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Abstract 

The objective of this thesis is the development of a photogrammetric processing 

chain for oriented image bundles, acquired with a stereo set-up of “Image 

Assisted Total Stations” (IATS) to continuously measure rock slope 

deformation. The system supplies 3D deformation vectors which can be 

analyzed by experts or processed in geodetic deformation analysis software 

reducing risks to infrastructure and even live posed by rock fall events.  

The developed processing chain was designed to automatically detect 

corresponding points in the respective stereo-images with sub-pixel accuracy, 

track them in consecutive measurement epochs and calculate their 3D position 

using a forward intersection. The used IATS devices need about five seconds to 

capture one stereopair of images with a ground sampling distance (GSD) of 

around 1 mm at a distance of 100 m covering a field of view of about 1.56 gon 

(2.45 m) in horizontal and 1.17 gon (1.84 m) in vertical direction. This constrains 

the minimum time frame available for data processing and evaluation for a 

system which permanently acquires data.  

The proposed solution consists of a fully configurable modular system 

containing optimized processing steps to increase the matching accuracy, the 

number of detected points and to reduce the amount of mismatches. Test 

results of the individual processing chain components were evaluated using 

synthetic ground truth data. The whole system was assessed using data-sets 

from field experiments and compared to high-resolution terrestrial laser scans, 

and conventional theodolite measurements of signalized points. The accuracies 

lie in a similar range as manually executed theodolite based point 

measurements on signalized targets. However, these results can be retrieved 

automatically based on image texture and the detection of dozens or even 

hundreds of deformation vectors is only a matter of seconds. Deformation 

experiments using artificial and natural structures were carried to demonstrate 

the temporal tracking of deformations on individual points leading to 3D 

deformation vectors. 

The IATS system combines the strength of a theodolite based measurement 

system in terms of highest accuracy with the high point density and automated 

processing of a terrestrial laser scanner. Furthermore, a statistical evaluation of 

each measured point is possible. Due to the fact that errors in an IATS system, 

set up with a shorter baseline to increase matching accuracy, mainly occur 

perpendicular to the base, the system also shows a high complementarity with 

TLS or polar distance measurements. 



 

iv 

 

  



v 

Acknowledgements 

I would like to thank my supervisor Viktor Kaufmann for all his help and the 

detailed review of this thesis. His thorough revisions lead to significant 

improvements.  

Special thanks go to Alexander Reiterer for giving me the opportunity to work 

in this interesting field and his continuous support until the end of this thesis. 

Further, I want to thank Mathias Schardt as my prior supervisor and boss for 

his support and Ruth Hödl for the equally important great administrative help.  

Great thanks also belong to my colleagues at the JOANNEUM RESEARCH and 

the Technical University of Munich, especially to Andreas Wagner for the great 

support and cooperation. 

None of this would have been possible without the support from my family 

and friends. Especially Josi was of the utmost importance to my mental health 

with his charming stories about how working on a PhD can also look like. 

Thank you deeply for all the laughs my friend. 

Last but not least I want to thank Birgit for sharing my life exactly during these 

many years of work on this thesis. We had a great time, I don’t regret anything. 

 

I want to dedicate this thesis to my late grandma Reinlinde Huber, who kept 

asking me when I was going to be finished. I am sorry I didn’t make it in time 

for you to see Oma. 

 

  



 

vi 

 

  



 

vii 

Contents 
 

1 Introduction ............................................................................................................ 1 

1.1 Problem statement .......................................................................................... 3 

1.2 Objectives ......................................................................................................... 7 

1.3 Structure ........................................................................................................... 8 

 

2 The IATS measurement system ........................................................................ 10 

2.1 Introduction ................................................................................................... 10 

2.1.1 Background and on-going research .................................................... 11 

2.1.2 Current commercial systems ................................................................ 16 

2.2 Prototype IATS2 – Leica TCRA1201+ hardware components ................ 18 

2.2.1 Angle measurements / Base instrument ............................................. 19 

2.2.2 Instrument adaptations / Ocular camera ............................................ 20 

2.3 System calibration ......................................................................................... 22 

2.3.1 Instrument axis calibration ................................................................... 22 

2.3.2 Camera calibration ................................................................................. 23 

2.3.3 Combined calibration approach .......................................................... 24 

2.4 Control software ............................................................................................ 26 

 

3 System set-up and design .................................................................................. 27 

3.1 Theoretical accuracy considerations ........................................................... 27 

3.2 Data acquisition and processing scheme ................................................... 29 

3.2.1 Continuous monitoring ......................................................................... 30 

3.2.2 Single measurement campaign ............................................................ 30 

3.2.3 Processing chain ..................................................................................... 30 

 

4 Image pre-processing .......................................................................................... 35 

4.1 Introduction ................................................................................................... 35 

4.2 Intensity transformations ............................................................................. 35 

4.3 Local neighborhood based pre-processing ................................................ 37 

4.4 Geometric correction ..................................................................................... 40 



 

viii 

 

5 Feature based methods for the detection of homologous non-signalized 

points ............................................................................................................................. 41 

5.1 Introduction .................................................................................................... 41 

5.2 Local feature detection .................................................................................. 42 

5.2.1 Requirements, concepts and terminology .......................................... 42 

5.2.2 Corner based methods ........................................................................... 43 

5.2.3 Blob based methods ............................................................................... 46 

5.3 Feature description ........................................................................................ 51 

5.3.1 Requirements and concepts .................................................................. 51 

5.3.2 State of the art algorithms ..................................................................... 52 

5.4 Feature matching ........................................................................................... 58 

5.4.1 Brute force ............................................................................................... 58 

5.4.2 Nearest neighbor approximation ......................................................... 58 

5.4.3 Geometrical restrictions ......................................................................... 59 

5.5 Conclusion ...................................................................................................... 60 

 

6 Refinement and temporal tracking of homologous non-signalized  

points ............................................................................................................................. 62 

6.1 Detection of mismatches ............................................................................... 62 

6.1.1 Global geometrical restrictions ............................................................. 62 

6.1.2 Local geometrical restrictions ............................................................... 64 

6.2 Least squares sub-pixel accuracy refinement ............................................ 67 

6.3 Temporal tracking of homologous points .................................................. 70 

6.4 Calculation of deformation vectors ............................................................. 74 

 

7 Method evaluation on synthetic test data ....................................................... 76 

7.1 Generation of synthetic “ground truth” data ............................................ 76 

7.2 Local feature detectors performance evaluation ....................................... 81 

7.2.1 Implementation details .......................................................................... 82 

7.2.2 Accuracy and runtime evaluation ....................................................... 83 

7.2.3 Feature detection conclusion ................................................................ 92 

7.3 Local feature descriptor performance evaluation ..................................... 93 



 

ix 

7.3.1 Implementation details ......................................................................... 94 

7.3.2 Accuracy and runtime evaluation ....................................................... 94 

7.3.3 Descriptor matching conclusion ........................................................ 104 

7.4 Least squares sub-pixel refinement performance evaluation ............... 105 

7.4.1 Implementation details ....................................................................... 105 

7.4.2 Accuracy and runtime evaluation ..................................................... 105 

7.4.3 LSM evaluation conclusion ................................................................ 110 

7.5 Conclusion and interpretation .................................................................. 111 

 

8 Evaluation of system design using measurement data .............................. 113 

8.1 Field trial Graz Weinzödl ........................................................................... 113 

8.1.1 Object and measured region of interest ............................................ 113 

8.1.2 IATS measurements ............................................................................. 115 

8.1.3 Artificial deformation .......................................................................... 116 

8.2 Field trial Pellheim ...................................................................................... 117 

8.2.1 Object and measured region of interest ............................................ 117 

8.2.2 IATS measurements ............................................................................. 119 

8.2.3 TLS measurements ............................................................................... 120 

8.2.4 Artificial deformation .......................................................................... 121 

8.3 Processing chain .......................................................................................... 121 

8.4 Results and evaluation ............................................................................... 124 

8.4.1 Field trial Graz Weinzödl evaluation ................................................ 124 

8.4.2 Field trial Pellheim evaluation ........................................................... 132 

8.5 Conclusion and interpretation .................................................................. 141 

 

9 Conclusions ........................................................................................................ 143 

 

10 References ........................................................................................................... 146 

 

11 List of Abbreviations ........................................................................................ 156 

 

 



 

x 

 

12 Appendix ............................................................................................................. 158 

A. Evaluation of feature detection methods ................................................. 158 

B. Visual evaluation of detected feature distribution ..................................... 160 

C. Feature detector performance evaluation charts .................................... 165 

D. Feature descriptor performance evaluation charts ................................. 167 

E. Least squares refinement performance evaluation charts ......................... 184 

F. Adjustment report (TPS network Pellheim) ................................................ 189 

G. Adjustment report (TPS network Weinzödl)........................................... 190 

H. Pointmatching tool command line options .............................................. 191 



Introduction 

1 

1 Introduction 

Geo-hazards such as rock falls and landslides endanger, injure and kill a large 

number of people all around the world. Research conducted at the International 

Landslide Centre at Durham University, UK indicates that from 2004 to 2010, 

2620 non-earthquake triggered landslide events killed a total of 32 322 people. 

However, this figure may still be too low as countries such as North Korea or 

Ethiopia with multiple fatal events each year only report a fraction of the total 

incidents. Events are likely to cause fatalities where the following factors come 

together: heavy rainfall, steep slopes and a dense population (Petley, 2012).  

In addition to the cost of human lives a huge economic impact has to be 

considered. In the USA alone average annual damages of one to two billion 

USD occur (U.S. Geological Survey, 2013). Similar or higher figures are to be 

expected in all densely populated areas all around the world. Furthermore, 

ancillary economic costs caused by infrastructure failure and downtime also 

have to be taken into account.  

Norway, to name a European example, registered more than 31 500 sites 

endangered by landslides or rock falls (Devoli, et al., 2011). Due to monitoring 

costs and inaccessible terrain only five of these sites are currently continuously 

monitored. One of these sites is the Åknes landslide illustrated in Figure 1. 

High-resolution long range remote monitoring could help to strongly decrease 

costs and risks to surveying personnel. 

As rock falls cannot be avoided the mitigation of accompanying risks to human 

lives and infrastructure is most important. Knowledge about dynamics of 

unstable regions may in many cases allow the prediction of hazardous events  

(Poisel & Preh, 2004) early enough for life saving precautionary measures to be 

taken. This calls for monitoring methods capable of detecting deformations in 

high accuracy to gain an insight in the spatial distribution and expected 

dynamics of the event. These insights derived from monitoring data are crucial 

for a reliable risk assessment and consequent reactions such as focused, more 

expensive on-site monitoring, the application of protection installations, or in 

last consequence the evacuation of endangered population. In post disaster 

event monitoring, remote surveying may be the only possibility to assess the 

amount of mass movement, occurred damages or further hazards while at the 

same time reducing the risk for emergency staff and field personnel. 

In this thesis the design and implementation of a high accuracy image-based 

remote monitoring system capable of dealing with the above mentioned issues 

is described and evaluated. The system is based on data acquisition from a 
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stereo set-up of “Image Assisted Total Stations” (IATS) and subsequent image 

processing steps in order to derive 3D positions of un-signalized points on the 

object and to track them over multiple measurement epochs creating 

deformation vectors. 

An IATS is a conventional tacheometer extended with an imaging sensor within 

the optical path of its telescope. Using the built-in robotic capabilities of the 

base instrument it is possible to capture a specific region of interest (ROI) 

through camera rotation. The data is represented as a bundle of images forming 

a panoramic mosaic. Using an exact calibration of the tacheometer and its 

imaging sensor the measured horizontal and vertical angles of rotation can be 

transferred into a coordinate system centered at the camera’s center of 

projection. This allows the calculation of specific angle values for every position 

on the image. Matched homologous points in stereo-images can then be used to 

perform a spatial forward intersection to calculate their 3D position. 

  

Figure 1: Continuously multisensor monitored rockslide, Åknes Norway (Kristensen, et al., 

2010) 

The author developed a modular photogrammetric processing chain for the 

processing of IATS image data from multiple measurement epochs calculating 

the above mentioned high-resolution deformation vectors.  

The IATS devices used in this work are prototypes from Leica (Wasmeier, 2009) 

based on a modified total station TCRA1201 with an ocular camera with a 

resolution of 2560x1920 pixels and a field of view of about 1.56 gon in 

horizontal and 1.17 gon in vertical direction (for a focus position at  ). 

The work presented in this thesis originates from the FWF funded research 

project “i-MeaS – An Intelligent Image-Based Measurement System for Geo-

Hazard Monitoring” (project number “Translational Research L514”) lead by 

the Institute of Geodesy and Geophysics of Vienna University of Technology in 



Introduction 

3 

which the author participated as project assistant over the course of two years 

and was further supported by the European Community's Seventh Framework 

Programme (FP7/2007-2013) research project DE-MONTES (“Deformation 

Monitoring by High-resolution Terrestrial Long Range Sensing” under grant 

agreement 285839) coordinated by the JOANNEUM RESEARCH, Graz in which 

the author participated as a key researcher.  

1.1 Problem statement 

The measurement system including its photogrammetric processing chain 

developed in this work is targeted at the task of continuous rock slope 

deformation measurement. These measurements are taken in consecutive 

scanning intervals; so called measurement epochs, to monitor rock walls which 

may be at risk of undergoing deformation. Knowledge about the kinematics1 of 

unstable surfaces in an accuracy range of 2 - 20 mm of deformation per day 

(Figure 2) may allow a subsequent prediction of hazardous events (Kristensen, 

et al., 2010). Figure 2 illustrates a schematic diagram of the movements at the 

Norwegian Åknes rockslide derived from measurement data of previous 

events. Continuous monitoring and data analysis is crucial to identify the 

movement behaviour and velocity trends.  

 

Figure 2: Velocity and acceleration as criteria for different alarm levels (Kristensen, et al., 

2010) 

Different extensive long term multisensory monitoring campaigns and 

evaluations of instable sites are documented in the literature. An exceptionally 

                                                 
1 Description of motions without explanation of their source 
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well documented example is the analysis of the kinematics of the Gradenbach 

landslide based on photogrammetric measurements, GPS and seismic 

monitoring data by Brückl, et al. (2006). In Brückl, et al. (2013) the evaluations 

were extended by extensometer measurements, hydrostatic water levels in 

boreholes and a strain monitoring using fiber optic sensors to analyze 

underlying dynamic processes. 

If a deformation of on object occurs, not only the geometrical changes are of 

interest but also the dynamics of the underlying process. This means that 

“geodetic deformation analysis” more and more means “geodetic analysis of 

dynamic processes” (Welsch & Heunecke, 2001). The classical geodetic 

deformation analysis as referred to in this thesis however, excludes the 

modelling of dynamic processes. This merely descriptive approach only 

evaluates the temporal development of the process (Welsch, et al., 2000). 

In a classical geodetic deformation analysis the calculated 3D object point 

coordinates, reference point coordinates and raw angle measurements are 

evaluated and analyzed in a common network adjustment. Connected 

measurements from different temporal epochs, as provided by the analysis of 

oriented image measurements, may lead to the identification of unstable 

reference points, a set of points that have moved significantly and the according 

covariance information. This evaluation can be carried out in geodetic 

deformation analysis software such as GOCA developed at the University of 

Applied Sciences Karlsruhe (Kälber, et al., 1999). The interpretation of the 

results is carried out either manually by experts or semi-automated relying on 

knowledge based geo-risk assessment (Vicovac, et al., 2010) or fuzzy systems 

(Chmelina, et al., 2006). The retrieved information can aid in the reduction of 

risks to infrastructure and even live posed by rock fall events. 

The measurement of rock slopes is traditionally done using monitoring 

techniques with a low data density such as TPS, DGPS or extensometer 

measurements leading to a point distance of about 50-100 meters (Abellán, et 

al., 2014). Another approach is a photogrammetric analysis offering far higher 

point density at the cost of lower accuracy. An alternative approach for rock 

slope monitoring is the application of laser scanning. To be more precise 

ground based terrestrial laser scanning (TLS) is used due to its higher point 

density and accuracy compared to the inadequate viewing angle from the air. 

The point distance on the object can be in cm range, the distance component can 

reach millimeter to centimeter accuracy. However, the system suffers from poor 

repeatability of single measurements and generally low temporal resolution. 

The lack of repeatable single measurements is made up for by the fact that 
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whole scans in the form of TLS-DEMs can be overlaid and subtracted to detect 

1D differences (Bauer, et al., 2005; Abellán, et al., 2010; Figure 3). Aryal, et al. 

(2012) developed a 2D comparison based on a sliding window correlation 

approach. Other techniques focus on the 3D alignment of different point clouds 

or sub-regions of those point clouds over multiple temporal epochs. This can be 

done by a manual or semi-automatic tracking of targets or common features or 

automatically for example using the ICP algorithm (Abellán, et al., 2014). 

The evaluation of measured and illustrated patterns of displacements can help 

to increase the understanding of the failure mechanisms. Furthermore, small 

scale rockfall (Figure 3) is rarely detected by current techniques due to the lack 

of point density. A prediction of possible rock slope failures has to be based on 

indicative signs of precursory activity such as precursory rockfalls and small 

pre-failure deformation which may lie in the same order of magnitude as 

instrument errors and are therefore hard to detect using TLS (Abellán, et al., 

2014). 

 

Figure 3: TLS point cloud comparison showing differences. Main rockfall events manually 

marked (Abellán, et al., 2010) 

The proposed work targets the application of continuous rock slope monitoring 

in a high temporal cadence using a stereo set-up of IATS. Optimally data 

evaluation using the developed photogrammetric processing chain can be 

carried out in parallel at the same speed as the data acquisition. This approach 

tries to retain the high accuracy values that can be reached with theodolite 

measurements of signalized points while automatically measuring non-

signalized points in high density using image based processing, and tracking 

them over multiple measurement epochs. An effort is undertaken to tackle the 

shortcomings of conventional TPS measurements such as the low point density 
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and low level of possible automation as well as the shortcomings of TLS such as 

lower accuracy compared to TPS measurements, lower temporal resolution and 

poorly repeatable single point measurements. In addition, existing deformation 

analysis methods and software developed for the analysis of TPS measurements 

should be directly usable for a further evaluation of the produced results. 

Due to the work’s focus on high temporal resolution and continuous 

monitoring, the production of high-resolution dense point clouds is not part of 

this work although possible using the acquired data (Section 8.4.2.2). Compared 

to the already more than 10-15 years of history of TLS applied to this area of 

applications and the huge amount of research work and instrument expertise 

that has been accumulated, the proposed work does not aim at a direct 

competition with the established concepts but rather demonstrates new 

concepts and shows achievable accuracies and other parameters of the new 

system. The recent appearance of commercially available IATS makes the 

presented ideas even more relevant. 
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1.2 Objectives 

The main objective of this thesis and therefore the main driver of the conducted 

research was the development of a photogrammetric processing chain for 

oriented image bundles acquired with an IATS stereo set-up.  

The processing chain has to be able to produce homologous points in a single 

temporal epoch, temporally connect them to adjacent measurement epochs and 

calculate 3D deformation vectors. 

In order to fulfill the objective of supplying temporally connected 

measurements multiple technical problems have to be solved with the highest 

possible degree of accuracy and the lowest possible computational runtime. The 

author proposes the following process. 

 Detection of non-signalized points in the images 

 Mutual matching of these points to detect correspondences in the highest 

possible accuracy considering computational constraints  

 Tracking matched points over multiple measurement epochs 

 Using the calibration parameters and the tracked stereo-correspondences 

to calculate 3D deformation vectors 

One main side requirement to the developed system was to find a solution how 

to optimally balance the two competing requirements of accuracy and limited 

runtime. The latter is aggravated by the fact that the used processing chain 

should be able to run on standard field capable hardware.  

A further objective is the determination of an optimal system stereo set-up. This 

again comes to a trade-off between the point matching requirement of having 

similar viewpoints for better matching results and the requirement of having an 

optimal base-to-distance ratio for the spatial forward intersection.  

Also it had to be evaluated how the used approach performs in comparison to 

other state of the art remote sensing solutions like TPS or TLS measurements in 

terms of accuracy and runtime. 
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1.3 Structure 

This thesis describes a modular photogrammetric processing chain using data 

from a prototype measurement system based on two stereo IATS. The work’s 

structure shall allow a consecutive reading wherein each chapter is logically 

based on the information given in the sections before. However, it is also 

possible to read individual chapters which have their own introductions and 

conclusions making them self-sufficient parts of work.  

Chapter 1 contains an introduction, the specification of objectives for this thesis 

and an outline of its structure.  

Chapter 2 gives an overview of the relevant measurement devices. This 

includes an account of the background of IATS, a report on the hardware of the 

used Leica IATS prototypes, a description of the system calibration and a short 

overview of the used device control software.  

Chapter 3 presents the system set-up and design. This section contains 

theoretical considerations of achievable accuracies as well as a system design 

review describing the data acquisition as well as the subsequent 

photogrammetric evaluation. Example application scenarios are presented from 

which key parameters regarding accuracy and system runtime are derived and 

linked to the successively described processing chain.  

Chapter 4 shortly outlines image pre-processing methods that can be applied in 

order to increase the efficacy of further processing. 

Chapter 5 describes applied image analysis methods for the detection and 

tracking of homologous points. As the photogrammetric analysis applied is 

based on the detection of non-signalized points in the images, the most suitable 

detector had to be found based on a review of state of the art methods. The 

same procedure was applied to the consecutive steps of feature description and 

matching.  

Chapter 6 discusses the importance of the detection of mismatches in a set of 

correspondences. In case of sufficient available runtime the accuracies of the 

matches can be refined via a Least Squares Matching which is described in this 

chapter. Furthermore, strategies for temporal tracking of detected homologous 

points and the resulting calculation of deformation vectors are presented.  

Chapter 7 contains a description of the implementation of the before described 

processing steps as well as evaluations of the algorithms’ accuracy and runtime 

based on synthetic rendered ground truth data. To improve the general outline 

and readability of this thesis only a sub-set of exemplary evaluation charts are 



Introduction 

9 

illustrated within this chapter. The remaining charts were placed in the 

Appendix Sections B to E. 

Chapter 8 evaluates the developed measurement system using data acquired 

during field experiments in comparison with theodolite measurements on 

signalized targets.  

Chapter 9 states the key findings and main conclusions and gives future 

prospects for the use of the developed system.  

Chapter 10 lists the references; Chapter 11 contains a list of abbreviations 

appearing in the thesis and states their meaning.  

The work is concluded with the Appendix containing tables from the 

evaluation of feature detection methods in Section A, figures for the visual 

evaluation of detected feature distribution in Section B, feature detector 

performance evaluation charts in Section C, feature descriptor performance 

evaluation charts in Section D and least squares refinement performance 

evaluation charts in Section E which are linked to the evaluations given in 

Chapter 7 as mentioned before. Appendix Section F and G comprise the 

network adjustment reports of field experiments whereas Section H contains 

the command line parameters of the feature detection, description and 

matching tool developed by the author. 
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2 The IATS measurement system 

2.1 Introduction 

The terms used to address total stations with differing levels of imaging 

support and capabilities range from “Imaging Total Station” (Leica Geosystems 

AG, 2010) or “Multistation” (Leica Geosystems AG, 2013a) to “Imaging Station” 

(Topcon, 2008). Based on Walser (2005) the term “Image Assisted Total Station” 

(IATS) will be used consistently throughout this thesis. 

The terms measurement accuracy and precision are used in this thesis as 

defined in the International vocabulary of metrology (BIPM, 2008). 

Measurement precision is the agreement of independent measurements under 

stable and repeatable conditions. A high precision describes a low variation of 

measurement results. The deviation of the mean of a large set of measurements 

from a given reference value describes the trueness or accuracy of the mean. 

This value does not give information about the spread of the data. The 

measurement accuracy describes the agreement of a single measurement and a 

given reference value. In this context a measurement error is the measurement 

value minus a reference quantity. There are two components of a measurement 

error, the systematic error which remains constant or varies predictably in 

replicable measurements and the random error varying in an unpredictable 

manner.  

The above mentioned IATS are a new kind of tacheometers offering in addition 

to 3D point measurements the acquisition of oriented images of high angular 

resolution showing the scene visible in the system’s telescope. Mosaics of 

adjacent images can be captured with camera rotation executed by computer 

controlled motors moving the tacheometer’s axes (Reiterer, et al., 2010).  

Using an exact calibration of the tacheometer and its imaging sensor the 

measured horizontal and vertical angles of rotation can be transferred into a 

coordinate system centered at the camera’s center of projection. This allows the 

calculation of specific angle values for every position on the image. This means 

that matched homologous points in stereo-images can be used to perform a 

spatial forward intersection to calculate the 3D position of this point. 

One of the most interesting aspects of this fusion of photogrammetry and 

angular measurements using a total station is the possibility to measure non-

signalized points in the images with higher accuracy than possible for a manual 

operator. This can be achieved through sub-pixel point detection and matching. 

The instrument used in this work the IATS2 based on a Leica TCRA1201+ total 
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station (Section 2.2) has an angle measurement accuracy of 0.3 mgon (Leica 

Geosystems AG, 2007a), the built-in camera has a resolution of around 0.6 

mgon per pixel.  

This technology poses multiple new possibilities like the detection of non-

signalized points in areas of rich texture within the captured images in a high 

density in seconds. The positions of certain geometrical patterns such as drill 

holes can be automatically detected or refined from approximate values. 

Signalized points in the form of specific target patterns or prisms can also be 

found and precisely localized. Furthermore, a direct image-based point to point 

correspondence in a stereo set-up or over measurement epochs can be 

established automatically. 

In all of the above stated cases the positioning accuracy is improved as points 

are defined by distinctive areas and rounded or linear features which can be 

used to calculate the center position as opposed to sighting the point directly 

with the center of the telescope (Wasmeier, 2009, p. 9). 

2.1.1 Background and on-going research 

The idea of using a combination of cameras and theodolites dates back to 

Albrecht Meydenbauer to the middle of the 19th century. He was the first to use 

the term Photogrammetry in 1867, in the same year he developed a combined 

camera and measurement system (Figure 4a), a first predecessor of devices that 

would later be called Phototheodolites (Albertz, 2001). Phototheodolites 

consisted of measuring cameras on a tripod which could be leveled and turned 

around vertical and horizontal axes with the possibility to read out angle values 

of the taken images. These could further be used for photogrammetric 

evaluations. Among the first manufacturers was the company Koppe which 

produced the phototheodolite shown in Figure 4b (Engler, et al., 1897). Over the 

years these devices became one of the most important instruments of terrestrial 

photogrammetry. 
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a) 

 

b) 

 

Figure 4: a) First photogrammetric camera built by Meydenbauer 1867 (Albertz, 2001), 

b) Phototheotolite by Koppe 1897 (Engler, et al., 1897) 

With the emergence of electronic theodolites for industrial surveying purposes 

in the early 1980s the instruments started making use of computers to 

automatically calculate spatial forward intersections from stereo measured 

points. So called electronic triangulation systems were developed based on the 

principle of computational spatial forward intersection of angles measured 

from two or more instruments using automated aiming mechanisms.  

Among the first of these systems were the Keuffel & Esser AIMS (Vyner & 

Hanold, 1982), the Zeiss IMS and the Brunson Electronic Triangulation System 

(BETS). The company Kern developed the industrial measurement Software 

ECDS which together with the image analysis software SPACE could be used to 

calculate forward intersections of angles measured with their instrument Kern 

E2-SE (Gottwald, 1987).  

In order to increase automation even further autonomous motors where used to 

aim at targets (Kahmen & Steudel, 1988) and an automated recognition of 

targets with imaging sensors was developed (Haag, et al., 1997).  

The main field of application for these systems were industrial high precision 

measurements. Due to the introduction of Laser-trackers by Leica in 1991 the 

imaging based systems were completely replaced within only a couple of years. 

Only after the invention and broad availability of small scale, reliable industrial 

digital cameras manufacturers of surveying instruments have again taken up 

the interest in image-assisted instruments in the beginning of the first decade of 

the 21st century. Most of these new systems used wide angle imaging 

components to create an overview and documentation of a surveyed area. A 

review of the different available image-based and image-assisted instruments 

on the market will be given in the next chapter.  
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a) 

 

b) 

 

Figure 5: a) Modified TCRA 1101 total station with ocular and overview camera,  

b) Vertical cross-section of instrument (Walser, 2005)  

Important for the current academic research are a prototype IATS system based 

on a Leica TCRA1101 total station placing a camera in the instruments ocular 

(Figure 5) and an enhanced small batch series of IATS2 prototypes based on a 

Leica TCRA1201 (Figure 6). This thesis is based on data captured with the latter 

of the two devices. 

The TCRA1101 based prototype was developed by Bernd Walser in close 

cooperation with Leica Geosystems (Walser, 2005). Walser used an ocular 

camera with a resolution of 488 x 572 pixel and a field of view of around 

1.3 x 1 gon. An overview camera with a field of view of 20 gon served as 

pointing helper. Walser developed an extensive procedure for system 

calibration and already performed some accuracy evaluations with template 

matching of signalized targets (Walser, 2005). This system was evaluated by 

Vicovac, 2008 and used in first tests of deformation measurements (Reiterer, et 

al., 2009). Based on the experience gained in the development of this first IATS, 

Leica Geosystem developed a small batch series of IATS2 based on their 2007 

released TCRA1201+ R1000 total station. The new IATS provided a more stable 

image acquisition and a greatly enhanced image resolution of 2560 x 1920 pixel 

of the ocular camera, however, due to cost reasons the overview camera is 

missing in this device. 
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Figure 6: Leica IATS2 prototype based on Total Station TCRA1201+ (Wagner, et al., 2013b) 

Research activities in the past years were dealing with a number of IATS related 

issues starting from the important system calibration (Walser, 2005; Vogel, 2006; 

Wasmeier, 2009) over to image pre-processing and first solutions for the 

detection of non-signalized points (Roic, 1996). Further work was dealing with 

manual point detection (Scherer, 2004) and reachable accuracies (Mischke & 

Kahmen, 1997; Wasmeier, 2009). Automated point detection was evaluated as 

well by Mischke & Kahmen (1997) and Reiterer (2004).  

Juretzko (2005) developed a concept of a fully integrated system based on three 

cameras with different focal lengths, a wide angle camera for a proper 

documentation and overview images, a long-focus-lens-camera to identify 

details and an ocular camera for the actual measurements. 

At the institute of Geodesy and Geophysics of the Vienna University of 

Technology multiple research projects were dedicated towards developing a 

stereo IATS based system for the purpose of geo- and deformation monitoring. 

Last of these was the project “i-MeaS – An Intelligent Image-Based 

Measurement System for Rock Fall Monitoring” in which the author worked as 

project assistant from the end of 2008 to the beginning of 2011, developing the 

foundations for this PhD thesis. The used measurement system was based on a 

stereo set-up of two modified Leica TCRA 1201 tacheometers (Reiterer, et al., 

2010). 

The above mentioned IATS2 system from Leica was also an integral part of the 

European Community's Seventh Framework Programme (FP7/2007-2013) 

research project DE-MONTES (“Deformation Monitoring by High-resolution 

Terrestrial Long Range Sensing” under grant agreement 285839) coordinated by 

the Joanneum Research in which the author participated as a key researcher. 
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This project aimed to combine the IATS high accuracy long range measurement 

capabilities with larger scale digital photogrammetry reconstructions.  

