
Ante ĆUSTIĆ

Efficiently solvable special cases

of multidimensional

assignment problems

PHD THESIS

written to obtain the academic degree of a Doctor of

Engineering Sciences

Doctoral studies of Engineering

at the doctoral school “Mathematics and Scientific

Computing”

Graz University of Technology

Supervisor:

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bettina KLINZ

Institute of Optimization and Discrete Mathematics

(Math B)

Graz, July 2014

Statutory Declaration

I declare that I have authored this thesis independently, that I have not

used other than the declared sources/resources, and that I have explicitly

marked all material which has been quoted either literally or by content

from the used sources.

. .

(date)

. .

(signature)

iii

Contents

Contents v

List of Figures ix

Acknowledgements xi

1 Introduction 1

2 Preliminaries 5

2.1 Linear assignment problem 5

2.1.1 Algorithms for the LAP 7

2.2 Axial 3-dimensional assignment problem 8

2.2.1 Problem statement and applications 8

2.2.2 Complexity and algorithms 10

2.2.3 Special cases . 11

2.3 Planar 3-dimensional assignment problem 13

2.3.1 Problem statement and applications 13

2.3.2 Complexity and algorithms 16

2.3.3 Special cases . 17

2.4 Multidimensional assignment problems 18

2.4.1 Definition . 18

2.4.2 Feasible solutions . 20

2.4.3 Applications and algorithms 21

3 Geometric axial 3-dimensional assignment problems 23

3.1 Technical preliminaries . 24

v

Contents

3.2 The maximization problem under tunneling distances 25

3.3 The maximization problem under polyhedral norms 27

3.4 The maximization problem in non-fixed dimension 29

3.5 A useful lattice . 31

3.6 The minimization problem 38

3.7 Implications for the weighted 3-dimensional matching problem 44

3.8 Conclusions . 45

4 Special cases of the planar 3-dimensional assignment problem 47

4.1 Monge-like structures . 47

4.2 Intractability results on Monge-like arrays 48

4.3 The optimal solution structure of the p-P3AP on layered

Monge arrays . 51

4.3.1 Block structure result for the 2-P3AP 51

4.3.2 Example with a single large block for p ≥ 3 58

4.3.3 Bandwidth result for the p-P3AP 60

4.4 Algorithms for the p-P3AP on layered Monge arrays 65

4.5 Special cases of the bottleneck-P3AP 68

4.6 Various other special cases 72

4.6.1 Maximization p-P3AP 72

4.6.2 Monotonicity property 73

4.6.3 The P3AP on distribution arrays generated by a sin-

gle nonzero density element 73

4.6.4 Greedily solvable instances with layered Monge cost

arrays . 77

5 The COVP for combinatorial optimization problems 79

5.1 Constant objective value property 79

5.2 The COVP for d-dimensional assignment problems 82

5.2.1 Sum-decomposable arrays 83

5.2.2 The COVP for the axial case: (d, 1)-AP 86

5.2.3 The COVP for the planar case: (d, d− 1)-AP 87

5.2.4 The COVP for the general case: (d, s)-AP 93

5.3 The COVP for d-dimensional transportation problems 95

vi

Contents

5.4 The COVP for spanning tree, shortest path and matching

problems . 98

5.4.1 The COVP for the minimum spanning tree problem . 98

5.4.2 The COVP for the shortest path problem 99

5.4.3 The COVP for the minimum weight maximum car-

dinality matching problem 101

5.5 Conclusions and open problems 102

Bibliography 105

vii

List of Figures

2.1 Matrix and graph theoretic representation of the LAP . . 6

2.2 Depiction of the constraints (2.7), (2.8) and (2.9), respec-

tively. 9

2.3 G. Monge . 11

2.4 Depiction of the constraints (2.18), (2.20) and (2.19), re-

spectively. 14

2.5 Latin square representation of a feasible solution. 14

2.6 Example for Latin rectangle/partial Latin square repre-

sentation . 16

3.1 Three examples of unit balls for an LR norm in R2 24

3.2 Lattice and its fundamental triangles 32

3.3 Fundamental triangle construction example 32

3.4 Instance of Case II. 34

3.5 Instances of Case III. 34

3.6 S must be a horizontal segment 35

3.7 Non-fundamental triangles have a large perimeter 37

3.8 A diamond (to the left) and all possible six directions of

a diamond incident to point p (to the right) 38

3.9 The three-colored lattice 39

3.10 A chain of diamonds between two points p and q 40

3.11 How a chain of diamonds attaches to a triple triangle . . . 41

3.12 How a chain of diamonds attaches to an element point . . 41

ix

List of Figures

3.13 Connecting chains to triple triangles: the upper picture

shows an infeasible clockwise choice, the picture at the

bottom shows the feasible counter-clockwise choice 42

4.1 Relation between array classes 48

4.2 Blocks of a Latin rectangle 52

4.3 Non-increasing SWAP . 53

4.4 Pushing elements closer to the diagonal 61

4.5 A feasible solution of the 3-P3AP 63

4.6 Target solution for p = 5 64

4.7 Representation of Corollary 4.14 for p = 3 66

4.8 Transforming T into T ′ 76

x

Acknowledgements

I would like to thank my advisor Bettina Klinz for her patient guidance

and support throughout my doctoral studies.

Special thanks goes to Gerhard Woeginger for sharing his time and ideas

with me. I’m very grateful that I have had the opportunity to work with

him. I’m further thankful to him for his kindness and hospitality during

my stay at TU Eindhoven.

My special thanks are extended to Vladimir Deineko and Frits Spieksma

for hosting me at University of Warwick and KU Leuven, and for introduc-

ing me to mathematicians that share my research interests.

I thank all the members of the DK Discrete Mathematics for making

my time in Graz a joyful and valuable experience. I particularly thank my

mentors Rainer Burkard and Wolfgang Woess for their help and support

throughout the completion of this thesis.

Special thanks go to Franz Rendl and Reinhardt Euler for the time they

invested into refereeing this thesis.

I further thank many people who have influenced me on my path to

a doctoral degree in mathematics, in particular Slobodan Maroja, Janja

Martinović and Vedran Krčadinac. Finally, I thank my family and friends

for their constant support and care.

xi

Chapter 1

Introduction

The combinatorial optimization problems considered in this thesis fit into

the following framework. Given a ground set E = {1, . . . , n}, a set of

feasible solutions F ⊂ 2E, and a real objective value function f : 2E → R,

find a feasible solution that minimizes f , i.e.

Minimize f(S), subject to S ∈ F .

Feasible solutions for which the minimal objective value is achieved are

called optimal solutions.

Usually there is a cost c(e) assigned to every ground element e ∈ E and

the objective value function is given by

f(S) :=
∑
e∈S

c(e). (1.1)

Some combinatorial optimization problems can be solved by a polyno-

mial time algorithm, i.e. they belong to the complexity class P. They are

regarded as “efficiently solvable” and “easy” problems. Some problems that

fall into this class are the minimum spanning tree problem, the shortest path

problem and the linear assignment problem. Conversely, NP-hard problems

are believed not to be polynomially solvable. Namely, the existence of a

polynomial time algorithm for some NP-hard problem would imply P=NP,

which is believed not to be true, see [41]. Some NP-hard combinatorial

optimization problems are the traveling salesman problem, the maximum

independent set problem and the quadratic assignment problem.

1

1 Introduction

There are several approaches to handling NP-hard combinatorial opti-

mization problems. For example, exponential time exact approaches like

branch and bound, cutting plane method or dynamic programing can be

applied. Furthermore, heuristics like greedy, improvement heuristics, meta-

heuristics and LP-relaxation approaches can be developed to solve such

problems in a suboptimal way. If a heuristic runs in polynomial time and

outputs a solution with the objective value at most α > 1 times the objec-

tive value of an optimal solution (at least 0 < α < 1 times for maximiza-

tion problems), then such a heuristic is called α-approximation algorithm.

Lastly, special cases of NP-hard problems can be investigated. Special

cases investigation of the multidimensional assignment problems, with spe-

cial emphasis on the three-dimensional assignment problems, is the central

topic of this thesis.

If the considered combinatorial optimization problem is NP-hard, we can

ask: Which subclasses of the problem allow fast solution (i.e. polynomial

time algorithm) and which don’t? Note that we do not ask for just one

problem instance, but for an (infinite) class of problem instances which

allow a fast algorithm. The knowledge about efficiently solvable special

cases offers a better understanding of the underlying hard problem. By

investigating the borderline between efficiently solvable and hard special

cases we detect what makes the problem hard. We can use solvable special

cases in heuristics or in approximating general problem instances by those

with special properties. Furthermore, some problems in practice show a

regular pattern which can be used for simplifying the solution process.

Some ways to arrive at special cases result from considering

• special cost structures,

• special geometry of the problem,

• special topology of the underlying graph structure,

• a special algorithm.

An important question in the field of special case investigation is the

question of the fast recognition of special structures.

There is a relatively rich literature on a variety of special cases for many

classes of NP-hard combinatorial optimization problems. For example, see

2

[43] and [20] for the surveys on the special cases of the traveling salesman

problem, and [76] for the survey on the special cases for multidimensional

assignment problems.

The rest of the thesis is organized as follows. In Chapter 2 we give a

short overview of the assignment problems investigated in this thesis.

In Chapter 3 we investigate special cases of the axial 3-dimensional as-

signment problem (A3AP) that emerge from the geometric setting of the

problem. We show that the clustering of three color points into three color

triangles, where the objective value of the clustering is the sum of triangle

perimeters, is NP-hard for a large class of distance metrics that, among

others, generalize Lp metrics. Conversely, if we want to maximize the to-

tal perimeter instead of minimizing it, the problem becomes polynomially

solvable for any fixed polyhedral metric. Furthermore, as a byproduct of

our results we get that the analogous results hold for the bottleneck and

one color versions of the problem. These results can be found in Ćustić et

al. [29].

Chapter 4 is dedicated to special case investigation of the planar 3-

dimensional assignment problem (P3AP). Unlike in the case of the A3AP,

there are no nontrivial P3AP special case results in the literature. This

thesis contributes to filling this void. The majority of our investigations

deal with cost structures associated with Monge-like properties. We detect

few NP-hard special cases and recognize some structural properties of the

optimal solution that enable us to design polynomial dynamic program-

ming algorithms. Most important results of Chapter 4 can be found in

Ćustić et al. [30].

In Chapter 5 we aim to characterize all instances for which every feasible

solution has the same objective value for a large class of multidimensional

assignment problems and some other combinatorial optimization problems.

Such instances define a trivially solvable special case. Furthermore, in the

case of combinatorial optimization problems with the sum objective value

function (1.1), such instances are in one-to-one correspondence with the

so called admissible transformations that can be used to solve the prob-

lem or to find a lower bound, see Section 5.1. The main results of this

chapter show that in the case of axial and planar d-dimensional assignment

problems the constant objective value property can be characterized by

3

1 Introduction

sum-decomposable arrays. We prove that this is not the case for general

multidimensional assignment problems by giving a counterexample. Other

problems considered are the transportation problem, the minimal spanning

tree problem, the shortest path problem and the minimum weight maximum

cardinality matching problem. Results from this chapter can be found in

Ćustić and Klinz [28].

4

Chapter 2

Preliminaries

Assignment problems are a class of combinatorial optimization problems

where a family of objects arranged in disjoint sets need to be assigned

to each other by some assignment rule. Every such assignment has the

corresponding cost. The problem is to find the one with the smallest cost.

For a comprehensive overview of the assignment problems see the book by

Burkard et al. [21].

In this chapter we give a short overview of the assignment problems

investigated in the latter chapters. In Section 2.1 the linear assignment

problem is addressed. In Section 2.2 and Section 2.3 two three-dimensional

assignment problem variants are presented. Finally, a generalization of

these notions in higher dimensions is presented in Section 2.4.

2.1 Linear assignment problem

The linear assignment problem (LAP) is one of the most famous problems

in linear programming and combinatorial optimization. Consider n tasks

and n machines. Assume that for every task-machine pair there is a cost

associated to it. The linear assignment problem models the problem of

assigning each task to a different machine so that the corresponding cost

objective is optimized. The cost objective can be formulated in various

ways. The classical one is as the sum of all task-machine pair costs in the

assignment. This yields the linear sum assignment problem (LSAP). An-

other one is as the maximum of all task-machine pair costs. This variant

5

2 Preliminaries

is called the linear bottleneck assignment problem (LBAP). In both LSAP

and LBAP one wants to find the assignment with the minimal correspond-

ing objective value. If the costs are the energy required by a machine to

perform a task, then the LSAP models the problem of finding the assign-

ment that minimizes the total energy consumption. If the costs are the

time needed for a machine to perform a task, then the LBAP models the

problem of finding the assignment that minimizes the time required for all

tasks to be completed.

If we express the costs in a form of a matrix C = (cij) where cij is the cost

of assigning task i to machine j, then the LAP is the problem of choosing

n elements of C with the minimal objective value, such that exactly one

element from each row and each column is chosen.

2 4 5 3

2 8 5 2

1 4 7 3

4 6 5 6

←→

Figure 2.1: Matrix and graph theoretic representation of the LAP

The LAP can also be expressed in the graph theoretic language. Let

G = (U, V ;U × V) be a complete bipartite graph with |U | = |V | = n,

where sets of vertices U and V correspond to the set of tasks and ma-

chines, respectively. Let the cost of performing a task i on a machine j

be associated to the edge (i, j). Then the LAP is the problem of finding a

perfect matching of a weighted graph G with the minimal objective value.

Every assignment is a bijective mapping of the n sized set of tasks to

the n sized set of machines, that is, a permutation of the set {1, . . . , n}.
Therefore, there are n! feasible solutions of the LAP. Let Sn denote a set

of permutations of the set {1, . . . , n}. Given a cost matrix C = (cij), the

LSAP is the problem of finding a permutation ϕ ∈ Sn that minimizes∑n
i=1 ciϕ(i), while the LBAP is the problem where the objective function

6

2.1 Linear assignment problem

maxi=1,...,n ciϕ(i) is minimized.

2.1.1 Algorithms for the LAP

An integer linear programming formulation of the LSAP is as follows:

min
n∑
i=1

n∑
j=1

cijxij (2.1)

s.t.
n∑
j=1

xij = 1 i = 1, 2, . . . , n, (2.2)

n∑
i=1

xij = 1 j = 1, 2, . . . , n, (2.3)

xij ∈ {0, 1} i, j = 1, 2, . . . , n. (2.4)

In the case of LBAP we have

min max
i,j=1,...,n

cijxij (2.5)

instead of (2.1).

An n× n matrix X = (xij) whose entries fulfill (2.2) and (2.3) is called

a doubly stochastic matrix. Doubly stochastic matrix with entries 0 and 1

is called a permutation matrix. Hence, every feasible solution of the LAP

corresponds to a permutation matrix. The set of all doubly stochastic

matrices forms the so-called assignment polytope. Birkhoff [16] showed that

permutation matrices uniquely correspond to the vertices of the assignment

polytope. Thus every doubly stochastic matrix can be written as a convex

combination of permutation matrices. Due to this property, the LSAP can

be solved using linear programming techniques.

The first combinatorial polynomial algorithm for the LSAP is the famous

Hungarian method developed by Kuhn [55]. It is a primal-dual algorithm

based on the results of Dénes Kőnig and Jenő Egerváry. The time complex-

ity of the original version is O(n4), while today O(n3) implementations are

known. Recently it was discovered that the Hungarian method was known

to Jacobi [49] hundred years before it was discovered by Kuhn.

Many more algorithms for the LSAP were suggested, among which are

7

2 Preliminaries

the primal algorithm by Balinski and Gomory [11], the dual algorithm by

Dinic and Kronrod [33], the auction algorithm by Bertsekas [15], simplex-

based algorithms [3], pseudoflow algorithms [45], the decomposition algo-

rithm by Kao et al. [51], etc. The best strongly polynomial time bound for

the LSAP is still O(n3).

Next we consider algorithms for the LBAP. One natural approach to

solving the LBAP is the threshold algorithm. It alternates between two

phases. In the first phase a cost element c∗ (the threshold value) is chosen

and a threshold matrix C̄ = (c̄ij) is defined as

c̄ij =

1 if cij > c∗,

0 otherwise.

In the second phase it is verified if for the cost matrix C̄ there exists an

assignment with total cost 0. In other words, one must check whether the

bipartite graph with edges that correspond to values 0 in the threshold

matrix, contains a perfect matching. Then the smallest value c∗ for which

the corresponding bipartite graph contains a perfect matching is the opti-

mum value of the LBAP. A good implementation of the threshold algorithm

yields complexity of O(n2.5/
√

log n), which is a theoretically best bound for

a dense LBAP (the number of nonzero coefficients cij is O(n2)).

An algorithm for the LBAP that mimics the Hungarian method can be

implemented using augmenting path methods, see [32].

2.2 Axial 3-dimensional assignment problem

Two standard ways to generalize the LAP to three dimensions are the axial

3-dimensional assignment problem which is addressed in this section, and

the planar 3-dimensional assignment problem which will be addressed in

Section 2.3. These names were first used by Schell in 1955, see [74].

2.2.1 Problem statement and applications

Given an n × n × n array C = (cijk), the axial 3-dimensional assignment

problem, A3AP for short, can be stated as follows. We ask for two per-

8

2.2 Axial 3-dimensional assignment problem

mutations ϕ, ψ ∈ Sn such that
∑n

i=1 ciϕ(i)ψ(i) is minimal, i.e. the problem

is:

min
ϕ,ψ∈Sn

n∑
i=1

ciϕ(i)ψ(i).

Every pair of permutations ϕ and ψ yields a feasible solution, hence there

are (n!)2 feasible solutions of the A3AP. The A3AP is also known in the

literature as the axial 3-index assignment problem.

Integer linear programming formulation of the A3AP is as follows.

min
n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk (2.6)

s.t.
n∑
i=1

n∑
k=1

xijk = 1 i = 1, 2, . . . , n (2.7)

n∑
i=1

n∑
k=1

xijk = 1 j = 1, 2, . . . , n (2.8)

n∑
i=1

n∑
j=1

xijk = 1 k = 1, 2, . . . , n (2.9)

xijk ∈ {0, 1} i, j, k = 1, 2, . . . , n (2.10)

Every feasible solution of the A3AP can be seen as a set of n elements of

C that contains exactly one element from every matrix obtained by fixing

an index of C. This is depicted in Figure 2.2.

Figure 2.2: Depiction of the constraints (2.7), (2.8) and (2.9), respectively.

The bottleneck axial 3-dimensional assignment problem, the bottleneck-

A3AP for short, is a version of the problem where the maximal element is

minimized, i.e.

min
ϕ,ψ∈Sn

max
i=1,...,n

ciϕ(i)ψ(i). (2.11)

The maximization version of the A3AP (max-A3AP) is also considered in

9

2 Preliminaries

the literature, for example in [23].

The (bottleneck) A3AP models the following problem. Given a set of n

jobs, n workers and n machines such that cijk measures the cost of assigning

a job i to a worker j on a machine k, we want to assign all jobs to different

workers and machines so that the total (maximal) cost is minimized. The

(bottleneck) A3AP has arisen in many applications some of which are:

capital investment, dynamic facility location, satellite launching [63, 64],

assembly of printed circuit boards [26], perishable production planning [7],

scheduling a rolling mill [71], etc.

2.2.2 Complexity and algorithms

In contrast to the LAP, the A3AP is NP-hard as it is a straightforward

generalization of the famous 3-Dimensional Matching which is shown to be

NP-complete by Karp [52].

3-Dimensional Matching (3DM)

Input: Three disjoint sets X, Y and Z (n = |X| = |Y | = |Z|) and

a set of triples T ⊆ X × Y × Z.

Question: Does there exists a subset of n triples M ⊆ T such that

every element of X ∪ Y ∪ Z occurs in exactly one triple of M?

Given an instance of the 3DM one can define an n×n×n array C = (cijk)

as follows. Let elements of sets X, Y , Z correspond to indices i, j, k,

respectively. Let cijk be equal to 0 if the triple that corresponds to (i, j, k)

is in M , and 1 otherwise. Then, the given 3DM instance is a YES instance

if and only if the optimal solution of the (bottleneck) A3AP with cost array

C is 0. For the max-A3AP swap 0’s and 1’s in C. Hence, the (bottleneck)

A3AP is NP-hard even when restricted to 0-1 cost arrays. Moreover, it

is straightforward to see that for the minimization and the bottleneck-

A3AP no polynomial algorithm can ever achieve a constant performance

ratio unless P=NP. On the other hand, 1
2
-approximation algorithm for the

max-A3AP is given by Arkin and Hassin [8].

The first branch and bound methods for the A3AP are due to Vlach

[79] and Pierskalla [64]. A primal-dual implicit enumeration method based

on a graph theoretic approach was designed by Hansen and Kaufman [47].

Polyhedral approaches were applied by Balas and Saltzman [10].

10

2.2 Axial 3-dimensional assignment problem

2.2.3 Special cases

Since the A3AP is NP-hard, its computational complexity when when re-

stricted to special cases is of interest.

Many hard combinatorial optimization problems become efficiently

Figure 2.3: G. Monge

solvable for Monge-like structures. Exam-

ples include the traveling salesman problem

[43], the economic lot-sizing problems [2] and

the axial d-dimensional assignment and trans-

portation problems [22].

Basic Monge structures are Monge matri-

ces which arise in many areas of mathematics

[22] and were first investigated by the French

mathematician Gaspard Monge.

Definition 2.1. An n1 × n2 matrix M = (mij) is called Monge matrix if

mij +mkl ≤ mil +mkj (2.12)

holds for all 1 ≤ i < k ≤ n1, 1 ≤ j < l ≤ n2.

The notion of the Monge matrix can be generalized to d > 2 dimensions

as follows.

Definition 2.2. An n1×n2×· · ·×nd d-dimensional array C = (ci1i2···id) is

called a Monge array if for ik = 1, . . . , nk and jk = 1, . . . , nk, k = 1, . . . , d,

we have

cs1s2···sd + ct1t2···td ≤ ci1i2···id + cj1j2···jd , (2.13)

where sk = min{ik, jk} and tk = max{ik, jk}, j = 1, . . . , d.

Bottleneck Monge matrices and arrays are defined by replacing Monge

properties (2.12) and (2.13) by

max{mij,mkl} ≤ max{mil,mkj} (2.14)

and

max{cs1s2···sd , ct1t2···td} ≤ max{ci1i2···id , cj1j2···jd}, (2.15)

respectively.

11

2 Preliminaries

For both the LAP and the A3AP an optimal solution is obtained by

identity permutations in the case of cost structures being Monge matrices

and Monge arrays, respectively, i.e. the following proposition holds [22].

Proposition 2.3. Let εn denote the identity permutation on {1, . . . , n}
with εn(i) = i.

(i) εn is an optimal solution for the LSAP and the LBAP on n×n Monge

matrices and bottleneck Monge matrices, respectively.

(ii) ϕ = εn and ψ = εn is an optimal solution for the (bottleneck) A3AP

on n× n× n (bottleneck) Monge arrays.

In Chapter 4 the planar 3-dimensional assignment problem on Monge-like

structures is investigated.

Klinz and Woeginger [53] showed that identity permutations ϕ = εn and

ψ = εn are also optimal for the bottleneck-A3AP if the cost array C = (cijk)

satisfies the following wedge condition:

clll < min{cijk : 1 ≤ i ≤ l; i ≤ j, k ≤ n; j + k 6= 2i}

for all l = 1, . . . , n.

The A3AP on decomposable cost arrays C = (cijk) of the form cijk =

aibjdk, for some nonnegative reals ai, bi and di, is investigated in [42] and

[23]. Since the cost array c̄ijk = −aibjdk is a Monge array provided ai, bi

and di are sorted in a nondecreasing order, the max-A3AP on C can be

solved in polynomial time. In contrast, in [23] it is shown that the A3AP

remains NP-hard.

Crama and Spieksma [27], Spieksma and Woeginger [77] and Polyakon-

skiy et al. [66] consider special cases arising from geometrical formulation

of the A3AP. Given sets R, B and G of n red, blue and green points, re-

spectively, let cijk denote the cost of the three-color triangle determined by

points ri, bj and gk. The problem of partitioning R ∪ B ∪ G into n three-

color triangles with the minimal total cost is exactly the A3AP. In [27], the

sum of all three edges and the sum of the two longer edges are used as costs

for triangles. Even if the point distances fulfill the triangle inequality the

problem remains NP-hard. The authors designed 3
2

and 4
3
-approximation

algorithms for these two problem variants, respectively.

