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“If you don’t know anything about computers, just remember that they are machines
that do exactly what you tell them but often surprise you in the result.”

—Richard Dawkins





Abstract

The scope of this thesis was to investigate the electronic properties of the recently discov-
ered iron-based superconductors. This new kind of high-temperature superconductors
exhibits a rich low energy band structure and superconductivity is observed in close prox-
imity to a magnetically ordered phase. It was our aim to study the electronic behavior
and electronic susceptibilities to shed light on the evolution of the critical superconduct-
ing temperatures with doping or pressure.

We developed a new implementation of the tetrahedron method that allows us to cal-
culate bare susceptibilities from first-principles without approximations in an efficient
way and utilized this program to obtain bare susceptibilities for a large number of dif-
ferent iron-based superconductors. Of all the calculations we performed, we will present
two prototypical examples in this manuscript. The first is LaFeAsO, where supercon-
ductivity can be achieved by electron doping. We determined the bare susceptibilities
with different concentrations of doping and compared our results with the experimen-
tally observed behavior of the critical superconducting temperature. The second case is
that of FeSe, where the superconducting temperature increases drastically when pres-
sure is applied. Here again, we computed susceptibilities for different hydrostatic and
non-hydrostatic pressure and confronted our results with measurements on Tc. While
the trends in the critical temperature could not be unambiguously linked to the suscep-
tibilities, we could demonstrate that susceptibilities, even in the non-interacting case,
are quantities with relevant physical information in the whole Brillouin zone and for
any continuative theory that considers interactions, the precise knowledge of these bare
quantities is therefore essential.

We also present calculations on the newly synthesized iron-based superconductor
LiFeO2Fe2Se2. This compound features two non-equivalent iron atoms and has a much
richer low-energy band structure than the usual iron-based superconductor. To inves-
tigate the electronic and magnetic properties of this compound, we employed not only
methods based on density functional theory, but also included correlations in the frame-
work of dynamical mean field theory. We demonstrated that this compound displays
two different realizations of correlation effects due to Hund’s coupling, caused by the
different valences of the two non-equivalent iron atoms and that due to the inclusion of
correlations, the usual iron-based superconductor Fermi surface is restored.

We are confident that important developments in the understanding of the physics of
iron-based superconductors have been accomplished in the course of this PhD project.
Additionally, we introducted a state-of-the-art full potential ab initio method to accu-
rately and efficiently calculate bare susceptibilities, which are important quantities for
many different physical properties.
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Kurzfassung

Das Ziel dieses Doktoratsprojektes lag in der Erforschung der elektronischen Eigen-
schaften der erst kürzlich entdeckten, eisenbasierten Supraleitern. Diese neuartige Klasse
von Supraleitern besitzt eine komplexe, niederenergetische Bandstruktur und die Supra-
leitung findet in direkter Nähe zu einer magnetisch geordneten Phase statt. Theorien,
die von schwacher Wechselwirkung ausgehen, bringen die Spinsuszeptibilität mit dem
Paarungsmechanismus der Supraleitung in Verbindung. Wir haben es uns zur Aufgabe
gemacht herauszufinden, ob das Verhalten der kritischen Supraleitungstemperatur als
Funktion der Dotierung oder der Druckausübung bereits in der nicht-wechselwirkenden
Suszeptibilität sichtbar ist.

Dazu haben wir eine neue Variante der Tetraedermethode entwickelt, die es uns
erlaubt, nicht-wechselwirkende Suszeptibilitäten ausgehend von ab initio Rechnungen
akkurat zu bestimmen. Derartige Rechnungen wurden für eine Vielzahl verschiedener
eisenbasierter Supraleiter durchgeführt, von denen zwei prototypische Beispiele in diesem
Manuskript präsentiert werden. Zum einen zeigen und diskutieren wir nicht-wechsel-
wirkende Suszeptibilitäten für LaFeAsO mit verschiedenen Dotierungskonzentrationen
und zum anderen für FeSe unter verschiedenen Drücken, und stellen unsere Ergebnisse
denen von Experimenten gegenüber. Obwohl das Verhalten der kritischen Temperatur
nicht eindeutig in den nicht-wechselwirkenden Suszeptibilitäten erkennbar ist, konnten
wir zeigen, dass die Suszeptibilitäten selbst im nicht-wechselwirkenden Fall in der ganzen
Brillouin-Zone wichtige Beiträge besitzen. Für jede weiterführende Theorie ist ihre
genaue Kenntnis daher von großer Bedeutung.

In den späteren Kapiteln präsentieren wir eine umfassende Untersuchung der elektro-
nischen Eigenschaften des Supraleiters LiFeO2Fe2Se2. Im Zuge dieser Arbeit verwen-
deten wir eine Vielzahl von Methoden, die nicht nur auf die Dichtefunktionalstheorie
beschränkt sind, sondern auch die Dynamische Molekularfeld-Theorie miteinbeziehen.
Abgesehen davon, dass dieses Material ein sehr interessantes niederenergetisches Verhal-
ten im Rahmen der Dichtefunktionalstheorie zeigt, konnten wir zeigen, dass es einen
selten Fall darstellt, indem verschiedene Effekte der Hund’schen Kopplung auf ein-
mal auftreten. Dies ist begündet in der Tatsache, dass dieser Supraleiter zwei nicht-
equivalente Eisenatomen beinhaltet, die unterschiedliche Valenzen aufweisen.

Wir sind davon überzeugt, dass mit dieser Arbeit ein wichtiger Beitrag zum besseren
Verständnis der Supraleitung in eisenbasierten Materialien geliefert wurde. Darüber
hinaus Wir stellten ein sehr leistungsfähiges Programm zur Berechnung nicht-wechsel-
wirkender Suszeptibilitäten vor, die wichtige Größen in Bezug auf viele physikalische
Eigenschaften sind.
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Chapter 1.

Introduction

In the course of this thesis we investigated electronic properties of iron-pnictides and
iron-chalcogenides [1, 2] to shed light on the underlying physics of their unconventional
superconductivity.

This new class of high-temperature (high-Tc) superconductors has caught a lot of
attention in the scientific community. The research interest is founded in the fact that
magnetism and superconductivity (SC) have long been thought of as being mutually
exclusive, while in iron-based superconductors (FeSCs) an iron atom is present in the
active layer. Additionally, in contrast to cuprates, a direct doping of the active layer
can be achieved. Since the discovery of the first FeSC in 2006 [3], a plethora of new
compounds have been synthesized and studied extensively. For many materials among
the FeSCs, a single-stripe antiferromagnetic (AFM) order was found experimentally to
be the ground state for the parent compounds [4–6]. When the compounds are doped or
pressure is applied, this AFM ordered phase vanishes to the benefit of a superconducting
one [7]. A schematical depiction of a prototypical FeSC phase diagram1 is presented in
Fig. 1.1. At high temperatures, the materials are in a paramagnetic phase (indicated by
PM) and upon cooling develop a long range AFM order or superconductivity, depending
on the doping concentration. In most of these materials, also a structural transition
from the tetragonal phase to phases of lower symmetry takes place. We will in this
work, however, not discuss the implications of the structural transitions and refer the
reader to Refs. [9–15] and references therein.

The occurrence of the superconducting phase was attributed to the very special low-
energy electronic structure of FeSCs. Theoretical studies showed that the Fermi surface
of almost all of these compounds has at least two electron and two hole cylinders of
quasi two-dimensional shape. The two hole cylinders are centered at the Brillouin zone
(BZ) center, while the electron pockets located at the corners of the BZ (see for example
Ref. [16] or Sec. 6 of this work). Due to the very similar radii, the pockets can be aligned
with the nesting vector qN = (πa ,

π
a ), and give rise to a single-stripe antiferromagnetic

ordering in an itinerant model of magnetism [17–19]. Although density functional the-
ory (DFT) methods can most of the time reproduce the observed Fermi surfaces, they
fail with predicting the magnitude of the magnetic moments [20, 21]. This is due to
the fact that DFT calculations are mean-field by nature and therefore do not account
for renormalization effects due to spin fluctuations, which usually suppress long-range
magnetic orders [22]. This results in theoretically calculated magnetic moments that are

1reproduced from Ref. [8] with kind permission of the publisher
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Chapter 1. Introduction

Figure 1.1.: Schematic drawing of the phase diagram of a typical pnictide high-Tc su-
perconductor, reprinted with permission from Macmillan Publishers Ltd:
Nature Communications 4, 1914, Blomberg et al., copyright 2013. Tet/PM
stands for the tetragonal, paramagnetic phase, Ort/AFM for the orthorhom-
bic antiferromagnetic phase and SC for the superconducting one.

considerably larger than the experimentally measured ones [23–25]. Moreover, magnetic
order has been predicted for materials that exhibit no magnetism in experiments [20].
This issue is improved by including the effects of interaction and correlations, as can be
done for example within the dynamical mean-field theory (DMFT) [26–28].

With respect to the origin of SC, it was pointed out very early that phonons can-
not yield the major pairing contributions [29, 30], a fact that has been reinforced by
experiments on the isotope effect [31]. It was also soon realized that the physics of the
superconducting phase is more involved than in the case of cuprates due to the multi-
band nature of the electronic excitations [32]. Because of the close proximity of AFM
and SC, Mazing et al. [33] suggested a sign-changing s-wave superconducting state (s±),
where the spin fluctuations that arise around the Fermi surface nesting vector are held
responsible for the superconducting pairing. In this scenario, which is based on the idea
by Berk and Schrieffer [34] that spin correlations can lead to superconducting pairing, a
peak in the spin susceptibility is charactersitic for the occurring attractive interactions
between the electrons. Even though the spin interaction is repulsive, a superconducting
pairing can take place when the order parameter of SC changes its sign along the Fermi
surface. This sign change and the respective spin propagator for the superconducting
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pairing can be related to a enhancement of the imaginary part of the transverse spin
susceptibility, which also implies an instability of the system towards a magnetic or-
der [25, 35–38]. This view has been strenghened by INS experiments, which observed
that the spin fluctuations and the holes of the Fermi surface vanish together upon elec-
tron doping, suggesting that the electronic band structure is indeed closely connected to
the magnetic fluctuations in these materials [39–42].

To elucidate the mechanisms behind magnetic order and superconductivity in FeSCs,
a detailed knowledge of the spin susceptibility is therefore needed. With respect to itin-
erant magnetism, calculations have been undertaken to shed light on the Fermi surface
nesting in these compounds and the consequences for emerging long-range magnetic or-
ders. To detect Fermi surface nesting, early studies focused on bare susceptibilities in
the constant matrix element approximation (CMA), where all matrix elements are set to
unity [7, 33, 43, 44]. They showed that there is indeed considerable nesting of the Fermi
surfaces and that the Fermi surface vector corresponds in most cases to the long-range
magnetic order observed in experiments. It was also noted that the increasing Tc with
doping or pressure is related to a decrease of the Fermi surface nesting and that the bare
susceptibility reacts strongly to changes in the electron band structure.

Regarding the superconducting phase, computations that also took into account the
matrix elements of the bare susceptibilities have been reported as well. In these studies,
a strong response of the susceptibility was found as well, substantiating the s± pairing
scenario. It was also argued that by the inclusion of interactions, the main features
observed in the non-interacting quantities will survive or even be enhanced [17, 33].
In order to describe the underlying physics better, interactions have to be included
and many different techniques have been used to investigate the origin of SC in FeSCs
by calculating full susceptibilities. These include, among others, methods based on
the random phase approximation [45–48], renormalization group [18,49] and fluctuation
exchange [50,51]. Of particular note is the work by Essenberger and collaborators [52,53],
who developed a completely ab initio theory to treat SC in FeSCs. All these calculations
are in agreement with a pairing that is induced by spin fluctuations, although the order
paramter does not always have to exhibit s± symmetry.

In KFe2As2 for example [54], which is a compounds with only hole pockets, a d-wave
symmetry was found to be the more favourable scenario for SC [55,56]. A similar case is
AxFe2−xSe2, whose Fermi surface consists of only electron pockets [57]. Moreover, it was
observed that an s±-wave gap can evolve into a d-wave gap and vice versa by doping or
application of pressure [46]. Kuroki et al. [58] showed, that one of the most important
parameters in this respect is the pnictogen height above the Fe plane. By changing
this pnictogen height, it was possible to switch between nodeless (high-Tc) and nodal
(low-Tc) pairing. In addition, superconducting pairing with s++ symmetry induced by
orbital fluctuations [59–61] was proposed as well, which however is not applicable to
FeSCs where a sign-change in the order parameter has been observed.2

With respect to the dynamical properties of FeSCs, neutron scattering experiments

2These are just a few examples of a currently very active field of research and we refer the reader to
Refs. [32, 62,63] and references therein for a more detailed review.
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Chapter 1. Introduction

have supplied important information on the interplay of magnetism and superconduc-
tivity. It was found that AFM and superconductivity compete against each other in
the shared parts of the phase diagram [25] and similar to other unconventional super-
conductors a collective magnon mode has been observed that appears below the critical
temperature [64–70]. The energy of this magnon mode is related to the superconducting
energy gap [71, 72] and if the s± pairing scenario holds true, the imaginary part of the
dynamic susceptibility has to exhibit a sharp peak at the ordering wave vector below
the critical superconducting temperature. Such an enhanced response has indeed been
found in INS experiments for several compounds [41, 65, 73, 74] and theoretical studies
on dynamic susceptibilities have been performed as well. Most of these studies, how-
ever, are again based on low-energy model systems [19, 75–78] and truly first-principles
calculations are very scarce [52,53] and seldom go beyond the bare susceptibility [79,80].

At the heart of all the aforementioned calculations of full susceptibilities and pair-
ing propagators lie the non-interacting, bare susceptibilities. As the superconducting
pairing mechanisms depend delicately on the electronic and magnetic behavior of the
compounds, very accurate methods to compute bare susceptibilities are needed. Work
along these directions was performed by several groups [52, 79] and it was an objective
of this PhD project to develop an efficient method [80, 81] to calculate both static and
dynamic bare susceptibilities from first-principles. We chose to employ a tetrahedron
method along the lines of MacDonald et al. [82] and Rath and Freeman [83] as the basis
of our program and invested much effort in improving the numerical representation of
the physically relevant parts of the first Brillouin zone (1BZ). With this algorithm at our
disposal, the second task was to obtain bare susceptibilities for a wide variety of different
materials in the family of FeSC. We investigated the dependence of χ0 on doping and
pressure, and compared the observed behavior to the experimentally measured evolution
of Tc.

Of course to quantitativley determine the dependence of Tc on doping or pressure
would require the calculation of full interacting susceptibilities, but even the investigation
of bare susceptibilities can reveal interesting properties of the superconducting material.
We found, for example, that χ0 is not a simple function with a few strong responses at
special points, but indeed carries a lot of information in almost all parts of the 1BZ. With
this knowledge, we have also assessed the effects of common approximations employed
to calculate susceptibilities. We came to the conclusion that even small approximations
can have a drastic effect on χ0 and that the precise knowledge of χ0 is therefore essential
for any continuative method beyond non-interacting electrons.

Another issue of current research on FeSCs revolves around the importance of cor-
relations in these compounds. Because the active layers of FeSCs have six electrons
occupying the 3d Fe orbitals, they belong to the Hund’s metals [27, 28, 84] regime. In
this parameter regime, itinerant electrons and local moments are equally important and
the Hund’s coupling plays a crucial role in determining the materials’ electronic and
magnetic properties [85,86]. This in turn means that neither fully itinerant methods nor
completely localized ones will be able to capture the underlying physics. To overcome
this problem, studies based on the DFT have been performed, where local correlation
effects are included within the framework of the DMFT. By this inclusion of correlations,
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the computed values for the magnetic moments and the resonance energies are success-
fully brought closer to the experimentally observed values [26,27,87]. Additionally, these
investigations find a strong orbital-dependent mass enhancement, i.e., the t2g orbitals
have a much larger effective mass compared to the eg orbitals. The different response of
the orbitals to correlations, which is a current field of active research, puts the FeSCs in
the vicinity of an orbital-selective Mott transition [28,88–90].

Along the same lines we will present a detailed DFT+DMFT study on LiFeO2Fe2Se2

in the last chapter of this work and discuss the effects of correlations on the two non-
equivalent Fe atoms in this compound. LiFeO2Fe2Se2 has only recently been synthesized
and presents a fascinating new member of the family of FeSCs. It differs from all
other FeSCs known so far as it comprises two types of Fe atoms in different valence
states, which has profound consequences for its electronic properties. In a first step we
determined the low-energy band structure and found that it is much richer compared to
conventional FeSCs. Additionally, the Fermi surface is considerably different to the one
of prototypical FeSCs, and by employing bare susceptibility calculations we could show
that charge transfer takes place between the different layers. The stability and magnetic
moments in different spin-ordered configurations have been studied with (spin-polarized)
DFT and DFT+U approaches and while the magnetic moments of the two Fe atoms are
large compared to other FeSCs, we found that spin fluctuations are still possible due to
a plethora of metastable magnetic configurations with energies close to the ground state
energy. The non-equivalence of the two iron atoms has even more pronounced effects
when correlations are included in the framework of DMFT. We found that this material
constitutes a remarkable case of a real compound where two different realizations of
correlation effects based on the Hund’s coupling are present. In addition, correlations
remove almost all contributions from the Fe in the LiFeO2 layer from the Fermi surface,
thus recovering the usual FeSC low-energy band structure.

We think that the results presented in this thesis will help to understand the underly-
ing physics of FeSCs. Especially with respect to the fact that the bare susceptibility is
a quantity that cannot be obtained within rough approximations, our newly developed
implementation of the tetrahedron method provides a tested foundation to calculate
χ0 accurately and efficiently. As electronic susceptibilities are at the heart of many
important physical quantities, such as the specific heat, electrical and thermal resistiv-
ity, dielectric response, electron screening and optical reflectivity and conductivity, our
method might prove useful in many different kinds of fields [91–93].

The future objectives are also clearly laid out, i.e., building a method upon the bare
susceptibility that allows to include interactions and correlations in order to move the
theoretically obtained χ closer to the experimental one. As mentioned before, our last
study on LiFeO2Fe2Se2 and others on different materials [27, 28, 87, 94] proved that
correlations have profound effects on the low-energy behavior of FeSCs and in order to
assess the physical properties correctly, comprehensive investigations with many different
state-of-the-art methods will have to be performed in future.
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Chapter 1. Introduction

This thesis is organized in two big parts; the first containing the background needed
to understand the executed calculations and the second comprising the obtained results
and discussions thereof. In detail, the structure is as follows.

After this introductory section, we recapitulate in Sec. 2 the theory behind the elec-
tronic susceptibility calculations we used in the later chapters of this work. For these
derivations we use the Green’s functions approach, usually employed to discuss the polar-
ization function and effective potential of an electronic system. As this theory allows for
a very intuitive graphical interpretation of all formulas, we adopt it to derive expressions
for bare susceptibilities, which are mathematically equivalent to polarization functions
within the simplest single bubble approximation. We have tried to keep this summary
of the theoretical concepts as compact as possible by referring to popular textbooks for
the basic derivations, while still providing discussions on all important aspects of the
theory.

This section is followed by Sec. 3, where we describe in detail our numerical implemen-
tation of the tetrahedron method. We explain in short the numerically simple method
by MacDonald et al. [82], on which our newly developed program is based on. After a
elaborate illustration of our algorithms, we compare our method with the former one,
highlighting the areas where important improvements have been made.

The subsequent Sec. 4 includes work that has been published in Ref. [80]. The aim
of this project, which was carried out with the help of Heinrich Sormann, Lilia Boeri,
Markus Aichhorn and Wolfgang von der Linden, was to present our newly developed
implementation of the tetrahedron method and discuss the effects of the most common
approximations in this framework.

The next two sections comprise two selected examples of materials for which we per-
formed bare susceptibility calculations. In Sec. 5 we examine one of the most popular
iron-based superconductors, i.e. LaFeAsO. There, we investigate the doping dependence
of the electronic structure of this prototypical FeSC. We will also compare the behavior of
the bare susceptibility with the evolution of Tc upon doping and arrive at the conclusion
that continuative methods that consider interactions as well have to be applied in order
to understand the recently observed double-dome feature of the superconducting phase.
The next Sec. 6 originates from a project made available under Ref. [81]. In collabora-
tion with Markus Aichhorn, Heinrich Sormann, Ewald Schachinger and Wolfgang von
der Linden, the author of this work studied the pressure dependence of the most simple
iron-based superconductor FeSe. We present results of the static bare susceptibility for
FeSe for various hydrostatic and non-hydrostatic pressures and compare our results with
the measured dependence of Tc when pressure is applied.

