
Graz University of Technology
Institute for Applied Information Processing and Communications
Inffeldgasse 16a
A-8010 GRAZ

IAIK

Master’s Thesis

A canonical PDF Text Extraction Algorithm

Reconstruction of Electronic Signatures from Printouts

submitted by

Gregor Kofler, December 2009

Advisor: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhard Posch

Supervisor: Dipl.-Ing. Dr. techn. Thomas Rössler

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Danksagung

Zu Beginn möchte ich mich bei all denjenigen bedanken, die mich während meines Studi-
ums und in der Ausarbeitung der vorliegenden Masterarbeit unterstützt haben.

Besonderer Dank gilt:

Meinen Eltern, die mir dieses Studium ermöglicht haben und mir immer mit Rat und
Tat zur Seite standen.

Meiner Freundin, Stefanie die diese schwierige Zeit mit mir durchgestanden hat und im-
mer wieder ein offenes Ohr für meine Ideen hatte.

Meiner Oma und "Opa" Fritz, die durch Ihre Unterstützung mein Studium wesentlich
erleichtert haben.

Meinen Betreuern Dr. tech. Dipl.-Ing. Thomas Rössler und Dipl.-Ing. Thomas Knall,
die mich durch ihre konstruktive Kritik und hilfreichen Tipps sehr unterstützt haben. Vor
allem Dr. tech Dipl.-Ing. Thomas Rössler der mir mit viel Engagement und Einsatz zur
Seite stand.

Herrn Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch, der es mir ermöglicht hat auf
dem IAIK diese Masterarbeit durchzuführen.

Abstract

This master’s thesis deals with the reconstruction of Official Signatures from printouts.
Official Signatures are advanced electronic signatures which play an important role in
the field of eGovernment and bridge the gap between paper and electronic based doc-
uments. This thesis depicts and analyses the problems of Adobe’s Portable Document
Format (PDF) in view of text extraction as well as in view of reconstruction of Official
Signatures from printouts.

The term eGovernment has become a synonymous with a modern, qualitative and ef-
ficient public administration by utilising new information and communication technology.
In eGovernment, trust plays a central role in terms of authenticity and data integrity.
This is enabled by electronic signatures. With the introduction of the well known "Cit-
izen Card", every citizen has obtained a qualified electronic signature that is the legal
equivalence to a personal handwritten signature in the digital world. Public authorities
also have an electronic signature, called an Official Signature. Any document or notifica-
tion from a public authority is affixed by an Official Signature which facilitates a secure
communication to citizens by means of integrity and authenticity. In eGovernment, PDF
has been well-established for interchanging document’s because of its platform indepen-
dence and preservation of the visual appearance of the original document. In order to
support the reconstruction of electronic signatures based on printed PDF documents,
only the document´s text content is signed. Therefore a text extraction is needed. The
issue is that PDF is well suited for illustrating documents but not for processing its text
content. This results in the fact that PDF documents are not necessarily self-contained
and self-descriptive. It utilises external objects such as system fonts which makes a text
extraction on other systems infeasible.

This thesis proposes TEA a text extraction algorithm that is feasible, reliable and appli-
cable in the field of eGovernment and fulfils the requirements of Official Signatures.

Kurzfassung

Die vorliegende Masterarbeit behandelt die Problematik der Rekonstruktion von elek-
tronischen Signaturen, im Speziellen von Amtssignaturen, anhand papier-basierter Doku-
mente im Kontext von eGovernment. Amtssignaturen spielen eine wichtige Rolle in eGov-
ernment und schlagen eine Brücke zwischen elektronischen und papier-basierten Doku-
menten. Im Rahmen dieser Masterarbeit wird das weitverbreitete Portable Document
Format (PDF) hinsichtlich des Einsatzes im eGovernment Bereich analysiert und die
wesentlichen Schwächen im Bezug auf die Rekonstruktion von Amtssignaturen anhand
des Dokumentenausdruckes aufgezeigt.

Der Begriff eGovernment steht für eine moderne, qualitative und effiziente behördliche
Verwaltung unter Verwendung aktueller Informations- und Kommunikationstechnologien.
Datensicherheit spielt dabei eine zentrale Rolle, vor allem in Hinsicht auf Integrität und
Authentifizierung - Stichwort "elektronische Signaturen". Mit der Einführung der Bürg-
erkarte, hat jeder Bürger in Österreich die Möglichkeit Dokumente oder Formulare auch
elektronisch zu unterschreiben, unter der gleichbedeutenden juristischen Gültigkeit einer
handgeschriebener Unterschrift. Behörden besitzen, wie Bürger, auch eine elektronis-
che Signatur, eine sogenannte Amtssignatur. Sie wird auf Bescheide und andere Erledi-
gungen seitens einer Behörde aufgebracht, um damit kenntlich zu machen, dass es sich
um ein amtliches Schriftstück handelt. Eine Amtssignatur gewährleistest einerseits, dass
ein Dokument von einer Behörde stammt und andererseits, dass der Inhalt des Doku-
ments während der Übermittlung nicht verändert wurde. Im Bereich eGovernment, spielt
im elektronischen Verkehr mit dem BürgerInnen das Portable Document Format (PDF)
eine bedeutende Rolle. Das Format zeichnet sich vor allem durch seine Plattformunab-
hängigkeit und seine farb- und strukturtreue Darstellung aus. Bei sogenannten text-
basierten Amtssignaturen wird für eine spätere Verifikation von behördlichen Dokumenten
nur der Textinhalt der PDF Datei signiert, um die Prüfbarkeit der Signatur auch auf Ba-
sis des Ausdruckes gewährleisten zu können. Die Herausforderung dabei besteht in der
Text-Extraktion, da PDF für die Betrachtung und nicht für die weitere Textverarbeitung
entwickelt wurde.

Im Rahmen dieser Arbeit werden die Probleme der Text-Extraktion von PDF Doku-
menten aufgezeigt, sowie ein zuverlässiger und praktikabler Ansatz zur Text-Extraktion
für den Einsatz im Bereich eGovernment präsentiert.

Contents

1 Introduction 3
1.1 Motivation . 3

1.1.1 Legal Requirements . 4
1.1.2 Visual Representation of Electronic Signatures in Austria 6
1.1.3 Reconstruction of Electronic Signatures from Printouts 7

1.2 Objectives of this Thesis . 10
1.3 Structure of this Thesis . 10

2 Portable Document Format 11
2.1 History and Motivation . 11
2.2 Components . 13

2.2.1 File Structure . 13
2.2.2 Objects and Indirect Objects . 17
2.2.3 Document Structure . 22

2.3 Graphic Model . 25
2.3.1 Content Streams . 26
2.3.2 Marked Content Streams . 27
2.3.3 Graphic Objects . 27
2.3.4 Coordinate Spaces . 29

2.4 Text . 30
2.4.1 Characters and Glyphs . 31
2.4.2 Fonts . 32
2.4.3 Text Objects and Operators . 37
2.4.4 Text Positioning . 37

3 Specification 42
3.1 The problem to be dealt with . 43
3.2 PDF/A-1 (ISO 19005-1) . 44
3.3 Tagged PDF . 46

1

3.4 Algorithm Requirements . 50
3.5 Algorithm Specification . 51

3.5.1 Data Model . 51
3.5.2 Hidden Text Recognition (HTR) 53
3.5.3 Text Extraction (TE) . 60

4 Implementation 64
4.1 System Overview of PDF-AS . 64
4.2 Architecture overview . 66

4.2.1 Pipes and Filters . 66
4.2.2 System Architecture . 69

4.3 Technical Overview . 70
4.3.1 Model-Package . 71
4.3.2 Pipes-Package . 72
4.3.3 Filters-Package . 74

4.4 Testing . 76
4.4.1 Testing Procedure . 76
4.4.2 Test results . 83

5 Discussion 85
5.1 Future work . 87

A Appendix 88
A.1 Acronyms . 88
A.2 Glossary . 89

2

Chapter 1

Introduction

1.1 Motivation

New technologies enrich and make our life easier day for day. The progress of information
and communication technologies (ICT) have especially changed our society and modern
life is unthinkable without these technologies. This changeover does not only affect the
private and business sector, but also the public sector. The appliance of new informa-
tion and communication technologies in the public domain can be summarized under the
term eGovernment. The term eGovernment, also called E-Gov, digital Government or
on-line Government has become a synonym for a modern, qualitative and efficient public
administration. Applications of eGovernment are diversified and geared to improve the
quality and transparency of information, communication and transaction between public
authorities and citizens or businesses.

In the European Union, Austria is one of the leading countries in the field of eGov-
ernment. The major topics of eGovernment are authentication and integrity by means of
communication over untrusted channels such as the internet. Especially documents from
public authorities require particular properties for showing citizens that a document orig-
inates from an official authority. Moreover, in eGovernment the most application forms
require the signature of the person filling it out, which until now had to be signed on the
paper itself. With the technological change, authenticating by signature has to be carried
out electronically.

Public authorities have an electronic signature too, a so called the Official Signature,
which is used to sign digital documents. The Official Signature is an advanced "electronic
signature" attached by an authority to an administrative notice or document. Thereby,
not only the authenticity and data integrity of the document can be verified by means

3

of the Official Signature but the printout of the signed document is also treated as being
equivalent to the official document by the authorities. In other words, Official Signatures
build a bridge between electronic documents and printouts in eGovernment.

At the beginning of the work on this thesis there was the problem of reconstructing elec-
tronic signatures and especially of Official Signatures from printouts. In eGovernment,
many legal act needs an electronic signature to come into force. This means most of the
documents or notifications issued by a public authority are affixed by an Official Signa-
ture. The resulting signature depends on the document’s text content (i.e. the content to
be signed) and a secret key only known by the issuer. The receiver of the document (e.g.
a citizen) is able to verify the signature by using the public key of the issuer and apply-
ing mathematical operations on the document’s text content. Only if the verification is
successful the document’s text content can be considered being authentic and unmodified.

In eGovernment, the Portable Document Format (PDF) is well-established because of
the platform independence, the free access of PDF readers for nearly every operating
system and because of the preservation of the visual appearance of the original document
from which the PDF document is created. Furthermore almost every application supports
the export into PDF. Thus, PDF has become the first choice for interchanging documents
not only in eBusiness but also in eGovernment.

The legal situation in Austria requires, that citizens or public authorities should be able
to reconstruct an Official Signature from printout. Beside the cryptographic verification
of the signature, this implies also the reconstruction of the document’s text content either
by typing or scanning the printout’s text. Of course, the extracted text should be equal
with the one, that has been signed. This thesis points out in a later chapter, that text
extraction of PDF documents is a great challenge, especially considering a later recon-
struction. In the course of the investigations on this topic, a canonical text extraction
algorithm for a subset of PDF documents is proposed which provides a standardized and
unique result regarding the documents reading direction.

1.1.1 Legal Requirements

Austria was one of the first European states that introduced a series of laws to facilitate
eGovernment services. The major laws are the E-Government Act (E-GovG), Signature
Act (SigG) and Signature Regulation (SigV). They define the terms electronic signature,
identity and authenticity. Furthermore, the legal regulation lays down the basic require-
ments and conditions for the technical eGovernment infrastructure in Austria, such as for

4

the well known Austrian Citizen Card as well as for Official Signatures. Official Signatures
are one major motivation of this master’s thesis. Therefore it is worth mentioning the
definition of Official Signatures by the Austrian E-Government Act which is as follows:

Official Signature §19 E-GovG1

[...]
(1) An official signature, being the electronic signature of a public authority,
is an advanced electronic signature within the meaning of the Signaturgesetz
(Signature Act), the peculiarity of which is indicated by an appropriate at-
tribute in the signature certificate.

(2) An official signature serves to facilitate recognition of the fact that a doc-
ument originates from a controller in the public sector. It may therefore only
be used by this controller in accordance with the detailed conditions laid down
in sub paragraph 3, when signing electronically or drawing up the documents
issued by them.

(3) The official signature in views of electronic documents shall be displayed by
means of an image which the public sector controller has published on the Inter-
net in secure form as its own and a reference within the document confirming
that it has been officially signed. The information needed for the validation
of the electronic signature has to be provided by the controller of the public
sector.
[...]

As recently as the definition of Official Signatures is the definition of the probative value
of printouts, which supports the verification of the printout of the signed document.

Probative Value of Printouts §20 E-GovG1

[...]
An electronic document of an authority printed out on to paper is assumed to
be authentic (Paragraph 292 ZPO, RGBl. No. 113/1895) if signed with an of-
ficial signature. The official signature has to allow verification by reconverting
the printout of the document into its electronic form or the document must
be verifiable by other means provided by the authority. The document shall

1"Federal Act on Provisions Facilitating Electronic Communications with Public Bodies", Austrian
Federal Law Gazette BGBl. I Nr. 10/2004, amended by BGBl I Nr. 7/2008

5

include a reference to the source on the Internet,containing the procedure for
reconverting the printout into the electronic form and the applicable verifica-
tion mechanisms, or a reference to another verification process.
[...]

The E-GovG differs between the reconstruction and verification of Official Signatures.
However, from the technical point of view the two terms are equivalent and will be used
synonymously in this thesis.

1.1.2 Visual Representation of Electronic Signatures in Austria

As already mentioned, Official Signatures base on advanced electronic signatures within
the meaning of the Signature Act and replace the seal and stamp of public authorities. An
Official Signature provides an standardized visual representation to show various signature
information. Figure 1.1 illustrates the design of an Official Signature exemplarily. The
main element of an electronic signature is the so called signature value. It depends on
various cryptographic attributes and on the document’s text content by so called text-
based signatures. However, beside the signature value, the Official Signature provides

Signature Value 2lqZqgbg3VQQ7Cwdw5ViG+CKte4xK7QzrtndrCVTnLXohY7G1gsjI28t0iwuiMWu

Signatory serialNumber=886647532789,givenName=Gregor,SN=Ko�er,CN=Gregor
Ko�er,C=AT

Date/Time-UTC 2009-10-29T22:27:17Z

Issuer-Certificate CN=a-sign-Premium-Sig-02,OU=a-sign-Premium-Sig-02,O=A-Trust Ges. f.
Sicherheitssysteme im elektr. Datenverkehr GmbH,C=AT

Serial-No. 243588

Method urn:pdfsig�lter:bka.gv.at:text:v1.1.0

Parameter etsi-moc-1.1@1c84e76a

Verification Information about the veri�cation of the electronic signature and of the printout
can be found at: https://www.signaturpruefung.gv.at

Figure 1.1: Visual representation of an Official Signature.

various so called signature attributes. The most important attributes are:

Signature value (Signaturwert) represents the value of the electronic signature cal-
culated by a cryptographic function (see Figure 1.2).

Signatory (Unterzeichner) describes the name of the signatory.

Date/Time-UTC (Datum/Zeit-UTC) represents the date and time of signing.

Issuer certificate (Aussteller-Zertifikat) attests the identity of the certificate service
provider that has issued the signatory signing certificate.

6

Serial-nr. (Serien-Nr.) represents the signatory’s certificate’s number.

Method (Methode) describes the used signature method or algorithm.

Parameter (Parameter) provides additional attributes of the signing method applied.

Note (Prüfhinweis) gives or points to information for verifying the signature.

Image/Blip designates that the signature is an Official Signature.

1.1.3 Reconstruction of Electronic Signatures from Printouts

The process of reconstruction of electronic signatures corresponds to the manual verifica-
tion of signatures. Therefore, we have to take a closer look how a signature is created and
verified in general. Figure 1.2 shows the signing and verification process of a notification,
represented by a PDF document. The steps for signing and verifying are summarized
briefly as follows (following the PDF-AS technology):

Signing

1. The text content of the underlying notification (PDF document) is extracted by a
well-defined text extraction algorithm. The extracted text represents the content to
be signed.

2. A hash value of the extracted text is calculated by a defined hash function (e.g.
SHA-1).

3. The calculated hash value is signed with the private key of the signatory.

4. The signature value and the signatory’s certificate, which affirms the authenticity of
the sender and keeps the public key for verification, are attached on the PDF docu-
ment. However, an Official Signature keeps a signatory certificate’s number instead
of the signatory’s certificate and in addition a issuer certificate of the certificate
service provider that has issued the signatory signing certificate. So the signatory’s
certificate’s have to be retrieved by the certificate service provider.

Any step at signing is carried out in background from the PDF-Amtssignatur (PDF-AS)
application, which will be discussed in a later chapter in this thesis. The verification of
the signature is performed analogue in a slight modified order.

7

Verification

1. The signature information is separated from the document.

2. The content of the underlying notification (PDF document) is extracted by a well-
defined text extraction algorithm. If the notification is only available as printout,
the text content of the document is typed out by hand from a citizen.

3. The hash value of the extracted text from step 2 is calculated by a defined hash
function (e.g. SHA-1).

4. The public key from the signatory certificate is used to decrypt the hash value
calculated by the sender.

5. The calculated hash value is compared with the decrypted hash value, if they are
equal, the notification is authentic and unmodified.

For document verification, there are two different methods. On the one hand, if the
document has been received electronically as PDF file then the document is verified au-
tomatically by the PDF-AS application. On the other hand, if the document is only
available as printout, a citizen can verify the document by entering the printout’s text by
hand. Thus, at the time of signing the method of text extraction from PDF documents is
crucial for a later verification of the document by means of reconstructing the signature
from printout. Only if the "automatic" text extraction applied by PDF-AS during signing
produces the same result as the manual one, that bases on the entered text by hand, the
verification of the Official Signature, based on printout, can succeed. Due to the nature
of PDF, automatic text extraction regarding a later reconstruction from printout is a
challenging task. Moreover, some features of PDF do not satisfy the legal requirements
of Official Signatures. So one challenge is to identify and to eliminate those features of
PDF, that prevent a proper extraction of the signed text, in order to develop a reliable
text extraction algorithm.

In the course of this thesis, we will point out the problems of generic PDF documents
regarding text extraction by means of the later reconstruction and how to tackle these
problems with the new PDF/A-1a format. Moreover, this thesis introduces TEA an text
extraction algorithm for PDF/A documents which aims to satisfy the legal requirements
of Official Signatures.

8

PDF document
(notification)

Hash
function

hash value

Encrypt hash
 using issuer´s

private key

101100110101

Text
Extraction

plain text

certificate

signature value

public key

IAIK
111100000101

electronically signed
PDF document

101100110101

electronically signed
document

101100110101

 document

certificate

public key

IAIK

Decrypt hash
 using issuer´s

public key
from certificate

signature value

111100000101

Text
Extraction

plain text

Hash
function

101100110101101100110101

VerificationSigning

printout
PDF document

4

1

2

3
2

1

4

3

5

Figure 1.2: Work-flow of signing and verifying documents in eGovernment.