Other academic developments try to develop their own IATS systems as add-on 

modules for standard total stations. One of these solutions is developed at the 

Geodesy and Geo-dynamics Lab (GGL) of the ETH Zurich. The system is called 

“Daedalus” and consists of multiple components which can be clipped onto 

regular total stations without any further changes to the measurement 

hardware (Figure 7).  

a) 

 

b) 

 

Figure 7: a) Original telescope b) Adjusted point of focus towards the appended CCD sensor 

plate behind the telescope using a correction lens (Guillaume, et al., 2012) 

All adaptions to the hardware are made in a non-destructive way allowing a 

further use of the theodolite for standard surveying. The system works with a 

range of Leica total stations such as the models TCA 1800, TCA 2003 or TDA 

5005. The camera including a cable based interface and a focus motor is clipped 

onto the viewing end of the telescope whereas a correction lens to shift the focal 

plane about four millimeters back onto the clipped-on projection plane of the 

sensor is attached to the front end of the telescope (Figure 8). 

a) 

 

b) 

 

Figure 8: a) Clip-on industrial camera and correction lens b) Application on Leica TCA 1800, 

zenith measurements are still possible (Guillaume, et al., 2012)  

The used industrial camera has a resolution of 1024 x 768 pixels and can capture 

and transfer 30 full frames per second. The angular resolution per pixel is 

around 1.2 mgon. 

The system was developed mainly for the application of astro-geodesy but was 

further improved to be also applied in automated terrestrial and engineering 
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surveying as well as deformation, vibration, and frequency analysis (Bürki, et 

al., 2010; Guillaume, et al., 2012). 

Another solution was developed by the “i3mainz - Institute for Spatial 

Information and Surveying Technology” which has been working on 

combinations of industrial digital cameras and polar measurement systems 

since 2006 resulting in multiple versions of digital camera-theodolites (Schlüter, 

et al., 2009).  

 

Figure 9: i3Mainz Digitalkameratachymeter mounting on a Leica TCRM 1103 (Hauth & 

Schlüter, 2010) 

The newest system consists of an industrial digital camera with a resolution of 

2560 x 1920 pixels which is mounted onto the ocular of the total station (Leica 

TCRM1103) with an adapter (Figure 9). The focus of the camera is fixed onto the 

crosshair plane of the telescope; therefore no further interference with the 

optical path of the sensor is necessary. A fixed mounting plate is screwed to the 

back of the eye-piece to allow a fast assembly of the system while not 

interfering with normal mode of operation of the instrument (Hauth & Schlüter, 

2010). 

2.1.2 Current commercial systems 

In the beginning of the 21st century the availability of a wide range of compact 

industrial digital camera hardware on the one side and growing computational 

power, data transfer and storage capacities on the other side strongly increased 

the interest in the topic of image-assisted technologies.  

Manufacturers aimed at developing functionalities for interactive, semi-

automatic surveying modes to support the measurement process and have 

developed total stations with varying degrees of imaging capabilities. In the 

following the currently available models including their features are described.  
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a)

 

b) 

 

c) 

 

d)

 

Figure 10: a) Topcon Imaging Station, b) Trimble VX Spatial Station, c) Pentax R-400VDN 

Visio, d) Leica Nova MS50 

In the year 2004 Topcon released the system GPT-7000i with an ocular camera 

of 640 x 480 pixel within the optical path of the telescope utilizing its 

magnification factor of 30. In addition a wide angle overview camera was 

available (Topcon, 2004) in order to allow aiming of the instrument by clicking 

on the displayed image. Countering the previous model’s lack of automated 

focus and remotely controllable actuators the Topcon Imaging Station (IS) was 

released in 2008. The resolution of both cameras was increased to 1280 x 1024 

pixel with a maximum frame rate of 10 Hz (Topcon, 2008). The instrument was 

equipped with radio antennas and could be controlled remotely. In 2012 an 

update with similar specifications and an added long range Wi-Fi control was 

released under the name IS-3 (Topcon, 2012). 

The Trimble VX Spatial Station released in 2007 has an eccentric overview 

camera with a field of view of 18.3 x 13.7 gon with a focus range from 3 meters 

to infinity. The camera resolution is 2048 x 1536 pixel and a frame rate of 5 Hz 

can be reached. Through camera calibration the image pixels can be related to 

the ocular measurements. This can be used to remotely control the instrument 

and initiate measurements using a virtual target on the captured images or to 

document and overlay executed measurements with image texture (Trimble, 

2007).  

In 2009 the company Pentax released the R-400VDN Visio series which follows 

a similar concept. The instruments are equipped with an overview RGB camera 

above the telescope which can capture and document all executed 

measurements. The maximum camera resolution is 2048 x 1536 pixel with a 

maximum frame rate of 10 Hz. Images are captured in a field of view of around 

9.8 x 7.3 gon at a fixed focus with a range from 20 m upwards. Images are 

stored on an SD card (Pentax, 2009).  
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Using the experience gained from their first IATS prototype version from 2003 

(Walser, 2005) and the small batch series of IATS2 produced in 2008 (as 

described in Section 2.2) Leica Geosystems included two 2560 x 1920 pixel 

imaging sensors in their new total station MS50 (Figure 10d) which was 

released in 2013. The maximum frame rate that can be reached is 20 Hz. The 

wide angle overview camera has a field of view of around 17.2 x 13 gon 

whereas the camera coaxial to the optical path of the telescope has a field of 

view of around 1.4 x 1.1 gon and a magnification factor of 30. The focus of the 

overview camera is kept fix and has a range of 2 m and further while the 

telescope-camera is able to variably focus from 1.7 m to infinity. The angular 

resolution in pixel is 0.0005 gon and 0.0067 gon for the telescope and the 

overview camera respectively (Leica Geosystems AG, 2013a; 2013b). 

2.2 Prototype IATS2 – Leica TCRA1201+ hardware components 

Until the introduction of the Leica MS50 in late 2013 the apparent restrictions in 

terms of interfaces and accessibility the commercial systems could not be 

integrated into a self-developed photogrammetric processing chain necessary to 

independently evaluate system performance and exploit the full possible 

potential of the technology. Academic researchers therefore focused on creating 

their own creative and open solutions as described in Section 2.1.1. These 

adaptions to existing instruments are however accompanied by unwanted side 

effects such as additional inaccuracies introduced by custom made lenses or 

mount-on camera equipment. As the main know-how of how to build highly 

accurate measurement systems avoiding the mentioned deficiencies resides at 

the instrument manufacturers the IATS2 built directly by Leica Geosystems 

represents an attractive solution to the academic community. The interfaces to 

the instrument and the camera are documented and accessible, however, the 

device is still not fully integrated and market ready as some issues with 

telescope balance caused by the additional weight of the camera and power 

supply and data transfer cables which are not run out through the vertical axis 

at the base of the unit (Figure 6), remain. 

Similarly to the IATS2 the Leica MS50 can also be remotely controlled over 

defined interfaces. It is even possible to apply custom written hardware drivers 

to communicate with the instrument. An adaption of the abstract hierarchical 

high and low level driver model developed within DE-MONTES for TLS and 

IATS2 control (Wagner, et al., 2013a) was developed to also control the MS50 

(Briechle, 2014) making the instrument fully compatible with the developed 

photogrammetric processing chain. The full integration of the imaging 
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hardware and connector cabling in the housing of the MS50 however, leads to a 

significant reduction in data transfer rates to the controlling computer. This 

effect is caused by the fact that the direct camera data connection cable was 

replaced by slip ring contacts into the interior of the total station to facilitate 

measurements. Test measurements have shown that the data transfer rate from 

the device was reduced by a factor of four (Wagner, et al., 2014). In this work 

only the IATS2 instrument described in this section was used. 

The following sections give a description of the individual components of the 

Leica IATS2 instrument upon which the image analysis conducted in this work 

is based. Information about the base system the Leica TCRA1201+ R1000 will be 

given, followed by the adaptations necessary to include an ocular camera 

together with a focusing mechanism and the appropriate interfacing to control 

the camera as well as the instrument. 

2.2.1 Angle measurements / Base instrument 

The most important component of an IATS system is the total station used as 

base instrument. In the following the instrument specifications of the IATS2 in 

terms of measurement accuracy will be given.  

The base instrument of the IATS2 is the Leica Total Station TCRA1201+ R1000 

which was introduced in 2007 and is in term based on the previous TPS1200 

class of instruments (Leica Geosystems AG, 2007a). The angle measurement 

accuracy of the device is 0.3 mgon. Distance measurements of reflectors can be 

executed at an accuracy of 1 mm ±1.5 ppm up to a distance of 1800 meters at 

strong sunlight or haze, 3000 meters at light haze or moderate sunlight and up 

to 3500 meters with overcast skies and no haze. Reflector-less distance 

measurements up to 500 meters reach an accuracy of 2 mm ±2 ppm and 4 mm 

±2 ppm above that distance in favorable atmospheric conditions (object in the 

shade or overcast sky). Distances of up to and above 1000 meters can be 

measured in the reflector-less mode at night time or twilight and go down to a 

maximum of 800 meters at favorable daytime conditions and 600 meters in 

direct sunlight assuming the use of a Kodak Gray card with 90% reflectance. 

For a Kodak Gray card with 18% reflectance only half of the respective 

distances can be reached (Leica Geosystems AG, 2007a) whereas in practice 

natural targets regularly lead to even lower values. When using reflector-less 

measurements, beam divergence as a function of distance also has to be taken 

into account. The size of the laser beam’s footprint on the surface is depending 

on this divergence. For this instrument it is 12x40 mm at a distance of 100 

meters but already 60x200 mm at a distance of 500 meters (Leica Geosystems 
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AG, 2007b) limiting the usability for precise point measurements. The figures 

given by the manufacturer are    standard deviations (Leica Geosystems AG, 

2007a).  

2.2.2 Instrument adaptations / Ocular camera 

The by far most important adaption of the base instrument in order to 

transform it into an IATS was the integration of a digital camera in the optical 

path of the telescope of the total station. The camera is mounted so that the 

imaging sensor lies in the focal point of the telescope replacing the crosshairs. A 

defined physical reticle is not necessary anymore as a virtual one can be drawn 

in the resulting images at any time (Wasmeier, 2009, p. 18).  

Leica used an industrial camera from the German manufacturer imaging 

Development Systems (IDS), namely the model UI-148xLE-C from the uEye 

series. The camera has a CMOS color chip with a resolution of 2560 x 1920 

pixels and a sensitive area of 5.63 x 4.22 mm. The used color filter array is 

implemented in the form of a Bayer pattern (Bayer, 1976) with a 25% blue and 

red and 50% green coverage. The physical side length of each pixel is therefore 

2.2 µm. Due to the inherent properties of the used CMOS sensor of lower power 

consumption and higher readout rates compared to a CCD sensor the maximal 

frame rate is 6.3 full frames per second. With reduced resolution or the readout 

of only certain regions of the full image higher frame-rates are possible. 

Outcrops with the HD resolution of 1920 x 1080 Pixels can be acquired in a 

frequency of 13 frames per second, XGA (1024 x 768) and VGA (640 x 480) 

images at a frequency of 27 and 52 frames per second respectively (IDS GmbH, 

2009). For certain applications the measurement frequency can be more 

important than the resolution and can be exploited for high frequency 

measurements of construction oscillations as done by Bürki, et al. (2010) with 

their own IATS system (Section 2.1.1) or to model atmospheric refraction 

influence by optical turbulences (Reiterer, 2012) with the here described Leica 

IATS2.  
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Figure 11: Relative Sensor Sensitivity of UI-148x (IDS GmbH, 2009, p. 134) 

Figure 11 shows the relative sensor sensitivity of the used camera. The 

optionally available IR-Cut-Filter is not used within the IATS2 system therefore 

signals in the near infrared range from 650 to 900 nm are also present in the 

images. The brightness information captured by the Bayer pattern is transferred 

to the controlling PC where it is converted to a color image and an additional 

gray channel representation with a function of the uEye API (IDS GmbH, 2009, 

p. 93). The evaluations conducted in this work as well as measurements on 

acquired IATS data generally rely on the monochromatic image 

representations. However, for the documentation of measured points or remote 

aiming in live stream of images the color information is especially helpful. 

Furthermore, color can be used for a rough segmentation of a measured region 

of interest, e.g. based on vegetation.  

The point of focus of the ocular camera can be changed moving a lens by 

manually turning a focusing ring. Through the use of a connected servo motor 

the focusing can additionally be automated or executed remotely. The 

servomotor 3564B from the company Faulhaber (Faulhaber GmbH & Co.KG., 

2007) was applied for this purpose as it offers a serial interface to a controlling 

computer. A limit switch at the focus position of infinity serves as a reference 

position from which the motor can reproducibly actuate every specified focus 

position using a count of its encoder steps. Consequently focus positions are 

simply specified as certain encoder step values (Wasmeier, 2009, p. 20). 

According to Wasmeier (2009) the focusing lens can be kept at a stable position 

for most applications of geo-monitoring as the measuring distances generally 

surpass the 75 to 80 meters after which focusing steps only change in an 

insignificant range. To compensate for the additional weight of the camera a 

compensation ring was mounted on the front face of the telescope (Figure 5). 
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2.3 System calibration 

An IATS system provides images in addition to precise angular measurements. 

In combination with the long focal length and the ability to easily change 

vertical and horizontal viewing angles this is the main difference and 

advantage compared to a conventional photogrammetric system. In contrast to 

a normal theodolite multiple targets can be selected within an image to retrieve 

their spatial vector. These targets are no longer at the center of the telescope but 

at arbitrary positions in the field of view. This results in an angular offset from 

the measured point to the theodolite reference axis intersection point.  

To make use of acquired images for measuring purposes it is essential to find a 

calibration procedure that allows retrieving a mathematical function relating 

every image position to an angle value with respect to the original theodolite 

readings. While for fixed-focus cameras one set of calibration parameters is 

sufficient the calibration has to be repeated for different focus positions as these 

change the optical path of the telescope (Wasmeier & Reith, 2013). 

In addition to this external orientation of the camera in relation to the 

theodolite, for an optimal result the intrinsic camera parameters have to be 

calibrated as well. Due to the long focus and the used industrial camera the 

distortion values are negligible around the center of the images but have to 

increasingly be taken into account the closer to the border of an image an angle 

reading is required.  

Therefore the integrated calibration of the whole IATS device consists of three 

individual calibration steps.  

1) The base instrument calibration of the theodolite,  

2) the calibration of image pixels in respect to theodolite readings and  

3) the intrinsic camera calibration.  

2.3.1 Instrument axis calibration 

In order to execute precise angular measurements with a theodolite the main 

condition that has to be fulfilled is that all axes of the instrument are 

perpendicular to each other and intersect in one point. However, in practice 

small deviations will always remain due to inaccuracies in the production 

process as well as caused by small internal movements in the device while in 

productive use. The following errors occur and have to calibrated and re-

calibrated in accordance with recommendations from the manufacturer: line-of 

sight error, tilting axis error, vertical axis error, vertical index error (Leica 

Geosystems AG, 2003). 
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2.3.2 Camera calibration 

Based on the pinhole camera model describing the relationship of 3D 

coordinates projected onto a 2D image plane through a single point aperture, 

the center of projection, a photogrammetric camera system is defined with the 

parameters of intrinsic and extrinsic orientation.  

The intrinsic parameters to be specified are (Hartley & Zisserman, 2000, p. 

153ff) the principle point (     ), the focal length (c) and lens distortion 

parameters (Hartley & Zisserman, 2000, p. 189). These parameters are generally 

modeled in a calibration matrix K as illustrated in (Hartley & Zisserman, 2000, 

p. 157) which is part of a 3x4 general projection matrix P mapping from image 

to world coordinates. It is formed by a multiplication of K, the 3x3 rotation 

matrix R and the 3x4 matrix        combining the 3x3 identity matrix I and the 

vector   describing the position of the camera’s projection center    

          
  in world coordinates. 

Distortion parameters are not included in this form and are modelled using the 

spatially dependent corrections      . These stem from a combination of 

symmetric lens distortion, tangential lens distortion, out-of-plane distortion and 

in-plane-distortion with a predominant influence from symmetric distortion 

(Hartley & Zisserman, 2000, p. 191).  

The intrinsic orientation can be calculated from bundle adjustment of test-field 

images. In the case of the calibration procedure developed by Wasmeier (2009) 

these parameters will be estimated together with exterior orientation based on 

the photogrammetric collinearity equations as the distortion of the IATS camera 

is rather small due to the long focal length and the high quality of the lens.  

In contrast to the projection matrix P used in computer vision the 

photogrammetric approach of camera calibration is based on the collinearity 

equations which are formulating the basic principles of photogrammetry and 

are used to relate 3D object space coordinates            to their respective 

2D image coordinates       from known camera calibration parameters, 

combining the above mentioned intrinsic calibration with extrinsic camera 

parameters. For further information and the according equations refer to Kraus, 

2007, p. 436f.  

Based on these equations a combined determination of intrinsic and extrinsic 

orientation is possible given a test-field with a sufficient amount of spatially 

well distributed known targets or additional geometric constraints (Wasmeier, 

2009, p. 35).  
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2.3.3 Combined calibration approach 

While the intrinsic parameters of an IATS are independent from the theodolite 

the extrinsic parameters are tightly connected to the instrument readings as 

these form an essential component of the extrinsic orientation. This requires a 

combined calibration of theodolite readings and extrinsic camera parameters.  

Vogel (2006) illustrated the different components of a theodolite with a 

photogrammetric device including the parameters to be calibrated. He 

extended the collinearity equations (Kraus, 2007, p. 436f) with the parameters 

describing the position of the camera in relation to the theodolite. According to 

him the IATS parameters to be calibrated are the principle point, the first term 

of radial distortion, focal length, theodolite line of sight error and tilting axis 

error, photogrammetric line of sight error and vertical index error (horizontal 

and vertical deviation of camera center from theodolite center) and the distance 

between camera center and theodolite center. In addition the camera sensor 

tilting angles causing deviations from perpendicularity with theodolite line of 

sight also have to be determined. 

In case of the Leica IATS2 not all of these parameters can be calibrated. In 

contrast to the IATS used by Vogel (2006) the projection center of the camera 

and the theodolite is in the range of <1 mm to <10 mm depending on the focus 

position. These small values of lead to ill-conditioned normal equations, 

therefore the horizontal and vertical deviation of the center of projection from 

the theodolite center cannot be calibrated (Wasmeier, 2009, p. 39). 

Another problem is the detection of the tilting of the camera sensor which 

consists of a generally small rotation around the x or y axis of the sensor (   ). 

A combined extrinsic parameter estimation of camera and instrument will show 

these errors as small constant components of the global rotation with a strong 

correlation to the position of the principle point. In order to still calibrate these 

components this calls for calibration measurements with known reference angle 

readings for all targets. In contrast a rotation of the sensor around its z axis ( ) 

is easily detectable as the base instrument is not capable of such a movement 

(Wasmeier, 2009, p. 31f). 

Another approach to the instrument calibration was developed by 

Walser (2005). It describes the calibration in a more image driven approach. The 

relation between theodolite and image coordinates is modelled as an affine 

transformation. The parameters to be calibrated in Walser’s approach are the 

vertical index error, line of sight error, tilting axis error, column, line scale 

factors, a skew factor and the rotation of the sensor around its Z axis.  
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This approach is not strictly a photogrammetric calibration as the intrinsic 

orientation is not calibrated. The focal length and the radial distortion have to 

be known. The principle point can be chosen at an arbitrary reference pixel and 

is an input parameter for the procedure that calculates correction parameters 

for theodolite readings in relation to the reference principle point. As the 

principle point is variable with changing focus positions so are these correction 

parameters (Wasmeier, 2009, p. 43).  

Wasmeier (2009) combined these two approaches using the first radial 

distortion term and the focal length calculated with Vogel’s method and the 

affine correction parameters from Walser using the reference principle point 

calculated with Vogel’s method. This allowed Wasmeier a comparison and 

mutual verification of the two sets of calibration parameters which were found 

to coincide well (Wasmeier, 2009, p. 43ff). In further calibrations the principle 

point position at the geometrical centre of the camera sensor was chosen.  

The actual calibration process was carried out on a virtual calibration field 

created with the use of a collimator. Using the motorization of the total station it 

is possible to create an arbitrarily dense target field by capturing the collimator 

with the IATS with the virtual target appearing at a different position in each 

image. Each observed target yields two sub-pixel coordinates and two angular 

readings from the theodolite. The number of unknowns to adjust is the amount 

of calibration parameters plus two angles of the target. These stay the same in 

each image as the target is stationary while only the camera is moved. The 

observed target field leads to an over-determined system which can be 

linearized and evaluated (Wasmeier & Reith, 2013).  

As the calibration has to be done in a controlled environment a collimator with 

a movable tube is used. The light of an illuminated target in the collimator is 

aligned parallel so that a virtual target at infinity is created. Lenses in the 

moveable tube bring the light to diverge making the target appear at a specific 

reference distance. The target of the collimator consisting of a crosshair and 

multiple circles can be detected and matched accurately using special image 

analysis techniques. The sub-pixel accuracy of these methods lies in the range of 
 

  
 pixel or better (Wasmeier & Reith, 2013). The calibration process has to be 

executed for each focus position to be calibrated leading to a stable set of 

parameters. Ten sampling points of focus position and object distance were 

found to be enough to determine the recession curve for the full focussing range 

of the instrument (Wasmeier, 2009, p. 34). 
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2.4 Control software 

One main target of research work in connection with new hardware is the 

possibility to access the full range of functionality of the device and to configure 

and evaluate all instrument parameters. Due to proprietary closed software 

environments aimed at binding a customer closer to the respective 

manufacturer this is generally not fully possible with surveying instruments on 

the market. As a result of its prototype status this is not the case for the used 

Leica IATS2, however, this brought up the necessity to create custom control 

software for the device. In parallel to this work data acquisition software was 

developed by Andreas Wagner at the Technical University of Munich which is 

described in detail in Wagner & Reith (2013). 

The software allows using the instruments either in an interactive mode 

wherein parameters can be set and feedback is shown in a graphical user 

interface (GUI) or with command line calls in order to allow a connection to on 

overlying software architecture to automatically execute measurements in 

certain time intervals for mid or long term automated monitoring tasks.  

Data acquisition takes around 5 - 5.5 seconds per image on each device 

including automated pointing of the instrument and transfer of the 

uncompressed image to data storage. The field of view of each camera at focus 

position   is around 1.56 x 1.17 gon. The measurement time for a certain region 

of interest is defined by the field of view and the set overlap of images.  

The software can either be used to control one single device or a stereo setup of 

two instruments. This depends on the used stereo baseline. Smaller baselines 

can be measured using one controlling PC (usually a field capable laptop) with 

cable connections to both devices whereas wider baselines generally require 

two instances of the control software on computers each directly connected to 

one instrument via cable. To temporally synchronize the measurements the 

system clocks of the controlling computers have to be synchronized as well. The 

controlling computers can be connected using a Wi-Fi bridge (Wagner, et al., 

2013b) and operated remotely.  

The command line batch processing mode can be accessed by external software 

managing automated continuous measurements and data processing. Data 

acquisition was tested with the “DE-MONTES Data Acquisition Module” 

(Furuya, et al., 2013) and the “DE-MONTES Monitoring Overlay” (Nauschnegg, 

et al., 2013). The latter allows a specification of continuous monitoring tasks 

such as data acquisition, processing and evaluation dependent on the successful 

evaluation of the previous step. 
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3 System set-up and design 

The following chapter gives an insight into recommended system set-up 

configurations including theoretical accuracy considerations for the used stereo 

set-up. Furthermore, the data processing scheme will be introduced. It consists 

of a modular photogrammetric processing chain representing the core 

component of this work. Due to its modular design it can be adapted towards 

the needs of different workflow requirements allowing to adjust the trade-off 

between reduced processing time and higher accuracy results. 

The typical set-up consists of stereo configurations of two instruments. 

Measurements from more than two instruments would allow redundant 

evaluations of processing results but the increased effort of system set-up and 

data acquisition minimize the potential benefits. Therefore only stereo 

measurements are covered in this section. 

3.1 Theoretical accuracy considerations 

An accuracy evaluation of the spatial forward intersection of different stereo 

set-ups depends on the geometric configuration. The positional errors to be 

expected can be calculated based on the base-to-distance ratio, errors of the 

station coordinates, instrument errors and matching accuracy. Matching errors 

are hereby harder to evaluate than geometrical constraints as they are not a 

stable factor but strongly depend on the content of the evaluated images. In 

general automated matching algorithms depend on well-defined image texture 

and show an increase in reliability and accuracy with decreasing variations 

between analyzed images. Hence, larger viewpoint changes stemming from 

wider baselines and varying illumination conditions from different 

measurement epochs may decrease the accuracy of matching results.  

Digital cameras capture data in a fixed raster containing intensity value 

information. That way the Leica IATS2 produces 2560 x 1920 individual 

measurements in the field of view per captured single channel image. The 

algorithms used and evaluated in this work (Chapter 4) can reach sub-pixel 

accuracy by fitting mathematical functions to (sections of) the image content. 

Calculated values such as the continuous function’s point of inflection may now 

lie in between the discrete raster of pixels. Different algorithms can reach 

different levels of accuracy ranging from less than 0.1 pixels to around one 

pixel. In this first theoretical accuracy estimation a fixed value of 0.3 pixel was 

chosen as a compromise between the different mentioned algorithms. To 

further reduce complexity possible matching accuracy degradation with 
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increasing viewpoint changes was also not integrated in the following 

estimations. 

The distance to the measured object in relation to the length of the baseline 

between two instruments is the most important factor in the measurement set-

up. The measured object should be located close to the perpendicular bisector of 

the base line. Errors in perpendicular direction to the baseline increase with a 

decreased baseline-to-distance ratio (e.g. from 1:3 to 1:4). Errors parallel to the 

baseline however do not suffer from this effect. This leads to the conclusion that 

the direction of expected deformations has to be taken into account when 

planning system set-up and measurement configuration. 

Another important factor restricting the possibilities of the system set-up is the 

automated point measurement as the matching quality decreases with larger 

viewpoint changes between images. A base-to-distance ratio of 2:1 would 

theoretically lead to evenly distributed errors in the direction of and 

perpendicular to the base line. This results in a change of view of 90 degrees 

and makes point matching of natural targets impossible and therefore prohibits 

the use of such a configuration. From the perspective of image processing a 

maximum base-to-distance ratio of 1:2 or better 1:3 is required, leading to view-

point changes ~28 and ~19 degrees respectively.  

The accuracy that can be achieved with a specific configuration can be 

calculated based on the accuracy of the station coordinates, the instrument’s 

angle measurement accuracy as given by the manufacturer, and the accuracy of 

the matching process. Using the values from the Pellheim field experiment 

(Section 8.2) an accuracy of    = 2 mm is assumed for the coordinates of the 

stations. The measurement accuracy of the used IATS is given as    = 0.3 mgon. 

The matching accuracy value of 0.3 pixel with a resolution of ~0.6 mgon per 

pixel translates to an angle of   = 0.18 mgon. The horizontal accuracy     is 

based on the two direction measurement of the orientation and the direction to 

the target and can be calculated with Gaussian error propagation (Equation 

(3.1)). Due to the levelling of the instrument only a single measurement is used 

for the vertical direction.  

 
     √  √  

    
       √  

    
  (3.1) 

This leads to values of ~0.35 mgon for vertical     and ~0.49 mgon for horizontal 

accuracy    . The forward intersection can be expressed as a constrained 

adjustment of the minimum distance of rays each going through the camera 

center of one of the IATS using the Gauß-Helmert model (Niemeier, 2008, p. 
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176; Equation (6.8)). The eigenvalues of the resulting covariance matrix     

express the square of the semi-major and semi-minor axes of the error ellipse. 

The direction of the error ellipse is expressed by the eigenvectors. Using a 

principle component transformation     can be rotated into the direction of the 

baseline to calculate transversal and longitudinal errors (Wagner, et al., 2014). 

The diagonal of the cofactor matrix of the observations     (Equation (6.9); 

Section 6.4) can be inserted with the squared values of the above calculated 

figures to derive the error ellipse. Simulated Helmert point errors (Niemeier, 

2002, p. 260) for a baseline of 100 meters using the example values introduced 

above are illustrated in Figure 12. 

 

Figure 12: Helmert point error for a baseline of 100 m, angle measurement accuracy 0.49 

mgon, station accuracy 2 mm (Wagner, et al., 2014) 

The above shown evaluations allow a suitable estimation of the influence of 

different measurement configurations on the achievable accuracies. 

3.2 Data acquisition and processing scheme 

The IATS based measurement system described in this work can be used with 

varying data acquisition strategies targeted at different use cases. The key 

parameters of each use case are the required accuracy, time constraints and the 

size of the measured target region. Unfortunately these are conflicting 

objectives which require a well-balanced trade-off as higher accuracy and larger 

target regions lead to longer processing times.  
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3.2.1 Continuous monitoring 

The first main use case is continuous monitoring of an endangered site 

requiring a fixed installation and continuous data acquisition and processing. 

The time constraints for processing are defined by the measurement frequency. 

Full processing of each epoch has to be finished by the time the data of the next 

epoch is captured. The accuracy of the produced results will typically be limited 

by these constraints. The measurement process for this use case is executed 

using the automated data acquisition module as mentioned in Section 2.4. Data 

acquisition takes around 5-6 seconds per image, processing however requires 

access to both stereo-partners of an image pair. This means that the data 

transfer between the two instruments over a customized long distance Wi-Fi 

link also has to be taken into account. According to tests this adds another ~1.2 

to 2 seconds for stereo distances up to 600 meters and ~5 to 80 seconds for 

distances around 1.5 km (Wagner & Reith, 2013). Depending on connection 

speeds a fully continuous monitoring would therefore leave around 7-8 seconds 

for processing. This requires the processing chain to be flexible enough to run a 

fast coarse matching continuously and re-process parts of the data in higher 

accuracy at night time or as soon as the illumination conditions prohibit new 

data acquisition.  

3.2.2 Single measurement campaign 

The second main use case consists of single measurement campaigns in which 

one or multiple data-sets are captured. The devices are packed up after each 

campaign and the data acquisition is done with the interactive mode of the 

IATS control software. In this case processing is typically done after the 

measurement process is complete without time constraints. However, hybrid 

set-up configurations are also possible wherein a measured data-set in a 

campaign is immediately processed on-site, analyzed and used to plan and 

define the consecutive measurement epochs. This again sets tough time and 

hardware constraints for the immediate processing.  

3.2.3 Processing chain 

The applied processing chain has to be modular and flexible enough to meet the 

mentioned use case requirements using an appropriate configuration and 

parameterization. In the case of little available processing time faster processing 

methods have to be chosen limiting the final accuracy. Up to a certain level the 

acquisition of more computational power can also be used to increase 

processing speed, however, costs of powerful high-end hardware may exceed 

the budget of specific measurement applications. The focus in this work lies on 
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the software side as the development, fine tuning and evaluation of a flexible 

processing chain consisting of multiple different methods and algorithms forms 

the core component of this thesis.  

The processing chain consists of the following consecutive stages: 

 Pre-processing, 

 Homologous point detection, and 

 Mismatch detection and match refinement  

Depending on the available processing time various components can be in- or 

excluded. The different stages of implemented processing steps are illustrated 

in Figure 13 - 15. The individual methods and algorithms are described in detail 

in Chapters 4 and 6. The fastest processing option used in the continuous 

monitoring case is highlighted in light red in each Figure; all other methods can 

be used additionally. It has to be noted that the least squares matching based 

match refinement step is computationally too costly and therefore completely 

excluded from fast processing. 

 

Figure 13: Image pre-processing steps (light red: coarse, fast processing) 

Image pre-processing describes operations at the lowest level of abstraction. 

Input and output images are still raster of intensity values. Pre-processing aims 

at enhancing certain image features for further processing whereas suppressing 

unwanted features such as image noise and distortions which might stem from 

lens deficiencies (Sonka, et al., 2008, p. 113). In the developed processing chain 

the main pre-processing steps applied aim at evenly distributing intensity levels 

over the whole image and the correction of lens deficiencies found in the 

calibration (Figure 13). The illumination falloff towards the periphery of the is 

strongly limited by the long focal length used. This effect and its compensation 

are called vignetting correction. More important are the histogram equalization 

and the adaptive histogram equalization. Both try to equally distribute intensity 
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levels over the full intensity scale. This can be used to increase contrast; 

especially near histogram maxima (Sonka, et al., 2008, p. 116). Adaptive 

histogram equalization applies this process not over the whole image but 

individually on smaller image-tiles to preserve and increase local contrast 

deviations (Section 4.2). These contrast enhancement methods enhance the 

quality of the results of the subsequent process of homologous point detection 

using feature matching. Another simple pre-processing concept that greatly 

enhances further processing accuracy is up-sampling of the images (Xu, et al., 

2012). This describes an artificial increase of image resolution generating new 

pixel values with interpolation methods. Nonetheless the increase of image size 

is also reflected in additional further processing time. In the case of global or 

local intensity transformations the geometry of the image remains unchanged, 

whereas in the case of up-sampling the principle point and focal length 

measured in pixels have to be adapted to new image dimensions. 

