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Abstract

Air traffic control (ATC) voice radio communication between aircraft pilots and con-
trollers is subject to technical and functional constraints owing to the legacy radio
system currently in use worldwide. This thesis investigates the embedding of digital
side information, so called watermarks, into speech signals. Applied to the ATC voice
radio, a watermarking system could overcome existing limitations, and ultimately
increase safety, security and efficiency in ATC. In contrast to conventional watermark-
ing methods, this field of application allows embedding of the data in perceptually
irrelevant signal components. We show that the resulting theoretical watermark ca-
pacity far exceeds the capacity of conventional watermarking channels. Based on
this finding, we present a general purpose blind speech watermarking algorithm that
embeds watermark data in the phase of non-voiced speech segments by replacing
the excitation signal of an autoregressive signal representation. Our implementation
embeds the watermark in a subband of narrowband speech at a watermark bit rate
of the order of magnitude of 500 bit/s. The system is evaluated experimentally using
an ATC speech corpus and radio channel measurement results, both of which were
produced specifically for this purpose and constitute contributions on their own. The
adaptive equalization based watermark detector is able to recover the watermark data
in the presence of channels with non-linear phase, time-variant bandpass filtering,
amplitude gain modulation, desynchronization and additive noise. In the aeronautical
application the scheme is highly robust and outperforms current state-of-the-art speech
watermarking methods. The theoretical results show that the performance could be
increased even further by incorporating perceptual masking.

Keywords: Information hiding, digital watermarking, speech watermarking, legacy
system enhancement, watermark capacity, watermark synchronization, air traffic
control, voice radio, analog radio channel.
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Zusammenfassung

Die Sprechfunk-Kommunikation zwischen Piloten und Fluglotsen unterliegt techni-
schen und funktionalen Einschränkungen, die sich aus dem althergebrachten und welt-
weit eingesetzten analogen Sprechfunk-System ergeben. Diese Arbeit beschäftigt sich
mit der Einbettung digitaler Seiteninformation, so genannter Wasserzeichen, in Sprach-
signale. Angewandt auf den analogen Flugfunk könnte ein solches Wasserzeichen-
System bestehende Einschränkungen aufheben und letztendlich die Effizienz sowie
die aktive und passive Sicherheit in der Flugsicherung steigern. Im Gegensatz zu
herkömmlichen Wasserzeichen-Verfahren erlaubt dieser Einsatzbereich ein Einbetten
der Daten in Signalanteilen, die vom menschlichen Gehör nicht wahrgenommen wer-
den können. Es zeigt sich, dass dies zu einer erheblichen Steigerung der Kapazität
des verdeckten Datenkanals führt. Basierend auf dieser Erkenntnis wird ein univer-
selles blindes Wasserzeichen-Verfahren vorgestellt, das die Daten in die Phase von
stimmlosen Sprachlauten einbettet, indem das Anregungssignal eines autoregressiven
Signalmodells durch ein Wasserzeichen-Signal ersetzt wird. Die Implementierung
bettet die Seiteninformationen mit einer Bitrate von circa 500 bit/s in einem Teilband
des schmalbandigen Sprachsignals ein. Zur experimentellen Validierung des Systems
wurden Flugfunkkanal-Messungen durchgeführt und ein für die Flugsicherung spe-
zifischer Sprachkorpus erstellt. Diese beiden Datensammlungen stellen jeweils einen
eigenständigen Beitrag dar. Der Wasserzeichen-Detektor basiert auf adaptiver Entzer-
rung und detektiert die eingebetteten Daten sogar bei einer Übertragung des Signals
über Kanäle mit zeitvarianter Kanalverstärkung, nicht-linearer Phase, zeitvarianter
Bandpass-Filterung, Desynchronisierung und additivem Rauschen. Das Verfahren ist
hochrobust und übertrifft in der Flugfunk-Anwendung leistungsmäßig die modernsten
existierenden Wasserzeichen-Verfahren. Die vorliegenden theoretischen Ergebnisse
zeigen, dass durch eine Berücksichtigung von gehörbezogenen Maskierungsmodellen
die Leistungsfähigkeit weiter gesteigert werden kann.

Stichwörter: Digitale Wasserzeichen, Einbettung digitaler Seiteninformationen, Sprach-
wasserzeichen, Wasserzeichenkanalkapazität, Wasserzeichensynchronisierung, Flug-
sicherung, Flugfunk, Sprechfunk, analoger Sprechfunkkanal
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Chapter 1

Introduction

1.1. Motivation

The advances in modern information technology revolutionized the way we com-
municate. Broadband Internet access and mobile wireless communication, be it for
voice, data, or video transmission, are ubiquitous and seemingly available anytime and
anywhere. Unfortunately, this is not entirely correct. The world is full of legacies, and
it is not always possible to deploy or use state-of-the-art communication technologies.

The problem addressed in this thesis is the voice radio communication between
aircraft and civil air traffic control (ATC) operators. Still today, this communication
is based on pre-World War II technology using amplitude-modulation analog radio
transmissions on shared broadcast channels. While technology has rapidly advanced
and satellite communication facilitates broadband Internet access in the passenger
cabin, the air/ground voice radio for pilots and controller communication has not been
changed since its introduction in the early forties of the last century.

The large technological gap between communication systems available in the cabin
for passenger services and in the cockpit for air traffic control purposes is not likely to
disappear in the foreseeable future. This is due to a wide range of reasons, including
an enormous base of airborne and ground legacy systems worldwide, long life-cycles
for aeronautical systems, difficult technological requirements (such as large system
scales and safety-critical compatibility, availability and robustness requirements), inter-
national regulations, and, last but not least, a lack of common political willingness or
determination.

The ATC voice radio lacks basic features that are taken for granted in any modern
communication system, such as caller identification or selective calling. It is commonly
agreed that such features could improve safety, security and efficiency in air traffic
control. Since, despite its advantages, there is no foreseeable time frame for the

1
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Aircraft System
Watermark
Embedder TX

Data
(i.e. Identification)

ATC System
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Data
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Watermark
Detector

ATC Display

TA
G

Figure 1.1.: Speech watermarking system for the air/ground voice radio.

introduction of digital ATC voice radio communication, it is attractive to retrofit or
extend the current analog system with additional features.

Many potential features, such as caller identification, authentication, selective calling,
call routing, or position reporting, can conceptually be reduced to a transmission
of digital side information that accompanies the transmitted analog speech signal.
In order to be legacy system compatible and to avoid the necessity of a separate
transmitter, such side information should be transmitted in-band within the speech
channel as shown in Figure 1.1. On the receiving end, such side information should
not be noticeable also with unequipped legacy receivers.

The imperceptible embedding of side information into another signal, often referred
to as information (or data) hiding or digital watermarking, constitutes the core of this
thesis. We deal with the general problem of imperceptibly embedding digital data into
speech, and consider the special case of embedding into ATC speech that is transmitted
over an analog aeronautical radio channel.

Watermarking speech signals with a high embedded data rate is a difficult problem
due to the narrow bandwidth of speech. The transmission of the watermarked speech
over a poor-quality aeronautical radio channel poses an additional difficulty due to
narrow bandwidth, noise corruption, fading and time-variance of the channel.

Compared to image, video and audio watermarking, there is relatively little prior
work in the field of speech watermarking. However, the production and perception of
speech is well understood, and one can draw from a large pool of knowledge gained
in the context of speech coding.

This thesis covers a wide range of aspects of the aforementioned problem. It
considers the full communication chain from source to sink, including the particular
characteristics of the input speech, the embedding of the watermark, the characteristics
of the aeronautical radio channel, and the detection of the watermark data in the
degraded signal. Solutions are provided for a wide range of sub-problems.

The first part of this thesis deals with speech watermarking in a general context.
It investigates the theoretical watermark capacity in speech signals and proposes a
new speech watermarking method and a complete system implementation, which
outperform the current state-of-the-art methods.

2



1.2. Thesis Outline

The second part presents contributions to the domain of air traffic control. In
particular, it presents an empirical study of the aeronautical voice radio channel, a
database of ATC operator speech, and an evaluation of the robustness of the proposed
watermarking system in the aeronautical application.

1.2. Thesis Outline

This thesis is divided into two parts.

Part I considers the general problem of embedding digital side information in speech
signals. After a short review of related work in Chapter 2, the following three
chapters address the issues of watermark capacity estimation, robust and high-rate
watermarking, and watermark synchronization.

Chapter 3 investigates the theoretical watermark capacity in speech given an additive
white Gaussian noise transmission channel. Starting from the general capacity of the
ideal Costa scheme, it shows that a large improvement in theoretical watermark capacity
is possible if the application at hand allows watermarking in perceptually irrelevant
signal components. Different ways to derive approximate and exact expressions for
the watermark capacity when modulating the signal’s DFT phase are presented and
compared to an estimation of the capacity when modulating host signal frequency
components that are perceptually masked. Parameters required for the experimental
comparison of both methods are estimated from a database of ATC speech signals,
which is presented in Chapter 7.

Chapter 4 presents a blind speech watermarking algorithm that embeds the water-
mark data in the phase of non-voiced speech by replacing the excitation signal of an
autoregressive speech signal representation. The watermark signal is embedded in a
frequency subband, which facilitates robustness against bandpass filtering channels.
We derive several sets of pulse shapes that prevent intersymbol interference and that al-
low the creation of the passband watermark signal by simple filtering. A marker-based
synchronization scheme robustly detects the location of the embedded watermark data
without the occurrence of insertions or deletions.

In light of the potential application to analog aeronautical voice radio communication,
we present experimental results for embedding a watermark in narrowband speech
at a bit rate of 450 bit/s. The adaptive equalization-based watermark detector not
only compensates for the vocal tract filtering, but also recovers the watermark data in
the presence of non-linear phase and bandpass filtering, amplitude modulation and
additive noise, making the watermarking scheme highly robust.

Chapter 5 discusses different aspects of the synchronization between watermark em-
bedder and detector. We examine the issues of timing recovery and bit synchronization,
the synchronization between the synthesis and the analysis systems, as well as the

3



Chapter 1. Introduction

data frame synchronization. Bit synchronization and synthesis/analysis synchroniza-
tion are not an issue when using the adaptive equalization-based watermark detector
of Chapter 4. For the simpler linear prediction-based detector we present a timing
recovery mechanism based on the spectral line method which achieves near-optimal
performance.

Using a fixed frame grid and the embedding of preambles, the information-carrying
frames are detected in the presence of preamble bit errors with a ratio of up to 10 %.
Evaluated with the full watermarking system, the active frame detection performs near-
optimal with the overall bit error ratio increasing by less than 0.5 %-points compared
to ideal synchronization.

Part II of this thesis contains contributions to the domain of air traffic control (ATC).
After a brief overview of the application of speech watermarking in ATC and related
work in Chapter 6, the subsequent chapters present a radio channel measurement sys-
tem, database and model, an ATC speech corpus, and an evaluation of the robustness
of the proposed watermarking application.

Chapter 7 presents the ATCOSIM Air Traffic Control Simulation Speech corpus, a
speech database of ATC operator speech. ATCOSIM is a contribution to ATC-related
speech corpora. It consists of ten hours of speech data, which were recorded during
ATC real-time simulations. The database includes orthographic transcriptions and
additional information on speakers and recording sessions. The corpus is publicly
available and provided free of charge. Possible applications of the corpus are, among
others, ATC language studies, speech recognition and speaker identification, the design
of ATC speech transmission systems, as well as listening tests within the ATC domain.

Chapter 8 presents a system for measuring time-variant channel impulse responses
and a database of such measurements for the aeronautical voice radio channel. Maxi-
mum length sequences (MLS) are transmitted over the voice channel with a standard
aeronautical radio and the received signals are recorded. For the purpose of synchro-
nization, the transmitted and received signals are recorded in parallel to GPS-based
timing signals. The flight path of the aircraft is accurately tracked. A collection of
recordings of MLS transmissions is generated during flights with a general aviation
aircraft. The measurements cover a wide range of typical flight situations as well as
static back-to-back calibrations. The resulting database is available under a public
license free of charge.

Chapter 9 proposes a data model to describe the data in the TUG-EEC-Channels
database, and a corresponding estimation method. The model is derived from various
effects that can be observed in the database, such as different filter responses, a
time-variant gain, a sampling frequency offset, a DC offset and additive noise. To
estimate the model parameters, we compare six well-established FIR filter identification
techniques and conclude that best results are obtained using the method of Least
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Squares. We also provide simple methods to estimate and compensate the sampling
frequency offset and the time-variant gain.

The data model achieves a fit with the measured data down to an error of -40 dB,
with the modeling error being smaller than the channel’s noise. Applying the model
to select parts of the database, we conclude that the measured channel is frequency-
nonselective. The data contains a small amount of gain modulation (flat fading). Its
source could not be conclusively established, but several factors indicate that it is not a
result of radio channel fading. The observed noise levels are in a range from 40 dB to
23 dB in terms of SNR.

Chapter 10 shows the robustness of the proposed watermarking method in the aero-
nautical application using the channel model derived in Chapter 9. We experimentally
demonstrate the robustness of the method against filtering, desynchronization, gain
modulation and additive noise. Furthermore we show that pre-processing of the speech
signal with a dynamic range controller can improve the watermark robustness as well
as the intelligibility of the received speech.

Chapter 11 concludes both parts of this thesis and suggests directions for future
research.

1.3. Contributions

The main contributions of this thesis are:

• a novel speech watermarking scheme that outperforms current state-of-the-art
methods and is robust against AWGN, gain modulation, time-variant filtering
and desynchronization

– presented in Chapter 4 and Chapter 10
– published in [1][2][3]

• methods for watermark synchronization on the sampling, bit and frame level
– presented in Chapter 5
– published in [1][2]

• watermark capacity estimations for phase modulation based and frequency
masking based speech watermarking

– presented in Chapter 3
– recent results, unpublished

• a battery-powered portable measurement system for mobile audio channels
– presented in Chapter 8
– published in [4]

• a database of aeronautical voice radio channel measurements
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– presented in Chapter 8
– published in [4]
– publicly available at http://www.spsc.tugraz.at/TUG-EEC-Channels

• a data model and an estimation technique for measured aeronautical voice radio
channel data

– presented in Chapter 9
– recent results, unpublished

• an air traffic control simulation speech corpus
– presented in Chapter 7
– published in [5]
– publicly available at http://www.spsc.tugraz.at/ATCOSIM

1.4. List of Publications

First-Author Publications

For the following papers, the author of this thesis did the major part of the theoretical
work, conducted all experiments, and did the major part in writing the paper.
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Proceedings of the International Conference on Spoken Language Processing (INTER-
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[4] K. Hofbauer, H. Hering, and G. Kubin, “A measurement system and the TUG-
EEC-Channels database for the aeronautical voice radio,” in Proceedings of the
IEEE Vehicular Technology Conference (VTC), Montreal, Canada, Sep. 2006, pp. 1–5.

[5] K. Hofbauer, S. Petrik, and H. Hering, “The ATCOSIM corpus of non-prompted
clean air traffic control speech,” in Proceedings of the International Conference on
Language Resources and Evaluation (LREC), Marrakech, Morocco, May 2008.

[6] K. Hofbauer and G. Kubin, “Aeronautical voice radio channel modelling and
simulation—a tutorial review,” in Proceedings of the International Conference on
Research in Air Transportation (ICRAT), Belgrade, Serbia, Jul. 2006.
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Part I.

Speech Watermarking
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Chapter 2

Background and Related Work

2.1. Digital Watermarking

Watermarking is the process of altering a work or data stream to embed an additional
message that is not or hardly perceptible. In digital watermarking, the work or data
stream to be altered is called the ‘host signal’, and may be an image, video, audio, text
or speech signal. A generic model for digital watermarking is shown in Figure 2.1. The
‘watermark’ is the embedded message and is expected to cause minimal perceptual
degradation to the host signal.1 Any modification to the watermarked signal in
between the watermark embedding and the watermark detection constitutes a ‘channel
attack’ and might render the watermark undetectable. The watermark capacity is
the maximum information rate of the embedded message given the host signal, the
allowed perceptual distortion induced by the watermark, and the watermark detection
errors induced by the channel attack.

A brief and very accessible introduction to watermarking including a presentation
of early schemes can be found in [14]. An exhaustive treatment of the underlying
concepts of watermarking is provided in [13].

Practical applications for digital watermarking range from copy prevention and
traitor tracing to broadcast monitoring, archiving, and legacy system enhancement.
We only consider the case of blind watermarking, where the original host signal is
not available at the watermark detector. Most watermarking methods are subject to a
fundamental trade-off between watermark capacity, perceptual fidelity and robustness
against intentional or unintentional channel attacks. The selection of an appropriate
operating point is highly application-dependent.

1In [13], the term ‘watermarking’ is used only if the embedded message is related to the host signal.
Otherwise, the term ‘overt embedded communications’ is used if the existence of an embedded
message is known, or ‘steganography’ if the existence of the embedded message is concealed.
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Figure 2.1.: Generic watermarking model.

2.2. Related Work—General Watermarking

In recent years, digital watermarking techniques achieved significant progress [13, 15].
Early methods considered watermarking as a purely additive process (Figure 2.2a),
with potential spectral shaping of the watermark signal (Figure 2.2b), or an additive
embedding of the watermark in a transform domain of the host signal (Figure 2.2c).
As an example, spread spectrum watermarking adds a pseudo-random signal vector
representing a watermark message to a transformation of the original host signal. This
type of system was used in many practical implementations and proved to be highly
robust, but suffered from the inherent interference between the watermark and the
host signal [16, 17, 18, 19].

Costa’s work on communication with side information [20] enabled a breach with
traditional additive watermarking. It allows to consider watermarking as a commu-
nication problem, with the host signal being side information that is available to the
embedder but not to the detector. The watermark channel capacity then becomes

CW, Costa =
1
2

log2

(
1 +

σ2
W

σ2
N

)
(2.1)

and depends solely on the watermark-to-attack-noise power ratio σ2
W

σ2
N

, assuming in-
dependent identically distributed (IID) host data, a power-constrained watermark
signal and an additive white Gaussian noise (AWGN) channel attack [20]. The capacity
is independent of the host signal power σ2

H, and thus watermarking without host
signal interference is possible [21, 22]. Striving to approach this capacity with practical
schemes, quantization-based methods embed the information by requantizing the
signal (Figure 2.2d) or a transform domain representation (Figure 2.2e) using different
vector quantizers or dither signals that depend on the watermark data. These methods
are often referred to as quantization index modulation (QIM). Reducing the embedding
dimensionality of distortion-compensated QIM to one (sample-wise embedding) and
using scalar uniform quantizers in combination with a watermark scale factor results in
the popular scalar Costa scheme (SCS) [23]. SCS is optimally robust against the AWGN
attack, but is vulnerable to amplitude scaling. A number of methods, for example
the rational dither modulation scheme [24], have been proposed to counteract this
vulnerability. However, quantization-based methods are still sensitive to many simple
signal processing operations such as linear filtering, non-linear operations, mixing or
resampling, which are the subjects of numerous recent investigations (e.g. [25], [26]).
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Figure 2.2.: A watermarked signal ŝ(n) is generated from the original speech signal
s(n) and the watermark data signal w(n) by (a) adding the data to s(n), (b)
adding adaptively filtered data to s(n), (c) adding the data to a transform
domain signal representation e(n), (d) quantizing s(n) according to the
data, (e) quantizing the transform e(n) according to the data, (f) modulating
e(n) with the data, and, as proposed in this work, (g) replacing parts of
e(n) by the data.
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2.3. Related Work—Speech Watermarking

Most watermarking methods use a perceptual model to determine the permissible
amount of embedding-induced distortion. Many audio watermarking algorithms use
auditory masking, and most often frequency masking, as the perceptual model for
watermark embedding. While this is a valid approach also for speech signals, we
claim that capacity remains unused by not considering the specific properties of speech
and the way it is perceived. It is thus indispensable to tailor a speech watermarking
algorithm to the specific signal.

In speech watermarking, as in audio watermarking, spread-spectrum type systems
used to be the method of choice for robust embedding [27, 28]. Various quantization-
based methods have been proposed in recent years, applying QIM or SCS to autore-
gressive model parameters [29, 30], the pitch period [31], discrete Hartley transform
coefficients [32], and the linear prediction residual [33]. The achievable bit rates range
from a few bits to a few hundred bits per second, with varying robustness against
different types of attacks. In a generalization of QIM, some methods modulate the
speech signal or one of its components according to the watermark data (Figure 2.2f)
by estimating and adjusting the polarity of speech syllables [34], by modulating the
frequency of selected partials of a sinusoidal speech or audio model [35, 36], or by
modifying the linear prediction model coefficients of the speech signal using long anal-
ysis and synthesis windows [37]. Taking quantization and modulation one step further,
one can even replace certain speech components by a perceptually similar watermark
signal (Figure 2.2g). Methods have been proposed that exchange time-frequency com-
ponents of audio signals above 5 kHz that have strong noise-like properties by a spread
spectrum sequence [38], or replace signal components that are below a perceptual
masking threshold by a watermark signal [39, 40].

The above-mentioned algorithms are limited either in terms of their embedding
capacity or in their robustness against the transmission channel attacks expected in
the aeronautical application. This is due to the fact that the methods are designed
for particular channel attacks (such as perceptual speech coding), focus on security
considerations concerning hostile channel attacks, or fail to thoroughly exploit state-of-
the-art watermarking theory or the characteristic features of speech perception.

2.4. Our Approach

In our approach, we combine the watermarking theory presented in the preceding
sections with a well-known principle of speech perception, leading to a substantial
improvement in theoretical capacity. From this we develop in Chapter 4 a practical
watermarking scheme that is based on the above concept of replacing signal compo-
nents (see Section 2.3) and using common speech coding and digital communications
techniques.

The watermark power σ2
W in (2.1) can be interpreted as a mean squared error (MSE)

host signal distortion constraint and essentially determines the watermark capacity.
However, it has previously been shown that MSE is not a suitable distortion measure for
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speech signals [41], as for example flipping the polarity of the signal results in a large
MSE but in zero perceptual distortion. It is a long-known fact that, in particular for
non-voiced speech (denoting all speech that is not voiced, comprising unvoiced speech
and pauses) and blocks of short duration, the ear is insensitive to the signal’s phase
[42]. This effect is also exploited in audio coding for perceptual noise substitution [43].
Thus, instead of the MSE distortion (or watermark power σ2

W) constraint, we propose
to constrain the watermarked signal to have the same power spectral density (PSD) as
the host signal (with power σ2

H) but allow arbitrary modification (or replacement) of
the phase. Compared to MSE this PSD constraint is far less restrictive and results in a
watermark channel capacity

CW, Phase ≈
1
4

log2

(
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
. (2.2)

This high SNR approximation is derived in Section 3.4.2. Note that in contrast to (2.1)

the capacity is no longer determined by the MSE distortion to channel noise ratio σ2
W

σ2
N

,

but by the host signal to channel noise ratio or SNR σ2
H

σ2
N

, and the watermark signal has
the same power as the host signal.

While watermarking in the phase domain is not a completely new idea, previously
proposed methods either require the availability of the original host signal at the
detector [44], are not suitable for narrowband speech [45, 46], or are restricted to
relatively subtle phase modifications [14, 47, 48]. Also, the large theoretical watermark
capacity given by (2.2) has not been recognized before.

To obtain a perceptually transparent and practical implementation of our phase
embedding approach, we assume an autoregressive (AR) speech signal model and
constrain the AR model spectrum and the temporal envelope to remain unchanged.
There is a one-to-one mapping between the signal phase and the model’s excitation,
which allows us to modify the signal phase by modifying the excitation. Applying the
concept of replacing certain signal components of Section 2.3, we exchange the model
excitation by a watermark signal. We do so in non-voiced speech only, since in voiced
speech certain phase spectrum changes are in fact audible [49, 50].
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Chapter 3

Watermark Capacity in Speech

This chapter investigates the theoretical watermark capacity in speech given
an additive white Gaussian noise transmission channel. Starting from the
general capacity of the ideal Costa scheme, it shows that a large improve-
ment in theoretical watermark capacity is possible if the application at
hand allows watermarking in perceptually irrelevant signal components.
Different ways to derive approximate and exact expressions for the water-
mark capacity when modulating the signal’s DFT phase are presented and
compared to an estimation of the capacity when modulating host signal
frequency components that are perceptually masked. Parameters required
for the experimental comparison of both methods are estimated from a
database of ATC speech signals.

This chapter presents recent results that have not yet been published.
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3.1. Introduction

In this chapter, we aim to estimate the watermark capacity in speech given an ad-
ditive white Gaussian noise (AWGN) channel attack. Using well-established speech
perception properties, we show that the watermark capacity in speech far exceeds the
watermark capacity of conventional quantization-based watermarking. We achieve this
improvement by proposing a clear distinction between watermarking in perceptually
relevant signal components (or domains) and watermarking in perceptually irrelevant
signal components.

Given that in the past most watermarking research was driven by the need of the
multimedia content industry for copyright protection systems, many algorithms aim at
a robustness against perceptual coding attacks. Since perceptual coding aims to remove
perceptually irrelevant signal components, watermarking must occur in perceptually
relevant components. However, there is a limit to how much perceptually relevant
components can be altered without degrading perceptual quality to an unacceptable
level. It is within this context where quantization-based watermarking and its capacity
evolved, and its capacity is reviewed in Section 3.2.

In watermarking for analog legacy system enhancement, robustness against per-
ceptual coding is not a concern. Besides watermarking in perceptually relevant
components, watermarking in perceptually irrelevant signal components is possible,
which opens a door to significant capacity improvements. A similar discussion can
be found in [13], but otherwise the important distinction between watermarking in
perceptually relevant or irrelevant components is seldom brought forward.

Given the aeronautical application presented in Chapter 6, we focus on watermarking
in perceptually irrelevant components and derive the watermark capacities in speech
on the basis of frequency masking (Section 3.3) and phase perception (Section 3.4). An
experimental comparison of the different capacities is performed in Section 3.5.

In the remainder of this chapter, all capacities C are given in bits per sample (or
bits per independent symbol, equivalently). Thus, the capacity specifies how many
watermark bits can be embedded in an independent host signal sample or symbol. For
a band-limited channel, the maximum number of independent symbols per second
(the maximum symbol rate or Nyquist rate) is twice the channel bandwidth (e.g., [51]).
Consequently, the maximum number of watermark bits transmitted per second is C
times twice the channel bandwidth in Hz.

3.2. Watermarking Based on Ideal Costa Scheme

As a basis for comparison, we start with a brief review of the capacity of watermarking
in perceptually relevant signal components and the Ideal Costa Scheme (ICS) [13]. The
ICS, also termed ‘dirty paper watermarking’, ‘watermarking with side information’
or ‘informed embedding’ is the underlying principle for most quantization-based
methods, and it is possible to derive an achievable upper bound for the watermark
capacity.

In quantization-based watermarking the host signal is quantized using different vec-
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Figure 3.1.: Quantization-based watermarking as a host-signal-adaptive additive pro-
cess.

tor quantizers that depend on the watermark data. Figure 3.1 depicts the quantization
as an addition of a host signal dependent watermark, which has a power constraint σ2

W
that corresponds to an MSE criterion for the distortion of the host signal. We review in
the following the watermark capacity derivation given this MSE distortion criterion.

Assuming a white Gaussian host signal vector s of length L with variance σ2
H, the

watermarked signal ŝ must lie within an (L− 1)-sphere W centered around s with
volume

VW =
πL/2rL

W

Γ( L
2 + 1)

and radius rW =
√

Lσ2
W. The Gamma function Γ is defined as

Γ(z + 1) = zΓ(z) = z
ˆ ∞

0
tz−1e−tdt.

The transmitted signal is subject to AWGN with variance σ2
N, and in high dimensions

the received signal vector lies with high probability inside a hypersphere N with radius

rN =
√

Lσ2
N centered at ŝ [52]. Consequently, all possible watermarked signals within

W lie after transmission within a hypersphere Y with radius rY =
√

L(σ2
W + σ2

N) (see
Figure 3.2). The number of distinguishable watermark messages given the channel
noise is thus VY/VW, which roughly means the number of ‘noise spheres’ N that fit into
the ‘allowed-distortion sphere’ W. The watermark capacity evaluates to [51, 52, 13]

CICS =
1
L

log2

(
VY

VW

)
=

1
2

log2

(
1 +

σ2
W

σ2
N

)
bit/sample (3.1)

and is inherently limited by the MSE distortion constraint.

3.3. Watermarking Based on Auditory Masking

Auditory masking describes the psychoacoustical principle that some sounds are not
perceived in the temporal or spectral vicinity of other sounds [53]. In particular,
frequency masking (or simultaneous masking) describes the effect that a signal is not
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Figure 3.2.: Quantization-based watermarking and the Ideal Costa Scheme shown as
sphere packing problem. Each reconstruction point ( ) within the sphere
W denotes a different watermark message.

audible in the presence of a simultaneous louder masker signal at nearby frequencies.
Figure 3.3 shows the spectrum of a signal consisting of three sinusoids, and the
masking threshold (or masking curve) derived using the van-de-Par masking model
[54]. According to the model, sinusoidal components below the masking threshold are
not audible because they are masked by the components above the masking threshold.

Perceptual models in general, and auditory masking in particular, are commonly
used in practical audio watermarking schemes, and the principles are well understood
[13, Ch. 8]. Besides more traditional approaches such as the spectral shaping of spread
spectrum watermarks (e.g., [55, 28]), the principle of auditory masking is exploited
either by varying the quantization step size or embedding strength in one way or the
other (e.g., [56, 57]), or by removing masked components and inserting a watermark
signal in replacement (e.g., [39]).

The remainder of this subsection derives an estimate of the theoretical watermark
capacity that can be achieved based on frequency masking.

3.3.1. Theory

In quantization-based watermarking, the watermark signal corresponds to the quanti-
zation error induced by the watermarking process, and the watermark power σ2

W in
(3.1) represents a MSE distortion criterion on the speech signal. If the watermark signal
(or quantization error) is white, the watermark is perceived as background noise and
the permissible level (the watermark power σ2

W) is application-dependent. However,
the watermark signal is inaudible if it is kept below the masking threshold. One can in-
crease the watermark power to σ2

W,mask, and thus the watermark capacity, by spectrally
shaping the watermark signal according to the signal-dependent masking threshold.
According to the masking model, the watermark signal is not audible as long as the
spectral envelope of the watermark signal is at or below the masking threshold. The
same approach is frequently applied in perceptual speech and audio coding: The
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Figure 3.3.: Masking threshold for a signal consisting of three sinusoids, the second of
them being masked and not audible.

quantization step-size is chosen adaptively such that the resulting quantization noise
remains below the masking threshold [58, 59]. Using (3.1), the watermark capacity
results in

CMask =
1
2

log2

(
1 +

σ2
W,mask

σ2
N

)
bit/sample (3.2)

with typically σ2
W,mask � σ2

W.

3.3.2. Experimental Results

We estimate the permissible watermark power σ2
W,mask and, thus, the watermark

capacity, with a small experiment. Using ten randomly selected utterances (one per
speaker) of the ATCOSIM corpus (see Chapter 7), we calculate the masking thresholds
in frames of 30 ms (overlapping by 50%). In a frequency band from 100 Hz to 8000 Hz
we measure the average power σ2

H of the speech signal as well as the permissible power
σ2

W,mask of the watermark signal, with the spectral envelope of the watermark signal set
to a factor κ below the signal-dependent masking threshold. The masking thresholds
are calculated based on [54], using a listening-threshold-in-quiet as provided in [60],
and a listening level of 82.5 dBSPL, which corresponds to a comfortable speech signal
level for normal listeners [61].

While the used masking model describes the masking of sinusoids by sinusoidal
or white noise maskers, in this experiment the maskee is a wideband noise signal,
which would not be entirely masked. To compensate for this shortcoming, the maskee
signal is scaled to be a factor κ below the calculated masking threshold. The maximum
value of κ at which the maskee signal is still inaudible was determined in an informal
experiment. We generated a noise signal that is uncorrelated to the speech signal
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Figure 3.4.: Scaled masking threshold power to signal power ratio σ2
W,mask/σ2

H using
κ = −12 dB for the utterance “swissair eight zero six contact rhein radar
one two seven decimal three seven”.

and has a spectral envelope that corresponds to the masking threshold of the speech
signal. This can be done by either setting the DFT magnitude of the watermark signal
to the masking threshold and randomizing the DFT phase, or by generating in the
DFT domain a complex white Gaussian noise with unit variance and multiplying this
with the masking threshold. The resulting noise signal was added to the speech signal
with varying gains κ, and the maximum value of κ at which the noise is still masked
was found to be κ ≈ −12 dB, corresponding to one fourth in amplitude or one 16th in
terms of power.

The masked-to-signal power ratio σ2
W,mask/σ2

H for all frames of an utterance is shown in
Figure 3.4. Averaged over all frames and utterances, the permissible watermark power
is σ2

W,mask ≈ κσ2
H. The estimated average watermark capacity using (3.2) then results in

CMask ≈
1
2

log2

(
1 + κ

σ2
H

σ2
N

)
≈ 1

2
log2

(
1 +

1
16

σ2
H

σ2
N

)
. (3.3)

Compared to (3.1), CMask does not depend on an MSE distortion criterion but is given

by the transmission channel’s signal-to-noise ratio (SNR) σ2
H

σ2
N

.
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3.4. Watermarking Based on Phase Modulation

We consider the case of watermarking by manipulating the phase spectrum of unvoiced
speech, while keeping the power spectrum unchanged. This means that instead of an
MSE distortion constraint we constrain ŝ to have the same power spectrum as s, but
allow arbitrary modification of the phase.

The following subsections present four different ways to derive the watermark
capacity: First, two high SNR approximations are presented, one using the information
theoretic definition of capacity, and one using sphere packing. Then, two exact solutions
are derived, one based on the joint probability density function (PDF) between input
and output phase angle, and one based on the conditional PDF of the complex output
symbol given the complex input symbol.

3.4.1. Preliminaries

3.4.1.1. Definitions of Phase

The notion of a signal’s phase is frequently used in literature. However, there is no
standard definition, and the intended meaning of phase widely varies depending
on the underlying concepts. In general, the phase of a signal is a quantity that is
closely linked to a certain signal representation. Depending on the most suitable
representation, we deal in the remainder of this thesis with three different ‘phases’,
which are interrelated but nevertheless represent different quantities. The three phase
definitions have in common that they represent a signal property that can be modified
without modifying some sort of a spectral envelope of the signal.

AR Model Phase Primarily, we consider a particular realization of a white Gaus-
sian excitation signal of an autoregressive (AR) speech signal model as defined in
Section 4.1.1 as the phase of a signal. It was previously shown that for unvoiced
speech the ear is not able to distinguish between different realizations of the Gaussian
excitation process as long as the spectral and temporal envelope of the speech signal is
maintained [42]. This notion of phase is used in our practical watermarking scheme of
Chapter 4.

DFT Phase The DFT phase denotes the argument (or phase angle) of the complex
coefficient of discrete Fourier transform (DFT) domain signal model as defined in
Section 3.4.1.2. A mapping of an AR model phase to a DFT phase requires a short-term
Fourier transform (STFT) of the signal using a well-defined transform size, window
length and overlap. The following capacity derivations consider only a single DFT
frame of length L of the speech signal.

MLT and ELT Phase In Section 3.4.8 modulated and extended lapped transform
(MLT and ELT) signal representations are applied. In contrast to the DFT coefficients,
the lapped transform coefficients are real and no direct notion of phase exists. Inter-
preting lapped transforms as filterbanks, we consider the variances of the subband
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signals within a short window as the quantities that determine the spectral envelope,
and consider the particular realizations of the subband signals as the phase of the
signal. Thus, modifying the MLT or ELT phase of a signal means replacing the orig-
inal subband signals by different subband signals with identical short-term power
envelopes.

3.4.1.2. DFT Domain Signal Model

For all capacity derivations of Section 3.4 (except Section 3.4.8) we consider the discrete
Fourier transform (DFT) of a single frame of length L of an unvoiced speech signal,
and modify the DFT phase while keeping the DFT magnitude constant. We use a 1√

L
weighting for the DFT and its inverse, which makes the DFT a unitary transform. Each
frame is assumed to have L complex coefficients X̃, of which only L

2 are independent.1

The tilde mark (̃) denotes complex variables, e.g., x̃ = rejϕ = a + jb, whereas boldface
letters denote real valued vectors, with s, ŝ and n representing a single frame of the
host signal, the watermarked signal and the channel noise, respectively. Considering
the real and imaginary parts of X̃ as separate dimensions, the DFT representation has
2L real coefficients R, where the L odd-numbered dimensions represent the real part
Rrl and and the L even-numbered dimensions represent the imaginary part Rim of the
complex DFT coefficients X̃ = Rrl + jRim. Assuming a white host signal with variance
σ2

H, each complex DFT coefficient X̃ has variance σ2
H, and each real coefficient R has

variance σ2
H
2 .

3.4.1.3. Watermarking Model

In order to facilitate theoretical watermark capacity derivations, we model the AR
model phase replacement performed in [42] and Chapter 4 by replacing the phase of
a DFT domain signal representation. An input phase angle Φ, which represents the
watermark signal, is imposed onto a DFT coefficient of the host signal s. While its orig-
inal magnitude rH is maintained, the phase angle is replaced by the watermark phase
angle Φ, resulting in the watermarked DFT coefficient X̃ = rHejΦ. The watermarked
signal is subject to AWGN n with DFT coefficient Ñ, phase angle Ψ and variance σ2

N,
resulting in the noisy watermarked signal ŝ + n with DFT coefficient Ỹ = X̃ + Ñ and
output phase angle Θ.

3.4.1.4. PDFs of the Random Variables

In the following paragraphs, we derive the PDFs of the involved random variables
(RV).

1For L even, the coefficients representing DC and Nyquist frequency are real-valued, and L
2 + 1 coeffi-

cients are independent. For odd L, the DC coefficient is real, no Nyquist frequency coefficient exists,
and L+1

2 coefficients are independent. As a simplification we assume in the following L
2 independent

complex coefficients, which for large L leads to a negligible difference in the capacity estimates.
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Input Phase Φ (scalar RV) Given the DFT domain signal model, the input phase
angle is restricted to the interval [0, 2π[. To maximize its differential entropy h, which
maximizes the watermark channel capacity C, Φ is assumed to be uniformly distributed
with PDF

fΦ(ϕ) =

{
1

2π 0 ≤ ϕ < 2π

0 else

and differential entropy
h(Φ) = log2(2π).

Noise Coefficient Ñ (complex RV) Each complex DFT coefficient Ñc, the subscript
c denoting Cartesian coordinates, of a complex zero-mean WGN signal with variance
σ2

N is characterized by
Ñ ∼ CN (0, σ2

N),

fÑc
(x̃) =

1
πσ2

N
exp

(
−|x̃|

2

σ2
N

)
with |x̃|2 = a2 + b2 = r2, and (3.4)

h(Ñ) = log2(πeσ2
N).

But fÑ(x̃) is really just a short-hand notation for the joint PDF fNa,Nb(a, b) of the
independent marginal densities

Na ∼ N (0, σ2
N
2 ) =

1√
πσ2

N

exp
(
− a2

σ2
N

)

Nb ∼ N (0, σ2
N
2 ) =

1√
πσ2

N

exp
(
− b2

σ2
N

)

fÑc
(x̃) = fNa,Nb(a, b) = fNa(a) fNb(b)

and h(Na) = h(Nb) = 1
2 log2(πeσ2

N). Note that h(Ñ) = h(Na) + h(Nb), since the
joint differential entropy is the sum of the differential entropies if the variables are
independent.

The density fÑc
(x̃) is not the density in polar coordinates, i.e. fÑp

(r, ϕ) 6= fÑc
(x̃),

because a transformation of variables is required. This results in [62, p. 201 ff.][63]

fNϕ(ϕ) =

{
1

2π 0 ≤ ϕ < 2π

0 else

fNr(r) =
r

σ2 exp
(
− r2

2σ2

)
=

2r
σ2

N
exp

(
− r2

σ2
N

)
(3.5)
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where fNr(r) is the Rayleigh distribution with parameter σ (in our case with σ2 = σ2
N
2 )

and mean and variance

µNr = σ

√
π

2
=

σN

2
√

π

σ2
Nr

= (2− π

2
)σ2 = (1− π

4
)σ2

N.

In this special case, comparing (3.4) and (3.5) results in fNr(r) = 2πr · fÑc
(x̃). Also, Nr

and Nϕ are independent, and their joint distribution is [62, p. 258]

fÑp
(x̃) = fNr ,Nϕ(r, ϕ) = fNr(r) fNϕ(ϕ) =

r
πσ2

N
exp

(
− r2

σ2
N

)
(3.6)

and fÑp
(x̃) = r · fÑc

(r). This polar representation can be derived from (3.4) by consid-
ering the polar coordinates (r, ϕ) as a vector function (or transform) of the Cartesian
coordinates (a, b), with

r =
√

a2 + b2

ϕ = arctan b
a

and the inverse transformation

a = r cos ϕ

b = r sin ϕ.

The Jacobian determinant J of the transform is

JN =
∂(a, b)
∂(r, ϕ)

=
∣∣∣∣

cos ϕ −r sin ϕ
sin ϕ r cos ϕ

∣∣∣∣ = r

and the joint density is

fNr ,Nϕ(r, ϕ) = JN · fNa,Nb(r cos ϕ, r sin ϕ) =
r

πσ2
N

exp
(
− r2

σ2
N

)
.

Signal Coefficient X̃ (complex RV) We consider a single complex DFT coefficient

X̃ = rHejΦ

with rH being a deterministic constant. In polar coordinates, the PDFs of the indepen-
dent RVs Xϕ and Xr are

fXϕ(ϕ) =

{
1

2π 0 ≤ ϕ < 2π

0 else

fXr(r) = δ(r− rH)

fXr ,Xϕ(r, ϕ) =

{
1

2π δ(r− rH) 0 ≤ ϕ < 2π

0 else
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and describe a two-dimensional circularly symmetric distribution [63].
With the transform

a = r cos ϕ

b = r sin ϕ

and the inverse transform

r =
√

a2 + b2

ϕ = arctan b
a

and its Jacobian

JX =
∂(r, ϕ)
∂(a, b)

=

∣∣∣∣∣
∂r
∂a

∂r
∂b

∂ϕ
∂a

∂ϕ
∂b

∣∣∣∣∣ =
1√

a2 + b2

the joint density in Cartesian coordinates is

fXa,Xb(a, b) = JX · fXr ,Xϕ

(√
a2 + b2, tan b

a

)
=

1
2π
√

a2 + b2
δ
(√

a2 + b2 − rH

)
=

=
1

2πrH
δ
(√

a2 + b2 − rH

)
(3.7)

and the dependent marginal densities in Cartesian coordinates are

fXa(a) =





1
πrH

(
1− ( a

rH
)2
)− 1

2
for |a| ≤ rH

0 else
(3.8)

fXb(b) =





1
πrH

(
1− ( b

rH
)2
)− 1

2
for |b| ≤ rH

0 else.