9

1.2 Objectives of this Thesis

In order to clarify the boundaries and content of this thesis, the objectives of this work
are defined as follows:

• The primary focus is on the specification of an canonical text extraction algorithm
which follows the reading direction with following key aspects:

– technically neutral

– correct handling of footer and header

– based on PDF/A specification

• The secondary objective focuses on the implementation of the specified algorithm to
be used within PDF-AS library, a core library used to create electronic signatures
in respect to the needs of Official Signatures as given by the E-GovG.

1.3 Structure of this Thesis

The results initiated by the motivation stated above are summarized in this thesis, which
is organized as follows:

Chapter 2 offers a survey regarding the sophisticated Portable Document Format (PDF)
version 1.4. It continues with the examination of PDF syntax, structure and how it man-
ages text in general. This chapter is mainly based on the "PDF Reference: Adobe Portable
Document Format Version 1.4" from Adobe Systems [PPS01] and the German book "Die
Post Script- und PDF-Bibel" form Thomas Merz [MD01].
Chapter 3 is divided into two parts. The first part deals with the problems concerning
the rich-feature nature of PDF in terms of electronic signatures and shows the problems of
PDF 1.4 in processing the document’s text content. The second part proposes a canonical
Text Extraction Algorithm (TEA) for PDF/A-1a documents. It specifies how to extract
text from PDF/A-1 documents for signing and verification in eGovernment.
Chapter 4 provides a detailed overview of the implementation of TEA which involves
the introduction of PDF-AS, the system architecture and basic design of TEA.
Finally, in Chapter 5, the strengths and weaknesses of TEA are outlined and an outlook
for future work are given.

10

Chapter 2

Portable Document Format

When talking about text extraction from PDF documents it is worth taking a closer look
at this frequently used document format. In this chapter we will examine Adobe’s PDF.
However a complete treatment of PDF is behind the scope of this thesis. Hence, we will
focus on the components of a PDF File (Section 2.2), graphic model of PDF (Section 2.3)
and how text is managed in PDF (Section 2.4). This chapter is mainly based on the "PDF
Reference: Adobe Portable Document Format Version 1.4" from Adobe Systems [PPS01]
and the book "Die Post Script- und PDF-Bibel" form Merz Thomas [MD01]. At the end
of this chapter we will show the problems of PDF 1.4 by means of processing text and
how these problems have been tackled by the PDF/A-1 specification in Section 3.2.

2.1 History and Motivation
In 1993, the Californian company Adobe Systems developed and published a platform in-
dependent document exchange format called PDF. Adobe’s Portable Document Format
emerged from the demand for an software, hardware and operating system independent
document exchange format, with the aim of preserving the document’ s fidelity and ap-
pearance.

The Portable Document Format is closely related to Adobe’s Post Script. Both for-
mats have been designed as a device independent page description language for creating
graphical output. While PostScript focuses on the standardization of document print-
outs, PDF is optimized for document exchange by preserving the uniform presentation
on screen, regardless of the environment in which documents were created.

Nowadays, there are more than 250 million PDF documents on the World Wide Web
and over 500 million copies of the Acrobat Reader around the world [PPS01]. Currently,

11

the Portable Document Format is used in all areas of the private sector and industry as
well in the public domain. The reason for this success is the fact that Adobe’s Reader for
reading and printing PDF documents has become freely available since PDF version 1.1.
On the other hand the Internet has grown explosively and has become more attractive for
document exchange. As a consequence, PDF could distribute rapidly over the Internet
and has become the de facto standard as interchange format in the World Wide Web.

Over the years, the PostScript and Portable Document Format have been improved sev-
eral times since they were first published. New versions of the Portable Document Format
are published in parallel with the releases of Adobe’s software suite, see Table 2.1.

Year Event

1985 PostScript Level 1

1991 PostScript Level 2

1993 Portable Document Format 1.0 / Acrobat 1.0

1994 Portable Document Format 1.1 / Acrobat 2.0

1996 Portable Document Format 1.2 / Acrobat 3.0

1997 PostScript Level 3

1999 Portable Document Format 1.3 / Acrobat 4.0

2001 Portable Document Format 1.4 / Acrobat 5.0

2003 Portable Document Format 1.5 / Acrobat 6.0

2005 Portable Document Format 1.6 / Acrobat 7.0

2006 Portable Document Format 1.7 / Acrobat 8.0

2008 Portable Document Format 1.7 Ext. Level 3 / Acrobat 9.0

Table 2.1: Development history of PostScript and PDF.

On July 2008, the Portable Document Format was published as open standard ISO
32000-1:2008 with the title "Document management – Portable document format – Part
1: PDF 1.7". In addition, subsets of PDF have been, or are being, standardized under
the International Organization of Standardization (ISO):

PDF/A-1 for long-term preservation of electronic documents in corporate, government
and academic environments published as ISO 19005-1:2005; based on PDF 1.4

PDF/X for the exchange and printing of graphics, published as ISO 15930.

PDF/E for the exchange of complex technical documents for engineering and manufac-
turing as well as for architecture and construction.

PDF/UA for universally accessible PDF file.

12

The listing above can not be claimed to be complete and only shows a fragment of the
available standards. Every standard covers a special domain. The PDF/A-1 standard
for long-term preservation of electronic documents. The PDF/A-1 standard does not
describe a new document format but it describes a profile of Adobe’s PDF 1.4 which
makes it more suitable for archiving electronic document over long periods of time. The
PDF/A-1 standard is well suited for text extraction. So it will be discussed in Section
3.2, "PDF/A-1 (ISO 19005-1) and Tagged PDF".

2.2 Components

As mentioned before, the Portable Document Format has been designed as a device inde-
pendent page description language. Like every language, it has its own alphabet, syntax
and structure. This section outlines the different components of a PDF file containing the
file structure and document structure as well as the provided objects and indirect objects
of the PDF specification. The Backus-Naur-Form (BNF) is used in the following section
in order to describe the PDF Syntax.

2.2.1 File Structure

A PDF document is optimized for efficient random access and incremental updates. There-
fore, PDF 1.4 [PPS01] specifies four elements which are mandatory for a PDF document:

• A header representing the first line of a PDF file and specifying the applied PDF
version of the document.

• A body containing a sequence of non-ordered indirect objects which will be discussed
in Section Objects and Indirect Objects. An indirect object contains one or more
objects and supports randomized access. An object represents a simple data type,
such as a Number, a String, a Name. Furthermore, PDF provides a huge number
of predefined complex objects such as pages, fonts and images.

• A cross-reference table points to the most important indirect objects in the file.

• A trailer describes where to find the cross-reference table in the file.

Beside these elements, there are some lexical conventions in a PDF file. A PDF character
is either a regular, delimiter or white-space character. The ASCII characters NULL (hex-
value:00), TAB (hex-value:09), LINE FEED (hex-value:0A), CARRIAGE RETURN (hex-
value:0D) and SPACE (hex-value:20) represent a white-space character. Every line is
terminated by a carriage return, line feed or both of them. The delimiter characters (,),

13

<, >, [,], {, }, / delimit and group characters to object tokens. The special character
% introduces a comment statement. An entire syntactical specification of each character
type is shown in Listing 2.1 in BNF.

<whitespace -char > ::=

NULL|TAB| LINE_FEED | CARRIAGE_RETURN |SPACE

<delimiter -char >::=

’(’|’) ’|’<’|’>’|’[’|’]’|’{’|’}’|’/’

<eol > ::=

CARRIAGE_RETURN | LINE_FEED | CARRIAGE_RETURN LINE_FEED

<digit > ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’

<number > ::= <digit >|<digit ><number >

Listing 2.1: Definition of the most important character types in BNF

The following section describes the most important elements of the file structure such
as the cross-reference table and the file trailer. Moreover, PDF’s smart technique for
updating PDF documents is proposed.

Cross-Reference Table

An essential part of a PDF file is the cross-reference table. It enables a randomized access
to any indirect object in the body without need to read the entire file. Each cross-reference
table is introduced by the keyword xref and can be divided into multiple sections. Each
section consists at least of a header and an entry. A detailed syntactical specification of
the cross-reference table and its elements is defined in Listing 2.2 in BNF.

<byte -offset > ::= <digit ><digit ><digit ><digit >

<digit ><digit ><digit ><digit ><digit ><digit >

<gen -number > ::= <digit ><digit ><digit ><digit ><digit >

<free -or -in -use >::= <’f’|’n’>

<section -header >::= <number > <number ><eol >

<section -entry > ::=

<byte -offset > <gen -number > <free -or -in -use ><eol >

<section > ::= <section -header ><section -entry >

<sections > ::= <section >|< section ><sections >

<cross -reference -table > ::= ’xref ’<eol ><sections >

Listing 2.2: PDF Cross-Reference Table specification in BNF

The section-header consists of an indirect object number and the number of indirect
objects contained in this section. A section contains at least one section-entry. A section-
entry consists of a 10-digit byte offset number, a 5-digit generation number and a marker

14

indicating that the affected entry is free "f" or in-use "n". If an entry is marked as in-use,
the 10-digit number represents the number of bytes from the beginning of the file to the
beginning of the indirect object. Otherwise, if an entry is marked as free, the indirect
object number is not in-use and the 10-digit number represents the number of the next
free object in the entire cross-reference table. All free entries build a circular linked list
starting with obj 0, which is the first object (entry) in the cross-reference table. The last
free entry links back to the first table entry. Beside the offset-number, each section-entry
has a generation number which describes how often an object was updated, the number
frees and in-uses. As a convention the first table entry (obj 0) is marked as free and has
the generation number 65535.

To enable a better understanding, Listing 2.3 illustrates a cross reference table with
two sections and three section-entries, whereas obj 1, which is the second section-entry,
is marked as in-use and begins at the byte 123 from the beginning of the PDF file. The
obj 2, which is the third section-entry, is marked as free, which means the object number
is not in-use anymore (e.g. the object was deleted).

xref

% s e c t i o n has one entry and first o b j e c t is obj 0

0 1

% obj 0 , first free entry of first s e c t i o n

0000000000 65535 f

% s e c t i o n has two e n t r i e s and first o b j e c t is obj 1

1 2

% obj 1 , first in - use entry of s e c o n d s e c t i o n

0000000123 00000 n

% obj 2 , s e c o n d free entry of s e c o n d s e c t i o n

% it was d e l e t e d and p o i n t s to the next free o b j e c t

0000000000 00001 f

Listing 2.3: Example of a Cross-Reference Table in PDF

File Trailer

The file trailer of a PDF File assigns the position of a cross-reference table. More precisely,
it holds the number of bytes from the beginning of the PDF file to the beginning of the
cross-reference table. It has the advantage that a PDF viewer application does not have
to search the complete document for the cross-reference table because the file trailer is
always at the end of the PDF File. Listing 2.4 illustrates an example of a trailer in a PDF
file.

15

trailer

% begin of t r a i l e r d i c t i o n a r y

<<

% size of the cross - r e f e r e n c e table

\Size 10

% c a t a l o g d i c t i o n a r y

\Root 2 0 R

% end of t r a i l e r d i c t i o n a r y

>>

startxref

% bytes from the b e g i n n i n g of the file to the

% b e g i n n i n g of the cross - r e f e r e n c e table

1234

% end of file m a r k e r

%%EOF

Listing 2.4: Example of a Trailer Entry in PDF

The file trailer is introduced by the keyword trailer, a trailer dictionary, the keyword
startxref and the number of offset bytes from the beginning of the PDF file. A dictionary
is a simple data type. An overview of all the data types available in PDF gives the
next Section, Objects and Indirect Objects. The trailer dictionary contains additional
information about the trailer such as the document catalog dictionary or the size of the
cross-reference table. The benefit of the catalog dictionary will be explained in detail in
the course of this section. Listing 2.5 shows the specifiaction of the file trailer in detail.

<trailer > ::= ’trailer ’<eol ><dictionary ><eol >

’startxref ’<eol ><number ><eol >’%%EOF ’

Listing 2.5: PDF file trailer specification in BNF

Incremental Updates

As mentioned before, a section entry is either marked as "in-use" or as "free". If a section
entry is in-use, it represents an indirect object of the PDF document; otherwise, a free
section entry means an indirect object has been deleted. Consequently the indirect object
number can be allocated for a new indirect object.

This mechanism is used intensely by a PDF creator application such as Adobe Acrobat.
This mechanism also allows an incremental update of PDF documents which provides
quick saving of small changes on large documents. If an incremental update is performed,

16

a new trailer is created and each new or changed object is appended to a new cross-
reference section. The new trailer contains all the entries of the old trailer. The new
cross-reference section not only contains the indirect objects that have been changed,
replaced or deleted but the entry of obj 0 as well.

2.2.2 Objects and Indirect Objects

The PDF specification defines eight basic types of objects which are similar (but not
equivalent) to data types and structures of other high-level programming languages such
as Java (see Table 2.2). In the following section, the term object is equivalent to the terms
data type and data structure and vice verse. In this section the BNF notation is used for
the syntactical description of the PDF data types. The PDF specification is extended
step-by-step in BNF.

Portable Document Format 1.4 Java 5

Boolean value boolean

Numeric value integer, float, double

String String, char[]

Name -

Array Object[]

Dictionary Map<Object,Object>

Stream String

Null null

Table 2.2: Comparison of data types between PDF 1.4 and Java 5 (source:[PPS01]).

Beside the following basic object types, there exist more complex data structures (such
as dates, name trees, and number trees) as well functions and file specifications. These
complex elements are not further discussed here. A detailed description of these elements
can be found in Section 3.8 of the PDF Reference [PPS01].

Boolean values

The keywords true and false introduce a boolean object. It can be used as value in
arrays and dictionaries or as operand in functions and conditional statements.

<boolean -value > ::= ’true ’|’false ’

Listing 2.6: BNF of boolean values in PDF

17

Numeric values

The PDF Reference allows integers as well as floating point numbers with the restriction
of the exponential format.

<integer > ::= (’-’)?<number >

<numeric -value > ::= <integer >.< number >

Listing 2.7: BNF of numeric values in PDF

Strings

A string object contains text and can be defined in two different ways: either as a literal
string by a sequence of literal characters enclosed in parentheses or as a byte-sequence
in hexadecimal representation enclosed in angle brackets. Both representations are il-
lustrated in Listing 2.8. A literal string can represent characters outside of the ASCII
character set by specifying a three digit octal number with a leading \ character. A
detailed specification of PDF strings is shown in Listing 2.9.

% s t r i n g r e p r e s e n t a t i o n by a s e q u e n c e of l i t e r a l c h a r a c t e r s

(This is a literal string .)

% h e x a d e c i m a l r e p r e s e n t a t i o n

% i n t e r p r e t e d as ASCII code 41(A) , 42(B) and 43(C) - b u i l d s the

s t r i n g ABC

<414243 >

Listing 2.8: Example of the different string representations in PDF

<special -char > ::= <delimiter -char >|

’*’|’!’|’&’|’^’|’.’|@|%

<octal -digit > ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’

<escape -char > ::=

’\’<octal -digit ><octal -digit ><octal -digit >

<literal > ::= ’a’|’b’|’c ’...| ’x’|’y’|’z’|

’A’|’B’|’C ’...| ’X’|’Y’|’Z’|

<special -char >

<string > ::=

’(’(<escape -char >|< literal >)*’) ’|’<’(<number >)*’>’

Listing 2.9: BNF of Strings in PDF

18

Names

A name is introduced by the slash character / and a valid sequence of characters. A
valid sequence must not contain a delimiter or white-space character. The character "#"
is only allowed in conjunction with a hexadecimal value. For instance, the valid literal
name /@Master’s#20Thesis_ results in @Master’s Thesis_. Name objects are unique
and used to identify parameters or functions. Unique means that two name objects with
the same character sequence identify the same object.

<all -literal > ::= <literal >|< special -char >

<hex -value -names > ::= ’#’<number >

<name > ::= ’/’(<all -literal >|<hex -value -name >)+

Listing 2.10: BNF of Name Objects in PDF

Arrays

A PDF array is similar to an object array (Object[]) in Java. In PDF, an array is a group
of elements enclosed in square brackets [,] and can have different object types. Listing
2.11 shows an example of a PDF array containing a number, a string and a name object.
Listing 2.12 specifies the array object in BNF.

[42 (This is a string) /Name]

Listing 2.11: Example of PDF Array storing different object types

<primary -datatype > ::= <boolean -value >|< numeric -value >|

<name >|< string >|< dictionary >

<array > ::=

’[’(<primary -datatype >|< indirect -obj -reference >)+’]’

Listing 2.12: BNF of Array type in PDF

Dictionaries

A dictionary is a data structure containing key/value pairs as elements. A key must be
a name object and a value can be any type of object. The double assignment of a key
results into an undefined value. A dictionary structure is bounded by two angle brackets
« and ».

<<

/Type Listing

/ SubType SubListing

/ FirstItem 1 % key : FirstItem , value : 1

19

/ SecondItem (a string) % key : SecondItem , value : a s t r i n g

/ SubDict <</ FirstItem 1.1 >>

>>

Listing 2.13: Example of a Dictionary Object

By convention, the entries Type and SubType identify the type of dictionary. In PDF
there is a huge set of predefined dictionaries with clear specified key/value pairs. These
dictionaries are also called complex objects. For instance, a Type1 font object has the
key values pairs Type/Font and SubType/Type1.

<dictionary -entry > ::=

<name > (<primary -datatype >|< indirect -obj -reference >)

<dictionary > ::= ’<<’(<dictionary -entry >)+’>>’

Listing 2.14: BNF of Dictionary Type in PDF

Stream Objects

In contrast to the aforementioned data types, a stream object is always defined as an
indirect object. A stream object consists of a stream dictionary and a stream sequence.
A stream dictionary contains additional information about the stream sequence such as
the sequence length and the applied filters. The stream sequence represents the data
byte-stream. It is enclosed by the keywords stream and endstream. Listing 2.15 shows
a minimal example of a stream object defined as indirect object.

2 0 obj % i n d i r e c t o b j e c t

<</ Length 42>>

stream

... sequence of 42- bytes ...

endstream

endobj

Listing 2.15: Minimal example of a Stream-Object

<stream -sequence > ::= ’stream ’BYTE -SEQUENCE ’endstream ’

<stream -object > ::=

<indirect -obj -def -header >

<dictionary ><stream -sequence >

<indirect -obj -def -tail >

Listing 2.16: BNF of Stream Objects in PDF

20

Filters

Filters are optional parameters of stream objects. Filters represent no data type but
a decompression or decoding algorithm embedded in a PDF viewer application. More
precisely, filters describe how to interpret the byte-sequence of a stream object. Thus
filters are classified into two groups:

• Decoding filters describe how to decode arbitrary 8-bit binary data. The PDF
Reference version 1.4 specifies two filters which allow the decoding of encoded data
into ASCII hexadecimal representation.

