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Abstract

Augmented Reality (AR) systems present a mixture of the real world and
virtual, computer generated objects to the user. One of the most challenging
tasks when building an AR system is camera tracking. This process of deter-
mining the exact current location and orientation of the camera with respect
to the scene is essential to be able to render objects registered with the real
world. In this thesis a novel approach to vision based camera tracking on
mobile devices is presented.

Building on previous work by Grabner et al. an on-line learning natural
feature tracker is implemented and adapted to the needs of an AR system.
This special approach of on-line learning of natural features of objects in the
scene allow for Anywhere Augmentation, i.e. the use of AR in completely
unprepared and previously unknown environments. The resulting tracker is
integrated into the OpenTracker framework which in turn can be used as
the tracking sub-component of the Studierstube AR application framework.

The system is tested within the Vidente application scenario, aiming
at the support of architects and field workers of utility and infrastructure
companies. In this case the AR systems provide a natural way to explore and
interactively modify georeferenced 3D data by letting the user walk around
at the construction site and visualizing models of the existing subsurface
infrastructure right in place.

The results of the experiments show a real-time capable, flexible and
adaptive yet robust tracking system.



Kurzfassung

Augmented Reality (AR) Systeme präsentieren dem Benutzer eine Mischung
aus realer Umgebung und virtuellen, computer-generierten Objekten. Eine
der größten Herausforderungen bei der Konstruktion eines AR Systems ist
Kamera-Tracking. Dieser Prozess, bei dem es darum geht die exakte aktuelle
Position und Orientierung der Kamera relativ zur Umgebung zu bestimmen,
ist essentiell um die virtuellen Objekte in die reale Umwelt einzupassen. In
dieser Arbeit wird ein neuer Ansatz für bildgestütztes Kamera-Tracking auf
mobilen Geräten präsentiert.

Aufbauend auf vorangehenden Arbeiten von Grabner et al. wird ein
on-line lernender “natural feature tracker” implementiert und an die Er-
fordernisse eines AR Systems angepasst. Dieses spezielle Verfahren des on-
line Lernens von Eigenschaften in der Szene natürlich vorhandener Objekte
ermöglicht Anywhere Augmentation, i.e. die Benutzung von AR in dem Sys-
tem völlig unbekannten und unpräparierten Umgebungen. Der resultierende
Tracker wird in das OpenTracker Framework eingebaut, das selbst wiederum
als Subkomponente des Studierstube AR Applikations-Framework verwen-
det werden kann.

Das System wird im Kontext des Vidente Projekts getestet. Vidente
hat zum Ziel Architekten und Arbeiter von Versorgungs- und Infrastruktur-
Unternehmen zu unterstützen. AR bietet hier Benutzern die Möglichkeit geo-
referenzierte 3D Datensätze auf intuitive Art und Weise zu inspizieren und
modifizieren, indem sie vor Ort mit einem AR Gerät ausgestattet die Umge-
bung betrachten und ihnen vorhandene Untergrundinfrastruktur passend
eingeblendet wird.

Die Ergebnisse der Experimente zeigen ein Echtzeit-fähiges, flexibles,
adaptives und dennoch robustes Tracking System.
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Chapter 1

Introduction

Augmented Reality (AR) systems enable users to experience of a combination
of the real world and virtual computer generated scenes. The intention of
mobile augmented reality is to give users equipped with electronic devices
the possibility to move naturally within their surroundings, and see (and
sometimes even interact with) virtual objects. It can thus also be seen as
the most intuitive kind of computer interface. One way to achieve this kind
of mixture is to let the users wear special glasses through which they can
directly see the environment and additionally the virtual objects that are
projected into the glasses. The other possibility is to take a camera, attach
it to the user (e.g . mounted on a helmet or on the back of a PDA, mobile
phone,. . . ) so that it sees the world from the user’s point of view, present
the video as background on the screen of the hand-held device or on the
screens of a “head mounted display” (HMD) and display the virtual objects
on top of it. In both cases views of the virtual objects must be rendered
appropriately, so they can be blended into the user’s current view of the
world.

One of the most challenging tasks in building an AR system is to deter-
mine the position and orientation (together called the pose) of the camera
(or the user’s head). Precise knowledge about the pose is needed to be able
to render the virtual objects from the same angle of view and give the user
a consistent impression of the augmented world. Only then the users can
be convinced that the virtual objects really are part of the physical world
surrounding them. This task, commonly referred to as camera tracking, is
the central problem of this thesis.

1.1 Motivation

This work is part of the Vidente1 project, which is an effort to build an AR
system for use in urban planning. The overall goal is to aid planners and field

1http://studierstube.icg.tu-graz.ac.at/vidente/
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Chapter 1. Introduction 2

workers in their every day work by providing tools for intuitive, efficient and
interactive exploration and modification of electronic datasets representing
three-dimensional models of underground infrastructure components such as
gas and electricity pipelines. There are two scenarios (examples are shown
in Figure 1.1) in which AR is going to be used to help the users:

Indoor, Table-top Model On top of a model, a plan or an aerial photo
of the building site, local existing infrastructure (i.e. gas and water pipes) is
displayed. Planners can use their AR devices to explore the computer model
from different angles and interactively and cooperatively manipulate it. As
you can see, special markers where added to the table top model.

Outdoor, On-Site Planning When going outside to the construction
site, project leaders, architects and workers should able to interactively in-
vestigate the location’s infrastructure and models of the planned modifica-
tions just by looking around, without having to read and interpret abstract
2D plans.

Figure 1.1: Vidente, Handheld Augmented Reality for Technical Infrastruc-
ture, indoor and outdoor applications

Camera Tracking Although mobile AR is a relatively new topic of re-
search and many prerequisites like powerful, mobile, light weight, embed-
ded (and affordable) computing devices have only become available recently,
there is already quite a rich variety of camera tracking approaches and work-
ing systems. Each of them employs certain types of sensors attached to the
mobile device and/or installed in the environment to measure the position
and orientation. An overview and discussion is given in section 3.1.

One important class of systems tries to recover the pose directly from
the images taken by the camera of the mobile AR system. Generally these
approaches yield the best results of registration, especially in environments
that have not been carefully prepared with special tracking equipment.
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Among these vision based trackers, discussed in detail in section 4, there
is a set of methods aiming to detect well known, fiduciary target object
markers in the image and use previous knowledge about them to identify
their position and orientation relative to the camera. Figure 1.2 shows ex-
amples of the kind of fiducials used for tracking with the ARToolkitPlus [70]
system.

(a) The standard marker with binary pat-
tern encoding the marker’s id

(b) The DataMatrix marker present-
ing an encoded message (this one says
“http://www.imagination.at/”)

(c) A frame marker leaves space for arbi-
trary content at the center

(d) Tracking a map with an overlaid dot
grid on a mobile phone

Figure 1.2: ARToolkitPlus, Tracking different kinds of fiducial markers

In contrast to these marker tracking approaches, the goal of this thesis is
to develop a vision based tracking system capable of dealing with unprepared
“natural” environments. Furthermore it will be integrated into and tested
with the Studierstube2 framework, providing all the tools necessary for fast
prototyping and easy creation of AR applications.

2http://www.studierstube.org/

http://www.studierstube.org/
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Requirements

A good overview over the requirements for an ideal tracking system is given
in [71]. The target application to be built as the practical part of this thesis
imposes several key requirements on the system.

Unknown targets Most importantly the system should be designed with
the goal of Anywhere Augmentation [22] in mind. The user should
be able to place virtual objects augmenting the real world into real
environments the system has never seen before. It can thus not rely on
the fact that it knows the visual appearance or any other detectable
characteristic of the objects and spatial relations between them in the
scene beforehand, but has to detect and learn to recognise them on-
line.

Fast initialisation At the beginning of operation the above mentioned
learning process needed to reidentify objects in the scene as the user
moves around has to be started quickly. The user should be able to
step up to the place he/she wants to work on, activate some initial-
ization procedure and more or less immediately start exploring and
interacting.

World Coordinate System In order to place virtual objects anywhere in
the scene at some point during the initialisation phase a coordinate
system has to be defined. An easy, flexible and intuitive way to specify
the location of the origin, the orientations of the principal axes and the
global scale has to be provided. The problem gets even harder when
the user wants to use predefined 3D object models with dimensions
that have to fit the real world. In this case an exact alignment of the
virtual coordinate system to the real world has to be found.

Real-time The tracker is thought to be used in live AR systems that need
to provide a certain frame rate in order to give the users a smooth
experience. Hence the time available to calculate the pose estimate for
the current frame is limited to about 30ms. This is a challenge espe-
cially on mobile platforms usually equipped with moderate processing
power.

Contribution of this work

The work presented in this thesis investigates how vision based camera track-
ing can be accomplished by autonomously selecting characteristic points on
the objects in the environment, learning on-line to detect them in subsequent
camera frames and thereby deducing the camera’s relative movement.

The novelty of this approach is the fact that a new robust on-line learn-
ing algorithm is employed for the continuous redetection of natural feature
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points in the scene. Consequently there is no need to prepare the working
area with artificial landmarks or fiducial markers used in many state-of-the-
art augmented reality tracking systems such as ARToolkitPlus. Furthermore
no a-priori knowledge such as a CAD model and/or images of the scene is
necessary. To sum up, it allows the user to interactively augment completely
unknown environments.

Confluence of vision and graphics

One of the aspects that made this project particularly interesting is the
combination of computer vision and computer graphics methods. Although
these disciplines are tightly coupled, many research and development teams
work alongside without profiting from each other. Projects like this show,
that interaction and combination of both sides can be fruitful and reward-
ing. As the demand for more and more integrated and smart devices rises,
methods and know-how from all sorts of computing sciences will have to be
joined to envision and construct such systems.

1.2 Structure of this document

Chapters 2, 3 and 4 are devoted to gradually introduce the reader to the core
of the task to solve in this thesis. Chapter 2 gives a general introduction to
augmented reality, definitions, a special focus on mobile AR and examples
of systems from related work. In chapter 3 several tracking approaches are
presented and discussed. Vision based tracking is only mentioned here to
accentuate the differences (advantages and backdraws) to other types of
tracking systems, leaving a detailed introduction to the methods used for
this thesis and alternative vision based approaches to chapter 4.

After the foundations are laid and the reader is introduced to the basic
terms and methods, chapter 5 describes the details of the system built as
practical part of the work at hand.

The set of experiments conducted to obtain qualitative and quantita-
tive evaluations of the resulting system’s performance are summarized in
chapter 6.

In the end chapter 7 concludes the thesis with a short resumptive dis-
cussion and an outlook on possible future work.



Chapter 2

Augmented Reality

Augmented Reality (AR) is an umbrella term for systems that offer users
the possibility to experience a combination of virtual computer generated
objects, as known from Virtual Reality (VR), and the real world.

2.1 Definitions

In the AR research community two definitions have become popular. The
first was given by Azuma [2]. It lists three essential characteristics of AR
systems.

• Combines real and virtual

• Interactive in real time

• Registered in 3-D

The last of the three points, requiring the virtual objects to be aligned
with the real world, gives rise to the problem of precise and robust pose
estimation, which turns out to be one of the biggest challenges in AR and
is the focus of this work.

The second was presented by Milgram and Kishino [32] who define AR
by placing it within a Reality-Virtuality Continuum shown in Figure 2.1.

