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Abstract

Fluorescence diffuse optical tomography is a rather new optical imaging modality.

The object, which is usually a small animal, is illuminated through a set of light

sources placed on its surface. The light spreads inside the object and excites flu-

orophores which themselves emit photons at a longer wavelength. This secondary

light is recorded by detectors on the boundary. From the knowledge of the light

sources and the boundary measurements, it is sought to reconstruct the distribution

of the fluorophore inside the object.

The reconstruction problem is nonlinear and ill-posed which makes it vulnerable

to noise. In the first part of this thesis the use of nonlinear inversion schemes

together with more advanced regularisation terms as total-variation regularisation

and a method of levelset type will be investigated.

The second part deals with the optimal source and detector placement for a given

target volume which has not been addressed so far. By minimising the redundancy in

the measurements, the best optode locations can be selected and signals originating

outside the target volume are suppressed.

Zusammenfassung

Die Fluoreszenzdiffusionstomographie ist ein optisches Bildgebungsverfahren mit

dessen Hilfe Fluorophorverteilungen im Inneren eines Objekts wie zum Beispiel eines

Kleintieres abgebildet werden können. Die Anregung des Fluorophors erfolgt durch

Lichtquellen, die an der Objektoberfläche angebracht werden. Das Anregelicht bre-

itet sich diffus im Körper aus, wird vom fluoreszierenden Stoff absorbiert, zum Teil

als langwelligeres Licht wieder abgestrahlt und schließlich an der Oberfläche detek-

tiert. Aus der Kenntnis der Lage der Quellen und der Intensität des Sekundärlichtes

kann anschließend die Fluorophorverteilung rekonstruiert werden.

Dieses nichtlineare Rekonstruktionsproblem ist schlecht gestellt und wird von daher

Messrauschen stark beeinflusst. Der erste Teil dieser Dissertation behandelt den

Einsatz nichtlinearer Regularisierungsstrategien wie zum Beispiel “total-variation

regularisation” zur Stabilisierung der Inversion.
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Der zweite Teil befasst sich mit der optimalen Anordnung von Quell- und Empfang-

soptoden für ein vorab definiertes Zielgebiet, ein Problem welches für Fluoreszenz-

tomographie in dieser Art und Weise bisher noch nicht behandelt wurde. Die besten

Optodenpositionen werden durch die Minimierung der Redundanz in den Messdaten

bestimmt. Mit der erhaltenen Konfiguration lassen sich Fluoreszenzquellen außer-

halb des Zielgebietes wirkungsvoll unterdrücken.
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1 Introduction

Aller Anfang ist leicht, und die

letzten Stufen werden am

schwersten und seltensten

erstiegen.

(Johann Wolfgang von Goethe)

The evolution of optical methods in biology and medicine was driven by the urge

of man to understand themselves and their surrounding in tight embrace of tech-

nological possibilities. The investigations have been constituted from simple visual

inspection of bodies with the unaided eye, the investigation of cavities by endoscopic

means to the observation of small structures using microscopy and even tomographic

imaging of cellular layers, by the invention of optical coherence tomography. While

traditional methods are still in use due to their low cost and their ease of application,

dedicated modalities haven been developed to overcome limits and insufficiencies in

order to provide better image quality in terms of resolution or tissue contrast.

Fluorescence diffuse optical tomography (FDOT) is a rather new imaging technology.

The investigated sample, which can be a slice of tissue or a small animal, for example,

is illuminated through a set of light sources placed on the sample’s surface. The

excitation light spreads in the tissue where it is partially absorbed by fluorescent

molecules, so called fluorophores. A part of the absorbed photons are re-emitted

at a longer wavelength and propagate throughout the tissue again before they are

recorded by detectors on the tissue boundary.

A particularly advantageous feature of fluorescence tomography is that the activity

of fluorophores can be influenced by metabolic states or processes, e.g. the oxygena-

tion of the tissue [1, 2], the pH value [3, 4] or the temperature [5]. This enables the

opportunity of functional imaging, i.e., not only the anatomical structures can be

visualised but also physiological states and activities in biological systems.
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1 Introduction

Nowadays, three different measurement principles for fluorescence tomography are

in use which differ according to the type of excitation source and photon detectors in

use: (i) continuous wave (CW) excitation [6], (ii) time-domain methods [7] and (iii)

frequency-domain methods [8, 9]. CW systems employ light sources with constant

intensity for the illumination of the sample. Usually, these systems are less expen-

sive and also easier to implement compared to time- or frequency-domain methods.

Unfortunately, these systems are not sensitive to time-varying processes and cannot

monitor the fluorescence decay time, for example, but acquire only the steady-state,

i.e. they fail to catch certain information from the inspected tissue which can be of

relevance. This problem is circumvented by time-domain methods which measure

the response of the tissue sample to a short excitation pulse and can thus be used

for the determination of the fluorescence half-life. The drawback is the increased

hardware cost for the generation and time-resolved measurement of short light pulses

and the increased difficulty in handling. Frequency-domain setups are a compromise

of CW and time-domain systems. Here the CW excitation intensity is modulated

in a time-harmonic fashion and the amplitude and the phase are measured by the

detectors. While the hardware is more complicated than in CW systems, e.g. due

to the devices for intensity modulation, it is still less expensive than the equipment

required for the generation of short laser pulses. From a signal-theoretic point of

view the frequency-domain system is equivalent to time-domain measurements and

the Fourier transform establishes the connection between both modalities. In this

thesis the focus is on frequency-domain systems.

The spatial resolution of FDOT is rather low. The reason is that photons are scat-

tered many times while traversing the tissue, and thus their trajectories can only

be described in a statistical manner. This is also the origin for the ill-posedness

of the inverse problem, i.e. the diffusive nature of light does not allow a reliable

reconstruction of fine structures and the high spatial frequencies of the fluorophore

concentration, respectively. In order to achieve a stable inversion, one has to use reg-

ularisation methods and add a-priori information during the reconstruction, which

can be prior assumptions about the distribution of the fluorescent dye or the covari-

ance of the measurement data, see e.g. [10].

For the reconstruction of the fluorophore distribution from measurements of the

emitted light, most often linearisations of the forward problem are used in liter-

ature [11, 12]. When the non-linearity of the governing equations is considered,
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1 Introduction

usually quadratic regularisation terms like the L2-norm are applied [13].

Not much work has been done regarding the optimal placement of optodes for flu-

orescence tomography. Up to now, the studies have focused on the influence of the

number of sources and detectors and their distances on the singular values of the

sensitivity matrix, which has to be computed in order to solve the inverse prob-

lem [14, 15]. However, these methods are only able to compare given measurement

setups but do not provide means for the optimal placement of the optodes. Such

a method is desired in practical applications where one is interested in imaging

only a given volume of interest, e.g. a certain organ, and does not care about the

surrounding.

This thesis seeks to partially overcome the previously mentioned limitations. The

full nonlinear nature of the forward problem will be considered for solving the in-

verse problem. Additionally, non-quadratic regularisation methods, namely total-

variation regularisation and a method of levelset type, are investigated to stabilise

the inversion. By using relaxations of the true mathematical formulation, it is pos-

sible to devise implementations that are similar to ordinary L2- and H1-penalties

and can therefore be easily incorporated into existing finite element codes.

For the adapted placement of optodes, a method originally used for the selection of

the most independent measurement configuration in tomographic and microseismic

monitoring is adapted to fluorescence tomography. This technique also allows one

to define a target region prior to the selection of the optode positions and thus bias

the measurement setup to this region. This is useful for an increased sensitivity in

the target volume and to suppress off-focus signals as will be demonstrated later

on.

The outline of this thesis is as follows: The mathematical description for light prop-

agation in tissue is introduced in chapter 2. Then, chapter 3 deals with the recon-

struction of fluorophore distributions from the knowledge of the light sources and the

boundary measurements. In chapter 4 different quadratic and non-quadratic regu-

larisation methods for the inverse problem are studied. The adaptive placement of

optodes, given a volume of interest, is described in chapter 6. Finally, concluding

remarks and an outlook can be found in chapter 7.
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2 Forward model

In der Schule haben wir

gelernt, dass Lehrerwissen

absolutes Wissen ist. Doch

Wissenschaft kann niemals

absolut sein. Sie ist die Kunst

der Annäherung.

(Frank Schätzing)

2.1 Models for light propagation

The forward model is the mathematical description of light propagation inside the

tissue. In order to achieve physically correct models, it is necessary to incorpo-

rate the optical properties of tissue and light as well as the light-tissue interaction.

Depending on the context, interesting properties of light are the intensity, the wave-

length, the polarisation, the speed and the direction of propagation. The most

important interaction processes with biological material are absorption and scatter-

ing. The first one describes the conversion of photon energy into other forms of

energy, for example the excitation of electrons or vibrational energy of molecules,

while the latter is the deflection of the photon out of its original trajectory into a

new direction.

Monte Carlo methods: Monte Carlo (MC) methods for solving the forward model

have a rather long tradition in optics. In the most simple form, they simulate,

in every run, the path of a single photon throughout the tissue. As most of the

physical processes like the change of the polarisation state or the absorption of

photons by electron excitation are stochastic in their nature, MC methods are well

suited to model these effects. Furthermore, it is comparatively easy to incorporate
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2 Forward model

non-homogeneous tissue and concomitant phenomena as reflection and refraction at

internal boundaries due to varying indices of refraction.

The drawback of MC methods is their slow convergence which is proportional to

the square root of the number of runs. In order to achieve reliable results for three

dimensional objects, it is often necessary to simulate the propagation of hundreds

of thousands or millions of photons. Furthermore, the convergence is poor when

a certain physical process has a very low probability, say it occurs only once in

one thousand trials. This has led to a series of strategies for speeding up the com-

putation, for example, simulating photon packets rather than individual particles

and randomly terminating photon packets that underwent too many absorption

events [16]. Still, the relatively high computational effort limits the applicability of

Monte Carlo methods for solving the inverse problem.

Transport equation: A deterministic solution for light propagation can be found in

Boltzmann’s transport equation (BTE) which is also frequently called the radiative

transport equation. Rather than modelling each particle independently, which can

be done with Monte Carlo methods, the BTE deals with an ensemble of photons in

an infinitesimal volume. To be more precise, the BTE is a balance equation for the

number of photons per unit volume (i.e. the photon density) Φ(x, s, t) at a spatial

location x travelling into an infinitesimal solid angle around a direction s at a time

instance t. The transport equation reads

1

ν

∂Φ(x, s, t)

∂t
+ s · ∇Φ(x, s, t) + (µa(x) + µs(x)) Φ(x, s, t)

= qint(x, s, t) + µs(x)

∫
SN−1

Θ(s, s′)Φ(x, s′, t) ds′ in Ω, (2.1)

together with the boundary condition

Φ(x, s, t) = qbc(x, s, t) ∀s : s · n < 0 on ∂Ω, (2.2)

where ν is the speed of light in the tissue, µa and µs are the absorption and scattering

coefficients, respectively, and Θ(s, s′) is the scattering phase function which states

the probability that a photon travelling in direction s′ will be deflected into direction

s. In this equation, SN−1 is the surface of the N -dimensional sphere and thus the

5



2 Forward model

integral is taken over all possible directions. The term qint models sources inside the

domain.

