b).

cally relevant error model for nonlinear optimization in SE3, including automatic weight-

ing of rotation and translation error during optimization.

7.2.2 Kinematic Calibration

In essence, kinematic calibration leads to a parameter estimation procedure, where the

robot end-effector pose is measured by an external sensor. A parametric model, describing

the forward kinematic mapping from joint coordinates q to end-effector poses Hh→b is

optimized until the deviation of calculated robot poses from the measured poses becomes

minimal. A considerable amount of research effort has been put into kinematic calibration,

addressing the following three key problems:

• Pose measurement

• Kinematic modeling

• Observability

Hollerbach et al. [47] presented a unified taxonomy of kinematic calibration methods.

Their main categorization is open-loop methods, which is the principle described in the

previous paragraph, closed-loop methods, where the end-effector is rigidly attached to the



7.3. Hand-Eye Calibration 143

ground (a varying number of DOF may be fixed), and screw-axis measurement methods,

where joint axes are explicitly measured and kinematic parameters are derived analytically.

Open-loop methods require an external reference system, which measures one or more

DOF of the end-effector pose. The measurement system may be a laser tracker [89] [4],

a laser interferometer [67] [2], hand mounted laser beams and stationary cameras [69],

vision systems [44] [91] [118] [119] [5] [33] [72] [79] and structured light systems [58].

Veitschegger [105] used a precision machined mechanical reference and aligned the end-

effector manually, whereas in [78] a CMM was used for pose measurement. Goswami et al.

[38] used an linear variable displacement transducer (LVDT) sensor to measure one DOF of

the end-effector pose.

Closed-loop methods do not require external measurement devices. The end-effector

is rigidly connected to the base, creating a closed kinematic chain. Because the range of

possible arm motions is severely restricted, careful planning of the fixture type is necessary,

such that all kinematic parameters can be identified [5] [81].

Among the vision-based calibration methods, open-loop methods are the most popular,

because the camera pose relative to a known reference target can be measured through

structure and motion techniques [42]. Either the camera, or the target is mounted to

the end-effector and provides a measurement of all six pose DOF [118]. Thereby, work on

camera calibration can be fused with kinematic calibration to formulate a large parameter

estimation problem, where camera and robot are calibrated simultaneously [119]. Even

self-calibration of the camera and kinematic system may be considered [77].

7.3 Hand-Eye Calibration

The calibration setup is as follows. A hand mounted camera observes the robot flange

through a mirror. Hand pose and mirror poses relative to the camera are estimated

directly.

The hand mounted camera observes the flange through a planar mirror, as sketched in

Fig. 7.3. By moving the end-effector relative to the camera, different views of the flange

are generated, which allow to formulate redundant constraints between CCF Cc and hand

CF Ch.

A very similar problem is described in Kumar et al. [66], where a set of stationary,

diverging cameras is calibrated by using a stationary reference target and a moving planar

mirror. In contrast to Kumar et al., in this work the mirror plane normal is estimated

directly.
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Figure 7.3: A hand mounted camera observes the hand through a mirror. For hand-eye
calibration, the hand is moved, changing the position of πm in the hand CF. A rectangular
reference marker is placed on the mirror to determine the plane normal.

7.3.1 Theory

In the proposed method, the camera projection center C and rotation matrix R relative

to the hand are estimated from measured mirror plane normals ni and measured reflected

camera poses C′i, R′i in at least three views.

The Mirror plane πm induces a reflection on the camera. The image of a real world

point X in the mirrored camera C′ is identical to the image of the mirrored point in the

real camera, as shown in Fig. 7.4.
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Figure 7.4: Mirrored camera pose. A camera (projection center C, rotation R) observes
world point X through a mirror. The image of reflected point X′ in the real camera is
identical to the image of the real point in the reflected camera (C′, R′).

If the real camera pose is known, the mirrored camera is uniquely determined by the

position of the mirror plane πm = (nT ,−d)T , which has three DOF. Note that d specifies

the distance to C, not to the origin. The mirrored projection center C′ must have the

same distance to πm as C, and the line connecting both centers must be perpendicular to

πm. It follows that
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C′ = C− 2dn. (7.1)

For the mirrored rotation, the following proposition holds:

Proposition 1 The vector connecting C and C′ is orthogonal to (rk + r′k), iff rk is not

orthogonal to the mirror plane.