12

2.3 Planar 3-dimensional assignment problem

In [66] the authors show that both the minimization and maximization

variant when the cost of a triangle is its perimeter is polynomially solvable,

if the underlying metric space satisfies the so-called Kalmanson conditions;

their results cover convex Euclidean point sets and tree metric spaces as a

special case.

In [77], the points are placed on the plane, the cost of the triangle is

its perimeter while the length of an edge is the Euclidean distance of the

corresponding points. The problem remains NP-hard and it is so even if

the sum of the areas of triangles instead of their perimeter is minimized.

Chapter 3 is dedicated to the investigation of the minimal and maximal

total perimeter problem complexity when the points are placed in Rd for a

large class of distance metrics.

2.3 Planar 3-dimensional assignment problem

The second classical way to define an assignment problem in the three-

dimensional setting, along with the A3AP, is the planar 3-dimensional as-

signment problem, P3AP for short. The name planar 3-index assignment

problem is also used in the literature.

2.3.1 Problem statement and applications

In the P3AP the goal is for a given n× n× n cost array C = (cijk) to find

n pairwise disjoint permutations ϕ1, ϕ2, . . . , ϕn ∈ Sn so as to minimize the

cost function
n∑
k=1

n∑
i=1

ciϕk(i)k (2.16)

where two permutations ϕ, ψ ∈ Sn are said to be disjoint if ϕ(i) 6= ψ(i) for

all i ∈ {1, . . . , n}.
An integer linear programming formulation of the P3AP is given below.

min
n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk (2.17)

s.t.
n∑
k=1

xijk = 1 i, j = 1, 2, . . . , n (2.18)

13

2 Preliminaries

n∑
i=1

xijk = 1 j, k = 1, 2, . . . , n (2.19)

n∑
j=1

xijk = 1 i, k = 1, 2, . . . , n (2.20)

xijk ∈ {0, 1} i, j, k = 1, 2, . . . , n (2.21)

Every feasible solution of the P3AP can be seen as a set of n2 elements

of C that contains exactly one element from every line obtained by fixing

two indices of C. This is depicted in Figure 2.4.

Figure 2.4: Depiction of the constraints (2.18), (2.20) and (2.19), respec-
tively.

Furthermore, every feasible solution of the P3AP corresponds to and can

be represented by a Latin square. Latin square of order n is an n×n table

filled with integers from 1 to n such that every row and column contains

every integer from 1 to n. To see this, let x be a feasible solution of the

P3AP. By placing integer k into a cell in row i and column j if and only

if xijk = 1 one obtains a Latin square. Namely, constraints (2.18) ensure

that every cell contains exactly one integer, and constraints (2.20) and

(2.19) ensure that every row and column contains all integers from 1 to n

respectively. A Latin square representation of a feasible solution is depicted

in Figure 2.5. Therefore, the number of feasible solutions of the P3AP with

x113 = x121 = x132 = x144 = 1

x211 = x224 = x233 = x242 = 1

x314 = x322 = x331 = x343 = 1

x412 = x423 = x434 = x441 = 1

←→

3 1 2 4

1 4 3 2

4 2 1 3

2 3 4 1

Figure 2.5: Latin square representation of a feasible solution.

an n × n × n cost array is equal to the number of Latin squares of order

14

2.3 Planar 3-dimensional assignment problem

n. This number grows very quickly and no easily computable formula that

computes it is known. Already for order 12 the number of Latin squares is

unknown.

The bottleneck planar 3-dimensional assignment problem (bottleneck-

P3AP) is a version of the problem where the maximal element is minimized.

The p-layer planar 3-dimensional assignment problem, p-P3AP for short,

is the following variant / generalization of the P3AP. Given an n × n × p
cost array C where p ∈ {2, . . . , n}, the goal is to find p pairwise disjoint

permutations ϕ1, . . . , ϕp so as to minimize the cost function

p∑
k=1

n∑
i=1

ciϕk(i)k.

Note that for p = n the P3AP results. The associated integer linear pro-

gram differs from the one for the P3AP by replacing the equality constraints

in (2.18) by
∑p

k=1 xijk ≤ 1 and setting the upper limit for the index k in

the objective value (2.17) and in the constraints (2.19), (2.20) and (2.21)

to p.

Feasible solutions of the p-P3AP can be represented as Latin rectangles

or as partial Latin squares. A Latin rectangle L is an m× n table (m ≤ n)

filled with integers from 1 to n such that every row and every column

contains every integer at most once. Note that an n × n Latin rectangle

is a Latin square. A partial Latin square occurs if entries of the table can

stay unfilled.

Observation 2.4. The set of feasible solutions of the p-P3AP is in one-

to-one correspondence with

(i) the set of p× n Latin rectangles

(ii) the set of partial n × n Latin squares in which each of the integers

1, 2, . . . , p appears exactly n times and the integers p + 1, . . . , n do

not appear at all.

To see this, let x be a feasible solution of the p-P3AP. To show that (i)

holds place integer i in column j and row k if and only if xijk = 1. To see

that (ii) holds place integer k in row i and column j if and only if xijk = 1.

See Figure 2.6 for an illustrating example with n = 4 and p = 3. The

15

2 Preliminaries

x113 = x121 = x132 = 1

x211 = x233 = x242 = 1

x322 = x331 = x343 = 1

x412 = x423 = x441 = 1

←→
2 1 3 4

4 3 1 2

1 4 2 3

←→

3 1 2

1 3 2

2 1 3

2 3 1

Figure 2.6: Example for Latin rectangle/partial Latin square representation

partial Latin square representation uses n× n table regardless of the value

of p, hence for small values of p the Latin rectangle representation is more

compact. Note that when p = n both the Latin rectangle and the partial

Latin square representation results with a Latin square, but such two Latin

squares will not coincide.

The (bottleneck) p-P3AP models the following timetabling problem: p

groups of students need to be taught by n professors within n time slots. If

cijk is the measure of dissatisfaction for every student group k, professor i

and time slot j triple, find a scheduling that minimizes the total (maximal)

dissatisfaction.

Balas and Landweer [9] used the P3AP to model satellite launching.

Furthermore, the P3AP is used to model timetabling (see e.g. [18, 48]) and

rostering problems [42].

2.3.2 Complexity and algorithms

The P3AP and the p-P3AP are NP-hard. A feasible solution of the p-

P3AP is made of p disjoint permutations, i.e. p disjoint perfect bipartite

matchings. Frieze [39] proved that already the problem concerning only

two disjoint matchings is hard, i.e. the Disjoint Matchings is NP-complete.

Disjoint Matchings (DM)

Input: Disjoint finite sets P, Q with |P | = |Q| and sets A1, A2 ⊆
P ×Q.

Question: Do there exist perfect matchings M1 ⊆ A1 and M2 ⊆
A2 such that M1 ∩M2 = ∅?

A simple proof of Frieze’s result can be found in [37].

Given an instance of the DM we can define an n×n× p array C = (cijk)

as follows. Let elements of sets P and Q correspond to indices i and j,

16

2.3 Planar 3-dimensional assignment problem

respectively. For k = 1, 2 let cijk be 0 if the pair that corresponds to (i, j)

is in Ak, and 1 otherwise. For k ≥ 3 let cijk = 0. Then, given DM instance

is a YES instance if and only if the objective value of an optimal solution

of the (bottleneck) p-P3AP with the cost array C is 0. This is true because

every pair of two disjoint perfect bipartite matchings can be extended to

the set of p ≤ n disjoint perfect bipartite matchings, see [46]. For the max-

p-P3AP swap 0’s and 1’s in C. Hence, the (bottleneck) p-P3AP is NP-hard

even when restricted to 0-1 cost arrays. Moreover, it is straightforward to

see that for the p-P3AP and bottleneck-p-P3AP no polynomial algorithm

can ever achieve a constant performance ratio unless P=NP. Conversely,

using the result from [8] a 1
2
-approximation algorithm can be obtained for

the max-P3AP version with inequalities ≤ 1 in (2.18), (2.19) and (2.20).

Branch and bound methods for the P3AP are presented by Vlach [79] and

Magos and Miliotis [59]. A tabu search approach is presented in [58]. The

polyhedral structure related to the P3AP is studied in [5, 35, 36]. Frieze

and Sorkin [40] have established high probability lower and upper bounds

for the optimal objective function value under the assumption that costs

cijk are independent, identically distributed exponential random variables

with parameter 1.

The p-P3AP has received less attention in the literature than the P3AP.

Gimadi and Glazkov [44] suggested an approximation algorithm for the

p-P3AP and analysed its performance in the case when the costs are in-

dependent, identically distributed uniform random variables. Yokota et al.

[80] presented an algorithm for the p-P3AP (called repeated assignment

problem in their paper) that outperforms general ILP-solvers for instances

with small p.

2.3.3 Special cases

We are not aware of any results in the literature on non-trivial special cases

of the P3AP. However, several contributions to this topic are presented in

this thesis.

In Chapter 4 special cases that satisfy multiple variants of Monge proper-

ties are investigated for the P3AP together with a variation of the P3AP for

which a feasible solution consists of p disjoint perfect matchings, 2 ≤ p ≤ n.

17

2 Preliminaries

In Chapter 5 we characterized all special cases of the P3AP (together

with other problems and generalizations) for which every feasible solution

has the same objective value.

2.4 Multidimensional assignment problems

In previous sections we defined classical two-dimensional and three-dimensi-

onal assignment problems, namely the LAP, the A3AP and the P3AP. In

this section we describe how the notion of assignment problems can natu-

rally be extended to higher dimensions. Characterizations of the multidi-

mensional assignment problem cost arrays for which every feasible solution

has the same objective value are investigated in Chapter 5.

2.4.1 Definition

In the case of the LAP we are given a two-dimensional n× n cost matrix,

and every feasible solution corresponds to a set of n cost elements, one for

every one fixed index (row or column) of the cost matrix. In the case of

the A3AP and the P3AP we are given a three-dimensional n× n× n cost

array. Every feasible solution of the A3AP corresponds to a set of n cost

elements, one for every one index of the cost array fixed. In the case of the

P3AP every feasible solution corresponds to a set of n2 cost elements, one

for every two indices of the cost array fixed. Now it is straightforward to

generalize these notions to higher dimensions. A general multidimensional

assignment problem is specified by two parameters d and s, where d is

the number of indices and s describes the number of fixed indices in the

constraints. Informally speaking, we want to find a set of ns elements of a

d-dimensional n × n × · · · × n array C with minimal total sum, such that

for every s fixed indices of C exactly one element is chosen.

Formally, the (d, s) assignment problem, (d, s)-AP for short, can be

stated in the following way.

Definition 2.5. Let d and s be integers with 0 < s < d. The input

of the (d, s)-AP consists of an integer n ≥ 1 and a d-dimensional n ×
n × · · · × n cost array C which associates the cost c(i1, i2, . . . , id) to the

d-tuple (i1, i2, . . . , id) ∈ {1, . . . , n}d. Let Qs be the set of all subsets of

18

2.4 Multidimensional assignment problems

K = {1, . . . , d} with cardinality s, i.e. Qs = {Q : Q ⊂ K, |Q| = s}. For

any set Q = {q1, q2, . . . , qs} ∈ Qs of fixed indices with q1 < q2 < · · · < qs

and any s-tuple t = (t1, . . . , ts) ∈ {1, . . . , n}s, let T (Q, t) be the set of all

d-tuples t′ = (t′1, . . . , t
′
d) ∈ {1, . . . , n}d such that t′qj = tj for all j = 1, . . . , s.

The general (d, s) assignment problem (d, s)-AP can be stated as

min
n∑

i1=1

· · ·
n∑

id=1

c(i1, i2, . . . , id)x(i1, i2, . . . , id) (2.22)

s.t.
∑

(i1,...,id)∈
T (Q,(j1,...,js))

x(i1, i2, . . . , id) = 1 for all Q ∈ Qs
and all (j1, . . . , js) ∈ {1, . . . , n}s,

x(i1, i2, . . . , id) ∈ {0, 1} for all (i1, i2, . . . , id) ∈ {1, . . . , n}d.

Note that in each of the equality constraints above the sum essentially

extends over d− s variables (corresponding to the free indices from the set

K \Q).

The bottleneck (d, s) assignment problem (bottleneck-(d, s)-AP) is the

version of the problem where the maximal element is minimized, i.e. we

have

min max
i1=1,...,n

· · · max
id=1,...,n

c(i1, i2, . . . , id)x(i1, i2, . . . , id)

instead of (2.22).

Let X = (x(i1, i2, . . . , id)) be a feasible solution of the integer program

stated above. Then the set F = {(i1, i2, . . . , id) : x(i1, i2, . . . , id) = 1} is a

feasible solution of the (d, s)-AP and the value
∑

(i1,...,id)∈F c(i1, . . . , id) is

the cost (objective value) of the feasible solution F .

Using the (d, s)-AP notation, the LAP is the (2, 1)-AP, while the A3AP

and the P3AP correspond to the (3, 1)-AP and the (3, 2)-AP, respectively.

More generally, we refer to the (d, 1)-AP as axial d-dimensional assignment

problem, and to the (d, d−1)-AP as planar d-dimensional assignment prob-

lem.

Let us remark that for d ≥ 4, there is no consensus in the literature

which problem version is referred to as planar d-dimensional assignment

problem. Our decision to refer to the (d, d− 1)-AP in which all constraints

involve single sums as planar problem is in accordance with the axial/planar

nomenclature which has been introduced in the original paper by Schell [74]

19

2 Preliminaries

and is used by Spieksma [76], Frieze and Sorkin [40] and others. A group of

authors around Appa, see e.g. [5], refer to the (d, 2)-AP as planar problem.

The A3AP and the P3AP are known to be NP-hard [39, 52]. As a

consequence thereof both the axial and planar d-dimensional assignment

problems are NP-hard for all d ≥ 3.

2.4.2 Feasible solutions

The following observations collect a few well known facts about the struc-

ture of the set of feasible solutions of the (d, s)-AP.

Observation 2.6. Every feasible solution of the (d, 1)-AP of size n can be

represented by a set of d−1 permutations of {1, . . . , n}. Namely, every fea-

sible solution can be written as F = {(i, φ1(i), . . . , φd−1(i)) : i = 1, . . . , n}
where each φk is a permutation of {1, . . . , n}.

Observation 2.7. A set of d-tuples F is a feasible solution of the (d, d−
1)-AP of size n if and only if F “contains” n pairwise disjoint feasible

solutions of the (d − 1, d − 2)-AP. Namely, define n sets of (d − 1)-tuples

obtained from F by fixing one index, for example the first one: Fi =

{(a2, a3, . . . , ad) : (i, a2, a3, . . . , ad) ∈ F} for i = 1, 2, . . . , n. Then every Fi

is a feasible solution of the (d − 1, d − 2)-AP because fixing d − 2 indices

in Fi corresponds to fixing d− 1 indices in F . Also, if there are Fi and Fj

that are not disjoint, then there would be two elements in F that coincide

on d−1 indices, a contradiction. The same construction works in the other

direction as well.

Observation 2.8. The feasible solutions of the (d, 2)-AP for d ≥ 3 cor-

respond to (d − 2)-tuples of mutually orthogonal Latin squares. Indeed,

assume that F is a feasible solution of the (d, 2)-AP. We can represent F

as an n×n table T with (d−2)-tuples as entries in the following way: The

(d − 2)-tuple (i3, . . . , id) is the entry in row i1 and column i2 of T if and

only if (i1, . . . , id) is an element of F . Since F is a feasible solution of the

(d, 2)-AP, each row and each column of T contain every integer from 1 to

n exactly once on the k-position for all k = 1, . . . , d − 2. Moreover, each

(d − 2)-tuple of pairwise distinct integers from {1, . . . , n} appears exactly

20

2.4 Multidimensional assignment problems

once in T . Hence T can be interpreted as a (d − 2)-tuple of mutually or-

thogonal Latin squares (the k-th component of the entries of T yields the

k-th Latin square). Note that if d = 4 then T is a Graeco-Latin square.

What distinguishes the general (d, s)-AP from the special cases with

s = 1 (axial problem) and with s = d − 1 (planar problem) is that there

does not need to exist feasible solutions for every value of n. Furthermore,

not much is known on the structure of the set of feasible solutions for

the (d, s)-AP for general n, cf. Appa et al. [6]. Infeasible instances and

instances with very few feasible solutions provide clear obstacles to our

intended COVP characterization. For this reason the feasibility topic for

the (d, s)-AP plays a role for us and we briefly review a few basic results

from the literature.

The question for which values n the general (d, s)-AP has feasible solu-

tions is a very difficult problem which is still open for many combinations of

d and s, and is related to a number of difficult problems in combinatorics.

More precisely, the general (d, s)-AP of size n has a feasible solution if

there exists an s-transversal design with d groups of size n, or equivalently

if there exists an orthogonal array OA(n, d, s) of index 1, strength s and

order n, see [25].

In view of Observation 2.8, the question of existence of Graeco-Latin

squares is of interest. This was a famous open problem for a long time

going back to Euler until it was finally proved by Bose et al. [17] that

Graeco-Latin squares, and thus feasible solutions of the (4, 2)-AP, exist for

every n ≥ 3 except for n = 6.

The number of mutually orthogonal Latin squares of size n (see Obser-

vation 2.8 for the connection to the feasibility of the (d, 2)-AP) is unknown

for general n. It is known however that this number is at most n − 1 and

that the upper bound is achieved if n is a prime power. It is also known

that there exist n−1 mutually orthogonal Latin squares if and only if there

exists a projective plane of order n, see [25].

2.4.3 Applications and algorithms

An important application that is modeled using an axial d-dimensional

assignment problem occurs in the field of target tracking and plays a central

21

2 Preliminaries

role in operating surveillance systems. Solution methods for this application

based on Lagrangian relaxation are proposed in Pattipati et al. [61], Poore

[67], Poore and Rijavec [68]. Other approaches are described in Murphey

et al. [60].

An application concerning routing in meshes that can be formulated as

the (d, 1)-AP is described in Fortin and Tusera [38]. The data association

problem, stemming from high energy physics and leading to the (5, 1)-AP

is described by Pusztaszeri, Rensing, and Liebling [70] (see also Pusztasz-

eri [69]). The authors tried to reconstruct the tracks of charged elemen-

tary particles generated by the large electron-positron collider at CERN in

Geneva.

The (4, 2)-AP occurs in the design of tournaments (see Appa, Magos,

and Mourtos [4] for a branch and cut approach) and conflict-free access to

parallel memories and the design of error-correcting codes.

22

Chapter 3

Geometric axial 3-dimensional

assignment problems

The axial 3-dimensional assignment problem (A3AP) is an important and

well-studied problem in combinatorial optimization, see Section 2.2. An

instance of the A3AP consists of three sets X, Y , Z with |X| = |Y | =

|Z| = n, and a cost function c : X × Y × Z → R. The goal is to find

a set of n triples in X × Y × Z that cover every element in X ∪ Y ∪ Z
exactly once, so that the sum of the costs of these triples is minimized. In

the closely related maximization version max-A3AP of the A3AP, this sum

is to be maximized. The book by Burkard et al. [21] contains a wealth of

information on the A3AP and other assignment problems.

A prominent special case of the A3AP is centered around a metric space

(S, d) where S is a set and where d is a distance function on S (that

hence is symmetric, non-negative, and satisfies the triangle inequality).

The elements in X∪Y ∪Z are points in S, and the cost c(x, y, z) of a triple

(x, y, z) ∈ X × Y × Z is given by

c(x, y, z) = d(x, y) + d(y, z) + d(z, x). (3.1)

Costs of this type are sometimes called perimeter costs ; intuitively speak-

ing, they measure the perimeter of the triangle determined by points x, y, z

in the metric space. Investigations under these types of costs are the topic

of this chapter. The results presented here can be found in [29].

23

3 Geometric axial 3-dimensional assignment problems

3.1 Technical preliminaries

Let R denote a compact and convex subset of the s-dimensional Cartesian

space Rs that has non-empty interior and that is centrally symmetric with

respect to the origin. The corresponding norm LR with unit ball R deter-

mines for any two points x, y ∈ Rs a distance dR(x, y) in the following way.

First translate the space so that one of the two points (say point x) lies in

the origin. Then determine the unique scaling factor λ by which one must

rescale the unit ball R (shrinking for λ < 1, expanding for λ > 1), so that

the other point (point y, in our case) lies on its boundary. The distance is

then given by dR(x, y) = λ. Note that since R is centrally symmetric, it

does not matter whether we choose point x or point y for the origin. See

Figure 3.1 for an illustration.

Figure 3.1: Three examples of unit balls for an LR norm in R2

The most popular norms for Rs are the Manhattan norm, the Euclidean

norm, and the Maximum norm. These three norms are special cases of the

well-known Lp norm, respectively for p = 1, for p = 2, and for p = ∞.

We recall that for 1 ≤ p < ∞, the Lp distance between two points x =

(x1, . . . , xs) and y = (y1, . . . , ys) in s-dimensional space is given by

d(x, y) =

(
s∑
i=1

|xi − yi|p
)1/p

. (3.2)

For p = ∞, the corresponding distance under the Maximum norm L∞ is

given by

d(x, y) = max s
i=1|xi − yi|. (3.3)

24

3.2 The maximization problem under tunneling distances

3.2 The maximization problem under tunneling

distances

In this section we consider a variant of the max-A3AP with perimeter costs

that will be useful in Section 3.3. The distances between the elements of

X ∪ Y ∪ Z are specified with the help of a system of k ≥ 2 so-called

tunnels t1, . . . , tk; we stress that throughout this section the number k of

tunnels is a constant that does not depend on the input. Each tunnel acts

as a bidirectional passage with a front entry and a back entry. For every

element x ∈ X∪Y ∪Z and every tunnel t, we denote by F (x, t) the distance

between x and the front entry of t and by B(x, t) the distance between x

and the back entry of t. Intuitively speaking, the only way of moving from

x to y is to first move from x to some tunnel, then to traverse the tunnel in

either direction (either from front entry to back entry, or from back entry

to front entry), and finally to move from the other end of the tunnel to y.

The tunneling distance between two elements x and y in X ∪Y ∪Z is then

given by

d(x, y) = max {F (x, ti) +B(y, ti), B(x, ti) + F (y, ti) : 1 ≤ i ≤ k} . (3.4)

The maximization version of the traveling salesman problem under tunnel-

ing distances is studied in [12].

We construct an undirected, edge-labeled, bipartite multigraph G whose

vertex set are the elements of X∪Y ∪Z together with the tunnels t1, . . . , tk.

Between any element x of X ∪Y ∪Z and any tunnel t there are two edges,

one of which is labeled B and has cost B(x, t), whereas the other one is

labeled F and has cost F (x, t).

A six-cycle in G is a closed walk x − ti − y − tj − z − tk − x with

(x, y, z) ∈ X × Y × Z and three (not necessarily distinct) tunnels ti, tj, tk.

The six-cycle is legal, if the labels of the two edges incident to ti are distinct,

if the labels of the two edges incident to tj are distinct, and if the labels of

the two edges incident to tk are distinct. We stress that we do not require

tunnel ti to be the maximizer of the expression for x and y in the right hand

side of (3.4), nor that tj and tk are the maximizers for the corresponding

expressions for y and z, respectively for z and x.

25

3 Geometric axial 3-dimensional assignment problems

A legal set C of six-cycles consists of n legal six-cycles in G that cover

every vertex of X ∪ Y ∪ Z exactly once. We define G[C] as the subgraph

of G that is induced by the 6n edges in C. Then we coarsen the subgraph

G[C] by anonymizing the identities of the vertices in X ∪ Y ∪ Z: every

vertex in X is simply labeled X, every vertex in Y is labeled Y , and every

vertex in Z is labeled Z. The resulting anonymized graph G∗[C] is called

an outline of C and G[C].

Lemma 3.1. The optimal objective value of the considered max-A3AP in-

stance coincides with the largest cost taken over all subgraphs G[C] with a

legal set C of six-cycles.

Proof. Let C be an arbitrary legal set of six-cycles. Every six-cycle x− ti−
y− tj − z− tk−x in C yields a corresponding triple (x, y, z) in X ×Y ×Z.

The cost c(x, y, z) of triple (x, y, z) may be computed according to (3.4), by

replacing the three tunnels ti, tj, tk by three other tunnels that maximize

the value. Hence, the cost of the triple is an upper bound on the cost of the

six-cycle, and the cost of all n corresponding triples is an upper bound on

the cost of G[C]. This shows that the optimal objective max-A3AP value

is an upper bound on the cost of every subgraph G[C].

Next consider a set T of n triples in X×Y ×Z that constitutes an optimal

solution for the max-A3AP instance. We translate every triple (x, y, z) ∈ T
into a legal six-cycle: we let ti (tj and tk, respectively) denote the tunnel

that maximizes the expression (3.4) for x and y (respectively, for y and z

and for z and x), and we choose the labels B and F appropriately in the

obvious way. For the resulting legal set CT , the cost of G[CT] coincides

with the optimal objective max-A3AP value.