The left-hand side of equation (2.1) models the decrease in photon density due to

movement and absorption, while the right-hand side incorporates the photon gain

caused by scattering and an internal source.

The boundary condition imposes restrictions on the solution only for inward-pointing

directions, i.e. for all s with s · n < 0 where n is the outward-pointing unit normal

of the domain. It states that no light can enter the domain from the outside except

at locations where a boundary source is present, i.e. where qbc(x, s, t) 6= 0.

A limitation of the transport equation is that it cannot handle wave effects. As a

consequence, the wavelength of the light must be much smaller than the dimensions

of the structures in the domain [17]. Furthermore, varying indices of refraction are

not included in equation (2.1) but can be incorporated.

Despite these insufficiencies, the transport equation would be well suited for biomed-

ical optics. It is able to handle many different types of tissue whether they are highly

scattering like muscle, as absorbing as the liver or as transparent as liquor, for ex-

ample. Furthermore, the boundary equation is physically meaningful.

The reason why the BTE is frequently avoided is the high computational effort

required in order to achieve an accurate solution. The photon density Φ(x, s, t) has

to be discretised in the spatial and angular domain which requires five variables for

a 3D problem (three coordinates and two angles). If too little angular directions are

chosen for the discretisation, the resultant photon field favours propagation along

these directions resulting in a star-like pattern as can be seen in 2.1 where one

would expect a radial symmetric distribution instead. To illustrate the influence

of the angular discretisation on the computational effort, imagine a rather coarse

discretisation of only 32 divisions for both the azimuth and the inclination. This

results already in 1024 directions which has to be multiplied by the number of mesh

points of the spatial discretisation.

Diffusion approximation: Due to the shortcomings of the previously described

models, the most common description for photon migration is the diffusion approx-

imation. This is a reduced form of the BTE which first expands the direction-

6



2 Forward model

Figure 2.1: Photon distribution (logarithmic) for a homogeneous medium with ab-
sorption µa = 0.01 mm−1 and scattering µs = 5 mm−1. The angular do-
main was discretised with eight directions (left) and 24 directions (right).
The star-like light propagation when using too little directions is clearly
visible in the left image. The images are by courtesy of Matthias Schlott-
bom.

dependent quantities Φ, Θ, qint and qbc into spherical harmonics. Then, all spherical

harmonics except the first one are neglected, i.e. only the isotropic propagation of

photons is considered. Some additional constraints are imposed on the photon flux

and the scattering phase function Θ. A thorough derivation is found in the review

article [18]. The model is valid in the regime where photon propagation is diffusive,

which is the case in tissues which are much more scattering than absorbing, at a

sufficient distance from the source. Problems arise if the tissue is either strongly

absorbing such as in the liver or nearly transparent as in liquor. Furthermore, the

model is inaccurate near the light source, where the photon propagation is not yet

diffusive due to the small number of scattering events, and at places where the

optical properties jump which might be the case at the boundary of organs, for

example [17].

In its time-harmonic form, the diffusion approximation is a partial differential equa-

7



2 Forward model

tion (PDE) which reads

−∇ · (κ(x)∇ϕ(x)) +

(
µa(x) +

iω

ν

)
ϕ(x) = qint(x), in Ω, (2.3)

%ϕ(x) + κ(x)n · ∇ϕ(x) =

{
% qbc(x),

0,

on Γbc,

on ∂Ω \ Γbc,
(2.4)

where ϕ is the photon density, κ = (N (µ′s + µa))
−1 the diffusion coefficient of the

tissue, µ′s the reduced scattering coefficient and µa the absorption coefficient. ω

is the modulation frequency of the excitation light source with the special case of

ω = 0 s−1 for continuous wave excitation with a constant intensity. The light injected

can be modelled by an internal source qint which is frequently used for collimated

beams or a boundary source qbc suitable for spatially extended sources on a part Γbc

of the boundary ∂Ω. % is a reflection coefficient for the incorporation of reflections

at the boundary ∂Ω of the domain Ω due to changes in the index of reflection.

2.2 Diffusion approximation for fluorescence

tomography

A straightforward way to apply the diffusion approximation to the field of fluores-

cence tomography is to use a two state model [13, 19]: one equation describes the

propagation of the excitation light which is injected at the surface of the sample and

another one is used for the propagation of light emitted by the fluorophore inside

the object. The two equations are coupled by a term that converts light from the

excitation wavelength to the emission wavelength. In reality, a fluorophore exhibits

a band-limited continuous emission spectrum leading to a continuous distribution

of the fluorescence wavelength. In favour of simplicity, the continuous spectra are

neglected and only two discrete wavelengths are considered.

The forward model for fluorescent tomography consists of two coupled PDEs and

has the form

−∇ · (κx∇ϕx) + µxϕx = qint, in Ω, (2.5)

−∇ · (κm∇ϕm) + µmϕm = γcϕx, in Ω, (2.6)

8



2 Forward model

with the boundary conditions

%xϕx + κxn · ∇ϕx =

{
%xqbc,

0,

on Γbc,

on ∂Ω \ Γbc,
(2.7)

%mϕm + κmn · ∇ϕm = 0, on ∂Ω, (2.8)

where ϕi, i ∈ {x,m} denote the complex amplitudes of the excitation (x) and the

emitted (m) light. If it is needed to emphasise the dependence of the photon densities

on the source, the notation ϕi(q) will be used.

The diffusion and (complex) absorption coefficients have to be extended to incorpo-

rate the dependence on the fluorophore concentration c. They are defined by

κi(x) =
1

N (µa,i(x) + µ′s,x(x) + εic(x))
, (2.9)

µi(x) = µa,i(x) + εic(x) +
iω

ν
, (2.10)

with i ∈ {x,m}. In these equations, µa,i serves as background absorption which is

increased by the product εic when a fluorophore is present. εi is the molar extinction

coefficient of the fluorophore at the respective excitation or emission wavelength.

This quantity links the fluorophore’s concentration and its absorption coefficient.

The scalar conversion factor on the right-hand side of (2.6) is defined as

γ =
η

1− iωτ
εx. (2.11)

Here, η is the quantum yield of the fluorophore (i.e. the ratio of the absorbed photons

to the ones emitted), and τ is the fluorescence life-time. According to (2.6), many

photons will be emitted at locations where sufficient absorption is present at the

excitation wavelength (the product εxc(x)) and where the conversion efficiency η is

high. It is straightforward to generalise this quantity by the assumption that the

fluorescence life-time and/or the quantum yield are spatially variant, i.e. τ → τ(x)

and η → η(x).

A measurement in fluorescence tomography is defined as the flux of the photons

leaving the domain at a detector site. The function d(s), s ∈ ∂Ω, incorporates the

detector’s aperture and its transfer characteristics. In the following, it is assumed

9



2 Forward model

to be real-valued but it can be extended to a complex-valued function without

problems. With this, the definition of the measurement can be written as

−
∫
∂Ω

κmn · ∇ϕmd ds
(2.8)
= %m

∫
∂Ω

ϕmd ds. (2.12)

For a tomographic measurement process, the object under investigation is illumi-

nated with ns light sources from different angles and all nd detectors are read out

simultaneously. The measurements can be arranged in a matrixM where the ij-th

entry is the reading of the i-th detector when the sample is illuminated by the j-th

source, i.e.

Mij := %m

∫
∂Ω

ϕm(qj)di ds. (2.13)

Finally, we can introduce the forward operator F that relates a concentration dis-

tribution c to the matrix of measurements M, i.e.

F : Cad ⊂ L2(Ω)→ Cnd×ns

c 7→ M := [Mij]1≤i≤nd,1≤j≤ns, (2.14)

where the admissible set Cad of fluorophore is defined as

Cad := {c ∈ L2(Ω) : 0 ≤ c ≤ c in Ω}, (2.15)

i.e. the upper concentration is bounded by c > 0 which in turn implies that κi > 0

and µi <∞. For a mathematical discussion on the properties of the forward operator

see [20] and the references therein. We use the notation Fij(c) to denote the mapping

of the fluorophore concentration c to the i-th detector reading when the sample is

excited by the j-th source.

2.3 Discretisation

There are various possibilities for the discretisation of the diffusion approximation.

Two of those which have been applied to biomedical optics are the finite difference

method [9] and the finite element method [13]. In this thesis, the focus is put

10



2 Forward model

on the latter. The reason is that finite element methods allow modelling complex

anatomical geometries. Also, different boundary conditions of Dirichlet, Neumann

or Robin type can be treated in a consistent manner.

A standard finite element method [21] with tetrahedral elements is chosen for the

discretisation of the system (2.5)–(2.8) of partial differential equations. The photon

fields ϕi, the associated sources qint and qbc and the detectors d are discretised with

piecewise linear basis functions. Also, the different optical parameters κi, µi as well

as the fluorophore concentration c are expanded in the same set of basis functions.

In the following, the construction of the finite element system shall be explained in

short. Let gT be the indices of the four nodes spanning the tetrahedron T and ψ

the linear basis functions on the finite element mesh. Accordingly, gF shall be the

three node indices spanning a face F of a tetrahedron on the outer boundary ∂Ω of

the computation domain Ω.

The 4 × 4 contributions of the tetrahedron T to the stiffness and the mass matrix

are then given by

KT
ij(κ) :=

∫
T

κ∇ψgT (i) · ∇ψgT (j)dx, and (2.16)

MT
ij (µ) :=

∫
T

µψgT (i)ψgT (j)dx 1 ≤ i, j ≤ 4. (2.17)

The result is similar for the 3× 3 mass matrix of the boundary term which is

BF
ij(%) := %

∫
F

ψgF (i)ψgF (j)dx 1 ≤ i, j ≤ 3. (2.18)

The assembled finite element system is of the form

[K(κx) +M(µx) +B(%x)]ϕx = q, (2.19)

[K(κm) +M(µm) +B(%m)]ϕm = M(γc)ϕx. (2.20)

In this system K, M and B are the assembled stiffness, mass and boundary mass

matrices, vx and vm are the photon fields at the excitation and emission wavelength

and q is the source term including both the internal and the boundary source. The

11



2 Forward model

measurement Mij of the i-th detector di and the j-th source qj is just the inner

product

Mij := d>i vm(qj). (2.21)

2.4 Examples

A showcase result of the photon density distribution in highly scattering material is

given in figure 2.2. The photon fields were simulated on a disc with a diameter of

30 mm. The optical properties assigned to the phantom have been compiled from

literature [22, 23, 24, 25]. Their values are listed in table 2.1. The modulation

frequency is set to ω = 0 s−1 which is—mathematically seen—the more difficult case

as only the real part of the data is available for the inverse problem later on.

Table 2.1: Background optical parameters

State equation µ′s µa,i ε ρ
mm−1 mm−1 mm−1 m−1

Excitation 0.275 0.036 8.35× 103 0.2
Emission 0.235 0.029 2.81× 103 0.2

Inside the disc is a circular fluorescent object with a concentration of 1× 10−2 µm.