A proof is given in [66]. Vectors rk and r′k, k = 1 . . . 3 denote the three columns of

rotation matrices R and R′. The following nonlinear constraint in C and rk holds:

(C′T −CT )(r′k + rk) = 0. (7.2)

The constraint can be linearized by introducing additional coefficients of the form

CT rk = sk. (7.3)

Kumar used (7.2) and (7.3) to formulate a linear, homogeneous equation system in

C and rk. The linear solution was projected to the closest orthogonal solution. It was

further refined by a bundle adjustment procedure, enforcing orthogonality and unit norm

of rk. His approach requires at least five images to find a solution.

However, if the mirror plane normal is known, (7.2) can be simplified to

(CT − 2dnT −CT )(r′k + rk) = 0, (7.4)

which is equal to

nT (r′k + rk) = 0. (7.5)

Each image contributes one linear constraint for each column of R, so at least three

images are necessary to solve for rotation. The center of projection is recovered from (7.1),

by solving the system of equations

(C′ −C)× n = 0. (7.6)

As a consequence it was shown that knowing the mirror plane normal simplifies the

estimation problem and allows calibration from fewer views.
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7.3.2 Method

From a methodological point of view, the calibration procedure consists of the following

steps: (1) Estimate n, (2) use 7.6 to solve for C, and (3) use a nonlinear bundle adjustment

to increase accuracy. In this section, these steps are reviewed more closely.

It is easy to get an estimate for n from a single image, by using orthogonal vanishing

points from a planar, right-angled object attached to the mirror. For a vanishing point V

in P3, the image projection is given by

v = MV1...3, (7.7)

where M is the first 3× 3 submatrix of projection matrix P. Now, if VA and VB are

two vanishing points orthogonal to the plane normal Vn, the following equation holds for

the first three coefficients of Vn:

Vn,1...3 = M−1vA ×M−1vB. (7.8)

As an example, Vn may be determined from the mirror edges, or from any planar,

rectangular object which lies flat on the mirror. If the reference marker dimensions are

known, it would theoretically be possible to estimate the mirror plane directly. This step

is omitted for practical reasons, as the reference marker is likely to be blurred in the

image, resulting in a potentially erroneous depth estimate, and the mirror plane may not

be accessible due to covering layers, or in case of a second surface mirror.

With known mirror plane normals, and known mirrored pose estimates, the linear

equation systems described in 7.3.1 are solved using Singular Value Decomposition.

A nonlinear optimization procedure is applied to refine results. The problem is to

estimate the set of unknown parameters, namely the mirror plane in each view and the

hand-eye transformation. The mirror plane normals have been estimated from orthogonal

vanishing points. The position of these may be uncertain, if the measured vanishing lines

are close to parallel. Therefore, it is more natural to optimize the vanishing point positions,

and derive the mirror plane normal from these. The hand pose has been measured from

image features, it is also natural to minimize an image based error:

arg min
∑

d(xi,P(Xi))2 +
∑

(lTi vi)2 +
∑

(‖vi‖ − 1)2, (7.9)

where xi are image measurements of the robot hand, and Xi are the corresponding 3D

features. Function P(X) is the image projection function, which includes reflection by the
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mirror, transformation to the CCF and central perspective projection. Also, reconstruc-

tion of the mirror plane from vanishing points is included in this function. The second

summation term in (7.9) penalizes deviation of the vanishing points vi from the measured

vanishing lines li, and the third term pulls the norm of the vanishing point vectors towards

unit norm to constrain scale.

7.4 Kinematic Calibration

The constraints derived for mirror-based hand-eye calibration are not valid for kinematic

calibration, as the eye-base transformation is not constant. Nonetheless, a mirror provides

the opportunity to observe eye motion relative to the base, as well as link motions relative

to camera and base.

A setup for kinematic calibration is sketched in Fig. 7.1. Each link, which is sufficiently

large and observable by the camera, has at least one artificial point marker attached to it.

Two markers on the robot base have a known distance, to uniquely constrain scale. The

number of mirrors is not restricted, so one is free to add one for observing certain poses.

The number of reference markers is also not restricted. If a link is mechanically too small

to attach a marker, it may be omitted.

The resulting optimization problem has more free parameters than the original open-

loop problem, but these are better constrained. Each point marker contributes three

unknown DOF, namely the translation relative to its link CF.