Real
Environment

Augmented
Reality(AR)

Augmented
Virtuality (AV)

Virtual
Environment

Mixed Reality (MR)

Virtuality Continuum

Figure 2.1: Milgram’s Virtuality Continuum
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2.2 Augmented Reality Systems

Early AR systems where stationary and restricted to a well prepared labo-
ratory setup. This was mainly caused by the fact that computers powerful
enough to process tracking sensor data and render graphics were simply not
small and energy efficient enough to be carried around.

Over the last decade the hardware has improved significantly and several
research teams have developed platforms and systems for mobile augmented
reality, also benefiting from advances in the closely related research fields of
ubiquitous computing and wearable computing. For a historical review and
general introduction to mobile AR the interested reader is referred to [23].
Furthermore section 2 of [2] presents a list of usage scenarios.

“Backpack-style” Augmented Reality

MARS Höllerer et al. [21] presented one of the first prototypes of a truly
Mobile Augmented Reality System. Figure 2.2 shows the hardware and the
system in action. It consists of a laptop with additional energy supply carried
in a backpack, a handheld computer with touchscreen for additional data
display (for instance web pages) and 2D input, a head mounted see-through
display with integrated orientation tracking sensors and a GPS module for
position tracking [10].

The idea behind the application realized with this system is to create
a user-interface that allows users to interactively and intuitively link all
kinds of information and multimedia content to real physical locations, thus
creating a spatialized hypertext [60, 61].

Tinmith-Metro Another example for wearable computer research is the
Tinmith AR system [40]. Over the years several prototypes of backpack and
HMD combinations have been developed. Figure 2.3 shows images of the
first and the most recent system. Lots of different components have been
tested and assembled with special focus on compactness, robustness, weight
and flexibility. One interesting aspect about this system is the Tinmith-Hand
3D input technique. The user wears custom made data gloves equipped with
fiducial markers that can be tracked in 3D by the system’s camera. When
tapping together the thumb and one other finger and thus closing a contact
the user can navigate through on-screen menus and trigger actions. Some
applications implemented with this system are presented below.

Handheld Augmented Reality

In the last years handheld devices such as compact tablet PCs, personal
digital assistants (PDAs) and mobile phones have become increasingly pow-
erful. The 3D rendering capabilities are now sufficient to create interactive
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(a) A user equipped with the
MARS backpack

(b) The hand-held input device showing a map of
the environment and allowing interaction

(c) Two examples of augmented scenes captured through the see-through head
mounted display. Informations like names of buildings and paths between them
can be displayed in 3D, registered with the real world.

Figure 2.2: Mobile Augmented Reality System (MARS) backpack [21]

(a) 1999 (b) 2006

Figure 2.3: Evolution of the Tinmith mobile AR backpack system [40]
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3D graphics in real-time on the device itself, built-in networking such as
WiFi and Bluetooth are standard. The fact that nowadays many people
own such a device and carry it always with them makes handheld devices
an interesting mobile AR platform. Another factor when comparing against
backpack (plus HMD) systems is social acceptance. Especially people who
are not declared technology enthusiasts would not want look like cyborgs.
So handheld AR also broadens the range of potential users.

One of the first to use a handheld computer as a standalone AR device
was Rekimoto [46]. The NaviCam system consists of a head mounted see-
through display showing guidance information within an office building and
a fully autonomous handheld device identifying barcode fiducals in a camera
image and displaying associated information, thereby coining the magnifying
glass metaphor.

A great source for handheld augmented reality related information is
the PhD thesis of Wagner [67]. The Studierstube ES framework, which was
used for the practical part of this thesis, was developed especially for hand-
held mobile augmented reality. A summary of the developing researchers’
experiences with this system was published in [55].

Several handheld AR projects have been implemented with Studierstube
ES. The invisible train [68] is a multi user interactive game featuring virtual
trains that can be seen using PDAs as “magic lenses”. By tapping on the
respective virtual objects on the PDA’s touchscreen the speed and direction
of the trains is influenced. The main focus of this project is usability. If
AR should once become a widely used technology the equipment has to be
easy and intuitive to use for everybody without special training. With the
“Handheld Augmented Reality Museum Guide” [54] real exibits are enriched
by superimposed interactive 3D animations and dynamic information which
can be used to add a storytelling facet to the visit.

Hecht et al. [20] explore methods to combine the advantages of phys-
ical and virtual maps. There is a rapidly growing number of applications
featuring interactive geographical maps with a rich variety of dynamically
superimposed information content, including location based services such
as finding the nearest restaurant and displaying directions. On the other
hand standard physical maps have the advantage of a big display area with
high resolution (while panning and zooming around on tiny screens is often
tedious and not always self-explanatory) without any power consumption.
Additionally experienced travellers already know where to look for maps and
how to work with them. The WikEye project takes the best of both worlds
by augmenting physical maps with geo-referenced, dynamic and searchable
content coming from Wikipedia.
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AR systems for urban planning

The starting point and context for this thesis is the Vidente project[51]. Its
target is to develop tools to support field staff of utility and infrastructure
companies in their everyday work. There are two scenarios for which the AR
system was designed. One is the planning phase where groups of architects
and construction workers meet around a table to investigate the existing
infrastructure of a construction site and design modifications. The second
field of application is going outside, directly to the construction site. Every
user equipped with the Vidente outdoor system can use it as a kind of“X-ray
vision” device to look beneath the ground making subsurface infrastructure
visible in place.

Multiple visualization techniques have been developed to display the
different kinds of information available as 3D models. Additionally textual
information can be displayed intelligently aligned with the virtual objects
and the current view.

(a) Vidente in action (data courtesy ÖBB-Infrastruktur Bau AG)

(b) Different mounting frames for the handheld PC providing additional sensors
and input devices

Figure 2.4: Vidente, Handheld Augmented Reality for Technical Infrastruc-
ture [51]

Figure 2.4a shows Vidente in an outdoor environment. On the left a
shot over the user’s shoulder shows him operating the outdoor equipment.
The picture on the right side is a screenshot showing a part of the ground
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with a virtual excavation defined by the user. Inside this restriced area the
existing infrastructure as well as annotations such as a depth gauge are
visible. Figure 2.4b depicts the frames developed to hold the central handheld
computer as well as external sensors. On the right the system is used with
the“Vespr” frame to show underground infrastructure indoors on a table-top
model of the Jakominiplatz in Graz.

A recently added feature is virtual redlining [52]. The term redlining
traditionally means to manually annotate 2D maps printed on paper. When
for instance a pipeline is scheduled for maintenance, draftsmen sketch its
duct and mark locations for excavations. With the virtual redlining compo-
nent it is possible to switch the application from passive investigation to an
interactive planning mode. By pointing the handheld device at the desired
location and pressing a button the user can place 3D annotation objects
directly onto the ground. The positions of the markers are stored and sent
back to a server where the information can be reintegrated into the existing
planning tools.

Another project in the same domain is IPCity1. The vision is to provide
a set of tools making city development graspable for everybody involved in
the process. The system consists of several components. In the Mixed Reality
Tent groups of citizens as well as professionals can collaboratively explore 3D
models of past, current and envisioned future structures of their local urban
environment. The Urban Sketcher [50] adds interactive aspects by giving the
possibility to sketch ideas on top of live video of the construction site in 3D
using an intuitive painting paradigm. When additional live footage of the
site is needed an AR scout equipped with a handheld device can be sent out
to capture data sent back to servers for on-line 3D reconstruction. Figure 2.5
shows the AR scout [43] system of the IPCity project in action.

Figure 2.5: IPCity: The AR scout is sent on-site to interactively collect
building data [43]

1http://studierstube.icg.tu-graz.ac.at/ipcity/

http://studierstube.icg.tu-graz.ac.at/ipcity/
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Experiments in outdoor interactive model creation have also been con-
ducted with the Tinmith backpack system mentioned above. Piekarski and
Thomas [41] introduce a method they call “construction at a distance”. The
Tinmith system tracks the users’ hands and thereby enables them to create
and manipulate the geometry of virtual objects within the real world by a set
of gestures. Their ideas and results in the research regarding 3D interactive
input methods look promising. Nevertheless the considerations mentioned
above about social acceptance and easy of use of backpack systems versus
handheld mobile augmented reality also apply here.



Chapter 3

Tracking Approaches

One of the toughest challenges in building an AR system is to give the com-
puters rendering images of the virtual objects knowledge about the current
state of the physical world. It is crucial to let users experience the computer
generated objects seamlessly integrated with the real world. In particular
the most essential part of this sensing task is to figure out the position and
orientation of known physical objects. This is commonly referred to as object
tracking.

3.1 Technologies

In general, an object tracking system has to provide values for the 3D po-
sition (x, y, z) and the orientation (3 angles: yaw, pitch, roll) of the object,
altogether resulting in 6 degrees of freedom (DoF).

Some of the approaches developed over the years are capable of delivering
all six parameters of the pose, while others focus on measuring for instance
just the position or one of the angles, mainly depending on the type of sensors
employed. For a detailed discussion of a wide range of techniques, classified
by the physical effects they are based on, the interested reader is referred
to [71]. The following is a list of some of the most prominent technologies
and devices.

Mechanical sensors Maybe the most straightforward approach to define
a pose in space is to build some form of direct physical linkage from the world
coordinates system’s origin to the object to track. Highly accurate sensors
are installed in the revolute and prismatic joints of the arm-like structure
to measure angles and distances. With a mathematical model of the known
geometry the pose is determined easily via forward kinematics.

This method is used for instance to create input devices for virtual real-

13
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ity modelling applications (e.g . MicroScribe1, FaroArm2, but has also been
applied to head tracking in early AR systems [63].

Despite its high precision mechanical systems are not very practical for
augmented reality. The major limiting factor is the constrained working
area (the volume that can be reached with the tip of the arm) rendering it
completely unusable for mobile and outdoor applications. Moreover being
attached to a fixed mechanical device makes working cumbersome.

Global Positioning System The most widespread tracking system is
GPS. Since there is a mass market for location based services in personal
assistants and smart phones, GPS modules are getting smaller and cheaper
rapidly. The position of a GPS receiver anywhere on the globe can be deter-
mined with an accuracy of a few meters by measuring the time the signals
take to travel from at least 4 of the 24 satellites, deployed in six different
orbits around the earth, to the device. Although this precision is impres-
sive compared to the working area, generally it is not sufficient for rendering
virtual objects accurately registered with the users direct environment. Nev-
ertheless GPS is used in many outdoor AR systems either when the task is
just to insert annotation labels to objects farther away or, in case high pre-
cision is needed, as a good starting point for other methods.

Ultra Wide Band RF In situations where signals from satellites are not
available, such as indoor environments, the same principle (i.e. measuring
the travelling time of a radio frequency signal) can be used by installing a
fixed setup of local senders. Systems such as the Ubisense Platform3 work
with ultra-wideband (UWB) radio waves to reduce the effects of multi-path
reflections and thereby reach a precision of a few centimetres.

The need to install and calibrate a setup of radio signal senders is clearly
a drawback, restricting UWB systems to well prepared situations, and thus
limiting the flexibility.

Magnetic fields With magnetic sensors the strength and orientation of
magnetic fields can be used as a source for position and orientation infor-
mation. The most well known example is a compass measuring the earth’s
magnetic field to figure out one’s orientation.

“3D Guidance” by Ascension4 uses magnetic sensors to track control
points on, as well as instruments within the patients body, consequently
making minimally invasive operation procedures possible. It uses pulsed DC

1http://www.immersion.com
2http://measuring-arms.faro.com/
3http://www.ubisense.net
4http://www.ascension-tech.com/

http://www.immersion.com
http://measuring-arms.faro.com/
http://www.ubisense.net
http://www.ascension-tech.com/
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fields, as opposed to formerly preferred AC solutions, to reduce the influence
of metal conductors in the field.