Lemma 3.2. Let G∗ be a given outline. Then we can compute in polyno-

mial time O(n3) the largest cost of all the induced subgraphs G[C] (with a

legal set C of six-cycles), whose outline G∗[C] coincides with G∗.

Proof. The problem boils down to assigning the elements ofX (respectively,

of Y and Z) to the n vertices in G∗ that are labeled X (respectively, labeled

Y and Z). The cost of assigning an element x ∈ X to some vertex v only

depends on x and on the two edges incident to v in G∗. Hence, we are

dealing with a classical two-dimensional assignment problem which can be

solved in polynomial time O(n3); see for instance [21].

26

3.3 The maximization problem under polyhedral norms

Lemma 3.3. There exist only O(n8k3) distinct outlines for graph G, and

they can all be enumerated in polynomial time.

Proof. After anonymizing the identities of the vertices in X∪Y ∪Z, a legal

six-cycle is determined by the three tunnels ti, tj, tk and the labels of its

first, third, and fifth edge. Hence there remain only 8k3 combinatorially

different legal six-cycles, and each of them may be used at most n times in

any outline.

The three lemmas above suggest the following approach to the max-A3AP

under tunneling distances. Enumerate all possible outlines in polynomial

time according to Lemma 3.3, and for each such outline compute the

maximum possible cost of a corresponding induced subgraph according to

Lemma 3.2. Return the largest cost over all outlines, which by Lemma 3.1

coincides with the optimal objective value of the max-A3AP instance.

Theorem 3.4. Problem max-A3AP with perimeter costs under tunneling

distances can be solved within a time complexity that depends polynomially

on the instance size n (and exponentially on the number k of tunnels).

The approach above computes the optimal objective value and the corre-

sponding graphs G∗[C] and G[C], but does neither yield the corresponding

optimal solution T ⊂ X × Y × Z for the max-A3AP instance, nor the

underlying legal set CT of six-cycles. The set CT can be determined in

polynomial time by invoking Lenstra’s algorithm [56] for integer program-

ming in constant dimension. For each of the 8k3 combinatorially different

legal six-cycles, we introduce a corresponding integer variable that counts

the number of occurrences of this cyle in CT . The constraints in the integer

program enforce that G[CT] coincides with G[C]. And once we have found

CT via the integer program, it is straightforward to identify the optimal

solution T (as outlined in the proof of Lemma 3.1).

3.3 The maximization problem under

polyhedral norms

Throughout this section, we consider the s-dimensional Cartesian space Rs

endowed with some fixed norm with polyhedral unit ball R. We investigate

27

3 Geometric axial 3-dimensional assignment problems

the special case of max-A3AP with perimeter costs where the elements in

X∪Y ∪Z are points in Rs and where the distances are measured according

to dR. We stress that both the dimension s of the underlying space and

the number of faces of the unit ball R are constants that do not depend on

the input.

The unit ball R is a polytope with 2k faces that is centrally symmetric

with respect to the origin. Then for certain vectors h1, . . . , hk ∈ Rs, this

polytope R can be written as the intersection of a collection of half-spaces:

R =

(
k⋂
i=1

{x : hi · x ≤ 1}

)
∩

(
k⋂
i=1

{x : hi · x ≥ −1}

)
(3.5)

As an example, for the rectilinear (Manhattan) norm in R2 the correspond-

ing vectors are h1 = (1, 1) and h2 = (−1,−1), and for the maximum norm

in R2 the corresponding vectors are h1 = (1, 0) and h2 = (0, 1). The dis-

tance dR(x, y) between two points x, y ∈ Rs is then given by

dR(x, y) = max {|hi · (x− y)| : 1 ≤ i ≤ s}

= max {hi · (x− y), hi · (y − x) : 1 ≤ i ≤ s}

= max {hi · x− hi · y, −hi · x+ hi · y : 1 ≤ i ≤ s} . (3.6)

We model a max-A3AP instance under a polyhedral norm as a special

max-A3AP under tunneling distances as discussed in Section 3.2. The

k vectors h1, . . . , hk serve as tunnels, and we set F (x, hi) = x · hi and

B(x, hi) = −x · hi. With this choice, the polyhedral distance dR(x, y)

between two points x and y in X ∪ Y ∪ Z in (3.6) coincides with the

distance given in (3.4). Hence Theorem 3.4 yields the following.

Theorem 3.5. For any polyhedral norm LR with unit ball R in s-dimensio-

nal space Rs, the max-A3AP with perimeter costs measured according to

LR can be solved within a time complexity that depends polynomially on

the instance size n (and exponentially on the number k of facets of the

polyhedral unit ball).

Theorem 3.5 implies the existence of a polynomial time approximation

scheme (PTAS) for the max-A3AP under any arbitrary norm with a not

28

3.4 The maximization problem in non-fixed dimension

necessarily polyhedral unit ball R. One simply approximates the unit ball

R by a polyhedral unit ball. Since the dimension s of the underlying space

and the ball R are fixed, one may choose a fixed polyhedral approximation

of the ball that approximates the distances between any two points within

a factor 1±ε. (This trick of approximating the unit ball is due to Barvinok

[13] who applied it to the maximum traveling salesman problem.) Hence

the following theorem holds.

Theorem 3.6. For any (not necessarily polyhedral) norm LR with unit ball

R in s-dimensional space Rs, the max-A3AP with perimeter costs measured

according to LR possesses a PTAS.

3.4 The maximization problem in non-fixed

dimension

The polynomial time results for the max-A3AP in the preceding section

assumed that the dimension s of the underlying space and the number

of faces of the underlying unit ball are constants that do not depend on

the input. In this section we discuss problem max-A3AP with perimeter

costs measured according to a standard Lp norm (with 1 ≤ p ≤ ∞) if the

dimension s is not fixed and part of the input. Our reductions are from the

following variant of Partition into Triangles.

Partition into Triangles (PIT)

Instance: A 6-regular, tripartite graph G = (V,E) with triparti-

tion V = V1 ∪ V2 ∪ V3, where |V1| = |V2| = |V3| = q.

Question: Does there exist a set T of q triples in V1×V2×V3 such

that every vertex in V occurs in exactly one triple and such that

every triple induces a triangle in G?

We have not been able to locate an NP-hardness proof of PIT on 6-regular

tripartite graphs in the literature (though we strongly expect that this

result has been observed before). For instance Van Rooij et al. [78] establish

NP-hardness for 4-regular graphs, but their graphs are not tripartite.

Proposition 3.7. The PIT on 6-regular tripartite graphs is NP-complete.

29

3 Geometric axial 3-dimensional assignment problems

Proof. The argument is routine, and we only sketch the main ideas. The

NP-hardness proof on pages 68 and 69 of Garey and Johnson [41] for Parti-

tion into Triangles is a reduction from the Exact Cover By 3-Sets problem.

We perform essentially the same reduction, but start it from the feasibility

version of the axial 3-dimensional assignment problem (Instance: three sets

X, Y , Z with |X| = |Y | = |Z| = q, and a set T ⊆ X × Y × Z of triples

such that every element of X ∪ Y ∪ Z occurs in at most three triples of

T . Question: Does there exist a subset T ∗ of q triples in T such that each

element of X ∪ Y ∪Z is contained in precisely one triple of T ∗?) Then the

resulting graph G is tripartite and all vertex degrees lie in {3, 4, 5, 6}.
Hence it remains to make the graph 6-regular. This can be reached

by various gadget constructions. We sketch a particularly simple approach

that increases the minimum degree ofG by one, while keeping the maximum

degree unchanged. Take the graph G = (V,E), and construct a copy

G′ = (V ′, E ′) of it (so that for every v ∈ V there is a corresponding copy

v′ ∈ V ′, and there is an edge (u, v) ∈ E if and only if there is an edge

(u′, v′) ∈ E ′). Define a new graph on the vertex set V ∪ V ′, and all edges

in E ∪ E ′, and furthermore an additional edge between v and v′ whenever

vertex v has degree in {3, 4, 5}. The new graph is still tripartite, and it

has a partition into triangles if and only if the old graph allows a partition

into triangles (note that the additional edges (v, v′) do not occur in any

triangle, and hence are irrelevant). If we repeat this construction two more

times, the resulting graph will be 6-regular and tripartite.

The following two lemmas establish NP-hardness of max-A3AP with

perimeter costs for all values p with 1 ≤ p ≤ ∞.

Lemma 3.8. For any fixed p with 1 ≤ p <∞, the max-A3AP with perime-

ter costs measured according to the Lp norm is NP-hard.

Proof. We consider an arbitrary instance G = (V,E) of PIT, and we con-

struct the following instance of max-A3AP with perimeter costs from it.

For every vertex v in part V1 (respectively, part V2 and part V3), we create

a corresponding point P (v) that belongs to the set X (respectively, set

Y and set Z). We choose s =
(
n
2

)
, and we make every coordinate corre-

spond to one 2-element set of vertices in V . The coordinate of point P (v)

corresponding to some set {u,w} with u,w ∈ V is chosen as follows: If

30

3.5 A useful lattice

v ∈ {u,w} and (u,w) is not an edge in E, then the coordinate has value 1;

in all other cases the coordinate has value 0.

Since G is 6-regular, every vertex v has exactly 3q−7 non-neighbors and

every point P (v) has exactly 3q− 7 coordinates with value 1 (and all other

coordinates at 0). Furthermore, if (u, v) ∈ E then the Lp distance between

P (u) and P (v) equals `∗ := p
√

6q − 14, and if (u, v) /∈ E then their Lp

distance equals p
√

6q − 16. In other words, non-edges correspond to short

distances and edges correspond to long distances. It can be seen that the

PIT instance has answer YES, if and only if the constructed max-A3AP

instance has a feasible solution with objective value at least 3q · `∗.

Lemma 3.9. The max-A3AP with perimeter costs measured according to

the Maximum norm L∞ is NP-hard.

Proof. The argument is very similar to the argument in Lemma 3.8. Again

we start from an arbitrary instance G = (V,E) of PIT, and we create for

every vertex v in V1 ∪ V2 ∪ V3 a corresponding point P (v). We choose

s = |E|, and we make every coordinate correspond to one edge in E. For

an edge e = (u, v) ∈ E, the coordinates corresponding to e are 0 for all

points with the exception of P (u) and P (v); one of P (u) and P (v) receives

coordinate +1 and the other one receives coordinate −1.

Then non-edges correspond to short distances 1 and edges correspond to

long distances `∗ := 2. It can be seen that the PIT instance has answer

YES, if and only if the constructed max-A3AP instance has a feasible

solution with objective value at least 6q.

3.5 A useful lattice

In this section, we derive a technical result (Theorem 3.12) that will be

central in the NP-hardness construction in Section 3.6. Throughout the

section we consider a fixed norm LR with unit ball R in the Cartesian

plane R2.

In our NP-hardness reduction we place generated points onto a 2-dimensi-

onal lattice. Our lattice will be defined by a fundamental triangle p1p2p3

whose shape and size depend on R, and is constructed as follows.

31

3 Geometric axial 3-dimensional assignment problems

��
��
��
��

Figure 3.2: Lattice and its fundamental triangles

We start by setting p1 to be the origin and p2 to be the point (1, 0).

Later, in the process of resizing, the coordinates of p2 could be changed.

Let dR(p, q) denote the LR distance of points p and q as before. We will

choose the third point p3 from the region A, which is defined as the set

of points in the upper half-plane of R2 with LR distance from both p1

and p2 strictly greater than dR(p1, p2) and less or equal than 1.2dR(p1, p2),

and such that all points in A have LR distance from points pL := (−1, 0)

and pR := (2, 0) strictly greater than 1.2dR(p1, p2), see Figure 3.3. In

b

R

p p

p

1 2

3

p pL R

a

c

Figure 3.3: Fundamental triangle construction example

Lemma 3.10 the existence of such an area for every R will be shown. We

choose p3 to be any point from A with integer coordinates. If there is

no such point in A we multiply all coordinates by some integer so that

such a point appears. We denote the side sizes of the triangle p1p2p3 by

a := dR(p1, p2), b := dR(p2, p3) and c := dR(p1, p3). We further denote

diL := dR(pL, p3) and diR := dR(pR, p3). Lastly we inflate the triangle

p1p2p3 by multiplying all coordinates by some integer so that the condition

32

3.5 A useful lattice

min{diL − b, diR − c,max{b, c} − a} ≥ 1 is satisfied (this will ensure that

the difference between the perimeter of the fundamental triangle and any

non-fundamental triangle is at least 1, see Lemma 3.11). This completes

the construction of our fundamental triangle.

We denote the perimeter (in LR norm) of the triangle p1p2p3 by ∆.

Lattice defining lines (dotted lines in Figure 3.2) fall into three classes;

the horizontal ones (parallel to p1p2) we call a-lines, those parallel to p2p3

we call b-lines, and those parallel to p1p3 we call c-lines. Furthermore, in

the proof of Lemma 3.11 we will make use of lines parallel to p3pL and

p3pR, which we denote as right and left diagonal lines, respectively.

Lemma 3.10. Given any LR norm, the set A defined above is a region

with nonempty area.

Proof. Let us denote by S the set of points in the upper half-plane whose

LR distance from both p1 and p2 is exactly 1.2a. We claim that the set S

will consist either of only one point or of one horizontal segment. Assume

that this is not the case, i.e. we have two points in S which are not on the

same horizontal line. The lower one we denote by s1 and the upper one

by s2. Then by shifting s1 and s2 to the right by a we get points r1 and

r2, respectively, which are two additional points whose LR distance from

p2 is exactly 1.2a. Now consider the line that passes through points p2 and

r1. We distinguish three cases, depending on the position of point r2 with

respect to the line p2r1.

Case I: Line p2r1 passes through point r2. In that case we have two

distinct points r1 and r2 that have the same distance from point p2 in the

same direction; contradiction.

Case II: Line p2r1 is positioned to the left of point r2. Denote by x

the intersection of lines p2r1 and s1r2, see Figure 3.4. The convexity of R

implies that dR(p2, x) ≤ 1.2a, which is in contradiction with the fact that

x is further away from p2 than r1.

Case III: Line p2r1 is positioned to the right of point r2. Denote by

q the point on line p1p2 which is to the right of p2 and is such that

dR(p2, q) = 1.2a. We consider two subcases. In the first subcase, lines

r2r1 and p1p2 intersect to the left of point q, see Figure 3.5a. Then the

point of intersection of lines r2q and p2r1 and the point r1 imply a con-

33

3 Geometric axial 3-dimensional assignment problems

2

1

p p

s

s

x

1 2

r

r

1

2

Figure 3.4: Instance of Case II.

tradiction in the same manner as in Case II. In the second subcase, lines

r2r1 and p1p2 intersect at point q or to the right of it, see Figure 3.5b. In

that case, lines s2s1 and p1p2 intersect to the right of p2. Then the point

of intersection of lines p2s1 and s2r1 and the point s1 imply a contradiction

in the same manner as in Case II.

22

p p

s

s

x

1 2

r

r

1 1

q

(a)

2 2

p p

s

s

x

1 2

r

r

1 1

q

(b)

Figure 3.5: Instances of Case III.

We obtained a contradiction in every case, hence all points in S are on

one horizontal line.

Next we prove that for any two points s1, s2 from S the whole segment

s1s2 is in S. Assume that s1s2 is not on the border of R scaled by 1.2a

and centered in p2. Then there exists a point q such that dR(p2, q) = 1.2a

with x-coordinate greater than that of s1 and smaller than that of s2, and

y-coordinate greater than that of s1 and s2. Assuming that s2 is to the

right of s1, let r be the point obtained by shifting s2 to the right by a.

Then the line p2s2 intersects either segment s1q or segment qr at the point

which we denote by x (see Figure 3.6), which leads to a contradiction in

the same manner as before. This shows that S contains one point or one

horizontal segment.

Finally, we prove that there exists a point in S whose neighborhood

contains a region which is in A. Denote the left and the right endpoint of

34

3.5 A useful lattice

21 r

p p

ss

x

1 2

q

Figure 3.6: S must be a horizontal segment

a segment S by sl and sr, respectively. Denote by q the point obtained by

shifting sl to the left by a, and denote by pR (pL) the point obtained by

shifting p2 (p1) to the right (left) by a. Note that dR(p1, q) = dR(p2, sl) =

1.2a. Then dR(p2, q) = dR(pR, sl) > 1.2a. Indeed, if dR(p2, q) = 1.2a, then

q is in S, and if dR(p2, q) < 1.2a, then denote by x the intersection of p2sl

and q2sr, where q2 is on the line p2q such that dR(p2q2) = 1.2a; point x leads

to a contradiction in the same manner as in Case I-III above. Analogously

it follows that dR(pL, sr) > 1.2a. Let SL := {x ∈ S : dR(pL, x) ≤ 1.2a} and

analogously SR := {x ∈ S : dR(pR, x) ≤ 1.2a}. It follows that both SL and

SR are proper subsets of S. Let s ∈ S be a point such that dR(pL, s) > 1.2a

and dR(pR, s) > 1.2a. Note that such a point exists. Namely, otherwise we

have that SL ∪ SR = S and the intersection of closures of SL and SR is not

empty, and any point from this intersection together with points pL and pR

does not satisfy the triangle inequality (1.2a + 1.2a ≥ 3a), contradiction.

Hence such point s exists.

Finally we show that a neighborhood of s contains an area that is in A.

Let Bε be a ball around the point s with the radius ε.

First let us consider the case when S is a segment. Points in Bε that

are below segment S have the distance to both points p1 and p2 strictly

smaller than 1.2a. This is true because the unit ball R centered in p1 or p2

and scaled by the factor 1.2a passes trough S. For ε small enough all such

points will have the distance to pL and pR strictly greater than 1.2a, hence

they are in A. This follows from the definition of s.

Now we consider the case when S is a one-point set, i.e. S = {s}. The

unit balls centered in points p1 and p2 and scaled by 1.2a are overlapping

in point s by crossing, not by touching (as in that case there would be

another point in S, which yields a contradiction). Hence, there is an area

35

3 Geometric axial 3-dimensional assignment problems

in Bε in which points have the distance to both p1 and p2 strictly smaller

than 1.2a. For ε small enough all points in that area will have the distance

to pL and pR strictly greater than 1.2a, hence they are in A.

The following lemma is of crucial importance.

Lemma 3.11. Let the lattice be defined by the fundamental triangle p1p2p3.

Any lattice point triangle that is not a fundamental triangle has a perimeter

in LR norm greater than ∆ + 1.

Proof. Recall that for the perimeter ∆ of the fundamental triangle 3a <

∆ ≤ 3.4a holds. Furthermore, a < b, c ≤ 1.2a. Hence if we prove that

the LR distance between any two lattice points, that are not points of the

same fundamental triangle, is strictly greater than max{b, c}, then every

non-fundamental triangle that has perimeter less or equal than ∆, must

have two sides of size a. Such a triangle is necessarily a flat triangle defined

by three consecutive points on a horizontal line, and has perimeter 4a > ∆.

Hence, by proving that the distance between any two lattice points, that

are not points of the same fundamental triangle, is strictly greater than

max{b, c}, we get that the perimeter of any non-fundamental triangle is

strictly greater than ∆.

Let p be a point in the lattice. For every other point q such that p and

q are not points of the same fundamental triangle, we will define a triangle

from which, by the triangle inequality, dR(p, q) > max{b, c} will follow.

We divide the lattice into ten areas by the following five lines: an a-line,

b-line, c-line, and left and right diagonal line, all of which pass through

p. They are represented as solid lines in Figure 3.7, where we w.l.o.g.

consider only the upper half plane. Depending in which area point q is

positioned, we choose a third point t such that from triangle inequality

dR(p, q) ≥ dR(p, t)− dR(q, t) > max{b, c} follows.

• q is in the area determined by a-line and left (right) diagonal line

(point q1 (q5) in Figure 3.7). We choose t to be the point of inter-

section of border left (right) diagonal and b-line (c-line) that passes

through q.

• q is in the area determined by b-line (c-line) and left (right) diagonal

line (point q2 (q4) in Figure 3.7). We choose t to be the point of

36

3.5 A useful lattice

4

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

p

q

q

q

q

q1

2

3

5

Figure 3.7: Non-fundamental triangles have a large perimeter

intersection of border left (right) diagonal line and a-line that passes

through q.

• q is in the area determined by b-line and c-line (point q3 in Fig-

ure 3.7). We choose t to be the point of intersection of a-line that

passes through q and border b-line if b > c, and border c-line other-

wise.

The distance of neighboring lattice points on segment pt is strictly greater

than the distance of neighboring lattice points on segment qt. Furthermore,

the distance of neighboring lattice points on segment pt is greater or equal

than max{b, c}. Finally, the number of lattice points on segment qt is

strictly smaller than the number of lattice points on segment pt, hence

dR(p, q) ≥ dR(p, t)− dR(q, t) > max{b, c}.
If we observe the argument above more carefully, we see that for any

two points p and q that are not on the same fundamental triangle, their

distance is at least by min{diL− b, diR− c,max{b, c}−a} greater than any

side size of the fundamental triangle, i.e. dR(p, q)−max{b, c} ≥ min{diL−
b, diR − c,max{b, c} − a}. From the construction of p1p2p3 the inequality

min{diL − b, diR − c,max{b, c} − a} ≥ 1 holds. Hence it follows that any

non-fundamental triangle has perimeter greater than ∆ + 1.

The results of the current section are summarized in the following theo-

rem.

37

3 Geometric axial 3-dimensional assignment problems

Theorem 3.12. For any norm LR with unit ball R in the Cartesian plane

R2, there exist two integer vectors v1 and v2, such that the lattice generated

by v1 and v2 has the following properties.

(i) The fundamental triangle of the lattice with vertices p1 = 0, p2 = v1

and p3 = v2 has a certain perimeter ∆ (measured in the LR norm).

(ii) Any three (distinct) points q1, q2, q3 in the lattice either form a triangle

congruent to the fundamental triangle p1p2p3, or otherwise form a

triangle with perimeter at least ∆ + 1 (measured in the LR norm).

3.6 The minimization problem

Throughout this section, we investigate versions of the A3AP with perime-

ter costs where the elements of X ∪Y ∪Z are points in the Cartesian plane

R2. The distances d(x, z) between points are measured according to some

fixed norm LR with unit ball R.

We will show that for every unit ball R, the corresponding version of

the A3AP with perimeter costs is NP-hard. Our reduction is built around

the fundamental triangle and the lattice introduced in Theorem 3.12. A

diamond is a set of four lattice points obtained by gluing together two

fundamental triangles along one side; see Figure 3.8. We partition the

lattice points into three classes, so that every fundamental triangle contains

exactly one point from each class. In the figures the three classes are

depicted by circles (#), squares (2) and filled circles (); see Figure 3.9.

p

Figure 3.8: A diamond (to the left) and all possible six directions of a dia-
mond incident to point p (to the right)

38

3.6 The minimization problem

Figure 3.9: The three-colored lattice

Our reduction uses ideas that are similar to those used by Spieksma et

al. [77] and Pferschy et al. [62]. The reduction is from the following special

case of the A3AP whose NP-hardness has been established by Dyer et

al. [34]. To avoid notational collisions between the variables in the A3AP

and the variables in the planar-3DM, we will consistently denote objects in

the planar-3DM by primed variables. The notion planar in the planar-3DM

and the P3AP is of a different nature.

Problem: Planar 3-dimensional matching problem (planar-3DM)

Instance: Three pairwise disjoint sets X ′, Y ′ and Z ′ with |X ′| =
|Y ′| = |Z ′| = q′ and a set T ′ ⊆ X ′× Y ′×Z ′ such that (i) every

element of X ′ ∪ Y ′ ∪Z ′ occurs in at most three triples from T ′,

and (ii) the corresponding graph G′ is planar. (This graph G′

contains a vertex for every element of X ′∪Y ′∪Z ′ and a vertex

for every triple in T ′. There is an edge connecting a triple to an

element if and only if the element is a member of the triple.)

Question: Does there exist a subset T ∗ of q′ triples in T ′ such

that each element of X ′ ∪ Y ′ ∪ Z ′ is contained in precisely one

triple from T ∗ ?

Hence let us consider an arbitrary instance of the planar-3DM. In the

first step, we compute a planar layout of the planar graph G′ that maps

the vertices of G′ into integer points in Z2 and that maps its edges into

straight line segments. This can be done in polynomial time, for instance

by using the algorithm of Schnyder [75].