7.4.1 Theory

The arm is modeled according to Robinson’s notation [93], where each link is described

by a rigid transformation relative to the previous link frame Hi, consisting of a series of

particular transformations of the form

Hi = R(p1, z)T(p2, z)T(p3, x)R(p4, x)R(p5, y)R(p6, z), (7.10)

where R(ϕ, a) denotes a rotation of angle ϕ around axis a, and T(d, a) denotes a

translation of d along axis a.

Depending on the link structure, two or more parameters per link are held fixed during

calibration. A hand mounted camera observes the robot arm through a mirror, described

by plane πm, which is given in the base coordinate system CB. Each link Li, which is at

least partially observable through the mirror, has reference markers Xm,i rigidly attached
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to it, where m specifies the point index, and i specifies the CF it is given in. For a single

point measurement, the following equation holds:

xm,q = K [I|0] H−1
e→hH

−1
h→bDπHi→bXm,i, (7.11)

where xm,q is the image point corresponding to Xm,i at robot pose q, and Dπ is the

reflection matrix of the mirror plane πm.

7.4.2 Method

To estimate the set of unknown parameters, a LM procedure is applied. Assuming that

intrinsic camera calibration and hand-eye calibration are known, a good initial solution

for the camera pose is found by computing the forward kinematic solution from blueprint

parameters. The mirror plane is initialized from a single square marker attached to the

surface.

7.5 Experiments

7.5.1 Simulation

Both algorithms are evaluated in terms of sensitivity to image noise and initialization

error. The simulated robotic model resembles a Mitsubishi RV-1A 6 DOF manipulator. As

for the camera, a 2megapixels sensor with a pixel width of 4.4µm and 4.8mm focal length

was simulated.
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Figure 7.5: Mean translational error over image noise for the nonlinear hand-eye calibra-
tion result (solid line) and the linear solution (dashed line).

As for hand-eye calibration, several small square markers are distributed over the

mirror surface. Each square marker is represented by 40 points, evenly distributed along

its perimeter, which simulates an edge-based segmentation method. The robot hand is
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also represented by a square marker, with hand CF in the center. The image measurements

are corrupted with Gaussian noise, where σ is increased from 0pixels to 1.0pixels. For each

noise level, ten repetitions were made. Results are given in Figure 7.5, in terms of mean

translational error over noise. It can be seen that the linear method gives plausible results

(below 10mm) for image noise below 0.5pixels. Up to 1pixels image noise, the nonlinear

method always converges to an accurate solution (< 1mm error).

To evaluate kinematic calibration, a total of eight reference points have been applied

to the links and the robot base. The marker positions were selected to approximate the

actual marker positions, as shown in Fig. 7.7. Kinematic calibration results over image

noise are given in Fig. 7.6. To evaluate calibration accuracy, a total of 4096 joint values

have been regularly sampled over the workspace. At each position, the translational error

between ideal and calibrated model has been evaluated. Again, for each noise level, the

mean error over ten repetitions is given.
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Figure 7.6: Mean translational error over image noise for the optimized kinematic calibra-
tion result (solid line) and the initial solution (dashed line).

The synthetic calibration experiment gave a residual position error of 0.12mm for hand-

eye calibration, and 0.13mm for kinematic calibration, under an image based localization

error of 0.1pixels. The calibration poses were selected, such that the points of interest

were visible in the camera, but not to maximize an observability measure.

7.5.2 Practical Experiment

A practical experiment has been conducted by mounting an industrial camera on the

end-effector of a Mitsubishi RV-1A robot arm (Fig. 7.7). The camera was calibrated

in an offline procedure using a method similar to Zhang [116]. A mirror (dimension

800× 600mm2) was placed in front of the manipulator. Rectangular markers (dimension

25×25mm2) were placed on the front side of the mirror plate to estimate the plane normal.
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Figure 7.7: Robot calibration setup. A camera, mounted on a robot with attached refer-
ence markers (a) observes the robot through a planar mirror (b).

The applied mirror was a second surface mirror, which might introduce a translational

error in the mirror plane due to refraction, a source of error which has not been further

investigated.

For hand-eye calibration, a total of 16 robot poses were used. The robot flange pose

was measured by fitting two ellipses in the image. One for detecting the flange perimeter

and one to measure a drill-hole to constrain rotation around the hand center (see Fig.

7.8).