Although the emission fields in figure 2.2 have visually nearly the same appearance

regardless of the source position, the peak amplitude of the emitted field is strongly

dependent on the distance of the source to the inclusion. From this dependence,

the distribution of the fluorophore can be reconstructed which is shown in the next

chapter.
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Figure 2.2: Simulation of the photon densities ϕx (top row) and ϕm (bottom row)
due to three different boundary sources positioned at angles of 11.25◦

(left), 56.25◦ (middle) and 146.25◦ (right). The colour encodes the log-
arithm of the amplitude of the photon densities.
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3 Inverse problem

Ich behaupte aber, daß in jeder

besonderen Naturlehre nur so

viel eigentliche Wissenschaft

angetroffen werden könne, als

darin Mathematik anzutreffen

ist.

(Immanuel Kant)

The inverse problem seeks to reconstruct the distribution of a fluorophore from the

measurement of light intensities at the emission wavelength on the boundary of the

object. There are various approaches to solving this problem and a good overview

about reconstruction methods applied for fluorescence tomography can be found in

[19].

3.1 Gauß-Newton algorithm

We start from a boundary measurement Mδ which is usually perturbed by noise

from various origins, e.g. detector noise, discretisation errors, modelling errors and

so on. δ is a bound for the deviation of the measured intensity to the true intensity

M = F (c) such that

‖Mδ −M‖ ≤ δ. (3.1)

The norm over the measurement space Cnd×ns is induced by the scalar product

〈A,B〉 =
∑
ij

AijBij (3.2)
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3 Inverse problem

Given a set of boundary measurementsMδ, the inverse problem is to find a suitable

fluorophore concentration c ∈ Cad such that

F (c) =Mδ. (3.3)

This constitutes a nonlinear ill-posed problem [20]. To deal with the nonlinearity,

Newton type methods can be used. Starting with some initial guess c0, a better

approximation ck+1 for the fluorophore concentration can be found by solving

F ′(ck)(ck+1 − ck) =Mδ − F (ck). (3.4)

F ′(c)h is the derivative of the forward operator F into direction h evaluated for a

given concentration c. Except for the special, and highly unlikely, case where the

number of measurements is exactly the same as the number of degrees of freedom

for the concentration, (i.e. the number of basis function used in the approximation

of Cad), F
′ is not directly invertible and thus the equation is not well-formed.

Due to these shortcomings, a least-squares minimisation with a Tikhonov-type reg-

ularisation is considered for a stable inversion. The objective function which is to

be minimised takes the form

Lα(c) := 1
2

∥∥F (c)−Mδ
∥∥2

+ αR(c). (3.5)

In this functional R(c) is a regularisation functional which stabilises the inversion by

penalising unlikely (or undesired) concentration distributions c. The regularisation

parameter α is used to balance between the penalisation of the data misfit by the

first term in equation (3.5) and the stability of the inversion. In the extreme case

α = 0 the reconstructed concentration will fit exactly to the measured data which

means that F (c) also incorporates the measurement noise which is of course not

desired. The other extreme is to choose a very large regularisation parameter with

the consequence that the inversion is very stable but F (c) will not at all reflect the

measured intensities.

The first-order optimality condition for (3.5) is formally1 given by

Re
〈
F ′(c)h, F (c)−Mδ

〉
+ αR′(c)h = 0 ∀h ∈ L2(Ω). (3.6)

1Amongst others, it has to be ensured that the updated concentration c+ h is part of Cad for a
mathematically correct treatment.
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3 Inverse problem

Here 〈·, ·〉 is the standard inner product on the space of measurements Cnd×ns and Re

denotes the real part of the following expression. This is again a nonlinear problem

in the concentration c, so Newton’s method can be used once more which leads to

the iteration scheme

Re
〈
F ′′(ck)(h, ck+1 − ck), F (ck)−Mδ

〉
+ Re 〈F ′(ck)h, F ′(ck)(ck+1 − ck)〉

+ αkR′′(ck)(h, ck+1 − ck) = Re
〈
F ′(ck)h,Mδ − F (ck)

〉
− αkR′(ck)h, (3.7)

where we have linearized R around ck. Note that the regularisation parameter can

vary in every iteration which is denoted as αk. The idea is to start with a large

regularisation parameter in order to find a stable approximation to the solution of

the inverse problem. In later iterations, when the approximate solution is near the

optimum, smaller parameters can be utilized.

When the Hessian F ′′(ck) is neglected, we arrive at the Gauß-Newton approxima-

tion

Re 〈F ′(ck)h, F ′(ck)(ck+1 − ck)〉+ αkR′′(ck)(h, ck+1 − ck)

= Re
〈
F ′(ck)h,Mδ − F (ck)

〉
− αkR′(ck)h, (3.8)

which is now linear in the update step ∆ck := ck+1 − ck. It turns out that the

Hessian of the regularisation term R′′ can be nasty to compute especially in the

case of nonlinear methods like total-variation regularisation, for example. Thus,

we choose to approximate it by a computationally more efficient version R̃′′. By

introducing F ′∗, the adjoint of the derivative of the forward operator, the final

iterations are of the form

Re
(
F ′∗(ck)F

′(ck) + αkR̃′′(ck)
)

∆ck = ReF ′∗(ck)
(
Mδ − F (ck)

)
− αkR′(ck) (3.9)

This is known as the iteratively regularised Gauß-Newton algorithm and is treated

in detail elsewhere [26, 27, 28].
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3.2 Sensitivity

In the previous section the derivative F ′ of the forward operator F was introduced.

In the following we define this derivative—also known as the sensitivity or the Ja-

cobian—and discuss an efficient implementation.

First, we are interested in how the change in the fluorophore distribution is reflected

in the measurements. To this end, we start from the forward system defined in (2.5)–

(2.8). Next, we consider a small perturbation th with t ∈ R and c+ th ∈ Cad in the

fluorophore concentration c, i.e. the concentration changes to c + th. This change

will give rise to perturbed optical parameters κ̃i := κi(c+ th) and µ̃i := µi(c+ th),

i ∈ {x,m}, and further also to perturbed photon fields ϕ̃i:

−∇ · (κ̃x∇ϕ̃x) + µ̃xϕ̃x = qint (3.10)

−∇ · (κ̃m∇ϕ̃m) + µ̃mϕ̃m = γ(c+ th)ϕ̃x. (3.11)

The absorption coefficients are linear in c and the perturbed absorption coefficients

are therefore

µ̃i = µa,i + εi(c+ th) +
iω

ν
, i ∈ {x,m}. (3.12)

The diffusion coefficients depend on the concentration c in a nonlinear manner.

Thus, a Taylor expansion around c of the form

κ̃i = κi(c+ th) = κi(c)− κ2
i (c)Nεith+O(t2‖h‖2), i ∈ {x,m}, (3.13)

is used. The second order term O(t2‖h‖2) will vanish eventually when taking the

limit t → 0 later on which is why this term is neglected right now. The change in

the photon fields is the difference between the perturbed and unperturbed fields.

This leads to the equations

−∇ · (κx∇(ϕ̃x − ϕx)) + µx(ϕ̃x − ϕx) =−∇ ·
(
κ2
xNεxth∇ϕ̃x

)
+ (µx − µ̃x)ϕ̃x,

(3.14)

−∇ · (κm∇(ϕ̃m − ϕm)) + µm(ϕ̃m − ϕm) =−∇ ·
(
κ2
mNεmth∇ϕ̃m

)
+ (µm − µ̃m)ϕ̃m

+ γc(ϕ̃x − ϕx) + γthϕ̃x, (3.15)
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3 Inverse problem

and after some reordering and division by t one obtains

−∇ ·
(
κx∇

(
ϕ̃x − ϕx

t

))
+ µx

(
ϕ̃x − ϕx

t

)
=−∇ ·

(
κ2
xNεxh∇ϕ̃x

)
− εxhϕ̃x,

(3.16)

−∇ ·
(
κm∇

(
ϕ̃m − ϕm

t

))
+ µm

(
ϕ̃m − ϕm

t

)
=−∇ ·

(
κ2
mNεmh∇ϕ̃m

)
− εmhϕ̃m

+ γc

(
ϕ̃x − ϕx

t

)
+ γhϕ̃x. (3.17)

The same procedure is applied to the boundary conditions given in equations (2.7)–

(2.8) which results in the expression

%i

(
ϕ̃i − ϕi

t

)
+ κin · ∇

(
ϕ̃i − ϕi

t

)
= κ2

i Nεihn · ∇ϕ̃i, i ∈ {x,m}. (3.18)

Finally, we compute the limit t→ 0. Here the assumption has to be made that the

photon fields depend continuously on c such that ϕ̃i = ϕi(c + th)
t→0→ ϕi(c). The

infinitesimal changes in the photon fields, induced by a concentration perturbation

h, are abbreviated by

wi := lim
t→0

ϕ̃i − ϕi
t

, i ∈ {x,m}. (3.19)

The result is a new system of coupled partial differential equations which is called

the sensitivity system. It has the form

−∇ · (κx∇wx) + µxwx =−∇ ·
(
κ2
xNεxh∇ϕx

)
− εxhϕx, in Ω, (3.20)

−∇ · (κm∇wm) + µmwm =−∇ ·
(
κ2
mNεmh∇ϕm

)
− εmhϕm

+ γcwx + γhϕx, in Ω, (3.21)

with the boundary conditions

%xwx + κxn · ∇wx =κ2
xNεxhn · ∇ϕx, on ∂Ω, (3.22)

%mwm + κmn · ∇wm =κ2
mNεmhn · ∇ϕm, on ∂Ω. (3.23)

Based on the definition of the measurement in (2.13), the perturbed measurement
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3 Inverse problem

is given by

M̃ij = −
∫
∂Ω

(
κm − κ2

mNεmth
)
n · ∇ϕ̃m(qj)di ds (3.24)

and consequently the change in the measurement is

M′
ij : = lim

t→0

M̃ij −Mij

t

= −
∫
∂Ω

κmn · ∇wm(qj)di ds+

∫
∂Ω

κ2
mNεmhn · ∇ϕm(qj)di ds

= %m

∫
∂Ω

wm(qj)di ds, (3.25)

which is just the integral of the change in the photon fields over the detector aperture

defined by di, a result which could also be deduced intuitively.

Given a perturbation h, the sensitivity system (3.20)–(3.23) has to be solved for

every source qj, j = 1, . . . , ns, which enters the system via the photon fields ϕx

and ϕm. Then, the induced change in the measurements can be evaluated for every

detector di, i = 1, . . . , nd, using the representation (3.25). Thus, one arrives at a

mapping from the perturbation h around the current distribution c to the variation

in the detector recordings which is just the directional derivative F ′(c)h.

The sensitivity F ′ maps a given perturbation h to the change in the measurements.

In order to solve the inverse problem, the opposite is required, i.e. one can compute

the difference between the predicted detector readings F (c) and the true measure-

ment matrix Mδ and aims to deduce the perturbation h which caused this change.