39

3 Geometric axial 3-dimensional assignment problems

In the second step, we map the planar layout into the three-colored

lattice. Every point (α, β) in the planar layout maps into a point that

is in the close neighborhood of the point 100α v1 + 100β v2 in the three-

colored lattice; here v1 and v2 are the integer vectors from Theorem 3.12.

Every element of X ′∪Y ′∪Z ′ is mapped into a corresponding element point ;

every element of X ′ goes into a circle (#), every element of Y ′ goes into

a square (2), and every element of Z ′ goes into a filled circle (). Every

triple in T ′ is mapped into a fundamental triangle called triple triangle.

These element points and triple triangles roughly imitate the planar layout

constructed above; there is plenty of leeway for doing this, since the main

restriction is that the various objects should be embedded far away from

each other.

q
p

Figure 3.10: A chain of diamonds between two points p and q

In the third step, we introduce several chains of diamonds that connect

certain element points to certain triple triangles; see Figure 3.10 for an

illustration. Every such chain connects an element point (for some element

x′ of X ′ ∪ Y ′ ∪ Z ′) to a triple triangle (whose corresponding triple t′ in

T ′ contains that element x′). These chains roughly follow the straight line

segment that corresponds to the edge between x′ and t′ in the planar layout

in the first step. Figure 3.11 shows how such a chain is attached to a triple

triangle, and Figure 3.12 shows how such a chain is attached to an element

point.

Three comments are in place. First, if an element x′ of X ′∪Y ′∪Z ′ occurs

in only two triples in T ′, then the corresponding element point is attached

to only two chains of diamonds. Secondly, for every chain of diamonds the

attachment point in the triple triangle belongs to the same class (#, 2,)

40

3.6 The minimization problem

�
�
�
�

t
t

t
1

2

3

Figure 3.11: How a chain of diamonds attaches to a triple triangle

e

Figure 3.12: How a chain of diamonds attaches to an element point

as the element point at the other end of the chain. Thirdly, we note that

there are two combinatorially different ways of choosing a triple triangle in

the lattice; one way has the vertices in the classes #, 2, clockwise, and

the other way has the vertices in the classes #, 2, counter-clockwise.

We always pick the way that allows a crossing-free attachment of the three

chains of diamonds connected to the triple triangle; see Figure 3.13 for an

illustration.

The element points, triple triangles and chains of diamonds altogether

contain 3n points from the three-colored lattice, and each of the three

classes contains exactly n points. These three sets with n points form

three sets X, Y , Z in an A3AP instance with perimeter costs. We com-

plete the reduction by defining the bound B = dn∆e. The following two

lemmas establish the connections between the considered instance of the

41

3 Geometric axial 3-dimensional assignment problems

�
�
�
� chainchain

chain

�
�
�
� chainchain

chain

Figure 3.13: Connecting chains to triple triangles: the upper picture shows
an infeasible clockwise choice, the picture at the bottom shows
the feasible counter-clockwise choice

planar-3DM and the newly constructed instance of the A3AP.

Lemma 3.13. If the constructed instance of the A3AP has a solution with

objective value at most B, then the considered instance of the planar-3DM

has answer YES.

Proof. Assume that the A3AP instance has a solution with objective value

at most B. Then by Theorem 3.12 all n triples in this solution have perime-

ter ∆ and form fundamental triangles in the lattice. Moreover, it is straight-

forward to verify that from any chain of diamonds the solution either picks

all the dashed triangles or picks all the solid triangles; see Figures 3.11

and 3.12.

We define a subset T ∗ of triples in T ′ by picking all the triples for which

the corresponding triple triangle occurs in the solution for the A3AP in-

stance. Consider some element x′ ∈ X ′∪Y ′∪Z ′. The corresponding element

point is contained in exactly one solid triangle in the A3AP solution, and

this triangle must belong to some chain; see Figure 3.12. Consequently,

this is a chain of solid triangles which propagates to some triple triangle.

42

3.6 The minimization problem

Figure 3.11 shows that the corresponding triple triangle is in T ∗. To sum-

marize, every element x′ ∈ X ′ ∪ Y ′ ∪ Z ′ is contained in exactly one triple

in T ∗.

Lemma 3.14. If the considered instance of the planar-3DM has answer

YES, then the constructed instance of the A3AP has a solution with objec-

tive value at most B.

Proof. Assume that the planar-3DM instance has answer YES, so that

there is a set T ∗ of q′ triples in T ′ that covers every element of X ′ ∪ Y ′ ∪
Z ′ exactly once. Then we construct the following solution for the A3AP

instance. For every triple in T ∗, we pick the corresponding triple triangle

for the A3AP solution. For every element x′ ∈ X ′ ∪ Y ′ ∪ Z ′, we pick the

solid triangles in the chain of diamonds that connects the element point

for x′ to the triple triangle whose triple covers x′ in T ∗; in the other chains

incident to this element point, we pick the dashed triangles. As all points

in X ∪ Y ∪ Z are covered by the n picked (fundamental!) triangles, their

overall length equals n∆.

Note that the bound B in our construction is an integer, and note that

all the points in X ∪ Y ∪ Z have integer coordinates; hence the reduction

can be easily implemented in polynomial time (and without worrying about

computations with irrational numbers). Together with Lemmas 3.13 and

3.14 this yields the following theorem.

Theorem 3.15. For any fixed norm LR with unit ball R in two-dimensional

space R2, the A3AP with perimeter costs measured according to LR norm

is NP-hard.

Note that the reduction described above allows for the NP-hardness re-

sult for the bottleneck-A3AP as well. Indeed, set bound B to be d∆e.
Hence we have the following theorem.

Theorem 3.16. For any fixed norm LR with unit ball R in two-dimensional

space R2, the bottleneck-A3AP with perimeter costs measured according to

LR norm is NP-hard.

43

3 Geometric axial 3-dimensional assignment problems

3.7 Implications for the weighted 3-dimensional

matching problem

Up to this point we have been solely concerned with the axial 3-dimensional

assignment problem, where the underlying elements belonged to three

classes X, Y and Z, and where every triple contained exactly one element

from every class. In the closely related weighted 3-dimensional matching

problem W3DM all the elements belong to the same class: An instance of

the W3DM consists of a ground set U with |U | = 3n and a cost function

c : U × U × U → R. The goal is to find a set of n triples in U × U × U
that cover every element in U exactly once, so that the sum of the costs of

these triples is minimized. In the maximization version max-W3DM of the

W3DM, this sum is to be maximized.

The algorithmic behavior of the W3DM is very similar to that of the

A3AP. Both problems are NP-hard in general, and (as a rule of thumb)

algorithms for one problem usually translate into algorithms for the other

problem. Pferschy et al. [62] proved that the W3DM with perimeter costs

under Euclidean distances in R2 is NP-hard. Our hardness arguments in

Section 3.6 can easily be adapted to the W3DM by setting U := X∪Y ∪Z,

thus extending and generalizing the result of [62] to arbitrary norms.

Corollary 3.17. For any fixed norm LR with unit ball R in two-dimensional

space R2, the W3DM with perimeter costs measured according to LR norm

is NP-hard.

Corollary 3.18. For any fixed norm LR with unit ball R in two-dimensional

space R2, the bottleneck-W3DM with perimeter costs measured according to

LR norm is NP-hard.

Also the NP-hardness proofs in Section 3.4 for max-A3AP (when the

dimension is part of the input) can easily be carried over to the matching

problem.

Corollary 3.19. For any fixed p with 1 ≤ p ≤ ∞, the max-W3DM with

perimeter costs measured according to the Lp norm is NP-hard.

In a similar fashion, the positive results in Sections 3.2 and 3.3 for the

44

3.8 Conclusions

maximization version carry over to the weighted 3-dimensional matching

problem. We leave the (fairly easy) technical details to the reader.

Corollary 3.20. The max-W3DM with perimeter costs under tunneling

distances can be solved within a time complexity that depends polynomially

on the instance size n (and exponentially on the number k of tunnels).

Corollary 3.21. For any polyhedral norm LR with unit ball R in s-dime-

nsional space Rs, the max-W3DM with perimeter costs measured according

to LR norm can be solved within a time complexity that depends polynomi-

ally on the instance size n (and exponentially on the number k of facets of

the polyhedral unit ball).

Corollary 3.22. For any (not necessarily polyhedral) norm LR with unit

ball R in s-dimensional space Rs, the max-W3DM with perimeter costs

measured according to LR possesses a PTAS.

3.8 Conclusions

We have derived a variety of results on the complexity of the A3AP and the

max-A3AP with perimeter costs, when distances are measured according

to certain norms. The A3AP turned out to be hard for all norms, even if

the dimension of the underlying Cartesian space Rs is s = 2. This of course

(trivially) implies NP-hardness also for all dimensions s ≥ 3.

The max-A3AP with perimeter costs shows a more versatile behavior. If

the dimension s is fixed, then the max-A3AP is easy for polyhedral norms;

furthermore the max-A3AP has a PTAS for all (not necessarily polyhedral)

norms. If the dimension s is part of the input, the max-A3AP is NP-hard

for any Lp norm.

Open Problem 3.23. Determine whether the max-A3AP with perimeter

costs is NP-hard if the elements are points in 2-dimensional space R2 and

if the distances are measured according to the Euclidean norm L2.

45

Chapter 4

Special cases of the planar

3-dimensional assignment

problem

In this chapter we investigate special cases of the P3AP and its variants.

See Section 2.3 for the definition and basic facts about the P3AP. The most

important results of this chapter can be found in [30].

4.1 Monge-like structures

The majority of special case structures investigated in this chapter are

related to the Monge property. We list various Monge-like structures and

point the relations between them.

The most well known Monge structures are Monge matrices which are

defined in Definition 2.1. As we are dealing with 3-dimensional assignment

problems, 3-dimensional Monge arrays as defined in Definition 2.2 are of

special interest to us. Note that a two dimensional Monge array is a Monge

matrix. It is well known that a d-dimensional array C is a Monge array if

and only if every two-dimensional subarray (matrix) of C corresponding to

fixed values for d− 2 of the d indices in C is a Monge matrix, see [1].

Next we define a special class of Monge arrays.

Definition 4.1. An n1 × n2 × · · · × nd d-dimensional array C = (ci1i2···id)

47

4 Special cases of the planar 3-dimensional assignment problem

is called distribution array if

ci1i2···id = −
i1∑

j1=1

i2∑
j2=1

· · ·
id∑

jd=1

pj1j2···jd (4.1)

where pj1j2···jd ≥ 0 for all j1, j2, . . . , jd. Array P = (pi1···id) is called density

array of C.

It is easy to show that every distribution array is a Monge array. More-

over the following proposition holds, see [22].

Proposition 4.2. An n1×n2 matrix M = (mij) is a Monge matrix if and

only if there exists an n1 × n2 distribution matrix (i.e. two dimensional

distribution array) D = (dij) and two vectors U = (ui) and V = (vi) such

that

mij = dij + ui + vj for all i, j.

There is no relation between Monge and distribution arrays analogous to

Proposition 4.2 in the case when the dimension is greater than two.

Next we consider a superclass of the class of 3.dimensional Monge arrays.

Definition 4.3. Let C = (cijk) be a three-dimensional n×n×p array such

that for every k, 1 ≤ k ≤ p, the matrix Mk = (mk
ij) where mk

ij = cijk is

a Monge matrix. Then C is called an array with Monge layers , or layered

Monge array for short. If Mk is a bottleneck Monge matrix for all k, then

C is called layered bottleneck Monge array.

distribution

3-dim. arrays
⊂

Monge

3-dim. arrays
⊂

layered

Monge arrays

Figure 4.1: Relation between array classes

4.2 Intractability results on Monge-like arrays

Monge arrays make the axial 3-dimensional assignment problem (A3AP)

easily solvable, see Proposition 2.3. For the planar 3-dimensional assign-

ment problem (P3AP) this is not the case. Before we state the intractability

48

4.2 Intractability results on Monge-like arrays

results, we present the following straightforward observation which will be

useful later.

Observation 4.4. Let C be an n × n × p array and let A = (aij) be an

n× n matrix and B = (bij) and D = (dij) be n× p matrices.

• Let p = n. The P3AP instances with cost array C and with cost

array C + C ′ where

c′ijk = aij + bik + djk for all i, j, k ∈ {1, . . . , n} (4.2)

are equivalent. The objective function value is shifted by the constant

α =
∑n

i=1

∑n
j=1(aij + bij + dij).

• The p-P3AP instances with cost array C and with cost array C +C ′′

where

c′′ijk = bik + djk for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , p} (4.3)

are equivalent. The objective function value is shifted by the constant

β =
∑n

i=1

∑p
k=1(bik + dik).

In Subsection 5.2.1 arrays that fulfill the property (4.2) are named sum-

decomposable with parameters d = 3 and s = 2. There it is proved that

all feasible solutions of the P3AP have the same cost if and only if the cost

array C is sum-decomposable with parameters d = 3 and s = 2. The cost

arrays that fulfill (4.3) play an analogous role for the p-P3AP for the p < n

case.

Theorem 4.5. The P3AP stays NP-hard on the class of layered Monge

cost arrays.

Proof. Consider the n × n matrix M = (mij) with mij = −(i + j)2 (or

alternatively mij = 4n2 − (i + j)2 if one prefers to deal with nonnegative

cost arrays). It is easy to check that M is a Monge matrix. Let F = (fijk)

be the n × n × n cost array obtained from M by setting fijk = mij for

all i, j, k ∈ {1, . . . , n}. Since M is a Monge matrix, F is a layered Monge

array.

49

4 Special cases of the planar 3-dimensional assignment problem

Let C be an arbitrary n× n× n 0-1 array. Consider the n× n× n cost

array C ′ = (c′ijk) with c′ijk = fijk + cijk. It is easy to check that the layered

Monge array property is inherited to C ′ from F .

It follows from Observation 4.4 that the P3AP on cost matrix C is equiv-

alent to the P3AP on cost array C ′. Since the P3AP is NP-hard for general

0-1 cost arrays it follows that the P3AP stays hard when restricted to lay-

ered Monge arrays.

Theorem 4.6. The p-P3AP stays NP-hard on the class of layered Monge

cost arrays.

Proof. The proof builds on the idea used in the proof of Theorem 4.5. We

make again use of the n×n Monge matrix M = (mij) with mij = −(i+j)2.

Let n′ = 2n and expand M into an n′ × n′ matrix M ′ as follows:

M ′ =

(
M Y

Y t Z

)

where Z is the n × n zero matrix and Y = (yij) is the n × n matrix with

yij = i · n for all i, j ∈ {1, . . . , n}. It is easy to check that M ′ is again a

Monge matrix.

Let an instance of the P3AP with an n×n×n 0-1 cost array C be given.

Expand C into an n′ × n′ × n array Ĉ = (ĉijk) by defining

ĉijk =

cijk for i, j, k ∈ {1, . . . , n}

0 for i, j ∈ {n+ 1, . . . , n′}, k ∈ {1, . . . , n}.

Now create the n′ × n′ × n cost arrays F ′ = (f ′ijk) and C ′ = (c′ijk) with

f ′ijk = m′ij for all i, j ∈ {1, . . . , n′}, k ∈ {1, . . . , n}

and

c′ijk = fijk + ĉijk for all i, j ∈ {1, . . . , n′}, k ∈ {1, . . . , n}.

It is easy to check that C ′ is a layered Monge array. Now consider the

instance I of the p-P3AP with cost array C ′ array and p = n.

50

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

Note that the cost entries in the Y and the Y t block of M ′ (which carry

over to the k-planes of F ′ and C ′) are positive numbers ≥ n while the

entries in Z are zero and the entries in M are negative. Thus an optimal

solution of the p-P3AP will contain only elements (i, j, k) for which either

i, j ∈ {1, . . . , n} or i, j ∈ {n + 1, . . . , n′} holds when such solutions exist

(which is easily seen to be the case). Hence an optimal solution of the

P3AP with cost array C can be obtained from an optimal solution of the

p-P3AP instance I by dropping all 3-tuples in the solution that involve

indices > n . The result now follows from the NP-hardness of the P3AP

for 0-1 cost arrays.

Note that the cost arrays used in the hardness reductions in the proofs

of Theorems 4.5 and 4.6 do not belong to the class of Monge arrays.

Open Problem 4.7. Determine the complexity of the P3AP and the p-

P3AP on the class of Monge arrays and its subclass of distribution arrays.

4.3 The optimal solution structure of the

p-P3AP on layered Monge arrays

Note that in the hard instance constructed in the proof of Theorem 4.6 the

number of layers p is of the order of n. This leaves the complexity status

of the p-P3AP for layered Monge arrays unsettled when p is a constant.

In this section we present results on the structure of the optimal solution

of the p-P3AP on layered Monge arrays. The bandwidth result shown in

Theorem 4.12 will be used in Section 4.4 to provide an algorithm that solves

the p-P3AP on layered Monge arrays in polynomial time if p is fixed.

4.3.1 Block structure result for the 2-P3AP

In this subsection we will prove that there always exists an optimal solu-

tion of the 2-P3AP on layered Monge arrays which fulfills a regular block

structure. To formulate this result and to prove it we will need the follow-

ing definitions. It will be convenient to represent feasible solutions of the

2-P3AP by Latin rectangles, cf. Subsection 2.3.1.

51

4 Special cases of the planar 3-dimensional assignment problem

Definition 4.8. A set B of the j-th to the m-th column of a Latin rectangle

L is called a block if the following is satisfied. The columns in B contain

only integers from j to m, first j−1 columns of L contain only integers from

1 to j − 1, and B is minimal with respect to the previous two properties.

Note that for every Latin rectangle L, the set of all its blocks forms

a partition of L. Figure 4.2 illustrates an example with a 2 × 12 Latin

rectangle. It is partitioned into 4 blocks.

1 2 4 3 5 8 7 9 6 11 10 12

2 1 3 5 4 9 6 7 8 10 12 11

Figure 4.2: Blocks of a Latin rectangle

Note that if a block B consists of m columns j, . . . , j + m − 1 then the

following property is fulfilled for all i = 1, . . . ,m− 1:

(∗) The first i columns of B contain an integer x > i + j and the last i

columns of B contain an integer x < j +m− i.

The local operation of a swap that exchanges two integers in a row of an

p× n Latin rectangle will play a fundamental role in what follows.

Definition 4.9. Let X be a feasible solution of the p-P3AP and let r, q ∈
{1, . . . , n}, r < q. The operation that exchanges the positions of r and q

in a row k of the Latin rectangle representation of X is referred to as a

swap and is denoted by SWAP(r, q, k). The swap is called feasible if the

newly obtained solution X ′ is feasible. The swap is called non-increasing

if c(X ′) ≤ c(X).

Lemma 4.10. Let C be an n×n×p layered Monge array and r, q be integers

such that 1 ≤ r < q. Then the swap SWAP(r, q, k) is non-increasing if r

is placed to the right of q.

Proof. Let q be placed in column j and row k and r < q be placed in

column s > j, i.e. xqjk = 1 and xrsk = 1. Since C is a layered Monge

array, the following property is fulfilled: crjk + cqsk ≤ crsk + cqjk. It follows

that exchanging the position of r and q in row k will lead to a new (not

necessarily feasible) solution X ′ with x′rjk = 1 and x′qsk = 1 such that

c(X ′) ≤ c(X).

52

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

r < q =⇒
r q

≤
q r

Figure 4.3: Non-increasing SWAP

Theorem 4.11. For the 2-P3AP with an n × n × 2 cost array C which

is a layered Monge array, there always exists an optimal solution which

represented as Latin rectangle decomposes into blocks with 2 or 3 columns.

Proof. For n ≤ 3 there is nothing to show. For n ≥ 4 we will show that

every feasible solution X can be transformed to a feasible solution X ′ which

has the claimed property and for which c(X ′) ≤ c(X) holds.

Our block transformation approach works iteratively. We decompose

blocks into smaller blocks step by step.

First, we will show that a block B of size 4 can be transformed into two

blocks of size 2 by performing a series of non-increasing swaps. Suppose

without loss of generality that the smallest integer in the block B is 1 (hence

the remaining integers in B are 2, . . . , n, where n is the size of the block

B). Depending on the number of occurrences of 1 in the first two columns,

we distinguish the following three cases (1), (2) and (3).

(1): There are two occurrences of 1 in the first two columns.

W.l.o.g. will assume that 1’s are on the main diagonal, cf. table (I).

(I)
1 a

b 1
(II)

1 a c b

b 1 c a

If a = b, the block B splits up into two 2× 2 blocks and we are done.

So assume that a 6= b. Now we search for the second occurrences of a

and b in block B. Note that a and b cannot appear in the same column

because then the solution would be infeasible (cf. table (II)). If a > b

we perform SWAP(b, a, 1) and if a < b we perform SWAP(a, b, 2),

which are both non-increasing swaps. Table (III) illustrates the first

case.

(III)
1 a c b

b 1 a c
−→

1 b c a

b 1 a c

53

4 Special cases of the planar 3-dimensional assignment problem

If c is smaller than a and b, then using two swaps exchange the posi-

tions of c and min{a, b}.

(2): There is only one occurrence of 1 in the first two columns.

It does not matter in which row 1 appears. We consider the two

subcases that arise depending on whether 1 occurs in the first or in

the second column.

(2.1): 1 occurs in the first column of B.
1 a

b c

We will divide this case into three subcases (2.1.1), (2.1.2) and

(2.1.3).

(IV)
1 a

a c 1
(V)

1 a c b

b c 1 a
(VI)

1 a b c

b c a 1

(2.1.1): In this case a = b holds. The column in which 1 occurs

for the second time is not containing c because then the last leftover

column would contain the same integer in both rows, cf. table (IV).

Therefore we can perform SWAP(1, c, 2) and move to the situation

from case (1).

(2.1.2): a 6= b and the second 1 appears in the third column of B. If

the third column does not contain c, then we perform SWAP(1, c, 2)

and again end up with case (1). Otherwise we have a situation like

in table (V). In that case first we perform SWAP(b, c, 1) followed by

SWAP(1, c, 2) if b < c, and SWAP(c, b, 2) followed by SWAP(1, b, 2)

if b > c. Again we end up with case (1).

(2.1.3): a 6= b, and the second 1 appears in the last column. If

the last column does not contain c, then we perform SWAP(1, c, 2)

and end up with case (1). Otherwise we have a situation like in

the table (VI). In that case we perform SWAP(1, a, 2) followed by

SWAP(1, c, 2). Again we end up with case (1).

54

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

(2.2): 1 appears in the second column.
a 1

c b

We again distinguish two cases.

(2.2.1): If a = b, the same argument as in (2.1.1) can be applied.

(2.2.2): If a 6= b, then we perform SWAP(1, a, 1) and end up with

case (2.1).

(3): 1 does not occur in columns 1 and 2.
a b 1

c

In this case we just preform SWAP(1, a, 1) or SWAP(1, b, 1), de-

pending on which one preserves feasibility (such swap always exists),

and then go to (2).

Next we show how to transform any block B of size > 4 into smaller

blocks such that at the left end a small block of size 2, 3 or 4 appears.

The remaining part (right tail) is then decomposed further in an iterative

manner. If all blocks are of size 2 or 3 the procedure stops. As for blocks

of size 4, the transformation performs a series of non-increasing swaps.

We distinguish the following three cases (1’), (2’) and (3’).

(1’): There are two occurrences of 1 in the first two columns. Again for

both configurations of 1’s the same arguments can be used because

of symmetry. So let us assume that we have the situation from table

(VII).

(VII)
1 a

b 1
(VIII)

1 a b

b 1 a

If a = b, then by performing SWAP(2, a, 1) and SWAP(2, a, 2) the

first two columns will form a block of size 2, and we are left with n−2

columns to which we can apply our approach iteratively. Assume that

55

4 Special cases of the planar 3-dimensional assignment problem

a 6= b. If the second occurrences of a and b do not appear in the same

column, we can move min{a, b} to the first or second column by an

appropriate swaps and are finished as above.

Hence, it remains to deal with the case shown in table (VIII). We will

divide this case into three subcases (1.1’), (1.2’) and (1.3’):

(1.1’): The second occurrences of a and b are in the third column, cf.

table (IX). The first three columns contain only 3 integers, hence by

SWAP(2, a, i) and SWAP(3, b, i), for i = 1, 2, we get a 2 × 3 block

and we are done.

(IX)
1 a b

b 1 a
(X)

1 a 2 b

b 1 a 2

(1.2’): The second occurrences of a and b are not in the third col-

umn, and a and b are not 2, cf. table (X). In this case we just perform

SWAP(2, a, 1) and SWAP(2, b, 2).

(1.3’): The second occurrences of a and b are not in the third column,

and either a or b is 2, cf. table (XI). In this case swap the second

occurrence of 2 with any integer in front of it that is not in the first

two columns. Then we can perform a swap that moves it into first

two columns.