The marginal densities are derived as follows. The arc length ∆c within an infinites-
imally small strip of width ∆a as shown in Figure 3.5 can be approximated by the
length of the tangent within the strip. Using

sin β =
A
rH

=
f

∆c
=
√

c2 − (∆a)2

∆c

the arc length results in

∆c =

(
1−

(
A
rH

)2
)− 1

2

∆a.

The probability P that a point lies within the strip ∆a is the arc length ∆c times the
density 1

2πrH
of the arc, times a factor of 2 to also account for the lower semicircle,

P =
1

πrH
∆c,
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A Δa
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Figure 3.5.: The joint density fXa,Xb(a, b) integrated over an interval ∆a.

and the probability density P∆a gives in the limit ∆a→ 0 the marginal PDF

fXa(a) =
ˆ ∞

b=−∞
fXa,Xb(a, b)db =





1
πrH

(
1−

(
a

rH

)2
)− 1

2

for |a| ≤ rH

0 else.

The marginal density integrates to 1 since

ˆ ∞

a=−∞
fXa(a)da =

1
πrH

ˆ rH

a=−rH

(
1−

(
a

rH

)2
)− 1

2

da =

=
1

πrH

[
rH arcsin

(
a

rH

)]rH

−rH

= 1.

Noisy Signal Coefficient Ỹ (complex RV) The noise-corrupted watermarked coeffi-
cient Ỹ is a sum of two independent complex RV, with

Ỹ = X̃ + Ñ = rYejΘ, and
fỸ(x̃) = fỸ(r) = fX̃(x̃) ∗∗ fÑ(x̃)

where ∗∗ denotes 2D-convolution. In Cartesian coordinates the summation of the two
complex RVs can be carried out on a by component basis, with

Ya = Xa + Na

Yb = Xb + Nb.
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Using (3.8), the density of the first sum is

fYa(a) = fXa(a) ∗ fNa(a) =
ˆ ∞

m=−∞
fXa(m) fNa(a−m)dm =

=
ˆ ∞

m=−∞
fXa(a−m) fNa(m)dm,

which evaluates to

fYa(a) =
1

πrH

1√
πσ2

N

ˆ
m

(
1−

(
m
rH

)2
)− 1

2

exp
(
− (m− a)2

σ2
N

)
dm.

No analytic solution to this integral is known. The expression for fYb(b) is equivalent.
Since Xa and Xb are dependent, Ya and Yb are also dependent, and the joint density

is not the product of the marginal densities. It appears difficult to obtain closed-form
expressions for the joint and conditional PDFs of X̃ and Ỹ. However, as shown in
Section 3.4.5 and Section 3.4.6, the conditional PDF fỸ|X̃(ỹ|x̃) can be easily stated given
the circular arrangement of X̃ and Ỹ.

Output Phase Θ (scalar RV) The output phase Θ of the observed watermarked
signal Ỹ is

Θ = arg(Ỹ) = arctan
Yb

Ya
= Yϕ,

and is again uniformly distributed, because the input phase is uniformly distributed
and the channel noise is Gaussian. Thus,

fΘ(ϕ) =

{
1

2π 0 ≤ ϕ < 2π

0 else
and

h(Θ) = log2(2π).

3.4.1.5. Approaches to Capacity Calculation

Given the DFT-based signal and watermarking model, two watermark capacities can
be calculated, one based on the channel input/output phase angles Φ and Θ, and
one based on the channel input/output complex symbols X̃ and Ỹ. Even though
information is only embedded in the phase angle Φ of X̃, the two capacities are
not identical, since in the later case the watermark detector can also respond to the
amplitude of the received signal.

The capacity is defined as the mutual information between the channel input and
the channel output, maximized over all possible input distributions, and

C =
1
2

sup
fX̃(x̃)

I(X̃, Ỹ) or C =
1
2

sup
fΦ(ϕ)

I(Φ, Θ). (3.9)

The additional factor 1
2 compared to the usual definition results from only half of the

complex DFT coefficients X̃ being independent. We calculate the capacity based on:
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1. the sphere packing analogy of Section 3.2 (used in Section 3.4.3);

2. the difference in differential entropy between Ỹ and Ñ (used in Section 3.4.2);

3. the formal definition of I based on the input’s PDF and the conditional PDF of
the output given the input (used in Section 3.4.4, 3.4.5 and 3.4.6).

3.4.1.6. Colored Host Signal Spectrum

While most of the following derivations assume a white host signal spectrum, the
extension to a colored host signal is straightforward and shown for the two high SNR
approximations of Section 3.4.2 and 3.4.3. The capacity can be calculated individually
for each DFT channel, and the overall capacity is the sum of the subchannel capacities.
We introduce band power weights pi, with

L/2

∑
i=1

pi =
L
2

(3.10)

, which effectively scale the SNR of the i’th subchannel from σ2
H

σ2
N

to pi
σ2

H
σ2

N
. Using a white

host signal, ∀i : pi = 1. The discrete band power weights pi could also be considered as
the samples of a scaled power spectral density p( f ) of the host signal. Substituting L
by fs and considering (3.10) as Riemann sum results equivalently in

ˆ fs/2

f =0
p( f )d f =

fs

2
. (3.11)

For a white host signal, p( f ) ≡ 1 as in the discrete case.

3.4.2. High SNR Capacity Approximation Using Mutual Information

We first consider the complex DFT coefficient X̃ of a white host signal with power σ2
H.

The Gaussian channel noise Ñ with power σ2
N changes both the amplitude and the

phase of the received signal. The ‘displacement’ N of X̃ in angular direction caused
by Ñ corresponds to a phase change tan(ϕ) = N

σH
. In the case of high SNR, the noise

component of Ñ in angular direction is a scalar Gaussian random variable N with

power σ2
N
2 , and we can also assume ϕ ≈ tan(ϕ). The phase noise Ψ induced by the

channel is then also Gaussian, with

Ψ ∼ N
(

0,
σ2

N/2

σ2
H

)
.

Given a transmitted phase Φ, the observed phase Θ is then Θ = Φ + Ψ, wrapped into
0 . . . 2π.

The channel capacity CPhase, MI-angle is the maximum mutual information I(Φ; Θ) over
all distributions of Φ. The mutual information is maximized when Φ (and consequently
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also Θ since Ψ is Gaussian) is uniformly distributed between 0 and 2π as defined
above. The maximum mutual information is then given by

I(Φ; Θ) = h(Θ)− h(Θ|Φ)
= h(Θ)− h(Θ−Φ|Φ) = h(Θ)− h(Ψ|Φ) = h(Θ)− h(Ψ)

since Φ and Ψ are independent. The mutual information I(Φ, Θ) between the received
phase Θ and the transmitted phase Φ then evaluates to

I(Φ, Θ) = h(Θ)− h(Ψ) = log2(2π)− 1
2

log2(2πe
σ2

N

2σ2
H

)

=
1
2

log2

(
σ2

H

σ2
N

)
+

1
2

log2

(
4π

e

)
,

and with only half of the complex coefficients X̃ being independent we obtain

CPhase, MI-angle, high-SNR =
1
2

I(Φ, Θ) =
1
4

log2

(
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
, (3.12)

with 1
4 log2

( 4π
e

)
≈ 0.55 bit. The subscript Phase, MI-angle, high-SNR denotes a high-SNR

approximation of the phase modulation watermark capacity derived using the mutual
information (MI) between the input and output phase angles. The same result is
obtained elsewhere for phase shift keying (PSK) in AWGN, but requiring a longer
proof [64].

For a non-white host signal with band power weights pi, the capacity results in

CPhase, MI-angle, high-SNR, colored =
1

2L
log2

(
L/2

∏
i=1

pi
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
=

=
1
4

log2

(
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
+

1
2L

L/2

∑
i=1

log2 (pi) .

The factor 1
2L results from the factor 1

4 of (3.12) and a factor 1
L/2 given by the number of

product or summation terms. Using the scaled host signal PSD p( f ) of Section 3.4.1.6
instead of the discrete band power weights pi results in

CPhase, MI-angle, high-SNR, colored =

=
1
4

log2

(
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
+

1
2 fs

ˆ fs/2

f =0
log2 (p( f )) d f .

3.4.3. High SNR Capacity Approximation Using Sphere Packing

An estimate of the watermark capacity can also be obtained using the same line of
arguments as in Section 3.2. Instead of the watermarked signal ŝ being constrained
to a hypersphere volume around s, it is now constrained to lie on an L

2 -dimensional
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manifold which contains all points in the L-dimensional space that have the same
power spectrum as s.

In the DFT domain, the power spectrum constraint corresponds to a fixed amplitude
of the complex DFT coefficients X̃. In terms of the real and imaginary coefficients Rrl
and Rim this means that for every 2-dimensional subspace of corresponding (Rrl; Rim)

the watermarked signal must lie on a circle with radius rH =
√

piσ
2
H, with pi as defined

above (for a white signal pi ≡ 1). The watermarked signal ŝ must thus lie on the
L
2 -dimensional manifold that is defined by these circles. The surface of this manifold is

AH =
L/2

∏
i=1

2πrH. (3.13)

The transmitted signal is subject to AWGN with variance σ2
N. We need to determine

the constellation of the observed signal and the number of distinguishable watermark
messages that fit onto the manifold.2 Averaged over all dimensions and given the
circular symmetry of the distributions, the noise can be split up into two components

of equal power σ2
N
2 , one being orthogonal to the above manifold, and one being parallel

to the manifold. Separating the noise into a parallel and an orthogonal component
requires that the manifold is locally flat with respect to the size of the noise sphere,
which is equivalent to a high SNR assumption. The orthogonal component effectively

increases the radii of the circles from rH to rY =
√

piσ
2
H + σ2

N
2 .3 The noise component

parallel to the manifold (with power σ2
N
2 ) determines the number of distinguishable

watermark messages. The ‘size’ of a watermark cell on the L
2 dimensional manifold is

the volume VN of the L
2 -dimensional hypersphere with radius rN =

√
L
2

σ2
N
2 , and

VN =
(π L

2
σ2

N
2 )L/4

Γ( L
4 + 1)

. (3.14)

The capacity is

CPhase, SP, high-SNR =
1
L

log2

(
AY

VN

)
(3.15)

which evaluates for a white host signal (pi ≡ 1) to

CPhase, SP, high-SNR =
1
4

log2

(
1
2

+
σ2

H

σ2
N

)
+

1
4

log2 (16π) +
1
L

log2

(
Γ( L

4 + 1)
LL/4

)
. (3.16)

The subscript SP denotes a watermark capacity derived using the sphere packing
approach. For large L and using Sterling’s approximation, Γ( L

4 + 1) can be expressed

2The projection of the L-dimensional noise (with spherical normal PDF) onto the L
2 -dimensional subspace

would result in the volume of the L
2 -dimensional hypersphere with radius rN =

√
L
2 σ2

N. A projection

of the noise onto a L
2 dimensional subspace (line, plane, hyperplane, . . . ) is something else than a

projection onto a curved manifold.
3This also reflects the fact that the channel noise changes the power spectrum of the received signal.
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as

Γ( L
4 + 1) ≈

√
πL
2

(
L
4e

) L
4

and (3.16) evaluates to

CPhase, SP, high-SNR =
1
4

log2

(
1
2

+
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
+

1
2L

[log2 (πL) + 1] . (3.17)

Sterling’s approximation is asymptotically accurate, and numerical simulations show
that for L > 70 the error in C induced by the Sterling approximation is below 10−4.

Again for large L, the last term on the right-hand side in (3.17) converges to zero
and (3.16) simplifies to

CPhase, SP, high-SNR =
1
4

log2

(
1
2

+
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
. (3.18)

The difference between (3.17) and (3.18) is smaller than 10−2 bit for L > 480. Given
σ2

H
σ2

N
� 1, the augend 1

2 in (3.18) is negligible and the result is identical to (3.12).
For a non-white host signal, that means ∃i : pi 6= 1, substituting (3.13) and (3.14) into

(3.15) results in

CPhase, SP, high-SNR, colored =
1
L

log2




∏L/2
i=1 2π

√
piσ

2
H + σ2

N
2

(
π L

2
σ2

N
2

) L
4

· Γ
( L

4 + 1
)

 =

=
1

2L
log2

(
L/2

∏
i=1

1
2

+ pi
σ2

H

σ2
N

)
+

1
4

log2 (16π) +
1
L

log2

(
Γ( L

4 + 1)
LL/4

)
(3.19)

which for large L again using Sterling’s approximation simplifies to

CPhase, SP, high-SNR, colored =
1

2L

L/2

∑
i=1

log2

(
1
2

+ pi
σ2

H

σ2
N

)
+

1
4

log2

(
4π

e

)
. (3.20)

Using the scaled host signal PSD p( f ) of Section 3.4.1.6 results in

CPhase, SP, high-SNR, colored =

=
1

2 fs

ˆ fs/2

f =0
log2

(
1
2

+ p( f )
σ2

H

σ2
N

)
d f +

1
4

log2

(
4π

e

)
.

3.4.4. Exact Capacity Using Input/Output Phase Angles

Assuming a deterministic input signal X̃ = rHej0, the joint PDF of Ỹ is [65, p. 413]

fỸp
(x̃)|X̃=rHej0 = fYr ,Yϕ

(r, ϕ)|X̃=rHej0 =
r

πσ2
N

exp
(
− r2 + r2

H − 2rrH cos(ϕ)
σ2

N

)
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and the marginal PDF fYϕ
(ϕ)|X̃=rHej0 is [66]

fYϕ
(ϕ)|X̃=rHej0 =

ˆ ∞

r=0
fYr ,Yϕ

(r, ϕ)dr =

=
1

2π
exp

(
− r2

H

σ2
N

)
+

rH cos(ϕ)√
4πσ2

N

exp
(
− r2

H

σ2
N

sin2(ϕ)
)

erfc
(
− rH

σN
cos(ϕ)

)
.

Provided the circular symmetry of the arrangement, changing the assumption of a
deterministic X̃ = rHej0 to a deterministic X̃ = rHejϕ′ corresponds to replacing (ϕ) by
(ϕ− ϕ′) in the above two equations and represents a simple rotation. We also note
that fYϕ

(which is the same as fΘ) given a deterministic input ϕ′ is the conditional PDF
fΘ|Φ(ϕ|ϕ′) and write

fΘ|Φ(ϕ|ϕ′) =
1

2π
exp

(
− r2

H

σ2
N

)
+

+
rH cos(ϕ− ϕ′)√

4πσ2
N

exp
(
− r2

H

σ2
N

sin2(ϕ− ϕ′)
)

erfc
(
− rH

σN
cos(ϕ− ϕ′)

)
.

With fΘ|Φ(ϕ|ϕ′) · fΦ(ϕ′) = fΦ,Θ(ϕ, ϕ′) we also obtain the joint PDF

fΦ,Θ(ϕ, ϕ′) =

{
1

2π fΘ|Φ(ϕ|ϕ′) if 0 ≤ ϕ, ϕ′ < 2π

0 else.

The mutual information I(Φ, Θ) can then be calculated using [64, p. 244]

I(Φ, Θ) =
ˆ 2π

ϕ=0

ˆ 2π

ϕ′=0
fΦ,Θ(ϕ′, ϕ) log2

fΦ,Θ(ϕ′, ϕ)
fΦ(ϕ′) fΘ(ϕ)

dϕ′dϕ.

Using (3.9) with only half of the DFT coefficients being independent, the capacity
evaluates to

CPhase, MI-angle =
1
2

I(Φ, Θ). (3.21)

The required integrations can be carried out numerically. A similar derivation leading
to the same result can be found in [66].

3.4.5. Exact Capacity Using Discrete Input/Output Symbols

Assume the input phase Φ consists of M discrete and uniformly spaced values. This
corresponds to M-ary phase shift keying (PSK) using a constellation with M symbols,
and the capacity is derived in [67, 68]. We briefly restate this derivation since it is the
basis for the capacity derivation in Section 3.4.6.

We assume M discrete complex channel inputs x̃m. The complex output sample ỹ
has the conditional PDF

fỸ|X̃(ỹ|x̃m) =
1

2πσ2 exp
(
−|ỹ− x̃m|2

2σ2

)
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with σ2 = σ2
N
2 and x̃m = rH exp

(
j 2πm

M

)
. The capacity of the discrete-input continuous-

output memoryless channel is

CPhase, MI-c.sym., discrete =
1
2

sup
fX̃(x̃)

M−1

∑
m=0

fX̃(x̃m)
∞̈

ỹ=−∞

fỸ|X̃(ỹ|x̃m)·

log2

{
fỸ|X̃(ỹ|x̃m)

∑M−1
n=0 fX̃(x̃n) fỸ|X̃(ỹ|x̃n)

}
dỹ,

again with only half of the DFT coefficients X̃ being independent and where
˜ ∞

ỹ=−∞ . . . dỹ
denotes an improper double integral over the two dimensions of the two-dimensional
variable ỹ, i.e.,

˜ ∞
ỹ=−∞ . . . dỹ =

´ ∞
ya=−∞

´ ∞
yb=−∞ . . . dybdya. The subscript Phase, MI-c.sym., discrete

denotes a phase modulation watermark capacity derived using the mutual information
(MI) between a set of discrete complex input symbols and the complex output symbols.
Given the desired signal constellation, the capacity is maximum if the channel inputs
x̃m are equiprobable with probability fX̃(x̃m) = 1

M and the supremum in the above term
can be omitted. We further substitute Ỹ := W̃ + X̃m with W̃ ∼ CN (0, σ2

N), resulting in

fỸ|X̃(ỹ|x̃m) = fW̃(w̃) =
1

πσ2
N

exp
(
−|w̃|

2

σ2
N

)

and

CPhase, MI-c.sym., discrete =
1
2

log2(M)− 1
2M

M−1

∑
m=0

∞̈

w̃=−∞

log2

[
M−1

∑
n=0

exp
(
−|w̃ + x̃m − x̃n|2 − |w̃|2

σ2
N

)]
fW̃(w̃) dw̃

where the integration can be replaced by the expected value with respect to W̃ and

CPhase, MI-c.sym., discrete =
1
2

log2(M)− 1
2M

M−1

∑
m=0

EW̃

{
log2

M−1

∑
n=0

exp
(
−|w̃ + x̃m − x̃n|2 − |w̃|2

σ2
N

)}
. (3.22)

The capacity can be calculated numerically using Monte Carlo simulations by gen-
erating a large number of realizations for W̃ and calculating and averaging C. The
variables x̃m and x̃n are discrete and uniformly distributed, and one can sum over all
its M values.

3.4.6. Exact Capacity Using Input/Output Complex Symbols

We can generalize the capacity derivation of Section 3.4.5 from a discrete set of input
symbols to a continuous input distribution with X̃ = rHejΦ as defined in Section 3.4.1
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with a complex channel input x̃ and

fX̃(x̃n) = fXa,Xb(a, b) =
1

2πrH
δ
(√

a2 + b2 − rH

)

as derived in (3.7). The complex output sample ỹ has the conditional PDF

fỸ|X̃(ỹ|x̃) =
1

2πσ2 exp
(
−|ỹ− x̃|2

2σ2

)

with σ2 = σ2
N
2 and x̃ = rHejϕ. The capacity of the continuous-input continuous-output

memoryless channel is [64, p. 252]

CPhase, MI-c.sym. =
1
2

sup
fX̃(x̃)

I(X̃, Ỹ) =
1
2

sup
fX̃(x̃)

∞̈

x̃m=−∞

fX̃(x̃m)·

∞̈

ỹ=−∞

fỸ|X̃(ỹ|x̃m) log2

[
fỸ|X̃(ỹ|x̃m)˜ ∞

x̃n=−∞ fX̃(x̃n) fỸ|X̃(ỹ|x̃n) dx̃n

]
dỹ dx̃m.

Given the desired signal constellation, the capacity is maximum if the channel inputs
x̃ are uniformly distributed on the circle with radius rH (with a density fX̃(x̃) as
described above), and the supremum in the above term can be omitted. We further
substitute Ỹ := W̃ + X̃m with W̃ ∼ CN (0, σ2

N), resulting in

fỸ|X̃(ỹ|x̃m) = fW̃(w̃) =
1

πσ2
N

exp
(
−|w̃|

2

σ2
N

)

and

CPhase, MI-c.sym. = −1
2

∞̈

x̃m=−∞

fX̃(x̃m)·

∞̈

w̃=−∞

log2




∞̈

x̃n=−∞

fX̃(x̃n) exp
(
−|w̃ + x̃m − x̃n|2 − |w̃|2

σ2
N

)
dx̃n


 fW̃(w̃) dw̃ dx̃m

where the integration over w̃ can be replaced by the expected value with respect to W̃
and

CPhase, MI-c.sym. = −1
2

∞̈

x̃m=−∞

fX̃(x̃m)·

EW̃



log2




∞̈

x̃n=−∞

fX̃(x̃n) exp
(
−|w̃ + x̃m − x̃n|2 − |w̃|2

σ2
N

)
dx̃n





 dx̃m
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and the same for x̃n

CPhase, MI-c.sym. = −1
2

∞̈

x̃m=−∞

fX̃(x̃m)·

EW̃

{
log2

[
Ex̃n

{
exp

(
−|w̃ + x̃m − x̃n|2 − |w̃|2

σ2
N

)}]}
dx̃m

and the same for x̃m

CPhase, MI-c.sym. = −1
2

Ex̃m

{
EW̃

{
log2

[
Ex̃n

{
exp

(
−|w̃ + x̃m − x̃n|2 − |w̃|2

σ2
N

)}]}}
.

(3.23)
The capacity C can be calculated numerically using Monte Carlo simulations by

generating a large number of realizations for x̃m, w̃ and x̃n, and calculating and
averaging C, or by numerical integration. To simplify the numerical integration, given
that fX̃(x̃) is zero for all x̃ in the complex plane except on a circle, we can replace the
two double integrals over x̃ by single integrals along the circles, resulting in

CPhase, MI-c.sym. = − 1
4πrH

2πˆ

ϕm=0

∞̈

w̃=−∞

fW̃(w̃)·

log2




2πˆ

ϕn=0

1
2πrH

exp
(
−|w̃ + rHejϕm − rHejϕn |2 − |w̃|2

σ2
N

)
dϕn


 dw̃ dϕm.

For numerical integration it is further possible to replace the integrals over ϕ by
summations, i.e.

2πˆ

ϕ=0

f (ϕ) dϕ ≈
S−1

∑
i=0

f (iϕ∆) ϕ∆ with ϕ∆ =
2π

S
and, e.g., S = 256.

3.4.7. Comparison of Derived Phase Modulation Capacities

The derived phase modulation capacities of Section 3.4.2 to Section 3.4.6 are shown

for different channel SNR σ2
H

σ2
N

in Figure 3.6. The differences of the capacities relative to
CPhase, MI-c.sym. of (3.23) are shown in Figure 3.7. The reason for CPhase, MI-c.sym. being
slightly larger than CPhase, MI-angle of (3.21) is that in the former case the detector has
access to both the amplitude and the phase angle of the received symbol, whereas in the
later case only the phase angle is known. The figures also include the general capacity
of the power-constrained AWGN channel given by the Shannon–Hartley theorem [64]

CShannon =
1
2

log2

(
1 +

σ2
H

σ2
N

)
.

It is the upper bound on the information rate when ignoring any watermarking-induced
constraint.
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sions at different channel SNR σ2
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(see also Figure 3.7).
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3.4.8. Phase Watermarking in Voiced Speech

Given the large capacity of phase modulation based watermarking in unvoiced speech,
it would be attractive to extend this approach also to voiced speech. In voiced speech,
however, perceptually transparent phase manipulations are much more difficult to
achieve, since the signal’s phase is indeed perceivable [49, 50, 69, 70]. It is important to
maintain 1) the phase continuity of the harmonic components across the analysis/syn-
thesis frames, and 2) the spectral envelope of the signal, including the spectral peaks
of the harmonics and the deep valleys in-between them, independent of the position of
the analysis window.

We explored possibilities to manipulate or randomize the signal phase in speech
while maintaining the two aforementioned perceptual requirements for voiced speech.
It follows a brief outline of the performed experiments, which will show that even under
idealistic assumptions it is not possible to fully randomize the phase of voiced speech
without severely degrading perceptual quality or resorting to perceptual masking.

3.4.8.1. Phase Modulation with the Short-Time Fourier Transform (STFT)

In this experiment, a fully periodic synthetic speech signal with constant pitch of
146 Hz was transformed into DFT domain using a pitch-synchronous short-time Fourier
transform (STFT) with a ‘square root Hann’ analysis window with 50 % overlap and
a window length that is an even multiple of the pitch cycle length. Using the same
window as synthesis window, the sum of the inverse DFT transforms of the individual
frames (‘overlap/add synthesis’) results in perfect reconstruction of the original signal
[71]. To evaluate the suitability of the signal’s phase for watermarking, we randomized
the phase angle of the complex DFT/STFT coefficients and examined the perceptual
degradation as a function of the window length.

Using a short analysis/synthesis window with a window length of 137 ms or 20
pitch cycles, the phase randomization leads to significant perceptual distortion and
makes the speech signal sound like produced in a ‘rain barrel’. Figure 3.8 shows the
long-term high-frequency-resolution DFT spectrum (using a measurement window
length of 1 s) of the original signal and the phase-randomized signal created using the
137 ms window. It is apparent that the phase randomization leads to a widening of
the spectral peaks due to the limited frequency resolution of the analysis/synthesis
window. For example, a pure sinusoidal signal is typically represented by several DFT
bins due to the spectral shape of the analysis window. If the phase relation between
the different DFT bins is not maintained, the inverse transform is not a pure sinusoid
anymore but a mixture of several sinusoids with adjacent frequencies and arbitrary
phase relations.

The perceptual degradation decreases when using much longer analysis/synthesis
windows in the order of magnitude of 200 pitch cycles. Using a long window corre-
sponds to changing the phase less frequently in time, and also results in an increased
frequency resolution. However, the window length determines the time/frequency
resolution trade-off of the STFT. For real speech signals such long windows lead to
unacceptable smearing in the time domain, and also the pitch would not be constant
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Figure 3.8.: Long-term high-frequency-resolution DFT spectrum with a measurement
window length of 1000 ms of 1) a constant pitch periodic speech signal and
2) the same signal with randomized STFT-domain phase coefficients (using
an analysis/synthesis window length of 137 ms).

for such long periods.
The ‘rain barrel effect’ can be eliminated by modulating only those coefficients that

are perceptually less important. To verify this, we calculated for every frame of the
STFT representation (using a window length of 27 ms or approximately four pitch
cycles, and 50 % overlap) the frequency masking curve using the van-de-Par masking
model [54] (see also Section 3.3). Then, we randomized only the phase of those DFT
coefficients whose magnitude is a certain threshold below the masking curve. We used
as test signal a male speech sustained vowel ‘a’ at a sampling frequency of 16 kHz
and a listening level of 82.5 dBSPL. A threshold of 0 dB (randomizing all coefficients
below the masking curve) resulted in 83 % of the coefficients being randomized and
a certain roughness in the sound, which again results from a widening of spectral
peaks (measured over a longer window), namely those peaks where a part of the
initial peak is masked. With a threshold of 6 dB (randomizing all coefficients 6 dB
below the masking curve, shown in Figure 3.9) 64 % of the phase coefficients were
randomized, and the previous roughness in the sound was barely noticeable anymore.
However, if a DFT coefficient is masked anyhow, then there is no need to maintain
the magnitude of the coefficient and one can proceed with the general masking-based
approach discussed in Section 3.3.

Independent of window length and masking, with using a 50% overlap to avoid
discontinuities at the frame boundaries, the speech signal is oversampled by a factor
of two, and the STFT representation contains twice as many coefficients as the time
domain signal. As a consequence for watermarking, the frequency coefficients are not
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Figure 3.9.: Randomization of the phase of those coefficients DFT that are masked and
have a magnitude of less than 6 dB below the masking curve.

independent, and it is not possible to independently randomize all phase coefficients
and re-obtain the same coefficients after resynthesis and analysis. An approach to
solve this problem is the use of a critically sampled orthogonal transform instead of
the STFT. This is discussed in the following subsection.

3.4.8.2. Phase Modulation with Lapped Orthogonal Transforms

The use of a critically sampled orthogonal transform for analysis and synthesis allows
to obtain a perfect reconstruction of the embedded watermark data. In the following,
we discuss the use of extended and modulated lapped transforms (ELT and MLT,
[72, 73, 74, 75]) for watermarking by phase modulation.

Extended Lapped Transform (ELT) The ELT is a critically sampled orthogonal
lapped transform with an arbitrary window length L [73, 74]. Just as the more
popular MLT, the ELT is a perfect reconstruction cosine-modulated filterbank defined
by the same basis functions, but generalized from a fixed window length L = 2M
to a variable window length that is typically larger than 2M, where M denotes the
transform size or number of filter channels.

The idea for watermarking is to use an ELT with few coefficients (filter channels)
and long windows, and to modify again the signal’s phase in the frequency domain.
As discussed in Section 3.4.1.1, we denote with modifying the MLT or ELT phase
the replacement of the original transform domain subband signals by watermark
subband signals with identical short-term power envelopes, since this preserves the
spectral envelope of the host signal. The orthogonality of the ELT and MLT assures
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that the embedded information is recoverable. A low number of coefficients (which
equals the update interval or the hop size) and long windows implicate that at any
given time there is a large number of overlapping windows. The hypothesis for this
experiment is that if each window has the desired magnitude spectrum, then also the
sum of the overlapping windows has the desired magnitude spectrum, no matter of
the position the spectrum being measured at. As such, it should be possible to recreate
the magnitude spectrum of voiced speech while continuously manipulating the phase
spectrum. We evaluate this approach with a small experiment.

We transformed a synthetic stationary constant pitch speech signal into the frequency
domain using an ELT as described in [74] with M filter channels and with a prototype
filter (window shape) with stopband attenuation As, designed using the Kaiser window
approach of [76]. The window length L is a result of M and As. Since there is no direct
notion of phase in the frequency domain of the ELT—it is a real-valued transform—we
measured the variance in each filter channel and replaced the original signal in each
frequency channel by Gaussian noise with equal variance. The modified signal was
then transformed back to time domain.

There are fundamentally contradicting requirements on the parameter M. On the
one hand, the number of filter channels determines the frequency resolution of the filter
bank, and in order to accurately maintain the sharp spectral peaks in voiced speech,
M must be large. For example, to obtain approximately ten subbands in-between
two harmonics of a speech signal with a pitch of 150 Hz, one must set M = 256 at
a sample rate of fs = 8 kHz (resulting in a subband width of fs

2M ≈ 15.6 Hz). With
As = 50 dB this results in a window length of 768 ms (L = 6144). But even with a
frequency resolution as high as this, and even though there is an overlap of 24 different
windows at any given time, there is still a significant widening of the spectral peaks
(see Figure 3.10). This widening shows itself with the same ‘rain barrel effect’ as
when using the STFT. Additionally, such a long window length results in unacceptable
smearing in the time domain. Decreasing M, for example to M = 64 and a window
length of 112 ms (As = 30 dB), makes the speech signal more similar to colored noise.

Just as in the STFT case, the ‘rain barrel effect’ at large M can be eliminated by not
randomizing the perceptually most important subchannels. This was confirmed with a
small experiment that kept 10 % of the M = 256 coefficients unmodified, namely those
with the largest power.

Modulated Lapped Transform (MLT) Reducing the window length L of the ELT to
twice the transform size M, L = 2M, and using a sine window results in the modified
lapped transform (MLT) [74, 75]. Applying the same phase randomization as with the
ELT, the results are very similar. For identical M, the randomized MLT sounds slightly
more noisy than the randomized ELT. For large M, the perceptual results become
almost identical for equal effective window lengths (considering at the ELT window
only its time-domain ‘main lobe’).

At a sampling frequency of 8 kHz, an MLT with M = 64 has a window length of
16 ms, which is a commonly used window length for speech signal coding. Using
this window length and again randomizing the coefficients results in a very noise-like
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Figure 3.10.: Constant pitch speech signal with original and randomized ELT coeffi-
cients using 256 filter channels and a 768 ms-window. The randomization
leads to a widening of the spectral peaks. (The plotted DFT spectrum is
measured using a 1000 ms-window.)

speech signal. This effect can again be mitigated by randomizing only the perceptually
less important coefficients. However, even when keeping 50 % of the coefficients
unmodified (again those with the largest power), a perceptual distortion is still audible.
Because of the short window length, the distortion is audible as noise. It is expected
that the use of a masking model instead of the power criterion to select the relevant
coefficients would decrease the audibility of the distortion.

3.4.8.3. Conclusion

We conclude that in voiced speech, in contrast to unvoiced speech, it is not possible to
fully randomize the signal’s phase without 1) severely degrading perceptual quality
or 2) resorting to perceptual masking. Time-frequency transforms allow direct access
to the signal’s phase, but in order to avoid discontinuities at frame boundaries, block
transforms can only be used with overlapping windows. While the STFT has the most
intuitive notion of phase, it is an oversampled representation whose phase coefficients
are not independent and, thus, difficult to embed and re-extract. This problem can be
solved with ELTs and MLTs, but they are subject to the same fundamental trade-off be-
tween time and frequency resolution as the STFT. Perceptual artifacts can be eliminated
by restricting the phase modulations to masked signal components. However, this is
not a useful approach for watermarking, since masked components can be replaced
altogether instead of only their phase being modulated.

Note that phase modifications are possible if performed at a much lower rate than
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presented herein, for example by randomizing only the initial phase of each voiced
segment. Several such methods were previously proposed but are limited in the
achievable data rate [14, 47, 48, 45, 46].

3.5. Experimental Comparison

In this section, we compare the derived watermark capacities of the ideal Costa scheme
(ICS), watermarking based on frequency masking, and watermarking based on phase
modulation.

3.5.1. Experimental Settings

The experimental settings for each method were chosen as follows.

Ideal Costa Scheme The capacity in (3.1) was evaluated using two different scenar-
ios, 1) assuming a fixed mean squared error distortion,

CICS, MSE=-25dB :
σ2

W

σ2
H

∣∣∣∣
dB

= −25 dB,

and 2) assuming a fixed watermark to channel noise ratio (WCNR),

CICS, WCNR=-3dB :
σ2

W

σ2
N

∣∣∣∣
dB

= −3 dB.

While the first case corresponds to a fixed perceptual distortion of the clean water-
marked signal (before channel), the second case corresponds to a fixed perceptual
distortion of the noise-corrupted watermarked signal (after channel, assuming that the
watermark signal is masked by the channel noise).

Frequency Masking For watermarking based on frequency masking, the watermark
capacity CMask of (3.3) is used, with the watermark power σ2

W,mask being κ = −12 dB
below the masking threshold of the masking model.

Phase Modulation In principle, the capacity of watermarking by phase modulation
is given by (3.23) and can be expressed as a function CPhase(σ2

H, σ2
N), with σ2

H being
equivalent to r2

H. However, two additional factors need to be taken into consideration
when dealing with real-world speech signals: First, as we showed in Section 3.4.8, the
phase modulation is possible in unvoiced speech only, and second, the energy in a
speech signal is unevenly distributed between voiced and unvoiced regions. For the
experiment, it was assumed that a fraction γ of the speech signal is unvoiced speech,
the average power (or variance) of which is a multiplicative factor ρ above or below
the average speech signal power σ2

H. The watermark capacity then evaluates to

CPhase, speech = γ · CPhase(ρσ2
H, σ2

N). (3.24)
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Figure 3.11.: Watermark capacity for quantization, masking and phase modulation
based speech watermarking. The abbreviations are explained in Sec-
tion 3.5.1.

We determined the parameters γ and ρ with a small experiment, again using ten
randomly selected utterances (one per speaker) of the ATCOSIM corpus (see Chapter 7).
After stripping silent regions (defined by a 43ms-Kaiser-window-filtered intensity curve
being more than 30 dB below its maximum for longer than 100ms), each utterance
was individually normalized to unit variance, i.e., σ2

H = 1. Then, a voiced/unvoiced
segmentation was performed using PRAAT [77], and the total length and average
power measured separately for all voiced and all unvoiced segments. The result is a
fraction of γ = 47 % being unvoiced, and the average power in unvoiced being −4.6 dB
below the overall signal power (ρ = 0.35). As a consequence, the unvoiced segments
contain 16 % of the overall signal energy. Performing the same analysis on the 192
sentences of the TIMIT Core Test Set [78] results in γ = 38 %, ρ = 0.16 (−8 dB), and
only 6 % of the total energy located in unvoiced segments. This difference can be
attributed to the slower speaking style in TIMIT compared to the ATCOSIM corpus.
The resulting watermark capacities based on the two databases and using (3.24) are
denoted CPhase,ATCOSIM and CPhase,TIMIT.

3.5.2. Results

The watermark capacities CICS, CMask and CPhase for quantization, masking, and phase
modulation based speech watermarking are shown in Figure 3.11. As in Figure 3.6, the
plot includes for comparison the Shannon capacity CShannon of the AWGN channel.
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3.6. Conclusions

Watermarking in perceptually relevant speech signal components, as it is required
in certain applications that need robustness against lossy coding, is best performed
using variants of the ideal Costa scheme, and its capacity CICS is shown in Figure 3.11.
In contrast, in the application of interest in this work—speech watermarking for
analog legacy system enhancement—watermarking in perceptually irrelevant speech
signal components is possible. Then, perceptual masking and the auditory system’s
insensitivity to phase in unvoiced speech can be exploited to increase the watermark
capacity (see CMask and CPhase in Figure 3.11).

Using auditory masking leads to a significant capacity gain compared to the ideal
Costa scheme. For high channel SNRs the masking-based capacity is larger than all
other watermark capacities in consideration.

The watermark capacity in the phase of unvoiced speech can be derived using
the sphere packing analogy or using the related concept of mutual information. In
unvoiced speech and for high channel SNRs, the capacity is roughly half of the Shannon
capacity plus half a bit per independent sample. The overall watermark capacity is
signal-dependent. For fast-paced air traffic control speech at low and medium channel
SNR, which is the application of interest in this work, the phase modulation approach
outperforms the masking-based approach in terms of watermark capacity.

The remainder of this thesis focuses on the phase modulation approach. Some
form of auditory masking is used in many, if not even most, state-of-the art audio
watermarking algorithms, and is a well-explored topic [13]. In contrast, a complete
randomization of the speech signal’s phase has, to our best knowledge, not been
previously proposed in the context of watermarking. It offers an opportunity for
a novel contribution to the area of speech watermarking and opens a window to
implementations that could possibly outperform current state-of-the-art methods.

Note that the phase modulation approach and the conventional masking-based
approach do not contradict each other in any significant way. In fact, it is expected
that a combination of the two approaches will lead to a further increase in watermark
capacity.
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Chapter 4

Watermarking Non-Voiced Speech

We present a blind speech watermarking algorithm that embeds the water-
mark data in the phase of non-voiced speech by replacing the excitation
signal of an autoregressive speech signal representation. The watermark
signal is embedded in a frequency subband, which facilitates robustness
against bandpass filtering channels. We derive several sets of pulse shapes
that prevent intersymbol interference and that allow the creation of the
passband watermark signal by simple filtering. A marker-based synchro-
nization scheme robustly detects the location of the embedded watermark
data without the occurrence of insertions or deletions.

In light of the potential application to analog aeronautical voice radio com-
munication, we present experimental results for embedding a watermark
in narrowband speech at a bit rate of 450 bit/s. The adaptive equalization-
based watermark detector not only compensates for the vocal tract filtering,
but also recovers the watermark data in the presence of non-linear phase
and bandpass filtering, amplitude modulation and additive noise, making
the watermarking scheme highly robust.

Parts of this chapter have been published in K. Hofbauer, G. Kubin, and W. B. Kleijn, “Speech
watermarking for analog flat-fading bandpass channels,” IEEE Transactions on Audio, Speech, and
Language Processing, 2009, revised and resubmitted.
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Chapter 4. Watermarking Non-Voiced Speech

As shown in Chapter 3, the combination of established watermarking theory with
a well-known principle of speech perception leads to a substantial improvement in
theoretical capacity. Based on this finding, the following chapter develops a practical
watermarking scheme that is aimed at analog legacy system enhancement. Although
the method is of general value, many of our design choices as well as the choice of
attacks that we consider are motivated by the application of watermarking to the
aeronautical voice radio communication between aircraft pilots and air traffic control
(ATC) operators as described in detail in Chapter 6.

In the remainder of this chapter, Section 4.1 proposes the watermarking scheme, also
addressing many practical issues such as synchronization and channel equalization.
After a discussion of certain implementation aspects in Section 4.2, experimental results
are presented in Section 4.3. Finally, we discuss our results and draw conclusions in
Section 4.4 and 4.5.

4.1. Theory

In Chapter 3 we have shown the large theoretical capacity of watermarking by replacing
the phase of the host signal. Motivated by this finding, this section presents a practical
speech watermarking scheme that is based on this principle. The new method also
addresses the two major difficulties with the theoretical approach: Firstly, the human
ear is only partially insensitive to phase modifications in speech, and secondly, the
transmission channel depends on the application and is in most cases not only a simple
AWGN channel. We assume in the following all signals to be discrete-time signals with
a sample rate fs.

4.1.1. Speech Signal Model

Our method is based on an autoregressive (AR) speech signal model. This is a common-
place speech signal representation, which models the resonances of the vocal tract
and is widely used in speech coding, speech synthesis, and speech recognition (cf.
[58, 60, 79]). Consequently, we consider certain temporal sections of a speech signal
s(n) as an outcome of an order P autoregressive signal model with time-varying
predictor coefficients c(n) = [c1(n), . . . , cP(n)]T and with a white Gaussian excitation
e(n) with time-variant gain g(n), such that

s(n) =
P

∑
m=1

cm(n)s(n−m) + g(n)e(n).

4.1.2. Transmission Channel Model

We focus on analog legacy transmission channels such as the aeronautical radio or the
PSTN telephony channel. As an approximation, we assume the channel to be an analog
AWGN filtering channel with a limited passband width. The transmission channel
attacks are listed in the left column of Table 4.1.
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Figure 4.1.: Watermark embedding: Non-voiced speech (or a subband thereof) is ex-
changed by a watermark data signal.