Nevertheless the susceptibility to influences of metal objects as well as
interfering fields is the key problem with magnetic sensing. In addition the
working space is limited to a well prepared and also quite constrained work-
ing space due to the inverse cubic falloff of magnetic fields as a function of
distance from the emitter.

Inertial Sensing Intertial Navigation Systems (INS) consist of three lin-
ear accelerometers and three gyroscopes to measure translational and rota-
tional acceleration. Double integration over the resulting acceleration values
gives the current position and orientation. Originally INSs were built on gim-
baled gyrostabilized platforms keeping the translational sensors stable with
regard to a navigation reference frame. This type of construction is widely
used in naval and airplane navigation systems, but it is way to big and heavy
to be carried around for mobile wearable computing. In modern systems all
parts are built as microelectromechanical systems (MEMS) strapped down
onto a fixed carrier. The effect of the gimbaled platform is immitated my
mathematically unrotating the measured translational accelerations before
integration with the current rotation matrix, as calculated from the orienta-
tional sensors. This allows complete system-on-chip designs with tiny form
factors and low weight. An example for a fully integrated 3-DoF orientation
tracking system complete with USB or RS-232 serial interface is the Inertia
Cube3 by InterSense5.

The list of advantages of inertial sensors is long: robustness, the speed of
measurements, insensitivity to acoustic or electromagnetic noise, no need to
prepare the environment. This is offset by one major disadvantage: drift. The
lack of an external reference frame leads to an inevitable error accumulation.

Acoustic Sensing Ultrasonic sensors use the travel time of sound waves to
measure distances. A special signal sent out from a speaker spreads out and is
recorded with a microphone. Via the speed of sound the time it takes for the
signal to reach the microphone determines the distance. Usually the signal is
a series of short pulses but experiments have been made to measure the phase
difference of a continuous output signal and its received counterpart. This
type of sensor is widely used in robot navigation or car parking aids to avoid
obstacles. Sound waves are sent out into the environment and reflected back
to the receiver by the nearest object. The main disadvantages of acoustic
systems are the susceptibility to interfering noise and impressions due to the
variability of the speed of sound (depending on weather conditions such as
temperature, humidity and wind).

5http://www.isense.com

http://www.isense.com
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Tracking based on Computer Vision Another important source of
information about the environment is light. Optical sensors such as cameras
can be used to measure the direction and intensity of light rays reflected
from the objects around or coming from artificially placed sources.

The biggest challenge is to process the large amount of data coming
from a camera appropriately. The lack of efficient algorithms as well as
powerful yet light-weight and energy saving computers has prevented the
use of cameras in tracking systems in the beginnings of AR research. But
the advances in high-performance embedded computing over the last years
has sparked many research projects around this topic.

Vision based tracking is the main focus of this work and the approach
developed in the practical part falls in this category, which is why chapter
4 is devoted exclusively to it.

In general, optical systems can be classified as outside-in or inside-out
depending on the position of the sensing cameras and the tracked target.

A typical example of an outside-in system is DTrack by A.R.T.6. A set
of cameras is installed and calibrated to overview the working area. The
target objects are equipped with a setup of small balls arranged in a fixed
three-dimensional constellation and coated with a material reflecting infra-
red light. In the camera images the balls are “easily” localised and from the
set of projected points the identity and pose of the depicted target object
can be calculated. This system is used for instance in a virtual reality liver
surgery planning system [42] to track the user’s head and input devices.

Since for truly mobile and outdoor AR systems relying on complicated
infrastructure in the environment are not an option, the focus of this work
lies on inside-out systems, having the camera attached directly to the tracked
target (e.g . on top of the user’s head mounted display).

Mainly in an attempt to reduce the computational complexity of the task
the first real-time capable approach relied on the discovery of “artificially
placed” markers (fiducials) in the image. Again this implies the need to
prepare the tracking targets, but first typical fiducials (colour spots, printed
plates) are cheap and a second reason visual marker tracking has become
really important is the fact that it was the first inexpensive and easy to apply
tracking method for AR, hence stimulating the development of a massive
amount of scientific as well as hobby projects and even commercial products.

Systems trying to solve camera tracking without any or with very limited
a-priori knowledge about and preparation of the target objects are discussed
in detail in chapter 4 below.

The list of advantages of vision based tracking includes: it is non invasive
(no expensive extra equipment to be placed somewhere around), low cost
(there are lots of cheap camera models available), accurate (taking measure-
ments directly from the image into which virtual objects are rendered after-

6advanced realtime tracking http://www.ar-tracking.de

http://www.ar-tracking.de
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wards minimizes the visual alignment error; imprecisions often are mainly
along the the cameras viewing axis (z-axis) which has less impact of the
resulting images quality), tracking can be focused on the relevant objects.

On the other hand there are problems with robustness due to partial
or full occlusion (an unobstructed line of sight to the tracking target is
always required) or image quality problems (motion blur, resolution, lighting
conditions). Additionally, in general, due to the amount of data recorded it
is computationally quite expensive.

Sensor Fusion All of the techniques mentioned so far have their specific
advantages and serve a range purposes well, but none is perfect (“no silver
bullet” as it is called in the subtitle of [71]). But since some factors impair-
ing one method do not necessarily have an influence on the result of others,
an obvious way to overcome the problems is to build systems that combine
multiple different types of sensors. For instance visual tracking with its high
accuracy can be complemented by a set of inertial sensors that continue to
deliver pose estimations whenever the vision module fails because of occlu-
sions or motion blur. The drift of the inertial system on the other hand is
corrected whenever the vision system successfully recovers from failure. Con-
sequently the essential task is to create algorithms that can deal with these
different kinds of input measurements, i.e. perform sensor fusion. Examples
of such hybrid systems include inertial & vision-based sensing [73], GPS &
inertial sensors & vision based marker tracking [39], GPS & inertial sensors
& vision based natural feature tracking [7, 24].
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3.2 Pose Estimation

Most of the tracking approaches based on computer vision have one point
in common. Each of them tries in its own specific way to find corresponding
projections mi on the camera image of points Mi in the world. Calculating
the pose from these matching pairs of coordinates is usually referred to as
the Perspective-n-point Problem (PnP) [11].

Figure 3.1 shows a schematic of the problem’s setup. First we will dis-
cuss the basic pinhole camera model, extensions for real cameras will be
mentioned later. A camera sitting at the origin of its own coordinate sys-
tem (yellow) is pointed at an object. The object’s coordinates are expressed
in the object coordinate frame (green) which for our purposes (since only
one planar object will be observed and the camera’s pose calculated rela-
tive to it) coincides with the world coordinate system. Points on the object
with the three dimensional coordinates Mi = (Xi, Yi, Zi) are being projected
perspectively to the points mi = (ui, vi) on the image plane (i = 1, . . . , n).

Figure 3.1: Image capturing process with the basic pinhole camera model.
Points in the world are projected onto the image plane, depending on the
camera’s pose [R, t] and its internal parameters.

The mathematical formulatation is given in equation 3.1

sm̃i = PM̃i (3.1)

where s is a scale factor, m̃i = (ui, vi, 1) and M̃i = (Xi, Yi, Zi, 1) are the
points mi and Mi in homogeneous coordinates and P is a 3 × 4 projection
matrix, unique up to scale (since all data is given in homogeneous coor-
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dinates) so it has 11 independent parameters. In the case of a perspective
camera P can be further decomposed into

P = K [R|t] (3.2)

K is the camera calibration matrix, holding the camera’s internal pa-
rameters, describing how points expressed in the camera coordinate system
are projected onto the image plane.

K =

fu s u0

0 fv v0
0 0 1


fu and fv is the camera’s focal length multiplied by the pixel resolution

along the u- and v-axis of the image.
u0 and v0 define the image origin’s offset to the camera’s principal point

(the point where the optical axis intersects the image plane).
s is the skew factor usually being 0 unless the camera’s u- and v-axis are

not perpendicular.
[R|t] is the composition of a 3×3 rotation matrix R and a 3×1 translation

vector t, describing the rotation and translation of the world coordinate
system to the camera coordinate system i.e. the camera’s pose. They are
also called the camera’s external parameters.

Consequently the task is to find P that satisfies equation 3.1 for a given
set of point correspondences mi ↔Mi. Since in real world measurements we
always have to deal with noise, in general there will be no perfect solution and
one has to search for a P that fits best, i.e. minimizes some error function. In
the literature two important error functions have been developed and used.

The image space error can be expressed as

Eis =
n∑
i=1

dist2(PM̃i, m̃i) (3.3)

with

dist2(a,b) =
(
ax
aw
− bx
bw

)2

+
(
ay
aw
− by
bw

)2

where the M̃i are points in space in world coordinates, PM̃i is the pro-
jection of M̃i onto the cameras image plane given the pose encoded in P and
m̃i are the corresponding point coordinates on the input image. dist2(a,b)
denotes the square of the Euclidean distance of two-dimensional homoge-
neous points a = [ax, ay, aw]T , b = [bx, by, bw]T .

It should be mentioned that estimating all 11 parameters of P directly
(external and internal camera parameters) is very unstable and the accu-
racy of the result depends on the number and the configuration of the input
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points. With the internal camera parameters K given, suitable rotation R
and translation t can be extracted from P [74]. If on the other hand K is
known beforehand from a camera calibration procedure the points m̃i mea-
sured on the image can be transformed into coordinates m̂i expressing the
positions of the projected points as if captured by a camera with the iden-
tity matrix as internal parameters K. This reduces the problem to finding
a suitable pose [R|t] and allows a different formulation of the image space
error as used in [34, 56]:

Eis =
n∑
i=1

(m̂ix

m̂iz

− Rt
xMi + tx

Rt
zMi + tz

)2

+

(
m̂iy

m̂iz

−
Rt
yMi + ty

Rt
zMi + tz

)2
 (3.4)

R =

RtxRty
Rtz


The second alternative is the object space error, measuring the sum of

squared shortest Euclidean distances of the world coordinates Mi to rays
projected out from the camera center through the points m̂i measured on
the image under a given pose:

Eos =
n∑
i=1

||(I−Mi)(RMi + t)||2 , with Mi =
m̂im̂t

i

m̂t
im̂i

(3.5)

An algorithm looking for an optimal pose should minimize one of these
error functions:

[R | t] = arg min[R | t]Eis , [R | t] = arg min[R | t]Eos

Generally minimizing the image space error Eis results in a better visual
alignment of objects rendered with the resulting pose. However the object
space error Eos is easier to parametrise and therefore favoured in many
methods, especially those aiming at a closed form solution, while most tech-
niques trying to minimize Eis use iterative algorithms such as Gauss-Newton
or Levenberg-Marquardt.

There is a wide range of different approaches to solve the Perspective-n-
point problem. Each of them has to make decisions in the game of compu-
tational complexity (and thus speed) vs. accuracy of the result. Some of the
early methods try to solve the cases n = 3 or n = 4 which is computation-
ally cheaper but more sensitive to noise than current methods incorporating
knowledge of more correspondences. Another decision is between a closed
form solution vs. an iterative one. Iterative methods generally do not pro-
vide guarantees on either computation time or attainable accuracy, but allow
to minimize complex and appropriate error functions that cannot be solved
directly.
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An excellent overview as well as an introduction to some important math-
ematical tools is given in section 2.3 of [26]. The following list is just a col-
lection of some important methods, providing insight into the requirements
and difficulties of the task.