After the last three chapters, which cover the dependence of χ0 for different classes of
FeSCs, we present a more comprehensive investigation of the recently synthesized FeSC
LiFeO2Fe2Se2 in Sec. 7, published in Ref. [95]. In this study, acquired with the help
of Lilia Boeri, Heinrich Sormann, Wolfgang von der Linden and Markus Aichhorn, we
investigated the effect on the electronic and magnetic structure of the iron valence in the
two layers this superconductor is comprised of. To provide a conclusive physical picture
of this compound, we not only calculate electronic quantities at the level of DFT, but
also include correlations in the framework of DMFT.

6



For sections 4, 6 and 7 we adopted the same texts and figures as used for the corre-
sponding publications, i.e. Refs. [80,81] and [95], respectively. By keeping the coherence
of these sections, we enable the reader to study these chapters individually without the
need to go through the introductory chapters first. The author of this work affirms
to have contributed in all stages of the projects, which include an extensive literature
search, analytical considerations, the development, implementation and testing of the
numerical methods, evaluation of the results, and writing of the manuscripts.
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Background
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Chapter 2.

Theoretical Background

The so-called dynamical structure factor S(q, ω), measured in inelastic neutron scat-
tering (INS) experiments, plays an important role for theoretical investigations as it
allows for a direct comparison of theory and experiment. To be more precise, S(q, ω) is
directly proportional to the imaginary part of the susceptibility function χ(q, ω). The
neutrons represent a magnetic perturbation to the system that varies in space and time
and the quantity that is measured in INS experiments is the inelastic scattering cross
section [96]. In the first-order Born approximation, the differential cross section d2σ

dΩ dω
for the inelastic scattering of slow neutrons for a metal in the paramagnetic phase is
given by [97,98]

d2σ

dΩ dω
=

1

2π~

(
gN r0

µB

)2 k′

k
S+−(q, ω) , (2.1)

where k and k′ are the absolute values of the wave vectors of the incident and final
neutron state, respectively. The gyromagnetic ratio gN for neutrons is 1.91, r0 is the
classical electron radius and µB is the Bohr magneton.

In this respect, S+−(q, ω) is the magnetic dynamical structure factor of the system
and describes the probability for a process in which the system changes its energy by
~ω and the momentum by ~q due to the scattering of a neutron. The subscript +−
indicates that a spin flip of the electron occurs simultaneously. In mathematical terms,
this can be expressed as

S+−(q, ω) =

∫
d3x

∫
d3x′ e−iq·(x−x

′)

+∞∫
−∞

dt eiωt〈m̂+(x, t) m̂−(x′, 0)〉 , (2.2)

with m̂±(x, t) = m̂x(x, t) ± im̂y(x, t). These m̂i are the magnetic moment density
operators and in the case of the magnetic field pointing in z-direction, the x and y
components are given by

m̂x = − µB
(
ĉ†↓ĉ↑ + ĉ†↑ĉ↓

)
m̂y = −iµB

(
ĉ†↓ĉ↑ − ĉ

†
↑ĉ↓
)
. (2.3)
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Chapter 2. Theoretical Background

Here we have introduced the field operator ĉ†↑(x, t) creating an electron with up-spin at
position x and time t. The structure factor obeys two important constraints. First, the
energy gain and loss during the scattering are related by the principle of detailed balance

S+−(q,−ω) = e
− ~ω

kBT S+−(q, ω) , (2.4)

which connects processes where the neutron loses energy with processes where the neu-
tron gains energy.1 Second, as the interaction is very weak, we can assume the system
to respond linearly to the perturbation. This allows us to use the fluctuation-dissipation
theorem (see for example Ref. [99]), which states that the evolution of a system due to
an externally induced perturbation is similar to that of a spontaneous fluctuation. This
is expressed by the following equation

S+−(q, ω) = −2~
∫
d3x

∫
d3x′ e−iq·(x−x

′) Imχ±(x,x′, ω)

= −2~Ω Imχ±(q, ω) (2.5)

and offers a perfect testing ground for our theoretical calculations, as it connects the
structure factor with the imaginary part of the spin susceptibility, indicated by the
subscript ±.2 An analogous relation exists between the dynamical charge structure
factor Sc(q, ω) and the charge susceptibility χc(q, ω)

Sc(q, ω) = −2~Ω Imχc(q, ω) (2.6)

In addition, the static spin susceptibility, i.e., χ±(q, ω = 0), describes the response of
the spin system to a static magnetic field that varies spatially. In other words, the q
vector for which the static susceptibility becomes very large (or even diverges) marks the
point of an instability of the system towards long-range magnetic order. For this reason,
χ±(q) has become a favorite quantity to investigate the antiferromagnetic ground states
of currently very often studied systems such as the FeSCs.

In this chapter we want to recapitulate the theory behind the electronic susceptibility
as it is used in the course of this work. There are in fact two different approaches to
derive χ, the first one making use of the analogy to a charge density system and employs
the Green’s functions technique, while the second one utilizes first-order perturbation
theory to evaluate the response to an external magnetic field. In the following, we want
to stay in the Green’s function formalism, as it is standard in most textbooks and also
provides a very descriptive graphical representation in the form of Feynman diagrams.
As this technique is usually employed to describe the effects of electronic interactions
based on the Coulomb potential, we will first introduce the charge susceptibility function
describing the reaction of the density of an electron gas to an external electric potential.

The following summary follows Ref. [92], although similar derivations can be found in
many textbooks on many-body theory, as for example Refs. [91] and [93].

1As always, ~ is the reduced Planck’s constant and kBT is the product of the Boltzmann’s constant
and the thermodynamical temperature.

2Here, Ω is the normalization volume.

12



2.1. The Response Functions χ± and χc

2.1. The Response Functions χ± and χc

The magnetic spin susceptibility χ± connects in linear relation the space- and time-
dependent perturbing magnetic potential Bext(r, t) with the corresponding induced elec-
tron spin density m

δm(r, t) =

∫
d3r′

t∫
−∞

dt′ χ±(r, r′, t− t′) δB(r′, t′) . (2.7)

A similar relation can be found to connect the electron charge density δρ with an external
perturbating field Vext by the means of the charge susceptibility χc.

δρ(r, t) =

∫
d3r′

t∫
−∞

dt′ χc(r, r′, t− t′) Vext(r′, t′) . (2.8)

Tightly connected to the concept of susceptibility functions is the occurrence of a dy-
namical effective interaction potential W . This effective interaction takes into account
that the electron density will react to the external potential and respond with screening
effects, thus changing the value of the potential. All perturbations considered, the ef-
fective interaction potential will in general be a function of both space and time. If the
electronic system is homogenous in time, however, one can use a Fourier transformation
to frequency space and obtain a short notation for the dynamical effective interaction
potential W (r, r′, ω)

W (r1, r2, ω) = v(r1 − r2) +

∫ ∫
d3x d3x′ W (r1,x, ω) χc(x,x

′, ω) v(x′ − r2) (2.9)

where we abbreviated the bare Coulomb potential v(r1 − r2) by

v(r1 − r2) =
e2

|r1 − r2|
.

A further simplification can be made if the system we are investigating is also homoge-
nous in space, i.e., only the difference in the coordinates δr = r1 − r2 matters. In this
case it is convenient to change from real space into wave vector space via a second Fourier
transformation. After this, Eq. (2.9) can be very compactly written in the form

W (q, ω) = v(q) +W (q, ω) χir
c (q, ω) v(q) , (2.10)

where χir
c is the irreducible susceptibility function. This function includes all polarization

parts which cannot be broken in two by “cutting” only one interaction line.3 Because
of the singularity of the Coulomb potential at |r1 − r2| = 0, one has to take care when
performing the Fourier transform. To treat it properly, the Coulomb potential can be

3For a more detailed description we refer the reader to Refs. [100] and [101].
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Chapter 2. Theoretical Background

= + χir
c

Figure 2.1.: Graphical representation of Eq. (2.10) to calculate the effective interaction
potential W (wavy line). The dotted lines represent bare Coulomb interac-
tions and the irreducible charge susceptibility is indicated by χir

c .

considered as the limit of the Yukawa potential. This way, one can avoid the singularity
and by setting the zero point of the potential to be at |q| = 0, one arrives at the
well-defined expression

v(q) =
4πe2

|q|2 with v(0) = 0.

As mentioned in the introduction of this chapter, one of the advantages to use the
Green’s function approach is its very descriptive graphical representation via Feynman
diagrams (see Ref. [100]). This is demonstrated in Fig. 2.1, which illustrates schemati-
cally Eq. (2.10). The wavy line represents the full interaction W , while the dashed one
stands for the bare Coulomb potential v(q). The solid lines represent non-interacting
Green’s functions.

For all calculations we want to perform on real materials, the spatial homogeneity is
unfortunately no longer present. This complicates the Fourier transformation from real
to reciprocal space considerably. We are in good approximation, however, still working
with a crystal, i.e. within a perfectly periodic lattice. For a general function that depends
on two coordinates r1 and r2 the transformation in a periodic lattice reads

f(r1, r2) =
1

Ω

1BZ∑
q

eiq·(r1−r2)
∑
K1

∑
K2

eiK1·r1e−iK2·r2 fK1,K2(q) . (2.11)

Here, q is a vector confined to the first Brillouin zone (1BZ) with volume Ω and Ki is a
reciprocal lattice vector. All quantities of Eq. (2.9) are functions of the same type as f
and we can write for the components with reciprocal lattice vectors K1 and K2

WK1,K2(q, ω) = vK1,K2(q) +
∑
K,K′

WK1,K′(q, ω) χir
K′,K(q, ω) vK,K2(q) (2.12)

All quantities in the above equation are matrices in the space of reciprocal lattice vectors
and with tildes representing matrices,4 Eq. (2.12) takes the form

W̃ (q, ω) = ṽ(q) + W̃ (q, ω) χ̃ir
c (q, ω) ṽ(q) , (2.13)

4The subscript c to indicate that we are talking about the charge susceptibility has been dropped for
the moment to create space for the reciprocal lattice vectors.
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2.2. The Bare Susceptibility χ0

≈ + χ0
c

Figure 2.2.: Graphical representation of Eq. (2.14) to approximately calculate the effec-
tive interaction potential W (wavy line). The dotted lines represent bare
Coulomb potentials and the solid lines non-interacting Green’s functions.

which resembles the scalar Eq. (2.10) for the interaction potential, derived for systems
homogenous in space, very closely. We want to note at this point that due to the simple
structure of the bare Coulomb interaction in real space, ṽ(q) in Eq. (2.13) is a diagonal
matrix in reciprocal space of the form

vK1,K2(q) = v(q + K1) δK1,K2 .

2.2. The Bare Susceptibility χ0

The charge susceptibility χc is the sum of all possible polarization insertions. Since
the exact evaluation of all these contributions cannot be done, we need to make some
approximations for χc and restrict the sum to those diagrams which we find vital to
describe the physics of our materials. A very common choice is to restrict oneself to
one single particle-hole scattering processe, as expressed by Eq. (2.14) and graphically
depicted in Fig. 2.2.

W (q, ω) ≈ v(q) + v(q) χ0
c(q, ω) v(q) . (2.14)

Additionally, we provide a graphical description of the bare bubble insertion χ0
c in

Fig. 2.3. The solid lines, again, stand for non-interacting (bare) Green’s functions, one
going from the vertex at r′ to r with an energy ω′ and the other from r to r′ with the
energy ω′−ω.5 Figuratively speaking, this describes a process where a particle-hole pair
is created at r′, with the particle having an energy of ~ω′ and the hole ~(ω′ − ω), which
is then destroyed at r. According to the rules of Feynman’s graph theory, χ0

c is therefore
written as follows

χ0
c(r, r

′, ω) = − i

π~

+∞∫
−∞

dω′ G0(r, r′, ω′)G0(r′, r, ω′ − ω) (2.15)

=
1

2µ2
B

χ0
±(r, r′, ω) (2.16)

In the framework of our theoretical considerations the charge susceptibility χ0
c and the

spin susceptibility χ0
± are mathematically identical and we will therefore drop the su-

perscript for the following chapters of this work.

5With the superscript 0 we want to make clear that we are dealing with non-interacting bare quantities.
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Chapter 2. Theoretical Background

ω′ ω′ − ω

r

r′

Figure 2.3.: Single particle-hole polarization insertion χ0
c , which is identical to χ0

±.

Since we are still working within a perfectly periodic lattice, it is reasonable to express
the electron propagators in a basis of Bloch waves. The non-interacting bare Green’s
function in such a basis reads

G0(r, r′, ω) =
1BZ∑
k

∑
n,n′

ψn,k(r)ψ∗n′,k(r′) G0
n,n′(k, ω) ,

where k is again a vector constrained to the 1BZ and n, n′ are electron band indices.
ψn,k(r) are Bloch-type wave functions of the electrons in the crystal. To evaluate
Eq. (2.15), we need to obtain the non-interacting Green’s functions, which are diag-
onal in band space

G0
n,n′(k, ω) = Fn,k(ω)δn,n′ ,

with

Fn,k(ω) =
Θ(εF − ε0n,k)

ω − ω0
n,k − iη

+
Θ(ε0n,k − εF )

ω − ω0
n,k + iη

. (2.17)

In Eq. (2.17) we used ε0n,k = ~ω0
n,k as abbreviation for the Bloch energy corresponding

to the eigenfunction ψn,k. Plugging these expression for the Green’s functions into
Eq. (2.15) for the susceptibility function,6 we get

χT (r, r′, ω) =
2

π

1BZ∑
k1,k2

∑
n,m

ψn,k1(r)ψ∗n,k1
(r′)ψm,k2(r′)ψ∗m,k2

(r)

+∞∫
−∞

dω′

2πi
Fn,k1(ω′)Fm,k2(ω′−ω)

(2.18)
In above equation, a new superscript T has been introduced, which indicates that we are
using time-ordered Green’s functions. These have the advantage that one can make use
of the Feynman’s diagrammatic method. On the other hand, however, they do not obey
causality, a necessary property for physical response functions. We will therefore derive
our theory with time-ordered quantities and then, before doing the actual numerical
evaluation, transform them into retarded functions.

6As in the following we have to discuss the properties of time-ordered and retarded functions, indicated
by the superscripts T and R, we are omitting the superscript 0 for the moment.
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2.2. The Bare Susceptibility χ0

We want to write χ0 in wave vector space and therefore need to Fourier transform
Eq. (2.18). The inverse Fourier transform of our general function from Eq. (2.11) is
written as

fK1,K2(q) =
1

Ω

∫
Ω

∫
Ω

d3r d3r′ e−i(q+K1)·r ei(q+K2)·r′f(r, r′) , (2.19)

where the integrals are performed over the volume of the 1BZ. Applying this to our
susceptibility function gives us

χTK1,K2
(q, ω) =

2

~Ω

∑
n,m

1BZ∑
k1,k2

+∞∫
−∞

dω′

2πi
Fn,k1(ω′)Fm,k2(ω′ − ω)· (2.20)

·
∫
Ω

d3r e−i(q+K1)·rψn,k1(r)ψ∗m,k2
(r)

∫
Ω

d3r′ ei(q+K2)·r′ψ∗n,k1
(r′)ψm,k2(r′)

In a perfectly periodic crystal, the integrals in the above equation have to be invariant
with respect to a translation of their center of integration by a primitive lattice vector
R, i.e.∫
Ω

d3r e−i(q+K1)·rψn,k1(r)ψ∗m,k2
(r)

!
=

∫
Ω

d3r e−i(q+K1)·(r+R)ψn,k1(r + R)ψ∗m,k2
(r + R) .

Since the eigenfunctions are all Bloch functions, i.e. ψn,k(r) = eik·Rψn,k(r + R), the
relation above simplifies to∫
Ω

d3r e−i(q+K1)·rψn,k1(r)ψ∗m,k2
(r)

!
= e−i(k2−k1+q)·R

∫
Ω

d3r e−i(q+K1)·rψn,k1(r)ψ∗m,k2
(r) ,

which is fulfilled for
k1

!
= k2 + q + G .

Here we introduced the reciprocal lattice vector G that guarantees that k2 + q and
consequently k1 are vectors of the 1BZ. To improve the readability of our equations we
want to use Dirac’s notation to express integrals of the form∫

Ω

d3r e−i(q+K1)·rψn,k1(r)ψ∗m,k2
(r) =: 〈m,k1|e−i(q+K1)·r|n,k1〉

We will also omit writing the vector G explicitely in all equations. We leave it to the
reader to insert G to all combinations of q + k whenever this sum reaches out of 1BZ.
With all this, Eq. (2.20) becomes

χTK1,K2
(q, ω) =

2

~Ω

∑
n,m

1BZ∑
k

+∞∫
−∞

dω′

2πi
Fn,k+q(ω′)Fm,k(ω′ − ω)·

· 〈m,k|e−i(q+K1)·r|n,k + q〉〈n,k + q|ei(q+K2)·r|m,k〉 (2.21)
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Chapter 2. Theoretical Background

To evaluate the integral over frequency, we write out in full the product of
Fn,k+q(ω′) · Fm,k(ω′ − ω), as given in Eq. (2.17).

+∞∫
−∞

dω′

2πi
Fn,k+q(ω′)Fm,k(ω′ − ω) =

+∞∫
−∞

dω′

2πi

(
Θ(εF − ε0n,k+q)

ω′ − ω0
n,k+q − iη

+
Θ(ε0n,k+q − εF )

ω′ − ω0
n,k+q + iη

)
·

·
(

Θ(εF − ε0m,k)

ω′ − ω − ω0
m,k − iη

+
Θ(ε0m,k − εF )

ω′ − ω − ω0
m,k + iη

)
Making use of Cauchy’s residue theorem one can perform the ω′ integral in the complex
plane. Since terms with poles with higher order than one have a vanishing contribution,
we only have to take into account terms with poles of order one. In connection with
Jordan’s lemma we can write [102]

+∞∫
−∞

dω′

2πi
Fn,k+q(ω′)Fm,k(ω′ − ω) =

Θ(ε0n,k+q − εF )Θ(εF − ε0m,k)

ω + ω0
m,k − ω0

n,k+q + iη
−

Θ(εF − ε0n,k+q)Θ(ε0m,k − εF )

ω + ω0
m,k − ω0

n,k+q − iη
(2.22)

Plugging the expression for the integral in Eq. (2.22) into Eq. (2.21), we finally arrive
at the desired result for the time-ordered susceptibility function χT .

χTK1,K2
(q, ω) =

2

~Ω

∑
n,m

1BZ∑
k

(
Θ(ε0n,k+q − εF )Θ(εF − ε0m,k)

ω + ω0
m,k − ω0

n,k+q + iη
−

Θ(εF − ε0n,k+q)Θ(ε0m,k − εF )

ω + ω0
m,k − ω0

n,k+q − iη

)
·

· 〈m,k|e−i(q+K1)·r|n,k + q〉〈n,k + q|ei(q+K2)·r|m,k〉 .
(2.23)

As said before, physical response functions have to have the property of causality, which
is violated by time-ordered quantities. We therefore have to transform Eq. (2.23) to write
χ as a retarded quantity. There is a close relation between time-ordered and retarded
functions, which can be summarized the following way [92,101]

Re
(
χR(q,−ω)

)
= Re

(
χT (q, ω)

)
Im
(
χR(q,−ω)

)
= Im

(
χT (q, ω)

)
· sgn(ω) (2.24)

With these expressions, we can write the retarded susceptibility function χR like

χRK1,K2
(q, ω) =

2

~Ω

∑
n,m

1BZ∑
k

(
Θ(ε0n,k+q − εF )Θ(εF − ε0m,k)

ω + ω0
m,k − ω0

n,k+q + iη
−

Θ(εF − ε0n,k+q)Θ(ε0m,k − εF )

ω + ω0
m,k − ω0

n,k+q + iη

)
·

· 〈m,k|e−i(q+K1)·r|n,k + q〉〈n,k + q|ei(q+K2)·r|m,k〉 (2.25)

As the denominator is the same in both terms, we simplify this expression by rewriting
the Θ distribution functions according to

Θ(ε0n,k+q − εF )Θ(εF − ε0m,k)−Θ(εF − ε0n,k+q)Θ(ε0m,k − εF ) = Θ(εF − ε0m,k)−Θ(εF − ε0n,k+q) .
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2.2. The Bare Susceptibility χ0

This gives us

χRK1,K2
(q, ω) =

2

~Ω

∑
n,m

1BZ∑
k

Θ(εF − ε0m,k)−Θ(εF − ε0n,k+q)

ω + ω0
m,k − ω0

n,k+q + iη
· (2.26)

· 〈m,k|e−i(q+K1)·r|n,k + q〉〈n,k + q|ei(q+K2)·r|m,k〉 .