• Decompression filters describe how to decompress the compressed data. The
compression of large data volumes is valuable reducing storage requirements and
transmission time.

In addition, the PDF specification allows cascading of two or more filters. Therefore each
filter is registered in an array and is executed in a registered order.

% S t r e a m d i r e c t o r y

<<

/ Length ...

/ Filter [/ ASCIIHexDecode / FlateDecode]

>>

Listing 2.17: Filter example of a Stream Object

The example in Listing 2.17 shows a stream directory which contains an array with two
specified filters: ASCIIHexDecode and FlateDecode. The data of the stream will be
decoded at first with the ASCIIHexDecode algorithm and then the result will be de-
compressed with the zlib/deflate algorithm. The encoding of the data must be realized
in reverse order (zlib/deflate and ASCIIHexEncode). Table 2.3 summarizes the most
important standard filters.

Filter Description

ASCIIHexDecode Decodes encoded ASCII data in hexadecimal representation

ASCII85Decode Decodes encoded ACSII base-85 data

LZWDecode Decompresses data compressed using the LZW (Lempel-Ziv-

Welch) adaptive compression method.

FlateDecode Decompresses data compressed using the zlib/deflate compres-

sion method.

RunLengthDecode Decompresses data compressed using a byte oriented run-length

compression algorithm.

Table 2.3: Extraction of available standard filters.(source:[PPS01])

21

Indirect Objects

Indirect Objects describe no objects in the sense of data types but indirectly reference
objects by using unique object numbers. They are broadly similar to object references
known from Java. An indirect object is enclosed by the keywords obj and endobj.

<indirect -obj -def -header > ::=

’obj ’ <number > <number ><eol >

<indirect -obj -def -tail > ::= ’endobj ’

<indirect -obj -definition > ::=

<indirect -obj -def -header >

(<primary -datatype >|< dictionary ><stream -sequence >)<eol >

<indirect -obj -def -tail >

<indirect -obj -reference > ::=

<unique -obj -Nr > <gen -obj -number > ’R’

Listing 2.18: Indirect Object specification in BNF

Only indirect objects can be referenced by other objects. An indirect object is referenced
by its unique number and the keyword R. The definition of an indirect object is introduced
by the keyword obj, a unique object number and a generation number. The generation
number determines how often an object has been deleted and reused over the incremental
update mechanism.

2.2.3 Document Structure

A PDF document can be seen as a composite of indirect objects contained in the body
section of the PDF file. To guarantee fast access to large documents, and to provide ad-
ditional information about the appearance of a PDF document on the screen or printout,
this composition of objects is managed hierarchically in a tree structure (see Figure 2.1).

In computer science, tree structures are frequently used because of simplicity and to
aid better understanding. A recursive definition of a tree structure is: a tree consists of a
root, a left sub-tree and a right sub-tree. A node without children is called leaf. A node
with a parent and children is called an inner tree node. In a tree, there is only one node
without a parent - it is the root node.

At the root of the document’s structure is the document’s catalog, which is a directory.
The document’s catalog references to other dictionaries containing references to simple
or complex objects. A complex object is a predefined dictionary which can be accessed
through defined key/value pairs. The PDF Reference specifies a large number of different

22

complex objects, and predefined dictionaries, such as page objects or fonts. The PDF
specification describes several tree structures for maintaining different logical structure in
a document such as outlines and article threads. An overview of the complete PDF Object
Hierarchy is illustrated in Figure 2.1. It is important to understand how the content of a

trailer

/Encrypt

/Root

/Info

/ID

/AcroForm

/StructTree-
Root

/Dests

/Pages[]

/Outlines

/Threads[]

/PageLabels

/Fields[]

/Thumb

/Annots[]

/Resources

/Contents[]

/MediaBox

/Rotate

/Shading

/Pattern

/Font

/XObject

/ColorSpace

Figure 2.1: PDF Object Hierarchy (source:[MD01]).

PDF document is managed and structured in a PDF file. Hence, we take a closer look to
the page tree and page objects of a PDF file.

Page Tree

All the pages of a PDF document are accessed through a page tree. A page tree is a
complex object which defines the order of all the pages in the document. The page tree
root is referenced by the document’s catalog. Inner tree nodes are represented by page
tree nodes and leaves are represented by page objects. A page object is a directory which
represents a page in a PDF document. It disposes different attributes such as the last
modified date or its two dimensional clipping area. The page tree structure ensure an
efficient and quick access of each page in a document. A simple example of a page tree
is shown in Listing 2.19. It illustrates a page tree of a PDF document with two pages:

23

the document’s catalog on the first and the page tree root node on the second. The page
tree (1 0 obj) references to two page objects, 5 0 R and 7 0 R. The page tree structure
has nothing in common with the logical structure of the document. This means an inner
tree node does not necessarily represent a chapter or section in the document but may
represent fragments of a page only.

% - - - - - - - - - - - - - - - - - - Catalog - - - - - - - - - - - - - - - - - -%

3 0 obj

<<

/Type Catalog % d i r e c t o r y type must be C a t a l o g

/Pages 1 0 R % r e f e r e n c e to page tree

>>

endobj

% - - - - - - - - - - - - - - - - Page Tree - - - - - - - - - - - - - - - - -%

1 0 obj

<<

/Type Pages % d i r e c t o r y type must be Pages

/Kids [5 0 R 7 0 R] % r e f e r e n c e s to c h i l d r e n

/Count 2 % n u m b e r of c h i l d r e n

>>

endobj

% - - - - - - - - - - - - - - - - - Page Objects - - - - - - - - - - - - -%

5 0 obj % first child node

<<

/Type Page % d i r e c t o r y type must be Page

/ Parent 1 0 R % p a r e n t node in tree

/ MediaBox [0 0 600 700] % d e f i n e s a r e c t a n g l e space

/ Resources <</Font % r e f e r e n c e to Font F2

<</F2 11 0 R >>

>>

/ Contents [21 0 R 28 0 R]

>>

endobj

7 0 obj % s e c o n d child node

<<

/Type Pages ...

>>

endobj

Listing 2.19: Basic example of a PDF document with two pages using page tree

24

Page Objects

As mentioned before, page objects represent leaves in the page tree. They contain two
dimensional information about a page in a document and provide various inheritable at-
tributes. In the example provided in Listing 2.19, the attributes MediaBox and Resources
given in 5 0 obj are mandatory and inheritable, where inheritable means that all child
nodes and their children nodes inherit their attribute from their parent node. A child
node can override inherited attributes by simply overwriting them.

The PDF specification defines various inheritable attributes. Inheritance is a mighty
instrument and is used by many object oriented programming languages such as in Java
for instance. Table 2.4 summarizes the core entries of a page tree node and page object.
One the most important entries of a page object is the Resources entry. It points to
external resources of a page such as a font directory or a stream containing an image.

Key Type Description

Type name (Required) It must be Pages for an inner node rather root node

(page tree node) or Page for a leaf node (page object).

Parent dictionary (Required; must be an indirect reference) Defines the predecessor

node of this node. The root element has an empty entry.

Kids array (Required for page tree nodes) An array of indirect references to the

immediate children of this node.

Count integer (Required for page tree nodes) Defines the number of leaf nodes

within the page tree.

Resources dictionary (Required for page object; inheritable) It might be an empty dictio-

nary containing any resources required by the page.

MediaBox rectangle (Required for page object; inheritable) A rectangle area which the

page is intends to display.

Contents stream or array (Optional) A single stream or array of content streams (see Section

2.3.1) which describe the content and appearance of this page.

Table 2.4: Core entries of page tree nodes and page objects.(source: [PPS01])

2.3 Graphic Model

After having outlined the PDF components we will have a closer look at the graphic
model of PDF. More precisely, we will discuss content streams, graphic objects, and the
various coordinate systems in PDF. This section summarizes the main features of Chapter
4 "Graphics", of the PDF Reference [PPS01].

25

2.3.1 Content Streams

The "P" of PDF is for portable, which means device independent. Adobe has developed
a graphic model for PDF which enables a device independent page description using two
dimensional graphic structures such as paths, text and external objects (XObjects) like im-
ages. The graphic model provides several graphic operations for painting graphical shapes
on a page.

Every page of a PDF document is represented by a page object which specifies differ-
ent page attributes. Each page object includes a Contents entry (see Table 2.4), which
contains one or more content streams. Content streams are streams containing a sequence
of graphic operations to be applied on a page. An operation is introduced by a graphic
operator, a predefined keyword. An operator may require some operands which can be
any PDF data type except a stream or an indirect object. Listing 2.20 shows an example
of a content stream in PDF without an encoding (see Section 2.2.2, Filters). The content
stream will paint the string "Uncompressed streams can be read easily" at the upper left
corner of a page. The example shows very good the use of some graphic operators. PDF
defines a huge number of different operators for various painting operations. The most
important operators and their functions are described briefly in the following sections.

...

21 0 obj

<</ Length 78 >>

stream

% save the c u r r e n t g r a p h i c state

% and set the color to black

q 0 0 0 rg

BT

% paint a s t r i n g with font F1 in size 12

% at p o s i t i o n (5 6 . 8 , 7 7 4 . 1) in user space

56.8 774.1 Td /F1 12 Tf

[(Uncompressed streams can be read easily)] TJ

ET

% r e s t o r e g r a p h i c state

Q

endstream

endobj

...

Listing 2.20: Example of an uncompressed Content Stream in PDF.

26

2.3.2 Marked Content Streams

A marked content stream is a content stream with so called marked content operators.
Marked content operators designate interesting elements of a content stream to a partic-
ular application. Furthermore, marked content operators facilitate associating portions
of a content stream with additional properties or externally specified objects. Table 2.5
summarizes the available marked content operators.

operands operator Description

tag MP Designates the next content operator. tag is a name object indi-

cating the role of the operator.

tag properties DP Designates the next content operator. tag is a name object indi-

cating the role of the operator. properties is a name or dictionary

object; if it is a name it is associated with a Properties dictionary

of the current page resource dictionary.

tag BMC Designates a a sequence of content operators. tag is a name ob-

ject indicating the role of the operator. Properties is a name or

dictionary object; if it is a name it is associated with a Properties

dictionary of the current page resource dictionary.

tag properties BDC Designates a a sequence of content operators. tag is a name object

indicating the role of the operator.

none EMC Terminates a marked-content sequence.

Table 2.5: Overview of marked content operators (source: [PPS01]).

The DP and BDC marked content operators associate a property list with a marked-
content element within a content stream. This is a dictionary containing information
meaningful to the current context.

2.3.3 Graphic Objects

Graphic objects are not objects in the sense of a data structure or indirect object, as
mentioned in the previous sections; a graphic object rather introduces a specified graphical
action and defines an environment for a set of graphic operators in a content stream. PDF
specifies six graphic objects:

• A path object represents a simple shape consisting of line segments, rectangles and
cubic Bezier curves. A path can be stroked, filled and clipped.

• A text object represents a sequence of characters being painted on a page. Special
text operators specify place and style of character glyphs.

27

• An external object - XObject represents an external object outside of the content
stream.

• An in-line image object represents a self-containing image such as raster and vector
graphics.

• A shading object represents a geometric shape whose colour is a function of the
position within a shape.

Adobe’s PDF Reference specifies precisely which graphic object can be combined with
another object object. Not every graphic object is nestable. For instance, a text object
cannot be defined in another text object but a path object can be defined in a path object.
An overview of the most important graphic operators is given by Table 2.6.

OPERANDS OPERATOR DESCRIPTION

- q Push current graphic state on the graphic stack. The graphic stack

is a general stack which works after the LastIn-FirstOut principle.

- Q Pop graphic state from the graphic stack and override the current

state.

a b c d e f cm Change the current transformation matrix by multiplying the

defined a,b,c,d,e,f matrix.

CTM =


a b 0

c d 0

e f 1

 ∗ CTM
lineWidth w Set the line width to lineWidth which is number.

lineCap j Set the line cap to lineCap which is an integer. Only the values 0

for butt cap, 1 for round cap) and 2 for projecting square cap are

allowed.

gray G Set the gray level for stroking operations to gray which is a num-

ber between 0.0. and 1.0.

gray g Same as G for non-stroking operations.

r g b RG Set a red-blue-green color for stroking operations to r g b which

are a numbers between 0.0. and 1.0.

r g b rg Same as RG for non-stroking operations.

- BT Introduce a text object and initializes the text matrix Tm, text line

matrix Tlm and text rendering matrix Trm. For more details see

at Section 2.4 "Text".

- ET End the current text object and discharge Tm.

Table 2.6: Overview of several graphic operators (source:[PPS01])

28

2.3.4 Coordinate Spaces

Every graphic object which is painted on a page is positioned by coordinates in a Cartesian
coordinate system. In PDF, a coordinate system has at least one origin, a definition about
the orientation of the x and y- axis and the length of the units along each axis. In order
to provide a device independent appearance of PDF documents, Adobe has introduced
different coordinate spaces. Figure 2.2 shows the relationship between the coordinate
spaces, where each arrow represents a transformation from one space into another. In the
following sections, each coordinate space is outlined briefly.

User
space

Device
space

Form
space

Glyph
space

Text
space

Image
space

Pattern
spaceData space

Figure 2.2: Overview of various Coordinate Systems in PDF and their relationships
(source:[PPS01]).

Data Space

The data space involves the form, glyph, text, image and pattern space. The form space
defines the coordinate system of external objects, called XObjects. They are treated as
self-contained graphical elements. The transformation from form space to user space is
specified by a form matrix contained in the XObject.

The glyph space is the space for glyphs. A glyph describes the graphical shape of a
character. Glyphs are managed and specified in fonts. The transformation from glyph
space totext space is performed by a predefined font matrix which maps 1000 units of
glyph space to one unit of text space. The text space defines the coordinates of text ob-
jects. The text matrix describes the transformation from text space to user space. Glyphs
and text objects are discussed in the next Section "Text".

29

All raster images are defined in the image space. The transformation from image space
to user space is static, which means it is not adjustable. Each image is one unit high and
one unit wide in the user space.

Finally, there is the pattern space, which represents repeating figures or smoothly varying
color gradients. Patterns are always combined with painting operations such as stroke,
fill, and show text. They are defined in pattern space.

User Space

The user space coordinate system builds an interface between the different data spaces
and the device space. The user space is defined by the CropBox entry in the page object
of the according page in a PDF document. By default, the CropBox is initialized with the
size of the MediaBox of a page. The origin of the user space is at the lower left corner; the
positive x axis is defined from left to right and the positive y axis is defined from bottom
to top; 1/72 inches represents one unit on both axis. Coordinates from the user space are
transformed into device space by the Current Transformation Matrix (CTM). The CTM
ensures the same visual representation on every output device, because the resolution can
vary from output device to output device (e.g. screen 72dpi, printer 600dpi). Hence, a
PDF viewer application can adjust the CTM to the currently demanded device resolution.

Device Space

Finally, a PDF document is rendered on an output device. Each device has its own
coordinate system the so called device space. Each device space may differ in the place
of origin, orientation of the axis and length of units on the axis (resolution). It would be
infeasible to ensure the same visual appearance of a document on different devices if the
coordinate system were defined in device space instead in user space.

2.4 Text

After outlining PDF’s graphic model we will discuss how PDF deals with the text. More
precisely, this section summarizes Chapter 5 of the Adobe PDF Reference [PPS01] with
the focus on the following questions:

• How is the relationship between characters and glyphs?

• How are glyphs organized in fonts?

• Which text objects and text operators are available in PDF?

30

2.4.1 Characters and Glyphs

In order to answer the first question, we will have to define the terms “character” and
“glyph”. A common definition of the term character is: a character is a mark or (abstract)
symbol of a written language ([MD01] page 178). Examples for characters are the letters
of the Latin alphabet. A glyph is the graphical representation of a character. It defines
the graphical shape of a character. For instance, the character "C" can be rendered as C,
C and C, whereas the three representations illustrate three different glyphs. It is impor-
tant to distinct between these two terms to avoid misunderstandings.

Before we take a closer look at the different font formats, we will explain some terms
about glyph positioning and metric. The term metric summarize various kinds of in-
formation about a glyph such as the glyph’s width, baseline, coordinate system and the
glyph’s origin. A glyph has its own coordinate system the so called glyph space. All
the coordinates and metrics are interpreted in glyph space. The font matrix specifies the
transformation to text space and is given by the font data structure. Initially, the glyph’s
origin represents the point (0.0) in the glyph coordinate system (see Figure 2.3). The
origin of the glyph space is positioned to the origin of the text space at the beginning of
a Text Object. A text object may contain various text operators such as a text showing
operator. A text showing operation may adjust the text matrix to perform a translation
or rotation of a text.

Glyphgbounding
box

Ne xt
glyph
origin

Glyph
origin

Glyph width

Baseline

(0,0)

Figure 2.3: Glyph metrics (source:[PPS01]).

The width of a glyph is also called (horizontal) displacement. It represents the distance
from the origin of the given glyph to the origin of the next glyph. In addition to the
horizontal displacement there is a vertical displacement which is used generally in some
Asian languages. In order to use the vertical displacement, PDF distinguishes between a
horizontal and vertical writing mode which aligns text accordingly.

31

The dashed rectangle in Figure 2.3 illustrates the smallest box that envelopes the en-
tire glyph. It is the so called bounding box of a glyph which is specified by the corner
coordinates of the glyph.

Gylphs are defined and managed by Fonts. In the following sections, some important
features of Fonts will be discussed briefly.

2.4.2 Fonts

A font represents a data structure that organizes and provides information for the proper
illustration and positioning of glyphs. Generally, a font defines glyphs for a set of char-
acters. The ultimate description of a glyph is generated by a font program written in a
special font language. The font language is interpreted by an embedded font interpreter
in the PDF viewer application. A font is represented in PDF as a dictionary specifying
the type of font, its encoding, its metric and additional information.

Font Formats

Fonts are a central element of many applications. Therefore, over the years, various pro-
ducers such as Adobe, Microsoft and Apple have invested a lot in developing digital fonts,
mostly for their own interests. In consequence different font types and font formats have
been created.