4.1.3. Watermark Embedding Concept

The presented speech signal model facilitates the embedding of a data signal by
replacing the AR model phase of the host speech signal (see Section 3.4.1.1). An
important property of the signal model is that there is no perceptual difference between
different realizations of the Gaussian excitation signal e(n) for non-voiced speech [42].
It is possible to exchange the white Gaussian excitation signal e(n) by a white Gaussian
data signal ê(n) that carries the watermark information. The signal thus forms a hidden
data channel within the speech signal. We denote with ‘non-voiced speech’ all speech
that is not voiced, comprising unvoiced speech and pauses.

The hidden data channel is restricted both in the temporal and in the spectral domain.
In the temporal domain, the replacement of e(n) by ê(n) can take place only when the
speech signal is not voiced, since the model as defined in Section 4.1.1 is accurate only
for non-voiced speech. The speech parts that are voiced and should remain unmodified
are detected based on their acoustic periodicity using an autocorrelation method [80].
In the spectral domain, only a subband bandpass component ePB(n) of e(n) can be
replaced by the data signal ê(n). This accommodates the bandpass characteristic of the
transmission channel, and the embedding band width and position must be selected
such that they fully lie within the passband of the transmission channel. The stopband
component eSB(n) = e(n)− ePB(n) must be kept unchanged, since in many practical
applications the exact channel bandwidth is not known a priori. This is realized by
adding an unmodified secondary path for the stopband component sSB(n).

Figure 4.1 shows an overview of the embedding scheme. First, the voiced and the
non-voiced time segments of the fullband input speech signal sFB(n) are identified and
indicated by a status signal SNV. Then, the predictor coefficients c(n) are calculated
and regularly updated using linear prediction (LP) analysis. The signal sFB(n) is
decomposed into two subbands (without downsampling), and a LP error filter (H−1

c )
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Chapter 4. Watermarking Non-Voiced Speech

Table 4.1.: Transmission Channel and Hidden Data Channel Model

Transmission Channel Attacks

DA/AD conversion (resampling)
Desynchronization

AWGN
Bandpass filtering

Magnitude and phase distortion

System-Inherent Attacks

Random channel availability SNV

Time-variant gain g
Time-variant all-pole filtering Hc

Additive stopband signal sSB

with predictor coefficients c(n) is applied on the passband component sPB(n), resulting
in the passband error signal r(n) = g(n)e(n). The LP analysis is based on sFB(n), since
otherwise the LP error filter would try to compensate the bandpass characteristic of
sPB(n). In voiced speech segments, the passband signal is resynthesized using the
original error signal r(n) and the LP synthesis filter Hc. In contrast, the non-voiced
speech segments (including unvoiced speech and inactive speech) are resynthesized
from a spectrally shaped watermark data signal w(n), on which the original gain g(n)
of the error signal and the LP synthesis filter Hc is applied. The unmodified stopband
component sSB(n) is added to the watermarked passband signal ŝPB(n), resulting in
the watermarked speech ŝFB(n).

4.1.4. Hidden Data Channel Model

The watermark detector is ultimately interested in the payload watermark mWM.
However, the watermark channel carrying the hidden data signal is subject to a number
of channel attacks, which are listed in Table 4.1. They are either inherent to the
embedding procedure of Section 4.1.3, or induced by the transmission channel. While
the system-inherent attacks are deterministic and known to the watermark embedder,
they are randomly varying quantities and unknown to the watermark detector.

The following sections further refine the embedding concept of Section 4.1.3 to
counteract the channel attacks defined in Table 4.1. In principle, the payload watermark
mWM must be transformed into a watermark signal w(n) using a modulation scheme
that is either robust against the channel attack or enables the detector to estimate and
revert the attack.

4.1.5. Watermark Signal Generation

In the following, we describe the composition of the real-valued watermark signal
w(n). It is subject to conditions that result from the perceptual transparency, data
transmission rate and robustness requirements.
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Figure 4.2.: Frame and block structure including watermark (WM), training (Tr), active
frame (Ac) and frame identification (ID) regions, which carry the data
symbols ab,p interleaved with the spectral shaping symbols mSh.

4.1.5.1. Bit Stream Generation

The encoded payload data is interleaved with additional auxiliary symbols in order
to facilitate the subsequent processing steps. As will be discussed in Section 5.1.3,
we use a fixed frame grid with frames of equal length LD. Each frame that lies
entirely within a non-voiced segment of the input signal is considered as active frame
and consists of LWM watermark symbols mWM representing encoded payload data,
LTr training symbols mTr for signal equalization in the receiver (Section 4.1.7), LAc
preamble symbols mAc for marking active frames (Chapter 5), LID preamble symbols
mID for sequentially numbering active frames with a consecutive counter (Chapter 5),
and LSh spectral shaping symbols mSh for pulse shaping and fulfilling the bandpass
constraint (Section 4.1.5.2). The symbols are real-valued, and interleaved with each
other as shown in Figure 4.2. While mWM, mTr, mAc and mID could in principle be
multi-level and multi-dimensional symbols, trading data rate against robustness, we
use in the implementation of Section 4.2 single-level bipolar one-dimensional symbols,
and denote with A the sequence of these interleaved data symbols and with ab,p the
individual terms of A as defined in the next section. The spectral shaping symbols mSh
are multi-level real scalars and not part of the data sequence A.

When using the signal model presented in Section 4.1.1, the set of pseudo-random
data, training and preamble symbols must consist of independent symbols, and have
an amplitude probability distribution that is zero mean, unit variance, and Gaussian.
However, we previously showed that violating the requirement of Gaussianity does
not severely degrade the perceptual quality [3].

4.1.5.2. Pulse Shaping

The aim of pulse shaping is to transform the data sequence A into a sequence of
samples w(n) that
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1. has the same predefined and uniform sampling frequency fs as the processed
speech signal,

2. has no intersymbol interference (ISI) between the data symbols A,

3. has a defined boxcar (bandpass) power spectral density with lower and upper
cut-off frequencies fL and fH that lie within the passband of the transmission
channel and with fH ≤ fs

2 , and

4. carries as many data symbols as possible per time interval (i.e., the symbol
embedding rate fa is maximum).

With a simple one-to-one mapping from A to w(n) the signal w(n) does not have the
desired spectral shape and the data is not reliably detectable since the Nyquist rate,
which is twice the available transmission channel bandwidth, is exceeded. To solve
this problem, we interleave the signal w(n) with additional samples mSh to reduce
the rate fa at which the data symbols A are transmitted to below the Nyquist rate.
Additionally, the values of the samples mSh are set such that the resulting signal w(n)
has the desired spectral shape.

Finding the correct quantities, distributions and values for the spectral shaping
samples mSh given specified cut-off and sampling frequencies is a non-trivial task.
However, transforming a data sequence into a band-limited signal is in many aspects
the inverse problem to representing a continuous-time band-limited signal by a se-
quence of independent and possibly non-uniformly spaced samples, and the theories of
non-uniform sampling and sampling and interpolation of band-limited signals can be
applied to this problem (cf. [81, 82, 83]). We consider the desired watermark signal w(t)
as the band-limited signal, the given data symbol sequence A with an average symbol
rate fa as the non-uniformly spaced samples of this signal, and the required pulse
shape y(t) as the interpolation function to reconstruct the band-limited signal from its
samples. The wanted symbols mSh are obtained by sampling the reconstructed signal
w(t) at defined time instants. The above four requirements on w(n) then translate to

1. constraining the sampling instants onto a fixed grid with spacing 1/ fs or a subset
thereof,

2. requiring the samples of the signal to be algebraically independent, i.e., any set
of samples A defines a unique signal w(t) with the desired properties,

3. requiring the signal to be band-limited to fL and fH, and

4. requiring the symbol rate fa to be close to the Nyquist rate of 2( fH − fL).

It is known from theory that these requirements can be fulfilled only for certain
combinations of fs, fL and fH (e.g., [83]). The permission of non-uniform sampling
loosens the constraints on the permissible frequency constellations.

A common approach for a practical implementation is to choose the parameters
such that in a block of N samples on a sampling grid with uniform spacing Ts = 1/ fs
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the first M samples are considered as independent samples and fully describe the
band-limited signal (e.g., [84]). The remaining N −M samples are determined by the
bandwidth-constraint and can be reconstructed with suitable interpolation functions.
Analogously, the first M samples are the information-carrying data samples, and
the remaining N −M samples are the spectral shaping samples, determined by the
interpolation function.

To formalize the problem, let A be the sequence of interleaved watermark, training
and preamble symbols as defined in Section 4.1.5.1 and a denote the terms of this
sequence. A is divided into non-overlapping and consecutive blocks of M terms, and
ab,p denotes the p’th term (p = 1 . . . M) in the b’th block. The terms ab,p of A are
considered as the samples of the band-limited signal w(t), which is non-uniformly
sampled at the time instants τb,p = tp + bNTs with tp = (1− p)Ts and Ts = 1/ fs. The
desired signal w(t) can then be constructed with [85]

w(t) =
∞

∑
b=−∞

M

∑
p=1

ab,pyb,p(t), (4.1)

where yb,p(t) is the reconstruction pulse shape that is time-shifted to the b’th block and
used for the p’th sample in each block, and with subsequent resampling of w(t) at the
time instants τ = nTs.

To have all previously stated requirements fulfilled, N, M, fs, fL, fH and yp must be
chosen accordingly. We provide suitable parameter sets and pulse shapes for different
applications scenarios in Section 4.2.2.

4.1.6. Synchronization

We deal with the different aspects of synchronization between the watermark embedder
and the watermark detector extensively in Chapter 5. In summary, sampling timing
and bit synchronization as well as signal synthesis and analysis synchronization are
inherently taken care of by the embedded training sequences and the adaptive equalizer
in the watermark detector. Data frame synchronization is achieved by using a fixed
frame grid and the embedding of preambles.

4.1.7. Watermark Detection

Figure 4.3 gives an overview on the components of the watermark detector, which
follows a classical front-end–equalization–detection design [86].

4.1.7.1. Detector Front End

In the first step the received analog watermarked speech signal is sampled. In the
presence of an RLS adaptive equalizer as proposed in the next subsection, the sampling
operation does not need to be synchronized to the watermark embedder. The channel
delay is estimated and the signal is realigned with the frame grid. These different
aspects of synchronization are discussed in Chapter 5. In the remainder of this chapter
we assume for the received signal path that perfect synchronization has been achieved.
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Figure 4.3.: Watermark detector including synchronization, equalization and water-
mark detection.

From the discrete-time speech signal s′FB(n) the out-of-band components s′SB(n) are
again removed by an identical bandpass filter as in the embedder, resulting in the
passband signal s′PB(n).

4.1.7.2. Channel Equalization

The received signal is adaptively filtered to compensate for the all-pole filtering in
the embedder as well as for the unknown transmission channel filtering. We make
use of the training symbols mTr embedded in the watermark signal w(n) in order to
apply a recursive least-squares (RLS) equalization scheme. The RLS method is chosen
over other equalization techniques such as LMS because of its rate of convergence and
tracking behavior, and the availability of efficient recursive implementations that do
not require matrix inversion [87].

We use an exponentially weighted and non-uniformly updated RLS adaptive filter
in an equalization configuration, which tracks the joint time-variation of the vocal tract
filter and the transmission channel [87]: Let K be the number of taps and λ (0 < λ ≤ 1)
be the exponential weighting factor or forgetting factor of the adaptive filter and α be a
fixed constant that depends on the expected signal-to-noise ratio in the input signal.
Also let u(n) = [s′PB(n + K − 1), . . . , s′PB(n)]T be the K-dimensional tap input vector
and w(n) the K-dimensional tap-weight vector at time n, with w(0) = 0. We initialize
the inverse correlation matrix with P(0) = δ−1I, using the regularization parameter
δ = σ2

s (1− λ)α with σ2
s being the variance of the input signal s′PB(n). For each time

instant n = 0, 1, 2, . . . , ∞ we iteratively calculate

q(n) = P(n)u(n)

k(n) =
q(n)

λ + uH(n)q(n)
P̃(n) = λ−1(P(n)− k(n)qH(n))

P(n + 1) = 1
2 (P̃(n) + P̃H(n))

where ∗ denotes complex conjugation and H denotes Hermitian transposition. We
introduced the last equation to assure that P(n) remains Hermitian for numerical
stability. The same effect can be achieved computationally more efficient by calculating
only the upper or lower triangular part of P̃(n) and filling in the rest such that

54



4.2. Implementation

Hermitian symmetry is preserved. If no training symbol is available, the tap-weights
are not updated, and w(n + 1) = w(n). If a training symbol is available for the current
time instant, the error signal eR and the tap weights are updated with

eR(n) = mTr(n)−wH(n)u(n)
w(n + 1) = w(n) + ke∗R(n).

The output e′(n) of the RLS adaptive filter is

e′(n) = wH(n)u(n).

After performing the active frame detection (see Section 5.1.3) an equalizer retraining
is performed. The active frame markers mAc can be used as additional training symbols,
which improves the detection of the subsequent frame ID symbols mID (see Figure 4.2).

4.1.7.3. Detection

An equalization scheme as presented in the previous subsection avoids the necessity of
an expensive signal detection scheme, effectively shifting complexity from the detection
stage to the equalization stage [86]. Consequently, the embedded watermark data is
detected after synchronization and equalization using a simple minimum Euclidean
distance metric.

4.2. Implementation

This section presents details of our signal analysis and pulse shaping implementation,
which are required to reproduce the experimental results presented in Section 4.3. In
this section a number of equations are acausal to simplify notation. For implementation,
the relationships can be made causal by the addition of an input signal buffer and
appropriate delays.

4.2.1. Signal Analysis

We first address the decomposition of the input signal into the model components. The
perfect-reconstruction subband decomposition of the discrete-time speech signal sFB(n)
with sample rate fs into the embedding-band and out-of-band speech components
sPB(n) and sSB(n) is obtained with a Hamming window design based linear phase
finite impulse response (FIR) bandpass filter of order NBP (even) with filter coefficients
h = [h0, . . . , hNBP ]

T, resulting in

sPB(n) =
NBP

∑
m=0

hmsFB(n−m + NBP
2 )

and sSB(n) = sFB(n)− sPB(n). The filter bandwidth WPB = fH − fL must be chosen
in accordance to the transmission channel and the realizable spectral shaping config-
uration as described in Section 4.1.5.2. Complete parameter sets for three different
transmission channel types are provided in Section 4.2.2.
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The linear prediction coefficient vector c(n) is obtained from solving the Yule-Walker
equations using the Levinson-Durbin algorithm, with

c(n) = R−1
ss (n)rss(n), (4.2)

where Rss(n) is the autocorrelation matrix and rss(n) is the autocorrelation vector of
the past input samples sFB(n−m) using the autocorrelation method and an analysis
window length of 20 ms, which is common practice in speech processing [79]. We
update c(n) every 2 ms in order to obtain a smooth time-variation of the adaptive filter.
If computational complexity is of concern, the update interval can be increased and
intermediate values can be obtained using line spectral frequency (LSF) interpolation
[58].

The LP error signal r(n) is given by the LP error filter H−1
c with

r(n) = sPB(n)−
P

∑
m=1

cm(n)sPB(n−m) = g(n)e(n), (4.3)

where we define the gain factor g(n) as the root mean square (RMS) value of r(n)
within a window of length Lg samples, and

g(n) =

[
1
Lg

Lg−1

∑
m=0

r2
(

n−m + Lg−1
2

)] 1
2

.

We use a short window duration of 2 ms (corresponding to Lg samples), which main-
tains the perceptually important short-term temporal waveform envelope.

To determine the segmentation of the speech signal into voiced and non-voiced
components, we use the PRAAT implementation of an autocorrelation-based pitch
tracking algorithm, which detects the pitch pulses in the speech signal with a local
cross-correlation value maximization [77].

4.2.2. Watermark Signal Spectral Shaping

The pulse shaping requirements described in Section 4.1.5.2 and the constraints on N,
M, fL, fH and yp given a certain transmission channel passband and a certain sampling
frequency fs are theoretically demanding and difficult to meet in practice. Even though
the topic is well explored in literature (e.g., [81, 82, 83]), there is at present no automatic
procedure to obtain ‘good’ parameter sets which fulfill all stated requirements such
as being bandwidth-efficient and free of inter-symbol interference. Thus, we now
provide suitable parameter sets and interpolation filters for three application scenarios
of practical relevance, namely a lowpass channel, a narrowband telephony channel,
and an aeronautical radio channel scenario. We do so for a sampling frequency
fs = 8000 Hz.

The derived reconstruction pulse shapes yb,p(t) are continuous-time and of infinite
length. To implement the pulse shapes as digital filters, yb,p(t) is sampled at the time
instants t = nTs, n ∈ Z, and truncated or windowed.
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4.2.2.1. Lowpass Channel

For a lowpass channel with bandwidth WC and choosing M, N and fs according to
WC = M

N
fs
2 , one can obtain the desired signal w(t) that meets all requirements with the

interpolation function

yb,p(t) =
(−1)bM

π fs
N (t− tp − bNTs)

·
∏M

q=1 sin
(

π fs
N (t− tq)

)

∏M
q=1,q 6=p sin

(
π fs
N (tp − tq)

) ,

which is a general formula for bandwidth-limited lowpass signals and achieves the
Nyquist rate [85]. In contrast, using for example a simple sinc function for yb,p(t)
would result in either ISI or the sample rate not being equal to fs.

4.2.2.2. Narrowband Telephony Channel

For a narrowband telephony channel with a passband from 300 Hz to 3400 Hz we select
M = 4 and N = 6 and define the reconstruction pulse shape

yb,p(t) = yp(t− bNTs) = yp(t(b)) =

sinc
(

2π
fs

12

[
t(b) − (p− 1)Ts

])

· sin
(

2π
fs

12

[
t(b) −

(
p− 1 + 2

⌈ p
2

⌉)
Ts

])

· cos
(

2π
fs

4

[
t(b) − (p− 3)Ts

])
,

t(b) := t− bNTs, sinc(x) =
sin(x)

x
,

(4.4)

to obtain a watermark signal w with a bandwidth from 666 Hz to 3333 Hz. Figure 4.4
shows this by illustration. This passband width WC = 2666 Hz is as small as the
Nyquist bandwidth that is required for the chosen symbol rate M

N fs, which is only
achievable for distinct parameter combinations. Figure 4.5 shows the M pulse shapes
and demonstrates how each pulse creates ISI only in the N − M non-information
carrying samples. This is achieved by carefully selecting the frequencies and phases
of the terms in (4.4) such that at each information-carrying sampling position a zero-
crossing of one of the terms occurs.

Ayanoglu et al. [84] define similar parameter and signal sets for channels band-
limited to 0 Hz–3500 Hz (M = 7, N = 8) and 500 Hz–3500 Hz (M = 6, N = 8).

4.2.2.3. Aeronautical Radio Channel

Given the particular passband width and position of the aeronautical radio channel
(300 Hz to 2500 Hz), using the aforementioned approach did not lead to a configuration
that would achieve the Nyquist rate.
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Figure 4.4.: Generation of a passband watermark signal for a telephony channel using
(4.4). Frequency domain representation (a) of the individual sinc, sin, and
cos terms, (b) of the product of the first two terms, and (c) of the product
of all three terms in (4.4), resulting in the desired bandwidth and position.
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2 , 1,−1 is located at tp = (p − 1)Ts. By
design, the ISI induced by the band-limitation falls into the spectral shaping
samples at t = b · 6Ts + 4Ts and t = b · 6Ts + 5Ts, with b ∈ Z.
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However, an efficient reconstruction pulse set with a watermark bandwidth from
500 Hz to 2500 Hz can be created using Kohlenberg’s second-order sampling [88]. We
omit the exact description of the method and only show its practical application: Using
the notation of [88], we define W0 = 500 Hz and W = 2000 Hz, which results in the
parameter r = 1 and fulfills 2W0

W < r < 2W0
W + 1 [81]. We select a = a1 = a2 = 1

W , which
represents every fourth sample in terms of the sample rate fs = 8000 Hz = 4W. The
phase shift for the second-order sampling is chosen to be k = 1

4W , which corresponds
to a shift of one sample in terms of fs. This results in M = 2 consecutive information
carrying samples (indexed by p = 1, 2) in each block of N = 4 samples, and the symbol
rate achieves the Nyquist rate. The desired passband signal w is then given similar to
(4.1) and (4.4) by

w(t) =
∞

∑
b=−∞

[
ab,1s(t(b)) + ab,2s(k− t(b))

]
(4.5)

with t(b) = t− bNTs and

s(t) =
cos [2π(W0 + W)t− (r + 1)πWk]− cos [2π(rW −W0)t− (r + 1)πWk]

2πWt sin [(r + 1)πWk]

+
cos [2π(rW −W0)t− rπWk]− cos [2πW0t− rπWk]

2πWt sin [rπWk]

as defined in [88, Eq. 31, with k ≡ K].

4.3. Experiments

This section presents experimental results demonstrating the feasibility, capacity, and
robustness of the proposed method.

4.3.1. Experimental Settings

Motivated by legacy telephony and aeronautical voice radio applications, the sys-
tem was evaluated using a narrowband speech configuration and various simulated
transmission channels.

4.3.1.1. Watermark Embedding

As input signal we used ten randomly selected speech utterances from the ATCOSIM
corpus [5]. They were chosen by a script such that there was one utterance per speaker
(six male and four female) and such that each utterance had a length between 5 and 7
seconds, resulting in a total of 57 s of speech. The signal was resampled to fs = 8000 Hz,
analyzed with an LP order P = 10, and the watermark embedded in a frequency band
from 666 Hz to 3333 Hz using M = 4 and N = 6 (Section 4.2.2.2). In each active frame
of length LD = 180 samples, LWM = 34 symbols were allocated for watermark data,
LTr = 72 for training symbols, LAc = 7 for active frames markers, LID = 7 for frame
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indices, and LSh = 60 symbols for spectral shaping. For all but the spectral shaping
symbols we used unit length binary symbols with alphabet {−1; 1}.

There is a large number of possibilities for the above parameter choices, which form a
trade-off between data rate and robustness. The parameters were picked manually such
that the corresponding subsystems (equalization, frame synchronization, detection,
. . . ) showed satisfactory performance given the channel model in Table 4.1. The
experimental settings are as such not carefully optimized and serve as illustrative
example, only.

4.3.1.2. Transmission Channels

The watermarked speech signal ŝFB(n) = ŝPB(n) + sSB(n) was subjected to various
channel attacks. Motivated by the application to telephony and aeronautical voice
radio communication, we simulated the following transmission channels:

1. Ideal channel (no signal alteration).

2. Filtering with a linear phase FIR digital bandpass filter of order N = 200 and a
passband from 300 Hz to 3400 Hz.

3. Sinusoidal amplitude modulation (flat fading) with a modulation frequency of
fAM = 3 Hz and a modulation index (depth) of hAM = 0.5.

4. Additive white Gaussian noise (AWGN) with a constant segmental SNR of 30 dB,
using a window length of 20 ms.

5. Filtering with an FIR linear phase Intermediate Reference System (IRS) trans-
mission weighting filter of order N = 150 as specified in ITU-T P.48 [89] and
implemented in ITU-T STL G.191 [90].

6. Filtering with a measured aeronautical voice radio channel response from the
TUG-EEC-Channels database, an FIR filter with non-linear and non-minimum
phase [4].

7. Filtering with an IIR allpass filter with non-linear and non-minimum phase and
z-transform

H(z) =
1− 2z−1

1− 0.5z−1 .

8. A combination of AWGN, sinusoidal amplitude modulation and aeronautical voice
radio channel filtering, each as described above.

The magnitude responses of the bandpass, IRS and aeronautical channel filters are
shown in Figure 4.6 with respect to the watermark embedding band. While for the
aeronautical channel the applied embedding bandwidth is too large and should instead
be chosen according to the specified channel bandwidth as in Section 4.2.2.3, the shown
configuration is a worst-case scenario and tests if the watermark detector can handle the
high attenuation within the embedding band. The simulated transmission channels are
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Figure 4.6.: Magnitude responses of the bandpass, IRS and aeronautical transmission
channel filters, in comparison with the watermark embedding band.

in the digital domain. Robustness against desynchronization and D/A-A/D conversion
is evaluated independently in Chapter 5.

We set the SNR of the AWGN channel to a level that results in an acceptable overall
BER, and the SNR is as such related to the embedding parameters of Section 4.3.1.1.
It is likely that a real-world aeronautical channel has at times a worse SNR, and
different parameter settings, for example a higher data symbol dimensionality, might
be preferable in the aeronautical application.

4.3.1.3. Watermark Detection

We used an adaptive RLS equalizer filter with K = 11 taps, λ = 0.7 and α = 0.5. The
number of filter taps is a trade-off between the channel’s memory and the adaptive
filter’s tracking ability in light of the fast time-variation of the vocal tract filter and
the radio channel. In the noise-less and time-invariant case, an (RLS) FIR filter with
K = 11 taps can constitute the perfect inverse of a LP all-pole filter of order P = 10. In
practice, the LP filter is time-variant and the observation distorted and noise-corrupted
by the radio transmission channel, which results in imperfect inversion. In contrast to
the description in Section 4.1.7.2, in the experiments presented herein we updated the
inverse correlation matrix P(n) only when a training symbol was available.

4.3.2. Overall System Evaluation

4.3.2.1. Robustness

We evaluated the overall watermarking system robustness (including frame synchro-
nization) in the presence of the channel attacks listed in the previous subsection and
using the input signal defined therein. We measured the robustness in terms of raw bit
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Figure 4.7.: Overall system robustness in the presence of various transmission channel
attacks at an average uncoded bit rate of 690 bit/s. The numbers in the top
row denote the corresponding BSC capacity CBSC in bit/s.

error ratio (BER) in the detected watermark data, without any forward error correction
coding being applied. The results are shown in Figure 4.7.

4.3.2.2. Data Rate

Out of the 57 s of speech a total of 31 s or γ = 53 % were classified as non-voiced,
resulting with the bit allocation of Section 4.3.1.1 in a measured average payload
data rate of R ≈ 690 bit/s in terms of uncoded binary symbols mWM. The rate R is
approximately fsγLWM

LD
times a factor that compensates for the unused partial frames in

non-voiced segments as shown in Figure 4.2.
Given the transmission rate as well as the BERs shown in Figure 4.7, it is possible to

express the achievable watermark capacity at which error-free transmission is possible
by considering the payload data channel as a memoryless binary symmetric channel
(BSC). The channel capacity CBSC as a function of the given rate R and BER pe is
(e.g. [91])

CBSC(R, pe) = R (1 + pe log2 (pe) + (1− pe) log2 (1− pe)) (4.6)

in bit/s and asymptotically achievable with appropriate channel coding.

4.3.2.3. Listening Quality

The listening quality of the watermarked speech signal ŝFB(n) was evaluated objectively
using ITU-T P.862 (PESQ) [92], resulting in a mean opinion score MOS-LQO of 4.05 (on
a scale from 1 to 4.5). Audio files with the original and the watermarked speech signals
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sFB(n) and ŝFB(n) are available online [93]. Informal listening tests showed that the
watermark is hardly perceptible in the presence of an ideal transmission channel, and
not perceptible in the presence of the simulated radio channel with AWGN, amplitude
modulation and channel filtering as defined above.

4.3.3. Evaluation of Alternative Detection Schemes

To gain insight into the proposed RLS channel equalization, we compared its perfor-
mance to two alternative adaptive filtering strategies by evaluating their robustness in
line with Section 4.3.2.1.

4.3.3.1. Detection Using LP Analysis

We previously proposed to determine the adaptive filter coefficients in the detector
using LP analysis, like in the embedding [3]. To achieve sufficiently similar coefficients
in the embedder and the detector, in the presence of a bandpass channel the LP analysis
in the embedder must then be based on sPB(n) instead of sFB(n).1 In comparison to
Figure 4.7 the BER approximately triples for the ideal, bandpass, noise and flat fading
channels, and for the IRS and the non-linear phase channels the BER is 50 % and
watermark detection fails altogether.

4.3.3.2. Detection Using RLS Equalization

Using the proposed RLS equalization scheme, the watermark data can be detected for
all channels. The BERs are shown in Figure 4.7.

4.3.3.3. Detection Using Embedder’s Predictor Coefficients

Using the embedder’s predictor coefficients c(n) for adaptive filtering in the detector
is a purely hypothetical experiment, since in most applications the coefficients of the
embedder are not available in the detector. However, it serves as an upper bound
on how well the RLS adaptive filter would theoretically do when neglecting the
transmission channel and perfectly inverting the time-variant all-pole filtering Hc. The
obtained BERs are lower by approximately one magnitude compared to the RLS results
in Figure 4.7, but only so if the transmission channel is linear phase. In the case of the
non-linear phase channels the BER is 50 %, and watermark detection fails.

4.4. Discussion

This section presents a qualitative summary and interpretation of the experimental
findings.

1Given that s′PB(n) is a passband signal, it might seem beneficial to use selective linear prediction (SLP)
[94] to estimate the coefficients. SLP is, however, only a spectral estimation technique that does not
yield the actual filter coefficients required in this application.
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4.4.1. Comparison with Other Schemes

First and foremost, no other schemes are known at present that are complete (in the
sense of most practical issues such as synchronization being addressed), are robust with
respect to the transmission channel model of Section 4.1.2, and have an embedding rate
that is comparable to the one shown in Section 4.3.2.2. It is the combination of these
three aspects that differentiates our proposal from current state-of-the-art methods and
our own previous work.

For a numerical comparison of our results with the reported performance of other
methods we use as measure CBSC/W, based on the number of embedded watermark bits
R (in terms of CBSC using the reported BER and (4.6)) and per kHz of embedding or
channel bandwidth W. Table 4.2 indicates that our method outperforms most of the
current state-of-the-art speech watermarking methods. It is, however, difficult to obtain
an objective ranking, because almost all methods are geared towards different channel
attacks and applications, and in general a large number of factors contribute to the
‘goodness’ of each system. While the method presented in [32] appears to perform
similar to our method, it assumes a time-invariant transmission channel and requires
before every transmission a dedicated non-hidden 4 s long equalizer training signal.
This makes the method impractical for the considered aeronautical application.

Table 4.2 also includes our previous work and shows that there are multiple options
for adapting our approach to different channel conditions. We have previously applied
various measures, such as the use of a different data symbol dimensionality, the
addition of a watermark floor (that is, a fixed minimum watermark signal gain g), or a
pre-processing of the host signal, to adjust the trade-off between perceptual fidelity,
capacity and robustness [2].

4.4.2. Comparison with Channel Capacity

In the following we compare the achieved embedding rate with the theoretical capacity
derived in Chapter 3. In our practical scheme, we embed 690 bit/s at 4.79 % BER, which
corresponds to a BSC capacity of 500 bit/s. With a maximum symbol transmission
rate or Nyquist rate 2WC = 5333 symbols/s and CW, Phase ≈ 3 bit/symbol (using (2.2)
with an SNR of 30 dB as applied in Section 4.3.2.1), the theoretical capacity evaluates to
CW = 16000 bit/s, or CW = 8500 bit/s considering embedding in non-voiced speech,
only.

In non-voiced speech (comprising unvoiced speech and pauses), we achieve the
Nyquist rate 2WC with all methods presented in Section 4.2.2. However, we embed
only one bit per symbol instead of three, because our current method does not account
for the time-variation and the spectral non-uniformity of the SNR that result from the
spectral characteristics of the host signal. Table 4.3 summarizes these and other factors
that contribute to the capacity gap. The given rate losses are multiplicative factors
derived from the experimental settings of Section 4.3.1.1 and the observed system
performance. The table shows where there is room for improvement, but also shows
that (2.2) is an over-estimation since it does not account for the perceptually required
temporally constrained embedding, the time-variant and colored spectrum of the host
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Table 4.2.: Comparison With Reported Performance of Other Schemes

Method Ref. R BER CBSC W CBSC/W SNR Simultan.
(bit/s) (bit/s) (kHz) (bit/(s kHz)) ch. attacks

LP
or

BP

N
on

lin
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hs
.

Fa
di

ng
ch

.

D
A

-A
D

cn
v.

Proposed Method
Phase Watermarking 4.3. 690 4,8% 499 2,7 187 30 dBsg X X
Phase Watermarking 4.3. 690 6,6% 449 2,7 168 30 dBsg X X X
Ph. WM (vector sym.) [2] 300 9,0% 169 4,0 42 10 dB X
Ph. WM (vector sym.) [2] 300 2,0% 258 4,0 64 15 dB X
Ph. WM (scalar sym.) [2] 2000 11,0% 1000 4,0 250 20 dB X
Ph. WM (scalar sym.) [2] 2000 2,5% 1663 4,0 416 30 dB X
Ph. WM (vector sym.) [3] 130 0,0% 130 4,0 32 ∞
Ph. WM (scalar sym.) [3] 2000 0,8% 1866 4,0 466 ∞

Alternative Speech Methods
Spread spectrum [28] 24 0,0% 24 2,8 9 20 dB X X
Spread spectrum [27] 800 28,4% 111 4,0 28 ∞ X X
QIM of AR coeff. [29] 4 3,0% 3 6,0 1 ∞
QIM of AR coeff. [37] 24 n/a 24 8,0 3 n/a X
QIM of AR residual [33] 300 n/a 300 3,1 97 n/a
QIM of pitch [31] 3 1,5% 3 4,0 1 n/a
QIM of DHT coeff. [32] 600 0,0% 600 3,0 200 35 dB
QIM of DHT coeff. [32] 600 0,1% 600 3,0 200 V.56bis X X
Mod. of partial traj. [35] 200 1,0% 184 10,0 18 ∞
Repl. of maskees [39] 348 0,1% 344 4,0 86 25 dB

Alternative Audio Methods
QIM of DCT of DWT [26] 420 0,0% 418 2,0 209 ∞ X
QIM of DCT of DWT [26] 420 0,0% 418 22,5 19 10 dB
Allpass phase mod. [45] 243 10,0% 129 3,0 43 ∞ X
Allpass phase mod. [45] 243 2,0% 209 7,0 30 5 dB
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Table 4.3.: Causes for Capacity Gap and Attributed Rate Losses

Cause Loss in Rate

No embedding in voiced speech 47 %
Embedding of training symbols 60 %

Embedding of frame headers 29 %
Use of fixed frame position grid 14 %

Embedding in non-white host signal 67 %
Imperfect tracking of time-variation 28 %

signal, and the filtering characteristic of the transmission channel.

4.4.3. Equalization and Detection Performance

Three different methods to obtain the filter coefficients for the adaptive filtering in the
detector were evaluated. All methods are invariant against the bandpass filtering and
the flat fading transmission channel. Additive WGN at a moderate SNR does have
an influence on the bit error ratio but does not disrupt the over-all functioning of the
system.

The hypothetical experiment of using the embedder coefficients in the detector shows
that approximating the embedder coefficients is a desirable goal only if the channel
is linear phase. Using linear prediction in the detector results in a bit error ratio of
approximately 10 % even in the case of an ideal channel. Compared to our previous
results [2] this is a degradation, which is caused by the band-limited embedding
introduced herein.

The proposed RLS adaptive filtering based detection is the only method robust
against all tested transmission channels. It can compensate for a non-flat passband and
for non-linear and non-minimum phase filtering due to the embedded training symbols.
Over a channel that combines AWGN, flat fading, and a measured aeronautical
radio channel response, the method transmits the watermark with a data rate of
approximately 690 bit/s and a BER of 6.5 %, which corresponds with (4.6) to a BSC
capacity of 450 bit/s. The same RLS method is applied in [32] for a time-invariant
channel using a 4 s long initial training phase with a clearly audible training signal.
In contrast, we embed the training symbols as inaudible watermarks and perform
on-the-fly equalizer training and continuous tracking of the time-variant channel.

A further optimization seems possible by developing an equalization scheme that
is not solely based on the embedded training symbols, but that also incorporates
available knowledge about the source signal and the channel model, such as the
spectral characteristics.
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4.5. Conclusions

The experimental results show that it is possible to embed a watermark in the phase
of non-voiced speech. Compared to quantization-based speech watermarking, the
principal advantage of our approach is that the theoretical capacity does not depend
on an embedding distortion to channel noise ratio, but depends only on the host signal
to channel noise ratio. We presented a proof-of-concept implementation that considers
many practical transmission channel attacks. While not claiming any optimality, it
embeds 690 bit/s with a BER of 6.6 % in a speech signal that is transmitted over a
time-variant non-linear phase bandpass channel with a segmental SNR of 30 dB and a
bandwidth of approximately 2.7 kHz.

The large gap between the presented implementation and the theoretical capacity
shows that there is a number of areas where the performance can be further increased.
For example, a decision feedback scheme for the RLS equalization, or a joint synchro-
nization, equalization, detection and decoding scheme could increase the reliability of
the watermark detector. On a larger scale, one could account for the non-white and
time-variant speech signal spectrum with an adaptive embedding scheme, and apply
the same embedding principle on all time-segments of speech for example using a
continuous noise-like versus tonal speech component decomposition [95].
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Chapter 5

Watermark Synchronization

This chapter discusses different aspects of the synchronization between wa-
termark embedder and detector. We examine the issues of timing recovery
and bit synchronization, the synchronization between the synthesis and
the analysis systems, as well as the data frame synchronization. Bit syn-
chronization and synthesis/analysis synchronization are not an issue when
using the adaptive equalization-based watermark detector of Chapter 4. For
the simpler linear prediction-based detector we present a timing recovery
mechanism based on the spectral line method which achieves near-optimal
performance.

Using a fixed frame grid and the embedding of preambles, the information-
carrying frames are detected in the presence of preamble bit errors with
a ratio of up to 10 %. Evaluated with the full watermarking system, the
active frame detection performs near-optimal with the overall bit error ratio
increasing by less than 0.5 %-points compared to ideal synchronization.

Parts of this chapter have been published in K. Hofbauer and H. Hering, “Noise robust speech
watermarking with bit synchronisation for the aeronautical radio,” in Information Hiding, ser. Lecture
Notes in Computer Science. Springer, 2007, vol. 4567/2008, pp. 252–266.
K. Hofbauer, G. Kubin, and W. B. Kleijn, “Speech watermarking for analog flat-fading bandpass
channels,” IEEE Transactions on Audio, Speech, and Language Processing, 2009, revised and resubmitted.
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“Synchronization is the process of aligning the time scales between two or more
periodic processes that are occurring at spatially separated points”[96]. It is a mul-
tilayered problem, and certainly so for an analog radio channel. We discuss in this
chapter the different aspects of synchronization between the watermark embedder and
the watermark detector, and present a practical synchronization scheme. Section 5.1
presents related work and our approach to the different levels of synchronization from
the shortest to the longest units of time. In Section 5.2 we describe an implementation
of the synchronization scheme, which is tailored to the watermarking algorithm of
Chapter 4. Experimental results are shown and discussed in Section 5.3.

5.1. Theory

Due to the analog nature of the transmission channel and the signal-dependent em-
bedding of the data in the speech signal, a watermark detector as shown in Figure 4.3
needs to estimate 1) the correct sampling time instants, 2) the transformations applied
to the data, and 3) the position of the data-carrying symbols.

5.1.1. Timing Recovery and Bit Synchronization

When transmitting digital data over an analog channel, the issue of bit or symbol
synchronization in-between digital systems arises. The digital sampling clocks in the
embedder and detector are in general slowly time-variant, have a slightly different
frequency, and have a different timing phase (which is the choice of sampling instant
within the symbol interval). Therefore, it is necessary that the detector clock synchro-
nizes itself to the incoming data sequence or compensates for the sampling phase
shift. Although bit synchronization is a well explored topic in communications, it
is still a major challenge in most modern digital communication systems, and even
more so in watermarking due to very different conditions. Bit synchronization can be
achieved with data-aided or non-data-aided methods, and we will use one or the other
depending on the used watermark detector structure.

5.1.1.1. Data-Aided Bit Synchronization

In data-aided bit synchronization, the transmitter allocates a part of the available
channel capacity for synchronization. It is then possible to either transmit a clock
signal, or to interleave the information data with a known synchronization sequence
[65]. This enables simple synchronizer designs, but also reduces the channel capacity
available for information transmission.

Given the RLS equalization based watermark detection presented in Section 4.1.7.2
(which is necessary for a channel with linear transmission distortion), there is already
a known sequence used for equalizer training embedded in the signal. While this
training sequence could also be used to drive a data-aided bit synchronization method,
this is in fact not necessary for the RLS based watermark detector. The RLS equalizer
inherently compensates for a timing or sampling phase error, as long as the error is
smaller than the RLS filter length.
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In the aeronautical application discussed in Chapter 6, the radio-internal frequency
references are specified to be accurate within ±5 ppm (parts per million) for up-to-date
airborne transceivers and ±1 ppm for up-to-date ground transceivers [97]. Assuming a
sampling frequency of 8 kHz and a worst-case frequency offset of 6 ppm, this leads to
a timing phase error of 0.048 samples per second, which accumulates over time but is
less than one sample (and well below the RLS filter length) given the short utterance
durations in air traffic control.

5.1.1.2. Non-Data-Aided Bit Synchronization

We discussed in Section 4.3.3 the use of linear prediction (LP) instead of the RLS
equalizer as adaptive filter in the watermark detector, in case the transmission channel
has no linear filtering distortion. In this case, no equalizer training sequence is
embedded, and payload data can be transmitted, instead. Since the LP error filter
does not compensate for timing phase errors, a sampling timing recovery method is
required, which is ideally non-data-aided in order to obtain a high payload data rate.

In non-data-aided bit synchronization the detector achieves self-synchronization
by extracting a clock-signal from the received signal. A wide range of methods
exist, including early-late gate synchronizers, minimum mean-square-error methods,
maximum likelihood methods and spectral line methods [98, 65]. For our watermarking
system, we use the highly popular nonlinear spectral line method because of its simple
structure and low complexity [65, 86]. It belongs to the family of deductive methods.
Based on higher-order statistics of the received signal, it derives from the received
signal a timing tone whose frequency equals the symbol rate and whose zero crossings
indicate the desired sampling instants.

For non-voiced speech our watermarking scheme is essentially a pulse amplitude
modulation (PAM) system with a binary alphabet. To demonstrate the basic idea of
the spectral line method, we assume that the received analogue watermark signal is a
baseband PAM signal R(t) based on white data symbols with variance σ2

a . Then R(t)
has zero mean but non-zero higher moments that are periodic with the symbol rate.
With p(t) being the band-limited interpolation pulse shape, the second moment of R(t)
is [86]

E
[
|R(t)|2

]
= σ2

a

∞

∑
m=−∞

|p(t−mT)|2 ,

which is periodic with the symbol period T. A narrow bandpass filter at fs = 1
T is used

to extract the fundamental of the squared PAM signal R2(t), which results in a timing
tone with a frequency corresponding to the symbol period and a phase such that the
negative zero crossings are shifted by T

4 in time compared to the desired sampling
instants [65]. We compensate this phase shift with a Hilbert filter.