Equation (2.26) for χR describes the answer of an electron gas in a crystal to a perturba-
tion by a charged particle within the bare bubble approximation. From this point on we
will only deal with retarded quantities, thus the superscript R is omitted for the sake of
reintroducing 0 to differentiate between non-interacting quantities and fully interacting
ones. Also, it describes the screening of the potential of the perturbation due to the elec-
trons. In order to make a numerical evaluation feasible, we will neglect all non-diagonal
elements of χK1,K2 . The effects of this approximation are most easily visible when we
perform a Fourier transformation back to real space (see Eq. (2.11)) and set K1 = K2,
i.e.

f(r− r′) =
1

Ω

∑
K

1BZ∑
q

ei(q+K)·(r−r′)fK(q) .

This relation makes clear that by only considering diagonal terms of χK1,K2 , we basically
assume a homogenous system in real space and neglect all so-called local field effects of
the susceptibility function. In this approximation, χ0 reads7

χ0(q, ω) =
2

~Ω

∑
n,m

1BZ∑
k

Θ(εF − ε0m,k)−Θ(εF − ε0n,k+q)

ω + ω0
m,k − ω0

n,k+q + iη

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2 .

(2.27)

To be consistent with the notation used in Secs. 4, 6 and 7, we will use a continuous
Fourier transformation in wave vector space and convert all frequencies to energies. We
also use from now on the short notation εmk = ε0m,k, giving us

χ0(q, ω) =
∑
n,m

dk

4π3

1BZ∫
Θ(εF − εmk )−Θ(εF − εnk+q)

~ω + εmk − εnk+q + iη̃

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2 .

(2.28)

This quantity will be the core of all calculations performed in the following chapters of
this work. Before we start with the actual numerical evaluation of χ0, we first want
to mention and discuss some further properties of this physical quantity. By using the
well-known relation [103]

1

a± iη = P

(
1

a

)
∓ iπδ(a) , (2.29)

7In order to facilitate readability we have omitted the subscript K.
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Chapter 2. Theoretical Background

one can easily extract the real and imaginary part of χ of Eq. (2.28), which read8

Reχ0(q, ω) =
∑
n,m

dk

4π3

1BZ∫
Θ(εF − εmk )−Θ(εF − εnk+q)

~ω + εmk − εnk+q

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2

and

Imχ0(q, ω) = −
∑
n,m

dk

4π2

1BZ∫ (
Θ(εF − εmk )−Θ(εF − εnk+q)

) ∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2

· δ
(
~ω + εmk − εnk+q

)
. (2.30)

The imaginary part for negative frequencies can be obtained by the relation

Imχ0(q,−ω) = −Imχ0(q, ω) . (2.31)

As the susceptibility function given in Eq. (2.28) is now a retarded quantity and a proper
physical response function, it obeys the Kramers-Kronig relation, which connects real
and imaginary part of χ0 in the following way

Reχ0(q, ω) =
1

π
P

 ∞∫
0

dω′ Im
(
χ0(q, ω′)

)( 1

ω′ − ω +
1

ω′ + ω

) . (2.32)

2.3. The Static Bare Susceptibility

In the static limit, the susceptibility has a particular physical interpretation, as it directly
measures the response of the system to a spatially varying, static magnetic field. The
real part can simply be obtained by performing the limit ω → 0 in Eq. (2.28) and then
taking Cauchy’s principle value again

χ0(q) =
∑
n,m

dk

4π3

1BZ∫
Θ(εF − εmk )−Θ(εF − εnk+q)

εmk − εnk+q

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2 .

(2.33)

As the imaginary part of χ0 vanishes for ω → 0, the real part carries all information. It is
this response to a static magnetic field that we will be investigating in chapters 4-7 of this
work. The two Heaviside functions in Eq. (2.33) make sure that only transitions from
occupied to unoccupied bands result in non-vanishing contributions to χ0 and the matrix
elements weigh the transitions based on their transition probabilities. An important part
of determining the structure of the susceptibility is given by the denominator containing
the energy differences between an electron of band m at wave vector k and a hole in

8The expression P(...) in Eq. (2.29) is an abbreviation for taking Cauchy’s principal value.
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qN

kx

k
y

Figure 2.4.: Simplified picture of the Fermi surface of a two-band iron-based supercon-
ductor. The black square represents the 1BZ and we assume a hole pocket
in the form of a cylinder in the center of the 1BZ (red). In the corners of
the BZ we have electron pockets in the same shape as the hole one.

band n and wave vector k + q. Very similar or even equal energies will result in a big
response of χ0 at this wave vector q, which indicates an instability towards a specific
magnetic ordering of the electronic system. If the susceptibility has its maximum at
q = 0, for example, the system is most likely to develop a ferromagnetic order.

A keyword that is often dropped when susceptibilities are discussed in the context of
magnetic orderings is Fermi surface nesting. This very popular concept, as discussed in
the context of iron-based superconductors before, describes the nesting of two different
Fermi surfaces with similar shape, when one is shifted by the nesting vector qN . In
FeSCs the Fermi surface of most materials is composed of several sheets, whose shape is
similar to each other and in an ideal case is also one- or two-dimensional. A simplified
picture of such a Fermi surface is shown in Fig. 2.4, where we have hole sheets in the
shape of cylinders in the center of the 1BZ (red) and electron sheets with the same shape
in the corners (blue). By shifting the electron or hole pockets by the vector qN = (π, π)
one can get the cylinders to overlap perfectly, called nesting. Such a surface nesting
over large areas leads to a logarithmic divergence in χ0, indicating a huge response to a
magnetic order with ordering vector qN .

2.3.1. Inter- and Intraband Contributions and the Limit |q| → 0

In order to investigate the contributions to χ0 more easily, it is convenient to split the
transitions into intra- and interband contributions. Intraband processes occur within the
same band, i.e. n = m, while interband ones happen between two different bands n 6= m.
Due to the Heaviside functions in our formulas for χ0, which make sure that an electron
is only excited from a (partly) filled band to a (partly) unoccupied band, intraband
contributions can only appear in metals and not in semiconductors or insulators.

We now want to take a closer look at the limit |q| → 0 of the static susceptibility
function χ0(q). We split the double sum over n and m into intra- and interband parts.
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Chapter 2. Theoretical Background

In the interband case, the matrix elements become

lim
|q|→0

(
〈m,k|e−iq·r|n,k + q〉

)
= 〈m,k|n,k〉 = 0 .

In the case of intraband transitions the matrix elements become unity, but we encounter
a problem with the energy denominator

lim
|q|→0

(
Θ(εF − εmk )−Θ(εF − εnk+q)

εmk − εnk+q

)
→ 0

0
.

One therefore has to be more careful in obtaining the limit and consider the behaviour
of the whole integral. If q is very small, a linear expansion for the energies is justified

εmk+q ≈ εmk +∇εmk · q .

Additionally, the volume integral over dk can be transformed into a surface integral over
the Fermi surface and we have

lim
q→0

χ0(q) = − 1

2π3

∑
m

∫
εmk =εF

dS

|∇εmk |
. (2.34)

The importance of Eq. (2.34) lies in the fact that this equation is, except for some
prefactors, the same as the one for the density of states (DOS) at the Fermi energy
N(εF ), i.e.

lim
q→0

χ0(q) = − 1

Ω0
N(εF ) , (2.35)

with Ω0 being the volume of the 1BZ. The above expression is very useful for any
numerical implementation of susceptibilities, as it offers a first and simple way to test
the correctness and accuracy of the algorithms. In the course of this work we will refer
to this test several times.

2.4. Going Beyond the Bare Susceptibility

2.4.1. Random Phase Approximation

The non-interacting bare susceptibility is the simplest expansion to the bare Coulomb
potential. As was already discussed, it describes the reaction of the electron gas to the
creation and annihilation of a non-interacting electron-hole pair, leading to the approx-
imated effective potential of Eq. (2.14). The “natural” improvement to this approxima-
tion is to consider not only one, but an infinite sum of insertions to the bare Coulomb
potential of the same type (see Fig. 2.5). In mathematical terms, Fig. 2.5 translates into

W (q, ω) ≈ v(q) + v(q) χ0(q, ω) v(q) + v(q) χ0(q, ω) v(q) χ0(q, ω) v(q) + . . .

= v(q) + v(q){χ0(q, ω) + χ0(q, ω)v(q)χ0(q, ω) + . . . }v(q) (2.36)
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2.4. Going Beyond the Bare Susceptibility

= + + + . . .

Figure 2.5.: Graphical representation of the terms considered in an RPA formulation
of W .

In literature, this choice of diagrams is called ring approximation as well as random
phase approximation (RPA). The term in curly brackets constitutes a more realistic
approximation to the polarization function. To be more precise, the RPA includes long-
range interactions between the otherwise noninteracting electron-hole excitations. The
infinite sum is easily evaluated and can be written as the Dyson-like equation

χRPA =
χ0

1− vχ0
. (2.37)

While χ0 only allows to study single-particle excitations, the RPA enhancement per-
mits to study collective excitations as well [103–105]. As can be seen from Eq. (2.8), the
response of a charge system is of the same form as the perturbation, yet the amplitude
of the reaction is determined by the polarization.9 This means that if the perturbation
is very weak, we can still get a big response from the system if the susceptibility is large.
In the extreme case of a diverging χ we would have modes of oscillations of the charge
density in the system even for a vanishing perturbation.

For Eq. (2.37), there are two conceptually different excitations described by a diverging
χRPA. The singluarities of χ0 describe single-particle excitations of the system, while
a vanishing denominator of χRPA translates into collective excitations. The condition,
when a collective excitation is present, can be easily split into two equations for the real
and imaginary part of Π0

1− v(q)Reχ0(q, ω) = 0

Imχ0(q, ω) = 0 (2.38)

The condition Imχ0 = 0 is equivalent to imposing the same for the full Imχ and
has a direct physical meaning. The imaginary part of the susceptibility describes the
dissipation taking place in the system. Therefore, in order to have a mode of a collective
excitation propagating through the system without damping, the imaginary part of χ
has to vanish.
9The following discussion on collective excitations follows the theory presented in Refs. [103–105]
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H = + + + . . .

Figure 2.6.: Graphical representation of the vertex correction to χ0.

Looking at the condition for the real part, we can distinguish between two extreme
cases. If the interaction is short ranged, v(q → 0) tends towards a constant value U ,
representing the local interaction of a Hubbard model. In this case, Eq. (2.38) is satisfied
for Reχ0 = 1/U . The additional approximation of small ω leads, after some calculation,
to the result that the frequency dependence of the dispersion relation is proportional to
the wave vector q, characteristic for a sound wave travelling through a system.

The other extreme case is that of long ranged interactions, as for example the Coulomb
interaction. Here, the arising excitations are plasmon excitations. They are the quan-
tum mechanical equivalent of classical plasma oscillations and describe oscillations of
collective oscillations at optical frequencies.

Even the RPA, however, cannot account for all physical processes happening in such
systems, as only the effects of creating electron-hole pairs on the interaction are consid-
ered. By doing so, this theory misses the interactions between the electron and the hole
of a created electron-hole pair itself.

2.4.2. Local Field Effects

An important development of the theory on polarization functions that goes beyond RPA
has been introduced by Hubbard [106,107] and includes the so-called vertex corrections to
the RPA. Hubbard enhanced the bare electron-hole polarization function by considering
the infinite sum of diagrams depicted in Fig. 2.6. This ladder expansion of the electron-
hole polarization describes the physical situation that the electron and hole of the same
electron-hole pair interact with each other due to a Coulomb potential. Without giving
the full derivation, the susceptibility in Hubbard’s local field correction is given by [106,
107]

χH(q, ω) =
χ0(q, ω)

1− v(q) [1−GH(q)]χ0(q, ω)
, (2.39)

where we introduced the static local field factor

GH(q) ≈ q2

2(q2 + k2
F )

. (2.40)
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2.4. Going Beyond the Bare Susceptibility

The local field factor described in Eq. (2.40) is a good approximation for many prob-
lems. As the exact solution to GH is complicated to evaluate, other approximations to
this factors have been employed, as for example the time-dependent local-density ap-
proximation (TDLDA) [108, 109]. There, the field correction is taken as the functional
derivative of the exchange-correlation potential Vxc with respect to the electron density n

GH(q, ω) = −v(q)

∫
d3x e−iq·x

dVxc(x)

dn(x)
. (2.41)

2.4.3. Including Interactions in the Case of Iron-Based Superconductors

In the theory of superconductors one is often interested in calculating Tc for a given
model or material. In order to make any predictions on the superconducting tempera-
ture, one calculates the superconducting pairing function and tries to solve the eigenvalue
equation for the superconducting state. At the heart of all these calculations are again
the spin and charge susceptibilities.10 The excitation physics of materials cannot be
described by bare susceptibilities, as one has to consider correlations and interaction
effects in some continuative theory. For example, in the FLEX approximation (see for
example Ref. [37] and references therein) the interaction vertex ΓFLEX is written like

ΓFLEX(k,k′, ω) =
3

2
U sχs(k− k′, ω)U s − 1

2
U cχc(k− k′, ω)U c +

1

2
(U s + U c) ,

where the superscripts s and c stand for spin and charge, respectively. U s (U c) is the spin
(charge) interaction and χs (χc) the resulting RPA spin (charge) susceptibility, given by
Dyson’s equation

χs =
χ0

1− U sχ0
and χc =

χ0

1 + U cχ0
. (2.42)

The pairing function, measuring the strength of the superconducting pairing, can in this
approximation be written like

Γi,j(k,k
′) =

∑
l1,l2,l3,l4

al2∗νi (k) al3∗νi (−k) ΓFLEX
l1,l2,l3,l4(k,k′) al1νj (k

′) al4νj (−k′) . (2.43)

In this notation we have assumed a multiorbital system, with li being orbital indices.
The alνi(k) is the orbital matrix element 〈νj ,k|l1〉 of band νi and orbital character l
at the wave vector k. As given in Eq. (2.43), ΓFLEX(k,k′, ω) describes the irreducible
particle-particle scattering of electrons with orbital indices l1, l4 and momenta k and −k
into electrons in orbitals l2, l3 and momenta k′ and −k′. Γi,j(k,k

′) then explains the
effective pairing interaction for an electron pair scattering on the νj Fermi surface with
momenta and spins (k′ ↑,−k′ ↓) to a pair on the νi Fermi surface and (k ↑,−k ↓).
10The superconducting pairing is a function where an integral over the whole 1BZ has to be performed

with a kernel proportional to χ.
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To get the leading eigenvalue λα of the fully dressed (particle-particle) Bardeen-
Cooper-Schrieffer (BCS) gap equation, one has to solve

− T

N

∑
k′

ΓPP (k,k′)G↑(k
′)G↓(−k′)φα(k′) = λαφα(k) , (2.44)

with G(k, iωn) being the fully dressed Green’s function. The system becomes super-
conducting, when the leading eigenvalue approaches unity. As we are summing over
all momenta k′ it is evident that χ of the whole 1BZ enters the superconducting gap
equation and that for superconductivity not only the maximal value of χ has to be taken
into account, as is the case for the spin (charge) instability of the system.

A proper evaluation of the dressed BCS gap function, however, would require at least
including interactions along the lines of FLEX presented above, which is usually done in
orbital picture. In an orbital basis, the interaction matrices U s and U c can be written
down for FeSCs in a 5-orbital model quite easily. On the other hand, a big advantage of
our implementation lies in the fact that we can calculate χ0 without any projections to
special orbitals and obtain the full bare susceptibility by summing over all bands, as we
describe in Sec. 3 and following chapters. Since we don’t want to lose this advantage,
we need to transcribe the interaction matrices into band picture.11

Let Ul1,l2,l3,l4 = 〈l1, l2|U |l3, l4〉 be the interaction matrix in orbital space. Following
Ref. [110] we have for the spin interaction

U sl1,l2,l3,l4 =


Ū for l1 = l2 = l3 = l4

J̄ for l1 = l2 6= l3 = l4

Ū ′ for l1 = l3 6= l2 = l4

J̄ ′ for l1 = l4 6= l2 = l3

, (2.45)

where Ū is the intraorbital repulsion, Ū ′ the interorbital interaction, J̄ the Hund’s rule
coupling and J̄ ′ the pair hopping energy. The charge interaction can be written similarly

U cl1,l2,l3,l4 =


Ū for l1 = l2 = l3 = l4

2Ū ′ − J̄ for l1 = l2 6= l3 = l4

2J̄ − Ū ′ for l1 = l3 6= l2 = l4

J̄ ′ for l1 = l4 6= l2 = l3

. (2.46)

In band space, the interaction matrix is a function of three momenta, say for example
k, k′ and q.12 In order to use Dyson’s equations as introduced in Eq. (2.44), we need to
simplify the expressions and get rid of two momenta, so that U is just a function of q,

11The next paragraphs follow very closely a private communication with Ilya Eremin.
12The fourth momentum is fixed by the other three because of momentum conservation.
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Figure 2.7.: Diagrammatic depiction of the terms considered in U

as is the susceptibility. Therefore, we start with the following ansatz:

U(q)

[
n m
n′ m′

]
=
∑
k,k′

Uk,k′,q

[
n m
n′ m′

]
=
∑
k,k′
〈n,k| ⊗ 〈m,k′|U |n′,k′ − q〉 ⊗ |m′,k + q〉 .

Making the transcription to orbital space for the interaction matrix leads to

U(q)

[
n m
n′ m′

]
=
∑
k,k′

∑
l1,l2,l3,l4

Ul1,l2,l3,l4 a
l1∗
n (k)al2∗m (k′)al3n′(k

′ − q)al4m′(k + q) ,

To proceed any further, we simplify this term further and split the double sum over
wave vectors k and k′ into an expression that applies for k ≈ k′ and one for k′ ≈ k+ q.
The first choice takes into account that the biggest contributions to the interaction for
the intra-band transitions will stem from matrix elements where k ≈ k′. The inter-band
transition, on the other hand, will have the biggest contributions when we connect bands
where k and k′ are seperated by q.

U(q)

[
n m
n′ m′

]
≈
∑
k

∑
l1,l2,l3,l4

Ul1,l2,l3,l4 a
l1∗
n (k)al2∗m (k + q)al3n′(k)al4m′(k + q)︸ ︷︷ ︸

for k′≈k+q

+

+
∑
k

∑
l1,l2,l3,l4

Ul1,l2,l3,l4 a
l1∗
n (k)al2∗m (k)al3n′(k− q)al4m′(k + q)︸ ︷︷ ︸

for k≈k′

(2.47)

For the further discussion, it is convenient to write the two contributions to U(q)
seperately

U1(q)

[
n m
n′ m′

]
=
∑
k

∑
l1,l2,l3,l4

Ul1,l2,l3,l4 a
l1∗
n (k)al2∗m (k + q)al3n′(k)al4m′(k + q) (2.48)

U2(q)

[
n m
n′ m′

]
=
∑
k

∑
l1,l2,l3,l4

Ul1,l2,l3,l4 a
l1∗
n (k)al2∗m (k)al3n′(k− q)al4m′(k + q) (2.49)
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A numerical evaluation of these terms is quite difficult, as all the matrix elements
aln(k) are complex numbers with a physical phase and an arbitrary one, due to the
degree of freedom when solving an eigenvalue equation. Nevertheless, a calculation of
Eq. (2.48) in the 1BZ is straightforward, as the matrix elements al1n and al2†m always
appear in pairs in terms of the wave vector k, which can therefore be combined to a real
number, making the interpolation on the k-grid easy.

For U2(q), as given in Eq. (2.49), this is not possible, as the wave vector k has to
be combined with k ± q and the product is still a complex number with an arbitrary
complex phase. An extremely careful and elaborate way of interpolation has therefore
to be chosen. As the main topic of this work is not on including interactions and corre-
lations to susceptibility calculations, we are not going to discuss the explicit numerical
implementation here in detail.
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Chapter 3.

Numerical Implementation

3.1. Introduction

In this chapter we want to give a short review of common methods to calculate electronic
susceptibilities and explain our implementation in detail. We will also elaborate on the
advantages and disadvantages of our algorithms and show test examples to illustrate
those points.

Electronic bandstructure methods exploit the translational symmetry of a crystal to
block-diagonalize the Hamiltonian of the system with respect to the wave vector k. In
further consequence, all one-particle quantities one wants to calculate, like the density
of states or in our case susceptibilities, can be obtained by an integration over the 1BZ.
The accuracy of these calculations is therefore directly related to the amount of k points
one chooses and the method of integration used.

Over the years, two kinds of algorithms have proven to be the most accurate and
useful: the special-point scheme [111,112] and microcell schemes [113,114]. Special-point
schemes represent the integral over the 1BZ as weighted sum over a set of specifically
chosen k points [115] and are most applicable to insulators and semiconductors. They
have the advantage of delivering very accurate results with a minimum number of k
points, yet struggle with materials without an electron band gap.