After discretisation, the number of basis functions for the admissible fluorophore

space Cad is finite. Therefore, it would be possible (at least in principle) to solve

the system (3.20)–(3.23) for basis function h ∈ L2(Ω). The outcome is a tensor with

dimension nd × ns × nc or a matrix of size (nd · ns) × nc where nc is the number

of degrees of freedom for Cad. The sought-after perturbation h can be obtained

after a matrix inversion. Obviously it is a very time-consuming task to solve one

PDE system for every basis function. This motivates the introduction of the adjoint

system to devise an efficient strategy for the assembly of the sensitivity matrix.
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3.3 Adjoints

The first step is to re-write the sensitivity system (3.20)–(3.23) in a weak form.

The equations for wx and wm for a certain source qj are tested with ψx and ψm,

respectively, which gives∫
Ω

κx∇wx · ∇ψxdx+

∫
Ω

µxwxψxdx+ %x

∫
∂Ω

wxψxds

=

∫
Ω

κ2
xNεxh∇ϕx · ∇ψxdx−

∫
Ω

εxhϕxψxdx (3.26)∫
Ω

κm∇wm · ∇ψmdx+

∫
Ω

µmwmψmdx+ %m

∫
∂Ω

wmψmds−
∫

Ω

γcwxψmdx

=

∫
Ω

κ2
mNεmh∇ϕm · ∇ψmdx−

∫
Ω

εmhϕmψmdx+

∫
Ω

γhϕxψmdx (3.27)

So far, the test functions ψx, ψm are arbitrary. Now, they will be fixed through

the requirement that equation (3.25) and the sum of the left-hand sides of the

equations (3.26)–(3.27) should be equal. The reason for this requirement is that it

will finally lead to an efficient formulation of the sensitivity system, i.e. the choice

of the test functions is motivated by the outcome of the following calculations. The

equality requirement stated previously reads∫
Ω

κm∇wm · ∇ψmdx+

∫
Ω

µmwmψmdx+ %m

∫
∂Ω

wmψmds−
∫

Ω

γcwxψmdx,

+

∫
Ω

κx∇wx · ∇ψxdx+

∫
Ω

µxwxψxdx+ %x

∫
∂Ω

wxψxds
!

= %m

∫
∂Ω

wmdi ds, (3.28)

which is after one more partial integration

−
∫

Ω

∇ ·
(
κm∇ψm

)
wmdx+

∫
Ω

µmwmψmdx−
∫

Ω

γcwxψmdx

+ %m

∫
∂Ω

wmψmds+

∫
∂Ω

κmn · ∇ψmwmds−
∫

Ω

∇ ·
(
κx∇ψx

)
wxdx+

∫
Ω

µxwxψxdx

+ %x

∫
∂Ω

wxψxds+

∫
∂Ω

κxn · ∇ψxwxds = %m

∫
∂Ω

wmdi ds. (3.29)

This equation has to be fulfilled for every wx, wm so it is the weak form of the
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system

−∇ · (κm∇ψm) + µmψm = 0 in Ω (3.30)

−∇ · (κx∇ψx) + µxψx = γcψm in Ω (3.31)

%mψm + κmn · ∇ψm = %mdi on ∂Ω (3.32)

%xψx + κxn · ∇ψx = 0 on ∂Ω, (3.33)

which is the adjoint system to the forward system (2.5)–(2.8). We note that this

adjoint system has to be solved in reverse order: The detector is the source for

the adjoint emission photons ψm which propagate through the tissue. Where a

fluorophore is present, the absorbed emission photons will be converted in part to

photons at the excitation wavelength, which in turn spread through the tissue again.

Thus, one can say that the adjoint system “reverses” the physical process of light

propagation. We write ψx(di) and ψm(di) to emphasize the dependence of the adjoint

fields on the detector di.

Finally, we can replace the left-hand side of (3.28) by the right-hand sides of (3.26)–

(3.27). Then the sensitivity for the ij-th measurement is given by

M′
ij =%m

∫
∂Ω

wm(qj)di ds

=

∫
Ω

κ2
xNεxh∇ϕx(qj) · ∇ψx(di)dx−

∫
Ω

εxhϕx(qj)ψx(di)dx

+

∫
Ω

κ2
mNεmh∇ϕm(qj) · ∇ψm(di)dx−

∫
Ω

εmhϕm(qj)ψm(di)dx

+

∫
Ω

γhϕx(qj)ψm(di)dx. (3.34)

Instead of the cumbersome assembly of the sensitivity matrix described in the direct

approach at the end of 3.2, we have a much more powerful method now. It suffices

to solve the forward problem (3.20)–(3.23) once for every source qj, j = 1, . . . , ns,

and the adjoint problem (3.30)–(3.33) once for every detector di, i = 1, . . . , nd. The

sensitivity matrix can then be assembled using the representation (3.34). With this

approach only (ns + nd) systems of partial differential equations have to be solved

instead of solving one PDE system per basis function as in the direct approach.

The only quantity left for explanation in equation (3.9) is the adjoint sensitivity F ′∗.
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It is defined through the equality of the inner products

〈F ′(c)h, r〉 !
= 〈h, F ′∗(c)r〉 . (3.35)

The inner product on the left-hand side is over the measurement space Cnd×ns while

the one on the right-hand side is the one induced by the L2 function space. Writing

down the inner product on the left-hand side and using (3.34) results in

∑
ij

%m

∫
∂Ω

wm(qj)di ds rij

=
∑
ij

∫
Ω

h
[
κ2
xNεx∇ϕx(qj) · ∇ψx(di)− εxϕx(qj)ψx(di)

+ κ2
mNεm∇ϕm(qj) · ∇ψm(di)− εmϕm(qj)ψm(di)

+ γϕx(qj)ψm(di)
]
rij dx, (3.36)

following that the functional F ′∗(c) can be identified with the complex conjugate of

the expression in the square brackets.

3.4 Discretisation

The adjoint system is discretised in the same manner as the forward model in 2.3.

The finite element system has the form

[K(κm) +M(µm) +B(%m)]ψm = d, (3.37)

[K(κx) +M(µx) +B(%x)]ψx = M(γc)ψm, (3.38)

i.e. the same structure is obtained as for the forward system with the notable ex-

ceptions that (i) the order of the excitation and emission matrix is reversed and (ii)

the complex coefficients µx, µm and γ have to be conjugated.

The sensitivity matrix F ′(c) is of size (nd · ns) × nc. The action of the ij-th row,
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1 ≤ i ≤ nd, 1 ≤ j ≤ ns, on a parameter perturbation h ∈ Rnc can be written as

F ′ijh := −ψm(di)
>K(κ′mh)ϕm(qj)− ψm(di)

>M(µ′mh)ϕm(qj)

− ψx(di)>K(κ′xh)ϕx(qj)− ψx(di)>M(µ′xh)ϕx(qj) + ψm(di)
>M(γh)ϕx(qj),

(3.39)

where κ′x, κ
′
m, µ′x and µ′m are the derivatives of the coefficients of the governing

equations with respect to the concentration c. For an efficient evaluation, the dif-

fusion coefficients are projected onto the finite element space of piecewise constant

functions prior to the computation of the derivative. This is not needed for the

absorption parameters as they are linear in the concentration. For a finite element

T , the derivatives are given by the expressions

κ′i,T = −Nεi

(
1

4

4∑
j=1

κi,gT (j)

)2

and µ′i = εi, i ∈ {x,m}. (3.40)

The discretized adjoint derivative F ′∗(c) is another matrix of size nc × (nd · ns).
Using (3.35) it is realised as

F ′∗(c) = M(1)−1F ′
>

(c), (3.41)

where the mass matrix M(1) incorporates the change of the underlying spaces used

for the inner products.

3.5 Examples

An example of the appearance of the adjoint fields for the same circular perturbation

as in figure 2.2 and three different detector positions is shown in figure 3.1. As the

PDE system is similar to the forward system, the appearance of the result is also

similar.

The sensitivity pattern for chosen source and detector locations is shown in figure 3.2.

One often refers to a banana-shape when characterising the appearance of these

“sensitivity fields”. A prototype example of this shape can be seen in the second

column of the last row.

23



3 Inverse problem

-0.6

-1

-1.4

-1.8

-2.2

-2.6

-0.6

-1

-1.4

-1.8

-2.2

-2.6

-0.6

-1

-1.4

-1.8

-2.2

-2.6

-4

-4.4

-4.8

-5.2

-5.6

-4.6

-5

-5.4

-5.8

-6.2

-5

-5.4

-5.8

-6.2

-6.6

Figure 3.1: Distribution of the logarithm of the adjoint fields ψm (top row) and ψx
(bottom row) due to three different detector positions at angles of 33.75◦

(left), 78.75◦ (middle) and 168.75◦ (right).

One notices that the magnitude of the sensitivity fields drops with increasing sen-

sor/detector separation. Therefore, the signal of adjacent source/detector pairs is

at least an order of a magnitude larger than those stemming from transillumination

measurements with opposing optodes.

The measurement of an optode pair is the volume integral of the fluorophore concen-

tration weighted by the corresponding sensitivity. Because the sensitivity is quite

smooth due to the diffusive nature of photon propagation in highly scattering media,

every measurement will contain information from a considerable fraction of the total

volume. Thus, it is immediately clear that the resolution of fluorescence tomography

is rather poor. This is also the source of the ill-posedness of the inverse problem

which makes the use of regularisation methods mandatory. Possible choices for the

regularisation terms are treated in the next chapter.
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Figure 3.2: Logarithm of the rows of the sensitivity matrix for different source and
detector locations. For every sensitivity field the corresponding source
is displayed in the first row and the associated detector in the column
farthest left.
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Die Rechenautomaten haben

etwas von den Zauberern im

Märchen. Sie geben einem

wohl, was man sich wünscht,

doch sagen sie einem nicht,

was man sich wünschen soll.

(Norbert Wiener)

In a typical fluorescence tomography setup one has more degrees of freedom, i.e.

more voxels in the computation domain, than measurements. So the reconstruction

of the fluorophore concentration c is underdetermined. Therefore, one can tune

the concentration in the voxels in such a way that the data misfit ‖F (c) −M‖ is

zero. Then the concentration c would not only reflect the intensity measurements

but also the noise in them. In fact, there are even infinitely many possibilities

for a concentration distribution with a vanishing data misfit. See the book by

Tarantola [29] for a more rigorous discussion of this problem.

Obviously, one needs to select a suitable fluorophore distribution c from all possible

ones. In order to do so, one has to bring a-priori information into the reconstruc-

tion algorithm. One possibility to do so is through the choice of the regularisation

functional R in equation (3.5).

The following chapter is devoted to the introduction of quadratic and nonquadratic

regularisation terms and a comparison of the resultant reconstructions.
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4.1 Quadratic regularisation terms

The most often used regularisation term is the L2 norm of the concentration. This

term penalises large concentrations and, thus, favours lower concentrations in the

whole domain. The dominance of such a penalty in many applications is not due to

its physical meaning but rather due to its simplicity and speed, both in implemen-

tation and evaluation. The regularisation term and its derivatives are

R(c) = 1
2
‖c‖2, R′(c) = c, R′′(c) = I, (4.1)

where I is the identity operator.