Due to the noisy transmission channel, and even though most of the noise is filtered
out by the narrow bandpass filter at fs = 1

T , the timing tone is noise-corrupted. This
leads to a timing jitter, which we reduce using a phase-locked loop that provides a
stable single-frequency output without following the timing jitter.
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5.1.2. Synthesis and Analysis System Synchronization

In principle, the signal analysis in the watermark detector needs to synchronize to the
signal synthesis in the watermark embedder. In order to perfectly detect the watermark
signal w(n) (see Figure 4.1), the LP analysis, the voiced/unvoiced segmentation, as
well as the gain extraction in the detector would have to be perfectly in sync with
the same processes in the watermark embedder. This is difficult to achieve because
these processes are signal-dependent and the underlying signal is modified by a)
the watermarking process and b) the transmission channel. In the context of our
watermarking system it is only a matter of definition if one considers these issues as a
synchronization problem, or if they are considered as part of the hidden data channel
as shown in 4.1. We address these issues with different approaches.

LP Frame Synchronization

When using an LP-based watermark detector, one might intuitively assume that the
block boundaries for the linear prediction analysis in the embedder and detector have
to be identical. However, using LP parameters as given in Chapter 4 and real speech
signals, the predictor coefficients do not change rapidly in between the update interval
of 2 ms. As a consequence, a synchronization offset in the LP block boundaries is not an
issue. In [2] we also showed experimentally that the bit error rate is not affected when
the LP block boundaries in the detector are offset by an integer number of samples
compared to the embedder.

When using the RLS-based watermark detector, LP frame synchronization does not
exist since the RLS equalizer operates on a per sample basis.

Adaptive Filtering and Gain Modulation Mismatch

The mismatch between the LP synthesis filter in the embedder and the adaptive
filtering in the detector, as well as the the gain estimation mismatch between watermark
embedder and detector are mostly a result of the transmission channel attacks. We
address this mismatch in two ways. First, we reduce the mismatch using the embedded
training sequences and the RLS equalizer in the receiver. Second, we accept that there
is a residual mismatch such that we are unable to exactly recuperate the watermark
signal w(n). Therefore, we only use a binary alphabet for w(n) to achieve sufficient
robustness.

Voiced/Unvoiced Segmentation

Due to the transmission channel attacks outlined in 4.1 it appears difficult to obtain
an identical sample-accurate voiced/unvoiced segmentation in the embedder and the
detector. While the embedder knows about the availability of the hidden watermark
channel (i.e., the host signal being voiced or non-voiced) and embeds accordingly,
the watermark channel appears to the detector as a channel with random insertions,
deletions and substitutions. We deal with this issue in combination with the frame
synchronization described in the next subsection.
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5.1.3. Data Frame Synchronization

In this subsection we address the localization of the information-carrying symbols
in the watermark detector. Due to the host signal dependent watermark channel
availability, the hidden data channel appears to the detector as a channel with in-
sertions, deletions and substitutions (IDS). Various schemes have been proposed for
watermark synchronization, including embedding in an invariant domain, embed-
ding of preambles or pilot sequences, host signal feature based methods, the use of
IDS-capable channel codes, the use of convolution codes with multiple interconnected
Viterbi decoders, and exhaustive search (cf. [99, 100, 101, 102]).

We use a fixed frame grid and an embedding of preambles, since this allows the
exploitation of the watermark embedder’s knowledge of the watermark channel
availability, and does not require a synchronized voicing decision in the detector. As
outlined in Section 4.1.5.1, a preamble is embedded in frames that carry a watermark,
so-called active frames, and consists of 1) a fixed marker sequence mAc that identifies
active frames and 2) a consecutive frame counter mID used for addressing or indexing
among the active frames.

To achieve synchronization at the watermark detector, a threshold-based correlation
detection of the active frame markers mAc over a span of multiple frames detects the
frame grid position and as such the overall signal delay. After the adaptive equalization
of the received signal as described in Section 4.1.7, there remain errors in the detection
of the preambles due to channel attacks. Therefore, the active frame detection is based
on a dynamic programming approach that detects IDS errors and minimizes an error
distance that incorporates the active frame markers mAc, the frame indices mID, and
the training symbols mTr.

Frame synchronization is considered as a secondary topic in the scope of this thesis
and does not significantly influence the overall performance. Alternative schemes,
which perform similarly, are possible. An introduction to frame synchronization is
provided in [103].

5.2. Implementation

5.2.1. Bit Synchronization

For the RLS-based watermark detector data-aided bit synchronization is inherently
achieved by the RLS equalizer. Thus, we focus in the following on the non-data-
aided bit synchronization for the LP-based watermark detector using the spectral line
method.

Spectral Line Synchronization Figure 5.1 shows the block diagram of the proposed
spectral line synchronization system.1 The received watermarked analog signal s(t)
is oversampled by a factor k compared to the original sampling frequency fs. In the

1Whether the proposed structure could be implemented even in analog circuitry could be subject of
further study.
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Figure 5.1.: Synchronization system based on spectral line method.

later simulations a factor k = 32 is used. Values down to k = 8 are possible at the cost
of accuracy. The linear prediction residual e(n) of the speech signal s(t) is computed
using LP analysis of the same order P = 10 as in the embedder and with intervals of
equal length in time. This results in a window length of k · 160 samples and an update
interval of k · 15 samples after interpolation.2

We exploit the fact that the oversampled residual shows some periodicity with the
embedding period T = 1

fs
due to the data embedding at these instances. We extract the

periodic component r(n) at fs from the squared residual (e(n))2 with an FIR bandpass
filter with a bandwidth of b=480 Hz centered at fs. The output r(n) of the bandpass
filter is a sinusoid with period T, and is phase-shifted by π

2 with an FIR Hilbert filter
resulting in the signal rH(n). The Hilbert filter can be designed with a large transition
region given that r(n) is a bandpass signal.

The zero-crossings of rH(n) are determined using linear interpolation between the
sample values adjacent to the zero-crossings. The positions of the zero-crossings on
the rising slope are a first estimate of the positions of the ideal sampling points of
the analog signal s(t). It was found that the LP framework used in the simulations
introduces a small but systematic fractional delay which depends on the oversampling
factor k and results in a timing offset. We found that this timing offset can be corrected
using a third-order polynomial tM = a0 + a1k−1 + a2k−2 + a3k−3. The coefficients ai
have been experimentally determined to be a0 = 0, a1 = 1.5, a2 = −7 and a3 = 16 .

Since the estimated sampling points contain gaps and spurious points, all points
whose distance to a neighbor is smaller than 0.75 UI (unit interval, fraction of a
sampling interval T = 1

fs
) are removed in a first filtering step. In a second step all gaps

larger than 1.5 UI are filled with new estimation points which are based on the position
of previous points and the observed mean distance between the previous points. The
received analog signal s(t) is again sampled, but instead of with a fixed sampling grid
it is now sampled at the estimated positions. The output is a discrete-time signal with
rate fs, which is synchronized to the watermark embedder and which serves as input
to the watermark detector.

Digital Phase-Locked Loop The bit synchronization can be further improved by the
use of a digital phase-locked loop (DPLL). The DPLL still provides a stable output in
the case of the synchronization signal rH(n) being temporarily corrupt or unavailable.
In addition, the use of a DPLL renders the previous point filtering and gap filling steps
unnecessary.

There is a vast literature on the design and performance of both analog and digital

2To improve numerical stability and complexity one could also perform the LP analysis at a lower
sample rate and then upsample the resulting error signal.
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phase-locked loops [104, 105]. We start with a regular second-order all digital phase-
locked loop [106]. Inspired by dual-loop gear-shifting DPLLs [107] we extended the
DPLL to a dual-loop structure to achieve fast locking of the loop. We also dynamically
adapt the bandwidth of the second loop in order to increase its robustness against
spurious input signals.

Dc1

c2

D

c3

in outerr

f

out

Figure 5.2.: Second-order all digital phase-locked loop.

The structure of the two loops is identical and is shown in Figure 5.2. The input
signal θin(n) of the DPLL is the phase angle of the synchronization signal r(n), which is
given by the complex argument of the analytic signal of r(n). The phase output θout(n)
is converted back to a sinusoidal signal rd(n) = − cos(θout(n)). The loop is computed
and periodically updated with the following set of equations:

θin(n) = arg(r(n) + jrH(n)) θerr(n) = θin(n)− θout(n)

θ f (n) = c1θerr(n) + θ f (n− 1)

θout(n) = c3 + θ f (n− 1) + c2θerr(n− 1) + θout(n− 1)

The input and output phases θin(n) and θout(n) are always taken modulo-2π. The
parameter c3 = 2π fs

k fs
specifies the initial frequency of the loop, with k being the

oversampling factor of the synchronizer. The parameters c1 and c2 are related to the
natural frequency fn = ωn

2π of the loop, which is a measure of the response time, and
the damping factor η = 1√

2
, which is a measure of the overshoot and ringing, by

c1 =
(

2π fn

k fs

)2

and c2 =
4πη fn

k fs
.

The loop is stable if [106]

c1 > 0, c2 > c1 and c1 > 2c2 − 4.

In the first loop we use a natural frequency fn,1 = 5000 Hz, which enables a fast
locking of the loop. However, the output θout(n) then closely resembles the input
θin(n) of the loop, so that when the input is corrupted, also the output becomes
corrupted. We consider the first loop as locked when the sample variance σ2

1 (n) of the
phase error θerr(n) in a local window of ten samples is below a given threshold for a
defined amount of time. We then gradually decrease the loop natural frequency fn,2
of the second loop (which runs in parallel with the first loop) from fn,2 = 5000 Hz to
fn,2 = 50 Hz. This increases the loop’s robustness against noise and jitter. When the
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input signal is corrupt, the DPLL should continue running at the same frequency and
not be affected by the missing or corrupt input. Therefore, when the variance of the
phase error in the first loop increases, we reduce the natural frequency of the second
loop to fn,2(n) = 10−σ2

1 (n)50 Hz.

5.2.2. Data Frame Synchronization

This subsection describes the implementation and experimental validation of the frame
synchronization method outlined in Section 5.1.3. To simplify the description, and
because all experiments in Section 4.3 are based on a binary symbol alphabet, we use
binary symbols herein, too.

5.2.2.1. Frame Grid Detection

To estimate the delay of the transmission channel and localize the frame grid position
in the received signal, the received and sampled signal s′(n) is correlated with the
embedded training sequence mTr. The delay ∆ between the embedder and the receiver
can be estimated by the lag between the two signals where the absolute value of their
cross-correlation is maximum, or

∆ = argmax
k
|ρs′mTr(k)| = argmax

k

∣∣∣∣∣
∞

∑
n=−∞

s′(n)mTr(n− k)

∣∣∣∣∣ . (5.1)

The range of k in the maximization is application-dependent. It can be short if a defined
utterance start point exists, which is the case in the aeronautical radio application. The
sign of the cross-correlation at its absolute maximum also indicates if a phase inversion
occurred during transmission. The delay is compensated and, in case a phase inversion
occurred, the polarity adjusted, and

s′FB(n) = sgn[ρs′mTr(∆)]s′(n + ∆).

5.2.2.2. Active Frame Detection

The frame synchronization scheme must be able to cope with detection errors in
the frame preambles. A simple minimum Euclidean distance detector for the binary
symbols in the equalized signal e′(n) is the sgn function, and the detected binary
symbol sequence m′d of the d’th frame is

m′d(k) = sgn
[
e′(dLD + k)

]
. (5.2)

There are bit errors in m′d due to the noise and the time-variant filtering of the channel.
To determine the active frames in the presence of bit errors, we denote with nAc(d)

the number of samples in frame m′d at the corresponding position that are equal to the
marker sequence mAc. Equivalently, we denote with nTr(d) the number of samples that
equal the training sequence mTr. We then consider those frames d′′a as potentially active
frames where

nAc(d)
LAc

nTr(d)
LTr

≥ τS (5.3)
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with τS being a decision threshold (with 0 ≤ τS ≤ 1). In the case of zero bit errors,
the product in (5.3) would evaluate to unity in active frames, and to 0.25 on average
in non-active frames. We use a decision threshold τS = 0.6, which was determined
experimentally.

Insertions, deletions and substitutions (IDS) occur in the detection of the active
frame candidates d′′a . To accommodate for this, we incorporate the frame indices mID,
which sequentially number the active frames and are encoded so as to maximize the
Hamming distance between neighboring frame indices. To improve the detection
accuracy of the frame indices mID, the signals r′(n) and m′d are recomputed using the
active frame markers mAc in the frame candidates d′′a as additional training symbols
for equalization.

The sequence of decoded frame indices Υ′ detected in the frames d′′a is not identical
to the original sequence of indices Υ = 1, 2, 3, . . ., because of the IDS errors in d′′a and
the bit errors in m′d. We use a dynamic programming algorithm for computing the
Levenshtein distance between the sequences Υ and Υ′, in order to determine where the
sequences match, and where insertions, deletions and substitutions occurred [108]. We
process the result in the following manner:

1. Matching frame indices are immediately assumed to be correct active frames.

2. In the case of an insertion in Υ′, either the insertion or an adjacent substitution in
Υ′ must be deleted. The one active frame candidate is removed from the sequence
that minimizes as error measure the sum of the number of bit errors in the frame
indices of the remaining frame candidates.

3. In the case of a deletion in Υ′, first all substitutions surrounding the deletion
are removed, too. Then, the resulting ‘hole’ of missing active frames must
be filled with a set of new active frames. Out of all possible frames that lie
between the adjacent matching frames, a fixed number of frames (given by the
size of the hole) needs to be selected as active frames. Out of all possible frame
combinations the one set is selected that minimizes as error measure the sum of
the number of bit errors in the frame identification, the active frame marker and
the training sequence, over all frames in the candidate set. To give higher weight
to consecutive frames, we reduce the error distance by one if a frame candidate
has a direct neighbor candidate or is adjacent to a previously matched active
frame.

Using the above detection scheme, and assuming the total number of frames embedded
in the received signal to be known, there are by definition no more insertion or deletion
errors, but only substitution errors in the set of detected active frames d′a. This then
also applies for the embedded watermark message, which considerably simplifies the
error correction coding of the payload data since a standard block or convolution code
can be applied.
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5.3. Experimental Results and Discussion

5.3.1. Timing Recovery and Bit Synchronization

5.3.1.1. Non-Data-Aided Bit Synchronization

Experimental Setup The spectral line based timing recovery algorithm presented in
this chapter is necessary only when using an LP-based watermark detector. LP-based
watermark detection is only possible when the transmission channel has no filtering
distortion. Since in this case many components of the watermark embedding scheme
presented in Chapter 4 can be omitted, we evaluate the timing recovery using the
simpler watermark embedding system that we presented in [2]. The system omits the
bandpass embedding and pulse shaping parts, assumes ideal frame synchronization,
and performs LP-based watermark detection.

An unsynchronized resampling of the received signal leads to a timing phase error,
which is a phase shift of a fractional sample in the sampling instants of the watermark
embedder and detector.

We use a piecewise cubic Hermite interpolating polynomial (PCHIP) to simulate
a reconstruction of a continuous-time signal and resample the resulting piecewise
polynomial structure at equidistant sampling points at intervals of 1

fs
or 1

k fs
respectively.

In this reconstruction process, each sample of the watermarked speech signal ŝ(n)
serves as a data point for the interpolation. The nodes of these data points would
ideally reside on an evenly spaced grid with intervals of 1

fs
. In order to simulate an

unsynchronized system we move the nodes of the data points to different positions
according to three parameters:

Timing phase offset: All nodes are shifted by a fraction of the regular grid interval 1
fs

(unit interval, UI).

Sampling frequency offset: The distance between all nodes is changed from one unit
interval to a slightly different value.

Jitter: The position of each single node is shifted randomly following a Gaussian
distribution with variance σ2

J .

The experiments presented in this subsection with the LP-based watermark detector
use as input signal a short sequence of noisy air traffic control radio speech with a
length of 6 s and a sampling frequency of fs = 8000 Hz.

Results Without synchronization, the watermarking system is inherently vulnerable
to an offset of the sampling phase and frequency between the embedder and the detec-
tor. Figure 5.3 shows the adverse effect of a timing phase offset if no synchronization
system is used. We measure this timing phase error in ’unit intervals’ (UI), which is
the fraction of a sampling interval T = 1

fs
.

The proposed synchronization system aims to estimate the original position of the
sample nodes, which is the optimal position for resampling the continuous-time signal
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Figure 5.3.: Robustness of the LP-based watermark detector without synchronization
with respect to a timing phase error.

at the detector. The phase estimation error is the distance between the original and the
estimated node position in unit intervals. Its root-mean-square value across the entire
signal is shown in Figure 5.4 for the above three types of synchronization errors. The
figure also shows the bit error ratio for different sampling frequency offsets. The bit
error ratio as a function of the uncorrected timing phase offset is shown in Figure 5.3.

Figure 5.5 shows the raw bit error ratio of the overall watermarking system (in two
different configurations and including a watermark floor and residual emphasis as
described in [2]) at different channel SNR and compares the proposed synchronizer to
artificial error-free synchronization. Compared to the case where ideal synchronization
is assumed, the raw BER increases by less than two percentage points across all SNR
values.

5.3.1.2. Data-Aided Bit Synchronization

We experimentally evaluate the capability of the RLS equalization based watermarking
system (Chapter 4) to compensate a timing synchronization offset. In contrast to the
previous experiments, we use the system implementation and experimental settings of
Section 4.3, again using ten randomly selected utterances of the ATCOSIM corpus as
input speech. Figure 5.6(a) shows the resulting BER when introducing a timing phase
offset of a fractional sample in the simulated channel as described above.

The error ratio significantly increases for timing phase offsets around −0.4 UI (equiv-
alent to an offset of 0.6 UI). This results from the fact that the RLS equalizer is a causal
system and cannot shift the received signal forward in time. The increased error rate
can be mitigated by delaying the training sequence that is fed to the equalizer by one
sample in time and adding one equalizer filter tap (K = 12). As shown in Figure 5.6(b),
the BER is then below 8 % for any timing phase offset.

The remaining increase in BER for non-zero timing phase offsets is a result of aliasing.
To overcome this limitation, a fractionally spaced equalizer should be used instead
of the sample-spaced equalizer of Chapter 4 [109, 110]. The discontinuity in the BER
curve at 0.6 UI results from the shift of the detected frame grid towards the next sample
(cf. Section 5.2.2.1).
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Figure 5.4.: Synchronization system performance for LP-based watermark detection:
Phase estimation error and bit error ratio for various types of node offsets.
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Figure 5.5.: Comparison of overall system performance (using the LP-based watermark
detector) with ideal (assumed) synchronization and with the proposed
synchronizer at two different embedding rates (in watermark bits per host
signal sample).

5.3.2. Data Frame Synchronization

We evaluate the data frame synchronization in the context of the RLS equalization
based watermarking system discussed in Chapter 4.

5.3.2.1. Frame Grid Detection

In certain applications a near-real-time availability of the watermark data is required. To
evaluate the time needed until frame grid synchronization is achieved, in the following
experiment we used only the first TFG = 0 s . . . 4 s of each utterance to detect the frame
grid. Figure 5.7 shows the fraction of utterances with correct frame grid detection for
a given signal segment length TFG, evaluated over 200 randomly selected utterances
of the ATCOSIM corpus and a clean transmission channel. The mean fraction of
non-voiced samples in the corresponding segments (also shown in Figure 5.7) explains
the decrease of the detection ratio for TFG > 0.2 s.

The experiment shows that a correct frame grid detection can be achieved for
correlation windows as short as TFG = 50 ms (Figure 5.7). The detection ratio locally
decreases for longer correlation windows because most utterances in the used database
start with a non-voiced segment. Because mTr is embedded in the non-voiced segments
only, correlation is low when the window is still relatively short and the fraction
of non-voiced samples within the window is low. This effect could be avoided by
considering only the non-voiced segments in the correlation sum (5.1), which, however,
requires a voiced/non-voiced segmentation in the detector.
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(b) Enhanced System (additional delay and equalizer tap)
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Figure 5.6.: Overall system robustness in the presence of a timing phase offset at an
average uncoded bit rate of 690 bit/s.
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Figure 5.7.: Fraction of successfully synchronized utterances as a function of the signal
segment length used for the frame grid detection.
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Figure 5.8.: Robustness of active frame detection against bit errors in the received
binary sequence m′d.

5.3.2.2. Active Frame Detection

In order to evaluate the performance of the active frame detection subsystem, we
introduced artificial bit errors into an error-free version of the detected binary sequence
m′d of (5.2), resulting from ten randomly selected utterances of the ATCOSIM corpus.
Figure 5.8 shows the ratio of correctly detected frames as a function of the bit error
ratio (BER) in m′d. The fraction of spurious frames is one minus the given ratio.

The experiment shows that the active frame detection is highly reliable up to a bit
error ratio of 10 % in the detected binary sequence. It was further observed that active
frame detection errors only contribute to a small extent to the overall system bit error
ratio: Using ideal frame synchronization instead of the proposed scheme, the change
in the bit error ratios of Figure 4.7 is < 0.5 %-points for all channels.

5.4. Conclusions

We conclude that timing recovery and bit synchronization can be achieved without
additional effort using the RLS equalization based watermark detector of Chapter 4.
In addition, the RLS equalizer resolves many problems occurring otherwise in the
synthesis/analysis system synchronization.

We demonstrated the application of classical spectral line synchronization in the
context of watermarking for a simpler but less robust linear prediction based watermark
detector. In combination with a digital PLL, the synchronization method provides
highly accurate timing recovery.

Frame grid synchronization can be achieved with windows as short as 50 ms, but
leaves room for further improvements for example by incorporating a voiced/non-
voiced detection in the detector. On the contrary, the active frame detection works
reliably up to a bit error ratio of 10 % and does not significantly contribute to the
overall watermark detection errors.
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Chapter 6

Speech Watermarking for Air Traffic
Control

The aim of civil air traffic control (ATC) is to maintain a safe separation between all
aircraft in the air in order to avoid collisions, and to maximize the number of aircraft
that can fly at the same time. Besides a set of fixed flight rules and a number of
navigational systems, air traffic control relies on human air traffic control operators
(ATCO, or controllers). The controller monitors air traffic within a so-called sector (a
geographic region or airspace volume) based on previously submitted flight plans and
continuously updated radar pictures, and gives flight instructions to the aircraft pilots
in order to maintain a safe separation between the aircraft.

Although digital data communication links between controllers and aircraft are
slowly emerging, most of the communication between controllers and pilots is verbal
and by means of analog voice radios. Air traffic control (ATC) has relied on the
voice radio for communication between aircraft pilots and air traffic control operators
since its beginning. The amplitude-modulation (AM) radio, which is in operation
worldwide, has basically remained unchanged for decades. The AM radio is based on
the double-sideband amplitude modulation (DSB-AM) of a sinusoidal carrier. For the
continental air-ground communication, the carrier frequency is within a range from
118 MHz to 137 MHz, the ‘very high frequency’ (VHF) band, with a channel spacing
of 8.33 kHz or 25 kHz [97]. Given the aeronautical life cycle constraints, it is expected
that the analog radio will remain in use for ATC voice in Europe well beyond 2020
[111, 112].

Parts of this chapter have been published in K. Hofbauer and H. Hering, “Digital signatures for the
analogue radio,” in Proceedings of the NASA Integrated Communications Navigation and Surveillance
Conference (ICNS), Fairfax, VA, USA, 2005.
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6.1. Problem Statement

The avionic radio is the main tool of the controller for giving flight instructions and
clearances to the aircraft pilot. It is crucial for a secure and safe air traffic operation to
have a reliable and fail-safe radio communication network to guarantee the possibility
of communication at any given time. From a technical point of view, high effort is
put into the systems in order to provide permanent availability through robust and
redundant design.

Once this ‘technical’ link between ground and aircraft is established (which we
assume further-on), the verbal communication between pilot and controller can start.
In order to avoid misunderstandings and to guarantee a common terminology, the two
parties use a restricted, very simple, common language. Although most of the words
are borrowed from the English language, the terms and structure of this language are
clearly defined in the corresponding standards [113]. Every voice communication on
the aeronautical channel is supposed to take place according to this ICAO terminology.

The radio communication occurs on a party-line channel, which means that all
aircraft within a sector as well as the responsible controller transmit and listen to
all messages on the corresponding radio channel frequency. In order to establish a
meaningful communication in this environment, it has to be clear who is talking (the
addresser, sender, originator) and to whom the current word is addressed to (the
addressee, recipient, acceptor). For the ATC air-ground communication, certain rules
are in place to establish this identification. In the standard situations, the air traffic
controller is the only person on the channel that does not identify himself as addresser
on the beginning of the message. Instead, the controller starts the message with the
call-sign of the aircraft, the addressee of the message. In case not otherwise explicitly
specified, every voice message of the aircraft pilot is inherently addressed to the air
traffic controller. Therefore the identification of the addressee (the controller in this
case) is omitted, and the pilot starts the message with the flight’s call-sign to identify
the addresser of the message.

The correct identification of addresser and addressee is crucial for a safe communi-
cation, and there are a number of problems associated with this identification process:

1. Channel monitoring workload. The aircrew needs to carefully monitor the radio
channel to identify messages which are addressed to their aircraft. This creates
significant workload.

2. Aircraft identification workload. The controller needs to identify the aircraft first
in the radio call, then on the radar screen. There is no convergence between
the radio call and the radar display system, which creates additional controller
workload.

3. Wrongly understood identification. An aircraft call-sign can be wrongly understood
by the controller or the pilot. This highly compromises safety, and is most likely
to happen when aircraft with similar call-sign are present in the same sector. This
potential risk is usually referred to as call-sign confusion.
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4. Missed identification. If the identification is not understood by the addressee,
the entire message is declared void and has to be repeated. This is additional
workload for both the aircrew and the controller.

5. Forged identification. There is currently no technical barrier preventing a third
party to transmit voice messages with a forged identification. This security threat
is currently only addressed through operational procedures and the party-line
principle of the radio channel.

An automatic identification and authentication of the addresser and the addressee
could solve these issues and, thus, improve the safety and security in air traffic control.

6.2. High-Level System Requirements

Developing an application for the aviation domain implies some special peculiarities
and puts several constraints on the intended system. From the above scenario we can
derive a list of requirements which such an authentication system has to fulfill. The
user-driven requirements specify the functions and features that are necessary for the
users of the system. At the same time various aspects have to be considered to enable
the deployment of the system within the current framework of avionic communications.

6.2.1. Deployment-Driven Requirements

Rapid Deployment First and foremost the development should keep a rapid im-
plementation and a short time to operational use in mind. The basic approach is to
improve the current communication system, as call-sign confusion and ambiguity is
currently an unresolved issue and will become even more problematic as air traffic
increases. Even though a long-term solution for avionic air-ground communication
will probably lie outside the scope of analog voice radio, analog radio will continue to
be used worldwide for many years to come.

Legacy System Compliance The system should be backward compatible to the
legacy avionic radio system currently in use. Changing to a completely new radio
technology would have many benefits. However, it is very difficult to obtain a seamless
transition to a new system. Neither is it possible to change all aircraft and ground
equipment from one day to another, nor is it trivial to enforce deployment of new
technologies among all participants. Co-existence among old and new systems is
necessary and they should ideally complement each other.

Bandwidth Efficiency Ideally the system should not create any additional demands
on frequency bandwidth. Especially in Europe there is a severe lack of frequency
bandwidth in the preferable VHF band, with the future demand only increasing. This
led to the reduction of the frequency spacing between two adjacent VHF channels from
25 kHz to 8.33 kHz, but this being a temporary solution. That is, a system that operates
within the existing communication channels would be highly preferable.
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Minimal Aircraft Modifications Changes to the certified aircraft equipment should
be avoided as much as possible. Every new or modified piece of equipment, might
it be a different radio transceiver or a connection to the aircraft data bus, entails a
long and costly certification process. Through minimizing the changes to on-board
equipment and maintaining low complexity, the certification process can be highly
simplified.

Cost Efficiency Finally, the total costs of necessary on-board equipment should be
kept as low as possible. Not only that there are much higher numbers of airborne than
ground systems, but as well most of the ground radio stations are operated by the air
traffic authorities, which are generally less cost-sensitive than airlines. Therefore the
development process should, wherever possible, shift costs from on-board to ground
systems.

6.2.2. User-Driven Requirements

Perceptual Quality Several potential identification systems affect the perceptual
quality of the speech transmission. A too severe degradation of the sound quality
would not be accepted by both the certification authorities and the intended users, and
for example become annoying to the air traffic controllers. Ideally the participants of
the communication should not notice the presence of the system. For this reason the
perceptual distortion needs to be kept at a minimum.

Real-Time Availability The identification of the addresser has to be detected im-
mediately at the beginning of the voice message. If the identification would display
only after the voice message, this would be of little use to the air traffic controller, as
he is then already occupied with another task. The automatic identification should
be completed before the call-sign is completely enunciated, ideally in less than one
second.

Data Rate In order to serve the purpose of providing identification of the addresser,
it is necessary to transmit a certain amount of data. This might be the aircraft’s tail
number or the 27 bit Data Link Service Address for aircraft and ground stations used
in the context of Controller Pilot Data Link Communication (CPDLC). A GPS position
report, which would be advantageous in various scenarios, requires approximately
50 bit of payload data. Altogether a data rate of 100 bit/s is desired, leaving some room
for potential extensions. For a secure authentication, most likely a much higher data
rate is required.

Error Rate Robustness is a basic requirement. An unreliable system would not
be accepted by the users. Two types of errors are possible. On the one hand, the
system can fail to announce the addresser altogether, and although this not safety
critical, too frequent occurrence would lead to user’s frustration. On the other hand
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Figure 6.1.: Identification of the transmitting aircraft through an embedded watermark.

the announcement of a wrong addresser can compromise safety. Therefore, it is
indispensable to assure robust transmission and to verify the data’s validity.

Maintaining Established Procedures Due to the strong focus on safety, the organi-
zation and work-flow in commercial aviation and air traffic control is highly based
on procedures, of which some are in place for decades. As a consequence, whenever
changes to the procedures are proposed, there is a thorough and time-demanding
review and evaluation process. For a rapid deployment it therefore seems beneficial
not to change or replace these procedures, but to provide supplementary services, only.

No User Interaction The system should be autonomous and transparent to the
user. For the controller, the system should support his work by providing additional
information, and should not add another task. For the pilots, a need for additional
training and additional workload is unwanted. Therefore, the system should work
without any human intervention.

6.3. Background and Related Work

6.3.1. Inband Data Transmission Using Watermarking

In order to fulfill the above requirements for an automatic identification system, the
use of speech watermarking was previously proposed [114, 28]. Figure 6.1 shows the
overall idea.

The general components of a speech watermarking system for the aeronautical
application are shown in Figure 6.2. The voice signal is the host medium that carries
the watermark and is produced from the speaker’s microphone or headset. The
watermark, the data that is embedded into the voice signal, could for example consist
of the 24 bit aircraft identifier and—depending on the available data rate—auxiliary
data such as the aircraft’s position or an authentication. The watermark embedder
could be fitted into a small adapter box between the headset and the existing VHF
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Figure 6.2.: General structure of a speech watermarking system for the aeronautical
voice radio.

radio [115]. It converts the analog speech signal to the digital domain, embeds the
watermark data, and converts the watermarked digital signal back to an analog speech
signal for transmission with the standard VHF radio.

The transmission channel consists of the airborne and ground-based radio transceivers,
corresponding wiring, antenna systems, etc., and the VHF radio propagation channel.
The channel has crucial influence on the performance of the system and is therefore
the subject of investigation in subsequent chapters. Although the transmitted signal
contains a watermark, it is technically and perceptually very similar to the original
speech signal and can therefore be received and listened to with every standard VHF
radio receiver without any modifications. This allows a stepwise deployment and
parallel use with the current legacy system. The watermark detector extracts the data
from the received signal, assures the validity of the data and displays it to the user.
The information could also be integrated into the ATC systems, e.g., by highlighting
the radar screen label of the aircraft that is currently transmitting. An industrial study
produced a detailed overview on operational concepts, potential benefits, applications
and packages, equipment and implementation scenarios, as well as a cost-benefit
analysis [116].

6.3.2. Related Work

This thesis focuses on the algorithms for the watermark embedding and detection, and
the aeronautical radio channel. Figure 6.3 shows how the area of research narrows
down by considering the constraints as outlined in Section 6.2.

Transmitting the identification tag is first and foremost a data communications prob-
lem. As the transmission should occur simultaneously within the legacy voice channel,
a speech watermarking system has to be applied. As shown in Section 2.3, the body of
research concerning watermarking tailored to speech signals is small. While most of
the existing watermarking schemes are tailored to be robust against lossy perceptual
coding, this requirement does not apply to watermarking for the aeronautical radio
communication. This thesis ultimately focuses on speech watermarking for the noisy
and time-variant analog aeronautical radio channel, and we give in the following a
short summary on the few existing systems tailored to the aeronautical application.

92



6.3. Background and Related Work

Data Communications       .

Watermarking Systems

Audio Watermarking

Speech Watermarking

Speech WM for
Analog Channels

Speech WM for 
Aeron. Channels

Legacy Channel

Sound               

Speech             

VHF Radio       

Aeronautic       

Image
Watermarking

Video
Watermarking

Music 
Watermarking

Broadcast Radio 
Watermarking

Speech WM for 
Digital Ch.

Speech WM for 
Compressed Ch.

Speech WM for 
Time-Invariant Ch.

Digital Comm. 
Systems

Analog Comm. 
Systems

Speech WM for
Noiseless Channels

...

...

...

...

...

Figure 6.3.: Research focus within the field of data communications.

6.3.2.1. Multitone Sequence Transmission

The most elementary technique to transmit the sender’s digital identification is a
multitone data sequence at the beginning of the transmission [117]. Standard analog
modulation and demodulation schemes can be applied to create a short high power
data package which is transmitted before each message. This is a very simple and field-
proven technology, which provides high robustness and data rates. The transmission is
clearly audible to the listener as a noise burst at the beginning of the message. The
noise burst, which would hardly be accepted by the user base, can be removed by an
adaptive filter. However, the fact that all of the receivers would have to be equipped
with this technology renders the entire system undesirable.

6.3.2.2. Data-in-Voice (DiV) Modem

The ‘Data-in-Voice’ system presented in [118] tries to decrease the audibility of the
multitone sequence by reducing its power and spectral bandwidth. Using a band-
reject filter, the system removes some parts of the voice spectrum around 2 kHz as
to operate an in-band modem. A standard 240 bit/s MSK (Minimum Shift Keying)
modem technique is used, which occupies a frequency bandwidth of approximately
300 Hz. In order to fully suppress the audibility of the data sequence, the system also
requires a filter on the side of the voice receivers.
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6.3.2.3. Spread Spectrum Watermarking

The ‘Aircraft Identification Tag’ (AIT) system presented in [28, 119] is based on direct
sequence spread spectrum watermarking and embeds the watermark as additive
pseudo-random white noise. The embedder first adds redundancy to the data by an
error control coding scheme. The coded data is spread over the available frequency
bandwidth by a well-defined pseudo-noise sequence. The watermark signal is then
spectrally shaped with a linear predictive coding filter and additively embedded into
the digitized speech signal, thus exploiting frequency masking properties of human
perception. The detector relies on a whitening filter to compensate for the spectral
shaping of the watermark signal produced by the embedder. A maximum-length
pseudo random sequence (ML-PRS), detected with a matched filter, is used to ensure
synchronization between embedder and detector. The signal is then de-spread and the
watermark data extracted. The voice signal acts as additive interference (additive noise)
that deteriorates the detector’s ability to estimate the watermark. Therefore, even in
the case of an ideal noiseless transmission channel, the data rate is inherently limited.

6.3.3. Proposed Solution

For the embedding of an identification or other data in the ATC radio speech, we
propose to use the speech watermarking algorithm presented in Chapter 4, or a variant
thereof. To substantiate the practical feasibility of our approach, a thorough evaluation
and a large number of further tests is required, and we focus in the following chapters
on two important aspects.

First, the embedding capacity of the proposed algorithm is host speech signal
dependent. In order to obtain realistic simulation results given the particular ATC
phraseology and speaking style, we produced and present in Chapter 7 a speech
database of ATC operator speech. The resulting ATCOSIM corpus is not only used
for evaluating the watermarking method, but is also of general value for ATC-related
spoken language technologies.

Second, the aeronautical transmission channel has a crucial influence on the data
capacity and robustness of the overall system. We therefore study the aeronautical
voice channel properties both in terms of stochastic channel models as well as using
empirical end-to-end measurements and derive a simulation model based on the
measurements.

Given the speech corpus and the results of the channel analysis, Chapter 10 will
validate the suitability of the proposed watermarking scheme for the aeronautical
application.
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ATC Simulation Speech Corpus

The ATCOSIM Air Traffic Control Simulation Speech corpus is a speech
database of air traffic control (ATC) operator speech. ATCOSIM is a con-
tribution to ATC-related speech corpora: It consists of ten hours of speech
data, which were recorded during ATC real-time simulations. The database
includes orthographic transcriptions and additional information on speak-
ers and recording sessions. The corpus is publicly available and provided
free of charge. Possible applications of the corpus are, among others, ATC
language studies, speech recognition and speaker identification, the design
of ATC speech transmission systems, as well as listening tests within the
ATC domain.

Parts of this chapter have been published in K. Hofbauer, S. Petrik, and H. Hering, “The ATCOSIM
corpus of non-prompted clean air traffic control speech,” in Proceedings of the International Conference on
Language Resources and Evaluation (LREC), Marrakech, Morocco, May 2008. More detailed information
is available in [120].
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7.1. Introduction

Until today spoken language technologies such as automatic speech recognition are
close to non-existing in operational air traffic control (ATC). This is in parts due to
the high reliability requirements that are naturally present in air traffic control. The
constant progress in the development of spoken language technologies opens a door
to the use of such techniques for certain applications in the air traffic control domain.
This is particularly the case for the controller speech on ground, considering the good
signal quality (close-talk microphone, low background noise, known speaker) and
the restricted vocabulary and grammar in use. In contrast, doing for example speech
recognition for the incoming noisy and narrowband radio speech is still a quite difficult
task.

In the development of practical systems the need for appropriate corpora comes into
place. The quality of air traffic control speech is quite particular and falls in-between
the classical categories: It is neither spontaneous speech due to the given constraints,
nor is it read, nor is it a pure command and control speech (in the sense of controlling a
device). Due to this and also due to the particular pronunciation and vocabulary in air
traffic control, there is a need for speech corpora that are specific to air traffic control.
This is even more the case considering the high accuracy and robustness requirements
in most air traffic control applications.

The international standard language for ATC communication is English. The use of
the French, Spanish or Russian language is also permitted if it is the native language
of both pilot and controller involved in the communication. The phraseology that is
used for this communication is strictly formalized by the International Civil Aviation
Organization [113]. It mandates the use of certain keywords and expressions for certain
types of instructions, gives clear rules on how to form digit sequences, and even defines
non-standard pronunciations for certain words in order to account for the band-limited
transmission channel. In practice however, both controllers and pilots deviate from
this standard phraseology.

After a review of the existing ATC related corpora known to the authors, the
subsequent sections present the new ATCOSIM Air Traffic Control Simulation Speech
corpus, which fills a gap that is left by the existing corpora. Section 7.2 outlines the
difficulty of obtaining realistic air traffic control speech recordings and shows the
path chosen for the ATCOSIM corpus. The transcription and production process is
described in Section 7.3 and 7.4. We conclude with a proposal for a specific automatic
speech recognition (ASR) application in air traffic control.

ATC Related Corpora

Despite the large number of existing speech corpora, only a few corpora are in the air
traffic control domain.

The NIST Air Traffic Control Complete Corpus [121] consists of recordings of 70 hours
of approach control radio transmissions at three airports in the United States. The
recordings are narrowband and of typical AM radio quality. The corpus contains an
orthographic transcription and for each transmission the corresponding flight number
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is listed. The corpus was produced in 1994 and is commercially available.
The HIWIRE database [122] is a collection of read or prompted words and sentences

taken from the area of military air traffic control. The recordings were made in a studio
setting, and cockpit noise was artificially added afterwards. The database contains
8,100 English utterances pronounced by non-native speakers without air traffic control
experience. The corpus is available on request.

The non-native Military Air Traffic Control (nnMATC) database [123] is a collection of
24 hours of military ATC radio speech. The recordings were made in a military air
traffic control center, wire-tapping the actual radio communication during military
exercises. The recordings are narrowband and of varying quality depending on the
speaker location (control room or aircraft). The database was published in 2007, but its
use is restricted to the NATO/RTO/IST-031 working group and its affiliates.

The VOCALISE project [124, 125] recorded and analyzed 150 hours of operational
ATC voice radio communication in France, including en route, approach and tower
control. The database is not available for the public and its use is restricted to research
groups affiliated with the French ‘Centre d’Études de la Navigation Aérienne’ (CENA)—
now part of the ’Direction des Services de la Navigation Aérienne’ (DSNA).

Another corpus that is similar to ours, but outside the domain of ATC, is the NATO
Native and Non Native (N4) database [126]. It consists of ten hours of military naval radio
communication speech recorded during training sessions.

The aforementioned corpora vary significantly among each other with respect to
e.g. scope, technical conditions and public availability (Table 7.1). The aim of the
ATCOSIM corpus is to fill the gap that is left by the above corpora: ATCOSIM provides
50 hours of publicly available direct-microphone recordings of operational air traffic
controller speech in a realistic civil en-route control situation. The corpus includes an
utterance segmentation and an orthographic transcription. ATCOSIM is meant to be
versatile and is as such not tailored to any specific application.

7.2. ATCOSIM Recording and Processing

The aim of the ATCOSIM corpus production was to provide wideband ATC speech
which should be as realistic as possible in terms of speaking style, language use,
background noise, stress levels, etc.

In most air traffic control centers the controller pilot radio communication is recorded
and archived for legal reasons. However, these legal recordings are problematic for a
corpus production for a multitude of reasons. First, most recordings are based on a
received radio signal and thus not wideband. Second, it is in general difficult to get
access to these recordings. And third, even if one would obtain the recordings, their
public distribution would be legally problematic at least in many European countries.