Kinematic calibration was performed from a total of 35 robot poses, the corresponding

virtual camera views are shown in Fig. 7.9. The complete kinematic chain was evaluated

against 32 independent camera poses calculated relative to a highly accurate reference

target (150 × 150mm2 dot grid pattern, nominal accuracy 0.9µm). These poses were

compared with the blueprint robot on one side, and with the calibrated robot on the other

side. Hand-eye transformation for the blueprint robot was estimated using the method of

Tsai/Lenz. The blueprint robot gave a mean translational error in the camera pose was

3.88mm for the blueprint robot, and 1.54mm for the calibrated robot.
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 Figure 7.8: Hand-eye calibration. A hand mounted camera observes the hand flange
(dashed ellipse) in a mirror. Rectangular markers (dashed lines) are attached to the
mirror to determine the plane normal.

Figure 7.9: Robot model and mirrored camera poses. Moving the hand mounted camera, a
number of virtual camera stations behind the mirror (dashed line) is generated, observing
the robot. Axis units are given in [mm].
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7.6 Conclusion

Robot kinematic- and hand-eye calibration is possible using a hand mounted camera and

mirrors. In the context of this work, several cameras are anyway mounted to the robot

hand for measurement purposes. The method is cheap, because no external reference

apart from a planar mirror is required. One obvious drawback is the requirement that the

hand flange must be visible. In many cases this is difficult to guarantee due to mechanical

reasons. It is important to note that the hand-eye translational offset must be sufficiently

large to generate a well constrained photogrammetric problem.

The feasibility of the proposed procedure was demonstrated in a laboratory experiment.

While no initialization is necessary for the hand-eye problem, the kinematic calibration

procedure requires rough knowledge of the kinematic chain, hand-eye offset and location

of the mirror plane. Kinematics and hand-eye offset may be initialized from construction

plans, while the mirror plane location can be estimated e.g. from the mirror edges. In

principle, the method can be applied to any type of kinematic manipulator, as long as

links are visible by the camera through a mirror. It would also be possible to place the

camera outside and observe the moving robot, but here one would lose flexibility in the

range of motion and in selecting suitable calibration poses.

Further research would include calibration through multiple mirror reflections, as it

has been done for 3D reconstruction in [29], and the tracking of robot links by natural

features instead of coded markers.
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In this chapter, the methodological findings of this work are brought together in an

integrated system. A 3D computer vision sensor is constructed, consisting of four cameras

and two projectors, mounted on an industrial manipulator, as described in Chapter 3.

The prototype is used to solve a practical inspection problem, according to a functional

specification as provided by an automation company. The author hereby aims to demon-

strate flexibility and practical applicability of the entire measurement concept, and also

of the specific methods which have been introduced so far.

8.1 Introduction

In this chapter we turn back to a similar problem as stated at the beginning (Section

1.1). An exhaust pipe, shown in Figure 8.1(a), which is approximately 50cm long, has one

contact flange on each ending. It should be automatically checked if the relative position

of both flanges is correct, whether the sealing surfaces are planar and the drill holes are

compliant with defined quality constraints on position and diameter.

153
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(a) (b)

(c) (d)

Figure 8.1: Exemplary measurement application. An exhaust pipe (a) has to be inspected
for dimensional correctness of entrance flange (left) and exit flange (right). A measurement
image of one flange with marked boreholes is shown in (b). The point-cloud resulting from
a structured light reconstruction is shown in (c). Measured borehole circles on the point-
cloud is shown in (d).

The measurement sequence hereby consists of moving the sensor to each contact flange,

perform the local measurements, namely drill-hole measurement and planarity checks, and

finally compute the relative displacement of both flanges.

8.2 Inspection Methodology

8.2.1 Drill Hole Inspection

Each contact flange consists of several drill holes (Figure 8.1(b)). Hole diameters and

distances between them need to be inspected. In a first preprocessing step, the influence of

stray light is suppressed by using difference images as described in Chapter 4.4.2. Because

of the shiny metal surface, data redundancy is required to accurately measure all boreholes,
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which is achieved by employing all cameras of the sensor setup. The drill hole borders

are coplanar with the flange plane, which facilitates data fusion from the different camera

views, as illustrated in Figure 8.2.1. In a first step, the flange plane π is reconstructed

using structured light reconstruction (Figure 8.1(c)) and subsequent least-squares plane

fitting.
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Figure 8.2: Principle of borehole inspection. First, the surface plane π is reconstructed
using structured light (a). Second, an edge detector is applied in each camera view 1 . . . n.
Edge pixels are back-projected to the plane π, where an ellipse-fitting method fuses the
results [70].