When the initial concentration is not c ≡ 0, i.e. it is not uniformly zero everywhere,

but one can a-priori provide a better guess c0, it is advantageous to penalise the

distance to this suggestion through the usage of the regularisation term

R(c) = 1
2
‖c− c0‖2. (4.2)

Another possibility is to penalise the gradient of the reconstructed fluorophore distri-

bution. In contrast to an L2 regularisation, the regularisation by the H1 semi-norm

allows for larger fluorophore concentrations but it penalises fluctuations in the recon-

struction and will thus force the resultant image to be smooth. The regularisation

functional is defined as

R(c) = 1
2
‖∇c‖2, R′(c)h = 〈∇c,∇h〉 , 〈R′′(c)h1, h2〉 = 〈∇h1,∇h2〉 (4.3)

4.2 Total-variation regularisation

A disadvantage of the regularisation term defined in (4.3) is that it keeps the gradient

of the fluorophore concentration small. Thus, jumps are considered to be “expen-

sive” and are avoided leading to a smooth image instead. For certain applications

where the fluorophore concentration is a-priori known to be piecewise constant (e.g.

it might be constant in a tumour or an organ and zero in the surrounding), the H1

reconstruction will be unnecessarily diffusive.
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This is mitigated to some extent by the use of a total-variation (TV) regularisation

term. Although it also measures the gradient of the reconstructed image, it uses the

L1 norm rather than the L2 norm as in equation (4.3). The total-variation functional

is defined as

TV(c) :=

∫
Ω

|∇c| dx. (4.4)

This penalty allows jumps in the image while it suppresses oscillations (or variations)

in the fluorophore concentration.

The drawback of the TV functional is its non-differentiability at points where

∇c = 0, ı.e. where the concentration is constant. Thus, we use a relaxation of

the functional of the form [30]

R(c) =

∫
Ω

√
β + |∇c|2dx, R′(c)h =

∫
Ω

∇c · ∇h√
β + |∇c|2

dx,〈
R̃′′(c)h1, h2

〉
=

∫
Ω

∇h1 · ∇h2√
β + |∇c|2

dx (4.5)

with some scalar β > 0 which smooths the total-variation functional around the

origin. Note also that R̃′′ is just an approximation of the true Hessian, because the

derivative of the denominator has been neglected.

4.3 Method of levelset type

Also levelset methods have attracted some interest in the field of diffuse optical

tomography for the reconstruction of piecewise constant parameters, see e.g. [31, 32].

The idea is the following: if the background fluorescence and the fluorescence inside

the inclusions are constant and known a-priori, the reconstruction will reduce to

the determination of the interface which separates the fluorophore inclusions from

the surrounding. One method to describe the interface mathematically is through

the levelset function φ which is defined on the whole domain Ω. All points x with

φ(x) < 0 are considered to be inside the inclusion while for locations x in the

background it is true that φ(x) > 0. Thus, the set {x : φ(x) = 0}, which is the zero

levelset, is the definition of the separating boundary (see figure 4.1 for a sketch of

this concept).
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ϕ>0

ϕ<0

ϕ=0

Figure 4.1: A levelset function φ which specifies two elliptical inclusions (shaded
area) in a rectangular domain Ω. The interior is defined by φ(x) < 0.

Having computed the levelset function, the concentration in any point x ∈ Ω can

be written as

c(x) = cu +H(φ(x))(cl − cu), (4.6)

where cu and cl are the upper (inside the inclusions) and lower (background) con-

centration levels, respectively, and H is the Heaviside function

H(x) =

1, x ≥ 0,

0, else.
(4.7)

Unfortunately, the numerical effort for the computation of the evolution of the lev-

elset function is comparatively high. The reason is again the non-differentiability

of the Heaviside function. Thus, we utilise what has been studied as a method of

levelset type in [33] and [34]. The idea is to parametrise the concentration c by a

nonlinear, smooth, monotonically increasing function Hβ(φ) and to reconstruct the

levelset function φ afterwards which is done by minimising the objective function

Lφα = 1
2
‖F (Hβ(φ))‖2 + αR(φ). (4.8)
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In this thesis, we use a smooth parametrisation based on the error function erf. Its

definition reads

Hβ(x) :=
cu + cl

2
+
cu − cl

2
erf

(
x

β

)
. (4.9)

This parametrisation restricts the concentration by the lower and upper bounds cl

and cu, respectively, but still allows values in between. Furthermore, it has a smooth

derivative which is needed for the Gauß-Newton algorithm.

The regularisation functional R now acts on the levelset function φ, and we choose

the H1 semi-norm for it.

4.4 Discretisation

The regularisation terms after a finite element discretisation are in the case of L2-

regularisation given by

R′(c) = M(1)c, R̃′′(c) = M(1), (4.10)

for H1-regularisation by

R′(c) = K(1)c, R̃′′(c) = K(1), (4.11)

and for the total-variation formulation they read

R′(c) = K(cβ)c, R̃′′(c) = K(cβ), cβ :=
1√

β + |∇c|2
. (4.12)

For the method of levelset type, the regularisation is applied to the levelset function

φ and has the same appearance as for the concentration above.

4.5 Regularisation parameter and stopping criterion

The choice of the regularisation parameter α in equation (3.5) has attracted quite

some interest. The basic problem is that this parameter balances the goodness of
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fit, i.e. how well the mathematical model approximates the measured data, and the

stability of the inversion. In this thesis a geometric sequence αk = qkα0 is used

for the regularisation parameter. Its initial value α0 and the factor q are chosen

depending on the regularisation method described in sections 4.1, 4.2 and 4.3. An

advantage of the iteratively regularised Gauß-Newton algorithm is its robustness to

these two parameters [27, 28].

Another problem is the stopping criterion for the iterative reconstruction. Most

often these criteria are implemented using heuristics. For example, one can set a

lower limit for the regularisation parameter [35] or stop if stagnation occurs and the

residual no longer changes [36]. Note that for the latter approach a good choice

for the step length is mandatory. Otherwise, the residual will decrease very slowly

which triggers the stopping criterion even when no (local) minimum of the objective

functional has been reached.

An objective stopping criterion is given by Morozov’s discrepancy principle [37]. It

states that the residual shall not be smaller than the error in the measurement.

Thus, α should be chosen such that

‖F (cα)−Mδ‖ ≈ ‖M−Mδ‖, (4.13)

where cα denotes the reconstructed fluorophore distribution with regularisation pa-

rameter α. Unfortunately, the expression on the right-hand side cannot be evaluated

in practise as the true measurements M are not known. Thus, one has to deduce

this quantity by other means based on the distribution of the noise, for example.

In order to relate Morozov’s discrepancy principle to the measurement noise, it is

useful to treat the noisy measurementsMδ
ij as random variables. The measurement

consists of two parts: i) the intensity recorded by the detector which is given by the

forward operator Fij(c) and ii) some additional noise Nij. We assume our model

F (c) to be correct—which means free of systematic errors—and deterministic. The

noise Nij consists not only of the detector noise but also of additional errors which

are due to simplifications in the forward model, uncertainties of the geometry, the

discretisation by finite elements and so on. Then the erroneous measurement has

the form

Mδ
ij = Fij(c) +Nij. (4.14)
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For the sake of simplicity, some constraints are imposed on the measurement noise.

Firstly, the noise shall be independent, i.e. the knowledge of one measurement shall

not influence the noise of another measurement. Secondly, the noise is assumed to

be normally distributed with zero mean and some variance σ2
ij, i.e. Nij ∼ N (0, σ2

ij).

In case the modelling and discretisation errors are small and the noise is mainly

caused by the detectors, it would be physically more sensible to assume a Poisson

distribution for Nij as it is the consequence of a photon counting process. However,

even in the latter case the normal distribution can be seen as an approximation to

the Poisson distribution for larger intensities [38].

If the fluorophore concentration c could be reconstructed perfectly, the elements of

the residual matrix R given by

Rij :=Mδ
ij − Fij(c) = Nij, (4.15)

would contain only the noise, and thus Rij ∼ N (0, σ2
ij). From this it immediately

follows that the scaled residual
Rij

σij
is distributed as N (0, 1). Therefore, we stop the

iterative Gauß-Newton algorithm defined in (3.9) as soon as the estimated variance

of the scaled residual is below 1, i.e. when

var

(
R

σ

)
=

1

nd · ns− 1

∑
ij

(
Rij

σij
−R

)2

≤ 1, with R =
1

nd · ns
∑
ij

Rij

σij
.

(4.16)

The drawback of this simple approach is that it uses the variance of the residuals

only and neglects their mean value. So, in certain applications this approach might

not work as expected. In these cases it is advantageous to define another random

variable Y which is the variance-weighted sum of squares of the residuals

Y :=
nd∑
i=1

ns∑
j=1

(
Rij

σij

)2

. (4.17)

This random variable exhibits a (central) chi-square distribution, Y ∼ χ2
nd×ns, where

the number of degrees of freedom is equal to the number of measurements [39]. The

mean of this random variable is equal to the degrees of freedom and the variance is

twice this value. Therefore, as an alternative to (4.16), one can also stop the iterative
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Figure 4.2: Numerical phantom used to test various regularisation methods. The
arcs depict the size and location of the optodes where sources are sym-
bolised by inward-pointing and detectors by outward-pointing arrows.
The radius of every source and detector was set to 1 mm.

reconstruction as soon as the sum of squares of the weighted residual approaches a

chosen threshold t:

∑
ij

(
Rij

σij

)2

=
∑
ij

(
Mδ

ij − Fij(c)
σij

)2

≤ t. (4.18)

4.6 Model problem

The regularisation methods are tested on a two dimensional numerical phantom.

It consists of a circular disc with a diameter of 30 mm. 16 sources and the same

number of detectors are arranged around the perimeter. Four fluorescent inclusions

with a diameter of 4 mm and a fluorophore concentration of 10µm are placed inside

the phantom at different depths. The optical properties of the surrounding are the

same as in table 2.1. In counter-clockwise direction starting with the one farthest

right, the inclusions’ centres are 3 mm, 4 mm, 5 mm and 6 mm beneath the boundary.

This setup is shown in figure 4.2.
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The finite element mesh consists of 12 289 nodes and 24 064 elements. To avoid

inverse crimes [40], the reconstruction is computed on a smaller mesh with only 3137

nodes and 6016 elements. Furthermore, the measurement data is perturbed with

Gaussian noise with a standard deviation equal to 1 % of the largest measurement

magnitude max |Mij|.

4.7 Results

The choice of α0 and q in the geometric sequence αk = qkα0 depends on the recon-

struction algorithm and is listed in table 4.1. Regarding the method of levelset type,

the lower concentration is always set to cl = 0µm while different values are used for

the upper level cu. The stopping index is chosen according to (4.16) or (4.18).

Table 4.1: Regularisation parameters used for testing the reconstruction algorithms.

Parameter L2 H1 TV erf +H1

α0 10−4 10−4 10−4 10−3

q 0.5 0.5 0.5 0.5
β – – 10−16 0.5

The reconstruction results using the stopping criterion devised in (4.16) are shown

in figure 4.3. The estimated concentration inside the inclusions is nearly the same

for the L2-, H1- and TV-regularised images 4.3(b)–(d). All exhibit increased inclu-

sion areas with a reduced peak amplitude that is only 60 % of the original value.