(XI)
1 2 b

b 1 2
(XII)

1 a c

b c 1

(2’): 1 appears once in the first two columns.

We can assume that 1 appears in the first row and first column. A

symmetric argument applies to the other cases. If the other occur-

rence of 1 and c is not in the same column (unlike in XII), then we

can perform SWAP(1, c, 2) and go to (1’).

(2.1’): Second occurrence of 1 and c are in the same column, and

that is not the third column, cf. table (XII). Then we swap 1 with an

56

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

integer to the left of it and then move it to the second column, and

go to (1’).

(2.2)’: 1 and c are in the third column, cf. table (XIII). We will cover

all the possibilities in 5 cases.

(XIII)
1 a c

b c 1
(XIV)

1 a c b

b c 1 a

(2.2.1’): If a = b, then by performing SWAP(2, a, i) and SWAP(3, c,

i), for i = 1, 2, the first three columns form a block.

In the remaining four cases we have a 6= b.

(2.2.2’): Second occurrences of a and b are not in the same column,

cf. table (XIV). Perform SWAP(b, a, 1) if b < a and SWAP(a, b, 2)

otherwise, and go to (2.2.1’).

In the remaining cases second occurrences of a and b are in the same

column.

(2.2.3’): Second occurrences of a and b are in the forth column.

By performing SWAP(2, a, i), SWAP(3, b, i) and SWAP(4, c, i), for

i = 1, 2, the first four columns form a block, and we have shown in

the first part of the proof how to decompose blocks of size four.

(XV)
1 a c 2 b

b c 1 a 2
(XVI)

1 a c 2

2 c 1 a

(2.2.4’): Second occurrence of a and b is not in the fourth column,

and both a and b are not 2 (or 3 if c = 2), cf. table (XV). In this

case we perform SWAP(2, a, 1), SWAP(2, b, 2) and SWAP(3, c, i),

for i = 1, 2, and we are finished.

(2.2.5’): a or b is 2 (or 3 if c = 2), cf. table (XVI). Now we swap

the second occurrence of 2 with the integer to the left of it, and then

57

4 Special cases of the planar 3-dimensional assignment problem

perform SWAP(2, a, 1) and we are finished.

(3’): 1 does not appear in the first two columns.

Just swap one 1 with an integer from the first or the second column,

depending on which swap preserves feasibility, and go to (2’).

We covered all the cases, which concludes the proof.

For the special case of distribution arrays we have a more elegant proof

which is based on the fact that for distribution arrays there exists an explicit

formula for the cost of a feasible solution in terms of entries of the density

array. As Theorem 4.11 is more general, we omit the proof for the special

case.

Theorem 4.11 can be used to design a polynomial time algorithm, see

Section 4.4.

4.3.2 Example with a single large block for p ≥ 3

It is natural to ask whether the block structure result for the 2-P3AP from

Theorem 4.11 carries over to the 3-P3AP. This is not the case, not even

for the subclass of distribution arrays as is demonstrated by the following

counterexample in which the unique optimal solution consists of a single

large block. Note that the block structure of the Latin rectangle repre-

sentation corresponds to the block diagonal structure of the partial Latin

square representation.

Let n = 10 and p = 3. We consider the distribution array C which is

generated by the density array P = (pijk) defined by

pij1 =

{
100 if i = j = 7

1 otherwise
, pij2 =

10a if i = 4 and j = 5

10a3 if i = 9 and j = 10

bj otherwise

,

and pij3 = aa for all i, j ∈ {1, . . . , 10}, where B = (bi) = (1, 1, a, a, a, a2, a2,

a3, a3, a3) and a is some large number. For notational convenience let us

refer to the 10× 10 matrix that corresponds to the k-plane of P as Qk (i.e.

58

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

qkij = pijk). We claim that the following 3× 10 Latin rectangle L:

L =

3 4 1 2 6 5 8 10 7 9

2 1 4 5 3 7 6 9 10 8

1 2 3 4 5 6 7 8 9 10

(4.4)

is the unique optimal solution for the 3-P3AP instance with cost array

C. This can be checked by computational means. Below we provide the

rationale behind why L shows up as unique optimal solution.

Consider the 10× 10× 2 subarray C2 of C where the k-plane of C with

k = 1 is dropped. We claim that the following Latin rectangle is an optimal

solution of the 2-P3AP on C2:

2 1 4 5 3 7 6 9 10 8

1 2 3 4 5 6 7 8 9 10
. (4.5)

This is easy to check. Note that the entries of Q3 are much larger than

the entries in Q2 and Q1. It can easily be checked that it thus pays off

to choose the overall best permutation for any Monge matrix, namely the

identity permutation, as solution for the plane Q3. By choosing any other

permutation more would be lost than can be won for the planes Q1 and

Q2. Hence the second row of (4.5) has to be the identity permutation.

Because of the structure of the vector B and its role inQ3, Latin rectangle

(4.5) splits into blocks of sizes 2, 3, 2 and 3, respectively. The two entries

of Q2 which involve the multiplicative factor 10 determine the type of the

two blocks of size 3 in (4.5).

Since Q1 has much smaller entries than Q2 and Q3, the optimal solution

of the 10× 10× 3 P3AP with cost array C will have (4.5) as last two rows.

This is true since every r × n Latin rectangle can be extended to an n× n
Latin square [46]. Because p1,7,7 = 100, the rightmost four columns of the

first row in the optimal Latin rectangle L have to be filled with integers

that are greater or equal than 7, if possible. There indeed exist three ways

to achieve this goal and we take the one with the lowest cost, i.e. the

block (8,10,7,9), and fill the rest of the first row of the Latin rectangle in

an obviously unique optimal manner. Hence the Latin rectangle L is the

unique optimal solution.

59

4 Special cases of the planar 3-dimensional assignment problem

As the Latin rectangle L consists of a single block of size n = 10, this

destroys any hope for a result along the lines of Theorem 4.11 for p ≥ 3.

The same approach can be used to construct examples where an arbitrarily

large block arises in the optimal solution. Just add an arbitrary number of

2× 2 blocks to the middle of the candidate solution (4.5).

The construction above can be carried over for p > 3. Add more k-planes

on top of P with much smaller values than in the first three k-planes. Then

the optimal solution will have a Latin rectangle representation such that

the first three rows are as in the example provided for p = 3, use Hall’s

theorem [46].

4.3.3 Bandwidth result for the p-P3AP

Recall that for the linear assignment problem on a Monge matrix the iden-

tity permutation provides an optimal solution, cf. Proposition 2.3. A fea-

sible solution of the p-P3AP is a set of p pairwise disjoint permutations

(assignments). Hence, one might expect that for the p-P3AP on a layered

Monge array the filled cells of the partial Latin square representation of

an optimal solution tend to group around the main diagonal. It is shown

below that this is indeed the case.

Theorem 4.12. Let I be an instance of the p-P3AP with the n × n × p
layered Monge cost array C. There exists an optimal solution X for I such

that the partial Latin square L that represents X has the following property:

(P) Whenever the cell in the i-th row and the j-th column of L (L(i, j))

is filled, we have that |i− j| ≤ 2p− 2.

Proof. Consider an optimal solution X and its representation as partial

Latin square L. We start at the upper right corner and shift a line parallel

to the main diagonal towards the center of the partial Latin square until

one hits for the first time a filled cell. Choose such cell and call it pivotal

cell. Suppose that the pivotal cell is L(i, j) and contains integer k, see

Figure 4.4 for an illustration. We define four sub-rectangles of the partial

Latin square L as follows, depending in which of the four quadrants around

L(i, j) the cells are located.

• Qla: Contains all cells (r, q) with r < i and q < j.

60

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

m

1

k

1

k

k

k

i

j

m k

Figure 4.4: Pushing elements closer to the diagonal

• Qlb: Contains all cells (r, q) with r > i and q < j.

• Qra: Contains all cells (r, q) with r < i and q > j.

• Qrb: Contains all cells (r, q) with r > i and q > j.

Let us refer to Qlb as candidate area. If there exists a cell L(q, r) in the

candidate area that is filled with integer k while the cells L(i, r) and L(q, j)

are empty, we can fill the cells L(i, r) and L(q, j) with integer k and restore

the cells L(i, j) and L(q, r) to the empty state. The new solution X ′ is

feasible again and since the cost array C is a layered Monge, it follows that

cirk + cqjk ≤ cijk + cqrk.

Hence the cost does not increase if we move to the new solution.

Next we examine for which i and j it is always possible to perform a

move of the type described above. First we count how many cells in the

candidate area are filled with k. Since there are no filled cells in Qra by

assumption, it follows that k occurs in Qla exactly i−1 times. Analogously,

it follows that k occurs in Qrb exactly n− j times. Consequently, k occurs

in the candidate area exactly n− (i− 1)− (n− j)− 1 = j − i times.

Note that filled cells in the part of row i left of the pivotal cell and filled

cells in the part of column j below the pivotal element (see the gray area in

61

4 Special cases of the planar 3-dimensional assignment problem

Figure 4.4) can lead to the situation in which a candidate integer k cannot

be used to perform a move of the type described above. Note that there

are exactly p − 1 filled cells in row i left of L(i, j) and exactly p − 1 filled

cells in column j below L(i, j). Therefore, if

j − i > 2p− 2

holds, we can always choose an integer such that the performed move is

feasible.

Similarly, if we consider the elements below the diagonal, we get that a

feasible move can be performed if i − j > 2p − 2. Therefore, there always

exists an optimal solution such that for all filled cells L(i, j) we have

|i− j| ≤ 2p− 2.

In Section 4.4, Theorem 4.12 is used to design a dynamic programming

algorithm that solves the p-P3AP on layered Monge arrays in linear time

for fixed p.

Note that if the partial Latin square L has property (P) from Theo-

rem 4.12, then L is a band matrix with bandwidth ≤ 4p − 3. Figure 4.5

depicts a feasible solution of the 3-P3AP of size n = 16 which satisfies

property (P). It is natural to ask whether this bound is tight. For p = 2

and odd n it is easy to see that this is the case. It suffices to choose the cost

array C such that in the optimal partial Latin square all diagonal entries

will be filled by 1’s, which is easy to achieve.

We conjecture that the bound 4p − 3 is tight for infinitely many values

of p. Moreover, we have constructed a class of instances for which we

conjecture that the bound is achieved when p is prime. We have checked

the correctness of the conjecture for values of p up to 31 by computational

means. Work on the proof is in progress. Now we present this construction.

Let F be an arbitrary feasible solution represented as partial Latin square.

First we describe how to construct a layered Monge array C for which F

provides an optimal solution to the p-P3AP. Each of the p layers of C will

be a distribution matrix. We obtain C by providing the density matrices

62

4.3 The optimal solution structure of the p-P3AP on layered Monge arrays

1 3 2

3 2 1

2 1 3

3 2 1

1 2 3

1 3 2

2 3 1

2 1 3

3 2 1

1 3 2

3 2 1

3 2 1

1 2 3

3 2 1

3 2 1

1 3 2

Figure 4.5: A feasible solution of the 3-P3AP

for these p distribution matrices. For each k ∈ {1, . . . , p} let Ak = (akij)

denote the density matrix for the k-th layer, i.e. the density matrix of the

distribution matrix defined by the elements cijk, i, j = 1, . . . , n. Now ob-

serve the positions of the occurrences of k in F . If some integer k is on

the position (i, j), then it corresponds to the cost element cijk that satisfies

cijk =
∑i

r=1

∑j
s=1−akrs. Hence it corresponds to ij elements from Ak. Let

Ok = (okij) be a matrix that counts all such occurrences of elements akij for

all integers k in F , i.e. okij is the number of k’s in F that are on positions

(r, s) for which r ≥ i and s ≥ j. Finally, let ID = (dij) be an analogue of

the Ok matrix in the case when all k’s are on the main diagonal. Now we

set akij to 1 if okij = dij, and to 0 otherwise. If we do this for all k = 1, . . . , p,

then F is an optimal solution for the array C, and we say that C is the

maximal layered Monge array for F .

Next we describe the partial Latin squares to which we apply the con-

struction above. Consider the Latin square of size p with the first row being

1, 2, . . . , p, and the i-th row being the first row shifted to the right by i− 1.

63

4 Special cases of the planar 3-dimensional assignment problem

Take three copies of such Latin square to be diagonal blocks of a partial

Latin square of the size n = 3p. Further on, we make the following swaps.

Move p’s from positions (1, p), (p + 1, 2p), (2p, 2p − 1) and (2p + 1, 3p) to

positions (1, 2p − 1), (p + 1, p), (2p, 3p) and (2p + 1, 2p). We denote the

resulting partial Latin square as the target solution, see Figure 4.6. Note

1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

5 1 2 3 4

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 1 5

5 1 2 3 4

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1

Figure 4.6: Target solution for p = 5

that if the target solution is the only optimal solution for some cost array,

then the bound of Theorem 4.12 is achieved. Indeed, p in the first row

achieves the bound.

Conjecture 4.13. Consider the p-P3AP on the maximal layered Monge

array for the target solution. Then the target solution is the only optimal

solution if and only if p is prime.

The necessity can be easily shown. Namely, let p be divisible by a ∈
{2, 3, . . . , p − 1}. Starting from a target solution one can obtain a new

optimal solution that does not achieve the bound by applying the following

p/a integer rearrangements. The rearrangements only include integers in

the middle block on the diagonal and the integer p in the first row. In every

such rearrangement we take two same value integers on positions (i, j) and

(r, s), and move them to positions (i, s) and (r, j). After each of the first

64

4.4 Algorithms for the p-P3AP on layered Monge arrays

p/a− 1 steps there will be a cell containing two integers, but the last step

will restore the feasibility. In the first step move integer p in the first row

and integer p in the a-th row of the middle block. Then move integers

p − a in the a-th and the 2a-th row of the middle block. Then move the

integers p− 2a in rows 2a and 3a, and so on. Due to the Monge property

all the steps will preserve the optimality, and the last step will restore the

feasibility.

Computer testings have shown that for prime p up to 31 the conjecture

holds.

Cost arrays described above are of size n = 3p, but they are easily

extended to all n ≥ 4p.

Note that the construction above, i.e. the construction of a layered Monge

cost array that fulfills the bound of Theorem 4.12 can be analogously done

for distribution arrays as well. Just let D = (dijk) be the density array

such that dijk = akijα
k for some large constant α.

4.4 Algorithms for the p-P3AP on layered

Monge arrays

Using Theorem 4.11 we can design a simple dynamic programming algo-

rithm that solves the 2-P3AP on layered Monge arrays in linear time. Al-

gorithm 4.1 which is described below is one such algorithm.

It easy to see that the complexity of Algorithm 4.1 is O(n) as the number

of blocks of size 2 and 3 for a given two and three integers, respectively, is

a constant. If the cost array is a Monge array or a distribution array then

not all blocks need to be considered, which can be used to speed-up the

algorithm.

Although for p ≥ 3 there does not need to exist an optimal solution

with a block structure, based on Theorem 4.12 we can devise a dynamic

programming algorithm that finds an optimal solution of the p-P3AP on

layered Monge arrays. The running time of the algorithm will be linear in

n and exponential in p.

To be able to formulate the algorithm more simply, we express Theo-

rem 4.12 in terms of Latin rectangle representations.

65

4 Special cases of the planar 3-dimensional assignment problem

Corollary 4.14. Let I be an instance of the p-P3AP with the n × n × p
layered Monge cost array C. There exists an optimal solution X for I such

that the Latin rectangle L that represents X has the following property:

(P’) For i = 1, . . . , n, integers i appear only in (i−2p+2)-th to (i+2p−2)-

th column of L.

Algorithm 4.1: 2-P3AP on layered Monge arrays

value[]: value[j] stores the optimal value of a feasible partial Latin

rectangle with first j columns filled (with integers from 1 to j)

block[]: an auxiliary array used for backtracking

Bj
k : set of all blocks of size k ending in j-th column; cmin(Bj

k)

denotes the minimal sum of corresponding costs among all

blocks from Bj
k

for j ← 2 to n do

value[j] = min{value[j − 2] + cmin(Bj
2), value[j − 3] + cmin(Bj

3)};
store in block[j] for which block the minimum above is achieved;

end

value[n] contains (only) an optimal value;

use block[] to reconstruct the optimal solution;

i-th column
↓

i

i

i

Figure 4.7: Representation of Corollary 4.14 for p = 3

Next we present Algorithm 4.2 (that can be found bellow) that solves

the p-P3AP on layered Monge arrays. It is based on Corollary 4.14. The

algorithm will start with the empty p × n Latin rectangle and will insert

integers from 1 to n satisfying property (P’).

Let us analyze the complexity of Algorithm 4.2. First let us observe the

size of the state set Fi. Every state in Fi has the first i − 2p + 1 columns

66

4.4 Algorithms for the p-P3AP on layered Monge arrays

Algorithm 4.2: p-P3AP on layered Monge arrays

initialize F0 to be the set containing only the empty p× n Latin

rectangle;

for i← 1 to n do

for all L ∈ Fi−1 do
build the set SL of all Latin rectangles obtained from L by

adding the integer i p times to the columns (i− 2p+ 2) to

(i+ 2p− 2) in all feasible ways;

for all X ∈ SL do
If the first i− 2p+ 2 columns of X are completely filled,

and there is no Latin rectangle in Fi with exactly the

same positions filled and smaller corresponding cost sum,

add X to Fi (and delete from Fi the one with same

positions filled and greater corresponding cost sum);

end

end

end

Fn contains (only) an optimal solution;

completely filled, and the last n− i− 2p+ 2 columns completely empty. A

layout of filled and empty positions is unknown only in the 4p− 3 columns

in between, and they contain p(2p− 1) integers, 2p− 1 in each row. There

is at most one state for every configuration of filled positions, hence the

size of the state set is |Fi| <
(
4p−3
2p−1

)p
, which is exponential function in p but

does not depend on n.

In the second for loop of the algorithm we create SL by inserting integer

i p times, once to every row. We insert them only to the area of 4p − 3

columns. Hence, the number of ways to do that is exponential in p but

does not depend on n. Now it is clear that the complexity of Algorithm 4.2

is O(f(p)n), where f is an exponential function. Furthermore, note that in

every step i of the outer for loop we only use Fi−1 to create Fi, hence the

size of the memory needed depends only on p.

Corollary 4.15. The p-P3AP for layered Monge cost arrays is fixed pa-

rameter tractable with respect to the parameter p.

67

4 Special cases of the planar 3-dimensional assignment problem

4.5 Special cases of the bottleneck-P3AP

In this section we investigate special cases of the bottleneck-P3AP. First

note that the positive results of the previous sections of this chapter hold

for the corresponding bottleneck variants.

Corollary 4.16. For the bottleneck-2-P3AP with layered bottleneck Monge

n× n× 2 cost array C, there always exists an optimal solution which rep-

resented as Latin rectangle decomposes into blocks with 2 or 3 columns.

Proof. Analogous to the proof of Theorem 4.11.

Corollary 4.17. Let I be an instance of the bottleneck-p-P3AP with n×n×
p layered bottleneck Monge cost array C. There exists an optimal solution

X for I such that the partial Latin square L that represents X has the

following property:

(Q) Whenever the cell in i-th row and j-th column of L (L(i, j)) is filled,

we have that |i− j| ≤ 2p− 2.

Proof. Analogous to the proof of Theorem 4.12.

From the two corollaries above it follows that one can use modified ver-

sions of Algorithm 4.1 and Algorithm 4.2 (replace summation with max

operator) to solve the bottleneck-p-P3AP for layered bottleneck Monge

cost arrays. Hence the following corollary holds.

Corollary 4.18. The bottleneck-p-P3AP for layered bottleneck Monge cost

arrays is fixed parameter tractable with respect to the parameter p.

We note that the complexity status of the bottleneck-P3AP on (layered)

bottleneck Monge arrays is open. The technique used to prove the hardness

result for the sum case does not work for the bottleneck case.

Open Problem 4.19. Determine the complexity of the bottleneck-P3AP

on bottleneck Monge arrays and layered Bottleneck Monge arrays.

In the case of p-P3AP on bottleneck layered Monge arrays again there

does not need to exist an optimal solution with a block structure when

p ≥ 3. Moreover, this holds even for the case of triply graded 0-1 arrays, see

68

4.5 Special cases of the bottleneck-P3AP

Definition 4.25, which are special cases of bottleneck layered anti1-Monge

arrays. The following 10 × 10 × 3 array C = (cijk), given by cijk = akij,

proves this fact:

A1 = (a1ij) =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

A2 = (a2ij) =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

A3 = (a3ij) =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1

.

1There is ≥ instead of ≤ in the definition of Monge array.

69

4 Special cases of the planar 3-dimensional assignment problem

One solution of the bottleneck-3-P3AP on cost array C, expressed as Latin

rectangle, is

8 7 10 9 5 6 2 4 1 3

9 10 6 8 7 4 5 1 3 2

10 9 8 7 6 5 4 3 2 1

,

which corresponds to one block of size 10. There is only one other optimal

solution which is obtained by swapping integers 7 and 8 of first row. This

alternative solution has the same “one block” property. It is easy to check

that these two solutions are indeed the only two optimal solutions. The

example above can be extended to arbitrary n and to p ≥ 3 (just add

additional irrelevant layers).

Next we investigate the case when cost arrays are the sum of three vec-

tors, i.e.

cijk = ai + bj + dk (4.6)

for some real vectors A = (ai), B = (bi) and D = (di). Note that the

bottleneck-A3AP on this class of cost arrays is NP-hard. Namely, this fol-

lows directly from the NP-completeness of the numerical three-dimensional

matching problem in [41]. We believe that the bottleneck-P3AP on the

class of cost vectors of the form (4.6) is NP-Hard also.

Open Problem 4.20. Determine the complexity of the bottleneck-P3AP

on cost arrays of the form (4.6).

Next we present one solvable more special case.

Proposition 4.21. The bottleneck-P3AP with cost array C = (cijk), such

that cijk = ai + bj + dk, where ai, bi and di are arithmetic sequences, i.e.

ai = a0 + i · α bi = b0 + i · β di = d0 + i · γ,

for some α, β, γ, is polynomially solvable. Furthermore, assuming α ≤ β ≤
γ, an optimal solution is given by:

70

4.5 Special cases of the bottleneck-P3AP

n− 1 n− 2 n− 3 2 1 n

n− 2 n− 3 n− 4 · · · 1 n n− 1

n− 3 n− 4 n− 5 n n− 1 n− 2

...
. . .

2 1 n 5 4 3

1 n n− 1 · · · 4 3 2

n n− 1 n− 2 3 2 1

, (4.7)

and the value of an optimal solution is c1nn = a1 + bn + dn (the upper

rightmost cell in (4.7)).

Proof. Consider first the rightmost column of a Latin square. It has to

contain all integers from 1 to n. Corresponding cost values of that column

have minimal bottleneck value if we arrange integers in such way that n is

in the first row, n − 1 is in the second, n − 2 is in the third, and so on.

The n in the first row will generate the greatest cost value (a1 + bn + dn) of

that column because γ ≥ α. Therefore a1 + bn +dn is a lower bound on the

optimal solution value. Hence if we find a feasible solution (Latin square)

with greatest cost element equal to a1 + bn + dn, then that is an optimal

solution. Latin square (4.7) is one such optimal solution. Namely, the cost

value corresponding to n in the upper rightmost field of Latin square (4.7)

is greater than the cost values corresponding to all other n’s in (4.7). Also,

for an arbitrary row the cost value corresponding to integer n is greater

or equal than the cost values corresponding to all others integers in that

row because γ ≥ β. Hence, the cost value corresponding to n in the upper

rightmost field is the greatest one.

Lastly, we add that the bottleneck-p-P3AP on triply graded arrays (see

Definition 4.25) can be solved using a variant of Algorithm 4.2. See Sub-

section 4.6.2 for more details.

71

4 Special cases of the planar 3-dimensional assignment problem

4.6 Various other special cases

In this section we list some special case results that did not fit into the

framework of the previous sections.

4.6.1 Maximization p-P3AP

It is straightforward to see that all results from Section 4.3 can be shown

to be true for maximization versions of the problems. Clearly, feasible

solutions will be reversed, i.e. in the Latin rectangle representation smaller

integers will be on the right and larger on the left hand side. In the partial

Latin square representation, integers will group around the antidiagonal.

Also, the construction of the counterexample from Subsection 4.3.2 can

be done analogously as follows. Q3 remains the same. Q2 is the same,

except that the elements factored by 10 are on different positions, namely

p7,4,2 = 10a and p2,9,2 = 10a3. Q1 can be filled with 1’s except p5,7,1 = 100.