Two different techniques have been developed for defining the appearance of glyphs in
fonts. On the one hand, a glyph can be described by means of discrete points, which are
to be filled similarly to bitmap. Fonts using this technology are called bitmap fonts. On
the other hand, a glyph can be described by defining its outlines (contours). Fonts of
this kind are called outline-fonts. giving name outline-fonts. Each technique has its own
advantages and disadvantages. For example, bitmap-fonts have a better performance but
they are not scalable. This leads to artefact viewing in higher resolution. In contrast,
outline-fonts look good but lose their aesthetic appearance through rasterisation (trans-
formation of outlines into point-grid).
Different font formats have been developed over the years. The most important formats
are:

• Type 1 fonts are outline-fonts which are fast in processing and improve the output
quality with so called hints. Hints are additional information which improve the
quality considerably, especially in lower resolutions. The Type-1 format has been

32

designed with the focus of the output on PostScript compatible printers. Adobe has
forced its PostScript format with high quality fonts.

• TrueType is the standard format of Windows and Mac operating systems. The
TrueType format has been designed for use with screen output.

• OpenType is Adobe’s answer to TrueType. It unions PostScript and TrueType and
operates on any operating system. OpenType is based on the data structure of
TrueType. It supports hinting and different illustration techniques.

PDF supports a huge range of different font formats and covers the entire spectrum of
available fonts, see Table 2.7.

Type SubType Description

Type 1 Type1 Type 1 font defines glyphs shape and how to encode them.

MMType1 A multiple master font that extends the Type 1 font, see Section

5.5.1, Type 1 Fonts in the PDF Reference [PPS01]

Type 3 Type3 Type 3 fonts represent user defined fonts that are always embed-

ded as stream in the PDF file.

TrueType TrueType A TrueType font.

Type 0 Type0 A composite font is one whose glyphs are obtained from other

fonts or from font like objects called CIDFonts.

CIDFont CIDFontType0 A CIDFont describes glyph shape based on the Type 1 technique,

see Section 5.6.3, CID Fonts in the PDF Reference [PPS01]

CIDFontType2 A CIDFont describes glyph shape based on the Type 1 technique,

see Section 5.5.1, Type 1 Fonts in the PDF Reference [PPS01]

Table 2.7: Font types available in PDF (source:[PPS01]).

PDF provides the embedding of fonts in a document. Therefore, PDF provides a
specified font object. Table 2.8 describes the most important dictionary entries of the font
object.

Key Type Description

Type name (Required) Defines the font type which must be a type from Table

2.7.

Subtype name (Required) Defines the font sub type which must be a sub-type

from Table 2.7.

BaseFont name (Required) The PostScript or TrueType name of the font.

FirstChar integer (Required) The first character code defined in the font’s width ar-

ray.

33

LastChar integer (Required) the last character code defined in the font’s width ar-

ray.

Width array (Required) Describes the glyph width of each defined glyph in

the font which applies to the characters in the range of FirstChar

- LastChar. For characters outside the range of FirstChar to

LastChar the value MissingWidth is assigned. The glyph width

is measured in glyph space.

FontDescriptor dictionary (Required; indirect object) General description of the font.

Encoding name or dic-

tionary

(Optional) - Defines the encoding used which is either a name

(MacRomanEncoding, MacExpertEncoding or WinAnsiEcoding)

or an encoding dictionary that describes the differences from the

font’s built in encoding or specified encoding.

ToUnicode stream (Optional) A stream containing a CMap file that maps character

code to Unicode values.

Table 2.8: Overview of common font dictionary entries (source: [PPS01]).

Character encoding

The character encoding describes the mapping between character codes which are ob-
tained from text strings and glyphs.
In general, font programs have a built-in encoding. For certain reasons, it might be neces-
sary to overwrite the build-in encoding. This can be done by including an Encoding entry
in the PDF font dictionary. The value of the Encoding entry is either a name of a base-
encoding (the name of one of the predefined MacRomanEncoding, MacExpertEncoding,
or WinAnsiEncoding) or an encoding dictionary. The encoding dictionary describes the
differences to the encoding specified by a base-encoding.

Listing 2.21 illustrates an example of embedding the Hevletica font. It shows a defi-
nition for a font dictionary and defines an appropriate encoding. The encoding used is
specified in 9 0 obj which describes differences between the encoding to be applied and
the font’s built-in base-encoding. The specified array contains integers or names. An in-
teger represents a character code and is the first index (begin) in a sequence of characters
which should be changed. The character code is paired with the subsequent character
name. Consecutive code indices are paired with subsequent names until a next character
code appears. For example, in Listing 2.21: the character code 39 is alternated to the
glyph "’" (quotesingle) and code 40 is alternated to "(" (leftparenthesis).

34

7 0 obj

<<

/Type /Font

/ Subtype /Type1

/ FirstChar 0

/ LastChar 255

/ Widths [

500 500 500 500 500 500 500 500

500 500 500 500 500 500 500 500

235 235 332 507 219 353 219 381

507 507 507 507 594 604 594 402

819 677 606 667 551 924 731 739

.

.

455 546 546 478 561 445 326 386

]

/ Encoding 9 0 R

/ BaseFont / Helvetica

/ FontDescriptor 10 0 R

>>

endobj

9 0 obj

<<

/Type / Encoding

/ Differences

[39 / quotesingle / leftparenthesis

96 /grave

128 / Adieresis /Aring / Ccedilla / Eacute / Ntilde

/ Odieresis / Udieresis / aacute / agrave

174 /AE / Oslash

177 / plusminus

180 /yen /mu

.....

]

>>

endobj

Listing 2.21: Example of a font dictionary that embeds the WarnockPro-Italic (source:
[MD01]).

35

Unicode CMaps

Beside the mapping of character codes to glyphs, it is sometimes necessary to know the
information content of glyphs. This means the presented glyphs of a document must be
interpreted in sense of text such as for text searching, indexing and extracting. The Uni-
code standard defines a system for numbering all of the common characters used in a large
number of languages. It is a suitable scheme for representing the information content of
text, but not its appearance, since Unicode values identify characters, not glyphs [PPS01].

Under certain circumstances, the information content of a character can not be deter-
mined because of insufficient information. Glyphs can still be shown, but the characters
cannot be identified and consequently, they cannot be converted to Unicode values with-
out additional information. To tackle this problem, PDF provides an optional ToUnicode
entry in the font dictionary, whose value is a stream object containing a special kind of
CMap file which maps character codes to Unicode values.

A CMap file must follow a clearly defined syntax, as described in Section 5.6.4, CMaps in
the PDF Reference [PPS01]. A CMap file must contain begincodespacerange and end-
codespacerange operators, which define the source character code range. In Listing 2.22,
the CMap file comprises a Unicode mapping for the characters 0 - 255 in decimal repre-
sentation. In addition, a CMap file must use beginbfchar, endbfchar, beginbfrange
and endbfrange operators to define a mapping from character codes to Unicode values.
In Listing 2.22, the characters code from hex-value 0x00 to hex-value 0x5E are mapped
to the Unicode values U+0020 to U+007E, where Unicode values are written as U+ fol-
lowed by four hexadecimal digits. Furthermore, the character codes in hexadecimal 0x5F,
0x60 and 0x61 are mapped to the Unicode strings U+0066U+0066, U+0066U+0069 and
U+0066U+0066U+006C.

...

1 begincodespacerange

<00> <FF > % s o u r c e c h a r a c t e r code range

endcodespacerange

2 beginbfrange

% m a p p i n g of c h a r a c t e r s 0 x00 -0 x5E to 0 x20 -0 x7E

<00> <5E> <20>

% U n i c o d e r e p r e s e n t a t i o n of c h a r a c t e r s 0 x5F , 0 x60 and 0 x61 ,

% they are m a p p e d to U +0066 U +0066 " ff " , U +0066 U +0069 " fi " and

% U +0066 U +0066 U +006 C " ffI "

%

36

<5F> <61> [<00660066 > <00660069 > <00660066006C>]

endbfrange

...

Listing 2.22: Fragment of a CMap stream (source:[PPS01]).

In view of text extraction, the mapping of character codes into Unicode values is an
importat point. Another important point, how text is managed in a PDF document. The
following sections will adress this question.

2.4.3 Text Objects and Operators

Beside graphic objects, PDF introduces so called text objects for covering all the painting
mechanisms and operations that deal with text. Similar to general a graphic object, a
text object builds an environment that initializes the text state for a set of certain text
operators. A text operator can show text strings, moves text or modifies the text state.
Text objects are not nestable which means a text object contains no other text object. In
addition there are some volatile parameters which only persist at the current text object:

• Tm represents the text matrix

• Tlm represents the line matrix

• Trm represents the text rendering matrix

A text object is enclosed by the operators BT, which begins a text object, initializes the
text matrix, and text line matrix to the identity matrix. The operator ET which ends the
text object and discharges the text matrix. In general, a text object may contain one or
more text operators. A detailed description of text operators is given in Table 2.9.

2.4.4 Text Positioning

In general, text is shown in text space. For the illustration of text in user space a transfor-
mation of text space coordinates is needed. The text space to user space transformation
can be represented by the following equation [PPS01]:

Tuserspace =


Tfs ∗ Th 0 0

0 Tfs 0
0 Trise 1

 ∗ Tm (2.1)

Tuserspace is computed before a glyph is painted by a text-showing operation indicated by
the operators TJ or Tj. After a glyph is painted, the Tm matrix is updated for positioning

37

the next glyph, which can be performed as follows [PPS01]:

Tm =


1 0 0
0 1 0
tx ty 1

 ∗ Tm (2.2)

tx =

 (fontw−tj1000 ∗ Tfs + Tc + Tw) ∗ Th
0 if vertical writing mode

ty =


fonth−tj

1000 ∗ Tfs + Tc + Tw

0 if horizontal writing mode

where

fontw is the glyph’s horizontal displacement.

fonth is the glyph’s vertical displacement.

tj is a position adjustment specified by a number in a TJ array, default value is 0.

Tfs and Th are the current text font size and horizontal scaling parameters in the
graphics state.

Tc and Tw are the current character and word spacing parameters in the graphics
state, if applicable.

To note is, beside positioning, the formula can be used for calculating the bounding box
of a glyph. This will be required for the box model of the presented text extraction algo-
rithm in the next chapter.

Table 2.9 summarizes the most important Text operators available in PDF. PDF pro-
vides various operation for adjusting the position of glyphs on a page to produce different
text effects.

38

OPERANDS OPERATOR DESCRIPTION

charSpace Tc Set the character space to charSpace which is a number; initial

value:0.

The character spacing parameter adds its value to glyph dis-

placement vector, whereas the positive values increase and

the negative values decrease the total character spacing. For

instance, a Tc value of 0.25 looks as follows:

Character
C h a r a c t e r

Tc = 0 (default)

Tc = 0.25

wordSpace Tw Set the word spacing to wordSpace which is a number; initial

value:0.

In addition to the character space it is possible to adjust the space

between words. The Tw operator is analogue to the Tc operator;

for instance, a Tw value of 0.25 generates the following output:

Tw 0 (default)

Tw 2.5

Word Space
Word Space

=

=

scale Tz Set the horizontal scaling to scale ÷ 100; scale is a number; initial

value:100.

The scaling parameter Tz enables to stretch or shrink text in

horizontal direction. A Tz value under 100 shrinks text, see at

following example:

Word
WordWord

Th = 100 (default)

Th = 50

font size Tf Set the text font to font and font size to size; A font is referenced

by the name of the font resource in the Font sub-dictionary;size is

a number. There is no initial value of font and size, and must be

set before text is shown.

39

tx ty TD Go to the beginning of the next line and add the values of tx, ty

as offset. Change the current line leading parameter Tl to −ty .

The operator is equal to the following code:

−ty Tl % adjust line leading

tx ty Td

a b c d e f Tm Replaces the current text and text line matrix as follows:

Tm = Tlm =


a b 0

c d 0

e f 1


render Tr Set the rendering model to render, which is an integer; initial

value:0.

PDF provides different text style manipulations for stroking,

filling and clipping boundaries, as well as the combinations of

all of them. The next table outlines all the available rendering

modes:

0 Fill text.

Stroke text.

2 Fill, then stroke text.

Neither fill nor stroke text (invisible).

4 Fill text and add to path for clipping (see above).

Stroke text and add to path for clipping.

6 Fill, then stroke text and add to path for clipping.

Add text to path for clipping.

R

R

R

R

MODE EXAMPLE DESCRIPTION

5

3

1

7

40

tx ty Td Go to the beginning of the next line and add the values of tx, ty

as an offset. The Td performs following matrix multiplication:

Tm = Tlm =


1 0 0

0 1 0

tx ty 1

 ∗ Tlm
- T* Performs a matrix multiplication and sets a new text matrix Tm

and text line matrix Tlm with the following code:

0 Tl Td

string Tj Display a text string.

array TJ Display one or more text strings and allows individual position-

ing of glyphs. An element of array is either a string or a number,

where a number is expressed in thousands of units and translates

the text matrix, Tm by that amount.

array Tc Array can contain text strings and/or numbers. If an array en-

try is a text string it is shown. If an array entry is a number

the amount is subtracted from the current coordinate, whereas

positive values translates glyphs to left or down, depends on the

current writing mode. This operator enables a character-wise po-

sitioning of text.

Table 2.9: Overview of available text operators in PDF version 1.4 (source:[PPS01]).

Finally, the page description language PDF provides a huge number of features to
support the representation of also eccentric documents. This chapter has given a small
impression of some features of PDF only. A detailed description of PDF is beyond the
scope of this thesis. The next section will focus on the text extraction of PDF documents.
Therefore, firstly, the problems of PDF regarding text extraction will be outlined and
secondly, a text extraction algorithm will be introduced.

41

Chapter 3

Specification

PDF provides a rich set of features for illustrating documents. This ranges from illus-
trating of forms with dynamic elements to illustrating of complex figures. However, the
nature of PDF creates difficulties in enabling the reconstruction of Official Signatures,
as required by the law. PDF does not support an unambiguous text extraction because
PDF documents are not necessary self-contained and self-describing, which is important
to enable a further processing of the document’s text content.

The "new " document format PDF/A-1a solves these problems by restricting PDF. PDF/A-
1a describes a "profile" for PDF documents with the focus on self-containing and self-
describing. However, PDF/A-1a defines a ruleset for PDF 1.4 that forbids and enforces
special features to support a text processing. PDF/A-1a documents become more suitable
for text extraction and, consequently, for Official Signatures. However, PDF/A-1a does
not solve all problems with respect to Official Signatures, which will be discussed in the
following sections.

This chapter is divided in two parts: The first part addresses the problems of text extrac-
tion from PDF and PDF/A-1a documents. Therefore, an overview of the most important
issues is given and the PDF/A standard is described. The second part specifies the canon-
ical Text Extraction Algorithm (TEA). TEA represents a proof-of-concept with the aim
to enable a text extraction from PDF/A-1a documents with respect to the requirements
of Official Signatures. TEA will replace the current text extraction algorithm of the un-
derlying PDF-AS system 2.0 [EG08]. Furthermore, the requirements of TEA are defined
in Section 3.4 and the major concepts of TEA are specified in Section 3.5.

42

3.1 The problem to be dealt with

PDF is well established as an interchange format because of its platform and application
independence. In order to also use the document format in the field of eGovernment, it
is mandatory to affix an Official Signature on it. As discussed at the beginning of this
thesis, this is because of legal regulations by the E-GovG. The §4 of SigV1 extends the
requirements of the interchange format PDF, it instructs that:

[...] die signierten Daten sowohl bei der Signaturerstellung als auch bei der
Signaturprüfung zweifelsfrei und mit gleichem Ergebnis darstellbar sind [...]

[...] the signed data must be absolutely certain (unambiguous) and shown equally
at the time of signature creation and verification [...] (loose translation)

In order to satisfy this requirements the use of dynamic and external objects in PDF
documents are forbidden in eGovernment. Moreover, the statute ensures that a signed
document comprises no hidden elements in particular, hidden text. Hence, dynamic, ex-
ternal and hidden objects must be identified and handled suitably. The following chapter
classifies problematic features of PDF in terms of electronic signatures, more precisely in
terms of text extraction and how to tackle them with PDF/A-1. The following classifica-
tion is partly based on Study of secure signatures with PDF/A [Neu07].

Dynamic Objects

PDF has allowed the embedding of JavaScript since version 1.4. JavaScript is well known
in web-development as script language. It provides an object-oriented access to html files.
It is heavily used for developing dynamic websites which change their content on demand.
In PDF, JavaScript is used for dynamic maintaining of formula fields. With regard to
signatures, JavaScript can be dangerous. For example, a script can be used to change
the amount of an account at the time of signing and verification. The document content
can be modified without breaking the signature of document. Hence, the property of
unambiguousness of signed data is not given any more.

External Objects

The best example of external objects are fonts. In most cases, fonts are not embedded
in the associated PDF file. Thus fonts will be substituted by other fonts if they are not
present on the system when viewing the document; and this, in turn, results in that

1"Verordnung des Bundeskanzlers über elektronische Signaturen (Signaturverordnung - SigV)", BGBl.
II Nr. 30/2000, BGBl. II Nr. 527/2004

43

the font encoding, the mapping of character codes to glyphs, can not be recognized any
more. For instance, the ’ö’ glyph may become a different glyph. This is a high potential
threat because the signature would not be broken in this case although the appearance
and printout of the PDF document is modified. This state depends on the font encoding,
how a glyph is selected by a character code. Another problem in terms of encoding is the
character encoding, which is the mapping of character codes to characters. In this case
the glyphs can still be shown, but the characters cannot be converted to Unicode values
without additional information. A reliable text extraction becomes infeasible.

Text-In-Picture

Text-in-picture means the representation of text as a picture. For instance, somebody
creates a picture that contains text. This picture is added to a document which is exported
as a PDF file. Thus, on viewing the PDF document it seems that the document shows
text but it does not; it shows a picture. The reconstruction or verification of the printout’s
signature becomes infeasible because at printout it is not possible to differentiate between
a text and a picture that contains text. Hence, the signature that is generated on the text
content of the PDF document is not reproducible/verifiable by having only the printout.
The same applies for Paths (geom. shapes) in PDF.

Hidden Elements

Hidden elements are elements that are not visible but present in the PDF document. Even
hidden text can become a problem at printout. While the electronic document can be
verified successfully, the printout is not verifiable because the hidden text get lost during
printing.

The PDF problems lead to the conclusion that dynamic and hidden objects as well as
pictures and shapes should be removed and external objects should be integrated into
the PDF file. Only then PDF supports the reconstruction of Official Signatures from
printouts.

