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Abstract

Large vocabulary continuous speech recognition (LVCSR) systems require large amounts of
labelled audio data for training. While such literal transcriptions of audio recordings, i.e.,
highly accurate textual reproductions of the utterances are expensive and therefore only avail-
able in limited amounts, non-literal field data from commercial automatic dictation systems
can be collected on large scale but with quality limitations. Automatic draft transcriptions
from the dictation system contain misrecognitions and the manual corrections of the draft
transcriptions produced by professional transcriptionists have been reformulated to comply
with stylistic guidelines.

In this work, phonetic similarity matching is utilised to bridge this gap between literal
and non-literal text resources such that large amounts of non-literal transcripts can be em-
ployed for the improvement of LVCSR systems. For the first time, a detailed analysis of the
deviations between manual reference transcripts, automatically recognised transcripts, and
final corrected documents of a medical transcription environment on orthographic and pho-
netic level is given. Based on these insights, a novel method for the alignment of recognised
transcripts and final corrected documents on multiple levels of segmentation was developed.
The alignment is calculated based on the similarity of two phone strings determined with a
stochastic string edit distance function trained on task-specific data.

The proposed methods are applied for solving two exemplary application-driven problems.
First, quasi-literal transcripts of medical dictations are reconstructed out of the non-literal
automatically recognised and the final, corrected medical reports. Semantic and phonetic
similarity measurements are defined for classifying aligned text chunks as either recognition
errors or reformulations introduced by the medical transcriptionist. Language model retrain-
ing with a corpus of 50 million reconstructed words resulted in a relative word error rate
reduction of 7.8% for a commercial medical transcription system. Second, speaker-specific
pronunciation models for non-native speakers are generated from small amounts of available
adaptation data. Phonetic similarity matching is utilised for measuring lexical confusability
and the accuracy gain of a proposed pronunciation variant such that both effects are balanced
for a given lexicon. Recognition tests with speaker-specifically adapted lexica resulted in an
average relative word error rate reduction of 1% per speaker for the same commercial medical
dictation system.



Kurzfassung

Spracherkennungssysteme mit großem Vokabular werden mit großen Mengen an annotier-
ten Audiodaten trainiert. Solch genaue Transkriptionen der Audioaufnahmen, d.h. exakte
Reproduktionen der Äußerungen sind teuer und daher nur in geringen Mengen verfügbar,
während Felddaten von kommerziellen Diktiersystemen laufend in großem Stil, allerdings mit
Qualitätseinschränkungen gesammelt werden können. Automatisch erkannte Transkripte des
Diktiersystems beinhalten Erkennungsfehler und von professionellen Transkribenten händisch
erstellte Dokumente beinhalten Umformulierungen um formalen Ansprüchen zu genügen.

In dieser Arbeit wird phonetische Ähnlichkeitsmessung dazu verwendet um diese Lücke
zwischen genauen und näherungsweisen Transkriptionen zu überbrücken, damit große Feld-
datensammlungen zur Verbesserung von automatischen Diktiersystemen verwendet werden
können. Dazu wurde erstmals eine detaillierte Analyse der Unterschiede zwischen exakten
manuellen Referenztranskriptionen, automatisch erkannten Transkripten und professionell
verfassten Befunden eines medizinischen Diktiersystems erstellt. Auf Basis dieser Erkennt-
nisse wurde eine neue Methode zur parallelen Ausrichtung von automatisch erkanntem und
formatiertem Befund auf mehreren Segmentierungsebenen entwickelt. Die Ausrichtung wird
berechnet indem die Ähnlichkeit zweier Phonemsequenzen durch eine stochastische Edit Di-
stanz bestimmt wird, die mit anwendungsspezifischen Daten trainiert wurde.

Mit den vorgeschlagenen Methoden werden zwei Problemlösungen beschrieben. Zuerst
wird ein quasi-exaktes Transkript eines medizinischen Diktats aus einem automatisch er-
kannten und einem manuell verschrifteten medizinischen Befund rekonstruiert. Mit Hilfe von
semantischen und phonetischen Ähnlichkeitsmaßen werden dabei abweichende Textteile ent-
weder als Erkennungsfehler oder als Umformulierung klassifiziert. Ein aus 50 mio. rekonstru-
ierten Worten trainiertes Sprachmodell führte in Erkennungstests zu einer relativen Wortfeh-
lerratenreduktion von 7.8% für ein kommerzielles medizinisches Diktiersystem. In einer zwei-
ten Anwendung wurden sprecherspezifische Aussprachemodelle für nicht-muttersprachliche
Sprecher aus kleinen Mengen an Adaptionsdaten erstellt. Mit phonetischer Ähnlichkeitsmes-
sung wurde die Vertauschbarkeit innerhalb des Lexikons und der Gewinn an Genauigkeit
bestimmt, den eine vorgeschlagenen Aussprachevariante bewirkt. Erkennungstests mit spre-
cherspezifisch adaptierten Lexika führten im Schnitt zu einer relativen Wortfehlerratenreduk-
tion von 1% pro Sprecher für dasselbe kommerzielle medizinische Diktiersystem.
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Chapter 1

Introduction

Automatic speech recognition (ASR) has become one of the main applications in speech
technology over the years. ASR systems have evolved from very simple speaker-dependent
small-vocabulary toy applications to a greatly diversified class of complex applications serving
a wide range of purposes within a large industrialised market. While the performance of
single systems is respectable considering the complexity of the tasks, an all-in-one, multi-
purpose, multilingual speech recognition system with human-like recognition performance is
still not at hand. In a recent overview on the state-of-the art in ASR, O’Shaughnessy [86]
lists performance evaluation results for a number of specific ASR tasks and databases as they
have improved over the years. In comparison to human speech recognition capabilities, the
current system performance is still rather poor. Even more so, in a study on the prospects of
purely data-driven ASR system development, Moore [81] concludes that when extrapolating
current system data requirements to recognition rates of 100%, an ASR system would have to
be trained on 600,000 to 800,000 hours of speech data which in turn is equivalent to between
4 and 70 human lifetimes of speech exposure1. Considering the fact that even children are
able to understand their parents, future ASR system development cannot rely on data alone.

Besides the mere performance figures, the user’s expectations on ASR systems are partic-
ularly high. Biased by science fiction fantasies, people expect Star Trek whenever they use
this technology, although it is at present not able to deliver the same results. Furthermore,
input failures are not experienced as user errors like with keyboard input, but as system
errors which cannot be influenced by the user [55]. Correct user input is wrongly interpreted
by the system – a frustrating experience.

For this reason, the main challenge in ASR system development even before any tech-
nological problem solution is the design of systems that are accepted by their users. On
the one hand, the best way to achieve this goal is to continuously improve the recognition
performance. This is a feasible strategy as long as the efforts for further reducing the error
rate are reasonable. On the other hand, it is equally important to design the human-system
interaction appropriately to ensure the feeling of success for the user and at the same time
avoid the annoyances that are associated with ASR usage. This thesis is a contribution to
this endeavour.

1.1 Large vocabulary continuous speech recognition

Large vocabulary continuous speech recognition (LVCSR) is one of the most challenging
specific applications in automatic speech recognition. Apart from the task of recognising the

1Depending on the actual lifetime and the language environment.
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CHAPTER 1. INTRODUCTION 2

acoustics of spoken words correctly, the continuous nature of natural spoken speech has to
be modelled as well with the help of a separate language model. For an appropriate coverage
of a language lexicon sizes of 30,000 lexemes and above are necessary, including a wide range
of phone contexts for the acoustic observations. Therefore, LVCSR is also a computationally
demanding application.

The technological challenges in LVCSR are manifold. To account for more natural in-
teraction, LVCSR systems have to move away from recognising read speech to spontaneous
speech speaking style. Closely related to this problem is the recognition of non-native speech
[36], a fact that is currently often ignored in today’s system deployment. The same is true
for fast speech, i.e., speakers talking at a much higher tempo than average speakers, which is
characterised by phone duration changes and deletion of whole phones [79]. Other challenges
are multi-lingual speech recognition [112] and, linked to that, the coverage of resource-limited
languages.

One way of dealing with these issues would be to solve them with the help of specifically
prepared data that contains the desired information. By broadening the data basis of an
ASR system some of the above mentioned challenges can be solved. The benefit offered by
this approach is, however, also its main problem. Collecting and annotating appropriate data
bases is a tedious and expensive process and for handling a growing diversity of situations,
the data collection approach is becoming more and more inefficient.

In this context, adaptation methods are a promising solution. The idea is to use only
small amounts of data together with prior knowledge about the problem in question to tune
a very general background model to a specific situation. The desired information, however,
has to be part of the background model already, as the adaptation data is mainly used for re-
weighting the existing model. For this reason, it is particularly suitable for tuning a system to
e.g., a specific speaker, or a particular scenario for which it should be optimised. Adaptation
techniques can be implemented at all modelling stages within an ASR system.

1.2 Phonetic and phonologic knowledge in speech technology:

A way to meet the open challenges?

The integration of phonetic and phonologic knowledge in speech technology has been pursued
for many years already. In several workshops this approach has been discussed from various
aspects and many papers have been published on this subject. For motivating this thesis as
a contribution to these efforts, some of the arguments from a panel discussion and printed in
[7] shall be summarised here briefly.

The historical evolution of ASR systems brought a shift in technology away from linguis-
tically motivated systems to almost purely statistically motivated systems in the late 1970s
and early 1980s. As Ainsworth [1] states in his argument, statistical methods have proven
to be superior in terms of the speech corpora and challenges available at this time. Now
with today’s challenges particularly in spontaneous speech and for ASR in noisy environ-
ments, the purely data-driven systems reach their limits. Phonetic knowledge may help out
if it is employed for deriving more elaborate mathematical models of speech production and
perception.

The fusion of phonetic sciences and speech technology could in fact be beneficial for both
disciplines as Greenberg illustrates in his article [38]. In a study on automatic stress detection
for conversational speech he compares a number of features to describe stress accent in En-
glish. Phonetic studies on controlled speech so far have indicated the fundamental frequency
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f0 to be the primary indicator for stress accent in English. In experiments on conversational
speech, however, stress models based on amplitude and vocalic duration returned better re-
sults than those operating on f0. Therefore, he concludes that speech technology is able to
complement and extend the knowledge gained from phonetics.

Phonetic knowledge is, however, not the silver bullet of speech processing according to
Strik [116]. In his review on various works on integration of phonetic knowledge in speech
technology, he concludes that it is difficult in general to directly apply phonetic knowledge
in speech processing. Phonetic studies operate on highly controlled recordings of so-called
“lab-speech” while speech technology is founded on more realistic speech. Furthermore,
the phonetic models are not adequately quantified to be employed directly into an ASR
system. Nevertheless, in some tasks like, e.g., pronunciation modelling, phonetics provides
powerful knowledge in the form of rules which only has to be complemented by appropriate
quantifications derived from data.

This thesis follows the arguments of Greenberg and Strik by providing methods and
analyses that supply knowledge to both, phonetics and speech technology, and by grounding
them on real-world collections of data.

1.3 Speech and language resources for system development

Speech technology applications are intrinsically tied to the speech and language resources
that they are based on. For ASR, these resources are audio recordings which are transcribed
appropriately to obtain a ground truth for the statistical models of speech. A transcription
is appropriate if it fully reproduces the relevant information of the source data sample in the
terminology of the developed system. In a text-to-text scenario this kind of transcription
could be termed verbatim. For a speech-to-text transcription an appropriate term would be
literal, as the meaning of an audio segment remains the same in both, the audio recording and
the textual transcription. The production of such resources is an expensive, time-consuming
process, because it has to be done by trained human transcribers. For this reason it is not
applicable to real-world use-cases like e.g., system adaptation to new speakers, or compilation
of massive amounts of data.

For some speech technology applications, it is possible to resort to data resources which
were not intended for system development originally. These may be automatically annotated
field data collected for quality assurance purposes, or manually produced transcriptions in a
different transcription style or level of detail, or possibly even very far related transcriptions
such as lecture notes or presentation slides. Such resources are often available at low cost and
in large amounts, but unfortunately not of the desired quality for system development. They
exhibit quality deficits in various ways, depending on the initial purpose that they had been
created for. Most of the time such texts are incomplete or partly incorrect. Transcriptions
may also be imprecise, not properly reproducing the correspondence between a particular
audio segment and its textual annotation. Sometimes, the text data is also only a derivative
reproduction of the original wording, meaning that a text transformation process has been
applied before. Due to the manifold deficits these resources will be simply termed non-literal
throughout the thesis.

This data resource constraint must be considered for the development of an adaptation
process. Phonetic and phonologic knowledge may help in dealing with the quality deficits of
non-literal transcripts. The extend to which certain phenomena may be explained is, however,
an open research issue that is addressed in this thesis.
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1.4 Outline of the thesis

1.4.1 Problem statement and main hypothesis

The main hypothesis that will be discussed in this thesis is:

Are phonetic/phonologic algorithms suited to overcome the gap between literal
and non-literal text resources, such that large amounts of non-literal transcripts
can be employed for the development/improvement of medical dictation ASR
systems?

This hypothesis will be tested in terms of experimental evaluations for specific application-
driven solutions to LVCSR challenges. For this reason, the scope of these investigations has
to be defined appropriately in advance.

The experiments were all conducted against the background of an LVCSR system for the
domain of medical dictation. This restriction to a single technology and domain appears rea-
sonable as the thesis is intended to show exemplary results created from real-world data and
under realistic conditions for implementation. However, the results are not primarily reported
in the form of word error rates – the ultimate goal in speech recognition system development
– but also in problem-specific performance measures that illustrate the performance of the
method as such and not its effects within an LVCSR system. In fact, the strategy pursued in
this thesis is that of minimum-invasive or even non-invasive system optimisation as it could
be desired by ASR service providers which do not develop ASR technology themselves, but
who have large amounts of data available for ensuring and improving their quality of service.
Such a strategy was already proposed in works like [102] some time ago, and it is still mea-
ningful these days, although the motivations for doing so might have changed. Today’s highly
integrated systems are not as easily tweakable as earlier systems used to be. Implementing
pre- or post-processing steps is therefore easier than opening up a quasi-“black-box” system.

The challenges that will be addressed in the thesis are twofold: First, there is the problem
of using non-literal transcripts for methods that require literal transcripts such as training or
adaptation of probabilistic models. In this context, transcript means text data representing
an annotation for the actual audio data. The “non-literalness” of the transcript is introduced
by the speakers, the recognition process, and the transcriptionists reviewing the generated
documents as detailed in chapter 2. The approach to meeting this challenge will be to make
the deviations between literal and non-literal transcript types visible, relate them to each
other and finally eliminate them to end up with a more literal annotation that is suitable for
training. The second challenge comes from the application and application domain itself. The
data is characterised by spontaneous speaking style, high rate realisations, and non-native
speech. These difficulties will be addressed by an adaptation approach to better match the
individual speaker characteristics of problematic speakers. Again the approach is designed
to be minimum-invasive into an LVCSR system.

There are already existing solutions to these challenges. The technique of lightly super-
vised training [64] handles the problem of non-literal reference transcripts for, e.g., broadcast
news transcription. Closed-captions of television broadcasts are used here as imprecise ref-
erence annotation for large amounts of unlabelled acoustic training data. In essence, lightly
supervised training is a two-step procedure for re-estimating acoustic models. In a first step,
the unlabelled acoustic data is automatically transcribed with a set of acoustic and language
models that have been trained on a small amount of hand-labelled data. Then, the non-literal
transcripts are aligned with the automatic transcripts and the portions of speech segments
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with matching transcriptions is used for re-training the acoustic models in an iterative fash-
ion. Since the non-matching segments are discarded in each iteration there is a considerable
loss of data which may result in the need for extra iterations or possible losses in termi-
nal performance. The approach proposed here tries to remedy this issue and maximise the
amount of data available at each iteration.

The challenge of speaker adaptation is addressed with acoustic adaptation methods such
as Maximum-A-Posteriori (MAP) [65] or Maximum Likelihood Linear Regression (MLLR)
[66] speaker adaptation. MAP adaptation is a Bayesian adaptation of the Gaussian acoustic
model parameters. These parameters are assumed to be random and distributed according
to a conjugate prior distribution, such that an MAP estimate can be obtained easily. As for
each state the model means and variances are estimated separately, a large amount of adap-
tation data is necessary to improve the system performance. MLLR adaptation transforms
only the mean vectors of a continuous Gaussian mixture acoustic model to end up with a
speaker-dependent model. To reduce the amount of required training data for estimating
the transformation matrices, similar states are grouped into regression equivalence classes
for which the transformation is determined jointly. For this method, already small amounts
of adaptation data on the order of a few seconds per speaker are enough to lower the word
error rate significantly. Both methods, however, require direct access to the acoustic model
parameters of the ASR system and are, therefore, highly invasive.

1.4.2 Scientific contributions

The scientific contributions of this work shall be summarised at this point to highlight the
novel aspects of this thesis. With regard to the current scientific literature the following
contributions can be mentioned – in the order of importance:

• A detailed analysis of the deviations between manual reference transcripts, recognised
transcripts, and final corrected documents. To the best knowledge of the author, em-
pirical studies on this kind of data are not available in the current scientific literature.
From the scientific point of view this analysis is highly valuable as it enumerates and
quantifies the phenomena that distinguish literal from non-literal language resources.
The insights helped significantly in developing methods for finding correspondences
between the different text types.

• A novel method for the alignment of recognised transcripts and final corrected docu-
ments at multiple levels of segmentation. This alignment procedure has been developed
in cooperation with partners at the Austrian Research Institute for Artificial Intelligence
(OFAI) and Philips Speech Recognition Systems, Vienna. Within this alignment frame-
work the integration of phonetic matching and particularly matching on sub-word level
have been suggested by the author of this thesis. The alignment procedure as a whole is
a significant technological milestone in the processing of multiple literal and non-literal
transcript types as it allows the compilation and analysis of large text databases – a
task which has not even been mentioned in the scientific literature up to now.

• The idea of reconstructing a quasi-literal transcription from paired non-literal tran-
scripts for the domain of medical dictations. Both the explicit reconstruction task and
the idea of using literal and non-literal transcripts for this task is novel. The detailed
evaluation of the specified reconstruction rules is added scientific value to the mere
adaptation application. Furthermore, this idea has been implemented in a practical
method.
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• The extension of an existing framework for pronunciation modelling to an optimisation
technique that generates speaker-specific pronunciation variants under the constraints
of minimising confusability and maximising the gain in modelling accuracy from non-
literal speaker adaptation material. Balancing confusability and accuracy explicitly
for new pronunciation variants has not been implemented before. Furthermore, this
pronunciation modelling framework is evaluated for the first time in terms of a LVCSR
dictation system.

• The design, production, validation, and evaluation of a corpus of phonetically tran-
scribed medical dictations recorded under field conditions. Up to now, a corpus of
dictated speech in conjunction with related literal and non-literal text resources has
not been available for research purposes.

Parts of this work have already been published and presented at international, peer-reviewed
conferences:

• S. Petrik and G. Kubin: Reconstructing Medical Dictations from Automatically Rec-
ognized and Non-Literal Transcripts with Phonetic Similarity Matching, In Proceedings
of the IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 2007, Honolulu,
Hawaii, pp. 1125–1128 [90]
In this paper, the medical dictation reconstruction task is presented and the phonetic
similarity measure for this task is described. The theoretical framework was developed
by both authors, while the experimental evaluation was done by the main author.

• S. Petrik and F. Pernkopf: Language Model Adaptation for Medical Dictations by
Automatic Phonetics-Driven Transcript Reconstruction, In Proceedings of the IASTED
Intl. Conf. on Artificial Intelligence and Applications (AIA), 2008, Innsbruck, Austria,
pp. 194–199 [92]
Based on the previous findings on phonetic similarity measurement, its application to
language model adaptation is described in this paper together with a small evaluation
in terms of language model perplexity. The main author contributed the theoretical
framework and the experimental evaluation. The automatic classification experiments
were provided by the co-author.

• S. Petrik and F. Pernkopf: Automatic Phonetics-Driven Reconstruction of Medical
Dictations on Multiple Levels of Segmentation, In Proceedings of the IEEE Intl. Conf.
on Acoustics, Speech, and Signal Processing, 2008, Las Vegas, Nevada, pp. 4317–4320
[91]
The contribution of this paper is an extended text matching scheme that works on
multiple levels of segmentation and solves segmentation error issues in alignments of
non-literal transcripts. The main author contributed the theoretical framework and
the experimental evaluation. The automatic classification experiments were provided
by the co-author.

Chapter 4 is a verbatim reprint of the article Semantic and Phonetic Automatic Recon-
struction of Medical Dictations, submitted to the journal Computer Speech and Language
by Elsevier. It is co-authored by Christina Drexel and Leo Fessler from Philips Speech
Recognition Systems Vienna, Jeremy Jancsary, Alexandra Klein, Johannes Matiasek, and
Harald Trost from the Austrian Research Institute for Artificial Intelligence (OFAI), and
Franz Pernkopf and Gernot Kubin from the Signal Processing and Speech Communication
Laboratory at Graz University of Technology. The sole contributions of the author are the
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phonetic similarity matching function, the phonetic reconstruction rules, and the experimen-
tal evaluation of the reconstruction quality at the end of this chapter.

1.4.3 Document structure

The thesis is divided into three major parts according to the goals defined earlier on:

Part I gives an introduction to non-literal transcript matching within the scope of this
thesis. As most of the natural language processing applications, also non-literal transcript
matching is half engineering and half algorithmic science. Chapter 2 is devoted to the data
resources available in an ASR-supported medical transcription system. The text types are
analysed and related to each other to get insights into the deviations that have to be expected
in similarity matching, particularly at the phonetic level. As additional outcome, two text
corpora have been compiled that will be used throughout the rest of the thesis for experimen-
tal evaluations. Chapter 3 deals with the problem of similarity matching for phone symbol
sequences which will be used to solve the application-driven problems later on.

Part II presents solutions for problems coming directly out of the application-domain of
LVCSR. The first problem described in chapter 4 is the reconstruction of a literal transcript
of a medical dictation out of the non-literal machine-recognised and final, human-corrected
medical reports. The proposed solution utilises semantic and phonetic similarity measurement
in conjunction to classify aligned text chunks as either recognition errors or reformulations
introduced by the medical transcriptionist. The second exemplary problem from LVCSR
– pronunciation modelling for non-native speakers – is presented in chapter 5. Phonetic
similarity matching is applied here for generating speaker-specific pronunciation models from
small amounts of available adaptation data. The framework for pronunciation generation
allows the definition of measures for lexical confusability and accuracy gain measures that
provide the means for an optimisation approach where accuracy and not confusability is
increased.

The third part of the thesis tries to look beyond the proposed solutions. It gives an outlook
on further corpus work – one of the original starting points for this thesis, discusses ideas how
the algorithms can further be improved, and which other application-oriented problems might
be solved with them. With the experimental evaluations from the previous parts and the
potential analysis of the third part, the initial hypothesis will be revisited in the conclusion
together with a critical review and recommendations for further research.
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Chapter 2

Literal and Non-Literal Text

Resources in an ASR-Supported

Medical Transcription Environment

The success of a Natural Language Processing (NLP) system cannot only be attributed to
algorithms alone, but also to the data resources these algorithms are built upon. Partic-
ularly for applications using statistical methods such as ASR or speech synthesis, language
resource engineering has become just as important as algorithm engineering. While algorithm
engineering requires expertise in mathematics and computer science, language resource engi-
neering is the tedious process of gathering prior knowledge by manual inspection and careful
analysis of large amounts of data. Nevertheless, major efforts of the NLP community on struc-
tured and standardised analysis of large text corpora have led to substantial and sustained
improvements in this field. [63], [41], [33], [72]

One of the main aims of this thesis is the utilisation of non-literal text resources as the
basis for algorithm engineering in an NLP system. In contrast to literal text resources that
are directly related to the speech data, non-literal transcripts are only indirectly derived
from the users’ utterances and, therefore, not directly useable for current algorithms. As
a consequence, corpora of paired literal and non-literal transcripts as language resources
are virtually not available. The preparation and design of such text corpora is one of the
contributions of this thesis and will be described in this chapter.

The analyses and preparatory works are not only targeted on the orthographic domain,
but also extended to the phonetic domain. From the literature on phonetics and phonology,
it is well known that reduction phenomena are commonly observed in spontaneous speech
(e.g., [21], [41], [53], [113]). Any algorithm that should exploit this inherent prior phonetic
knowledge of the data requires annotation at this level of detail. Despite the focus on phonetic
algorithms, the multi-alignment medical dictation text corpus presented at the end of this
chapter was designed to be easily extensible with other kinds of text data.

Before the text resources are introduced, the terms error, deviation, and mismatch that
will be used throughout this chapter shall be defined. An error is an isolated, but possibly
systematically occurring negative event (a mistake) that has been observed within a single text
source. Deviations in contrast are neutral observations of differences between two different
text sources. Mismatches finally describe deviations that are perceived in a negative sense,
usually when also the alignment of the texts is wrong.

This chapter starts with a brief introduction to medical transcription, how ASR is at
present used to support the transcription workflow, and which text resources are generated in

9
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such large-scale document production environments. The individual types of literal and non-
literal transcripts are explained in detail together with exemplified observations and rough
quantifications. Based on these findings, two text corpora derived from medical transcription
field data are presented that will be used in later chapters of this thesis.

2.1 Medical transcription

Medical transcription (MT) has evolved as a supporting health profession from the basic
stenography-type task performed by single transcriptionists to a big industrialised market in
the United States with distributed processing done by many thousands of homeworkers. This
trend is not only driven by the pressure for cost reduction, but also by legal restraints on
record keeping of patient data. The substantial progress in speech and language technology
has made these growth figures possible.

2.1.1 Transcription workflow

The traditional medical transcription workflow is depicted in figure 2.1. The physician is
examining a patient and dictates his findings to a recording device or online via telephone for
distributed processing. The dictation recording is then transcribed by a professional medical
transcriptionist (or ‘medical editor’) who compiles it into a written document – the medical
report. The transcribed report needs to be approved by the physician again to ensure that
critical passages like, e.g., dosages or medications were transcribed correctly. After approval,
the medical report is handed over to the patient and filed for later reference [62].

The transcription task requires special skills from the transcriptionists which are trained
in specific training programmes. This includes knowledge of medical domain vocabulary in
terms of physiology, current medications, and also soft skills such as a consistent, rhythmic
working pace, or keen perception to understand even recordings of bad quality. The physicians
are required to speak clearly, slowly, and unambiguously, but in some working environments
like, e.g., in emergency outpatient units these standards are often violated as there is only
little time for dictating.

2.1.2 ASR in medical transcription

The modified workflow with ASR technology is shown in figure 2.2. In contrast to figure 2.1,
the dictation recording is first processed by an ASR system that creates a draft transcript
of the dictation. This transcript is then passed on to the medical transcriptionist and just
corrected instead of transcribed from scratch [62]. Depending on the transcript requirements,
this process leads to major savings and increased productivity in the document creation
process.

dictates transcribes

MEDICAL
TRANSCRIPTIONIST

PHYSICIAN REPORT

Figure 2.1. Traditional workflow in medical transcription.
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dictates corrects

MEDICAL
TRANSCRIPTIONIST

PHYSICIAN REPORT

ASR

transcribes

Figure 2.2. ASR-supported workflow in medical transcription.

The transcription task for the ASR system can be specified as follows. Medical dicta-
tion is a large vocabulary continuous speech recognition task with highly domain-specific
vocabulary that is combined with standard text vocabulary for freely dictated passages. For
some investigations, a further division according to the medical discipline (e.g., cardiology,
emergency medicine, ...) or the type of final document (e.g., operational summary report,
radiology report, ...) is helpful. Dictated speech as speaking mode can be described as freely
articulated, but by professional users1. The ASR system has to handle a large number of
users in a broad range of language proficiency levels (native and non-native speakers). The
recordings are done indoors over a band-limited telephone channel in a possibly reverberant
acoustic environment with a certain level of background noise (e.g., in emergency outpatient
units). As an additional requirement, the desired output should conform to certain formal
standards in terms of formatting and style that need to be imposed on the draft transcript.

2.1.3 Text resources generated in the course of the workflow

The overall goal of this document creation process is the production of a medical report from
dictated speech. If the physicians spoke ready-for-print, the ASR system worked perfectly,
and the transcriptionists were not creative in their reviewing process, the textual output
would be perfect at each processing stage. Unfortunately, this is not the case, and there are
two kinds of imperfections in the output texts that will be distinguished:

• System errors
Each actor introduces errors into the workflow. Some errors may be automatically
corrected in post-processing if there is reliable knowledge about them. They become
visible, however, only in comparison to a true reference for each processing stage, which
is not always available.

• Non-literal output
With respect to the audio reference, a degradation of the transcription accuracy can
be observed after each processing step. In section 1.3, the term literal was introduced
for transcriptions which fully reproduce the relevant information of the reference data
in the terminology of the developed system. In contrast to that, transcripts become
non-literal as new errors are introduced or previous errors are compensated.

Studying the system errors is difficult, as most of the generated transcripts are non-literal
and not suited as a reference for evaluating the processing stages separately. Figure 2.3
illustrates the text resources that are generated in the course of the transcription process:

1Although professional, it is not possible to assume the users to be cooperative, as many professional
dictation systems operate in batch mode where automatic speech recognition is done offline and not during
dictation. In this scenario the speakers are not aware of the existence of an ASR system in the background.
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SPK WRIREC FRM

SPEECH RECOGNITION DOCUMENT CREATION

Figure 2.3. Overview of documents created during the transcription workflow: manual transcrip-
tions (SPK), draft transcripts (REC), formatted draft transcripts (FRM), and final
corrected medical reports (WRI).

Manual orthographic and phonetic transcriptions (SPK) are still literal transcripts, while
the draft transcripts or recognised texts (REC, FRM) and the final medical reports (WRI)
are already non-literal transcripts. The workflow implies two tasks that need to be solved
consecutively as shown in figure 2.3: the speech recognition task which aims at accurately
reproducing the speakers utterances, and the document creation step that creates a formal
report from an informal dictation transcript. According to these two tasks text types can
either be assigned to the spoken or the written level.

At present, text corpora from the medical dictation document production workflow are
not publicly available due to legal constraints concerning patient information and commer-
cial interests of ASR-technology providers. The analyses and evaluations presented in this
thesis were done on a subset of data that Philips Speech Recognition Systems uses for bench-
marking and monitoring their operational LVCSR systems for American English medical
dictation. These are realistic data from the medical domain, comprising all presented text
types and providing enough material for training and testing of statistical measures. From
these data two speech corpora were compiled: the MEDTRANS corpus of phonetically tran-
scribed medical dictations (cf. section 2.5.1) and the MEDALIGN corpus of multi-alignment
medical dictations (cf. section 2.5.2). The specification and compilation of these corpora is
also a contribution of this thesis.

In the following discussion of literal and non-literal text resources the statistics and ex-
amples presented are directly derived from the two corpora. A detailed description of the
production of these corpora together with key data figures will be given later in section 2.5.

2.2 Literal text resources

2.2.1 Manual orthographic transcriptions

Manual orthographic transcriptions are literal transcripts of dictations produced by human
transcriptionists for offline documentation purposes. Assuming that the literal transcription
process is error-free, all insights on this type of texts reveal information about speaker errors.
The orthographic notation is by definition incomplete for this task and therefore usually ex-
tended by text markups indicating non-speech events. Furthermore, transcription guidelines
define how unclear or incomplete utterances should be documented.

Table 2.1 gives a brief summary on a number of speaker errors that were automatically ex-
tracted from the manual orthographic transcriptions in the PROFILE set of the MEDALIGN
corpus (see section 2.5.2). Unconsciously produced errors are listed in the first part of table
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Table 2.1. Speaker errors in manual orthographic transcriptions of the MEDALIGN-PROFILE data
set, sorted by counts.

Error category Example Count [%]

hesitations, filled pauses ‘ahm’, ‘uhm’, ‘hmm’ 22,652 28.87

non-speech breathing, laughter, coughing 4,967 6.33

self-corrections ‘digi* digits’ 2,128 2.71

repetitions ‘again again’ 270 0.34

syntactic structure omitted ‘’ → ‘period’, ‘’ → ‘comma’ 37,816 48.20

textual structure omitted ‘’ → ‘new line’, ‘’ → ‘new paragraph’ 9,543 12.16

abbreviations, acronyms ‘EOMI’ → ‘extraocular movements intact’ 705 0.90

short forms ‘meds’ → ‘medications’ 336 0.43

instructions ‘scratch that’, ‘all capital’, ‘please add’ 37 0.05

TOTAL 78,454 100.00

2.1, and consciously produced speaker errors that are clearly opposing the guidelines for med-
ical dictation are listed in the second part of the table. From a total of approximately 312,000
spoken words in the PROFILE set, 78,454 could be identified as speaker errors according to
the above error categorisation.

• Hesitations & filled pauses
The most prominent speaker errors are hesitations and filled pauses. On average about
one in fifteen spoken words is actually such a “non-word”, which makes it by far the
most frequent word in a medical dictation2. Hesitations and filled pauses serve vari-
ous purposes, for instance, structuring the speakers’ utterances and thoughts [117], or
providing time for finding the right word. As artifacts that do not convey meaning of
the dictated text as such they are undesired in the final medical report and need to be
removed. Considering the ASR task, it is important to correctly recognise them (even
just for removing them) and to avoid a misrecognition as an ordinary short word.
E.g., ‘the patient [ahm] had ...’ ↔ The patient had ...