In a second step, images of the flange are acquired from all cameras. In each camera

view, the drill hole borders are detected separately by using an edge detector. The edge

pixels are then back-projected onto the known flange plane π, where an ellipse-fitting

algorithm is applied to estimate the borehole parameters (radius and center), as shown

in Figure 8.1(d). In this course, the information gathered by several cameras is elegantly

merged. The ellipse-fitting procedure, essentially a least-squares estimation problem, is

conducted in object space.

A different option would be to estimate the borehole ellipse separately in each camera

view, and finally estimate the corresponding 3D quadric. The proposed method has the

advantage that ellipse estimation takes place in object space. For nearly circular boreholes

this means that the estimation problem is not biased due to perspective distortion (see

Chapter 2.5), and measurements from all camera views, weighted with their confidence,

are elegantly merged.
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8.2.2 Planarity Inspection

As a by-product of the drill-hole inspection problem, the flange plane is reconstructed,

in form of a point cloud, as well as an analytic plane. The deviation of reconstructed

points from the plane holds information about flange planarity. For better visualization,

the height map of the sealing surface of the exhaust pipe depicted in Figure 1.1 is shown

in Figure 8.3. A point-cloud of the second exhaust pipe is shown in Figure 8.1(c).

Figure 8.3: Height map of a flange surface. Using pattern adaption, even specular reflecting
surfaces can be reconstructed with high spatial resolution [70].

8.2.3 Flange Inspection

The relative position of both flanges is derived from the local drill-hole measurements, the

known eye-hand calibration and robot kinematic parameters. The working principle is

sketched in Figure 8.4. A unique CF is assigned to each flange, using the drill hole centers

as anchor points. The relative pose of the flange to the sensor is determined and further

transformed to the robot base CF. When both flanges are given in the common base CF,

their relative pose is easily derived.
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Figure 8.4: Principle of a global measurement. Two distinct local measurements are
performed in the sensor CF. In each measurement, the pose of an object relative to the
sensor is determined. With known sensor motion, both measurements are transformed in
a common CF [70].

8.3 Evaluation

8.3.1 Local Measurement

The measurement results were evaluated against reference measurements from a CMM. The

entry and exit flange planes were measured using tactile point measurements and plane-

fitting. The interior walls of the drill holes were hereby sampled pointwise (10 measure-

ments per hole). The resulting points were projected to the flange planes to obtain the

upper hole boundary. An ellipse-fitting algorithm gave the hole centers and radii. The

reference measurement was repeated twice. Because the result varied slightly, the vision

system was evaluated against both CMM results, as shown in Tables 8.1 and 8.2, where

the reference measurements are compared against each other, as well as the vision system

results.

To evaluate the local measurement performance under more well-behaved ambient

conditions, a synthetic flange was measured as well, consisting of a sheet of paper glued

on glass, with boreholes (three black circles) printed on it. The same flange measurement

procedure as before was performed. Figure 8.5 shows an example image. The green circles

denote the reference centers of each hole and the red dots denote the measurement result.

Results of the synthetic flange measurement are summarized in Table 8.3. Circle radii,

distances between circle centers and distances to the centroid are compared to the reference

information, obtained indirectly through the printer resolution.

The synthetic flange measurement showed superior accuracy, compared to the real-
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E1 [mm] E2 [mm] ECMM [mm]

Center hole1 0.28 0.3 0.036
Center hole2 0.24 0.25 0.034
Center hole3 0.18 0.2 0.035

Mean center 0.24 0.25 0.035

Flange centroid 0.0 0.0 0.0

Radius hole1 - 0.23 -
Radius hole2 - 0.34 -
Radius hole3 - 0.20 -

Table 8.1: Measurement results on entrance flange. On the entrance flange, shown in
Figure 8.1(b), the borehole radii and center locations were measured. The Euclidean
errors between measured parameters and the first CMM measurement (E1), as well as the
second CMM measurement (E2) are given, as well as the Euclidean deviation between both
CMM measurements (ECMM ) [70].