The microcell algorithms divide the 1BZ in smaller cells, which can be in principle of
any shape. The most widely used method is the tetrahedron method, where the 1BZ is
partitioned into small tetrahedra. Compared to codes using higher-order polyeders, this
method is conceptionally easier and due to linear interpolations of the electron energies
and matrix elements within a tetrahedron, the corresponding integrals can be performed
analytically [116, 117]. Applied to insulators and semiconductor, however, tetrahedron
methods needed a large amount of k points within the 1BZ to get reliable results. This
disadvantage was remedied by Blöchl et al. [118], who introduced an improved technique
that brought this method up to the level of special-point algorithms.

For the electronic susceptibilities calculated for our work, we chose to implement a
tetrahedron scheme as it applicable to a wide variety of problems. We will in fact present
two implementations. The first one was developed by Heinrich Sormann and uses the
integration method by MacDonald, Vosko and Coleridge [119]. We will refer to this
program from now on with MVC code. The second one was developed by the author
of this work and is built on the foundations of the MVC code. It uses an algorithm,
where only the region of 1BZ physically relevant for the χ computation is tessellated into
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tetrahedra and an analytic integration inside the tetrahedra along the lines of Ref. [116].
The actual integration formulas, however, have been reworked by Wolfgang von der
Linden to obtain a more stable and accurate integration routine. In order not to disturb
the flow of reading, these formulas are summarized in App. A.

3.2. Different Conventions for χ0

The numerical evaluation of electronic susceptibilities is by no means a trivial task,
even with today’s computer power. For the moment we will focus on the static bare
susceptibility,1 as presented in Sec. 2.3, and present again Eq. (2.33).

χ0(q) =
∑
n,m

dk

4π3

1BZ∫
Θ(εF − εmk )−Θ(εF − εnk+q)

εmk − εnk+q

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2 . (3.1)

Two things in particular cause major difficulties for any algorithm. Firstly, the numeri-
cal representation of the Heaviside functions, and secondly the treatment of singularities
in the energy denominator. Using the substitution −k′ = k + q and the facts that
εmk = εm−k and |m,k〉 = |m,−k〉, we can express Eq. (3.1) differently

χ0(q) =
∑
n,m

dk

2π3

1BZ∫
Θ(εF − ε0m,k)Θ(ε0n,k+q − εF )

εmk − εnk+q

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2 . (3.2)

Equations (3.1) and (3.2) offer two alternatives for the calculation of χ0(q). In case of
Eq. (3.2), one has to evaluate one integral over the 1BZ where - apart from the matrix
element - the numerator of the integrand consists of a product of Heaviside functions.
Eq. (3.1), on the other hand, requires the calculation of two independent integrals, where
each includes only one Heaviside function. From the point of view that the numerical
treatment of integrals over Heaviside functions is by no means trivial, Eq. (3.1) seems
to be the more favourable candidate for a numerical evaluation. In fact, during the last
decades a great number of authors dealing with the numerical determination of χ0(q)
took this choice [33,45,76,110,120].

Despite its advantages, the evaluation of Eq. (3.1) has severe shortcomings, as the
numerical results of two integrals of similar magnitude are subtracted. The situation is
illustrated in Fig. 3.1, where we demonstrate the integration over the 1BZ for a very
simple test case, namely a homogeneous electron gas in a 2D square lattice. The square
represents the 1BZ and the central circle is the ’Fermi circle’, which lies completely within
the 1BZ, assuming that we only have one valence electron per unit cell. The union of
the yellow and red regions in Fig. 3.1(a) represents the Fermi circle shifted by the wave
vector q. Note that all parts of this circle lying outside the 1BZ are projected back into
the 1BZ. The evaluation of Eq. (3.1) requires an integration over the whole central Fermi

1The generalization to the dynamic susceptibility is straightforward and will be discussed in Sec. 3.3.2.
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Figure 3.1.: Details of the integration over k-space for a homogeneous electron gas in a
2D square lattice according to (a): Eq. (3.1) and (b): Eq. (3.2).

circle (blue plus red regions). An analytical analysis of the integrals, however, shows
that the red regions in Fig. 3.1(a) do not contribute at all. These zero regions increase
with decreasing wave number |q|. Using Eq. (3.1) for the determination of χ0 therefore
requires (especially for small values of |q|) many superfluous numerical integrations.

This numerically unpleasant situation is improved considerably if the susceptibility
is calculated based on Eq. (3.2). Firstly, there is only one integral, and secondly (as
illustrated in Fig. 3.1(b)), due to the product of the two Heaviside functions, which
implies the condition

Θ(εF − εmk )Θ(εnk+q − εF ) = 1 , (3.3)

the red areas described above are explicitly avoided and the summation is restricted to
tetrahedra in the blue region of Fig. 3.1(b). As Eq. (3.2) allows for a much more accurate
evaluation of χ0, in particular for small values of |q|, we have chosen this formula to
be the basis of our susceptibility calculations. The implications of using the product
of Heaviside functions instead of the difference for the actual numerical implementation
will be discussed in more detail in the later part of Sec. 3.3.

3.3. Implementation of the Tetrahedron Method

As the MVC code represents the foundations of our newly developed program, we want
to give a short summary of the way this algorithm works. By defining

Fm(k) =
1

2π3

∑
n

∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣2

εmk − εnk+q

Θ(εnk+q − εF ) , (3.4)
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we have the compact expression for the susceptibility

χ0(q) =
∑
m

1BZ∫
dk Θ(εF − εmk )Fm(k) . (3.5)

Due to the point group symmetry of the crystal, one can restrict the integral over k
points to an irreducible wedge (IW) of the 1BZ. For the following we assume that the
crystal’s point group has T elements and we abbreviate the corresponding symmetry
matrix of the tth element by αt. Equation (3.5) then becomes

χ0(q) =
∑
m

IW∫
dk Θ(εF − εmk )

T∑
t

Fm(αtk) , (3.6)

where we made use of the fact that εmαtk
= εmk . The integration technique as used

in the MVC code follows in principle the suggestion by MacDonald et al. presented in
Ref. [119]. We will therefore only sketch the most important parts needed to understand
the working principle of such a program.

• At first, the IW is divided into a number of tetrahedrons, as shown in Fig. 3.2.
These tetrahedrons don’t have to be of the same size and orientation. In practice,
however, it is most convenient to work with a regular mesh of k points, which
constitute the vertex points of the tetrahedrons. For the further discussion we
assume to have J tetrahedrons and the four vertices of the jth tetrahedron are
given by kjs with s = 1, 2, . . . , 4.

• For each kjs, the quantities εmk and Fm(αt) have to be obtained. In our case,
the Bloch energies εmk and the corresponding wave functions ψm,k(r) are calcu-
lated with the full potential linearized augmented plane wave (FP-LAPW) code
WIEN2k [121, 122]. Then, the wave functions ψm,k(r) are represented by a set of
plane wave coefficients am,k(K), with K being a reciprocal lattice vector, i.e.

ψm,k(r) =
1√
Ω

∑
K

am,k(K)ei(k+K)·r . (3.7)

with Ω being the normalization factor. In this representation, the matrix element
in Eq. (3.4) can be written as

〈m,k|e−i(q+K)·r|n,k + q〉 =
∑
K′

a∗m,k(K′) an,k+q(K′ −K) . (3.8)

32



3.3. Implementation of the Tetrahedron Method

Figure 3.2.: Tetrahedron tessellation of the IW of a simple tetragonal lattice. For the
sake of simplicity we use a 2-dimensional representation. The BZ is given
by the axis limits and the area where this Heaviside function Θ(εF − εmk )
equals unity is indicated for the IW by the red shading. The Fermi radius
has been chosen to be kF (k) = 1.9πa .

• The simplest approximation of χ0 is then given by calculating the weighted sum
inside each tetrahedron and subsequently summing over all tetrahedrons

χ0(q) ≈
∑
m

J∑
j=1

vj
1

4

4∑
s=1

F̃m(kjs)Θ(εF − εmk ) . (3.9)

Here we used the abbreviation vj for the volume of the jth tetrahedron, and

F̃m(kjs) =
∑

t Fm(αtk
j
s). In this formulation, the effect of the Fermi surface is

simply taken into account by the fact that all k points lying outside the Fermi
body are discarded. It is evident that such a simple approximation would require
an enormous number of k points in order to give a result of reasonable accuracy.

• A much better evaluation of Eq. (3.6) is possible with the following approach. The
intersection points of the Fermi surface (the border of the red area in Fig. 3.2)
with the surfaces of the tetrahedrons are approximately calculated by means of
linear interpolation. These new points define new tetrahedrons, which all fulfill
Θ(εF − εmk ) = 1. The Bloch energies and the values of F̃m(kjs) are also linearly
interpolated to the new k points. Staying in the notation of Ref. [119], Eq. (3.5)
is written like

χ0(q) ≈
∑
m

J∑
j=1

vjnj
1

4

4∑
s=1

Ijs F̃m(kjs) , (3.10)
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where nj and Ijs include the interpolation mentioned above.2

The Heaviside function Θ(εnk+q− εF ) appearing in Eq. (3.4) assures that the scattered
electron states lie above the Fermi level. In the MVC code, no interpolation is performed
in order to better approximate this Heaviside function for the sake of a simpler and more
compact algorithm. In the following we will show that our improved method, which
eradicates this weakness,3 yields results of much higher accuracy.

In order to numerically evaluate Eq. (3.2) properly, our new implementation accurately
represents the second Heaviside function by a reshaping of the tetrahedron mesh. This
process is performed in two steps.

• Reshaping of the tetrahedra with respect to Θ(εF − εmk )
Similar to the method of MacDonald et al. we classify every tetrahedron with
respect to the first Heaviside function. If the energies εmk at all tetrahedron vertices
are smaller than εF , the corresponding tetrahedron is considered fully occupied
and added to the list of new tetrahedrons unchanged. A tetrahedron, where only
some (but not all) vertex energies are smaller than the Fermi energy, is called
partly occupied. We then calculate the intersection of the Fermi surface with this
tetrahedron by linear interpolation of the energies εmk and decompose the partly
occupied tetrahedron into smaller, fully occupied ones, which are then added to
our list of new tetrahedrons.4 If all energies are smaller than the Fermi energy, the
tetrahedron is considered empty and discarded. By employing such a procedure,
as schematically drawn in Fig. 3.3(b), we end up with a list of tetrahedrons, which
occupy only the area where Θ(εF − εmk ) = 1.

• Reshaping of the tetrahedra with respect to Θ(εnk+q − εF )
Having obtained a list of fully occupied tetrahedrons with respect to the first
Heaviside function, we proceed to numerically represent the second one with a
similar algorithm. Every tetrahedron of our newly created list is subjected to the
same classification, (i.e., fully occupied, partly occupied, empty) but now with
respect to Θ(εnk+q − εF ). As this Heaviside function ensures that the electron is
scattered into an available state above the Fermi energy, we now add the empty
ones to our list unchanged. The fully occupied tetrahedrons are cast away and the
partly occupied ones are broken up into smaller, completely empty tetrahedrons.
In the end, we are left with a tetrahedron mesh that fills only the area where
the product of both Heaviside functions equals unity (see Fig. 3.3(c), i.e., only
the physical scattering processes from occupied to unoccupied electron states are
taken into account.

2For a detailed derivation we refer the reader to Ref. [119].
3coupled with a better integration algorithm (see App. A)
4“We also tested a quadratic interpolation of the electron energies and transition matrix elements [118],

which requires DFT calculation for additional k points. We found, however, that it is more advan-
tageous to use these additional k points directly to create a tighter tetrahedral mesh and to use a
linear interpolation.” C. Heil et al., Ref. [80]
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Figure 3.3.: Panel (a): Tetrahedron tessellation of the IW. The red area indicates where
the product of Heaviside functions equals unity while the green shading
represents the area, where only Θ(εF − εmk ) equals unity. Panel (b): First
step of the tetrahedron reshaping to get fully occupied tetrahedrons where
εmk < εF . Panel (c): Second step of the tetrahedron reshaping to represent
only the area where Eq. (3.3) is fulfilled.

We want to note here that while the first cutting described has to be carried out
only once for every electron band of the sum over m, the second cut has to be
performed

1. for every q vector,

2. for every electron band of the sum over n, and

3. for every point group element of the crystal.

The remaining task is the integration of 1/(εmk − εnk+q) for every tetrahedron. Inte-
gration formulas for such a problem can be found in many studies, as for example in
Refs. [114,116,123]. However, we experienced problems with either the practical numer-
ical implementation or the resulting accuracy with all of these formulations. A new set
of integration formulas was therefore developed, in which all possible cases of singulari-
ties and indeterminacies have been carefully evaluated analytically. These formulas are
presented in App. A.

3.3.1. Comparison of the MVC code and our new implementation

In the following, we want to give a short comparison of results obtained with the MVC
code and our improved method. As test material we chose chromium, which is the
classical example of a material exhibiting spin-density waves [124]. As our focus here
is on the performance of the two implementations, we will review very briefly all the
material’s properties needed to understand the susceptibility results. A more elaborate
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Figure 3.4.: Comparison of results obtained with the MVC code (blue crosses) and our
newly developed algorithm (black line) for 506 k points in the IW. The value
of N(εF ) is indicated by a black cross at |q| = 0.

discussion of the electronic structure and its implications for the susceptibility can be
found in Sec. 4.

Chromium was the first material for which a spin density wave at a wave vector of
|qSDW | ≈ 21

22
2π
a in the (100) direction was found [125] and many susceptibility calcu-

lations were carried out to trace the origin of this SDW [124, 126, 127].5 In all these
studies, a peak in the bell-shaped susceptibility curve is found at |qSDW |, which can
be connected to a nesting of the Fermi surfaces (see Sec. 4.3 of this work, published in
Ref. [80]).

The results of a susceptibility calculation on chromium along the (100) direction can
be seen in Fig. 3.4. There, we used 506 k points to represent the IW and included
28 bands around the Fermi energy in our calculation in order to assure convergence
with respect to the number of bands. The blue crosses mark the data points calculated
with the MVC code and the black solid line is the susceptibility curve obtained by our
improved algorithm.

A few observations are in order:

• As discussed in Sec. 2.3.1, χ0(q) has to approach the DOS at the Fermi energy
N(εF ) for q → 0. This condition is only met with our new algorithm, which
approaches this limit nicely. The MVC code, on the other hand, is unable to
handle small values of |q| and provides unreliable results for these wave vectors.

• Also at qSDW , the MVC code struggles to resolve the peak of the susceptibility.
This most important feature of the susceptibility of Cr, however, is well resolved

5For a more detailed history of SDW in Cr see M. Bayer, Ph.D. thesis, TU Dresden, 2008.
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Figure 3.5.: Comparison of results obtained with the MVC code (blue crosses) and our
newly developed algorithm (black line) for 1015 k points in the IW. The
value of N(εF ) is indicated by a black cross at |q| = 0.

with our improved program, which yields |qSDW | ≈ 0.95 · 2π
a , in accordance with

other theoretical studies and experiments [124–126].

• A closer inspection of the blue crosses reveales that also in the region of larger |q|,
i.e. from 0.3 · 2π

a onwards, small oscillations can be observed, which are directly
related to the size of the tetrahedrons in the IW. The black solid line does not
show this behavior.

A way to improve the accuracy of the MVC code is to consider a much tighter tetrahe-
dron mesh. The result of such a calculation is shown in Fig. 3.5, where we used roughly
twice as many k points in the IW as in Fig. 3.4.

The first, obvious obseration is the fact that the results of the MVC code for |q| → 0
have indeed improved considerably. While there are still large numerical errors in the
blue data points left, the tendency towards N(εF ) is reproduced much better than before.
The improvement close to the wave vector of the magnetic instability, however, is much
smaller. Furthermore, there is no visible response at qSDW , which means that the
MVC code is completely unable to describe this interesting response of Cr. Also a
further doubling of the number of k points does not improve the situation for the MVC
code significantly. The black curves in Figs. 3.4 and 3.5 representing the susceptibility
calculated with our improved method, however, match each other nicely. This means
that with our new implementation we obtain reliable results already for a small number
of k points.

The situation is even worse in the CMA. In this very simple approximation, often
employed to measure Fermi surface nesting (see also Ref. [80]), the matrix elements are
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Figure 3.6.: Comparison of results obtained in the CMA with our newly developed algo-
rithm (black line) with 506 k points in the IW and the MVC code for 506
(red circles) and 1015 (blue crosses) k points.

all set to unity. While the susceptibilities obtained within the CMA are in general very
different to properly calculated susceptibility curves, they do show a strong response at
wave vectors where parts of the Fermi surface overlap. Results for calculations in the
CMA are presented in Fig. 3.6, where the black solid line stands for data obtained with
our new algorithm and the red circles and blue crosses represent data points from the
MVC code for 506 and 1015 k points, respectively. A discussion on the merits of the
CMA will follow in later chapters of this work (Sec. 4), here we only want to note that
the MVC code provides completely useless data and the situation does also not improve
when more k points are included.

This leaves us with the conclusion that the MVC code cannot be used in the CMA and
in order to get reliable results for the proper bare susceptibility with this technique, one
has to consider a huge number of k points in the IW. While this might be possible for a
simple compound such as chromium, it is completely impractical for more complicated
compounds such as LiFeO2Fe2Se2 (see Sec. 7). Our new implementation of the tetrahe-
dron method, however, delivers very accurate results already for very few k points in the
IW. This in turn allows us to tackle more expensive calculations such as calculating the
dynamic bare susceptibility, as discussed in Sec. 3.3.2. It also presents a firm foundation
for calculations beyond the bare susceptibility.

3.3.2. Calculation of the dynamic susceptibility

The calculation of the dynamic susceptibility is of particular interest, as this allows the
determination of excitation energies and, when going beyond χ0, dispersion relations of
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collective modes. It is convenient for the following discussion to split χ0(q, ω) into its
real and imaginary parts, as done in Eq. (2.30). For these formulas, one can also find
expressions where the product of Heaviside functions appears instead of their difference.
In analogy to Sec. 3.2. We therefore have

Reχ0(q, ω) =
∑
n,m

1BZ∫
dk

4π3
Θ(εF − εmk )Θ(εnk+q − εF )|〈m,k|e−iq·r|n,k + q〉|2

×
(

1

εmk − εnk+q + ~ω
+

1

εmk − εnk+q − ~ω

)
, (3.11)

and

Imχ0(q, ω) = −
∑
n,m

1BZ∫
dk

4π2
Θ(εF − εmk )Θ(εnk+q − εF )|〈m,k|e−iq·r|n,k + q〉|2

× δ(~ω + εmk − εnk+q) . (3.12)

From a numerical point of view it is much more convenient to calculate the imaginary
part of the susceptibility and then use a Kramers-Kronig transformation to obtain the
real part than to calculate the real part directly. If we consider for a moment the matrix
elements to be constant over the volume of the tetrahedron, the integration over the
tetrahedron volume V reduces to

I =

∫
V
dk δ(~ω + εk − εk+q) . (3.13)

This is an equation often encountered in numerics, as for example in DOS calcula-
tions. By a linear interpolation of the energies and a Taylor expansion up to first order,
Eq. (3.13) can be rewritten

I =

∫
V
dk

δ(~ω − εk)

|∇k(∆ε)| ,

where ∆ε = εk − εk+q. With that, the solution to Eq. (3.13) can be simply written as
the area of the constant energy surface S with energy ~ω, divided by the gradient of the
energy difference

I =
S

|∇k(∆ε)| . (3.14)

A schematic representation is given in Fig. 3.7, which shows a tetrahedron cut by the con-
stant energy surface S. The inclusion of matrix elements in this integration is straight-
forward by performing a linear interpolation for those as well.

To calculate χ0(q, ω), our algorithm therefore executes the following steps
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Figure 3.7.: Schematic drawing of a single tetrahedron with its corner coordinates ki to
illustrate the integration of Eq. (3.13). The shaded area S is the constant
energy surface inside the tetrahedron with ∆ε = ~ω.

• Reshaping of the tetrahedron mesh with respect to Θ(εF − εmk )Θ(εnk+q − εF ). As
before, this leaves us with only the physically relevant volume of the IW.

• For every value of ω the integral∫
V
dk

∣∣∣〈m,k|e−i(q+K)·r|n,k + q〉
∣∣∣2 · δ(~ω + εk − εk+q) (3.15)

has to be solved for every tetrahedron which is cut by the constant energy surface
given by ω. This process has to be repeated for (i) every q vector, (ii) every electron
band of the sum over n, and (iii) for every point group element, as already discussed
in the context of the static case.