• Self-corrections & repetitions
Interruptions of the speaker’s train of thought are not only indicated by hesitations, but
also by self-corrections or repetitions. Usually, a self-correction is characterised by only
partially realised words that are immediately followed by either the intended word or
another, correct word. In the manual transcriptions a broad spectrum of self-corrections
can be observed, ranging from short slips (be*, mis*, ...) over nearly complete repeti-
tions (*lieves, assessmen*, ...) to nonsense words (*lumpempt*, regurtition*, ...)3.
Such word fragments are critical for the speech recognition step, because they are not
contained in the ASR lexicon and are easily confused with other similar sounding words.
Repetitions are similar to self-corrections in that the same word or phrase is uttered
more than once in direct succession. They can harm the recognition quality as they are
usually not represented in the ASR language model. Both kinds of speaker errors are
unwanted in a final medical report and need to be corrected.

• Document structuring
In a dictation scenario the speaker assumes that the utterances are transcribed literally
and entirely and no additions are to be made by the transcriptionist. This implies

2The second most frequent word in the PROFILE set – and – occurred 6,961 times.
3It is not clear how accurately these orthographic labels really represent the audio segments.
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that the utterances themselves are meant to be complete or “ready for press”. It is,
however, a common observation that syntactic as well as textual document structuring is
generally omitted or inconsistently dictated. Syntactic structuring refers to punctuation
while textual structuring comprises formatting, paragraphing, or formats like, e.g.,
enumerations. Enumerations are a particular source of confusion, since a consistent
numbering is hardly maintained by the speakers due to counting errors, or the term
“next number” which occurs mostly for enumerations with more than four to five items
as they are typical for lists of medications.

E.g., ‘past medical history unremarkable surgical history a vasectomy’

↔ </PAST MEDICAL HISTORY/> Unremarkable.

</PAST SURGICAL HISTORY/> Vasectomy.

• Acronyms & abbreviations
Due to time limitations and the high level of standardisation, many common medical
terms are uttered in abbreviated form or as acronyms. Although not being a speaker
error, these units need to be expanded by the medical transcriptionist in the final report
in order to be understandable for the patient.

E.g., ‘HIV’ ↔ Human immunodeficiency virus

‘PERRLA’ ↔ pupils equal, round & reactive to light & accommodation

• Meta-commands & instructions
Finally, dictations also contain instructions to the transcriptionist which are a problem
on their own. These short phrases like ‘scratch that’, ‘please add’, or ‘go back

to’, for instance, need not only to be edited out of the final document whether they
have been correctly recognised or not, but they also cause changes in the text that
are hard to reproduce by an ASR system without semantic analysis4. There are even
extreme cases, where the physician at the beginning of the dictation requests a standard
template of his own to be used such that the rest of the dictation does not match the
final medical report at all.

2.2.2 Manual phonetic transcriptions

In addition to orthographic manual transcriptions, a substantial number of dictations were re-
transcribed on phonetic level to obtain insights into the articulation characteristics of speech
produced in medical dictation and to have a reference for algorithm testing. At this point,
a brief overview from the literature on phonologic variation in speech production is given
together with selected examples from the MEDTRANS corpus (cf. section 2.5.1).

Phonologic variation in spoken language

Dictated speech is a special speaking style that does not directly correspond to any of the
‘classical’ styles read, spontaneous, or conversational speech. The utterances are planned, as
the speaker is supposed to carefully select his words before speaking them as if he would be
reading them off his mind. In practice, however, this is hardly the case, and the frequent
interruptions in the train of thoughts result in disfluencies that often give dictations a more

4Longer and more complex instructions like ’oops I guess I am going back sorry going back to

current medical problems when it said [ahm] left hip pain [ahm] say parentheses with reported

per* fracture of the left hip in the nineteen eighties end of parentheses sorry about that

one’ are rare, but not impossible.
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spontaneous than read character. The observed surface pronunciations for this speaking
style are (among other factors) mainly the result of high rate (fast) speech and the physical
condition of the speaker.

The pronunciation of native American English speakers in professional dictation is only
slightly to moderately accented, as the speakers usually conform to General (or Network)
American English pronunciation. This quasi-standard which is perceived as accentless for
most middle-class white Americans has its roots in the massive immigration from various
countries (and hence different languages), the continuing trend for urbanisation, the high
mobility of Americans in general, and the unifying American school system [77]. Most im-
portantly, the introduction of radio and television in the 20th century then made this pro-
nunciation of the originally Mid-Western regions predominant all over the United States as
many broadcasting organisations and their broadcasters originated from that area [60], [61].

Phonetic variation in spontaneous speech can often be understood in terms of underly-
ing phonologic processes [84],[113]. This allophonic variation allows the definition of rules
that explain how specific phonetic realisations emerge from canonical baseforms. Phonologic
processes result in assimilation, deletion, addition, substitution, or reduction of phones, de-
pending on the actual phone context. For this reason, it is hard to represent a word with a
single canonical pronunciation and a static pronunciation lexicon.

The variations are, however, not only of phonologic but also of phonetic nature. For fast
speech it is clear that due to the reduced amount of time for conveying the same information,
at some point losses have to occur. These losses can of course partially be attributed to me-
chanical constraints imposed by the vocal apparatus [68]. Still, further studies indicate that
they are also driven by cognitive processes, claiming that phonetic realisations are determined
rather “by habit than speed or inertia” as stated by Shockey [113]. The latter claim is sup-
ported by a list of factors for phonologic speech reduction ranked in a vulnerability hierarchy
(cf. [113], p. 15). The following list of factors is inspired by the vulnerability hierarchy, but
reduced to well-observable deviations in medical dictations.

• Word frequency
Word frequency is a main factor for phonologic reduction. High frequency words such
as content or filler words are usually more redundant than low frequency words like
nouns or adjectives. The more information is conveyed in a word, the more it is likely
that it will not be reduced or altered, simply for the reason that the recipient ought
to understand the message. Previous studies on the SWITCHBOARD corpus support
this observation [40],[32].
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Figure 2.4. Number of pronunciation variants per word observed in the MEDTRANS corpus, sorted
by word frequency.
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Table 2.2. Pronunciation variants with syllabic structure for the words milligrams and
regular from the MEDTRANS corpus.

Pronunciation variant Count

/m I · l I · g r & m z/ 198

/m I · l @ · g r & m z/ 29

/m @ · l @ · g r & m z/ 21

/m I · l I · g r @ m z/ 6

/m I · l · g r & m z/ 3

/m I · l I · g r & m s/ 3

/m @ · l I · g r & m z/ 3

/m I · l I · g r & m/ 2

/m I · l @ · g r @ m z/ 1

/m 3 · l · g r & m z/ 1

/m 2 · g r @ m z/ 1

Pronunciation variant Count

/r e g · l R/ 42

/r e g · j @ · l R/ 40

/r e g · @ · l R/ 14

/r e g · j @ · l 3 r/ 7

/r e g · j U · l @ r/ 5

/r e g · j @ R/ 5

/r e g · @ · l @ r/ 5

/r e g · j @ · l @ r/ 4

/r e g · U · l R/ 4

/r e g · U · l @ r/ 4

/r e g · @/ 3

This assumption is confirmed by the phonetic transcriptions of the MEDTRANS corpus.
With decreasing word frequency, i.e., with increasing word frequency rank, the number
of observed pronunciation variants decreases as well as shown in figure 2.4 and table B.1
in appendix B. While for the most frequent word – the hesitation [hes] – 60 different
realisations were found, for the word physical at rank 100 the pronunciation variant
count reduces to 9, and for the word discuss at rank 1,000 to only 3.

• Syllable structure
Not all phonologic processes can be meaningfully described within the local scope of a
phone, but instead within the larger context of syllables. The structure of syllables with
an onset, a nucleus, and the coda gives some implications for explaining pronunciation
variation. While onsets are very unlikely to be reduced, the nucleus may undergo
a substitution, and the final coda is likely to be omitted. One explanation for this
observation may be the high responsiveness of the auditory cortex to beginnings of
sounds [37].
Consider the word milligrams from the MEDTRANS corpus (268 realisations, rank
58 in the word frequency ranking). The syllabic structure is a good indicator for
the observed phonologic variation as shown in table 2.2. While the onsets are never
affected, the vowel nuclei /I/ and /&/ tend to be reduced or even deleted completely.
The syllable structure of the word regular5 (152 realisations, rank 104 in the word
frequency ranking) is less stable. The first syllable remains constant, but the second
and third syllable are very likely to be reduced or even merged into a single artifact as
in /r e g · j @ R/ or /r e g · @/.

• Speaking rate
For the English language the effects of speaking rate are manifested in the reduction
or deletion of unstressed vowels. According to an experimental evaluation in [21] the
conditions for these reductions are determined by the position within the word and the
position related to the word stress. While in a slow rate mode post-stress vowels are
more likely to be deleted preferably in word-medial positions, for fast rate mainly the
word-medial vowels are affected by deletions, no matter if they are before or after the

5The word regular is part of the phrase ‘heart regular rate and rhythm’ used in the physical exam-
ination section of a medical dictation. This section is governed by such standardised phrases and therefore
often uttered very fast and sloppily.
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Figure 2.5. Duration boxplots for 6 of the most frequent pronunciation variants (bottom to top) of
the word patient from the MEDTRANS corpus.

stressed vowel. Furthermore, there is evidence that the deletion of the schwa sound is
governed by the syllable structure and also related to accompanying consonant changes
in the environment [21]. Whenever the resyllabification of surrounding consonants as
onsets and codas of wellformed syllables in careful speech is possible, the reduction of
the syllable is highly likely to occur in fast speech.
An example from the MEDTRANS corpus illustrates these influences of speaking rate.
The word patient is a highly frequent word in the MEDTRANS corpus (866 reali-
sations, rank 17 in the word frequency ranking) with a total of 15 different observed
pronunciation variants. For 6 of the most frequent pronunciation variants, the audio
segment durations were collected. Figure 2.5 summarises the measures in boxplots. For
longer audio segments, the realisations correspond to the canonical pronunciation /p Y

S N t/ or the properly articulated variants including an explicit schwa in the second
syllable. With decreasing segment length, however, the word-final consonants (/p Y

S/, /p Y S N/) are more likely to be deleted as well as the second-syllable schwas.

• Phonetic/Phonologic
It can be observed that not all phones of a language are equally likely to undergo
changes. The type of phone and the immediate environment of a particular realisation
also determines whether it will be articulated canonically or not. Miller and Nicely
were among the first to investigate the confusion of English consonants systematically
[78]. For English, the alveolars /t,d,n,l/ and the fricatives /s,z/ are particularly
vulnerable [113]. The result does, however, not always have to be a deletion, but may
also be an assimilation with the subsequent phone.
The MEDTRANS transcriptions support these assumptions. Table B.2 in appendix B
lists the 100 most frequently observed phone substitutions calculated by performing a
Levenshtein alignment between canonical and manual phonetic transcription (cf. chap-
ter 3, section 3.3.1). The alveolars /t,d/ are in fact those phones that are most easily
confused or reduced. The phones /n,l,r/ appear at the top of this ranking mainly due
to their similarity with their syllabic variants /N,L,R/ – a direct consequence of the
Philips phonetic alphabet (cf. appendix A, table A.1). The fricatives /f,v,s,z/ are
less affected than the alveolars, but still among the main confusions. Vowel reductions
to schwa or even full deletions occur often in this context.

• Non-nativeness
A considerable amount of physicians in U.S. health institutions does not speak English
as a first language. Therefore, non-native speech is another important observation in
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medical dictations that is reflected in the phonetic transcriptions. In contrast to the
reduction phenomena discussed before, non-native speech results in phone addition,
reduced coarticulation, and phone substitutions motivated by the primary language
phone inventory. A more detailed account on non-native speech is given in chapter 5.

The deviations described so far have only involved single phones at most. Massive reduc-
tions of more than one phone or even whole syllables can also be observed. Studies suggest
that this is a common phenomenon for colloquial speech [53], [94]. A detailed quantitative
analysis of deviations in manual phonetic transcriptions is given in section 2.5.1 in terms of
the MEDTRANS corpus description.

2.3 Non-literal text resources

2.3.1 Recognised texts

As shown earlier in figure 2.3, the output of the ASR system can be separated into an output
of the speech recognition stage – the draft transcript – and an intermediate result of the
document production stage – the formatted draft transcript. For analysis purposes, these
two texts are discussed separately, although for correction and editing, only the formatted
draft transcript is processed within the transcription process.

Draft transcripts

The goal of the draft transcription is to obtain a transcript which is as close to the manual
orthographic transcript as possible. This means that the ideal draft transcript is an exact
literal transcript of the audio recording including also non-speech and unusable speech, pos-
sibly labelled such that it can be automatically removed in the subsequent formatting stage.
The draft transcript is the output of a speaker-independent LVCSR system trained on med-
ical dictation training utterances. The types of errors produced by LVCSR systems are well
known [55], [39]. The actual errors that may occur in the draft transcripts are, however,
highly system-dependent. For this reason, the following error categorisation is meant to be
descriptive and exemplary only.

• Word substitutions
Similar words are easily confused by ASR systems which results in substitution errors.
The confusability of two word depends on their phonetic similarity (i.e. the similarity
between the phone sequences in the dictionary) and their chance of occurring in similar
word contexts. Short words and, in particular, function words exhibit low discriminative
power and are thus highly vulnerable.
E.g., ‘one’ ↔ none

• Segmentation errors
Depending on lexicon and language model, long words may be split into shorter words
or vice versa. These errors are summarised under the term segmentation errors. Again,
short words with high frequency of occurrence (e.g., function words) get easily deleted,
or merged with neighbouring words.
E.g., ‘rudimentary’ → room ventrally
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• Insertions due to background noise/speech
The quality of the draft transcript also strongly depends on the cleanness of the audio
input. Background noise or non-speech utterances produced by the speaker may be
misrecognised as short words. The same holds for background speech which can be
commonly observed in dictations made in a hospital environment.
E.g., ‘period [bg noise] new paragraph ...’ → period the new paragraph ...

• Out-of-vocabulary words
Out-of vocabulary (OOV) words and, in particular, proper names are a systematic
shortcoming of lexicon-based ASR systems as they are by default misrecognised and
may lead to further errors in their immediate neighbourhood due to language modelling
side-effects.
E.g., ‘Maverick’ → Aimee the ER I seek a

Formatted draft transcripts

After the speech recognition stage, the goal of the document creation step is to format the
draft transcript according to formal and stylistic guidelines. The ideal formatted draft tran-
script is a final document that does not need any additional correction. The draft transcript
is post-processed to compensate some types of speaker errors and to apply formatting as it
is desired for the final medical report. In general, only those errors are handled which can be
reliably detected and corrected after the complete draft transcript has been recognised.

• Compensation of speaker errors
Hesitations, non-speech, and self-corrections are speaker errors that can be easily com-
pensated by simply removing them from the draft transcript. If these events have not
been correctly recognised the speaker error is propagated from the spoken to the writ-
ten level beyond this processing stage.
E.g., ‘myo* [ahm] myocardial infarction’ → myocardial infarction

• Punctuation
Since few speakers dictate punctuation consistently and correctly, punctuation marks
can be added automatically with the help of a stochastic punctuation model which
inserts the marks tentatively at the desired positions. Some punctuation may be inte-
grated into the lexicon as well, like e.g., colons or hyphens.
E.g., ‘lungs clear’ → LUNGS: clear.

• Formatting
The main focus of the post-processing stage is on formatting the draft transcript. Nu-
merical expressions like e.g., dates, times, laboratory values, or medications have to be
transferred from their spoken wording to a written digitised form. These deterministic
mappings can be implemented with context-free grammars.
E.g., ‘December 6’ → 12/06

• Document structuring
The document is structured according to formatting commands given by the speaker
or by a document formatting model. Formatting in this respect means division into
paragraphs, highlighting of headlines, and creation of enumerations.
E.g., ‘history of present illness’ → </HISTORY OF PRESENT ILLNESS/>
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Table 2.3. Modifications observed in final medical reports of the MEDALIGN-PROFILE data set,
sorted by counts.

Error category Example Count [%]

headings ‘allergies’ → {ALLERGIES} 5,547 44.91

contractions ‘I’ll’ → ‘I will’ ‘I’d’ → ‘I would’ 1,600 12.95

capitalisation ‘Aspirin’ → ‘aspirin’ 1,434 11.61

abbreviations, acronyms ‘A and O’ → ‘alert and oriented’ 1,301 10.53

concatenations ‘intraoral’ ↔ ‘intra-oral’ 653 5.28

numerus ‘respiration’ → ‘respirations’ 566 4.58

tempus, genus ‘is’ ↔ ‘was’, ‘are’ ↔ ‘were’, ... 476 3.85

short forms ‘meds’ → ‘medications’ 336 2.72

’the patient’ ‘he’ → ‘the patient’ 312 2.52

spellings B U N → BUN 126 1.02

TOTAL 12,351 100.00

2.3.2 Final documents

According to specifications given by health authorities, medical reports need to fulfil stan-
dards concerning the document structure, the coverage and level of detail for particular kinds
of medical reports, and other formal requirements related to writing style.

To get an overview of corrections and reformulations that occur between spoken and writ-
ten text in medical dictations, an exploratory data analysis was performed on the PROFILE
subset of the MEDALIGN multi-alignment medical dictation corpus (cf. section 2.5.2). The
categories for deviations were chosen without regard to syntactic, semantic, text-analytic
or other respects, only the subjective frequencies determined the primary selection. Since
the counting was done manually the results collected in table 2.3 should be interpreted just
as a ranking of categories for highlighting the relative differences between them. The most
frequent categories are discussed in the following.

• Headings
The most frequent deviation in the alignments are text parts which were formatted into
a paragraph heading in the written form (44% of classified deviations). Whenever the
text part only comprises a single word, the formatting is straightforward. As soon as
several words are affected, this transformation can become quite complex. In that case,
the formatting is often combined with a reformulation as in ‘he has no allergies’

→ {ALLERGIES} none.

• Contractions, capitalisation, abbreviations & acronyms
The correction of contractions, capitalisation, abbreviations, and acronyms are also
frequently observed. The expansion of contractions in particular turns out to be highly
ambiguous. In some cases, when there is also a temporal change involved, the result of
the transformation process can be completely different from the original text. Again,
formatting may be combined with reformulation.
E.g., ‘he’s’ → he has, he is, he was, ...

• Concatenations
Deviations in the writing style of concatenated words were also noted to be frequent.
The interchanging usage of hyphens, spaces, and also the omission of a separating
character occurs arbitrarily and can only be explained by the manual nature of the text
generation process for both, the manual reference transcripts and the written reports.



CHAPTER 2. LITERAL AND NON-LITERAL TEXT RESOURCES 21

• Numerus
For nouns, a change in numerus can be observed frequently. In most of the cases,
singular in the spoken text is changed to plural in the written text. Changes from plural
to singular occur much less frequently. These deviations are clearly due to speaker errors
in comparison to the previous errors which were of syntactic nature.
E.g., ‘palpitation’ ↔ palpitations, ’murmurs’ ↔ murmur

• Tempus & Genus
For verbs deviations in tempus and genus can be observed in about the same order of
magnitude as the changes in numerus for the nouns. The deviations, however, do not
seem to be systematic. Changes from past to present tense are about equally frequent
as changes from present to past tense. Other changes are also possible, but rather rare
in comparison to the above mentioned, just like deviations in modus(active/passive).
E.g., ‘is’ ↔ was, ‘are’ ↔ were

• Short forms
Short forms are often used to speed up the dictation process. They act as a kind of code
between dictating person and transcriber (cf. speaker errors in section 2.2.1). In the
final report these short forms have to expanded again according to official transcription
style guidelines to ensure “clarity of communication” (cf. [15], p. 2). The number of
used short forms is limited, but each of them is used frequently.

E.g., ‘O two sat’ ↔ oxygen saturation

‘C section’ ↔ cesarean section

‘Afib’ ↔ atrial fibrillation

• Personal pronoun → ‘the patient’
Another frequent observation is the reformulation of the personal pronouns he and she

into the term “the patient” in the final report. Medical transcription style guidelines
suggest that “within the body of a medical report, care should be taken to avoid men-
tioning personally identifying information.” (cf. [15], p.103). However, if proper names
appear in a dictation, they are mostly not patient’s names but primary care physicians’
or hospital’s names. Automatic correction is, therefore, not trivial.

• Spellings
Spellings account for approx. 1% of the classified deviations. Usually, the spelled term
is pronounced regularly before the actual spelling (e.g., ‘clindamycin C L I N D A M

Y C I N’ ↔ clindamycin). During post-processing, the spelled letters are mostly just
removed, unless recognition errors were involved. As expected, the spelled entities are
almost exclusively singletons, meaning that they only occur once in the data.

2.4 A paragraph from a sample medical report

To illustrate the differences between the text sources, a paragraph from a sample medical
report is printed verbatim in figure 2.6. The selected paragraph is the description of the
physical examination of a patient in a hospital’s emergency outpatient unit. This part of
the medical report is typically highly standardised in the information it has to give and,
therefore, often corrected by the medical transcriptionists to conform to these standards. At
the same time, it is often uttered with high speaking rate, which makes it difficult to recognise
automatically.
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Manual orthographic transcription

on physical exam he was alert afebrile pulse ox was ninety four percent head

ears eyes nose and throat EOMI PERRLA ??? clear TMs normal oropharyngeal mucosa

is clear neck is supple no ??? JVD heart regular rate rhythm chest clear to

auscultation percussion any wheezes rubs or rhonchi abdomen is soft without

any masses pain guarding rebound bowel sounds are normal extremities showed no

cyanosis clubbing or edema neurological exam is intact with no obvious deficits

period [ahm] repeat [ahm] repeat auscultation of the chest [ahm] revealed

wheezes throughout the lung bases period [ahm] patient under use accessory

muscles auscultation

Recognised text (draft transcript)

of physical exam is alert comma afebrile period pulse ox ninety-four percent

as of thirty-one apparently since her TMs normal period mucosa is clear period

negative abscess JVD or regular rhythm period CHEST: past period discussion was

resolved rhonchi period ABDOMEN: softly masses period no bowel sounds normal

period duration cyanosis comma clubbing or edema period neurological exam is

intact with no obvious tests period [ahm] repeat [ahm] repeat auscultation of

the chest reveals wheezes throughout [ahm] lung bases period [ahm] the patient

had a cystocele source period duration

Final medical report

</PHYSICAL EXAMINATION/>
He was alert, afebrile, pulse ox was 94%. HEENT: EOMI. PERRLA. TMS normal.

Oropharyngeal mucosa is clear. Negative nodes or masses, JVD. Heart is regular

rate and rhythm. Chest is clear to auscultation and percussion. No wheezes,

rales or rhonchi. Abdomen is soft without masses, pain, guarding or rebound.

Bowel sounds are normal. Extremities showed no clubbing, cyanosis or edema.

Neurological exam is intact with no obvious deficits. Repeat auscultation of

the chest revealed wheezes throughout the lung bases. The patient did not use

any accessory muscles for auscultation.

Differences between recognised text and final medical report

of </ PHYSICAL EXAMINATION/>
is He was alert, afebrile, pulse ox was 94%. as of thirty-one apparently since

her HEENT: EOMI. PERRLA. TMS normal. Oropharyngeal mucosa is clear. Negative

abscess nodes or masses, JVD. Heart is or regular rate and rhythm. Chest past

period discussion was resolvedis clear to auscultation and percussion. No

wheezes, rales or rhonchi. Abdomen is softly without masses, pain, guarding

or rebound. Bowel sounds are normal. Extremities showed no clubbing, duration

cyanosis clubbing or edema. Neurological exam is intact with no obvious

deficitstests. Repeat auscultation of the chest revealed wheezes throughout

the lung bases. The patient had a cystocele source period durationdid not use

any accessory muscles for auscultation.

Figure 2.6. A paragraph from a sample medical report as it is represented in the various medical
transcription text types: red parts were deleted from the recognised text and blue parts
were inserted to obtain the final medical report.



CHAPTER 2. LITERAL AND NON-LITERAL TEXT RESOURCES 23

The manual orthographic transcription contains a number of acronyms (EOMI, PERRLA,
TMs, JVD), hesitations ([ahm]) and parts that were not understandable by the transcriptionist
(???). Punctuation is missing completely, as well as accompanying document formatting.

The draft transcript contains recognition errors, particularly for short words or longer
phrases along with segmentation errors. Still, it is possible to recover almost all information
that was given in the dictation. The capitalised words CHEST: and ABDOMEN: are recognition
lexicon entries with integrated formatting and not the result of an automatic formatting
attempt by the ASR system.

The final medical report has changed notably compared to the original orthographic
transcript. The paragraph heading was reformatted, and punctuation was inserted by the
medical transcriptionist. Numbers were digitised and hesitations removed from the draft
transcript. Apart from these obvious changes, the text was also considerably reformatted
which can be seen in the last part of figure 2.6.

2.5 Medical Dictation text corpora

2.5.1 MEDTRANS: Phonetically transcribed medical dictation corpus

The MEDTRANS corpus is a set of orthographically and phonetically transcribed dictations
of medical reports with corresponding audio recordings. The phonetic transcriptions of these
recordings were produced in terms of this thesis to gain insights into particular problems of
ASR, since plain orthographic transcriptions are not capable of delivering this information.
Furthermore, the transcribed material provides a valuable reference for the development and
evaluation of the phonetic edit distance measures in chapter 3. Form and level of detail of
the phonetic transcription was defined according to these goals.

Corpus structure

The structure of the corpus is determined by the data resources from which the corpus was
compiled and the transcription process itself. The first part of the corpus (subset A) is
composed of real world recordings from an installed ASR-supported medical transcription
environment, i.e., documents produced according to the ASR-supported workflow (cf. figure
2.2). The second part of the corpus (subset B) consists of medical reports and recordings
that were produced according to the traditional workflow (cf. figure 2.1) with draft transcripts
produced in a separate offline post-production process. It was an essential requirement to
have both, manual orthographic transcription and an already recognised text at hand for
generating automatic phonetic transcriptions (APTs). The APTs were intended to minimise
transcription efforts and ensure consistency among transcribers. Speakers and reports were
selected according to the subjective quality of dictation in terms of speed, intelligibility,
acoustic quality, and usage of hesitations.

Each report was transcribed by a single phonetic transcriber except for 18 reports from two
speakers which had accidentally been transcribed by at least two transcribers independently
from each other. These transcriptions were collected in a third subcorpus (subset C) which
was used for calculation of transcriber labelling agreement. Table 2.4 shows the key figures
for each of the resulting 3 data subsets.
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Table 2.4. Key figures for data subsets A, B, and C of the MEDTRANS corpus.

A B C ⊂ B A ∪ B

speakers (male/female) 11 (11/0) 19 (15/4) 2 (0/2) 30 (26/4)

reports 102 170 40 312

total length (h:min:s) 5:26:41 8:34:32 1:47:52 15:49:05

Transcription process

The reports were transcribed by 9 English students with experience in English phonetics un-
der supervision of an expert phonetician. Training included basic instruction on how to use
the transcription software ELAN [130], introduction to the domain of dictated speech, and a
joint transcription of a sample report to establish a common transcription style. During tran-
scription, remaining ambiguous cases were discussed in groups together with the supervisor.
Apart from the phonetic transcription, also phonetic deviations observed by the transcribers
were annotated according to a pre-defined set of annotation deviation categories. The pho-
netic symbol inventory and annotation deviation category set are shown in table 2.5 and in
appendix A, table A.1.

From the manual orthographic transcriptions and the triphone acoustic models of the
ASR engine, APTs were created with an HMM-based forced alignment procedure beforehand
which then only had to be corrected by the transcribers. In addition to a draft phonetic
transcription the APTs also provided an audio segmentation on word level that facilitated
counting of deviations in the transcriptions. The automatically determined word boundaries
remained untouched during transcription, only segment labels were corrected.

After subset A had been finished, two major changes were implemented. First, the anno-
tation deviation category set was extended by two categories (#34, #45) that were missing
before. And second, the acoustical recordings from subset B were stretched using the software
Praat [10] with the PSOLA method [82] by a factor of 1.3 to enhance their intelligibility. This
step dramatically increased the efficiency of the transcribers: While for subset A one minute
of audio material took about 60 minutes to transcribe, the transcription time of the same
amount of audio data reduced to 35 minutes for subset B.

Evaluation

The transcriptions were evaluated with respect to transcription labels and annotation devi-
ation category labels. In this part, the differences between automatic and manual phonetic
transcriptions are studied and summarised. Furthermore, the transcription quality was vali-
dated by determining transcriber labelling agreement.

Transcription labels & annotation deviation categories

The overall statistics are similar for each of the data subsets as shown in table 2.6. Subset A
accounts for about 40% of the data, and subset B for about 60%. Around 82% of the total
number of audio segments had a speech transcription, the rest were segments containing
non-speech like silences or parts marked acoustically not useful. A small number of segments
were transcribed without having an initial orthographic form. This number is probably even
higher, as it does not take into account those segments that already had an (incomplete)
orthographic form.
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Table 2.5. Annotation deviation categories of the MEDTRANS corpus with examples in SAMPA
notation. Categories #34 and #45 were introduced after the transcription of subset A.

# Description Automatic Corrected

11 schwa deletion /n oU t @ d/ /n oU t @ d @/

12 vowel deletion /s i t/ /s i t i/

13 consonant deletion /m oU s l i/ /m oU s d l i/

14 schwa insertion /p A s @ b l=/ /p A s b l=/

15 vowel insertion /f A l oU V p/ /f A l oU p/

16 consonant insertion /p eI S n= t/ /p eI S n=/

21 diphthong instead of monophthong /k oU l d/ /k O l d/

22 monophthong instead of diphthong /Q l s O/ /Q l s oU/

23 schwa instead of full vowel /h e r oU @ n/ /h e r oU I n/

24 full vowel instead of schwa /m e d I k l=/ /m e d @ k l=/

25 voiced /l e v l= z/ /l e v l= s/

26 unvoiced /p r e z n= t/ /p r e z n= d/

27 vowel lengthening marker added /n O: r m l=/ /n O r m l=/

28 vowel lengthening marker removed /I m p r u v d/ /I m p r u: v d/

29 wrong vowel /p r A b l @ m z/ /p r V b l @ m z/

31 American English (AE) transcription /t O: n s @ l/ /t A n s L/

32 British English (RP) transcription /s d & d @ s/ /s t Y t @ s/

33 error in proper noun transcription /b r U k f i l= d/ /b r U k f @ l= d/

34 consonant substitution /f O l Y t/ /f O l Y k/

41 wrong orthographic transcription /T 3 r t i/ /T r i/

42 orthographic w.o. phonetic transcription --- ---

43 undefined transcription symbol used /o r T @ p i d I k s/ /O r T @ p i d I k s/

44 unintelligible – word partially audible /d @ v e l @ p I N/ /v e l f I n/

45 unintelligible – nothing audible /k @ n t I n j u d/ ---

Out of the segments having a transcription, about 23% deviated from the automatically
generated form in at least one symbol. Most of those segments contained just one deviation,
while only a very limited number (> 0.5%) contained three or more deviations. The maximum
number of observed deviations was five.

The highest number of deviations were removed lengthening markers (around 25%). Con-
sonant insertions account for the second largest number of deviations, following with 12%.
The same holds for schwa deletion (cat. #11). Another prominent observation is the conver-
sion from voiced to unvoiced phones (cat. #26). Together, these four observations sum up
to already more than 50% of all annotations in all data sets. The detailed statistics for each
annotation deviation category are shown in appendix B, tables B.3 and B.4.

The ranking of the remaining categories differs significantly for each of the data set.
While, e.g., full vowels instead of schwa (cat. #24) are very prominent with 9.87% in subset
A, the same category was observed in only 2.14% of the cases in subset B. Also worth
mentioning are the differences for categories #31 and #32, concerning British and American
English transcriptions (4.69/4.22% vs. 0.68/0.09%). Finally, there is also a notable difference
with categories #44 and #45, describing acoustically unintelligible segments (4.76/0.82% vs.
2.17/1.28%).
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Table 2.6. MEDTRANS transcription label statistics per subset.

A B C ⊂ B A ∪ B

Count [%] Count [%] Count [%] Count [%]

Total segments 62,772 100.00 89,010 100.00 20,249 100.00 151,782 100.00

... w. initial transcription 51,662 82.30 73,686 82.78 16,765 82.79 125,348 82.58

... w.o. initial transcription 11,110 17.70 15,324 17.22 3,484 17.21 26,434 17.42

Deviating segments 15,097 29.22 19,269 26.15 3,858 23.01 34,366 22.64

1 deviation 12,639 24.46 15,904 21.58 3,299 19.68 28,543 18.80

2 deviations 2,145 4.15 2,842 3.85 495 2.95 4,987 3.29

3 deviations 259 0.50 417 0.56 56 0.33 676 0.44

>3 deviations 54 0.10 105 0.14 8 0.05 159 0.10

Different deviations 17,927 23,286 4,490 41,213

Discussion

The following list of observations highlights some interesting figures that were found in the
results and is not meant to be a complete listing.

• Schwa deletion (#11)
The deletion of the schwa sound may be explained to a large extent with the Philips
phonetic transcription guidelines which prescribe the omission of schwa in case of syl-
labic /l/, /n/, /m/, and /r/ [93]. Schwa insertion (#14) only plays a minor role.