 

Figure 14: Homologous point detection process consisting of feature detection, description 

and matching (light red: coarse, fast processing)2 

The basic principle of the whole measurement system is the detection of 

homologous non-signalized points consisting of image features in stereo-

images as well as over multiple measurement epochs. This allows the 

calculation and evaluation of deformation vectors in a similar manner as from 

manual surveying. Dense matching methods are computationally too expensive 

and time consuming and were therefore excluded as processing option. 

Homologous point detection can be divided in the sub-processes feature 

detection, feature description and a feature matching (Figure 14). Various 

                                                 
2 Refer to Chapter 11 List of Abbreviations for the meaning of the mentioned abbreviations 
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feature detection methods were evaluated and implemented in the processing 

chain so as to exploit complimentary characteristics of the different methods. 

Matching of the generated feature description of each point generally requires a 

mutual comparison of each vector with every other one in the set. This full 

unrestricted comparison leads to a quadratic relation of the amount of features 

and the processing time and is referred to as “brute force matching”. The 

amount of points to be compared can be reduced with the known epipolar 

relation between images. This procedure will further be called epipolar 

constrained matching. The relation between point set size and computational 

cost is linear. However, this can only be applied for a stereo set-up and will not 

match deformations occurring over multiple measurement epochs as they 

violate the global geometric relation between the images describing only a 

change in camera pose but not in image content. Another matching possibility 

is the generation of a tree like structure describing the similarity of feature 

vectors. Generation of these structures can be done computationally efficient 

using specialized software libraries; the matching process consists of following 

the tree content which can also be done in constant time (Muja & Lowe, 2009). 

 

Figure 15: Mismatch detection and match refinement (light red: coarse, fast processing) 

The results after the matching process may still contain errors reducing the 

results of the final measurements. Therefore a third post-processing component 

is processed consisting of mismatch detection and match refinement (Figure 

15). Mismatches can be found as correspondences violating a certain model 

describing image relation. One of these models is the epipolar relation between 

images again which can be extended by a local evaluation of the variation of the 

match position on the epipolar line. That way unlikely large 3D variation in a 

local neighborhood (spikes) can be detected and excluded. Another local 

possibility to detect mismatches is the calculation of so called meta-descriptors 

formed by the spatial relation of groups of features (Liu, et al., 2012). A last step 

is the refinement of matches using the least squares matching method (Grün, 

1985). The implemented process strongly benefits from reliable approximations 
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and well defined points as delivered by the previous processing steps. 

According to the required accuracy the refinement can be carried out with two 

free parameters adjusting a shift, four estimating a helmert transformation or 

six parameters estimating an affine transformation. In addition two radiometric 

parameters can be adjusted as well consisting of a constant intensity value shift 

and an intensity value multiplication factor. Least squares matching adjusts and 

improves the found transformation parameters over multiple iterations until a 

consistency criterion is met. To improve the reliability of results and to 

introduce an error estimate the process is applied from search image to 

reference image and back. The distance from the original starting point to the 

resulting back-matching position in pixel serves as an accuracy measure. The 

resulting high matching accuracy comes at the cost of time consuming 

computation making this method unavailable for fast processing. 
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4 Image pre-processing 

4.1 Introduction 

In the case of photogrammetric measurements the influence of illumination 

plays in important role in how the texture of the measured object appears in the 

acquired data. This becomes even more of a problem the further apart the 

different viewpoints are situated in a spatial or temporal context. For later 

matching purposes it is important to have highest possible similarity which can 

be reached with suitable image pre-processing. In theory most pre-processing 

steps could also be integrated into subsequent processing, it makes sense 

however, to keep the operations separated to benefit from optimized 

implementations and to avoid unwanted duplication. This leads to the 

placement of image pre-processing components at the beginning of the 

processing chain described in Section 3.2.3 (Figure 13). 

Image pre-processing is applied at intensity value level. The input as well as the 

output of the process are images represented as matrices of intensity values. At 

this stage the images are generally still in the same form as captured by the 

sensor. The aim of pre-processing is the suppression of unwanted image 

features or distortions or the enhancement of features that facilitate further 

processing steps. The elimination of unwanted features can therefore reduce 

image information while at the same time improving processing results (Sonka, 

et al., 2008, p. 113). 

For the application at hand it is important not to distort the geometry of the 

images which would introduce measurement errors. Therefore the described 

methods only apply pixel wise intensity transformations. With the exception of 

lens distortion correction which corrects the relation of image positions to 

measurement angles, thereby improving the accuracy of 3D measurements. 

Image up-sampling does not change the geometry of the image however the 

intrinsic parameters of principle point and focal length have to be adapted to 

the new dimensions. 

4.2 Intensity transformations 

This class of pre-processing methods modifies the intensity value of each pixel. 

An intensity correction can be applied depending on the pixel position to 

correct systematic deficiencies. The systematic errors can be represented as a 

multiplicative coefficient        for a corrected image        forming the 

degraded image       .  
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  (4.1) 

To obtain        a reference image with a known intensity value c can be taken 

resulting in the degraded image        . The found error coefficients can then be 

used to correct the original images as long as the transformation is valid. It may 

be necessary to periodically re-calculate the error coefficients (Sonka, et al., 

2008, p. 115). This can also be used to correct vignetting effects describing the 

illumination falloff from the principle point towards the image borders 

proportional to      of the irradiation angle on the sensor (Sonka, et al., 2008, p. 

90).  

Intensity transformations can also be applied non-position dependent so that 

        describes the transformation from intensities           to          . 

Intensity transformations are particularly useful to enhance image contrast. The 

histogram equalization technique can be applied to generate an image with 

intensity values equally distributed over the full available intensity scale, thus 

enhancing contrast close to histogram maxima while decreasing contrast near 

minima (Sonka, et al., 2008, p. 116).  

The effect of the application of histogram equalization can be seen in Figure 16. 

The cumulative probability density shows the equal intensity distribution over 

the full range of a one channel eight bit image with its 256 intensity values.  

a) 

 

b) 

 

c) 

 

d) 

 

Figure 16: a) low contrast image and c) result of histogram equalization with corresponding 

histograms (red) and cumulative histograms (black) in b) and d) 



Image pre-processing 

37 

Histogram equalization supports a later matching process by adjusting the 

contrast range in the stereo-images in a similar manner; however, areas 

deviating from the mean intensity such as shadows are not sufficiently 

enhanced. 

4.3 Local neighborhood based pre-processing 

Local neighborhood based pre-processing uses a batch of surrounding intensity 

values of a pixel to produce new output values.  

In the IATS processing chain local neighborhood based pre-processing is used 

for two purposes. The first is the up-sampling of images to increase the sub-

pixel accuracy of results. The second application of local neighborhood based 

pre-processing is contrast limited adaptive histogram equalization which 

performs histogram equalization over smaller batches of the image and results 

in a much more homogeneous contrast distribution than global histogram 

equalization in cases where the image contains regions that are significantly 

lighter or darker than the majority of the content. 

Image up-sampling is a simple method to improve sub-pixel accuracy by 

increasing the image size in pixels using interpolation. An extensive analysis 

and evaluation of the method and its implication on stereomatching was carried 

out by Xu, et al. (2012). They developed a simple up-sampling framework 

leading to an accuracy increase of around 20% for dense stereomatching. Both 

bilinear and bi-cubic interpolation were reported to lead to satisfactory results. 

This method can also be used in the implemented IATS based processing chain. 

However, applying this step is only possible for very high accuracy applications 

without strong time constraints. Although the up-sampling pre-processing step 

itself is computationally inexpensive the improved quality of results comes at 

the cost of a quadratic increase in processing time with the magnification factor 

for almost all further processing steps.  

Up-sampling of images can also be used to improve the matching accuracy of 

algorithms reaching only pixel accuracy to sub-pixel accuracy. This was applied 

successfully for the normalized cross correlation (NCC) dense matching 

algorithm by Debella-Gilo & Kääb (2011), Heid & Kääb (2012) and Redpath, et 

al. (2013) for the calculation of deformation vectors derived from dense 

matching of remote sensing data illustrating glacier creep. The applied dense 

matching as well as the large amount of applied up-sampling by a factor of 10 

in Redpath, et al. (2013) cause a huge computational effort. This stands in 

contrast to the high-resolution feature point matching approach developed in 
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this work which neglects dense disparity information in favor of computational 

efficiency and accurate point matches.  

In contrast to the latter application and similar to Xu, et al. (2012) the applied 

point matching and refinement algorithms described in Section 4.3 and 5.2 

already use sub-pixel accuracy refinement methods. The application of image 

up-sampling as a pre-processing step will therefore increase the algorithms’ 

accuracy in a similar range as for Xu, et al. (2012) which is around 20%. As 

already mentioned this gain comes at the cost of a greatly increased processing 

time. The method can therefore only be applied if there are no time restrictions 

on the processing.  

a) 

 

b) 

 

c) 

 

d) 

 

Figure 17: a) image with cast shadow and b) result of adaptive histogram equalization with 

corresponding histograms (red) and cumulative histograms (black) in b) and d) 

The second applied method, adaptive histogram equalization, divides the 

image in rectangular contextual regions or tiles in which the optimal contrast is 

enhanced with standard histogram equalization as outlined in Section 4.2. This 

tiling process would create visible borders at the edges of contextual regions. To 

avoid this effect only the center pixel of each tile gets the value from the 

transformation function derived with the local histogram equalization. All other 

pixels get interpolated values of the result of the transformation functions of 

their adjacent tiles. This creates a continuous transition between equalized 

neighboring contextual regions (Zuiderveld, 1994, p. 475). 

Adaptive histogram equalization tends to generate or amplify noise in 

homogeneous areas which are characterized by a peak in the histogram caused 
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by a lot of pixels falling into the same intensity range. Contrast limited adaptive 

histogram equalization solves this problem by a contrast limiting or maximum 

contrast clipping factor. This factor is applied to high peaks of equalized 

histograms on each contextual region by limiting the maximum amount of 

intensity values falling into a certain local histogram bin. Clipped values are 

then equally distributed over the whole local histogram. This leads to a 

minimization of introduced noise (Zuiderveld, 1994, pp. 476-477).  

This approach leads to similar results as the Wallis filter (Wallis, 1976) 

commonly used in photogrammetry. Purpose of the Wallis filter is to 

adaptively enhance contrast on both ends of the brightness range by forcing 

image contrast and mean to resemble given values in local image patches. It is a 

generalization of the local standard deviation based image enhancement which 

adjusts local differences so that each patch has the same given standard 

deviation. Wallis (1976) expanded this method by two weighting parameters, 

the contrast gain constant to increase or decrease the amount of applied 

enhancement and the brightness forcing constant which defines the weight of 

the local mean within a tile in contrast to the global mean. To ensure smooth 

transitions between tiles the results are interpolated from the neighboring block 

centers as in local histogram equalization.  

Rock slope monitoring is strongly influenced by varying illumination 

conditions causing cast shadows with “false” edges represented as sudden 

changes in the intensity values of the images which are moving with the 

changing angles of the sun. Adaptive histogram equalization is an excellent 

possibility to locally enhance contrast in shadow areas and therefore decrease 

the effect of cast shadows. This effect is illustrated in Figure 17 showing a 

section of an image with an overhanging rock-face and the caused shadow. 

Global histogram equalization might even amplify the shadow borders (Figure 

16) whereas the local adaptive variant of the method increases the similarity of 

shadow and non-shadow regions.  
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4.4 Geometric correction 

Geometric correction or geometry based pre-processing is the rectification of an 

image following a given model. It can be used to apply a transformation 

changing image rotation, scale, skewing angle or more complex distortions such 

as a full perspective transformation or lens distortions.  

The application of transformations generally generates new pixel positions in 

between the original image raster. To generate integer values for the output 

image raster intensity interpolations of neighboring non-integer values have to 

be used. However, every interpolation step introduces errors causing a slight 

degradation of image quality. 

In the IATS based processing chain there are two possibilities to correct camera 

lens deficiencies like radial and tangential distortion. The first is to run all 

image processing operations on the original images and apply the adjustment 

parameters found in the calibration at the stage of 3D point reconstruction. The 

second possibility is to calculate an undistorted image from the found 

distortion model and then run all other processing methods on the corrected 

image. This can help to improve the quality of image matching but comes at the 

cost of interpolation errors in the distortion correction step. As the lens 

distortion of the IATS is relatively small (maximum ~1.5 pixel at image borders) 

the first method is generally used and the respective parameters are added to 

the results of the point detection step.  

The second application of geometry based pre-processing in the application at 

hand is the use of the known mutual orientation of the two IATS stations to 

calculate epipolar corrected images which only have disparities in row 

direction. This can also help a consecutive image matching as the search space 

in the image is restricted to only one dimension. However, the known epipolar 

relation between images can also be exploited at the point matching or 

mismatch detection stage (Section 3.2.3) without interpolation errors and 

additional processing caused by image warping. 
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5 Feature based methods for the detection of homologous non-

signalized points 

5.1 Introduction 

The key components for the calculation of accurate 3D points using spatial 

forward intersection is the accurate image orientation acquired from the system 

calibration as described in Section 2.3 and equally important the detection of 

homologous points in corresponding images of a stereo set-up with highest 

possible accuracy. This process is the second part of the developed processing 

chain described in Section 3.2.3.  

Although the images are saved in the form of rasterized intensity values it is 

possible to detect and match points situated in between this given grid of pixels 

by interpolating texture from their local neighborhood. This is called sub-pixel 

accuracy and is one of the main requirements to this task of homologous point 

detection.  

To build a processing chain delivering the best possible results all available 

technical options were analyzed and evaluated. As mentioned previously there 

are two conflicting main requirements to be fulfilled which are highest possible 

accuracy and lowest possible runtime. To find the best solution the process of 

homologous point detection was split into different stages (Figure 14). These are 

defined as follows. 

 Detection of distinct non-signalized points based on well-defined 

statistical extrema within the image content 

 Description of these points using their local intensity neighborhood 

forming feature vectors 

 Matching of these vectors to recognize homologous points 

For each of these steps state of the art image processing algorithms were 

analyzed and evaluated. The main purpose was to find the methods performing 

best for the individual tasks keeping in mind the above stated requirements. 

The resulting system thus has to make use of complementary characteristics of 

the different hereby evaluated algorithms. The required degree of accuracy or 

the available runtime have to be configurable leading to different 

configurations of the processing chain for different tasks. 
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5.2 Local feature detection 

Local features are image patterns forming distinctive extrema in their local 

neighborhood and the whole image. The following section describes the local 

feature detection algorithms that were evaluated in the course of this work. It 

lists general requirements and concepts regarding local features and then gives 

information of a set of state of the art algorithms. Implementations of the 

described methods will be evaluated regarding repeatability and sub-pixel 

localization accuracies under changing environmental conditions as well as 

runtime requirements. All of this is done in accordance with the processing 

workflow defined in Section 3.2.3 in order to find the most suitable approach 

for the different use cases. 

5.2.1  Requirements, concepts and terminology 

To be able to match data-set over longer time series containing multiple 

measurement epochs the application at hand requires detected points to have a 

high invariability towards changed illumination conditions or geometrical 

transformations of the images like changed viewpoints. This requirement 

towards high repeatability under varying conditions can generally only be met 

through the use of image features such as second order derivations which are 

more complex to compute in comparison to simple intensity value differences. 

Different classes of feature detectors show varying characteristics which may 

complement each other. This calls for a careful evaluation of a well-balanced 

ratio of repeatability and accuracy versus computational effort.  

In the literature different terms are used such as interest point, interest region 

or local feature. Similar to a point defined in geometry an ideal local feature 

would describe a location without a spatial extent. However, an image consists 

of a pixel raster defining the smallest unit which always has an implicit spatial 

extent. The calculation of sub-pixel values can only be done using interpolation 

from the surrounding neighborhood which again assigns the found feature the 

spatial extent of this neighborhood. If this extent is ignored in further 

processing like 3D reconstruction the local feature is generally called interest 

point, if the spatial context is used to describe the found feature it is typically 

called region. In accordance with the literature in the following the term local 

feature will be used describing interest points as well as regions (Tuytelaars & 

Mikolajczyk, 2008). 
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According to Tuytelaars & Mikolajczyk, 2008 a suitable local feature should 

have the following properties.  

 Repeatability: in multiple images of the same scene under varying 

viewing conditions a maximum of features should be re-detected. 

 Distinctiveness: the local neighborhood describing a feature should 

exhibit high entropy.  

 Locality: in order to avoid possible occlusions the feature should be local 

and planar. This is a competing property with distinctiveness as the 

intensity variation is reduced the more homogenous a feature is. 

 Quantity: a sufficient number of features should be detectable depending 

on the application. 

 Accuracy: localization of the feature in scale space and image location 

should be as precise as possible. 

 Efficiency: the feature should be computed inexpensively. 

 Invariance: expected deformations are to be modeled in the descriptor 

making it invariant to these transformations. Higher invariance may lead 

to a decrease in distinctiveness. 

 Robustness: features should be robust against deformations such as image 

noise or blur. This may reduce feature distinctiveness as well. 

Different feature detection methods are categorized according to the type of 

features that are found. In the following sections the most important 

representatives of the corner based and blob based methods are described.  

5.2.2 Corner based methods 

The definition of corners as detected by corner based feature detection methods 

are image positions with a high curvature. This can be found at a point of 

intersection of two edges, close to different dominant edge directions caused by 

highly textured regions but also at object or shadow boundaries. The found 

features do not have to correspond to projections of real world 3D corners. 

However, the important criterion is not the detection of real corners but 

conformance with the previously defined properties of local features.  

Due to the tendency of 2D corners to be detected at occlusion boundaries where 

the strongest intensity variations appear the features often do not comply with 

the Locality criterion as features are not planar but contain foreground as well as 

background components. This effect also limits viewpoint invariance as 

changed viewing angles cause significant variations especially at non-planar 

regions such as object boundaries. A further problem is the identification of 

scale as corner positions are rather stable over multiple scale space levels. The 
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Localization of found features on the other hand is more accurate at edge 

positions (Tuytelaars & Mikolajczyk, 2008). 

5.2.2.1  Harris operator 

Harris & Stephens (1988) proposed a corner detector based on a matrix of image 

gradients, the second moment matrix or structure tensor. This matrix is also 

called auto-correlation matrix and often used to describe local texture 

representing gradient distribution around a feature (Equation (5.3)). By 

integrating a scale parameter the method was expanded to a scale adapted 

version. 
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The gradients are computed with kernels of the scale    depicting the window 

size. If this parameter is chosen too small the result may be affected by noise if it 

is too large finer corners may be lost. The scale factor    defines a Gaussian 

smoothing kernel responsible for the size of the corners. Higher smoothing 

values correspond to coarser scales and larger corners. 

Corners are found at positions where both eigenvalues of the matrix are large. 

Harris & Stephens (1988) defined a corner response measure H as given in 

equation (5.4) tunable with the parameter  .  

 
                 

                     (5.4) 

Corners can be extracted by a thresholding of the parameter  . Sub-pixel 

accuracy is reached in the neighbourhood of a point from a quadratic 

approximation of maxima in the corner response function H (Tuytelaars & 

Mikolajczyk, 2008).  

The strength of this method is the high localization accuracy whereas the 

complex processing required depicts its main weakness. 
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5.2.2.2 SUSAN – Smallest Uni- value Segment Assimilating Nucleus 

The mentioned Harris operator works well for a wide range of applications but 

requires a quite complex and time consuming computation. Therefore methods 

were developed taking a contrary approach to corner detection, which were 

more focused on simplicity and a resulting faster computation. One of these 

methods is called SUSAN (Smallest Uni- value Segment Assimilating Nucleus, 

Smith & Brady, 1997).  

A circular mask with a center pixel, described as “nucleus” is evaluated in a 

way that the intensity of each pixel within the mask is compared to its nucleus. 

Equation (5.5) shows a simplified comparison of each pixel   with the nucleus    

within the mask. The numbers of pixels with a similar intensity as the center are 

forming an area called the “Uni- value Segment” (USAN). This value (      in 

equation (5.6)) is largest when the nucleus lies in a homogeneously textured 

area, it is strongly reduced closer to an edge and reaches a minimum when 

lying on a corner. In the case of a “Smallest USAN” the nucleus differs strongly 

from the surrounding mask and represents a potential local feature. SUSANs 

are found by a comparison of n with a threshold of g empirically defined as 0.75 

times the maximum possible value of n.  

 
        {

                       

                       
} (5.5) 
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}  (5.6) 

The algorithm does not rely on image derivatives and also does not require 

noise reduction and can be computed inexpensively. However, due to the same 

properties it is strongly susceptible to changed illumination conditions. The 

method was also applied for noise reduction and edge detection purposes. 

Found corners are often located on or close to edges reducing the repeatability 

of the feature and increasing noise sensitivity (Smith & Brady, 1997).  

5.2.2.3 FAST 

FAST (Features from Accelerated Segment Test) was developed targeted at real 

time applications and enhanced the methods applied in the SUSAN detector 

(Smith & Brady, 1997) to further speed up computation. The method was 

proposed by Rosten & Drummond (2005). Each evaluated pixel is compared to 

the center of a circular mask with a fixed radius of 16 pixels and classified as 

one of three states: darker, similar or brighter. Machine learning methods are 

applied to generate decision trees containing the results of previously tested 
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pixels on sets of training images. These decision trees can be converted into 

compile-able code of long if, then, else combinations forming the executable 

feature detector.  

This detector is not scale invariant but very fast to compute and offers accurate 

feature localization. Computation times where found to be 30 to 40 times faster 

than other methods such as DoG (Section 5.2.3.2) or Harris (Section 5.2.2.1, 

Rosten & Drummond, 2006). In its original form the detector does not compute 

feature orientation and scale. These two deficiencies were eliminated in 

extensions by Leutenegger, et al. (2011) and Rublee, et al. (2011). They added 

feature orientation calculation and scale invariance by computing the detector 

on multiple image pyramids with a successive non-maxima suppression. The 

resulting feature detectors including feature descriptors of the same name are 

called BRISK (Binary robust invariant scalable keypoints) and ORB.  

5.2.3 Blob based methods 

In the field of visual perception so called blobs describe cylindrically assembled 

color sensitive groups of neurons in the visual cortex which were first identified 

in the year 1979 (Wong-Riley, 1979). Another definition of the term blob is small 

drop of color. In the field of computer vision it describes areas in an image 

featuring a unique, homogenous property clearly separating them from their 

environment. That way they illustrate mathematically defined extrema in the 

image. Local features that fall into this category generally consist of small areas 

of undefined shapes with in interpolated maximum defining their exact center. 

This means that they exhibit complementary properties in comparison to corner 

based features and are generally more robust to scale and viewpoint changes. 

On the other hand the localization accuracy of blob like features is generally 

lower than for corner based methods. 

5.2.3.1 Determinant of the Hessian 

The second-order partial derivative of a function forming a square matrix is 

called Hessian. In image processing the intensity function        at the position 

x, y at scale    is used to define the Hessian as follows (Bay, et al., 2008).  

            
  

   
                       [ 

                    

                    
] (5.7) 

             contain the discretised cropped Gaussian smoothed second order 

image derivatives with a Gaussian kernel of size   . The matrix describes the 

change of a normal to an isosurface. That way important shape information is 

captured from the image. Local image features can be detected based on the 
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Hessian matrix using its determinant or its trace. Using the determinant is 

advantageous in the sense that it finds features less likely to lie near contours or 

straight edges improving invariance towards noise or scale changes 

(Mikolajczyk & Schmid, 2001 and Tuytelaars & Mikolajczyk, 2008). 

Bay, et al. (2008) developed a method significantly speeding up the feature 

detection process by coarsely approximating the different Gaussian filters. Due 

to necessary discretization and cropping of any image filter optimal properties 

are never reached. Following the promising results Lowe, 2004a had with 

efficiently approximating the Laplacian of Gaussian detector, Bay, et al., 2008 

used simple box filters as illustrated in Figure 18 to approximate the Gaussian 

second order partial derivative filters (Bay, et al., 2008).  

 

Figure 18: Discretized Gaussian filter in Lyy and Lxy direction and coarse approximation 

filters  

(Bay, et al., 2008) 

These box filters can be computed inexpensively using integral images. In an 

integral image each pixel represents the sum of all original image elements in 

the rectangular area between the origin and the pixel (see Equation (5.8)). 

 
        ∑ ∑         

 

    

 

    

 (5.8) 

Once this representation of image values is calculated an integral over a 

rectangular image region of any size can be calculated with four memory 

accesses and three additions. The upper right and lower left corner values of the 

box filter in the integral image are subtracted by the lower right value and the 

upper left value is added to form the integral. The required processing time for 

these operations does not depend on the size of the calculated region. This 

means that for the detection of larger scaled features no image pyramids have 

to be calculated, the only thing that has to be changed is the size of the box 

filters. Surprisingly it could also be shown that the results of the approximated 

filters are comparable or even better than with original Gaussian kernels as 

shown in Figure 18 (Bay, et al., 2008). 

An additional advantage of this method is the possibility to separate found 

features based on the sign of the trace of the Hessian matrix. It describes either 

light blob like features on a dark background or vice versa. This can be used to 
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separate the sets of points in a later feature matching process further reducing 

required processing time and improving matching accuracy.  

All these properties make the speeded up Determinant of the Hessian detector 

by Bay, et al., 2008 one of the best available solutions for feature detection. The 

unfortunate downside of the method is the existing US patents (Funayama, et 

al., 2007) restricting its application. Academic use is generally tolerated but 

commercial implementations have to acquire a license from the patent holder. 

To the authors knowledge there is no corresponding patent in Europe. 

5.2.3.2 Laplacian of Gaussian and Differences of Gaussians 

The Hessian matrix as defined in the previous section consists of second order 

image derivatives and can be used to detect blob like features from its 

determinant as done in the described Determinant of the Hessian detector or 

from its trace. The trace of the Hessian is identical with the Laplacian of the 

original intensity function. The resulting Laplacian of Gaussian (LoG) is a 

general edge detector finding closed contours as described by Marr & Hildreth 

(1980). Thresholding can be used to detect local features which, however, have 

the disadvantage of lying on or close to edges making them sensitive to noise. 

This effect can be reduced by an evaluation of the eigenvalues of the full 

Hessian matrix to filter out points similarly to the approach taken in the Harris 

operator (Section 5.2.2.1). 

Lowe, 2004a developed a method to approximate the Laplacian of Gaussian via 

the calculation of Differences of Gaussians. This simple and effective method 

computes multiple versions of the image with different levels of Gaussian 

smoothing and pairwise subtracts the lower levels of smoothing from higher 

levels (Figure 19). The results resemble the Laplacian of Gaussian but can be 

computed with a fraction of the computational costs.  

 

Figure 19: Subtraction of different smoothing levels approximating Laplacian of Gaussian  

(Tuytelaars & Mikolajczyk, 2008) 

The scale of the points is defined based on the size of the used Gaussian kernels. 

To avoid ambiguities points found in adjacent scales are discarded using a 

3x3x3 non-maxima suppression that ensures that the found feature forms a 
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maximum within the 3x3 neighborhood of the current scale and the according 

neighborhoods of the higher and lower scale. To eliminate edge responses from 

the found local features the ratio of the eigenvalues of the Hessian is evaluated. 

The derivations forming the Hessian are estimated from differences of 

neighboring sample points (Lowe, 2004a). This feature detector is generally 

used in combination with Lowe’s famous local feature descriptor SIFT (scale 

invariant feature transform, see Section 5.3.2.1).  

The detector is protected by the same US patent as the SIFT descriptor (Lowe, 

2004b) creating similar conditions as already mentioned for the speeded up 

Determinant of the Hessian detector (Section 5.2.3.1).  

5.2.3.3 CenSurE – Center Surround Extremas 

The Center Surround Extrema (CenSurE) feature detector was specifically 

designed for the task of Visual Odometry and Structure from Motion for off-

road vehicles. The estimation of camera positions requires stable and accurate 

features over a large range of scales to accurately estimate movement 

trajectories. The available detectors generally use image pyramids to detect 

features at higher scales, however, the required smoothing is accompanied with 

a reduction in image resolution and therefore feature localization accuracy. The 

idea behind CenSurE is to detect features at all scales at original image 

resolution (Agrawal, et al., 2008). 

While Lowe, 2004a approximated the Laplacian of Gaussian from differences of 

Gaussian, Agrawal, et al., 2008 used even simpler bi-level center surround 

filters multiplying the image with -1 or 1. The most accurate filter exhibiting the 

largest rotational invariance would be circular as shown in Figure 20 and is 

most computationally expensive to compute. The approximations octagon, 

hexagon and box have decreasing degrees of rotational invariance but can be 

calculated efficiently using integral images (as described in Section 5.2.3.1). The 

computational cost rises with the degree of complexity of the used filter. 

a)

 

b)

 

c)

 

d)

 

Figure 20: Different approximations of the Laplacian of Gaussian from bi-level filters  

a) Circular symmetric b) Octagon c) Hexagon d) Box (Agrawal, et al., 2008) 
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While simple box filters can be calculated easily using standard integral images, 

the slanted edges of octagon and hexagon filters require special integral image 

representations reflecting the respective angles. Equation (5.9) describes the 

calculation of slanted integral images. If   is set to zero rectangular integral 

images are calculated, the summed areas slant left if the parameter is set to a 

value below zero and right if it is above zero. The filters can be split into 

trapezoid regions consisting of filter parts with the same slant which can be 

calculated from the integral images requiring only three additions (Section 

5.2.3.1). The hexagon can be split into two trapezoids, the octagon into three. 

This determines the computational cost of calculating each filter. 

 

        ∑ ∑         

         

    

 

    

 (5.9) 

The Harris corner measure is then used to suppress filter responses on edges 

and lines (equation (5.3)). It is computationally more expensive than the 

Hessian used in other detectors but is only computed for a small number of 

points above a certain threshold and was found to be better at suppressing edge 

responses (Agrawal, et al., 2008). 

The CenSure operator is scale invariant and fast to compute. It has the 

additional benefit that the features are detected at different scales in the original 

image resolution. This means that no interpolation over the scale space is 

necessary and points at higher scales are better localized. Experimental results 

for visual odometry data-sets showed that CenSurE with an octagon filter 

outperformed Harris, DoH, DoG and other detectors in terms of runtime, 

stability as well as accuracy due to the longer and more accurate trajectories 

formed from features tracked over large scale changes (Agrawal, et al., 2008).  

5.2.3.4 Maximally stable extremal regions 

The Maximally stable extremal regions (MSER) detector finds blob like features 

but is strictly speaking not a blob based detector but as already contained in its 

name: “region based”. Region based detectors are generally defined as finding 

homogenous image regions which may contain the above mentioned blobs but 

also larger and more complex structures. The main advantage of these methods 

is their localization accuracy as the center of larger, more complex shapes can be 

calculated very accurately. They are more complementary to corner based 

methods than to blob based methods as similar features are found.  

MSER developed by Matas, et al. (2002) detects regions defined by connected 

boundaries resulting in an exact localization. It works best on images which can 
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be segmented and contain homogenous regions which are well divided. This 

makes the detector more suitable for urban environments or generally scenes 

containing different well-defined objects. It is therefore prone to image blur 

causing separate regions to appear connected. A further disadvantage is the 

small number of features that is generally found in each image. The main 

advantage of the method is its high location accuracy and its invariance to 

affine image transformations (Tuytelaars & Mikolajczyk, 2008). 

5.3 Feature description 

To be able to find homologous points in different images of varying viewpoints 

the descriptors representing the local neighborhood of the feature can be used. 