• Calculating the real part via a Kramers-Kronig transformation as described in
Eq. (2.32). Special attention has to be paid to the fact that in order to perform this
transformation properly, the chosen frequency interval needs to be large enough,
i.e., Imχ0(q, ω) has to vanish for all ω ≥ ωmax, where ωmax is the biggest frequency
considered in the transformation.
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Abstract

Electronic susceptibilities are a very popular tool to study electronic and magnetic prop-
erties of materials, both in experiment and theory. Unfortunately, the numerical eval-
uation of even the bare susceptibility, which depends on the computation of matrix
elements and sums over energy bands, is very work intensive and therefore various ap-
proximations have been introduced to speed up such calculations. We present a reliable
and efficient implementation of the tetrahedron method which allows us to accurately
calculate both static and dynamic bare susceptibilities, based on full-potential density
functional theory (DFT) calculations. In the light of the exact results we assess the
effects of replacing the matrix elements by a constant and the impact of truncating the
sum over the energy bands. Results will be given for representative and topical materials
such as Cr, a classical transition metal, as well as the iron-based superconductor FeSe.

4.1. Introduction

The susceptibility χ both of charge and spin is a favoured quantity of theorists as it
reveals interesting details of the excitation spectrum of the considered system and can
directly be compared with experimental results [128,129]. There is a long list of materials
for which susceptibilities have given important insights to unravel the underlying physics.
In particular, for the iron-based superconductors [1, 7] (FeSCs), susceptibilities play a
crucial role in the discussion of the origin of superconductivity.

Many undoped FeSCs have an antiferromagnetic ground state, whose magnetic or-
dering vector matches the Fermi surface nesting vector [7]. Since the very beginning
of the field, this has been considered a strong indication of spin-fluctuation mediated
superconductivity and many theories have been proposed to explain superconductivity
based on susceptibility calculations [18,32,33,45,52,79,130–132]. In these weak-coupling
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approaches, the full electronic structure is usually reduced to an effective model using an-
alytical approximations for the relevant bands (ab initio downfolding or projection tech-
niques) and the many-body interactions responsible for superconductivity, magnetism
and other instabilities are treated with more and more sophisticated methods, such
as random-phase approximation (RPA), fluctuation exchange approximation, functional
renormalization group, etc. [32, 131, 132]. Only very recently, a first-principles scheme
for an ab initio treatment of spin fluctuations has been proposed [52]. Although they
don’t allow quantitative predictions of critical temperatures and energy scales, these
calculations have provided very important insights into issues such as the symmetry of
the order parameter, trends of superconducting critical temperatures, competition of
different instabilities, and so on.

These studies have shown that even small changes in the electronic structure can have
a large impact on superconductivity and magnetism. This implies that the influence
of the approximations employed for the calculations of the non interacting system is a
serious issue. The non interacting susceptibility, representing the basis of RPA and of
self-consistent DFT for spin fluctuations, is a particularly critical quantity: the results
are very sensitive to small details of the electronic structure, therefore very accurate
electronic structures and k-space integration methods are needed; matrix elements are
easy to compute in a plane wave basis, but converge very slowly with basis size; in cases
where bare susceptibilities are used as input for many-body calculations, the number of
bands is also a serious issue.

A common procedure in this case is to downfold the full electronic structure onto
an effective low-energy model, which reproduces the band structure in the vicinity of
the Fermi level. This truncation can have severe effects on the susceptibility, since the
convergence with the number of bands is very slow. In fact, although susceptibility
calculations have been performed for a long time and many different algorithms have
been proposed for the numerical evaluation [116,119,123,129], the number of fully first-
principles calculations of susceptibilities is scarce [47,52,79,120,133].

In this paper we present a method that enables one to avoid these approximations
and yields reliable results for the static and dynamic bare susceptibility, based on full-
potential DFT calculations [121] of the electronic structure and tetrahedron integra-
tion [113]. We introduce a non standard tetrahedron method that explicitly takes only
the non vanishing contributions of the Brillouin zone into account and significantly re-
duces the number of required k points. The accuracy of the presented approach is
controlled by the number of k points in the first Brillouin zone, the number of reciprocal
lattice vectors G used in the expansion of the LDA wave functions in plane waves, and
the number of electronic bands entering the susceptibility formula. We demonstrate that
converged results can be reached with acceptable computational effort.

Based on exact results obtained by this method, we scrutinize the approximation
where all matrix elements are replaced by unity - henceforth referred to as constant ma-
trix element approximation (CMA) [116,117,119,123]. The CMA, which was very often
used in the early days of susceptibility calculations, is at the heart of many qualitative
arguments on Fermi surface nesting, which have been revived in recent years to explain
different phenomena, ranging from charge and spin density waves (SDWs) to supercon-
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ductivity [33, 134]. We show that, in fact, CMA can strongly affect the susceptibility.
Moreover, we discuss the effects of downfolding the full band structure to an effective
low-energy model.

We would like to remark that the general purpose of this work is to provide a scheme to
compute reliable bare susceptibilities. The inclusion of many-body effects, which would
allow a direct comparison to experiment, is beyond the scope of this paper.

This paper is organized as follows. In Sec. 4.2 we introduce expressions for the bare
susceptibility χ0 and the method and algorithm we propose to evaluate them with.
In Sec. 4.3 we study the impact of CMA on the static bare susceptibility χ0 of two
representative examples and we also discuss the error induced by truncating the number
of electronic bands. In Sec. 4.4 we extend the analysis to dynamic susceptibilities and
our findings are summarized in Sec. 4.5.

4.2. Method

For a system of Bloch electrons - taking into account only the diagonal elements of
the χ0 matrix - the real and imaginary parts of the non interacting (bare) dynamic
susceptibility [92] read

Reχ0(q, ω) =
∑
n,m

1BZ∫
dk

4π3
Θ(εF − εmk )Θ(εnk+q − εF )

× |〈m,k|e−iq·r|n,k + q〉|2
(

1

εmk − εnk+q + ~ω
+

1

εmk − εnk+q − ~ω

)
(4.1)

Imχ0(q, ω) = −
∑
n,m

1BZ∫
dk

4π2
Θ(εF − εmk )Θ(εnk+q − εF )

× |〈m,k|e−iq·r|n,k + q〉|2 δ(~ω + εmk − εnk+q), (4.2)

where Eq. (4.2) holds for ω ≥ 0. For negative values of ω, the imaginary part is taken
from the relation

Imχ0(q,−ω) = −Imχ0(q, ω) . (4.3)

The real and imaginary parts of χ0 are connected via the Kramers-Kronig transfor-
mation. q is a vector of the extended wave-vector space and k represents vectors of the
first Brillouin zone (1BZ). n and m denote electron band indices, εF is the Fermi energy,
and εmk stands for the energy dispersion of the mth band. The product of Heaviside
functions in the numerator of the integrand ensures that only transitions from occupied
to unoccupied electron states contribute to the integral. A similar expression for χ0

can be derived where the product of Heaviside functions is replaced by their difference
Θ(εF − εmk )−Θ(εF − εnk+q). While the latter is simpler from a geometrical point of view,
it has the disadvantage that many contributions of the two terms cancel each other, an
effect which becomes increasingly severe with decreasing |q|.
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Figure 4.1.: (Color online) (a) Tetrahedral mesh of the irreducible wedge of an fcc lattice.
The other panels show the mesh after the first (b) and after the second (c)
cut with the Fermi surface (see text). For the sake of simplicity we use a
parabolic dispersion ε(k) = |k|2; q = (0.15, 0, 0) and kF = 0.77.

We therefore chose Eqs. (4.1) and (4.2) to be the basis of all our susceptibility cal-
culations. In Sec. 4.3, which is dedicated to the static bare susceptibility, all results
are obtained by an evaluation of Eq. (4.1) for ω = 0, in which case the imaginary part
vanishes. However, if one wishes to study the dynamics of χ0 (as, e.g., in Sec. 4.4 of this
paper), one is usually interested in the ω dependence of both the real and the imaginary
part of χ0. In this case, one normally computes only the imaginary part Imχ0(q, ω) be-
cause its numerical evaluation is significantly less challenging than a direct calculation of
Reχ0(q, ω) and the corresponding real part can then be easily obtained by the Kramers-
Kronig relation, provided that sufficiently large values of ω have been considered.

Both expressions (4.1) and (4.2) require a k-space integration over the irreducible
wedge (IW) of the 1BZ. For a numerical evaluation of such integrals, different algo-
rithms have been proposed in literature. Smearing methods are not appropriate for
susceptibility calculations, and the most commonly used implementations are random
sampling [52, 79] or tetrahedron methods [113,114,116–118,123].

In the following we present an implementation of the tetrahedron method that differs
from other algorithms in some key aspects, which will be described later. The starting
point, however, is the same as in all other implementations, i.e., the IW is decomposed
into a number of tetrahedra as depicted in Fig. 4.1(a) and described, for example, in
Refs. [114,123]. The Bloch energies εmk and the corresponding wave functions ψm,k(r) for
k points at the corners of the tetrahedra are determined by using electron band structure
codes, in our case the full potential linearized augmented plane wave (FP-LAPW) code
WIEN2k [121, 122]. Numerically, each wave function ψm,k(r) is represented by a set of
plane wave coefficients am,k(K), with K being the reciprocal lattice vector. Based on this
system of input data, the energies εnk+q and coefficients an,k+q(K), which usually belong
to k points not contained in the tetrahedra set, are approximated by linear interpolation.
This means that in our calculations both the electron energies and the matrix elements
in Eqs. (4.1) and (4.2) are numerically treated on equal footing.
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The most demanding aspect of the numerical evaluation of the integrals (4.1) and
(4.2) comes from the product of Heaviside functions Θ(εF − εmk )Θ(εnk+q − εF ): first, the
step function Θ(εF − εmk ) reduces the integration within the IW to initial electron states
εmk lying inside the Fermi surface (FS). The numerical realization of such a reduction is
quite popular in the literature; some authors (see, e.g., Charlesworth and Yeung [117])
call this a geometric interpretation of the tetrahedra to emphasize that their occupation
depends on their spatial position within the IW: a tetrahedron is said to be either empty,
fully occupied, or partially occupied, if it is either entirely outside, inside, or cut by the
Fermi surface. Empty tetrahedra are removed as they do not contribute to the integral
and fully occupied ones remain unchanged. Since the integration over fully occupied
tetrahedra is less time consuming and more reliable than over partially occupied ones,
the latter are further decomposed into a finer set of completely occupied tetrahedra.
This procedure, schematically shown in Fig. 4.1(a) and Fig. 4.1(b), is described in detail
by, e.g., MacDonald et al. [119] and Rath and Freeman [116].

The key aspect of our implementation is that this process of cutting the tetrahedra to
carve out the regions where the Heaviside function equals unity is consequently repeated
also for Θ(εnk+q − εF ). In this way, the final tetrahedra are restricted to the region of
the IW, where the condition

Θ(εF − εmk )Θ(εnk+q − εF ) = 1 (4.4)

is fulfilled. 1 The corresponding (second) reformulation of the set of tetrahedra in the
IW is graphically demonstrated by Fig. 4.1(b) → Fig. 4.1(c). While the first step from
(a) to (b) has to be performed only once for every electron band (of the sum over m), the
second step has to be repeated (i) for every value of the q vector, (ii) for every electron
band of the sum over n, and (iii) for every point group element of the crystal. The main
benefit of this approach is that a lot of numerical issues encountered when integrating
over tetrahedra, which do not fulfill condition (4.4) but only Θ(εF − εmk ) = 1, can be
avoided and a simpler set of integration formulas can be used. Besides the simplified
numerical integration, the number of k points in the IW can be significantly reduced.
For example, the results for chromium, which we are going to discuss in Sec. 4.3, were
obtained by using approximately 500 k points in the IW. To achieve the same accuracy
without the second carving of the 1BZ, we would have needed to consider more than
2000 k points.

Finally, we also tested a quadratic interpolation of the electron energies and transition
matrix elements [118], which requires DFT calculations for additional k points. We
found, however, that it is more advantageous to use these additional k points directly
to create a tighter tetrahedral mesh and to use a linear interpolation.

1Θ(εnk+q − εF ) reduces the integration within the IW to final electron states εnk+q lying outside the
Fermi surface.
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Figure 4.2.: (Color online) LDA bandstructure of Cr, decorated with partial characters:
s (green), d-t2 (blue), and d-e (red). The coordinates of the high-symmetry
points are Γ0=(0,0,0), H=(0,1,0), N=(1
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2), all in units of
2π
a with a being the lattice constant.

4.3. Static Bare Susceptibility

The CMA is the simplest approximation to avoid the cumbersome evaluation of the
matrix elements entering the bare susceptibility formula. This approximation has been
used to interpret susceptibility data and SDW order in many transition metals, such as
Pd and Cr. The concept of Fermi surface nesting, which derives from these early CMA
calculations, is still quite popular nowadays in several materials, such as FeSCs and
layered metal dichalchogenides. We will demonstrate that although CMA in some cases
may lead to reasonable results, it fails in other cases. In the light of this unpredictability
it is advisable to include matrix elements in all static susceptibility calculations and even
more so in the dynamical ones.

In order to calculate the matrix elements 〈m,k|e−iq·r|n,k + q〉 correctly we expand
the LAPW [121] eigenvectors |m,k〉 in a plane wave basis. We carefully checked that
our results are converged with respect to the number of plane waves (typically around
4000).

We start our discussion with the 3d transition metal chromium (Cr), a classical SDW
material [125], for which different approximations for susceptibilities have been proposed.
Neutron scattering experiments show an incommensurate SDW with |qSDW| ∼ 21

22
2π
a ,
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Figure 4.3.: (Color online) FS of Cr in the kz=0 plane. The different colors indicate
different orbital character as described in Fig. 4.2 and the boundary of the
1BZ is indicated by dotted lines.

which corresponds to one of the nesting vectors of the Fermi surface. Fermi surface
nesting was however not sufficient to explain why Mo, which has a very similar Fermi
surface, does not display any SDW. This led to more refined susceptibility calcula-
tions [124, 126, 127], which showed that the susceptibilities of the two materials with
matrix elements are quite different, with no obvious SDW instability in Mo.

The electronic structure of Cr in the experimental body centered cubic (BCC) crystal
structure is shown in Fig. 4.2; the colored symbols indicate the partial character of the
electronic bands: s (green), d-e, i.e., 3z2 − 1, x2 − y2 (red) and d-t2, i.e., xy, xz and yz
(blue). The s band is entirely full, and extends from ∼ 8 to ∼ 4 eV below the Fermi
level (εF ). The d bands lie higher, with a clear separation between t2 bands, which
form a narrow structure ±2 eV around εF , and e bands extending to higher energies. In
many cases, however, the bands are not pure, i.e., they display contributions from more
than one partial character, and this indicates a substantial hybridization between the
corresponding real-space orbitals.

The resulting Fermi surface is three dimensional and comprises three types of sheets:
large octahedral hole and electron pockets around the center (Γ) and at the corner (H) of
the BZ, and several smaller hole pockets around the N points. A two-dimensional section
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of the FS in the kz=0 plane is shown in Fig. 4.3; the color coding for the dominant partial
characters is the same as in Fig. 4.2. The large pockets around Γ and H are mostly of
t2 character, the small ellipsoids around N are mostly of e character.

Based on this electronic structure, we have used our highly accurate susceptibility
program to compute the corresponding χ0 along the (010)-direction from the Γ point of
the 1BZ (Γ0) to the center of the next BZ (Γ1). In Fig. 4.4 we compare exact results
where matrix elements are properly taken into account (black curve) with the CMA (red
curve). The left scale belongs to the exact results and the right scale to CMA. The cross
at |q| = 0 marks the value of the density of states at the Fermi energy N(εF ) given by
the LAPW calculation, a value χ0(q) has to approach in the limit |q| → 0. Of course,
N(εF ) can only be calculated reliably when matrix elements are correctly included. The
agreement of limq→0 χ0(q) with the exact value of the density of states is a stringent
test for the k-space integration.

The exact result yields a broad bell-shaped curve with a small and narrow peak at q =
qN2 , with |qN2 | ≈ 0.95 2π

a , which fits perfectly to the experimentally observed wavelength
of the SDW in chromium, [125] and is in very good agreement with previous tight-
binding [126] and supercell calculations. 2 Although there is a peak at the same wave
number in the CMA result (red curve) as well, the rest of the susceptibility differs
significantly from the exact result. In particular, we observe a second very strong peak
at q = qN1 , with |qN1 | ≈ π

a , which is not present in the exact result.

In order to understand these results in detail, we first compare the converged suscep-
tibility [Fig. 4.4(b)], which was obtained by summing over 30 bands, with the result we
would obtain restricting the sum in Eq. (4.1) only to bands at the Fermi level [Fig. 4.4(a)].
First of all, we notice that the red curves in panels (a) and (b) are almost identical, i.e.,
in the CMA the shape of χ0 is almost entirely determined by the transitions between
bands at the Fermi level. The situation is very different for the exact susceptibility (black
curves), where matrix elements strongly enhance transitions between “outer” bands, i.e.,
bands that do not cross the Fermi level; in this particular case, this enhancement is very
strong for k points half-way between Γ and H.

While it is almost impossible to give a detailed account of all the transitions involv-
ing outer bands, since their number is very large, it is extremely instructive to trace
back the enhancement of the susceptibility due to matrix elements, when only bands
at the Fermi surface are included [panel a]. Indeed, the two peaks seen at qN1=0.52 2π

a
and qN2=0.95 2π

a in the CMA correspond to two nesting vectors of the Fermi surface,
illustrated in Fig. 4.3. The shorter vector (qN1) connects the large hole FS with small
ellipsoidal pockets around N, while the larger one (qN2) connects it to the large electron
pocket at H. The large difference in the matrix elements stems from the fact that qN2

connects parts of the Fermi surface for which not only the geometrical, but also the
orbital overlap, is large, and this does not happen for qN1 . 3

2For a review of SDW in Cr, see M. Bayer, PhD Thesis, TU Dresden 2008
3The effect of orbital overlap is easy to understand in the tight-binding approximation, [126,135] where

the matrix elements in Eqs. (4.1) and (4.2) are approximated by
∑

i c
n
i (k)cmi (k + q) . Here, cni (k)

are the normalized coefficients of the ith atomic orbitals for the electronic Bloch state of band n at
wave-vector k.
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(a): Fermi surface bands

(b): all bands
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Figure 4.4.: (Color online) Static bare susceptibility χ0 for Cr. CMA results (red, right
axis) are compared with the exact results (black, left axis). Γ1 stands for
the Γ point in the second BZ. The upper panel (a) shows the converged
results, while in the lower panel (b) only the contributions of the bands at
the Fermi level have been included in the susceptibility.
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Figure 4.5.: (Color online) LDA bandstructure for FeSe at ambient pressure with the
bands labeled according to their dominant orbital character. The five Fe d
bands that form the Fermi surface are shown in red, while all other Fe d
bands are depicted in blue. The Se p are shown in black and the bands
above Fe d in green.

The main conclusions of our first detailed comparison is that the CMA is a very poor
approximation for the full susceptibility for two reasons: (i) it overemphasizes the role of
the bands that cross the Fermi surface; (ii) it neglects completely the information on the
orbital character of the electronic states, which has a major effect on matrix elements.
Finally, we also want to remark that in CMA, the q-dependence of the susceptibility
solely stems from the energies εk+q, which are periodic with respect to any reciprocal
lattice vector K of the crystal. Therefore one has χ0(q) = χ0(q+K), as observed in all
red curves of Figs. 4.4, which is an artifact of the approximation. 4

After the classical example of Cr, we next present results for FeSe as a representative
example of the wide class of the recently-discovered FeSCs [1, 7], where models based
on susceptibilities have played a major role in the past few years. For the following
discussion we have chosen FeSe because it is one of the “simplest” FeSCs in terms of
chemical formula and crystal structure. This allows us to discuss the electronic structure
without entering the details of hybridization with intercalated atoms and layers and
three-dimensional interlayer hopping; to avoid the problem of unfolding, we also chose
to work in the two-Fe unit cell.

4For a more detailed discussion of momentum dependence of the matrix elements see Refs. [136,137].

52



4.3. Static Bare Susceptibility

Γ0 M Γ1

0

50

100

150

200

χ
0 C
M

A
(e
V

−
1
)

conv.
Se p - Fe d

Fe d
Fe fs

Figure 4.6.: (Color online) Static bare susceptibility in CMA χ0
CMA for FeSe calculated

by including different sets of bands, as shown in Fig. 4.5. From bottom
to top the included bands are: Fe d that cross the Fermi energy (red), all
Fe d bands (blue), Se p plus all Fe d bands (black), and Se p plus Fe d
plus all higher bands which are needed to ensure convergence of the full
susceptibility χ0.