• Schwa substituted by full vowel (#24)
Interestingly, this vowel substitution occurs very often in subset A (9.87%), but much
less frequently in subset B (2.14%). This observation is confirmed by the exactly op-
posite configuration for the inverse category #23 (2.13% vs. 6.92%). Therefore, it is
very likely that this observation is related to the stretching of the recordings in subset
B and, thereby, the increased vowel quality perception in fast speech passages.

• Voiced – unvoiced conversion (#25, #26)
Conversion of a voiced to an unvoiced part of a segment occurs quite frequently in all
data sets (7.7%), while the inverse conversion happens rather rarely (1.52%).

• Vowel lengthening markers removed (#28)
This occurs due to canonical pronunciations in the lexicon or the imprecise conversion
between the phonetic alphabets. Interestingly, the inverse observation (#27: vowel
lengthening marker added) occurs much less frequently (3.76%) which is a strong indi-
cator for the conversion problem.

• Deviations due to British or American English (#31, #32)
The phonetic lexicon used for APT is built from American English and British English
resources such that it can be used in both language environments. Therefore, the
APT may be ambiguous in some cases and confusions may occur easily. Interestingly,
these deviations have mostly been observed in subset A, i.e., in the beginning of the
transcription process. Since these deviations are also covered by other categories it
seems that the phonetic transcribers did not use these labels consistently afterwards.

• Wrong orthographic transcription (#41)
At first sight, the quality of the orthographic transcriptions appears to be poor, con-
sidering the relatively high frequency of this category (4.77%). A closer look, however,
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revealed that a lot of hesitations are involved here. Furthermore, some transcribers
seemed to use this category inflationary even for correct segments. Further analysis
would be necessary to determine the real causes. Mismatches like the one given in table
2.5, however, are not as frequent.

• Unintelligible (#44, #45)
In terms of intelligibility the quality of subset B was better than that of subset A
due to the automatic stretching of the recordings and a more careful pre-selection of
speakers for transcription. Therefore, the frequency of unintelligible segments could be
significantly reduced which is reflected in these measures.

Transcriber labelling agreement

Consistency in labelling is an important indicator for the quality of a phonetic transcription
[25], [20], [94]. Since the phonetic transcriptions were made by more than a single transcriber,
it is essential to determine the transcriber labelling agreement. Otherwise, it is not clear
whether the observed deviations in the transcriptions represent phonologic variation or just
‘transcription noise’.

Usually, labelling consistency is measured by determining the pairwise agreement of tran-
scribers for a certain subset of the corpus that has been transcribed by all transcribers. This
procedure is not directly applicable to this corpus, as there is no report which has been tran-
scribed by all transcribers. Still, subset C allows the determination of pairwise transcriber
agreement on different texts. Table B.5 in appendix B shows the mapping between tran-
scribers and reports for subset C. Altogether, 9 transcribers annotated 18 different reports
such that there were 26 transcriber pairings with 10 of them being distinct.

Transcriber agreement itself was calculated in two ways. First, by counting the number of
common phone labels divided by the total number of labels for each pairing (% agreement or
P (a)). And second, by determining Cohen’s κ coefficient[19] which measures the agreement
between two raters who each classify N items into C mutually exclusive categories. This
measure is more robust than simple percent agreement calculation since it takes into account
the agreement occurring by chance. Assuming that the labelling events are collected in a
C × C confusion matrix G = {gij ; i, j = 1..C}, the κ-coefficient is determined by

κ =
P (a) − P (e)

1 − P (e)
(2.1)

where P (a) is the relative observed agreement among raters, and P (e) is the probability that
agreement is due to chance, defined by

P (a) =
1

N

C
∑

i=1

gii and P (e) =
C

∑

c=1

∑C
j=1 gcj

N

∑C
i=1 gic

N
. (2.2)

These agreement scores were calculated for the whole symbol set and for five phonetic classes
of symbols (stops, fricatives, liquids, nasals, and vowels). Since vowels have an optional
lengthening marker, agreement was determined with and without regard of the lengthening
marker. The resulting agreement scores are listed in table 2.7.

The transcriber agreement scores are comparable to those of other phonetic corpora tran-
scribed at similar level of detail [127], [94]. The percentage agreement is significantly higher
than the previously measured correspondences between automatic phonetic transcription and
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Table 2.7. MEDTRANS transcriber agreement measured in percent agreement and Cohen’s κ for
all labels and divided into phonetic classes in subset C.

Phonetic class % agreement κ N

stops 92.35 0.9102 12,933

fricatives 97.06 0.9650 7,214

liquids 91.60 0.8902 5,298

nasals 93.12 0.8823 5,013

vowels (w.o. lengthening) 89.33 0.8812 15,271

vowels (w. lengthening) 81.69 0.7981 15,271

overall 89.11 0.8870 40,758

manual phonetic transcription (89% in table 2.7 vs. 77% in table 2.6). For this reason, the
deviations observed in the corpus are not only the result of the manual transcription process,
but also of actual phonologic variations.

2.5.2 MEDALIGN: Multi-alignment medical dictation corpus

For analysis and processing of the various text types, a text corpus is needed which integrates
all text formats in such a way that relations between sub-units are established flexibly. As-
suming that correspondences and deviations are local, data analysis algorithms can access
relevant portions of each text format without extensive search. The integration task is there-
fore a text alignment step. In this case, however, not only two independent text sequences
need to be aligned, but at least three which poses a problem for representation. Instead
of a single alignment label, two alignment labels need to be calculated for documenting the
relation between entities. The resulting alignment will be referred to as multi-alignment.

Multi-alignment procedure

For the medical dictation data described in this chapter a multi-alignment procedure was
provided by Philips Speech Recognition Systems. This procedure is based on the idea that
the text types can be separated into time-stamped data where text segments are linked to a
specific segment in the audio recording and continuous text data that is neither segmented
nor directly related to the audio. Note that this distinction is not the same as for literal and
non-literal transcripts. Time-stamped texts are the recognised text and the manual phonetic
transcription, while continuous texts are the manual orthographic transcription and the final
medical report. This difference in tokenisation and synchronicity holds some implications for
the multi-alignment. First, an atomic tokenisation with respect to the recognition lexicon
may help resolving hard cases for a tokeniser within the final medical report. And second, a
kind of consistency constraint ensures that segments of one text cannot “overtake” the other
text that has hard evidence from the audio.

Starting from these assumptions, the multi-alignment is done from two elementary two-
sided alignments as shown in figure 2.7. Alignment A is a semi-automatic alignment of
the manual orthographic transcription with the final medical report, while alignment B is
an automatic alignment of the manual orthographic transcription and the draft recognised
transcript. The alignments are then merged based on the common manual orthographic
transcription with respect to the two previously mentioned constraints.

This way of aligning multiple texts has several advantages. It is fast, as the simple
alignments are based on word level and the merging step operates more locally than globally.
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REC SPK WRI

B A

Figure 2.7. Multialignment process between manual transcriptions (SPK), draft transcripts (REC),
and final corrected medical reports (WRI). Two alignments (A: SPK ↔ WRI and
B: REC ↔ SPK) are merged based on the common SPK transcript, such that REC,
SPK, and WRI are synchronised. Therefore, gaps must be opened in alignments A and
B wherever necessary.

Furthermore, it allows for simple extension by integrating further text types, if they are
directly related to one of the primary text types. For the application presented in chapter 4,
up to 17 different text types were aligned, including information such as word type information
or different representations of text formatting.

Challenges in multi-alignment

The alignment scheme is too simple for the complex input containing formatting and major
differences in representation of the various text deviations described in sections 2.2 and 2.3.
Two prominent challenges in multi-alignment shall be highlighted in the following.

The major shortcoming of this multi-alignment approach is the inconsistent tokenisation
that results in segmentation problems and local alignment inconsistencies. Figure 2.8 illus-
trates how recognition errors induce such mismatches and break the correspondences between
the individual text types. A solution to this problem would need to hypothesise at which po-
sition longer words may be split into shorter fragments such that sub-word correspondences
may be established between the compared strings.

Another shortcoming of the multi-alignment procedure are obvious mismatches in the
alignment as shown in figure 2.9 with the words auscultation and consultation. The
multi-alignment procedure between non-timed text types is based on Levenshtein alignment
(cf. chapter 3, section 3.3.1) which assigns equal costs for substitutions, no matter how similar
or dissimilar they are. An improved multi-alignment must establish correspondences between
non-identical strings in a content-sensitive way. In section 4.3 of chapter 4, a more elaborate
alignment procedure is presented that remedies these problems.

Data sets

With the help of the multi-alignment procedure a number of data sets were compiled. The
label MEDALIGN only refers to the common method for creation, because each of the derived
data sets was compiled for a specific purpose. Table 2.8 gives an overview on the key figures
of each set.
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REC ↔ SPK ↔ WRI

Atrovent COR Atrovent COR Atrovent

INS ,

neuro SUB spironolactone COR spironolactone

lactone DEL

<hes> DEL

INS ,

and COR and COR and

lipids SUB Lipitor COR Lipitor

for DEL

INS .

Figure 2.8. Deviations in tokenisation observed in multi-alignments induced by recognition errors:
matches(COR), substitutions (SUB), deletions (DEL), and insertions (INS).

REC ↔ SPK ↔ WRI

dietary COR dietary COR dietary

<hes> SUB -AM DEL

<hes> SUB consultation COR consultation

auscultation SUB he COR he

with SUB received COR received

some SUB while COR while

blood DEL

in COR in COR in

the COR the COR the

hospital COR hospital COR hospital

Figure 2.9. Alignment mismatches in the multi-alignments induced by content-insensitive alignment:
matches (COR), substitutions (SUB), deletions (DEL).

Table 2.8. Key figures for the MEDALIGN corpus data sets: PROFILE for manual inspection and
text resource analysis, WERBAL for experimentation with balanced word error rates,
NNS102 for evaluation of non-native speakers, and INSPECT for adaptation. Note that
for some of the dictations in the PROFILE and NNS102 data sets, recognised texts were
not available.

PROFILE WERBAL NNS102 INSPECT

speakers (male/female) 60 (48/12) 283 (224/59) 102 (102/0) 434 (434/0)

reports 630 735 758 3,453

total length [h:min:s] 36:32:55 47:54:06 60:36:16 221:33:54

SPK words 312,424 335,474 445,798 1,573,024

REC words 216,037 381,738 182,995 1,779,300

WRI words 270,937 328,193 347,199 1,523,161
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The PROFILE data set was meant for the quantitative analysis of text resources presented
in this chapter. The WERBAL set was composed as an evaluation data set covering a wide
range of speakers. The reports were selected to fit three balanced word error rate ranges (low,
medium, and high) and to avoid outliers. The NNS102 data set comprises only non-native or
accented speakers and was designed for training and testing of the pronunciation modelling
approach in chapter 5. The INSPECT set is used for acoustic adaptation and for large-scale
analysis of potential ASR errors. NNS102 and INSPECT are fully disjoint to ensure the
proper separation of acoustic and pronunciation model adaptation data.

2.6 Conclusion

Within the ASR-supported medical transcription workflow several different text resources
are generated that may be utilised for improving an ASR system. There are major differ-
ences between these text types, and each type adds special benefits that can be exploited.
Manual transcriptions are not only the true reference for training the acoustic models of the
ASR system, but also document speaker errors that need to be corrected somewhen in the
transcription workflow. Draft transcripts from the ASR system contain speech recognition
errors which become visible in direct comparison to the manual transcriptions. The final re-
ports give insights into the editing operations done by the medical transcriptionists for either
correcting speaker errors, or ASR errors, or for formatting the dictation into a standardised
medical report.

Working with many text types with significant differences among each other turned out
to be a challenging task. To exploit the full range of information that is given in a medical
dictation, a method for alignment of multiple texts must be developed. Pairwise comparison
of the texts reveal deviations, but only the combination of multiple alignments into a single
multi-alignment synchronises the individual text types and provides a systematic approach on
text analysis. The analysis of deviations presented in this chapter indicates that the deviations
range from whole words over syllables down to single phones. The first attempt for multi-
alignment based on time-synchronisation used for compilation of the MEDALIGN corpus only
provides rough correspondences between the texts. The level of detail in the segmentation is
too coarse to account for a proper matching. The main conclusion of this chapter is therefore
that an accurate alignment must establish correspondences on multiple levels of segmentation.
An algorithm that implements such a multi-level alignment is presented in chapter 4.

The findings of this chapter suggest the phonetic domain for processing the various literal
and non-literal transcript types. The analyses hold the following implications:

• The comparison of short phone sequences is sufficient as variation usually occurs within
units not larger than a syllable.

• Some phone positions in a word are less or not at all affected by variation like syllable
onsets in contrast to the syllable nucleus and coda which are highly vulnerable. This
is another strong argument in favour of the syllable as structuring unit for phonetic
similarity matching.

• Not all phones are equally affected by pronunciation variation, thus phone-specific
weights appear promising to model the phonologic variation.

• Some of the available cues like syntactic or semantic information cannot be covered
by phonetic measures. Nevertheless, the integration of such a priori knowledge sources
may be beneficial for disambiguating difficult cases.



Chapter 3

Similarity, Dissimilarity, and

Confusability in ASR

In everyday language, the terms similar and dissimilar are used to characterise the rela-
tion between two objects in an informal way. Whenever either only a quick, approximate
judgement is desired, or whenever the object properties are difficult to describe and measure,
people refer to such vague descriptions. Although the exact transition between ‘similar’ and
‘dissimilar’ is undefined, the meaning of this judgement is usually clear. In contrast to the
subjective human judgement, an objective comparison of two objects must clearly define the
ranges for similarity and dissimilarity, and if clear, deterministic decisions are to be made.
Setting the threshold itself is just an art as defining an appropriate similarity measure.

Directly related to the problem of similarity measurement is the problem of confusability.
Classification methods are based on the assumption that the similarity of an actual data
sample and a previously recorded pattern can be determined and appropriately expressed in
a single figure. The difficulty of finding the similarity threshold is solved for classification tasks
such that data samples that are closely related to the prototyping pattern will be assigned
the same label, for each prototype. This way, dissimilarity automatically starts whenever the
similarity to a different prototype is higher, thus the similarity threshold is implicitly set.
This concept is a good application for objective similarity measurement, but while it allows
for a certain amount of variation (or generalisation), there are limits to its performance. The
effectiveness of this approach strongly depends on how well the similarity function is suited to
distinguish between the prototypes, or in other words, how much the prototyping patterns are
alike themselves. Ideally, their distances should be equal among each other and much larger
than the distances to their various realisations to allow for a clear comparison. Otherwise
the blessing turns into a curse as data samples are incorrectly classified or confused.

The goal of this chapter is to find an appropriate similarity measure for automatically
assessing the deviations between literal and non-literal transcripts that were described in
chapter 2. The findings there suggest the phonetic domain for processing the various text
types. Such a phonetic similarity measure would be beneficial in two respects: First, it could
lead to an enhanced alignment in comparison to the multi-alignment presented in section
2.5.2. And second, it would allow to interpret the deviations with respect to the common
source to which all text sources are related: the audio recording of the dictation. In other
words, a phonetic similarity measure could estimate how plausible it is that two compared
text parts originate in the same audio segment of a dictation.

Rabiner and Juang already argue in their description of pattern comparison techniques
that “correct time alignment between two utterances of different words is not a well-defined

32
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linguistic concept” (cf. [98], section 4.7, p. 225). While this a legitimate concern for time-
aligning acoustic audio signals, it is less of a problem for aligning literal and non-literal
phone symbol strings, which are used throughout this chapter. Furthermore, the chosen
pronunciation classification task interprets the similarity problem as a confusability problem,
which makes it ideal for comparing algorithms.

The chapter is structured as follows: The first part is a formal definition of the prob-
lem together with a review of selected state-of-the art similarity measurement algorithms in
language processing. With respect to the current literature, the methods are divided into
state-based and symbol-based approaches. The second part of this chapter presents a short
evaluation of these methods on a publicly available data set and application-specific data.
Based on this evaluation, arguments for an appropriate phonetic similarity measure of lit-
eral and non-literal transcripts will be given together with suggestions for application-specific
extensions.

3.1 General definition and notation

In the literature on sequence matching various method-specific definitions and illustrations
have been given for describing the problem (e.g., traces in [125], or paths in [122]). At this
point, however, more general definitions will be introduced that even fundamentally different
sequence comparison approaches and algorithms can be described within the same notational
framework.

For determining similarity two interlinked problems need to be solved. First, an align-
ment between the input sequences has to be established. With the proper correspondences
between the single symbols within the sequences, a scoring scheme can be applied either as
a by-product of the alignment procedure, or in a separate step. Formally, this requires two
definitions:

Definition 1 Let xN
1 = 〈x1, x2, ..., xN 〉 (short: xN) be a sequence of symbols xi ∈ X of length

N , and yM
1 = 〈y1, y2, ..., yM 〉 (short: yM ) a second sequence of symbols yj ∈ Y of length M ,

where in general M 6= N . An alignment Λ of xN and yM is a sequence of paired symbols
Λ = 〈(xi, yj)〉 for all i = 1..N, j = 1..M , such that each symbol pairing occurs only once.

Definition 2 A score is the real-valued cost c assigned to a single input symbol pair:
X×Y → R : (xi, yj) → c. A scoring scheme takes all the scores of an alignment Λ = 〈(xi, yj)〉
to produce a total score d(Λ) = d(〈(xi, yj)〉).

Note that these definitions do not give any indication to how the actual alignment pro-
cedure should work or to the type of input symbols. Depending on the understanding of
the alignment procedure and the symbol alphabets X and Y (continuous or discrete, uni-
or multivariate), state-based models and symbol-based models for sequence alignment can be
dichotomised. Although the foundations are similar for both approaches, they are fundamen-
tally incompatible, but there are attempts for combining the two ideas [24]. In the following
sections, the approaches will be introduced in more detail and for each of them a selection of
state-of-the art algorithms will be presented.
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Figure 3.1. State-based similarity approach: Input sequence representation as (a) finite state trans-
ducers and (b) similarity graph as formal composition xN ◦ yM of the transducers.

3.2 State-based approach

The state-based approach to sequence alignment is best viewed from the perspective of a
deterministic finite state transducer (FST) (cf. section 3.4 in [54]). The input symbol se-
quences are each represented as an FST with states S = {s1, s2, ..., s{N,M}+1}, labelled state
transitions E, and input alphabets X ,Y as depicted in figure 3.1. One of the transducers acts
as an acceptor with state transitions E = {(si → si, xi : ǫ), (si → si+1, xi : ǫ) | i = 1..N} that
consumes the symbol sequence as its input without producing output (〈D,I,A,L〉 in figure
3.1), while the other transducer acts as a generator with state transitions E = {(sj → sj, ǫ :
yj), (sj → sj+1, ǫ : yj) | j = 1..M} which generates the symbol sequence at the output from
no input (〈C,A,L,L〉 in figure 3.1). The formal composition xN ◦ yM of acceptor xN and
generator yM results in a trellis-structure that describes all possible alignments of the input
sequences. By traversing the trellis-structure, the sequences are processed synchronously, as
for each time step, the model either remains in the current state, or it changes to one of the
neighbouring states. The alignment is then the sequence of traversed edges. In the state-
based approach the information about the current position within the alignment is defined
by the states of the model and not by the input symbols. In figure 3.1, the symbol sequences
〈D,I,I,I,I,A,A,L,L,L〉 and 〈C,C,C,A,A,A,L,L,L,L〉 would just as well be accepted. As a con-
sequence of the separation of sequence transduction and underlying data representation, the
state model allows for discrete, continuous, and even multivariate data ranges.

Due to the formal FST composition of generating and accepting edges, there are no more
empty symbols in the resulting alignment. For this reason, this approach is suited whenever
there is no intuitive notion of an empty symbol, e.g., when processing synchronous feature
sequences obtained from frame-wise processing of audio signals with dynamic time warping.
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3.2.1 Continuous range

Dynamic Time Warping (DTW)

The dynamic time warping algorithm was originally introduced to meaningfully compare two
realisations of the same utterance with possibly varying speaking rate or speech sound de-
viations [98]. For this task, the input signals are windowed and usually short-time spectra
are calculated such that a spectral distortion measure can be applied as scoring scheme.
The symbol alphabets are therefore X ,Y ∈ R

d with d being the number of spectral fea-
tures. The spectral distortion measure incorporates heuristics such as monotonicity, local
continuity, endpoints, global path, or slope weighting constraints, according to the domain of
the investigated signals. Signal alignment and time-normalisation is achieved by a dynamic
programming scheme which uses the local spectral distortion measure to achieve a globally
optimal alignment.

DTW is useful whenever audio signals are directly compared to each other on a frame-
by-frame basis and no indirect symbolic representation is available. Applications are, e.g.,
template-based automatic speech recognition [124] or example-based automatic phonetic tran-
scription [67].

Acoustic confusability

The theory of acoustic confusability developed in [96] and refined in [46], [47], and [16] is
another good example for the state-based approach to sequence comparison. The basic idea
is to derive the acoustic similarity between two words directly from already existing, well-
trained parameter distributions, i.e., the acoustic model of an ASR system which is capable
of recognising these words. Current acoustic models are based on Hidden Markov Models
(HMMs), where each HMM represents a context-independent phone or context-dependent
triphone with three or more states, that follow a non-ergodic left-to-right sequence topol-
ogy (i.e., diagonal state transition matrix) [54], [131]. The observations are modelled with
multivariate Gaussian Mixture Models (GMMs). To synthesise whole words from individual
phone models, the similarity graph shown in figure 3.1 is extended to a weighted finite state
transducer (WFST) by assigning the distance of the specified HMM pairs to the correspond-
ing edges. Since there are no ǫ-edges in the similarity graph, but always symbol pair edges,
the state-based approach is optimally suited for this task.

The computation of a distance or similarity between two HMMs is then a completely
separated problem. To compare continuous probability densities, the measure of relative
entropy or Kullback-Leibler divergence is an appropriate scoring scheme. For distributions x
and y representing symbols in X ,Y, it can be defined as follows:

h(x ∈ X‖y ∈ Y) =

∫

x(ξ) log
x(ξ)

y(ξ)
dξ. (3.1)

For single Gaussian distributions there exist closed-form evaluations of equation 3.1
whereas for GMMs, there is no closed form or analytical solution to this problem and, usu-
ally, numerical methods like Monte-Carlo sampling have to be applied to approximate the
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solution. The authors test various alternative divergence measures for this task including:

DB(x, y) = − log
∫

√

x(ξ)y(ξ)dξ Bhattacharyya divergence

DMC(x, y) = 1
K

K
∑

k=1

log x(ξk)
y(ξk) → D(x ‖ y) Monte-Carlo sampling

DG(x, y) =
∑

a

πa(D(xa ‖ ym(a)) + log πa

ωm(a)
) Goldberger approximation [35]

Dmin(x, y) = min
a,b

D(xa ‖ yb) Gaussian approximation

for Monte-Carlo samples k, GMM components xa and yb with weights πa and ωb, and a
matching function m(a) that relates components xa, yb to each other according to their sim-
ilarity. The advantage of this model of acoustic similarity is its direct relation to the ASR
system by evaluation of the acoustic model. This means that no extra data and no extra
training procedures are necessary. Current acoustic models, however, are too complex for ac-
curate and fast computation of phone similarities. Even with the proposed approximations,
the model is only computable in reasonable time for monophone acoustic models and not for
the usually implemented tied-state triphone acoustic models.

3.2.2 Discrete range

Confusion extraction from time-synchronously aligned transcriptions

Another application of the state-based approach is presented in [11]. There, the authors
introduce a system for fully automated recognition of non-native speech by modification of
the acoustic model with phone confusion information. For extracting this information, an
alignment of the spoken language transcription and the speaker’s native language transcrip-
tion is necessary. In this case, the symbol alphabets are the target language phoneme set for
X and the foreign language phoneme set for Y. From this synchronous alignment, language
specific confusion rules are extracted from the data, such that overlapping time segments
are collected and related to each other in the form of maximum likelihood estimates. The
strict time-alignment prevents the definition of an empty time interval and hence requires
the application of the state-based approach.

3.3 Symbol-based approach

Staying with the FST representation, the input sequences in the symbol-based approach again
follow the generator/acceptor paradigm. After each symbol, however, an arbitrary number
of empty symbols may be processed as shown in figure 3.2. The composition of these input
transducers therefore results in a similar lattice structure but with different state transitions.
These transitions can be described as operations that edit the generator input sequence such
that the acceptor sequence is produced. Thus, an alignment of two strings is a sequence of
these so-called edit operations which in sum describe how one string is transformed into the
other. In contrast to the state-based approach, the information about the current position in
the alignment is encoded in the input symbols and not the states. Only the specified sequence
of symbols is accepted by the input FSTs, so gaps may appear in the alignment that are



CHAPTER 3. SIMILARITY, DISSIMILARITY, AND CONFUSABILITY IN ASR 37

-:-

-:C

-:-

-:A

-:-

-:L

-:-

-:L

-:-

D:-

-:-

I:-

-:-

A:-

-:-

L:-

-:-

-:C

D:-

D:C

-:-

D:-

-:A

D:A

-:-

-:C

I:-

I:C

-:-

-:A

I:-

I:A

-:-

D:-

-:L

D:L

-:-

I:-

-:L

I:L

-:-

-:C

A:-

A:C

-:-

-:A

A:-

A:A

-:-

-:L

A:-

A:L

-:-

D:-

-:L

D:L

-:-

I:-

-:L

I:L

-:-

A:-

-:L

A:L

-:-

-:C

L:-

L:C

-:-

-:A

L:-

L:A

-:-

-:L

L:-

L:L

-:-

-:L

L:-

L:L

-:-

D:-

-:-

I:-

-:-

A:-

-:-

L:-

-:-

-:C
-:-

-:A
-:-

-:L
-:-

-:L

(a) (b)

Figure 3.2. Symbol-based similarity approach: Input sequence representation as (a) finite state
transducer and (b) similarity graph as formal composition xN ◦ yM of the transducers.

labelled with the empty symbol ǫ which makes the symbol-based approach asynchronous.
For this reason the symbol alphabets can only be discrete, which directly implies the term
string alignment.

Originally, the symbol-based approach was developed for applications in communications
to describe how a message changes when transmitted over a noisy channel (e.g., [69], [6]).
Further domains of applications include bioinformatics (DNA sequencing), text processing
(approximate string matching, spelling correction [22], [18]), or image processing (editing of
contour paths). A thorough overview on string matching algorithms is given in [83].

The concept of string edit distance can be formalised in the following way: Starting
from the general definitions given earlier, the string transformation process is broken down
into a sequence of elementary edit operations Z l = 〈z1, z2, ..., zl〉. The commonly defined
operations are substitution zsub = (xi, yj) (with identity xi = yj as special case), deletion
zdel = (xi, ǫ), and insertion zins = (ǫ, yj). Depending on the application, further operations
can be defined as well. In speech processing, e.g., compression zcomp = (〈xi, xi+1〉, yj) and
expansion zexp = (xi, 〈yj , yj+1〉) are often-observed phenomena [105], while transpositions
ztrans = (yj, xi), for instance, were introduced in [125] to model common typing errors in
typed texts.

Mathematically, a proper edit distance measure has to fulfil the axioms of a metric:

d(xN , yM ) > 0 non-negativity

d(xN , xN ) = 0 zero property

d(xN , yM ) = d(yM , xN ) symmetry

d(xN , yM ) + d(yM , zL) ≥ d(xN , zL) triangle inequality

(3.2)

In practice, however, many measures violate one or more of these axioms – in particular
the symmetry and triangle inequality properties – while still returning useful results. Gen-
erally, two types of edit distance measures can be distinguished. Deterministic measures
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have fixed scores for each edit operation and hence produce a deterministic result for a given
source/target string pair. Stochastic measures model the transformation from source into
target string probabilistically. Each edit operation has a probability of occurrence assigned,
and the edit distance is then defined as the sum over the probabilities of all possible edit
sequences.

3.3.1 Deterministic measures

Levenshtein distance (LEV)

Levenshtein supposedly was the first to define a simple edit distance measure together with an
algorithm for computing it [69]. Many other authors presented similar ideas and algorithms of
comparable complexity (cf. [105], [125], [75]). The Levenshtein distance handles 4 elementary
edit operations: identity, substitution, deletion, and insertion. Given a cost function c which
assigns costs to each edit operation, the Levenshtein distance is calculated with the following
recursive formula:

dlev(x
n, ym) = min



















cdel(xn, ǫ) + dlev(x
n−1, ym)

cins(ǫ, ym) + dlev(x
n, ym−1)

csub(xn, ym) + dlev(x
n−1, ym−1)

cident(xn, ym) + dlev(x
n−1, ym−1) .

(3.3)

This means that for a given pair of subsequences xn ≤ xN , ym ≤ yM , the Levenshtein
distance is the minimum cost of either:

• (xn−1, ym) plus the cost of a deletion,

• (xn, ym−1) plus the cost of an insertion, or

• (xn−1, ym−1) plus the cost of either an identity or a substitution operation.

Since the total distance only depends on the distance calculations of the input string
prefixes, the overall distance can be calculated with a dynamic programming algorithm in
O(N · M) time, the product of the sequence lengths. A faster algorithm is presented in [75]
which runs in O(N2/ log(N)) time for sequences which are both of length N . In [119] an
exact algorithm is proposed which runs even in O(d ·N) time, where d is the edit distance of
the string pair.

In case of the standard Levenshtein distance, the cost for a substitution, deletion, or in-
sertion operation is csub = cdel = cins = 1, while it is zero for the identity operation (cid = 0).
Therefore, the Levenshtein distance becomes the minimum number of substitutions, dele-
tions, and insertions. For the so-called Generalised Levenshtein Distance, the cost function is
not only dependent on the type of edit operation, but also on the input symbol sequences xN

and yM (cf. [125]). An even more general scoring scheme was proposed in [13], by replacing
the substitution cost with a single parameter r. This way, the computed distance becomes
a function of the parameter r and hence postpones the exact definition of an optimal sub-
stitution cost for a subsequent classification task to the following classifier. Such an optimal
classification approach is investigated in [85].
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Normalised Levenshtein distance (NLEV)

One of the main problems of the Levenshtein distance is that the interpretation of the total
cost depends on the lengths of the compared strings. Two short sequences related by a
single correcting edit operation may be interpreted as being rather dissimilar, while two
long sequences related by the same single operation may be considered very much alike. To
simplify the interpretation, one could normalise the calculated distance by the sum of the
input sequence lengths:

dnlev(x
N , yM ) =

dlev

N + M
. (3.4)

This method is not optimal for the generalised Levenshtein distance as the range of
output values is different for strings of approximately equal length and strings of unequal
length. Therefore, a different normalisation method is proposed in [74] where only the edit
path is considered for normalisation. A better way of normalising the Levenshtein distance
would be based on the edit path Π as proposed in [74]. In a straight forward manner – the
so-called post-normalisation – the edit distance result could be normalised by the length of
the edit path Π leading to a minimum distance of

dnlevpost
(xN , yM ) =

argminΠ W (Π)

L(Π)
. (3.5)

The edit path Π is defined as the sequence of edit operations needed to transform the source
into the target string. Its weight W (Π) is then the sum of costs along the path and L(Π)
is the length of this path. Post-normalisation, however, is still not the most accurate way
of normalisation as minimisation of the weights prior to normalisation is not necessarily
equal to the minimum after normalisation. Therefore, the path-normalisation is based on the
normalised path weights:

dnlevpath
(xN , yM ) = argmin

Π

W (Π)

L(Π)
. (3.6)

This normalised distance can be computed in O(N ·M2) time, as the length of the edit paths
has to be considered in the calculation. A similar algorithm implementing the same idea, but
running in O(N · M) is presented in [122].

While the previous algorithms do not fulfil the metric axioms, a true normalised Leven-
shtein distance metric was proposed in [132] together with a proof of the triangle equality:

dnlevmetric
(xN , yM ) =

2 · dlev(x
N , yM )

α · (N + M) + dlev(xN , yM )
, (3.7)

where α = max{c(x, ǫ), c(ǫ, y);x ∈ X , y ∈ Y}. The complexity of this algorithm is O(N · M)
and comparable to the previous methods. Each of the discussed normalisation methods has its
particular advantage. The choice for a specific method, however, depends on the application.

Generalised Levenshtein distance with phonetic feature weights

The Levenshtein distance was introduced as a robust and flexible method for expressing
the differences between two symbol strings. The Generalised Levenshtein distance allows
the incorporation of a priori information into the distance calculation, as the costs not just
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depend on the type of edit operation, but also on the actual symbols [125]. Therefore, the
distance calculation becomes domain-dependent and more precise.

For the domain of phonetic distance calculation, several studies successfully proposed the
usage of phonetic features or phonetic classes as a priori information [59], [108], [31], [45].
This information can either be obtained from confusability charts, e.g. from [78], or from the
IPA chart [50] which categorises consonants according to their attributes place of articulation
and manner of articulation, and vowels according to their attributes height and backness as
shown in the vowel quadrangle. The actual phone feature class assignments for the various
phonetic alphabets used in this work are listed in appendix A, table A.2. In the experimental
evaluation presented in section 3.4, the best results were achieved with the substitution cost
function

csub(xn, ym) = 1 −
|F{xn} ∩ F{ym}|

|F{xn} ∪ F{ym}|
· α , (3.8)

where F{xn} is the set of phonetic features for symbol xn and α is an independent weighting
or scaling factor. This means that phone pairs that share many features and are therefore
easily confusable get lower substitution cost than phone pairs sharing only few phonetic
features.