The resulting feature vectors can be compared resulting in correspondences 

which can be used in numerous applications such as image matching, structure 

from motion, visual odometry, image panorama calculation and many more. 

There are multiple feature descriptors available exhibiting different degrees of 

invariance towards changes in the image data based on various properties such 

as image intensity values, image texture, gradients or color. This work will be 

focused on descriptors based on gray value input data. This section explains the 

feature description step and compares different descriptors.  

5.3.1 Requirements and concepts 

There are many descriptors available capturing the information contained in 

the intensity values of the local neighborhood of a defined feature position. The 

main requirements are the specified feature and a local neighborhood 

containing a sufficient degree of information for a distinctive description.  

The easiest version of a descriptor would be a vector of those intensity values 

itself which could then be compared to others using a cross correlation. This 

results in long feature vectors and costly computation. Distribution based 

descriptors try to capture image properties such as texture or gradient 

information in histograms. This can help to reduce the complexity of the 

required descriptors while still capturing a maximum of the information 

contained in the local neighborhood. Another class of methods is formed by 

spatial frequency based descriptors, however, they are rarely used as spatial 

relations are not explicit in the frequency domain and their local use is highly 

complex. Another method to approximate and describe a feature is the use of 

differential descriptors wherein local derivatives up to a specified order 

describe the neighborhood (Mikolajczyk & Schmid, 2005). 
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The quality of the descriptor can be measured using the three parameters 

repeatability, matching accuracy and processing time. Repeatability describes 

the ratio of detected correctly matched features over the total number of 

correspondences. The matching accuracy is defined as the percentage of correct 

matches within the total amount of matches.  

5.3.2 State of the art algorithms 

The following section contains a description of state of the art algorithms with 

the best performance according to the literature and conducted analysis. The 

ones with the highest performance in terms of detections rates are more closely 

described other tested descriptors leading to poorer results are mentioned by 

name only including reasons why they do not work as well. 

5.3.2.1 SIFT 

SIFT stands for Scale Invariant Feature Transform and was developed by 

Lowe (2004a). Many other feature descriptors are based on similar principles 

but SIFT tends to achieve the highest overall matching rates over a wide range 

of applications. The fact that the method is not tailored to a certain task 

represents its main advantage. Other descriptors may be better suited in certain 

cases regarding computational complexity or even accuracy but SIFT is the best 

general purpose descriptor.  

Lowe, 2004a also developed an optimized feature detector for SIFT, the 

previously described Difference of Gaussian (DoG) detector (Section 5.2.3.2) 

which delivers accurate feature locations including scale information 

corresponding to a certain level of Gaussian smoothing of the image. The first 

step of the SIFT descriptor computation is the calculation of the dominant 

gradient orientation around the feature at the current scale to detect its 

orientation. All further processing steps are executed relative to the orientation 

and scale of the feature.  

 

Figure 21: Simplified SIFT feature descriptor, local gradients combined into histogram of 

oriented gradients (Lowe, 2004a) 
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The descriptor is formed by local image gradients which are sampled at a 

defined raster around the feature. The gradient values are weighted with a 

Gaussian to gradually reduce the influence of gradients from the center towards 

the sides of the descriptor window. Sub-regions of 4x4 gradients are aggregated 

into histograms of orientated gradients (HoG, see Figure 21). The eight values 

of each histogram represent the magnitude of the sum of the gradients of a 

certain direction. SIFT generally uses 16x16 sampling points leading to 4x4 

histograms of 8 values and a total descriptor vector length of 128 values. The 

final feature vector is normalized to unit length to compensate for illumination 

changes. Image contrast changes represented by a constant shift in intensity 

values is cancelled by this normalization step, constant brightness changes will 

not affect the descriptor at all as the gradients are calculated relatively from 

intensity differences (Lowe, 2004a).  

The descriptor is invariant to scale and orientation changes and can compensate 

for changing illumination conditions by capturing the distribution of gradient 

magnitude and direction rather than intensity values. Compared to other 

descriptor such as SURF (Section 5.3.2.2) the computation of the descriptor is 

computationally more expensive. The same applies to the matching process due 

to the relatively long feature vector.  

SIFT with its HoG descriptor has become the reference feature description 

method every new descriptor has to measure up to. There are multiple 

implementations available but it remains to be mentioned that the method is 

patented in the US (Lowe, 2004b) restricting its application. Academic use is 

generally tolerated but commercial implementations have to acquire a license 

from the patent holder. To the authors knowledge there is no corresponding 

patent in Europe. 

5.3.2.2 SURF 

The second most used feature descriptor for gray scale images is SURF 

(speeded up robust features). It was developed by Bay, et al., 2008 at the ETH-

Zurich and is based on similar principles as the SIFT feature descriptor. The 

main difference is the strong focus on efficient computation and a limitation of 

runtime without compromising matching accuracy and repeatability compared 

to SIFT.  

Bay, et al., 2008 developed a feature detector for his SURF descriptor based on 

an efficient approximation of the Determinant of the Hessian which relies on 

the use of box filters which can be computed inexpensively using integral 
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images (Section 5.2.3.2). Information about the position of the feature within the 

scale space is also retrieved by the detector.  

The descriptor is based on simple binary first order Haar Wavelet filter 

responses instead of image gradients using the integral images to speed up 

computation. The filter responses are weighted with a Gaussian and used to 

calculate the feature orientation based on their dominant direction.  

a) 

 

 

 

b) 

 

Figure 22: a) Haar Wavelet filters with weights of -1 and 1 in horizontal and vertical direction 

and b) the SURF descriptor derived from filter responses (Bay, et al., 2008) 

The descriptor is calculated in relation to the found feature orientation splitting 

the descriptor window defined by the scale of the feature into four rectangular 

sub-regions. These are regularly sampled to calculate 5 x 5 Haar Wavelet 

responses (Figure 22a) in each sub-region. The sum and the absolute value of 

the sum of filter responses in horizontal and vertical direction relative to the 

feature orientation are used to form the feature descriptor (Figure 22b). This 

leads to 4 x 4 sub-regions each contributing 4 entries resulting in a feature 

vector length of 64 values (Bay, et al., 2008).  

The shorter feature vector of only 64 values compared to 128 in the SIFT 

descriptor further reduces processing time and makes SURF generally more 

than five times faster than SIFT. However, the shorter descriptor leads to a 

reduction of information and also reduces sensitivity to image noise increasing 

with the feature vector length. For this reason Bay, et al. (2008) could show that 

their algorithm not only outperforms SIFT in terms of computational efficiency 

but also in certain cases in terms of accuracy and repeatability. Generally SIFT 

tends to be more accurate than SURF by a small margin which is made up for 

by the reduced runtime of the latter.  
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The SURF descriptor is protected by the same US patent as its detector 

(Funayama, et al., 2007 and Section 5.2.3.2) creating the same conditions as 

already mentioned for SIFT (Section 5.3.2.1).  

5.3.2.3 BRISK 

The next generation of feature descriptors after SIFT and SURF tried to achieve 

similar matching accuracy and repeatability at much lower computational costs. 

A big step in this direction was done by the introduction of a descriptor based 

on a bit string describing the results of intensity value comparison tests within a 

descriptor window instead of a vector of floating point values. This descriptor 

was developed by Calonder, et al. (2010) and is called BRIEF (binary robust 

independent elementary features). The use of bit strings drastically reduces the 

time needed to do a full matching of two feature vectors as the comparison can 

be done using the hamming distance defining the amount of different values of 

two bit strings. This comparison can be computed inexpensively on modern 

CPUs and makes the matching process up to an order of magnitude faster than 

the matching of SURF feature vectors based on the calculation of Euclidean 

vector distances (Calonder, et al., 2010). In an effort to improve the BRIEF 

descriptor to make it more distinctive and even less computationally expensive, 

BRISK was developed by Leutenegger, et al., 2011.  

 

Figure 23: BRISK descriptor sampling pattern. Red circles describe Gaussian kernel sizes 

used to smooth intensities at the blue sampling locations (Leutenegger, et al., 2011) 

BRISK makes use of a regular spaced concentric sampling pattern around a 

given feature position (Figure 23). The pattern resembles the sampling of the 

DAISY descriptor (Tola, et al., 2010). Image intensities at the sampling positions 

are smoothed with a Gaussian of   proportional to the distance to next point. 

Pairwise combinations of all points within the sampling pattern form two 

classes, short distance and long distance combinations separated by an 

empirically determined threshold proportional to the scale of the feature (Tola, 
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et al., 2010 Leutenegger, et al., 2011). A local orientation of the feature is 

calculated estimating the overall characteristic pattern orientation from 

estimated gradients of the long distance combinations only. As for all 

rotationally invariant descriptors the extraction of the descriptor values is done 

in relation to the found orientation. The descriptor itself consists of comparisons 

of the smoothed intensity values of the short distance combinations. The vector 

is set to one or zero depending on whether the first or second sample intensity 

value is larger. That way a bitstring of 512 values or 64 Bytes is formed 

(Leutenegger, et al., 2011).  

These vectors can be matched calculating their Hamming distance with a 

simple XOR operation and a following bitcount. The amount of same values is 

the measure of similarity. Leutenegger, et al., 2011 report that the matching 

accuracy as well as the repeatability is comparable to SIFT and SURF while 

being over an order of magnitude faster in feature description as well as 

matching. 

5.3.2.4 FREAK 

A further enhancement of the concept of bit string based descriptors was 

developed by Alahi, et al. (2012) and is called Fast Retina Keypoint (FREAK). 

According to the authors the sampling pattern of the descriptor was inspired by 

the human visual system.  

The circular sampling pattern of the descriptor is similar to BRISK with the 

main difference of an exponential increase in the distance of sampling points 

from the center similar to the amount of photoreceptor ganglion cells in the 

human retina. Another important difference to BRISK is the overlap of 

receptive fields (Figure 24, left). The 512 sampling point intensity comparison 

combinations used to generate the descriptor were found from the analysis of 

training data. The combinations were segmented into four main patterns 

ranging from coarse to fine (Figure 24, right). The first quarter of the descriptor 

consisting of a 16 Byte bitstring involves combinations furthest from the center. 

This can be used to speed up the consecutive matching step even further. Due 

to hardware implementations on modern CPUs 16 Byte can be compared in one 

parallel command. More than 90% of candidates can already be discarded by a 

comparison of only the first 16 Byte of the descriptor leading to a substantial 

reduction of necessary matching operations (Alahi, et al., 2012). 
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a) 

 

b)

 

Figure 24: a) FREAK descriptor sampling pattern with corresponding Gaussian smoothing 

kernel in Analogy to retinal photoreceptor cells and b) intensity combinations of sampling 

points leading to highest descriptor variance (Alahi, et al., 2012) 

The feature extraction as well as the matching step is around 30% faster than 

BRISK which in term is more than an order of magnitude faster than SURF. 

According to the authors and external evaluations matching accuracy and 

repeatability is higher than for BRISK, SIFT and SURF in most officially 

available test data-set (Alahi, et al., 2012).  

5.3.2.5 Others 

Other recently developed descriptors that score well in one or all of the 

categories matching accuracy, repeatability and computation time will be 

mentioned shortly in the following section for the sake of completeness. 

ORB (oriented robust BRIEF) uses the BRIEF descriptor relative to a given 

orientation increasing descriptor robustness by not choosing sampling point 

combinations arbitrarily but calculating optimal comparisons leading to the 

highest descriptor variance from training data (Rublee, et al., 2011).  

In contrast to the new binary descriptors targeted at efficient computation a 

different class of methods was introduced focusing on matching accuracy and 

repeatability. These are LIOP (Local Intensity Order Pattern for Feature 

Description, Wang, et al., 2011), MROGH (Multisupport Region Order-Based 

Gradient Histogram, Fan, et al., 2011) and its extension MRRID (Multisupport 

Region Rotation and Intensity Monotonic Invariant Descriptor, Fan, et al., 2012) 

which was introduced to handle large illumination changes. These descriptors 

are intrinsically rotation invariant without having to be extracted relative to a 

feature orientation and are highly discriminative. This way they avoid the main 
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source of error of other feature descriptors lying in the estimation of feature 

orientation. The main disadvantage of these descriptors is their high required 

processing time which is in the range of an order of magnitude higher than 

SIFT for LIOP which is the fastest of these methods. LIOP is in term around 5 

times faster than MROGH and 2 times faster than MRRID (Miksik & 

Mikolajczyk, 2012). This means that for the application at hand these high level 

descriptors are computationally far too expensive and will be discarded in favor 

of modular post-processing for mismatch detection and accuracy refinement. 

5.4 Feature matching 

After the detection of local image features and the extraction of feature vectors 

distinctively describing the features’ local neighborhood the final step is the 

matching of these vectors to find correspondences. The following section will 

describe the different possible methods and their implication on matching times 

and accuracy. 

5.4.1 Brute force 

Computing and comparing the Euclidian distance for floating point number 

descriptors or the Hamming distance for binary descriptors of each feature 

vector extracted from search data to each feature vector of reference data is 

referred to as brute force matching. This exhaustive search approach covers all 

possible feature combinations without any restrictions and results in a 

quadratic relation of computational effort and vector length.  

A global thresholding of the resulting Euclidian or Hamming distances does 

not perform well in finding correspondences as some features show a much 

higher variation than others. Lowe (2004a) proposed the use of the concept of 

best and second-best matches without a global threshold on the Euclidian 

distance. The distance of the best match has to be significantly lower than the 

second-best match. This ratio can be used in the matching process to accept a 

higher number of matches at the cost of increased false matches or to dismiss 

correct matches with the benefit of lowering the amount of incorrect ones. Lowe 

(2004a) found that a ratio of 0.8 eliminates 90% of mismatches and only 5% of 

correct matches. This concept can equally be applied to binary descriptors 

matched based on their Hamming distance.  

5.4.2 Nearest neighbor approximation 

The nearest neighbor matching of large feature vectors resulting in problems of 

high dimensional space generally is the most time consuming part in the search 
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for corresponding features. Exact nearest neighbor indexing algorithms do not 

provide a speedup over linear exhaustive search over around 10 dimensional 

spaces (LOWE, 2004A). This means that approximate algorithms have to be 

applied which can offer a large reduction of computational effort while still 

reaching accurate solutions. 

These algorithms are based on k-d trees representing a structure that partitions 

data in a k-dimensional space (Freidman, et al., 1977). Similarity search 

operations can be executed very efficiently following the branches of the tree. 

According to Muja & Lowe (2009) the two algorithms best suited for the 

application of feature vector matching are searching hierarchical k-means trees 

with a priority search order and the use of multiple randomized k-d trees. 

Compared to linear exhaustive search these methods can speed up the 

matching process up to several orders of magnitude (Muja & Lowe, 2009). 

5.4.3 Geometrical restrictions 

Matching based on geometrical restrictions in the scope of this thesis refers to 

the known exterior orientation which can be used to construct epipolar lines 

which in term restrict the matching process to a small matching window. This 

greatly decreases the runtime requirements of a brute force matching and 

increases accuracy by restricting the search space. 

In the case of IATS measurements the orientation of the images is available. 

This allows the calculation of epipolar lines in stereo-images (Hartley & 

Zisserman, 2000, p. 240) which can be further clipped by the approximate object 

distance to a rectangular matching window to drastically reduce the amount of 

features that have to be compared. This changes the computational complexity 

of the brute force matching process from quadratic to constant. 
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Figure 25: Epipolar constrained matching (Reiterer, et al., 2010) 

Figure 25 illustrates the geometric constraints leading to the described matching 

window. The achievable speed-up can be described using some example 

figures: two lists of feature vectors of 25 thousand points each, require 625 

million vector comparisons. Using the calculated constraints this process can be 

reduced to about 1.25 million comparisons, based on the assumption of an even 

point distribution in images of 2560x1920 pixel and a matching window of 

200x50 pixels, resulting in a matching time reduction of over two orders of 

magnitude (Reiterer, et al., 2010). 

5.5 Conclusion 

According to literature the presented algorithms involved in the feature 

detection, description and matching process all have their individual strength 

and weaknesses. The requirements and conditions set by different applications 

may lead to different sets of algorithms that should be chosen to process the 

data. Furthermore, some described methods such as the epipolar restricted 

matching may not be applicable because of missing relative camera orientation 

in cases where processed data does not stem from IATS devices. Another more 

specific problem would be a commercial use of the developed software in the 

USA. This leads to a restriction of algorithms protected by US patents such as 

SIFT and its DoG detector or SURF with the fast DoH detector. 

Algorithm performance as specified in the original papers as well as in different 

comparative survey studies was always tested under similar conditions for the 

sake of comparability. However, these test settings are generally not 

representative for the applications of geo-monitoring as studied in the work at 
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hand. Also new methods are always described as outperforming state of the art 

algorithms in various ways. In objective comparison this generally only holds 

for carefully chosen sets of test data and accordingly optimized sets of 

processing parameters. Therefore an independent comparison of methods with 

specifically chosen data-sets representing the task of geo-monitoring is 

absolutely essential to be able to make an explicit statement about which 

algorithm to use for what kind of application including the accuracy and 

runtime that is to be expected. 

The above described methods for feature point matching lead to results of 

varying degrees of sub-pixel accuracy. However, no mutual stereo information 

is used to refine the feature correspondence. The matching process just assigns 

local features in both images to their respective correspondences. This allows 

very fast processing compared to dense methods and optimally leads to stable 

features that can be tracked over time and larger degrees of various distortions 

in the images. If the matching accuracy should be increased an additional 

stereomatching process with the found feature positions as initial values has to 

be applied. This will be described in the following section. 

Mismatches that may be present after the detection of homologous local 

features may still be present after applying the described methods. Strategies 

how to deal with this problem were implemented and are also described in 

Section 6. 
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6 Refinement and temporal tracking of homologous non-

signalized points 

After a successful detection of homologous image features potential 

mismatches have to be detected and excluded. If allowed by the time 

constraints of the current application the sub-pixel accuracy of the detected 

points can be refined. The next step of processing is the temporal tracking of 

homologous features. Different strategies of how this can be done will be 

described. 

6.1 Detection of mismatches  

The detection of mismatches, the so called outlier detection is an important part 

of the feature matching process, especially in the application at hand false 

positives should be reduced to zero wherever possible. This can be achieved 

using a very robust feature descriptor and a suitable feature vector matching 

method. However, in most cases the results will have to be checked in a post 

processing step dealing with outliers. The term “outlier” is here used as a 

synonym for mismatch. In order to decide what a “correct match” and what a 

“mismatch” is some kind of model has to be evaluated. Each measurement is 

either in agreement with this model or lies above a certain error threshold 

outside of the model. Hence, correct measurements are called “inliers” whereas 

mismatches are called “outliers”. 

6.1.1 Global geometrical restrictions 

An intuitive first approach to filter outliers is the use of a known exterior 

orientation and the geometrical restrictions that come with it. This means that 

for a stereo system the fundamental matrix can be used to evaluate whether 

detected homologous points lie on common epipolar lines.  

There are multiple possibilities to construct the epipolar lines from image 

orientations. One possibility is the direct use of the P matrices commonly used 

to describe camera orientations (Section 2.3.2). The projection of the center of 

camera one (described by P) into the second image (described by P’) is defined 

by P’C and leads to the epipole in the second image. The projection of an 

arbitrary image point x into the second image can be described with        

     , where    is the pseudoinverse of P. The epipolar line in the second 

image connects the epipole and the projected point with                    

  , where F is the fundamental matrix (Equation (6.1) and Hartley & 

Zisserman, 2000, p. 244).  



Refinement and temporal tracking of homologous non-signalized points 

63 

 
               (6.1) 

For the sake of completeness the formula to calculate F without the use of P 

matrices from the individual orientation components of two intrinsic calibration 

matrices, two rotation matrices and a base is given in Kraus (2007, p. 202). 

If the image orientation and calibration is not available or has to be refined the 

fundamental matrix can be calculated from point correspondences either using 

the seven point algorithm or the normalized eight point algorithm (Hartley & 

Zisserman, 2000, pp. 281-282) according to the amount of available 

correspondences. These algorithms are generally applied with a robust 

estimation method such as RANSAC (RANdom SAmple Consensus, Fischler & 

Bolles, 1981). Seven (or eight) points are chosen from the set of correspondences 

to calculate the fundamental matrix using the respective algorithm. The result is 

used to evaluate how many entries in the set are within a certain outlier 

distance to the calculated model. If the amount of inliers is smaller than a 

certain threshold then the process is repeated if it is larger than the threshold or 

a certain amount of iterations have been evaluated it is terminated and the final 

model is estimated again using all inlier correspondences (Hartley & 

Zisserman, 2000, pp. 117-118). This method can retrieve a precise estimate of the 

fundamental matrix but is prone to errors stemming from an irregular 

distribution of correspondences caused by large clusters of matches in texture 

rich sub-regions of the images.  

Figure 26 shows epipolar lines drawn into an IATS stereo-image pair together 

with a couple of point matches to illustrate this concept of mismatch detection. 

Epipolar lines go through the projection of the camera center of the partner 

image, the so called epipole and limit the position of the corresponding point to 

one dimension (Figure 25). Homologous stereo-points lie somewhere along the 

corresponding epipolar line, matches violating this condition can be excluded. 

As an extension of outlier filtering based on epipolar geometry a method was 

developed in this thesis to restrict matches in their position on the epipolar line. 

Therefore the mean position on the epipolar line of the K nearest neighbors is 

calculated and compared to the current match. The maximum deviation can be 

given as a fixed threshold factor, based on the intensity entropy of the feature 

neighborhood, or based on the variance of the epipolar line positions of the 

nearest neighbors. This restricts the generation of local spikes of 3D coordinates 

calculated from the corresponding features. 
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Figure 26: Concept of match evaluation based on epipolar lines illustrated on IATS stereo-

images 

There is also a global approach to geometry based matching which only relies 

on points and not on local features using an iterative closest point (ICP) 

algorithm (Besl & McKay, 1992) to register two sets of points (i.e. find the 

relative pose transformation) based on the iterative minimization of square 

errors between the correspondences. However, like for other gradient descent 

techniques a suitable initial approximation has to be present for the method not 

to converge into the first local minimum without delivering a useful solution. 

However, the default relative pose transformation model generally applied in 

the ICP algorithm is a similarity or an affine transformation. For this reason the 

algorithm is more effective for the registration of multiple 3D point clouds and 

less for 2D mismatch detection in a stereo set-up which would require a 

projective transformation model.  

6.1.2 Local geometrical restrictions 

Global geometrical restrictions work well in case of stereo-image matching 

where the poses of the cameras serve as a model which can be estimated and 

used. However, the application of geo-monitoring also requires techniques to 

reliably detect mismatches in correspondences over multiple measurement 

epochs within which occurred local deformations violate global geometrical 

models. Filtering correspondences using these models would result in the loss 

of information about the deformation which is a crucial part of the 

measurement. This problem can be solved with local geometrical restrictions or 

a hybrid approach wherein the global model sets a loose boundary of outliers 

whereas local restrictions are used to validate the correspondences. 

Local geometrical restrictions in this case refer to so called “meta-descriptors” 

these are formed using a combination of multiple adjacent detected 

homologous points. This set of points forms a pattern which can be evaluated 
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as a local model to detect outliers. Such an approach was developed by Liu, et 

al. (2012) for the purpose of aerial image registration. The method is called 

Restricted Spatial Order Constraints (RSOC) and was developed to 

automatically register aerial images with low or repeated texture and large 

affine transformations (Liu, et al., 2012). It can be used to evaluate a set of 

correspondences to find mismatches by creating a meta-descriptor from the 

angle sequence of the K nearest neighbors around each point as shown in 

Figure 27.  

 

Figure 27: Local feature meta-descriptor consisting of the angular spatial order of   ’s K 

nearest neighbors and the angular order of the respective correspondences (Liu, et al., 2012) 

The descriptor is built from the angular spatial order of each point’s nearest 

neighbors counted clockwise. The respective descriptor formed by the matched 

point in the second image surrounded by the correspondences of the nearest 

neighbors of the original point in the first image can represent local affine 

distortions without ever changing the angular sequence of the descriptor. 

Assuming two sets of points P, Q and ordered angle values to the K nearest 

neighbors given as S, the feature point descriptor of the first image may be 

denoted by       {          }  {                        }, the descriptor of 

the correspondence as         {   
   

 
     

 }    {                         }.  

The two descriptors are rotated so that both start with their lowest lexical entry 

and are then compared. If the match as well as the correspondences of all 

nearest neighbors is correct the rotated descriptors should be identical. The 

count of differences between the descriptors represents the likelihood that the 

match is incorrect. The rotated descriptors of the above given example would 

be { 1 6 4 5 3 2 } and { 1 4 5 3 6 2 } and show such a potential mismatch.  

After this evaluation a validation cross check is performed by repeating the 

procedure with descriptors formed by the match in the second image with its 

local K nearest neighbors and its counterpart in the first image formed by the 

correspondences of the descriptor points in the second image.  

In deviation from the original formulation as given in Liu, et al., 2012 an 

adapted version of the algorithm was developed within this thesis. The original 

implementation was specifically targeted at aerial images whereas the adapted 
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algorithm is targeted at the close range photogrammetric application of geo-

monitoring. To the author’s knowledge this represents the first application of 

this approach in close range photogrammetry. An error measure of point index 

penalties was introduced counting differences of all descriptor comparisons. 

That way a threshold value of maximum penalty count can be used to validate 

points. This threshold is best set to a value of two due to the twofold cross 

check matching process. This way points with only one penalty count will not 

be automatically rejected restricting the amount of discarded correct matches.  

To further remove outliers the median distance between the center and the 

nearest neighbor points on the one hand and among the respective 

correspondences is calculated. If it deviates by more than a factor of two times a 

defined scale factor the current point is identified as a gross outlier and 

discarded. 

a)

 

b)

 

Figure 28: a) Matches on data-set with local deformation and ~25% outliers and b) result of 

modified RSOC algorithm. Left descriptors formed by six nearest neighbors (blue), cross-

check right descriptors (green) - respective descriptors formed by correspondences omitted 

for the sake of clarity, filtered matches of stable area (dark red) and deformation (light red). 
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Where global geometry based outlier filtering would exclude correspondences 

in the deformed area, RSOC maintained those matches by evaluating the local 

correspondence neighborhood. The descriptor formed by each point connected 

to its nearest neighbors is shown in blue and green respectively. The descriptors 

formed by the associated correspondences of these nearest neighbors are 

omitted in the figure for the sake of clarity. All outliers could be removed 

whereas matches describing the deformation where retained.  

Another local method that was developed and implemented to get rid of coarse 

mismatches is a filter based on the mean disparity direction of the K nearest 

neighbors of a match. The allowed deviation of the mean disparity angles of 

neighboring matches can be given as a fixed threshold or based on the variance 

of the neighboring angle values. 

6.2 Least squares sub-pixel accuracy refinement 

The different point detection methods all take the local intensity pattern 

environment of the detected points into account. However, this is done in 

varying degrees of accuracy. As described in Section 5.2 the used feature 

detection methods all apply various degrees of sub-pixel interpolation, 

however, the process does not use mutual intensity correlation information 

from the stereo-partner to refine the position. This can be done in the hereby 

described refinement process based on a least squares matching (LSM). The 

necessary predictions can be retrieved from a previous feature matching 

process. 

The LSM method was introduced by Grün (1985) and is based on the principle 

of iteratively transforming a search window of a defined size around a 

predicted match position to minimize the difference to a reference window 

around the predicted correspondence position. The optimal transformation is 

found by minimizing sums of squared intensity differences between search and 

reference window. The transformations that are applied to the search window 

used to approximate perspective distortions between image pose are shift, 

scale, rotation and skew. According to accuracy requirements and processing 

time constraints two parameters of a shift, four parameters of a similarity- or six 

parameters of an affine-transformation can be adjusted. Bethmann & Luhmann 

(2011) extended the model with more complex polynomial functions of up to 12 

parameters to accurately match smoothly rounded surfaces.  

An affine transformation can approximate perspective distortions on a local 

scale assuming that the transformation is consistent within the search and 
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reference windows. In addition to the geometric transformations two 

radiometric parameters can also be approximated and adjusted. One is a 

constant shift in intensity values and the other is a multiplication factor of 

intensity values stemming from brightness and contrast changes in the images.  

The resulting sub-pixel refined match results heavily depend on the image 

texture within the matching windows but can reach accuracies better than 0.1 

pixel. To the knowledge of the author LSM represents the most accurate feature 

point matching method available. Local invariant features which can be very 

well localized form excellent predictions for an LSM refinement which makes 

the method such a valuable component of the developed processing chain. The 

downside, however, is long computation time due to the complex iterative 

process.  

Different models of LSM where formulated by Grün (1985), Kraus (2007, pp. 

326-328) or Bethmann & Luhmann (2011). The standard method is well known 

and widely used in photogrammetry and was already applied in the related 

application of deformation vector generation for glaciers from temporal series 

of satellite imagery (Debella-Gilo & Kääb, 2012a). A dense matching approach 

was applied in contrast to the application at hand where LSM is used to refine 

matching accuracy of locally well-defined image features which generally leads 

to higher accuracies. 

In the following the original method which was implemented and evaluated by 

the author will be described in more detail. Extensions of the method towards 

color could be neglected as only one channel gray value images are used in this 

work.  

The intensity values of the image patches within the reference and the search 

window can be represented as the discrete two-dimensional functions f(x,y) and 

g(x’,y’). Due to the presence of noise the ideal correlation condition of  

f(x,y) = g(x’,y’) can generally not be established without adding image noise 

effects e(x,y). This results in the model: f(x,y) – e(x,y) = g(x’,y’). 

Depending on the parameters left to adjust the refinement process can deal with 

a different amount of geometric transformations in the image. A first approach 

only adjusts translations by the two shift parameters         which are added to 

the initial position x’, y’. This can be successful in homogenous image areas on a 

rather small scale as in this case the extracted image patches may be similar. 

In order to achieve better matching results the above mentioned approach can 

be extended to an affine solution. The transformation is extended to 6 

parameters to allow the approximation of the best fitting affine transformation 
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between the image patches. Since the local extent of the compared patches is 

rather small an affine transformation accurately enough approximates the real 

projective transformation between the images, in some cases the affine 

transformation can even be replaced by simple translations without a 

significant loss of accuracy. The radiometric transformations between the 

images can be modeled via with two linear parameters representing a gray 

value shift and offset. 

The system contains eight unknowns, divided in six geometrical and two radial 

parameters and needs at least as many pixels to compare within the matching 

windows. However, as generally larger window sizes of seven, nine or more 

pixels side-length are chosen the resulting systems are highly over determined.  

The unknowns are combined into the vector    {                 }, with the 

design matrix A containing their coefficients. The image intensity differences 

f(x,y) - g(x’,y’) are kept in the vector l. This leading to the observation equation 

(Grün, 1985): 

 
           . (6.2) 

The equation can be evaluated using a least squares estimation.  

 
             (6.3) 

The vector        can be used to keep track of the differences in intensity 

values of the current solution. The found parameters are used as new 

predictions and fed into a new iteration of calculations. Intensity values at 

g(x’,y’) will generally not be integer pixel values after or even in the first 

iteration. This means that the used values have to be interpolated from their 

local neighborhood. Evaluations have shown that bilinear interpolation is the 

best method for LSM considering the tradeoff between accuracy and 

computational effort (Matsuoka, et al., 2008). It is therefore also used in the 

implementation developed by the author.  

The iterative process is ended unsuccessfully after a maximum amount of 

iterations is reached or successfully if the criterion of convergence is met. In the 

developed implementation the criterion given by Kraus (1996, p. 80) is used 

with the proposed value of         . 



Refinement and temporal tracking of homologous non-signalized points 

70 

 
                (6.4) 

Template windows are always rectangular and have an uneven number of 

pixels as side-length so as to have a defined center pixel. The system is 

calculated in a local template window coordinate system due to numerical 

reasons. Resulting refinements of the predicted match positions are added to 

the initial values after each iteration. LSM generally uses integer value 

prediction positions in the reference image. Due to the automated feature 

matching process applied in this work to retrieve initial predictions the 

homologous points typically have sub-pixel positions. Therefore an adaption of 

the standard method was developed by the author which uses the retrieved 

geometric transformation parameters after each iteration to calculate the new 

feature position in the search window not from the reference windows center 

point but from a position shifted by the initial offset to the closest integer value. 