In the L2 reconstruction artifacts are visible, especially near the boundary of the

domain. Such artifacts are reduced in the H1- and even more in the TV-regularised

images. Comparing figures (c) and (b), the smoothing behaviour of the H1 semi-

norm due to the penalisation of the gradient can be seen very well. This smoothing

is not present in the TV-regularised (figure (d)) reconstruction where the transition

from an inclusion to the background is much steeper. Furthermore, one notices also

that the total-variation regularisation promotes a constant concentration inside the

inclusions. The levelset reconstructions in 4.3(e)–(f) have the best localisation of

the perturbations. This comes at the cost of additional a-priori information which

is the knowledge of the upper fluorophore concentration cu. If this quantity can be
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Figure 4.3: Comparison of reconstructions of (a) four fluorescent objects using (b)
L2, (c) H1 and (d) total-variation regularisation and a method of levelset
type with (e) cu = 10µm and (f) cu = 50µm. All concentrations are
projected to Rnc

+ . The stopping index is chosen according to the variance
approach defined in (4.16).

estimated correctly, the position and size of the inclusions can be reconstructed sig-

nificantly better than with the other regularisation methods. However, this method

is sensitive to the upper concentration as can be seen from figure (f). There, the

fluorophore concentration in the perturbations is overestimated by a factor of 2.5

which in turn is the reason for the underestimated area of the inclusions.

For comparison reasons we also show the result of the reconstructed fluorophore

when the stopping index is chosen based on the variance-weighted sum of squares

given in (4.18). The threshold was set to twice the mean value of the underlying

chi-square distribution. The results shown in figure 4.4 are quite similar to the ones

obtained with the variance approach shown in figure 4.3. However, the reconstruc-

tion is stopped in an earlier iteration when the sum of squares-method is used to

choose the stopping index. This is why the method of levelset type (4.4(f)) does not

overestimate the fluorophore concentration as much as in 4.3(f).
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Figure 4.4: Reconstructions from simulated data of the original phantom (a) with
(b) L2, (c) H1 and (d) TV regularisation and a levelset type method
with upper concentration levels of (e) cu = 10µm and (f) cu = 50µm.
The concentrations are projected to R+. The variance-weighted sum of
squares of (4.18) is used to determine the stopping index.
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Further investigations in the reconstruction quality of the previously described reg-

ularisation methods have been subject to a study published in [35]. In a cylindrical

simulation phantom with a diameter of 30 mm and a height of 60 mm a random

number of inclusions with a random Gaussian shaped fluorophore distribution have

been placed. In order to compare the result in an objective manner, the amount

of reconstructed fluorophore within regions containing x% of the real inclusion is

considered. While smaller values for the percentage x provide information about

the localisation of the reconstructed fluorophore inclusion, larger percentages are

helpful to compare the total amount of fluorophore.

The results of an extensive simulation study with 100 different fluorophore dis-

tributions are listed in table 4.2. The heading linearised L2 refers to a single-step

reconstruction similar to the Born approximation. This linearisation performs worst

for all regions. Similar to the results shown in figures 4.3 and 4.4, total-variation reg-

ularisation is more accurate than the ordinary L2 regularisation. Also in this study,

the method of levelset type tended to overestimate the true amount of fluorophore

while it is still the method with the best localisation (i.e. most of the fluorophore is

located within the 50 % region of interest).

Table 4.2: Ratio of fluorophore in the reconstructions to the original amount for
different regularisation strategies.

Region linearized L2 L2 TV erf +H1

50 % 0.51± 0.12 0.65±0.17 0.80±0.21 1.03±0.50
75 % 0.60± 0.11 0.75±0.16 0.89±0.18 1.18±0.64
90 % 0.69± 0.11 0.86±0.14 0.96±0.15 1.35±0.83
95 % 0.75± 0.11 0.91±0.13 1.00±0.13 1.45±0.97

4.8 Discussion

In this chapter, nonlinear reconstruction schemes for fluorescence tomography with

quadratic and nonquadratic regularisation terms have been compared. All regular-

isation methods be it L2, H1, total-variation or the method of levelset type lead to

very similar algorithms after discretisation and can therefore be easily incorporated

into existing finite element codes.
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The iteratively regularised Gauß-Newton reconstruction method uses a decaying

sequence of regularisation parameters αk and does not require potentially expensive

line searches which are typically required to ensure global convergence of Newton-

type methods. Furthermore, the iterative reconstruction easily allows termination

of the reconstruction when a certain a-posteriori criterion is fulfilled. We based

the stopping criterion on Morozov’s discrepancy principle which has an intuitive

physical interpretation—the noise in the reconstruction should not be smaller than

the noise in the measurement. However, other criteria that measure the change of

the residual, for example, are also possible and in use, cf. [36].

The method of levelset type needs the lower and upper fluorophore concentration

levels cl and cu. While the lower level for the background can arguably be fixed

to cl = 0m, the choice of the upper level is a considerable problem for practical

applications. In [35] the approach was tested to relate the peak concentration to the

total amount of fluorophore injected into the sample by assuming an average vol-

ume for the inclusion. Unfortunately, this assumption does not hold in many cases,

which is the reason why the method of levelset type overestimates the amount of

fluorophore, as is visible in table 4.2. A possible solution could be to include the

determination of the upper concentration level in the reconstructions, i.e. after find-

ing a levelset function, which segments the domain into inclusions and background,

another minimisation with respect to the fluorophore concentration inside the in-

clusion could be performed. These two optimisation steps could be applied in an

alternating manner.

It can be concluded that the use of nonquadratic regularisation terms improves

the quality of the reconstructions significantly, both visually and also in an objec-

tive manner. The method of levelset type is the best choice if information on the

expected concentration levels is available a-priori or can be estimated during the

reconstruction process. In other cases, the total-variation regularisation might be a

viable alternative.
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The Guide is definitive. Reality

is frequently inaccurate.

(Douglas Adams)

In the previous chapters the inverse problem and nonquadratic regularisation meth-

ods have been presented and a method for the choice of the stopping criterion based

on the measurement noise has been proposed. In the following the origin of the

measurement noise and its influence on the reconstruction will be investigated.

5.1 Origin of noise

The charge-coupled device (CCD) chip used in many scientific cameras is a complex

high-tech product. Accordingly, there are many different noise sources and the

analysis of CCD noise has been subject to various investigations, e.g. [41, 42, 43].

A short characteristic of important noise types following [41] is given here. Travers-

ing the chain from the arrival of photons on the CCD to the final digital signal, the

main noise sources are shot noise, dark noise, amplifier noise and read-out noise.

Shot noise: Shot noise or photon noise is due to the inherent quantum nature of

light and therefore cannot be eliminated. The interval between the arrival of photons

is governed by a Poisson statistics from which follows that the noise variance is equal

to the mean value of the signal.
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Dark noise: Dark noise originates in the thermal generation of electrons in the

silicon of the integrated circuit. Similar to shot noise, also the dark noise follows a

Poisson statistics. However, as it depends heavily on the temperature of the CCD,

cooling the camera significantly reduces the amount of thermal electrons.

Amplifier noise: The charge generated by the photons in the bins of the CCD is

amplified and converted in a voltage prior to any further signal processing. Thus, the

signal is perturbed further by amplifier noise which can be assumed to be normally

distributed with zero mean. For low signal intensities, amplifier noise dominates the

shot noise. It is important to note that the amplification of the charge generated

by the photons also amplifies shot and dark noise. Therefore, cooling the CCD to

reduce dark noise is important for low-signal applications.

Read-out noise: The conversion of the analog voltage signal to a digital signal

at the read-out stage introduces read-out noise or quantisation noise. This error

depends on the number of quantisation steps and the quality of the analog-to-digital

converter. This noise can be assumed to be uniformly distributed in ±1
2
q, where q

is the quantisation step.

5.2 Effect on reconstruction quality

For the reconstruction shown in figures 4.3 and 4.4 the same noise standard deviation

of 1 % of the largest measurement was assumed. In the following, the influence of

the noise on the reconstructions will be studied in more detail.

The final probability density function for the overall measurement noise is quite

complicated as it contains Poisson distributed photon and dark noise, Gaussian

amplifier noise and uniform read-out noise. For the sake of simplicity, in this thesis

all the noise added to the simulation data is assumed to be normally distributed.

This can be justified as for low-intensity signals the detection hardware is the main

noise source. For high-intensity signals the Poisson distribution can be approximated

by a normal distribution sufficiently well [38].
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We test the regularisation methods with noise that is subject to three different

assumptions: (N1) a constant standard deviation for all measurements, σij = σ =

f ·maxij |Mij|, (N2) a constant standard deviation for all measurements belonging

to the same source, σij = σj = f ·maxi |Mij| and (N3) a standard deviation which

is proportional to the corresponding detector reading σij = f · |Mij|. f denotes a

scalar fraction and is in the range of several percent.

The first approach is often found in literature and is a sort of a worst case because

small signals will suffer considerably. To relate this noise model to a practical setup,

several assumptions have to be made: (i) The measurement noise should depend

mainly on the integration time of the detector. (ii) The integration time in turn is

chosen such that the largest measurement fits in the detector’s dynamic range. (iii)

The same integration time is used for all measurements.

Next we again assume that the integration time determines the measurement noise.

However, we allow this time to be adjusted for every excitation separately rather

than having one fixed integration time for all sources. So we end up with noise model

(N2). There the variance is constant for all measurements belonging to the same

source. To realise such a setup in practice, it is necessary to adapt the integration

time when changing the position of the excitation source. It will most likely be

necessary to make multiple measurements with different integration times for every

source position in order to utilize the detector’s dynamic range efficiently and to

avoid overexposure of the sensors. Thus, a longer time is needed for the acquisition

of the full data set compared to the previous setup with a constant integration

time.

The noise model (N3) is somehow the best case and thus the opposite to (N1).

It states that the measurements have a constant coefficient of variation (CV =
σij
Mij

= const). In practical settings such a noise model would be difficult to achieve.

However, it is included here to demonstrate what could be reconstructed in an ideal

setting.

The resulting images for the same simulation model as described in section 4.6, using

the noise models (N1)–(N3) and noise fractions of 0.5 %–5 %, are shown in figure 5.1.

The second stopping criterion based on the chi-square distribution (equation (4.18))

was used in the reconstruction algorithm.
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no
convergence

0.5% 1% 3% 5%

Figure 5.1: Reconstructions using the H1-semi norm for different noise levels of
0.5 %, 1 %, 3 % and 5 % (columns from left to right) and different noise
models based on the largest measurement datum (top row), on the
largest measurement per excitation (middle row) and with a constant
coefficient of variation bottom row). The stopping criterion was not
reached for the low-noise case with the last noise model.
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Using the most rigorous noise model (N1), the original fluorophore distribution can

be reconstructed sufficiently well up to approximately 1 % Gaußian noise. Already

for 3 % noise the individual inclusions are not separated anymore in the reconstruc-

tion.

If it is possible to reduce the noise such that it is only dependent on the largest

measurement of each excitation (model N2), the results are much clearer. For 0.5 %

and 1 % noise the inclusions are better localised and even for a noise fraction of 3 %

the four inclusions are recognisable. Only at higher noise levels the reconstructions

smear out and become indistinguishable.