3.3.2 Stochastic measures

Several definitions for probabilistically modelling String Edit Distance have been given, rang-
ing from generative models [6],[103], over Markov Random Fields [126], to discriminatively-
trained Conditional Random Fields [76]. Common to all these approaches is a probabilistic
scoring scheme where the scores are expressed as probabilities of occurrence. The following
overview is based upon the ideas from [103] and extensions presented in [27]. In their works,
the authors propose a generative model inspired by a stochastic transducer. Their idea is
that a string pair can be represented by all sequences of edit operations that explain how the
one string is transformed into the other. Assuming that each string pair is generated by at
least one edit sequence, the probability of the string pair is then the sum of the probabilities
of all edit sequences for that string pair.

More formally this means that one needs to determine the joint probability P (xN , yM | θ)
of the source and target symbol sequences pair (xN , yM ) given model parameters θ. The edit
operations are modelled with a hidden two-dimensional random variable Zi : (X ∪ ǫ×Y ∪ ǫ)
indexed by i = 1..{max(N,M) ≤ l ≤ N +M} to reflect the position within the edit sequence.
The desired joint probability is now defined as

P (xN , yM | θ) =
∑

{max(N,M)≤l≤N+M}

∑

{zl#:v(zl#)=(xN ,yM )}

P (Z l = zl, xN , yM | θ) , (3.9)

where v(zl#) is the so-called yield of the terminated edit sequence zl#, which is the set of
all terminated edit sequences of length l that produced (xN , yM ). The special termination
symbol # is introduced to make sure that the set Z∗# of all terminated, arbitrary-length
edit sequences is prefix free and the above defined probability function is valid. In short, the
joint probability is the sum over all edit sequences zl of all possible lengths l that result in
the given sequence pair.
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From this joint probability two edit distance measures are derived. The so-called Viterbi
Edit Distance

dMCIvit
= − log argmax

{zl:v(zl)=(xN ,yM )}

P (Z l = zl, xN , yM | θ) (3.10)

only considers the most likely edit sequence for the given string pair, while the Stochastic
Edit Distance

dMCIsto = − log P (xN , yM |θ) (3.11)

accumulates the probabilities for all possible edit sequences. For both measures the calculated
distance decreases exponentially with the edit operation sequence length and is never equal
to zero for any string pair.

So far there has not been any comment on the probability of the single edit operations
P (Zi = zi, x

N , yM | θ) and on the interdependencies between the zi’s. By defining these
relations different model topologies can be realised. Selected topologies are presented in the
following.

Memoryless, context-independent model (MCI model)

Whenever there are no dependencies between the edit operations zi the model is considered
to be memoryless. In this case, the probability of the sequence of edit operations is simply
the product of the single edit operations:

P (Z l = zl, xN , yM ) =

l
∏

i=1

P (Zi = zi, x
N , yM ) . (3.12)

Furthermore, if the single edit operations do not depend on the source and/or target
symbols at position i but are the same throughout the edit sequence, the model is context-
independent :

P (Zi = zi, x
N , yM ) =



















cdel(xai
) zi = (xai

, ǫ)

cins(ybj
) zi = (ǫ, ybj

)

csub(xai
, ybj

) zi = (xai
, ybj

)

0 otherwise .

(3.13)

ai, bj are the indices within the source and target sequences up to zi. On the whole, the edit
operations need to define a valid probability distribution, so

∑

z P (z) = 1.

The advantage of this memoryless, context-independent model as proposed in [103] is
the small number of parameters θ that must be specified for decoding. Its capabilities are,
however, limited for modelling effects that go beyond interactions of single symbols.

Memoryless, context-dependent model (MCD model)

The memoryless, context-dependent model was developed already much earlier [6]. Inspired
by a problem in communications, the authors construct this probabilistic model for a noisy
channel which produces output of varying length for a given input sequence. Furthermore,
they propose an algorithm for decoding information transmitted through this channel. The
original idea and notation is reproduced here briefly to motivate context-dependency.

The channel model is defined as follows: for each transmittable symbol xk ∈ X a Markov
chain F (xk) is constructed with states S = {s1, s2, ..., sIk

}, where Ik is the number of states
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for symbol xk. The chain has transitions producing output symbols yj ∈ Y according to the
conditional probability distribution Q(yj|si1 → si2) where the basic state transition proba-
bility is denoted by P (si1 |si2) or Pφ(si1 |si2) if no output symbol is produced (null transition).
The probabilities of all outgoing transitions for a state sum up to one. By concatenating the
Markov chains of the input symbols, a Probabilistic Finite State Machine (PFSM) for the
whole input sequence is generated. Since the emission probabilities Q are dependent on the
state transition si1 → si2 which is directly related to the input symbols in F (xk), the model
is context-dependent.

Coming back to the previous notation this means that the edit operation probabilities are
now dependent either on the source symbol xai

at edit sequence position i when conditioned on
the source string, or on target symbol ybj

when conditioned on the target string, respectively:

P (Zi = zi, x
N , yM ) =



















cdel,xai
(xai

) zi = (xai
, ǫ)

cins,xai
(ybj

) zi = (ǫ, ybj
)

csub,xai
(xai

, ybj
) zi = (xai

, ybj
)

0 otherwise .

(3.14)

Memory model (MEM model)

The memory model is an extension to the context-independent model that takes the last
edit operation zi−1 into account when choosing the current edit operation zi = (xn, ym).
The computation is thus extended from the simple product of the individual edit operation
probabilities to

P (Z l = zl, xN , yM ) = P (z1) ·

l
∏

i=2

P (zi | zi−1, x
N , yM ) · P (#|zl) , (3.15)

which results in a much larger number of model parameters, but allows to take care of edit
operation sequences containing, e.g., consecutive deletions or operations such as transposi-
tions. The combination with context-dependent edit operations is not recommendable due
to the further increase in model parameters.

HMM-like model

The HMM -like model (cf. [27], [100]) is a completely different interpretation of the stochastic
edit distance problem. So far, all discussed models had a hidden random variable (RV) Z
representing the edit operations. The HMM -like model does without this implicit description
of the transduction process and instead forces the consumption of one target symbol at each
time instant. For this reason, insertions and deletions have to be modelled by separate
hidden RVs I and D that control the propagation of the source symbol sequence. While I is
of cardinality 2 representing the source index being either incremented or not, the cardinality
of D is constrained to a fixed value m, allowing only m consecutive deletions in the source
string.

The joint distribution therefore becomes the sum over all pairs of insertion and deletion
sequences (iM , dM ) which make up the difference between input sequence lengths N and M :

P (xN , yM ) =
∑

{(iM ,dM ):
PM

j=1 ij−dj=N−M}

P (IM = iM ,DM = dM , xN , yM ) . (3.16)



CHAPTER 3. SIMILARITY, DISSIMILARITY, AND CONFUSABILITY IN ASR 43

Note the fixed length M of the sequence of insertions and deletions. Apart from this re-
striction, this HMM-like model is similar to the MCD model as the conditional probabilities
P (yj |xi) are modelled – in this case explicitly:

P (IM = iM ,DM = dM , xN , yM ) =

M
∏

j=1

P (ij)P (dj |ij)P (xj |dj)P (xj |ij)P (yj |xj) . (3.17)

3.4 Evaluation: Pronunciation classification

In a pronunciation classification task, surface pronunciations obtained from manual phonetic
transcriptions are compared to canonical pronunciations taken from a phonetic lexicon. For
each surface form, a minimum distance classifier then selects the word with the most similar
canonical form. The application of phonetic similarity is clearly defined in this task and
phonetic distance measures can meaningfully be compared with each other. This evaluation
method was already chosen in previous studies on this topic ([103], [27]). It should be
noted, however, that the results strongly depend on the test data sets and the provided
lexicons which makes comparisons between studies difficult. For this reason, the experimental
evaluation comprises a similar setup to the studies in [103], [27] to verify the reference results
on conversational speech, and an application-specific setup based on the MEDTRANS corpus
(cf. chapter 2, section 2.5.1) to evaluate the phonetic distance measures on dictation speech.

3.4.1 Experimental setup

The classification problem is defined as follows: For an observed target string t (surface
pronunciation) the corresponding source string s (canonical pronunciation) shall be found.
Let C(w) = s denote the mapping from an orthographic word w to a pronunciation s and
C−1(s) = w the inverse mapping. Then Wt = {C−1(t)} is the set of all words corresponding
to the observed surface pronunciation t. Furthermore, let W be the orthographic reference
vocabulary of all words w and S =

⋃

C(w ∈ W ) be the set of all canonical pronunciations
from W . Then, a minimum distance classifier is defined as

Ŵt = C−1(argmin
s∈S

d(t, s)) . (3.18)

Ŵt contains all those words of vocabulary W whose canonical pronunciations have the min-
imum distance to the target pronunciation t. Since C(w) is not unique due to homophony,
the error rate has to be expressed in terms of the information retrieval measures Recall and
Precision. Recall describes how many of the relevant words were found, while Precision ex-
presses how many of the found words were actually relevant. The F1-measure is the harmonic
mean of Recall and Precision [120]. In the previous notation, these measures are defined as

Recall =
|Ŵt ∩ Wt|

|Wt|
, Precision =

|Ŵt ∩ Wt|

|Ŵt|
, and F1 = 2 ·

Recall · Precision

Recall + Precision
. (3.19)

To give an example, for a given pronunciation t = /W n d/, Ŵt = {pound, found, sound,
round, wound} was hypothesized. The actual Wt = {pound, pounds}, which means that
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Recall = 1 / 2 * 100% = 50%, and Precision = 1 / 5 * 100% = 20%. The results presented
in [103] and [27] are equivalent to Precision values.

It must be noted that these measures favour the deterministic distance measures, as words
with equal distance are accumulated in the set of hypotheses. Therefore, Recall values tend
to be high, while Precision values are very low. To provide a fair comparison, the k-best word
hypotheses Ŵt,k, k = 1..5 were calculated for each target string, and the rank of the correct
word within this sorted list was determined. This means that the best matching canonical
pronunciations sj1...sjk

∈ S are sorted such that d(t, sj1) < d(t, sj2) < ... < d(t, sjk
). The

resulting rank is the smallest k for which Ŵt,k ∩ Wt 6= {}.

3.4.2 Data sets

The phonetic similarity measures were tested on two different data sets. The first data set
was compiled from manual phonetic transcriptions of the SWITCHBOARD corpus ([34], [41])
performed at the International Computer Science Institute (ICSI), University of California,
Berkeley. These transcripts of conversational speech exhibit a substantial amount of variation
in pronunciation and are, therefore, well-suited for the pronunciation classification task. This
data has also been used in previous studies on pronunciation modelling ([103], [27]), but it
was not possible to reproduce the exact division into training and test data sets for these
experiments. The canonical reference pronunciations were taken from the pronunciation dic-
tionary created in terms of the SWITCHBOARD resegmentation project [23] at the Institute
for Signal and Information Processing (ISIP), Missisippi State University. Both, transcrip-
tions and dictionary are in ARPABET phonetic notation. In the following, this data set will
be called SWBTRANS.

The second data set was compiled from the MEDTRANS corpus of narrow phonetic tran-
scriptions of medical dictations (cf. chapter 2, section 2.5.1). In contrast to the SWITCH-
BOARD data, the domain fits the target application of medical dictation, as the transcriptions
were done from actual real world recordings. The pronunciation dictionary was provided by
Philips Speech Recognition Systems.

Both data sets were post-processed in a similar fashion before the experimental evaluation
was done. The following steps were performed on the raw data to obtain the final data sets:

• removal of non-speech, unintelligible segments, incompletely uttered words (e.g., false
starts), and hesitations,

• correction of misspelt orthographic words,

• validation of the source and target phoneme inventories,

• removal of utterances with phone sequence length < 3.

In the SWBTRANS set, the target phone inventory has been reduced to those 51 symbols
which occurred at least 10 times in the corpus to avoid conditioning problems during training
of the stochastic distance measures. A few key figures for both sets are listed in table 3.1.

3.4.3 Training and decoding

So far, the model parameters for the stochastic measures have been described but not set to
specific values. It is one of the major advantages of these measures that the model parameters
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Table 3.1. Key figures for pronunciation classification evaluation data sets SWBTRANS and MED-
TRANS: number of training and test word pairs, number of unique orthographic words,
number of unique phonetic forms (pronunciations), and number of forms per word for
source (canonical reference transcription) and target string (observed surface pronuncia-
tion). The number of forms per word may be less than one, as one pronunciation can be
represented by many orthographic words.

SWBTRANS MEDTRANS

Count [%] Count [%]

sample pairs (xN , yM ) 19,607 100.0 74,044 100.0

training pairs 18,607 94.9 73,044 98.6

... identical pairs (xN = yM ) 6,982 35.6 58,327 78.8

... differing pairs (xN 6= yM ) 11,625 59.3 14,717 19.8

test pairs 1,000 5.1 1,000 1.4

... identical pairs (xN = yM ) 405 2.1 831 1.1

... differing pairs (xN 6= yM ) 595 3.0 169 0.3

SWBTRANS MEDTRANS

Source Target Source Target

words 3,622 3,622 6,346 6,346

forms 3,575 8,744 6,568 11,461

forms / word 0.987 2.414 1.035 1.806

alphabet size 42 51 46 46

can directly be estimated from data. This way, the similarity measures become adaptable to
specific tasks or domains.

The stochastic measures were implemented as Dynamic Bayesian Networks (DBN) with
the Graphical Models Toolkit GMTK [8] following the approach in [27]. The DBN represen-
tation allows for easy modification of model topologies and provides ready-made solutions
for parameter learning via probabilistic inference. In this implementation the parameters
were estimated with the Expectation-Maximisation (EM) algorithm optimising the Maxi-
mum Likelihood criterion. For all models the algorithm converged after three EM iterations.
Decoding was done with the Viterbi algorithm for Viterbi edit distance (cf. eqn. 3.10) and
the Junction Tree algorithm for stochastic edit distance (cf. eqn. 3.11). As the differences
were marginal, results are reported on stochastic edit distance only.

The memoryless, context-independent model was re-implemented in C++ following the
reference implementation in [103]. This implementation was much faster than the GMTK
model: Training time on the SWBTRANS corpus could be reduced from 10 hours with the
GMTK model to 15 seconds in the C++ model, giving exactly the same results. Similar
speed-ups were observed for decoding.

3.4.4 Quantitative results

Classification

The Recall/Precision/F1 measures determined in the pronunciation classification experiments
are collected in table 3.2 and the statistics for the 5-best ranking of word hypotheses in 3.3.

The stochastic measures perform superior to the deterministic ones with both data sets
as indicated by the F1 measure and the ranking results. For the SWBTRANS data set,
the best results were achieved by the memory model (MEM) with 82.69%, followed by the
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Table 3.2. Recall, Precision, and F1 measures determined for minimum distance classification with
data sets SWBTRANS and MEDTRANS: standard symbol alphabets (std), mapped sym-
bol alphabets (map), and extensions with phonetic class information (cla). The models
are: Levenshtein distance (LEV), Normalised Levenshtein Distance (NLEV) with path
normalisation (NLEVpath) and metric-compliant normalisation (NLEVmetric), Memo-
ryless context-independent model (MCI), Memoryless context-dependent model (MCD),
Memory model (MEM), and HMM-like model (HMM).

Model Eqn. SWBTRANS MEDTRANS

Rec. Prec. F1 Rec. Prec. F1

d
et

er
m

in
is

ti
c

m
ea

su
re

s

LEV (3.3) std 78.33 67.65 72.60 90.08 94.38 92.18

map 77.80 68.41 72.80 90.08 94.38 92.18

(3.8) cla 67.53 74.47 70.83 87.78 95.22 91.35

NLEV (3.4) std 74.33 71.60 72.94 88.03 94.57 91.19

map 77.80 68.41 72,80 88.03 94.57 91.19

(3.8) cla 69.87 76.64 73.10 87.58 95.29 91.28

NLEVpath (3.6) std 72.58 69.83 71.18 87.03 93.97 90.37

map 70.73 70.15 70.26 87.03 93.97 90.37

NLEVmetric (3.7) std 74.33 71.60 72.94 88.03 94.57 91.19

map 73.07 71.99 72.52 88.03 94.57 91.19

st
o
ch

a
st

ic
m

ea
su

re
s

MCIsto (3.13) 77.92 85.60 81.58 90.13 98.40 94.09

MCDsi
(3.14) 70.60 77.62 73.94 89.53 97.80 93.48

MCDti
75.19 82.60 78.72 89.93 98.15 93.86

MCDsi,si−1
74.47 82.28 78.18 89.63 97.85 93.56

MCDti,ti−1
76.54 84.72 80.42 90.13 98.35 94.06

MEM (3.15) 78.72 87.07 82.69 89.88 97.85 93.70

HMMsi
(3.17) 71.49 79.25 75.17 89.43 97.75 93.41

HMMti
71.81 79.55 75.48 88.63 96.95 92.61

memoryless, context-independent model (MCI) with 81.58%. For the MEDTRANS data
set, the situation is reversed as the MCI model performed slightly better than the memory
model (94.09% compared to 93.70%). The result rankings in table 3.3 confirm these findings.
Comparing the stochastic measures, the context-independent measures (MCI and MEM)
returned the best results. Context-dependency works better when applied to the target
string than to the source string. This finding is intuitive as there is much more variation in
the target strings than in the source strings. Extending the context-range to the previous
symbols further pushes the performance to a significant degree. The HMM model cannot
keep up with the rest and only performs marginally better than the deterministic measures.
Interestingly, there is not much difference between the source-sequence and target-sequence
oriented models.

Compared to the stochastic measures the basic deterministic measures achieve higher
Recall, but lower Precision scores with both data sets. This tendency is easily explained
as the distance scores are independent of the actual symbols involved in the edit operation.
Therefore, many word pairs can be found that have the same score, meaning that the set Ŵt

of hypothesised words is large and the correct word thus likely to be found. The stochastic
measures on the other hand either hit or miss, and there are only very few cases where there
is more than one best match. Normalisation of the Levenshtein distance (NLEV ) mainly
improves the Precision as it reduces the number of best matching candidates, sometimes,
unfortunately, by removing the correct word as well. The alternative normalisation meth-
ods based on the editing path length (NLEVpath) and compliant with the metric axioms
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Table 3.3. Ranking results: percentage of data samples where the correct word appeared at rank k
in the pronunciation classification results list.

SWBTRANS

Rank LEV NLEV MCI MCD MEM HMM

k std cla std cla path metric si ti si, si−1 ti, ti−1 si ti

1 67.7 75.4 71.4 77.2 69.6 71.4 86.7 78.5 83.5 83.2 82.9 87.9 80.1 80.6

2 19.8 5.7 14.2 6.5 14.3 14.2 5.4 5.6 4.9 5.6 5.6 4.4 5.4 4.8

3 10.0 3.2 5.6 3.1 4.6 5.6 1.5 3.2 2.7 2.5 2.3 2.2 2.3 2.7

4 2.1 2.1 4.2 1.8 3.1 4.2 1.1 1.4 1.1 1.1 1.3 1.3 1.5 2.3

5 0.4 0.9 1.1 1.0 1.8 1.1 0.5 1.3 1.0 0.7 0.6 0.5 0.8 0.6

>5 0 12.7 3.5 10.4 6.6 3.5 4.8 10.0 6.8 6.9 7.3 3.7 9.9 9.0

MEDTRANS

Rank LEV NLEV MCI MCD MEM HMM

k std cla std cla path metric si ti si, si−1 ti, ti−1 si ti

1 94.2 95.7 94.7 95.7 94.2 94.7 98.8 98.2 98.6 98.3 98.8 98.4 98.1 97.3

2 4.6 1.9 3.0 1.3 2.7 3.0 0.6 1.1 1.1 0.8 0.4 1.0 0.9 1.2

3 0.9 1.1 1.0 1.4 1.7 1.0 0.3 0.2 0.1 0.3 0.3 0.1 0.3 0.6

4 0.2 0 0.8 0.3 0.7 0.8 0.1 0 0.1 0 0 0 0 0.2

5 0.1 0.3 0.2 0.3 0.2 0.2 0 0.2 0 0.2 0 0 0.1 0

>5 0 1.0 0.3 1.0 0.5 0.3 0.2 0.3 0.1 0.4 0.5 0.5 0.6 0.7

(NLEVmetric) did not bring better results for any of the two data sets and are, therefore, not
suited for this type of input data.

Inclusion of phonetic feature weights (cla rows in table 3.2) improved the Precision scores
at the expense of the Recall for both data sets. In contrast to the standard implementations,
the Recall/Precision ratio is almost inverted as the distance scores are highly diversified due
to their symbol-dependency. The gains are, however, small and could only be measured
when the weighting factor α was low (SWBTRANS: α = 0.2, MEDTRANS: α = 0.3) and the
dependency therefore low as well. This is an interesting result, because it suggests that the
discriminating effect is more beneficial than the simple accumulation of an absolute score.
For the latter, it would be necessary to re-define the costs for insertions and deletions as well,
which would require further phonetic knowledge that goes beyond the phonetic feature labels
such as articulatory constraints or phonologic rules.

There are several reasons for the significant differences between the results for the two
data sets. First, the number of samples with identical source and target string in the test set
of MEDTRANS is about twice as high as in SWBTRANS. Furthermore, SWBTRANS has
different phoneme inventories for source and target pronunciation which makes comparisons
with the deterministic measures difficult. Second, SWBTRANS is a corpus of conversational
speaking style in contrast to the dictation speaking style in the MEDTRANS corpus. As
a consequence, there are fewer and less prominent deviations in pronunciation in the MED-
TRANS data set. For these reasons, the SWBTRANS set is more challenging and hence more
interesting for evaluation in contrast to the less variable MEDTRANS data set. MEDTRANS,
on the other hand, comprises a larger vocabulary and thus potentially higher confusability
among the words.
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Figure 3.3. F1 performance versus training set size for SWBTRANS data set. Note: For the MCD
and HMM models only the best performing configurations are plotted.

Dependency on training data for the stochastic measures

For the stochastic measures, the number of training samples needed to achieve a reasonable
performance is essential. Figure 3.3 shows the relation between the F1 measure and the
amount of training data for the SWBTRANS data set. With increasing number of model
parameters, the need for training samples increases as well as shown in table 3.4. To achieve
the same performance as the best deterministic measure in terms of F1 – the NLEV measure –
the MCI model requires only around 100 training sample pairs. The same holds for the HMM
model, which has almost reached its maximum there. The MCD model with single symbol
context already needs 400 samples to measure up with NLEV. The MEM model requires one
order of a magnitude more data (∼ 1,000 samples). And finally, the MCD model with two
symbols of context requires even around 4,000 data samples.

Table 3.4. Number of model parameters for the stochastic measures on the test data.

Model Eqn. SWBTRANS MEDTRANS

MCIsto (3.13) 2,236 2,209

MCDsi
(3.14) 4,940 4,418

MCDti
4,940 4,418

MCDsi,si−1
140,608 103,823

MCDti,ti−1
96,148 103,823

MEM (3.15) 4,999,696 4,879,681

HMMsi
(3.17) 2,236 2,209

HMMti
2,236 2,209
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3.4.5 Qualitative results

Apart from the quantitative analysis, also a manual inspection of the experimental results
was made to get a better insight on how the different methods work. For this inspection, a
subset of samples was selected from both test data sets that showed a Levenshtein distance
dlev > 1. The subset was then visually analysed to find categories that describe the observed
deviations. After the sample pairs had been assigned to the categories the returned candidate
word lists of each tested measure were compared with each other.

The following main categories of deviations could be determined, in order of frequency:

• Moderate reductions: /T AX M EY DX AX Z/ → /T AX M AA T OW Z/: tomatoes

Moderate reductions are minor deviations between the strings that do not affect the
number of syllables per word. They can occur due to speaking style variation or small
disfluencies in fluent speech.

The deterministic measures sensitively react on moderate reductions, as they fail in
about one third of all cases. The stochastic measures get on better with this type
of deviation. The MCI model excels as the only method which was able to correctly
recognise all moderate reductions.

• Massive reductions: /EY M OW/ → /EH N IY M OW R/: anymore

Massive reductions are caused by fast speech or sloppy pronunciation of the speaker.
The canonical phone sequence is strongly distorted, by phone substitutions and particu-
larly phone deletions, usually at the word end. For these experiments, an utterance was
labelled as massively reduced if at least one of the syllables was missing. In contrast to
word artifacts, however, the uttered phone sequence can still be correctly understood
by an attentive and experienced human listener.

All measures were substantially affected by these deviations. The Levenshtein and
HMM -like models suffer from almost complete breakdown. The best results were
achieved by the memory model which was able to correctly recognise more than half of
the massively reduced pronunciations. In case of utterances such as /Z P R AA LG IH/

→ /P R AA B AX B L IY/ for the word probably, this is remarkable.

• Segmentation errors: /L AE S T SIL N/ → /L AE S T/: last

Segmentation errors were introduced already at the production of the phonetic corpora
used in the experiments. In case of the SWBTRANS data set, the word level seg-
mentation of the phonetic transcription was done automatically based on time-stamp
information, and in case of the MEDTRANS data set, the automatic orthographic
segmentation was not changed during the phonetic transcription process. Therefore,
segmentation errors are unfortunately inevitable for some samples.

The effect on the experimental results, however, is low. The MCI model again is most
robust against segmentation errors, as well as the deterministic measures. The worst
effect can be observed with the MCD and HMM models, most probably because the
contexts are broken for this type of deviation.

• Short, functional word artifacts: /V AX JH/ → /B AH T/: but

The classification task becomes harder the shorter the compared pronunciations are.
Mostly, this happens for functional words which convey little meaning and usually only
serve syntactic purposes within a sentence. Therefore, they also tend to be heavily
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reduced and appear as almost random. A sample was labelled as short artifact if it was
not possible to infer the orthographic word from the observed phone sequence manually.

None of the methods could appropriately deal with short functional word artifacts. Even
the MEM model as the best method in this respect was not able to recover half of the
words. The HMM models failed completely, as did the MCI model. The Levenshtein
model performed not much worse than the MEM model in terms of recall, as there are
many candidates with short pronunciations in the lexicon.

• Transcription errors: /IH D V AE N Z/ → /AE D V AE N T IH JH/: advantage

A data sample was labelled as transcription error if the phonetic transcription suggested
a different word from the lexicon than what had actually been transcribed. Such mis-
takes often happen with inflected words where the baseform was transcribed instead of
the actual inflected form or vice versa. Another type of transcription errors were phone
repetitions.

Phone repetitions were easily handled by all measures while the rest of the transcription
errors were not resolvable for any measure. Therefore, these samples are best ignored
in the analysis.

• Heterophones: /L IH V/ → /L AY V/: live

Heterophones are words that have the same orthographic representation, but different
phonetic representations. By definition, it is impossible to disambiguate such words
without additional semantic cues. A few words in the test corpora were heterophones
where only one of the two possible phonetic realisations was present in the lexicon, but
the other one was uttered.

Almost all methods fail for heterophones, except for the memory model which was able
to find the correct word for the above example. This may, however, have happened
incidentally.

3.5 Suggestions for extensions

The analysis of the pronunciation classification results showed that the remaining errors
are mostly artifacts that cannot be classified meaningfully. Therefore, there is hardly any
room for improvement on this data. Pronunciation classification, however, is only one of
many possible applications in text matching, and as such it does not directly address those
observations from chapter 2 that require a context wider than just a single word within a
text alignment. At this point, a few promising extensions to the phonetic similarity measures
shall be discussed briefly.

3.5.1 The syllable as structuring unit

In section 2.2.2 the syllable structure was identified as one of the major factors for describing
phonologic variation in spoken language. Assuming that the syllable structure of the input
phone sequences can be determined automatically, this knowledge can be integrated into
phonetic similarity measurement.

One way of exploiting this knowledge would be to split the input phone sequences into
individual syllables and perform syllable matching instead of whole-word matching. Since the
variation in syllable length is much smaller than the variation in word length (cf. figure 3.4),
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Figure 3.4. Number of phones per phone input sequence for syllable-based and word-based input
sequences in the MEDTRANS training data set.

this partitioning step has a normalisation effect that would particularly be beneficial for the
stochastic measures whose distance scores increase exponentially with edit sequence length.
Furthermore, the syllable boundaries may give good guesses for potential segmentation errors
in the alignment as discussed in section 2.5.2.

The syllable structure may also be integrated by means of position-dependent weighting
factors. This way, edit operations are weighted with respect to their function in a syllable.
For instance, the deletion of a consonant like /d/ could be assigned a lower weight in coda
position than in onset position. At the same time, such weighting factors would enforce the
correct alignment of the phone strings with respect to the syllable structure.

3.5.2 Parameter-tying schemes

The application of stochastic edit distance measures is limited by the relatively high number
of model parameters that must be specified or trained from data. Particularly for complex
models such as the context-dependent model or the memory model, a reduction of the number
of model parameters could reduce the amount of required training data. Ristad and Yianilos
already gave this indication in their work [103]. The dependence on the previous phone xi−1

or the previous edit operation zi−1 could be weakened to the previous phone class (vowel,
fricative, plosive, nasal, stop, ...) or the previous type of edit operation (substitution, deletion,
or insertion). Similarly, parameter-tying could also be conditioned on the syllable structure.

3.6 Conclusion

Phonetic similarity matching is a process of joint alignment and local scoring. While the
alignment procedure usually follows a dynamic programming scheme, the various algorithms
mainly differ in their scoring models. The main contribution of this chapter is an experimental
evaluation of both, deterministic and stochastic edit distance measures, as in the literature,
so far only either stochastic measures or normalisation methods of the Levenshtein distance
have been benchmarked against the Levenshtein distance. This comparative evaluation was
set up as a pronunciation classification task based on phonetic transcriptions of conversational
speech recordings and – as a further contribution – of dictation speech. Furthermore, this
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evaluation is the first one that relates the pronunciation classification performance to the
amount of data used for training the stochastic models.

In direct comparison the stochastic edit distance models outperform the deterministic
distance models in the pronunciation classification task. The performance gain comes from
the prior knowledge obtained from data during the training phase which allows for better
differentiation between similar sequences. Their abilities go even as far as correctly assign-
ing pronunciations suffering from massive reductions, where the deterministic models fail
completely. For applications this means that as soon as domain and task-specific real world
training data is available, a stochastic edit distance model should be the primary choice for
similarity measurement.

The choice for a specific stochastic edit distance model basically depends on the amount of
available training data. The experiments show that for the memoryless, context-independent
model already around 100 training pairs are enough to achieve higher F1 scores than the
best performing deterministic measure. With such little training data, it could be possible to
develop highly specific models, e.g., speaker-, domain-, or maybe even section-specific models.
The memory model shows the highest potential, but requires about an order of magnitude
more data to draw levels with the deterministic measure and another order of magnitude to
reach the performance of the memoryless model. The learning curve, however, is then still
not bounded, which makes this model interesting for long-term adaptation scenarios where
large amounts of data are available.
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Chapter 4

Automatic Reconstruction of

Medical Dictations∗

After decades of research, speech recognition technology has reached a level where it can be
successfully integrated into products for everyday use. In particular, this applies to dicta-
tion systems with integrated speech recognition which help reduce the amount of manual
transcriptions. In the medical domain, where dictation traditionally plays an important role,
speech recognition systems have contributed to a more efficient report creation process since
medical transcriptionists no longer have to type whole documents, instead they only do the
post-processing to create the final reports. This way, highly skilled medical transcriptionists
make better use of their expertise.

In many cases, this post-processing step unfortunately still involves a lot of tedious editing:
recognition errors have to be corrected, and the style and formatting of the document have
to be adapted to the standards applied to written reports. Particularly for dictations by
unexperienced users, post-processing can become time consuming, and thus may lead to
many and various deviations between the recognition results and the final reports.

While recognition results and final reports are usually available in abundance, manual
transcriptions of the actual spoken words without recognition errors (i.e., assuming perfect
recognition) are costly and scarce. For training automatic speech recognition systems, how-
ever, literal transcriptions of the actual words are needed.

A standard methodology to overcome the problem of non-literal transcriptions in ASR
training is unsupervised or lightly supervised training [64], [56]. These approaches allow the
generation of statistical models from only small amounts of literal transcriptions together
with large amounts of non-literal transcriptions in an iterative fashion. For language model
training, methods like linear model interpolation [17] or transformation-based learning [89]
are used to cope with non-literal transcriptions. Although these methodologies lead to re-
ductions in word error rate for as various domains as news broadcasts or transcriptions of
class lectures [44], they do not give explanations for the mismatches between the non-literal
data and the actual wording in the training utterances. Furthermore, problematic segments
like disfluencies, hesitations, or speaker corrections cannot be modelled without proper an-
notation. For these reasons, literal transcriptions are still valuable.

∗This chapter is a verbatim reprint of the article Semantic and Phonetic Automatic Reconstruction of

Medical Dictations, submitted to the journal Computer Speech and Language by Elsevier. It is co-authored by
Christina Drexel, Leo Fessler, Jeremy Jancsary, Alexandra Klein, Gernot Kubin, Johannes Matiasek, Franz
Pernkopf, and Harald Trost. The sole contributions of the author are the phonetic similarity matching function,
the phonetic reconstruction rules, and the experimental evaluation of the reconstruction quality at the end of
this chapter.
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These motivations lead us to the definition of the problem of how a literal transcription can
be automatically reconstructed from non-literal transcripts of different information sources.
This problem has already been addressed by [87] for modelling disfluencies and hesitations
in medical dictations. However, a comprehensive model for automatic reconstruction needs
to go beyond the scope of specific phenomena and provide a generic framework for exploiting
the full potential of the analysed documents.