3.2 PDF/A-1 (ISO 19005-1)

The problems of archiving PDF documents are similar to those discussed above. Also
here a document format is needed to ensure that documents remain readable, capable of
being rendered and accessible under preserving its integrity and visual appearance for the
long-term. This subsection points out the intention of PDF/A-1 (ISO 19005-1) [Int05],
the benefit of Tagged PDF and the relations between them.

44

The feature-rich nature of PDF creates difficulties in preserving information over long-
term. PDF documents are not necessarily self-contained, drawing on system fonts and
dependencies on external objects; on the other hand as time goes by technology changes,
external connections will be broken and so information gets lost.

There are various methods for archiving electronic documents such as storage then as
picture (TIFF) or as microfilm but with the disadvantage of losing the possibility of hav-
ing access to its text based content (e.g. text search). In order to use the advantages
of PDF and to meet the requirements of long-term archiving of electronic documents,
the ISO 19005-1 (PDF/A-1) international file format standard has been established. The
PDF/A-1 standard was published on October 1, 2005 with the full title: "ISO 19005-1:
Document management – Electronic document file format for long-term preservation –
Part 1: Use of PDF 1.4 (PDF/A-1)". PDF/A-1 represents the first part in a new fam-
ily of ISO standards which defines a file format for long-term preservation of electronic
documents based on PDF 1.4. The scope of this standard is on preserving the visual
appearance and the maintenance of information in electronic documents, independently
of tools and systems which are used for creating, storing or rendering over archival time
spans. A second part, PDF/A-2, will be published in 2009 based on a newer PDF version.

In fact, the PDF/A-1 standard focuses only on how to use PDF 1.4 for long-term archiv-
ing. PDF/A-1 does not specify an archiving strategy and does not cover for electronic
signatures. The standard specifies only a minimum set of PDF 1.4 features in order to en-
sure preserving the visual appearance of electronic documents. In other words, PDF/A-1
represents only a "profile" of PDF 1.4 .

Currently, PDF/A-1 specifies two different conformance levels:

• PDF/A-1a (ISO 19005-1a): Level “A” conformance: A PDF/A-1a document ensures
the preservation of structural and semantic properties of the document. Level 1a
uses “Tagged PDF” and Unicode character maps to preserve the document’s logical
structure and content text stream in natural reading order. The Unicode standard
defines a system for numbering characters used in a large number of languages in
order to ensure a unique identification of characters.

• PDF/A-1b (ISO 19005-1b): Level “B” conformance: A PDF/A-1b document en-
sures the exact visual reproduction of the author’s original only and does not contain
any information about the logical structure of the document and the character en-
coding.

45

A PDF/A-1 document should be self-contained and self-descriptive which means they
contain all resources (fonts, structure information) necessary for rendering, printing and
for processing the document. The following list outlines the most important restrictions
and instructions of PDF/A-1 documents compared to the PDF 1.4 specification. More
information about the technical requirements of PDF/A-1 is in the PDF/A-1 specification
[Int05].

• The encryption of a PDF/A-1 document (as described in Section 3.5 [PPS01]) is
not permitted.

• Transparency is not allowed in PDF documents.

• All colours shall be specified in a device-independent manner.

• Each font used must be embedded, which involves the font program, glyph metrics
and character encoding so that the font is embeddable for unlimited, universal
rendering. Each associated font directory includes a ToUnicode entry, whose value
is a CMap file which maps every character code to a 2-byte Unicode value (see
Section, 2.4.2 ToUnicode CMaps).

• A stream directory shall not contain the F, FFilter, or FDecodeParams keys and
the LZWDecode filter is not permitted due to license rights.

• Audio and video content are forbidden.

• JavaScript and launching of executable files are prohibited.

• Interactive form fields and external links (e.g. hyper links) are forbidden.

• A Level A (PDF/A-1a) conform document have to meet the requirements of Tagged
PDF (see Section 9.7, Tagged PDF in [PPS01]).

Tagged PDF is important for text extraction from PDF/A-1a documents. Only a "tagged"
PDF document delivers enough information to extract its text content. The basic idea of
Tagged PDF is discussed in the next paragraph.

3.3 Tagged PDF

PDF is well suited for the illustration and printing of documents containing text, images
and other information. On the other hand, PDF is not well suited for maintaining a docu-
ment’s content. For instance, the selection or copying of text from a PDF document does
not always work properly. Which means the copied text does not represent the illustrated

46

one. The problem is the character encoding; it defines the mapping of character codes to
characters themselves. In general, characters can be identified according to a particular
standard character set, for instance Unicode. Unicode represents a unified character set
that allows a unique character identification by means of code points (character code).
Without knowing about the character encoding, characters can not be interpreted (Uni-
code value) without additional information but glyphs can still be shown in PDF.

To resolve the issue of character identification, Tagged PDF defines a set of rules for
representing text in the page content so that characters, words, and text order can be
determined reliably. In addition, Tagged PDF defines conventions for explicitly declaring
and describing the logical structural with respect to the document’s content. Tagged PDF
is based on two mechanisms of PDF 1.4, which are:

• marked-content operators to designate fragments of a content stream and

• logical structure facilities to define structural information.

Marked-content operators have already been discussed in Section 2.3.2, Marked-content
streams.

In order to describe the document’s logical and visual structure, Adobe has introduced
special logical structure facilities. The logical structure of a document is described by a
structure tree. The root of the tree is called the structure tree root and other nodes are
called structure elements. Every structure element has a type and one or more content
items. A content item can be a marked-content sequence embedded within the content
stream, a complete PDF object such as an annotation or another structure element. The
type of structure element is determined by the S entry which characterizes the role of
the content item within the document. PDF specifies a set of standard structure types
which are mostly similar to HTML tags. Users can also define its own structure types.
To interchange user types with other applications, a role map is needed which maps user
types to equivalent standard types. In addition to structure types, a structure element
can be described by structure attributes. A structure attribute is similar to an HTML
attribute which assigns specific properties to an element. Furthermore, PDF allows the
grouping of elements together by a class map. This is needed to build a class of structure
elements with similar attributes.
The major focus of Tagged PDF is to provide a set of standard structure types to stylize
PDF content with the intent to provide additional structural information to Tagged PDF
consumers. This includes the possibility for consumers to make their own layout decisions
while preserving the author’s document layout. Tagged PDF has introduced four different

47

categories of structure element types which are been divided into:

• Grouping elements group elements into hierarchies. Examples of grouping elements
are:
Document, Part, Art, Sect Div, BlockQuote, Caption

• Block level structure elements layout text or other content such as the heading, list
item or footnote. Examples of Block-level structure elements are:
P,H1-H6,Table,TR,TH,TD,L,LI.

• Inline level structure elements specify the styling of text or other content. Examples
of Block level structure elements are:
Span, Quote, Note, Reference.

• Illustration elements are any structure elements whose structure type is one of fol-
lowing:
Figure, Formula, Form.

In addition to the logical structural facilities, Tagged PDF encompasses a set of conven-
tions [PPS01]:

• A Tagged PDF document involves a structure tree.

• A Tagged PDF document contains information about the content order regarding
the natural reading direction.

• Each character of a Tagged PDF document can be mapped to a conform Unicode
representation.

• A Tagged PDF document provides information to distinguish between real content
and artifacts of the layout process. The real content of a document covers all the
PDF objects in a file which are important with respect to the document’s content.
All other objects, which are not related to the original document’s content, are called
artifacts. Artifacts are created in course of layout or technical processes during the
PDF generation.

• Representing text in a form from which an Unicode representation and information
about font characteristics can be unambiguously derived.

• Representing word breaks unambiguously.

48

We assume that Tagged PDF is well suited for providing information about the docu-
ment’s content and its logical structure. Tagged PDF facilitates PDF to embed structure
information which can be used for text extraction.

However, a PDF creation application, for instance Adobe PDF Driver, creates a PDF/A-
1a file from an original document. The logical structure, which is represented by the
structure tree, is derived from the original document. The issue is that there don’t exist
clear defined guidelines (policies) for creating the logical structure tree, such as: If the y-
position of an element A (e.g. an image) is greater then the y-position an element B (e.g.
some text), then element A is inserted before element B in the logical structure tree. In
consequence, the structure tree of a PDF/A-1a document can be vary from PDF creation
application to application. The uniqueness of the logical structure tree is not given any
more. This gives leeway in interpreting the logical order of a document and may produce
different results in text extraction. So the reconstruction of an Official Signature from
printout, that bases on the logical structure tree, becomes infeasible. This is a knock-out
criterion to use the logical structure tree of a PDF/A-1a document for text extraction
regarding Official Signatures.

49

3.4 Algorithm Requirements

This section describes the algorithm requirements [AR] and preconditions of TEA in
detail.

• [AR1] TEA requires a PDF/A-1a conforming document as input.
Text extraction from traditional PDF documents could become infeasible. Thus,
TEA is performed on a PDF/A-1a conforming document that is self-contained and
provides a minimum of information as follows:

– information to map any character to its Unicode representation.

– information to identify words by defining clear word breaks.

• [AR2] TEA must deliver a unique result.
In this context, unique means that two different PDF/A-1a documents deliver two
different results. Two documents are different if, and only if, its visible text content
is different. This condition includes the fact that the text extraction is done in a
standardized manner. The text content of a PDF/A-1a document comprises every
character that is shown by the "text-showing" operators Tj and TJ . In addition,
the result of TEA should only contain the visible text content of the document’s
printout. Hidden text must be excluded from the result. Text is called hidden if,
and only if, it meets any of the following points:

– It is not present at printout.

– It is crossed out at printout.

• [AR3] The result of TEA must be a sequence of characters according to
the document’s visible text content on printout.
With regard to the reconstruction of a text-based signature it is important to only
sign visible text content of the document’s printout. In other words, only the visible
text content of a PDF/A-1a document should be signed.
PDF artifacts must be recognized and treated in view of the reproduction of the
document’s printout. Artifacts are graphic objects which are not part of the original
document. They result because of visual effects or mechanical processes during
PDF generation. For example, some PDF documents emulate a bold character by
two overlapped characters with marginal, horizontal displacement. In general, a
font provides separate rendering information for illustrating bold text with single
characters.

• [AR4] The extracted sequence of characters must follow the natural read-
ing direction of the document from top left to bottom right.

50

3.5 Algorithm Specification

This section focuses on the specification of TEA. Hence, we will describe the principal
concepts and give generic information about TEA according to the defined requirements.
Figure 3.1 shows the two phase concept of TEA. Any phase is performed successively on
the input PDF/A-1a document. The result of any phase is the input of the next phase.
Finally, TEA returns the text content of the given PDF/A-1a document.

TEA - two phase concept

Text Extraction
(TE)

Hidden Text Recognition
(HTR)

Figure 3.1: Basic concept of the text extraction algorithm TEA consisting of two phases:
hidden text recognition (HTR) and text extraction (TE).

With respect to the algorithm requirements, only visible text content should be extracted.
Therefore, TEA is divided into two parts. At first, a Hidden Text Recognition (HTR)
algorithm determines hidden text fragments which should be removed from the document.
Secondly, only the visible text content is extracted in natural reading order (logical order)
from the top left to the bottom right corner. In the following sections, each phase will be
described in detail.

3.5.1 Data Model

Before we specify each phase, it is worth looking at the data-model that is used in the
following section. Therefore we will take a closer look at the composition of a PDF page.
A PDF page can be imagined as a two dimensional plane on which various elements/ob-
jects are attached. The set of elements can be divided into three classes:

• Image elements are represented by external objects (XObject) or inline images,
introduced by the PDF Do operator (see Section 4.8 in [PPS01]).

• Path elements are represented by PDF path operations which are used to draw
lines and to define shapes of filled areas (see Section 4.4 in [PPS01]).

• Text elements are represented by single-characters of the document introduced by
PDF text-showing TJ and Tj operators (see Section 2.4).

51

For further processing, each page element is abstracted by its bounding box. The bound-
ing box of an element describes the smallest iso-oriented rectangle area that covers the
complete element. Iso-oriented means that the left and right edge as well as the top and
bottom edge of a rectangle are parallel to the y- and x-axes of the coordinate system (e.g.
in user space). The bounding box of an element is defined by its position on document,
height, width and the class of the associated page object. Figure 3.2 shows the different
page elements with their bounding boxes. The bounding box of a text element can be

g
(a) bounding box of a glyph

origin of
bounding
box

(c) bounding box of an image(b) bounding box of a path

Figure 3.2: Bounding boxes of page elements.

determined by the bounding box of the associated glyph. This requires some calculations
which are equal to the formulas in Section 2.4.4, Text Positioning, with slight adaptations,
as follows:

glyphwidth = (fontw1000 ∗ Tfs + Tc + Tw) ∗ Th (3.1)

glyphheight = fonth
1000 ∗ Tfs (3.2)

where

fontw is the glyph’s horizontal displacement.

fonth is value of the font entry Ascent in the associated font descriptor dictionary.

Tfs and Th are the current text font size and horizontal scaling parameters in the
graphics state.

Tc and Tw are the current character and word spacing parameters in the graphics
state.

The bounding box of an image (see Figure 3.2) is calculated by applying the current
transformation matrix on a unit square with lower left corner (0-0) and upper right corner
(1-1). Furthermore, the bounding box can be determined by the transformed unit-square.
In PDF, a path is defined by a sequence of points to describe a Bezier curve. The bounding
box of a path object is calculated by its lowest left and highest right point. This can result
into an overhead which is accepted.

52

3.5.2 Hidden Text Recognition (HTR)

At first, TEA performs a HTR algorithm to identify hidden text fragments in the docu-
ment. There are three cases when text becomes hidden in a PDF/A-1a document. Each
case must be taken into account during hidden text recognition:

Case 1 Text is rendered in text rendering mode three or seven which is introduced by
the Tr text operator within a content stream (see PDF Reference [PPS01], Section
9.5.2 Marked Content and Clipping).

Case 2 Text is overlapped by other page elements such as images or paths (shapes).

Case 3 Text becomes hidden because of marginal colour differences (low contrast) be-
tween the text colour and background colour.

HTR Case 1 - rendering mode

This case is easily detected by scanning each content stream for the Tr operator and its
value. PDF provides eight rendering modes which are used to support text effects. An
overview of all rendering modes was given in Section 2.4. Text that is rendered in mode
three or seven becomes hidden and is removed (Section 9.5.2 [PPS01]).

HTR Case 2 - overlapped text

The appearance and position of every page element is defined by the page’s content
streams (see Section 2.3.1, Content Streams). The position is defined by x- and y-
coordinates in user space. Beside this, the imaging model of PDF is responsible for
rendering. It separates the specification and rendering process. PDF 1.4 extends this
model to facilitate transparency. PDF/A-1a does not allow transparency. This means the
painting model of PDF/A-1a is a simple opaque imaging model in which each graphics
object is painted independently of any previous object. The order in which an element is
painted is equal to the order in which the element is specified within the content stream
of a page. This means, objects which are specified at the end of a content stream overlaps
objects, or only parts of it, which are specified earlier within the content stream. For
instance, a text element can become overlapped by an image if the image is specified after
the text element within the content stream, of course under the condition that their x
and y position overlap.

This property of PDF/A-1a can be used to identify overlapped text or characters. The
idea is to transform the overlapping text problem into a geometrical overlapping problem
by exploiting the bounding-box abstraction. Therefore, overlapped text is identified by

53

performing a rectangle-intersection algorithm. Figure 3.3 shows the basic principle of the
overlapped text recognition; red rectangles assign hidden characters regarding to the ob-
jects painting order. The intersected rectangle problem is a frequent problem in Computer
Science. The algorithms of Edelsbrunner H. et al. [Ede83b], Wood D. et al. [HWD80]
and Preparata F., Shamos M. [PS93] base on the famous plane-sweep technique. In the
following section, Preparata’s and Shamos’s plane-sweep algorithm for the intersections
of iso-oriented rectangles problem will be outlined briefly.

Headline 1 Headline 2 Headline 3 Headline 4

…header…

…footer…

This text serves for better understanding the challenge of text-extraction
from PDF documents. This text serves for better understanding the
challenge of text-extraction from PDF documents.

row1/col2 row1/col3 row1/col4
row2/col1 row2/col2 row2/col3 row2/col4

Show me this line in this document.
 justified text block

This text serves for better understanding the
challenge of text-extraction from PDF documents.
This text serves for better understanding the
h ll f t t t ti f PDF d t

row 1/col1

glyph bounding box

XObject bounding box glyph bounding box

overlapped bounding boxes
text becomes hidden

path bounding box

overlapped bounding box but
does not in�uence visibility of
text

Figure 3.3: Page elements and their bounding boxes. Left: Original PDF Page; Right:
Associated bounding boxes.

Plane-sweep algorithm for intersecting iso-oriented rectangles [PS93]

The traditional plane-sweep algorithm of Shamos und Hoey et al. [SH76] describes an
algorithm for determining intersections of line segments. However, the core concepts can

54

scan-line L

in
se

rt
re

m
ov

e

in
se

rt.

re
m

ov
e

.

Y

X

Figure 3.4: Plane-sweep algorithm for reporting intersected iso-oriented rectangles.[PS93]

be used for reporting intersected rectangles. The algorithm can be sketched up as follows:
all rectangles are sorted in ascending x-order and a scan line L sweeps in horizontal
direction, from left to right, over the plane. If the sweep line encounters the begin of a
rectangle then the rectangle is stored; otherwise if the end of a rectangle is encountered
the rectangle is deleted and the corresponding overlapped rectangles are retrieved. As
usual, a plane-sweep algorithm is event driven and supported by two data structures, an
event schedule X and a scan line status Y. Event driven means that the algorithm or
more precisely the scan line stops at defined events. Each event signals a change of the
status of the algorithm (e.g. scan line reaches left edge of a rectangle). Following events
are defined:

Event 1: left edge of rectangle.

Event 2: right edge of rectangle.

The event schedule X stores all the x-values of left and right edges of rectangles, sorted
in ascending x-order. The x-values must be stored in such a manner that is clear whether
it refers the left or right edge of the correspond rectangle. In the course of the algorithm
the scan line removes step by step the smallest x-value from the event schedule X. In
other words the event schedule represents all the events, or more precisely all the edges
of rectangles which were not yet intersected by the scan line L. If the removed value
represents the left edge of a rectangle, the rectangle is inserted into the status structure
Y; otherwise if the removed value represents the x-value of the right edge of a rectangle,
the rectangle is removed from Y. All the rectangles, which intersects the removed one,
are reported.