Direct Linear Transform (DLT) One of the first methods presented
is the DLT algorithm discussed in detail in [19]. It solves directly for P,
forming a set of linear equations by inserting the correspondences m̂i ↔
Mi into equation 3.1, rewriting them into the form Ap = 0 where p is a
vector formed of the coefficients of matrix P, calculating the SVD (singular
value decomposition) and taking the resulting eigenvector with the smallest
eigenvalue as p.

The main disadvantage is that this solution linearly minimizes an alge-
braic error that does not correspond to Eis, Eos or any other quantity with
geometrically meaningful interpretation in the problem domain.

Pose estimation from 3D planes A set of methods deal with pose
estimation from planar objects. The simplest linear method relies on the
fact, that a projection of points on a plane in the world onto the image
plane can be described by a homography:

m̂ = PM̃ = K
[
R1 R2 R3 t

]
X
Y
0
1

 = K
[
R1 R2 t

]XY
1

 = H

XY
1


M̃ is an object point on the Z = 0 plane. R1, R2, R3 are the columns

of the rotation matrix R. The homography defining the mapping of object
points onto the image plane can be estimated similarly to the DLT algorithm
by the SVD of a set of linear equations [19].

A similar pose estimation technique has been used in [58, 59] where
inter-frame homographies are calculated to track planes. One particularly
interesting aspect about this method for this work is that the homography
calculation is used to identify new planes visible in the last two frames.
Whenever a plane gets out of sight (e.g . the ground) and another plane
becomes dominant (e.g . a façade) the tracking system can switch over to
the new plane.

POSIT The POSIT algorithm [6] iteratively approximates the current
pose by calculating a scaled orthographic projection (SOP) with respect to
a preliminary pose. For a given camera an SOP can be described as follows.
All the points of the object depicted in the current frame are projected
normally onto a plane perpendicular to the cameras viewing axis (i.e. parallel
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to the image plane) and situated in the object coordinate frame’s origin. The
resulting image is then scaled down to the image plane by multiplying with
f/Z0 where f is the camera’s focal length (distance camera center ↔ image
plane) and Z0 the (distance camera center ↔ object origin).

An SOP differs from a perspective projection because it depicts the ob-
ject as if it were flattened along the camera’s viewing axis. So the distance
between the two different projections of a point Mi depends on the object
point’s z-coordinate in camera coordinates (i.e. its depth when seen from
the camera).

If the camera’s pose is known, depth values for all points and therefore
the deviations εi of the image points under perspective and scaled ortho-
graphic projection can be calculated. The other way around, if the deviations
εi are known, it is possible to determine the pose by solving a set of linear
equations. The key observation used in the algorithm is that it is possible
to alternate the calculation of more exact deviations εi given a preliminary
pose estimation and based on that the refinement of the pose.

POSIT has the advantage of being fairly easy to implement while achiev-
ing good results and thus has become quite popular. Since for planar con-
figurations of the object’s world coordinates the algorithm does not work
an extension had to be developed [34]. This is also one of the first works to
acknowledge the fact, that for the planar case always two plausible solutions
exist.

Robust Pose Estimation from a Planar Target Schweighofer and
Pinz [56] take the considerations about multiple possible solutions of planar
cases of the PnP problem one step further. The first part of their work is a
thorough analysis of the minima of the error functions Eos and Eis for a range
of different settings. They observe a strong tendency for a second minimum
especially in configurations with a camera far away from the object (the
projection gets almost orthographic) but also for close range situations with
a steep viewing angle. Methods that do not take this into account implicitly
(randomly) choose one of the possible solutions. This is a major reason
for large pose jumps rendering the calculated pose unusable for augmented
reality applications.

Schweighofer and Pinz approach the problem by formulating an algo-
rithm that iteratively, given a preliminary pose, analyses the error function
and searches for alternative poses that produce local minima (usually one
other pose). Any other pose refinement algorithm ([30] was taken in the
reference implementation) can then be used to receive a series of better esti-
mates. When all of the resulting estimates converge, the one with the lowest
error is chosen.
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EPnP: Non-Iterative O(n) Solution Another interesting work was re-
cently presented by Lepetit et al. [28]. The target object’s keypoints are
expressed as a linear combination of four control points cwi (three in the
planar case). The task reduces to finding the locations of the control points
within the camera coordinate system cci , which define the locations of all ob-
ject coordinates in camera coordinates. It is then straightforward to extract
the rotation and translation aligning the point sets in the two coordinate
systems.

The fact that makes this method fast is that they found a way to calculate
the control point’s location in camera coordinates from the eigenvectors of
a 12 × 12 (fixed size) matrix MTM, constructed from a matrix M with
dimensions 2n× 12 which can be built in linear time.

Their evaluation shows that the accuracy can compete with some of the
best iterative methods while being much faster. For the planar case, as many
others, this method does not account for the possibility of a pose ambiguity,
which is why in comparison with [56] it performs significantly worse at the
cases for which two locally optimal poses with a similar error are likely to
occur.

Conclusion There are several reasons to take the work of Schweighofer
and Pinz as the pose estimation method for the practical part of this thesis.
First it produces very stable and accurate results while being real-time ca-
pable. Additionally an efficient implementation exists in form of a C-library
(libRPP), which is also already in use as one of the alternative pose esti-
mators in ARToolkitPlus and hence already included in the OpenTracker
framework.



Chapter 4

Computer Vision based
Tracking

As we have seen in the last section, for calculating the pose of the camera
relative to the scene we need to find the coordinates of points on the image
that are the projections of corresponding points in the scene for which we
known world coordinates. We’ll now investigate how this can be done.

4.1 Tracking and its challenges

While “tracking” in augmented reality applications (as described in section
3.1) means to recover the position and orientation of any tracked object
within a given world coordinate frame, in the field of computer vision the
term is used in a slightly broader scope. Tracking in context of computer
vision can be described as the process of finding objects of interest within
an image and tracing them throughout a series of consecutive frames of a
(live) video stream. This does not necessarily include the calculation of the
objects pose (or the camera respectively).

A very good overview of the current state of the art methods and tools
for computer vision based tracking is given in [26].

The task of calculating the pose of a mobile device from a live video
stream for use in an augmented reality system includes the following chal-
lenges:

• Condition changes:
The appearance of objects on the image can change significantly be-
cause of changing light, reflections and specularities.

• Environmental changes:
In outdoor environments it is not possible to exactly know the whole
setting beforehand. Some of the objects in the surrounding might be
known and therefore their appearance could be learned, but the system

24
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has to deal with unexpected changes and situations where none of the
known objects are in sight.

• Stability:
For augmented reality purposes the calculated pose has to be accurate
enough to produce images that make the user believe the virtual ob-
jects really reside in the real world. Every measurement is subjected to
errors that can be characterised as jitter (normally distributed random
deviations) and drift (incremental error over time). Both have to stay
below certain thresholds, but especially the drift is a limiting factor
because it leads to strong misalignment after some time.

• Speed:
Augmented reality systems need real-time performance for the user to
have the feeling of being immersed in the partly virtual world. This
means all calculations have to be done with a frame rate of at least 15
frames per second (the more the better).

• Memory consumption:
Since we are dealing with mobile augmented reality the amount of
memory available in the target devices is often limited. On mid-size
devices like Ultra Mobile PCs (UMPC) up to 1 GB of RAM is already
standard but other interesting platforms like mobile phones still have
lower specifications.

For the practical part of this thesis an implementation of the feature
learning algorithm presented in [17] was used and adapted. First we would
therefore like to present and discuss the key concepts and methods used in
this approach. The reasons it was chosen will become apparent in the section
below, discussing the benefits related to the aforementioned challenges and
compared to other methods.

4.2 Tracking feature points learned on-line

This section is a short summary of [17] and thus gives a brief introduction
to tracking objects by learning to recognise distinctive keypoints on them.
The pseudo code for the overall system is listed in Algorithm 1.

Tracking by feature point classification

Tracking an object using feature points means to identify interest points
on the object and learning to identify image patches showing these points
throughout a series of frames. It can thus be formulated as a classification
problem [29]. For each interest point a classifier is trained to distinguish
a small patch around the keypoint from everything else (i.e. other object
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keypoints as well as keypoints in the background). Since the input consists
of consecutive frames of a video stream, it is a save assumption that the
appearance of keypoints does not change too dramatically allowing the sys-
tem to re-identify the keypoints by applying all classifiers to all the interest
points of the new frame.

Geometric Constraints

To recognise and reject false positive matches a geometric constraint is used.
For now only planar objects are considered and thus there has to be a ho-
mography between the keypoint positions in the last and the configuration
in the current frame. A homography defines a mapping between correspond-
ing 2D image coordinates of points on a plane in the world in two different
cameras. It can be calculated by solving a linear system of equations [19]. An
implementation is available in the OpenCV library. To eliminate the outliers
a RANSAC [11] algorithm is executed, calculating the homography multiple
times over a small sub set of keypoint matches and taking the one with the
most inliers.

Feature point selection and exchange

For robust tracking results it is crucial to find feature points that can be
redetected reliably. When the system is started interest points on the object
are extracted out of which a random set of fixed size is chosen and classifiers
are trained to recognise a patch around them. Over time the quality of
a selected feature point can be updated by calculating the probability to
redetect it in the next frame. This probability is estimated by tracing how
often it was detected within the recent past:

Pi,t+1 = β · Pi,t + (1− β) · δi (4.1)

where Pi,t+1 is the probability to redetect feature point i in the next frame, δi
is 1 if it was detected in the current frame, 0 otherwise and β ∈ R, 0 ≤ β ≤ 1
determines the influence of the feature point’s history.

In this work some additional considerations were made and tested, which
will be presented in chapter 6.

4.3 On-line boosting for feature selection

The section above explained how an object can be tracked robustly by iden-
tifying parts of the object in images following the steps of Algorithm 1. This
algorithm requires functions to construct and update classifiers Ci. Hence
this section is going to introduce the background upon which Grabner and
Bischof [15] built the “on-line boosting for feature selection” algorithm used
for the classification in [17] and consequently also in this work.
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Algorithm 1 Object Tracking via Keypoint Matching (from [17])

Require: classifier set C = {C1, C2, . . . , CN} trained forN object keypoints
up to time t

Require: function to create a new classifier Cnew

Require: function to make positive C+
i (pj) and negative C−i (pj) updates

to the i-th classifier with image patch pj around keypoint kj
Require: function detectKeypoints, returns k Keypoints
Require: function estimateHomography

Kt = detectKeypoints()

// for each classifier find the keypoint that matches best
for i = 1 . . . N do
mi = argmax

kj∈Kt

Ci(pj)

end for

H = estimateHomography(M)
M c ⊆M ;Ot ⊆ Kt

for i = 1, . . . , N do

// update classifiers of inlier keypoints
if mi ∈M c then
C+
i (pmi);C

−
i (pj), j 6= mi

end if

// update probability that the keypoint will found in next frame

Pi,t+1 = β · Pi,t + (1− β) · δi, δi =

{
1 mi ∈M c

0 else
// if too low, create classifier on a new keypoint on object
if Pi,t+1 < θ then
Ci = Cnew

C+
i (pr), r ∈ Ot; C−i (pq), q 6= r

Pi,t+1 = 0.5
end if

end for
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Binary Classification in Machine Learning

The task to accomplish at this point is to recognise parts of / points on
an object in an image depicting the object. In this context a classifier is a
tool that given an image or a sub-part (patch) answers the question “Is this
patch showing the object you were trained on?”. The answer can be a binary
yes/no decision or a real value indicating the probability or confidence of the
decision.