All calculations presented here employ the crystal structure at ambient pressure mea-
sured by Kumar et al. in Ref. [138]. Our electronic structure, shown in Fig. 4.5, agrees
nicely with previous studies [16, 138]; similarly to what we did in Fig. 4.2, we have col-
ored the bands according to their dominant character and/or position with respect to
the Fermi level. This choice allowed us to introduce a compact notation for the suscepti-
bility plots, but it does not permit one to appreciate the full complexity of the electronic
structure. This issue is discussed in more detail in other publications [58,135,139]. Here
we only want to recall that, due to the sizable p− d hybridization, there is a substantial
contribution of Se p states to the Fe d bands, and vice versa.

The sixteen Fe d - Se p bands form a manyfold which extends from ∼ −6 to ∼ +2 eV
around the Fermi energy; the six lowest bands have mostly selenium character, and are
separated by a small gap from the ten Fe bands at ±2 eV. The Fermi level cuts the iron
bands at a nominal electron count d6, creating three hole pockets at the Γ point, and
two electron pockets at the M point. The kz dispersion of the bands is so small that the
FS is essentially two dimensional.

The inner and outer hole pockets have dominant xz, yz orbital character, while the
middle hole pocket is mostly of xy character; the electron pockets are formed by two
ellipsoids with the long axis along the 110 and 11̄0 directions, with dominant xz/yz
character on the long side and xy on the short one.

A clear geometrical nesting for q ∼ M = (πa ,
π
a , 0) exists between the hole and electron

pockets; this feature is common to many Fe-based superconductors, but the different
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Figure 4.7.: (Color online) Static bare susceptibility χ0 for FeSe at ambient pressure
calculated by including different sets of bands, as explained in Fig. 4.6. The
left panel (a) shows the exact result while the right panel (b) contains the
CMA result.

shape and orbital composition in different compounds can lead to marked differences
in the full susceptibility. Note also that all partial character of the hole and electron
pockets match over a considerable part of the BZ.

We analyze its behavior in detail for FeSe, studying χ0 in the (110)-direction in k-
space. We start from the CMA picture, shown in Fig. 4.6. The color coding in the figure
is consistent with Fig. 4.5: χ0

CMA results calculated considering only transitions between
the Fe bands that create the Fermi surface are drawn in red, those which also involve
the rest of the Fe d bands not crossing εF in blue, while in black we have all transitions
from Se p to Fe d. The converged results with respect to the number of bands is shown
in green.

In χ0
CMA, since matrix elements are neglected and the denominator of Eq. (4.1) is

almost k independent for large energies, the inclusion of more bands in the sum results
in an almost rigid shift in the susceptibility, which decreases as 1/∆ε for bands away
from the Fermi level. This background shift has no physical meaning, and in order to
compare susceptibility curves with different numbers of bands, it is more meaningful to
shift them to a common offset. This is done in the right panel of Fig. 4.7, where χ0

CMA

is set to zero at |q| = 0 for all curves. Due to the constant matrix elements, χ0
CMA

depends purely on 1/(εmk − εnk+q). This expression is large only for the partially filled

Fermi surface bands and χ0
CMA(q)− χ0

CMA(0) therefore depends mainly on these bands;
the most evident feature is a pronounced peak at the M point, due to the nesting of
hole and electron Fermi sheets. An enhancement is seen also around the Γ point, for
q . 0.4 ΓM due to hole-hole and electron-electron transitions; no inter- or intra-band
transitions are possible for 0.4 . |q| . 0.6 ΓM, and this accounts for the depletion seen
in χ0

CMA for these values of |q|.
The full susceptibility, with matrix elements correctly taken into account, is shown in

the left panel of Fig. 4.7. We want to stress that in this case no scaling or shifting of
the results has been performed. As long as all bands which cross the Fermi level are
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Figure 4.8.: (Color online) Contributions of the band transitions to χ0 for FeSe at am-
bient pressure at the M point. The red square contains transitions only
between Fermi surface bands and the blue square contains all band tran-
sitions between the Fe 3d bands. Inside the black square are all Fe d and
Se p bands. We employed a logarithmic color scale to visually enhance small
values.

included in the calculation, χ0 approaches N(εF ) in the limit |q| → 0. Away from Γ0

the absolute value does of course depend on the number of included bands. All curves
have a peak at the M point. However, quite surprisingly, the absolute maximum of
the red curve, calculated based only on the Fermi surface bands, is not at M, but close
to Γ0. This means that at the Fermi surface the matrix element enhances hole-hole
and electron-electron transitions more than electron-hole ones. Note that based on this
result, we could conclude that this particular system has a dominant instability at small
|q|, at variance with most other FeSCs. However, the full susceptibility, including bands
fairly away from the Fermi energy, has its maximum at M; the convergence to the exact
curve in terms of included bands is quite slow 5.

This is also graphically illustrated in Fig. 4.8, where the contributions of the indi-
vidual band transitions to the susceptibility χ0 at the M point are represented in a
two-dimensional histogram. The red square contains all bands that create the Fermi
surface, while the blue square includes all transitions between Fe d bands and the black
square all Fe d and Se p bands. The biggest contribution originates from the transition
of the middle hole pocket to the outer electron pocket of the Fermi surface. One can
also observe that there are considerable contributions to the susceptibility outside the
red square and also outside the blue square, again substantiating the vital importance of
including enough bands in a χ0 calculation. We note in passing that similar calculations

5We found that the results for the full χ0 converge if approximately 50 bands around εF are included.
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Figure 4.9.: (Color online) Imaginary part of the dynamic bare susceptibility χ0 for FeSe
halfway between Γ and M. The black line represents the result obtained with
exact matrix elements and the red line depicts the CMA result.

for other FeSCs (not shown) display a different convergence as a function of the number
of included bands.

We can summarize this section noting that in systems like FeSCs, with a complicated
multi-orbital Fermi surface and a large p-d hybridization which distributes the spectral
weight of the bands over a wide energy range, susceptibility calculations are extremely
delicate. In particular, one should avoid the CMA, as it can lead to wrong results, and
carefully monitor the convergence of the results with the number of bands. The latter
caveat is particularly relevant for model studies of trends in FeSCs based on downfolded
models of the electronic structure [58,135].

Needless to say, the convergence of the interacting susceptibility with the number of
bands might differ, since s, p, and d bands will respond differently to correlations due
to different interaction parameters.

4.4. Dynamic Bare Susceptibility

In addition to the static susceptibility, which is connected to instabilities towards ordered
ground states, valuable information can be obtained also from the dynamic susceptibility.
This quantitity describes the elementary excitations of the system. We focus here on its
imaginary part, which is directly related to scattering experiments and has therefore a
transparent physical interpretation. We show below that the approximations discussed
in the previous section for the static susceptibility have even more dramatic effects in the
dynamical case. Of course, direct comparison to experiments requires knowledge of the
full interacting susceptibility, which is beyond the scope of this work. However, a crucial
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Figure 4.10.: (Color online) Imaginary part of the dynamic bare susceptibility for FeSe
at ambient pressure. The left panel (a) shows Imχ0 whereas the right
panel (a) contains the results for Imχ0

CMA. The q point shown in Fig. 4.9
is indicated by a vertical white line.

ingredient to all theoretical descriptions is a proper calculation of the bare susceptibility,
which we discuss here.

In Fig. 4.9 we show the frequency dependence of Imχ0 for a representative q point in
the 1BZ, which sits half-way between Γ and M. The black line shows the result with all
matrix elements properly included. As compared to the CMA result, the matrix elements
strongly enhance some parts of the spectrum and suppress others. For example, the small
shoulder around 0.5 eV in the CMA result (red line) is enhanced forming a well-defined
peak, while the high-energy contributions are strongly suppressed. The reason for this
deviation is again that the CMA completely neglects the effect of orbital character,
leading to an overestimation of certain transitions. This is most obvious for energies
above 4 eV, where the discrepancy increases sharply. At this energy, the transitions are
to a very large extent from the bands with dominant Se p orbital character to those with
dominant Fe d and vice versa. In this case, the matrix elements are small compared to
direct d-d transitions; this effect is not at all reflected in the red curve of Fig. 4.9. As
a result, the overall spectral weight in the CMA is too large at high frequencies. The
susceptibility even shows a linear increase for very large frequencies, which makes the
use of a Kramers-Kronig transformation meaningless.

Figure 4.10 shows intensity plots along high symmetry lines in the 1BZ for Imχ0 (left)
and Imχ0

CMA (right). The q point used in Fig. 4.9 is indicated by a vertical white line.
The narrow peak at approximately 0.5 eV in Fig. 4.9 translates into a well-defined branch
of single-particle excitations, extending up to 0.7 eV. Another high-intensity region of
Imχ0 starts around 1 eV, concentrated at the X point. In the CMA results, the spectral
weight distribution is very different. For example, the low energy branch is almost
completely suppressed and a large, featureless continuum above 1.5 eV appears.

The bare spectrum as presented here contains information about the single-particle

57



Chapter 4. Accurate bare susceptibilities from full-potential ab initio calculations

excitations of the system, and these can be measured by inelastic neutron scatter-
ing. However, their intensity is rather weak compared to collective excitations, such
as (para)magnons.

As mentioned above, these require a calculation of the full susceptibility, which is
highly non-trivial. Even if one of the simplest approximations is used, namely the
random-phase approximation (RPA) [18, 32], further assumptions on the interaction
Hamiltonian are needed to make the calculation feasible; in particular, the computa-
tional cost grows with the number of included bands, and this requires downfolding
the electronic structure to an effective low-energy model. More refined methods exist
- FLEX, fRG - which improve the treatment of many-body interactions, but they are
even more expensive computationally. An alternative approach that treats the interact-
ing kernel ab initio has been suggested recently by Essenberger et al. [52].

However, every calculation for the full susceptibility relies on an accurate evaluation of
the bare susceptibility. Following results of Ref. [52], we want to note that the position
of collective excitations is crucially influenced by the precise structure of the bare suscep-
tibility. For instance, (para)magnon dispersions form in regions of the q-ω plane, where
the intensity of the single-particle excitations is low. This of course means that a precise
calculation of the bare susceptibility, as we present it in this work, is an absolutely nec-
essary ingredient also for an accurate calculation of the interacting susceptibility, which
can then be compared to experimental results.

4.5. Conclusions

In this paper we have presented a practical implementation of bare static and dynamic
susceptibilities, based on full-potential LAPW calculations, and a very efficient tetra-
hedron method for k-space integration. This allowed us to study in detail the effect of
matrix elements and the convergence with the number of bands for some representa-
tive and topical materials (Cr, FeSe). We were able to show that the approximation,
where all matrix elements in the susceptibility formula are replaced by a constant value
(CMA), can lead to unreliable results. Therefore, nesting arguments, which are based
on this approximation and are often employed to explain instabilities towards different
orderings, are many times unfounded. [134,140]

Moreover, we have studied the convergence of the results as far as the summation over
the bands is concerned. It appears that the convergence is slower then commonly ex-
pected. This could affect schemes that are based on downfolded models of the electronic
structure, where only a few bands are taken into account. These effects, already signifi-
cant in the static susceptibility, are even more severe for the dynamic susceptibility. For
instance, low-energy excitations might not be visible or misplaced when matrix elements
are not treated properly.

In view of the unpredictable accuracy of CMA and/or a band-summation restriction
it is advisable to refrain from any approximations and to evaluate the susceptibility
formula exactly. One possible and efficient approach has been presented in this paper.
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Chapter 5.

LaFeAsO and the Effects of Doping

5.1. Introduction

The field of iron-based superconductors was established with the discovery of supercon-
ductivity in fluorine-doped LaFeAsO1−xFx by Kamihara et al. [1] in 2008, which is the
prototypical example for an FeSC of the 1111 family. In LaFeAsO, superconductivity
was introduced by replacing oxygen, which is in a 2− oxidation state, with fluorine. As
F has an oxidation number of 1−, this doping process adds electrons to the system. The
phase diagram for LaFeAsO, summarized in Ref. [142], is reproduced here in Fig. 5.1
with kind permission from the publisher. From x = 0 to approximately 0.04, one ob-
serves a single-stripe antiferromagnetic ground state of the parent - and weakly doped
- material. With increased F doping (open squares) the superconducting behavior sets
in and reaches its maximum Tc ≈ 26 K at 11% electron doping. Because of the poor
solubility of fluorine for concentrations x > 0.2, an F overdoping of the compound is not
possible and the full phase diagram with respect to doping could not be obtained.

In 2012, however, Iimura et al. [142] doped LaFeAsO with hydrogen (filled symbols
in Fig. 5.1), which has a much better solubility in LaFeAsO. It was therefore possible
to reach higher doping concentrations and to dope the system up to the breakdown
of superconductivity at about x ≈ 0.53 . These authors found a two-dome structure
with maxima at x ≈ 0.08 and 0.36 at ambient pressure (filled squares). It has to be
said, however, that the errors in the experiments in the region of minimal Tc are quite
large. It is imaginable that the dependence of Tc as a function of doping exhibits not a
pronounced two-dome feature, but rather a very broad plateau.

In the region of the phase diagram, where both F and H doping are possible, the
qualitative agreement between the two different dopings is very good. This is remarkable,
as the sizes of the H and F atoms are quite different and one would therefore expect a
stronger response from the lattice. At higher pressures of 3 GPa, Iimura et al. don’t find
a two-dome structure, but a very broad peak (inverted triangles). One has to be careful
with interpreting this higher pressure data set, however, as the experimental data points
are very scarce.

In the following, we want to investigate the low-energy behavior of doped LaFeAsO
and study the response of the bare susceptibility to the application of doping. From a
theoretical point of view it is more advantageous to consider F doping with a hypothet-
ically unlimited solubility instead of H doping, as fluorine is much closer to oxygen in
terms of atomic number and mass. A first hint that both types of doping result in the
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Figure 5.1.: Electronic phase diagram for LaFeAsO1−xHx (filled symbols) and
LaFeAsO1−xFx (Ref. [141]; open symbols). The Tc obtained under am-
bient pressure is shown with squares and for 3 GPa with inverted triangles.
Reprinted by permission from Macmillan Publishers Ltd: Nature Commu-
nications 3, Article number: 943, Iimura et al., copyright 2012.

same behavior has already come from the overlap of the Tc vs. doping concentration
curves in the phase diagram of Fig. 5.1.

Other evidence of the equivalence of F and H as electron donors for the 1111 FeSCs
comes from Matsuishi et al. [143]. They performed detailed studies on the behavior of
the closely related compound CeFeAsO when doped with either H or F. By looking at
the bandstructure and density of states, they found that, apart from the 2p fluorine
and the 1s2 hydrogen bands far away from the Fermi energy, the low-energy behavior
of CeFeAsO1−xHx is practically identical to the one of CeFeAsO1−xFx. Ref. [143] also
reports the composition of the compounds, showing that H is actually substituting the
O atoms and is not simply incorporated in interlayers. Additionally, they point out that
the unit cells of all their meassured compounds correspond to the same ZrCuSiAs-type
(P4/nmm) structure. More studies on the effects of hydrogen doping on parent materials
of the type ReFeAsO with Re={Ce,Sm,Ca} can be found in Refs. [143–145].

With the knowledge that H and F doping have very similar effects on the electronic
bandstructure and that the lattice constants are in a first approximation unchanged,
it is valid to assume F doping with a hypothetically unlimited doping range. For a
theoretical investigation of doping effects, two very common approximations in first-
principle calculations to avoid huge supercells are the rigid band model and the virtual
crystal approximation (VCA). A rigid band approximation is a simple shift of the Fermi
energy that leaves the band curvatures unchanged. In VCA, on the other hand, the
integer electron number of a given atom is changed to a non-integer one in order to
represent doping or impurity effects in the crystal (see for example Ref. [146]). This
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Figure 5.2.: Crystal structure of LaFeAsO with the unit cell indicated by the solid black
lines. The Fe plane is indicated by the red shading.

works reasonably well as long as the core electrons of the original atom match the core
electrons of the substituting atom. As VCA also takes into account changes in the band
structure apart from a simple shift of the filling, this method is clearly preferable to the
rigid band model and has therefore been also applied in our studies.

The crystal structure of LaFeAsO is depicted in Fig. 5.2. The Fe atoms are shown
in red and the plane of the Fe square lattice is schematically drawn in transparent red.
Tetrahedrally coordinated to them are the As atoms. Intercalated in these FeAs planes
are the LaO planes, where also the O atoms form a square lattice with La on their
tetrahedral positions.

Iimura et al. [142] reported the experimental As heights but unfortunately no infor-
mation on the other unit cell parameters were given. We therefore used the unit cell
parameters a = b = 7.6250 a0, c = 16.5181 a0 (in the P4/nmm crystal structure) and
zLa = 0.1415 from Ref. [20]. The zAs as a function of doping used were taken from a
linear fit of the experimental values reported by Ref. [142]. These values can be found
in Table 5.1.

For our DFT calculations we again employed the FP-LAPW package WIEN2k [121]
using a GGA-PBE exchange-correlation functional [147].1

Fig. 5.3 shows the bandstructure for the undoped parent compound LaFeAsO. From
−5.5 eV to −2 eV are mostly As p bands, which are shown in black. Then subsequently
with a small gap at −2 eV up until about 2.2 eV lie the Fe d bands. The five Fe bands,
which cross the Fermi energy, are depicted in red in Fig. 5.3, while the other Fe bands

1RKmax was set to 7.0 and the following MT radii were chosen: LaRMT = 2.36 a0, FeRMT = 2.40 a0,
AsRMT = 2.13 a0 and ORMT = 2.09 a0. For the DOS calculations we used Gaussian broadenings of
0.003 and 0.006 and counterchecked the results.
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Figure 5.3.: DFT bandstructure for LaFeAsO. The five Fe d bands that form the Fermi
surface are shown in red, while all other Fe d bands are depicted in blue.
The As p are shown in black and the bands above Fe d in green.
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Figure 5.4.: Fermi surface of LaFeAsO with the reciprocal unit cell indicated by the solid
black lines. Γ is at the center of the reciprocal unit cell and the M points
are located at the corners.

are shown in blue. All bands above the Fe d are drawn in green. Undoped LaFeAsO
constitutes a prototypical example for a FeSC bandstructure. At the Γ point one finds
three hole pockets and at the M point there are two electron pockets, all having xy and
xz+yz character. The dispersion of the bands in LaFeAsO is also exceptionally low in z-
direction, giving an almost perfect two-dimensional character to the Fermi surface, which
therefore consists of five cylinders. Depending on the structural details (for example, if
one uses experimental structures instead of DFT optimized ones), another heavy hole
pocket may appear at the Z point with z2 character and considerable dispersion along the
z-direction. The Fermi surface for the structure given in Ref. [142] is shown in Fig. 5.4
and a cut through the kz = 0 plane is presented in the left panel of Fig. 5.8, where the
three concentrical cylinders of the hole pockets in the center and the two cylinders from
the electron pockets at the M points are depicted. (see also Refs. [17, 33,120])

After having discussed the electronic structure of the undoped material, we now want
to focus on the effects of electron doping on the low-energy physics of LaFeAsO. For the
corresponding band structure calculations of LaFeAsO1−xFx in the VCA, we reset the
oxygen charge (Z = 8) by a virtual nuclear charge of Z = 8 + x, where x is the fluorine
fraction. Additionally, we reset the original value of zAs by x-dependent values which
were taken from a linear fit of the experimental values reported in Ref. [142]. These
values can be looked up in Table 5.1 along with the calculated Fermi energies and DOS
at εF as a function of F doping. As we are adding electrons to the system, the Fermi
energy has to increase with increasing concentration of F atoms. The monotonic increase
of N(εF ), however, is not immediately evident. We therefore provide in Fig. 5.5 a better
picture of the behavior of the DOS in the low energy regime. In this picture, the 40%
doping case has been omitted for the sake of readability.

Apart from the increasing value of N(εF ), there is another very interesting effect of
the doping visible at around −0.5 eV. As one can see in the green line, which represents
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Table 5.1.: Experimentally determined As positions zAs for various dopings (see
Ref. [142]). The dopings not coinciding with the exact experimental val-
ues were calculated using a linear fit. Additionally, the Fermi energies εF in
eV and the DOS at εF are given.

x zAs [Å] εF [eV] N(εF ) [eV−1]

0.00 1.3053 8.2 4.15

0.10 1.3134 8.7 4.19

0.20 1.3279 8.9 4.37

0.30 1.3453 9.0 4.77

0.40 1.3642 9.1 5.23

the undoped compound, there is a lot of weight in the DOS at ≈ −0.4 eV. This feature
becomes smaller and is shifted to lower energies when doping is increased. We will see
later on, when discussing the imaginary part of the dynamic susceptibility, that there
are excitations with wave vector (π, π, 0) showing a similar dependence on doping, i.e.,
a shift to higher energies and decreasing strength. We attribute this effect to the fact
that the bands responsible for the high weight of the DOS are the same ones creating
the excitations.