In this article, we propose such a reconstruction framework and describe a system which
has been developed for automatically reconstructing the actual spoken words from the recog-
nition result and the final medical reports. These two different input sources are complemen-
tary for the task of reconstructing literal transcripts. The resulting reconstructions can be
used the same way as manual transcriptions for training speech recognition systems.

The base for reconstruction is an alignment between the written report and the recognition
result. The alignment takes into account semantic information (for explaining reformulations)
and phonetic information (for explaining recognition errors) as well as syntactic information
in terms of document formatting. From the interpretation of the deviations between the
written report and the recognition result, the words which are considered to have actually
been spoken are reconstructed. According to the proposed methods, we name our approach
Semantic and Phonetic Automatic ReConstruction (SPARC). The main innovative aspect
of our method is the optimal interplay between two independent knowledge sources, namely
semantics and acoustics/phonetics in the categorisation of differences between automatic
transcript and final document, as well as in the reconstruction of the original utterance from
these two data sources.

Qualitative and quantitative evaluations based on manual transcriptions have shown that,
in many cases, the alignment leads to a correct reconstruction. The resulting reconstructed
text can serve not only as a base for training and improving the speech recognition system;
a deeper understanding of the typical reformulations and reformatting may eventually also
support a shift from mere speech recognition to document production in dictation applica-
tions.

In the following sections, we will continue with a more detailed account of the SPARC
approach in section 4.1 and a description of the available text corpora in section 4.2. Following
this introductory part, in sections 4.3, 4.4, and 4.5 the three main units of the approach – text
alignment, similarity measurement, and text reconstruction – are then elucidated. In section
4.6, we report experimental results in terms of the quality of the reconstructed text and an
automatic speech recognition experiment with retrained language model. We conclude the
paper with a discussion of the results and an outlook for further applications.

4.1 SPARC approach

The SPARC approach is a method for the automatic production of literal transcriptions from
available data sources in large document production environments using speech recognition.
Three types of data are currently available in such systems:

• Audio files (AF), comprising the original utterances;

• Draft transcriptions (DT) – or more simply: recognised texts -, produced by the dicta-
tion system (containing the recognition errors);

• Final documents (FD) – or more simply: written texts -, produced by the typist (where
recognition errors are corrected but where also some parts are re-formulated in a way
different from the original utterances).
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Error-free literal transcriptions (LT) – or more simply: reference texts – of the audio files,
however, are usually not available, or only to a certain degree if some manual transcriptions
have been made. Yet, literal transcriptions of the original spoken utterances are needed for
advancing the accuracy and efficiency of automated dictation:

• Aligned corpora of LT and FD can be used to automatically learn recurrent refor-
mulations, thus allowing automated dictation to be augmented by an automatic text
reformulation module which provides a draft that is closer to the intended final docu-
ment.

• Large quantities of literal transcriptions and audio files can serve as data for training of
the acoustic and language models to decrease the word error rate of speech recognition.

For medical dictations, the reconstruction task was already described by [87]. There,
the authors propose an augmented probabilistic finite-state model for generating semi-literal
transcriptions. This probabilistic model handles so-called ‘out-of-transcription expressions’
like greetings, false starts and repairs, and filled pauses as the only sources of mismatches
between recognised and written texts. For the same task, SPARC provides added value by
also explaining and categorising such mismatches. For hypothesising the reconstructed text
mismatches are not only detected, but also interpreted. The interpretation of a mismatching
token pair as e.g., a recognition error, or a reformulation of the typist helps in designing more
accurate models for the differences between spoken and written form of medical dictations.
[123] describes a hybrid method for detecting speech recognition errors in radiology reports
based on semantic knowledge, constraint rules and statistical modelling (i.e., pointwise mutual
information and co-occurrence analysis). In [44], transcription generation was presented for
recorded academic lectures with a finite-state transducer approach.

Semantic relatedness and similarity measures have mostly been developed to improve
the recall of Information Retrieval (IR) systems. There are two main established ways of
measuring the semantic similarity between two terms: on the one hand, relatedness can be
measured in terms of the distance between two words or multiword expressions in a knowledge
base, e.g., WordNet (see [26]). On the other hand, relatedness can be derived from a corpus
by determining co-occurrence and context features with IR methods. Often, corpus- and
knowledge-based measures are combined. Due to the many available knowledge sources, the
medical domain lends itself well to knowledge-based measures for semantic relatedness and
similarity (for an overview, cf. [88]).

Similarly, phonetic similarity measurement has been used for addressing many topics in
ASR: modelling pronunciation variation (e.g., [103], [27]), predicting ASR errors [31], mea-
suring acoustic confusability [96], discriminative language model training and OOV detection
[99], or IR [133]. In many of these applications, confusion matrices are used to measure
the phonetic similarity of phone sequences or phone confusion networks. These matrices are
either handcrafted, e.g., from phonetic class information, or estimated from data.

The technological goal is to automatically construct an error-free literal written transcrip-
tion of the user’s original utterances. Methodologically, the basis for this reconstruction is
formed by an analysis of the semantic and acoustic differences between DT and FD. Scien-
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Audio files (AF)

Draft transcriptions (DT)

Final documents (FD)

Reconstructed texts
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Reconstruction
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  ...
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Semantics Phonetics

Figure 4.1. SPARC architecture: draft transcriptions and final documents are first annotated, then
properly matched based on semantic and phonetic similarities, and finally categorised
and selectively combined into a reconstruction hypothesis.

tifically, SPARC requires solutions for the following problems:

• Automatic semantic annotation of text corpora with the help of a domain-specific on-
tology.

• Accurate text alignment and chunking for the available draft transcriptions and final
documents.

• Methods for comparing aligned text chunks for semantic and phonetic similarity.

• Classification of text chunks based on the similarity measures (text reconstruction).

Figure 4.1 illustrates the architecture of the SPARC approach. Our method starts with
the automatic semantic annotation of both DTs and FDs. Pairs of documents are then aligned
to identify chunks where texts display differences. Semantic similarity is measured based on
the semantic annotation, while phonetic similarity is determined online with a parameterised
stochastic similarity measure. This way, the difference between a specific chunk in DT and
FD can be categorised as correction of a speech recognition error or a reformulation by the
human typist – or a combination of both (cf. table 4.1). Reconstruction of the originally
dictated words is based on this analysis. Note that semantic and phonetic similarity mea-
surement are used for both alignment and reconstruction.

SPARC can be adapted to any domain and to any language as long as the basis for
training/learning – namely adequately sized parallel corpora of DT and FD – as well as
the necessary linguistic resources – lexical, morphology, thesauri, etc. – are available. We
implemented SPARC for English medical reporting, due to the fact that very large collections
of medical corpora in English can be obtained, and medical reporting is at the moment by
far the most important application of speech recognition in professional dictation.
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Table 4.1. The SPARC approach to text reconstruction. Based on semantic and phonetic similarity
measurements, chunks of written and recognised text can be classified as either matches,
reformulations, corrections or a combination of both.

PHONETICS

similar dissimilar

S
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M
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N

T
IC

S
similar MATCH REFORMULATION

dissimilar CORRECTION
REFORMULATION
& CORRECTION

4.2 Data description

For reconstruction, we distinguish between matching (i.e., identical) and mismatching parts
of the aligned texts. As this task is trivial for matching parts, only the mismatching parts will
be of interest. Generally, we describe mismatches between texts on word level in terms of the
mismatch edit operations insertion, deletion, and substitution. This way, a word error rate
can be determined easily, but mismatch interpretation is difficult since actual mismatches
can be composed of several adjacent mismatch edit operations. For this reason, we define a
mismatch region as a contiguous sequence of mismatch edit operations in order to establish
correspondences between matched words.

A statistical study of a corpus of 80,000 medical reports with 38 million words revealed
an average length of 2.3 words for a mismatch region and an average occurrence of 3.6 times
for this region within the corpus. Regions occurring only once account already for 60%
of all mismatches while frequent regions occurring ≥ 10,000 times only account for about
11% of all mismatches. Such highly frequent mismatches are, e.g., insertions or deletions of
punctuations and short words. On the other hand, regions of length 1 cover around 20% of all
mismatches, and 75% of all mismatches occur in regions of length ≤ 5. For the reconstruction
task, this means that only relatively short symbol sequences have to be processed.

Mismatches can be traced back to the human dictation process, the automatic recognition
process, and the human transcription process. In general, the dictating person speaks freely,
thus hesitations, self-corrections, and repetitions can be observed often in the recordings,
but of course not in the final documents. ASR is error-prone, resulting in the confusion of
words which are phonetically similar. The transcription process completes the range of mis-
match sources by adding formatting to the text according to certain well-defined standards.
Formatting affects the text in two ways: first, by additional structure like inserted punctua-
tions, paragraph breaks, or capitalisation of words, and second, by formatting of particular
document entities like headings, grammatical units (dates, quantities, etc.), or enumerations
out of continuous text. The latter formatting step makes reconstruction difficult, as different
speaking variants are mapped onto a standardised written form. Furthermore, the structure
and style of the text can be altered by reformulations of the typist as well. These alterations
include expansion of abbreviations, acronyms, and short forms, or grammatical corrections
like changes in genus, tempus, or numerus so as to put the final written text into a proper
stylistic and grammatical form.
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4.3 Text alignment

Establishing proper alignment of the final report (FD) and the recognised text (DT) is an
important prerequisite for all further steps [49].

During alignment, both input documents are viewed as sequences of tokens. A generalised
Levenshtein alignment algorithm is then applied to these sequences (cf. [69]). The Leven-
shtein algorithm views alignment as a minimisation problem, where a number of actions with
associated costs can be performed to navigate through the search space:

• If substitution is performed for two elements xi and yj of sequences xN
1 and yM

1 , then
these two elements will be mapped to each other in the final alignment and labelled
with [=]. This action includes the special case of identity where xi = yj with zero cost
(unlike ‘true’ substitutions).

• Deletion, on the other hand, results in element xi of sequence xN
1 being mapped to

the empty element, i.e., it will not have a corresponding element of sequence yM
1 in the

alignment. Deletions are labelled with [<].

• Insertion is symmetric to deletion and as such leads to yj being mapped to the empty
element. Insertions are labelled with [>].

For each pairing (xi, yj) out of xN
1 × yM

1 , a scoring function is invoked that evaluates the
respective costs for each of the three available actions. Dynamic programming is applied to
find the cheapest path (i.e., the cheapest sequence of actions) through the search space in
O(NM) time, where N and M are the length of xN

1 and yM
1 , respectively. This approach

allows to factor out all domain-specific aspects to the scoring function by, e.g., assigning spe-
cial scores to formatting marks while the dynamic programming scheme for cost minimisation
remains untouched.

A common phenomenon that can be observed in such alignments are mismatches caused
by recognition errors involving splitting or merging of words (segmentation errors) within the
recognised texts or massive reductions due to fast speech (cf. figure 4.2 and 4.4). To account
for these problems, the alignment has been extended to handle multiple levels of segmentation.
Since the alignment procedure operates on sequences of tokens, it can be applied recursively
to any pair of tokens that has been further split to a finer level of segmentation. Multi-word
expressions or grammatical units can thus be reduced to sequences of single words which in
turn can be broken down to sequences of syllables. The sequence of alignment labels obtained
from these alignment processes are concatenated into a single alignment label, expressing the
amount of overlap on submatching level between the parent tokens.

For the purpose of creating a literal transcript, it is crucial that all corresponding passages
of the two input documents are mapped to each other. Corresponding means that two
passages denote the same section in the actual dictation. Naturally, the two passages need
not necessarily consist of the same tokens like, e.g., in a mismatch region. Figure 4.2 illustrates
this problem for a sample text passage. The standard Levenshtein algorithm with equal costs
for all edit operations calculates the minimum cost alignment based on the orthographic
spelling, however, at the expense of proper word correspondences. Furthermore, the mismatch
region is even split improperly at the wrong comma, such that the semantic correspondence
between written and recognised text is lost. The SPARC alignment re-establishes the proper
word correspondences even for segmentation mismatches and preserves a singular contiguous
mismatch region.
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written text ↔ recognised text

. COR .

\n\n/DIET/ \n = \n\n

Low-fat = Diet

, = is

low-cholesterol = a

> low

> fat

, COR ,

two-gram = low

> cholesterol

> 2 grams

sodium COR sodium

written text ↔ recognised text

. COR .

> \n \n

\n\n/DIET/ \n = Diet

> is

> a

Low-fat =< low

<= fat

, = ,

low-cholesterol =< low

<= cholesterol

, <

two-gram = 2 grams

sodium COR sodium

Figure 4.2. A sample text passage with mismatch regions highlighted in boxes, aligned with standard
Levenshtein alignment (left) and the advanced multi-alignment computed by SPARC
(right). Labels are: COR for identical words, [=] for corresponding/substituted words,
[<] for deletions, and [>] for insertions.

Hence, two scoring mechanisms have been developed that compare token pairs for se-
mantic and for phonetic similarity, respectively, and these have then been united in a single
scoring function. Naturally, it would be desirable to not only compare token pairs, but whole
passages for similarity in the scoring functions. However, the restriction to token pairs is
a necessary concession to the already unfavourable computational complexity of alignment
problems. Less local comparisons can be performed at the reconstruction stage.

4.4 Similarity measures

Similarity measurement of tokens is used in both text alignment (cf. section 4.3) and re-
construction (cf. section 4.5). For text alignment, the similarity measures are consulted by
scoring functions of the generalised Levenshtein alignment algorithm to improve accuracy in
contrast to plain orthographic matching. In text reconstruction, the measures are used to
condition reconstruction rules and perform the classification of text chunks as either matches,
corrections, reformulations, or a combination thereof (cf. section 4.1, table 4.1). The basic
methods, however, are the same in alignment and in reconstruction.

4.4.1 Semantic similarity

In order to measure semantic similarity, words are first assigned a semantic representation.
Since our primary application domain is medical reports, specialised medical terminology
has to be incorporated into the knowledge sources. The resource we employ for that purpose
is the Unified Medical Language System (UMLS, [70]), which includes a metathesaurus, a
semantic network, and a lexicon (SPECIALIST). The morphosyntactic information from the
lexicon was worked into the finite-state transducer that is used as a morphological lexicon.

The metathesaurus is a very large, multi-purpose, and multi-lingual terminology database
that contains information about biomedical and health related concepts, their various names,
and the relationships among them. Unfortunately, the relations between UMLS concepts
appear to depend on the particular knowledge source the concept comes from, and the depth
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it is modeled solely within that knowledge source. Nevertheless, for analysing synonymity
of two words or determining a rough degree of semantic relatedness, these relations appear
to be sufficient. In addition, all concepts in the metathesaurus are assigned to at least one
semantic type from the UMLS semantic network.

Furthermore, a high coverage resource for general vocabulary, the WordNet lexical
database [26] is available for English. In Wordnet, nouns, verbs, adjectives and adverbs
are organised into synonym sets, each representing one underlying lexical concept; the re-
lations connecting WordNet synsets are quite different from the relations between UMLS
concepts. For our purpose, the hypernym relation is the most important synset relation.2.

The following ordinal scale has been defined in order to obtain a rough measure of semantic
similarity of two words:

7 identical (modulo case)

6 same root (only inflection)

5 synonymous

4 morphologically derived

3 conceptual siblings

2 same UMLS semantic type
or parent(word1,word2)
or parent(word2,word1)

1 direct hierarchical relation
between semantic types

0 no similarity at all

In the above context, parent(word1, word2)means that word1 maps to a concept/synset
(inter alia) that is a direct UMLS superconcept or hypernym synset of one of the con-
cepts/synsets word2 maps to. Two words are siblings if they share at least one direct UMLS
superconcept or hypernym synset. The intuition behind this was to use a measure which is
available in both WordNet and UMLS, which has a finer granularity than the (rather crude)
UMLS semantic type and which assures that both concepts have something in common (the
“supertype”).

Based on the similarity value of its two argument tokens on the ordinal scale, costs for
substitution, insertion and deletion are determined by the semantic scoring function and
returned to the invoking alignment framework.

4.4.2 Phonetic similarity

Phonetic similarity measurement [90] requires three sources of information for comparison:
the phonetic symbol sequence from the recognised text, the orthographic word sequence
from the recognised text and the word sequence from the written text. The basic similarity
measurement process is depicted in figure 4.3, and its main components are explained in more
detail below.

Automatic phonetic transcription (APT)

In a first step, the written text is transferred to the phonetic domain with automatic phonetic
transcription (APT). This is done by a simple lexicon lookup. The phonetic lexicon we used
contains 160,000 words with 197,000 pronunciations. It includes common as well as domain-
dependent vocabulary and was compiled from customary and publicly available resources like
CMUdict3. To improve coverage on formatted text parts, a de-formatting grammar is applied
to formatted text units. The de-formatting grammar is an inverted version of a formatting

2For a study which compares WordNet and UMLS in greater detail, see [14]
3See http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 4.3. Block scheme of phonetic similarity function: automatic phonetic transcription (APT),
automatic syllabification, trainable string edit distance measure (SED), and Levenshtein
measure (LevD).

grammar used in the speech recogniser which now produces speaking variants for a given
formatted entity as shown in the following example:

December 6 → December the sixth

December O six

sixth of December

...

Furthermore, a simple regular expression syntax was defined to encode the possibly many
speaking and pronunciation variants in a single string. The extended syntax allows grouping
and alternation (“|”) of expressions as described in the corresponding BNF grammar:

expr := group+

group := “(”word+ ( “|”word∗)∗ “)”

word := [A, .., Z, a, .., z]

Since the word after the alternation-operator | is optional, whole words may be omitted. This
is particularly useful for dealing with hesitations or dictated formatting instructions which
do not appear in the written text by definition.

The recognised text still contains non-speech events like silence or noise markers which
do not have a phonetic transcription and which are not contained in the written text either.
These parts get scores assigned which automatically force them to be marked as insertions
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(path A in figure 4.3). After that, it is certain that the remaining string pairs are valid pho-
netic strings that can be handled by the phonetic similarity measurement model. Whenever
the APT fails, phonetic matching is impossible, so the string pair can only be matched in the
orthographic domain with the Levenshtein measure (path B in figure 4.3).

Automatic syllabification

Syllable boundaries are usually best assigned by expert phoneticians or can be inferred from
stress markers stored offline in the lexicon. For the highly specific vocabulary used in the
medical domain, such annotated expert phonetic lexica were not available to us. Further-
more, the vocabulary is subject to change over time, as new medication may be prescribed or
medical treatments and measures may change. Therefore, an online automatic syllabification
algorithm was implemented to determine syllables directly from the texts. The algorithm
introduced by [43] is based on Optimality Theory [95], where phonological processes are
modelled by applying ranked constraints on base forms to obtain surface forms. For syllab-
ification, this means that a number of competing syllabification constraints are applied to
the input words. In contrast to [43], the ‘noonset’ constraint had to be removed, as primary
stress information was not available in the phonetic lexicon. The modified algorithm was
tested on a sample set of 100 randomly selected words which were manually compared to a
reference syllabification provided by Merriam-Webster’s online dictionary4. The modification
degraded the performance of the algorithm in terms of accuracy of the syllable boundaries,
but not the number of detected syllables, and still returned correct results in around 80% of
all cases.

With this algorithm, the word level units for recognised and written text are split into
sequences of syllables. The alignment algorithm is then applied recursively on the syllable
sequences. Adjacent words are not only aligned, but also tested for overlap on syllable
level. The word-level alignment label is therefore replaced by an overlap symbol string. The
resulting alignment expresses both word and syllable level correspondences. Consider the
sample alignment in figure 4.4. Within the first mismatch region, the word Charcot was
incorrectly recognised and split into sharp and cold. The syllable level alignment, however,
shows that sharp corresponds to the first, and cold to the second syllable of Charcot. As
syllable alignment is determined based on phonetic similarity, the alignment may sometimes
look confusing. The short words of and in are not aligned with each other, since in is
phonetically more similar to the last syllable of ulceration than to of.

Training a string edit distance measure (SED)

The main component of the phonetic scoring function is a trainable string edit distance
measure based on the stochastic model presented by [103]. In this model, a string pair (x, y)
is represented by all sequences of edit operations zi which produce that pair. Assuming that
each pair can be produced by at least one edit sequence, the probability of the pair is the
sum of the probabilities of all edit sequences for that pair:

p(x, y|θ) =
∑

{zn#:v(zn#)=〈x,y〉}

p(zn#|θ) , (4.1)

where # is the sequence termination symbol and v(zn#) defines the set of all terminated
edit sequences producing 〈x, y〉. Since every zi has a probability p(zi) assigned and the model

4See http://www.merriam-webster.com/
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written text ↔ recognised text

a COR a

Charcot SAr·k@t =< SArp sharp

-- -- >= koUld cold

foot fUt = fUt foot

, kAm@ < -- --

though DoU = nO no

there is Der= Iz COR Der= Iz there is

no nO COR nO no

ulceration Vl·s@·reI·S@n ==== Ql·t@·reI·S@n alteration

-- -- <<<= In in

of Vv < -- --

skin skIn COR skIn skin

Figure 4.4. A sample alignment containing two mismatch regions. The re-aligned mismatch regions
are highlighted in boxes while identical words are labelled with COR. Phonetic strings
are in SAMPA notation and syllable boundaries are marked with dots [·]. Note that the
[=]-overlap symbol just indicates correspondence, not equality of syllables, in contrast
to the insertion [<] and deletion [>] symbols which label non-matching syllables.

is memoryless, p(zn#|θ) is the product of the probabilities of the single edit operations. These
probabilities p(zi) are learned from a corpus of predefined, similar string pairs with an EM
algorithm ( [103]). Accumulating the probabilities for all edit sequences, a similarity measure
can now be defined as

d(x, y) = − log p(x, y|θ) . (4.2)

Two issues should be noted at this point. First, the similarity value decreases exponen-
tially with the input string length due to the usage of the distinct termination symbol #.
Therefore, the similarity value needs to be normalised – in this case by the sum of the input
string lengths. Furthermore, the similarity measure is never zero since each edit operation
has assigned a probability 0 < zi < 1. To still be able to detect exact matches, the systematic
bias is subtracted symmetrically to normalise the measure to zero according to the following
formula:

d0(x, y) = d(x, y) −
1

2
· [d(x, x) + d(y, y)] (4.3)

Prior to matching, the regular expressions generated by the automatic phonetic transcrip-
tion have to be expanded again, as only the minimum score for all possible realizations is
returned (path C in figure 4.3). Finally, in case the stochastic model fails, another fallback
to the Levenshtein measure is done, this time with phonetic strings (path D in figure 4.3).

The model was trained in 3 EM iterations with a set of 13,383 string pairs obtained from
manual narrow phonetic transcriptions of a domain-specific corpus of 272 medical reports.
The transcriptions were done by English students with specific training in phonetics, ensur-
ing quality in the transcription process. For each word in the transcription, a string pair
consisting of the canonical transcription obtained from the phonetic lexicon and the actual
phonetic transcription was compiled. This way, phonetic similarity is clearly defined, and
frequent phoneme confusions can be learned easily from real-world data.

Figure 4.5 displays the learned probability distribution for each edit operation defined
on a phonetic symbol pair. As expected, most of the probability mass was assigned to



CHAPTER 4. AUTOMATIC RECONSTRUCTION OF MEDICAL DICTATIONS 65

 

 

sil
{
A:
Q
O:
i:
e
eI
I
oU
U
u:
aU
V
3:
b
tS
d
D
f
g
h
dZ
k
l
m
n
N
p
r
s
S
t
T
@
l=
m=
n=
v
w
j
z
Z
aI
oI
r=

sil { A: Q O: i: e eI I oUU u: aU V 3: b tS d D f g h dZ k l m n N p r s S t T @ l= m=n=v w j z Z aI oI r=

INS

DEL
0

0.05

0.1

0.15

0.2Schwa substitutions

Schwa
substitutions

Voiced−unvoiced
conversion

Syllabic vs.
non−syllabic forms

Vowel substitutions

Figure 4.5. Learned probability distribution for edit operations zi after 3 EM iterations. Phonetic
symbols are in SAMPA notation.

identity operations (main diagonal). Furthermore, vowels were likely to be substituted by
schwa (/@/) and vice versa. Voiced-unvoiced substitutions between /t/ and /d/ were also
quite prominent, just like substitutions between the syllabic (/n=/, /m=/, /l=/) and non-
syllabic forms (/n/, /m/, /l/) of the semi-vowels. The learned probability distribution
clearly reflects the phonetic knowledge that can be observed in dictated speech.

4.4.3 Combined similarity measurement

The semantic and phonetic scoring functions are used as building blocks for a combined
scoring function that best exhibits the behaviour that is required for further processing.

The goal is to align any two sequences of elements for which phonetic or semantic similarity
can be assigned. Distinguishing between phonetic and semantic similarity is postponed to
the reconstruction process since it is the single aim of this processing stage to put related
elements into proper correspondences.

Combining the two sets of scores for substitution, deletion and insertion into a single set
of scores is somewhat subtle, because contradictory actions might be suggested by semantic
and phonetic similarity scores. As an example, phonetic scoring might vote for substituting
two elements, while semantic scoring might want to substitute one of these elements with a
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written text ↔ recognised text deformatted reconstructed rule

He = he he he sim bigram

says = said said said sim bigram

he COR he he he identical

did not COR did not did not did not identical

have COR have have have identical

any COR any any any identical

cardiac COR cardiac cardiac cardiac identical

> , comma -- –

> residual residual residual repetition

residuals COR residuals residuals residuals identical

Figure 4.6. Reconstruction of a text passage with two mismatch regions (dashed boxes): Written
text, alignment labels, and recognised text are given as input. Deformatted recognised
text, reconstructed text, and the matching rule for each alignment line are generated by
the system.

different one. Such contradictions need to be resolved while still following the overall goal
of performing substitution (mapping between two elements) when either the phonetic or
semantic measure indicate similarity.

The combined scoring function for alignment was developed and tuned heuristically by
manual inspection of a small number of alignments. In general, the phonetic similarity
function analyses the tokens on a high level of detail and thus establishes correspondences in a
greedy fashion which sometimes results in alignments that cannot be interpreted meaningfully
any more. The semantic similarity scoring function on the other hand, is more robust against
“over-correspondencing” but at the same time not capable of properly detecting fine matches.
For these reasons, semantic matching is applied in the first place to filter out clear cases
and avoid overstretched regions of correspondence, before phonetic matching is used to find
detailed matches.

4.5 Text reconstruction

Based on the alignment, a reconstruction hypothesis for a literal transcription can be com-
puted. In general, this process can be seen as a classification task, as already outlined in
section 4.1 (cf. table 4.1). A classifier is used to select the recognised or the written text
for each alignment token. For optimal control and fine-tuning, we implemented a rule-based
reconstruction system that allows generic and context-dependent analysis of the alignment.
This approach is also compared to state-of-the-art automatic classification approaches using
the same input features.

The rule-based reconstruction process, which is described in [51], operates on the estab-
lished alignment. The steps performed for reconstructing the actually spoken words are the
following (cf. figure 4.6):

• Deformatting:
First, a column containing the completely deformatted variant of the recognised words is
created (cf. section 4.4.2). In particular, formatted items and punctuation are replaced
by the most likely spoken variant based on the phonetic representation and the measures
for phonetic and semantic similarity.



CHAPTER 4. AUTOMATIC RECONSTRUCTION OF MEDICAL DICTATIONS 67

written text ↔ recognised text

HEART: = Heart

Examination = examination

is <

normal COR normal

. COR .

LUNGS: = Lungs

> are

Clear = clear

. COR .

Figure 4.7. Excerpt of aligned input sequences with sliding rule window indicated by solid frame.

• Identifying and retracing moved blocks:
Then, moved blocks are identified if there are any, and within the written text the
identified text blocks are actually moved to the place where the corresponding text is
assumed to have been dictated. The moved regions are then realigned, such that the
result of this (and the previous) step is a new alignment column.

• Application of reconstruction rules:
Reconstruction rules specified by the user are applied to this alignment, and two ad-
ditional columns are created: one containing the reconstructed words and another one
consisting of a justification (i.e., the responsible rule) for that reconstruction.

• Reconstructing moved blocks:
Finally, the moved parts of the report are reinserted in order to resemble the original
input.

4.5.1 Rule engine

Once a stable alignment has been established, knowledge about corresponding passages can
be used for inspecting tokens and their contexts both in the edited document and the output
of the speech recognition system.

For this purpose, a rule engine has been developed. The reconstruction rules that are
interpreted by this engine provide a mechanism for inspecting a sliding window that is moved
over multiple columns according to their alignment. In addition to columns for the edited
document (cf. figure 4.7, left side) and the output of the speech recogniser (cf. figure 4.7,
right side), a so-called “alignment” column is available that indicates the correspondence
between the left and the right side at the current element: “=” indicates that some kind of
similarity has been found between the left and the right side, and therefore a substitution
has been performed, whereas “<” indicates a deletion and “>” indicates an insertion. In
the case of deletion, there is no element on the right side corresponding to that on the left
side. Symmetrically, there is no element on the left side if the alignment column contains an
insertion label.

Figure 4.7 depicts aligned columns and the sliding window of a rule that is used to inspect
the column elements and their context at a certain position in the input. For each rule, a
regular expression is applied to the alignment column, which specifies a dynamic sliding
window size. In the example above, the regular expression might have been formulated in
such a way that the sliding window iterates over instances of consecutive lines labelled with
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“=”, with the intention of inspecting only whole blocks of elements for which some kind of
similarity has been found.

Each rule adheres to the following skeleton:

rule rulename

match -w/window regexp/

# inspect sliding window

do

# specify reconstruction result

done

As explained above, the “window regular expression” works on the string of labels in the
alignment column and specifies for which lines the rule window is set up. The match block
can then be used to inspect all columns within the borders of the window. If the rule finds
that the lines inside the window exhibit a phenomenon that this rule can handle, a non-zero
value is returned in the match block, which causes the do block to be triggered. The do block
is then responsible for building a literal transcription of the matching lines and writing it to
a result column.

The advantage of this approach is that each phenomenon (like recogniser errors, repe-
titions, etc.) can be handled by a separate rule which encapsulates both the detection of
such cases as well as the required knowledge to decide which column should be used or which
transformations have to be applied to build an appropriate literal transcription for the current
window.

The bodies of the match and do blocks can be freely expressed in regular Perl code.
In addition, some special built-in functions for measuring phonetic and semantic similarity
between two strings, and for converting formatted expressions into their most likely spoken
variant (e.g.: 500 mg → five hundred milligrams, cf. section 4.4.2) are available in these
blocks.

Since more than one rule can match for a certain sequence of alignment labels, rules match
on a first-come first-serve basis, meaning that rule precedence influences the result. In the
experiments (cf. section 4.6), the effect of rule ordering is investigated explicitly.

4.5.2 Rule definitions

To test the effects of the previously described techniques, we specified reconstruction rules,
where an alignment label is either the identity edit operation (COR) or a sequence of align-
ment labels [=, <,>] (cf. figure 4.8). The rules can be grouped into three categories: baseline
rules, semantics-based rules, and phonetics-based rules.

Baseline rules are the three simple starting points for the hypothesized reconstruction
that do not require any advanced processing:

• Baseline: only identical words in the alignment (COR) are reconstructed, mismatch regions
are ignored.

• Recognised-only (REC): for each alignment label, always select the recognised text for
reconstruction.

• Written-only (WRI): for each alignment label, always select the written text for recon-
struction.
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written text ↔ recognised text CTXpho OVGpho OVSpho reference text

a COR a a a a a

Char·cot =< sharp Charcot Charcot Charcot Charcot

>= cold

foot = foot foot foot - foot

, < - , -

though = no though - - though

there is COR there is there is there is there is there is

no COR no no no no no

ul·ce·ra·tion ==== al·te·ra·tion ulceration ulceration - ulceration

<<<= in -

of < - of - of

skin COR skin skin skin skin skin

Figure 4.8. A sample alignment containing two mismatch regions (dashed boxes), together with
reconstruction rule results. Syllable boundaries are marked with dots [·]. Note that the
[=]-overlap symbol just indicates correspondence, not equality of syllables, in contrast
to the insertion [<] and deletion [>] symbols which label non-matching syllables. The
solid boxes highlight lines affected by each rule, dashes [−] mark parts not covered by
the rule.

Semantics-based rules implement semantic knowledge in the reconstruction process. With
regard to the initial assumption that reformulations are semantically similar, semantic rules
select the recognised text for reconstruction, as soon as the rule matches.

Phonetics-based rules on the other hand try to detect corrections of speech recognition
errors in the alignments. Therefore, they select the written text for reconstruction whenever
the rule matches. As recognition errors are more likely to occur than reformulations, these
rules should match more often than the semantic rules.

The following types of rules were defined for both semantic and phonetic similarity sepa-
rately as indicated by subscripts in section 4.6:

• Context (CTX): matches sequences of 1, 2, or 3 alignment labels containing at least one
submatching label (=), if similarity is higher than threshold t. The idea behind this rule
is that longer corresponding regions in the alignment are more likely to be real correspon-
dences.