Formally this can be formulated as follows: Given a set of m training
examples T = {〈x1,y1〉, . . . , 〈xm,ym〉} with xi ∈ X being feature vectors and
yi ∈ Y target values for the classification, with Y = {−1,+1} in the case
of binary classification, indicating that the input vector xi belongs to class
A (yi = 1) or class B (yi = −1) (or in our case is/is not an image patch
showing the feature point), find a generalised mapping h : X → Y. This
mapping h is called a classifier.

Classification of feature vectors is an important topic in machine learning
and has been investigated thoroughly over the years. Many algorithms have
been proposed and an all-embracing discussion goes beyond this work. [1, 3,
8, 33, 49] are just a few references covering this topic.

Boosting

Boosting can be seen as a meta algorithm for machine learning. The main
idea is to improve the performance of any kind of classifier learned by some
machine learning algorithm, by cleverly combining the output of several
classifiers to achieve better results. The key concepts are:

Weak classifier A weak classifier is one that gives a single output hy-
pothesis on an input sample. Any classifier created with an algorithm from
the literature can be taken. The “weak learner” can thus be an arbitrarily
complex algorithm but because the only restriction is, that it must perform
sightly better than random guessing (i.e. produce an error rate of below
50%), usually simple and computationally cheap (i.e. fast) learning algo-
rithms are chosen to obtain the weak classifiers. The output of each weak
classifier is taken as one hypothesis hweak.

Strong classifier The strong classifier is the actual result of boosting. It
is obtained by taking N weak classifiers and forming a linear combination
(weighted sum):

hstrong(x) = sign(conf (x)) (4.2)

conf (x) =
N∑
n=1

αn · hweak
n (x)
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The core problem to solve therefore is to train weak classifiers and choose
the weights α1, . . . , αN appropriately.

Off-line boosting

The algorithm AdaBoost (adaptive boosting) was first presented in [13]. A
short introduction is given in [14] and improved variants have been pre-
sented.

The main concept of AdaBoost is to assign a weight D(i) to the training
sample xi that indicates how important it is. Initially all weights are equal
D(i) = 1

m . A weak learner hweakn is then trained to classify the training
samples correctly. If the algorithm supports weights for the training sam-
ples D(i) can be taken directly, otherwise the input data can be sampled
according to D(i). The weight αn specifying the importance of hn in the
resulting strong classifier is defined by its error on the training data εn:
αn = 1

2 · ln
(

1−εn
εn

)
. Finally the weights D(i) are adjusted such that sam-

ples that where misclassified by hn become more important compared to
the others. When the process is repeated the next weak classifier will thus
concentrate on examples that could not be correctly classified by now. The
algorithm stops when either a certain amount of weak classifiers was trained
or some other performance criterion is met (e.g . overall error drops below a
threshold).

On-line boosting

The difference between off-line and on-line learning is, that while an off-
line algorithm always has a fixed set of training samples available right at
the beginning and in every step of the learning process and thus aims at
producing somehow optimal output on all the available input data, on-line
algorithms get their input data fed sequentially and try to adapt to each
sample. The task is much harder, because when trying to deduce information
from the current input no statistics over the entire set of data is available but
only the data seen up to this point. The main advantages are, that on-line
algorithms can be used in scenarios where not all the data is available at
the beginning of the learning process and the learner can adapt to unknown
and dynamically changing environments.

An on-line version of boosting was developed by Oza and Russell and
published in [37, 38]. While it is quite straightforward to modify most parts
of the boosting algorithm to operate on-line (weak classifiers can learn on-
line if appropriate algorithms are chosen, the calculation of αn remains the
same, . . . ) there is one major problem. When seeing an example we do
not know its importance D(i), since we do not know all of the others. So
Oza and Russell propose to estimate the importance by propagating the
sample through the list of currently available weak classifiers and updating
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the weight (here called λ) according to the responses. The result is similar
to the off-line case. The first weak classifier sees every sample with equal
importance, just like off-line. Further down the line the importance of the
sample increases if classifiers up to that point could not classify it correctly.
A detailed analysis of the algorithm and the convergence of the on-line to
the off-line case is given in Oza’s PhD thesis [36].

Off-line boosting for feature selection

Tieu and Viola [65] use boosting to select appropriate features for image
retrieval. First they construct a large feature pool F . Each feature when
applied to an input image returns some response. The task is to select a
subset of features Fsub = {f1, . . . , fk} ⊆ F that return the best responses to
discriminate among certain classes of images. This was achieved by adapt-
ing the standard boosting algorithm to use the features as weak classifiers.
In each iteration of the boosting loop all features are evaluated on the in-
put samples and the best feature to discriminate the target classes gets
selected as hweakn along with its weighting factor αn. The strong classifier is
constructed as a linear combination of the weak classifiers, just like in the
standard AdaBoost.

Viola and Jones [66] used these findings to build a fast and robust object
detection system.

On-line boosting for feature selection

Inspired by Ozas approach to on-line boosting Grabner and Bischof [15]
adapted AdaBoost for on-line feature selection. Since the off-line feature
selection method by Tieu and Viola needs all the training examples at once
to train all weak classifiers and then pick one, which is not possible in the
on-line case they introduced selectors taking the role of weak classifiers in
the boosting process.

Each selector holds a set of weak classifiers Hweak = {hweak1 , . . . , hweakM }
out of which it chooses the best hypothesis hsel = hweakm (i.e. the one with
the lowest error: m = arg mini εi ) every time it gets updated.

The error of the m-th weak classifier in the n-th selector εn,m is based on
the sum of the weights of correctly (λcorrn,m ) and incorrectly (λwrongn,m ) classified
samples:

εn,m =
λwrongn,m

λcorrn,m + λwrongn,m

The strong classifier is constructed as linear combination of a fixed set
of N selectors, just as in the standard off-line case (see equation 4.2).

A schematic representation of the algorithm is depicted in Figure 4.1.
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Algorithm 2 On-line AdaBoost for feature selection (from [15])

Require: training example 〈x, y〉, y ∈ {−1,+1}
Require: strong classifire hstrong (initialised randomly)
Require: weights λcorrn,m , λwrongn,m (initialised with 1)

initialise importance of weight λ = 1
// for all selectors
for n = 1, 2, . . . , N do

// update the selector hseln
for m = 1, 2, . . . , M do

// update each weak classifier
hweakn,m = update(hweakn,m , 〈x, y〉, λ)

// estimate errors
if hweakn,m (x) = y then
λcorrn,m = λcorrn,m + λ

else
λwrongn,m = λwrongn,m + λ

end if
en,m = λwrong

n,m

λcorr
n,m +λwrong

n,m

end for

// choose weak classifier with the lowest error
m+ = arg minm(en,m)
en = en,m+ ;hseln = hweakn,m+

if en = 0 or en > 1
2 then

exit
end if

// calculate voting weight
αn = 1

2 · ln(1−en
en

)

// update importance weight
if hseln (x) = y then
λ = λ · 1

2·(1−en)
else
λ = λ · 1

2·en

end if

// replace worst weak classifier with a new one
m− = arg maxm(en,m)
λcorrn,m− = 1;λwrong

n,m− = 1
get new hweakn,m−

end for
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Figure 4.1: On-line boosting for feature selection (from [15])

Image Features

For application in computer vision the boosting algorithm has to work on
image features. The weak classifiers build hypotheses based on the responses
of the features to input image patches. The image features used could be any
available image patch descriptor. The limiting factor mainly is computation
speed.

Grabner and Bischof [15] used Haar-like features already tested in the
object detection work of Viola and Jones [66] and additionally experimented
with orientation histograms and local binary patterns (LBP) [35]. In this
work only Haar-like features were chosen because they evaluate fastest due
to the preliminary calculation of an integral image and deliver good results.
The weak classifiers on-line learning is done by incrementally estimating
Gauss-distributions over the feature responses for positive and negative ex-
amples. The classification of a new sample is then accomplished by finding
the Gauss curve that better fits the new feature response.

For selection of image patches interest points have to be identified. This
work makes use of the implementation of the corner detection algorithm
presented in [57], which is an extension of the Harris corner detector, from
Intel’s OpenCV library1.

1http://opencvlibrary.sourceforge.net/

http://opencvlibrary.sourceforge.net/
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4.4 Discussion

Tracking of natural features has been investigated for quite some time now
and there are many different solutions around. Nevertheless the requirements
of this particular work in augmented reality rule out most of the existing
approaches. The following is a short overview of the different kinds of algo-
rithms with a focus on the analysis of benefits, drawbacks and suitability
for the practical part of this thesis. For a detailed list of references and dis-
cussion of the methods the interested reader is referred to the previously
mentioned survey by Lepetit and Fua [26] and to chapter 2 of the doctoral
thesis of Klein [25].

First of all, there is a series of tools and methods, used for instance in
post production of movies, that achieve very accurate results but do not
run at real-time and often also are not completely autonomous [4, 12, 64]
(Icarus2, Voodoo3, commercial: Boujou (2d3)4, MatchMover5).

Egde-Based methods such as the RAPiD system originally presented by
Harris [18] and its numerous different refinements and extensions require a
CAD model of the object to be tracked. Starting from a preliminary pose,
positions of edges in the image are predicted and searched for in a small
neighbourhood. Since we want to be able to do tracking in unknown envi-
ronments we cannot have a model beforehand.

Many methods try to reduce the computational complexity by specifying
a motion model used to predict the position of objects or interest points in
the next frame (short baseline matching). One example is the KLT tracker
[31] calculating the optical flow and matching a template of the object to the
new frame. The problem with motion models is, that if the camera moves
too fast or for other reasons the detection is impossible in the next frame
(occlusion, motion blur, . . . ) the system completely looses track, cannot
recover and has to be reinitialised.

Additionally tracking templates has some difficulties with more complex
transformations of the target (partial occlusion, illumination changes, reflec-
tivity). This is one of the reasons why interest point based methods have be-
come more popular. Especially tracking-by-detection (wide baseline match-
ing) has some important advantages and became computationally feasible
with the advent of fast detection algorithms. No motion model is required
because the whole image is searched. Moreover only some of the interest
points have to be found enhancing robustness against partial occlusions.

Significant improvements to real-time keypoint recognition have been
presented by Lepetit et al. [27]. Detection is very fast, reliable and the re-
sulting pose is stable but it requires an off-line training of the keypoints on

2http://aig.cs.man.ac.uk/research/reveal/icarus/
3http://www.digilab.uni-hannover.de/docs/manual.html
4http://www.2d3.com/
5http://www.realviz.com/

http://aig.cs.man.ac.uk/research/reveal/icarus/
http://www.digilab.uni-hannover.de/docs/manual.html
http://www.2d3.com/
http://www.realviz.com/
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the target object and the memory consumption is high.
Wagner et al. [69] show that the randomized tree approach can be mod-

ified to achieve performance that makes it possible to deploy to and run on
mobile phones. Target objects have to be known and trained on beforehand.