Then the unique optimal solution will be:

8 7 10 9 5 6 3 1 4 2

9 10 7 6 8 4 5 2 1 3

10 9 8 7 6 5 4 3 2 1

Corollary 4.22. For the max-2-P3AP with a layered Monge n × n × 2

cost array C, there always exists an optimal solution which, represented as

Latin rectangle, decomposes into reversed blocks with 2 or 3 columns.

Corollary 4.23. Let I be an instance of the max-p-P3AP with n× n× p
layered Monge cost array C. There exists an optimal solution X for I such

that the partial Latin square L that represents X has the following property:

(R) Whenever the cell in i-th row and j-th column of L (L(i, j)) is filled,

we have that |i− n+ j − 1| ≤ 2p− 2.

Corollary 4.24. The max-p-P3AP for layered Monge cost arrays is fixed

parameter tractable with respect to the parameter p.

72

4.6 Various other special cases

4.6.2 Monotonicity property

Some hard combinatorial optimization problems become easy if the cost

structure fulfills a monotonicity property. However, monotonicity does not

help for the P3AP.

Definition 4.25. An n1× n2× n3 cost array C is called triply graded if C

is monotone increasing along all three lines of C. (That is, if i1 > i2, then

ci1jk ≥ ci2jk. Analogous for indices j and k.)

Theorem 4.26. The P3AP and the p-P3AP remain NP-hard on the class

of triply graded cost arrays.

Proof. Let C be an n× n× p cost array with p ∈ {2, . . . , n}. We will show

that C = (cijk) can be turned into a triply graded cost array C̃ such that

the order of feasible solutions of the p-P3AP with respect to the objective

function value does not change.

Let

m ≥ |max
i,j,k

cijk −min
i,j,k

cijk|.

Define c̃ijk = cijk + (i + j + k)m. It follows from Observation 4.4 that the

p-P3AP instances with cost arrays C and C̃ are equivalent. Moreover, it

can be easily seen that C̃ is monotone increasing along all lines and hence

triply graded.

Note that the same approach also works if the direction of monotonicity

is not the same in all three coordinate directions.

In the case of triply graded arrays the sum and bottleneck versions of

the p-P3AP behave differently. Namely, triply graded arrays are bottle-

neck anti-Monge arrays, hence the bottleneck-p-P3AP can be solved by a

bottleneck variant of Algorithm 4.2 where the order of columns is reversed.

4.6.3 The P3AP on distribution arrays generated by a

single nonzero density element

In this subsection we investigate the solvability of the P3AP with distribu-

tion cost arrays, with respect to the number of nonzero density elements.

First we state a classical result concerning Latin square completions.

73

4 Special cases of the planar 3-dimensional assignment problem

Theorem 4.27 (Ryser [73]). Let T be an r×s Latin rectangle filled with the

integers 1, 2, . . . , n. Let N(i) denote the number of times that the integer i

occurs in T . A necessary and sufficient condition in order that T may be

extended to an n× n Latin square is that for each i = 1, 2, . . . , n,

N(i) ≥ r + s− n.

Proposition 4.28. For the P3AP with a distribution cost array

cijk =
i∑

i′=1

j∑
j′=1

k∑
k′=1

−pi′j′k′ ,

where the density array P = (pijk) contains a single 1 entry and all other

entries are 0, there exists a polynomial algorithm for finding optimal solu-

tion.

Proof. Let pijk = 1 be the one nonzero density element. Then the problem

reduces to finding a Latin square such that its (n−i+1)×(n−j+1) bottom

right Latin rectangle contains as many integers greater or equal than k as

possible. Let us denote by r and s the number of rows and columns of such

bottom right Latin rectangle, i.e. r := n− i+ 1, and s := n− j+ 1. We can

assume that r ≥ s, otherwise rotate the Latin square by 90 degrees and

proceed analogously.

One way of filling the r×s rectangle such that it has minimal sum of the

corresponding cost values, with only constraint being that same integers

do not appear in the same rows or columns, can be done as follows:

T :=

n-s+2 · · · n-1 n n-r+1

n-s+3 · · · n n-r+1 n-r+2

n-s+4 · · · n-r+1 n-r+2 n-r+3
...

...
...

n-s-1 · · · n-4 n-3 n-2

n-s · · · n-3 n-2 n-1

n-s+1 · · · n-2 n-1 n

.

74

4.6 Various other special cases

The optimality of such rectangle T does not depend on the value of k

(in pijk = 1) but it may not satisfy Theorem 4.27, i.e. it could be not

extendable to an n× n Latin square. We will modify Latin rectangle T so

that it remains optimal and that it satisfies Theorem 4.27.

In T there are r different integers, and each of them appears s times.

We need to add remaining n− r integers N(i) = r + s− n times. Integers

that are already in T appear there s times, therefore by Theorem 4.27

s − (r + s − n) = n − r of them can be removed. Hence, if we remove

smallest r + s − n integers from T n − r times, and replace them by the

missing n−r integers r+s−n times, we will get a Latin rectangle that can

be extended to a Latin square, and when extended it will be an optimal

solution.

We can do the exchange as follows: Insert integer 1 to the first column

of T in place of integer n − r + 1. Insert other 1’s in place of n − r + 2,

n− r + 3, n− r + 4 and so on, in such way that the next insertion is two

columns right and one row above. The row “above” the first row is the last

row. After making an insertion to one of the last two columns, jump to

the second column to find the next integer to exchange. Insert 1’s until all

r + s − n 1’s are inserted. In doing so, all 1’s will be in different columns

but also in different rows, because if r < n, then N(i) = r+s−n < s (look

at the row difference between two 1’s in first two columns.) Now insert the

next integer, i.e. 2, s + r − n times by inserting it into the cell one row

above and one column to the right of the previously inserted integers, i.e.

1’s. Proceed like this until all n− r integers are inserted. It is obvious that

in this way we get an optimal extensible Latin rectangle, which we denote

by T ′. In Figure 4.8, a transformation from T to T ′ is depicted.

Next, we will describe how to extend Latin rectangle T ′ to a Latin square.

This extension is also a sufficiency proof of Theorem 4.27, and it is derived

from it, see [73].

We form a 0-1 r × n matrix A in the following way. Let A contain 0 in

the i-th row and the j-th column if and only if there is integer j in the i-th

row of T ′. Note that A has exactly ` := n− s ones in each row. Denote by

M(i) the number of 1’s in the i-th column. N(i) = r −M(i) ≥ r + s− n,

hence M(i) ≤ ` for all i. Since T ′ is an r × s Latin rectangle, it follows

75

4 Special cases of the planar 3-dimensional assignment problem

p3,4,k = 1

n = 11

r = 9

s = 8

N(i) = 6

n− r = 2

red −→ 1

blue −→ 2

5 6 7 8 9 10 11 3

6 7 8 9 10 11 3 4

7 8 9 10 11 3 4 5

8 9 10 11 3 4 5 6

9 10 11 3 4 5 6 7

10 11 3 4 5 6 7 8

11 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

Figure 4.8: Transforming T into T ′

that N(i) ≤ s. Hence `− (n− r) ≤M(i). Finally,

`− (n− r) ≤M(i) ≤ `.

Now we will add n− r rows to A so that A becomes an n× n matrix with

exactly ` 1’s in every row and column. Let t denote the number of columns

of A with M(i) < `. Then n− t denotes the number of columns of A with

M(i) = `, and consequently

`r =
n∑
i=1

M(i) ≥ (n− t)`+ (`− (n− r))t.

Thus, `(r − n) ≥ t(r − n), hence t ≥ `.

Next, let p denote the number of columns of A with M(i) = `− (n− r).
Then n−p is the number of columns with M(i) > `−(n−r). Consequently,

`r =
n∑
i=1

M(i) ≤ p(`− (n− r)) + (n− p)`,

hence `(r − n) ≤ p(r − n) and p ≤ `.

We now add to A a row consisting of ` 1’s and n − ` 0’s. Since t ≥ `,

there are at least ` positions where 1’s may be inserted so that the resulting

(r+1)-rowed matrix will have at most ` 1’s in each column. Moreover, since

76

4.6 Various other special cases

p ≤ `, the 1’s may be inserted to all columns with M(i) = `− (n− r). In

the resulting (r + 1)-rowed matrix, let M ′(i) denote the number of 1’s in

the i-th column. Because of the structure of the added row, it is clear that

`− (n− (r + 1)) ≤M ′(i) ≤ `.

The process may be continued inductively, and the resulting square ma-

trix A′ possesses ` 1’s in each row and column. Matrix A′ satisfies Hall’s

marriage theorem. Namely, for any r rows of A′ there are at least r columns

containing 1. Assume that there are only r − 1 columns containing 1. Be-

cause every column in A′ contains ` 1’s, the chosen r rows would contain

at most (r − 1)` 1’s, but any r rows of A′ contain r` 1’s, contradiction.

Now construct one matching m := (t1, t2, . . . , tn) from A′, where ti de-

notes the column of chosen 1 from the row i. Now take the last r elements

of m and add it as a column to T ′. After removing the chosen 1’s from

A′, it still satisfies Hall’s marriage theorem, so we can proceed inductively

until we extend T ′ to an r × n Latin rectangle that we denote by T ′′.

Now all we need to do is to add n− r rows to T ′′ to get a Latin square.

Let D be a n × n 1-0 matrix containing 1 in the i-th row and the j-th

column if and only if j-th column of T ′′ does not contain integer i. It is

easy to see that D contains exactly n − r 1’s in every row and column.

Therefore it satisfies Hall’s marriage theorem, hence we can inductively

extract matchings from D and add it as a row to T ′′. This concludes the

algorithm.

4.6.4 Greedily solvable instances with layered Monge

cost arrays

Consider the following greedy algorithm for the p-P3AP on a cost array

C. First find a matching M1 that solves the linear assignment problem

(LAP) on the first layer of C (i.e. on the matrix cij1 for i, j = 1, . . . , n).

Then find a matching M2 that solves the LAP on the second layer of C

with additional constraint being that M1 and M2 are disjoint. Then find a

third matching disjoint to the previous two in the analogous way. Continue

in this manner until obtaining p disjoint matchings that determine the

77

4 Special cases of the planar 3-dimensional assignment problem

solution of the p-P3AP.

In this subsection we want to know for which layered Monge arrays p-

P3AP is solved by the greedy algorithm. In the light of Proposition 4.2,

w.l.o.g. we can consider only Monge matrices that are distribution matrices.

We answer this question for p = 2.

Proposition 4.29. Let C = (cijk) be an n × n × 2 layered Monge array

such that D1 = (d1ij) and D2 = (d2ij) with d1ii > 0 for i = 1, . . . , n are

the density matrices of the corresponding Monge matrix layers of C (i.e.

cijk = −
∑i

r=1

∑j
s=1 d

k
rs). Then the 2-P3AP on cost array C can be solved

to optimality by the greedy algorithm if

d1ii ≥ max{d2ii, d2i−1,i, d2i,i+1} for all i ∈ {1, 2, ..., n− 1}. (4.8)

Proof. By Theorem 4.11 there exists an optimal solution that represented

as Latin rectangle L consists only of blocks of size 2 and 3. From the

condition d1ii > 0, for i = 1, . . . , n, it follows that the Latin rectangle

representation of every solution obtained by the greedy algorithm will have

1 2 · · · n (4.9)

as its first row. Moreover, the solution obtained by the greedy algorithm

will have the objective value less or equal to the objective value of any Latin

rectangle with the first row being (4.9). Hence, by checking when there is

no block of size 2 or 3 that has the corresponding cost sum strictly smaller

than every block consisting of the same integers with the first row of the

form j j + 1 j + 2 or j j + 1 , we get the sufficient conditions for

the optimality of the greedy algorithm. In doing so we get (4.8).

For p ≥ 3 the problem gets significantly harder. Even for arbitrarily large

a > 0 the condition dki,j > a · dk+1
i,j for all i, j, k does not force optimality

of the greedy algorithm. Namely, the difference of costs of matchings from

different layers are not important, but the difference of costs of matchings

in the same layer. Furthermore, if more than one matching is the feasible

outcome of a step of the greedy algorithm, analysis gets out of control.

Open Problem 4.30. Find other classes of cost arrays for which the p-

P3AP is solved to optimality by the greedy algorithm.

78

Chapter 5

The constant objective value

property for combinatorial

optimization problems

The topic of this chapter is the following. Given a combinatorial optimiza-

tion problem, we aim at characterizing the set of all instances for which

every feasible solution has the same objective value.

Our central result deals with multidimensional assignment problems. We

show that for the axial and for the planar d-dimensional assignment prob-

lem instances with constant objective value property are characterized by

sum-decomposable arrays. We provide a counterexample to show that the

result does not carry over to general d-dimensional assignment problems.

Our result for the axial d-dimensional assignment problems can be shown

to carry over to the axial d-dimensional transportation problem. Moreover,

we obtain characterizations when the constant objective value property

holds for the minimum spanning tree problem, the shortest path problem

and the minimum weight maximum cardinality matching problem.

The results of this chapter can be found in [28].

5.1 Constant objective value property

In this chapter we will deal with the following type of combinatorial opti-

mization problems. We are given a ground set E = {1, . . . , n}, a real cost

79

5 The COVP for combinatorial optimization problems

vector C = (c(1), . . . , c(n)) and a set of feasible solutions F ⊆ 2{1,...,n}.

The objective value of a feasible solution F ∈ F is given by the so-called

sum objective function

c(F) :=
∑
i∈F

c(i).

The goal is to find a feasible solution F ∗ such that c(F ∗) is minimal.

The traveling salesman problem, the linear assignment problems, the

shortest path problem, Lawler’s quadratic assignment problem and many

other well-known combinatorial optimization problems fall into the class of

combinatorial optimization problems described above.

Definition 5.1. We say that an instance of a combinatorial optimization

problem has the constant objective value property (COVP) if every feasible

solution has the same objective value.

Our goal is to characterize the set of instances with the COVP, or in other

words, the space of all cost vectors for which every feasible solution has the

same objective value, for various combinatorial optimization problems.

The constant objective value property is closely connected to the notion

of admissible transformations introduced in 1971 by Vo-Khac [50].

Definition 5.2. A transformation T of the cost vector C to the new cost

vector C̃ = (c̃(1), c̃(2), . . . , c̃(n)) is called admissible with index z(T), if

c(F) = c̃(F) + z(T) for all F ∈ F .

Note that admissible transformations preserve the relative order of the

objective values of all feasible solutions. It is well known that admissible

transformations can be used as optimality criterion and to obtain lower

bounds which are useful for hard combinatorial optimization problems.

Namely, consider the combinatorial optimization problem minF∈F c(F).

Let T be an admissible transformation with index z(T) from the origi-

nal cost vector C to the new cost vector C̃ such that there exists a feasible

solution F ∗ with the following properties:

(i) c̃(i) ≥ 0 for all i ∈ {1, . . . , n},

(ii) c̃(F ∗) = 0.

80

5.1 Constant objective value property

Then F ∗ is an optimal solution with objective value z(T). If the condition

(ii) is not satisfied or we cannot prove that it holds, then z(T) gives a lower

bound.

For the class of combinatorial optimization problems with sum objective

function there is a one-to-one correspondence between admissible transfor-

mations that transform the cost vector (c(1), . . . , c(n)) to (c̃(1), . . . , c̃(n)),

and cost vectors B = (b(1), b(2), . . . , b(n)) that fulfill the COVP. The cor-

respondence is obtained by c(i) = c̃(i) + b(i) for all i. Then the index of

the corresponding admissible transformation is z(T) =
∑

i∈F b(i) for any

F ∈ F . The correspondence between the COVP and admissible transfor-

mations provides a further source of motivation for investigating COVP

characterizations.

The notion of admissible transformations can be generalized to the al-

gebraic setting and applied to a wider class of combinatorial optimization

problems, including the case of bottleneck objective functions, see [24].

Note, however, that for the bottleneck objective function, which is given

by c(F) = maxi∈F c(i), there is no one-to-one correspondence between the

COVP and admissible transformations.

Berenguer [14] characterized the set of all admissible transformations for

the travelling salesman problem (TSP) and the multiple salesmen version.

All admissible transformations for the TSP are obtained by adding real

values to rows and columns of the distance matrix. In view of the corre-

spondence mentioned above this result can be rephrased as a result on the

COVP for the TSP as follows (this has been noted already by Gilmore,

Lawler and Shmoys [43]).

An n × n real matrix C = (cij) is called sum matrix if there exist two

real n-dimensional vectors U = (ui) and V = (vi) such that

cij = ui + vj for all i, j ∈ {1, . . . , n}. (5.1)

Theorem 5.3 (Berenguer [14], Gilmore et al. [43]). The TSP instance with

a cost matrix C = (cij) has the COVP if and only if C is a sum matrix.

For the TSP the diagonal entries of C do not play a role and can be

ignored. Berenguer’s proof works for the linear assignment problem as

well, i.e. an instance of the linear assignment problem with cost matrix

81

5 The COVP for combinatorial optimization problems

C = (cij) has the COVP if and only if C is a sum matrix.

Some classes of admissible transformations for different types of assign-

ment problems are listed by Burkard [19]. However, no COVP characteri-

zations are provided.

We remark that there is a simpler way to prove the COVP characteriza-

tion for the linear assignment problem mentioned above by making use of

the LP-duality and the complementary slackness condition. Since for each

pair (i, j) there exists an assignment which assigns i to j (i.e. the primal

assignment variable xij is 1), all dual constraints need to be fulfilled with

equality which is equivalent to the condition (5.1) (note that the vectors U

and V contain the dual variables).

The structure of the rest of the chapter is as follows. In Section 5.2 we

investigate the problem of characterizing the instances with the COVP for

multidimensional assignment problems. We show that for the multidimen-

sional axial and planar case the cost arrays with the COVP are precisely

the class of sum-decomposable arrays which can be represented as sums

of lower dimensional arrays of appropriate dimension (for the precise def-

inition see Section 5.2). We furthermore provide a counterexample which

shows that sum-decomposability is not necessarily required for the COVP

to hold for general multidimensional assignment problems. In Section 5.3

the result for the axial d-dimensional assignment problem is carried over to

the axial d-dimensional transportation problem. Finally, in Section 5.4 we

deal with COVP characterizations for the minimum spanning tree problem,

the shortest path problem and the minimum weight maximum cardinality

matching problem.

5.2 The COVP for d-dimensional assignment

problems

Berenguer’s result for the classical linear assignment problem motivated us

to ask for COVP characterizations for multidimensional assignment prob-

lems (d, s)-AP. See Section 2.4 for the definition and introduction to mul-

tidimensional assignment problems (d, s)-AP.

82

5.2 The COVP for d-dimensional assignment problems

5.2.1 Sum-decomposable arrays

In this subsection we investigate the vector spaces of sum-decomposable

arrays. These will occur as solutions of various COVP characterizations.

Sum-decomposable arrays generalize the concept of sum matrices to higher

dimensions.

Informally, a d-dimensional n×n×· · ·×n real array C is sum-decompo-

sable with parameters d and s (and size n) if C can be obtained as a sum

of
(
d
s

)
s-dimensional arrays, one for each subset of {1, . . . , d} of size s. For

example, in the case d = 3 and s = 2, C = (cijk) is sum-decomposable

if there exist three two-dimensional real arrays A = (aij), B = (bij) and

D = (dij) such that cijk = aij + bik + djk. A formal definition follows.

Definition 5.4. Let n, d and s be integers such that d > s > 0 and

n > 1. Let Qs = {Q : Q ⊂ {1, . . . , d}, |Q| = s}. Then the d-dimensional

n× n× · · · × n real array C is called sum-decomposable with parameters d

and s and size n if there exist
(
d
s

)
s-dimensional n×n× · · · ×n real arrays

AQ = (aQ(j1, . . . , js)), one for each Q ∈ Qs, such that

c(i1, i2, . . . , id) =
∑
Q∈Qs

aQ(hQ(i1, i2, . . . , id))

where hQ(i1, i2, . . . , id) denotes the s-tuple associated with Q, i.e. hQ(i1, i2,

. . . , id) = (iq1 , . . . , iqs) for Q = {q1, . . . , qs}, q1 < q2 < · · · < qs.

We denote the vector space of all sum-decomposable real arrays of size

n with parameters d and s by SAVS(d, s, n).

For Q = {j1, j2, . . . , js} ∈ Qs let VQ denote the vector space of all d-

dimensional n×n×· · ·×n arrays C = (c(i1, i2, . . . , id)) for which there exists

a mapping f : {1, 2, . . . , n}s 7→ R with c(i1, i2, . . . , id) = f(ij1 , ij2 , . . . , ijs).

In other words, the value c(i1, i2, . . . , id) depends only on the s indices

from the set Q and not on all d indices. Let Q1, Q2, . . . , Q(d
s)

be such that

Qs = {Q1, . . . , Q(d
s)
}. Note that

SAVS(d, s, n) = VQ1 + VQ2 + · · ·+ VQ
(d
s)
. (5.2)

We will use the following proposition, that can be found in [65, Prop. 7.1

of Chap. 1, p. 15], to prove that a variant of inclusion-exclusion principle

83

5 The COVP for combinatorial optimization problems

holds for the vector subspaces VQi
. Recall that the distributivity with re-

spect to sum and intersection does not hold for arbitrarily vector subspaces,

i.e. it is not true that V1 ∩ (V2 + V3) = (V1 ∩ V2) + (V1 ∩ V3) holds for all

vector spaces V1, V2, V3.

Proposition 5.5. Let W be a vector space and V1, V2, . . . , Vn ⊂ W be a

collection of its subspaces. Then the following conditions are equivalent:

(i) The collection V1, V2, . . . , Vn is distributive with respect to the opera-

tions of sum and intersection.

(ii) There exists a basis {wα : α ∈ A} of the vector space W such that

each of the subspaces Vi is the linear span of a set of vectors wα.

Now we are ready to prove the following proposition.

Proposition 5.6. Let SAVS(d, s, n) be expressed as in (5.2). Then we

have

(i) dim(VQ) = ns for all Q ∈ Qs,

(ii) dim (∩i∈IVQi
) = n|∩i∈IQi| for all I ⊂ {1, . . . ,

(
d
s

)
},

(iii) dim(SAVS(d, s, n)) = dim

 (d
s)∑
i=1

VQi

 =

(d
s)∑

k=1

(−1)k+1

 ∑
1≤i1<···<ik≤(d

s)

dim
(
VQi1

∩ · · · ∩ VQik

) ,

(iv) dim(SAVS(d, d− 1, n) = nd − (n− 1)d,

dim(SAVS(d, 1, n) = dn− d+ 1.

Proof. Ad (i): Follows directly from the definition of VQ.

Ad (ii): Let us start with |I| = 2 and consider J = {j1, j2, . . . , js},
K = {k1, k2, . . . , ks} from Qs. Further, let C and E be two arrays from

VJ and VK , respectively. Hence, c(i1, i2, . . . , id) = f(ij1 , ij2 , . . . , ijs) and

e(i1, i2, . . . , id) = g(ik1 , ik2 , . . . , iks) for some f, g : {1, 2, . . . , n}s 7→ R. Then

for every A = (a(i1, . . . , id)) ∈ VJ ∩ VK we have that a(i1, i2, . . . , id) =

t(iq1 , . . . , iq|J∩K|), qi ∈ J ∩ K, for some t : {1, 2, . . . , n}|J∩K| 7→ R. Hence,

84

5.2 The COVP for d-dimensional assignment problems

dim(VJ ∩VK) = n|J∩K|. The case |I| ≥ 3 follows by an inductive argument.

This settles (ii).

Ad (iii): The case of two vector spaces involved in the sum follows from

the fact that

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2) (5.3)

holds for any two subspaces V1 and V2 of a vector space. Next we settle the

case of three vector spaces, so let Qi, Qj, Q` ∈ Qs. The general case then

follows by induction. Note that (5.3) implies that

dim
(
VQi

+ VQj
+ VQ`

)
=

dim (VQi
) + dim

(
VQj

+ VQ`

)
− dim

(
VQi
∩
(
VQj

+ VQ`

))
. (5.4)

To proceed further it suffices to prove that the subspaces VQi
are distribu-

tive with respect to sum and intersection, i.e. that

VQi
∩
(
VQj

+ VQ`

)
=
(
VQi
∩ VQj

)
+ (VQi

∩ VQ`
) (5.5)

holds. It is easy to check that using (5.5) and (5.3) in (5.4) above leads

to the claim (iii) for three vector spaces. So, it only remains to show

that the distributivity property (5.5) holds. To that end, we construct

bases for the vector spaces VQ for Q ∈ Qs and for the vector space V of

all d-dimensional n × · · · × n real arrays. The distributivity then follows

from Proposition 5.5. Namely, call an array from V elementary if a single

entry is 1 and all other entries are 0. It is easy to see that the set of

nd d-dimensional n × n × · · · × n elementary arrays forms a basis for V .