Start values for the affine transformation are generally set to an identity matrix 

but can also be initialized with a global affine transformation estimated from a 

larger set of matched points. The same holds for the initialization of the 

radiometric parameters. 

As an alternative method to the convergence criterion and the intensity value 

residual vector, to evaluate the accuracy of a refined position a back-matching 

approach was implemented. In a first operation the search image position of a 

correspondence to a certain feature in the reference image is refined with LSM, 

in a second run the found search image position is used to match back into the 

reference image switching the roles of both template windows. That way a 

refined position in the original reference image can be retrieved. The distance 

from the initial feature position in the reference image to the final position after 

matching into the search window and back into the reference, measured in 

pixels is called “back-matching distance” and serves as a consistency measure. 

The clear drawback of this method is the twofold application of a 

computationally expensive matching process. However, the back-matching 

typically converges after the first couple of iterations due to the almost perfect 

predictions of positions as well as radiometric and geometric transformation 

parameters from the first matching run. 

6.3 Temporal tracking of homologous points 

An important part of this work is the temporal tracking of calculated 

homologous points over time in multiple measurement epochs. There are 
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different strategies of how to implement this temporal tracking. These strategies 

are further described including their advantages and disadvantages. The 

contribution of this processing step to the overall processing runtime also has to 

be considered. 

There are multiple examples for the calculation of deformation vectors derived 

from photogrammetric methods in literature. Ladstädter (2004) developed a 

monitoring system for aerial images of rock glaciers to retrieve deformation 

information. It is based on a temporal series of “pseudo-orthophotos” derived 

from a rectification of the original aerial images with a coarse terrain model 

evaluated using an “Multi-Photo-Constrained-Matching-Algorithm” based on 

point prediction and LSM. The 3D points are triangulated using the orientation 

of the original perspective images. Other approaches only cover the mono 

image case where disparities are calculated over a series of images consisting of 

multiple measurement epochs. This way only pixel value deformations can be 

calculated. In an extension of this approach the texture information from 

registered Ortho images with corresponding digital elevation models (DEM) is 

used. Measurements of the deformation are then available using the known 

pixel size in units of the global coordinate system. The 3D information of both 

ends of the vectors can be retrieved from the globally oriented DEM. This 

method was extensively evaluated for the measurement of surface 

displacements on mass movements especially in the case of glacier creep and 

rock falls by Debella-Gilo & Kääb (2011) using NCC in combination with image 

up-sampling and Debella-Gilo & Kääb (2012a) using LSM for dense matching. 

The NCC based method was improved in Debella-Gilo & Kääb (2012b) by 

adaptively choosing the template matching windows according to the signal to 

noise ratio in the underlying texture. This represents a simple scale space 

analysis which is also an integral part of the detection of local features (Section 

5.2) as used in this work. For cases where dense matching results are necessary 

and processing time or computational effort is unrestricted Redpath, et al. 

(2013) could show that NCC in combination with an up-sampling of images by 

a factor of 10 leads to high sub-pixel accurate matching results for the same set 

of applications. Further investigations were carried out by Heid & Kääb (2012) 

comparing NCC with different frequency based matching methods to derive 

glacier surface displacements, resulting in an advantage for matching in the 

spatial domain.  

The above described approach of matching multiple globally registered Ortho 

images requires only one matching step per measurement epoch. In the 

application at hand the tracking of homologous non-signalized points, 
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however, requires stereomatching in each epoch as well as a second step 

tracking the detected features over time. This increases complexity as only 

temporally connected points with valid stereo-correspondences in their 

respective epochs form required 3D deformation vectors. One method of 

tracking points over time is based on feature point matching as described in 

Section 5.4, re-using feature descriptors already calculated for stereomatching. 

The other is based on a least squares matching or another correlation based 

refinement method. The chosen strategy depends on the amount of movement 

that is to be expected in between measurement epochs. In the following both 

strategies are described in detail.  

 

Figure 29: Deformation vectors of moved target tracked using descriptor matching projected 

into left image of first epoch exaggerated by a factor of 10  

The two following strategies to track homologous points over multiple 

measurement epochs were implemented in the processing chain developed in 

this work. Strategy one is based on a second application of descriptor based 

feature matching over time (Figure 29). To avoid mismatches the length of the 

deformation vectors can be restricted to a certain distance around the projection 

of the homologous point in a consecutive measurement epoch. This process can 

be applied to only one side of the stereo-images in each epoch or to both. 

Further the developed RSOC meta-descriptor (Section 6.1.2) can be applied to 

detect and exclude potential mismatches. If sufficient computational power or 

runtime is available the sub-pixel results can be refined using LSM (Section 6.2). 

The workflow for this first strategy can be described as follows. 

 Execute feature based stereomatching in every measurement epoch 

 Save feature descriptors of homologous points 

 Project 3D coordinates of points from previous epoch into the images of 

consecutive epoch 

 Execute descriptor matching of left images over epochs restricted to a 

maximum deformation around the projected points 

 Execute descriptor matching of right images over epochs (optional)  
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 Compute RSOC meta-descriptors to detect mismatches (optional) 

 Refine matching results with LSM (optional) 

 

Figure 30: Artificially introduced deformation tracked with LSM projected into left image of 

first epoch exaggerated by a factor of 10 

Whereas this approach can be used to detect larger und unpredictable 

deformation, the second developed strategy for feature tracking over time is 

based on LSM and can be used to reliably follow predictable small scale 

deformation in high accuracy. Figure 30 shows the application of this method 

on an artificially deformed data-set, larger deformations such as the moved 

target cannot be detected. The second strategy consists of the following steps. 

 Execute feature based stereomatching in every measurement epoch 

 Save feature descriptors of homologous points 

 Project 3D coordinates of points from previous epoch into the images of 

consecutive epoch 

 Add offset to account for predicted deformation movement (optional)  

 Execute LSM to detect sub-pixel deformation 

Due to the complex multi-image matching involved in the generation of 3D 

deformation vectors which require non-signalized homologous points to be 

detected in four images to connect two measurement epochs, the amount of 

vectors that can be tracked over multiple epochs is drastically reduced with 

each epoch. Therefore all found temporal correspondences of homologous 

points are kept in each epoch making up for tracks lost because of changed 

illumination conditions are real rock fall events. The occurred deformation can 

be derived for a whole time series by connecting the movements of neighboring 

deformation vectors within certain proximity. 
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6.4 Calculation of deformation vectors 

The calculation of the deformation vectors is the final step of evaluation done in 

the herein presented work. The homologous stereo-points tracked over multiple 

time series are used to calculate 3D deformation vectors with spatial forward 

intersection using the camera calibration parameters. Deformations are 

visualized in 2D as an overlay on the original images as well as exported to 3D 

in the VRML format. This allows an expert user to interpret on-going 

deformations.  

The calculation of 3D coordinates from rays in object space derived from image 

positions and intrinsic as well as extrinsic camera calibration can be done with a 

spatial forward intersection or triangulation. Each point has to be observed 

from at least two positions. Due to errors in camera calibration as well as in the 

corresponding 2D feature positions the rays will generally not intersect. This 

means there may be no 3D point X that exactly satisfies x = PX, x’ = P’X for the 

measured image points x, x’ with the camera orientations P and P’ (Hartley & 

Zisserman, 2000, p. 310). Deviations caused by lens distortion effects as 

calculated in the calibration process (Section 2.3.3) are also taken into account at 

this stage as increments to the measured image coordinates.  

There are different possibilities to calculate the approximate 3D point position. 

The first one is the geometric solution derived from the calculation of the 

midpoint on the line orthogonal to both rays representing the shortest distance. 

The calculation is based on the orthogonality condition (equation (6.5)) of the 

two rays L, L’ through the camera centers C, C’ in the direction defined by the 

angle values of the measured image coordinates denoted as u, u’ with the 

measurement errors d, d’. The resulting linear equations can be solved for the 

error increments. Averaging leads to the position of the point X.  

                          

                            
(6.5) 

 The algebraic solution is based on the collinearity conditions. The projection 

equations of the measured point positions in the images can be combined into a 

form of AX = 0. The scale factor of homogenous 2D coordinates is eliminated by 

a cross product. This leads to three remaining equations for each image 

position. Two of them are linearly independent. Combining the four equations 

from two images the homogenous system of equations AX = 0 can be 

established with          denoting the individual lines of the camera orientation 

matrices P and P’ (Hartley & Zisserman, 2000, p. 312).  
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    [                                 
              ]

 
    (6.6) 

The homogenous solution can be calculated as the unit singular vector with the 

smallest singular value of A using singular value decomposition (SVD). 

Another option is setting              to reduce the set of homogenous 

equations to four inhomogeneous equations with three unknowns. The 

disadvantage of this method is the condition that X does not lie at infinity 

(Hartley & Zisserman, 2000, p. 313). 

If more detailed information about the intersection errors is necessary the 

intersection can be calculated as a constrained adjustment minimising the 

distance between 3D rays using the Gauß-Helmert model (Niemeier, 2008, p. 

176). The unknowns  ⃗               describe the minimum distance between 

the rays     going through corresponding camera centers  ⃗  ,    are the unknown 

distances to  ⃗   (Equations (6.7)). The observations are coordinates of  ⃗   and the 

horizontal and vertical angle measurements     and   . 

 
 ⃗           ⃗          (

               

               

        

) (6.7) 

With the Gauß-Helmert model defined in (Niemeier, 2008, p. 176; Equation 

(6.8)) a covariance matrix (Equation (6.9)) can be derived. 

      ̂      (6.8) 

                
         (6.9) 

Based on this covariance matrix error ellipses can be calculated with the 

matrix’s eigenvalues defining the semi-major and semi-minor axes and its 

eigenvectors defining the error ellipses’ direction. 

 

Figure 31: Uncertainty of triangulation, glancing angles lead to reduced accuracy of 

localization, indicated by shaded regions (Hartley & Zisserman, 2000, p. 321)  

As mentioned in Section 3.1 due to imperfections in camera orientation as well 

as in homologous point measurements the accuracy of the reconstruction 

depends on the geometry of the intersected angles. Figure 31 illustrates this 

principle for different configurations.  
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7 Method evaluation on synthetic test data 

The feature detection, description and refinement algorithms described in 

Section 4 and 6 were evaluated on artificially generated synthetic test data-sets 

with known ground truth to determine strength and weaknesses of the 

individual methods. 

7.1 Generation of synthetic “ground truth” data 

In order to evaluate the different algorithms test data-sets were chosen and 

generated representing different challenges for the feature detection, 

description and matching algorithms that are described later in this section. The 

data-sets consist of IATS images captured at different sites in Austria, 

Switzerland and Germany. The chosen data-sets show homogenous rock-walls, 

inhomogeneous clutter and debris as well as mixed regions. Further data-sets of 

increasing viewpoint change were evaluated as well as images containing 

illumination changes as this is one major issue to be covered. 

Data-sets to evaluate feature matching methods generally contain planar 

structures related to the stereo-partner with a reference homography which can 

be used to calculate reference feature positions. Due to the unstructured 

environment encountered in geo-monitoring this approach could not be used. 

Instead synthetic reference ground truth data was generated. Highly accurate 

matching results were calculated using a state of the art dense matching of 

stereo-partners within the individual data-sets using the Semi-global matching 

method developed by Hirschmuller (2006). The resulting disparity maps where 

interpolated to fill holes caused by a failed stereo correlation or missing 

information due to occlusions. Using the first stereo-partner and the 

interpolated dense disparity maps describing the image relation to the second 

stereo-partner an artificial version of the second image was created. The texture 

of the first image was warped into the geometry of the second using lanczos 

based resampling with a kernel size of eight pixels. The lanczos filter was 

developed by Duchon (1979) and represents one of many finitely supported 

approximations of the sinc-function which is in theory considered as the ideal 

interpolation method. The lanczos kernel is defined as the normalized sinc 

function multiplied by sinc(x/a) for the interval –a ≤ x ≤ a.  

The individual feature detection and matching algorithms can be evaluated on 

the real left image and the artificially generated right image. From the disparity 

maps used to generated the synthetic image and according sub-pixel 

interpolation the stereo-correspondence of each pixel is known and can be used 
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to evaluate the applied feature detection and matching methods in terms of 

repeatability, localization accuracy and runtime performance. 

Ten synthetic test data-sets where generated to test different properties of local 

feature detectors and descriptor as described above. The data-sets including a 

rationale for choosing the individual images are given. Left stereo-partners 

consist of original IATS images, right stereo-partners were synthetically 

generated from interpolated dense matching results as described above. The 

exact position of each pixel correspondence is therefore known and can later be 

used to evaluate an applied feature matching process. The following table lists 

the origin of the individual data-sets. 

Table 1: Generated synthetic stereo data-sets 

ID Location Test case  Viewpoint change [gon] 

01 
Quarry Untermurbach, 

close to Munich 

Uneven intensity distribution, 

cast shadows 
41.1 

02 

Pasterze glacier, Austria 

Homogenous rock wall 5 

03 
Homogenous rock wall and in-

homogenous debris 
4.3 

04 
Homogenous rock wall and in-

homogenous debris 
4.4 

05 In-homogenous debris 5.5 

06 Weinzödl, Graz Rock wall with cracks 18 

07 
Clay-pit Pellheim,  

close to Munich 
Low texture clay wall 18.2 

08 Illgraben, Switzerland Scale change 15.9 

09 
Brick wall, Munich Increasing viewpoint change 

22 

10 47.5  

The first test data-set stems from IATS images acquired in a quarry close to 

Munich. The total viewpoint change between the two images is around 

41.1 gon. The images were chosen to test the algorithms’ performance in the 

presence of unevenly distributed intensities caused by cast shadows and the 

potential positive influence of pre-processing methods. 
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Figure 32: Synthetic stereo data-set 1, cast shadows – viewpoint change ~41.1 gon  

 

  

Figure 33: Synthetic stereo data-set 2, homogenous rock wall – viewpoint change ~5 gon 

The second IATS data-set (Figure 33) shows a homogeneous rock wall from a 

distance of about one kilometre and a viewpoint change of only around 5 gon. 

The images where acquired at a measurement campaign at the Austrian glacier 

Pasterze. Rationale for this data-set is the test of algorithm performance on 

homogenous rock areas. 
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Figure 34: Synthetic stereo data-set 3 and 4, homogenous rock wall mixed with in-

homogenous debris – viewpoint change ~4.3 / 4.4 gon respectively 

The third and fourth chosen data-sets (Figure 34) were also acquired at the 

Pasterze and illustrate a common form of terrain encountered in applications of 

geo-monitoring, areas consisting of homogenous rock walls mixed with areas of 

in-homogenous debris.  

  

Figure 35: Synthetic stereo data-set 5, in-homogenous debris – viewpoint change ~5.5 gon  

Test set five (Figure 35) consists of in-homogenous debris and rounds up the 

narrow viewpoint test case designed to evaluate complementary properties of 
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the different methods. The response of the different local feature detectors and 

descriptors to changing environment was evaluated with these data-sets. 

  

Figure 36: Synthetic stereo data-set 6, rock wall with cracks – viewpoint change ~18 gon 

The data-sets six and seven consist of very different objects monitored from a 

distance of around 260 meters each in a typical IATS measurement 

configuration with a stereo viewpoint change of around 18 gon. Figure 36 

shows a rock wall with multiple cracks in a climbing crag in Graz Weinzödl 

which has been known for repeated rock fall events. Figure 37 shows a lowly 

textured but nonetheless instable clay wall at a clay-pit in Pellheim close to 

Munich. 

  

Figure 37: Synthetic stereo data-set 7, low textured clay wall – viewpoint change ~18.2 gon 

Data-set eight illustrates a challenging measurement configuration wherein the 

stereo base line is not parallel to the measured wall but in the measurement 

direction. As the images are taken with upward looking cameras this results in 

a scale difference as well as a larger geometrical distortion as can be seen in 

Figure 38. The images where acquired at a measurement campaign in Illgraben, 

Switzerland. 
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Figure 38: Synthetic stereo data-set 8, rock wall with scale difference – viewpoint change 

~15.9 gon 

In order to evaluate the effect of viewpoint changes in a controlled environment 

the data-sets nine and ten were created which consist of IATS images of a brick 

wall in Munich taken from three different positions. Therefore a data-set with a 

viewpoint change of ~22 gon and one with a viewpoint change of ~47.5 gon 

showing the same area and texture is available. 

   

Figure 39: Synthetic stereo data-set 9 and 10, brick wall with increasing viewpoint change of 

~22 / 47.5 gon respectively 

Figure 39 shows the brick wall images forming two stereo configurations with 

increasing viewpoint change. This data-set was used to evaluate the influence 

of the resulting geometrical distortion on the feature matching process.  

7.2 Local feature detectors performance evaluation 

Plenty of studies evaluating and comparing the performance of local feature 

detectors have been published (Mikolajczyk & Schmid, 2001, 2002, 2004, 2008, 

2012, Triggs, 2004, Jazayeri & Fraser, 2008, Gauglitz, et al., 2011). In addition 

almost every publication about a newly introduced detector has a section 

comparing it to other state of the art methods (e.g. Rosten & Drummond, 2006). 

Publicly available test data-sets were created against which new developments 

can be tested (Scharstein & Szeliski, 2002). The evaluation data-sets generally 

consist of different sequences to illustrate detector invariance towards certain 
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distortions in the image such as increasing in plane rotation, affine 

transformation, scale change, Gaussian blur or jpg compression artefacts. Most 

of these sequences consist of man-made structures and cover only one 

viewpoint.  

In the current work available evaluations were used as a base decision criterion 

which detectors to implement and analyze further. In deviation from existing 

analysis the task at hand places a whole new set of requirements which cannot 

be completely fulfilled by any single algorithm. This required an extensive 

comparative evaluation of feature detection methods on data-sets specifically 

selected to illustrate the conditions to be considered in the process of image-

based geo-monitoring from IATS image data. In the following the conducted 

evaluation of local feature detector performance is described. 

A performance evaluation of implementations of previously mentioned 

algorithms was carried out. They were analyzed regarding their localization 

accuracy and repeatability under applied transformations in the image domain 

as well as regarding their individual runtime behavior.  

7.2.1 Implementation details 

The algorithms described in Section 5.2 with the highest performance according 

to literature were implemented and tested. For this reason a unique command 

line based test tool was developed that includes image pre-processing (Section 

4.2) such as histogram equalization and (contrast limited) adaptive histogram 

equalization (Section 4.3), local feature detection and description using various 

different algorithms, feature vector matching using different techniques and 

post processing to detect mismatches and refine feature positions (refer to 

Appendix H for a full list of the available functionality). The tool was 

developed as a 32bit C++ application under Microsoft Windows 7 using the 

development environment Visual Studio 2008. As a re-implementation of all 

used methods from scratch would not have been feasible nor have led to 

reproducible results the widely used computer vision library OpenCV (Bradski, 

2000) was integrated on source code basis allowing modifications and detailed 

evaluations of all integrated functionalities. Further a well-documented, high 

performance improved implementation of the SURF algorithm including its fast 

DoH detector available as source code in the OpenSURF library (Evans, 2009) 

was adapted and integrated.  

A set of best performing corner-based as well as blob-based detectors according 

to literature were evaluated. The analyzed cornerbased detectors consist of the 

recent high speed detector FAST which makes use of machine learning 
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techniques (Section 5.2.2.3), two of its multi-scale adapted derivatives ORB and 

BRISK, the well-known photogrammetric method HARRIS (Section 5.2.2.1) and 

a simple multi scale adapted version of the latter which will be called Pyramid 

HARRIS. The original implementations of FAST, ORB and BRISK were 

developed and implemented by the respective authors already in the used 

OpenCV framework. The OpenCV HARRIS implementation is a re-

implementation of the original method with a strong focus on processing speed 

which makes it perfectly suitable for the application at hand. As the standard 

HARRIS operator only finds features on a single scale an enhancement of the 

method was implemented by the author of this work that creates a scale space 

by generating Gaussian image pyramids and applies the HARRIS corner 

detector on each level. This detector will be called Pyr(amid) HARRIS. 

However, this simple approach does not contain non-maxima suppression of 

features present on adjacent scales. The blob based methods DoG, DoH, 

CenSurE and MSER were also evaluated. DoG (Section 5.2.3.2) is part of the 

SIFT algorithm (Section 5.3.2.1 and Lowe, 2004a) of which a closed source 

reference application exists in the form of a command line tool executable. As it 

is impossible to separate the detection from the description step within this tool 

it was tested with a high threshold leading to zero detected features and 

therefore no feature description. The runtime was therefore solely used for 

image IO operations (which are negligible) and feature detection. That way it 

could be determined that Lowe’s original implementation runs four to five 

times slower than the one contained in OpenCV. Due to lower runtime and the 

additional benefit of a direct interfacing with the developed point matching tool 

on source code basis the DoG implementation from OpenCV was used. The 

CenSurE (Section 5.2.3.3) detector is also present in OpenCV with some minor 

improvements under the name STAR, as is the region-based detector MSER 

(Section 5.2.3.4). The fast DoH detector (Section 5.2.3.1) which is part of the 

SURF algorithm (Section 5.3.2.2 and Bay, et al., 2008) was integrated in the 

evaluation tool based on the afore mentioned OpenSURF library. 

7.2.2 Accuracy and runtime evaluation 

The ten synthetic test data-sets were used to evaluate the performance of the 

different algorithms. The three evaluated criteria are repeatability, localization 

accuracy and computational complexity measured in algorithm runtime. The 

repeatability score is calculated as described in Mikolajczyk & Schmid (2004) as 

the ratio between point correspondences and the lower number of points 

detected in one of the images. Only features present in both images are taken 

into account whereas the feature sets are restricted to the minimum amount of 
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features found in both images. The localization accuracy is the error in relative 

location of corresponding features according to the reference measured in 

pixels. Two features are considered as corresponding if the localization 

accuracy is higher than 1.5 pixels.  

7.2.2.1 Local feature detection evaluation overview 

The following tables give an overview over the full evaluation of detectors. The 

Data-set ID links to the individual generated ground truth data-sets as 

introduced in Table 1. For each applied detector the amount of found features 

and the detector runtime is shown. All data-sets where evaluated in their 

original form as well as after contrast enhancement with adaptive histogram 

equalization. The amount of features represents points found in the first image 

restricted by the condition that they are also theoretically visible in the stereo-

partner image, further reduced to the minimum of remaining features in both 

images. This means that a total of 1000 features found in the first image might 

be reduced to 800 visible in both images. If however only 500 features were 

found in the second image the 800 points, are ordered according to their filter 

response and restricted to the 500 strongest features. On the other hand if 1000 

features were to be found in the right image they are accordingly also restricted 

to 800.  

Detector runtime was measured directly in the individual detection functions 

not including data IO operations or image pre-processing. For each data-set 

each analyzed algorithm was executed 100 times leading to averaged system 

runtimes which are shown in Tables 18 - 21. Due to restricted space and for the 

sake of clarity calculated empirical standard deviations of the runtime were 

omitted in the tables. Average values of these runtime deviations over all data-

sets measured in seconds are shown in the aggregation of detector runtime 

performance in Table 2. 

Every tested algorithm is configurable using a set of different parameters. Due 

to the exponential amount of possible configurations it is not possible to 

evaluate an extensive comparison of all detectors with a full set of different 

parameters. Therefore the main common parameters such as size of the scale 

space which might be given as amount of image pyramids to be evaluated were 

kept constant over all algorithms. Further every method has one main filter 

response threshold which was carefully adjusted for every detector on every 

individual data-set to lead to similar amounts of features. Due to the different 

implementations, detection approaches and responses to image texture this can 

only ever lead to a similar range with a larger degree of variation. The 

alternative strategy of calculating a maximum amount of present features with 
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each method and then restricting those to the same value would have seriously 

distorted the results of the runtime evaluation and was therefore discarded.  

As runtime is one of the key parameters that was evaluated the above 

mentioned timing of all detectors averaged over all data-sets is shown in Table 

2. The algorithms are ranked in ascending order and a comparison is done by 

showing the runtime in percentage of the slowest method which turned out to 

be the DoG implementation of the SIFT algorithm. The FAST method remains 

true to its name proving to be the fastest available feature detector being 

around 480 times faster than DoG followed by the corner based methods ORB 

and BRISK which take around three to five percent of the slowest method’s 

runtime. The similar blob based methods DoH and STAR come third with 

runtimes of around 14 to 18 percent of DoG followed by HARRIS and MSER 

which are still showing a speedup factor of two. To set the absolute runtime 

values into perspective; the evaluation was carried out on a Laptop with an 

Intel i7-3520M CPU and 8 GB of RAM.  

Table 2: Aggregation of detector runtime evaluation 

Detector Runtime [sec] Percentage of slowest 

FAST 0.0052 ±0.0003 0.26 %  

ORB 0.0690 ±0.0032 3.46 % 

BRISK 0.1002 ±0.0040 5.03 %  

STAR 0.2749 ±0.0047 13.80 % 

DoH 0.3504 ±0.0168 17.59 % 

HARRIS 0.7007 ±0.0092 35.17 % 

PyrHARRIS 0.9442 ±0.0099 47.39 % 

MSER 0.9556 ±0.0154 47.97 % 

DoG 1.9923 ±0.0383 100.00 % 

A comprehensive evaluation of all local feature detection methods on all 

synthetic stereo test data-sets as introduced in Section 7.1 is listed in the 

Tables 18 - 21 which were placed in Appendix A. Evaluation results are 

presented separately for corner based and blob based methods showing 

processing results with and without applied adaptive histogram equalization.  

Table 18 shows the results of the analyzed corner based methods on all data-

sets, whereas values derived with the blob based methods DoH, DoG and 

STAR as well as with the blob and region based method MSER are given in 

Table 19.  
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Table 20 again illustrates the results of corner based methods with the main 

difference of applied pre-processing of the images with adaptive histogram 

equalization before the feature detection process. 

Table 21 illustrates the respective values for the blob and region based methods. 

As initially mentioned all detectors were able to find larger amounts of features 

with a decreased variation between the individual methods. 

As is visible in the tables the average amount of detected features present in 

both images is around 1776 without image pre-processing with an empirical 

standard deviation of around 880 points. For the data-sets evaluated with 

adaptive histogram equalization for image pre-processing leading to more 

evenly distributed intensity and contrast conditions an average of around 2186 

± ~674 features where detected with all methods. 

 

7.2.2.2 Visual evaluation of detected feature distribution on different data-sets 

The first synthetic data-set as shown in Figure 32 includes cast shadow regions 

posing a great challenge for all tested local feature detectors. As all of these 

algorithms rely on a certain global filter response threshold which if surpassed 

on a specific image location marks it as local feature to be used, uneven 

intensity distribution in the images leads to the identification of features only in 

certain parts of the images. Data-set one was created to illustrate this problem 

and to show the positive effects appropriate pre-processing can have on local 

feature detectors. 

Figure 40 shows the resulting features of all tested algorithms on the left image 

of the cast shadows stereo data-set. The features were restricted to those also 

visible in the stereo-partner (Figure 32); therefore no features are present 

around the borders of the image. Local features are marked by a color coded 

cross corresponding to the color of the name of the method as shown in the 

legend in the upper left of the image. It is clearly visible that all detectors 

unanimously ignored the shadowed region in favor of the better illuminated 

area with significantly higher contrast. Another thing to be noted is the 

apparent lack of red FAST features. This is due to ORB and BRISK keypoints 

which basically rely on the same underlying detection technique as FAST and 

may therefore overwrite these features in the output images. 
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Figure 40: Application of local feature detectors on cast shadows data-set, amount of features 

restricted to those visible in the synthetic stereo-partner shown in color coded legend 

Figure 41 present the same data-set again with an additional pre-processing 

step of adaptive histogram equalization (as described in Section 4.3) applied 

before the feature detection process. The resulting homogenous intensity 

distribution after the adaptive histogram equalization causes higher filter 

responses on the shadow region. All detectors improved feature detection rates 

in the enhanced region. Noticeable is the difference between blob-based (blue) 

and corner-based (red to yellow) methods. Improved shadow regions exhibit a 

higher proportion of found features from corner based methods than in the 

originally well illuminated image section. This leads to the conclusion that in 

case of low contrast areas improved by pre-processing methods corner based 

detectors exhibit complementary properties to blob based methods which show 

stronger responses in areas of higher contrast. This may be caused by their high 

susceptibility to image noise which is amplified through contrast 

enhancements.  
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Figure 41: Application of local feature detectors on cast shadows data-set after adaptive 

histogram equalization, amount of features restricted to those visible in stereo-partner 

shown in legend  

To improve the general outline and readability of this work the illustrations 

referred to in the following paragraphs were placed in the Appendix, B Visual 

evaluation of detected feature distribution. 

Data-sets number two to five were chosen because of their distinctively 

different image texture while showing similar narrow stereo viewpoint 

differences of only 4.3 to 5.5 gon. Figure 83 illustrates the application of the 

local feature detectors on the homogenous rock wall of data-set two before and 

after adaptive histogram equalization. The amount of features in previously 

low textured regions is increased in the enhanced data-set. However, many of 

the previously strongest and therefore most repeatable features were replaced 

by new ones.  

Figure 84 presents the evaluation of data-set three containing the top of a rock 

wall covered with loose debris. A majority of features is found in the debris 

region. This effect is amplified by the contrast enhancement.  

Figure 85 contains the evaluation of data-set number four, depicting a 

homogenous rock wall mixed with a flow of debris. A shift of detected features 

from the rock wall to the debris is visible after contrast enhancement.  
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The feature detection process on the in-homogenous debris of data-set five is 

shown in Figure 86. Due to the already rather uniform intensity distribution in 

the original image the contrast enhancement does not greatly change the 

distribution or the amount of found features. The size of the illustrated region 

was reduced; the legend however still refers to the number of features found in 

the full uncropped image. This is also the case for all further images labeled as 

cropped.  

The evaluation of data-set number six showing a rock wall covered with cracks 

of various sizes is given in Figure 87. As was to be expected a majority of the 

features are found along cracks. The contrast enhancement amplifies fine 

grained structures which are found as strong features mainly by corner based 

methods but may be of questionable repeatability. Data-set number seven as 

evaluated in Figure 88 exhibits very low contrast. This leads to the only case 

where the three detectors ORB, HARRIS and MSER could not retrieve enough 

features even though their response thresholds were significantly reduced. 

Detection rates of most other detectors were also below average. The applied 

contrast enhancement increased detection rates and lead to a satisfactory 

coverage. 

7.2.2.3 Evaluation of localization accuracy and repeatability of local feature 

detectors 

The following charts show the respective detector localization accuracy and 

repeatability within the narrow viewpoint data-sets two to five. As above all 

evaluations where carried out on the original images and on versions enhanced 

with adaptive histogram equalization.  

The evaluation of detector localization accuracy as illustrated in Figure 42 

shows that all detectors are able to reach differing levels of sub-pixel accuracy. 

The only detector with significantly better performance in these data-sets is 

DoG which is also the one with the longest runtime (Table 2). Empirical 

standard deviations of all methods are illustrated in the chart using error bars 

and lie in a range between ~0.21 pixel for DoG and ~0.4 pixel for BRISK. An 

interesting aspect of this evaluation is the fact that the localization accuracy 

curves of all detectors show a rather similar behavior for the individual data-

sets. This may indicate that the complementarity of the individual methods is 

lower than expected. The ranking of detector performance in terms of 

localization accuracy is also quite stable over the different data-sets with the 

obviously superior performance of DoG and the generally worst results from 

BRISK. However, due to the fact that only those detectors with the highest 

performance stated in literature were evaluated the results all lie in a similar 
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range with no method failing completely. Further, intensity based pre-

processing does not significantly reduce the overall detector performances in 

terms of localization. 