For the best noise case (N3), where the coefficient of variation is constant, even

the 5 % of data noise do not lead to a corrupted reconstruction. However, there

is a problem with the stopping criterion for the low-noise case with a fraction of

only 0.5 %. By inspecting the concentration after every update, it is clear that the

reconstruction itself works but the variance-weighted residual does not reach the

predefined threshold. The reason is not completely clear up to now and needs to be

further investigated.
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I love fools’ experiments. I am

always making them.

(Charles Darwin)

The placement of sensor and detector optodes is an important parameter for the

design of fluorescence tomography hardware. The chosen configuration determines

in which region the setup will be sensitive to the fluorophore signal and what the

resolution there will be.

The quality of reconstruction usually increases with the amount of sources and

detectors in the measurement setup. From a certain number on, however, the mea-

surements will no longer be independent, which is a consequence of the diffusive

propagation of light in tissue. This limits the number of optodes in a measurement

setup in a natural way. As was shown in chapter 3, also the time needed to solve

the inverse problem is directly related to the number of sources and detectors in

the measurement setup. Furthermore, each additional optode makes the hardware

more expensive to set up and to maintain. Therefore, the question arises on how to

position as few optodes as possible in such a manner that the maximum information

is gained from a measurement.

In previous work, Graves et al [14] have investigated the influences of the number

of sources and detectors and their respective distances on the reconstructions. The

comparison is based on a singular value analysis of the weight matrix which is

essentially the discretised sensitivity matrix but was actually generated from a Born

approximation. This method was later on extended by Lasser et al [15], who applied

it to 360◦ projection tomography. The drawback of this methodology is that only full

measurement setups can be compared as the singular value decomposition operates

on the whole sensitivity matrix.

This chapter is based on material published in [44] with written permission by SPIE.
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The method presented in the following relaxes these constraints and allows for the

computation of a quality criterion for every single optode, i.e. one obtains an im-

portance measure for every optode in the system. Additionally focus regions can be

specified to which the measurement setup will be more sensitive to than the rest of

the domain.

6.1 Redundancy minimisation

The optimisation method is based on the technique proposed by Curtis et al [45].

The idea is to have only independent measurements, such that every measurement

results in information which is useful for the reconstruction step. One possibility to

quantify the independence between the k-th and l-th measurements is through the

computation of the inner-product of the corresponding sensitivities F ′k(c) and F ′l (c).

In the following, we denote the discretised derivative F ′(c) by J (which refers to the

Jacobian) in favour of a concise mathematical notation. Then, the independence

can be quantified by the inner product of the row-vectors jk and jl.

In section 3.3 it was shown that one has to solve one PDE for every source and

detector, i.e. there is no use in dismissing single measurements as this would reduce

the computational burden only a little bit: the application of F ′ and F ′∗ would

become slightly cheaper but setting up the matrices is nearly as expensive as for the

full matrix. Furthermore, excluding a single measurement does not reduce hardware

cost because still the same number of optodes is required.

Therefore, lumped quality measures for optodes rather than single measurements

are necessary. In order to arrive at a compact formulation we enumerate the mea-

surements (i.e. the source/detector pairs) such that each measurement is identified

uniquely by an index. Let I be this set of measurement indices. The size of this

set is |I| which is also the number of rows of the sensitivity matrix J . The sub-set

of measurements belonging to the i-th source is denoted by Si ⊂ I. By re-ordering

the measurements m it is possible to partition them into two sets m1, m2 where

m2 consists of all measurements made with the i-th source and m1 contains all

other measurements. The number of rows of the corresponding sub-matrices J1,J2
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is |I \ Si| for J1 and |Si| for J2. A differential measurement can be written as

J =

(
J1

J2

)
, m =

(
m1

m2

)
,

(
m1

m2

)
=

(
J1

J2

)
c (6.1)

The independence of one measurement mk made with the i-th source and another

measurement ml made with some other source is given by

(jk, jl)
2

‖jk‖2 ‖jl‖2
, k ∈ Si, l ∈ I \ Si, (6.2)

This quantity is a real number from the interval [0, 1]. If the measurements are

orthogonal, it will be zero and it will be close to 1 if the measurements are dependent.

In contrast to [45], the square of the cosine of the measurement vectors is used

here which is advantageous later on when this criterion is compared to the mutual

information measure.

The average redundancy of the i-th source optode is obtained when the inner-

products of all measurement vectors belonging to this source with all other mea-

surement vectors are computed. This leads to the expression

ri :=
1

|I \ Si| |Si|
∑
l∈I\Si

∑
k∈Si

(jk, jl)
2

‖jk‖2 ‖jl‖2
, i = 1, . . . , ns, (6.3)

which is again a quantity from [0, 1]. In the final algorithm the quantity

qi := 1− ri, i = 1, . . . , ns, (6.4)

is used as a quality measure for the i-th source. One obtains a quality measure for

the k-th detector when the set of source indices Si in equation (6.3) is replaced by

the set of detectors indices Dj.

The implemented algorithm starts from a pool of feasible source and detector op-

todes. Having computed the quality measures qi, i = 1, . . . , ns, for all sources, it

remains to find the set of the best sources with respect to a certain stopping crite-

rion. For the sake of simplicity, we assume that there is a certain budget for source

optodes, i.e. we would like to find a predefined number of “best” sources. However,

a full search amongst the initial set is a combinatorial problem and the time needed
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to find the exact solution grows exponentially with the size of the set. Instead the

algorithm iteratively dismisses the one source exhibiting the worst quality measure

from the pool of optodes. After each iteration the quality measures have to be

recomputed again, because excluding an optode most likely increases the indepen-

dence of all others. The final sources left in the pool are considered to be the best

source optodes.

In a second step, the algorithm starts from the full initial pool again but iterates

on the detector optodes using the same approach as above. The combination of the

best sources and best detectors is taken as a final measurement setup.

The lumped quality measure for an optode in equation (6.3) was defined by an

arithmetic average of the quality measure of a single measurement. Thus, one could

also think about other averages, for example based on the geometric mean which

leads to

qg,i :=

 ∏
n∈I\Si

(
1− 1

|Si|
∑
m∈Si

(jm, jn)2

‖jm‖2 ‖jn‖2

) 1
|I\Si|

, i = 1, . . . , ns. (6.5)

As will be shown in 6.3, this version has a closer relation to entropy optimisation

methods.

6.2 Focusing

When looking at a part of a sample only, say an organ, it might be desired to bias

the placement of the optodes such that in the volume of interest a higher sensitivity

is obtained. A straightforward approach is to define a mask vector on the finite

element mesh having the structure

f := (f1, . . . , fnt), 0 ≤ fi ≤ 1, i = 1, . . . , nt, (6.6)

with nt being the number of elements in the mesh. In the simplest case this vector

is binary having a value of 1 inside the volume of interest and 0 everywhere else.

For more fine-grained focusing the vector elements can take intermediate values as

well.
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Instead of operating on the sensitivity matrix J , the optimisation algorithm de-

scribed above operates on the focused Jacobian JF = J diag(f).

6.3 Comparison to entropy methods

Optimisation techniques which maximise the entropy have a long history in image

reconstruction and have been applied successfully to various tomographic imaging

modalities (e.g. [46, 47, 48, 49, 50]). The key idea is that the unknown parameter

is seen as a realisation of a random variable having a certain probability density.

Then, one seeks to reconstruct that parameter distribution leading to the maximum

entropy, for example.

A way to quantify independence in the measurements is via the mutual information

(MI). Lets start again from the split data set in equation (6.1). To compute the

entropy, the concentration vector c is interpreted as random variable. Additionally

the a-priori knowledge of the probability distribution is required. For the sake of

easiness, the parameters are assumed to be independent, identically distributed with

a normal distribution with a variance of σc. The resultant model covariance matrix

is then diagonal, i.e. cov(c) = σcI. The data covariance matrix is obtained by the

relation

cov(m) = cov(Jc) = J cov(c)J> = σcJJ
>, (6.7)

or when the split data set is used:

cov

(
m1

m2

)
= σc

(
J1J

>
1 J1J

>
2

J2J
>
1 J2J

>
2

)
. (6.8)

The entropy H(m) is a measure for the uncertainty of the data. By using the

multivariate normal distribution [51] it is expressed as

H(m) = 1
2

log
[
(2πe)M det(cov(m))

]
. (6.9)
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If one measures only part of the data, say m1, the entropy is accordingly

H(m1) = 1
2

log
[
(2πe)M−Si det(cov(m1))

]
(6.10)

and the conditional entropy of m1, given that the measurements m2 have already

been acquired, is

H(m1|m2) = 1
2

log
[
(2πe)M−Si det(cov(m1|m2))

]
, (6.11)

where cov(m1|m2) is the conditional covariance. It can be calculated from equa-

tion (6.8) by the Schur complement of J2J
>
2 in JJ> [52]:

cov(m1|m2) = σc
(
J1J

>
1 − J1J

>
2 (J2J

>
2 )−1J2J

>
1

)
. (6.12)

The covariance is well defined if J2J
>
2 is invertible which is the case if the individ-

ual sensitivities, i.e. the rows of J , are linearly independent. If the pseudo-inverse

J>2 (J2J
>
2 )−1 was the identity matrix, the conditional covariance would be zero which

is plausible because then the concentrations could be exactly reconstructed from the

knowledge of m2 only, i.e. measuring m1 would be futile.

A low conditional entropy H(m1|m2) means that the uncertainty in the data m1

decreases significantly if the set m2 is also measured. Another way to quantify the

reduction of the uncertainty in m1 if m2 is known beforehand, is through the mutual

information

MI(m1,m2) := H(m1)− H(m1|m2). (6.13)

The source tested for removal shall correspond to the set m2. It can be removed

from the pool of optodes safely, if the mutual information to all other measurements

is high because then the information gained with this source is also present to a

large extent in the set m1 which was obtained without the current source.

The negative mutual information combined with equations (6.10)–(6.12) leads to

−MI(m1,m2) = 1
2

log
[
det
(
J1J

>
1 − J1J

>
2 (J2J

>
2 )−1J2J

>
1

)
/ det(J1J

>
1 )
]
. (6.14)

Again J1J
>
1 is invertible due to the linear independent rows of J . Now, it is assumed

that this symmetric matrix can be decomposed such that J1J
>
1 = AA> where the

matrix A shall be invertible. A is then the square root of the matrix J1J
>
1 . The
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determinant of the latter is then the product of det(A), i.e.

det −1(J1J
>
1 ) = det

(
(J1J

>
1 )−

1
2

)
det

(
(J1J

>
1 )−

1
2

)
. (6.15)

Finally, we obtain for the mutual information the expression

−MI(m1,m2) = 1
2

log

[
det

(
I − (J1J

>
1 )−

1
2J1J

>
2 (J2J

>
2 )−1J2J

>
1 (J1J

>
1 )−

1
2

)]
. (6.16)

A diagonal matrix containing the norms of the row vectors of J is denoted by

diag−
1
2
(
JJ>

)
=


1
‖j1‖ 0

. . .