Next we construct a basis for the subspace VQ where Q = {j1, j2, . . . , js}.
Let Ak1,...,ks be the 0-1 d-dimensional array such that the entry at position

(i1, . . . , id) is 1 if ij1 = k1, . . ., ijs = ks and 0 otherwise. Then the set of

arrays {Ak1,...,ks : (k1, . . . , ks) ∈ {1, . . . , n}s} forms a basis for VQ. Note that

every element of the basis for VQ can be written as a linear combination of

elementary arrays.

Ad (iv): Note that any intersection of ` distinct subsets of {1, 2, . . . , d}

85

5 The COVP for combinatorial optimization problems

has cardinality d− `. Hence, from (ii) and (iii) it follows that

dim(SAVS(d, d− 1, n)) =
d∑
i=1

(−1)i+1

(
d

i

)
nd−i,

which is equal to nd − (n − 1)d by the binomial theorem. Since the inter-

section of any distinct one-element sets is empty it follows that

dim(SAVS(d, 1, n)) = dn− d+ 1.

5.2.2 The COVP for the axial case: (d, 1)-AP

Now we turn to the problem of characterizing the instances of the axial d-

dimensional assignment problem with the constant objective value property

(COVP).

Theorem 5.7. An instance of the (d, 1)-AP with cost array C has the

COVP if and only if C is a sum-decomposable array with parameters d and

1.

Proof. Note that one direction follows immediately, i.e. if C is the sum of

d vectors, then every feasible solution has the same objective value. Con-

versely, assume that every feasible solution has the same objective value.

For integers i1, i2, . . . , id ∈ {2, 3, . . . , n} consider the following d pairs of

d-tuples:

(1, 1, . . . , 1), (i1, i2, . . . , id)

(i1, 1, . . . , 1), (1, i2, . . . , id)

(1, i2, 1, . . . , 1), (i1, 1, i3, . . . , id)
...

(1, . . . , 1, id), (i1, . . . , id−1, 1).

There exists a set of n−2 d-tuples which completes each of these pairs to a

feasible solution; for example the set {(kj1, k
j
2, . . . , k

j
d) : j = 2, . . . , n−1, kjl =

86

5.2 The COVP for d-dimensional assignment problems

j if j < il and kjl = j + 1 otherwise, l = 1, . . . d}. By assumption we have

c(i1, i2, . . . , id) = c(i1, 1, . . . , 1) + c(1, i2, . . . , id)− c(1, . . . , 1) (5.6)

= c(1, i2, 1, . . . , 1) + c(i1, 1, i3, . . . , id)− c(1, . . . , 1) (5.7)

...

= c(1, . . . , 1, id) + c(i1, . . . , id−1, 1)− c(1, . . . , 1).

Due to (5.6) there exist a vector V1 = (v1(i)) and a (d−1)-dimensional array

G1 = (g1(i1, . . . , id−1)) such that c(i1, i2, . . . , id) = v1(i1) + g1(i2, . . . , id).

Analogously, from (5.7) it follows that there exists a vector V2 and a (d−1)-

dimensional array G2 such that c(i1, i2, . . . , id) = v2(i2) + g2(i1, i3, . . . , id).

Hence, c(i1, i2, . . . , id) = v1(i1) + v2(i2) + g1,2(i3, . . . , id) for some (d − 2)-

dimensional arrayG1,2 = (g1,2(i1, . . . , id−2)). Using the remaining equations

in an analogous manner we finally obtain that C is the sum of d vectors,

i.e.

c(i1, i2, . . . , id) = v1(i1) + v2(i2) + · · ·+ vd(id),

where the vectors Vk = (vk(i)) can be chosen as follows:

v1(i) = c(i, 1, . . . , 1)− d− 1

d
c(1, 1, . . . , 1),

...

vd(i) = c(1, . . . , 1, i)− d− 1

d
c(1, 1, . . . , 1).

5.2.3 The COVP for the planar case: (d, d− 1)-AP

We now turn to the planar case. Note that there are exactly two feasible

solutions of the (d, d− 1)-AP when n = 2.

Definition 5.8. We say that an instance of the (d, d − 1)-AP with cost

array C has property P2 if for every 2× 2×· · ·× 2 sub-array of C, which is

obtained by restricting the index sets to {1, i1}×{1, i2}× · · · × {1, id}, the

two feasible solutions on the resulting subproblem of size 2 have the same

objective value.

87

5 The COVP for combinatorial optimization problems

Property P2 and sum-decomposable cost arrays for the (d, d− 1)-AP are

related in the following way.

Lemma 5.9. Let I be an instance of the (d, d− 1)-AP with cost array C.

If I has property P2, then C is a sum-decomposable array with parameters

d and d− 1.

Proof. Consider the 2×2×· · ·×2 subarray D2 of C obtained by restricting

index sets to {1, i1} × {1, i2} × · · · × {1, id} with ij ∈ {2, . . . , n} for j =

1, . . . , d. By exploiting the fact that the two feasible solutions for the

subarray D2 have the same objective value we get that

c(i1, i2,id) =
∑
x∈I1

c(x)−
∑
x∈I2

c(x) + · · ·+ (−1)d+1
∑
x∈Id

c(x), (5.8)

where Ii is the set of all d-tuples from {1, i1} × {1, i2} × · · · × {1, id} with

exactly i ones. Then from (5.8) it follows that C can be expressed as the

sum of d (d − 1)-dimensional arrays Aj = (aj(i1, . . . , id−1)), j = 1, . . . , d,

defined by

a1(i2, i3, . . . , id) =
∑
x∈I11

c(x)− 1

2

∑
x∈I12

c(x) + · · ·+ (−1)d+1 1

d

∑
x∈I1d

c(x)

a2(i1, i3, . . . , id) =
∑
x∈I21

c(x)− 1

2

∑
x∈I22

c(x) + · · ·+ (−1)d+1 1

d

∑
x∈I2d

c(x)

...

ad(i1, i2, . . . , id−1) =
∑
x∈Id1

c(x)− 1

2

∑
x∈Id2

c(x) + · · ·+ (−1)d+1 1

d

∑
x∈Idd

c(x),

where Iki is the set of all d-tuples from {1, i1} × {1, i2} × · · · × {1, id} with

exactly i ones, one of which is on the k-th coordinate.

The following result relates property P2 and the COVP.

Proposition 5.10. Every instance of the (d, d− 1)-AP with cost array C

with n 6= 3 that has the COVP, also has property P2.

Proof. We will prove that both feasible solutions of the (d, d − 1)-AP on

the sub-array of C with indices {1, 2}× {1, 2}× · · · × {1, 2} have the same

88

5.2 The COVP for d-dimensional assignment problems

objective value; the general case can be shown analogously. When n = 2,

this is trivially true. Assume n ≥ 4. We will build two different feasible

solutions F d
1 and F d

2 for the (d, d−1)-AP that satisfy the following property:

F d
1 and F d

2 both contain a feasible solution of the (d, d − 1)-AP on the

subproblem induced by the index set {1, 2}d, and all other elements of these

two solutions are the same. The existence of such F d
1 and F d

2 completes

the proof. Namely, by assumption the objective values of F d
1 and F d

2 are

equal, hence (5.8) holds.

Next we explain how F d
1 and F d

2 can be constructed recursively from a

feasible solution of the (d− 1, d− 2)-AP, which we denote by F d−1, which

also contains a feasible solution on the subproblem of size 2 induced by the

index set {1, 2}d−1. We define F d
j , j = 1, 2 as follows:

F d
j = {(i, a1, a2, . . . , ad−2, φji (ad−1)) : (a1, . . . , ad−1) ∈ F d−1, i = 1, . . . , n},

where n permutations φji , i = 1, . . . , n, are chosen to be mutually disjoint

(recall that two permutations α and β are disjoint if α(i) 6= β(i) for all

i). Furthermore, for every i we choose φ1
i and φ2

i such that they coincide

except for φ1
1(1) = 1, φ1

1(2) = 2, φ1
2(1) = 2, φ1

2(2) = 1, in contrast to

φ2
1(1) = 2, φ2

1(2) = 1, φ2
2(1) = 1, φ2

2(2) = 2. To show that such two sets of

permutations (for j = 1 and j = 2) exist, we represent them as two n× n
Latin squares. For j = 1, 2, let the j-th table contain the integer φjr(s) in

the row r and column s. The resulting tables will be two Latin squares

of order n which are identical except in the 2 × 2 upper-left corner. That

corner is filled with two different Latin squares of order 2, respectively.

It is well known that for n ≥ 4 such Latin squares exist, see [73]. From

Observation 2.7 we get that F d
j are indeed feasible solutions.

The approach we followed in the proof of Proposition 5.10 did not serve

us to cover the case n = 3 and d ≥ 5. Using a linear algebra approach we

were able to cover this case as well and hence to prove the following COVP

characterization for the (d, d− 1)-AP.

Theorem 5.11. An instance of the (d, d − 1)-AP with cost array C has

the COVP if and only if C is a sum-decomposable array with parameters d

and d− 1.

89

5 The COVP for combinatorial optimization problems

Proof. If the cost array C is sum-decomposable, then it is straightforward

to see that every feasible solution has the same objective value.

Conversely, assume that every feasible solution has the same objective

value. For the case n 6= 3 the statement follows from Proposition 5.10

and Lemma 5.9. For the remaining case n = 3 we make use of the same

technique that has been used in [43, 57] to obtain a COVP characterization

for the TSP. Let C(d, n) denote the collection of all d-dimensional n× n×
· · · × n cost arrays C for which all feasible solutions of the (d, d − 1)-AP

have the same objective value. Clearly C(d, n) is a linear subspace of the

set of all d-dimensional n× n× · · · × n arrays. Our goal is to prove that

C(d, 3) = SAVS(d, d− 1, 3). (5.9)

To that end, we consider all feasible solutions of the (d, d−1)-AP for n = 3.

Next we build up the 0-1 matrix Md where the rows of Md correspond to the

feasible solutions and the columns correspond to the d-tuples over {1, 2, 3}.
The entry of Md that corresponds to the feasible solution F and the d-tuple

(i1, i2, . . . , id) is set to 1 if and only if (i1, i2, . . . , id) ∈ F .

Note that every row of the matrix Md+1 is obtained from three disjoint

rows of the matrix Md. For every row r1 of the matrix Md there are exactly

two rows r2, r3 disjoint with r1, and r2 and r3 are also mutually disjoint.

Therefore r1r2r3 and r1r3r2 are rows of Md+1. Hence the matrix Md+1 has

twice as many rows as Md. This corresponds to the fact that for n = 3

the number of feasible solutions doubles when moving from the planar d-

dimensional assignment problem to the (d+ 1)-dimensional one. It is easy

to see that Md is a 3 ·2d−1×3d matrix. The following matrices Md, d = 1, 2

are provided as illustration:

M1 =

1 0 0

0 1 0

0 0 1

, M2 =

1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 0 1

0 0 1 1 0 0 0 1 0

1 0 0 0 0 1 0 1 0

0 1 0 0 0 1 1 0 0

0 0 1 0 1 0 1 0 0

.

C(d, 3) is the solution space of the system of linear equations with coef-

90

5.2 The COVP for d-dimensional assignment problems

ficient matrix Md and a constant right hand side vector. Thus we obtain

dim C(d, 3) = 3d + 1− rank(Md).

From Proposition 5.6 (iv) we know that dim(SAVS(d, d− 1, 3)) = 3d− 2d.

Hence in order to prove that (5.9) holds, we need to show that rank(Md) =

2d + 1. Observe that in fact it suffices to show that rank(Md) ≥ 2d + 1

since obviously SAVS(d, d− 1, 3) ⊆ C(d, 3); Lemma 5.12 below completes

the proof.

Lemma 5.12. Let Md be the matrix constructed above. We have

rank(Md) ≥ 2d + 1.

Proof. We start with observing the following recursive structure of Md.

Define

A0 =

1 0 0

0 1 0

0 0 1

 B0 =

0 1 0

1 0 0

1 0 0

 C0 =

0 0 1

0 0 1

0 1 0

 ,

and recursively for k ≥ 1

Ak =

(
Ak−1 Bk−1 Ck−1

Ak−1 Ck−1 Bk−1

)
Bk =

(
Bk−1 Ck−1 Ak−1

Bk−1 Ak−1 Ck−1

)

Ck =

(
Ck−1 Ak−1 Bk−1

Ck−1 Bk−1 Ak−1

)
,

where Ak, Bk and Ck are 3 · 2k× 3k+1 matrices. It is easy to see that Md =

Ad+1 for d ≥ 1. Next we will exhibit a regular (2d+ 1)× (2d+ 1) submatrix

M ′
d of Md which will settle the lemma. We construct new matrices A′k,

B′k and C ′k from Ak, Bk and Ck as follows: First, remove all columns with

indices ≥ 2·3k+1. Next, remove all rows and columns with indices that are

divisible by 3. It is straightforward to observe that the recursive structure

91

5 The COVP for combinatorial optimization problems

survives this construction. More precisely we have

A′k =

(
A′k−1 B′k−1
A′k−1 C ′k−1

)
B′k =

(
B′k−1 C ′k−1
B′k−1 A′k−1

)
C ′k =

(
C ′k−1 A′k−1
C ′k−1 B′k−1

)
(5.10)

for k ≥ 1 and

A′0 =

(
1 0

0 1

)
B′0 =

(
0 1

1 0

)
C ′0 =

(
0 0

0 0

)
.

The matrices A′k, B
′
k and C ′k have 2k+1 rows and 2k+1 columns. We obtain

our target matrix M ′
d from the matrix A′d+1 by re-inserting row 3 and

column 3 of the matrix Ad+1. In order to show that M ′
d is regular, we will

calculate its determinant by a recursive approach. We will make use of

the observation that the upper left and lower left block are identical in the

matrices A′k, B
′
k and C ′k. This will allow us to create a zero block as lower

left block of a reduced matrix which has the same determinant as A′k. This

results in

detA′k = detA′k−1 det
(
C ′k−1 −B′k−1

)
(5.11)

for k ≥ 1. An analogous argument yields

det (C ′k −B′k) = det
(
C ′k−1 −B′k−1

)
det
(
B′k−1 + C ′k−1 − 2A′k−1

)
(5.12)

and

det (B′k + C ′k − 2A′k) = det
(
B′k−1 + C ′k−1 − 2A′k−1

)
det
(
3
(
B′k−1 − C ′k−1

))
(5.13)

for k ≥ 1. Furthermore observe that

det
(
3
(
B′k−1 − C ′k−1

))
= 32k det

(
C ′k−1 −B′k−1

)
(5.14)

as the involved matrices are of size 2k × 2k. Let

zk = detA′k, uk = det (C ′k −B′k) , vk = det (B′k + C ′k − 2A′k) .

By explicit calculations we get the initial values z0 = 1, u0 = −1, v0 = 3.

92

5.2 The COVP for d-dimensional assignment problems

From (5.11)–(5.14) we obtain the following recursions for k ≥ 1

zk = zk−1uk−1, uk = uk−1vk−1, vk = 32kvk−1uk−1. (5.15)

By combining the second and the third equation in (5.15) we obtain vk =

32kuk which allows to eliminate vk. We obtain the new system of recursions

zk = zk−1uk−1, uk = 32k−1

u2k−1, k ≥ 1. (5.16)

This already implies that all matrices A′k are regular, but for the sake of

completeness we provide the solution for the recursion above. It is not hard

to show that

uk = 3k2
k−1

, zk = 3(k−2)2k−1+1

provides a solution to the system (5.16) with the initial conditions z0 = 1

and u0 = −1. As a consequence thereof we get that

detA′d+1 = 3d2
d+1+1.

Note that M ′
d differs from A′d+1 only in its additional row and additional

column. The additional column (the third column) of M ′
d corresponds to

the third unit vector. By developing the determinant of M ′
d with respect

to this column, we obtain

detM ′
d = detA′d+1 = 3d2

d+1+1,

which implies that M ′
d is regular and hence rank(Md) ≥ 2d + 1.

Let us mention that one can show that rank (Md) = 2d+1 by calculating

the reduced row echelon form of matrix Md. For our purposes it sufficed

to show a weaker result which could be obtained more elegantly.

5.2.4 The COVP for the general case: (d, s)-AP

Theorem 5.7 and Theorem 5.11 impose the following question for the (d, s)-

AP.

Question 5.13. Is it true that a feasible instance of the (d, s)-AP with cost

93

5 The COVP for combinatorial optimization problems

array C has the COVP if and only if C is a sum-decomposable array with

parameters d and s?

Theorem 5.7 and Theorem 5.11 imply that the answer to Question 5.13 is

affirmative in the following cases: (2, 1)-AP, (3, 1)-AP, (3, 2)-AP, (4, 1)-AP

and (4, 3)-AP. This leaves us with the (4, 2)-AP as the smallest unsettled

case. This is also the smallest case for which it is not guaranteed that a

feasible solution exists for all n ≥ 2.

The following example shows that the answer to Question 5.13 is negative

in general.

Example 5.14. There are 72 Graeco-Latin squares of size 3, hence there

are 72 feasible solutions for the (4, 2)-AP with n = 3, see Observation 2.8.

We consider the system of linear equations that is obtained by requiring

that all 72 feasible solutions have the same objective value. The dimension

of the solution space of this system of equations, and thus the dimension

of the space of cost arrays with the COVP, is 49, which can easily be

calculated by a computer algebra system. By Proposition 5.6 one gets that

the dimension of SAVS(4,2,3) is 33. Hence, there exists a cost array with

the COVP that is not sum-decomposable. Now we provide one such array.

Let C be the 3×3×3×3 array where c(1, 1, 1, 2), c(1, 1, 2, 1), c(1, 2, 1, 1),

c(1, 2, 2, 2), c(2, 1, 1, 1), c(2, 1, 2, 2), c(2, 2, 1, 2), c(2, 2, 2, 1) and c(3, 3, 3, 3)

have value 1 and all other entries have value 0. All 72 feasible solutions of

the (4,2)-AP with this cost array have the objective value 1, and it is easy

to check that C is not sum-decomposable.

We did not find counterexamples for the (4, 2)-AP for n ≥ 4. For n =

4 and n = 5 the computer calculations gave the affirmative answer to

Question 5.13. For n = 6 there are no feasible solutions and for n = 7 the

number of feasible solutions gets too large to handle.

Conjecture 5.15. A feasible instance of the (4, 2)-AP with cost array C

of size n 6= 3 has the COVP if and only if C is a sum-decomposable array

with parameters 4 and 2.

We believe that Example 5.14 occurs since for n = 3 the number of

feasible solutions is relatively small, but then grows very fast. Note that

for larger values of n even the number of Graeco-Latin squares is unknown.

94

5.3 The COVP for d-dimensional transportation problems

This eliminates explicit proof approaches as the set of feasible solutions

is not known. A proof would need to exploit the structure of the set of

Graeco-Latin squares.

We checked that the answer to Question 5.13 for the (5, 2)-AP for n = 4 is

affirmative. For n = 2, 3, 6 there are no feasible solutions. For n = 5 the set

of feasible solutions became too large for our straightforward computational

approach. The same happened for the (5, 3)-AP for n = 4, and for n = 2, 3

the problem is again infeasible. The motivation behind our experiments

was our wish to obtain a feeling whether the answer to Question 5.13 is

affirmative for sufficiently large n. We believe so, but we could handle only

very small cases and do not have enough empirical results to propose a

conjecture.

5.3 The COVP for d-dimensional transportation

problems

In this section we deal with the COVP for d-dimensional transportation

problems. Specifically, we show that our COVP characterization for the ax-

ial d-dimensional assignment problem carries over to the axial d-dimensional

transportation problem while this approach fails for the more involved pla-

nar case.

Multidimensional transportation problems are known in the literature

under diverse names. Alternative names are for example multi-index or d-

index transportation problems, d-fold transportation problems and multi-

way or d-way transportation problems, see e.g. [31, 72].

The d-dimensional transportation problem can be defined along the lines

of the definition of the d-dimensional assignment problem (d, s)-AP. We

are given a d-dimensional n1 × n2 × · · · × nd cost array C. While in the

assignment case the right hand side of all equality constraints is equal to

one, in the transportation case we are additionally given an s-dimensional

array BQ for each set Q ∈ Qs of fixed indices which provides the right

hand side values for this group of constraints induced by the set Q. The

arrays BQ can be viewed as marginals for the transportation array X =

(x(i1, i2, . . . , id)). We refer to the resulting transportation problem as (d, s)-

95

5 The COVP for combinatorial optimization problems

TP.

Like for the assignment case, we obtain the axial d-dimensional trans-

portation problem when s = 1 and the planar d-dimensional transportation

problem when s = d − 1. As we will deal with the axial d-dimensional

transportation problem below, we provide its explicit formulation.

We are given an n1 × n2 × · · · × nd cost array C = (c(i1, i2, . . . , id)) and

d supply-demand vectors B1, . . . , Bd, where the k-th vector Bk = (bk(i)) is

an nk-dimensional vector over the nonnegative integers. Furthermore we

assume
∑n1

i=1 b1(i) =
∑n2

i=1 b2(i) = · · · =
∑nd

i=1 bd(i). Let Ir = {1, . . . , nr}
be the index set for ir, r = 1, . . . , d. We obtain the following formulation

for the (d, 1)-TP:

min
∑
i1∈I1

∑
i2∈I2

. . .
∑
id∈Id

c(i1, i2, . . . , id)x(i1, i2, . . . , id)

s.t.
∑

i1∈I1,...,id∈Id
s.t. ik=j

x(i1, i2, . . . , id) = bk(j) for all k ∈ {1, . . . , d}, j ∈ {1, . . . , nk}

x(i1, i2, . . . , id) ≥ 0 for all ir = 1, . . . , nr, r = 1, . . . , d.

If X = (x(i1, . . . , in)) has to be integral, the problem above becomes NP-

hard for d ≥ 3. For d = 2 the well-known classical Hitchcock transportation

problem arises.

Theorem 5.16. An instance of the axial d-dimensional transportation

problem with cost array C has the COVP if and only if C is sum-decomposable

array with parameters d and 1.

Proof. Any instance of the integral axial d-dimensional transportation prob-

lem can be transformed into an equivalent instance of the axial d-dimensional

assignment problem. To that end, we replace every supply/demand facility

that has a supply/demand value t > 1 by t facilities with identical trans-

portation costs that have supply/demand value 1. In this manner we get

an equivalent problem with a blown up n × n × · · · × n cost array where

n =
∑n1

i=1 b1(i) and all supplies/demands are 1. Thus the newly obtained

problem is the (d, 1)-AP.

For the integral version of the (d, 1)-TP we can apply the COVP charac-

terization from Theorem 5.7 directly. For the non-integral version observe

96

5.3 The COVP for d-dimensional transportation problems

that the transformed problem with unit supplies and demands is a re-

laxation of the (d, 1)-AP which results if the integrality constraints on X

are dropped. In this case it follows from Theorem 5.7 that the set of in-

stances with the COVP is a subspace of SAVS(d, 1, n), and is hence equal to

SAVS(d, 1, n). Note that the transformation that blows up the cost array

and the inverse transformation preserve the sum-decomposability property

of the cost array.

Note that setting d = 2 in Theorem 5.16 implies that an instance of

the classical transportation problem with cost matrix C has the COVP

if and only if C is a sum matrix. The proof of Theorem 5.16 provides

the connection to assignment problems and further to Berenguer’s COVP

characterization for the TSP, cf. Theorem 5.3. As a by-product this reveals

the nature of the connection between results of Klinz and Woeginger [54]

on the optimality of the North-West corner rule and Theorem 5.16, and

thus answers an open problem mentioned in the concluding section of [54].

At first sight one might expect that Theorem 5.11 for the planar d-

dimensional assignment problem (d, d − 1)-AP carries over to the planar

d-dimensional transportation problem (d, d− 1)-TP. However several diffi-

culties arise in this case. First, note that the blow-up technique to trans-

form the transportation problem to a (continuous) assignment problem

does not work in general in the planar setting. The second and probably

bigger obstacle to a COVP characterization for the planar case comes from

the fact that for d ≥ 3 the d-dimensional planar transportation problem

does not necessarily have feasible solutions (not even in the non-integral

case). Due to the universality result of de Loera and Onn [31] checking

feasibility for the 3-dimensional planar (integer) transportation problem is

as hard as deciding whether a general linear (integer) program has a fea-

sible solution (the result already holds for a fixed third dimension, i.e., for

n3 = 3). As the number of feasible solutions of a feasible instance of the

d-dimensional transportation problem can be as small as one, even in the

non-integral case, it is not any longer necessary for the COVP that all dual

constraints have to be fulfilled with equality. Hence the approach based on

the complementarity slackness condition that works for the linear assign-

ment problem and the classical transportation problem, that was explained

97

5 The COVP for combinatorial optimization problems

in the introduction, fails for d ≥ 3.