• Overlap, greedy (OVG): matches sequences of 2 or 3 alignment labels, where inserted or
deleted submatching labels (</>) are either preceded or succeeded by at least one matching
label (=), if similarity is higher than threshold t. This rule collects all word sequences
showing any possible overlap at submatching level without regard of the matching order.

• Overlap, selective (OVS): matches sequences of 2, 3, or 4 alignment labels, where sub-
matching labels (=) are first succeeded by insertion (<), and then preceded by deletion
(>) labels if similarity is higher than threshold t. This pattern is typical for segmentation
errors in the recognised text.

Figure 4.8 illustrates the effect of each rule on a sample alignment for the phonetic sim-
ilarity case. The context rule is activated whenever a group of matching syllables appears.
Still, it is not enough as it does not handle stand-alone insertions or deletions appropriately.
The greedy overlap rule can handle insertions and deletions whenever they appear in terms
of a syllable overlap. However, it is not activated when there is a direct match (though ↔
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no). The selective overlap rule, finally, matches only the precise first segmentation error,
where the syllable counts exactly match. Accidental matches are therefore impossible. This
example indicates that combination of rules may be beneficial.

4.6 Experiments

The text reconstruction process was evaluated for two different tasks to examine the perfor-
mance of the SPARC method. First, the quality of the reconstruction was tested. For this
test, a literal transcription was reconstructed and compared to a manual reference transcrip-
tion for a set of medical reports. We define the evaluation as a text retrieval task, because
the results reflect how much of the original text can be reconstructed and how much of the
reconstructed text is actually part of the original text. This test is a true performance mea-
sure of the system, without considering any particular application. The performance of the
main components – semantic and phonetic similarity measurement, and text reconstruction
– will be evaluated separately in section 4.6.1.

Second, the speech recognition performance using reconstructed texts is measured (cf.
section 4.6.2). In this test, the language model of the speech recogniser producing the recog-
nised texts was re-trained with the reconstructed texts and tested on an independent test
set. This test is only an indirect performance measure and is intended to demonstrate the
applicability and impact on the speech recognition process. For this reason, we decided to
test with a commercially available ASR system instead of an academic one and did not per-
form specific parameter tuning to keep the results more independent from the actually used
ASR system.

4.6.1 Reconstruction quality

For measuring reconstruction quality, we report results in terms of the metrics Recall =
|COR|

|COR|+|MISS| , Precision = |COR|
|COR|+|WRONG| , and their harmonic mean F1, where |COR| is

the number of reconstructed words with perfect correspondence in the reference text, |MISS|
is the number of words in the reference text without correspondence in the reconstructed
text, and |WRONG| is the number of reconstructed words without correspondence in the
reference text [120].

The evaluation corpus consisted of 735 written and recognised texts of about 335,000
tokens, as well as manually transcribed reference texts for validation of the hypothesized
reconstruction. The texts were selected such that they equally represent three ranges of
average word error rates (WER) for the recognised text compared to a manual reference
transcription. Hesitations and incomplete words were removed beforehand to avoid biased
results.

Semantic and phonetic similarity measurement

The impact of semantic and phonetic similarity measurement is studied by evaluating seman-
tic and phonetic reconstruction rules separately before they are joined in a single system. For
the phonetic rules, previous results from [91] are summarised here, while for the semantic
rules and the joint system, entirely new results are presented.

We start with the evaluation of the semantic rules in table 4.2. The first group covers
the baseline rules (Baseline, REC, WRI), while the CTXsem, OVGsem, and OVSsem systems



CHAPTER 4. AUTOMATIC RECONSTRUCTION OF MEDICAL DICTATIONS 71

Table 4.2. Reconstruction results in % for semantics-based rules (second block) in comparison to
baseline systems (first block). Best results for each row grouping are boldface.

5-13% WER 20-25% WER 40-45% WER

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Baseline 100 78.9 88.2 99.9 64.6 78.4 99.5 46.0 62.9

REC 83.3 93.4 88.1 79.0 85.7 82.2 66.7 71.9 69.2

WRI 92.8 93.1 92.9 89.9 89.6 89.8 85.9 85.4 85.6

CTXsem 98.6 87.6 92.8 97.3 76.9 85.9 95.6 60.6 74.2

OVGsem 99.7 80.2 88.9 99.4 66.6 79.8 98.7 47.9 64.5

OVSsem 99.8 79.2 88.4 99.7 65.0 78.7 99.0 46.5 63.3

allsem 98.6 87.7 92.8 97.2 77.0 86.0 95.5 60.8 74.3

Table 4.3. Reconstruction results in % for phonetics-based rules (second block) in comparison to
baseline systems (first block). Best results for each row grouping are boldface.

5-13% WER 20-25% WER 40-45% WER

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Baseline 100 78.9 88.2 99.9 64.6 78.4 99.5 46.0 62.9

REC 83.3 93.4 88.1 79.0 85.7 82.2 66.7 71.9 69.2

WRI 92.8 93.1 92.9 89.9 89.6 89.8 85.9 85.4 85.6

CTXpho 97.6 90.4 93.8 95.4 82.8 88.7 93.1 69.8 79.8

OVGpho 97.9 86.4 91.8 95.8 78.3 86.2 93.1 65.7 77.0

OVSpho 99.8 79.5 88.5 99.6 65.6 79.1 98.8 47.3 64.0

allpho 97.0 91.1 94.0 94.7 84.3 89.2 92.1 72.6 81.2

of the second group represent semantic context and overlap. The combination of all rules is
denoted by allsem.

The recognised text (REC) is not a good starting point for reconstructing a literal tran-
scription. Although the recall scores are comparable to the other methods, many errors stem
from the recognition process, resulting in poor precision. The written text (WRI) is more
reliable for the domain of medical dictations.

Using semantic context (CTXsem) for reconstruction returns accurate results with higher
precision than recognised-only (REC) or written-only (WRI) reconstruction and significantly
higher recall than the baseline system. This holds even more for the overlap rules (OVGsem,
OVSsem): whenever semantic overlap is detected, it is almost always correct. Unfortunately,
the recall scores are only 0.4% - 2.0% absolute higher than the baseline scores, indicating a
low number of matches for these rules. In sum, neither the separate semantic rule systems
nor their combination is able to exceed the baseline systems for any of the WER ranges.

The threshold value for semantic similarity measurement can take values between t = 0
(no similarity) and t = 7 (identity) and was varied from t = 1 to t = 7 in the experiments.
The resulting curves are plotted in a Recall/Precision diagram (cf. figure 4.9). Adjusting
the semantic similarity threshold does not contribute much to the overall performance. The
trade-off between recall and precision is almost linear, as is shown by the graphs in figure
4.9. The best recall/precision value pairs were obtained for a similarity threshold value t = 5
for all WER ranges.

Likewise, we evaluated the phonetic rules separately and in combination compared to the
baseline systems. Table 4.3 summarises the results.

In the phonetically controlled reconstruction contextual information (CTXpho) returned
better F1 scores than in the semantically-controlled reconstruction. Only for the low WER
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Figure 4.9. Recall/Precision diagram derived from the allsem system by varying the semantic simi-
larity threshold t between t = 1 and t = 7 for high, medium, and low WER texts.

case, however, a gain of 0.9% absolute can be observed in contrast to the written-only (WRI)
reconstruction. The greedy exploration of overlap on syllable level (OVGpho) returned sur-
prisingly precise results which are absolutely comparable to using contextual information.
This applies even more to the selective overlap rule (OVSpho), which has only very little
gain in recall in comparison to the baseline, but almost maximum precision. These findings
indicate that the combination of these rules could be beneficial. The combination of all rules
shows the best performance for all WER ranges.

The threshold value for phonetic similarity measurement can be adjusted between t = 0.0
(no similarity) and 10.0 (identity) and was varied from t = 5.0 to 10.0 in the experiments. Like
for semantic similarity measurement, the resulting curves are plotted in a Recall/Precision
diagram, shown in figure 4.10. Optimising the threshold value for phonetic similarity also
contributes to the overall performance. The trade-off between recall and precision is not
linear, as the graphs in figure 4.10 show. The best recall/precision value pairs were obtained
for a similarity threshold value t = 8.0 for all WER ranges.

The SPARC method tries to combine knowledge about semantic and phonetic similarity
to detect matches, corrections, and reformulations in the data (cf. section 4.1, figure 4.1).
For this reason, the best semantics- and phonetics-based systems were combined into a single
system. As mentioned before, the rule engine is sensitive to rule precedence, so there are
several possible combinations. Thus, the impact of semantic and phonetic knowledge in the
reconstruction process can be estimated. Table 4.4 lists the results for the given combinations:
the I+S and I+P systems are combinations of the baseline and the allsem/allpho systems,
where the results are taken from tables 4.2 and 4.3, respectively. The I+S+P and I+P+S
systems are combinations of the baseline, semantic and phonetic systems with the given rule
precedence.

In terms of reconstruction performance, the combination of semantic and phonetic rules
leads to improvements in recall without major losses in precision, resulting in gains in F1.
The semantic system improves significantly (1.4% to 7.4% relative) while the phonetic system
improves only slightly (0.1% to 0.25% relative). The best results are obtained when phonetic
rules are given precedence over semantic rules. The detailed statistics on rule matching



CHAPTER 4. AUTOMATIC RECONSTRUCTION OF MEDICAL DICTATIONS 73

45 50 55 60 65 70 75 80 85 90 95
85

87

89

91

93

95

97

99

101

Recall [%]

P
re

ci
si

on
 [%

]

 

 

low WER
med WER
high WER

Baseline Baseline Baseline

WRI

WRI

WRI

t=5.0

t=10.0

t=8.0

Figure 4.10. Recall/Precision diagram derived from the allpho system by varying the phonetic sim-
ilarity threshold t between t = 5.0 and t = 10.0 for high, medium, and low WER
texts.

Table 4.4. Reconstruction results in % for combinations of the baseline identity (I), semantics- (S),
and phonetics-based (P) rules. Rule precedence is indicated by the order of the rule
addition terms. Best results for each column are boldface.

5-13% WER 20-25% WER 40-45% WER

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

I+P 97.0 91.1 94.0 94.6 84.2 89.1 92.1 72.5 81.1

I+S 98.6 87.6 92.8 97.3 76.9 85.9 95.6 60.6 74.2

I+P+S 97.0 91.3 94.1 94.5 84.6 89.3 91.9 72.8 81.3

I+S+P 97.9 90.5 94.1 95.9 82.7 88.8 93.4 69.5 79.7

counts in table 4.5 explain this observation. In about 70 to 80% of all cases, identical items
are detected which are matched by the baseline identity rule. Semantic rule matches account
for about 18% of all matches and phonetic matches for about 28%, when applied separately to
the alignments. In combination, however, phonetic rules still match in about 8% of all cases
after semantic matching, while semantic rules only match in 0.5% after phonetic rules have
been applied. Therefore, it can be concluded that 8% of mismatches are of pure phonetic
nature, only 0.5% of pure semantic nature, and the rest of about 17 to 18% can be explained
in both semantic and phonetic terms.

Rule-based versus data-driven reconstruction

The rule-based reconstruction approach was compared to a data-driven approach to evaluate
the classification performance. For data-driven text reconstruction, we use different classifiers
to produce the hypothesized literal transcription which is the 2-class output of a classifier, i.e.,
either written text or recognised text. For classifier training, the class labels are produced by
aligning the reference text with the written text. The features are derived from the automatic
alignment and the phonetic similarity score (see section 3.1) computed for the aligned written
and recognised phoneme strings. In addition, this score is derived for 3 consecutive phoneme
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Table 4.5. Rule matching counts and percentages for the combined rule systems.

TOTAL identical (I) semantic (S) phonetic (P)

[1] [1] [%] [1] [%] [1] [%]

I+S 79,525 64,911 81.6 14,614 18.4 0 0

I+P 89,592 64,923 72.5 0 0 24,669 27.5

I+S+P 86,741 64,916 74.8 14,621 16.9 7,204 8.3

I+P+S 90,033 64,923 72.1 441 0.5 24,669 27.4

strings to model the dependency of adjacent words in the classifier. The remaining features
are computed from the sequence of submatching alignment labels. Therefore, the sequence is
split into 3 equal parts. After assigning values to the labels, i.e. [=] . . . 0, [<] . . .− 1, [>] . . . 1,
the mean and standard deviation of each part serve as feature. The last feature denotes the
length of the syllable symbol sequence. Hence, 9 features are used for the classifiers. The
following classification approaches are used [9]:

• k-NN: k-nearest neighbour classifier. For the presented results k = 9.

• NN: Neural network (Multilayer Perceptron) with 3 layers. The number of neurons
in the input and output layer is set to the number of features and the number of
classes, respectively. The number of neurons in the hidden layer is set to 70. We
use Levenberg-Marquardt backpropagation for training, a hyperbolic tangent sigmoid
transfer function for the neurons in the input and hidden layer, and a linear transfer
function in the output layer.

• SVM: The support vector machine with the radial basis function (RBF) kernel uses
two parameters C∗ and σ, where C∗ is the penalty parameter for the errors of the
non-separable case and σ is the parameter for the RBF kernel. We set the values for
these parameters to C∗ = 1 and σ = 1.5.

The optimal choice of the parameters, kernel function, number of neighbours, and trans-
fer functions of the above mentioned classifiers has been established during extensive experi-
ments. Five-fold cross-validation is used to produce the results with the classifiers. Through-
out our experiments, we use exactly the same data partitioning for each training procedure.

Table 4.6 lists the data-driven systems k-NN, NN, and SVM in comparison to the best
combined rule-based system I+P+S. Both, rule-based and data-driven reconstruction use
the same input features derived from the alignment labels, semantic, and phonetic similarity
scores.

The data-driven systems are closer to the written text only (WRI) reconstruction than
the rule-based system, showing improvement in precision for all WER ranges. The rather
simple k -NN classifier consistently produces the highest precision while the more complex
NN and SVM classifiers achieve higher recall scores. The rule-based system outperforms the
data-driven system only for low error rates.

The selection of either rule-based or data-driven reconstruction framework depends on the
intended application. The definition of rules allows the precise control of the reconstruction
process and specific fine tuning for either high precision or high recall. Furthermore, it can be
used efficiently for “labelling” a corpus of parallel recognised and written texts by applying
specific rule configurations. The data-driven system, however, is better when the amount of
reconstructed data needs to be maximised, particularly for the high WER condition. The
main benefit is then that no handcrafting of rules and no tuning of similarity thresholds is
required.
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Table 4.6. Reconstruction results in % for baseline systems (first block), the best rule-based system
(second block), and data-driven systems (third block). Best results for each column are
boldface.

5-13% WER 20-25% WER 40-45% WER

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Baseline 100 78.9 88.2 99.9 64.6 78.4 99.5 46.0 62.9

REC 83.3 93.4 88.1 79.0 85.7 82.2 66.7 71.9 69.2

WRI 92.8 93.1 92.9 89.9 89.6 89.8 85.9 85.4 85.6

I+P+S 97.0 91.3 94.1 94.5 84.6 89.3 91.9 72.8 81.3

k-NN 94.9 92.8 93.9 91.6 88.0 89.8 87.1 83.4 85.2

NN 94.9 93.0 93.9 91.4 88.5 89.9 86.6 84.0 85.3

SVM 94.8 93.0 93.9 91.3 88.6 89.9 86.6 84.4 85.5

4.6.2 Automatic speech recognition

The effect of using reconstructed texts for language model training was evaluated in the
environment of a commercial backend speech-recognition system for telephone channel audio.
The SPARC method was compared to the standard method for language model training and
to a random generation of reconstructed text.

Language modelling approach

The standard approach of this ASR system for creating language models is to segment large
corpora of written text into lexicon entries and to train trigram models on them. The mapping
of written text onto lexicon entries is not a trivial process since formatted items like numbers,
quantities, dates etc. cannot be directly represented as lexicon entries and give only little clue
as to what a speaker would say to dictate such items. Written text further contains additions
(including punctuation marks) and reformulations by transcriptionists and, therefore, does
not represent what actually has been or will be dictated.

To handle the common cases of formatted numeric items (“grammar items”) and inserted
punctuation marks, a 2-stage decoding-rescoring strategy is applied:

• Decoding: An initial language model is trained on regular words and classes of gram-
mar items. This language model cannot cover spoken forms of grammar items. There-
fore, at decoding time, it is interpolated with an additional language model derived from
grammars representing spoken forms of grammar items (“grammar language model”).

• Rescoring: The emerging wordgraph is parsed for grammar items, and enriched with
edges marked with the corresponding grammar classes. This wordgraph then is rescored
using the initial language model. At the same time, punctuation marks are hypothe-
sized.

The setup is robust in language-model adaptation as only the class of a grammar item
needs to be determined, without guessing a word sequence that might have been spoken. Its
weakness, however, lies in the imprecise grammar language model used at decoding time.
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Table 4.7. Language model details: Number of tokens and out-of-vocabulary (OOV) rate.

Language model Size OOV rate

MultiMed 287M 0.9%

Classic (baseline) 51.92M 1.15%

Random as-spoken 56.37M 1.15%

Reconstructed 49.64M 1.34%

Experimental setup

We chose the domain of Clinical Reports as test case since there was enough data available,
both to create reconstructed text (requiring written and recognised text) and to evaluate
the performance (requiring reference transcriptions of what has actually been dictated). The
baseline word error rate indicated a low-to-medium WER condition, thus the rule-based
system with I+S+P rules was used for text reconstruction. This setup reconstructed 101,607
reports from 504 authors (between 45 and 507 reports per author) running in parallel on four
standard personal computers for three weeks and produced a text corpus of 52 million words
(cf. table 4.7), the equivalent of about 9,000 hours of sound.

The speaker-independent acoustic models of the ASR system have been trained on 200
hours (female speakers) and 300 hours (male speakers) of acoustic material recorded on a
telephone channel with 4kHz bandwidth, Acoustic speaker-adaptation was performed using
Maximum-Likelihood Linear Regression (MLLR) for the first 15 minutes of sound, and
Maximum-A-Posteriori (MAP) adaptation for the rest of the available data, which was 10
hours of sound for each speaker in the test set.

For this domain, a large medical lexicon of 58,103 words was used, giving a high coverage
on both the test set and the training corpus (OOV rates < 1.5%).

Recognition tests were performed on a set of 239 reports from 2 female and 3 male authors
(3 hours of sound per user), all in the domain of Clinical Reports5, and all recorded through
a telephone channel with 4kHz bandwidth. The best available acoustic references for these
speakers were used. The baseline word error rate on our test set was 11.77% (cf. table 4.8).

Language models

The reconstruction of spoken words allows to avoid the use of language model classes for
grammar items. To measure this effect and the quality of the resulting language models, we
perform recognition tests with four different trigram language models:

1. MultiMed: A language model used in commercial applications, created from 287
million words of general medical reports. This language model requires an interpolated
grammar language model at decoding time, since it trains grammar items as classes.

2. Classic: This language model is built from the corrected text of the reconstruction
corpus (52 million words), and is otherwise consistent with initial language models
used in commercial applications, requiring an interpolated grammar language model at
decoding time.

5The available speakers for the domain of Clinical Reports do not cover all word error rate ranges of the
previous experiments in section 4.6.1. For this reason, results are reported per speaker and on average, but
not according to the previous separation into low, medium, and high word error rate conditions.



CHAPTER 4. AUTOMATIC RECONSTRUCTION OF MEDICAL DICTATIONS 77

3. Random as-spoken: Same as classic, but instead of grammar classes, a randomly
chosen spoken representation of that class is trained. This is a standard technique to
get closer to what has been spoken, at least in the case of grammar items, and can be
seen as a simple case of reconstruction. It does not require a grammar language model
at decoding time any more.

4. Reconstructed: Reconstructed text produced by SPARC was slightly post-processed
to match the lexicon: Phrases (i.e., multi-word expressions handled as single lexicon
entry like “she is”, “he had” etc.) are handled by SPARC as word sequences and were
mapped back to single lexicon entries. Special words for punctuation marks were rein-
troduced (SPARC reconstructs dictated periods and commas as lexicon entries “period”
and “comma”, while the lexicon and the rescoring language model use special symbols).

The chosen evaluation method is biased against the SPARC reconstruction approach and
leads to slightly worse results for two reasons:

• SPARC reconstructs the so called “demographic header”, this is demographic patient
information at the beginning of the dictation, which is not a part of the final report.
Recognition performance on the demographic header is ruled out in all tests since
recognition accuracy in this section is of no benefit for the user.

• The lexicon (and rescoring language model) makes a distinction between special words
like “Lungs:” and “Heart:” versus “lungs” and “heart”, respectively to be able to pro-
duce appropriately formatted output. SPARC always reconstructs the regular words;
therefore, recognition accuracy is expected to be lower on these special words.

Results

The results are summarised in table 4.8. Using the reconstructed text language model re-
duced the overall word error rate from 11.77% to 10.86% which is a relative reduction of
7.74% compared to the baseline classic language model. The randomly generated as-spoken
variants only lead to an overall relative reduction of 4.38%. Table 4.8 also shows that these
improvements are consistent for all speakers. Both, the random as-spoken and reconstructed
text language models even outperform the MultiMed language model which was created
from substantially more data. Hypothesizing the spoken forms of grammar items is therefore
beneficial for the applied 2-stage decoding-rescoring strategy.

Based on the findings from this first experiment, we conducted a second experiment where
we gradually increased the corpus size for language model training from 1 million tokens up

Table 4.8. ASR results for the tested language models: Word error rate (WER) and relative differ-
ence (rel. △) to the Classic (baseline) model in [%].

Speaker MultiMed Classic Random Reconstructed

WER WER WER rel. △ WER rel. △

F1 7.68 8.25 7.93 -3.91 7.81 -5.36

F2 16.80 17.64 16.37 -7.18 15.42 -12.56

M1 16.79 17.37 16.76 -3.50 16.56 -4.67

M2 6.86 7.13 7.12 -0.28 6.57 -7.98

M3 9.33 8.87 8.46 -4.60 8.45 -4.80

Total 11.34 11.77 11.25 -4.38 10.86 -7.74
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Figure 4.11. WER in [%] for increasing re-training text corpus size.

to the maximum size of about 50 million tokens. Figure 4.11 illustrates the evolution of the
word-error rate with respect to the size of the language model training corpus. Up to a corpus
size of 3 million words, there is not much difference between the models built on randomly
generated as-spoken variants and reconstructed text. For a corpus size of 6 million tokens or
more, the SPARC method performs consistently better. At 50 million words, the word-error
rate begins to go into saturation, so incorporating more data will only have minor effects on
the word-error rate.

Apart from the mentioned adjustments, the reconstructed texts were not further opti-
mised or tuned for ASR purposes. Using the SPARC method without any further tuning
immediately resulted in the reported improvements. Additional fine-tuning in terms of, e.g.,
the interpretation of punctuation or the exclusion of leading and trailing irrelevant text blocks
in recognised texts may even further improve the performance.

4.7 Conclusion

We have described the SPARC method of semantics and phonetics based similarity measure-
ment for the automatic reconstruction of medical dictations from draft recognised texts and
final written reports. The resulting reconstructed texts can be used for various applications in
language technology, including but not limited to acoustic and language model adaptation for
automatic speech recognition, computer-aided document production in medical transcription,
or generally for the development of parallel text corpora of non-literal text resources.

The method is based on an alignment between a draft speech recognition transcript con-
taining errors and a formatted, corrected medical report that may have been paraphrased
during the transcription process. The text alignment uses a model of semantic and phonetic
similarity to detect corresponding (matching) regions in the texts and to properly align them
on multiple levels of segmentation. For this purpose, semantic and phonetic similarity mea-
sures were developed for the matching procedure. The resulting alignment is interpreted with
a newly developed rule engine which allows precise control over the reconstruction process
with context-sensitive reconstruction rules.
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The experimental evaluation showed that the text quality improved for the reconstructed
text in comparison to both recognised and written text. For recognised texts with a low
word error rate, the best reconstruction system improved the F1-score of the best baseline
system from 92.9 to 94.1%. In general, phonetics-based rules proved to be more effective than
semantic-based rules while semantics-based rules turned out to be more precise. Combining
phonetic and semantic knowledge for text reconstruction improved the reconstruction quality.
A more detailed analysis revealed that 8% of the resolved mismatches are of pure phonetic
nature, only 0.5% of pure semantic nature, and about 17-18% are detectable with both
semantic and phonetic measures together. The rule engine for reconstruction proved to have
comparable performance to a data-driven classification system for the low word error rate
condition, while for medium and high word error rates, the automatic classifiers returned
better results.

Concerning the overall benefit for the speech recognition system, an experiment with a
retrained language model based on reconstructed texts yielded a word error rate reduction of
7.74% relative in comparison to a standard retraining, and of 4.38% relative for a language
model based on randomly reconstructed text. As no specific optimisation has been performed
yet, further improvements by parameter tuning are still possible.

The focus of the SPARC approach on the assignment of phonetic and semantic similarity
between aligned speech recognition results and final reports has turned out to be useful and
suitable for the reconstruction of literal transcripts. Three main aspects of the approach have
already turned out to be beneficial: 1) Reconstructed texts reduce the required amount of
manually transcribed texts for training of speech recognition systems. 2) Retraining with
reconstructions leads to slightly lower word-error rates in speech recognition. 3) Since the
reconstruction and alignment are knowledge based, our methods may also be used as anno-
tation tools for semantic and phonetic information; these methods may serve as a starting
point for automatic document creation.

In future work, we plan to evaluate the usage of reconstructed text for re-training or
re-scoring of the acoustic models. We expect the gains for this task, however, to be minor,
since the amount of material that the SPARC method makes available for acoustic training
in addition to the material that is already there is relatively small. Furthermore, we want
to compare our results to different approaches of including semantic information into the
language model, e.g., as classes or embedded grammars.



Chapter 5

Speaker-Specific Selective

Pronunciation Modelling

Within the data processing chain of large vocabulary continuous speech recognition (LVCSR),
the pronunciation model (PM) is the important link between the acoustic model and the
language model. Although this mapping from a sequence of phones to words significantly
contributes to the performance of the ASR system, often only little effort is invested in
optimisation of the PM. Both, implementation in the form of a lexicon and design with the
help of phonologic rules have not changed considerably over the years [52], [98], [54]. A PM
should be capable of modelling variation in pronunciation as it occurs within a larger group of
speakers and of resolving phonologic ambiguities such as homophony or oronymy. It is right
at this processing stage that automatically extracted phonetic knowledge is best integrated
into the ASR process. This way, confidence in the decision process is gathered early and the
disambiguation of similar-sounding words is not just postponed to a later processing stage
(e.g., the language model or semantic rescoring of the n-best recognition results).

For systems with a very large number of users, a universally optimal PM is difficult to
find. Particularly non-native speakers or fast talkers exhibit deviations in speaking style that
are often either too strong for complying with the existing models or simply too rare to be
generalised at all. In such situations, a speaker- or speaker group-specific adaptation of the
LVCSR system is a promising solution for dealing with the variety. Apart from acoustic model
adaptation, also pronunciation model and – whenever the degree of language proficiency is
very low – language model adaptation is possible. Model adaptation, however, always pre-
sumes that a well-conditioned model already exists, and only parameter transformations have
to better match the underlying model with the observed data. Ideally, this transformation
works with only small amounts of adaptation data in an unsupervised fashion for full au-
tomation. For ASR service providers that have data of many users at their disposal, but
only buy in black-box ASR technology, such automatic adaptation techniques operating in a
non-invasive fashion are an interesting option for improving their quality of service.

Many methods have been proposed for modelling pronunciation variation at the lexi-
cal level (cf. [115], [128], [30] for an overview). These can basically be divided into data-
driven and knowledge-based methods. Recently, more attention has been drawn to the data-
driven approaches due to the availability of large annotated speech corpora. In contrast to
the knowledge-based approaches, data-driven pronunciation modelling is more amenable to
speaker-specific styles and can be semi-automated requiring only little supervision. These
advantages are counterbalanced by higher sensitivity to modelling data noise and the depen-
dency on large amounts of collected speech data.

80
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Usually, these pronunciation model adaptation methods propose the extension of an initial
general ASR lexicon with new pronunciation variants. Inserting new pronunciation variants,
however, implies two opposing effects: improvement (gain) in pronunciation model accuracy
and losses due to higher confusability among similar words within the lexicon. For this
reason, a new approach is presented here that is exactly built on optimising this conflict of
objectives. It is an extension to the works in [71] and [31], adapted to the task of pronunciation
modelling at the lexical level with the help of speaker-specific phone confusions extracted from
aligned recognised texts and final reports. The optimisation model incorporates the derived
joint probability distribution of phoneme substitutions in a weighted finite state transducer
(WFST) to allow for efficient computation.

In the beginning of this chapter, the pronunciation modelling and adaptation problem
is defined, reasons for variation in pronunciation are discussed and an overview over related
work is given. These introductory reflections are the basis for the definition of a new PM
adaptation approach that is presented in section 5.2. In a series of experiments, the new
approach is extensively evaluated and the results are discussed, such that directions can be
given for further work on this idea.

5.1 Pronunciation modelling at the lexical level

5.1.1 General definition

A pronunciation model is usually realised in the form of a lexicon or dictionary. Each lex-
eme represents an orthographic word that is related to at least one phone symbol sequence
– the word’s pronunciation. The first pronunciation per word is referred to as the canoni-
cal pronunciation. Additional pronunciation alternatives are included to allow for a certain
degree of variation. The final PM is the result of the process of finding pronunciation alter-
natives. These can be either directly collected from a large corpus of phonetically transcribed
utterances based on their probability of occurrence or predicted with a rule-based model.

The pronunciation prediction task can be formalised as follows: Given a canonical source
pronunciation sN (w) = 〈s1, ..., sN 〉 of a word w in an utterance, a prediction function
f(sN , w) → t̂M defines the transformations that transform sN into the observed target pro-
nunciation t̂M = 〈t̂1, ..., t̂M 〉 obtained by manual phonetic transcription of the utterance. In
general, M 6= N and the symbol inventory is the same for both, source and target pronunci-
ation. Canonical source pronunciations are derived from a phonetic lexicon, based on word
w taken from the orthographic transcription of the utterance.

5.1.2 Motivation

The one-to-many mapping of the pronunciation model is primarily helpful for dealing with
linguistic ambiguities that cannot be resolved otherwise. Pronunciation modelling can, how-
ever, also be applied to account for variations in speaking style over a larger group of speakers
(e.g., non-native or accented speech, speaking rate variations). In some cases, it can also be
“abused” for modelling syntactical constraints without a separate post-processing stage (e.g.,
the expansion of acronyms).

Linguistic ambiguities

The term linguistic effects relates to those words which cannot be disambiguated just based
on their orthography. Heterophones are words that have identical orthographic spelling, but
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different pronunciation. The grapheme read, for instance, is used to denote the present tense
(/r i: d/) and past tense (/r e d/) form of the same verb. Heteronyms as a special case
of heterophones do not only differ in pronunciation, but also in their meaning. Consider the
word does which can be either the 3rd person singular of the verb do (/d V z/), or the noun
describing female animals (/d oU z/).

Non-native speech

Non-native speech is often characterised by serious deviations from native speech resulting
in reduced acoustic model performance [129]. In contrast to regional varieties of a language,
non-native speech is restricted to a smaller group of speakers which is usually inhomogeneous.
Individual biographies have a large influence on the degree of deviation from the standard
language. Factors such as birthplace, age, and social integration are directly related to a
speaker’s proficiency of a foreign language. This premise makes a systematic investigation
difficult. For this reason, non-native accents are best studied with second language learners.
These are already assessed according to their proficiency and their output is streamlined to
a certain degree due to the teacher’s instruction.

Non-native speech can be studied with respect to frequency domain, time domain, and
at the phonetic symbol level [129]. Frequency-domain features include deviations in the
formant structure, particularly with F2 and F3, even if the speech is well-articulated and
understandable [5]. Time domain features are, e.g., differences in voice onset time and word
final stop release time [4]. Word rate and the ratio between speech and silence are significantly
different as well. Non-native speakers tend to speak slower and with longer pauses which
leads to a reduction of coarticulation effects [118]. Differences on phonetic level are most
easily explained with the differences between the phoneme set of mother-tongue and foreign
language for a speaker [28]. During the acquisition of the foreign language, the speaker learns
to transform his source phoneme inventory to the new target language phoneme inventory
and possibly to extend it with new phonemes that are foreign to him. The latter is often
difficult and results in systematically wrong pronunciations.

5.1.3 State-of-the-art in lexical pronunciation modelling

Modifications of the lexicon can be divided into rule-based, data-driven and combined ap-
proaches. Rule-based approaches try to model non-native speech with the help of explicit
pronunciation rules for non-native speech. New pronunciation variants are derived by apply-
ing these rules to the canonical pronunciation (e.g., [57], [107]). Adapting a lexicon this way
is much faster compared to handcrafting, although at the expense of accuracy, as rules usu-
ally only cover phenomena in a broad sense. Data-driven approaches extract the information
directly from a training corpus of phonetically transcribed non-native speech by means of a
phoneme recogniser (cf. [3], [101]). This leads to higher precision for specific applications, but
requires large amounts of adaptation data for finding robust estimates. At the same time,
generalisation to new words is difficult. Combined methods avoid this problem by learning
the pronunciation rules from a training corpus [29]. As a reference for a combined pronunci-
ation modelling technique, the classification and regression tree method will be explained in
more detail.