The logical resort is the conduction of simulations in order to generate the speech
samples. However, the required effort to set up realistic ATC simulations (including
facilities, hard- and software, trained personal, . . . ) is large and would far exceed the
budget of a typical corpora production. However, such simulations are performed for
the sake of evaluating air traffic control and air traffic management concepts, also on a
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large scale involving tens of controllers. The ATCOSIM speech recordings were made
at such a facility during an ongoing simulation.

7.2.1. Recording Situation

The voice recordings were made in the air traffic control room of the EUROCONTROL
Experimental Centre (EEC) in Brétigny-sur-Orge, France (Figure 7.1).1 The room and
its controller working positions closely resemble an operational control center room.
The simulations aim to provide realistic air traffic scenarios and working conditions
for the air traffic controller. Several controllers operate at the same time, in order to
simulate also the inter-dependencies between different control sectors. The controller
communicates via a headset with pseudo-pilots which are located in a different room
and control the simulated aircraft. During the simulations only the controllers’ voice,
but not the pilots’, was recorded, because the working environment of the pseudo-
pilots, and as such the speaking style, did not to any extent resemble reality.

7.2.2. Speakers

The participating controllers were all actively employed air traffic controllers and
possessed professional experience in the simulated sectors. The six male and four
female controllers were of either German or Swiss nationality and had German, Swiss
German or Swiss French native language. The controllers had agreed to the recording of
their voice for the purpose of language analysis as well as for research and development
in speech technologies, and were asked to show their normal working behavior.

7.2.3. Recording Setup

The controller’s speech was picked up by the microphone of a Sennheiser HME 45-KA
headset. The microphone signal and a push-to-talk (PTT) switch status signal were
recorded onto digital audio tape (DAT) with a sampling frequency of 32 kHz and a
resolution of 12 bit. The push-to-talk switch is the push-button that the controller has
to press and hold in order to transmit the voice signal on the real-world radio. The
speech signal was automatically muted when the push-button was not pressed. This
results in a truncation of the speech signal if the push-button was pressed too late or
released too early. Figure 7.2 shows an example of the recorded signals. The recorded
PTT signal is a high-frequency tone that is active when the PTT switch is not pressed.
After the digital transfer of the DAT tapes onto a personal computer and an automatic
format conversion to a resolution of 16 bit by setting the less significant bits to zero, the
status signal of the push-to-talk button could after some basic processing be used to
reliably perform an automatic segmentation of the recorded voice signal into separate
controller utterances.

1The raw recordings were collected by Horst Hering (EUROCONTROL) for a different purpose and
prior to the work presented herein.
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Figure 7.1.: Control room and controller working position at the EUROCONTROL
Experimental Centre (recording site).
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Figure 7.2.: A short speech segment (transwede one zero seven rhein identified)
with push-to-talk (PTT) signal. Time domain signal and spectrogram of
the PTT signal (top two) and time-domain signal and spectrogram of the
speech signal (bottom two).
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7.3. Orthographic Transcription

The speech corpus includes an orthographic transcription of the controller utterances.
The orthographic transcriptions are aligned with each utterance.

7.3.1. Transcription Environment

The open-source tool TableTrans was chosen for the transcription of the corpus [127].
TableTrans was selected for its table-based input structure as well as for its capability to
readily import the automatic segmentation. The transcriptionist fills out a table in the
upper half of the window where each row represents one utterance. In the lower half
of the window the waveform of the utterance that is currently selected or edited in the
table is automatically displayed (Figure 7.3). The transcriptionist can play, pause and
replay the currently active utterance by a single key stroke or as well select and play a
certain segment in the waveform display. A small number of minor modifications to
the TableTrans applications were made in order to lock certain user interface elements
and to extend its replay capabilities.

A number of keyboard shortcuts were provided to the transcriptionist using the open-
source tool AutoHotKey [128]. These were used for conveniently accessing alternative
time-stretched sound files2 and for entering frequent character or word sequences such
as predefined keywords, ICAO alphabet spellings and frequent commands, both for
convenience and in order to avoid typing mistakes.

7.3.2. Transcription Format

The orthographic transcription follows a strict set of rules which is given in Appendix A.
In general, all utterances are transcribed word-for-word in standard British English. All
standard text is written in lower-case. Punctuation marks including periods, commas
and hyphens are omitted. Apostrophes are used only for possessives (e.g. pilot’s
radio)3 and for standard English contractions (e.g. it’s, don’t). Numbers, letters,
navigational aids and radio call signs are transcribed following a given definition
based on several aeronautical standards and references. Regular letters and words
are preceded or followed by special characters to mark truncations (=), individually
pronounced letters (~) or unconfirmed airline names (@).

Stand-alone technical mark-up and meta tags are written in upper case letters with
enclosing squared brackets. They denote human noises such as coughing, laughing and
sighs ([HNOISE]), fragments of words ([FRAGMENT]), empty utterances ([EMPTY]), non-
sensical words ([NONSENSE]), and unknown words ([UNKNOWN]). Groups of words are
embraced by opening and closing XML-style tags to mark off-talk (<OT> ... </OT> ),
which is also transcribed, and foreign language (<FL> </FL>), for which a transcrip-
tion could be added at a later stage. Table 7.2 gives several examples of transcribed

2The duration of each utterance was stretched by a factor of 1.7 using the PRAAT implementation of the
PSOLA method [77]. These time-stretched sound files were used only when dealing with utterances
that were difficult to understand.

3Corpus transcription excerpts are written in a mono-spaced typewriter font.
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utterances.
Silent pauses both between and within words are not transcribed. For consistent

results this would require an objective measure and criterion and is thus easier to
integrate in combination with a potential future word segmentation of the corpus.
Also technical noises as well as speech and noises in the background—produced by
speakers other than the one recorded—are not transcribed, as they are virtually always
present and are part of the typical acoustical situation in an air traffic control room.

Table 7.2.: Examples of Controller Utterance Transcriptions in the ATCOSIM Corpus
Human noises are labeled with [HNOISE], word fragments with [FRAGMENT] and unintelli-
gible words with [UNKNOWN]. Truncations are marked with an equals sign (=), individually
pronounced letters with a tilde (~), and beginning and end of off-talk is labeled with <OT>

and </OT>.

aero lloyd five one seven proceed direct to frankfurt
speedway three three five two contact milan one three four five two bye

ah lufthansa five five zero four turn right ten degrees report new heading
hapag lloyd six five three in radar contact climb to level two nine zero

scandinavian six one seven proceed to fribourg fox romeo india

ind= israeli air force six eight six resume on navigation to tango
good afternoon belgian airforce forty four non ~r ~v ~s ~m identified

[HNOISE] alitalia six four seven four report your heading
[FRAGMENT] hapag lloyd one one two identified

sata nine six zero one is identified <OT> oh it’s over now </OT>
aero lloyd [UNKNOWN] charlie papa alfa guten tag radar contact

7.3.3. Transcription Process and Quality Assurance

The entire corpus was transcribed by a single person, which promises high consistency
of the transcription across the entire database. The native English speaker was intro-
duced to the basic ATC phraseology [113] and given lists covering country-specific
toponyms and radio call signs (e.g., [129]). Clear transcription guidelines were estab-
lished and new cases that were not yet covered by the transcription format immediately
discussed.

Roughly three percent of all utterances were randomly selected across all speakers
and used for training of the transcriptionist. This training transcription was also used
to validate the applicability of the transcription format definition and minor changes
were made. The transcriptions collected during the training phase were discarded and
the material re-transcribed in the course of the final transcription.

After the transcription was finished, the transcriptionist once again reviewed all
utterances, verified the transcriptions and applied corrections where necessary. Re-
maining unclear cases were shown to an operational air traffic controller and most of
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them resolved.
Due to the frequent occurrence of special location names and radio call signs an

automatic spell check was not performed. Instead of this, a lexicon of all occurring
words was created, which includes a count of occurrence and examples of the context
in which the word occurs. Due to the limited vocabulary used in ATC, this list consists
of less than one thousand entries including location names, call signs, truncated words,
and special mark-up codes. Every item of the list was manually checked and thus
typing errors eliminated.

7.4. ATCOSIM Structure, Validation and Distribution

The entire corpus including the recordings and all meta data has a size of approximately
2.5 gigabyte and is available in digital form on a single DVD or an electronic ISO disk
image. Some statistics of the corpus are given in Table 7.3.

7.4.1. Corpus Structure and Format

The ATCOSIM corpus data is composed of four directories.
The ‘WAVdata’ directory contains the recorded speech signal data as single-channel

Microsoft WAVE files with a sample rate of 32 kHz and a resolution of 16 bits per
sample. Each file corresponds to one controller utterance. The 10,078 files are located
in a sub-directory structure with a separate directory for each of the ten speakers and
sub-directories thereof for each simulation session of the speaker.

The ‘TXTdata’ directory contains single text files with the orthographic transcription
for each utterance. They are organized in the same way as the audio files. The directory
also contains an alphabetically sorted lexicon and a comma-separated-value file which
includes not only the transcription of all utterances but also all meta data such as
speaker, utterance and session IDs and transcriptionist comments.

The files in the ‘HTMLdata’ directory are HTML files which present the transcriptions
and the meta data in a table-like format. They enable immediate sorting, reviewing
and replaying of utterances and transcriptions from within a standard HTML web
browser.

Last, the ‘DOC’ directory contains all documentation related to the corpus.

7.4.2. Validation

The validation of the database was carried out by the Signal Processing and Speech
Communication Laboratory (SPSC) of Graz University of Technology, Austria. The
examiner and author of the validation report has not been involved in the production
of the ATCOSIM corpus, but only carried out an informal pre-validation and the formal
final validation of the corpus.

The validation procedure followed the guidelines of the Bavarian Archive for Speech
Signals (BAS) [130]. It included a number of automatic tests concerning complete-
ness, readability, and parsability of data, which were successfully performed without
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Table 7.3.: Key Figures of the ATCOSIM Corpus

Duration total (thereof speech) 51.4 h (10.7 h)
Data size 2.4 GB
Speakers (thereof female/male) 10 (4/6)

Sessions total 50
Sessions per speaker 7, 9, 5, 6, 1, 2, 2, 8, 7, 3

Utterances total 10078

Utterances per speaker 1167, 1848, 808, 1162, 238,
384, 378, 1716, 1739, 638

Utterance duration
(mean, std. deviation, min, max) 3.8 s, 1.6 s, 0.04 s, 38.9 s

Utterances, containing
- <FL> </FL> 182
- <OT> </OT> 84
- [EMPTY] 319
- [FRAGMENT] 35
- [HNOISE] 62
- [NONSENSE] 11
- [UNKNOWN] 11

Words 108883
Characters (thereof without space) 626425 (517542)

Lexicon entries
- Total 858
- Meta tags 9
- Truncations 106
- Compounds 13
- Unique words 730
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revealing errors. Furthermore, manual inspections of documentation, meta data, tran-
scriptions, and the lexicon were done, which showed minor shortcomings that were
fixed before the public release of the corpus. Finally, a re-transcription of 1% of the
corpus data was made by the examiner, showing a transcription accuracy on word
level of 99.4%, proving the transcriptions to be accurate. The ATCOSIM corpus was
therefore declared to be in a usable state for speech technology applications.

7.4.3. License and Distribution

The ATCOSIM corpus is available online at http://www.spsc.tugraz.at/ATCOSIM and
provided free of charge. It can be freely used for research and development, also in
a commercial environment. The corpus is also foreseen to be distributed on DVD
through the European Language Resources Association (ELRA).

7.5. Conclusions

The ATCOSIM corpus is a valuable contribution to application-specific language re-
sources. To our best knowledge currently no other speech corpus is publicly available
that contains non-prompted air traffic control speech with direct microphone record-
ings, as it is difficult to produce such recordings for public distribution. The large-scale
real-time ATC simulations exploited for this corpus production provide an opportunity
to record ATC speech which is very similar to operational speech, while avoiding the
legal hassle of recording operational ATC speech.

Applications

The application possibilities for spoken language technologies in air traffic control
are manifold, and the corpus can be utilized within different fields of speech-related
research and development.

ATC Language Study Analysis can be undertaken on the language used by controllers
and on the instructions given.

Listening Tests The speech recordings can be used as a basis for ATC-related listening
tests and provide real-world ATC language samples.

Speaker Identification The corpus can be used as testing material for speaker identi-
fication and speaker segmentation applications in the context of ATC.

ATC Speech Transmission System Design The corpus can be used for the design,
development and testing of ATC speech transmission and enhancement systems.
Examples where the corpus was applied include the work presented in this thesis
and the pre-processing of ATC radio speech to improve intelligibility [131].

Speech Recognition The corpus can also be used for the development and training
of speech recognition systems. Such systems might become useful in future
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ATC environments and for example be used to automatically input into the ATC
system the controller instructions given to pilots .

We expand on the speech recognition example:
The controller sees among other information the current flight level of the aircraft on

the radar screen in the text label corresponding to the aircraft. For example, a controller
issues an instruction to an aircraft to climb from its current flight level 300 to flight level
340 (e.g. “sabena nine seven zero climb to flight level three four zero”). In
certain ATC display systems, the controller now enters this information (‘climb to 340’)
into the system and it shows up in the aircraft label, as this information is relevant
later on when routing other adjacent aircraft. However, the voice radio message sent to
the pilot already contains all information required by the system, namely the aircraft
call-sign and the instruction.

Depending on the achievable robustness, an automatic speech recognition (ASR)
system that recognizes the controller’s voice radio messages could perform various
tasks: In case of extremely high accuracy the system could gather the information
directly from the voice message without any user interaction. The ASR system could
otherwise provide a small list of suggestions, to ease the process of entering the
instructions into the system. Alternatively, the system could compare in the background
the voice messages sent to the pilot and the instructions entered into the system, and
give a warning in case of apparent discrepancies.

Compared to other ASR applications, the conditions would be comparably favorable
in this scenario: The signal quality is high due to the use of a close-talk microphone and
the absence of a transmission channel. The vocabulary is limited, and additional side
information, such as the aircraft present in the sector and context-related constraints,
can be exploited. The ASR system can be speaker-dependent and pre-trained, and
continue training due do the constant feedback given by the controller during operation.

Possible Extensions

Depending on the application, further annotation layers might be useful and could be
added to the corpus.

Phonetic Transcription A phonetic transcription is beneficial for speech recognition
purposes. For accurate results it requires transcriptionists with a certain amount of
experience in phonetic transcription or at least a solid background in phonetics and
appropriate training.

Word and Phoneme Segmentation A more fine-grained segmentation is also bene-
ficial for speech recognition purposes. It can often be performed semi-automatically,
but still requires manual corrections and substantial effort.

Semantic Transcription A semantic transcription would describe in a formal way the
actual meaning of each utterance in terms of its functionality in air traffic control, such
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as clearance and type of clearance, read-back, request, . . . This would support speech
recognition and language interface design tasks, as well as ATC language studies. The
production of such a transcription layer requires good background knowledge in air
traffic control. Due to lack of contextual information, such as the pilots’ utterances,
certain utterances might appear ambiguous.

Call Sign Segmentation and Transcription This transcription layer marks the signal
segment which includes the call sign and extracts the corresponding part of the
(already existing) orthographic transcription. This can be considered as a sub-part
of the semantic transcription which can be achieved with significantly less effort and
requires little ATC related expertise. Nevertheless this might be beneficial for certain
applications such as language interface development.

Extension of Corpus Size and Coverage With an effective size of ten hours of
controller speech the corpus might be too small for certain applications. There are
two reasons that would support the collection and transcription of more recordings.
The first reason is the pure amount of data that is required by the training algorithms
in modern speech recognition systems. The second reason is the need to extend the
coverage of the corpus in terms of speakers, phonological distribution and speaking
style, as well as control task and controlled area.

This chapter presented a database of ATC controller speech, which represents the
input signal of the watermarking-based enhancement application considered in this
thesis. Likewise, the following chapter presents a database of measurements of the
ATC voice radio channel, which constitutes the transmission channel of the application
at hand.
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Chapter 8

Aeronautical Voice Radio Channel
Measurement System and Database

This chapter presents a system for measuring time-variant channel impulse
responses and a database of such measurements for the aeronautical voice
radio channel. Maximum length sequences (MLS) are transmitted over the
voice channel with a standard aeronautical radio and the received signals
are recorded. For the purpose of synchronization, the transmitted and
received signals are recorded in parallel to GPS-based timing signals. The
flight path of the aircraft is accurately tracked. A collection of recordings
of MLS transmissions is generated during flights with a general aviation
aircraft. The measurements cover a wide range of typical flight situations as
well as static back-to-back calibrations. The resulting database is available
under a public license free of charge.

Parts of this chapter have been published in K. Hofbauer, H. Hering, and G. Kubin, “A measurement
system and the TUG-EEC-Channels database for the aeronautical voice radio,” in Proceedings of the
IEEE Vehicular Technology Conference (VTC), Montreal, Canada, Sep. 2006, pp. 1–5.
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Figure 8.1.: A basic audio channel measurement system.

8.1. Introduction

A large number of sophisticated radio channel models exist, based on which the
behavior of a channel can be derived and simulated [132, 133, 6]. In Appendix B,
the basic concepts in the modeling and simulation of the mobile radio channel are
reviewed. The propagation channel is time-variant and dominated by multipath
propagation, Doppler effect, path loss and additive noise. Stochastic reference models
in the equivalent complex baseband facilitate a compact mathematical description of
the channel’s input-output relationship. Three different small-scale area simulations of
the aeronautical voice radio channel are presented in Appendix B, and we demonstrate
the practical implementation based on a scenario in air/ground communication.

Unfortunately, very few measurements of the aeronautical voice radio channel that
could support and quantify the theoretical models are available to the public [134].
The aim of the experiments presented in this chapter is to obtain knowledge about
the characteristics of the channel through measurements in realistic conditions. These
measurements shall support the insight obtained through the existing theoretical
channel models discussed in Appendix B. Therefore, we measure the time-variant
impulse response of the aeronautical VHF voice radio channel between the aircraft and
the ground-based transceiver station under various conditions.

The outline of this chapter is as follows: Section 8.2 shows the design and implemen-
tation of a measurement system for the aeronautical voice channel. Section 8.3 gives
an overview of the conducted measurement flights. The collected data form the freely
available TUG-EEC-Channels database, which is presented in Section 8.4.

8.2. Measurement System for the Aeronautical Voice Radio
Channel

Conventional wideband channel sounding is virtually unfeasible in the aeronautical
VHF band. It requires a large number of frequency channels, which are reserved
for operational use and are therefore not available. Thus a narrowband method is
presented, which moreover allows a simpler and less expensive setup.

Figure 8.1 shows the basic concept of the proposed system: A known audio signal
is transmitted over the voice radio channel and the received signal is recorded. The
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time-variant impulse response of the channel can then be estimated from the known
input/output pairs.

Measuring the audio channel from baseband to baseband has certain advantages and
disadvantages. On the one hand, besides its simplicity, the measurement already takes
place in the same domain as where our target application, a speech watermarking
system, would be implemented; on the other hand, a baseband measurement does not
reveal a number of parameters that could be obtained with wideband channel sounding,
such as distinct power delay and Doppler spectra. Although these parameters cannot
be directly measured with the proposed system, their effect on the audio channel can
nevertheless be captured.

8.2.1. Synchronization between Aircraft and Ground

As already indicated in Figure 8.1, it is necessary to synchronize the measurement
equipment on the transmitter and the receiver side. This linking is necessary as the
internal clock frequency of two devices is never exactly the same and the devices
consequently drift apart. Moreover, the clock-frequency is time-variant, due in part
to its temperature-dependency. But, in a setup where one unit is on the ground
and the other one is in an aircraft, the different clocks cannot be linked and a direct
synchronization is not possible. This problem is common to all channel sounding
systems.

In high-grade wideband channel sounders a lot of effort is put into achieving
synchronization. In former days, accurately matched and temperature-compensated
oscillators were aligned before measurement. Once they were separated, the systems
still stayed in sync for a certain amount of time before they started drifting apart again.
In modern channel sounders atomic clocks provide so stable a frequency reference
that the systems stay in sync for a very long time once aligned. Such systems are
readily available on the market, but come with a considerable financial expense, and
are relatively large and complex in setup.

8.2.2. Synchronization using GPS Signals

The global positioning system (GPS) provides a time radio signal which is available
worldwide and accurate to several nanoseconds. It can therefore also serve as an
accurate frequency and clock reference [135]. Certain off-the-shelf GPS receivers output
a so-called 1PPS (one pulse per second) signal. The signal is a 20 ms pulse train with
a rate of 1 Hz. The rising edge of each pulse is synchronized with the start of each
GPS and UTC (coordinated universal time) second with an error of less than 1 µs. This
accuracy is in general more than sufficient for serving as clock reference for a baseband
measurement system.

To the authors’ knowledge no battery-powered portable audio player/recorder with
an external synchronization input was available on the market at the time of measure-
ments in 2006. As a consequence, direct synchronization between the transmitter and
the receiver-side is in our application again not possible, even though a suitable clock
reference signal would be available.
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We propose in the remainder of this section a measurement method and setup
with which synchronization can nevertheless be achieved by recording the clock
reference signal in parallel to the received and transmitted signals and appropriate
post-processing.

8.2.3. Hardware Setup

The basic structure of the measurement setup is shown in Figure 8.2. On the aircraft,
the signals are transmitted and received via the aircraft-integrated VHF transceiver.
The measurement audio signal is replayed by a portable CompactFlash-based audio
player/recorder [136]. The transmitted and received signals are recorded with a second
unit, in parallel with the 1 PPS synchronization signal which is provided by the GPS
module [137]. The aircraft position, altitude, speed, heading, etc., are accurately
recorded by a hand-held GPS receiver once every two seconds [138]. The setup is
portable, battery-powered, rigid, and can be easily integrated into any aircraft. The
only requirement is a connection to the aircraft radio headset connectors. Figure 8.3
shows the final hardware setup on-board the aircraft. An identical setup is used on the
ground.

All devices are interconnected in a star-shaped manner through a custom-built
interface box, which is fitted into a metal housing unit containing some passive circuitry
and standard XLR and TRS connectors (Figure 8.4). The interface box provides a push-
to-talk (PTT) switch remote control together with status indication and recording, and
power supply, status indication and configuration interface for the GPS receiver. The
box serves as the central connection point and provides potentiometers for signal level
adjustments, test points for calibration and a switch to select transmit or receive signal
routing. The design considers the necessary blocking of the microphone power supply
voltage, the appropriate shielding and grounding for electromagnetic compatibility
(EMC) as well as noise and cross-talk suppression.

8.2.4. Measurement Signal

The measurement signal consists of a continuously repeated binary maximum length
sequence (MLS) of length L = 63 samples or T = 7.875 ms at a chip rate of 8 kHz
[139]. This length promises a good trade-off between signal-to-noise ratio, frequency
resolution and time resolution. It results in an MLS frame repetition rate of 127 Hz
and an excitation of the channel with a white pseudo-random noise signal with energy
up to 4 kHz. The anticipated rate of channel variation at the given maximum aircraft
speed and the bandwidth of the channel are below these values [6].

The transmitted MLS sequence is interrupted once per minute by precomputed
dual-tone multi-frequency (DTMF) tone pairs, in order to ease rough synchronization
between transmitted and received signals. All audio files are played and recorded
at a sample rate of 48 kHz and with a resolution of 16 bit. The measurement signal
is therefore upsampled to 48 kHz by insertion of zeros after each sample in the time
domain and low-pass interpolation with a symmetric FIR filter (using Matlab’s interp-
function). The signal is continuously transmitted during the measurements. However,
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Figure 8.2.: Overview of the proposed baseband channel measurement system, using
GPS timing signals for synchronization.
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Figure 8.3.: Complete voice channel measurement system on-board an aircraft, with
audio player and recorder, interface box, synchronization GPS (top left),
and tracking GPS (bottom right).

small interruptions are made every 30 seconds and every couple of minutes due to
technical and operational constraints.

8.2.5. Data Processing

The post-processing of the recorded material consists of data merging, alignment,
synchronization, processing, and annotation, and is mostly automated in Matlab. The
aim is to build up a database of annotated channel measurements, which is described
in Section 8.4. It follows an outline of the different processing steps.

8.2.5.1. Incorporation of Side Information

The original files are manually sorted into a directory structure and labeled with an
approximate time-stamp. The handwritten notes about scenarios, the transmission
directions, the corresponding files, the time-stamps and durations are transferred into
a data structure to facilitate automatic processing. Based on the data structure, the
start time of each file is estimated.

The GPS data is provided in the widely used GPX-format and is imported into Matlab
by parsing the corresponding XML structure, from which longitude, latitude, altitude
and time-stamp can be extracted [140]. The remaining parameters are computed
out of these values, also considering the GPS coordinates of the airport tower. The
speed values are smoothed over time using robust local regression smoothing with the
RLOESS method with a span of ten values or 20 s [141].
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Figure 8.4.: Overview and circuit diagram of measurement system and interface box.
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8.2.5.2. Analysis of 1PPS Signal and Sample Rate

The recorded files are converted into Matlab-readable one-channel Wave files using a
PRAAT script [77]. From the 1PPS recording, the positions of the pulses are identified
by picking the local maximum values of a correlation with a prototype shape. As
it is known that the pulses are roughly one second apart, false hits can be removed,
and missing pulses can be restored by interpolation. The time difference in samples
between two adjacent pulses defines the effective sample rate at which the file was
recorded. It was found that the sample rate is fairly constant but differs among the
different devices by several Hertz. It is therefore necessary to compensate for the
clock rate differences. For the aircraft and ground recordings, the sample rate can be
recovered by means of the 1PPS track. Based on those the sample rate of the audio
player can also be estimated.

8.2.5.3. Detection of DTMF Tones and Offset

For detecting the DTMF tones, the non-uniform discrete Fourier transform (NDFT) is
computed at the specific frequencies of the DTMF tones [142]. The tones are detected
in the power spectrum of the NDFT by correlation with a prototype shape, as the
duration and relative position of the tones is known from the input signal. Again after
filtering for false hits, the actual DTMF symbol is determined by the maxima of the
NDFT output values at the corresponding position. The detected DTMF sequences of
corresponding air/ground recording pairs are then aligned with approximate string
matching using the Edit distance measure [108]. Their average offset in samples is
computed and verified with the offset that is obtained from the data structure with
the manual annotations. These rough offsets are refined using the more accurate 1PPS
positions of both recordings.

8.2.5.4. Frame Segmentation and Channel Response

The recording of the received signal with a sample rate of 48 kHz is split up into
frames of 378 samples, which is the length of one MLS. The corresponding frame in the
recording of the transmitted signal is found by the previously computed time-variant
offsets between the 1PPS locations in the two recordings, and then with the local
position in-between two 1PPS pulses. Through this alignment the synchronization
between transmitted and recorded signal is reestablished. The alignment is accurate
to one 48 kHz sample, which is one sixth of a sample in terms of the original MLS
sequence.

Based on the realigned transmission input-output pairs, the channel frequency
response for every frame is estimated based on FIR system identification using the
cross power spectral density (CPSD) method with

H(ωk) =
X(ωk) ·Y(ωk)
|X(ωk)|2

, (8.1)

where X, Y, and H are the discrete Fourier transforms of the channel’s input signal,
output signal and impulse response, respectively [143]. For numerical stability the

118



8.3. Conducted Measurements

(a) Aircraft during measurements. (b) Aircraft transceiver.

Figure 8.5.: General aviation aircraft and onboard transceiver used for measurements.

signals are downsampled to a sample rate of 8 kHz before system identification, as the
channel was excited only up to a frequency of 4 kHz.

All frames are annotated with the flight parameters and the contextual information
of the meta data structure using the previously computed time-stamps and offsets.
A more accurate channel model and estimation scheme based on the measurement
results is presented in Chapter 9.

8.3. Conducted Measurements

A number of ground-based and in-flight measurements were undertaken with a general
aviation aircraft at and around the Punitz airfield in Austria (airport code LOGG).
After initial trials at the end of March 2006, measurements were undertaken for two
days in May 2006.

The aircraft used was a 4-seat Cessna F172K with a maximum speed of approximately
70 m/s and a Bendix/King KX 125 TSO communications transceiver (Figure 8.5). The
initial trials were undertaken with a different aircraft.

On ground, the communications transceiver Becker AR 2808/25 was used (Figure 8.6).
It is permanently installed in the airport tower in a fixed frequency configuration.
For reference and comparison, a Rohde&Schwarz EM-550 monitoring receiver which
provides I/Q demodulation of the received AM signal was applied. The I/Q data with a
bandwidth of 12 kHz was digitally recorded onto a laptop computer, however without
a 1PPS synchronization signal. Synchronization is to a certain extent nevertheless
possible using the DTMF markers in the transmitted signal. For the monitoring
receiver a λ

4 -ground plane antenna with a magnetic base was mounted onto the roof of
a van.

The measurements occurred on the AM voice radio channel of Punitz airport at
a carrier frequency of 123.20 MHz. Measurements were taken both in uplink and
downlink direction, with the tower or the aircraft radio transmitting, respectively. The
I/Q monitoring receiver continuously recorded every transmission.
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(a) I/Q measurement receiver.

(b) Airport tower transceiver.

Figure 8.6.: Ground-based transceivers used for measurements.
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A series of measurement scenarios was set up which covered numerous situations.
The ground measurements consisted of static back-to-back measurements with the
aircraft engine on and off. Static measurements were undertaken with the aircraft
at several positions along a straight line towards the tower, spaced out by 30 cm.
Additional measurements were taken with a vehicle parked next to the aircraft. The
ground based measurements were concluded with the rolling of the aircraft on the
paved runway at different speeds. A variety of flight maneuvers was undertaken.
These covered the following situations and parameter ranges:

• Low and high altitudes (0m to 1200m above ground)

• Low and high speeds (up to 250 km/h)

• Ascends and descends

• Headings perpendicular and parallel to line-of-sight

• Overflights and circular flights around airport

• Take-offs, landings, approaches and overshoots

• Flights across, along and behind a mountain

• Flights in areas with poor radio reception (no line-of-sight)

Thorough organizational planning, coordination and cooperation between all parties
involved proved to be crucial for a successful accomplishment of measurements in the
aeronautical environment.

8.4. The TUG-EEC-Channels Database

Based on the above measurements we present an aeronautical voice radio channel
database, the TUG-EEC-Channels database. It is available to the research community
under a public license free of charge online at the following address:

http://www.spsc.TUGraz.at/TUG-EEC-Channels/
The TUG-EEC-Channels database covers the channel measurements described in Sec-
tion 8.3 with three extensive flights and several ground measurements with a total
duration of more than five hours or two million MLS frames. For each frame of
8 ms (corresponding to 378 samples at 48 kHz) the following data and annotation is
provided:

• Time-stamp

• Transmission recording segment

• Reception recording segment

• Type of transmitted signal
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Figure 8.7.: Normalized frequency response of the static back-to-back voice radio
channel in up- and downlink direction.

• I/Q recording segment

• Link to original sequence

• Uplink/downlink direction

• Estimated channel impulse response

• Flight parameters elevation, latitude, longitude, distance to tower, speed, and
azimuth relative to line-of-sight

• Experimental situation (engine on/off, aircraft on taxiway or flying, . . . )

• Plain-text comments

An exact description of the data format of the TUG-EEC-Channels and additional
information can be found on the website. Upon request, the raw MLS recordings as well
as a number of voice signal transmission recordings and voice and background noise
recordings made in the cockpit using conventional and avionic headset microphones
can also be provided.

The following figures present several excerpts of the database. Figure 8.7 shows
the magnitude response of the transmission chain in both directions, which is mostly
determined by the radio transceivers. In Figure 8.8, the magnitudes of selected
frequency bins of the downlink channel are plotted over time. The basic shape of
the frequency response is maintained, but the magnitude varies over time. This time
variation results from a synchronization error which is compensated in the more
accurate model of Chapter 9. Figure 8.9 illustrates a GPS track.

8.5. Conclusions

We presented a system for channel measurements and the TUG-EEC-Channels database
of annotated channel impulse and frequency responses for the aeronautical VHF voice

122



8.5. Conclusions

500 1000 1500 2000 2500 3000 0

0.5

1

−15

−10

−5

0

Time in s

Frequency in Hz

Downlink Channel
M

ag
ni

tu
de

 in
 d

B

Figure 8.8.: Evolution of the frequency bins at 635, 1016, 1397, 1778, 2159, 2540 and
2921 Hz over time. Aircraft speed is 44.7 m

s at a position far behind the
mountain and an altitude of 1156 m.

Figure 8.9.: Visualization of the aircraft track based on the recorded GPS data.
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Chapter 8. Voice Radio Channel Measurements

channel. The current data can be directly applied to simulate a transmission channel
for system test and evaluation. We hope that the aeronautics community will make
extensive use of our data for future developments, which would also help to verify the
validity of our measurement scenarios.

Beyond that, it would be interesting to see what conclusions with respect to parame-
ters of the aeronautical radio channel models can be drawn from the data. In Chapter 9,
we present a further analysis and abstraction of the data and propose a model of the
aeronautical VHF voice channel based on the collected data.
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Chapter 9

Data Model and Parameter Estimation

In this chapter, we propose a data model to describe the data in the TUG-
EEC-Channels database, and a corresponding estimation method. The model
is derived from various effects that can be observed in the database, such
as different filter responses, a time-variant gain, a sampling frequency
offset, a DC offset and additive noise. To estimate the model parameters,
we compare six well-established FIR filter identification techniques and
conclude that best results are obtained using the method of Least Squares.
We also provide simple methods to estimate and compensate the sampling
frequency offset and the time-variant gain.

The data model achieves a fit with the measured data down to an error
of -40 dB, with the modeling error being smaller than the channel’s noise.
Applying the model to select parts of the database, we conclude that the
measured channel is frequency-nonselective. The data contains a small
amount of gain modulation (flat fading). Its source could not be conclusively
established, but several factors indicate that it is not a result of radio channel
fading. The observed noise levels are in a range from 40 dB to 23 dB in
terms of SNR.

This chapter presents recent results that have not yet been published.
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9.1. Introduction

The TUG-EEC-Channels database contains an estimated channel impulse response for
every measurement frame based on the cross power spectral density of the realigned
channel input and output signal of the corresponding frame. This set of impulse
responses can itself form a channel description based on the assumption of a time-
variant filter channel model. We will apply this channel description, among others, in
the evaluation of the watermarking system in Chapter 10.

A manual inspection of the recorded signals and the estimated channel responses re-
vealed that the simple time-variant filter channel model underlying the CPSD estimates
of (8.1) may not be an adequate representation for the input/output relationship of the
data and may lead to wrong conclusions. We found the following signal properties
that are not represented in the basic model.

Additive Noise The recorded signals are corrupted by additive noise, which fully
affects the CPSD channel estimates.

DC Offset There are significant time-variant DC offsets in the recorded signals and
the estimated impulse responses.

Time Variation There is a systematic time-variation of the impulse response estimates
of (8.1), even in the case of the aircraft not moving. Figure 9.1 shows this for a
short segment of a static back-to-back measurement with the aircraft on ground
(frame number 2012056 to 2013055). We denote the n’th sample of the estimated
impulse response of the k’th frame with h(n, k). The DC offset of each impulse
response has been removed a-priori by subtracting the corresponding mean value.

Sampling Frequency Offset Albeit small, there is a sampling frequency offset be-
tween the recordings of the transmitted and received signals.

Gain Modulation Measured in a sliding rectangular window with a length of one
frame (i.e., 63 samples or 378 samples at a sample rate of 8 kHz or 48 kHz, respec-
tively), the transmitted signal is due to its periodicity of exactly constant power.
Measuring the recordings of the received signal with the same sliding window
reveals an amplitude (gain) modulation, which appears to be approximately
sinusoidal with a frequency of 40–90 Hz.

In the remainder of this chapter, we propose an improved channel model and a corre-
sponding estimation method that provides stable and accurate estimations with low
errors, addresses the irregularities in the channel estimates contained in the database,
and provides a mean to estimate the noise in the measured channel by incorporating
neighboring frames. We apply the method to select parts of the measurement database
to demonstrate the validity of the model and to estimate its parameters.
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(a) Mean and standard deviation of the coefficients over all frames.
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(b) Time variation of selected coefficients over all frames.
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Figure 9.1.: Time-variation of the estimated impulse responses h(n, k) in the TUG-EEC-
Channels database for a static back-to-back measurement over 1000 frames
(8 s).
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Measurement Errors
(Transmitter-Side)

Voice Radio
Channel

Measurement Errors
(Receiver-Side)

TX RX

Figure 9.2.: Separation between voice radio channel model and measurement errors.

9.2. Proposed Data and Channel Model

We propose an improved channel model that better represents the measured data by
incorporating the aforementioned effects.

9.2.1. Assumptions

It is important to take into consideration that part of the observed effects might be
measurement errors. This is represented in Figure 9.2 by separating the measurement
error and voice radio channel models. It is often difficult to conclusively establish if
an observed effect is caused by the measurement system or the radio channel, and we
make the following assumptions.

By specification, the voice radio channel includes the radio transmitter, the radio
receiver, and the VHF wave propagation channel. As such, it is a bandpass channel and
does not transmit DC signal components. We attribute the DC offset to deficiencies in
the measurement hardware, and to the interface box circuits in particular, and consider
the time-variant DC offset (measured within a window of one measurement frame) as
a measurement error.

We assume that the filtering characteristics of the system can be mostly attributed to
the voice radio channel, since in laboratory measurements the frequency response of
the measurement system was verified to be flat compared to the observed filtering. It
appears that the filtering is dominated by the radio transmitter and receiver filters. One
can observe two particular filter characteristics in the database that solely depend on
the transmission direction (air/ground or ground/air) and, as such, on the transmitter
and receiver used.

The sampling frequency offset can be clearly attributed to the measurement system,
since the sampling clocks of the audio devices were not synchronized and the signals
replayed and recorded with slightly offset sampling frequencies.

We conjecture—and later results will confirm—that the systematic time-variation
of the TUG-EEC-Channels estimates shown in Figure 9.1 results from an insufficient
synchronization between the recordings of the transmitted and the received signals.
The database aims to synchronize all signal segments, no matter their content, using
the GPS timing signals. It successfully does so with an accuracy of one sixth of a
sample in terms of the original MLS chip rate. However, the results will show that
this accuracy is not sufficient for obtaining low estimation errors. In fact, the constant
slope in the lower plot of Figure 9.1 results from a slight drift between the channel
input/output frame pairs. When the offset between a pair is larger than half a sample
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H ResamplingTX RX
x yH yHw yHwg yHwgc yHwgcR

w(n) g(n) c(n)

Voice Radio Channel

Measurement Errors 

Figure 9.3.: Proposed data and channel model with a linear and block-wise time-
invariant filter H, additive noise w, time-variant gain g and time-variant
DC offset c. The subscripts of the signal y denote the model components
that the signal has already passed. For example, yHw denotes the input
signal after having passed the filter H and the addition of the noise w.

(at a sample rate of 48 kHz), the offset is automatically compensated by shifting the
input by one sample, which leads to the discontinuities in h(n, k) visible in Figure 9.1.

The observed gain modulation could be a measurement effect or a channel property,
and we will discuss this issue in more detail at the end of this chapter.

We expect that most of the additive noise results from the voice radio channel.
Nevertheless, the measurement system also contributes to the overall noise level. For
example, there is small cross-talk between the recorded MLS and GPS signals due to
deficiencies in the measurement hardware, and there is electromagnetic interference
from the aircraft avionics.

9.2.2. Proposed Model

Based on the above assumptions, we propose a data model as shown in Figure 9.3.
We merge the transmitter- and receiver-side measurement errors into one block. The
overlap between the voice radio channel model and the measurement error model
represents the uncertainty in the attribution of the components in the overlapping
segment to one or the other category. Also, there is an uncertainty in the order of the
model elements, and the depicted arrangement represents one possible choice.

9.3. Parameter Estimation Implementation

Before Section 9.3.3 shows the implementation of an estimation method for the channel
model shown in Figure 9.3, we first address two sub-problems. We present a simple
sampling clock synchronization method using resampling (Section 9.3.1), and compare
different methods to estimate a linear and time-invariant channel filter given a known
channel input and a noise-corrupted channel output (Section 9.3.2).
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9.3.1. Self-Synchronization of the Received Signal by Resampling

In the following, we focus on signal segments in the database containing MLS signals,
and present a simple resynchronization method in which we leave aside the transmitted
signal recordings, and accurately resample the received signal recordings to the chip
rate of the original MLS. While we do not claim any optimality herein, the presented
method is simple and provides sufficient performance given the task at hand.

A manual inspection of the recordings showed that the sampling frequencies of the
different devices are different among each other, but stable within segments of several
minutes. In the following we assume that the sampling frequencies are constant within
one block. A block denotes a recording fragment that contains a continuous MLS
signal, and typically has a length of 20 s to 30 s.

The original MLS signal used in the measurements has a length of 63 chips at a
chip-rate of 8000 chips/s. Since the signal was upsampled to a sampling frequency
f0 = 48 kHz, the MLS signal is periodic with a signal period N0 = 6 · 63 = 378 samples
or T0 = 378

48000 s ≈ 7.875 ms. The signal was replayed at an unknown sampling frequency
close to 48 kHz, transmitted over an analog channel, and recorded at a sampling
frequency that is again close to 48 kHz but unknown.

In order to compensate for the two unknown sampling frequencies, we transform
the recorded received signal y1(n), denoted RX in the database and corresponding to
yHwgcR in Figure 9.3, into a cubic spline representation and resample the spline with a
sampling frequency f2 such that the signal period of the resulting y2(n) is again exactly
N0 (or T0, respectively). We determine the optimal f2 or, equivalently, the resampling
factor γ = f2

f0
using two autocorrelation-based periodicity measures and a three-step

local maximization procedure.
Let the vector

xk = [y2(kN0), y2(kN0 + 1), y2(kN0 + 2), . . . , y2(kN0 + N0 − 2), y2(kN0 + N0 − 1)]

denote the k’th frame of the resampled signal (with k in the range from 0 . . . M-1,
assuming M frames within one block of y1(n), and M even). We define two scalar
error functions

g1(γ) =
[

x0 x2 . . . xM−4 xM−2
] [

x1 x3 . . . xM−3 xM−1
]T

g2(γ) =
[

x0 x1 . . . xM/2−2 xM/2−1
] [

xM/2 xM/2+1 . . . xM−2 xM−1
]T .

The functions g1 and g2 are similar to an autocorrelation of y2 at lags N0 and N0 M
2 , and

are plotted in Figure 9.4 for an exemplary block of the database (frame-ID 2011556
to 2013057). While g1 has a smooth and parabolic shape, which is advantageous for
numeric maximization, its maximum peak is very wide and thus prone to the influence
of noise. In contrast, g2 has a very narrow and distinct peak, but exhibits many local
maxima.