Concluding, there does not seem to be much hope to be able to provide

a nice sufficient and necessary condition for the set of instances with the

COVP for the 3-dimensional planar transportation problem and even less

hope for cases with d > 3.

5.4 The COVP for spanning tree, shortest path

and matching problems

In this section we provide COVP characterization for the minimum span-

ning tree problem, the shortest path problem and the minimum weight

maximum cardinality matching problem.

5.4.1 The COVP for the minimum spanning tree problem

In the minimum spanning tree problem (MST) we are given a connected,

undirected graph G = (V,E) and edge weights we for each edge e ∈ E.

The task is to find a spanning tree for which the sum of edge weights is

minimal.

Lemma 5.17. Let I be an instance of the MST with graph G and weights

w = (we). If I has the COVP, then every edge in any (simple) cycle in G

has the same weight.

Proof. Let C be a (simple) cycle in G and e be an arbitrary edge from C.

There exists a spanning tree T which contains all edges of C except e. By

adding edge e to T and removing from T in turn an arbitrary edge f 6= e

from C, we obtain another spanning tree T ′. As the weights of T and T ′

are identical, it follows that we = wf . Hence all edges in C have the same

weight.

To formulate the COVP characterization for the MST we need the fol-

lowing definition.

Definition 5.18. Let G = (V,E) be an undirected graph. The undirected

graph H = (VH , EH) which has a vertex ve for each edge e ∈ E and an

98

5.4 The COVP for spanning tree, shortest path and matching problems

edge {ve, vf} ∈ EH if and only if e and f lie on a common simple cycle C

is called cycle graph of G.

Theorem 5.19. Let I be an instance of the MST problem with graph G

and weights w = (we). Let H be the cycle graph of G and let V1, . . . , V`

be the vertex sets of connected components of H and E1, . . . , E` be the

corresponding sets of edges in G. Then I has the COVP if and only if

there exist constants αi, i = 1, . . . , ` such that for all e ∈ Ei we = αi, for

all i.

Proof. To prove that the stated condition is sufficient, let T and T ′ be

two spanning trees. It is easy to see that one can move from T to T ′ by

a sequence of moves which add an edge e ∈ T ′ \ T and delete an edge

f ∈ T \ T ′ where f lies on the unique cycle in T ∪ {e}. As all edges on

the cycle have the same weight, it follows from iterative application that

w(T) = w(T ′), where w(T) denotes the sum of all we, e ∈ T .

To prove necessity of the stated condition, first observe that every bridge

of G (corresponds to an isolated vertex in H) is part of every spanning tree

and hence can have arbitrary weight. The claim now follows by applying

Lemma 5.17 for each cycle C in G.

Note that if H is connected (which is the case for example if G is 2-

connected), then the COVP holds if all edges have the same weight.

It is easy to see that the COVP characterization for the MST problem

can be carried over to the setting of matroids (circuits play the role of cycles

and bases play the role of spanning trees).

5.4.2 The COVP for the shortest path problem

Given a weighted graph (undirected or directed) with the vertex set V =

{1, 2, ..., n} the shortest path problem is the problem of finding a path

from vertex 1 to vertex n such that the sum of edge weights along the

path is minimized. In what follows we consider both the undirected and

the directed version of the shortest path problem in a complete graph and

provide COVP characterizations.

99

5 The COVP for combinatorial optimization problems

Theorem 5.20. Let G = (V,E) be the complete undirected graph with the

vertex set V = {1, 2, . . . , n}, n ≥ 3, and let w(i, j) denote the nonnega-

tive weight of the edge (i, j). This instance of the undirected shortest path

problem has the COVP if and only if the weights are of the following form

w(i, j) = w(j, i) =

a if i = 1, j 6= n,

b if i 6= 1, j = n,

a+ b if i = 1, j = n,

0 otherwise

(5.17)

for some non-negative reals a and b.

Proof. Assume that every path from 1 to n has the same weight. For n = 3

the result is straightforward. Assume n ≥ 4 and take two distinct vertices

i and j such that 1 < i, j < n. Consider the five paths from vertex 1

to vertex n that only go through a subset of the vertices {1, i, j, n}. By

assumption we get the following relations

w(1, n) = w(1, i) + w(i, j) + w(j, n)

= w(1, j) + w(j, i) + w(i, n)

= w(1, i) + w(i, n)

= w(1, j) + w(j, n).

By adding and subtracting appropriate equations we get that w(i, j) = 0,

w(1, i) = w(1, j), w(i, n) = w(j, n), so (5.17) follows.

Note that the converse trivially holds, which concludes the proof.

Theorem 5.21. Let G = (V,E) be the complete directed acyclic graph with

the vertex set V = {1, 2, . . . , n} and edge set E = {(i, j) ∈ V × V : i < j},
and let w(i, j) denote the weight of edge (i, j). This instance of the directed

shortest path problem has the COVP if and only if there exists a real vector

A = (ai) such that

w(i, j) = aj − ai for all i, j ∈ {1, . . . , n}, i < j. (5.18)

Proof. Assume that every path from vertex 1 to vertex n has the same

100

5.4 The COVP for spanning tree, shortest path and matching problems

weight. Consider the path composed of edges (1, i), (i, j) and (j, n). It has

the same weight as the path composed of edges (1, j) and (j, n). It follows

that w(i, j) = w(1, j) − w(1, i). Set ai := w(1, i) for i = 1, . . . , n, so that

w(i, j) = aj − ai.
Now assume that for all i < j the weight of (i, j) can be represented as

in (5.18) for some vector A = (ai). Consider an arbitrary path from vertex

1 to n, and let 1 = v1 < v2 < · · · < vk = n be all vertices on that path.

Then the weight of the path is

k−1∑
i=1

w(vi, vi+1) =
k−1∑
i=1

avi+1
− avi = avk − av1 = an − a1.

Since this number is independent of the choice of path, (5.18) is also suffi-

cient and hence the statement holds.

5.4.3 The COVP for the minimum weight maximum

cardinality matching problem

In the minimum weight maximum cardinality matching problem we are

given an undirected graph G = (V,E) and edge weights w(i, j) for each

edge (i, j) ∈ E. Our goal is to find a matching for which the sum of edge

weights is minimal among all matchings of maximal cardinality.

Theorem 5.22. Let I be an instance of the minimum weight maximum

cardinality matching on the complete undirected graph G with n vertices

and edge weights w(i, j).

(i) If n is odd, I has the COVP if and only if all edge weights are equal.

(ii) If n is even, I has the COVP if and only if there exists a real vector

A = (ai) such that

w(i, j) = ai + aj for all i 6= j. (5.19)

Proof. Let n be odd. Suppose that every maximum cardinality matching

has the same weight. Let i, j, k ∈ V be three distinct vertices. Let M be a

maximum cardinality matching on the vertex set V \ {i, j, k}. By adding

101

5 The COVP for combinatorial optimization problems

an arbitrary edge from the triangle defined by i, j and k to M we obtain

a maximum cardinality matching on the initial instance. By assumption it

follows that every edge in the triangle defined by i, j and k has the same

weight. Hence the statement follows.

Let n be even. Assume that every perfect matching has the same weight.

Since each of the two pairs of edges (i, j), (k, l) and (i, l), (j, k) can be

identically extended to a perfect matching it follows that

w(i, j) + w(k, l) = w(i, l) + w(j, k)

for all distinct i, j, k, l. Hence, there exist two real vectors U = (ui) and

V = (vi) such that w(i, j) = ui + vj for all i 6= j. Since the weight matrix

has to be symmetric (G is undirected), there exists a real vector A = (ai)

such that (5.19) holds.

Note that (5.19) is clearly a sufficient condition for the COVP.

5.5 Conclusions and open problems

In this chapter our goal was to characterize the set of instances with the

constant objective value property (COVP), i.e. to investigate the space of

all instances for which every feasible solution has the same objective value.

As our central result, we showed that the COVP instances of the planar

and the axial d-dimensional assignment problem are characterized by sum-

decomposable arrays with the corresponding parameters. We provided a

counterexample which shows that these results do not carry over to general

d-dimensional assignment problem. The following remains a challenging

open problem.

Open Problem 5.23. Determine whether the sum decomposability char-

acterizes the COVP instances in all cases of the multidimensional assign-

ment problems for which feasible solutions exist and size of the instance is

sufficiently large.

We used the results for the axial d-dimensional assignment problem to

characterize the COVP instances for the axial d-dimensional transportation

problem.

102

5.5 Conclusions and open problems

Furthermore, as simpler side results, we characterized the COVP in-

stances for the following classical combinatorial optimization problems: the

minimum spanning tree, the shortest path problem in undirected and di-

rected graphs and the minimum weight cardinality matching problem in

complete graphs.

Open Problem 5.24. Find a combinatorial optimization problem with

a sum objective value function for which a nice COVP characterization

can be obtained where the underlying cost structure is not essentially sum-

decomposable.

103

Bibliography

[1] A. Aggarwal and J.K. Park, Sequential searching in multidimen-

sional monotone arrays, Technical Report RC 15128, IBM T.J. Wat-

son Research Center, Yorktown Height, New York, November 1989.

[2] , Improved algorithms for economic lot size problems, Oper.

Res. 41 (1993), 549–571.

[3] M. Akgül, A genuinely polynomial primal simplex algorithm for the

assignment problem, Discrete Appl. Math. 45 (1993), 93–115.

[4] G. Appa, D. Magos, and I. Mourtos, A branch and cut algorithm

for a four-index assignment problem, J. Oper. Res. Soc. 55 (2004),

298–307.

[5] , A new class of facets for the Latin square polytope, Discrete

Appl. Math. 154 (2006), 900–911.

[6] , On multi-index assignment polytopes, Linear Algebra Appl.

416 (2006), 224–241.

[7] C. Arbib, D. Pacciarelli, and S. Smriglio, A three-dimensional

matching model for perishable production scheduling, Discrete Appl.

Math. 92 (1999), 1–15.

[8] E.M. Arkin and R. Hassin, On local search for weighted k-set pack-

ing, Math. Oper. Res. 23 (1998), 640–648.

[9] E. Balas and P.R. Landweer, Traffic assignment in communication

satellites, Oper. Res. Lett. 2 (1983), 141–147.

105

Bibliography

[10] E. Balas and M.J. Saltzman, An algorithm for the three-index as-

signment problem, Oper. Res. 39 (1991), 150–161.

[11] M.L. Balinski and R.E. Gomory, A primal method for the assignment

and transportation problems, Management Science 10 (1964), 578–

593.

[12] A. Barvinok, S.P. Fekete, D.S. Johnson, A. Tamir, G.J. Woegin-

ger, and R. Woodroofe, The geometric maximum traveling salesman

problem, J. ACM 50 (2003), 641–664.

[13] A.I. Barvinok, Two algorithmic results for the traveling salesman

problem, Math. Oper. Res. 21 (1996), 65–84.

[14] X. Berenguer, A characterization of linear admissible transforma-

tions for the m-travelling salesmen problem, European J. Oper. Res.

3 (1979), 232–238.

[15] D.P. Bertsekas, A new algorithm for the assignment problem, Math.

Programming 21 (1981), 152–171.

[16] G. Birkhoff, Three observations on linear algebra, Univ. Nac. Tu-

cumán. Revista A. 5 (1946), 147–151.

[17] R.C. Bose, S.S. Shrikhande, and E.T. Parker, Further results on the

construction of mutually orthogonal Latin squares and the falsity of

Euler’s conjecture, Canad. J. Math. 12 (1960), 189–203.

[18] D. Briskorn, A. Drexl, and F.C.R. Spieksma, Round robin tourna-

ments and three index assignments, 4OR 8 (2010), 365–374.

[19] R.E. Burkard, Admissible transformations and assignment problems,

Vietnam J. Math. 35 (2007), 373–386.

[20] R.E. Burkard, V.G. Deineko, R. van Dal, J.A.A. van der Veen, and

G.J. Woeginger, Well-solvable special cases of the traveling salesman

problem: A survey, SIAM Rev. 40 (1998), 496–546.

[21] R.E. Burkard, M. Dell’Amico, and S. Martello, Assignment Prob-

lems, Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 2009.

106

Bibliography

[22] R.E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge prop-

erties in optimization, Discrete Appl. Math. 70 (1996), 95–161.

[23] R.E. Burkard, R. Rudolf, and G.J. Woeginger, Three-dimensional

axial assignment problems with decomposable cost coefficients, Dis-

crete Appl. Math. 65 (1996), 123–139.

[24] R.E. Burkard and U. Zimmermann, Combinatorial optimization in

linearly ordered semimodules: a survey, Modern applied mathemat-

ics (Bonn, 1979), North-Holland, Amsterdam, 1982, pp. 391–436.

[25] C.J. Colbourn and J.H. Dinitz, Handbook of combinatorial designs,

second edition (discrete mathematics and its applications), Chapman

& Hall/CRC, 2006.

[26] Y. Crama, A. Oerlemans, and F.C.R. Spieksma, Production plan-

ning in automated manufacturing, Lecture Notes in Economics and

Mathematical Systems, vol. 414, Springer-Verlag, Berlin, 1994.

[27] Y. Crama and F.C.R. Spieksma, Approximation algorithms for

three-dimensional assignment problems with triangle inequalities,

European J. Oper. Res. 60 (1992), 273–279.

[28] A. Ćustić and B. Klinz, The constant objective value property for

combinatorial optimization problems, submitted, arXiv:1405.6096.

[29] A. Ćustić, B. Klinz, and G.J. Woeginger, Geometric versions of

the three-dimensional assignment problem under arbitrary norms,

in preparation.

[30] , Planar 3-dimensional assignment problems with Monge-like

cost arrays, in preparation, arXiv:145.5210.

[31] J.A. De Loera and S. Onn, All linear and integer programs are slim

3-way transportation programs, SIAM J. Optim. 17 (2006), 806–821

(electronic).

[32] U. Derigs and U. Zimmermann, An augmenting path method for solv-

ing linear bottleneck assignment problems, Computing 19 (1977/78),

285–295.

107

Bibliography

[33] E.A. Dinic and M.A. Kronrod, An algorithm for solving the assign-

ment problem, Dokl. Akad. Nauk SSSR 189 (1969), 23–25.

[34] M.E. Dyer and A.M. Frieze, Planar 3DM is NP-complete, J. Algo-

rithms 7 (1986), 174–184.

[35] R. Euler, R.E. Burkard, and R. Grommes, On Latin squares and

the facial structure of related polytopes, Discrete Math. 62 (1986),

155–181.

[36] R. Euler and H. Le Verge, Time-tables, polyhedra and the greedy

algorithm, Discrete Appl. Math. 65 (1996), 207–221.

[37] D.G. Fon-Der-Flaass, Arrays of distinct representatives—a very sim-

ple NP-complete problem, Discrete Math. 171 (1997), 295–298.

[38] D. Fortin and A. Tusera, Routing in meshes using linear assignment,

Operations Research ’93, 1994, pp. 169–171.

[39] A.M. Frieze, Complexity of a 3-dimensional assignment problem, Eu-

ropean J. Oper. Res. 13 (1983), 161–164.

[40] A.M. Frieze and G.B. Sorkin, Efficient algorithms for three-

dimensional axial and planar random assignment problems, Random

Struct. Alg. (2014), in print.

[41] M.R. Garey and D.S. Johnson, Computers and intractability: A

guide to the theory of NP-completeness, W. H. Freeman & Co., New

York, NY, USA, 1979.

[42] K.C. Gilbert and R.B. Hofstra, An algorithm for a class of three-

dimensional assignment problems arising in scheduling applications,

IIE Transactions 19 (1987), 29–33.

[43] P.C. Gilmore, E.L. Lawler, and D.B. Shmoys, Well-solved special

cases, The traveling salesman problem, Wiley-Intersci. Ser. Discrete

Math., Wiley, Chichester, 1985, pp. 87–143.

[44] È.Kh. Gimadi and Yu.V. Glazkov, An asymptotically exact algo-

rithm for solving a modified three-index planar assignment problem,

Diskretn. Anal. Issled. Oper. Ser. 2 13 (2006), 10–26.

108

Bibliography

[45] A.V. Goldberg and R. Kennedy, An efficient cost scaling algorithm

for the assignment problem, Math. Programming 71 (1995), 153–

177.

[46] M. Hall, An existence theorem for Latin squares, Bull. Amer. Math.

Soc. 51 (1945), 387–388.

[47] P. Hansen and L. Kaufman, A primal-dual algorithm for the three-

dimensional assignment problem, Cahiers Centre Études Recherche

Opér. 15 (1973), 327–336.

[48] A.J.W. Hilton, The reconstruction of Latin squares with applications

to school timetabling and to experimental design, Math. Program-

ming Stud. (1980), 68–77.

[49] C.G.J. Jacobi, De investigando ordine systematis aequationum dif-

ferentialum vulgarium cujuscunque, Borchardt Journal für die reine

und angewandte Mathematik LXIV (1865), 297–320.

[50] Vo-Khac K., La régularisation dans les problèmes combinatoires et

son application au problème de sectorisation, Rev. Française Infor-

mat. Recherche Opérationnelle 5 (1971), 59–77.

[51] M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting, A decompo-

sition theorem for maximum weight bipartite matchings, SIAM J.

Comput. 31 (2001), 18–26.

[52] R.M. Karp, Reducibility among combinatorial problems, Complexity

of computer computations (Proc. Sympos., IBM Thomas J. Watson

Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York,

1972, pp. 85–103.

[53] B. Klinz and G.J. Woeginger, A new efficiently solvable special case

of the three-dimensional axial bottleneck assignment problem, Com-

binatorics and computer science (Brest, 1995), Lecture Notes in

Comput. Sci., vol. 1120, Springer, Berlin, 1996, pp. 150–162.

[54] , The northwest corner rule revisited, Discrete Appl. Math.

159 (2011), 1284–1289.

109

Bibliography

[55] H.W. Kuhn, The Hungarian method for the assignment problem,

Naval Res. Logist. Quart. 2 (1955), 83–97.

[56] H.W. Lenstra, Integer programming with a fixed number of variables,

Math. Oper. Res. 8 (1983), 538–548.

[57] J.K. Lenstra and A.H.G. Rinnooy Kan, A characterization of linear

admissible transformations for the m-travelling salesmen problem:

A result of Berenguer, European J. Oper. Res. 3 (1979), 250–252.

[58] D. Magos, Tabu search for the planar three-index assignment prob-

lem, J. Global Optim. 8 (1996), 35–48.

[59] D. Magos and P. Miliotis, An algorithm for the planar three-index

assignment problem, European J. Oper. Res. 77 (1994), 141–153.

[60] R.A. Murphey, P.M. Pardalos, and L. Pitsoulis, A parallel grasp for

the data association multidimensional assignment problem, Parallel

processing of discrete problems (Minneapolis, MN, 1997), IMA Vol.

Math. Appl., vol. 106, Springer, New York, 1999, pp. 159–179.

[61] K.R. Pattipati, S. Deb, Y. Bar-Shalom, and R.B. Washburn, A new

relaxation algorithm and passive sensor data association, Automatic

Control, IEEE Transactions on 37 (1992), 198–213.

[62] U. Pferschy, R. Rudolf, and G.J. Woeginger, Some geometric clus-

tering problems, Nordic J. Comput. 1 (1994), 246–263.

[63] W.P. Pierskalla, The tri-substitution method for the three-

dimensional assignment problem, Journal of the Canadian Opera-

tions Research Society 5 (1967), 71–81.

[64] , The Multidimensional Assignment Problem, Oper. Res. 16

(1968), 422–431.

[65] A. Polishchuk and L. Positselski, Quadratic algebras, University Lec-

ture Series, vol. 37, American Mathematical Society, Providence, RI,

2005.

110

Bibliography

[66] S. Polyakovskiy, F.C. Spieksma, and G.J. Woeginger, The three-

dimensional matching problem in Kalmanson matrices, J. Comb.

Optim. 26 (2013), 1–9.

[67] A.B. Poore, Multidimensional assignment formulation of data asso-

ciation problems arising from multitarget and multisensor tracking,

Comput. Optim. Appl. 3 (1994), 27–57.

[68] A.B. Poore and N. Rijavec, A Lagrangian relaxation algorithm

for multidimensional assignment problems arising from multitarget

tracking, SIAM J. Optim. 3 (1993), 544–563.

[69] J. Pusztaszeri, The nonlinear assignment problem in experimental

high energy physics, Nonlinear assignment problems, Comb. Optim.,

vol. 7, Kluwer Acad. Publ., Dordrecht, 2000, pp. 55–89.

[70] J. Pusztaszeri, P.E. Rensing, and T.M. Liebling, Tracking elemen-

tary particles near their primary vertex: a combinatorial approach,

J. Global Optim. 9 (1996), 41–64.

[71] L. Qi and D. Sun, Polyhedral methods for solving three index as-

signment problems, Nonlinear assignment problems, Comb. Optim.,

vol. 7, Kluwer Acad. Publ., Dordrecht, 2000, pp. 91–107.

[72] M. Queyranne and F.C.R Spieksma, Multi-index transportation

problems, in C. A. Floudas and P. M. Pardalos, Encyclopedia of

Optimization, Springer, 2009.

[73] H.J. Ryser, A combinatorial theorem with an application to latin

rectangles., Proc. Am. Math. Soc. 2 (1951), 550–552.

[74] E.D. Schell, Distribution of a product by several properties, Proceed-

ings of the Second Symposium in Linear Programming, Washington,

D. C., 1955, National Bureau of Standards, Washington, D. C., 1955,

pp. 615–642.

[75] W. Schnyder, Embedding planar graphs on the grid, Proc. 1-st An-

nual ACM-SIAM Symp. On Discr. Alg. (SODA) (1990), 138–147.

111

Bibliography

[76] F.C.R. Spieksma, Multi index assignment problems: complexity, ap-

proximation, applications, Nonlinear assignment problems, Comb.

Optim., vol. 7, Kluwer Acad. Publ., Dordrecht, 2000, pp. 1–12.

[77] F.C.R. Spieksma and G.J. Woeginger, Geometric three-dimensional

assignment problems, European J. Oper. Res. 91 (1996), 661–618.

[78] J.M.M. van Rooij, M.E. van Kooten Niekerk, and H.L. Bodlaender,

Partition into triangles on bounded degree graphs, Theory Comput.

Syst. 52 (2013), 687–718.

[79] M. Vlach, Branch and bound method for the three-index assignment

problem, Ekonom.-Mat. Obzor 3 (1967), 181–191.

[80] D. Yokoya, C.W. Duin, and T. Yamada, A reduction approach to the

repeated assignment problem, European J. Oper. Res. 210 (2011),

185–193.

112

	Contents
	List of Figures
	Acknowledgements
	Introduction
	Preliminaries
	Linear assignment problem
	Algorithms for the LAP

	Axial 3-dimensional assignment problem
	Problem statement and applications
	Complexity and algorithms
	Special cases

	Planar 3-dimensional assignment problem
	Problem statement and applications
	Complexity and algorithms
	Special cases

	Multidimensional assignment problems
	Definition
	Feasible solutions
	Applications and algorithms

	Geometric axial 3-dimensional assignment problems
	Technical preliminaries
	The maximization problem under tunneling distances
	The maximization problem under polyhedral norms
	The maximization problem in non-fixed dimension
	A useful lattice
	The minimization problem
	Implications for the weighted 3-dimensional matching problem
	Conclusions

	Special cases of the planar 3-dimensional assignment problem
	Monge-like structures
	Intractability results on Monge-like arrays
	The optimal solution structure of the p-P3AP on layered Monge arrays
	Block structure result for the 2-P3AP
	Example with a single large block for p3
	Bandwidth result for the p-P3AP

	Algorithms for the p-P3AP on layered Monge arrays
	Special cases of the bottleneck-P3AP
	Various other special cases
	Maximization p-P3AP
	Monotonicity property
	The P3AP on distribution arrays generated by a single nonzero density element
	Greedily solvable instances with layered Monge cost arrays

	The COVP for combinatorial optimization problems
	Constant objective value property
	The COVP for d-dimensional assignment problems
	Sum-decomposable arrays
	The COVP for the axial case: (d,1)-AP
	The COVP for the planar case: (d,d-1)-AP
	The COVP for the general case: (d,s)-AP

	The COVP for d-dimensional transportation problems
	The COVP for spanning tree, shortest path and matching problems
	The COVP for the minimum spanning tree problem
	The COVP for the shortest path problem
	The COVP for the minimum weight maximum cardinality matching problem

	Conclusions and open problems

	Bibliography