The low energy bandstructure as a function of doping can be seen in Fig. 5.6. The
bands of the undoped compound is again depicted in green, the 10% doped compound
in black and the bands of the 20% doped one in blue. The other cases of 30% and
40% doping are not shown in order to keep the figure easily readable. There are two
major effects to be observed here: First, the bandstructures are shifted downwards with
increased doping as electrons are added.2 Second, we see that the differences in the
bands at the M point for example are quite small, while they are big for Γ0 and Z. This
difference in the curvature of the bands would have been overlooked in a rigid band
approximation (see also Ref. [148]). As the susceptibility, which we will discuss later,
depends very strongly on even small changes in the bandstructure, it is favourable to
describe the doping at least on the level of a VCA approximation.

5.2. Static Bare Susceptibility

The static bare susceptibility for LaFeAsO1−xFx has been calculated as described in
Sec. 2 and 3 and is plotted along the (110) direction in Fig. 5.7. Matrix elements have
been properly included, which leads to the already discussed loss of periodicity of χ0

in reciprocal space.3 The gray shaded areas in the vicinities of Γ0 and Γ1 are regions
with very small q. It depends a lot on the material, if our numerical implementation

2The Fermi energy is set to εF = 0.
3We included more than 50 bands around the Fermi energy in order to assure convergence with respect

to bands. 546 k points in the irreducible wedge were chosen for the integral over 1BZ and 3993 plane
waves to describe the matrix elements.
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Figure 5.5.: DOS of LaFeAsO1−xFx near the Fermi energy at εF = 0 as a function of
doping. The LaFeAsO DOS is shown in green, the DOS for 10% doping in
black, for 20% in blue and for 30% in red.

can deal well with these extreme cases of q. While it works reasonably well in the case
of FeSe, discussed in Sec. 3, our tests showed that the computation struggles in the case
of LaFeAsO. Anywhere outside the shaded areas, however, our calculations are very
reliable.

The susceptibility of undoped LaFeAsO is drawn in green, the 10% doped compound
in black, 20% in blue and the case with a doping concentration of 30% in red. χ0 of the
undoped material features a pronounced maximum at the M point, presented already in
many studies, as for example in Refs. [33,43,45,79,120]. This maximum is attributed to
the nesting of the Fermi surface cylinders at Γ with those at the M point. In general, a
maximum of χ0 at q gives the wave vector, where the system is most instable towards
charge or spin fluctuations and might develop a long-range, itinerant magnetic order.
Indeed, experiments find single stripe antiferromagnetic order in LaFeAsO, which is in
accordance with the (π, π, 0) nesting vector observed in χ0.

When electrons are added to the system via doping, the radii of the electron pockets
grow while the radii of the hole pockets shrink. This can be seen by comparing the left
and right panel of Fig. 5.8, where we show a cut through the Fermi surface at kz = 0
for undoped LaFeAsO (left) and 20% electron doping (right). A perfect nesting of the
cylinders over large areas is no longer existing in the doped case, notable in a reduction
of χ0 at the former nesting vector. Although the curvatures of the cylinders do not
match each other as nicely as for the undoped compound, one can still get portions of
the Fermi surfaces to overlap by shifting q by ∆q, which is the difference in the cylinders’
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Figure 5.6.: DFT bandstructure for LaFeAsO1−xFx as a function of doping. The
LaFeAsO bands are shown in green, the bands for 10% doping in black
the the ones for 20% in blue. The Fermi energy for all bandstructures was
chosen to be εF = 0.
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Figure 5.7.: Static bare susceptibility χ0 for LaFeAsO (green), LaFeAsO0.9F0.1 (black),
LaFeAsO0.8F0.2 (blue) and LaFeAsO0.7F0.3 (red). The gray-shaded areas are
areas with very small q, where the reliability of our calculations is lessened.
The blue arrow marks the length 2 ·∆q20%, where ∆q20% is the difference of
the Fermi cylinders’ radii for the 20% doping case.

radii. This ∆q is easily discernable as a plateau in χ0, as shown for the 20% doping
case in Fig. 5.7 (see also Ref. [149]). With increasing doping this difference in the radii
becomes bigger, until the Fermi surface topology loses its cylindrical shape entirely.

We want to investigate this doping effect on the bare static susceptibility further by
considering not only the path Γ0-M-Γ1 as before, but explore the whole (qx, qy, 0) plane.
The results of such a calculation are reported in Fig. 5.9, where we show χ0 in the
qz = 0 plane for undoped LaFeAsO in the left panel and for 20% doped compound
LaFeAsO0.8F0.2 in the right panel. The parent compound on the left emphasizes the
results already reported in Fig. 5.7, i.e., the typical strong response expected from an
1111 FeSC with the marked peaks at the M points. The 20% doped material, however,
reveals that doping does not simply cut through the peaks, leaving an area of constant
gradient with size 2 ·∆q, but actually shifts weight to other areas of the BZ. Figuratively
speaking, Fig. 5.9 (right) looks like cylinders with radius ∆q and main axis in the Γ0-M
direction being “pressed” into χ0 at the M point, thus shifting weight into the M-X-M
directions.

This means that the strength of the instability towards a magnetic ordering of the
system is much reduced, as this depends solely on the value of the maximum of χ, while
the superconducting pairing is an integral over the whole 1BZ with χ appearing in the
kernel (see Sec. 2). In relation, the superconducting state should become more stable
than the long range magnetic order upon doping, which may explain the increase of Tc
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Figure 5.8.: Top view of the Fermi surface at kz = 0 of LaFeAsO (left) and
LaFeAsO0.8F0.2 (right). Different colours indicate different bands.
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Figure 5.9.: χ0(q) as a function of q = (qx, qy, 0) for undoped LaFeAsO (left) and
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with doping in LaFeAsO. This simple argumentation, however, is not very satisfactory
and also can’t explain the double-dome feature observed by Iimura.

In Refs. [148] and [150] the behavior of the static susceptibility of LaFeAsO as a func-
tion of doping was also studied with included interactions. There, the authors calculate
DFT bandstructures for various cases of doping and derive a five-band tight-binding
model. From this tight-binding fit, with the inclusion of spin and orbit interaction, the
RPA susceptibility is calculated.4 From their results in Ref. [150], the authors conclude
that the second superconducting dome in LaFeAsO is associated with a new antifer-
romagnetic ordering. Ref. [148] explains the reappearing order of spins and orbitals
for x ∼ 0 with commensurate electron-hole FS nesting, while for x ∼ 0.4 it is due
to an incommensurate electron-electron FS nesting. It has to be said, however, that
these theoretical results and even the experimental ones are still debated about,5 as the
double-dome could also be a simple single-dome structure with a very broad maximum,
within the errors given for the experiment.

5.3. Dynamic Bare Susceptibility

In this section, we will present results of the dynamical bare susceptibility obtained with
our method as a function of electron doping, as results on dynamic bare susceptibilities
for LaFeAsO are very scarce (see [79]). The dynamical part of the susceptibility, as
already discussed in Sec. 2, is directly related to INS experiments. Of course, to correctly
describe the excitations of real systems, we would also need to include interactions and
correlations in our calculations of the dynamical susceptibilities. Yin et al. in Ref. [28]
however showed in DMFT calculations that materials of the 1111 and 122 families are
amongst the least correlated compounds with mass enhancement factors between 2− 3,
compared to 3− 7 for iron-chalcogenides. We therefore think that important aspects of
the excitation spectrum of LaFeAsO can already be seen within a dynamical calculation
of χ0, while for the collective excitations a RPA treatment should allow for a comparison
with experiment. The numerical evaluation of Imχ(q, ω) has already been discussed in
Sec. 3 and we will in the following present results obtained for LaFeAsO and the effect
of doping.

We show the imaginary part of the dynamical bare susceptibility for undoped LaFeAsO
along high symmetry lines in the left panel of Fig. 5.10. As we are working in the non-
interacting regime, the bright areas in the surface plot represent single-particle excita-
tions. An excitation without energy gap arises for small |q|, i.e., at the Γ point, both
in the (100) and (110) direction. With increasing |q|, the peak of the excitations gets
shifted to higher frequencies. In the low-energy regime we find another, yet weaker exci-
tation at the M point, which disperses in the form of an arc towards Γ. At 0.5 eV there
is another excitation with very low dispersion at M. A hint that the ∼ 0.5 eV range will
be a hotspot for excitations was already given in the DOS, shown in Fig. 5.5, as a lot of

4see Ref. [32] and references therein for an excellent review on these tight-binding models for FeSCs
and RPA calculations.

5D. Singh, private communications
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Figure 5.10.: Imχ0(q, ω) along high symmetry lines for undoped LaFeAsO (left) and
LaFeAsO0.8F0.2 (middle) and LaFeAsO0.7F0.3 (right). The colormap was
chosen in a way that black represents vanishing values and the brightest
yellow is 5 eV−1. All panels share the same scaling of the colormap.

states are available in this energy regime. In the higher-energy region at approximately
1.4 eV we observe the strongest peak at the X point.

The middle and right panels of Fig. 5.10 depict Imχ0 for the cases of 20% and 30%
electron doping, respectively. In comparison with the undoped compound we find that
the long wavelength excitations, i.e., at Γ, are basically unchanged. At (π, π, 0), however,
a gap opens, which increases with doping. Also at 0.5 eV, the former low dispersing,
broad feature gets pushed to higher energies and becomes more curved. The higher
energy exitation at 1.4 eV around (π, 0, 0) gets split into two clearly seperable excitations,
when the system is doped. With increasing doping, one of these excitations is shifted to
lower energies and lies around 1.2 eV for LaFeAsO0.7F0.3, while the second one is more
or less pinned to 1.4 eV and does not move as a function of doping.

To better distinguish the single excitations we plot in Fig. 5.11 the imaginary part
of χ0(q, ω) at two fixed wave vectors q. The upper panel shows Imχ0 at the X point,
where the undoped compound is represented by the green curves and the 30% doped
compound by the red curve. The red arrows indicate the splitting of the big excitation of
LaFeAsO at 1.4 eV into two peaks located at around 1.2 eV and 1.4 eV. We also observe
the clear energy gap at this wave vector.

The lower panel of the same figure shows the same quantities and compounds as the
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Figure 5.11.: Imχ0(q, ω) at X (upper panel) and M (lower panel) for undoped LaFeAsO
(green) and Land LaFeAsO0.7F0.3 (red).

upper one, albeit at the M point. As we mentioned before, the undoped compound
(green) exhibits a zero-energy excitation and a small but sharp feature around 0.5 eV.
Upon doping, a non-vanishing energy gap is introduced at the M point and the peak at
0.5 eV is pushed to slighty higher energies, as indicated by the red arrows.

Unfortunately, we are not aware of any INS experiments for LaFeAsO with electron
doping above 20% to classify the validity of bare susceptibility calculations for this and
similar compounds.

5.4. Conclusions

In the last sections we have discussed the case of LaFeAsO with electron doping. Nor-
mally, additional electrons are incorporated in this compound by substituting oxygen
with fluorine, for which the solubility is very low. If hydrogen is used instead of fluorine,
however, it is possible to overdope this compound and by doing so reach the end of the
superconducting dome. When such a hydrogen doping experiment was performed by
Iimura et al. [142] they observed a two-dome structure of the superconducting phase.
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Our calculations of the static bare susceptibility for the undoped parent material show
the expected strong response at qN = (π, π, 0), which is in accordance with the single-
stripe antiferromagnetic order observed experimentally. We have also shown that the
strength of the magnetic instability at this point decreases with increased doping. This
again is consistent with the physical situation depicted in the phase diagram, i.e., a loss
of the magnetic order to the benefit of an emergent superconducting phase. The static
bare susceptibility, however, cannot reproduce the observed two-dome character of the
superconducting phase and we can therefore not speculate on its origin.

In the second part of this chapter we presented results of dynamical bare susceptibility
calculations for the undoped compound, for the 20% doped case and for 30% doping. We
observe modes with vanishing energy gap originating from the Γ point and excitation
hotspots around 1.5 eV at the X and the M point. The excitation at the X point is
particularly interesting, as it gets split when the material is doped. We also detect an
excitation with very low energy at the M point, whose strength decreases with increasing
doping. Unfortunately, due to the missing effects of interaction in our calculations, we
cannot directly compare our results with INS experiments.

Note: While finishing this thesis we became aware of a work by Suzuku et al. [151], who
studied the 1111 systems with fluor and hydrogen doping in the FLEX approximation.
They found that the first Tc dome originates from spin fluctuations in the dxz/yz orbitals
induced by Fermi nesting, and that the second dome is due to spin fluctuations enhanced
by interactions of electrons of dxy character, whose second nearest neighbor hoppings
are larger than the nearest neighbor ones. Although we cannot comment on the results
of their FLEX calculations, their findings for the first Tc dome is in agreement with our
calculations.
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Abstract

In many iron-based superconductors the occurrence of superconductivity was related to
nesting properties of the underlying Fermi surfaces. However, it is not clear if this picture
still applies in iron-chalcogenides. In order to investigate this issue we calculate from
first-principles the static susceptibility of FeSe under applied pressures, both hydrostatic
and non-hydrostatic. We show that the electronic band structures are highly sensitive to
the way pressure is applied and confront our theoretical results with conclusions drawn
from experiments. The calculated susceptibility shows strong dependence on the way
pressure is applied, with robust peaks for hydrostatic pressures and vanishing peaks
in the non-hydrostatic case, whereas experimentally the critical temperature of FeSe is
quite universal as function of pressure. This is clear evidence that in FeSe the evolution
of the susceptibility and Fermi surface nesting cannot be related to the evolution of the
critical temperature with pressure.

6.1. Introduction

The discovery of a new class of iron based high-Tc superconductors by Kamihara et
al. [1] has kicked off an avalanche of research in solid state physics, a lot of it dedi-
cated to the key question of the superconducting pairing mechanism. A feature that
has been agreed upon is that the parent compounds of the FeAs superconductors ex-
hibit an antiferromagnetic (AFM) spin density wave (SDW) phase, as seen in LnOFeAs
(Ln = La,Ce,Pr,Sm [4, 152, 153]) and AeFe2As2 (Ae=Ba,Sr,Ca [6, 154, 155]), or are on
the verge of it, as in AFeAs (A = Li,Na [156, 157]). In such materials, superconduc-
tivity (SC) arises or is enhanced, respectively, when this long-range magnetic order is
suppressed by doping or by application of physical or chemical pressure. In this respect,
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pnictide and chalcogenide compounds are much more flexible as compared to the cuprate
high-Tc superconductors, where the superconducting state can be reached only by dop-
ing, and intercalating layers between the copper-oxygen planes are therefore essential.
This large flexibility has been underpinned by the discovery of SC in FeSe [5, 158–160],
a material lacking completely the intercalated planes of the iron-pnictides. This struc-
tural simplicity and its enormous response to external pressure (Tc increases from 8 K at
ambient pressure [158] to 37 K at about 7 GPa [161]) made it a popular testing ground
to study mechanisms of SC in iron-based superconductors.

Theoretical studies have shown [28,87,162,163] that iron chalcogenides are significantly
stronger correlated than the iron pnictide materials. Since this goes hand-in-hand with
the enhancement of localized magnetic moments, the applicability of the Fermi surface
nesting (FN) scenario in this class of compounds has to be clarified. In that scenario,
SC can be regarded as a consequence of perturbations of the AFM ordering of the
parent material [16, 138, 164–167]. Often a suppression of peaks in the susceptibility is
regarded as an indicator for the occurrence of SC. From the experimental side, many
independent experimental studies on pressure vs. Tc phase diagrams have been published
for FeSe [161, 165, 168–170]. The general consensus seems to be that Tc starts around
8 K for ambient pressure, has a maximum at about 7 GPa and decreases again for even
higher pressures. While all the works mentioned above applied pressure hydrostatically,
a recent study investigated how Tc changes under non-hydrostatical pressure [171]. It
is interesting to observe that the corresponding phase diagram is quite similar, i.e. the
way how pressure is applied seems to be of minor importance for SC.

In this paper we investigate by first-principle calculations the evolution of the static
susceptibility [33,79,120] under applied pressure in FeSe. We show that non-hydrostatic
pressures have a strong impact on the shape of the Fermi surface and, hence, result
in a strong suppression of the peaks in the susceptibility. This is not the case for
hydrostatic pressures. Since the evolution of Tc is quite universal in experiments, as
discussed above, our results evidence that there is no relationship between the evolution
of the susceptibility and SC whatsoever, neither positive nor negative, in FeSe. This
also means that the evolution of the peaks in the susceptibility should not be taken as
a criterion for the strength of SC in FeSe.

6.2. Method

A very useful quantity for theoretical investigations of the strength and changes of the
FN is the static susceptibility matrix χ0(q) (in short χ0). For a system of Bloch electrons
- taking into account only the diagonal elements of this matrix - it reads in the random
phase approximation

χ0(q) =
1

2π3

∑
n,m

∫
(BZ)

dk
fm(k) [1− fn(k + q + G)]

εm(k)− εn(k + q + G)
|〈m,k|e−iq·r|n,k + q + G〉|2 , (6.1)

where q represents a vector of the extended wave number space, n and m denote electron
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band indices, k belongs to the first Brillouin zone (BZ), and εm(k) and fm(k) mean the
energy dispersion of the mth band and the Fermi function, respectively. The reciprocal
lattice vector G is defined such that k+q+G ∈ BZ. We want to stress that the matrix
elements 〈m,k|e−iqr|n,k + q + G〉 are fully included in our calculation.

FN leads to a pronounced peak of χ0 at the nesting vector q = qN due to singularities
of the integrand. Many undoped parent materials of iron-based superconductors show
a marked FN and consequently a maximum of χ0 at qN . A perturbation of the crystal
structure due to applied pressure or of the electronic band structure due to (electron or
hole) doping is able to suppress the FN and the strong response of χ0. It was argued [33,
45, 172, 173] that the reduction of the collectively AFM-ordered electron spins in favor
of the appearance of spin-flip processes may act as a generator for electron pairing and
SC.

All results presented in this work have been obtained on the basis of non-spinpolarized
DFT full-potential linearised augmented-planewave band-structure calculations using
the WIEN2k package [121]. The exchange-correlation potential has been approximated
by the generalized-gradient approximation GGA, and the base-centered orthorhombic
crystal structure Cmma has been used. The numerical integration over the first Bril-
louin zone has been performed with a semi-analytical tetrahedron method. This newly
developed algorithm is able to manage the very difficult integration even for q→ 0 with
an accuracy that satisfies the relation χ0(0) = N(εF )/Ω0 numerically, where N(εF ) is
the electronic density of states at the Fermi energy εF and Ω0 the volume of the unit
cell of the crystal. Each electron wave function has been represented by about 4000
plane waves, and 52 electron bands, corresponding to an energy interval from −1.2 Ry
below to 3 Ry above the Fermi energy, have been included. Instead of the real Cmma
structure with ã 6= b̃ 6= c̃, where ã, b̃ and c̃ are the FeSe unit cell lattice parameters,
many studies use the P4/nmm structure instead, which occurs when ã = b̃. For a better
comparison of our results we therefore inscribed our Cmma unit cell into the P4/nmm

unit cell with modified lattice parameters a =
√
ã2 + b̃2, c = c̃. The momentum vectors

q are expressed in units of (π/a, π/a, π/c) throughout this work and χ0 is presented in
units (eV ·a3

0)−1 with a0 being the Bohr radius. The lattice and unit cell parameters are
taken from experiment, where we used data by Margadonna et al. [161] and Kumar et
al. [138] for hydrostatic pressures, and for the non-hydrostatic case data from Uhoya et
al. [171].

6.3. Results

We start the discussion of the pressure dependence with the hydrostatic case. We checked
that the results based on the crystal structures reported by Kumar et al. [138] are essen-
tially the same as the results based on structures reported by Margadonna et al. [161] In
the following, we will hence show only results based on data by Kumar et al. In Fig. 6.1
a surface plot of the static susceptibility over the (qx, qy, 0)-plane for FeSe at a hydro-
static pressure of 2.8 GPa is presented. The dominating features are the marked peaks,
indicating a strong FN of the hole pockets at the Γ point and the electron pockets at
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Figure 6.1.: Static susceptibility χ0 in the (qx, qy, 0)-plane of FeSe at a hydrostatic pres-
sure of 2.8 GPa. The vertical solid black lines mark the positions of the X
points in the reciprocal unit cell and qx, qy are given in units of π/a.
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Figure 6.2.: Static susceptibility χ0 in the (qx, 0, 0) direction of FeSe for different hydro-
static pressures (qx is given in units of π/a). Apart from the vertical shift,
due to the increasing density of states at the Fermi energy, χ0 shows very
little dependence on pressure.
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Figure 6.3.: Static susceptibility χ0 in the (qx, qy, 0)-plane for FeSe at a non-hydrostatic
pressure of 4 GPa. The vertical solid black lines mark the positions of the
X points in the reciprocal unit cell and qx, qy are given in units of π/a.

the X points, corresponding to the FN vector qN = (1, 0, 0). For a better quantitative
discussion of the pressure dependence, we show a (qx, 0, 0) cut of the susceptibility in
Fig. 6.2. In this diagram we compare the susceptibility in the (1, 0, 0) direction for three
structures at pressures 2.8 GPa (red, ×), 7 GPa (cyan, �) and 21 GPa (blue, 4). Inter-
estingly, the three calculated profiles have a quite similar shape. They differ only by a
vertical shift, reflecting the increase of N(εF ) with increasing pressure. However, the
prominent peak at qN = (1, 0, 0) does not vanish with increasing pressure, leading to
the conclusion that the strength of the FN is not pressure-dependent in the hydrostatic
case.