Classification and regression trees (CART)

Classification and Regression Trees (CART) were introduced by Breiman [12] as a solution for
automatic classification of samples based on distinctive features. CART are a nonparametric
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and nonlinear method that is best used whenever only little a priori knowledge about the
underlying structure is available like, e.g., in data mining. In such cases, CART provide results
which are easy to interpret and to implement in optimisation tasks. CART have already
been successfully used by Fosler [29] and others (e.g., [2], [101]) for modelling pronunciation
variation in spontaneous speech.

A CART tree is a compact description of how a data set may be partitioned into disjoint
subsets along a binary tree, such that each leaf of the tree represents a data subset and the
tree nodes define splitting criteria. The tree growing algorithm maximises the “purity” of
each immediate subset with respect to the current node’s splitting criterion. Therefore, the
method requires a set of binary questions as possible splitting criteria, a goodness of split
criterion that selects the best criterion for a certain split, a rule that defines when to stop
splitting, and an assignment of leaf nodes to classes [12]. For the case of PM, the set of
questions comprises contextual information combined with phonetic (cf. appendix A, table
A.2) and linguistic a priori knowledge (cf. appendix A, table A.3).

Pronunciation variant generation

In the training phase, the input phone sequences are first aligned and then for each source
phone symbol all instances are extracted together with their immediate right and left con-
text phone. From these list of realisations a separate tree is learned for each phone which
expresses the transformation in terms of the contextual information and additional phonetic
and linguistic class information. An example tree for the phone /d/ realised by three different
speakers is depicted in figure 5.1. The binary questions are the internal nodes of the tree.
By traversing the tree the transformation rules are read off and the final leaf symbol defines
the actual output symbol of the transformation.

For creating a new pronunciation variant the training procedure is reversed. For each
phone of the canonical pronunciation a target phone is predicted by traversing the specified
CART tree. The resulting phone sequence is then only concatenated to retrieve the new
pronunciation variant.

Modelling deletions and insertions

If source and target pronunciation are of different length (i.e., M 6= N), the modelling effort
increases. Deletion of phones from the source string is modelled easily by indicating the
deletion with a special (empty) symbol in the target pronunciation. Modelling insertions
is a much bigger problem. In contrast to deletions, an insertion of a phone in the target
pronunciation would require the generation out of nothing at an arbitrary position within
the symbol string. There are three options how to handle this problem in a sequential
generation approach:

A. By allowing a generative function that produces output of more than one target symbol
per source symbol. This is the most accurate and intuitive strategy, but it requires non-
trivial modifications of the learning algorithm.

source: s { l @ d

target: s { l @ d @

B. By introducing new symbols into the symbol inventory which represent inserted phones
as double-phones. This model is easy to implement, but produces an exponentially
growing symbol inventory which is difficult to handle.
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Figure 5.1. CART trees of phone /d/ for speakers a) #050678 b) #047722 c) #008107 from data set
MEDALIGN-NNS102. Inner nodes represent splitting criteria with regard to current,
previous, and subsequent phone.

source: s { l @ d

target: s { l @ d+@

C. By inserting seed symbols into the source symbol string at each possible position where
an insertion may occur as shown below. If the seed symbol is chosen to be the empty
symbol which has been used for modelling deletions, this approach is intuitive and easy
to implement. However, it is only possible to model single insertions.

source: s { l @ d

target: s { l @ d @

In the experiments, insertions were modelled with model C. To avoid the loss of contextual
information due to the additional seed symbols, the phones in context of the current source
phone were selected such that they do not represent the immediate seed symbols but the
actual context phone instead, unless the seed symbol covers a real insertion.

5.1.4 Alternative non-native speech adaptation approaches

Several methods have been proposed to account for non-native speech in automatic speech
recognition. They can be divided into methods for acoustic model adaptation or specific pro-
nunciation modelling. In terms of pronunciation modelling, modifications to the lexicon have
been proposed as well as modified decoding procedures. The latter avoid the trade-off bet-
ween high coverage and accuracy in the lexicon due to the increased number of pronunciation
variants including increased confusability.
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Acoustic model adaptation

Due to the inhomogeneity of the group of non-native speakers, methods for speaker-specific
acoustic model adaptation appear promising. These methods include Maximum-A-Posteriori
(MAP) adaptation [65] or Maximum Likelihood Linear Regression (MLLR) [66]. Some of
these methods, however, require large amounts of adaptation data for modification of the
acoustic models for each speaker. Another approach is to model the second language acquisi-
tion process by transforming acoustic models from the non-native speaker’s source language
to the target language. Actual merging of source and target acoustic models has proven to
be the most effective method [129]. In contrast to MLLR adaptation, less data is needed
to provide the same improvement on the word recognition rate. The combination of MLLR
adaptation and lexical pronunciation modelling has proven to be beneficial as well [36].

Alternative pronunciation modelling techniques

Pronunciation modelling is not restricted to lexicon modifications. In [111], priors for pronun-
ciation variants are estimated during training with forced alignment in maximum likelihood
or discriminative fashion [110]. These (unigram) priors are then explicitly integrated into the
decoding procedure, thus reducing the impact of less likely pronunciation variants. Similarly,
pronunciation modelling may also be incorporated at the parameter-tying level of the acoustic
model as proposed by Saraçlar et al. [106] or Hain [42]. In these methods, a ‘soft’ parame-
ter tying scheme replaces the deterministic mapping between phoneme and HMM or HMM
state. Instead of explicitly enforcing phone substitutions at the symbol or HMM level, HMM
state sharing between the substitutable phones are allowed during acoustic model training
which implicitly models variation in pronunciation. A more radical approach is taken by
Ristad and Yianilos [104]. Instead of guessing appropriate underlying pronunciation forms
during lexicon design they propose to model the observed surface pronunciations directly
with a stochastic transducer. In contrast to the standard generative pronunciation model
their surficial pronunciation model encodes the variability across pronunciations and not the
phonologic processes to derive a surface form from an underlying canonical form.

5.2 A model for minimisation of lexical confusability

Many lexical pronunciation modelling methods propose the extension of an existing LVCSR
lexicon with new pronunciation variants. Pronunciation modelling, however, also means to
find the optimal balance between two opposing effects, namely the achieved gain in modelling
accuracy and the losses due to higher confusability within the lexicon. For increasing the
goodness of fit of a specific word, it is preferable to have many possible pronunciations assigned
to it. These additional pronunciations are, however, not only similar to the word that they
represent, but also to other words in the lexicon. The higher the number of alternatives, the
higher the confusability. Reducing the number of pronunciation alternatives on the other
hand, also decreases the accuracy.

Consider a very simple lexicon consisting of the three words ACCESS, AXIS, and EXCESS:

Word Canonical pronunciation Alternative pronunciations

ACCESS /{ k s e s/ /e k s e s /

AXIS /{ k s @ s/

EXCESS /e k s e s / /I k s e s/



CHAPTER 5. SPEAKER-SPECIFIC SELECTIVE PRONUNCIATION MODELLING 86

word
selection

variant
generat ion

confusabil i ty

accuracy

add /
discard

phone
confusion
extract ion

adaptat ion
data

lexicon

phone confusion matrix (CFM)

Figure 5.2. Schematic illustration of the lexical confusability optimisation approach.

The canonical pronunciations already show a high degree of similarity among each other. If
variants are added arbitrarily, highly confusable pairings within the lexicon may appear easily
as indicated between the words ACCESS and EXCESS. Ideally, the gain in model accuracy by
adding the variant /e k s e s/ should be opposed to the increase in confusability that goes
with it. As a result this variant would most probably be discarded.

Various criteria have been proposed for optimal pronunciation variant selection. Most
simply, pronunciation variants may be included based on their frequency of occurrence in a
training corpus [109]. In [48], a maximum likelihood criterion is proposed for selecting an
optimal subset of pronunciation baseforms. Similarly, a confidence measure can be used for
rejecting statistically irrelevant variants during lexicon generation [114].

Based on this observation, a pronunciation modelling approach can also be defined as
an optimisation problem for finding the right balance between these effects. If there are
measures for confusability and the gain in accuracy, a method can be defined that modifies
an existing pronunciation lexicon with regard to these criteria. Figure 5.2 illustrates this
approach schematically. Starting with a pronunciation lexicon, a candidate word is selected
from it for optimisation. From this word, a new, speaker-specific pronunciation variant is
generated. The new pronunciation is then tested for both, confusability with other words and
similarity to already existing variants of the same word. A classification stage decides based on
the measurements whether the variant should be integrated or not. From the updated lexicon,
the next word is selected for optimisation. Speaker-specific phonetic confusion information
is extracted offline from a pool of data and provided as an input to the variant generation
routine and the measurement procedures.

This scheme presents two essential challenges: First, the development of appropriate
measures for accuracy and confusability. While a measure for accuracy has to express the
gain achieved by the model between a speaker-independent and its speaker-specific variant
for each word, the confusability measure has to relate a new pronunciation variant for a word
to the rest of the lexicon. Second, it is vital to find an efficient implementation that allows for
fast processing of large lexicons. Consider an LVCSR lexicon with 50,000 entries. Determining
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the similarity of a word to all other words in the lexicon requires W ·W measurements with W
being the number of words in the lexicon. For each word pair the similarity calculation again
requires O(N ·M) tests with N,M being the number of phones per word. Assuming an average
word length of 4 phones, a total of 4·1010 tests must be performed to complete one iteration of
optimisation. Even for a single iteration, it turns out that this approach is computationally
too expensive. Besides an efficient representation, the integration of approximations and
heuristics becomes necessary for speeding up the computation.

In general, this greedy algorithm will not find a global optimum for the optimisation
problem. Nevertheless, the algorithm could be iterated as well or combined with a dedicated
mathematical global optimisation method such as, e.g., Simulated Annealing [58]. Despite
the efficient computational representation and various approximations, an iterative global
optimisation is at the moment not computable in reasonable time for large vocabulary pro-
nunciation lexica.

5.2.1 Learning speaker-specific phone confusions from data

For the optimisation framework, we assume that speaker-specific information is represented
in form of a phone confusion matrix (CFM) as it is produced by the methods reviewed in
chapter 3. The calculation of a speaker-specific CFM consists of two steps: In the first one,
two independent phonetic transcriptions of the same utterance representing reference and
hypothesised transcriptions are aligned and segmented on word level. In the second step, the
CFM is trained from these phone sequence pairs.

Alignment

Depending on the input data sources, two competing approaches were defined for the ex-
periments. The first one is intended for classical ASR application scenarios with speaker
enrolment, while the second represents a rather automatic training in absence of manual
orthographic transcriptions of the adaptation data.

• The ENROL alignment requires audio recordings and corresponding manual ortho-
graphic transcriptions of the adaptation data. From these basic data sources two
different phone sequences were generated (cf. figure 5.3). The reference automatic
phonetic transcription (APT) is the result of a forced alignment of the manual or-
thographic transcription with the audio data using speaker-adapted triphone acoustic
models. In these transcriptions, recognition errors on word level can be ruled out at the
expense of reduced accuracy on phoneme level. For a phonetic transcription closer to
the actual pronunciation a free automatic phonetic transcription was produced by using
speaker-adapted monophone acoustic models and unigram phone language model. This
transcription now allows for more variation as it is more local and obtained with less
contextual constraints, but at the same time it contains more inserted or substituted
phones. This “transcription noise” should hopefully cancel out during CFM training.
Finally, the two transcriptions were acoustically realigned at the frame level with the
adapted acoustic models to ensure synchrony for the whole recording.

The phoneme sequences were then paired based on time stamp information, as both
transcriptions are time synchronous. The alignment was done on word level, where
overlapping phones on word boundaries were assigned to the word that contained the
larger fraction of the phone. The result of the alignment process is thus a sequence
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SPK: to recognise speech ↓ forced alignment
reference APT: t u: r e k @ g n aI z s p i tS ↓ lexicon lookup

free APT: t @ r e k @ n aI z b i tS ↓ monophone recognition

Figure 5.3. Reference automatic phonetic transcription generated from reference orthographic
transcriptions by forced alignment and lexicon lookup vs. free automatic phonetic
transcription directly generated from monophone acoustic model recognition.

of word pairs in phonetic transcription, where the canonical reference transcription
from the ASR lexicon is paired with a monophone recognition result, reflecting a closer
transcription of the actually observed pronunciation.

• In the AUTO alignment, the speaker-specific information is extracted in absence of
manual orthographic transcriptions from automatically recognised transcripts of medi-
cal dictations and human post-processed final medical reports as utilised by the SPARC
method (cf. chapter 4). The reference transcription phone sequence is an automatic
phonetic transcription of the final medical report (generated during reconstruction, cf.
section 4.4.2). The hypothesised transcription phone sequence is the most likely phone
sequence from the speech recogniser. After alignment on word level, only those word
pairs showing high phonetic similarity were selected as reliable matches that indicate
potentially corrected recognition errors. In sum, this data set enables learning from
available non-literal transcripts in a fully automatic way.

Confusion matrix training

A memoryless, context-independent (MCI) stochastic edit distance model was trained with
the paired phoneme sequences for each speaker (cf. section 3.3.2). Training was done in three
iterations with a minimum probability of 10−4 for each edit operation and a uniform initial
parameter distribution. The learned parameter distributions represent a speaker-specific
CFM. Figure 5.4 shows the CFMs for three speakers of the evaluation set as calculated with
the ENROL alignment. Note the evident differences in substitutions (off-diagonal elements),
deletions (leftmost column), and insertions (bottommost row).

Besides the speaker-specific CFMs, a speaker-independent CFM was trained as well from
the MEDTRANS corpus (cf. section 2.5.1). This speaker-independent reference can be used
for studying and evaluation of speaker-dependent CFMs. The training data used for the
speaker-independent CFM differs from the speaker-dependent CFM in two important aspects.
First, the MEDTRANS corpus contains actual manual phonetic transcriptions in contrast to
the free automatic phonetic transcriptions of the MEDALIGN-NNS102 data set. Therefore,
it can be seen as true reference data. And second, the manual transcriptions are derived
from the canonical reference transcriptions such that there is no overlap of phones at word
boundaries.
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Figure 5.4. Phone confusion matrices for speakers a) #050678 b) #047722 c) #008107 from data
set MEDALIGN-NNS102 with ENROL alignment.

5.2.2 Selection of candidate words

The optimisation procedure is accelerated if only a subset of lexicon entries is inspected. These
candidate words should be representative for the lexicon and show potential for improvement.
Words with high recognition error rates appear to be suitable candidates. For compiling a
list of recognition errors again the SPARC reconstruction method presented in chapter 4 is
applied. Requiring only recognised and corrected transcripts, the whole candidate selection
procedure is fully automated and, therefore, applicable in a real-word adaptation scenario.

Like for the calculation of the confusion matrices, again an alignment of the two texts on
word level is necessary, but only in the orthographic domain. The alignment process consists
of the following steps:

1. Selection of data: The coverage of the candidate word list increases with the amount
of analysed data. Since for many speakers only little material is available, the analysis
was performed in a speaker-independent fashion.

2. Definition of reconstruction rules: Two reconstruction rules were defined for the
framework. The first rule filters out identical words in the alignment to reduce the
amount of data for postprocessing and counting. The second rule labels those parts in
the alignment which show high phonetic similarity (dth ≥ 8.0). These word pairs are
potential recognition errors that have been corrected during the transcription process.
In addition to the labelling, the most likely spoken variant was returned instead of the
actually written word.

3. Realignment and reconstruction: The paired texts were realigned and recon-
structed according to this setup. Whenever the reconstruction rules returned more
than one word for a certain pairing – which is possible due to spoken variant generation
– the reconstruction result was split into single words. This means that the obtained
error frequencies are upper bounds for the actual error frequencies.

4. Ranking of the most frequent errors: The word pairs of recognised and recon-
structed texts were scanned for the error labels, sorted, and ranked according to their
frequency of occurrence.
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5. Matching words with the ASR lexicon: To ensure correspondence with the ASR
lexicon for confusability analysis, the list of frequently confused words was matched
with the lexicon in terms of hyphenation and case.

In the experimental evaluation, this set of recognition error candidate words is compared
to the set of words with multiple pronunciation variants and a set containing all lexicon
words.

5.2.3 Pronunciation variants from Weighted Finite State Transducers

Weighted finite state transducers (WFSTs) were proposed and already successfully demon-
strated for ASR applications [80]. The processing chain from feature extraction down to
language modelling can fully be expressed within this framework and provides a transparent,
factored view on the complex task of ASR. The methods for pronunciation variant generation
are an extension to the work of [31], where a similar task – modelling ASR errors by phonetic
confusions – is described.

Definition

A WFST T is a tuple T = (X ,Y, Q,E, i, F, λ, ρ) over the semiring K, where X is the input
alphabet, Y is the output alphabet, Q is a finite set of states, E ⊆ Q×Q×(X ∪ ε)×(Y ∪ ε)×K)
is a finite set of transitions, i ∈ Q is the initial state, F ⊆ Q is the set of final states, λ is
an initial weight, and ρ is a final weight function. A state transition t = (p[t] → n[t], li[t] :
lo[t], w[t]) is then an edge from source state p[t] to destination state n[t], with input label
li[t], output label lo[t], and weight w[t] ∈ K. ε denotes the empty symbol. More details can
be found in [80].

A path in T is a consecutive sequence of transitions t = 〈t1...tn〉. It becomes a successful
path Π if it starts from the start state i and ends in a final state f ∈ F . The output
label of Π is the concatenation of the labels along its transitions: l[Π] = 〈l[t1]...l[tn]〉. For
pronunciation modelling, K will be a tropical semiring (R+ ∪ {∞},min,+,∞, 0) over the
positive real numbers together with min and addition (+) as algebraic operations, negative
log likelihoods as weights, and a Viterbi (best path) approximation. In this case, the path’s
weight is the sum of the initial weight, the transition weights, and the final weight: w[π] =
λ + w[t1] + ... + w[tn] + ρ(n[tn]) [80].

The algorithmic operations on WFSTs that will be used in the framework are: union,
minimisation, composition, inversion, and decoding. The Union operation combines two
WFSTs in parallel. Minimisation removes redundant information by determinisation (ε-
removal) and combination of states. Composition means the relational composition of two
WFSTs T = R◦S, such that there is exactly one mapping sequence u to sequence w for each
pair of paths that is created by R : u → v and S : v → w. Decoding finally is the method
that returns the n-best successful paths sorted according to their path weights [80].

Lexicon and CFM representation

A pronunciation lexicon P : wi → {pi,1...pi,ni
} is a mapping from orthographical words wi to

pronunciations pi,j, where ni is the number of pronunciations per word and W is the total
number of words. Each pi,j is represented by a finite state transducer as a transformation of
a graphemic input symbol wi to a sequence of phonetic output symbols (cf. figure 5.5). The
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Figure 5.5. FST representation of the canonical pronunciation /{ k s e s/ of the word access.

empty symbol is denoted by “ ” in the graphemic domain and “.” in the phonetic domain
respectively.

P is created by forming the union of the individual pronunciation FSTs. As a conse-
quence, the resulting directed graph is huge, containing many epsilon transitions and redun-
dant information. For larger lexicons, it turns out that many pronunciations share common
prefixes. The words access → /{ k s e s/ and axis → /{ k s @ s/ for example share
the first three phones and altogether only differ in a single phone. Since the graphemic input
symbol that assigns the phone sequence to a word is only added at the very end of the path,
common prefixes can be combined into a single path, significantly reducing the size of the
lexicon graph (cf. figure 5.6).
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Figure 5.6. FST lexicon P comprising the words access, axis, actual, and apple.

A confusion matrix C = {cxy} between input phones x = 1..|X | and output phones
y = 1..|Y| is also expressed as a WFST with identical input and output alphabets. Every
matrix element cxy is a transduction from symbol x ∈ X to y ∈ Y with weight cxy. The
WFST of C is thus a single state with self-transitions for each of its entries (cf. figure 5.7).

0

{:./7.228
{:{/3.922
{:@/7.359
@:./4.275

@:@/3.166
@:{/7.007

Figure 5.7. WFST confusion matrix C for substitutions and deletions of phones /@/ and /{/ with
corresponding weights.
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Pronunciation variant generation

From the speaker-specific confusion matrix C and the speaker-independent lexicon P it is
possible to generate new pronunciation variants p̂i for a specific word wi by applying the
composition operation:

p̂i = argmax{wi ◦ P−1 ◦ C}. (5.1)

The first composition selects the canonical pronunciation for word wi from the pronuncia-
tion lexicon. The second composition replaces the phone transitions with those edges from
confusion matrix C that have the corresponding input symbol. To reduce the number of
transitions, the graph is pruned such that only transitions falling below a threshold dcfm are
included. The resulting graph depicted in figure 5.8 contains all paths that result in possible
pronunciation variants. The decoding operation finally returns the list of best pronunciations
from the graph.

0 1

{:./7.228

{:{/3.922

{:A/6.190

{:e/6.676

{:eI/6.745

{:I/7.047
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2
k:./6.539

k:./6.539
3

s:z/7.052

s:./5.502

s:s/3.263

4

e:./5.984

e:e/3.993

e:I/7.405

e:r/7.825

e:@/7.748

5

s:s/3.263

s:z/7.052

s:./5.502

6
.:./0

Figure 5.8. WFST composition of the word access with confusion matrix C.

Since phone identities have minimal negative log likelihoods, the best path – by definition
– is the canonical pronunciation and, therefore, discarded. The remaining variants are then
filtered such that they fulfil two constraints: First, variants with more than one deletion are
discarded to avoid artifacts, and second, phone repetitions are merged into single phones.

5.2.4 Measuring confusability and the gain in modelling accuracy

Confusability measure

The measure for lexical confusability is an extension to the pronunciation variant generation
procedure. By applying an additional composition operation to the WFST of figure 5.8, the
phone confusions are transformed back to words that are already in the lexicon:

ŵi = argmax{wi ◦ P−1 ◦ C ◦ P}. (5.2)

The operation simply feeds the output symbol sequences of the pronunciation generator as
input sequences to the lexicon transducer which then returns the corresponding words (cf.
figure 5.9). Again the number of paths to investigate has to be reduced by pruning. This
way, the most similar words of a lexicon given speaker-specific confusions are found very
efficiently. To arrive at the confusability measure, the argmax operator needs to be relaxed
such that ŵi becomes a list of words that is sorted according to their similarity to the base
word wi using the MCI model of section 3.3.2, eqn. 3.11:
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Figure 5.9. WFST composition of the word access with confusion matrix C and lexicon P .

Table 5.1. Ranked list of confusability measurements for base word ACCESS with pronunciation
/{ k s e s/, confusion matrix C, and lexicon P (cf. figure 5.9).

Word Pronunciation Score Rank

ACCESS /{ k s e s/ 18.177 1
EXCESS /e k s e s/ 20.931 2
EXCESS(2) /I k s e s/ 21.302 3
AXIS /{ k s @ s/ 21.932 4

ŵi =

{

ŵi,1, ŵi,2, ..., ŵi,m

}

dMCI (wi,ŵi,1)≤...≤dMCI (wi,ŵi,m)

. (5.3)

This list is in fact the m-best list of the decoding operation. For practical considerations,
m will typically be much small than W (e.g., m = 20). From this ranked list of confusable
words, the confusability measure dcfb is derived as the rank of the base word wi, where equally
weighted words due to homophones are assigned the same rank:

dcfb(wi, ŵi) =
{

k | ŵi,k = wi

}

. (5.4)

The measure is low, if there are only few words whose pronunciation variants are more
similar to the pronunciation variants of the base word, i.e., which have a lower rank. If
there are many highly confusable words, then the returned rank and hence the confusability
measure will be higher. Table 5.1 illustrates confusability measurement for the example graph
in figure 5.9. Starting from the base word access with pronunciation /{ k s e s/, the list
of similar words is ranked according to the similarity score. In this example, dcfb = 1, as the
base word already heads the m-best list.

Accuracy gain measure

The measure for the gain in modelling accuracy is meant to counterbalance the effects of
adding new pronunciation variants with low confusability. Keeping confusability low is of no
meaning if the gain in accuracy achieved by the new pronunciation is negligible. For this
reason, a measure that defines the gain in accuracy is needed.

For the definition of this measure the phonetic similarity measures presented in chapter
3 can be re-used. The memoryless, context-independent model of a stochastic edit distance
between phone sequences was defined as (cf. eqn. 3.11):

dMCIsto = − log p(xN , yM |θ) (5.5)
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meaning the negative log likelihood of the joint probability of phone sequences xN and yM

given the edit operation probabilities θ. So far, differences in the distance values have only
been achieved by altering either of the two input sequences, e.g., by comparing two realisations
ỹM and ˜̃yM of a word to the canonical pronunciation xN . By exchanging the underlying
parameters θ, the similarity of the input sequences with respect to different parameterisations
can be computed instead. Defining θspk as the speaker-specific CFM and θref as the speaker-
independent reference CFM determined at the end of section 5.2.1, a measure is defined that
is directly related to the gain in modelling accuracy:

dacg(pi,1, p̂i) =| dMCIsto(pi,1, p̂i | θref) − dMCIsto(pi,1, p̂i | θspk) | (5.6)

where pi,1 is the canonical pronunciation and p̂i is the newly generated pronunciation to
be tested. dacg is low for pronunciations of approximately equal similarity with respect to
speaker-dependent and reference parameters, and high if the similarities are different.

5.2.5 Optimisation strategies

The proposed optimisation approach assumes an existing initial pronunciation lexicon that
already contains pronunciation variants (PVs) for a number of words. Therefore, it has to
deal with existing variants as well as with possible new variants. There are several strategies
for optimising an existing pronunciation lexicon to a specific speaker, i.e., to minimise the
confusability while retaining high accuracy:

a. Test existing variants, do not add new ones (WFSTa): If the lexicon already
contains the right PVs for a given speaker, then only the redundant alternative PVs
need to be removed to minimise the confusability. This approach is the most simple,
as there is no need for the generation of new, speaker-specific PVs.

b. Test existing variants and add new ones (WFSTb): The lexicon may in some
cases already contain the most suitable PVs for a given speaker, but maybe not for every
candidate word. This means that the existing variants have to be evaluated together
with newly generated ones, and only the best ones will be included in the new lexicon.

c. Keep existing variants and add new ones (WFSTc): The initial lexicon gives
already good coverage with its variants, but in some cases, the speaker’s pronuncia-
tion is too far away from the available pronunciations. By adding new variants, the
shortcomings will be remedied.

d. Discard existing variants and add new ones (WFSTd): The initial lexicon does
not represent the speaker at all. For this reason, all existing variants have to be removed
and a new lexicon is built from scratch. This step simulates the creation of an initial
lexicon.

5.3 Experiments

The WFST-based PM optimisation approach was evaluated in an experiment by creating new,
speaker-specific lexica for non-native and accented native speakers. For these speakers, the
standard pronunciation model may not fit perfectly, thus, there is potential for improvement.
The models were trained with a moderate amount of adaptation data and evaluations were
performed on a held-out test set. As the ultimate goal is to improve the ASR recognition
rate, the pronunciation models were directly tested with an operational ASR system.
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Table 5.2. Native and non-native speaker accents annotated in the NNS102 data set.

Native accents Speakers

North 1
Northeast 19
Midland 7
Other 6
South 14
West 8

Non-native accents Speakers

African 1
Asian 6
British 1
Hispanic 13
Indian 16
Iranian 10

5.3.1 Experimental setup

The ASR experiments were performed with a Philips commercial speech-recognition system
for professional medical dictation. Recognition was performed in batch dictation mode with
adapted and unadapted acoustic models, and a specific context model comprising multiple
medical domains. The initial lexicon contained 13,830 words with 16,917 pronunciations,
covering the evaluation data completely. The performance was measured in terms of word
error rate (WER) between recognised text and manual reference transcription where partial
words, hesitations, and non-speech words in the reference transcription are ignored. For
illustration purposes, the resulting number of newly generated pronunciations is included in
the form of statistical boxplots as well.

All investigations are based on data from the MEDALIGN corpus (cf. section 2.5.2). The
so-called inspection subset (INSPECT) covers data which are used for acoustic adaptation.
These data must not be taken for PM training, but can be used for the selection of candidate
words as a large number of reports is available for each speaker. In total, this set comprises
3,453 reports from 434 speakers.

The actual speaker-specific data is collected in the NNS102 data set. This set consists of
102 speakers which are marked as either non-native or accented. Speakers are assigned to
one out of 12 accent groups (cf. table 5.2), where 6 are non-native speech and 6 are native
American accents. For 102 speakers, more than 25min of recordings were available which
were divided into a Train/Dev set of 15min and an Eval set of ≥10min of speech.

In the course of the evaluation a number of factors were identified which influence the
system performance. These are the optimisation strategy for building the lexicon, the set of
candidate words, the data source from which the speaker-specific confusions are extracted,
and the usage of speaker-specific adapted models. The following presentation of the experi-
mental results is structured according to these factors.

5.3.2 Comparison of optimisation strategies

The first series of experiments was aimed at finding the best optimisation strategy together
with its optimal threshold settings for the confusability and accuracy gain measures. For this
reason, candidate word set and phonetic confusion data was fixed to potentially optimal val-
ues, while the thresholds were varied between dcfb = {1, 2, .. , 6} and dacg = {0.5, 1.0, .. , 3.0}
for confusability and accuracy gain, respectively. For all optimisation strategies presented in
section 5.2.5 the optimal values were determined. For each strategy, results are reported with
the best fixed threshold settings over all speakers (fix) and speaker-specific optimal thresholds
(opt). The resulting figures are collected in table 5.3.

All systems including the baseline system exhibit a relatively high standard deviation in
word error rate. This is a consequence of the high diversity among speakers of the NNS102
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Table 5.3. WER in [%] and pronunciation variant (PV) counts for various optimisation strategies
and evaluation setups: Fixed thresholds for all speakers (fix) and optimal thresholds per
speaker (opt).

WER Cand. New PVs Total number of PVs

[%] Count Count 14,000 15,000 16,000 17,000 18,000 19,000

base 28.45 ± 13.35

WFSTa fix 29.73 ± 13.39 2,409 0

opt 29.39 ± 13.03 2,409 0

WFSTb fix 29.78 ± 13.52 2,409 4,132

opt 29.23 ± 13.18 2,409 4,132

WFSTc fix 28.46 ± 13.36 2,409 1,071

opt 28.19 ± 13.27 2,409 1,071

WFSTd fix 33.19 ± 12.18 2,409 1,071

opt 32.67 ± 12.02 2,409 1,071

data set. As shown later in table 5.7 non-native speakers show worse word error rates on
average than the native accented ones. With respect to the high standard deviation the
differences between the systems seem to be diminishing at first, but become more visible on
a per speaker basis as will be shown in figure 5.10 later on.

Overall, the WFSTc approach of keeping existing pronunciation variants and adding new
ones returned the best results. This finding is probably best explained by the high quality of
the initial lexicon and the fact that the existing pronunciation variants had been considered
in the training phase as well. This is why the related WFSTa and WFSTb strategies return
comparable figures, while the WFSTd strategy of creating new alternatives from scratch is
far behind. The boxplots illustrate the clear differences in lexicon size and also the variability
that goes with each method.

Table 5.3 also makes clear that individual threshold optimisation per speaker is essential
for achieving best results. The variation in optimal threshold settings between speakers is
very high and it was not possible to find any correlation with factors such as speaker group or
baseline word error rate. If only a fixed threshold setting over all speakers is determined then
it turns out that only very low threshold settings (e.g., dcfb = 1.0 and dacg = 0.5 for WFSTc)
are selected and the pronunciation modelling effect is thus minimal. As the whole lexicon
optimisation is done offline, tuning the thresholds for each speaker is a doable procedure in
a real-world system.

5.3.3 Comparison of candidate word sets

The set of candidate words is another main factor in the PM approach. In the previous
experiments, the set of candidate words was set to those words which already had more than
one pronunciation in the lexicon. In this experimental series, this choice (MULTIVAR) was
compared to a setup where candidate words were determined as those words with frequent
recognition errors (RECERR) and another setup, where all lexicon words were defined as
candidates (FULL). Since the WFSTc strategy turned out to be the best, all further experi-
ments were done with this strategy. The results for each candidate word setup are collected
in table 5.4.

Optimising the full lexicon gives the best results, and there is a general trend that the
word error rate goes down with higher number of candidates. The step between the largest
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Table 5.4. WER in [%] and pronunciation variant (PV) counts for strategy WFSTc and different
candidate word sets: Fixed thresholds for all speakers (fix) and optimal thresholds per
speaker (opt).

WER Cand. New PVs Total number of PVs

[%] Count Count 0 1,000 2,000 3,000 4,000

base 28.45± 13.35

MULTIVAR fix 28.46± 13.36 2,409 1,071

opt 28.19± 13.27 2,409 1,071

RECERR fix 28.50± 13.43 3,749 2,426

opt 28.14± 13.28 3,749 2,426

FULL fix 28.49± 13.40 13,830 8,069

opt 28.13± 13.29 13,830 8,069

Table 5.5. WER in [%] and pronunciation variant (PV) counts for strategy WFSTc and different
sources for speaker-specific confusions: Fixed thresholds for all speakers (fix) and optimal
thresholds per speaker (opt).

WER Cand. New PVs Total number of PVs

[%] Count Count 0 1,000 2,000 3,000 4,000

base 28.45 ± 13.35

ENROL fix 28.46 ± 13.36 2,409 1,071

opt 28.19 ± 13.27 2,409 1,071

AUTO fix 28.47 ± 13.37 2,409 2,380

opt 28.35 ± 13.32 2,409 2,380

candidate set (FULL) and the second-largest set (RECERR) is, however, diminishing. Con-
sidering the computation time as well, the RECERR set composed of frequent recognition
errors should be the first choice for optimisation.