Quite amazing results in real-time SLAM have recently been presented
by Williams et al. [72]. They extend the randomized tree algorithm to learn
new keypoints incrementally and embed it into a probabilistic map building
framework. Still there is a knock out factor for our target platforms. Because
the addition of new keypoints does take too long to be done within the time
for the next frame, it is moved to a separate background thread which is
only possible on multiprocessor machines. Additionally several views of the
keypoint have to be rendered which requires a fast GPU.
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System

This chapter gives an introduction to the augmented reality system built
as practical part of this thesis, presenting the overall structure, components
and technological base used to implement it.

5.1 Frameworks and Libraries

Studierstube

The Studierstube Augmented Reality Project [53]1 was initiated to build
a software development environment for augmented reality applications. It
provides a modular, flexible and constantly growing set of libraries for the
different tasks involved. Additionally there is a runtime environment exe-
cuting the core of the system into which all the required modules for a given
application, specified in an XML configuration, from video acquisition and
object tracking to application logic are loaded dynamically.

The graphical rendering is based on the Open Inventor toolkit [62]. The
core is an object oriented scene graph. The file format to specify scene graph
configurations and its scripting capabilities facilitate rapid prototyping of
complex and interactive applications.

The list of utilities includes video capturing via the OpenVideo module,
various camera and object tracking methods integrated in the OpenTracker
module, an EventSystem capable of handling events in distributed environ-
ments over networks, various GUI frontends as well as a python binding
(Pivy [9]). There is also a special adaptation for embedded systems called
the Studierstube ES (Embedded Subset).

Some examples of applications implemented with Studierstube are shown
in Figure 5.1. A schematic representation of the Studierstube ES system
architecture is depicted in Figure 5.2

1http://studierstube.icg.tu-graz.ac.at/

35

http://studierstube.icg.tu-graz.ac.at/
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(a) Tracked input devices: Pen & Per-
sonal Interaction Panel (PIP)

(b) Manipulation of virtual objects

(c) Virtual Chess Board (d) Virtual Liver Surgery Planning

Figure 5.1: Augmented Reality Applications implemented with Studierstube

Figure 5.2: Studierstube Client Architecture
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OpenTracker

With OpenTracker [44, 45] developers can build systems to handle all kinds
of 3D object tracking and user input tasks. There is a wide range of input
modules integrating the output of tracking devices2 like GPS, InterSense (in-
ertial and ultrasound), UbiSense (ultra-wideband radio) or Cameras (track-
ing of fiducial markers in camera images with ARToolkitPlus [70]), as well
as user input devices like a mouse, a keyboard, a data glove (P5Glove) or
even speech recognition (Microsoft Speech SDK), into the system and makes
them available as event sources. A data flow graph defined in an XML con-
figuration file specifies how the data from these sources is packed into event
objects, processed, transformed, merged and sent on to event sinks like dif-
ferent network nodes, log files or tracking engines used in Studierstube to
manipulate objects in the scenegraph and trigger interactions.

VISION FW

The Vision FW Framework provides implementations of various off-line and
on-line boosting algorithms, image patch classifiers and a range of different
utilities to build image classification systems. The on-line classifier used for
this work is mainly an implementation of [15].

libRpp

For estimation of the pose from a set of matchings between world coordinates
and image coordinates as described in section 3.2, the libRpp library which is
an implementation of [56] was used. It is also selectable in the configuration
of ARToolkitPlus as a more stable alternative to the standard ARToolkit
pose estimation method.

5.2 Assembling the system

In order to explain the system’s configuration, taking a look at the data flow
shows how an input image is acquired, processed, augmented with virtual
objects and finally presented to the user. The whole process is illustrated in
Figure 5.3.

1. Image Acquisition: The Image is captured by the OpenVideo com-
ponent and forwarded to video sink nodes that are connected to the
Studierstube kernel.

2. In the kernel the event of a new frame arriving is fed into the EventSys-
tem. Within the EventSystem resides the OpenTracker context.

2for a full list of supported devices see http://www.icg.tu-graz.ac.at/public_
wiki/OpenTracker

http://www.icg.tu-graz.ac.at/public_wiki/OpenTracker
http://www.icg.tu-graz.ac.at/public_wiki/OpenTracker
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Studierstube

VideoComponent

EventSystem

OpenTracker Context

SceneGraph

VideoBackground

World Transformation

rendering

OpenTracker

NaturalFeatureTrackerModule

EventSink

Pose

OpenVideo

Camera

VideoSink

NaturalFeatureTracker

Image Capture

Image Processing
Keypoint Extraction
Feature Management

Feature Recognition Pose Calculation

LibRPPVision_FW

PoseImage

PoseImage

Image

Figure 5.3: Components of the system
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3. The NaturalFeatureTrackerModule is registered in the OpenTracker
context as a video user. It receives the image and processes it to recover
the camera pose with the help of VISION FW and libRpp. The process
inside the module is explained in detail below.

4. When OpenTracker asks all modules to push new events the resulting
pose is written into an event object. This event holding the new pose is
propagated through the OpenTracker graph until it reaches a tracking-
EventSink connected to the Studierstube kernel.

5. The kernel passes the event with the new pose on to the scenegraph
where it updates a TrakEngine’s position and orientation field. These
fields are used in the transformation node that contains the whole
scene. Together with the input image as background all the objects
can now be rendered and displayed.

NaturalFeatureTrackerModule

The actual product of this project is the NaturalFeatureTracker library,
containing the code to calculate camera poses from a continous video stream
by tracking natural features. It is designed for easy use as a subcomponent
of OpenTracker. As outlined above it receives new video frames from the
OpenTracker context. The following steps are mainly an implemenation of
the Algorithm 1 presented in [16] and performed to calculate the camera
pose:

1. First the image is converted to grey scale. A smoothed version is
created by convolution with a Gauss kernel and Harris-corners are
extracted as interest points (both operations use functions from the
OpenCV library).

2. The prepared input is handed over to the FeatureTracker Compo-
nent (NaturalFeatureTracker.lib) implementing the actual tracking al-
gorithm.

First frame If it is the first frame the tracker receives:

• Split interest points into background and object keypoints by
evaluating which of them are / are not on the object. At this
point the system has to know the outline of the target object
in the first frame (an initial object region). This problem of
initialisation is investigated and solved below.
• Initialise classifiers for a fixed number of keypoints on the

object. Using functions of the VISION FW library, new clas-
sifiers are created and a configurable number of positive and
negative updates are executed. The positive patch is always
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the one around the keypoint to be identified, the negatives
are randomly chosen from the background keypoints and the
other object keypoints.

Followup frames On all the subsequent frames:

• Find the positions of the object features in the current frame
by evaluating all classifiers on all keypoints and taking the
best match.
• Find a homography between the keypoints found on the last

and the current frame.
• For all inliers to the homography update the corresponding

classifier with a patch around the newly found keypoint as
positive example and a random negative patch.
• Increase feature quality measure for all those that were found

in the current frame, decrease the others.

3. Take all features for which world coordinates and the position on the
current frame are known and find a pose that projects the keypoints
from world coordinate system to the respective current keypoint coor-
dinates on the image. For the first frame it is only the corners of the
initial object region. For all consecutive frames inliers of the homog-
raphy for which world coordinates have been calcualated before are
included.

4. Using the current pose, calculate world coordinates for new object fea-
tures by projecting the image coordinates back onto the object plane.
This calculation is repeated on a series of frames for which poses have
been recovered in order to have a set of world coordinate estimates
over which we can average (again with outlier removal). Only then a
new object feature is considered for pose estimation.

5. As a final step the quality of the tracked object features is evaluated.
Features that have not been found in a certain number of frames in
the recent past are dropped and replaced by new ones initialised on a
new keypoint on the object.

Initialisation

One of the problems that has to be solved is how to initialise the tracker.
The strength of the tracker is its ability to track targets that have never been
seen before and have to be learned on-line. That implies, that the system
cannot know in advance how the area of the target is shaped and especially
how the coordinate frame of the virtual world should be scaled and oriented
relative to the target. The precondition is that the target must be planar
(the homography estimation for outlier detection of the keypoint matches as
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well as the pose estimation algorithm rely on that fact). In order to keep the
system as flexible as possible the systems lets the user define a rectangular
area on the target object in the first frame by clicking on the four corner
points. After the system starts the user just sees the live video. Clicking once
freezes the current frame, then the system expects mouse clicks that define
the target object’s area in the current frame in the following order: top-left,
top-right, lower-right, lower-left. Figure 5.4 illustrates this process. Next the
aspect ratio of the rectangle is calculated [59] the virtual coordinate system
is set to have the rectangle as x-y-plane (ground) with the origin at the
center and scaled such that the x-coordinate is 1 at the right border and -1
at the left border of the rectangle, and an initial camera pose is calculated.

Figure 5.4: Initialisation Process: First click to freeze the video, then click the
corners of the rectangular planar target clockwise. This defines the virtual
coordinate system.
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5.3 Configuration

The following is an overview over the list configuration files holding the
parameters that can be adjusted to configure the system.

Core Module The center piece of every Studierstube application is the
Studierstube kernel. It is configured via the kernel.xml file. Here all
the components to be loaded into the system are listed.

OpenTracker The opentracker.xml file holds the configuration of all
OpenTracker sub-modules and the graph structure. The first part is a
list of all the modules that have to be initialized and their basic set-
tings. One of them is the NaturalFeatureTrackerModule with its own
configuration file nftracker.xml containing the following parameters.
windowWidth Size of the object feature patches.
numObjectFeatures Number of object features to track.
numBaseClassifiers Number of selectors within each ob-

ject feature’s classifier.
numWeakClassifiers Number of weak classifiers within

each selector.
initialTrainingIterations Number of positive and negative up-

dates for a newly created classifier.
minConfidence Minimal threshold for a classifier re-

turn value to be counted as a posi-
tive match (in the range of (−1, 1)).

initialFeatureQualityValue Initial quality of new feature
numKeypointsToDetect Number of interest points returned

by the keypoint detector.
The pose calculated by the NaturalFeatureTrackerModule is wrapped
into an event object and sent to all NaturalFeatureTrackerSource nodes.
The NaturalFeatureTrackerSource has to be a child node of an EventSink
to pass it on to the Studierstube’s SceneGraph.

OpenVideo All the information needed to initialise a video source (live
camera or video file) is located in openvideo.xml. A source has to
be defined (OpenCVSrc for files, DSVLSrc or VideoWrapperSrc for live
video from a camera) that sends its captured frames to a VideoSink
used in the SceneGraph as VideoBackground and is sent to Open-
Tracker for pose estimation. In the root node of the OpenVideo con-
figuration the updateRate parameter specifies the frame rate of the
input video.

Interactive Application For the interactive application described in sec-
tion 6.1 the SoTexturedSpheres node-kit is needed which was imple-
mented in the starlight component.
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Experimental Results

In order to evaluate the implemented system a series of experiments had to
be conducted. First some demo usage scenarios the system can be used for
are presented. Then an analysis of the capabilities of the tracking method
regarding robustness, speed and accuracy of the calculated pose is given.

6.1 Implemented use cases

The following examples of different AR demo scenarios were constructed to
show possible applications of the system.

Vidente Urban Planning - Jakominiplatz

The starting point for this work was the need for a 3D camera pose tracker
that would deliver the pose of a mobile AR device relative to an ortho-
photo or a map of a given area (in our demo case the Jakominiplatz in
Graz) so sub-surface infrastructure like gas and electricity pipeline models
can be displayed interactively, accurately registered on top of the photo. This
enables urban planners to naturally explore the available data and interact
with it.