We maximize g1 and g2 as a function of the resampling factor γ = f2
f0

in the following
way:
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(a) Periodicity Measure g1
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(b) Periodicity Measure g2
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Figure 9.4.: Two periodicity measures as a function of the resampling factor f2
f0
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H
x yH yHw

w

Figure 9.5.: LTI filter plus noise channel model.

1. Maximization of g1 over γ in the interval γ = [0.98; 1.02] using golden section
search and parabolic interpolation (Matlab function ‘fminbnd’, [144]), resulting
in the estimate γ1.

2. Maximization of g2 over γ in the interval γ = [γ1 − 2δ; γ2 + 2δ] using a manually
tuned δ = 5 · 10−5 + 0.06

M and a grid search with a search interval of 0.1δ, resulting
in the estimate γ2.

3. Maximization of g2 over γ in the interval γ = [γ2− δ; γ2 + δ], again using golden
section search and parabolic interpolation, and resulting in the final estimates
γopt and f2,opt at which the spline is resampled to form y2(n).

The frequency offset f2 − f0 for different measurement signal segments is included in
Table 9.2.

9.3.2. Comparison of Filter Estimation Methods

We compare six well-established methods to estimate the channel impulse response
of the filter component H of the model in Figure 9.3, in terms of accuracy and noise
robustness.1

Filter Plus Noise Channel Model

For the comparison of the different estimators, we assume a linear and time-invariant
(LTI) filter plus noise model to characterize the relation between input and output. The
model is characterized by the filter’s impulse response h(n) or frequency response
H(ejω), the input signal x(n), the output signal yHw(n) and additive white Gaussian
noise (AWGN) w(n) (see Figure 9.5). We denote with P the order of the filter, with N
the number of input and output samples used for the channel estimation, and with the
circumflex or hat accent ( ˆ ) estimated variables.

Estimation Methods

We compare the estimation accuracy of the following methods.

1Parts of this subsection are based on M. Gruber and K. Hofbauer, “A comparison of estimation methods
for the VHF voice radio channel,” in Proceedings of the CEAS European Air and Space Conference (Deutscher
Luft- und Raumfahrtkongress), Berlin, Germany, Sep. 2007. The experiments were performed by Mario
Gruber in the course of a Master’s thesis [145].
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Deconvolution The filter’s impulse response ĥ(n) is estimated recursively using
[146]

ĥ(p) =
1

x(0)

(
yHw(p)−

p

∑
m=1

x(m)ĥ(p−m)

)
.

Spectral Division The impulse response ĥ(n) is estimated by an inverse discrete
Fourier transformation (DFT) of the frequency response Ĥ(k), which is obtained using
[146]

Time domain Frequency domain
yHw(n) = x(n) ∗ ĥ(n) c s Y(k) = X(k)Ĥ(k)

.

Power Spectral Densities The frequency response Ĥ(k) can also be obtained using
[146]

Time domain Frequency domain
Rxy(n) = Rxx(n) ∗ ĥ(n) c s Gxy(k) = Gxx(k)Ĥ(k),

where Rxx(n) = ∑N−1
m=0 x(m)x(m + n) is the auto-correlation of the input x(n) and

Rxy(n) = ∑N−1
m=0 x(m)yHw(m + n) the cross-correlation between input x(n) and the

output yHw(n), and Gxx(k) and Gxy(k) the corresponding power spectral density (PSD)
and cross-PSD.

Method of Least Squares The impulse response vector ĥ is given by the solution of
the normal equation [147]

ĥ = (XTX)−1XTy. (9.1)

Using the covariance windowing method, the Toeplitz structured convolution matrix X
is

X =




x(P− 1) · · · x(1) x(0)
x(P) · · · x(2) x(1)

...
. . .

...
...

x(N − 1) · · · x(N − P + 1) x(N − P)




and the output vector y is

y =




yHw( P−1
2 )

yHw(1 + P−1
2 )

...
yHw(N − 1− P−1

2 )


 .

Maximum Length Sequence If the input signal x(n) is a maximum length sequence
(MLS), then Rxx(n) ≈ δ(n) and the cross-correlation Rxy(n) between input x(n) and
output yHw(n) approximates the channel’s impulse response, or [148]

ĥ(n) = δ(n) ∗ ĥ(n) ≈ Rxx(n) ∗ ĥ(n) = Rxy(n).
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The approximation Rxx(n) ≈ δ(n) is only valid for long MLS. The approximation error
can be fully compensated with [148]

ĥ(n) =
1

L + 1

(
Rxy(n) +

P−1

∑
m=0

ĥ(m)

)
.

Estimation Performance Comparison

Experimental Settings We estimate P = 63 filter coefficients using as input N = 214

samples of an audio signal with a sample rate fs = 22050 Hz or a repeated MLS signal.
The signal x(n) is filtered using an FIR lowpass filter of order 60 (PLP = 61) and a
cutoff-frequency of 4.4 kHz, and AWGN w(n) added at an SNR of 10 dB, with

SNR = 20 log10

(
(x(n) ∗ h(n))RMS

w RMS

)
dB.

The index RMS indicates the root mean square value of the corresponding signal.

Experimental Results We use as error measure the error in the filtered signal ob-
tained with the original and the estimated filter. It is given by

ey(n) = yH(n)− ŷH(n) = x(n) ∗ h(n)− x(n) ∗ ĥ(n)

and expressed as the ratio

Ey = 20 log10

(
ey, RMS

yH,RMS

)
dB.

The estimation error for all methods and for the two input signals with and without
noise w(n) is shown in Table 9.1. In the presence of noise the method of Least Squares
outperforms all other methods. This result is consistent with estimation theory, as the
method of Least Squares is an efficient estimator (i.e., it attains the Cramer-Rao lower
bound) given the linear model and additive white Gaussian observation noise [147].

Estimation Parameters and Noise Estimation The number of estimated filter coef-
ficients, so far set to P = 63, influences the observed estimation error. Figure 9.6 shows
that in the noise-free case the estimation is error-free as soon as P > PLP (using the
same experimental settings as above, and Least Squares estimation). In the presence of
noise, the estimation error has a minimum at P ≈ PLP, since for large P the estimator
begins to suffer more from the channel noise due to the random fluctuations in the
redundant filter coefficient estimates.

The number of input samples, so far set to N = 214 samples, affects the observed
estimation error. Assuming a time-invariant channel and using the same experimental
settings as before, the estimation accuracy increases with increasing N (Figure 9.7). In
the case of large N (i.e., N � P) and using the method of Least Squares, it is possible
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Table 9.1.: Filter Estimation Results
Estimation error to output ratio Ey for different estimation methods,

input signals, and with and without observation noise w.

Estimation Method Audio Audio+Noise MLS MLS+Noise

Deconvolution < -150 dB > +100 dB < -150 dB > +100 dB
Spectral Division < -150 dB -16 dB -68 dB > +100 dB

PSD < -150 dB -21 dB < -150 dB +8 dB
Least Squares < -150 dB -34 dB < -150 dB -34 dB

MLS n/a n/a -27 dB -9.7 dB
MLS (compensated) n/a n/a < -150 dB -10 dB

(a) Noise-Free Channel
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Figure 9.6.: Estimation error to output ratio Ey as a function of the number of estimated
coefficients. The original filter has PLP = 61 coefficients.
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Figure 9.7.: Signal and noise estimation errors Ey and Ew at an SNR of 10 dB as a
function of the number N of input and output samples ( fs = 22050 Hz)
used for estimation.

to estimate not only the filter coefficients h(n), but also the channel noise w(n). The
noise estimate

ŵ(n) = yHw(n)− ŷH(n) = yHw(n)− x(n) ∗ ĥ(n) (9.2)

has an estimation error
ew(n) = w(n)− ŵ(n),

which is again expressed as an estimation error ratio

Ew = 20 log10

(
ew, RMS

wRMS

)
dB

and shown in Figure 9.7 as a function of the number of samples used for estimation.
We conclude that, in comparison to the frame-based PSD estimator used for the

database, the Least Squares method is a more suitable estimator. In combination with
using long signal segments it also allows to estimate the channel noise, which is needed
in the channel estimation method presented hereafter.

9.3.3. Channel Analysis using Resampling, Pre-Filtering, Gain
Normalization and Least Squares Estimation

Based on the results of the previous two subsections, we have developed an estimation
method for the channel model of Figure 9.3. We focus only on measurement data
blocks containing MLS signals.

As depicted in Figure 9.8, the estimation consists of the following steps.

1. The recorded received signal yHwgcR(n), denoted RX in the database, is resampled
with the resampling factor γopt to 48000 Hz, using the method described in
Section 9.3.1.

2. The resampled signal is decimated (including anti-alias filtering) by a factor of
six to the chip-rate of the original MLS sequence.
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Figure 9.8.: Estimation of the channel’s impulse response, time-variant gain, and addi-
tive noise based on measured data and with compensation for measurement
errors.
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Figure 9.9.: Implementation of the gain normalization.

3. The DC offset c(n) is estimated using a lowpass filter of order 1000 and a cutoff
frequency of 40 Hz.

4. To remove the DC offset, and low and high frequency noise outside the frequency
range of interest, ŷHwgc(n) is bandpass filtered using a bandpass filter with a
passband from 100 Hz to 3800 Hz.

5. The time-variant gain g(n) is estimated with a conventional envelope follower
(shown in Figure 9.9, and using a lowpass filter with a cutoff frequency of 100 Hz).
The signal ŷHwg(n) is then normalized to unit gain using the gain estimate ĝ.

6. The channel filter’s impulse response h(n) is estimated using the original binary-
valued MLS signal xMLS(n) of the database as input, ŷHw(n) as noise-corrupted
output, and the method of Least Squares for estimation, as discussed in Sec-
tion 9.3.2 and computed with Matlab’s backslash operator.2

7. The channel noise w(n) is estimated using (9.2) and

ŵ(n) = ŷHw(n)− xMLS(n) ∗ ĥ(n) = ŷHw(n)− ŷH(n).

9.4. Experimental Results and Discussion

To show the validity of the analysis system and to obtain insight in the channel
properties, we apply the analysis system presented in the previous section to select
parts of the database that cover a wide range of experimental conditions.

2It is assumed that the filter is time-invariant within one block. Section 9.4 will show that the assumption
of a time-variant filter in combination with a tracking estimation method leads to overall inferior
results.
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9.4.1. Filter and Noise Estimation

The noise estimate ŵ(n), which is at the same time the error signal of the Least Squares
estimation, is a strong measure for the suitability of the entire channel estimation
scheme. Assuming N � P, the error signal ŵ(n) is expected to contain no MLS signal
components, but only noise. Thus, we use as error measure the overall power of the
error signal ŵ(n), as well as its spectral and acoustical quality. If, for example, there is
a sampling frequency drift or gain modulation that is not appropriately compensated,
there is no good overall Least Squares fit, and a significant fraction of the (modulated)
MLS signal resides in ŵ(n). In fact, parts of the proposed channel model were inspired
by residuals observed in ŵ(n). We define the estimated signal-to-noise ratio (and error
measure) as

SNRest = 20 log10

(
ŵRMS

ŷH, RMS

)
dB.

Applying the proposed estimation method to the database using P = 63 and always
the full data block for input and output, results in the estimated SNRs as summarized
in Table 9.2 and the estimated frequency responses as shown in Figure 9.10. A manual
inspection of the estimated responses showed that the frequency response mainly
depends on the transmission direction (air/ground or ground/air), and as such on the
transmitting and receiving voice radios. Apart from this, very little other variation of
the frequency response among the different blocks was observed.

Table 9.2 also provides estimation results for two alternative estimation methods. In
the ‘Least Squares’ (LS) method described so far, the full data block is used for the
estimation of h(n), which assumes that h(n) is time-invariant. To accommodate for
potential slow time-variations of h(n, t), the ‘Windowed LS’ method performs a Least
Squares estimation within a window of five frames (315 samples), and calculates an
estimate ĥ(n, t) for every sample of the data block. The table also shows the estimation
error when tracking h(n, t) with an exponentially weighted recursive-least squares
(RLS) adaptive filter [87] with a forgetting factor λ = 0.998.

The results show that the assumption of a time-invariant h(n) leads to the lowest
estimation error. This means that the performance improvement obtained by using as
many samples as possible for the estimation (cf. Figure 9.7) outweighs the performance
degradation induced by the time-invariance assumption. In other words, the time-
variation of the impulse response is smaller than what can be measured given the
channel noise. Also, a manual inspection of the error signals did not reveal any
significant temporal changes within a data block, which is another justification for the
assumption of a time-invariant channel filter h(n).

At low noise levels (e.g., data block number 1), the error signal contains short
repetitive noise bursts with a constant frequency of approximately 6 Hz. The origin of
these noise bursts is unknown. However, since the same noise bursts are audible in
recordings of signal pauses of the database when no MLS signal was transmitted, we
conclude that the bursts are not an estimation error but are present in the signal. Due
to their periodic occurrence it appears likely that the bursts result from electromagnetic
interference within the measurement system itself or between the measurement system
and other components of the aircraft or ground systems. At medium noise levels
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(a) Air/Ground Transmission
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(b) Ground/Air Transmission
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Figure 9.10.: Estimated frequency responses.
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9.4. Experimental Results and Discussion

(a) Data Block Nr. 1 (A/G, engine off, back-to-back)
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(b) Data Block Nr. 7 (A/G, engine on, flight)
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(c) Data Block Nr. 13 (A/G, engine on, flight, max. distance)
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Figure 9.11.: DFT magnitude spectrum of the noise estimate and estimation error
signal ŵ for different data blocks.

(e.g., data block number 7) the error signal sounds similar to colored noise, and at
the highest noise levels (e.g., data block number 13), the error signal is very similar to
white noise. Figure 9.11 shows the corresponding power spectra of the error signals.

9.4.2. DC Offset

Figure 9.12 shows the time-variant DC offset c(n) in the recordings of the received
signal, obtained by filtering data block number 1 with a lowpass filter of order 1000 and
a cutoff frequency of 40 Hz. The clearly visible pulses with a frequency of 1 Hz result
from interference between the voice recordings and the GPS timing signal within the
measurement system, and are as such a measurement error. Even though the amplitude
of this DC offset is small compared to the overall signal amplitude, the offset, if not
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Figure 9.12.: DC component of the received signal recording. The pulses result from
interference with the GPS timing signal.

removed a-priori, would severely degrade the overall estimation performance.

9.4.3. Gain

In some data blocks we observed a sinusoidal amplitude modulation of the estimated
gain ĝ of the received signal. The DFT magnitude spectrum of the time-variant gain
ĝ(n) for three different data blocks is shown in Figure 9.13. In two of these cases
the spectrum exhibits a distinct peak. For every data block, Table 9.3 provides the
frequency location fsin of the most dominant spectral peak, as well as its amplitude
Asin relative to the DC gain C, expressed in

LAsin/C = 20 log10

(
Asin

C

)
,

modeling the gain modulation with g(n) = C + Asin sin
(

2π fsin
fs

n
)

. Expressing the same
quantity in terms of RMS values results in

LARMS/CRMS = 20 log10




[
Asin sin

(
2π fsin

fs

)]
RMS

CRMS


 ≈ LAsin/C − 3 dB.

Table 9.3 also shows the overall power of the gain modulations relative to the DC gain,
expressed in

Lg−C/C = 20 log10

(
[ĝ(n)− C]RMS

CRMS

)
.

The source of the sinusoidal gain modulations (GM) is not immediately clear. Given
Figure 9.13 and Table 9.3, we observe the following facts:

1. GM is present if engine is running, only.

2. GM is present even if aircraft is not moving.

3. Frequency of GM is independent of the relative heading of the aircraft.
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9.5. Conclusions

4. Frequency of GM depends on an unknown variable that has some connection
with the aircraft speed.

5. Frequency of GM is significantly larger than the frequency predicted in Ap-
pendix B for gain modulations caused by multipath propagation and Doppler
shift.

We conclude from these facts that the observed gain modulation is not caused by the
physical radio transmission channel, especially since it as also present in situations
where the aircraft did not move.

We believe that the gain modulation results from interference between the aircraft
power system and the voice radio or the measurement system. In particular, the gain
modulation might result from a ripple voltage on the direct current (DC) power supply
of the aircraft radio. Such a ripple voltage is a commonly observed phenomenon
and results from insufficient filtering or voltage regulation of the rectified alternating
current (AC) output of the aircraft’s alternator or power generator [149]. The frequency
of the ripple voltage is, as such, a linear function of the engine’s rotational speed, which
is measured in rotations per minute (rpm). We conjecture that the unknown variable
that the gain modulation frequency depends on, is the engine rpm. This would align
well with the results of Table 9.3 with no gain modulation when the engine is off and
a significant frequency difference between engine idle and engine full throttle. The
magnitude of the ripple voltage as well as its impact on the communication system
is expected to be system- and aircraft-specific and to be less of an issue in modern
systems and large jet aircraft with an independent auxiliary power unit (APU).

An alternative explanation for the gain modulation could be a periodic variation
of the physical radio transmission channel induced by the rotation of the aircraft’s
propeller. The rotational speed of the propeller is linked to the engine rpm either
directly or via a fixed gear transmission ratio.

9.5. Conclusions

In this section, we presented an improved model to describe the data in the TUG-EEC-
Channels database presented in Chapter 8 and a corresponding estimation method.
This method allows to characterize the measured channel in terms of its linear filter
response, time-variant gain, sampling offset, DC offset and additive noise, and also
helps to identify measurement errors. In contrast, the channel estimates included in
the database combine all effects into a single variable, namely a channel response
estimated frame by frame.

Given the low level of the estimation error signal and the spectral characteristics
of the noise estimate, we conclude that the proposed estimation method works as
expected, and that the proposed data model is a reasonable description for the mea-
sured data. As expected by theory, the analysis of the measurements confirms that the
channel is not frequency-selective. The source of the observed flat fading could not
be conclusively established. However, there are several factors that strongly suggest
that the observed gain modulation does not result from radio channel fading through
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(a) Data Block Nr. 1 (A/G, engine off, back-to-back)
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(b) Data Block Nr. 4 (G/A, engine on, back-to-back)
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(c) Data Block Nr. 7 (A/G, engine on, flight)
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Figure 9.13.: DFT magnitude spectrum of the time-variant gain ĝ of different data
blocks.
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Table 9.3.: Dominant Frequency and Amplitude Level of the Gain Modulation

Data Block Nr. Frequency LAsin/C LARMS/CRMS Lg−C/C

1 79.9 Hz -69.7 dB -72.8 dB -51.2 dB
2 43.2 Hz -53.2 dB -56.3 dB -42.4 dB
3 27.1 Hz -64.8 dB -67.9 dB -51.1 dB
4 45.4 Hz -41.4 dB -44.5 dB -39.3 dB
5 86.8 Hz -28.3 dB -31.3 dB -23.3 dB
6 86.5 Hz -27.6 dB -30.6 dB -21.9 dB
7 86.6 Hz -26.8 dB -29.8 dB -22.9 dB
8 83.7 Hz -27.3 dB -30.3 dB -25.1 dB
9 81.8 Hz -36.7 dB -39.8 dB -34.8 dB

10 80.2 Hz -34.8 dB -37.8 dB -36.0 dB
11 73.0 Hz -24.2 dB -27.2 dB -21.8 dB
12 86.5 Hz -33.1 dB -36.1 dB -31.6 dB
13 65.1 Hz -36.6 dB -39.6 dB -31.7 dB

multipath propagation but from interference between the aircraft engine and the voice
radio system. The observed noise levels are in a range from 40 dB to 23 dB in terms of
SNR, which are worst-case estimations since all estimation errors accumulate in the
noise estimate, and the real channel noise level might in fact be smaller.
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Chapter 10

Experimental Watermark Robustness
Evaluation

In this chapter, we make use of the channel model derived in Chapter 9 to
evaluate the robustness of the proposed watermarking method in the aero-
nautical application. We experimentally demonstrate the robustness of the
method against filtering, desynchronization, gain modulation and additive
noise. Furthermore we show that pre-processing of the speech signal with
a dynamic range controller can improve the watermark robustness as well
as the intelligibility of the received speech.

This chapter presents recent results that have not yet been published.
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Chapter 10. Experimental Watermark Robustness Evaluation

This chapter experimentally evaluates the robustness of the watermark system pre-
sented in Chapter 4 in light of the application to the air traffic control voice radio.
The evaluation is an explicit continuation of the experimental results of Section 4.3,
now incorporating the obtained knowledge about the aeronautical voice radio chan-
nel. Consequently, we use the same experimental setup and settings as described in
Section 4.3.

10.1. Filtering Robustness

Section 4.3 demonstrated the robustness of the watermarking method against linear
and time-invariant filtering using a bandpass filter, an IRS filter, a randomly chosen
estimated aeronautical channel response filter and an allpass filter. These results are
repeated and extended in Figure 10.1.

10.1.1. Estimated Static Prototype Filters

We evaluated the filtering robustness using the measured and estimated aeronautical
radio channel filters of Chapter 9. In particular, we used the two distinct channel
response filters for air/ground and ground/air transmissions as depicted in Figure 9.10.

The resulting BERs are shown in Figure 10.1 and indicate that the method is robust
against both filters (denoted ‘Ch. 9, air/gnd’ and ‘Ch. 9, gnd/air’). The increased BER
in the ground/air transmission direction likely results from a mismatch between the
used embedding band position (666 Hz–3333 Hz) and the frequency response of the
ground/air channel. As shown in Figure 9.10, the ground/air channel has a non-flat
frequency response and significant attenuation above 2.5 kHz. A more suitable choice
for the watermark embedding would be the configuration described in Section 4.2.2.3
with an embedding band from 0.5 kHz to 2.5 kHz.

10.1.2. Time-Variant TUG-EEC-Channels Filter

We evaluated the robustness against the time-variant CPSD-based channel estimates
of Section 8.2.5.4. This is a worst-case scenario, since, as discussed in Chapter 9, the
time-variation of these channel response estimates originates from an estimation error
due to insufficient compensation of the sampling clock drift.

We used the estimates of two different measurement scenarios, one with the aircraft
being static on ground (‘Ch. 8, ground’, Frame-ID 2011556 to 2013968 in the TUG-
EEC-Channels database) and one with aircraft flying at high speed (‘Ch. 8, flight’,
Frame-ID 2396236 to 2399927), both with transmission in air/ground direction. The
filter taps obtained from the CPSD-based channel estimates (available every 7.875 ms)
were interpolated over time and continuously updated while filtering the watermarked
speech signal. The results in Figure 10.1 confirm the robustness of the watermarking
method against this time-variant filtering attack.
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Figure 10.1.: Overall system robustness in the presence of various transmission channel
filters at an average uncoded bit rate of 690 bit/s.

10.2. Gain Modulation Robustness

In this section, the robustness of the watermarking method against sinusoidal gain
modulations is evaluated, both systematically and in the measured aeronautical channel
conditions.

In contrast to the previous experiments, in this and all following experiments of this
chapter the input speech is normalized to unit variance on a per utterance level to
establish a coherent signal level across utterances.

10.2.1. Sinusoidal Gain Modulation Robustness

Figure 10.2 shows the robustness of the principle embedding method against sinusoidal
gain modulations of the form

ŝFB(n) =
[
1 + hGM sin

(
2πn fGM

fs

)]
s′FB(n)

with a modulation frequency fGM and a modulation depth hGM. The experimental
conditions are the same as in Section 4.3, except that ideal frame synchronization is
assumed since the implemented frame detection scheme works reliably only up to a
BER of approximately 15 % (see Figure 5.8).

Using the measured worst-case modulation frequency and depth of Table 9.3 (Data
Block Nr. 11, fGM = 73 Hz, hGM = −24.2 dB = 0.062) and real frame detection, the
resulting BER is shown in comparison to an ideal channel with constant gain in
Figure 10.3.
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Figure 10.2.: Watermark embedding scheme robustness against sinusoidal gain modu-
lation at an average uncoded bit rate of 690 bit/s (assuming ideal frame
synchronization).
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Figure 10.3.: Overall system robustness in the presence of the measured gain modu-
lation and a simulated automatic gain control at an average uncoded bit
rate of 690 bit/s (and using the actual frame synchronization).
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10.3. Desynchronization Robustness

10.2.2. Simulated Automatic Gain Control

Aeronautical radio transceivers typically contain an automatic gain control (AGC)
both in the radio frequency (RF) and the audio domain [97, 150]. To evaluate the
robustness against adaptive gain modulation, we simulated a channel with an AGC
using the SoX implementation [151] of a dynamic range controller (or ‘compressor’,
[152]) with an attack time of 20 ms, a release time of 500 ms, a look-ahead of 20 ms, and
a compression ratio of 1:4 above a threshold level of -24 dB [150]. The resulting BER
shown in Figure 10.3 demonstrates that the AGC does not decrease the watermark
detection performance.

10.3. Desynchronization Robustness

An experimental evaluation of the timing, bit and frame synchronization is provided
in Section 5.3. This topic is not further treated herein.

10.4. Noise Robustness

The robustness of the watermarking method against AWGN was evaluated in Sec-
tion 4.3 with a segmental SNR of 30 dB. The noise robustness for a wide range of
non-segmental SNRs is shown in Figure 10.4 (‘Original signal’). To show the behavior
of the principle method, perfect frame detection is assumed, since otherwise the BER
would level off at around 15 % due to failing frame synchronization.

The BER curve indicates that the method would sometimes not be robust against
the measured aeronautical channel conditions, since the worst-case measured SNR
(including estimation errors that contribute to the noise level) was found to be 22.7 dB
(see Table 9.2). However, the robustness of the watermarking scheme against AWGN
is difficult to specify in absolute terms in the aeronautical application. Due to the
presence of gain controls in the transceivers, the transmission channel is non-linear,
and care must be taken when defining or comparing signal-to-noise ratios. While
SNR is a measure of the mean signal and noise power, the aeronautical channel is in
fact peak power constrained, with the peak power level being given by the maximum
allowed output power of the transmitter (integrated over a short time window). The
BER curves corresponding to Figure 10.4 are shown in Figure C.1 of Appendix C for
given peak signal-to-noise ratios (PSNR). We assume the peak power to be the signal’s
maximum average power measured in windows of 20 ms.

The SNRs of Table 9.2 were measured with an input signal of constant instantaneous
power. As a consequence, the automatic gain controls were in a steady state and
the output signal power at some nominal level. Due to the reaction time of the gain
controls, a peak of a real speech signal may in practice far exceed this nominal level,
and the actual peak power limit lies above this measured steady-state level.

In the remainder of this section, we briefly discuss and experimentally evaluate
additional measures to increase the noise robustness of the watermarking method.
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Figure 10.4.: Watermark embedding scheme robustness against AWGN at average
uncoded bit rates of 690 bit/s (‘original signal’), 470 bit/s (‘sr’) and
485 bit/s (‘sr+mbcl’).

10.4.1. Selective Embedding

The watermarking method as described in Chapter 4 embeds the watermark in all
time segments that are not voiced, which also includes pauses and silent segments.
However, when assuming a fixed channel noise level, the local SNR in silent regions
is very low and watermark detection fails, leading to high BERs. A simple measure
to increase the noise robustness of the watermarking method is to not embed during
pauses and constrain the embedding to regions where the speech signal has significant
power. Inevitably, this decreases the uncoded watermark bit rate.

We simulate the non-embedding in pauses by removing all silent regions of the
input signal, which are defined by a 43ms-Kaiser-window-filtered intensity curve being
more than 30 dB below its maximum for longer than 100ms. Given the ten normalized
utterances of the ATCOSIM corpus used throughout the tests of this chapter, 14 % of
the speech signal are detected as silence. This reduces the average watermark bit rate
from 690 bit/s to 470 bit/s, both calculated on the basis of the duration of the original
signal. The resulting BER curve shown in Figure 10.4 (‘silence removal’) demonstrates a
significant improvement in terms of noise robustness, however, at the cost of a reduced
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Figure 10.5.: Improving watermark robustness and speech intelligibility by dynamic
range compression.

bit rate.

10.4.2. Speech Enhancement and Watermarking

A Master’s thesis [131] that was supervised by the author of this work studied and
compared different algorithms to pre-process the speech signal before the transmission
over the aeronautical radio channel in order to improve the intelligibility of the cor-
rupted received speech. The compared systems are fully backward-compatible and
operate only at the transmitting side. The methods were compared subjectively using
the modified rhyme test (MRT) and significantly improved the intelligibility of the
received speech at high channel noise levels.

The study showed the high effectiveness of a dynamic range controller (or ‘compres-
sor’, [152]) to improve the intelligibility. The isolated word recognition rate increased
by 12.6 percentage points on average. Given the peak power constrained transmission
channel and, thus, a fixed peak signal to noise level ratio, the compressed speech signal
has much higher overall energy compared to the original signal and, consequently, a
larger perceptual distance from the constant-power channel noise.

The compressor increases the SNR of the transmitted signal without increasing the
peak signal-to-noise ratio (PSNR). As a consequence, the dynamic range compression
not only increases the intelligibility, but also the noise robustness of the watermark
system. Since the speech signal has overall higher energy, also the watermark signal
that replaces the speech signal is higher in energy relative to the channel noise if the
compression precedes the watermark embedding as shown in Figure 10.5.

We simulate a dynamic rage controller using Audacity [153] with the Apple Core-
Audio implementation [154] of a multiband compressor followed by the LASDPA
implementation [155] of a limiter [152]. The settings used for both units were chosen
manually and are shown in Figure C.2 of Appendix C.

The input speech signal without silent regions as used in the previous subsection
was pre-processed by the compressor before the embedding of the watermark as shown
in Figure 10.5. Given various channel noise levels, the resulting BER curve is shown in
Figure 10.4 and exhibits a significant improvement.

Due to the presence of the compression system, it is of relevance if the signal to
channel noise ratio is defined as SNR or PSNR. Further on, the SNR is different
depending on whether the signal power is measured before the enhancement system
(as the channel is peak-power constrained and both processed and unprocessed signal
have the same peak power) or if it is measured at the channel input. Figure C.1 shows
the BER curves corresponding to Figure 10.4 but using alternative signal-to-noise ratio
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measures.
We cannot overstate the fact that within a single system that combines watermark

embedding and compression it is possible to robustly embed a watermark and, at the
same time, increase the intelligibility of the transmitted ATC speech. The system could
be fully backward-compatible. At the receiving end all receivers (including legacy
installations) would benefit from the intelligibility improvement. An equipped receiver
is required in order to benefit also from the embedded watermark.

10.4.3. Watermark Amplification

In principle, any measure that increases the power of the embedded watermark signal
relative to the channel noise increases the likelihood that the embedded message will
be successfully detected. Two simple measures are introduced and their effectiveness
evaluated.

A primitive way to increase the watermark power is to add the watermark data
signal w(n) (using the notation of Section 4.1) to the watermarked signal ŝPB(n). The
watermark signal is added as a watermark floor at a fixed power level relative to the
channel noise power. In non-voiced regions, a comfort noise of equivalent power is
added in order to maintain a constant background noise level. The resulting BER
curves shown in Figure 10.4 (‘waterm. floor’) demonstrate the effectiveness of the
watermark floor. Given a watermark floor level -3 dB below the channel noise, the
watermark floor is imperceptible since it is masked by the channel noise. Nevertheless
it significantly improves the noise robustness of the watermark. At higher levels, the
watermark floor becomes audible, and the additional gain in robustness comes at the
cost of perceptual quality. If the channel noise level is not known a-priori, a certain
value has to assumed based on operational requirements.

Another simple measure to increase the watermark power is to increase the gain
g(n) of the non-voiced speech components (cf. Section 4.1). Figure 10.4 (‘unvoiced
gain’) shows the positive effect on the BER curves given a gain g(n) that is increased by
a factor of +3 dB and +6 dB relative to its initial measured value. Since the non-voiced
components are often low in power compared to voiced components, the additional
gain does in most cases not increase the peak power of the watermarked signal. The
increased noise robustness comes, however, at the cost of perceptual quality.

10.5. Conclusions

We conclude that the proposed watermarking method is robust against any filtering
that is expected to occur on the aeronautical radio channel. The method allows
the embedding of the watermark in a frequency band that matches the passband of
the transmission channel. The equalizer in the watermark detector compensates for
phase distortions and tracks eventual time-variations of the channel filters. The high
robustness against filtering attacks comes as no surprise since the watermark detector
also has to cope with the rapidly time-varying LP synthesis (vocal tract) filter.

The watermarking method is also highly robust against sinusoidal gain modulations
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over a wide range of modulation frequencies and modulation depths, considering
that the measured worst case modulation depth is well below -20 dB. Non-sinusoidal
gain modulations in the form of an AGC do not degrade the detection performance
either. The high gain modulation robustness is not surprising because the method
must inherently be robust against the rapidly time-varying gain of the unvoiced speech
excitation signal.

The timing synchronization scheme based on the detector’s equalizer shows satis-
factory performance, but there is room for further improvement by the application of
fractionally spaced instead of sample-spaced equalizers. A working implementation
for frame synchronization was presented, but many alternative schemes exist and
further optimization is possible.

We evaluated the noise robustness over a wide range of signal-to-noise ratios. It
is difficult to specify the SNR ranges of real world ATC channels. The implementa-
tion presented herein far exceeds the operationally required watermark bit rate of
approximately 100 bit/s [116]. Given the presented BER curves, for an operational ATC
implementation it might be beneficial to reduce the bit rate and, therefore, increase the
noise robustness of the watermark.

A number of further measures are available to improve the noise robustness. The
most remarkable is a pre-processing of the speech signal by multiband dynamic range
compression and limiting. This processing not only boosts the noise robustness of the
watermark, but also increases the intelligibility of the received speech signal.
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Chapter 11

Conclusions

Air traffic control (ATC) radio communication between pilots and controllers is subject
to a number of limitations given by the legacy system currently in use. To overcome
these limitations, and ultimately increase safety, security and efficiency in ATC, this
thesis investigates the embedding of digital side information into ATC radio speech.
It presents a number of contributions towards the ATC domain as well as the area
of robust speech watermarking. Figure 11.1 illustrates the connections among the
different contributions in the context of the ATC application at hand. The structure of
this chapter mostly mirrors the signal flow shown in the figure.

A review of related work reveals that most of the existing watermarking theory
and most practical schemes are based on a non-removability requirement, where the
watermark should be robust against tampering by an informed and hostile attacker.
While this is a key requirement in, e.g., transaction tracking applications, it poses
an unnecessary constraint in the legacy enhancement application considered in this
thesis. Theoretical capacity derivations show that dropping this constraint allows for
significantly larger watermark capacities, because watermarking can be performed in
perceptually irrelevant instead of perceptually relevant host signal components. In
contrast to perceptually relevant components, perceptually irrelevant signal compo-
nents are not limited to small modifications but can be replaced by arbitrary values.

ATC
Speech

Watermark
Embedding

ATC
Channel

Synchro-
nization

Watermark
Detection

[Ch. 7] [Ch. 4, Ch. 10][Ch. 5][Ch. 8, Ch. 9][Ch. 4]

Figure 11.1.: Relationship among the different chapters of this thesis.
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We derived the watermark capacity in speech based on perceptual masking and the
auditory system’s insensitivity to the phase of unvoiced speech, and showed that this
capacity far exceeds the capacity of the conventional ideal Costa scheme.

To underline the validity of our theoretical results, we designed and implemented
a practical speech watermarking method that replaces the imperceptible phase of
non-voiced speech by a watermark data signal. Even though the practical scheme
still operates far below the theoretical capacity limit, it outperforms most current
state-of-the-art methods and shows high robustness against a wide range of signal
processing attacks.

To validate the robustness of our scheme in the aeronautical application, we cre-
ated two evaluation resources. At first, good knowledge about the characteristics of
the aeronautical voice radio channel is required. Since little information is publicly
available, we designed and implemented a ground/airborne based audio channel
measurement system and performed extensive in-flight channel measurements. The
collected data is now publicly available and can be used as a basis for further devel-
opments related to the air/ground voice radio channel. We proposed a model for the
measured channel data, and the extracted model parameters are used in the validation
of the watermarking scheme to simulate different effects of the aeronautical channel.

In addition, due to the particular nature of ATC speech and the limited availability
of ATC language resources, we also created an ATC speech corpus. The corpus is
useful in the validation of our watermarking scheme, but also constitutes a valuable
resource for language research and spoken language technologies in ATC.1

Synchronization between watermark embedder and detector is necessary to detect
the watermark in the received signal. Many proposed watermarking schemes assume
perfect synchronization and do not treat this (often difficult) problem any further.
We carefully addressed this issue, transferred digital communication synchronization
methods to the watermarking domain, and presented a full implementation that covers
the various layers of synchronization.

The watermark detector is based on hidden training sequences and adaptive equal-
ization. The overall method is inherently robust against time-variant filtering and gain
modulation, which is a distinct advantage compared to quantization-based watermark-
ing. Moreover, the proposed scheme outperforms current state-of-the-art methods on a
scale of embedded bit rate per Hz of host signal bandwidth, considering the type of
channel attacks that are relevant in the aeronautical application.

Using the data obtained in the channel measurements, we evaluated the robustness
of the proposed method in light of the aeronautical application. The method is robust
against static and time-variant measured channel filter responses, the measured channel
gain modulation, and a simulated automatic gain control. Due to the non-linearity of
the ATC channel it is difficult to specify absolute channel noise levels. We evaluated
the noise robustness over a large range of channel SNRs and proposed a number
of measures that, if necessary, can increase the noise robustness of the proposed

1Within one year since its public release, the speech corpus DVD with a download size of 2.4 GB
was requested by mail from several institutions, and was downloaded in full from our website by
approximately 40 people (conservative estimate based on manually filtered server log-files).
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method. We recommend a pre-processing of the input speech signal with multiband
dynamic range compression and limiting for the aeronautical application. This not
only significantly increases the noise robustness of the watermark but also improves
the subjective intelligibility of the received speech. An increased intelligibility in
air/ground voice communication would constitute a further substantial contribution
to the safety in air traffic control.

Naturally, the work presented in this thesis is subject to limitations, and a number of
options for further research arise.

Since we proposed an entirely novel watermarking scheme, our implementation can
be considered as proof-of-concept implementation, only. The large gap to the theoretical
capacity shows that the performance can be further increased and numerous options
for further optimizations exist. For example, it is expected that an optimization of
the existing parameters, an SNR-adaptive watermark embedding, fractionally-spaced
equalization, or a joint synchronization, equalization and detection scheme could
increase both robustness and data rate. Furthermore, we have not evaluated the
real-time capability of our implementation. While the method operates in principle
on a per frame basis and is computationally not prohibitively expensive, a real-time
implementation was outside the scope of this thesis and is yet to be carried out. The
evaluation of the method’s robustness in the aeronautical application was limited by
the relatively small scope of the available channel data. To improve the validity of the
evaluation, the aeronautical channel measurements should be carried out on a large
scale with a wide range of aircraft types, transceiver combinations and flight situations.

We expect that a continuation of the theoretical work laid out in this thesis could
lead to a deeper understanding of speech watermarking and, ultimately, to better
performing system designs. Our theoretical capacity estimation for phase modulation
based watermarking is an upper bound, only, due to the idealistic assumptions made
about the host signal and the transmission channel. An evaluation of the capacity under
tighter but more realistic assumptions would provide additional insight and likely
result in a significantly lower watermark capacity. Complementing our experimental
robustness evaluation, a theoretical analysis of the robustness of the phase modulation
method against different transmission channel attacks could provide additional insight.
Incorporating the particular characteristics of the host signal and the aeronautical
channel, such an analysis would likely lead to a better system design. Last but not least,
the capacity derivations for masking based watermarking show that in our system
a lot of additional watermark capacity is still unused because perceptual masking is
not incorporated. Further research in speech watermarking should aim to exploit this
additional capacity by combining masking-based principles with the phase replacement
approach introduced in this thesis.
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Appendix A

ATCOSIM Transcription Format
Specification

This appendix provides the formal specification of the transcription format of the
ATCOSIM speech corpus presented in Chapter 7. While Section A.1 describes the basic
rules of the transcription format, Section A.2 contains content-specific amendments
such as lists of non-standard vocabulary.

A.1. Transcription Format

The orthographic transcription follows a strict set of rules which is presented hereafter.
In general, all utterances are transcribed word-for-word in standard British English. All
standard text is written in lower-case. Punctuation marks including periods, commas
and hyphens are omitted. Apostrophes are used only for possessives (e.g. pilot’s
radio)1 and for standard English contractions (e.g. it’s, don’t).

Technical noises as well as speech and noises in the background—produced by
speakers other than the one recorded—are not transcribed. Silent pauses both between
and within words are not transcribed either. Numbers, letters, navigational aids and
radio call signs are transcribed as follows.

In terms of notation, stand-alone technical mark-up tags are written in upper case
letters with enclosing squared brackets (e.g. [HNOISE]). Regular lower-case letters
and words are preceded or followed by special characters to mark truncations (=),
individually pronounced letters (~) or unconfirmed airline names (@). Groups of
words are embraced by opening and closing XML-style tags to mark off-talk (<OT>

1The mono-spaced typewriter type represents words or items that are part of the corpus transcription.
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... </OT> ), which is also transcribed, and foreign language (<FL> </FL>), for which
currently no transcription is given.

A.1.1. ICAO Phonetic Spelling

Definition: Letter sequences that are spelled phonetically.

Notation: As defined in the reference.

Example: india sierra alfa report your heading

Word List: alfa bravo charlie delta echo foxtrot golf hotel india juliett kilo
lima mike november oscar papa quebec romeo sierra tango uniform victor
whiskey xray yankee zulu

Supplement: fox (short form for foxtrot)

Reference: [113]

A.1.2. Acronyms

Definition: Acronyms that are pronounced as a sequence of separate letters in standard
English.

Notation: Individual lower-case letters with each letter being preceded by a tilde (~).
The tilde itself is preceded by a space.

Example: ~k ~l ~m

Exception: Standard acronyms which are pronounced as a single word. These are
transcribed without any special markup.

Exception Example: NATO, OPEC, ICAO are transcribed as nato, opec and icao
respectively.

A.1.3. Numbers

Definition: All digits, connected digits, and the keywords ‘hundred’, ‘thousand’ and
‘decimal’.

Notation: Standard dictionary spelling without hyphens. It should be noted that
controllers are supposed to use non-standard pronunciations for certain digits,
such as ‘tree’ instead of ‘three’, ‘niner’ instead of ‘nine’, or ‘tousand’ instead
of ‘thousand’ [113]. This is however applied inconsistently, and in any case
transcribed with the standard dictionary spelling of the digit.