E1 [mm] E2 [mm] ECMM [mm]

Center hole1 2.39 2.03 0.91
Center hole2 3.8 3.22 1.58
Center hole3 2.93 2.39 1.07

Mean center 3.04 2.55 1.19

Flange centroid 3.01 2.49 1.13

Radius hole1 - 0.85 -
Radius hole2 - 0.19 -
Radius hole3 - 0.60 -

Table 8.2: Measurement results on entrance flange. On the exit flange, the borehole radii
and center locations were measured. The Euclidean errors between measured parameters
and the first CMM measurement (E1), as well as the second CMM measurement (E2) are
given, as well as the Euclidean deviation between both CMM measurements (ECMM ) [70].

world example. On one side, this results from the idealized object properties, and on the

other side from more accurate reference information. The real flange holes are slightly

elongated, making an exact reference measurement difficult. Even two CMM measurements

showed a considerable deviation from each other.
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Figure 8.5: Synthetic flange with hand-annotated reference information (green circles)
and measured 3D points, reprojected to the image (red dots). The centroid of the circle
centers is also shown, in comparison with the ideal centroid, which has been printed on
the synthetic flange a s black dot [70].

Erad [mm] Ed [mm] Ecc [mm]

Hole1 0.0314 0.0526 0.0133
Hole2 0.0161 0.2242 0.1017
Hole3 0.0100 0.0251 0.0859

Mean 0.0192 0.1006 0.0670

Table 8.3: Metric error of synthetic flange measurement. Circles on a printed paper (see
Figure 8.5) were inspected. The measured parameters are circle radii, distances between
circle centers and distances of the circle centers to their centroid. The measured results
are compared to ground truth information retrieved from the printer resolution. Erad is
the absolute radius error, Ed is the absolute error of center-center distance (w. r. t. the
next hole), and Ecc is the error of the distance between a circle center to the centroid of
all circle centers [70].

8.3.2 Global Measurement

The accuracy of global measurements is mainly affected by the robot positioning quality,

which can be split into repeatability and absolute positioning accuracy. In this section,

repeatability and absolute accuracy are evaluated for a specific manipulator, which has

been used during measurement, namely an ABB IRB 2400/16 6 DOF robot.
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8.3.2.1 Repeatability

Repeatability forms a lower bound on the reachable absolute positioning accuracy. As

a consequence, in a first step it has been evaluated whether the robot complies to the

nominal value of 60µm [1].

In accordance with the ISO9283 standard [50], the industrial robot manipulator of

the type ABB IRB 2400/16, with the vision sensor mounted on its hand, was moved to

random position in its workspace and afterwards placed in front of a static reference target,

similar to the calibration procedure described in Chapter 5.2.3. The sensor pose relative

to the target was measured and recorded. The procedure was repeated over roughly 70

minutes with different robot motions. Finally the pose difference over all measurements

was evaluated, resulting in a mean absolute error of 28µm.

8.3.2.2 Absolute Positioning

To evaluate absolute positioning accuracy, a steel plate with eight drill holes, as shown in

Figure 8.6, was constructed. The reference object was inspected by a CMM to get accurate

ground truth information.

Figure 8.6: Reference object for evaluation of absolute positioning accuracy. Eight drill
holes with a diameter of 20mm (named B1, B2,..., B8 ) are placed in intervals of 100mm
over the length of the reference object.

The plate was placed in the robot workspace, as shown in Figure 8.7. The measurement

system was used to determine the relative position of the drill holes. Because the length

of the object exceeds the vision sensor’s workspace, it had to be moved from one hole to
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the next. The measurement results were merged afterward using the known robot motion

and sensor-hand pose. The borehole measurement procedure was hereby identical to the

one described in Section 8.3.1. The evaluated distances are sketched in Figure 8.7(b).

(a) The reference object is mounted 1400mm in
front of the robot base, at a height of 850mm.

(b) Measured drill holes. The distances between the third hole and rest of the
holes to the right were measured with the CMM and with the vision sensor.

Figure 8.7: Robot accuracy evaluation using a reference object.

A comparison to the CMM data gave a mean absolute positioning accuracy of 0.065mm

over ten repetitions of the measurement procedure.

The outer borders of the reference plate were also reconstructed using structured light,

to obtain a length measurement for the object (see Figure 8.8).

The measured plate length was 769.74mm, in comparison to the CMM measurement

of 769.97mm. The difference of 0.24mm serves as a quality measure for the absolute

positioning accuracy over the whole plate length.
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Figure 8.8: Measurement of object length. Both outer surfaces (read and blue) of the
reference object were reconstructed using structured light and plane-fitting. The object
length was derived by calculating the perpendicular distance of the center of the blue plane
to the red plane [70].