Our first demo scenario is therefore a reduced version of the Vidente
Jakominiplatz application, without the GUI elements and interaction pos-
sibilities, just showing gas and electricity pipelines to visually verify the
camera pose and the model’s alignment.

Figure 6.1 shows the system in action. In the first frame (6.1a) the system
has to be initialized on the target object as described above (see section 5.2).
In this case we have the special requirement, that we have a predefined 3D
model that has to be scaled and positioned on top of the target object to
achieve good alignment. So the virtual coordinate system can not be chosen
arbitrarily, but exact positions on the map have to be clicked by the user
and are matched to world coordinates specified in the configuration files.

43
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.1: Tracking sequence of an ortho-photo of Jakominiplatz augmented
which sub-surface infrastructure (gas and electricity pipelines): (a) initial
frame showing the aligned sub-surface infrastructur models and the feature
points as cubes, (b) normal tracking, (c) fast camera movement causes the
tracker to fail on one frame, (d) tracking is recovered in one of the subse-
quent frames, (e) continuous tracking despite the fact that several feature
points cannot be detected in the current frame (zoomed in and occluded),
(f) when zooming out again after a longer period of close-up frames, the
feature exchange mechanism placed all the features in the formerly visible
area (feature points clustered in top right), (g) some frames later the feature
points spread out again to cover the entire object.
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As soon as the initialisation is done the tracking starts. In addition to the
model showing gas (green) and electricity (red) pipelines, in this demo the lo-
cation of feature points on the object tracked by the NaturalFeatureTracker
are being represented as small coloured cubes. A green cube indicates that
the feature point was redetected in the current frame and is an inlier of the
homography calculation and thus also used for the pose estimation. A cube
turning blue means the evaluation of the feature point’s classifier reached
a certain minimum confidence threshold but it was rejected as an outlier
by the homography and was hence also not counted as matched and not
used for the pose estimation. And finally when a feature point was not at all
redetected in the current frame it is shown red. The tabletop setup is shown
in the top row of Figure 6.2.

It should be mentioned here, that this demo shows our system can deal
with this kind of scenario where a predefined model needs to be aligned with
one specific target object, but it is not the perfect tool for it. If the model,
the target and the matching between them has to be known in advance
there is no need to learn the target object’s appearance on-line and faster
and more robust tracking methods that require an off-line training stage
could be used (e.g . [69]). The strength of the approach presented here is
the ability to track objects unknown beforehand by learning them on-line.
In the planning domain this is necessary when virtual object models are
built and manipulated interactively in a previously unknown environment.
For instance one could imagine a planning tool for modifications to a house.
With our tracker one can step up to any planar façade, mark it is as the
tracking target and then interactively place, move and scale various building
blocks as windows, balconies or information tags. This is illustrated in the
bottom row of Figure 6.2.

Virtual Soccer Field

As a second demo the implementation of a virtual soccer field was chosen.
It is shown in Figure 6.3. There are two aspects demonstrated with this
scenario: First the ability of the tracker to robustly identify sub-parts of tar-
gets with self-similar organic texture. Different printouts of meadow images
and grass textures serve as the base on top of which we want to display
the field’s outlines and two goals. Second we show the interactive simulation
capabilities of the Studierstube system and how the mobile AR device itself
can be used as an input device manipulating the virtual object. The user has
virtual cross-hairs at the center of the screen. By pointing it at the desired
location on the pitch and pressing a key virtual objects are placed at the
position where the ray from the camera’s center (the user’s point of view)
through the cross-hairs intersects the ground plane. This is similar to the
virtual redlining technique [52] used in the Vidente project. There are two
different types of objects: Bouncing soccer balls and simple trees.
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Figure 6.2: first row: Setup of the Vidente planning application. The user
is equipped with an ultra-mobile PC that accurately renders 3D structures
and information directly on top of the orthographic photo of Jakominiplatz
in Graz; second row: Setup for the interactive outdoor planning tool.

The implementation of the interactive part was a matter of a view lines
of code to define a new node kit which can be inserted into the scenegraph.
It is connected to the tracking engine to be notified whenever the camera
pose changes or a key is being pressed. Pressing the ’t’ or ’b’ key sets the
system to tree mode or ball mode respectively. When the user pressed the ’a’
(for “add”) key the current camera pose is used to construct the ray coming
from the camera center and pointing into the cameras viewing direction and
a new object is generated and placed where the ray intersects the ground
(i.e. the xy-plane).

6.2 Evaluation of the computed camera pose

In order to evaluate the quality of the tracking method numerically the
calculated pose (the actual output of the NaturalFeatureTracker) has to be
compared to a proper reference.
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(a) virtual soccer field (b) a different target object

(c) trees planted interactively (d) zooming in and placing a new ball

Figure 6.3: Rendering an interactive animated virtual soccer field on top of
different grass-textured objects: (a) & (b) Different grass textures, robust
tracking of the whole region or a sub-area; (c) & (d) Additional virtual
objects (bouncing balls and trees) can be added interactively by pointing
the cross-hairs at the desired location on the ground and pressing a key.
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Comparison with ARToolkitPlus

The first approach taken is to compare the pose from the NaturalFeature-
Tracker to the pose that ARToolkitPlus computes for the same input video
stream. To get a pose from ARToolkitPlus the target object has to be
equipped with fiducial markers. The prepared target is shown in Figure 6.4.
The natural feature tracker is initialised only on the inner region, the sur-
rounding markers enable ARToolkitPlus to calculate the pose.

Figure 6.4: Target with fiducial markers to be tracked by ARToolkitPlus and
content tracked by NaturalFeatureTracker for pose comparison.

Figure 6.5 shows the results of the comparison for a short video sequence.
In the first row the movement of the camera is indicated by a blue line. Every
50th frame a camera is plotted to show the camera’s orientation. The left
picture shows the results of ARToolkitPlus, the right one shows the poses
NaturalFeatureTracker delivers.

Since pose estimation is always only possible up to an arbitrary scale
factor in all the experiments the translation is measured with respect to the
size of the tracking target, more precisely it is expressed as a percentage of
the target’s width.

Figures 6.5b and 6.5c show the differences between the positions and
orientations for each frame. The results are very similar. The differences in
translation remain below 0.5%. The angle between the camera’s orientations
has a mean value of 0.45◦ with a standard deviation of 0.27.
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(a) Camera poses, ARToolkitPlus (left) and NaturalFeatureTracker(right)
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(c) Angle between the cameras’ orientations

Figure 6.5: Comparison of the camera poses calculated by NaturalFeature-
Tracker and ARToolkitPlus on a short video sequence of the Jakominiplatz
ortho-photo target.
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Synthetic scenes with groundtruth

For a more accurate evaluation video sequences for which groundtruth is
available (i.e. the exact camera pose for every frame is known) are needed.
One possibility is to render a synthetic video using a 3D animation tool like
Blender1. With this procedure the pose is not only known but can also be
controlled exactly. Hence the capabilities of tracker in special situations can
tested explicitly. Having seen quite promising results so far especially the
more problematic cases will be investigated.

The first scene tests rotation invariance. The camera rotates about the
world coordinate frame’s y-axis, i.e. it starts directly in front of the object
and then moves to the left always facing the object (the equivalent of a
stationary camera and an object rotating about its vertical axis).

Figure 6.6 shows the results of the camera pose evaluation. The first
thing to investigate is up to which viewing angle the tracking works. Several
videos with the target object rotating at different speeds were created and
for each rotation speed the tracking results of several runs were recorded.

At the beginning of the video sequence the tracker successfully finds the
pose, after some time it may not be able to track the target for some frames
and then again recover and redetect the object until at some point it looses
track completely. 6.6a illustrates this behaviour. The blue line shows the
mean value and standard deviation of the last angle from which the target
was successfully tracked. The red line indicates the range of angles at which
the tracker failed the first time.

The second scene under investigation is a rotation about the camera’s
z-axis (viewing axis). The according results are shown in Figure 6.7 and will
now be discussed together with the ones of the first experiment.

The results most importantly document two facts: First it is obvious
that the Haar-features forming the base of the classifiers’ decisions perform
badly on rotations of the patches of more than a few degrees. Already after
a few frames, when pure rotation exceeds about 30◦ lots of feature points
are lost. For slow rotations there is the chance to adapt to the rotated
appearance of the patches, but the effect of learning has a smaller impact
on the angle up to which the target can be tracked than the initialisation
of new features gradually replacing old features that cannot be found any
more.

At this point it should be mentioned that for an on-line adapting detec-
tion algorithm these tests are the hardest case, because the samples always
increasingly differ from the initial appearance and in an attempt not to drift
too much, the classifiers have to stop incorporating new data continuously.

The second observation is that as soon as the tracker looses the object in
one frame and it rotates further (not showing previous appearances again),
even if the tracker finds enough correct matches again, the accuracy of the

1http://www.blender.org

http://www.blender.org
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(a) Average rotation angle for which tracking failed the first time (red)
and up to which tracking worked (blue)
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(b) Mean value and standard deviation of camera position error for con-
tinously tracked frames (green) and for frames where tracking was recov-
ered after failure (blue)
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(c) Errors in camera orientations

Figure 6.6: Results of tracking an ortho-photo of Jakominiplatz rotating
about the world coordinate frame’s y-axis for different rotation velocities
(synthetic scene created with Blender)
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(a) Average rotation angle for which tracking failed the first time (red)
and up to which tracking worked (blue)
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(b) Mean value and standard deviation of camera position error for con-
tinously tracked frames (green) and for frames where tracking was recov-
ered after failure (blue)
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(c) Errors in camera orientations

Figure 6.7: Results of tracking an ortho-photo of Jakominiplatz rotating in
front of the camera (i.e. around the z-axis) for different rotation velocities
(synthetic scene created with Blender)
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resulting pose drops. This is indicated in Figures 6.6b, 6.6c, 6.7b and 6.7c.
The green lines show the mean and standard deviation of errors in position
and orientation for all frames from the beginning to the point when the
tracking begins to fail. For small rotation speeds the translation error is
usually around 1% of the target objects width and the error in the rotation
angle is about 1◦. The blue lines however show the errors in position and
orientation for the frames where tracking was recovered after failing on one
frame. The poses returned in these cases are not really suitable for AR
purposes any more. When observing one run of the experiment it can be
seen that the alignment is fine as long as the tracker works continuously,
as soon as it fails once there is only the possibility that a few features
may be redetected by chance in a later frame making the tracker jump to
the approximate new pose which is expressed in the data producing the
blue lines. The same is true for fast camera rotation (about 10◦ per frame)
already on consistently tracked frames.

Consequently these experiments emphasize the problem of finding a good
heuristic for exchanging features. Those that have proven to be reliably
detectable should not be discarded too fast to make place for new ones.
Additionally features initialized at the beginning per definition have exact
world coordinates which have to be estimated for new features under noisy
conditions before they can be used for pose estimation. Simply adding new
features linearly adds to the time it takes to match features to the current
interest points and is therefore not feasible in a real-time scenario. But on the
other hand, as we have seen above in cases like the given two experiments,
new feature points have to be initialised continuously to be able to keep on
tracking the target.

Another solution to deal with the poor rotation invariance would be to
unrotate the patches according to a primary orientation given by a dominant
gradient direction (or the like) before classification. This would only be pos-
sible if there is a fast implementation and enough time in the preprocessing
stage.

As a last test the overall performance for a more complex camera move-
ment in a synthetic scene is investigated. Figure 6.8 presents the results. In
contrast to the last section here the power of the tracker to redetect the
object after it was lost, in frames where the object’s appearance gets sim-
ilar enough to the last successfully tracked frame, and keep on calculating
accurate camera poses, can be seen.