55

Figure 3.4 show the principle of the plane-sweep algorithm. It shows the scan line L,
illustrated by vertical dashed lines, which sweeps over the plane and stops at each event
in X. The Y list, illustrated by horizontal dashed lines, contains the y-intervals of rect-
angles in L. In Figure 3.4, each red coloured rectangle represents a hidden text element.
In fact, the plane-sweep algorithm recognizes more intersections as really necessary for
hidden text recognition. So in addition, every intersected rectangle have to be checked
if it represents a text object and if it is behind another element. To note, text becomes
overlapped if it is rendered before another element is rendered at the same place. There-
fore, the ordering of each page object must be taken into account for determining hidden
text. For hidden text recognition, glyphs which are marginal overlapped only should not
be recognized as hidden unless they are readable at printout. In order to recognize these
false positive intersections of glyphs, a tolerance value for overlapping glyphs is crucial.
This means, the plane-sweep algorithm is filled with shrinked bounding boxes, where the
value for shrinking should be discovered empirically.

However, the status structure Y stores the y-intervals (height) of rectangles only. That
is because [PS93]: a rectangle intersects a given rectangle if the y-interval of both over-
laps at the time of intersection of the scan line L. However, the rectangle intersection
problem is reduced to the problem of maintaining a set of intervals such that intervals
can be inserted and deleted efficiently and a query asking for all intervals that inter-
sect a given interval can be answered quickly. To achieve this, a special data structure
an interval tree is required. An interval tree allows inserting and deleting in O(log n)
[CLS01] time queries asking for all intervals that intersect a given interval is carried out
in O(min(n, logn+k)) time [CLS01], where k is the number of intervals in the output list.

There are different ways for implementing an interval tree. Edelsbrunner H. et al. [Ede83a]
proposes an 2-fold rectangle tree. Thomas H. et al. [CLS01] proposes an more intuitive
way for implementing a interval tree by means of an augmented red-black tree.
Figure 3.5 shows an interval tree represented by an augmented red-black tree. The interval
tree contains a set of intervals int = [x1, x2]. An interval has a low endpoint low[int] = x1

and a high endpoint high[int] = x2. Two intervals int1 and int2 overlap if int1∩ int2 6= ∅,
that is, if low[i] ≤ high[int2] and low[int2] ≤ high[i]. Each node n in the interval tree
provides a interval int[n] = [x1, x2], a key key[n] = low[int[n]] represented by the low
endpoint of the interval and a max value maxint[n], which represents the maximum value
of the high endpoint of all nodes rooted by the node n (see Figure 3.5). For instance, the
node nx = [8, 9] has a maxint[n] = 23 which is the highest endpoint value of all children
nodes. On the other side, a query of overlapped intervals for a given interval [15, 24]

56

returns the intervals [15, 23], [16, 21], [17, 19] and [19, 20].

interval

max

[5,8]
10

[0,3]
3

[15,23]
23

[6,10]
10

[16,21]
30

[8,9]
23

[25,30]
30

[17,19]
20

[19,20]
20

[26,26]
26

Figure 3.5: Interval tree with ten intervals sorted by the left endpoint.(source: [CLS01])

HTR Case 3 - marginal colour differences (low contrast)

The last case addresses the problem the instance that text can be hidden because of
marginal colour differences between text colour and background colour.

Text can take arbitrary colours in a PDF document. In general, a colour value is given by
one or more numbers depending on the colour space used. PDF supports different colour
spaces and differentiates between device-dependent, device-independent (CIE-based) and
special colour spaces, see Table 3.1.

device-dependent device-independent (CIE-based) special

DeviceGray CalGray Indexed

DeviceRGB CalRGB Pattern

DeviceCMYK Lab Separation

ICCBased DeviceN

Table 3.1: Supported colour spaces divided by same general characteristics. [PPS01]

Device colour spaces enable a page description to specify colour values that are di-
rectly related to their representation on an output device; while CIE-based colour spaces
produce consistent results on different output devices, within the limitations of each de-
vice. Special colour spaces adds features or properties to an underlying colour space.

In general, CIE-based and Special colours are converted into the device’s native colours
by complex algorithms, typically DeviceGray, DeviceRGB, or DeviceCMYK. A PDF/A-
1a document specifies the colour characteristics of the device on which it is intended to

57

be rendered by using a PDF/A-1a output intent, as described in Section 9.10.4 [PPS01].
The output intent describes the colour reproduction characteristics of a possible output
device. The output intent dictionary includes a DestOutputProfile entry which defines
an embedded ICC Profile stream that transforms PDF document’s source colours (CIE-
based and special) to output device colourants and vice versa. So PDF/A-1a does always
allow a transformation into the CIE colour space, indirectly or directly. This is important
because the most colour metrics for calculating the distance between two colours assume
the CIE colour space. In the following, two metrics are proposed for calculating the dif-
ference between two colour values.

The International Commission on Illumination (CIE) suggest the ∆E∗ab formula for calcu-
lating the difference between two colour values. More precisely, The ∆E∗ab value represents
the Euclidean distance between to colours in the Lab colour space. The ∆E∗ab value is
calculated as following [Nas98]:

∆E∗ab =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2

∆E∗ab Rating

0.0 ... 0.5 no or marginal difference

0.5 ... 1.0 difference for some persons

1.0 ... 2.0 visible difference

2.0 ... 4.0 perceived difference

above 4.0 different colour

The definition of ∆E∗ab was extended in 1994 to address non-uniformities in recognition
of colours by the introduction of application specific weights. The calculation is a little
bit more complex but reduces the non-uniformity error significantly [Nas98]:

∆E∗94 =

√√√√(L∗2 − L∗1
KL

)2
+
(
C∗2 − C∗1
1 +K1C∗1

)2

+
(

∆H
1 +K2C∗1

)2

C∗1 =
√
a2

1 + b2
1 C∗2 =

√
a2

2 + b2
2

∆H =
√

(a1 − a2)2 + (b1 − b2)2 + (C∗1 − C2∗)2

58

K1 =

 0.045 graphic arts

0.048 textiles
K2 =

 0.015 graphic arts

0.014 textiles

KL =

 1 graphic arts

2 textiles

Both calculations of ∆E∗ab require a conversion from a colour space X into the Lab colour
space. This conversion is done either indirectly through the conversion of X into the
CIE-XYZ space and afterwards the conversion from CIE-XYZ space into Lab space; or
directly by the associated ICC Profile defined by the output intent. The transformation
of the CIE-XYZ space into the Lab space needs a reference white Xr, Yr, Zr in CIE-XYZ
space. The reference white can be taken from the according colour space dictionary in the
WhitePoint entry (see PDF Reference 4.5.4 "CIE-Based Colour Spaces" [PPS01]). The
conversion is performed as follows:

pr = P

Pr
P is replaced by X,Y,Z

ε = 216
24389 κ = 24389

27

L∗ = 116fy − 16 fy =


3
√
yr xr > ε

κyr+16
116 else

a∗ = 500(fx − fy) fx =


3
√
xr xr > ε

κxr+16
116 else

b∗ = 200(fy − fz) fz =


3
√
zr xr > ε

κzr+16
116 else

There many other formulas for calculating the distance between two colour values and it is
beyond the scope of this thesis to evalute each one. The defined metrics should only give
a short overview of the complexity of this topic. Regardless which metric function is cho-
sen. In order to satisfy AR2, hidden characters must be excluded from the text extraction.

The result of HTR is a PDF/A-1a document which does not contain any hidden text
fragments in terms of the algorithm requirements. Figure 3.6 shows a process diagram
of the HTR algorithm. The diagram gives an overview of each step needed at the HTR

59

phase. The order of steps is not mandatory for the result; In order to improve performance
the following order is recommended. At first, all the text elements whose rendering value
is equal three or seven are removed. This reduces number of page elements. Furthermore,
the rectangle-intersection algorithm is used to identify the background colour of text el-
ements and to recognize overlapped text elements. The background colour is required to
calculate the contrast of a text elements and in consequence the visability of the text.
Overlapped text need not become hidden, so various if-conditions are defined which check
if text gets hidden or not (see Figure 3.6).

3.5.3 Text Extraction (TE)

This section describes the second phase of TEA the Text Extraction (TE). In general,
a text extraction from PDF documents can be reduced to two independent tasks. On
the one hand, every character code within a page stream must be mapped to an associ-
ated character value. This procedure is called character encoding. On the other hand,
PDF stores text in an arbitrary order which does not need to be equal to document’s
logical structure. Therefore, the extracted text must be ordered to preserve the logical
and semantic structure which is, in general, the natural reading direction from top left to
bottom right in the western hemisphere.

The first problem is solved by requiring the PDF/A-1a "profile" for PDF documents,
as claimed in AR1. As aforementioned in Section 3.2, a PDF/A-1a document ensures
that each used font is embedded. This implies the font program, glyph metrics and the
character encoding so that the font is embedded for unlimited, universal rendering. Re-
garding the character encoding, each font directory includes a ToUnicode entry, whose
value is a CMap file which maps every character code into a 2-byte Unicode value (see
Section 2.4.2 "ToUnicode CMaps"). So every character can be mapped to its Unicode
representation.

The proper ordering of extracted text can be achieved in different ways. As aforemen-
tioned, PDF/A-1a provides information about the document’s logical structure by intro-
ducing a structure tree. Every node of the tree references to an element on the page,
where the logical order of an element is defined by the position of the associated node in
the tree within a deep first search. However, as explained in Section 3.3, the structure tree
can become ambiguous and is a security vulnerability in terms of electronic signatures.
For instance, if a text extraction is carried out by using the structure tree, an attacker can
manipulate the tree to adapt the text order of the PDF document without recognizing
this at text extraction. Hence, the text of PDF document does not reflect the text order

60

P
e

rf
o

rm
 H

T
R

 o
n

 P
D

F
/A

-1
a

d

o
c
u

m
e
n

t
c
o

n
ta

in
in

g
 h

id
d

e
n

 t
e
x
t.

pa
rs

e
co

nt
en

t
st

re
am

s
of

 P
D

F
D

oc
um

en
t

P
D

F
/A

-1
a

 d
o

c
u

m
e

n
t

w
it

h
 t

e
x

t
e

le
m

e
n

ts

w
h

ic
h

 a
re

 m
a

rk
e

d
 a

s
 h

id
d

e
n

.

cl
as

si
fy

 a
nd

 id
en

ti
fy

 p
ag

e
el

em
en

ts
:

-
Te

xt
-

Pa
th

s
-

Im
ag

es
 (X

O
bj

ec
ts

)

ca
lc

ul
at

e
bo

un
di

ng
 b

ox
of

 r
em

ai
ni

ng
 p

ag
e

el
em

en
ts

re
m

ov
e

te
xt

 e
le

m
en

ts
,

w
ho

se
 r

en
de

ri
ng

-m
od

e
va

lu
e

is
 e

qu
al

 3
 o

r
7

se
t

ba
ck

gr
ou

nd
 c

ol
ou

r
of

 t
ex

t
el

em
en

ts
 b

y
ap

pl
yi

ng
 t

he
 r

ec
ta

ng
le

in
te

rs
ec

ti
on

 a
lg

or
it

hm

ca
lc

ul
at

e
co

lo
ur

-d
if

fe
re

nc
e

be
tw

ee
n

te
xt

 e
le

m
en

t
an

d
it

s
ba

ck
gr

ou
nd

de
si

gn
at

e
te

xt
 e

le
m

en
t

as
 h

id
de

n

de
le

te
 f

ir
st

 p
ag

e
el

em
en

t
p1

 f
ro

m
qu

eu
e

Q
 a

nd
 g

et
 in

te
rs

ec
ti

on
pa

ir
s

(p
1,

p2
...

n)
 o

f
p1

(i
ni

ti
at

e
re

ct
an

gl
e

in
te

rs
ec

ti
on

 a
lg

or
it

hm
)

fi
ll

qu
eu

e
Q

 w
it

h
pa

ge
 e

le
m

en
ts

 s
or

te
d

by
x-

Po
si

ti
on

se
t

th
e

vi
si

bi
lit

y
of

 b
ot

h
el

em
en

ts
 a

cc
or

di
ng

 t
o

th
e

cu
rr

en
t

vi
si

bi
lit

y
an

d
to

 t
he

 lo
w

co
nt

ra
st

 c
he

ck

so
rt

 in
te

rs
ec

ti
on

 p
ai

rs
 a

cc
or

di
ng

to
 t

he
 d

ep
th

 o
f

p2
..n

 (f
ro

m
lo

w
es

t
to

 h
ig

he
st

)

ge
t

ne
xt

 in
te

rs
ec

ti
on

pa
ir

 (p
1,

px
)

de
si

gn
at

e
bo

th
 t

ex
t

el
em

en
ts

 a
s

hi
dd

en

de
si

gn
at

e
on

e
of

 b
ot

h
te

xt
 e

le
m

en
ts

 a
s

hi
dd

en

Is
 b

ol
d

te
xt

em
ul

at
ed

?

D
oe

s
in

te
rs

ec
ti

on
 p

ai
r

co
nt

ai
n

a
te

xt
 e

le
m

en
t?

Is
 a

 n
on

-T
ex

tE
le

m
en

t
be

tw
ee

n
th

e
tw

o
in

te
rs

ec
te

d
Te

xt
El

em
en

ts
?

Is
 q

ue
ue

 Q
 e

m
pt

y?

H
as

 n
ex

t
in

te
rs

ec
ti

on
 p

ai
r?

D
oe

s
th

e
hi

dd
en

 t
ex

t
el

em
en

t
ov

er
la

p
th

e
ot

he
r

on
e?

Is
 o

ne
 o

f
bo

th
te

xt
 e

le
m

en
ts

hi
dd

en
 b

ec
au

se
of

 t
oo

 lo
w

co
lo

ur
-d

if
fe

re
nc

e?

Is
 t

ex
t

el
em

en
t

ov
er

la
pp

ed
by

 n
on

-t
ex

t
el

em
en

t?

D
oe

s
in

te
rs

ec
ti

on
 p

ai
r

co
nt

ai
n

a
te

xt
 e

le
m

en
t

an
d

a
no

n-
te

xt
 e

le
m

en
t?

ye
s

no

no

ye
s

ye
s

no
no

ye
s

ye
s

no

no

no

ye
s

no

ye
s

no

ye
s

ye
s

Figure 3.6: Process diagram of the first phase of TEA the hidden text recognition (HTR).

61

at printout any more, which is required by AR3. Due to the lack of technical protection
mechanisms for PDF/A-1a, the structure tree can not be utilized for ordering.
Another approach to extract text in an consistent way is to use the graphical text position
on a page. This method satisfies the AR1-AR4 algorithm requirements and it is resistant
against attacks on PDF source-code, as modifying the position of an element results in
changing the printout as well. The major disadvantage here is that all the semantic layout
information such as from tables or multi-column documents are lost because they are not
reproducible by means of position information. Nevertheless, this approach satisfies the
requirements of Official Signatures and ordering by position is a straightforward approach.
Every text element is ordered firstly by its y-position and secondly by its x-position. In
addition, it is necessary to canonise the extracted text stream because text in PDF/A-1a
does not contain any line breaking characters or space characters between paragraphs. In
order to improve the readability of extracted text and to establish a standard formatting,
line breaks and spaces are added or removed, depending on the following rules:

• A new line begins if a character is inserted with a new y-position. This results
into a variation in representation between input document and canonized text but
preserves the semantic meaning of it.

• A space character is inserted if the space between two characters is greater than
the width of the average space character of the current font. If the font of the two
characters is different, the average of space width is taken as threshold. Multiple
space characters in a row are not allowed and reduced to one.

The canonisation improves readability of the text extraction. Furthermore, canonisation
should make a later reconstruction easier. Figure 3.7 illustrates all steps of the text
extraction phase in detail.

62

get current Font
directory

encode text of element

create text element
for each

text-showing operator

set text of element

PDF/A-1a document with marked
hidden text content after HTR

visible text content of
PDF/A-1a document.

identify text operators
within page streams

order all text elements
by the y- and x-position

canonize text elements

write text to output
stream

remove hidden text
elements

Figure 3.7: Process diagram of text extraction (TE).

63

Chapter 4

Implementation

This chapter deals with the implementation details of the Text Extraction Algorithm
Module (TEA-M). Section 4.1 gives a schematic overview of the PDF-AS Application
in which TEA-M is integrated. The Section 4.2 points out the internal architecture of
TEA-M. Finally, Section 4.3 discusses the main components of TEA-M in detail and their
relationship to each other.

4.1 System Overview of PDF-AS

The E-Government and Innovationszentrum (EGIZ) was established in 2005 as a joint
initiative of the Federal Chancellery Austria and IAIK at Graz University of Technol-
ogy. Since then EGIZ has supported the Chancellery in development and technical re-
search in the field of eGovernment. EGIZ has conducted several projects in field of
eGovernment, such as the Online Application Modules (MOA) architecture and the PDF-
Amtssignatur (PDF-AS) application.

The PDF-AS application has been designed to attach an Official Signature on PDF doc-
uments. It affixes an electronic signature as well as an Official Signature on a PDF
document and verifies an officially signed document. PDF-AS supports two modes of
operation:

• binary based PDF signature

• text based PDF signature

In the first mode, PDF-AS signs the entire PDF file, or parts of it, at byte level. This com-
prises all the elements of the document, such as pictures, shapes and text. This method
has the disadvantage that the Official Signature is not reproducible from the document’s
printout, which is a requirement as stated before. On the other hand, a text signature

64

enables the reproduction of the signature from the document’s printout.

At the time of working on this thesis, the PDF-AS application simply uses the open
source library PDFBox from Apache [APA09] for text extraction. PDFBox provides an
object based access to PDF documents for the Java programming language. PDF-AS is
designed on a two-level architecture where the first level provides low-level access on PDF
and the second level builds up complex objects. Furthermore, the library provides a basic
structure for text extraction that avoids the development from the sketch. This makes
PDFBox the first choice as the basis of TEA-M.

Returning to PDF-AS, Figure 4.1 shows a greatly simplified configuration of the entire
PDF-AS system. PDF-AS uses a multitude of various open source libraries. The figure
shows very good the provided interfaces of TEA-M to the other PDF-AS components.

Figure 4.1: Schematic diagram of the PDF-AS application and its components.

TEA-M is a central part of the entire PDF-AS system and is primarily used by the
signing and verification module. The major modules are:

TEA module is responsible for text extraction from PDF documents. Furthermore,
the module provides an interface for other PDF-AS modules. The PDFBox library
provides a low level access on PDF documents for TEA-M.

Signature module is responsible for creating an Official Signature.

Verification module is responsible for verifying an Official Signature.