Using the same procedure, plate thickness was measured, as shown in Figure 8.9.

The thickness measurement was compared to reference data measured by a digital sliding

caliper of the type Mitutoyo CD-6”CX, with a nominal tolerance of ±0.02mm. A total of

five reference measurements were conducted, in the same area as the vision sensor, resulting

in an average thickness of 14.74mm. The difference to the vision based measurement is

0.33mm.

Finally, the flange measurement as described in Section 8.2 was conducted on a real

exhaust pipe and compared to reference data from a CMM. Because two reference measure-

ments with the CMM also differed considerably, a comparison between them and the results

from the vision system is given in Table 8.4.

8.4 Conclusion

This work has been partly conducted in cooperation with an automation company, in the

course of generating a highly flexible, accurate and easy to use measurement instrument

for 3D inspection. In this chapter, the applicability of the proposed methods to a real-

world problem with real-world requirements has been demonstrated. Additional problems
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Figure 8.9: Measurement of object length. The thickness was estimated by reconstructing
the front and the back side of the steel bar using structured light. To both point clouds (red
and black dots) planes were fitted, and plate thickness was calculates as the perpendicular
distance from the red plane centroid to the blue plane [70].

the sensor was able to solve include 2D image processing tasks like barcode reading, optical

character recognition and detection of welding artifacts.

The exhaust pipe, used as an example throughout this work, has a complex shape.

The difficulties we had during creation of reliable reference data using a CMM, show the

complexity of the measurement problem. The global measurement consequently gave the

best results on a simpler object, namely the ruler used to evaluate absolute positioning ac-

curacy. It can also be observed, that the ruler thickness measurements show a larger error

than the pose measurements of the drill holes. This is probably due to joint inaccuracies.

The robot joint excitations for the upper joints were considerably higher in the thickness

experiment, because the sensor had to be placed on opposite position and orientation.

Errors in the eye-hand calibration are also more prominent in this configuration. An er-

roneous offset in the sensor viewing direction is essentially doubled when doing thickness

measurements and cancels out when doing only translational measurements.
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Comparison of global flange measurement to CMM data

Entrance flange
E1 E2 ECMM

Angle error [deg] 0.0 0.0 0.0
Ellipse center error [mm] 0.0 0.0 0.0

Exit flange
E1 E2 ECMM

Angle error [deg] 0.63 0.76 0.14
Ellipse center error [mm] 3.01 2.55 1.07

Flange centroid measurement (entrance - exit flange)
CMM1 CMM2 Sensor

Distance [mm] 406.67 407.25 406.75

Table 8.4: Measurements of the sensor system, compared to two measurements of a CMM.
Two reference measurements differed considerably, so the vision sensor is compared to
both. The entrance flange was used as alignment plane and the centroid of the flange’s
drill holes was used as origin, therefore there is no error on the entrance flange. The
centroid error states the translational error between the coordinate systems fitted to each
flange.

In accordance with the literature in robot calibration, accuracy strongly depends on

the manipulator used, so it is hard to give absolute measures for the reachable system ac-

curacy. The striking feature of the proposed concept however is ease of use. Once set up,

all calibration tasks, ranging from camera/projector calibration to eye-hand calibration

and kinematic calibration, run automatically. This alone saves time during robot mainte-

nance, sensor maintenance or replacement of broken parts. Further, pattern adaption on

the measurement area also runs automatically. The image-based measurement is planned

afterwards, on an optimal sensor placement and on illumination-optimized images. Selec-

tion of cameras, selection of the light source, data transfer and control are all solved in

one generic package which can be applied to a variety of inspection problems.
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Conclusion

In this thesis, the problem of vision based three-dimensional quality inspection in industrial

environments has been addressed, with a special focus on medium scale part inspection

(dimension in the range of one meter). Within the huge variety of possible measurement

concepts, a robot mounted projector-camera system has been proposed, motivated and

evaluated. In the course of the work, the two main limiting factors of accuracy and

robustness were further investigated: radiometric quality and geometric accuracy.