World coordinate calculation

As stated above (in section 5.2) the world coordinates of newly initialised
object features are calculated by projecting their image coordinates back
onto the object plane. Doing this several times yields a set of estimates over
which a mean value is calculated with outlier removal, since the estimates
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(a) Camera poses, groundtruth (left) and NaturalFeatureTracker(right)
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(b) Errors of the calculated positions
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Figure 6.8: Evaluation of the pose calculated by NatuaralFeatureTracker
compared to groundtruth on a synthetic scene of the Jakominiplatz ortho-
photo tracking target
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are based on the current pose which can be significantly wrong for some
frames. Figure 6.9 shows the world coordinate estimates for some feature
points during a test run, the calculated mean value and in- and outliers of
the calculation.
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Figure 6.9: World coordinate calculation of object feature points. mean value
(green), inliers (blue), outliers (red)

6.3 Profiling data

One of the key requirements for a tracker is its applicability in a real-time
system. Thus the runtime performance of the system has to be examined.

Theoretical considerations

The first step is an analysis of how the individual parts of the code depend
on certain parameters adjustable in configuration files.

The resolution of the video frame only affects the input preparation
stage, from converting to grey scale and calculation of an integral image to
smoothing with a Gauss kernel and the extraction of interest points.

When trying to redetect an object feature in the current frame every
feature’s classifier has to be evaluated on each candidate interest point. Thus
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this part depends linearly on the number of interest points, the number of
object features (i.e. the number of classifiers) and the number of selectors
within each classifier.

The calculation of a frame to frame homography and the pose estimation
depend on the number of object features. The time to update the object
feature classifiers depends on the number of features, the number of selectors
and the number of weak classifiers within each selector. Whenever an object
feature’s quality drops below a minimum threshold it is replaced by a new
one. This new object feature has to be initialized with a series of positive and
negative updates. This process is controlled by setting a number of initial
training iterations. The following table summarizes the above:
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image preparation quad - - - - -
keypoint extraction quad - - - - -
feature detection - lin. lin. lin. - -
homography calc. - - lin. - - -
feature update - - lin. lin. lin. lin.

The size of the patches that define feature points does not influence the
run-time speed since it is only relevant for the evaluation of the basic image
features and the Haar-features used run with constant speed on any scale.

Framework overhead One of the most time consuming parts is finding
the new locations of object features in the current frame. Every classifier
has to be evaluated on every interest point. It consists of evaluating image
features on the surrounding image patch and comparing the result to one or
two thresholds. The evaluation of image features is also essential to the clas-
sifier updates. Thus it is crucial that these parts are implemented efficiently.
To check if the implementation in the framework wastes computation time
it is compared to the execution time of the bare minimum code for a given
configuration.

Evaluating one Haar-feature on an image patch requires the calculation
of the sum of pixel values within 2 to 4 sub-areas on the patch depending on
the type of feature (on average three getSum() calls) and a multiplication
with the weight of the area. With the integral image prepared, one call to
getSum() results in four memory accesses (one for each corner of the rectan-
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gular area). The evaluation of 60 classifiers with 30 selectors on 300 keypoints
equals to about 60× 30× 300× (3×getSum()+2 threshold decisions)

On an Intel Core2 Duo 1.66 GHz System the following timings were
recorded:

540.000 × 3 × getSum(): ≈ 40 ms
540.000 × threshold decisions: ≈ 40 ms
⇒ minimum total time: ≈ 80 ms

60× 300 classifier evaluations ≈ 85 ms

This result also indicates that this setup cannot run with a frame rate
of more than about 10 frames per second. Real-time operation can only be
achieved by reducing the number of interest points or the number of object
features.

Another observation is that calling getSum() on always the same patch
around one keypoint is faster (about 15%), presumably because the required
memory area is cached in the CPU. This has not been tested by now.

Search area restriction In order to reduce the time to find matches many
SLAM like approaches use a probabilistic camera motion model (Kalman
filter) to predict the position of the feature points in the next frame and only
search within a local neighbourhood constrained by a confidence measure
of the prediction. A very simple approach was tested, only evaluating the
feature point classifiers on interest point within a 30 pixel radius of the
feature point’s position in the last frame. This works well for small camera
movements and increases matching performance dramatically. Additionally
the search radius can be enlarged over time when not enough feature points
are being found.

Frame rate When trying to measure the speed of the tracker one problem
arises. The overall frame-rate of the system does not tell much about it,
because the video capturing and the pose calculation are not synchronized.
The video frames come in with a fixed rate specified in the OpenVideo
configuration file. If the next frame comes before the pose calculation was
done, a frame gets dropped and after the tracker module finished it has to
wait for the next frame. So the time it takes to calculate the new pose is
not the time for the whole frame minus the time for everything else but the
tracker. Thus here only the time within the tracker module, from receiving
a new video frame to the output of the calculated pose was measured.
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Timings on different platforms

As the primary target platform an ultra-mobile PC (UMPC): Sony Vaio
VGN-UX50, Intel Core Solo (1.06 GHz), 512MB RAM, Windows XP was
chosen. The rear camera has a resolution of up to 1280x1024, but for most
of the experiments 320x240 was used.

Additional experiments were conducted on the development platform:
Sony Vaio VGN-FE11M, Intel Core2 Duo (1.66 GHz). Apart from the slightly
faster CPU clock speed, the laptop has two advantages. Since the Studier-
stube framework is multi-threaded, it can make use of the dual core archi-
tecture. The tracker basically can run on one core alone. Second, the faster
graphics card and memory throughput allows much more complex models
(on the ultra-mobile PC it is virtually impossible to use textures without
experiencing heavy performance penalties). Here the camera is a standard
USB WebCam (Logitech QuickCam Pro for Notebooks) and a resolution of
640x480 was taken.

Table 6.1 shows the profiling data of several experiments on both plat-
forms. All values are averaged over a minimum of 500 frames of each run.
The different parameter settings show the influence of the number of ob-
ject features to track and the speed-up achieved by using the search area
restriction discussed above.

The biggest part of the total time is spent on the redetection of feature
points on the current frame. This is why a reduction of the search area has
great influence on the total time. The feature update is the second biggest
factor and only depends on the number of object features. Last but not least
the extraction of interest points takes quite a while with the implementa-
tion used (cvGoodFeaturesToTrack() from OpenCV). Other methods (e.g .
FAST [47, 48]) should be considered.

Summing it up one can see that interactive frame rates can be achieved,
but only when the number of object features tested is in the range of 20 to
30 and some form of search area restriction is applied.
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Experiment A B C D
Platform UMPC UMPC UMPC UMPC
Image resolution 320× 240 320× 240 320× 240 320× 240
# interest points 200 200 200 200
# object features 50 50 25 25
# selectors 30 30 30 30
# weak classifiers 50 50 50 50
# init. training iterations 40 40 40 40
search area restriction no yes no yes

Task t(ms) t(ms) t(ms) t(ms)
Image Capture & Prep. 6 6 7 6
Interest Point Extraction 13 13 15 13
Object Feature Matching 179 17 108 8
Homography 5 6 5 4
Online Feature Update 37 38 22 20
Online Feature Exchange 1 1 0.5 0.5
Pose estimation 4 4 3 3
Total 249 90 166 58

Experiment E F G H
Platform Laptop Laptop Laptop Laptop
Image resolution 640× 480 640× 480 640× 480 640× 480
# interest points 300 300 300 300
# object features 60 60 30 30
# selectors 30 30 30 30
# weak classifiers 50 50 50 50
# init. training iterations 40 40 40 40
search area restriction no yes no yes

Task t(ms) t(ms) t(ms) t(ms)
Image Capture & Prep. 15 16 15 15
Interest Point Extraction 30 31 31 30
Object Feature Matching 96 58 46 23
Homography 3 3 2 2
Online Feature Update 20 20 10 11
Online Feature Exchange 0.7 0.4 0.5 0.1
Pose estimation 2 2 1.2 1.1
Total 171 82 111 65

Table 6.1: Timing per frame.



Chapter 7

Discussion and Outlook

The thesis at hand shows that on-line learning of natural features is a prac-
ticable method to provide camera pose tracking and can be integrated into
a complete, working and real-time capable AR system. As the practical part
the NaturalFeatureTracker module providing camera tracking data was im-
plemented as a sub-component of the OpenTracker framework which in turn
can be used in the Studierstube AR framework. That way several use cases
were implemented to show the capabilities of the overall system and a series
of tests were carried out to provide numerical evaluation data for the tracker.

7.1 Outlook

After all the work, for every item checked off, a new one has to be added to
the bottom of the to-do list, opening up room for improvement and leaving
work for future.

On-line recognition and learning of new planar patches in the scene
As mentioned above it would be desirable to have a system that con-
tinues to work when the initially learned target gets out of sight. With
a tracking system like the one presented, relying on homography cal-
culations and hence planar targets this would mean to identify new
planar patches in the scene (like in [59]) and concurrently learn to
track it to be able to switch over when the original target is lost.

Non-planar targets Another interesting extension would be to leave the
domain of planar targets. The elimination of false positive matches of
the keypoint classifiers could not be done by a homography any more
and thus would have to be merged into the pose calculation. Conse-
quently one would have to come up with a pose estimation algorithm
fast enough to be used in a RANSAC framework (i.e. run several times
for each frame) or it would have to be able to deal with outliers itself.
An evaluation of [28] seems interesting in this context.

60
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Improved feature management One of the most essential questions in
the tracking system as it is now, is when to keep a learned object fea-
ture and when discard it and initialize a new one. Switching to new
ones generally makes the process more unstable since world coordi-
nates for new features have to calculated using the current calculated
pose thus gradually introducing drift. Keeping good features on the
other hand may prevent the system to keep on tracking when too
many of the known features get out of sight or become unrecognisable.
Finding smart feature exchange policies will definitely be a challenge.
For instance one could imagine a system that interactively learns to
control the feature exchange itself (e.g . with reinforcement learning).

Learning of environmental maps Looking at the last two points it be-
comes obvious that it would be desirable to have a system that in-
telligently manages a full 3D map of redetactable object keypoints of
the full working area. Research in that direction has been conducted
under the term of “simultaneous localization and mapping” (SLAM).
The key requirement for a system such as the one presented here would
be to still be able to limit the amount of classifiers that have to be
tested on a new frame while keeping knowledge of a massive amount of
keypoints. One solution also used in [5, 72] would be to use a Kalman
filter system to predict a small range of keypoints that may appear in
the next frame, given the current pose and a camera motion model.

Improved feature learning The keypoint learning itself could be improved
in several ways. Especially making the detection more robust against
rotation, either by preprocessing the input patches or additionally
learning rotated (or, in general, affine transformed) views, would in-
crease the overall performance a lot. The main problem here is the time
available to do extra preprocessing and additional learning iterations.

Confidence calculation Every event within the OpenTracker system hold-
ing pose information has a confidence field associated with it that can
be used for instance to perform sensor fusion. Multiple sources can
provide pose data for an object and a switch node filtering the incom-
ing data can choose the most reliable one or even construct a merged
result reflecting the individual confidence values. The NaturalFeature-
Tracker has lots of internal information that could be used to calculate
the confidence of the resulting pose (e.g . the confidences returned by
the keypoint detectors, the number of inliers at the homography cal-
culation, the remaining error of the pose estimation).
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