Due to the PDF-AS architecture, the following implementation requirements [IR] have
been defined in the scope of this thesis:

• [IR1] TEA-M shall be implemented as Java library.

• [IR2] TEA-M shall provide a standardized interface for communication with other
PDF-AS components.

65

• [IR3] TEA-M shall provide a modular design to support the implementation and
integration of arbitrary text extraction algorithms.

Furthermore, TEA-M requires Java 6.0 and the following Apache libraries: PDFBox 0.8
(core library), JempBox 0.8 (for working with XMP) and FontBox 0.8 (for accessing to
PDF fonts) [APA09].

4.2 Architecture overview

The following sections outline the software architecture and summarize important design
decisions.

4.2.1 Pipes and Filters

As introduced in Section 3.5, TEA follows a two phase concept for extracting text content
of PDF/A-1a documents which is composed of a:

• Hidden Text Recognition (HTR) Phase and

• Text Extraction (TE) Phase

The core concept of TEA-M implementation is that the output of each phase is the input
of the next one, which makes it well suited for the Pipes and Filters architecture pattern
from [BMR+96]. The pattern will be described in the following paragraph.

"The Pipes and Filters architecture pattern provides a structure for systems
that process a stream of data in sequential steps. Each processing step is encap-
sulated in a filter component. Data is passed through pipes between adjacent
filters. Recombining filters in the Pipes and Filters pattern allows to build
family of related systems." [BMR+96, S. 54ff.]

The core idea of the Pipes and Filters pattern is to divide large processing steps into
smaller ones which are easier to reuse and to handle. This makes extensions and changes
manageable in development. Furthermore, the pattern is notably, scaleable and ad-
justable. Thus, the pattern is well suited for parallel programming with only slight
modifications to the pattern, as suggested by Ortega et al. [OA05] or Mattson et al.
[MSM04]. Concurrency has a huge impact on the performance of large data sets and may
reduce computation time dramatically. Mattson et al. describes two patterns which are
very similar to Pipe and Filter pattern with the key difference of considering concurrency:
the Pipeline and the Task Parallelism Pattern. Figure 4.2 illustrates the concept of the
Pipeline pattern [MSM04] which can be phrased out as follows: a Pipeline is defined by

66

pipeline stages. At each stage a sequence of computations are performed concurrently by
a sequence of filter components. The result of each filter is pushed to its neighbour filter.
The pipeline starts again and each filter is applied on the new data set.

Figure 4.2: Pipeline Pattern of Mattson T. et al. [MSM04].

However, Figure 4.3 shows the conceptional TEA-M architecture by applying the Pipes
and Filters pattern. Every pipe element performs a specific task on a IPDFModel object,
an abstraction of a PDF page. The order of execution is formed by the pipeline. Each
stage in the pipeline has privileged read and write access on a IPDFModel object for the
time it is executed. The following paragraphs explain major components from Figure 4.3:

Figure 4.3: Simplified TEA-M architecture concept.

PDPage

This is the in-memory representation of a PDF document page from PDFBox.

IPDFModel

The IPDFModel represents the in-memory data on which a filter is performed. It keeps
information about a PDF page and a collection of IPageElement elements. TEA deals

67

with PDF page elements in order to determine hidden text. As introduced in the previous
section, a PDF Page can be considered as a composition of Text, Path and Image elements.
Each element of this kind is represented by the IPageElement interface in TEA-M. It
keeps information about position, size and textual content of an associated page element.
More precisely, an IPageElement object is given by its x- and y-coordinates of the upper
left corner and its width and height value in user space. In addition, the coordinates of
an IPageElement are invariant regarding page rotation. It has the advantage that an
IPageElement is always defined by its upper left corner, unless page rotation.

IPDFFilter

An IPDFFilter component takes input data (e.g. IPDFModel object) from a pipe, per-
forms a sequence of operations on the input data and sends output result data (e.g.
IPDFModel object) to the pipe again. TEA-M defines a sequence of different IPDFFilter
components, most of them implement algorithms and phases which were defined in section
3.5:

• AbstractPDFStreamProcessor: This filter will run through a PDF page content
stream and executes certain operations to build a IPDFModel object.

• IHiddenTextRecognition: It provides the HTR algorithm which recognizes and
designate hidden IPageElement objects from the input IPDFModel.

• ITextExtractor: This filter encapsulates the TE algorithm. It removes hidden
and non text elements from the IPDFModel.

• CanonizeFilter: This filter encapsulates the canonization procedure. It formats
the IPDFModel into human-readable style by adding or removing line-breaks and
space-characters.

• OutputStream: This filter writes the resulting extracted character stream to a
java.util.OutputStream.

IPipe

The IPipe component transfers data between filters and synchronises activities between
neighbouring IPDFFilter objects. TEA-M provides three different implementation of
IPipe objects namely the FilterPipe, the LinearPipe and the ParallelPipe . The
FilterPipe servers as wrapper only which encapsulates a IPDFFilter object. However,
the LinearPipe and the ParallelPipe enables the parallel execution of a set of IPipe
objects. So, the LinearPipe object combines single FilterPipe objects to a line of pipes,

68

where each stage of the pipe is executed concurrently. The following sections describe the
simultaneous execution of filters in detail.

4.2.2 System Architecture

Figure 4.4 presents the TEA-M architecture. The PDFBox and PDF-AS infrastructure is
not shown for reasons of clarity. PDF-AS implements and handles the calling of the text
extraction pipeline, as illustrated in Figure 4.3.

<<component>>
Filters

<<component>>
Model

<<component>>
Pipes

<<component>>
AbstractStreamProcessor

<<component>>
IPDFModel

<<component>>
ParallelPipe

<<component>>
FilterPipe

<<component>>
LinearPipe

<<component>>
HTR

<<component>>
TE

Figure 4.4: Block diagram illustrates system architecture of TEA-M.

The architecture, as shown in Figure 4.4, introduces some new parts of the pipeline
mechanism. Pipes are used to encapsulate filters and to synchronize communication be-
tween other pipes. Pipes are connected to pipelines that are executed consecutively. The
traditional Pipes and Filters pattern from [BMR+96] does not support multithreading
from the skretch. TEA-M implements a slightly modified version of Pipe and Filters
with multithreading support. The benefit of multithreading is higher performance due
do simultaneous execution of all pipes in a pipeline. The parallel programming requires
the partitioning of computation into smaller parts. This requires that computations are
independent from each other. That means a filter can be carried out until completion
without interference.[OA05]

TEA-M provides two methods for establishing a pipeline: either by connecting a pipe
to another one by the IPipe interface or by using of a managed pipe such as LinearPipe

69

or ParallelPipe. The latter supports the simultaneous execution of a sequence of pipes.
While the result of LinearPipe is formed by the last registered pipe, the result of Par-
allelPipe is formed by the union of each single pipe item.

The advantages of this architecture are the exploiting of concurrency, a easy mainte-
nance and increased performance compared to traditional pipes and filters architecture
[BMR+96]. The disadvantages of this architecture are the additional effort in develop-
ment compared to a strategy pattern or to a traditional pipes and filters pattern due to
the synchronisation of pipes. This implies the risk of deadlocks. Furthermore, objects for
communication between pipes must be built up to a common denominator, which may
limit a decoupling of objects.

4.3 Technical Overview

The technical design encompasses the package and class structure of TEA-M, as well as
the interaction between the different components of TEA-M

The following list summarizes the package structure of TEA-M and briefly describes
what each package does. The package structure relies basically on the system architecture
discussed before.

• at.gv.egiz.tea.model: Abstract PDF page element data model; used by IPDF-
Filter and IPipe

• at.gv.egiz.tea.pipes: Provides different pipe implementations of the Pipe and
Filter framework.

• at.gv.egiz.tea.filters: Provides various filter implementations of the Pipe and
filter framework.

• at.gv.egiz.tea.filters.htr: A HTR implementation of TEA .

• at.gv.egiz.tea.filters.te: A TE implementation of TEA.

• at.gv.egiz.tea.util: The util package compasses everything that is not tied to
the core algorithms of TEA. Beside standard data manipulation functions this also
includes logging functionality.

The following sections give an detailed overview of each package provided by TEA-M

70

4.3.1 Model-Package

Figure 4.5 depicts the key classes in parsing a PDF/A-1a document and constructing an
IPDFModel object from it. Classes from PDFBox are omitted for clarity. The central
classes or interfaces are the IPDFModel, AbstractStreamProcessor and OperatorPro-
cessor.

An IPDFModel object keeps a collection of IPageElements - there are three different
implementations: TextElement, PathElement and ImageElement. Each one reflects the
bounding box of a PDF page element and its content. In fact, IPageElement is a IRect-
angle2D that is used from IPlaneSweepAlgorithm in the Filter package.

The IPageElement or IPDFModel object is constructed by an AbstractStreamProcessor
instance. It is the interface that is used by other packages in the system, neatly imple-
menting a bridge pattern of abstraction. The inner workings of the model package can be

<<Enum>>
PointType

PDFMarkedContentStreamProcessor

PathElement

ImageElement

+getContext() : AbstractStreamProcessor...
AbstractOperatorProcessor

AbstractStreamProcessor org::apache::pdfbox::operator::OperatorProcessor

FillPathEvenOddRule

BeginMarkedContent

CurveToReplicateInitialPoint

CurveToReplicateFinalPoint

FillAndStrokeNonZeroRule

FillPathNonZeroRule

CloseFillEvenOddAndStrokePath

EndText

BeginPathAndMoveTo

CloseFillNonZeroAndStrokePath

DrawRectangle

ClosePath

EndPath

ClipEvenOddRule

StrokePath

EndMarkedContent ShowText

CurveTo

BeginTextClipNonZeroRule

LineTo

CloseAndStrokePath

FillAndStrokeEvenOddRule

XObject

<<Interface>>
IPDFFilter

<<Interface>>
IRectangle2D

<<Interface>>
IPageElement

AbstractPageElementBoundingBox

TextElement

<<Interface>>
IPDFModel

PDFModel

operators

model
(at::gv::egiz::tea)

elements

iPDFModel

0..1

0..1

0..1

1

*

0..*1

Figure 4.5: Simplified UML class diagram of the model package.

explained by looking at the specific case of building a PDFModel. The AbstractStream-
Processor in Figure 4.5 receives a request from the IPDFFilter interface that invokes a
specific org.apache.pdfbox.PDDocument and org.apache.pdfbox.PDPage object. The
processor parses the content stream of the PDPage and invokes an associated Operator-
Processor for each operator. TEA-M implements a sequence of OperatorProcessors

71

for specific content stream operations, as illustrated in Figure 4.5, in addition to those
provided by PDFBox. When an OperatorProcessor is invoked it performs various oper-
ations on the caller AbstractStreamProcessor to build and to modify IPageElements
applying a builder pattern.

The use of builder pattern enables easy programming and a clean abstraction of func-
tionality. Elements can be modified through a shared context and must not be managed
by each OperatorProcessor. Furthermore, it decouples the IPDFModel from Operator-
Processors.

4.3.2 Pipes-Package

Figure 4.8 shows how the Pipe and Filter framework is implemented and how it is asso-
ciated with the rest of the system. The core elements in Figure 4.8 are IPDFFilter and
IPipe, which provide an interface for other packages. The former will be discussed later.

The IPage interface inheritsjava.util.concurrent.Callable. It allows a concurrent
execution of implemented classes by threads and returns a result if it is completed. As
noted, TEA-M implements various pipes for different purpose. The differences between
FilterPipe, LinerarPipe and ParallelPipe are in the accomplishment of an associ-
ated IPDFFilter:

• FilterPipe represents the simplest pipe. It encapsulates an IPDFFilter, executes
it on request of a neighbour pipe and if the associated filter is finished the pipe
pushes the filter’s result to the next pipe and invokes its execution.

• LinearPipe is itself a pipe and takes a series of pipes which forms a pipeline; In
the case of execution, it carries out each pipe concurrently and pushes the result
from first to second pipe, second to third pipe etc. and lastly to the LinearPipe´s
output.

• ParallelPipe is similar to LinearPipe. It differs regarding the movement of exe-
cution as each pipe is executed concurrently but the result of each one is merged to
one result and forwarded to the ParallelPipe´s output.

Figure 4.6 illustrates a linear pipe with three filters which is encapsulated in a IPipe
object. All pipes are carried out parallel, where the result of PipeA is the input of PipeB
and so on. The result of a linear pipe is the result of of the last pipe item (PipeC). In
contrast, in figure 4.7, the result of all pipes are merged and forwarded to output which

72

PipeC

PipeB

PipeA

LinearPipe

9: filterC.process(pushedData)

7: filterB.process(pushedData)

17: close()

16: close()

15: close()

13: pushData(IPDFModel-B)

11: pushData(IPDFModel-A)

14: instance IPDFModel-C

12: instance IPDFModel-B

10: instance IPDFModel-A

5: filterA.process(pushedData)

8: call()

6: call()

4: call()

3: addPipe(filterC)

2: addPipe(filterB)

1: addPipe(filterA)

Figure 4.6: Simplified sequence diagram of LinearPipe in TEA-M.

PipeC

PipeB

PipeA

ParallelPipe

13: merge(IPDFModel A-B-C)

10: instance IPDFModel-A

14: close()

4: call()

8: call()

15: close()

11: instance IPDFModel-B

16: close()

6: call()

1: addPipe(filterA)

2: addPipe(filterB)

12: instance IPDFModel-C

5: filterA.process(pushedData)

9: filterC.process(pushedData)

3: addPipe(filterC)

7: filterB.process(pushedData)

Figure 4.7: Simplified sequence diagram of ParallelPipe in TEA-M.

73

represents the behaviour of ParallelPipe. Finally, every pipe has to be closed to push
the last input of the first pipe to the last pipe.

AbstractThreadedPipeFilterPipe

<<Interface>>
IPipe

LinearPipe ParallelPipe

OutputStreamFilter

+process(IPDFModel) : IPDFModel

<<Interface>>
IPDFFilter

PageSeperationFilter

htr te

CanonizeFilter

IPDFModel

TextExtractorPositionFilter

<<Interface>>
IHiddenTextRecogntion

pipes
(at::gv::egiz::tea)

filters
(at::gv::egiz::tea)

model
(at::gv::egiz::tea)

T

0..*

Figure 4.8: Simplified UML class diagram of the pipe and filter packages.

4.3.3 Filters-Package

The IPDFFilter interface must be implemented by any object that is used in a pipeline.
In general, a filter encapsulates a specific algorithm which transforms a IPDFModel object.
TEA-M applies a sequence of different filters for text extraction on PDF/A-1a documents.
The most important will be discussed in the following sections.

Hidden Text Recognition (HTR)

The function of this filter is described in detail in chapter 3. In this section we only
give some technical implementation notes. Figure 4.9 shows the class diagram of the

74

Event

<<Interface>>
Event

PlaneSweepRectangle2DImpl

IntervalEntry Entry XComperator

HiddenTextRecognition

<<Interface>>
IPlaneSweepAlgorithm

<<Enum>>
EventType

<<Interface>>
IHiddenTextRecogntion

<<Interface>>
IPDFFilter

ColorDistanceFilterHiddenTextDesignator

<<Interface>>
IFilter

htr
(at::gv::egiz::tea::filters)

eventfilters

T

T

1

1

0..*

0..*

0..*0..*
0..*

Figure 4.9: Simplified UML class diagram of the htr package.

htr-package. The focus is on the IHiddenTextRecognition and IPlaneSweepAlgorithm
interfaces. The former provides an interface for other packages by applying the bridge
pattern. The latter class provides the "business logic" of the HiddenTextRecognition
which builds the core part of HTR. The PlaneSweepRectanlge2DImpl class realises
a rectangle intersection algorithm according to Shamos and Hoey [SH76] plane-sweep
technique. The algorithm was described in detail in section 3.5.

Text Extraction (TE)

Figure 4.10 shows the class diagram of the TE implementation, which tightly follows the
algorithm’s specification in section 3.5.3. In general, an IPDFModel object keeps an un-
ordered set of IPageElements, whereas each one represents a part of a PDF page. In
the case of text-extraction, only TextElements are of interest. The challenge is the re-
construction of the reading order of the origin document. Therefore, TEA-M provides a
TE implementation with the TextExtractorPositionFilter class. It orders all the text
elements in an IPDFModel object by means of its y- and x- position on the page. The ad-
vantage of this approach is that it is always applicable, independent of the PDF document
and it delivers a unique result. The disadvantage is that the reconstruction is not lossless;
that is, in some cases the approach can not reconstruct the visual and logical structures
of a document such as of tables. For example, a multi-line table without borders does not
differ from a normal text block regarding the text position. On the other hand a table

75

can be read column by column and not from top left to bottom right, which is recognized
from a reader easily but not from the algorithm. The TextExtractorPositionFilter is
designed as an IPDFFilter to be use as a pipe element in a pipeline.

Furthermore, this package provides a canonization implementation, as defined in sec-
tion 3.5.3, by the CanonizeFilter class. It is used to canonize an IPDFModel object,
where only visible text objects are recognized. It implements the IPDFFilter interface to
utilize it as a pipe item. The canonization process is implemented as follows: a map data
structure represents a PDF page, where a key represents the y-position of a text-line and
the associated value to key keeps the array of text elements at this line. If an element
is inserted, the map is checked for a present key. If the key is not present a new line is
introduced and the element is added. Otherwise only the element is added.

<<Interface>>
IPDFFilter

TextExtractorPositionFilter

te
(at::gv::egiz::tea::filters)

CanonizeFilter

Figure 4.10: Simplified UML class diagram of the te-package.

4.4 Testing

In this section we will evaluate TEA-M, if it satisfies the requirements as defined in section
3.5. Therefore, the test procedure and test data set are introduced. Furthermore, at the
end of this section the test results are presented and briefly discussed.

4.4.1 Testing Procedure

Unit testing is a popular verification and validation method in software development
for testing parts of a implementation as a whole. In order to validate TEA-M against
the algorithm specification a sequence of unit tests have been defined and executed on
TEA-M. The focus was put on testing major features of TEA, such as the correct text
extraction according to the reading direction and the hidden text recognition.
The input of every unit test was generated in OpenOffice Writer and exported as a PDF/A
file. Furthermore, the text content of every PDF/A document was being extracted by
TEA-M. If the extracted text matched with the expected one, the test was evaluated as

76

successful otherwise as failed. A detailed overview of all test results gives Table 4.22. In
the following sections, every test is described briefly. This involves a list of test files in
which the respective test is applied and the expected result of the test.

T1: Header and Footer Test

Figure 4.11(b) gives the test case for testing header and footer extraction. The simple
PDFBox based extraction algorithm of PDF-AS had problems in recognizing headers and
footers of multi page PDF documents correctly, where TEA solves these problems.