 

 

Figure 42: Narrow viewpoint data-sets detector localization accuracy 

The detector repeatability scores as defined in beginning of Section 7.2.2 are 

shown in Figure 43. It clearly shows that the image pre-processing reduces 

detector repeatability for all methods. This can be explained by the fact that 

lower contrast features are enhanced and may get higher filter responses than 

the strongest features in the original images which would have been more 

stable. In the narrow viewpoint data-sets the BRISK features have the lowest 

repeatability whereas on the other end HARRIS corners, followed by MSER 

regions and blobs detected with DoG or STAR show the highest scores. 
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Figure 43: Narrow viewpoint data-sets detector repeatability 

To improve continuous readability the remaining evaluation charts of other 

data-sets were placed in Appendix, C Feature detector performance evaluation 

charts. 

Results of the evaluation of the data-sets illustrating illumination changes in a 

cast shadow area with a viewpoint change of 41.1 gon (data-set ID 1), a cracked 

rock wall with a viewpoint change of 18 gon (ID 6), a low textured clay wall 

with a viewpoint change of 18.2 gon (ID 7) and scale change with a viewpoint 

change of 15.9 gon (ID 8) are shown in Figure 89.  

Throughout the different aspects evaluated within the mentioned data-sets the 

overall ranking of detectors with DoG among the best and BRISK among the 

worst performing methods remains unchanged compared to the evaluation of 

the narrow viewpoint data-sets. However, the advantage of DoG over the 

following methods is lower and only significantly better in the challenging scale 

change data-set. So as not to distort results, in the low textured data-set number 

seven (without pre-processing) ORB and HARRIS detectors where taken out of 

the localization as well as the repeatability chart due to the low amount of 

features found (Figure 88). The localization accuracies and the respective 

empirical standard deviations (from ~0.27 pixel for Pyramid HARRIS to ~0.42 

pixel for BRISK) lie in a similar range than in the narrow viewpoint data-sets 

although the viewpoint changes are much higher. 
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The repeatability of features in these data-sets as illustrated in Figure 90 again 

shows the same pattern regarding lower performance after contrast 

enhancement. The ranking is again similar with MSER, DoG and HARRIS at the 

top end and BRISK features with the lowest repeatability.  

The data-sets nine and ten illustrate an increasing viewpoint change on a brick 

wall (Figure 39) before and after adaptive histogram equalization to evaluate 

influences on detector performance.  

The overall detector localization accuracy performance is slightly worse than 

for narrower viewpoints. DoG is not able to outperform the other descriptors as 

in the narrow viewpoint case. This is probably caused by the many well defined 

corners and edges on which the corner based detectors HARRIS and FAST can 

achieve higher localization accuracy. Interestingly the performance of all 

descriptors stays almost constant between the two stations although a 

viewpoint difference of 25.5 gon is present. Empirical standard deviations as 

also illustrated in the chart range from ~0.31 pixel for HARRIS to ~0.4 pixel for 

BRISK. 

Figure 92 shows repeatability scores for the brick wall data-set. The corner 

based detector ORB shows the highest rates followed by the HARRIS and DoG. 

The already mentioned behavior of lower repeatability scores after adaptive 

histogram equalization is visible as well.  

7.2.3 Feature detection conclusion 

The chosen feature detection algorithms where evaluated with respect to their 

runtime, localization accuracy and repeatability. The definition of these 

concepts is given Section 7.2.2.1. The algorithm with the lowest runtime was 

FAST which is 480 times faster than the slowest method DoG with ORB and 

BRISK also being around 29 and 20 times faster. In absolute values this 

corresponds to 0.0052 ±0.0003 seconds for FAST and 1.9923 ±0.0383 seconds for 

DoG. 

In the case of the narrow viewpoint dataset the slowest method DoG 

outperforms its competitors in terms of localization accuracy, whereas BRISK 

leads to the worst results (Figure 42). In concrete numbers DoG reaches 

accuracy value in the range of around 0.3 ±0.21 pixel while BRISK leads to 

results in the range of around 0.7 ±0.4 pixel. The application of adaptive 

histogram equalization does not significantly influence the localization 

accuracy. The opposite is true for the repeatability where a negative influence of 

the pre-processing method can be shown (Figure 43). HARRIS features show 

the highest repeatability, closely followed by MSER. DoG and STAR based 
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features reach similar results and are ranked third. BRISK performs 

significantly worse than the other detectors also with regard to repeatability. 

HARRIS reaches repeatability rates of around 80-85% without pre-processing 

and around 65% after adaptive histogram equalization whereas BRISK lies in a 

range below 30% repeatability. 

Over all evaluated data-sets the ranking with DoG among the best and BRISK 

among the worst performing methods stays constant. Differences occur if many 

well defined corners and edges are present in the data which gives an 

advantage to the methods HARRIS and FAST and if more scale invariance is 

required in which case DoG performs best.  

The FAST detector method is recommended in the presence of hard time 

constraints due to its low runtime and good results on well-defined corners if 

no scale invariance is required. If the processing time is less of an issue DoG is 

recommended. However, it has to be noted that it is covered by software 

patents in the US (Lowe, 2004b).  

7.3 Local feature descriptor performance evaluation 

After local feature description became popular with the publication of SIFT by 

Lowe (2004a) multiple studies evaluating and comparing the performance of 

different methods were published (e.g. Mikolajczyk & Schmid, 2005; Gauglitz, 

et al., 2011 or Miksik & Mikolajczyk, 2012). In addition every publication about 

a newly introduced descriptor has a section comparing it to other state of the art 

methods (Bay, et al., 2008; Rublee, et al., 2011; Leutenegger, et al., 2011; Wang, 

et al., 2011; Fan, et al., 2011; Alahi, et al., 2012). Publicly available test data-sets 

were created against which new developments can be tested (Scharstein & 

Szeliski, 2002). The evaluation data-sets generally consist of different sequences 

to illustrate algorithm invariance towards certain distortions in the image such 

as increasing in plane rotation, affine transformation, scale change, Gaussian 

blur or jpg compression artefacts. Most of these sequences consist of man-made 

structures and cover only one viewpoint.  

As mentioned in Section 7.2 literature studies were used as a base decision 

criterion which descriptors to implement and analyze further in the application 

of image-based geo-monitoring from IATS data. In the following the conducted 

evaluation of local feature descriptor performance is described. The evaluation 

is closely interlinked with the results of the previous step the feature detection. 

It is also evaluated which descriptors are best suited to describe certain kinds of 
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regions such as homogenous or inhomogeneous areas, and what the effect of 

the used feature detector on the performance of the descriptor is. 

The performance of the descriptors is rated in terms of recall and correct vs. 

incorrect match ratio values as defined in Mikolajczyk & Schmid (2005) as well 

as regarding their individual runtime behavior.  

7.3.1 Implementation details 

The feature description algorithms described in Section 5.3 with the highest 

performance according to literature were implemented and tested. The methods 

where integrated in the same command line based test tool already described in 

Section 7.2.1. The tool was developed as a 32bit C++ application under 

Microsoft Windows 7 using the development environment Visual Studio 2008. 

Wherever possible the original implementations of descriptors where used. 

Therefore the OpenCV (Bradski, 2000) library was integrated on source code 

basis allowing modifications and detailed evaluations of all integrated 

functionalities. Further a well-documented, high performance improved 

implementation of the SURF algorithm available as source code in the 

OpenSURF library (Evans, 2009) was adapted and integrated. The latter was 

necessary as the source code of the original implementation of SURF was not 

released by the authors. The evaluated algorithms BRISK (Leutenegger, et al., 

2011; Section 5.3.2.3) and FREAK (Alahi, et al., 2012; Section 5.3.2.4) where 

developed using the OpenCV library. The original implementations are 

therefore available and used as source code. The source code of the original 

SIFT algorithm is also not published therefore the implementation available 

within OpenCV was used instead. 

7.3.2 Accuracy and runtime evaluation 

The evaluation of feature descriptors was carried out based on the results 

retrieved in the evaluation of feature detectors. The analyzed descriptors were 

evaluated in combination with a feature matching process with the generated 

correspondences. The goal of this evaluation is the identification of detector, 

descriptor pairs that lead to the best overall results and the best possible results 

for certain classes of monitored objects illustrated by the chosen evaluation 

data-sets. Correctly and incorrectly matched features are displayed as a fraction 

of the theoretically maximal possible feature correspondences. The matching 

accuracies are displayed as a deviation of the reference positions in pixel. The 

following section contains an evaluation of required computational runtimes 

(Table 3) and the ratio of correct and incorrect matches and the respective 

accuracies illustrated for each detector, descriptor combination on each 
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individual data-set. These illustrations were generated for features computed 

with and without adaptive histogram equalization pre-processing and with and 

without application of outlier filtering to improve the quality of calculated 

matches. Due to the large amount of data-sets evaluated with different options 

only a subset of those, offering most valuable comparisons are included in the 

following section. Figures 93 - 125 illustrate in depth analysis of the descriptor 

behavior on all individual data-sets allowing an evaluation which method is 

best suited for which kind of terrain. Figures 46 - 49 towards the end of this 

chapter contain a compressed overview wherein a mean of the results of all 

evaluated data-sets was generated in order to show all detector-descriptor 

combinations in one single chart.  

As runtime is one of the key parameters that was evaluated it was measured 

directly in the individual feature description functions not including data IO 

operations or image pre-processing. Average values of these runtime deviations 

over all data-sets measured in nanoseconds are shown in the aggregation of 

descriptor runtime performance in Table 3. The algorithms are ranked in 

ascending order and a comparison is done by showing the amount of time 

needed to calculate each descriptor for one single feature. To set the absolute 

runtime values into perspective; the evaluation was carried out on a Laptop 

with an Intel i7-3520M CPU and 8 GB of RAM.  

Four different feature descriptors were chosen and applied to the features 

derived in Section 7.2. The binary descriptors BRISK and FREAK (Sections 

5.3.2.3 and 5.3.2.4) and the floating point number descriptors SIFT and SURF 

(Sections 5.3.2.1 and 5.3.2.2). The evaluation was therefore carried out on the 

same data-sets and was done on the features computed with and without 

adaptive histogram equalization (AHE). The same criteria for feature 

correspondence as in the feature detector evaluation (Section 7.2) were used. A 

value of maximally possible matches was computed based on the detector 

repeatability scores as calculated in Section 7.2.2.3. Matching scores are further 

expressed as a ratio of maximally possible correct matches and computed 

matches for each detector, descriptor and matcher combination. The amount of 

possible matches was retrieved from the total amount of features (tables in 

Section 7.2.2.1), multiplied with the repeatability score of the individual 

detector as given in Section 7.2.2.3. To generate the graphs the descriptors were 

matched with the brute force method (Section 5.4.1) using the Euclidian 

distance for the floating point number descriptors SIFT and SURF and the 

Hamming distance for the binary descriptors BRISK and FREAK. Further the 

best to second best match ratio check introduced by Lowe, 2004a (Section 5.4.1) 
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was applied with a minimum distance ratio of 0.65 (as used in Miksik & 

Mikolajczyk, 2012). To give a representative image of descriptor performance a 

minimum threshold of ten total correspondences was chosen below which the 

descriptor results on a certain data-set are omitted in the individual charts (e.g. 

see Figure 109). 

7.3.2.1 Descriptor timing evaluation 

The following table shows the aggregated timing of the individual feature 

descriptors averaged over all executed processing runs as a percentage of the 

slowest descriptor. The values are given in nanoseconds necessary to describe 

one feature. The large standard deviations stem from the description of features 

of different scales. Values are as expected and in accordance with Leutenegger, 

et al., 2011 and Miksik & Mikolajczyk, 2012. SIFT is the slowest method, 

followed by SURF and the far faster methods BRISK and FREAK. 

 

Table 3: Aggregation of descriptor runtime evaluation 

Detector Runtime [nano sec] Percentage of slowest 

BRISK 22.44 ±12.65 0.60 % 

FREAK 45.40 ±33.42 1.21 % 

SURF 1003.30 ±958.74 26.70 % 

SIFT 3757.11 ±2099.97 100.00 % 

The evaluation of time needed for matching was done in a similar manner. The 

following times describe the nanoseconds needed to compare one pair of 

descriptors. SIFT takes longest due to the longer descriptor vector compared to 

SURF. The matching of BRISK and FREAK is fastest due to the simple 

comparison of the binary descriptors (Table 4).  

 

Table 4: Aggregation of descriptor matching evaluation 

Detector Runtime [nano sec] Percentage of slowest 

BRISK 5.24 ±1.91 21.19 % 

FREAK 5.28 ±2.01 21.34 % 

SURF 15.52 ±2.71 62.74 % 

SIFT 24.73 ±1.82 100.00 % 

The applied filters, namely the geometry based filter estimating a refined 

fundamental matrix from calculated correspondences and the disparity length 

and angle filter comparing a match with its K nearest neighbors were also 
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timed. The geometry based filter takes 0.0624 ±0.0108 milliseconds whereas the 

disparity length and angle filter needs 0.1498 ±0.0269 milliseconds per 

evaluated match. 

7.3.2.2 Descriptor matching evaluation 

Similarly to the previous sections only a sub-set of exemplary evaluation charts 

is illustrated within the test whereas others were moved to Appendix D Feature 

descriptor performance evaluation charts to facilitate continuous reading.  

Descriptors applied to BRISK features 

Figure 93 shows the application of the four chosen descriptors, BRISK, FREAK, 

SIFT and SURF on features computed with the BRISK detector as a fraction of 

the theoretically possible matches. Corresponding features are considered a 

correct match if they are not further away from the reference position than 1.5 

pixels. Wrong matches, according to the reference disparity maps may 

theoretically exceed the ordinate of the graph but will generally lie below the 

percentage of correct matches. As was to be expected the BRISK descriptor 

generates the best results for its own detector, followed by the FREAK 

descriptor which follows a similar processing pattern. SIFT and SURF generate 

comparable results with much lower percentages of mismatches than the binary 

descriptors. The BRISK detector appears to have problems to produce 

distinctive features in the data-set containing well defined cracks, potentially 

due to their position on edges rather than corners. The amount of mismatches is 

high but was to be expected due to the weak performance of the feature 

detector in the detector evaluation process (Section 7.2.2.3).  

Figure 94 shows the same evaluation on BRISK features computed on images 

pre-processed with adaptive histogram equalization leading to a better feature 

distribution within the image but to less stable points with a lower 

repeatability. The scores of correctly matched features stay almost constant but 

the proportion of wrong matches is strongly amplified. 

Figure 95 and Figure 96 illustrate the deviation of the matched feature 

correspondences to the reference. Due to the difference in performance of the 

individual descriptors and the presence of gross outliers the data had to be 

visualized on a logarithmic scale. 

The logarithmic scale is necessary to properly illustrate for instance the 

performance of the BRISK descriptor with an average accuracy of around 2 

pixels and an average standard deviation of around 8 pixels on the same chart 

as SIFT with an average standard deviation of 218 pixels due to the 
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overwhelmingly large amount of mismatches. The evaluation of features 

computed with AHE shows values in a similar range as without pre-processing.  

However, these results are clearly not usable without an additional filtering of 

the detected matches as described in Section 6.1. Figure 44 shows the same 

data-set with the application of outlier filtering. A precise fundamental matrix 

describing the epipolar geometry of the images was calculated from the 

detected correspondences with the known image orientations as an initial 

estimate (Section 6.1.1). Feature correspondences further away from their 

epipolar lines than 1 pixel were eliminated. In order to also eliminate 

mismatches fitting to the calculated model correspondences were restricted 

based on the mean position on the epipolar line of the K nearest neighbors 

compared to the position of the current match. These measures on the one hand 

reduced the amount of correct matches as well as the amount of mismatches 

due to the strict policy leading to a certain amount of false positives.  

 

Figure 44: Matches from descriptors on BRISK features with additional outlier filtering 

The immediate positive effect of the filtering is visible in Figure 45. Due to the 

lack of gross outliers a logarithmic scale is not necessary anymore. The 

improved accuracy can be shown with the same example used previously. The 

mean accuracy of BRISK over all data-sets was reduced from around 1.9 ± 7.9 to 

1.1 ± 1.1 pixel whereas results from SIFT changed from around 56.1 ± 217.7 to 

0.8 ± 0.7 pixel. All other descriptors also lie in a similar range of accuracy.  
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Figure 45: Matching accuracy on BRISK features with additional outlier filtering 

Descriptors applied to DoH features 

Features computed with the fast Hessian implementation of the DoH detector 

(Section 5.2.3.1) as introduced together with the SURF algorithm outperform the 

BRISK features. Interestingly other than in the previous case SURF descriptors 

on average receive the lowest scores compared to the other tested descriptors 

on its own detector. As also stated in Miksik & Mikolajczyk (2012) BRISK 

performs well combined with DoH. Further the DoH features allow a robust 

matching in the challenging scale change data-set for all descriptors again with 

BRISK outperforming the other methods. Similarly to the case of the BRISK 

detector the results based on features derived with AHE pre-processing do not 

deviate significantly from the results without pre-processing, the corresponding 

graphs are therefore omitted. Figure 97 and Figure 98 show unfiltered matches 

and match accuracies whereas Figure 99 and Figure 100 show filtered results. 

Descriptors applied to DoG features 

Features retrieved with the DoG detector are best evaluated with the SIFT 

descriptor the detection method was developed for. BRISK competes well but 

the challenging scale change data-set is handled far better by SIFT. The amount 

of gross outliers in the unfiltered data-set is already low in the case of SIFT and 

the matching accuracies in the filtered data-sets are among the highest of all 

detectors. Evaluations of features computed with AHE are again omitted. 
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Descriptors applied to FAST features 

Using FAST features the SIFT descriptor is able to retrieve the highest amount 

of correct matches and even results in high accuracy values without additional 

outlier filtering with around 0.9 ± 0.9 pixel average match accuracy. Due to the 

property of FAST being a single scale detector no descriptor was able to achieve 

satisfactory results on the multi-scale data-set which reduces the overall 

matching scores.  

FREAK did not pass the initially mentioned threshold of a minimum of ten 

matches in the multi-scale data-set and is therefore omitted in the 

corresponding sections of the graphs. Whereas BRISK and FREAK show the 

highest overall matching accuracy with around 0.5 ± 0.3 and 0.4 ± 0.3 pixel 

respectively, SURF performs significantly worse.  

Descriptors applied to HARRIS features 

HARRIS features have high recognition rates especially for SIFT and BRISK. 

Due to the fact that not enough features could be detected in the homogenous 

clay wall data-set there are also no matches visible in Figure 106. Therefore the 

evaluation of features with AHE pre-processing is shown in Figure 110 to 

Figure 113. The detector leads to high matching accuracy scores particularly in 

combination with SIFT. Due to the lack of multi-scale feature detection the scale 

change data-set cannot be matched satisfactorily. 

Descriptors applied to Pyramid HARRIS features 

The Pyramid HARRIS detector was developed by the author to make use of the 

well-known qualities of the HARRIS detector while retrieving scale invariant 

features. However, the granularity of the used reduction factor for image 

pyramids calculated prior to the application of the detector proved to be too 

coarse to successfully deal with the scale change data-set (Figure 114). Therefore 

only the filtered data-set and accuracy evaluation graphs are shown for this 

detector. 

As for the single scale HARRIS detector not enough features to produce a 

sufficient amount of matches in the homogenous clay wall data-set were 

detected. Therefore no information about correspondences is contained in the 

respective sections of the graphs. The accuracy of the matches lies in a similar 

range as HARRIS for BRISK and FREAK, whereas SIFT and SURF perform 

significantly worse than in the single scale case. 

Descriptors applied to MSER features 

The MSER feature detector leads to the best results in combination with BRISK. 

Due to the low amount of features found in the homogenous clay wall data-set 
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the evaluation of features computed after AHE pre-processing is shown below. 

Due to the excellent scale invariance of the detector the scale change data-set 

could be evaluated well with all descriptors. The resulting matching accuracy 

(Figure 118) is similar for all descriptors but does not reach a top ranking 

among the detectors.  

Descriptors applied to ORB features 

The ORB feature detector is based on a multi-scale implementation of FAST. 

However, it is not able to successfully deal with the scale change data-set. Due 

to otherwise lower matching scores it is inferior compared to the original FAST 

implementation. The combination with SIFT or BRISK work best and lead to 

acceptable matching accuracies even without outlier filtering. The matching 

accuracy after outlier filtering over all descriptors is among the lowest of all 

detectors. 

Due to the low amount of features found in the homogenous clay wall data-set 

again the evaluation of features computed after AHE pre-processing is shown 

below. 

Descriptors applied to STAR features 

The STAR detector works best in combination with the SIFT descriptor. This 

combination leads to the highest overall rate of correct matches over all 

detector-descriptor combinations evaluated. The scale information given by the 

detector can be used successfully to also match the challenging scale change 

data-set, however, SIFT handles this data-set far better than its competitors. 

SIFT again also leads to useful results without applied outlier filtering. In 

contrast to the satisfying rate of detected matches the matching accuracy on 

STAR features is together with ORB and BRISK among the lowest of all 

detectors. 

Comparison of all detector-descriptor combinations 

The following charts contain the above shown information condensed into 

single charts by averaging the results of all detector-descriptor combinations 

including the described filters over all evaluated data-sets. 
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Figure 46: Average fraction of filtered correct matches of possible matches for all detectors 

and descriptors over all data-sets including standard deviation 

Figure 46 shows that the STAR detector in combination with SIFT and the DoH 

detector used for BRISK lead to the highest rates of correct matches, however, 

Figure 47 shows that those two are also the combinations leading to the highest 

amount of mismatches. Therefore the performances of FAST and HARRIS 

primarily combined with SIFT but also with BRISK have to be valued higher as 

they lead to much fewer incorrect matches. Further it has to be considered that 

these two detectors only work in a single scale and cannot be applied in 

applications where larger scale changes are to be expected. On the other hand 

this means that the scores of correct matches only calculated over data-sets 

without scale change puts the combinations HARRIS/SIFT, HARRIS/BRISK and 

FAST/SIFT at an even level with STAR/SIFT while retaining the mentioned 

advantages. 

As can be seen in Figure 48 DoG and HARRIS lead to the best matching 

accuracies for SIFT and SURF with the lowest standard deviation (Figure 49). 

FAST leads to the best matching accuracy for BRISK and FREAK also with the 

lowest standard deviation.  
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Figure 47: Average fraction of incorrect matches of possible matches (after filter) 

 

 

Figure 48: Average matching accuracy for all detectors and descriptors over averages of all 

data-sets including standard deviation 
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Figure 49: Average standard deviations of matching accuracy for all detectors and descriptors 

over all data-sets including standard deviation of standard deviations 

 

7.3.3 Descriptor matching conclusion 

The conducted evaluations lead to the conclusion that if high processing speed 

is a requirement the FAST/BRISK combination should be used for a maximum 

of matching accuracy and an excellent matching rate at a minimal processing 

time. If another requirement is scale invariance then DoG/BRISK is an adequate 

alternative, reducing the overall matching rate but able to deal with scale 

changes very well. If processing speed and scale invariance are not important 

the combination HARRIS/SIFT can be used. 

For an application in the US the software patents covering DoG, DoH, SURF 

and SIFT have to be considered. In this case FAST/BRISK will be the best 

option. If scale invariance is absolutely necessary MSER/BRISK or STAR/BRISK 

are the best options. 
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7.4 Least squares sub-pixel refinement performance evaluation 

7.4.1 Implementation details 

The above described method was implemented by the author using the 

programming language C++ and enhanced to allow a calculation of refinements 

for different homologous points in parallel. This creates a linear speedup of the 

matching process by the amount of available cores. Modern Intel CPUs 

additionally offer virtual cores using a concept called Hyper-Threading, this 

doubles the amount of available CPUs for processing. On the author’s computer 

with an Intel i7-3520M CPU the speedup factor that can be reached for LSM due 

to the implemented parallelization is four. Standard office PCs nowadays can 

have four to eight physical cores bringing the speedup factor to a value of eight 

or even 16 compared to linear processing. It has to be noted however that 

despite these optimizations allowing speedups of up to an order of magnitude, 

due to the iterative process of the algorithm LSM still is the computationally 

most expensive part of the developed processing chain and should only be 

applied in case of high accuracy requirements and low runtime restrictions.  

7.4.2 Accuracy and runtime evaluation 

The full potential of the LSM method is illustrated in a first accuracy evaluation 

wherein the search image is artificially created from the reference using an 

affine transformation reflecting a similar stereo set-up as used in data-set 

number 6 (Table 1). A reduced set of features from the DoH detector was 

matched with the SURF descriptor, filtered by the geometry based outlier 

detection method and restricted to 100 correspondences. These matches were 

refined with LSM. This does not represent a realistic trial as the two images are 

related by the same transformation that is estimated by the matching method 

however the convergence process and LSM’s ability to approximate this 

transformation in highest accuracy can be shown. Using a matching window 

based on the scale of the DoH features and a maximum of 30 iterations the six 

parameters of an affine transformation and two radiometric parameters 

consisting of a gray value multiplication factor and a gray value offset where 

estimated. All 100 matches converged and also showed a back-matching 

distance of less than 0.1 pixel, resulting in a mean deviation from the calculated 

reference position of 0.0109 ± 0.0087 pixel. The maximum deviation from the 

reference was 0.0406 pixel. These impressive values show the maximum 

matching accuracies that can be achieved with LSM on locally well-defined 

features within homogenous neighborhoods where projective image distortions 

can be approximated using an affine model.  
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Figure 50: Single stereo-correspondence evaluated with LSM 

Figure 51 shows an example of the LSM convergence process of one of the 

initial correspondences retrieved from feature matching (Figure 50). On the left 

side of the panels the reference window is shown which stays constant, on the 

right side the continuously transformed search windows over multiple 

iterations are displayed. To be able to calculate the necessary image gradients in 

the search window at every position of the reference window the former has to 

be one pixel larger. 

    

Figure 51: The convergence and refinement process of LSM 

In the following analysis the LSM method was used as a post processing and 

accuracy refinement method for the full set of evaluations shown in Section 

7.3.2. Features already filtered according to their averaged runtimes are given 

and the accuracy results are displayed. 

The average runtimes of the parallel calculation of LSM on four separate cores 

on an Intel i7-3520M CPU with 8 GB of RAM are shown in Table 5 for multiple 

different parameter settings. Again the shown values are averages over the 

application of an 8 parameter LSM on all detector-descriptor combinations on 

all test data-sets. A fixed maximum amount of 30 iterations and a convergence 

threshold of 0.0001 (see Equation (6.4)). The runtime difference between LSM 

with and without back-matching is not as large as could be expected as the first 

matching run already produces accurate predictions that can be used for back-

matching including the inverse of the retrieved reference to search window 

affine transformation. This generally leads to a back-matching convergence 
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within the first iterations and therefore does not significantly increase the 

runtime.  

Table 5: LSM runtimes comparison 

Runtime per correspondence 

[milliseconds] 

Window 

size 

Back-

Matching 

3.631 ± 0.047 31 Yes 

2.916 ± 0.039 31 No 

1.016 ± 0.038 15 Yes 

1.094 ± 0.031 15 No 

0.842 ± 0.025 9 Yes 

0.703 ± 0.024 9 No 

To increase readability a majority of evaluation charts were again placed in 

Appendix E Least squares refinement performance evaluation charts. 

Smaller LSM matching windows lead to a greater rate of rejected matches but 

higher matching accuracy as can be seen in Figures 126 - 134. The size of the 

matching window is the main influence on LSM runtime. The LSM evaluations 

are based on the filtered feature matching results as shown in the previous 

chapters. These matches are used as initial values for LSM and ensure a fast 

convergence process. Matching windows of size 9, 15 and 31 pixel were 

evaluated.  

Figure 126 shows the fraction of matches after LSM of theoretically possible 

matches. The amount of matches was visibly reduced compared to the initial 

values shown in Figure 46. Additional filtering with the LSM back-matching 

distance further decreases this ratio but also strongly reduces the amount of 

incorrect matches as can be seen in comparison of Figure 128 and Figure 129. As 

a consequence also the resulting accuracy values are higher after an applied 

back-matching process as illustrated in Figure 130 and Figure 131. Results 

including filtering based on back-matching are only shown for LSM with a 

matching window of 9 pixels, deviations to LSM only based on the convergence 

however are in a similar range also for larger matching windows. As expected 

LSM results in significantly better accuracies as feature matching alone (Figure 

48). With an increase of the matching window from 9 to 15 pixels the amount of 

correct matches is increased (compare Figure 126 and Figure 52; Figure 128 and 

Figure 53) whereas the matching accuracy is reduced (compare Figure 130 and 

Figure 54). While the second effect, the reduced matching accuracy is further 

increased with an additional increase of search window size from 15 to 31, the 
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amount of correct matches does not change (compare correct matches in Figure 

52 and Figure 132 and accuracies in Figure 54 and Figure 134). Based on this 

evaluation regarding the involved parameters of correct matches, matching 

accuracy and runtime a matching window of 15 pixels therefore seems to be the 

best overall tradeoff. 

 

Figure 52: Average fraction of filtered correct matches of possible matches from LSM with a 

window size of 15 pixels  
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Figure 53: Average fraction of filtered incorrect matches of possible matches after LSM with 

window size of 15 pixels 

 

Figure 54: Average LSM accuracy with an LSM window size of 15 pixels 
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7.4.3 LSM evaluation conclusion 

The applied feature descriptor does not influence the matching accuracy that 

can be reached with LSM. However, the used feature detector significantly 

influences the results. HARRIS and FAST lead to the highest LSM accuracies. 

Due to their close relation to FAST the ORB and BRISK detectors produce 

similar results when used as initial values for LSM.  

Due to a satisfying trade-off of achievable accuracy, the amount of correct 

features that are preserved and runtime a LSM matching window of 15 pixels is 

preferable. If sufficient input correspondences are available and highest 

accuracy is required a matching process with a matching window of only 9 

pixels and an additional validation of the results using a back-matching process 

can be applied. Larger matching windows are not reasonable. 

  



Method evaluation on synthetic test data 

111 

7.5 Conclusion and interpretation 

To bring the performed evaluations back into the context of geo-monitoring it 

has to be kept in mind that there are different requirement to a feature detection 

and matching algorithm to be applied in an actual monitoring system as 

mentioned earlier. On the one hand the matching accuracy is important as it 

significantly influences the final 3D accuracy of the measurements. On the other 

hand the repeatability and stability of derived results regarding outliers or 

mismatches is at least as important. Further, depending on the current 

measurement configuration the processing time constraints pose a limiting 

factor on the choice of algorithm.  

An interpretation of the conducted evaluation based on these criteria shows 

that a proper detection of mismatches using global or local geometric 

constraints is crucial to achieve the required accuracies. This is clearly visible by 

comparing for instance the charts in Figure 45 and Figure 95 illustrating 

matching accuracy with and without applied outlier filtering. Both global and 

local outlier filtering methods are used in the following section of real world 

measurement data evaluation. Within stereo setups the epipolar geometry 

(Section 6.1.1) is used to filter outliers, over multiple time epochs the local 

RSOC filter (Section 6.1.2) is applied.  

The combined analysis of feature detector performance and its influence on 

feature description and matching allows the identification of best performing 

detector/descriptor pairs to be used for certain measurement configurations. 

The FAST feature detector should be used in combinations with the BRISK 

feature descriptor for highest processing speed. It leads to a maximum of 

matching accuracy combined with a low amount of mismatches computed with 

the lowest processing time of all evaluated methods for the detector as well as 

the descriptor. The combination of the HARRIS detector and SIFT descriptor 

leads to similar accuracy values and slightly higher matching rates, however, at 

a much slower processing speed. Furthermore, the descriptor is covered by US 

software patents which may prohibit its application outside of academic use. 