An investigation of the available measurement concepts showed, that their realizations

are either limited in the range of applications, overly complicated or very expensive. The

sensor proposed here mainly consists of industrial cameras, standard video projectors and a

manipulator. In relation, e.g. to a CMM, all of these parts are comparably cheap. The parts

are combined in one package, in a fixed geometric configuration, and are together able to

solve a large variety of measurement problems. The applicability has been demonstrated

on a real-world problem, where an exhaust pipe had to be inspected for a variety of

different parameters.

The central factor of every robust vision system is image quality. On metallic objects,

which are common in industrial quality inspection, dynamic range is a key issue. An

investigation of different methods for dynamic range enhancement was conducted. Both

the principle of HDR imaging and the principle of intensity optimization on the projector

brought improvements in accuracy on difficult surfaces. Hereby the optimization of pro-

jector intensity is preferable, because excessive light intensity is hereby avoided in the first

place, which also avoids imaging artifacts. Especially in quality inspection, where the same

type of object is inspected repeatedly, the optimization pattern can be reused from object

to object, which results in a considerable speedup, compared to HDR imaging. Currently,

165
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the proposed pattern adaption method is based on knowledge of scene geometry, which

leads to an ill-posed problem. Future work would be the investigation of methods which

do not rely on scene knowledge or even do not rely on geometric sensor calibration.

With radiometrically optimized images of an object, the second problem is how to relate

image based measurements to world coordinates. We hereby rely on position information

from the robot and a triangulation based measurement principle. For triangulation, the

correspondence problem is solved by a proven method, namely structured light. Assum-

ing ideal image measurements, resulting 3D accuracy relies on correct modeling of robot

and sensor geometry, as well as accurate knowledge of the model parameters. The mod-

eling process touches different fields of expertise, from robotics over photogrammetry to

computational geometry. It was shown that the resulting model can be calibrated in an

automatic fashion, including camera geometry, projector geometry, and robot geometry.

In this course, two novel contributions were proposed: robot calibration by self-inspection

through a mirror and structure estimation through interpolation with generalized barycen-

tric coordinates.

To complete the work with an outlook, one inevitably notices, that the hardware

components by themselves are under a rapid development. Projection and camera systems

are continuously miniaturized, with ever increasing resolution. This does not only have

an effect on sensor miniaturization, but allows to increase redundancy in the number of

projector and cameras. Especially the intelligent exploitation of redundant projectors is a

topic which has not been addressed so far.

Another issue which was exempt from this work is user interaction. Many sensor capa-

bilities require the application of geometrical ”tricks”, like the plane-based circle fitting,

proposed in Chapter 8. These methods require a considerable amount of parametriza-

tion, which is hard to do if the underlying methods are not known to the engineer. On

the other hand, most of these parameters are geometric in nature, and are intuitive, if

presented in 3D, in camera image space, or directly on the object. This can also be real-

ized with a projector-camera system. A guided task teaching system, which relies on the

projector-camera system for user interaction, would hereby be a promising approach.

The proposed hardware system was developed to the state of a research prototype.

Consequently, engineering issues like long-term stability or temperature sensitivity need

to be investigated in detail.
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Acronyms and Symbols

List of Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

BRDF bidirectional reflectance distribution function

CCD charge coupled device

CCF camera coordinate frame

CDS correlated double sampling

CF coordinate frame

CMM coordinate measuring machine

CMOS complementary metal oxide semiconductor

CPC complete and parametrically continuous

CRF camera response function

DH Denavit Hartenberg

DLP digital light processing

DLT direct linear transform

DMD digital micromirror device

DOF degrees of freedom

DOM degree of motion

DR dynamic range

GigE gigabit ethernet

GPU graphics processing unit
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HDR high dynamic range

ICF image coordinate frame

IR infrared

IR-LED infrared light emitting diode

ISO International Organization for Standardization

LAN local area network

LASER light amplification by stimulated emission of radiation

LCD liquid crystal display

LCoS liquid crystal on silicon

LED light emitting diode

LIDAR light detection and ranging

LM Levenberg-Marquardt

LVDT linear variable displacement transducer

ML maximum likelihood

MLE maximum likelihood estimation

MRE mean reprojection error

PDF probability density function

PMD photonic mixer device

PRF projector response function

RMS root mean square

RANSAC random sample consensus

RPY roll-pitch-yaw

SNR signal to noise ratio

SOCP second order cone programming

TOF time of flight

VDI Verein Deutscher Ingenieure

WCF world coordinate frame
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