Test files: PDF/A 1, PDF/A 10, PDF/A 11

(a) header and footer test

(b) expected result

Figure 4.11: Figure shows the header and footer test and the expected result.

T2: Body Text Test

The body text test tests the text extraction from the body of a PDF document with
respect the reading direction. Figure 4.12 shows the test and the expected result.

Test files: PDF/A 2, PDF/A 10, PDF/A 11

T3: Text Block Test

Figure 4.13 illustrates a simple text-block provided by various word processing applica-
tions, such as Microsoft Word and OpenOffice Writer. This test tests the text extraction
from a text-block.

Test files: PDF/A 3, PDF/A 10, PDF/A 11

77

(a) header and footer test

(b) expected result

Figure 4.12: Figure shows the body text test and the expected result.

(a) header and footer test

--------------------- justi�ed text block ---------------------
This text servers for better understanding the
challenge of text-extraction from PDF documents.

(b) expected result

Figure 4.13: Figure shows the text block test and the expected result.

T4: Table Test

Tables provide additional information concerning the document’s reading direction. A
reader easily knows the reading direction of a table which is not always from top left to
bottom right. In particular, tables are often used for styling purposes. At printout, only
the position of text is recoverable but not styling and structure information. Figure 4.14
shows a table with full borders and Figure 4.15 shows a table without borders. At print-
out, a distinction between regular styled text and text in tables is infeasible by means of
the text position. For instance, the table in Figure 4.15 can be read column per column
by a person instead of row by row such as TEA.

Test files: PDF/A 4, PDF/A 10, PDF/A 11

78

(a) table with full borders

Headline 1 Headline 2 Headline 3 Headline 4
row1/col1 row1/col2 row1/col3 row1/col4
row2/col1 row2/col2 row2/col3 row2/col4

(b) expected result

Figure 4.14: Figure shows the table test with borders and the expected result.

(a) table without borders

Headline 1 Headline 2
Tables provide additional information
How tables are recognized at
printout?
regarding the reading direction
Tables provide additional information
How tables are recognized at regarding the reading direction.
printout?

(b) expected result

Figure 4.15: Figure shows the table test without borders and the expected result.

T5: Listing Test

Listings and enumerations are used frequently in text document. As usual, text process-
ing applications allow the adjustment of listing symbol before the text. In OpenOffice
Writer, the OpenSymbol font is used for listing symbols. During work on this thesis some
problems with the OpenSymbol font regarding the character encoding have been encoun-
tered. For instance, in Figure 4.16 the character "x" is encoded as "?", which makes a text
extraction infeasible.

79

Test file: PDF/A 12

(a) listing test

x This is the �rst item of listing.
x This is the second item of listing.
x This is the third item of listing.

(b) expected result

Figure 4.16: Figure shows the listing test and the expected result.

T6: Text-in-Picture Test

At the time of verification of a electronic signed printout, a major problem is to distinct
between text and text which is embedded in a picture. This circumstance is tested with
the following test case, given in Figure 4.17. TEA does not extract text from pictures, so
no extracted text is expected.

Test file: PDF/A 13

Figure 4.17: Figure shows the text-in-picture test only because the expected result is empty.

T7: Hidden Text - Rendering Mode Test

Text, that is rendered in mode three or seven, is hidden at printout and on screen. Hence,
a visible representation of this test case cannot be generated.

Test files: PDF/A 5, PDF/A 10, PDF/A 11

T8: Hidden Text - Marginal Color Difference Test

The recognition of hidden text is a major requirement of TEA. Hidden text is divided
into three types whenever the marginal color difference between text and its background
is one of those types. In this example text becomes hidden because of low contrast and
cannot be reconstructed at printout. Figure 4.18 illustrates the according test case with

80

the expected result.

Test files: PDF/A 9, PDF/A 10, PDF/A 11

(a) hidden text - marginal color difference test

White text is readable on a black background.

(b) expected result

Figure 4.18: Figure shows the marginal color difference test and the expected result.

T9: Hidden Text - Overlapped Text Test

There are three different tests for testing the recognition of hidden text. Crossed out text
is given in Figure 4.19. Crossed out text is removed from text extraction. Figure 4.20
and 4.21 test the recognition of hidden text which is overlapped by a text-block and a
picture. Only the visible text should be extracted.

Test files: PDF/A 6, PDF/A 7, PDF/A 8, PDF/A 10, PDF/A 11

(a) crossed out text

This serves for understanding the challenge of text-extraction
from PDF documents. This text serves for better understanding the
challenge of text-extraction from PDF documents.

(b) expected result; crossed out text is deleted

Figure 4.19: Figure shows the overlapped text test with crossed out text and the expected
result.

81

(a) overlapped text by a text-block

--------------------- justi�ed text block ---------------------
Show me this line
This text serves for better understanding the
challenge of text-extraction from PDF documents.
This text serves for better understanding the

(b) expected result; overlapped text is deleted

Figure 4.20: Figure shows the overlapped text test, whereby text is overlapped by a text box,
and the expected result.

(a) overlapped text by an image

(b) expected result; overlapped text is deleted

Figure 4.21: Figure shows the overlapped text test, whereby text is overlapped by an image,
and the expected result.

T10: Combination Test

The tests header and footer, text, text-block, table and all overlapped tests are combined
in this test. There is no image for this test. The expected result is the expected result of
each single test.

Test file: PDF/A 10

T11: Combination Test with more pages

This test contains all test of the combination test and allocated over two pages. A figure
was not generated for this test but the expected result is the expected result of each single
test.

Test file: PDF/A 11

82

4.4.2 Test results

TEA-M was being tested by a sequence of PDF/A files, where each PDF/A file contains
one or more unit tests. In Figure 4.22, a plus implies, the test was carried out successfully,
a minus means the test was failed and a slash means the test was not performed with this
file.

The table in Figure 4.22 shows that, beside document PDF/A 12 and PDF/A 13, all
the tests are carried out successfully. The files PDF/A 12 and PDF/A 13 involves the
tests for extracting a listing and the text from a picture. The extraction of the listing has
failed because the listing symbol "x" is extracted as "?". Hence, the extracted character
"?" does not match with the expected one "x". This is the result of a wrong character
encoding by the OpenSymbol font which is used by OpenOffice for the listing symbol.
The test in PDF/A 13 has failed, because TEA is not designed for recognitizing text in
pictures.

Summing up, TEA-M has accomplished all tests regarding the algorithm requirements.
That is, TEA-M recognizes hidden text in a PDF/A document, which satisfies [AR2] and
[AR3]. Furthermore TEA-M extracts only the visible text of the document following the
reading direction from top left to bottom right, which satisfies [AR2],[AR3] and [AR4].
The algorithm requirement [AR1] is satisfied by taking PDF/A documents as input, which
TEA-M fulfils.

83

hi
dd

en
 te

xt

he
ad

er
 &

 fo
ot

er
bo

dy
 te

xt
te

xt
-b

lo
ck

ta
bl

e
lis

tin
g

te
xt

-in
-p

ic
tu

re
m

ul
ti-

pa
ge

s

re
nd

er
in

g

m
od

e

ov
er

la
pp

ed

 te
xt

m
ar

gi
na

l

co
lo

r-
di

ff

PD
F/

A
 1

/
/

/
/

/
/

/
/

/

PD
F/

A
 2

/
/

/
/

/
/

/
/

/

PD
F/

A
 3

/
/

/
/

/
/

/
/

/

PD
F/

A
 4

/
/

/
/

/
/

/
/

/

PD
F/

A
 5

/
/

/
/

/
/

/
/

/

PD
F/

A
 6

/
/

/
/

/
/

/
/

/

PD
F/

A
 7

/
/

/
/

/
/

/
/

/

PD
F/

A
 8

/
/

/
/

/
/

/
/

/

PD
F/

A
 9

/
/

/
/

/
/

/
/

/

PD
F/

A
 1

0
/

/
/

PD
F/

A
 1

1
/

/

PD
F/

A
 1

2
/

/
/

/
/

/
/

/
/

PD
F/

A
 1

3
/

/
/

/
/

/
/

/
/

vi
si

bl
e

te
xt

D
oc

um
en

t-
ID

Figure 4.22: Overview of executed unit tests and its results; green plus = test was successful,
red minus = test was failed, slash = not tested with this PDF file

84

Chapter 5

Discussion

The primary objectives of this thesis are the specification and implementation of a proof-
of-concept text extraction algorithm for PDF/A-1a documents in order to enable a re-
construction of Official Signatures from printouts. Key aspects of the algorithm are that
the extracted text is unambiguous, represents the visible text content of the underly-
ing document and considers the reading direction from top left to bottom right. More-
over, the text extraction algorithm shall replace the underlying algorithm of the PDF-
Amtssignatur (PDF-AS) application. PDF-AS was developed by the E-Government and
Innovationszentrum (EGIZ). It facilitates the attachment of Official Signatures on PDF
documents.

In the course of this work the difficulties of PDF regarding the text extraction and recon-
struction of Official Signatures from printouts have been shown. To tackle the problems of
PDF the new PDF/A-1a document format was introduced. The ISO standard PDF/A-1a
focuses on the archiving of PDF documents over a long-term of time. This implies the
preservation of the visual appearance and the ability of processing the document’s text
content (e.g. text extraction) with respect to the reading direction by providing a so
called logical structure tree.

However, we have shown that the document format PDF/A-1a establishes a basis for
text extraction but it does not satisfy all requirements of Official Signatures in terms of
reconstruction from printouts. On the one hand this involves the unambiguous text ex-
traction regarding the reading direction and on the other hand the consideration of hidden
text. The provided logical structure tree of PDF/A-1a documents has turned out as "bad
choice" for text extraction. This is because PDF/A-1a does not define any policies for
creating the logical structure tree. Hence, the structure tree may change from PDF/1-a
creation application to application. In consequence, the structure tree does not guarantee

85

an unique text extraction. Moreover, we have shown that the recognition of hidden text
in PDF/A-1a documents is crucial for reconstructing Official Signatures from printouts.

To tackle these and further problems of PDF/A-1a, we have introduced the Text Ex-
traction Algorithm (TEA) in Chapter 3. TEA provides a two phase concept for text
extraction from PDF/A-1a documents. At the first phase a HTR algorithm designates
hidden text fragments. At the second phase the visible text content is extracted by the
text’s vertical and horizontal position. Therefore a character is represented by a bounding
box

In section 4, a Java implementation of TEA called TEA-M have been developed. Fo-
cus of the TEA-M architecture is the easy adaptation and extension of TEA. Therefore,
a multi threaded version of the Pipes and Filter architecture [BMR+96] was introduced.
Furthermore, in Section 4.4 TEA-M have been tested against a small set of unit tests. The
test results in Section 4.4.2 shows that not all problems at the text extraction are solved
by TEA. Although PDF/A-1a ensures a proper character encoding, there are problems
in character encoding. This was shown by the test file PDF/A 12 in Section 4.4. Also the
overlapped text recognition algorithm tends to false positive matchings. This results from
the fact that not every overlapped character is unreadable at printout. However, TEA
and TEA-M provides a reliable text extraction and builds a solid basis for the further
development of PDF-AS.

86

5.1 Future work

A major target for future work is to evaluate TEA-M against a representative test data
set in order to explore the weaknesses and strengths of the implementation. A weakness
of TEA is that only PDF/A-1a documents are supported. This restricts the number of
PDF documents for text extraction dramatically. Future development will concentrate
on relaxing this limitation of TEA. One way could be the transformation of existing PDF
documents into PDF/A-1a documents with the focus on adding Unicode information. An-
other approach could be the combination of TEA with OCR optical character recognition
algorithms in order to extract text from non-conform PDF/A-1a documents. Another
open question is how to tackle the text-in-picture problem regarding the reconstruction
of Official Signatures from printouts. An rather generic solution of this problem would
be the designation of pictures by watermarks at the time of signing in order to identify
them at printout.

87

Appendix A

Appendix

A.1 Acronyms

BNF Backus-Naur-Form

CTM Current Transformation Matrix

ISO International Organization of Standardization

TEA Text Extraction Algorithm

TEA-M Text Extraction Algorithm Module

PDF Portable Document Format

PDF-AS PDF-Amtssignatur

HTR Hidden Text Recognition

OTR Overlapped Text Recognition

TE Text Extraction

IAIK Institute for Applied Information Processing and Communications

EGIZ E-Government and Innovationszentrum

ICT Information and communication technologies

MOA Online Application Modules

E-GovG E-Government Act

SigG Signature Act

SigV Signature Regulation

88

A.2 Glossary

Binary signature

A binary signature signs the entire document or parts of it at byte level.

Text-based signature or textual signature

A text-based signature signs the entire text content of a document within defined speci-
fications of PDF-AS [EG08].

Official signature

An official signature is an electronic signature within the meaning of the Signaturgesetz
(Signature Act). In order words an official signature is an advanced electronic signature
which serves to facilitate recognition of the fact that a document originates from an
authority.

E-Government

The term E-Government covers all electronic services, transactions and interactions be-
tween agencies and citizens.

Austrian E-Government Act

The Austrian E-Government Act provides a clear and solid legal basis for the electronic
communication, procedure and proceeding within all layers of government. Furthermore
it instructs to create technical prerequisites for establishing E-Government in Austria.

Signature Act

The Signature Act provides a legal framework for using and creating electronic signatures.

Portable Document Format (PDF)

The Portable Document Format (PDF) has been well established as an interchange format
of electronic documents in private sector as well as for eGovernment.

ISO 19005-1 (PDF/A-1)

ISO 19005-1, Document management — Electronic document file format for long-term
preservation — Part 1: Use of PDF 1.4 (PDF/A-1), is the first part in a new familiy of ISO
standards which adresses the issue of maintaing information in electronic documents over

89

archival time spans. PDF/A-1 bases largely on the PDF 1.4 specification with exceptions
of PDF Transparency, encryption, mulit-media and others. PDF/A-1 documents are self-
contained and self-describing which means they contain all resources (fonts, structure
information) necessary for rendering, printing and for processing its text content.

Signature attributes

An electronic signature is characterized uniquely by its attributes such as signature value,
signature date and signature properties.

PDF-AS

The PDF-AS application is an project of the E-Government Innovation Center which
attaches an official signature on a PDF document. Thereby it provides two different
modes of operation for creating signatures: text-based and binary-based signature.

PDFBox

PDFBox is a open source java libraries that allows the creation of new PDF documents,
manipulation of existing documents and the ability to extract content from documents.

TEA

TEA stands for Text Extraction Algorithm and is a canonical text extraction algorithm
for PDF/A documents.

TEA-M

The TEA module represents an software implementation of TEA.

90

Bibliography

[APA09] Apache pdfbox - java pdf library. Website, 2009. http://incubator.apache.

org/pdfbox (accessed August 2009).

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Micahel Stal. Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. John Wiley & Sons, 1996.

[CLS01] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest Clifford Stein.
Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill,
Januar 2001.

[Ede83a] Herbert Edelsbrunner. A new approach to rectangle intersections part i. In-
ternational Journal of Computer Mathematics, pages 209–219, 1983.

[Ede83b] Herbert Edelsbrunner. A new approach to rectangle intersections part ii.
International Journal of Computer Mathematics, pages 212–229, 1983.

[EG08] E-GIZ. PDF-Amtssignatur Spezifikation 2.0.0. www.egiz.gv.at, 2008.
https://demo.egiz.gv.at/plain/content/download/527/3056/file/

PDF-AS-Spezifikation-2.0.0.pdf(accessed on July 2009).

[HWD80] Six H.-W. and Wood D. The rectangle intersection problem revisited. BIT
Numerical Mathematics, pages 426–433, 1980.

[Int05] International Organisation Standard (ISO). ISO 19005-1:Document manage-
ment - Electronic document file format for long-term preservation, Part 1:Use
of PDF 1.4 (PDF/A-1), Januar 2005.

[MD01] Thomas Merz and Olaf Drümmer. Die PostScript- und PDF-Bibel. Dpunkt
Verlag, second edition, March 2001.

[MSM04] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns
for Parallel Programming. Dpunkt Verlag, September 2004.

91

http://incubator.apache.org/pdfbox
http://incubator.apache.org/pdfbox
https://demo.egiz.gv.at/plain/content/download/527/3056/file/PDF-AS-Spezifikation-2.0.0.pdf
https://demo.egiz.gv.at/plain/content/download/527/3056/file/PDF-AS-Spezifikation-2.0.0.pdf

[Nas98] Kurt Nassau. Color for science, art and technology. North-Holland Publishing
Co, first edition, 1998.

[Neu07] DI Edgar Neuherz. Dokumentation strategiekonformität - studie zu sichere
signaturen mit pdf/a. Technical report, E-Government and Innovationcenter,
2007.

[OA05] Jorge L. Ortega-Arjona. The parallel pipes and filters pattern:a functional
parallelism architectural pattern for parallel programming. Technical report,
Departamento de Matematicas, Facultad de Ciencias, UNAM, 2005.

[PPS01] Chuck Geschke (Preface), John Warnock (Preface), and Adobe Systems. PDF
Reference: Adobe Portable Document Format Version 1.4. Addison-Wesley,
third edition, March 2001.

[PS93] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An
Introduction. Springer, 1993.

[SH76] Michael I. Shamos and Dan Hoey. Geometric intersection problems. Proc. 17th
IEEE Symp. Foundations of Computer Science (FOCS ’76), pages 208–215,
1976.

92

	Introduction
	Motivation
	Legal Requirements
	Visual Representation of Electronic Signatures in Austria
	Reconstruction of Electronic Signatures from Printouts

	Objectives of this Thesis
	Structure of this Thesis

	Portable Document Format
	History and Motivation
	Components
	File Structure
	Objects and Indirect Objects
	Document Structure

	Graphic Model
	Content Streams
	Marked Content Streams
	Graphic Objects
	Coordinate Spaces

	Text
	Characters and Glyphs
	Fonts
	Text Objects and Operators
	Text Positioning

	Specification
	The problem to be dealt with
	PDF/A-1 (ISO 19005-1)
	Tagged PDF
	Algorithm Requirements
	Algorithm Specification
	Data Model
	Hidden Text Recognition (HTR)
	Text Extraction (TE)

	Implementation
	System Overview of PDF-AS
	Architecture overview
	Pipes and Filters
	System Architecture

	Technical Overview
	Model-Package
	Pipes-Package
	Filters-Package

	Testing
	Testing Procedure
	Test results

	Discussion
	Future work

	Appendix
	Acronyms
	Glossary