If the measurement configuration covers larger scale differences, as may be 

encountered if the stereo-base line lies in the direction of to the measured object 

(i.e. Section 7.1 data-set ID8) a scale invariant feature detector is required. This 

leads to the combination of DoG as detector and BRISK as descriptor, 

producing satisfying results at the cost of longer feature detection processing 

time. The application of the DoG detector is covered by the same US software 

patents as SIFT. To avoid this issue while retaining a high level of scale 

invariance the detector descriptor combination MSER/BRISK can be used for 
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higher accuracy or STAR/BRISK for better matching rates. Both options are 

however inferior to the recommended, scale invariant DoG/BRISK combination.  

Using these feature matching methods mean accuracies of around half a pixel 

can be reached leading to an angular resolution in the range of the accuracy of 

the base-instrument (Section 2.1.). For better matching results a sub-pixel 

refinement method such as LSM is necessary. A previously applied feature 

matching process delivers excellent predictions for this method. The resulting 

accuracy however varies with the applied feature detector. The use of a 

HARRIS detector leads to the best LSM results closely followed by FAST. Both 

resulting in a mean matching accuracy of less than 0.3 pixel and a greatly 

reduced standard deviation lying between 0.05 and 0.1 pixel. It remains to be 

noted however that the application of LSM may significantly increase the 

required processing time. Therefore the method will most likely be used in 

applications without strong time constraints. The positive results of the 

application of LSM on the accuracy and variation of derived 3D deformation 

vectors can be seen in the evaluation of field trial data in the following chapter 

(Figure 66 and Figure 67).  
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8 Evaluation of system design using measurement data 

To evaluate the developed system under field conditions multiple tests were 

conducted to validate the IATS calibration, set-up and control software on the 

one hand and the accuracy of the applied processing on the other hand. Among 

smaller measurement campaigns targeted at system set-up and orientation two 

larger field experiments were carried out to capture data including 

measurements from theodolites and terrestrial laser scanners in order to 

provide reference data for the IATS measurements. The following chapter 

contains the evaluation of the developed processing chain using the captured 

reference data. 

8.1 Field trial Graz Weinzödl 

This field trial was carried out at a rock wall in the north of Graz on the 25th of 

February 2013 by the DE-MONTES project consortium (Bauer, et al., 2014). The 

main target of this field trial was on the one hand a technical end to end testing 

of the applied device control software and on the other hand an accuracy 

comparison of the applied methods of stereo photogrammetry, IATS and TLS. 

Important for the scope of this work a test with an artificial deformation was 

conducted using a rock model made of structured and painted foam to target 

the field of deformation monitoring. Targets on this artificial rock were 

measured with a total station. These artificial deformation data-sets were 

evaluated using the developed processing chain. 

Due to the date of the measurement campaign in the end of winter the whole 

measurement system proved to be able to withstand non-ideal weather 

conditions as it was snowing during half of the data capturing.  

8.1.1 Object and measured region of interest 

The target object was the midsection of a rock climbing wall of around 20 by 40 

meters (Figure 56), measured from a distance of around 150 meters. Multiple 

data-sets where acquired using a stereo set-up of IATS (Leica IATS2 see Section 

2.2), a Riegl VZ 400 terrestrial laser scanner and a conventional 

photogrammetric stereo set-up. Fourteen reflecting control points in the form of 

circular targets where placed on and around the object and measured using a 

Leica TCRA1201 Total Station to establish a control network. The positions of 

the IATS, TLS and Total Station can be seen in Figure 55.  
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Figure 55: Field Trial Test Site at Climbing Wall Weinzödl north of Graz. Aerial Image 

© Microsoft 

Figure 56 gives an overview of the dimension of the measured Region of 

Interest and the distribution of the placed control points. A local left handed 

Cartesian coordinate system was defined with the measured control points 

using polar point measurements from a single position. The used disc shaped 

targets have a diameter of around 20 centimetres and where sheeted with a 

retro-reflecting lamination to be clearly detectable in the visible spectrum as 

well as in the reflectance image of the Laser Scan. The well distributed targets 

are not necessary for the IATS measurements but were used to register the 

measurement results from all used sensors into one common coordinate frame 

to compare their relative accuracy. The comparison and evaluation of TLS and 

conventional photogrammetry however lie outside the scope of this work. Only 

the artificial deformation measured with a total station and the IATS system 

was used in this evaluation. The artificial deformation was carried out close to 

target 14 visible in Figure 56. 

Table 6: Target accuracies as a result of TPS network adjustment  

 Accuracy [m] 

Target Position Height 

8 0.0040 0.0062 

11 0.0066 0.0104 

12 0.0045 0.0071 

13 0.0035 0.0054 

14 0.0045 0.0071 
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Table 6 gives accuracy values of the control points that are later visible in both 

IATS bundles (Figure 57). For more information refer to Appendix G 

Adjustment report (TPS network Weinzödl).  

 

Figure 56: Measured Region of Interest, including numbered control points and close-up of 

mounting of target 14 

 

8.1.2 IATS measurements 

As depicted in Figure 55 the IATS Stations where set up in an average distance 

of around 147 m and 163 m to the object with a baseline of around 47 meters. 

Due to their different angles of observation the two devices captured 150 (left 

station) and 220 (right station) images to cover the area of interest with image 

bundles of 10x15 and 11x20 rows and columns respectively. This resulted in an 

observation time of ten minutes for the left station and fifteen minutes for the 

right station. With an angle resolution of 0.61 mgon per pixel the field of view 

of one image is ~1.56 x 1.71 gon or ~3.68 x 2.76 m in a distance of 150 m. The 

ground sampling distance (GSD) of one pixel at that distance is therefore 

~1.4 mm.  
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Figure 57: Spherical Panoramas composed of the captured image Mosaics; red targets are 

visible from both stations – white targets only from one station 

The orientations measured by the IATS together with the known IATS 

calibration where used to project the captured images into a spherical 

panorama as shown in Figure 57.  

 

Table 7: Residuals of IATS measured targets to TPS Measurements 

Target Δ X [m] Δ Y [m] Δ Z [m] 

8 0.000 -0.001 0.003 

11 -0.008 -0.004 -0.008 

12 0.000 0.006 -0.008 

13 -0.004 -0.003 0.003 

14 -0.002 -0.001 -0.001 

The centres of the individual targets where extracted within the images in a 

high sub-pixel accuracy using intensity thresholding operations and the 

calculation of the center of gravity. Taking into account the intrinsic calibration 

of the two cameras a forward intersection was calculated for each target 

resulting in the 3D residuals shown in Table 7.  

8.1.3 Artificial deformation 

In order to capture a large enough controlled deformation an artificial rock was 

used consisting of a square wooden plate with a side length of about one meter. 

In order to simulate well-textured and structured rock polyurethane foam, 

gravel and paint were applied. Four reflective targets on the corners of the 

artificial rock allow precise positioning measurements with a total station. The 

model was placed in a flat section of the rock wall below target number 14 

about three meters above the ground (Figure 56 and Figure 58).  
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Figure 58: Artificial rock model as seen from the left IATS station before and after an 

artificial deformation 

The artificial rock was measured in single IATS image tiles from each station 

(Figure 58) as a part of a full image bundle while the four signalized corner 

targets were observed with a Leica TCRA1201 tacheometer. Due to weather 

conditions and time restrictions the theodolite measurements were carried out 

from only one location. Therefore no quality measures for the observed points 

are available. The theoretical accuracy of the polar distance measurements of 

the device is stated by the manufacturer with an RMS of ±2 mm by the 

manufacturer for each target (Bauer, et al., 2014).  

8.2 Field trial Pellheim 

The second major field trial was conducted in a clay-pit in Pellheim near 

Munich. The pit is owned and operated by Hörl & Hartmann Ziegeltechnik 

GmbH & Co. KG. The field trial was carried out to obtain control points of 

higher accuracy and higher resolution TLS measurements compared to the 

measurement campaign in Graz (Bauer, et al., 2014).  

8.2.1 Object and measured region of interest 

A vertical wall at the west end of the clay-pit was chosen as measurement area 

due to the interesting structure and texture and its accessibility from above as 

well as from below. The IATS devices where set up in a mean distance of 

around 261 and 292 meters from the measured object (Figure 61). The control 

and reference points of the ground control point network (Figure 60) were 

measured by a Leica TPS1201 and a Leica MS50 total station which have angle 

measurement accuracies of 0.3 mgon each. Distance measurements can be 

carried out with an accuracy of 1 mm ±1.5 ppm for prisms and 2 mm ±2ppm for 
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surfaces. Additionally for every measurement epoch the region of interest was 

also scanned using a Leica HDS7000 laser scanner which was set up at a 

distance of only around 80 meters from the ROI. Scans were taken with a 

resolution of 10 mm point distance in the target area. 

 

Figure 59: Field trial clay-pit Pellheim overview. Satellite image © Google 

Figure 60 shows the region of interest including the control points used to 

register the measured data-sets from the different sensors. Further the artificial 

rock and its targets are visible on the measured wall. 

 

Figure 60: Overview of region of interest including control points and artificial rock with 

targets 

To measure the control point, network observations from four different stations 

were carried out using forced centering for targets and instruments. Resulting 

accuracies and confidence levels after a network adjustment conducted at the 

Technical University of Munich are visible in Figure 61 (refer to Appendix F for 

the adjustment report). The accuracy of the control points and the artificial rock 
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was determined as 3 mm for position and height respectively. For the TPS, TLS 

and IATS positions 2 mm were derived for position and height. 

 

Figure 61: TPS network and point accuracies 

To orient the laser scans in each epoch the four control points (T1 to T4) 

consisting of black and white targets were scanned separately with the highest 

possible resolution of ~4.5 mm point distance. The TLS measurements and the 

TPS measured target positions were used to calculate the three rotations and 

translations of the transformation orienting the laser scans resulting in maximal 

residuals of ±3 mm. From a comparison of two scans of the target region an 

average range noise of the laser scanner of around ±3 mm was calculated 

corresponding well with given manufacturer specifications (Bauer, et al., 2014).  

8.2.2 IATS measurements 

The two IATS stations were set-up in an average distance to the region of 

interest of 261 m for IATS0 and 292 m for IATS1. The baseline between the 

instruments was 84.47 m. This leads to a mean intersection angle in the 

measured object points of around 18 gon. This value represents an adequate 

compromise between the image matching condition of as little viewpoint 

change as possible to retrieve highest accuracy correspondences and the 

geometrical condition whereupon the highest accuracies in all three directions 

can be reached at intersection angles of 100 gon. The locations of measured 
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object points are not on the perpendicular bisector of the baseline as would be 

ideal for the triangulation. However, the set-up is representative for real world 

applications wherein the conditions of the site often prohibit a theoretically 

optimal setting leading to compromises such as the above. It could be shown 

that highly accurate results can be retrieved also from non-optimal 

measurement configurations. 

Within each measurement epoch 32 images where taken by IATS1 and 40 

images by IATS0 to cover the measured region. With an acquisition time of 

around five to six seconds per image this process takes around three and four 

minutes respectively. 

 

Table 8: Residuals of IATS measured targets to TPS Measurements 

Target Δ X [m] Δ Y [m] Δ Z [m] 

T1 0.005 -0.003 0.001 

T2 0.001 0.001 -0.001 

T4 0.005 0.004 0.001 

To verify the orientation of the IATS a template matching was performed to 

retrieve the sub-pixel image positions of the targets visible in the images. Table 

8 shows the residuals of the target coordinates calculated from IATS to the 

adjusted values from the TPS network (Wagner, et al., 2014).  

8.2.3 TLS measurements  

A reference model of the target area was captured using a Leica HDS7000 TLS 

from a distance of only around 80 m which is less than a third of the distance of 

the IATS to the object. A point density of 10 mm was used and the scan was 

oriented by scanning the black and white targets T1-T4 (Figure 60). The scanner 

is subject to range noise of ±2 – 8 mm at this measurement distance according to 

the manufacturer. Based on the comparison of two successive scans of the same 

region a range noise of 2.7 mm was calculated. Other errors such as wrong 

absolute distance measurements are eliminated by the registration of the scan.  
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Table 9: Residuals of transformation to register TLS 

Target Δ X [m] Δ Y [m] Δ Z [m] 

T1 -0.003 -0.003 0.001 

T2 -0.001 0.001 0.001 

T3 0.003 -0.001 -0.001 

T4 -0.003 -0.001 0.001 

Table 9 shows the residuals of the transformation (three rotations, three 

translations) used to orient the laser scan (Wagner, et al., 2014). 

8.2.4 Artificial deformation 

Similarly to the field trial in Graz an artificial deformation was measured using 

the same artificial rock equipped with signalized targets at its corners. Due to 

the fact that the test site was accessible from above as well as from below the 

artificial rock could be moved comfortably (Figure 60). In contrast to the 

previous measurement campaign the signalized points on the moved target 

where measured from two positions to increase the localization accuracy and to 

provide quality estimates for the observations.  

8.3 Processing chain 

This work deals with the task of geo hazard monitoring based on a vision based 

geodetic system using a stereo set-up of IATS. Simplified the necessary steps 

are the detection of non-signalized stereo-correspondences and the tracking of 

those features into consecutive measurement epochs wherein stereo-

correspondences have to be established again. This leads to highly accurate 3D 

deformation vectors describing the movement of a measured object. 

The processing chain was developed in the high-level programming language 

python and integrates the necessary individual pieces of developed software for 

 image pre-processing 

 feature detection, description and matching, 

 mismatch detection and  

 match refinement. 

These components are mostly C++ applications except the RSOC mismatch 

detection filter which was only implemented in pure python based on numpy 

the optimized python library for numeric calculations. Other functionality such 

as the least squares matching were first implemented and tested in python and 

then ported to a C++ application in order to speed up processing. The python 
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workflow mainly handles interfacing issues. This means on the one hand the 

interfacing to the user based on configuration files or command line parameters 

and on the other hand the preparation and assembly of parameters needed by 

the individual sub-functions. Another important task is data format conversion 

and preparation. As an example the feature matching may write a 

correspondence file containing information not only about the sub-pixel 

positions of homologous features but also their scale space position and 

extraction filter response value, whereas the tool executing the forward 

intersection needs a file containing only an index and the left and write column 

row pixel positions. In this case the workflow handles the conversion and keeps 

track of the files to be used.  

Most functionality developed by the author is contained in a single C++ library 

accessibly from a command line application containing histogram-equalization 

or adaptive-histogram-equalization pre-processing methods, all evaluated 

feature detectors and descriptors, brute-force, adaptive nearest neighbors and 

epipolar-restricted matching methods, mismatch detection based on a 

homography or fundamental matrix estimation or refinement and other filter 

methods and a match refinement using massively parallelized LSM as 

described in Section 6.2. Further the calculated features and feature vectors can 

be saved as well as diverse output images illustrating features and 

correspondences (refer to Appendix H for the full list of available command 

line options of the mentioned tool). Other used C/C++ command line tools are 

DispTo3d.exe to calculate the spatial forward intersection using two camera 

calibration files and a feature correspondence file, and the tool 3dToDisp.exe 

which projects a list of 3D coordinates into an image of which the calibration 

was specified. These two tools were developed at the Joanneum Research as 

part of the Impro image processing library.  

The matching parameters can be configured either as fast processing which will 

use FAST feature detection and BRISK feature description without LSM 

refinement or as high accuracy processing which applies HARRIS feature 

detection and SIFT feature description including LSM refinement. If this 

granularity of parameter definition is not fine enough the individual 

parameters can be exchanged as well in a parameter file. The structure of the 

processing chain is as follows. 
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The left image of epoch one is L1, the right image is R1. L2 and R2 are the 

images of the consecutive epoch. 

 L1 match to R1 

o Pre-processing 

o Feature detection 

o Feature description 

o Feature matching 

o Mismatch detection 

o (LSM match refinement) 

 Forward intersection for correspondences from epoch 1 

 L1 match to L2 

o Pre-processing 

o Loading corresponding matches from L1 R1 as features for L1 

o Feature detection in L2 

o Feature description 

o Feature matching 

o Mismatch detection 

o (LSM match refinement) 

 RSOC mismatch filtering 

 L2 match to R2 

o Pre-processing 

o Loading corresponding matches from L1 L2 as features for L2  

o Feature detection in R2 

o Feature description 

o Feature matching 

o Mismatch detection 

o (LSM match refinement) 

 Forward intersection for correspondences from epoch 2 

 Creation of output files 

o Creation of 3D deformation vectors file 

o Back-projection of epoch 2 coordinates into L1 

o Creation of 2D projections of deformation vectors in L1 

o Draw deformation vectors in L1 

o Save processing log 

o Save processing time 
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8.4 Results and evaluation 

The processing chain outlined in the previous section was applied to the 

acquired test data described in 8.1 and 8.2 and the processing results are 

compared to the reference data.  

8.4.1 Field trial Graz Weinzödl evaluation 

As described in Section 8.2.1 the artificial deformation carried out in Graz was 

applied manually and measured with polar distance measurements of four 

signalized targets in both measurement epochs. The used stereo data-sets, 

consisting of four single IATS tiles from two measurement epochs are shown in 

Figure 62. The images from the left station cover a field of view of ~3.6 x 2.7 m 

in a distance of 147 m with a pixel resolution of ~1.4 mm. The right station is 

placed at a distance of 163 m and the images cover an area of ~4 x 3 m with a 

pixel resolution of ~1.,6 mm. 

 

  

  

Figure 62: Artificial deformation in consecutive measurement epochs 

 

The applied deformation was a vertical shift by around 0.424 m according to the 

differences of measured targets as shown in Table 10. 
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Table 10: Coordinate differences between epochs 

Target Δ X  

[m] 

Δ Y  

[m] 

Δ Z  

[m] 

Displacement 

[m] 

TP01 0.001 0.000 0.427 0.427 

TP02 0.002 -0.003 0.419 0.419 

TP03 0.009 -0.005 0.425 0.425 

TP04 0.008 0.004 0.423 0.423 

Ø -0.001 0.005 0.423 0.424 

 

Following the findings from Chapter 7 a fast and coarse processing run using 

the processing chain described in Section 8.3 with the FAST detector and the 

BRISK descriptor and an epipolar restricted matching was applied. The 

resulting projected deformation vectors are shown in Figure 63. 

 

 

Figure 63: 3D vectors from FAST/BRISK matching projected into left image of first epoch 

A comparison of the length of the automatically derived deformation vectors of 

the artificial target with the TPS measurements leads to the results shown in 

Figure 64. 
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Figure 64: FAST BRISK deformation vector length compared to mean length from TPS 

The processing time of the FAST BRISK based application of the automated 

deformation measurement on a Laptop with an Intel i7-3520M CPU and 8 GB of 

RAM is given in Table 11. The values were averaged over 10 processing runs 

leading to an overall standard deviation of around 0.35 seconds for the whole 

processing chain.  

Table 11: Processing time using FAST and BRISK 

Processing Step Execution Time [seconds] 

Pointmatching L1R1  3.25 

Format conversion and forward intersection 0.39 

Pointmatching L1L2 1.87 

RSOC filter (python implementation) 1.75 

RSOC filter (estimation for C++ implementation) 0.18 

Pointmatching L2R2 1.59 

Format conversion and forward intersection 0.22 

Output generation and visualization (python implementation) 2.20 

Output generation and visualization (estimation for C++ implementation) 0.22 

Total (with current python implementations) 11.27 

Estimated total with non-existent C++ implementations 7.71 

Although a constant amount of initial features is extracted the timing values 

depend on the amount of retrieved matches in the first epoch and may 

therefore vary over different data-sets. Values of the shown data-set therefore 

just serve as a representative example. 

Two steps of the processing, the RSOC filtering and the output generation and 

visualization are still implemented in python only. Based on experiences with 
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the implementation of LSM both in python as well as in C++ a speedup by a 

factor of 10 to 20 is possible when implementing processing steps in C++ and 

additionally making use of parallelization. These changes could bring the 

amount of required processing time from more than 11 seconds down to only 

around 8 seconds. Considering these figures were derived on a two year old 

laptop, values in the range of under 5 to 6 seconds needed for a fully 

synchronous data capturing and evaluation are without question possible using 

an up-to date high-level laptop or mid-level desktop workstation.  

 

Figure 65: 3D vectors from FAST/SIFT matching projected into left image of first epoch 

The accuracy of this processing run is in agreement with processing results 

from other feature detectors and descriptors as will be shown in the following 

figures. The consistency of the calculated IATS deformation vectors and the fact 

that the TPS measurements were carried out as polar measurements which are 

not capable to sufficiently capture the vertical direction of deformation leads to 

the conclusion that the calculated IATS measurements may be more accurate 

than the acquired “reference” data. For this reason another field trial had to be 

carried out to capture reference data in higher accuracy. 

Figure 65 shows the resulting deformation vectors from a processing run with 

the detector, descriptor combination FAST/SIFT. A higher amount of 

deformation vectors could be detected but the matching accuracy seems to be 

below the FAST, BRISK combination in this case. This results in a higher 

variance of the length of deformation vectors as visible in Figure 66. The mean 

deformation vector length however stays the same as for the FAST, BRISK 

based processing.  
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Figure 66: FAST SIFT deformation vector length compared to mean length from TPS 

 

As expected the execution time of the SIFT based processing chain is 

significantly higher (Table 12). 

 

Table 12: Processing time using FAST and SIFT 

Processing Step Execution Time [seconds] 

Pointmatching L1R1  2.92 

Pointmatching L1R1 (with LSM) 15.82 

Format conversion and forward intersection 0.26 

Pointmatching L1L2 2.20 

Pointmatching L1L2 (with LSM) 5.91 

RSOC filter (python implementation) 2.49 

RSOC filter (estimation for C++ implementation) 0.25 

Pointmatching L2R2 2.49 

Pointmatching L2R2 (with LSM) 3.77 

Format conversion and forward intersection 0.20 

Output generation and visualization (python implementation) 2.64 

Output generation and visualization (estimation for C++ implementation) 0.26 

Total (python) 13.66 

Total with LSM refinement (python) 31.44 

Estimated total (C++) 9.66 

Estimated total with LSM refinement (C++) 27.63 
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Figure 67: FAST SIFT LSM deformation vector length compared to mean length from TPS 

Additional LSM match refinement reduces the amount of detected deformation 

vectors as visible in Figure 67. The increased matching accuracy reduces the 

variance in the length of the resulting deformation vectors. However, it 

increases the already long processing times even further as visible in Table 12. 

The timing values were again retrieved as an average of 10 processing runs 

with a standard deviation of 0.62 and 0.87 seconds with and without LSM.  

 

 

Figure 68: 3D vectors from HARRIS/SIFT matching projected into left image of first epoch 

As found in the evaluation of synthetic test data in Section 7.2 the detector, 

descriptor combination HARRIS/SIFT (Figure 68) leads to the best results in 

terms of matching accuracy and repeatability. The results in this evaluation lead 

to less deformation vectors that could be tracked than the FAST/SIFT 

combination. However, the standard deviation of the matching accuracy could 

be lowered to a value of ±1.2 mm as can be seen in Figure 69. An additional 

application of LSM refinement further decreases this value to only ±0.7 mm 

(Figure 70). 
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Figure 69: HARRIS SIFT deformation vector length compared to mean length from TPS 

The runtimes for the HARRIS/SIFT combination with and without LSM 

refinement shown in Table 13 lie above the values for FAST/SIFT due to the 

longer processing times needed for the detection of HARRIS features. The 

values are again averaged over 10 processing runs and show standard 

deviations of around 0.71 and 0.83 seconds for normal and LSM refined 

matches. 

 

Figure 70: HARRIS SIFT LSM deformation vector length compared to mean length from TPS 

The different matching methods lead to similar results in terms of accuracy as 

illustrated in Table 14. The main difference is the processing time and the 

amount of detected deformation vectors.  
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Table 13: Processing time using HARRIS and SIFT 

Processing Step Execution Time [seconds] 

Pointmatching L1R1  4.83 

Pointmatching L1R1 (with LSM) 13.59 

Format conversion and forward intersection 0.28 

Pointmatching L1L2 4.52 

Pointmatching L1L2 (with LSM) 8.44 

RSOC filter (python implementation) 6.51 

RSOC filter (estimation for C++ implementation) 0.65 

Pointmatching L2R2 3.44 

Pointmatching L2R2 (with LSM) 4.78 

Format conversion and forward intersection 0.22 

Output generation and visualization (python implementation) 4.31 

Output generation and visualization (estimation for C++ implementation) 0.43 

Total (python) 24.11 

Total with LSM refinement (python) 31.39 

Estimated total (C++) 15.41 

Estimated total with LSM refinement (C++) 29.19 

 

Table 14 shows a systematic offset between TPS and IATS measurements that is 

also visible in Figure 64, 66, 67, 69 and 70. This was most likely caused by an 

outdated calibration of intrinsic camera parameters of the used IATS devices at 

time of the experiment. The faulty values for the principle point and focal 

length cause deviations from the TPS based measurements in the range of 

around 2.5 mm. 

 

Table 14: Summary of calculated deformation vector deviation from TPS measurements 

Detector Descriptor Refine Mean 

Displacement [m] 

Std. Dev.  

Displacement [m] 

Deviation 

from TPS [m] 

FAST  BRISK No 0.4260 0.0025 0.0024 

FAST SIFT No 0.4264 0.0016 0.0029 

FAST SIFT  LSM 0.4263 0.0006 0.0027 

HARRIS SIFT No 0.4258 0.0012 0.0023 

HARRIS SIFT LSM 0.4260 0.0007 0.0024 
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8.4.2 Field trial Pellheim evaluation 

In the Pellheim experiment TPS and TLS based reference data was captured and 

compared to IATS measurements. This section is split into the comparison of 

IATS based results with TPS measurements, a comparison with TLS results and 

the illustration of the evaluation of a time series consisting of four measurement 

epochs.  

8.4.2.1 IATS compared to TPS reference 

In contrast to the measurement campaign in Graz the artificial deformation 

applied in the field trial in Pellheim was observed from a stereo set-up of total 

stations as shown in Figure 61. The network adjustment resulted in an accuracy 

of ±3 mm in height and position for the signalized corner points on the moved 

artificial rock (Table 15). In the following a comparison of the results of the 

developed processing chain applied to two consecutive measurement epochs 

with the mentioned reference measurements will be shown.  

 

Table 15: Coordinate differences between epochs 

Target Δ X  

[m] 

Δ Y  

[m] 

Δ Z  

[m] 

Displacement 

[m] 

Kx.1 -0.031 -0.055 -0.001 0.063 

Kx.2 -0.035 -0.054 0.005 0.065 

Kx.3 -0.020 -0.057 -0.002 0.060 

Kx.4 -0.023 -0.054 0.003 0.059 

Ø -0.027 -0.055 0.001 0.062 

 

Figure 71 shows the resulting deformation vectors of the FAST/BRISK based 

processing. The increased distance compared to the previous example is visible 

in the size of the artificial stone in the image. Due to the weakly textured 

homogenous clay wall fewer features could be detected and tracked. The 

smaller deformation of only around 6.2 cm is illustrated as projected 3D 

deformation vectors into the left image of the first epoch. The starting points of 

the vectors are shown in red and the end points in green. 
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Figure 71: 3D vectors from FAST/BRISK matching projected into left image of first epoch 

Since the reference measurements are to be expected far more accurate than the 

polar measurements in the campaign in Graz the comparison of IATS based 

results and the mean deformation vector length of the reference shows 

deviations in the range of less than 1 mm for the detector, descriptor pair 

FAST/BRISK (Figure 72). The standard deviation of the retrieved deformation 

vector length is ±3.3 mm. The used IATS stereopairs where taken from a 

distance of 261 m and 292 m respectively. The left images cover a field of view 

of around 6.4 x 4.8 m on the object with a pixel resolution of around 2.5 mm. 

The right images show an area of around 7.2 x 5.4 m with a resolution of 

around 2.8 mm.  

 

 

Figure 72: FAST BRISK deformation vector length compared to mean length from reference 
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Figure 73: 3D vectors from FAST/SIFT matching projected into left image of first epoch 

The resulting deformation vectors using the same detector with the SIFT 

descriptor lead to higher amounts of matches as shown in Figure 73. The 

evaluation however also results in a higher variance in the length of the vectors 

(Figure 74). The mean deviation from the reference is still below 2 mm. The 

standard deviation is almost twice as high as in the FAST/BRISK case and 

reaches 6.2 mm. As already seen in the evaluation of the data from Graz the 

additional application of LSM to refine the sub-pixel matching accuracy leads to 

a strong reduction of the variance of results (Figure 75). In this case a mean 

deviation to the reference of 1.2 mm with a standard deviation of only ±2 mm 

could be reached. 

 

 

Figure 74: FAST SIFT deformation vector length compared to mean length from reference 
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Figure 75: FAST SIFT LSM deformation vector length compared to mean length from 

reference 

Due to the results from the synthetic test data evaluation also the detector 

descriptor pair HARRIS/SIFT was applied to the Pellheim artificial deformation. 

Figure 76 shows the according deformation vectors.  

 

Figure 76: 3D vectors from HARRIS/SIFT matching projected into left image of first epoch 

The application of HARRIS/SIFT leads to a small standard deviation of 

deformation vector lengths of ±2.8 mm with a low deviation of the mean 

processing derived vectors from the mean reference vectors of only 0.4 mm 

(Figure 77). An additional match refinement using LSM leads to an even lower 

standard deviation of ±1.6 mm as illustrated in Figure 78. 

 

 

Figure 77: HARRIS SIFT deformation vector length compared to mean length from reference 
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Figure 78: HARRIS SIFT LSM deformation vectors compared to mean length from reference 

Table 16 shows a summary of the evaluation. The IATS based results coincide 

with reference measurements well within the calculated accuracy of the 

reference data. As was to be expected the application of LSM leads to a 

reduction of the variance of the retrieved results, however, processing solely 

based on feature descriptor matching also leads to similarly low average 

deviations from the reference.  

 

Table 16: Summary of calculated deformation vector deviation from TPS measurements 

Detector Descriptor Refined Mean  

Displacement [m] 

Std. Dev.  

Displacement [m] 

Deviation 

from TPS [m] 

FAST  BRISK No 0.0623 0.0033 0.0006 

FAST SIFT No 0.0633 0.0062 0.0016 

FAST SIFT  LSM 0.0605 0.0020 -0.0012 

HARRIS SIFT No 0.0622 0.0028 0.0004 

HARRIS SIFT LSM 0.0613 0.0016 -0.0004 

8.4.2.2 IATS compared to TLS measurement 

Based on the formulas given in Section 3.1 a range of expected errors was 

calculated for the IATS measurement configuration in the Pellheim experiment. 

The eigenvalues and eigenvectors of the covariance matrix lead to an error 

ellipse with semi-axes of 14.4 mm and 2.1 mm at an orientation of 159 gon 

leading to a Helmert point error of 14.6 mm. In the direction of the baseline 

which is also the approximate direction of the ROI this leads to a mean 

standard deviation of 13.6 mm in longitudinal and 5.6 mm in transversal 

direction (Wagner, et al., 2014). To compare the TLS scan data with the IATS a 

triangulated irregular network (TIN) was created from the raw scan data. The 

IATS the image bundles where stitched together to two spherical panoramas 

based on their known orientation and a sub-pixel matching process at the tile 

borders to ensure a smooth transition. These stereo panoramas were mutually 
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matched using the correlation based dense matching algorithm HFVM 

(Kolesnik, et al., 1998) and reconstructed in 3D based on the known orientation 

of the panoramas. The resulting point cloud was also triangulated and can 

therefore be compared to the TLS results. The shortest distance of each point of 

the two datasets is illustrated in Figure 85.  

 

Figure 79: IATS to TLS results comparison, differences in m (Wagner, et al., 2014) 

The TLS model is illustrated as background whereas the distance to the IATS 

model is color-coded from negative values in blue to positive values in red. The 

range illustrated in green is chosen based on the calculated Helmert point error 

of 14.6 mm and a hypothesis test with a 95% level of significance. This 

evaluation shows a good accordance of the IATS point cloud with the TLS data 

within the calculated and expected range of accuracy (Wagner, et al., 2014). 