Example: three hundred, one forty four, four seven eight, one oh nine

Word List: zero oh one two three four five six seven eight nine ten hundred
thousand decimal
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A.1.4. Airline Telephony Designators

Definition: The official airline radio call sign.
Notation: Spelling exactly as given in the references.
Examples: air berlin, britannia, hapag lloyd

Exceptions: Airline designators given letter-by-letter using ICAO phonetic spelling
as well as airline designators articulated as acronyms.

Exceptions Examples: foxtrot sierra india, ~k ~l ~m

References: [156, 157, 129]

A.1.5. Navigational Aids and Airports

Definition: Airports and navigational aids (navaids) corresponding to geographic
locations.

Notation: Geographical locations (navaids) are transcribed as given in the references
using lower-case letters. The words used can be names of real places (ex.
hochwald) or artificial five-letter navaid or waypoint designators (ex. corna,
gotil).2 Airports and control centers are transcribed directly as said and in
lower-case spelling.

Examples: contact rhein on one two seven
alitalia two nine two turn left to gotil
alitalia two nine two proceed direct to corna charlie oscar romeo november
alfa

References: [158, Annex A: Maps of Simulation Airspace], [159, 160]

A.1.6. Human Noises

Definition: Human noises such as coughing, laughing and sighs produced by the
speaker. Also breathing noises that were considered by the transcriptionist as
exceptionally loud were marked using this tag.

Notation: [HNOISE] (in upper-case letters)
Example: sabena [HNOISE] four one report your heading

A.1.7. Non-verbal Articulations

Definition: Non-verbal articulations such as confirmatory, surprise or hesitation
sounds.

Notation: Limited set of expressions written in lower-case letters.
Example: malaysian ah four is identified

Word List: ah hm ahm yeah aha nah ohh3

2In some occasions less popular five-letter designators are also spelled out using ICAO phonetic spelling.
3In contrast to ohh as an expression of surprise, the notation oh is used for the meaning ‘zero’, as in one
oh one.
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A.1.8. Truncated Words

Definition: Words which are cut off either at the beginning or the end of the word
due to stutters, full stops, or where the controller pressed the push-to-talk (PTT)
button too late. This also applies to words that are interrupted by human noises
([HNOISE]). This notation is used when the word-part is understandable. Empty
pauses within words are not marked.

Notation: The missing part of the word is replaced by an equals sign (=).

Examples: good mor= good afternoon (correction), luf= lufthansa three two five
(stutter), =bena four one (PTT pressed too late), sa= [HNOISE] =bena (inter-
ruption by cough)

Exception: Words which are cut off either at the beginning or the end of the word
due to fast speech or sloppy pronunciation are recorded according to standard
spelling and not marked. If the word-part is too short to be identified, another
notation is used (see below).

Exception Example: “goo’day” is transcribed as good day.

A.1.9. Word Fragments

Definition: Fragments of words that are too short so that no clear spelling of the
fragment can be determined.

Notation: [FRAGMENT]

Example: [FRAGMENT]

A.1.10. Empty Utterances

Definition: Instances where the controller pressed the PTT button, said nothing at all,
and released the button again.

Notation: [EMPTY]

Exception: If the utterance contains human noises produced by the speaker, the
[HNOISE] tag is used.

A.1.11. Off-Talk

Definition: Speech that is neither addressed to the pilot nor part of the air traffic
control communication.

Notation: Off-talk speech is transcribed and marked with opening and closing XML-
style tags: <OT> ... </OT>

Example: speedbird five nine zero <OT> ohh we are finished now </OT>
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A.1.12. Nonsensical Words

Definition: Clearly articulated word or word part that is not part of a dictionary and
that also does not make any sense. This is usually a slip of the tongue and the
speaker corrects the mistake.

Notation: [NONSENSE]

Example: [NONSENSE] futura nine three three identified

A.1.13. Foreign Language

Definition: Complete utterances, or parts thereof, given in a foreign language.

Notation: The foreign language part is not transcribed but is in its entirety replaced
by adjacent XML-style tags: <FL> </FL>

Example: <FL> </FL> break alitalia three seven zero report mach number

Exception: Certain foreign language terms, such as greetings, are transcribed accord-
ing to the spelling of that language, and are not tagged in any special way. A full
list is given below.

Exception Examples bonjour, tag, ciao

Exception Word List: See Section A.2.4.

A.1.14. Unknown Words

Definition: Word or group of words that could not be understood or identified.

Notation: [UNKNOWN]

Example: [UNKNOWN] five zero one bonjour cleared st prex

A.2. Amendments to the Transcription Format

The actual language use in the recordings required the following additions to the above
transcription format definitions.

A.2.1. Airline Telephony Designators

The following airline telephony designators cannot be found in the references cited
above, but are nonetheless clearly identified.

A.2.1.1. Military Radio Call Signs

There was no special list for military aircraft call signs available. The following call
signs were confirmed by an operational controller:

• ~i ~f ~o
• mission
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• nato
• spar
• steel

A.2.1.2. General Aviation Call Signs

In certain cases general aviation aircraft are addressed using the aircraft manufacturer
and type number (e.g. fokker twenty eight). The following manufacturer names
occurred:
• fokker
• ~b ~a (Short form for British Aerospace.)

A.2.1.3. Deviated Call Signs

In certain cases the controller uses a deviated or truncated version of the official call
sign. The following uses occurred:
• bafair (Short form for belgian airforce.)
• netherlands (Short form for netherlands air force.)
• netherlands air (Short form for netherlands air force.)
• german air (Short form for german air force.)
• french air force (The official radio call sign is france air force.)
• israeli (Short form for israeli air force.)
• israeli air (Short form for israeli air force.)
• turkish (Short form for turkish airforce.)
• hapag (Short form for hapag lloyd.)
• french line (Short form for french lines.)
• british midland (This is the airline name. The radio call sign is midland.)
• berlin (Short form for air berlin.)
• algerie (Short form for air algerie.)
• hansa (Short form for lufthansa.)
• lufty (Short form for lufthansa.)
• luha (Short form for lufthansa.)
• france (Short form for airfrans.)
• meridiana (This is the airline name, which also used to be the radio call sign.

The official call sign was changed to merair at some point in the past.)
• tunis air (This is the airline name. The radio call sign is tunair.)
• malta (Short form for air malta.)
• lauda (Short form for lauda air.)

A.2.1.4. Additional Verified Call Signs

The following call sign occurred and is also verified:

• london airtours (This call sign is listed only in the simulation manual [161].)
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A.2.1.5. Additional Unverified Radio Call Signs

The following airline telephony designators could not be verified through any of the
available resources. They are transcribed as understood by the transcriptionist on a
best-guess basis and preceded by an at symbol (@).

@aerovic
@alpha
@aviva
@bama
@cheena

@cheeseburger
@color
@devec
@foxy
@hanseli

@indialook
@ingishire
@jose
@metavec
@nafamens

@period
@roystar
@sunwing
@taitian
@tele

A.2.2. Navigational Aids

A.2.2.1. Deviated Navaids

In certain cases the controller uses a deviated version of the official navaid name. The
following uses occurred:

• milano (Local Italian version for milan.)
• trasa (Short form for trasadingen.)

A.2.2.2. Additional Verified Navaids

The following additional navaids occurred and are verified as they were occasionally
spelled out by the controllers:

• corna
• gotil

A.2.3. Special Vocabulary and Abbreviations

The following ATC specific vocabulary and abbreviations occurred. This listing is most
likely incomplete.

• masp (Minimum Aviation System Performance standards, pronounced as one
word)
• ~r ~v ~s ~m (Reduced Vertical Separation Minimum)
• ~c ~v ~s ~m (Conventional Vertical Separation Minimum)
• ~i ~f runway (Initial Fix runway)
• sec (sector)
• freq (frequency)

A.2.4. Foreign Language Greetings and Words

Due to their frequent occurrence the following foreign language greetings and words
were transcribed, using a simplified spelling which avoids special characters:

167



Appendix A. ATCOSIM Transcription Format Specification

• hallo (German for ‘hello’)
• auf wiederhoren (German for ‘goodbye’)
• gruss gott (German for ‘hello’)
• servus (German for ‘hi’)
• guten morgen (German for ‘good morning’)
• guten tag (German for ‘hello’)
• adieu (German for ‘goodbye’)
• tschuss (German for ‘goodbye’)
• tschu (German for ‘goodbye’)
• danke (German for ‘thank you’)
• bonjour (French for ‘hello’)
• au revoir (French for ‘goodbye’)
• merci (French for ‘thank you’)
• hoi (Dutch for ‘hello’)
• dag (Dutch for ‘goodbye’)
• buongiorno (Italian for ‘hello’)
• arrivederci (Italian for ‘goodbye’)
• hejda (Swedish for ‘goodbye’)
• adios (Spanish for ‘goodbye’)
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Appendix B

Aeronautical Radio Channel Modeling and
Simulation

In this appendix, the basic concepts in the modeling and simulation of
the mobile radio channel are reviewed. The propagation channel is time-
variant and dominated by multipath propagation, Doppler effect, path loss
and additive noise. Stochastic reference models in the equivalent complex
baseband facilitate a compact mathematical description of the channel’s
input-output relationship. The realization of these reference models as
filtered Gaussian processes leads to practical implementations of frequency
selective and frequency nonselective channel models. Three different small-
scale area simulations of the aeronautical voice radio channel are presented
and we demonstrate the practical implementation of a frequency flat fading
channel. Based on a scenario in air/ground communication the parameters
for readily available simulators are derived. The resulting outputs give
insight into the characteristics of the channel and can serve as a basis for the
design of digital transmission and measurement techniques. We conclude
that the aeronautical voice radio channel is a frequency nonselective flat
fading channel and that in most situations the frequency of the amplitude
fading is band-limited to the maximum Doppler frequency.

Parts of this chapter have been published in K. Hofbauer and G. Kubin, “Aeronautical voice radio
channel modelling and simulation—a tutorial review,” in Proceedings of the International Conference on
Research in Air Transportation (ICRAT), Belgrade, Serbia, Jul. 2006.
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B.1. Introduction

Radio channel modeling has a long history and is still a very active area of research.
This is especially the case with respect to terrestrial mobile radio communications
and wideband data communications due to commercial interest. However, the results
are not always directly transferable to the aeronautical domain. A comprehensive
up-to-date literature review on channel modeling and simulation with the aeronautical
radio in mind is provided in [134]. It is highly recommended as a pointer for further
reading and its content is not repeated herein. In this appendix, we review the general
concepts of radio channel modeling and demonstrate the application of three readily
available simulators to the aeronautical voice channel.

B.2. Basic Concepts

This and the following section are based on the work of Pätzold [132] and provide a
summary of the basic characteristics, the modeling, and the simulation of the mobile
radio channel. Another comprehensive treatment on this extensive topic is given in
[133].

B.2.1. Amplitude Modulation and Complex Baseband

The aeronautical voice radio is based on the double-sideband amplitude modulation
(DSB-AM, A3E or simply AM) of a sinusoidal, unsuppressed carrier [65]. An analog
baseband voice signal x(t) which is band-limited to a bandwidth fm modulates the
amplitude of a sinusoidal carrier with amplitude A0, carrier frequency fc and initial
phase ϕ0. The modulated high frequency (HF) signal xAM(t) is defined as

xAM(t) = (A0 + kx(t)) cos(2π fct + ϕ0)

with the modulation depth

m =
|kx(t)|max

A0
≤ 1

The real-valued HF signal can be equivalently written using complex notation and
ωc = 2π fc as

xAM(t) = Re
{
(A0 + kx(t))ejωctejϕ0

}
(B.1)

Under the assumption that fc � fm the HF signal can be demodulated and the
input signal x(t) reconstructed by detecting the envelope of the modulated sine wave.
The absolute value is low-pass filtered and the original amplitude of the carrier is
subtracted.

x(t) =
1
k
([|xAM(t)|]LP − A0)

Figure B.1 shows the spectra of the baseband signal and the corresponding HF
signal. Since the baseband signal is, by definition, low-pass filtered, the HF signal is a
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Figure B.1.: Signal spectra of (a) the baseband signal x(t) and (b) the HF signal xAM(t)
with a carrier at fc and symmetric upper and lower sidebands (Source:
[139], modified).

bandpass signal and contains energy only around the carrier frequency and the lower
and upper sidebands LSB and USB.

In general, any real bandpass signal s(t) can be represented as the real part of a
modulated complex signal,

s(t) = Re
{

g(t)ejωct
}

(B.2)

where g(t) is called the equivalent complex baseband or complex envelope of s(t) [139].
The complex envelope g(t) is obtained by downconversion of the real passband signal
s(t), namely

g(t) = (s(t) + jŝ(t))e−jωCt

with ŝ(t) being the Hilbert transform of s(t). The Hilbert transform removes the
negative frequency component of s(t) before downconversion [86]. A comparison of
(B.1) and (B.2) reveals that the complex envelope gAM(t) of the amplitude modulated
HF signal xAM(t) simplifies to

gAM(t) = (A0 + kx(t))ejϕ0

The signal x(t) is reconstructed from the equivalent complex baseband of the HF signal
by demodulation with

x(t) =
1
k

(|gAM(t)| − A0) (B.3)

The complex baseband signal can be pictured as a time-varying phasor or vector in a
rotating complex plane. The rotating plane can be seen as a coordinate system for the
vector, which rotates with the angular velocity ωc.
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Figure B.2.: Multipath propagation in an aeronautical radio scenario (Source: [162]).

In order to represent the HF signal as a discrete-time signal, it must be sampled with
a frequency of more than twice the carrier frequency. This leads to a large number
of samples and thus makes numerical simulation difficult even for very short signal
durations. Together with the carrier frequency ωc the complex envelope gAM(t) fully
describes the HF signal xAM(t). The complex envelope gAM(t) has the same bandwidth
[− fm; fm] as the baseband signal x(t). As a consequence it can be sampled with a much
lower sampling frequency, which facilitates efficient numerical simulation without
loss of generality. Most of the existing channel simulations are based on the complex
baseband signal representation.

B.2.2. Mobile Radio Propagation Channel

Proakis [65] defines the communication channel as “. . . the physical medium that is
used to send the signal from the transmitter to the receiver.” Radio channel modeling
usually also includes the transmitting and receiving antennas in the channel model.

B.2.2.1. Multipath Propagation

The transmitting medium in radio communications is the atmosphere or free space,
into which the signal is coupled as electromagnetic energy by an antenna. The received
electromagnetic signal can be a superposition of a line-of-sight path signal and multiple
waves coming from different directions. This effect is known as multipath propagation.
Depending on the geometric dimensions and the properties of the objects in a scene,
an electromagnetic wave can be reflected, scattered, diffracted or absorbed on its way
to the receiver.

From hereon we assume, without loss of generality, that the ground station transmits
and the aircraft receives the radio signal. The effects treated in this paper are identical
for both directions. As illustrated in Figure B.2, reflected waves have to travel a longer
distance to the aircraft and therefore arrive with a time-delay compared to the line-of-
sight signal. The received signal is spread in time and the channel is said to be time
dispersive. The time delays correspond to phase shifts in between the superimposed
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waves and lead to constructive or destructive interference depending on the position
of the aircraft. As both the position and the phase shifts change constantly due to
the movement of the aircraft, the signal undergoes strong pseudo-random amplitude
fluctuations and the channel becomes a fading channel.

The multipath spread Tm is the time delay between the arrival of the line-of-sight
component and the arrival of the latest scattered component. Its inverse BCB = 1

TM
is the coherence bandwidth of the channel. If the frequency bandwidth W of the
transmitted signal is larger than the coherence bandwidth (W > BCB), the channel
is said to be frequency selective. Otherwise, if W < BCB, the channel is frequency
nonselective or flat fading. This means that all the frequency components of the
received signal are affected by the channel in the same way [65].

B.2.2.2. Doppler Effect

The so-called Doppler effect shifts the frequency content of the received signal due
to the movement of the aircraft relative to the transmitter. The Doppler frequency
fD, which is the difference between the transmitted and the received frequency, is
dependent on the angle of arrival α of the electromagnetic wave relative to the heading
of the aircraft.

fD = fD,max cos(α)

The maximum Doppler frequency fD,max, which is the largest possible Doppler shift, is
given by

fD,max =
v
c

fc (B.4)

where v is the aircraft speed, fc the carrier frequency and c = 3 · 108 m
s the speed of

light.
The reflected waves arrive not only with different time-delays compared to the

line-of-sight signal, but as well from different directions relative to the aircraft heading
(Figure B.2). As a consequence, they undergo different Doppler shifts. This results in a
continuous distribution of frequencies in the spectrum of the signal and leads to the
so-called Doppler power spectral density or simply Doppler spectrum.

B.2.2.3. Channel Attenuation

The signal undergoes significant attenuation during transmission. The path loss is
dependent on the distance d and the obstacles between transmitter and receiver. It
is proportional to 1

dp , with the pathloss exponent p in the range of 2 ≤ p < 4. In the
optimal case of line-of-sight free space propagation p = 2.

B.2.2.4. Additive Noise

During transmission additive noise is imposed onto the signal. The noise results,
among others, from thermal noise in electronic components, from atmospheric noise
or radio channel interference, or from man-made noise such as engine ignition noise.
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(a) Rayleigh PDF
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cR :=
ρ2
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From the limit ρ → 0, i.e., cR → 0, the Rice process ξ(t) results in the Rayleigh process
ζ(t), whose statistical amplitude variations are described by the Rayleigh distribution
[Pap91]
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The probability density functions pξ(x) and pζ(x) according to (3.17) and (3.19) are
shown in the Figures 3.3(a) and 3.3(b), respectively.

(a) (b)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

p
ζ(

x)

σo
2=1/2

σo
2= 1 

σo
2= 2 

Figure 3.3: The probability density function of (a) Rice and (b) Rayleigh processes.

As mentioned before, the exact shape of the Doppler power spectral density Sµµ(f)
has no effect on the probability density of the absolute value of the complex Gaussian
random process, i.e., ξ(t) = |µρ(t)|. Analogously, this statement is also valid for
the probability density function of the phase ϑ(t) = arg{µρ(t)}, where ϑ(t) can be
expressed with (3.1), (3.2), and (3.4) as follows

ϑ(t) = arctan
{

µ2(t) + ρ sin (2πfρt + θρ)
µ1(t) + ρ cos (2πfρt + θρ)

}
. (3.20)

In order to confirm this statement, we study the probability density function pϑ(θ; t)
of the phase ϑ(t) given by the following relation [Pae98d]
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The probability density functions pξ(x) and pζ(x) according to (3.17) and (3.19) are
shown in the Figures 3.3(a) and 3.3(b), respectively.
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Figure 3.3: The probability density function of (a) Rice and (b) Rayleigh processes.

As mentioned before, the exact shape of the Doppler power spectral density Sµµ(f)
has no effect on the probability density of the absolute value of the complex Gaussian
random process, i.e., ξ(t) = |µρ(t)|. Analogously, this statement is also valid for
the probability density function of the phase ϑ(t) = arg{µρ(t)}, where ϑ(t) can be
expressed with (3.1), (3.2), and (3.4) as follows

ϑ(t) = arctan
{

µ2(t) + ρ sin (2πfρt + θρ)
µ1(t) + ρ cos (2πfρt + θρ)

}
. (3.20)

In order to confirm this statement, we study the probability density function pϑ(θ; t)
of the phase ϑ(t) given by the following relation [Pae98d]
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Figure 3.1: (a) Jakes power spectral density Sµiµi(f) and (b) the corresponding
autocorrelation function rµiµi(τ) (fmax = 91Hz, σ2

0 = 1).

will play an important role in the following, where fc denotes the 3-dB-cut-off
frequency.

Theoretical investigations in [Bel73] have shown that the Doppler power spectral
density of aeronautical channels has a Gaussian shape. Further information on the
measurements concerning the propagation characteristics of aeronautical satellite
channels can be found, for example, in [Neu87]. Although no absolute correspondence
to the obtained measurements could be proved, (3.11) can in most cases very well be
used as a sufficiently good approximation [Neu89]. For signal bandwidths up to some
10 kHz, the aeronautical satellite channel belongs to the class of frequency-nonselective
mobile radio channels [Neu89].

Especially for frequency-selective mobile radio channels, it has been shown [Cox73]
that the Doppler power spectral density of the far echoes deviates strongly from
the shape of the Jakes power spectral density. Hence, the Doppler power spectral
density is approximately Gaussian shaped and is generally shifted from the origin of
the frequency plane, because the far echoes mostly dominate from a certain direction
of preference. Specifications for frequency-shifted Gaussian power spectral densities
for the pan-European, terrestrial, cellular GSM system can be found in [COS86].

The inverse Fourier transform results for the Gaussian power spectral density (3.11)
in the autocorrelation function

rµiµi(τ) = σ2
0 e
−
�

π fc√
ln 2

τ
�2

. (3.12)

In Figure 3.2, the Gaussian power spectral density (3.11) is illustrated with the
corresponding autocorrelation function (3.12).

Characteristic quantities for the Doppler power spectral density Sµiµi(f) are the
average Doppler shift B

(1)
µiµi and the Doppler spread B

(2)
µiµi [Bel63]. The average Doppler

shift (Doppler spread) describes the average frequency shift (frequency spread) that

(d) Gaussian PSD
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Figure 3.2: (a) Gaussian power spectral density Sµiµi(f) and (b) corresponding

autocorrelation function rµiµi(τ) (fc =
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a carrier signal experiences during transmission. The average Doppler shift B
(1)
µiµi is

the first moment of Sµiµi
(f) and the Doppler spread B

(2)
µiµi is the square root of the

second central moment of Sµiµi(f). Consequently, B
(1)
µiµi and B

(2)
µiµi are defined by

B(1)
µiµi

:=

∫∞
−∞ fSµiµi

(f)df∫∞
−∞ Sµiµi(f)df

(3.13a)

and

B(2)
µiµi

:=

√√√√
∫∞
−∞(f −B

(1)
µiµi)2Sµiµi(f)df∫∞

−∞ Sµiµi
(f)df

, (3.13b)

for i = 1, 2, respectively. Equivalent — but often easier to calculate — expressions for
(3.13a) and (3.13b) can be obtained by using the autocorrelation function rµiµi

(τ) as
well as its first and second time derivative at the origin, i.e.,

B(1)
µiµi

:=
1

2πj
· ṙµiµi(0)
rµiµi(0)

and B(2)
µiµi

=
1
2π

√(
ṙµiµi

(0)
rµiµi(0)

)2

− r̈µiµi(0)
rµiµi(0)

,(3.14a, b)

for i = 1, 2, respectively.

For the important special case where the Doppler power spectral densities Sµ1µ1(f)
and Sµ2µ2(f) are identical and symmetrical, ṙµiµi(0) = 0 (i = 1, 2) holds. Hence, by
using (3.7), we obtain the following expressions for the corresponding characteristic
quantities of the Doppler power spectral density Sµµ(f)

B(1)
µµ = B(1)

µiµi
= 0 and B(2)

µµ = B(2)
µiµi

=
√

β

2πσ0
, (3.15a, b)

Figure B.3.: Probability density functions (PDF) and power spectral densities (PSD,
fD,max = 91 Hz, σ2

0 = 1) for Rayleigh and Rice channels (Source: [132]).

B.2.2.5. Time Dependency

Most of the parameters described in this section vary over time due to the movement
of the aircraft. As a consequence the response of the channel to a transmitted signal
also varies, and the channel is said to be time-variant.

B.2.3. Stochastic Terms and Definitions

The following section recapitulates some basic stochastic terms in order to clarify the
nomenclature and notation used herein. The reader is encouraged to refer to [132] for
exact definitions.

Let the event A be a collection of a number of possible outcomes s of a random
experiment, with the real number P(A) being its probability measure. A random
variable µ is a mapping that assigns a real number µ(s) to every outcome s. The
cumulative distribution function

Fµ(x) = P(µ ≤ x) = P({s|µ(s) ≤ x})
is the probability that the random variable µ is less or equal to x. The probability
density function (PDF, or simply density) pµ(x) is the derivative of the cumulative
distribution function,

pµ(x) =
dFµ(x)

dx
The most common probability density functions are the uniform distribution, where
the density is constant over a certain interval and is zero outside, and the Gaussian dis-
tribution or normal distribution N(mµ, σ2

µ), which is determined by the two parameters
expected value mµ and variance σ2

µ.
With µ1 and µ2 being two statistically independent normally distributed random

variables with identical variance σ2
0 , the new random variable ζ =

√
µ2

1 + µ2
2 represents

a Rayleigh distributed random variable (Figure B.3(a)). Given an additional real

parameter ρ, the new random variable ξ =
√

(µ1 + ρ)2 + µ2
2 is Rice or Rician distributed

(Figure B.3(b)). A random variable λ = eµ is said to be lognormally distributed. A
multiplication of a Rayleigh and a lognormally distributed random variable η = ζλ
leads to the so-called Suzuki distribution.
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A stochastic process µ(t, s) is a collection of random variables, which is indexed by
a time index t. At a fixed time instant t = t0, the value of a random process, µ(t0, s),
is a random variable. On the other hand, in the case of a fixed outcome s = s0 of
a random experiment, the value of the stochastic process µ(t, s0) is a time function,
or signal, that corresponds to the outcome s0. As is common practice, the variable
s is dropped in the notation for a stochastic process and µ(t) written instead. With
µ1(t) and µ2(t) being two real-valued stochastic processes, a complex-valued stochastic
process is defined by µ(t) = µ1(t) + jµ2(t). A stochastic process is called stationary if
its statistical properties are invariant to a shift in time. The Fourier transform of the
autocorrelation function of such a stationary process defines the power spectral density
or power density spectrum of the stochastic process.

B.3. Radio Channel Modeling

Section B.2.2.1 illustrated multipath propagation from a geometrical point of view.
However, geometrical modeling of the multipath propagation is possible only to a very
limited extent. It requires detailed knowledge of the geometry of all objects in the scene
and their electromagnetic properties. The resulting simulations are time consuming
to set up and computationally expensive, and a number of simplifications have to be
made. Furthermore the results are valid for the specific situation only and cannot
always be generalized. As a consequence, a stochastic description of the channel and
its properties is widely used. It focuses on the distribution of parameters over time
instead of trying to predict single values. This class of stochastic channel models is the
subject of the following investigations.

In large-scale areas with dimensions larger than tens of wavelengths of the carrier
frequency fc, the local mean of the signal envelope fluctuates mainly due to shadow-
ing and is found to be approximately lognormally distributed. This slow fading is
important for channel availability, handover, and mobile radio network planning.

More important for the design of a digital transmission technique is the fast signal
fluctuation, the fast fading, which occurs within small areas. As a consequence, we
focus on models that are valid for small-scale areas, where we can assume the path
loss and the local mean of the signal envelope due to shading, etc. , to be constant.
Furthermore we assume for the moment a frequency nonselective channel and, for
mathematical simplicity, the transmission of an unmodulated carrier. A more extensive
treatment can be found in [132], on which this section is based on.

B.3.1. Stochastic Mutlipath Reference Models

The sum µ(t) of all scattered components of the received signals can be assumed to be
normally distributed. If we let µ1(t) and µ2(t) be zero-mean statistically independent
Gaussian processes with variance σ2

0 , then the sum of the scattered components is
given in complex baseband representation as a zero-mean complex Gaussian process
µ(t) and is defined by

Scatter: µ(t) = µ1(t) + jµ2(t) (B.5)
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The line-of-sight (LOS) signal component m(t) is given by

LOS: m(t) = A0ej(2π fD+ϕ0), (B.6)

again in complex baseband representation. The superposition µm(t) of both signals is

LOS+Scatter: µm(t) = m(t) + µ(t) (B.7)

Depending on the surroundings of the transmitter and the receiver, the received
signal consists of either the scatter components only or a superposition of LOS and
scatter components. In the first case (i.e. (B.5)) the magnitude of the complex baseband
signal |µ(t)| is Rayleigh distributed. Its phase ∠(µ(t)) is uniformly distributed over
the interval [−π; π). This type of a Rayleigh fading channel is predominant in regions
where the LOS component is blocked by obstacles, such as in urban areas with high
buildings, etc.

In the second case where a LOS component and scatter components are present
(i.e. (B.7)), the magnitude of the complex baseband signal |µ(t) + m(t)| is Rice dis-
tributed. The Rice factor k is determined by the ratio of the power of the LOS and

the scatter components, where k = A2
0

2σ2
0
. This Rice fading channel dominates the

aeronautical radio channel.
One can derive the probability density of amplitude and phase of the received signal

based on the Rice or Rayleigh distributions. As a further step, it is possible to compute
the level crossing rate and the average duration of fades, which are important measures
required for the optimization of coding systems in order to address burst errors. The
exact formulas can be found in [132] and are not reproduced herein.

The power spectral density of the complex Gaussian random process in (B.7) cor-
responds to the Doppler power spectral density when considering the power of all
components, their angle of arrival and the directivity of the receiving antenna. Assum-
ing a Rayleigh channel with no LOS component, propagation in a two-dimensional
plane and uniformly distributed angles of arrival, one obtains the so-called Jakes power
spectral density as the resulting Doppler spectrum. Its shape is shown in Figure B.3(c).

However, both theoretical investigations and measurements have shown that the as-
sumption that the angle of arrival of the scattered components is uniformly distributed
does in practice not hold for aeronautical channels. This results in a Doppler spectrum
which is significantly different from the Jakes spectrum [163]. The Doppler power
spectral density is therefore better approximated by a Gaussian power spectral density,
which is plotted in Figure B.3(d). For nonuniformly distributed angles of arrival, as
with explicit directional echos, the Gaussian Doppler PSD is unsymmetrical and shifted
away from the origin. The characteristic parameters describing this spectrum are the
average Doppler shift (the statistic mean) and the Doppler spread (the square root of
the second central moment) of the Doppler PSD .

B.3.2. Realization of the Reference Models

The above reference models are based on colored Gaussian random processes. The
realization of these processes is not trivial and leads to the theory of deterministic
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processes. Mostly two fundamental methods are applied in the literature in order to
generate colored Gaussian processes. In the filter method, white Gaussian noise is
filtered by an ideal linear time-invariant filter with the desired power spectrum. In the
Rice method an infinite number of weighted sinusoids with equidistant frequencies
and random phases are superimposed. In practice both methods can only approxi-
mate the colored Gaussian process. Neither an ideal filter nor an infinite number of
sinusoids can be realized. A large number of algorithms used to determine the actual
parameters of the sinusoids in the Rice method exist. The methods approximate the
Gaussian processes with a sum of a limited number of sinusoids, thus considering the
computational expense [132]. For the filter method on the other hand, the problem
boils down to filter design with its well-understood limitations.

B.3.3. Frequency Nonselective Channel Models

In frequency nonselective flat fading channels, all frequency components of the received
signal are affected by the channel in the same way. The channel is modeled by a
multiplication of the transmitted signal with a suitable stochastic model process. The
Rice and Rayleigh processes described in Section B.3.1 can serve as statistical model
processes.

However it has been shown that the Rice and Rayleigh processes often do not provide
enough flexibility to adapt to the statistics of real world channels. This has led to the
development of more versatile stochastic model processes such as the Suzuki process
and its variations (a product of a lognormal distribution for the slow fading and a
Rayleigh distribution for the fast fading), the Loo Model with its variations, and the
generalized Rice process.

B.3.4. Frequency Selective Channel Models

Where channel bandwidth and data rate increase, the propagation delays can no longer
be ignored as compared to the symbol interval. The channel is then said to be frequency
selective and (over time) the different frequency components of a signal are affected
differently by the channel.

B.3.4.1. Tapped Delay Line Structure

For the modeling of a frequency selective channel, a tapped delay line structure is
typically applied as reference model (Figure B.4). The ellipses model of Parsons and
Bajwa [133] shows that all reflections and scatterings from objects located on an ellipse,
with the transmitter and receiver in the focal points, undergo the same time delay. This
leads to a complex Gaussian distribution of the received signal components for a given
time delay, assuming a large number of objects with different reflection properties in
the scene and applying the central limit theorem. As a consequence, the tap weights
ci(t) of the single paths are assumed to be uncorrelated complex Gaussian processes.
It is shown in Section B.2.3 that the amplitudes of the complex tap weights are then
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Figure B.4.: Tapped delay line structure as a frequency selective and time variant
channel model (Source: [132]). W is the bandwidth of the transmitted
signal, ci(t) are uncorrelated complex Gaussian processes.

either Rayleigh or Rice distributed, depending on the mean of the Gaussian processes.
An analytic expression for the phases of the tap weights can be found in [132].

B.3.4.2. Linear Time-Variant System Description

The radio channel can be modeled as a linear time-variant system, with input and
output signals in the complex baseband representation. The system can be fully
described by its time-variant impulse response h(t, τ). In order to establish a statistical
description of the input/output relation of the above system, the channel is further
considered as a stochastic system, with h(t, τ) as its stochastic system function.

These input/output relations of the stochastic channel can be significantly simplified
assuming that the impulse response h(t, τ) is wide sense stationary1 (WSS) in its
temporal dependence on t, and assuming that scattering components with different
propagation delays τ are statistically uncorrelated (uncorrelated scattering (US)). Based
on these two assumptions, Bello proposed in 1963 the class of WSSUS models. They
are nowadays widely used and are of great importance in channel modeling. They are
based on the tapped delay line structure and allow the computation of all correlation
functions, power spectral densities and properties such as Doppler and delay spread,
etc., from a given scattering function. The scattering function may be obtained by the
measurement of real channels, by specification, or both. For example, the European
working group ‘COST 207’ published scattering functions in terms of delay power spec-
tral densities and Doppler power spectral densities for four propagation environments
which are claimed to be typical for mobile cellular communication.

1Measurements have shown that this assumption is valid for areas smaller than tens of wavelengths of
the carrier frequency fc.
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B.3.5. AWGN Channel Model

The noise that is added to the transmitted signal during transmission is typically
represented as an additive white Gaussian noise (AWGN) process. The main parameter
of the model is the variance σ2

0 of the Gaussian process, which together with the signal
power defines the signal-to-noise ratio (SNR) of the output signal [65]. The AWGN
channel is usually included as an additional block after the channel models described
earlier.

B.4. Aeronautical Voice Channel Simulation

This section aims to present three different simulators which implement the above
radio channel models. As mentioned earlier, the models are based on a small-scale
area assumption where path loss and shadowing are assumed to be constant. We first
define a simulation scenario based on which we show the simulators’ input parameters
and the resulting channel output. We use as example the aeronautical VHF voice radio
channel between a fixed ground station and a general aviation aircraft which is flying
at its maximum speed.

The input and output signals of all three simulators are equivalent complex baseband
signals, and the same Matlab-based pre- and post-processing of the signals is used for
all simulators. The processing consists of bandpass pre- and post-filtering, conversion
to and from complex baseband, and amplitude modulation and demodulation.

B.4.1. Simulation Scenario and Parameters

For air-ground voice communication in civil air traffic control, the carrier frequency fc
is within a range from 118 MHz to 137 MHz, the ‘very high frequency’ (VHF) band.
The 760 channels are spaced 25 kHz apart. The channel spacing is reduced to 8.33 kHz
in specific regions of Europe in order to increase the number of available channels to a
theoretical maximum of 2280. According to specification, the frequency response of
the transmitter is required to be flat between 0.3 kHz to 2.5 kHz with a sharp cut-off
below and above this frequency range [97], resulting in an analog channel bandwidth
W = 2.2 kHz.

For the simulations, we assume a carrier with amplitude A0 = 1, frequency fc =
120 MHz and initial phase ϕ0 = π

4 , a channel spacing of 8.33 kHz, a modulation depth
m = 0.8 and an input signal which is band-limited to fl = 300 Hz to fm = 2.5 kHz. For
the illustrations we use a purely sinusoidal baseband input signal x(t) = sin(2π fat)
with fa = 500 Hz, which is sampled with a frequency of fsa = 8000 Hz and bandpass
filtered according to the above specification. Figure B.5 shows all values that the
amplitude modulated signal xAM(t) takes on during the observation interval in the
equivalent complex baseband representation gAM(t). The white circle represents the
unmodulated carrier signal, which is a single point in the equivalent complex baseband.
A short segment of the magnitude of the signal, |gAM(t)|, is also shown in the figure.

In the propagation model a general aviation aircraft with a speed of v = 60 m
s is

assumed. Using (B.4), this results in a maximum Doppler frequency of fD,max = 24 Hz.
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Figure B.5.: Sinusoidal AM signal in equivalent complex baseband. Left: In-phase and
quadrature components. The white circle indicates an unmodulated carrier.
Right: The magnitude of gAM(t).

Given the carrier frequency fc, the wavelength is λ = c
fc

= 2.5 m. This distance λ is
covered in tλ = 0.0417 s. Furthermore, we assume that the aircraft flies at a height
of h2 = 3000 m and at a distance of d = 10 km from the ground station. The ground
antenna is considered to be mounted at a height of h1 = 20 m. The geometric path
length difference ∆l between the line-of-sight path and the dominant reflection along
the vertical plane on the horizontal flat ground evaluates to

∆l =

√
h2

1 +
(

h1d
h1 + h2

)2

+

√
h2

2 +
(

d− h1d
h1 + h2

)2

−
√

d2 + (h2 − h1)
2 = 11.5 m

which corresponds to a path delay of ∆τ = 38.3 ns. In a worst case scenario with a
multipath spread of Tm = 10∆τ, the coherence bandwidth is still BCB = 2.6 MHz. With
BCB � W, according to Section B.2.2.1 the channel is surely frequency nonselective.
Worst-case multipath spreads of Tm = 200 µs as reported in [163] cannot be explained
with a reflection in the vertical plane, but only with a reflection on far-away steep
slopes. In these rare cases, the resulting coherence bandwidth is in the same order of
magnitude as the channel bandwidth.

We cannot confirm the rule of thumb given in [163] where ∆l ≈ h2 given d �
h2. For example, a typical case for commercial aviation where h1 = 30 m, h2 =
10000 m and d = 100 km results in a path difference of ∆l = 6.0 m. In the special case
of a non-elevated ground antenna with h1 ≈ 0 the path delay vanishes. In contrast,
large path delays only occur in situations with large h1 and h2 and small d such as in
air-to-air communication, which is not considered herein.

The Rician factor k is assumed to be k = 12 dB, which corresponds to a fairly strong
line-of-sight signal [163].

B.4.2. Mathworks Communications Toolbox Implementation

The Mathworks Communications Toolbox for Matlab [164] implements a multipath
fading channel model. The simulator supports multiple fading paths, of which the first
is Rice or Rayleigh distributed and the subsequent paths are Rayleigh distributed. The
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Doppler spectrum is approximated by the Jakes spectrum. As shown in Section B.3.1,
the Jakes Doppler spectrum is not suitable for the aeronautical channel. The preferable
Gaussian Doppler spectrum is unfortunately not supported by the simulator. The
toolbox provides a convenient tool for the visualization of the impulse and frequency
response, the gain and phasor of the multipath components, and the evolution of these
quantities over time.

In terms of implementation, the toolbox models the channel as a time-variant linear
FIR filter. Its tap-weights g(m) are given by a sampled and truncated sum of shifted
sinc functions. They are shifted by the path delays τk of the kth path, weighted by
the average power gain pk of the corresponding path, and weighted by a random
process hk(n). The uncorrelated random processes hk(n) are filtered Gaussian random
processes with a Jakes power spectral density. This results in

g(m) = ∑
k

sinc
(

τk

1/ fsa
−m

)
hk(n)pk.

The equation shows once again that when all path delays are small as compared to the
sample period, the sinc terms coincide. This results in a filter with only one tap and
consequently in a frequency nonselective channel.

In our scenario the channel is frequency-flat, and a model according to Section B.3.3
with one Rician path is appropriate. The only necessary input parameters for the
channel model are fsa, fD,max and k.

The output of the channel for the sinusoidal input signal as defined above is shown
in Figure B.6(a). The demodulated signal (using (B.3) and shown in Figure B.6(b))
reveals the amplitude fading of the channel due to the Rician distribution of the signal
amplitude. It is worthwhile noticing that the distance between two maxima is roughly
one wavelength λ. This fast fading results from the superposition of the line-of-sight
component and the multitude of scattered components with Gaussian distribution. As
shown in Figure B.6(c), bandpass filtering the received signal according to the specified
channel bandwidth does not remove the amplitude fading.

The toolbox also allows a model structure with several discrete paths similar to
Figure B.4. One can specify the delay and the average power of each path. A scenario
similar to the first one with two distinct paths is shown for comparison. We define one
Rician path with a Rician factor of k = 200. This means that it contains only the line of
sight signal and no scattering. We furthermore define one Rayleigh path with a relative
power of -12 dB and a time delay of ∆τ = 38.3 ns, both relative to the LOS path.

Due to the small bandwidth of our channel, the results are equivalent to the first
scenario. Figure B.7 shows the time-variation of the power of the two components,
with the total power being normalized to 0 dB.

B.4.3. The Generic Channel Simulator Implementation

The Generic Channel Simulator (GCS) is a radio channel simulator which was de-
veloped between 1994 and 1998 under contract of the American Federal Aviation
Administration (FAA). Its source code and documentation is provided in [165]. The
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(a) Channel Outpout
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(b) Demodulation
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(c) Bandpass Filter
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Figure B.6.: Received signal at different processing stages. Received signal (channel
output of Mathworks Communication Toolbox and an observation interval
of 2 s) (a) in equivalent complex baseband, (b) after demodulation, and
(c) after bandpass filtering.
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Figure B.7.: Power of the line-of-sight component (top) and the Rayleigh distributed
scattered components (bottom).
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(a) Channel Outpout (b) Demodulation
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Figure B.8.: Generic Channel Simulator: Received signal in an observation interval of
300 s (channel output) (a) in equivalent complex baseband and (b) after
demodulation.

GCS written in ANSI C and provides a graphical MOTIF-based interface and a com-
mand line interface to enter the model parameters. Data input and output files are in a
binary floating point format and contain the signal in equivalent complex baseband
representation. The last publicly available version of the software dates back to 1998.
This version requires a fairly complex installation procedure and a number of adjust-
ments in order to enable compiling of the source code on current operating systems.
We provide some advice on how to install the software on the Mac OS X operating
system and how to interface the simulator with Matlab [166].

The GCS allows the simulation of various types of mobile radio channels, the
VHF air/ground channel among others. Similar to the Mathworks toolbox, the GCS
simulates the radio channel by a time-variant IIR filter. The scatter path delay power
spectrum shape is approximated by a decaying exponential multiplying a zeroth-order
modified Bessel function, the Doppler power spectrum is assumed to have a Gaussian
shape.