The ratio between proposed and actually included PVs does not scale linearly either.
This ratio is not equal to one if there are PVs generated by the optimisation method that are
not included into the lexicon due to high confusability or low modelling gains. At the same
time, it is also an indicator for already existing PVs of the candidate words as the RECERR
candidate set does not contain many words with existing PVs and does not overlap much
with the multivar set.

5.3.4 Comparison of resources for speaker-specific confusions

It is a benefit of the proposed PM approach that the speaker-specific confusion information is
completely separated from the rest of the framework and may therefore be obtained from any
kind of source data with any kind of method. A preferable way of obtaining this information
would be by automatic processing of already collected non-literal transcripts such that no
manual intervention is needed to come up with a PM for a problematic speaker. This idea
was tested as described in section 5.2.1 with data retrieved by the SPARC method. Table 5.5
presents the results compared to the baseline and the CFMs trained from literal transcripts
(ENROL).

The AUTO CFMs with optimal threshold settings beat the baseline word error rates, but
the gains are much reduced in comparison to the ENROL CFMs. At the same time, the



CHAPTER 5. SPEAKER-SPECIFIC SELECTIVE PRONUNCIATION MODELLING 98

Table 5.6. WER in [%] and pronunciation variant (PV) counts for unadapted and adapted acoustic
models with WFST and CART approach: Optimal thresholds per speaker (opt).

WER New PVs Total number of PVs

[%] Count 0 1,000 2,000 3,000 4,000

unadapted base 28.45± 13.35

acoustic WFSTc opt 28.19± 13.27 1,071

models CARTc opt 28.23± 13.31 2,409

adapted base 17.02± 10.03

acoustic WFSTc opt 16.89± 9.99 1,071

models CARTc opt 16.90± 9.97 2,409

number of proposed PVs is much higher, in fact almost equal to the number of candidate
words, while the number of actually included PVs is much less. A closer inspection of the
optimisation process revealed that most of the proposed PVs had been rejected due to high
phonetic distance scores in the accuracy gain measure. In combination with the high number
of proposed PVs, it must be concluded that the AUTO CFMs show a high mismatch to the
CFMs trained with the ENROL data. Therefore, many generated variants are definitely new,
but they do not resemble the speaker-independent distance model at all which means that
the variant is rejected. Unfortunately, this means that for some speakers the AUTO CFMs
provided only a very poor description of the actual speaker-specific confusions. These defects
could be remedied by either more training data or a more elaborate confusion extraction from
the non-literal transcripts.

5.3.5 Adapted versus unadapted acoustic models

In this final experiment the performance achieved with the WFST lexical PM optimisation
system is compared to a benchmark CART system with respect to acoustic speaker adapta-
tion. The experiments so far have been conducted with speaker-independent acoustic models
to provide a realistic starting point for modelling without any speaker-specific adjustments.
In practice, however, a pronunciation model will be applied in conjunction with an acoustic
adaptation procedure. In the experiments acoustic adaptation was performed by applying a
combination of MLLR and MAP adaptation prior to the actual pronunciation modelling step.
Table 5.6 shows a comparison of the baseline word error rates with the best WFST results
and results achieved with the CART method that has been optimised accordingly in terms of
threshold settings. The CART results were created by first training a speaker-specific CART
tree for each phone with the NNS102 training set, and then deriving pronunciation variants
for the lexicon by applying the CART trees to each phone of the canonical pronunciation.

The figures in table 5.6 clearly show that acoustic model parameter adaptation has much
higher effects on the word error rate than lexical PM adaptation. Although the number of
adaptable parameters is much higher in acoustic modelling the potential gains are higher
as the classification occurs at the high-dimensional acoustic feature level that provides more
evidence for statistic modelling than the mere symbolic phone strings handled in lexical pro-
nunciation modelling. Despite this fundamentally different initial situation it is noteworthy
that there are still small, but measureable improvements, even for the case with acoustic
adaptation. In this initial experiment only a single iteration was conducted between acoustic
adaptation and PM adaptation. As the pronunciation modelling step leads to an improved
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Table 5.7. WER in [%] for unadapted and adapted acoustical models with WFST and CART ap-
proach: Optimal thresholds per speaker, best results per group in boldface.

Speaker Unadapted Adapted

group base WFSTc CARTc base WFSTc CARTc

all 28.45 28.19 28.23 17.02 16.89 16.90

African 40.39 38.43 40.05 25.32 24.63 24.97

Asian 31.95 31.69 31.79 23.27 23.12 22.94

British 23.28 23.10 22.91 10.86 10.70 10.82

Hispanic 37.64 37.18 37.21 21.62 21.44 21.48

Indian 37.02 36.62 36.81 22.54 22.37 22.40

Iranian 32.71 32.61 32.53 13.41 13.35 13.39

North 18.06 17.90 18.00 14.16 14.05 14.07

Northeast 24.95 24.77 24.45 20.68 20.61 20.73

Midland 20.86 20.77 20.73 15.16 15.03 15.02

Other 41.29 41.01 40.93 18.02 17.85 17.89

South 20.48 20.27 20.28 13.65 13.58 13.62

West 19.48 19.30 19.28 9.67 9.54 9.58

annotation of the acoustic reference for adaptation, consecutive iterations of acoustic adap-
tation and lexical adaptation might lead to additional improvements.

The WFST system performs marginally better than the CART system. The reasons for
that are to be found in the explicit insertion model used for the CART system, while in
the WFST system insertions are modelled implicitly. Therefore, the generated variants are
substantially different which is reflected in the number of suggested pronunciations.

Table 5.7 gives a breakdown of the results reported in table 5.6 according to the initial
speaker group definitions (cf. table 5.2). At first, the striking difference in baseline word error
rates between non-native and accented native speakers is visible, not so much for the adapted
case, but definitely for the unadapted acoustic models. With PM, the baseline rates slightly
improve for all groups, apart from the solitary African speaker, who clearly benefits from the
adapted lexicon. In absolute figures, the native accents profit less from PM than the non-
native ones. While with unadapted acoustic models the best results are balanced between the
WFST and CART systems, in the adapted model case, the WFST system performs superior
to the CART system.

The PM effects on individual speakers are depicted in figure 5.10 for the results from
table 5.6. It is interesting to note that in both cases the WFST system causes a very slight
WER degradation for only very few speakers while the recognition rates improve for the
majority of speakers. The CART system returns higher improvement rates for a few speakers,
but also leads to noteable losses for about 20% of all speakers. From this point of view, the
WFST lexicon optimisation approach can be applied without much concerns for performance
loss.

5.4 Conclusion

Lexical pronunciation modelling allows for ASR system adaptation without major interven-
tions into the training and decoding processes. For this reason, adaptations at this processing
stage may as well be done by ASR service providers for fine-tuning the system to their users
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Figure 5.10. Relative WER reduction per speaker in [%] (sorted in descending order) for WFST
and CART framework with a) unadapted and b) adapted acoustic models.

and task domains. Non-native speakers proved to be relevant candidate speakers for speaker-
specific adaptation of the lexical pronunciation model in an experimental evaluation, even
more relevant than just accented native speakers of the target language. In contrast to
earlier attempts of pronunciation modelling, the newly proposed approach aims at creating
speaker-specific pronunciation variants for selected words such that the confusability within
the lexicon and the obtained gain in model accuracy are balanced.

The careful extension of an existing lexicon with new pronunciation variants turned out
to be the best optimisation strategy compared to building up a completely new lexicon
from scratch. Nevertheless, the word error rate reductions accomplished by the optimisation
vary a lot between speakers and an automatic, speaker-specific tuning of the optimisation
thresholds is essential. In general, the effects of lexicon adaptation are not comparable to
acoustic model adaptation, but in conjunction small improvements are still measureable. It
would be interesting to use the adapted lexicon already for the training or acoustic adaptation
process to maybe further increase the effects.

As far as the initial assumption on the balance between confusability and accuracy within
the lexicon is concerned, the experimental evaluation has shown that there are significant
differences in the number of proposed pronunciation variants and actually inserted variants.
In conjunction with the high variability of the actual inclusion criteria among speakers, it can
be concluded that pronunciation model adaptation based on these two measures is directly
related to the performance of the system.

In direct comparison to the non-parametric CART method for lexicon adaptation, the
WFST method shows comparable performance together with higher robustness towards the
modelling of insertions. On a per-speaker basis, the WFST method also does not deteriorate
the overall ASR system performance for almost all speakers.
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Chapter 6

Outlook and Conclusion

6.1 Outlook

This thesis was set up as a first exploration of working with non-literal text resources and
phonetic algorithms in speech technology. The previous chapters gave some insights into
the specialities of non-literal transcripts via experimental evaluations on well-designed text
corpora, and provided methods for solving application-specific problems within a specified
non-literal transcript processing framework. Nevertheless, the thesis does not claim to be
complete in terms of the methods presented and the full range of applications exploited. The
experimental studies rather provide a valuable potential analysis for the chosen approach
that allows for further ideas to be realised in a similar fashion.

This outlook is intended to give the reader an idea in which respects the developed algo-
rithms may be extended and to show how versatile the phonetic approach is in its application.
The outlook on further research options is divided into three main sections: First, ideas con-
cerning corpora creation with phonetic methods are listed, based on the experiences that were
gained during the creation of the text corpus in chapter 2, section 2.5. Second, extensions
to the phonetic similarity matching algorithms from chapter 3 are proposed. And finally,
further areas of application besides the covered topics in chapter 4 and 5 are discussed.

6.1.1 Further corpus work

In chapter 2, literal and non-literal transcript types were introduced along with text corpora
compiled from a pool of available text databases (cf. section 2.5.2, MEDALIGN corpus). The
simple text alignment methods used for their creation were not able to solve all problematic
issues related to text format discrepancies and tokenisation. With the help of the semantics-
and phonetics-driven alignment step of the SPARC method (cf. section 4.3), the MEDALIGN
corpus could already be refined in terms of alignment accuracy as shown in chapter 4.

The rule-based reconstruction engine of the SPARC method provides a framework for
further and much more precise annotation of such parallel text corpora. Specifically tuned
reconstruction rules could label particular phenomena within the alignment automatically
and thus help building up knowledge bases of text deviations. Consider as an example the
problem of headings within a medical dictation: Only in few cases a heading is dictated
as such within the continuous text, but usually, headings are created from the first words
of the subsequent paragraph by the transcriptionist. This results in a reformulation of the
original dictation and a measurable mismatch between recognised and written text. A specific
reconstruction rule which searches for a heading style in the written text and a low phonetic
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similarity score in conjunction with the recognised text could retrieve all potential heading
reformulations. These annotations may provide a deeper understanding of the underlying
processes that could be used in the document creation stage. The reconstruction problem
could then be inverted into an automatic dictation reformulation system.

Another application of the SPARC method has already been given in chapter 5, where a
list of misrecognised words was extracted from the MEDALIGN-INSPECT corpus with the
help of two specialised reconstruction rules. The rule framework is not only limited to the
semantic and phonetic similarity features, but may be extended with other measures as well
that may provide additional information for corpus annotation. The re-aligned and extra-
annotated corpora may then in turn be used for re-training the phonetic and possible other
similarity measures in a reinforcement learning fashion.

6.1.2 Phonetic algorithm extensions

The experimental evaluation in chapter 3 revealed that for phonetic similarity matching a
stochastic string edit distance model returns the best results in a pronunciation classification
task. The addition of prior knowledge in terms of phone frequencies provided significant
improvements to the similarity estimation. Therefore, it may be beneficial to include further
knowledge into the stochastic similarity model.

The most natural extension would be to include syllable structure information. As already
mentioned in chapter 2, several studies indicated that pronunciation reduction can directly be
explained by the underlying rhythm of the English language. One way for integration could
be in the form of a parameter tying scheme in the parameter-rich context dependent model
for reducing the number of trainable parameters while still exploiting the benefits of phone
context. The syllabic structure of the compared words could also be modelled by a separate
random variable on top of the current context-independent edit distance model which would
allow the distinction between word-initial and word-final positions.

Apart from additional sources of prior knowledge, the convergence of the state-based
and symbol-based similarity measurement approaches is another interesting topic for further
research. Although basically incompatible due to the inherent model difference caused by
the empty symbol, it would be very helpful to learn the phone confusions directly from the
acoustic ASR models, but apply them in a symbol-based comparison framework. This way,
the similarity model would be defined by the acoustic properties only and would not suffer
from any other recogniser side effects.

6.1.3 More application-driven solutions

With the reconstruction of literal transcriptions and the development of speaker-specific pro-
nunciation models, two solutions to ASR-related problems were proposed in chapters 4 and
5. The methods developed in this thesis can, however, be applied for creating many further
applications and supporting tools.

At the acoustic modelling stage, current parameter tying schemes are based upon hand-
crafted pronunciation rules that are evaluated in decision trees [131]. Instead of decision
trees, learned phone confusion probability distributions may be used as well for motivating
parameter reductions which would not require any additional rule definitions. Acoustic mod-
elling in this fashion could on the one hand become more language independent and on the
other hand possibly more speaker-dependent as well, assuming that speaker-specific phone
confusion matrices are employed. Another application in terms of acoustic modelling could
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be accent classification of speakers based on small amounts of ASR-generated texts. A con-
fusion matrix trained on these data would be compared to a set of accent-specific confusion
matrices and the new speaker assigned to the best-matching model. Such a classification
could be used for the pre-selection of accent-specific acoustic models or other accent-specific
resources like specialised lexica or language models.

Apart from these online applications phonetic similarity matching could also be applied
meaningfully during the design phase of an ASR system. Consider a system with limited,
context-dependent vocabulary and controlled input language, such as a speech-controlled
form filling system: In this scenario the recognition rate will strongly depend on the con-
fusability inherent in the local grammar rules for each form field, since language modelling
effects are minimised due to the limited number of words per utterances. The optimisation
framework for confusability within the ASR lexicon (cf. chapter 5, section 5.2) could directly
be applied here as well. When designing the grammar rules and contextual vocabularies, this
framework allows for immediate control of the acoustic confusability and hence the exclusion
or reformulation of critical words.

In a similar fashion the same technology may be utilised in the post-processing phase
during transcription correction as well. Knowledge about highly confusable words and fre-
quent ASR errors allows the design of tools which could further accelerate and simplify the
work of medical transcriptionists. It is impossible today to imagine document editing with-
out the automatic correction of typing errors and spell checkers which are both built upon
orthographic and phonetic similarity measurement. For the case of medical transcription,
these tools could be further tuned towards recognition errors for re-ranking the list of word
alternatives during editing. Another tool could be built upon the n-best list results from
recognition, re-ordered according to phonetic similarity given speaker-specific confusion in-
formation. Recognition n-best lists have already been exploited in several works, e.g., with
semantic similarity measurements [97], or in specific user interfaces designed for people with
special needs [121].

6.2 Conclusion

6.2.1 A critical discussion of the initial hypothesis

The introduction included a formulation of a main hypothesis of this thesis that shall be
revisited here. This work was specified to find an answer to the question:

Are phonetic/phonologic algorithms suited to overcome the gap between literal
and non-literal text resources, such that large amounts of non-literal transcripts
can be employed for the development/improvement of medical dictation ASR
systems?

Since this a precise and complex question a critical discussion has to deal with its various
aspects. There are three main points of interest. First, whether phonetic/phonologic algo-
rithms were the right choice for reaching the proposed goal. From the literature and the
characteristics of the processed data, this approach appeared very promising. For the literal
transcript reconstruction task (cf. chapter 4), phonetic similarity matching was directly com-
pared to semantic similarity matching. Phonetic similarity shows its strength with matching
on subword-level while for coarser alignment of whole mismatch regions semantic similarity
returns more plausible results. From the experiments it can be concluded that phonetic sim-
ilarity is the stronger of both concepts, although the best results were achieved when they
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were applied in combination. For pronunciation modelling phonetic algorithms are without
alternative anyway.

The second question was whether it was possible to bridge the gap between literal and non-
literal transcripts. In this respect, the investigations in chapter 4 proved that a combination
of automatically recognised draft transcript and a final corrected medical report is closer to
a literal transcription than any of the two original texts. However, it is not possible to fully
reconstruct a literal transcript from a non-literal one as missing or heavily deviating passages
cannot be recovered. For practical considerations, the improvements in transcript quality are
still good enough to show an effect on the ASR system performance.

This directly leads to the third question whether the methods lead to measurable ASR
system improvements. The conducted ASR experiments in chapters 4 and 5 are only ex-
emplary as direct comparisons to existing methods could not be implemented due to the
minimum invasiveness constraint. For this reason, a general conclusion to this question is
difficult. Still, the experiments indicated that there are small, but measurable word error
rate reductions for both applications: language model retraining with reconstructed literal
transcripts and speaker-specific pronunciation variants. This is a result worth mentioning, as
the used ASR system is a professional production type system developed and optimised over
many years and not an academic prototype.

Altogether, the methods proved their effectiveness in various tasks, from pronunciation
classification to transcript reconstruction and speaker-specific pronunciation prediction. For
ultimate system optimisation, it must be noted that phonetic similarity matching cannot be
the first choice as it is not competitive enough to outperform existing methods of acoustic
model adaptation and language model training. Under the constraint of minimum-invasive
system optimisation, the available options are nevertheless exploited as much as possible.
And in combination with, e.g., lightly supervised acoustic model training, further positive
effects may still occur since the amount and quality of the training material is improved. For
this reason, we conclude that the initial hypothesis is confirmed to a large degree.

6.2.2 Remarks on the generalisability of the approach

In the beginning of this work, the scope for the investigations was set tightly to LVCSR
systems in the domain of medical dictation for English. This strong restriction was justified
by the exemplary character of the evaluations for demonstrating the functionality of the
developed methods under real-world conditions. In the light of the results, the question
arises how the findings would generalise in a wider context.

One particular benefit of the stochastic phonetic similarity methods presented in chapter
3 is that although they model phonetic and phonologic (language-dependent) knowledge they
are still language-independent. Given a training data set of a different language, the relevant
information will still be captured in the derived confusion matrices. Therefore, the restriction
to English as singular language can easily be disregarded.

Relaxing the domain context is also possible as long as the data resources are not too
different from the investigated ones. Basically, the methods should be applicable to all
professional dictation scenarios with a similar workflow to medical dictation (cf. figure 2.2),
e.g., also in the legal or financial domains. Whenever collections of non-literal transcripts
are available for such systems they can be analysed in the same fashion. Another possible
domain could be broadcast news transcription. In that case, closed-captions could be utilised
as non-literal text resource if the amount of similarity to the draft transcription from the
recogniser is about the same as in the medical scenario.
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For ASR tasks other than LVCSR, the applicability is at least questionable. The proposed
alignment techniques rely on continuous text data and will surely lose some of their potential
in comparison to simpler alignment methods on shorter inputs. Instead, applications in text
processing and data mining are definitely imaginable, e.g., the direct comparison of different
versions of the same document, or plagiarism detection.

Altogether, the presented algorithms of this thesis are probably applicable within a wider
scope than it was set in the beginning. For definite statements on particular scope extensions,
however, more research has to be conducted.
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Appendix A

Definitions

Phonetic symbol alphabets

Table A.1. Phonetic symbol sets: International Phonetic Alphabet (IPA), Philips Speech Pro-
cessing Phonetic Alphabet (PSPPA), Speech Assessment Methods Phonetic Alphabet
(SAMPA), Advanced Research Projects Agency Alphabet (ARPABET). Note: Symbols
#47 to #53 are custom extensions by ICSI to standard ARPABET.

# IPA PSPPA SAMPA ARPABET Example

1 si #sil# SIL pre-and-post

2 æ & { AE bad

3 A A A: AA car

4 6 Q Q law

5 O o O: AO north

6 i i i: IY free

7 e e e EH America

8 eI Y eI EY eight

9 I I I IH kit

10 oU O oU OW low

11 U U U UH sure

12 u u u: UW fool

13 aU W aU AW town

14 2 V V AH cup

15 3 3 3: ER bird

16 b b b B black

17 tS C tS CH choose

18 d d d D do

19 D D D DH other

20 f f f F fat

21 g g g G get

22 h h h HH hot

Continued on next page...
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Table A.1. Phonetic symbol sets: International Phonetic Alphabet (IPA), Philips Speech Pro-
cessing Phonetic Alphabet (PSPPA), Speech Assessment Methods Phonetic Alphabet
(SAMPA), Advanced Research Projects Agency Alphabet (ARPABET). Note: Symbols
#47 to #53 are custom extensions by ICSI to standard ARPABET.

# IPA PSPPA SAMPA ARPABET Example

23 dZ J dZ JH jar

24 k k k K key

25 l l l L light

26 m m m M more

27 n n n N now

28 N G N NG ring

29 p p p P pen

30 r (K,ö) r r R right

31 s s s S soon

32 S S S SH share

33 t t t T ten

34 T T T TH thumb

35 @ @ @ AX afford

36 @l L l= EL little

37 @m M m= EM socialism

38 @n N n= EN cotton

39 v v v V move

40 w w w W wet

41 j j j Y yet

42 z z z Z zero

43 Z Z Z ZH vision

44 aI 2 aI AY pride

45 OI 9 oI OY joy

46 @r R r= baker

47 R DX butter

48 1 IX roses

49 LG lateral glide

50 R̃ NX nasal flap

51 PV filled pause

52 P Q uh-oh

53 0 UX suit
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Phone classes

Table A.2. Phonetic class assignment in ARPABET and SAMPA phonetic alphabet notations.

Phonetic class ARPABET SAMPA

vowel /AA AE AH AO AW AX AY EH ER EY

IH IY OW OY UH UW/

/A { V O aU @ aI e 3 eI I i oU

oI U u/

front vowel /AE AY AW EH EY IH IY OY/ /{ aI aU e eI I i oI/

central vowel /ER AW AY OW UH/ /3 aU aI oU U/

back vowel /AA AW OY AO OW UH AH UW/ /A aU oI O oU U V u/

closed vowel /AW EY IH OY OW UH UW W Y AY/ /aU eI I oI oU U u w j aI/

closed mid vowel /AY ER AW EY IH OY OW UH/ /aI 3 aU eI I oI oU U/

open vowel /AE AA AY AW OH OW/ /{ A aI aU Q oU/

open mid vowel /AE EH EY OY AO AH AX/ /{ e eI oI O V @/

diphtong /AY AW EY OY OW/ /aI aU eI oI oU/

voiced /ER AE AA AY AW EH EY IH IY OH

OY AO OW UH AH UW B D DH G L M

N NG R V Y Z/

/3 { A aI aU e eI I i Q oI O

oU U V u b d D g N v j z l= m=

n= r=/

labial /B F M P V/ /b f m p v m=/

fricative /CH DH F JH HH S SH TH V Z ZH/ /tS D f dZ h s S T v z Z/

anterior+ /D DH L N R S T TH Z/ /d D l n r s t T z n= r=/

anterior− /AE AY AW EH EY IH IY OY CH JH

NG SH Y ZH/

/{ aI aU e eI I i oI tS dZ N S

j Z/

dorsal /AA AW OH OY AO OW UH AH UW G

K N NG W/

/A aU Q oI O oU U V u g k n N

w n=/

stop /B CH D G JH K M N NG P T/ /b tS d g dZ k m n N p t m=

n=/

approximant /ER AE AA AY AW EH EY IH IY OH

OY AO OW UH AH UW L R W Y/

/3 { A aI aU e eI I i Q oI O

oU U V u l r w j l= r=/

sibilant /CH JH S SH Z ZH/ /tS dZ s S z Z ts/

nasal /M N NG/ /m n N m= n=/

plosive /B D G K P T/ /b d g k p t/

liquid /L R W Y/ /l r w j l= r=/

silence /SIL/ /#sil#/
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Part-of-speech tags from the Penn Treebank corpus

Table A.3. Lexical category tags from the Penn Treebank Tag Set [73] used for CART pronunciation
modelling.

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition/subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NP Proper noun, singular

NPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PP Personal pronoun

PP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb
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MEDTRANS Corpus Details

Word and phone frequency statistics

Table B.1. Word counts (WC) and pronunciation variant counts (VC) from the MEDTRANS corpus,
subsets A and B.

Rank WC Word VC Examples

1 4,276 [hes] 65 /&/, /& m/, /A m/, /d A/, /@ m/, /A & m/, /m A/, /e h/, /m/

2 3,109 the 32 /D/, /D &/, /D @/, /D I/, /D e/, /D i/, /T @/, /d @/, /d i/

3 2,735 and 46 /&/, /& G/, /& n/, /& n d/, /& n t/, /@ n/, /@ n d/,
/@ n t/, /n/, /n d/

4 2,347 is 12 /@ z/, /I s/, /I z/, /i z/, /z/

5 2,300 of 25 /@ f/, /@ v/, /A v/, /O f/, /Q v/, /V v/, /Q f/, /V f/

6 2,271 a 20 /&/, /2/, /@/, /A/, /Y/, /A Y/, /d 2/, /s m Q l si Y/

7 2,075 -A 21 /&/, /@/, /A/, /A A/, /A h A/, /A m/, /A m A/, /D @/, /Y/

8 1,803 to 23 /T @/, /d @/, /d u/, /t @/, /t O/, /t U/, /t u/

9 1,761 period 19 /p @ r @ d/, /p I r @ d/, /p I r i & d/, /p I r i @ d/,
/p I r i @ t/

10 1,590 was 22 /w @/, /w @ s/, /w @ z/, /w A z/, /w O Z/, /w Q z/, /w V z/

...

99 170 physical 9 /f I z @ k L/, /f I z I g @ l/, /f I z I g L/,
/f I z I k @ l/, /f I z I k L/

100 169 who 2 /A h u/, /h u/

101 164 back 5 /b & d/, /b & g/, /b & k/, /l & k/, /v & k/

102 163 S 3 /@ s/, /I s/, /e s/

103 161 other 8 /A D R/, /O D R/, /Q D R/, /V D 3 r/, /V D @/, /V D @ r/

104 152 regular 26 /r e g @ l @ r/, /r e g @ l R/, /r e g j @ R/,
/r e g j @ l 3 r/

...

999 12 discuss 3 /d I s g @ s/, /d I s g V s/, /d I s k V s/

1,000 12 diagnosed 1 /d 2 @ g n O z d/

1,001 12 deficits 3 /d e f @ s @ t s/, /d e f @ s I t s/, /d e f s @ t s/

1,002 12 culture 2 /k @ l C R/, /k V l C R/

1,003 12 consider 2 /k @ n s I d @ r/, /k @ n s I d R/

1,004 12 consciousness 3 /k A n S @ s n @ s/, /k A n S n @ s/
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Table B.2. List of the 100 most frequent phone confusions observed in the MEDTRANS corpus:
canonical pronunciation (C) and observed pronunciation (O).

# Count C O # Count C O # Count C O # Count C O

1 3,025 d t 26 192 . l 51 101 O A 76 58 V A

2 2,779 @ . 27 192 A @ 52 100 e . 77 56 . b

3 1,388 r R 28 188 . h 53 94 @ N 78 55 & A

4 1,342 . d 29 185 . & 54 92 . z 79 55 @ Y

5 1,183 . t 30 165 Q A 55 91 . e 80 50 . L

6 1,172 n N 31 161 . n 56 91 t . 81 50 U V

7 966 . @ 32 160 . v 57 91 u @ 82 49 O .

8 915 @ I 33 156 n G 58 84 r . 83 48 @ 2

9 752 I @ 34 155 U @ 59 80 . N 84 47 . A

10 633 l L 35 147 A m 60 79 A . 85 47 A V

11 631 . m 36 139 . R 61 78 @ o 86 46 3 e

12 478 O V 37 139 I . 62 73 Q V 87 46 O Q

13 476 @ V 38 137 @ & 63 72 O o 88 45 k .

14 384 O @ 39 137 @ t 64 72 m M 89 43 e i

15 353 d . 40 137 n . 65 68 @ u 90 40 e Y

16 314 A & 41 135 I i 66 67 . O 91 39 V O

17 288 . I 42 125 @ R 67 67 . w 92 39 j .

18 286 . i 43 124 g k 68 67 e @ 93 39 t T

19 251 f v 44 121 . s 69 65 S C 94 38 . u

20 229 . j 45 119 @ A 70 65 s . 95 38 @ r

21 223 @ i 46 119 @ O 71 64 A O 96 37 . p

22 218 @ e 47 114 s z 72 64 n t 97 37 @ 3

23 200 3 . 48 112 . k 73 63 3 @ 98 36 . V

24 199 & @ 49 112 . r 74 62 & . 99 36 I e

25 194 t d 50 112 i . 75 60 & e 100 36 w .
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Transcription label & annotation deviation category statistics

Table B.3. MEDTRANS annotation deviation category distribution – sorted by category.

Cat. A B C ∈ B A ∪ B

# Count [%] Count [%] Count [%] Count [%]

11 1,466 8.18 1,977 8.49 407 9.06 3,850 8.63

12 123 0.69 655 2.81 155 3.45 933 2.09

13 206 1.15 333 1.43 35 0.77 574 1.29

14 376 2.10 288 1.24 40 0.89 704 1.58

15 279 1.56 289 1.24 49 1.09 617 1.38

16 2,011 11.22 3,070 13.18 659 14.67 5,740 12.87

21 323 1.80 327 1.40 67 1.49 717 1.61

22 461 2.57 180 0.77 27 0.60 668 1.50

23 381 2.13 1,612 6.92 166 3.69 2,159 4.84

24 1,770 9.87 498 2.14 127 2.82 2,395 5.37

25 262 1.46 363 1.56 52 1.15 677 1.52

26 1,157 6.45 1,967 8.45 311 6.92 3,435 7.70

27 239 1.33 1,288 5.53 155 3.45 1,682 3.77

28 3,729 20.80 6,254 26.86 1,442 32.11 11,425 25.61

29 1,403 7.83 1,342 5.76 360 8.01 3,105 6.96

31 757 4.22 159 0.68 35 0.77 951 2.13

32 840 4.69 21 0.09 2 0.04 863 1.93

33 83 0.46 79 0.34 12 0.26 174 0.39

34 88 0.49 705 3.03 72 1.60 865 1.94

41 872 4.86 1,076 4.62 179 3.98 2,127 4.77

42 0 0.00 0 0 0 0 0 0

43 101 0.56 0 0 0 0 101 0.23

44 853 4.76 505 2.17 84 1.87 1,442 3.23

45 147 0.82 298 1.28 54 1.20 499 1.12
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Table B.4. MEDTRANS annotation deviation category distribution – sorted by count.

Cat. A Cat. B Cat. C ∈ B Cat. A ∪ B

# Count [%] # Count [%] # Count [%] # Count [%]

28 3,729 20.80 28 6,254 26.86 28 1,442 32.11 28 11,425 25.61

16 2,011 11.22 16 3,070 13.18 16 659 14.67 16 5,740 12.87

24 1,770 9.87 11 1,977 8.49 11 407 9.06 11 3,850 8.63

11 1,466 8.18 26 1,967 8.45 29 360 8.01 26 3,435 7.70

29 1,403 7.83 23 1,612 6.92 26 311 6.92 29 3,105 6.96

26 1,157 6.45 29 1,342 5.76 41 179 3.98 24 2,395 5.37

41 872 4.86 27 1,288 5.53 23 166 3.69 23 2,159 4.84

44 853 4.76 41 1,076 4.62 27 155 3.45 41 2,127 4.77

32 840 4.69 34 705 3.03 12 155 3.45 27 1,682 3.77

31 757 4.22 12 655 2.81 24 127 2.82 44 1,442 3.23

22 461 2.57 44 505 2.17 44 84 1.87 31 951 2.13

23 381 2.13 24 498 2.14 34 72 1.60 12 933 2.09

14 376 2.10 25 363 1.56 21 67 1.49 34 865 1.94

21 323 1.80 13 333 1.43 45 54 1.20 32 863 1.93

15 279 1.56 21 327 1.40 25 52 1.15 21 717 1.61

25 262 1.46 45 298 1.28 15 49 1.09 14 704 1.58

27 239 1.33 14 288 1.24 14 40 0.89 25 677 1.52

13 206 1.15 15 289 1.24 31 35 0.77 22 668 1.50

45 147 0.82 22 180 0.77 13 35 0.77 15 617 1.38

12 123 0.69 31 159 0.68 22 27 0.60 13 574 1.29

43 101 0.56 33 79 0.34 33 12 0.26 45 499 1.12

34 88 0.49 32 21 0.09 32 2 0.04 33 174 0.39

33 83 0.46 43 0 0.00 42 0 0.00 43 101 0.23

42 0 0.00 42 0 0.00 43 0 0.00 42 0 0.00
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Transcriber labelling agreement

Table B.5. Mapping between transcribers Ti and reports for subset C of the MEDTRANS corpus.

Report ID T1 T2 T3 T4 T5 T6 T7 T8 T9

A092054F00037ER X X

A092054F00049ER X X

A092054F00054ER X X

A092054F00066ER X X

A092054F00068ER X X

A092054F93436ER X X X

A092054F93440ER X X

A092054F93443ER X X

A092054F93456AD X X

A092054F93513ER X X X

A092054F93606AD X X

A092054F93613AD X X X

A092054F95170AD X X X

A092054F95212AD X X

G403501F92221CL X X

G403501F94484CL X X

G403501F97030CL X X

G403501F97628CL X X
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