 

a) 

 

b) 

 

Figure 80: a) ICP registration of TLS scans b) IATS based deformation vectors exaggerated by 

a factor of 10 (Wagner, et al., 2014) 

The artificial deformation was also captured by the TLS. Using an ICP 

algorithm cut-outs of the target region containing the artificial deformation 

where registered to each other to retrieve transformation parameters 

representing the rigid body motion of the artificial rock. The developed IATS 

based processing chain using the feature detector FAST and the descriptor SIFT 
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was applied to retrieve 3D deformation vectors in the same way as described in 

the previous Sections. The parameters of the transformation could be directly 

calculated from the 3D deformation vectors. Results of both TLS and IATS were 

compared to transformation values based on the TPS reference measurements. 

 

Table 17: TLS and IATS rigid body motion residuals to reference from TPS 

 TLS IATS 

Translation [m]   

X 0.005 -0.005 

Y -0.003 0.007 

Z 0.005 0.000 

Rotation [gon]   

X -0.085 0.173 

Y -0.088 0.236 

Z -0.068 0.494 

 

Table 17 shows the residuals of the TLS and IATS based transformation 

parameters to the TPS based reference. Within their measurement accuracy 

both, the TLS and IATS lead to similar results, however with the TLS at a 

distance of ~80 meters and the IATS at 261 m and 292 m from the object.  

It remains to be mentioned that the evaluated case of moving a well-defined 

artificial rock is especially beneficial for the ICP algorithm used to register the 

two laser scan point clouds. The clearly separated and temporally unchanged 

structure of the artificial rock facilitates the registration in all three directions. In 

the theoretical case where only the horizontal edge of such a target is measured, 

a lateral deformation might not be quantifiable by the laser scanner. This 

aperture problem is however mitigated by the high point density of the scanner 

and will only become problematic at further distances. Admittedly the textural 

information needed by the IATS system is generally accompanied by structural 

variations in natural objects such as rock slopes, which means that both systems 

will show a similar capacity to register multi temporal datasets. 
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8.4.2.3 IATS time series 

In the Pellheim experiment five measurement epochs were captured from the 

same stations wherein only the artificial target was moved and finally removed 

in the last epoch. The processing chain described in Section 8.3 was applied to 

retrieve deformation vectors between the individual epochs.  

a) 

 

 

 

 

 

c) 
 

b) 

 

      

Figure 81: Illustration of time series, deformation vectors are projected in the left image of 

the first epoch a) deformation vectors between epoch 0 and 1 in red, start points gray b) 

added vectors between epoch 1 and 2 in blue, start points red c) added vectors between epoch 

2 and 3 in green, start points blue 

The processing was based on the detector descriptor pair FAST/SIFT. The 

horizontal movement between epoch 0 and 1 can be seen as red deformation 

vectors in Figure 81a. The endpoints of these vectors are illustrated in the form 
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of small red crosses. Figure 81b shows the consecutive deformation consisting 

of a rotation, illustrated in blue. The beginnings of the deformation vectors are 

marked in red whereas the endpoints have the same color as the lines. Figure 

81c shows a slight rotation and larger horizontal displacement in the opposite 

direction as the previous movements. The green deformation vectors start at 

positions marked with a blue cross. 

Most deformation vectors only connect two measurement epochs. A continuous 

tracking of the occurred deformation over all epochs is however possible by 

interpolation due to the sufficiently high density of deformation vectors. 

 

Figure 82: 3D VRML model of deformation vectors between epoch 0, 1 and 2 

The deformation vectors can also be directly analyzed in 3D using the VRML 

format and a suitable 3D viewer. Figure 82 shows the deformation vectors 

between epoch 0, 1 and 2 in 3D. The vectors are displayed via a gradual color 

change from red to yellow between epoch 0 and 1, and a change from yellow to 

green between epoch 1 and 2. This method allows a simple yet efficient analysis 

of the calculated results directly in 3D. 
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8.5 Conclusion and interpretation 

The evaluation of field trial measurement data using the developed processing 

chain allowed an end to end testing of the system design from data acquisition 

to the final processing. The results were assessed and validated using ground 

truth theodolite measurements. The full used processing chain was described 

and executed with different detector, descriptor combinations. Furthermore, 

processing runs with and without LSM sub-pixel refinement were executed. To 

reduce possible mismatches to a minimum a global geometrical epipolar outlier 

filtering was applied in between stereo measurements and a local RSOC filter 

was used for different temporal measurement epochs preserving the matched 

deformation which would violate a global outlier detection model.  

The timing of the fastest available detector/descriptor combination without 

LSM refinement shows values around 11 seconds for a full processing and 

multi-temporal connection of two stereopairs from different measurement 

epochs resulting in 3D deformation vectors. Considering the fact that some 

components are not implemented as efficiently as they could be and the used 

processing hardware is not up to date, an evaluation within 5 to 6 seconds 

required for a fully continuous monitoring is reachable. The mean accuracy of 

this fast processing run was compared with other detector, descriptor 

combinations including LSM refinement and was found to be in good 

agreement. However, the refinement process reduces the standard deviation of 

measurements.  

Because of unfavorable weather conditions in the field trial in Graz Weinzödl 

the reference measurements were carried out only as polar distance 

measurements. Caused by IATS calibration issues a systematic deviation 

between IATS and TPS measurements occurred in the range of around 2.5 mm. 

However, measurement errors could not sufficiently be evaluated due to an 

insufficient coverage with accurately measured ground control points. For these 

reasons another field trial had to be carried out to capture reference data in 

higher accuracy. 

The reference data of the second field trial in Pellheim, Germany, was captured 

from two TPS positions. A network adjustment lead to an accuracy of ±3 mm 

for the signalized corner points on the moved artificial rock. The mean length of 

the resulting automatically derived 3D deformation vectors showed deviations 

of only between 0.4 mm and 1.2 mm from the reference measurements at an 

IATS distance of 261 m and 292 m from the object. LSM refined matches lead to 

a standard deviation of better than ±2.0 mm whereas unrefined results where 

only below ±6.5 mm varying for different detector, descriptor pairs. 
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The comparison of IATS with TLS illustrate that the IATS based system is able 

to compete with TLS, in terms of accuracy. When it comes to measurement set-

up and data acquisition time the IATS system is more complex and time 

consuming. If dense point clouds are calculated from IATS data longer 

processing times in the range of multiple hours, depending on the size of the 

image bundle and the set resolution of the panorama, for the mosaicking and 

dense matching process have to be accepted. In this case also a parallel data 

acquisition and processing is not possible as the full panoramas have to be 

available before they can be evaluated. These points are the main reasons the 

processing chain developed in this thesis is focused on continuous pairwise 

evaluations of stereo-images and their connection to the temporally adjacent 

measurement epochs and not the calculation of dense 3D point clouds. This 

way data acquisition and evaluation can be executed in parallel in about 5-6 

seconds per image (on suitable processing hardware) automatically leading to 

already temporally connected 3D deformation vectors. The whole method 

however, is limited by the need of illumination and sufficient texture on the 

measured object. 
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9 Conclusions 

The main objective of this thesis was to develop a photogrammetric processing 

chain for oriented image bundles, acquired with a stereo set-up of “Image 

Assisted Total Stations”. The work was targeted at the task of continuous rock 

slope deformation assessment from measurements taken in consecutive 

intervals, so called measurement epochs, in order to determine and monitor 

objects which may be at risk of undergoing deformation. 

Therefore a processing chain for the automated calculation of 3D deformation 

vectors based on IATS image data was developed and evaluated. After 

appropriate system calibration and set-up the accuracies lie in a similar range as 

manually executed point measurements on signalized targets. However, these 

results can be retrieved automatically, solely based on image texture and the 

detection of dozens or even hundreds of deformation vectors is only a matter of 

seconds.  

This aspect represents the main advantage of an IATS based measurement 

system in combination with appropriate image analysis: the resulting 3D point 

density can reach similar values as a laser scan combined with the accuracy of 

conventional theodolites. In comparison to TLS the IATS based angle 

measurements, like conventional theodolite measurements do not have the 

issue of large laser beam footprints. On the other hand small patches of image 

texture around points are still necessary to automatically calculate homologues 

points needed to retrieve the 3D coordinates. Further statistical error 

information such as error ellipses for each calculated 3D point can be derived. 

This requires the calculation of the forward intersection as a constrained 

adjustment as described in Section 6.4 and was not performed in the conducted 

field experiments. However, for the Pellheim experiment the accuracy range to 

be expected was calculated based on the measurement configuration (Section 

8.4.2.2) leading to an error ellipse with semi-axes of 14.4 mm and 2.1 mm and a 

Helmert point error of 14.6 mm for a set-up with a baseline of around 84 m and 

a mean distance to the object of 261 m and 292 m for the respective stations.  

For IATS direct point to point connections over multiple measurement epochs 

based on image texture are possible, directly leading to 3D deformation vectors. 

Laser scans can only be registered using the structure of the object without the 

possibility to retrieve direct point to point correspondences without signalized 

targets. Therefore the method is especially well suited to detect deformations in 

lateral direction which may not be recognizable in laser scans in case of 

insufficient structural variation in the scanned region. In the Pellheim 

experiment a well-defined target was moved to create an artificial deformation. 
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In this case it is unproblematic for an automated algorithm to register laser 

scans. The high point density of the scans generally mitigates the aperture 

problem. In contrast, the necessary aperture to calculate homologous points in 

images only consists of small patches of texture around the points, depending 

on the scale of the point and the used algorithm and is therefore far smaller 

than the larger patch needed for a laser scan registration. 

Using suitable instrument control software a continuous data acquisition and 

parallel evaluation using the developed processing chain is possible leading to 

an automated deformation monitoring system, thereby fulfilling the main 

objective of this thesis.  

In order to reach these results many distinctive underlying processing steps are 

necessary. This thesis focused on developing, evaluating and combining these 

components to a full workflow. In order to automatically retrieve direct 3D 

deformation vectors the concept of feature detection and matching was applied. 

Various state of the art methods were developed and evaluated based on 

synthetic reference data. As mismatches can lead to wrong deformation alerts 

they cannot be tolerated in the evaluation. For that reason they were reduced by 

a set of specialized filters based on local or global geometric constraints. For 

further refinement of the acquired feature correspondences the LSM method 

was successfully implemented and evaluated.  

The in depth evaluation of all methods lead to a set of algorithms which can be 

processed in the same amount of time necessary to capture a new stereopair of 

images. This allows a possible fully continuous monitoring. The second set of 

algorithms offers a higher accuracy but is more time consuming leading to 

longer necessary measurement intervals. 

The developed processing chain was evaluated using test data from two 

executed measurement campaigns and compared to captured ground truth 

data from TPS and TLS measurements. The first experiment (Section 8.4.1) lead 

to a systematic offset of IATS measurements from the TPS reference in the range 

of 2.5 mm, due to IATS calibration issues. The evaluation of the second 

experiment (Section 8.4.2) showed a good accordance of IATS and TPS as well 

as of IATS and TLS measurements.  

Based on these results it can be stated that the IATS system combines the 

strength of a theodolite based measurement system in terms of highest accuracy 

and the high point density and automated processing of a terrestrial laser 

scanner. Furthermore, it is possible to calculate a statistical evaluation of each 

measured point. Due to the fact that errors in an IATS system, set up with a 
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shorter baseline to increase matching accuracy, mainly occur perpendicular to 

the base the system also shows a high complementarity with TLS or polar 

distance measurements. 

Leica Geosystems equipped their new total station MS50 with a five megapixel 

camera coaxial to the optical path of the telescope opening up the described 

field of IATS based measurements for commercial operators and other 

manufacturers are likely to follow. The MS50 also includes a limited laser 

scanning functionality therefore perfectly integrating the described 

complementarity of passive and active vision based sensors. 

Another exciting field of future application of this technology is based on 

cheaper, less accurate angle measurement devices: so called pan-tilt units. In 

combination with more advanced processing algorithms including for example 

bundle adjustment methods may pave the way to a wide spread distribution 

and use of this class of devices. This indicates an overall trend from laser 

scanners to image-based sensors for many applications.  

The possibilities arising from industrial versions of IATS may have a significant 

impact on the field of surveying leading to a fusion of ideas and methods from 

conventional geodesy and photogrammetry. 
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11 List of Abbreviations 

 

Abbreviation Meaning 

IATS Image Assisted Total Station 

AIMS Analytical Industrial Measuring System 

API Application Programming Interface 

BETS Brunson Electronic Triangulation System 

BRIEF Binary Robust Independent Elementary Features 

BRISK Binary Robust Invariant Scalable Keypoints 

CCD Charge-Coupled Device 

CenSurE Center Surround Extremas 

DGPS Differential GPS 

CMOS Complementary Metal-Oxide-Semiconductor 

CPU Central Processing Unit 

DEM Digital Elevation Model 

DE-MONTES Deformation Monitoring by High-resolution Terrestrial Long Range Sensing 

DoG Difference of Gaussians 

DoH Determinant of the Hessian 

ECDS Electronic Coordinate Determination System 

FAST Features from Accelerated Segment Test 

FREAK Fast Retina Keypoint 

GB Gigabyte 

GOCA GPS-based Online Control and Alarm System 

GPS Global Positioning System 

GUI Graphical User Interface 

HD High Definition 

HFVM Hierarchical Feature Vector Matching 

HoG Histograms of oriented Gradients 

ICP Iterative Closest Point 

IDS Imaging Development Systems 

IEEE Institute of Electrical and Electronics Engineers 

i-MeaS Intelligent Image-Based Measurement System for Geo-Hazard Monitoring 

IO Input Output 
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Abbreviation Meaning 

IR Infrared 

LIOP Local Intensity Order Pattern 

LSM Least Squares Matching 

MB Megabyte 

MROGH Multisupport Region Order-Based Gradient Histogram 

MRRID Multisupport Region Rotation and Intensity Monotonic Invariant Descriptor 

MSER Maximally Stable Extremal Regions 

NCC Normalized Cross Correlation 

ORB Oriented Robust BRIEF 

PC Personal Computer 

RAM Random Access Memory 

RANSAC Random Sample Consensus 

RGB Red Green Blue 

RMS Root Mean Square 

ROI Region Of Interest 

RSOC Restricted Spatial Order Constraints 

SD card Secure Digital Memory card 

SIFT Scale Invariant Feature Transform 

SURF Speeded Up Robust Features 

SUSAN Smallest Uni-Value Segment Assimilating Nucleus 

SVD Singular Value Decomposition 

TIN Triangulated Irregular Network 

TLS Terrestrial Laser Scanning 

TPS Total Positioning System 

VGA Video Graphics Array 

VRML Virtual Reality Modelling Language 

Wi-Fi WLAN products that are based on the IEE's 802.11 standards 

WLAN Wireless local area network 

XGA Extended Graphics Array 
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12 Appendix 

A. Evaluation of feature detection methods 

 

Table 18: Evaluation of corner based feature detectors without image pre-processing 

ID FAST ORB BRISK HARRIS PyrHARRIS 

 Number of detected features 

  Processing time [sec] 

01 1559 0.0055 2075 0.0250 2587 0.1308 1677 0.6757 1131 0.9294 

02 1896 0.0044 1636 0.0488 1692 0.0742 2090 0.7447 1258 1.0245 

03 2882 0.0056 2261 0.0301 3654 0.1381 2209 0.6785 2754 0.9249 

04 2657 0.0058 2387 0.0199 2791 0.1046 2406 0.6998 1241 0.9322 

05 1850 0.0056 2299 0.0329 2533 0.0998 2258 0.6720 2872 0.9261 

06 1277 0.0063 903 0.0182 1483 0.1066 387 0.6858 414 0.9164 

07 1007 0.0051 3 0.0119 1275 0.0857 7 0.6706 12 0.9138 

08 2859 0.0069 185 0.0110 2602 0.1031 2740 0.6753 1373 0.9238 

09 1168 0.0051 1451 0.0527 3209 0.1465 2096 0.7029 1005 0.9816 

10 1404 0.0052 1557 0.0543 3317 0.1485 756 0.6963 825 0.9654 

Ø ~1856 0,0056 ~1527 0,0443 2463 0,1032 ~1663 0,6902 ~1289 0,9438 

 

Table 19: Evaluation of blob based feature detectors without image pre-processing 

ID DoH STAR DoG MSER 

 Number of detected features 

  Processing time [sec] 

01 1151 0.3571 2636 0.2726 2412 1.9063 1972 0.9756 

02 1224 0.3389 2026 0.2749 1055 2.4436 264 0.5658 

03 1512 0.3377 1976 0.2687 2215 2.0419 2414 0.8165 

04 1466 0.3617 2115 0.2672 2301 1.8760 1578 0.8652 

05 2034 0.3419 2840 0.2679 2247 2.1071 3279 1.0647 

06 1082 0.3484 1264 0.2706 1791 2.0739 1201 0.9263 

07 1494 0.3871 2260 0.2718 847 2.3813 14 0.4226 

08 1181 0.3416 2264 0.2677 2762 2.3274 288 0.5533 

09 1254 0.3389 1995 0.2896 1945 1.9006 1172 1.1112 

10 1354 0.3391 2206 0.2884 717 1.9159 726 0.9581 

Ø 1375,2 0,3492 2158,2 0,2739 1829,2 2,0974 1290,8 0,8259 
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Table 20: Evaluation of corner based feature detectors with adaptive histogram equalization 

ID FAST ORB BRISK HARRIS PyrHARRIS 

 Number of detected features 

  Processing time [sec] 

01 1796 0.0068 1753 0.0763 3196 0.1554 785 0.6818 2315 0.9336 

02 1538 0.0046 2296 0.1813 2322 0.0918 2277 0.9704 3008 1.0288 

03 2707 0.0068 1967 0.1057 2497 0.1025 1704 0.6841 2549 0.9294 

04 2649 0.0055 2577 0.0948 3957 0.1181 2490 0.6733 3287 0.9343 

05 1904 0.0067 2131 0.1102 3082 0.1111 2038 0.6881 2904 0.9507 

06 1677 0.0058 2075 0.0621 2655 0.1194 893 0.6954 2462 0.9231 

07 2790 0.0074 2677 0.0970 1692 0.0763 2633 0.6821 3499 0.9348 

08 1510 0.0048 2478 0.1029 3095 0.1200 2140 0.6817 3151 0.9377 

09 2173 0.0063 2113 0.2120 2913 0.1190 2097 0.6933 2861 0.9568 

10 2629 0.0064 2334 0.2077 3038 0.1209 1542 0.7037 3107 0.9649 

Ø ~2137 0.0061 ~2240 0.1250 ~2845 0.1135 ~1860 0.7154 ~2914 0.9494 

 

Table 21: Evaluation of blob based feature detectors with adaptive histogram equalization 

ID DoH STAR DoG MSER 

 Number of detected features 

  Processing time [sec] 

01 875 0.3431 2438 0.2726 1768 1.8710 1595 1.3043 

02 1481 0.3366 3096 0.2742 2698 1.9896 849 1.2230 

03 1331 0.3413 1747 0.2682 1861 2.0519 3974 1.5321 

04 2419 0.3606 2050 0.2786 2400 2.0114 2530 1.3777 

05 1256 0.3399 2682 0.2655 2101 2.0903 2373 1.2644 

06 1611 0.3937 1869 0.2739 1388 1.8841 1375 1.3532 

07 2168 0.3645 1668 0.2733 1217 1.8724 1415 1.1577 

08 1394 0.3463 2115 0.2734 2497 1.9487 1416 1.3393 

09 1762 0.3378 2213 0.3023 2384 2.0211 1880 1.7387 

10 1957 0.3427 2317 0.2926 663 1.8879 1975 1.7262 

Ø 1625.4 0.3507 2219.5 0.2775 1897.7 1.9628 1938.2 1.4017 
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B. Visual evaluation of detected feature distribution 

 

 

 

Figure 83: Feature distribution on homogeneous rock wall, before and after adaptive 

histogram equalization 
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Figure 84: Feature distribution on debris above parts of a homogeneous rock wall 
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Figure 85: Feature distribution on homogeneous rock wall mixed with inhomogeneous 

debris 
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Figure 86: Feature distribution on in-homogenous debris (image cropped) 

 

 

 

Figure 87: Feature distribution on cracked rock wall (image cropped) 
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Figure 88: Feature distribution on weakly textured clay wall (image cropped) 
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C. Feature detector performance evaluation charts 

 

 

Figure 89: Localization accuracy on cast shadow, cracked rock, clay wall and scale change 

data-sets 

 

 

Figure 90: Detector repeatability on cast shadow, cracked rock, clay wall and scale change 

data-sets 



Appendix 

166 

 

 

Figure 91: Brick Wall increasing viewpoint data-sets detector localization accuracy 

 

 

Figure 92: Brick Wall increasing viewpoint data-sets detector repeatability 
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D. Feature descriptor performance evaluation charts 

 

 

Figure 93: Matches from descriptors on BRISK features as fraction of maximally possible 

matches, divided in correct and incorrect matches 

 

 

Figure 94: Matches from descriptors on BRISK features computed with AHE pre-processing 
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Figure 95: Matching accuracy on BRISK features including empirical standard deviation on 

logarithmic scale 

 

 

Figure 96: Matching accuracy on BRISK features computed with AHE pre-processing 
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Figure 97: Matches from descriptors on DoH features 

 

 

Figure 98: Matching accuracy on DoH features 

 



Appendix 

170 

 

Figure 99: Matches from descriptors on DoH features with additional outlier filtering 

 

 

Figure 100: Matching accuracy on DoH features with additional outlier filtering 
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Figure 101: Matches on DoG features 

 

 

Figure 102: Matching accuracy on DoG features 

 



Appendix 

172 

 

Figure 103: Matches on DoG features with additional outlier filtering 

 

 

Figure 104: Matching accuracy on DoG features with additional outlier filtering 
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Figure 105: Matches from descriptors on FAST features 

 

 

Figure 106: Matching accuracy on FAST features 
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Figure 107: Matches on FAST features with additional outlier filtering 

 

 

Figure 108: Matching accuracy on FAST features with additional outlier filtering 
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Figure 109: Matches on HARRIS features 

 

 

Figure 110: Matches on HARRIS features computed with AHE pre-processing 
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Figure 111: Matching accuracy on HARRIS features computed with AHE pre-processing 

 

 

Figure 112: Matches on HARRIS features computed with AHE with outlier filtering 
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Figure 113: Matching accuracy on HARRIS features computed with AHE with outlier 

filtering 

 

 

Figure 114: Matches on Pyramid HARRIS features with additional outlier filtering 
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Figure 115: Matching accuracy on Pyramid HARRIS features with additional outlier filtering 

 

 

Figure 116: Matches on MSER features computed with AHE 
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Figure 117: Matches on MSER features computed with AHE with outlier filtering 

 

 

Figure 118: Matching accuracy on MSER features computed with AHE with outlier filtering 
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Figure 119: Matches on ORB features computed with AHE 

 

 

Figure 120: Matching accuracy on ORB features computed with AHE 
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Figure 121: Matches on ORB features computed with AHE with outlier filtering 

 

 

Figure 122: Matching accuracy on ORB features computed with AHE with outlier filtering 
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Figure 123: Matches on STAR features 

 

 

Figure 124: Matches on STAR features with additional outlier filtering 
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Figure 125: Matching accuracy on STAR features with additional outlier filtering 
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E. Least squares refinement performance evaluation charts 

 

 

Figure 126: Average fraction of filtered correct matches of possible matches from LSM with a 

window size of 9 pixels applied to all detectors and descriptors over all data-sets including 

standard deviation 

 

Figure 127: Average fraction of filtered correct matches of possible matches from LSM with a 

window size of 9 pixels and a back-matching distance of less than 0.1 pixel 
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Figure 128: Average fraction of filtered incorrect matches of possible matches after LSM with 

window size of 9 pixels 

 

Figure 129: Average fraction of filtered incorrect matches of possible matches after LSM with 

window size of 9 pixels and a back-matching distance of less than 0.1 pixel 
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Figure 130: Average LSM accuracy for all detectors and descriptors over averages of all data-

sets including standard deviation with an LSM window size of 9 pixels 

 

Figure 131: Average LSM accuracy for all detectors and descriptors over averages of all data-

sets including standard deviation with an LSM window size of 9 pixels and a back-matching 

distance of less than 0.1 pixel 
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Figure 132: Average fraction of filtered correct matches of possible matches from LSM with a 

window size of 31 pixels 

 

Figure 133: Average fraction of filtered incorrect matches of possible matches after LSM with 

window size of 31 pixels 
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Figure 134: Average LSM accuracy with an LSM window size of 31 pixels 
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F. Adjustment report (TPS network Pellheim) 

 

 

Errors of coordinates =========================================================  

 

A,B = Semi-major, semi-minor axis of the confidence ellipse (S = 95.00 %)  

Phi = Bearing of the semi-major axis 

 

Point number ----- Position --- Phi ------- A ------- B ---- Height ----------- 

                     (m)       (gon)       (m)       (m)      (m)  

       IATS0        0.0024     33.08     0.0057    0.0020    0.0009  

       IATS1        0.0025     47.09     0.0058    0.0024    0.0010  

      IATS10        0.0078     40.25     0.0170    0.0090    0.0026  

      IATS11        0.0099     64.01     0.0220    0.0106    0.0015  

        K1.1        0.0027      0.82     0.0059    0.0031    0.0019  

        K1.2        0.0027      0.26     0.0059    0.0031    0.0019  

        K1.3        0.0028      1.98     0.0059    0.0037    0.0019  

        K1.4        0.0027      1.05     0.0059    0.0031    0.0019  

        K2.1        0.0027      0.80     0.0059    0.0031    0.0019  

        K2.2        0.0028      2.12     0.0059    0.0037    0.0019  

        K2.3        0.0027      0.80     0.0059    0.0031    0.0019  

        K2.4        0.0028      2.12     0.0059    0.0037    0.0019  

        K3.1        0.0028      1.96     0.0059    0.0037    0.0019  

        K3.2        0.0027      1.02     0.0059    0.0031    0.0019  

        K3.3        0.0028      1.94     0.0059    0.0037    0.0019  

        K3.4        0.0027      0.99     0.0059    0.0031    0.0019  

        K4.1        0.0027      0.84     0.0059    0.0031    0.0019  

        K4.2        0.0028      2.15     0.0059    0.0037    0.0019  

        K4.3        0.0027      0.85     0.0059    0.0031    0.0019  

        K4.4        0.0027      1.07     0.0059    0.0031    0.0019  

          LS        0.0043    180.77     0.0103    0.0021    0.0015  

        MS50        0.0023    199.84     0.0055    0.0011    0.0008  

          T1        0.0027      5.27     0.0060    0.0029    0.0008  

          T2        0.0033     19.52     0.0075    0.0031    0.0014  

          T3        0.0031    196.83     0.0071    0.0031    0.0014  

          T4        0.0025      2.83     0.0055    0.0029    0.0008  

     TPS1200        0.0024    133.06     0.0050    0.0030    0.0009 
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G. Adjustment report (TPS network Weinzödl) 

 

 

Errors of coordinates =========================================================  

 

A,B = Semi-major, semi-minor axis of the confidence ellipse (S = 95.00 %)  

Phi = Bearing of the semi-major axis 

 

Point number ----- Position --- Phi ------- A ------- B ---- Height ----------- 

                     (m)        (gon)    (m)      (m)        (m) 

              1       0.0059   112.50   0.0108   0.0094     0.0098 

              3       0.0060   160.54   0.0113   0.0096     0.0097 

              4       0.0060     8.81   0.0111   0.0096     0.0097 

              5       0.0055    53.07   0.0101   0.0089     0.0097 

              6       0.0061   153.53   0.0114   0.0098     0.0098 

              7       0.0065   156.72   0.0116   0.0103     0.0102 

              8       0.0040   155.00   0.0074   0.0063     0.0062 

              9       0.0061   158.59   0.0114   0.0098     0.0097 

             10       0.0069   164.12   0.0138   0.0118     0.0113 

             11       0.0066   166.28   0.0123   0.0105     0.0104 

             12       0.0045   167.93   0.0083   0.0071     0.0071 

             13       0.0035   168.10   0.0067   0.0055     0.0054 

             14       0.0045   170.22   0.0083   0.0071     0.0071 

          IATS0       0.0045   167.55   0.0102   0.0044     0.0043 

          IATS1       0.0059    59.61   0.0109   0.0049     0.0047 
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H. Pointmatching tool command line options 
--------------------------------------------------------------------------------------- 

   mandatory parameters: 

    -l leftinputfile -r rightinputfile 

   optional parameters : 

    -thres threshold feature detection response threshold  (Default = 0.001) 

    -u run in rotation variant mode     (Default = false) 

    -o octaves number of octaves to calculate   (Default = 3) 

    -i intervals number of intervals per octave   (Default = 4) 

    -is sampleStep sampling step in pixel           (Default = 2) 

    -Detector det The interest point detector to be used, options are 

           FAST, ORB, BRISK, HARRIS, PyramidHARRIS, SURF, SIFT  (Default SURF) 

    -Descriptor desc The interest point descriptor to be used, options are 

           ORB, BRISK, FREAK, SIFT and SURF (Default SURF) 

    -Matcher The matching method to be used, options are 

           FlannBased, BruteForce, BruteForce-Hamming (Default BruteForce) 

    -loadOrientation L.cal R.cal dMaxEpipolarLineDeviation 

           Use known image orientation to restrict matching (Default = false) 

    -matchRatio ratio similarity ration for matching   (Default = 0.65) 

    -he global histogram 191qualization    (Default = false) 

    -ahe nTilesX nTilesY fContrastLimit if no additional parameter specified: 8 8 none 

     (contrast limited) adaptive local histogram equal.  (Default = false) 

    -outList list path to save output list         (Default = Corresp.ip) 

    -savePts save index scale & response additionally for points (Default = false) 

    -outImgCorrespList list path to save corresp. List  (Default = ImgCorr.ip) 

    -descriptors img1.desc img2.desc feature vectors of matches (Default = no save) 

    -maxPoints 100 keep only the best N matches     (Default = 100000) 

    -outImg img1 img2 path to save output images       (Default = no save) 

    -lines 1 draw lines btw. stereo-points with given width [px] (Default = false) 

    -allPoints draw all found points            (Default = false) 

    -windows draw descriptor windows for points    (Default = false) 

    -montage img path of images stereo montage    (Default = no save) 

    -divide 4 divide into tiles. pts are detected separately  (Default = none) 

    -outlierDetect 20 fundamental matrix for outlier detection (Default = none) 

           plus restrictivity of RANSAC [px] if no number given LMEDS will be used   

    -h use Homography for outlier detection (with outlierDetect)  (Default = false) 

    -filterEpipolarSpikes nNeighbors fMaxDeviationFactor filter points by comparing 
  horizontal position on epipolar line with nNeighbors. Allow a deviation from mean 
  1(+/-)fMaxDeviationFactor. Defaults: nNeighbors = 5, fMaxDeviationFactor = 0.2 

    -filterDisparityDistanceAndAngle KNN fMaxDistDev fMaxAngle filter by deviation of 
  disparity distance or angle within KNN neighbors mean: 1(+/-)DistDev & Angle[gon] 
      defaults: KNN = 5, fMaxDistDev = 0.2 fMaxAngle = 10.0 

    -addMatches add points consistent w. outlier model as matches (Default = false) 

    -multipleHomographies calculate multiple homographies with outliers of previous ones 

    -MatchCorners nCornerSize estimate homography from first matching run, then match 
  patches of given sidelength [px] around corners of calculated image intersection a 
  second time. No patch size given, imagesize/3 will be used  (Default = false) 

    -RANSAConly corresp.ip load points and perform RANSAC   (Default = no) 

    -batch write image correspondences      (Default = no) 

    -loadPts corresp.ip load ip coordinates from file (Default = no) 

    -loadDescs img1.desc img2.desc load descriptors from file. if only 1 is given it 
  will be matched with image2. format as -descriptors  (Default = no) 

    -templateBasedOutlierDetection 4 10 0.5 scale up factor of batches, batch size 
  factor, accuracy (Default = no) 

    -mask strMaskImage pixels with value 0 in mask will be excluded 

    -LSM enter (all in one line - surrounded with quotes): (Default = no) 

           "windowsize iterations converge numparams BMdist bLSMOnly" 