In the following example we use a similar setup as in the second scenario in
Section B.4.2, a discrete line-of-sight signal and a randomly distributed scatter path
with a power of -12 dB. With the same geometric configuration as above, the GCS
software confirms our computed time delay of ∆τ = 38.3 ns.

Using the same parameters for speed, geometry, frequency, etc., as in the scenarios
described above, we obtain a channel output as shown in Figure B.8.

The time axis in the plot of the demodulated signal is very different as compared
to the one in Figure B.6(c). The amplitude fading of the signal has a similar shape as
before but is in the order of three magnitudes slower than observed in Section B.4.2.
This contradicting result cannot be explained by the differing model assumptions, nor
does it coincide with first informal channel measurements that we pursued.

We believe that the out-dated source code of the GCS has legacy issues which lead
to problems with current operating system and compiler versions.
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(a) Channel Outpout
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(b) Demodulation and Filtering
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Figure B.9.: Reference channel model with Jakes PSD: Received signal (channel out-
put) (a) in equivalent complex baseband and (b) after demodulation and
bandpass filtering.

B.4.4. Direct Reference Model Implementation

The third channel simulation is based on a direct implementation of the concept
described in Section B.3.3 with the Matlab routines provided in [132]. We model
the channel by multiplying the input signal with the complex random process µm(t)
as given in (B.7). The random processes are generated with the sum of sinusoids
approach as discussed in Section B.3.2. Figure B.9 shows the channel output using a
Jakes Doppler PSD and a Rician reference model. The result is very similar to the one
obtained with the Mathworks toolbox.

In a second example, a Gaussian distribution is used for the Doppler power spectral
density instead of the Jakes model. The additional parameter fD,co describes the width
of the Gaussian PSD by its 3 dB cut-off frequency. The value is arbitrarily set to
fD,co = 0.3 fD,max. This corresponds to a fairly small Doppler spread of B = 6.11 Hz,
compared to the Jakes PSD with B = 17 Hz. Figure B.10 shows the resulting discrete
Gaussian PSD. The channel output in Figure B.11 confirms the smaller Doppler spread
by a narrower lobe in the scatter plot. The amplitude fading is by a factor of two slower
than with the Jakes PSD.

B.5. Discussion

We further examine the path gain of the frequency nonselective flat fading channel
simulated in Section B.4.2. This path gain is plotted in Figure B.12(a) and corresponds
to the amplitude fading of the received signal shown in Figure B.6(b). Considering
the time-variant path gain as a time series, its magnitude spectrum (shown in Fig-
ure B.12(b)) reveals that the maximum frequency with which the path gain changes
approximately coincides with the maximum Doppler frequency fD,max = v

c fc of the
channel. The amplitude fading is band-limited to the maximum Doppler frequency.

This fact can be explained with the concept of beat as known in acoustics [167].
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Figure B.10.: Discrete Gaussian Doppler PSD with fD,max = 24 Hz and a 3-dB-cut-off
frequency of fD,co = 7.2 Hz.
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(b) Demodulation and Filtering
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Figure B.11.: Reference channel model with Gaussian PSD: Received signal (channel
output) (a) in equivalent complex baseband and (b) after demodulation
and bandpass filtering.
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(b) Path Gain Spectrum
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Figure B.12.: Time-variant path gain and its magnitude spectrum for a flat fading
channel with fD,max = 24 Hz.
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The superposition of two sinusoidal waves with slightly different frequencies f1 and
f2 leads to a special type of interference, where the envelope of the resulting wave
modulates with a frequency of f1 − f2. The maximum frequency difference f1 − f2
between a scatter component and the carrier frequency fc with which we demodulate
in the simulation is given by the maximum Doppler frequency. This explains the
band-limitation of the amplitude fading.

In a real world system a potentially coherent receiver may demodulate the HF signal
with a reconstructed carrier frequency f̂c which is already Doppler shifted. In this
case, the maximum frequency difference between Doppler shifted carrier and Doppler
shifted scatter component is 2 fD,max. This maximum occurs when the aircraft points
towards the ground station so that the LOS signal arrives from in front of the aircraft,
and when at the same time a scatter component arrives from the back of the aircraft
[163]. We can thereof conclude that the amplitude fading of the frequency nonselective
aeronautical radio channel is band-limited to twice the maximum Doppler frequency
fD,max.

For a channel measurement system as presented in Chapter 8 the maximum fre-
quency of the amplitude fading entails that the fading of the channel has to be
sampled with at least double the frequency, that means with a sampling frequency of
fms ≥ 4 fD,max, to avoid aliasing. With the parameters for a general aviation aircraft used
throughout this appendix, this means that the amplitude scaling has to be sampled
with a frequency of fms > 96 Hz or, in terms of an audio sample rate fsa = 8 kHz,
at least every 83 samples. For a measurement system based on maximum length
sequences (MLS, see Chapter 8) this means that the MLS length should be no longer
than L = 2n − 1 = 63 samples.

A factor that is not considered in the presented channel models is the likely presence
of automatic gain controls (AGC) in the radio transmitter and receiver. Since the
presented models are propagation channel models, transceiver components are by
definition not part of these models. Transceiver modeling is in fact a discipline by
itself and is outside the scope of this work. However, it should be noted that an AGC
in the receiver might partially compensate for the amplitude modulation induced
by the fading channel. Figure B.13(a) and B.13(b) show the demodulated signal of
Section B.4.2 after the bandpass filtering and after the application of a simulated
automatic gain control with a cut-off frequency of 300 Hz. In theory, carrier wave
amplitude modulations with a frequency of less than fl = 300 Hz should not be caused
by the band-limited input signal but by the fading of the channel. An automatic gain
control could therefore detect all low-frequency modulations and compensate for all
fading with a frequency up to fl = 300 Hz. The actual implementations for automatic
gain controls and their parameters are however highly manufacturer-specific and very
little information is publicly available.

We considered throughout this appendix the case of a small general aviation aircraft
as used in the channel measurements presented in Chapter 8. It is also of interest to
briefly discuss the case of large commercial aviation passenger aircraft. The relevant
parameters are a typical cruising speed of around 250 m/s and a cruising altitude
of around 10000 m. In combination with the parameters of Section B.4.1 this results
in a maximum Doppler frequency of fD,max = 100 Hz. The upper band limit of the

186



B.6. Conclusions

(a) Bandpass Filter
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(b) Automatic Gain Control
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Figure B.13.: Received signal (a) before and (b) after an automatic gain control.

amplitude fading, equaling 2 fD,max = 200 Hz, approaches the lower band limit of
the audio signal. The path delay of ∆l = 6.0 m or ∆τ = 20 ns results in a coherence
bandwidth of BCB = 5 MHz, and the channel is thus again frequency nonselective and
flat fading.

In this appendix, we dealt with the Doppler shift of the modulated carrier wave,
which leads in combination with the multipath propagation to signal fading. It is
worthwhile to note that also the modulating signal, that means the audio signal that is
represented in the amplitude of the carrier wave, undergoes a Doppler shift. However,
this Doppler shift is so small that it can be neglected in practice. For example, for a
sinusoidal audio signal with a frequency of 1000 Hz and an aircraft speed of 250 m/s
the maximum Doppler frequency using (B.4) is 8.3 · 10−4 Hz.

B.6. Conclusions

We reviewed the most common radio propagation channel models and performed
simulations for the aeronautical voice radio channel. We conclude that due to its narrow
bandwidth the aeronautical voice radio channel is a frequency nonselective flat fading
channel. In most situations the frequency of the amplitude fading is band-limited to
the maximum Doppler frequency, which is a simple function of the aircraft speed and
the carrier frequency. The amplitude fading of the channel might in parts be mitigated
by an automatic gain control in the radio receiver.
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Appendix C

Complementary Figures

This appendix presents complementary figures for Section 10.4, which are provided
for reference.
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Figure C.1.: Noise robustness curves identical to Figure 10.4, but plotted against differ-
ent SNR measures.
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Figure C.2.: Multiband compressor and limiter settings for transmitter-side speech
enhancement.

191



Appendix C. Complementary Figures

192



Bibliography

[1] K. Hofbauer, G. Kubin, and W. B. Kleijn, “Speech watermarking for analog
flat-fading bandpass channels,” IEEE Transactions on Audio, Speech, and Language
Processing, 2009, revised and resubmitted.

[2] K. Hofbauer and H. Hering, “Noise robust speech watermarking with bit syn-
chronisation for the aeronautical radio,” in Information Hiding, ser. Lecture Notes
in Computer Science. Springer, 2007, vol. 4567/2008, pp. 252–266.

[3] K. Hofbauer and G. Kubin, “High-rate data embedding in unvoiced speech,” in
Proceedings of the International Conference on Spoken Language Processing (INTER-
SPEECH), Pittsburgh, PY, USA, Sep. 2006, pp. 241–244.

[4] K. Hofbauer, H. Hering, and G. Kubin, “A measurement system and the TUG-
EEC-Channels database for the aeronautical voice radio,” in Proceedings of the
IEEE Vehicular Technology Conference (VTC), Montreal, Canada, Sep. 2006, pp. 1–5.

[5] K. Hofbauer, S. Petrik, and H. Hering, “The ATCOSIM corpus of non-prompted
clean air traffic control speech,” in Proceedings of the International Conference on
Language Resources and Evaluation (LREC), Marrakech, Morocco, May 2008.

[6] K. Hofbauer and G. Kubin, “Aeronautical voice radio channel modelling and
simulation—a tutorial review,” in Proceedings of the International Conference on
Research in Air Transportation (ICRAT), Belgrade, Serbia, Jul. 2006.

[7] K. Hofbauer, H. Hering, and G. Kubin, “Speech watermarking for the VHF radio
channel,” in Proceedings of the EUROCONTROL Innovative Research Workshop
(INO), Brétigny-sur-Orge, France, Dec. 2005, pp. 215–220.

[8] K. Hofbauer and H. Hering, “Digital signatures for the analogue radio,” in
Proceedings of the NASA Integrated Communications Navigation and Surveillance
Conference (ICNS), Fairfax, VA, USA, 2005.

193



Bibliography

[9] K. Hofbauer, “Advanced speech watermarking for secure aircraft identification,”
in Proceedings of the EUROCONTROL Innovative Research Workshop (INO), Brétigny-
sur-Orge, France, Dec. 2004.

[10] M. Gruber and K. Hofbauer, “A comparison of estimation methods for the VHF
voice radio channel,” in Proceedings of the CEAS European Air and Space Conference
(Deutscher Luft- und Raumfahrtkongress), Berlin, Germany, Sep. 2007.

[11] H. Hering and K. Hofbauer, “From analogue broadcast radio towards end-to-end
communication,” in Proceedings of the AIAA Aviation Technology, Integration, and
Operations Conference (ATIO), Anchorage, Alaska, USA, Sep. 2008.

[12] H. Hering and K. Hofbauer, “Towards selective addressing of aircraft with voice
radio watermarks,” in Proceedings of the AIAA Aviation Technology, Integration, and
Operations Conference (ATIO), Belfast, Northern Ireland, Sep. 2007.

[13] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and
Steganography, 2nd ed. Morgan Kaufmann, 2007.

[14] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,”
IBM Systems Journal, vol. 35, no. 3/4, pp. 313–336, 1996.

[15] N. Cvejic and T. Seppanen, Digital Audio Watermarking Techniques and Technologies:
Applications and Benchmarks. IGI Global, 2007.

[16] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum
watermarking for multimedia,” IEEE Transactions on Image Processing, vol. 6,
no. 12, pp. 1673–1687, Dec. 1997.

[17] D. Kirovski and H. S. Malvar, “Spread-spectrum watermarking of audio signals,”
IEEE Transactions on Signal Processing, vol. 51, no. 4, pp. 1020–1033, Apr. 2003.

[18] N. Lazic and P. Aarabi, “Communication over an acoustic channel using data
hiding techniques,” IEEE Transactions on Multimedia, vol. 8, no. 5, pp. 918–924,
Oct. 2006.

[19] X. He and M. S. Scordilis, “Efficiently synchronized spread-spectrum audio
watermarking with improved psychoacoustic model,” Research Letters in Signal
Processing, vol. 8, no. 1, pp. 1–5, Jan. 2008.

[20] M. H. M. Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory,
vol. 29, no. 3, pp. 439–441, May 1983.

[21] I. J. Cox, M. L. Miller, and A. L. McKellips, “Watermarking as communications
with side information,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1127–1141, Jul.
1999.

[22] B. Chen and G. W. Wornell, “Quantization index modulation: A class of provably
good methods for digital watermarking and information embedding,” IEEE
Transactions on Information Theory, vol. 47, no. 4, pp. 1423–1443, May 2001.

194



Bibliography

[23] J. J. Eggers, R. Bäuml, R. Tzschoppe, and B. Girod, “Scalar Costa scheme for
information embedding,” IEEE Transactions on Signal Processing, vol. 51, no. 4, pp.
1003–1019, Apr. 2003.

[24] F. Perez-Gonzalez, C. Mosquera, M. Barni, and A. Abrardo, “Rational dither
modulation: A high-rate data-hiding method invariant to gain attacks,” IEEE
Transactions on Signal Processing, vol. 53, no. 10, pp. 3960–3975, Oct. 2005.

[25] I. D. Shterev, “Quantization-based watermarking: Methods for amplitude scale
estimation, security, and linear filtering invariance,” Ph.D. dissertation, Delft
University of Technology, 2007.

[26] X. Wang, W. Qi, and P. Niu, “A new adaptive digital audio watermarking based
on support vector regression,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 8, pp. 2270–2277, Nov. 2007.

[27] Q. Cheng and J. Sorenson, “Spread spectrum signaling for speech watermarking,”
in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 3, Salt Lake City, UT, USA, May 2001, pp. 1337–1340.

[28] M. Hagmüller, H. Hering, A. Kröpfl, and G. Kubin, “Speech watermarking
for air traffic control,” in Proceedings of the European Signal Processing Conference
(EUSIPCO), Vienna, Austria, Sep. 2004, pp. 1653–1656.

[29] M. Hatada, T. Sakai, N. Komatsu, and Y. Yamazaki, “Digital watermarking based
on process of speech production,” in Multimedia Systems and Applications V, ser.
Proceedings of SPIE, 2002, vol. 4861, pp. 258–267.

[30] S. Chen and H. Leung, “Speech bandwidth extension by data hiding and phonetic
classification,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 4, Honolulu, Hawaii, USA, Apr. 2007,
pp. 593–596.

[31] M. Celik, G. Sharma, and A. M. Tekalp, “Pitch and duration modification for
speech watermarking,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 2, Philadelphia, PA, USA,
Mar. 2005, pp. 17–20.

[32] A. Sagi and D. Malah, “Bandwidth extension of telephone speech aided by data
embedding,” EURASIP Journal on Advances in Signal Processing, vol. 2007, no.
64921, 2007.

[33] B. Geiser, P. Jax, and P. Vary, “Artificial bandwidth extension of speech supported
by watermark-transmitted side information,” in Proceedings of the European Con-
ference on Speech Communication and Technology (EUROSPEECH), Lisbon, Portugal,
Sep. 2005, pp. 1497–1500.

[34] S. Sakaguchi, T. Arai, and Y. Murahara, “The effect of polarity inversion of speech
on human perception and data hiding as an application,” in Proceedings of the

195



Bibliography

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol. 2, Istanbul, Turkey, Jun. 2000, pp. 917–920.

[35] L. Girin and S. Marchand, “Watermarking of speech signals using the sinusoidal
model and frequency modulation of the partials,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1,
Montreal, Canada, May 2004, pp. 633–636.

[36] Y.-W. Liu and J. O. Smith, “Audio watermarking through deterministic plus
stochastic signal decomposition,” EURASIP Journal on Information Security, vol.
2007, no. 1, pp. 1–12, 2007.

[37] A. Gurijala and J. Deller, “On the robustness of parametric watermarking of
speech,” in Multimedia Content Analysis and Mining, ser. Lecture Notes in Com-
puter Science. Springer, 2007, vol. 4577/2007, pp. 501–510.

[38] R. C. F. Tucker and P. S. J. Brittan, “Method for watermarking data,” U.S. Patent
US 2003/0 028 381 A1, Feb. 6, 2003.

[39] S. Chen and H. Leung, “Concurrent data transmission through PSTN by CDMA,”
in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
Island of Kos, Greece, May 2006, pp. 3001–3004.

[40] S. Chen, H. Leung, and H. Ding, “Telephony speech enhancement by data hiding,”
IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 1, pp. 63–74,
Feb. 2007.

[41] R. Gray, A. Buzo, A. Gray, Jr., and Y. Matsuyama, “Distortion measures for speech
processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28,
no. 4, pp. 367–376, Aug. 1980.

[42] G. Kubin, B. S. Atal, and W. B. Kleijn, “Performance of noise excitation for
unvoiced speech,” in Proceedings of the IEEE Workshop on Speech Coding for Telecom-
munications, Saint-Adele, Canada, Oct. 1993, pp. 35–36.

[43] D. Schulz, “Improving audio codecs by noise substitution,” Journal of the Audio
Engineering Society, vol. 44, no. 7/8, pp. 593–598, Jul. 1996.

[44] A. Takahashi, R. Nishimura, and Y. Suzuki, “Multiple watermarks for stereo
audio signals using phase-modulation techniques,” IEEE Transactions on Signal
Processing, vol. 53, no. 2, pp. 806–815, Feb. 2005.

[45] H. M. A. Malik, R. Ansari, and A. A. Khokhar, “Robust data hiding in audio
using allpass filters,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 4, pp. 1296–1304, May 2007.

[46] H. Matsuoka, Y. Nakashima, T. Yoshimura, and T. Kawahara, “Acoustic OFDM:
Embedding high bit-rate data in audio,” in Advances in Multimedia Modeling, ser.
Lecture Notes in Computer Science. Springer, 2008, vol. 0302-9743, pp. 498–507.

196



Bibliography

[47] X. Dong, M. Bocko, and Z. Ignjatovic, “Data hiding via phase manipulation of
audio signals,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 5, Montreal, Canada, May 2004, pp.
377–380.

[48] P. Y. Liew and M. A. Armand, “Inaudible watermarking via phase manipulation
of random frequencies,” Multimedia Tools and Applications, vol. 35, no. 3, pp.
357–377, Dec. 2007.

[49] H. Pobloth and W. Kleijn, “On phase perception in speech,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol. 1, Phoenix, AZ, USA, Mar. 1999, pp. 29–32.

[50] H. Pobloth, “Perceptual and squared error aspects in speech and audio coding,”
Ph.D. dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden,
Nov. 2004.

[51] S. Haykin, Communication Systems, 4th ed. Wiley, 2001.

[52] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley,
2006.

[53] H. Fastl and E. Zwicker, Psychoacoustics, 3rd ed. Springer, 2006.

[54] S. van de Par, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen, “A
perceptual model for sinusoidal audio coding based on spectral integration,”
EURASIP Journal on Applied Signal Processing, vol. 2005, no. 9, pp. 1292–1304,
2005.

[55] M. D. Swanson, B. Zhu, A. H. Tewfik, and L. Boney, “Robust audio watermarking
using perceptual masking,” Signal Processing, vol. 66, no. 3, pp. 337–355, 1998.

[56] A. Sagi and D. Malah, “Data embedding in speech signals using perceptual mask-
ing,” in Proceedings of the 12th European Signal Processing Conference (EUSIPCO’04),
Vienna, Austria, Sep. 2004.

[57] S. Chen and H. Leung, “Concurrent data transmission through analog speech
channel using data hiding,” IEEE Signal Processing Letters, vol. 12, no. 8, pp.
581–584, 2005.

[58] W. B. Kleijn and K. K. Paliwal, Eds., Speech Coding and Synthesis. Elsevier, 1995.

[59] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proceedings of the
IEEE, vol. 88, no. 4, pp. 451–515, Apr. 2000.

[60] X. Huang, A. Acero, and H.-W. Hon, Eds., Spoken Language Processing: A Guide to
Theory, Algorithm and System Development. Pearson, 2001.

[61] R. C. Beattie, A. Zentil, and D. A. Svihovec, “Effects of white noise on the most
comfortable level for speech with normal listeners,” Journal of Auditory Research,
vol. 22, no. 1, pp. 71–76, 1982.

197



Bibliography

[62] H. J. Larson and B. O. Shubert, Probabilistic models in engineering sciences. Wiley,
1979, vol. 1.

[63] N. M. Blachman., “Projection of a spherical distribution and its inversion,” IEEE
Transactions on Signal Processing, vol. 39, no. 11, pp. 2544–2547, Nov. 1991.

[64] R. E. Blahut, Principles and Practice of Information Theory. Addison-Wesley, 1987.

[65] J. G. Proakis and M. Salehi, Communication Systems Engineering, 2nd ed. Prentice-
Hall, 2002.

[66] J. Aldis and A. Burr, “The channel capacity of discrete time phase modulation in
AWGN,” IEEE Transactions on Information Theory, vol. 39, no. 1, pp. 184–185, Jan.
1993.

[67] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Transac-
tions on Information Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[68] R. Padovani, “Signal space channel coding: Codes for multilevel/phase/fre-
quency signals,” Ph.D. dissertation, University of Massachusetts (Amherst), 1985.

[69] D.-S. Kim, “Perceptual phase quantization of speech,” IEEE Transactions on Speech
and Audio Processing, vol. 11, no. 4, pp. 355–364, Jul. 2003.

[70] K. K. Paliwal and L. Alsteris, “Usefulness of phase spectrum in human speech
perception,” in Proceedings of the International Conference on Spoken Language
Processing (INTERSPEECH), Geneva, Switzerland, Sep. 2003, pp. 2117–2119.

[71] E. Moulines and J. Laroche, “Non-parametric techniques for pitch-scale and
time-scale modification of speech,” Speech Communication, vol. 16, no. 2, pp.
175–205, February 1995.

[72] H. S. Malvar, “Lapped transforms for efficient transform/subband coding,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 6, pp. 969–978,
Jun. 1990.

[73] H. S. Malvar, “Extended lapped transforms: properties, applications, and fast
algorithms,” IEEE Transactions on Signal Processing, vol. 40, no. 11, pp. 2703–2714,
Nov. 1992.

[74] H. S. Malvar, Signal Processing with Lapped Transforms. Artech House, 1992.

[75] S. Shlien, “The modulated lapped transform, its time-varying forms, and its
applications to audio coding standards,” IEEE Transactions on Speec and Audio
Processing, vol. 5, no. 4, July 1997.

[76] Y.-P. Lin and P. Vaidyanathan, “A Kaiser window approach for the design of
prototype filters of cosine modulated filterbanks,” IEEE Signal Processing Letters,
vol. 5, no. 6, pp. 132–134, Jun. 1998.

198



Bibliography

[77] P. Boersma and D. Weenink. (2008) PRAAT: doing phonetics by computer (version
5.0.20). [Online]. Available: http://www.praat.org/

[78] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren,
and V. Zue. (1993) TIMIT acoustic-phonetic continuous speech corpus. CD-ROM.
Linguistic Data Consortium. [Online]. Available: http://www.ldc.upenn.edu/
Catalog/CatalogEntry.jsp?catalogId=LDC93S1

[79] P. Vary and R. Martin, Digital Speech Transmission. Wiley, 2006.

[80] P. Boersma, “Accurate short-term analysis of the fundamental frequency and
the harmonics-to-noise ratio of a sampled sound,” Proceedings of the Institute of
Phonetic Sciences, vol. 17, pp. 97–110, 1993.

[81] A. J. Jerri, “The Shannon sampling theorem—its various extensions and applica-
tions: A tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596,
Nov. 1977.

[82] R. G. Vaughan, N. L. Scott, N. L. Scott, D. R. White, and D. R. White, “The theory
of bandpass sampling,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp.
1973–1984, Sep. 1991.

[83] Y. Wu, “A proof on the minimum and permissible sampling rates for the first-
order sampling of bandpass signals,” Digital Signal Processing, vol. 17, no. 4, pp.
848–854, Mar. 2007.

[84] E. Ayanoglu, N. R. Dagdeviren, G. D. Golden, and J. E. Mazo, “An equalizer
design technique for the PCM modem: A new modem for the digital public
switched network,” IEEE Transactions on Communications, vol. 46, no. 6, pp.
763–774, Jun. 1998.

[85] J. Yen, “On nonuniform sampling of bandwidth-limited signals,” IRE Transactions
on Circuit Theory, vol. 3, no. 4, pp. 251–257, Dec. 1956.

[86] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, 3rd ed.
Springer, 2004.

[87] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice-Hall, 2002.

[88] A. Kohlenberg, “Exact interpolation of band-limited functions,” Journal of Applied
Physics, vol. 24, no. 12, pp. 1432–1436, Dec. 1953.

[89] ITU-T Recommendation P.48: Specification for an Intermediate Reference System, Inter-
national Telecommunication Union, Nov. 1988.

[90] ITU-T Recommendation G.191: Software Tools for Speech and Audio Coding Standard-
ization, International Telecommunication Union, Sep. 2005.

[91] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE Transac-
tions on Information Theory, vol. 40, no. 4, pp. 1147–1157, Jul. 1994.

199

http://www.praat.org/
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1


Bibliography

[92] ITU-T Recommendation P.862.x: Perceptual Evaluation of Speech Quality (PESQ),
International Telecommunication Union, Oct. 2007.

[93] K. Hofbauer. (2008) Demonstration files: Original and watermarked ATC speech.
[Online]. Available: http://www.spsc.tugraz.at/people/hofbauer/wmdemo1/

[94] J. Makhoul, “Spectral linear prediction: Properties and applications,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 23, no. 3, pp. 283–296,
Jun. 1975.

[95] M. Nilsson, B. Resch, M.-Y. Kim, and W. B. Kleijn, “A canonical representation
of speech,” in Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), vol. 4, Honolulu, Hawaii, USA, Apr. 2007, pp.
849–852.

[96] F. Gardner and W. Lindsey, “Guest editorial: Special issue on synchronization,”
IEEE Transactions on Communications, vol. 28, no. 8, pp. 1105–1106, Aug. 1980.

[97] Airborne VHF Communications Transceiver, Aeronautical Radio Inc. (ARINC) Char-
acteristic 716-11, Jun. 2003.

[98] L. E. Franks, “Carrier and bit synchronization in data communication–a tutorial
review,” IEEE Transactions on Communications, vol. 28, no. 8, pp. 1107–1121, Aug.
1980.

[99] P. Moulin and R. Koetter, “Data-hiding codes,” Proceedings of the IEEE, vol. 93,
no. 12, pp. 2083–2126, Dec. 2005.

[100] G. Sharma and D. J. Coumou, “Watermark synchronization: Perspectives and a
new paradigm,” in Proceedings of the IEEE Conference on Information Sciences and
Systems, Princeton, NJ, USA, Mar. 2006, pp. 1182–1187.

[101] D. J. Coumou and G. Sharma, “Watermark synchronization for feature-based
embedding: Application to speech,” in Proceedings of the IEEE International
Conference on Multimedia and Expo, Toronto, Canada, Jul. 2006, pp. 849–852.

[102] M. Schlauweg, D. Pröfrock, and E. Müller, “Soft feature-based watermark decod-
ing with insertion/deletion correction,” in Information Hiding, ser. Lecture Notes
in Computer Science. Springer, 2007, vol. 4567/2008, pp. 237–251.

[103] R. A. Scholtz, “Frame synchronization techniques,” IEEE Transactions on Commu-
nications, vol. 28, no. 8, pp. 1204–1213, Aug. 1980.

[104] H. Meyr and G. Ascheid, Synchronization in Digital Communications. Wiley, 1990,
vol. 1.

[105] F. M. Gardner, Phaselock Techniques, 3rd ed. Wiley, 2005.

[106] Y. R. Shayan and T. Le-Ngoc, “All digital phase-locked loop: concepts, design
and applications,” IEE Proceedings F: Radar and Signal Processing, vol. 136, no. 1,
pp. 53–56, Feb. 1989.

200

http://www.spsc.tugraz.at/people/hofbauer/wmdemo1/


Bibliography

[107] B. Kim, “Dual-loop DPLL gear-shifting algorithm for fast synchronization,” IEEE
Transactions on Circuits and Systems—Part II: Analog and Digital Signal Processing,
vol. 44, no. 7, pp. 577–586, Jul. 1997.

[108] P. A. V. Hall and G. R. Dowling, “Approximate string matching,” ACM Computing
Surveys, vol. 12, no. 4, pp. 381–402, Dec. 1980.

[109] G. Ungerboeck, “Fractional tap-spacing equalizer and consequences for clock
recovery in data modems,” IEEE Transactions on Communications, vol. 24, no. 8,
pp. 856–864, Aug. 1976.

[110] D. Artman, S. Chari, and R. Gooch, “Joint equalization and timing recovery in a
fractionally-spaced equalizer,” in Proceedings of the Asilomar Conference on Signals,
Systems and Computers, vol. 1, Pacific Grove, CA, USA, Oct. 1992, pp. 25–29.

[111] D. van Roosbroek, EATMP Communications Strategy - Volume 2 - Technical Descrip-
tion, 6th ed. EUROCONTROL EATMP Infocentre, 2006.

[112] R. Kerczewski, J. Budinger, and T. Gilbert, “Technology assessment results of
the Eurocontrol/FAA future communications study,” in Proceedings of the IEEE
Aerospace Conference, Big Sky, MT, USA, Mar. 2008, pp. 1–13.

[113] Manual of Radiotelephony, International Civil Aviation Organization Doc 9432
(AN/925), Rev. 3, 2006.

[114] H. Hering, M. Hagmüller, and G. Kubin, “Safety and security increase for air
traffic management through unnoticeable watermark aircraft identification tag
transmitted with the VHF voice communication,” in Proceedings of the 22nd Digital
Avionics Systems Conference (DASC 2003), Indianapolis, USA, 2003.

[115] H. Hering and K. Hofbauer, “System architecture of the onboard aircraft identi-
fication tag (AIT) system,” Eurocontrol Experimental Centre, EEC Note 04/05,
2005.

[116] M. Celiktin and E. Petre, AIT Initial Feasibility Study (D1–D5). EUROCONTROL
EATMP Infocentre, 2006.

[117] J. B. Metzger, A. Stutz, and B. Kauffman, ARINC Voice Services Operating Procedures
Handbook. Aeronautical Radio Inc. (ARINC), Apr. 2007, rev. S.

[118] M. Sajatovic, J. Prinz, and A. Kroepfl, “Increasing the safety of the ATC voice com-
munications by using in-band messaging,” in Proceedings of the Digital Avionics
Systems Conference (DASC), vol. 1, Indianapolis, IN, USA, Oct. 2003, pp. 4.E.1–8.

[119] M. Hagmüller and G. Kubin, “Speech watermarking for air traffic control,”
Eurocontrol Experimental Centre, EEC Note 05/05, 2005.

[120] K. Hofbauer and S. Petrik, “ATCOSIM air traffic control simulation speech
corpus,” Graz University of Technology, Tech. Rep. TUG-SPSC-2007-11, May
2008. [Online]. Available: http://www.spsc.tugraz.at/ATCOSIM

201

http://www.spsc.tugraz.at/ATCOSIM


Bibliography

[121] J. J. Godfrey. (1994) Air traffic control complete. CD-ROM. Linguistic Data Con-
sortium. [Online]. Available: http://www.ldc.upenn.edu/Catalog/CatalogEntry.
jsp?catalogId=LDC94S14A

[122] J. Segura, T. Ehrette, A. Potamianos, D. Fohr, I. Illina, P.-A. Breton, V. Clot,
R. Gemello, M. Matassoni, and P. Maragos. (2007) The HIWIRE database, a noisy
and non-native english speech corpus for cockpit communication. DVD-ROM.
[Online]. Available: http://www.hiwire.org/

[123] S. Pigeon, W. Shen, and D. van Leeuwen, “Design and characterization of the non-
native military air traffic communications database (nnMATC),” in Proceedings
of the International Conference on Spoken Language Processing (INTERSPEECH),
Antwerp, Belgium, 2007.

[124] L. Graglia, B. Favennec, and A. Arnoux, “Vocalise: Assessing the impact of data
link technology on the R/T channel,” in Proceedings of the Digital Avionics Systems
Conference (DASC), Washington D.C., USA, 2005.

[125] C. Arnoux, L. Graglia, and D. Pavet. (2005) VOCALISE - the today use of VHF as
a media for pilots/controllers communications. [Online]. Available: http://www.
cena.aviation-civile.gouv.fr/divisions/ICS/projets/vocalise/index_en.html

[126] L. Benarousse, E. Geoffrois, J. Grieco, R. Series, H. Steeneken, H. Stumpf, C. Swail,
and D. Thiel, “The NATO native and non-native (N4) speech corpus,” in Pro-
ceedings of the RTO Workshop on Multilingual Speech and Language Processing, no.
RTO-MP-066, Aalborg, Denmark, Sep. 2001, pp. 1.1–1.3.

[127] K. Maeda, S. Bird, X. Ma, and H. Lee, “Creating annotation tools with the
annotation graph toolkit,” in Proceedings of the International Conference on Language
Resources and Evaluation (LREC), Paris, France, 2002.

[128] C. Mallett. (2008) Autohotkey - free mouse and keyboard macro program with
hotkeys and autotext. Computer program. [Online]. Available: http://www.
autohotkey.com/

[129] Designators for Aircraft Operating Agencies, Aeronautical Authorities and Services,
International Civil Aviation Organization Nr. 8585/93, 1994.

[130] F. Schiel and C. Draxler, Production and Validation of Speech Corpora. Bastard
Verlag, 2003.

[131] A. Campos Domínguez, “Pre-processing of speech signals for noisy and band-
limited channels,” Master’s thesis, Royal Institute of Technology (KTH), Stock-
holm, Sweden, Mar. 2009, unpublished.

[132] M. Pätzold, Mobile Fading Channels. Modelling, Analysis and Simulation. Wiley,
2002.

[133] J. D. Parsons, The Mobile Radio Propagation Channel. Wiley, 2000.

202

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC94S14A
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC94S14A
http://www.hiwire.org/
http://www.cena.aviation-civile.gouv.fr/divisions/ICS/projets/vocalise/index_en.html
http://www.cena.aviation-civile.gouv.fr/divisions/ICS/projets/vocalise/index_en.html
http://www.autohotkey.com/
http://www.autohotkey.com/


Bibliography

[134] BAE Systems Operations, “Literature review on terrestrial broadband VHF
radio channel models,” B-VHF, Deliverable D-15, 2005. [Online]. Available:
http:///www.B-VHF.org

[135] D. W. Allan, N. Ashby, and C. C. Hodge, “The science of timekeeping,” Agilent
Technologies, Application Note AN 1289, 2000.

[136] MicroTrack 24/96 User Guide, M-Audio, 2005. [Online]. Available: http://www.
m-audio.com

[137] GPS 35-LVS Technical Specification, Garmin, 2000. [Online]. Available: http://
www.garmin.com

[138] eTrex Legend Owner’s Manual and Reference Guide, Garmin, 2005. [Online]. Avail-
able: http://www.garmin.com

[139] B. Sklar, Digital Communications, 2nd ed. Prentice-Hall, 2001.

[140] D. Foster. (2006) GPX: the GPS exchange format. [Online]. Available: http://
www.topografix.com/gpx.asp

[141] W. S. Cleveland and S. J. Devlin, “Locally-weighted regression: An approach to
regression analysis by local fitting,” Journal of the American Statistical Association,
vol. 83, no. 403, pp. 596–610, 1988.

[142] M. D. Felder, J. C. Mason, and B. L. Evans, “Efficient dual-tone multifrequency de-
tection using the nonuniform discrete Fourier transform,” IEEE Signal Processing
Letters, vol. 5, no. 7, 1998.

[143] J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT) with Audio Applica-
tions, 2nd ed. W3K Publishing, 2007.

[144] MATLAB Version 7.4.0.287 (R2007a), The MathWorks, 2007.

[145] M. Gruber, “Channel estimation for the voice radio – Basics for a measurements-
based aeronautical voice radio channel model,” Master’s thesis, FH JOANNEUM
- University of Applied Sciences, Graz, Austria, 2007.

[146] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing,
2nd ed. Prentice Hall, 1999.

[147] M. J. Levin, “Optimum estimation of impulse response in the presence of noise,”
IRE Transactions on Circuit Theory, vol. 7, pp. 50–56, 1960.

[148] D. D. Rife and J. Vanderkooy, “Transfer-function measurement with maximum-
length sequences,” Journal of the Audio Engineering Society, vol. 37, no. 6, pp.
419–444, 1989.

[149] J. Schwaner. (1995) Alternator induced radio noise. Sacramento Sky Ranch Inc.
[Online]. Available: http://www.sacskyranch.com/altnoise.htm

203

http:///www.B-VHF.org
http://www.m-audio.com
http://www.m-audio.com
http://www.garmin.com
http://www.garmin.com
http://www.garmin.com
http://www.topografix.com/gpx.asp
http://www.topografix.com/gpx.asp
http://www.sacskyranch.com/altnoise.htm


Bibliography

[150] Series 200 Single-Channel Communication System, Rohde & Schwarz, Munich,
Germany, data sheet.

[151] C. Bagwell. (2008) SoX - Sound eXchange (version 13.0.0). [Online]. Available:
http://sox.sourceforge.net/

[152] U. Zölzer, DAFX: Digital Audio Effects. Wiley, 2002.

[153] D. Mazzoni and R. Dannenberg. (2008) Audacity: The free, cross-platform sound
editor (version1.3.6). [Online]. Available: http://audacity.sourceforge.net/

[154] Core Audio Overview, Apple, Jan. 2007. [Online]. Available: http://developer.
apple.com/documentation/MusicAudio/Conceptual/CoreAudioOverview/

[155] S. Harris. (2006) Steve Harris’ LADSPA plugins (swh-plugins-0.4.15). [Online].
Available: http://plugin.org.uk/

[156] Designators for Aircraft Operating Agencies, Aeronautical Authorities and Services,
International Civil Aviation Organization Nr. 8585/138, 2006.

[157] Designators for Aircraft Operating Agencies, Aeronautical Authorities and Services,
International Civil Aviation Organization Nr. 8585/107, 1998.

[158] R. Lane, R. Deransy, and D. Seeger, “3rd continental RVSM real-time simulation,”
Eurocontrol Experimental Centre, EEC Report 315, 1997.

[159] Digital Aeronautical Flight Information File (DAFIF), 6th ed. National Geospatial-
Intelligence Agency, Oct. 2006, no. 0610, electronic database.

[160] Location Indicators, International Civil Aviation Organization Nr. 7910/122, 2006.

[161] D. Seeger and H. O’Connor, “S08 ANT-RVSM 3rd continental real-time simula-
tion pilot handbook,” Dec. 1996, Eurocontrol internal document.

[162] E. Haas. Communications systems. [Online]. Available: http://www.kn-s.dlr.de/
People/Haas/

[163] E. Haas, “Aeronautical channel modeling,” IEEE Transactions on Vehicular Technol-
ogy, vol. 51, no. 2, pp. 254–264, 2002.

[164] MATLAB Communications Toolbox, 3rd ed., The MathWorks, 2004.

[165] K. Metzger. The generic channel simulator. [Online]. Available: http://www.eecs.
umich.edu/genchansim/

[166] K. Hofbauer. The generic channel simulator. [Online]. Available: http://www.
spsc.tugraz.at/people/hofbauer/gcs/

[167] M. Dickreiter, Handbuch der Tonstudiotechnik. KG Saur, 1997, vol. 1.

204

http://sox.sourceforge.net/
http://audacity.sourceforge.net/
http://developer.apple.com/documentation/MusicAudio/Conceptual/CoreAudioOverview/
http://developer.apple.com/documentation/MusicAudio/Conceptual/CoreAudioOverview/
http://plugin.org.uk/
http://www.kn-s.dlr.de/People/Haas/
http://www.kn-s.dlr.de/People/Haas/
http://www.eecs.umich.edu/genchansim/
http://www.eecs.umich.edu/genchansim/
http://www.spsc.tugraz.at/people/hofbauer/gcs/
http://www.spsc.tugraz.at/people/hofbauer/gcs/

	Front Matter
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline
	1.3 Contributions
	1.4 List of Publications

	I Speech Watermarking
	2 Background and Related Work
	2.1 Digital Watermarking
	2.2 Related Work---General Watermarking
	2.3 Related Work---Speech Watermarking
	2.4 Our Approach

	3 Watermark Capacity in Speech
	3.1 Introduction
	3.2 Watermarking Based on Ideal Costa Scheme
	3.3 Watermarking Based on Auditory Masking
	3.4 Watermarking Based on Phase Modulation
	3.5 Experimental Comparison
	3.6 Conclusions

	4 Watermarking Non-Voiced Speech
	4.1 Theory
	4.2 Implementation
	4.3 Experiments
	4.4 Discussion
	4.5 Conclusions

	5 Watermark Synchronization
	5.1 Theory
	5.2 Implementation
	5.3 Experimental Results and Discussion
	5.4 Conclusions

	II Air Traffic Control
	6 Speech Watermarking for Air Traffic Control
	6.1 Problem Statement
	6.2 High-Level System Requirements
	6.3 Background and Related Work

	7 ATC Simulation Speech Corpus
	7.1 Introduction
	7.2 ATCOSIM Recording and Processing
	7.3 Orthographic Transcription
	7.4 ATCOSIM Structure, Validation and Distribution
	7.5 Conclusions

	8 Voice Radio Channel Measurements
	8.1 Introduction
	8.2 Measurement System for the Aeronautical Voice Radio Channel
	8.3 Conducted Measurements
	8.4 The TUG-EEC-Channels Database
	8.5 Conclusions

	9 Data Model and Parameter Estimation
	9.1 Introduction
	9.2 Proposed Data and Channel Model
	9.3 Parameter Estimation Implementation
	9.4 Experimental Results and Discussion
	9.5 Conclusions

	10 Experimental Watermark Robustness Evaluation
	10.1 Filtering Robustness
	10.2 Gain Modulation Robustness
	10.3 Desynchronization Robustness
	10.4 Noise Robustness
	10.5 Conclusions

	11 Conclusions
	Appendix
	A ATCOSIM Transcription Format Specification
	A.1 Transcription Format
	A.2 Amendments to the Transcription Format

	B Aeronautical Radio Channel Modeling and Simulation
	B.1 Introduction
	B.2 Basic Concepts
	B.3 Radio Channel Modeling
	B.4 Aeronautical Voice Channel Simulation 
	B.5 Discussion
	B.6 Conclusions

	C Complementary Figures
	Bibliography