0 1
‖j|I|‖

 . (6.17)

With this expression, the redundancy from equation (6.3) can also be written as

ri =
1

|I \ Si| |Si|

|I\Si|∑
l=1

|Si|∑
k=1

(
diag−

1
2
(
J1J

>
1

)
J1J

>
2 diag−

1
2
(
J2J

>
2

))2

l,k

. (6.18)

which is just the Frobenius norm of the matrix

diag−
1
2
(
J1J

>
1

)
J1J

>
2 diag−

1
2
(
J2J

>
2

)
, (6.19)

and can therefore be written in terms of the trace of this matrix multiplied with its

own transpose resulting in

ri =
1

|I \ Si| |Si|
tr

(
diag−

1
2
(
J1J

>
1

)
J1J

>
2 diag−1(J2J

>
2 )J2J

>
1 diag−

1
2
(
J1J

>
1

))
.

(6.20)

The matrix notation for the quality measure qi = 1− ri is then

qi =
1

|I \ Si|
tr

(
I − 1

|Si|
diag−

1
2
(
J1J

>
1

)
J1J

>
2 diag−1(J2J

>
2 )J2J

>
1 diag−

1
2
(
J1J

>
1

))
.

(6.21)

In a similar manner, one can derive a matrix notation for the geometric quality
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measure defined by equation (6.5). It has the form

qg,i =

[
det diag

(
I − 1

|Si|
diag−

1
2
(
J1J

>
1

)
J1J

>
2

× diag−1(J2J
>
2 )J2J

>
1 diag−

1
2
(
J1J

>
1

))] 1
|I\Si|

. (6.22)

Comparing the results of (6.16), (6.21) and (6.22), interesting similarities in the

structure of the equations can be found although the expressions are not equal.

While the mutual information measure combines the whole conditional covariance

matrix into one quality measure through the application of the determinant, the

other two equations operate on the diagonal part of this matrix only, i.e. they con-

sider only the variances of the parameter but not the covariances. This means that

the mutual information is expensive to compute (it requires matrix inversions and

computations of determinants) whereas the redundancy measures are comparatively

cheap as the inversion and the calculation of determinants have to be carried out

for diagonal matrices only.

A disadvantage of the formulation based on Curtis’ approach (equation (6.21)) is

that there is no strong relationship between the trace of the covariance matrix and

its determinant, i.e. it can be that the trace between two setups increases while the

determinant decreases.

This drawback is mitigated to a certain extent when the geometric averaging (equa-

tion (6.22)) is used. From the Cauchy-Schwarz inequality cov2(x, y) ≤ var(x) var(y),

it follows that the covariance has to decrease if the corresponding variances decrease.

Thus, one can argue that a decrease in the quality measure based on the geomet-

ric mean qg,i will lead to a decrease in (−MI) and therefore increase the mutual

information. Thus, an optode which is redundant (low qg,i) is likely to exhibit a

high mutual information content MI between its own measurements and all other

measurements taken with other optodes.
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6.4 Results

The adaptation algorithm was tested on a homogeneous cylinder with a diameter of

30 mm and a height of 90 mm (figure 6.1 (a)). The same scattering and absorption

parameters as in chapter 2 (table 2.1) were used.

To create an initial optode pool, 48 sources and 48 detectors were placed in a zig-zag

pattern on a regular grid around the cylinder (see figure 6.1(a)). The six rings of

16 optodes each were spaced by 10 mm. The stopping criterion was set to eight

sources and the same number of detectors, i.e. a maximum budget for the optodes

is prescribed.

Three different target regions A, B and C were chosen in order to test the focusing

ability of the adaptation algorithm. Their masks are defined as

fA(x, y, z) =

1 if 10 ≤ z ≤ 20,

0 else,
(6.23)

fB(x, y, z) =

1 if − 7.5 ≤ z ≤ 7.5,

0 else,
(6.24)

and

fC(x, y, z) =

1 if x > 0 and − 20 ≤ z ≤ −10,

0 else,
(6.25)

i.e. the target regions are two cylinder slices with different thicknesses and one half-

slice.

The outcome of the adaptation procedure for the chosen volumes of interest are

depicted in figures 6.1(b)–(d). When focusing on region A, the adaptation procedure

delivers the ring of optodes covered by this region which is the intuitive arrangement.

For the larger volume B, the best arrangement is symmetric for each ring with respect

to the cylinder’s axis but not symmetric to its mid-plane. The most interesting result

is probably the adaptation to the half-cylinder slice shown in figure 6.1(d). The final

optodes agglomerate near the focus region because the sensitivity is highest near the

optodes. Interestingly the algorithm also suggests to put some of the optodes behind
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Figure 6.1: (a) Geometry of the optimisation model (measures in mm) together with
the initial pool of feasible optodes which are arranged in a zig-zag pattern
on six rings with 10 mm spacing. (b)–(d) The result of the adaptation
algorithm when focusing on the regions drawn in orange. In the last
figure the detectors belonging to the best set found by the geometric or
the arithmetic averaging method are marked with G and A, respectively.

the focus region. These optodes measure in combination with an optode at the front

fluorescent light across the focus volume and thus provide valuable information.

The stability of the adaptation procedure was tested through a Monte-Carlo simula-

tion. The initial optode locations were shifted randomly with a uniform distribution

from [−1mm, 1mm] along the z-axis and the cylinder’s perimeter. Thus, the error

is up to 10 % of the distance in the z-direction and up to 15 % of the distance along

the perimeter. The result of the 50 Monte-Carlo trials is visualised in figure 6.2. The

size of the circles (sources) and squares (detectors) is proportional to the frequency

of the optode appearing in the best measurement set. While the best set for the

half-slice is quite stable as shown in 6.2(b), this is not the case if the full cylinder

slice is chosen as target volume (figure 6.2(b)). In the latter, all setups which rotate

the optode arrangement by one position around the cylinder axis are equivalent.

The ability to suppress fluorophore signals whose origin is outside the specified target

volume is demonstrated by a reconstruction of simulated data from three spherical

fluorescent inclusions with a diameter of 5 mm which are located in the focus volumes
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Figure 6.2: Stability of the adaptation result using geometric averaging for focus
regions B (a) and C (b). Sources are drawn as circles, detectors as
squares. The marker size is proportional to the stability of the optode.
Optodes from the reference set (unshifted initial pool of optodes) are
marked with “×”.
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Figure 6.3: (a) The simulation phantom for the generation of measurement data for
the reconstruction. The dotted lines mark the height of the six optode
rings. The reconstructed fluorophore distribution for three differently
focused setups with focus on region A, B and C (from left to right).

according to figure 6.3(a). The optical tissue parameters are again the same as given

in table 2.1. The resultant images of the fluorophore distribution using the focused

sensitivities are displayed in figure 6.3(b)–(d). In all three cases the off-focus signal

is suppressed sufficiently well. The quality of the reconstruction, however, is best

for the lower sphere because in this setup the optodes are well concentrated due to

the small focus volume.

6.5 Discussion

Contrary to methods previously published by Graves[14] and Lasser [15], the method

described above does not rely on a singular value decomposition (SVD) of the sensi-

tivity matrix. As the SVD is a global operation on the Jacobian, it delivers quality

measures for whole setups only. The redundancy minimisation approach measures

the quality of every optode and therefore provides a much more fine grained infor-

mation, which might be useful for the design of optimally suited hardware.

Furthermore, the SVD is a comparatively expensive operation from a numerical
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point of view. Thus, the method is restricted to 2D geometries or simple 3D ge-

ometries with a lower number of finite elements. The method developed by Curtis

is again advantageous in this respect as it only relies on the computation of inner

products of the Jacobian, which is a cheap operation and can even be parallelised

easily, which is not the case for the singular value decomposition.

The stopping criterion used for the results presented in the previous section is just

the maximum number of optodes. In practise this would mean that a certain bud-

get can be spent for the sources and detectors. One could also think about other

stopping criteria based on the resolution or contrast-to-noise ratio, for example.

However, such criteria have not been implemented so far and are subject to further

studies.

The resultant algorithm starts from an initial optode pool from which iteratively the

worst sensors and detectors are removed. This approach has two drawbacks. The

first one is that there is no guarantee that the overall best optodes remain in the

pool. Principally, it could be better for the final arrangement, if in a certain iteration

the worst optode is kept and the second worst is thrown out, for example. However,

the only possibility to make sure of reaching the best set would be an exhaustive

search which is exponentially hard to solve with around 6× 1014 possible solutions

for the example presented above. The second drawback is that the optimal set of

optodes is not necessarily present in the initial pool. This scenario is actually quite

likely considering that there are infinitely many possibilities for the arrangement of

a finite amount of optodes on the object’s surface.

A viable and promising alternative for both of the previous problems involves for-

mulating the optimisation problem as a distributed control problem with sparsity

constraints [53, 54] and to compute a sort of “optode field” that is nonzero only

at discrete points. These discrete points can be interpreted as the optimal position

for the optode placement. Not only would such an approach circumvent to find

the solution of an exponentially growing problem, it would also be independent of

an initial optode pool and provide a truly optimal setup, provided that it can be

solved by a globally convergent method. Additionally, the optode field’s magnitude

would be an indicator for the best source strength, i.e. the intensity used for the

excitation.
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Wenn die anderen glauben,

man ist am Ende, so muss

man erst richtig anfangen.

(Konrad Adenauer)

In this thesis a cross-section of reconstruction and optimization methods for fluo-

rescence diffuse optical tomography was presented. Below, the novelties and short-

comings of these topics shall be summarized.

Nonlinear reconstruction: It was shown that the application of a nonlinear for-

ward model together with non-quadratic regularisation yields more accurate results

than a simple linearised reconstruction. Total-variation regularisation and levelset

methods have the special advantage that they promote a clear separation of the

inclusion from the background and thus do not lead to overly smooth reconstruc-

tions.

From a mathematical point of view, the näıve implementation by a smooth relax-

ation of the total-variation functional and the Heaviside function in the levelset

method is not desired. In [55] we could mitigate this problem by using primal-dual

methods for solving the inverse problem together with a total-variation regulari-

sation. A mathematically profound version of a levelset reconstruction, based on

topological and shape derivatives, is currently under development. First results

using only first-order terms of the topological derivative have been published [56].

Optimal optode placement: Surprisingly, the question of how to place the optodes

in a fluorescence tomography setup in an optimal manner has yet not received very

much attention. The only approaches found in literature restrict themselves to the
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comparison of complete setups and are thus only of limited use for optimal hardware

design.

With our approach, it is possible to compare individual optodes and to select the

best optodes from a predefined pool. Furthermore, we have studied the possibility of

suppressing unwanted off-focus signals through biasing the configuration to a chosen

target volume.

However, to claim that these positions are optimal would be inappropriate because

the optimal optodes are most likely not even part of the initially chosen feasible set.

In future work, we intend to overcome this limitation by treating the problem as an

optimal control problem, where the sources will be modelled as continuous functions

over the boundary of the object. Applying sparsity promoting L1 constraints to these

sources should result in “optode fields” which are nonzero only at discrete points

which can then be understood as optimal points.

Furthermore, the experimental evaluation of the methods proposed in this thesis is

still pending and subject to further investigation.
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