The situation is different in the non-hydrostatic case, as demonstrated in Figs. 6.3 and
6.4. Here we present the static susceptibility for the compounds reported by Uhoya et
al. [171]. Fig. 6.3 depicts the situation for 4 GPa, where the marked maxima at the X
points, similar to the hydrostatic case, can still be observed. On the other hand, for the
high pressure case (12.9 GPa) shown in Fig. 6.4, these maxima are reduced significantly.
This change of the susceptibility is even better demonstrated in Fig. 6.5, where we
depict again a (qx, 0, 0) cut of the susceptibility. Here we compare χ0 for the case of
non-hydrostatic pressures at 4 GPa (red, ×), 7 GPa (cyan,�) and 12.9 GPa (blue,4).
For the intermediate pressure regime of 7 GPa we interpolated the structural data from
Uhoya et al. [171] for 4 GPa and 12.9 GPa. It is known from experiments [138,143,161]
that - in such moderate pressure regimes - the unit cell parameters change linearly with
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Figure 6.4.: Static susceptibility χ0 in the (qx, qy, 0)-plane for FeSe at a non-hydrostatic
pressure of 12.9 GPa. The vertical solid black lines mark the positions of
the X points in the reciprocal unit cell and qx, qy are given in units of π/a.

pressure, supporting this approach. While the strong response at qN is still present
for the cases with 4 and 7 GPa (albeit slightly reduced for the 7 GPa structure), it has
vanished completely for the high pressure case. This behavior of χ0 allows the conclusion
that the FN in FeSe is rather strong for low and is reduced considerably for higher non-
hydrostatic pressures.

In order to get better insight into this different FN behavior, we present in Figs. 6.6
and 6.7 the cuts of the Fermi surfaces in the (qx, qy, 0)-plane for low (4 GPa) and high
(12.9 GPa) non-hydrostatic pressures. The different colors in these diagrams correspond
to different bands, while the black dotted lines mark the edges of the unit cell in reciprocal
space.

For low pressures (Fig. 6.6), it can clearly be seen that there is a marked FN, origi-
nating mainly from the interband transitions between the hole-like pockets around the Γ
point and the electron-like pockets around the X point. Different to doping, where hole
pockets shrink and electron pockets grow - or vice versa - the effect of non-hydrostatic
pressures is a bit more subtle: Large pressures lead to considerable changes in the a/b
lattice parameters, and as a consequence, not only the sizes of the pockets, but also their
shapes are altered substantially (Fig. 6.7). In the case of low pressures the electron and
hole pockets are in good approximation circular. For high pressures on the other hand,
the pockets at the X points disappear completely and the Fermi surfaces at the Γ point
are distorted to more complicated quasi-elliptical shapes. This results in a complete
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Figure 6.5.: Static susceptibility χ0 in the (qx, 0, 0) direction for FeSe for different non-
hydrostatic pressures (qx is given in units of π/a). χ0 shows a marked peak
at the FN vector qN for the 4 GPa case, which is still present, albeit reduced,
for the 7 GPa compound. At high pressures of 12.9 GPa no prominent feature
can be seen.

loss of the FN vector qN and further supports our conclusion drawn from Figs. 6.3-6.5,
namely, that increasing non-hydrostatic pressure causes a significant decrease of the FN:
While in the 4 GPa case the nesting vector qN = (1, 0, 0) can clearly be observed, such
a feature is not visible for a pressure of 12.9 GPa. We want to emphasize that the calcu-
lation of the complete susceptibility offers more detailed and reliable information about
the position of the SDW-vector and the strength of the FN. This is based on the fact
that χ0 involves the integration over the whole Brillouin zone and the inclusion of the
matrix elements, as can be seen in Eq. (6.1).

6.4. Discussions and Conclusions

The results presented above have important implications concerning the behavior of SC
in FeSe. For low pressures the static susceptibility of this material exhibits a strong
response at the FN vector. For higher pressure the suppression of the peak in the
susceptibility depends crucially on whether pressure is applied hydrostatically or not.
According to our calculations there is no visible reduction of the FN for applied hydro-
static pressures, even as large as 21 GPa. On the other hand, we observe that the FN
is reduced significantly if pressure is applied non-hydrostatically, resulting in a complete
suppression of the peaks at the FN vector in the susceptibility. Based on these theo-
retical results alone, without knowing the experimental facts, one would argue that -
in the framework of FN-mediated pairing - SC in FeSe is only supported efficiently by
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Figure 6.6.: Fermi surface kz = 0 cut for FeSe at a non-hydrostatic pressure of 4 GPa.
The different colors correspond to different electron bands that cross the
Fermi energy. kx and ky are given in units of π/a and the black dashed lines
mark the boundaries of the reciprocal Cmma unit cell.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

k
x

k
y

Γ

X

X

Figure 6.7.: Fermi surface kz = 0 cut for FeSe at a non-hydrostatic pressure of 12.9 GPa.
The different colors correspond to different electron bands that cross the
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mark the boundaries of the reciprocal Cmma unit cell.
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non-hydrostatic pressures. However, such a result contradicts experiments, which report
a considerable increase of Tc with increasing pressure independent of the way pressure
is applied. This shows clearly that the evolution of the theoretically calculated suscep-
tibility and - in particular - of its peaks with pressure cannot be taken as a criterion for
the evolution of Tc in this compound.

This leads to the conclusion, that SC in the FeSe compounds is not based on a weak-
coupling nesting between electron and hole pockets, and therefore not mediated by
spin fluctuations coming from an itinerant SDW state. In addition, recent studies have
shown [174–176] that the pronounced increase of Tc with pressure cannot be explained
by phononic Cooper-pairing either. In order to explain SC in FeSe in agreement with
our results we argue that other mechanisms should be invoked. Since these materials
obviously show enhanced electronic correlations [28,87,162,163], a mechanism based on
short-ranged spin fluctuations mediating between more localised magnetic moments [168,
177–179] might be promising.
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Abstract

We perform electronic structure calculations for the recently synthesized iron-based su-
perconductor LiFeO2Fe2Se2. In contrast to other iron-based superconductors, this ma-
terial comprises two different iron atoms in 3d5 and 3d6 configurations. In band theory,
both contribute to the low-energy electronic structure. Spin-polarized density functional
theory calculations predict an antiferromagnetic metallic ground state with different mo-
ments on the two Fe sites. However, several other almost degenerate magnetic configu-
rations exist. Due to their different valences, the two iron atoms behave very differently
when local quantum correlations are included through the dynamical mean-field the-
ory. The contributions from the half-filled 3d5 atoms in the LiFeO2 layer are suppressed
and the 3d6 states from the FeSe layer restore the standard iron-based superconductor
fermiology.

7.1. Introduction

The discovery of iron-based high-Tc superconductors (FeSCs) in 2008 [1] has triggered an
enormeous amount of research in solid state physics, both experimental and theoretical.
Since then, many new compounds have been discovered and investigated, which differ
considerably in their structural details [7]. They all share a common structural motif,
i.e., a square lattice of Fe atoms to which pnictogen or chalcogen atoms are tetrahedrally
coordinated. In the case of pnictogen compounds, spacer layers such as layers of lan-
thanide oxides [153,180,181] or alkaline (earth) atoms [6,157,182] between the Fe planes
ensure charge neutrality. In chalcogenide compounds, these layers are not necessary,
leading to the structurally simplest iron-based superconductors FeSe and FeTe.

Recently, Lu et al. [183] synthesized LiFeO2Fe2Se2, i.e., a FeSe compound, interca-
lated with LiFeO2 layers, and reported a very high critical temperature of Tc = 43 K,
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comparable to that of many other high-Tc FeSCs, including (mol)-FeSe [1,161,184,185].
Together with Sr2VO3FeAs [186], and rare-earth (Ce,Pr,Eu) 1111 pnictides, this is one
of the few examples of a FeSC with a magnetic atom in the intercalated layers. What
makes this compound special is that the magnetic atom is itself iron. The iron atoms in
the LiFeO2 and FeSe layers, FeLi and FeSe, respectively, have very different properties
related to their nominal charge. Since FeLi is in a 3d5 configuration and therefore at
half filling, correlations are very effective and may lead to a Mott-insulating state for
moderate values of the Coulomb interaction U and Hund’s coupling J [85]. FeSe, on the
other hand, is in 3d6 configuration, i.e., well into the Hund’s metal regime [28, 86, 94],
where the correlated metallic state extends to much larger values of the Coulomb inter-
action U . This compound could thus provide two qualitatively different realizations of
correlation effects due to Hund’s coupling in one and the same compound.

The electronic structure of LiFeO2Fe2Se2 was studied in Ref. [187] with standard
density functional calculations. The authors found an antiferromagnetic (AFM) ground
state in which both layers are metallic, and argued that with the inclusion of local
correlations the LiFeO2 plane would become insulating, while the FeSe layer would
exhibit a bad metallic behavior. However, no quantitative evidence for this argument
was provided.

In this paper, we study the electronic structure of LiFeO2Fe2Se2 including strong
local correlations, using DFT+U [188] and DFT+DMFT calculations. We show that
at the DFT level both FeLi and FeSe exhibit a strong tendency to magnetism, leading
to a double-AFM ground state in which both layers are either metallic or insulating
at the same time. Magnetism appears extremely fragile, with many almost-degenerate
configurations competing with the ground state one. This indicates a strong tendency to
a paramagnetic behavior, which we describe using dynamical mean field theory (DMFT).
We find that in this regime the behavior of the two Fe atoms is qualitatively very different,
due to the different charge state: FeLi is an incipient Mott insulator, while FeSe is fully
into the Hund’s metal regime. As a result, FeLi states are almost entirely removed from
the Fermi level, while FeSe bands retain a strongly coherent character and form a typical
FeSC Fermi surface.

This paper is organized as follows: In Sec. 7.2 we report the computational details of
our calculations. Section 7.3 contains the results of our DFT and DFT+U calculations
in the non-magnetic and magnetic regime. In Sec. 7.4 we present calculations including
correlations within DFT+DMFT. We conclude and summarize our findings in Sec. 7.5.

7.2. Computational Details

According to Lu et al. [183] LiFeO2Fe2Se2 crystallizes in a simple tetragonal unit cell with
a = b = 3.7926 Å, c = 9.2845 Å, and α = β = γ = 90◦, which belongs to the P4/nmm
space group and contains one formula unit (f.u.). Each unit cell comprises two different
types of layers: the FeSe layer common to all FeSCs, and a LiFeO2 layer, in which Li and
Fe are randomly distributed on a square lattice and O atoms tetrahedrally coordinated
to them. Fe atoms in the LiFeO2 - FeLi - and FeSe layers - FeSe - are inequivalent.
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Figure 7.1.: (Color online) Nonmagnetic unit cell of LiFeO2Fe2Se2. The two different
iron atoms are shown with two different colors, FeLi in green and FeSe in
red. The FeLi and FeSe planes are shaded in green and red, respectively.

They are shown in green and red in Fig. 7.1, respectively. For all our calculations we
assumed a regular, alternating in-plane arrangement of the Li and FeLi atoms, so that
Li and FeLi sit on top of FeSe atoms. In this configuration, FeSe occupies 4e and Se 8j
Wyckoff positions with z = 0.6645; Li and FeLi occupy 4d positions, O 8j positions with
z = 0.0764. We want to note here that the Fe concentration in the LiFeO2 layer is only
half that of the one in the FeSe layer; thus the average nearest-neighbor Fe-Fe distance
in the LiFeO2 layer is a factor of

√
2 larger. The FeSe tetrahedra are strongly elongated;

in fact, the distance of the Se atoms from the Fe planes is hSe ≈ 1.53 Å, much larger
than hSe ≈ 1.45 Å in bulk FeSe at zero pressure [161].

For all our electronic structure calculations we have employed the full-potential lin-
earized augmented plane-wave package WIEN2k [121] using a GGA-PBE exchange-
correlation functional. [147],1 For the DFT+DMFT calculations we use the charge self-
consistent implementation of the TRIQS toolkit. [26, 189, 190] As impurity solver we
employ continuous-time quantum Monte-Carlo. [191–193]

1RKmax was set to 7.0 and the following MT radii were chosen: RMT(Li) = 1.90a0, RMT(FeLi) =
2.02a0, RMT(FeSe) = 2.02a0, RMT(Se) = 2.15a0 and RMT(O) = 1.79a0. For the reciprocal k-space
integration we took 720 k-points in the irreducible wedge.
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Figure 7.2.: (Color online) Left: DFT band structure of nonmagnetic LiFeO2Fe2Se2

(solid black lines), isolated LiFeO2 (dashed green lines), and isolated FeSe
(red dotted lines). Right: (p)DOS of nonmagnetic LiFeO2Fe2Se2. The
pDOS of FeLi is shown in green and the pDOS of FeSe in red. The contri-
butions from Se and O are plotted in blue and brown, respectively, on the
negative axis. The units are st/eV (two spins) per atom for the pDOS; the
total DOS is in st/eV f.u. (two spins) and has been rescaled by a factor of
2 to improve the readability of the figure.

7.3. Electronic Structure

Figure 7.2 shows the non-magnetic DFT bandstructure (left panel) and the (partial)
density of states (pDOS) of LiFeO2Fe2Se2 (right panel), in an energy range of [−6, 2] eV
around the Fermi level, which is chosen at zero energy. The bandwidth of FeLi is about
2 eV, which is due to the larger average Fe-Fe distance in this layer, and that of FeSe

3.5 eV. States at the Fermi level have mostly FeLi and FeSe partial character, while
ligand (O, Se) bands lie lower in energy. The peak at approximately −2 eV has mainly
O character and it is clearly seen that around −4.1 eV there is a strong hybridization
between FeLi and O, while FeSe and Se show hybridization between −3.9 eV and −2.5 eV.
The DOS at the Fermi energy is N(EF ) = 7.7 eV−1 f.u. per spin, i.e., above the Stoner
criterion.

The left panel of Fig. 7.2 shows the corresponding electronic structure along high-
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Figure 7.3.: (Color online) Left: Zoom of Fig. 7.2 with the bands of LiFeO2Fe2Se2 in
solid black. The dominant character of the LiFeO2Fe2Se2 bands is shown
by the symbols. The band without special character markers is a mixture
of all characters. Right: Band structure of bulk FeSe calculated for the
experimental crystal structure at ambient pressure from Ref. [161].

symmetry lines in the Brillouin zone (BZ). Our results agree with those of Ref. [187]. In
addition to the bands of the full compound (solid black lines), we also show the bands
of the isolated LiFeO2 (dashed green lines) and FeSe layers (dotted red lines) in the
original unit cell. In order to align the bands, we had to shift the bands of isolated
LiFeO2 down by −0.1 eV, which corresponds to a charge transfer of 0.35 e− from FeSe
to LiFeO2 layers. Except for an increased dispersion of the FeSe bands along the Γ-Z
direction, the low-energy band structure of LiFeO2Fe2Se2 coincides almost exactly with
that of the isolated layers.

Due to the strong elongation of the Fe-Se tetrahedra and to hybridization with the
LiFeO2 states, the fermiology of LiFeO2Fe2Se2 is quite different compared to typical iron-
chalcogenide SCs. In Fig. 7.3, we show the low-energy bandstructure of LiFeO2Fe2Se2

and bulk FeSe decorated with the dominant orbital characters along a short section of
the Γ-X path. This permits us to highlight and understand the difference in the shape
of the hole pockets.

The FeSe 3dxy band close to the Fermi energy (red triangles in Fig. 7.3) has the same
dispersion in LiFeO2Fe2Se2 and bulk FeSe. On the other hand, the remaining hole bands
have very different dispersions in the two compounds. In particular, one of the doubly
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Figure 7.4.: (Color online) Top view of the Fermi surface at kz = 0 (left) and kz = π/c
(right) of non-magnetic LiFeO2Fe2Se2. Different colours indicate different
bands.

degenerate dxz/yz bands which form the hole pockets in most FeSCs is pushed up in
LiFeO2Fe2Se2 due to the large hSe, [45, 139] and is further modified by hybridizations
with FeLi dz2 . These hybridizations are so strong that when this band crosses EF , it has
mostly FeLi character. As one dxz/yz band is removed from the Fermi surface, another
band appears at EF . This new band is mainly a mixture of FeSe dxz/yz and FeLi dz2 .

Figure 7.4 shows the Fermi surface of LiFeO2Fe2Se2 in the kz = 0 and the kz = π/c
planes. In this figure, different colors indicate different bands and are not related to
orbital character. The smallest hole pocket has a three-dimensional cigar shape and is
located around the Γ point [yellow line in Fig. 7.4(a) and not present in Fig. 7.4(b)].
The other hole pockets are shown in blue (FeSe dxy), green (FeLi/FeSe), and black (FeSe

3dxz+yz). The electron pockets at the M points, shown in cyan and red, have mostly
dxz/yz/xy character and are much less affected by hybridization and changes in selenium
height hSe. In addition to the FeSe pockets, the LiFeO2 layer provides an additional
hole pocket in the middle of the Brillouin zone (magenta lines in Fig. 7.4), which has a
considerable three-dimensional character.

The charge transfer between the layers and the presence of the additional LiFeO2-
derived band are quite visible also in the susceptibility χ0, plotted in Fig. 7.5. Details of
the calculations are given in Ref. [80]. The susceptibility of the full compound, shown as
a black solid line, grows towards the border of the Brillouin zone (X-M line), and shows
a dip around the M point, in contrast to most FeSCs, which show a clear maximum at
M. Indeed, the isolated FeSe layer (red curve) shows a well-defined peak at this point.
The LiFeO2 layer (green solid line) has an even larger susceptibility, with a dip around
the M point. In order to explain the full susceptibility it is not sufficient to sum the
contributions from the isolated layers, which still shows a maximum around the M point
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Figure 7.5.: (Color online) Static bare susceptibility χ0 for isolated FeSe (red), isolated
LiFeO2 (green), and the full LiFeO2Fe2Se2 compound (black). The dotted
blue line results when summing χ0 for the two isolated layers. The dashed
brown line depicts the summed χ0 of the isolated layers, where we performed
a rigid-band shift in order to account for the charge transfer. All susceptibil-
ities are given per spin and for all Fe atoms in the respective unit cells. The
blue and brown curves have been shifted up (down) by 1.5 eV−1 to improve
readability. For details on the susceptibility calculation see Ref. [80].

(dotted blue curve). In order for the sum of the two layers to reproduce the susceptibility,
the Fermi levels have to be adjusted as done in Fig. 7.2. This results in the dashed brown
curve of Fig. 7.5 and highlights the occurrence of charge transfer in this material.

We now discuss results of spin-polarized DFT calculations for the magnetically ordered
states, which are shown in Tables 7.1 and 7.2. We considered the most important
magnetic configurations for the isolated layers and the full compound. In Table 7.1
we show the results for the magnetic moments (mFe) and the stabilization energy per
Fe atom (∆E) for ferromagnetic (fm), checkerboard (cb), single stripe (ss), and double
stripe (ds) configurations for the isolated layers. In isolated LiFeO2 we find that the cb
order is the one with the lowest energy, with an energy difference of 221 meV from the ss
and 335 meV from the fm configuration. In the isolated FeSe compound the ss magnetic
order is the most favourable one, separated from the cb order by 53 meV and from the
ds order by 141 meV. FeSe and FeLi have different magnetic moments; the filling of the
atoms implies a saturation moment of 4 and 5 µB, respectively. In fact, we find that
m of FeSe is 2.4µB

2, while the magnetic moment of FeLi in LiFeO2 is ∼ 3.6µB. These
values are almost independent of the magnetic ordering pattern, both in the isolated
layers and in the full compound.

2This is in line with DFT calculations for other FeSCs in d6 configuration [16,28]. This larger m(FeSe)
is a consequence of the large Se height.

91



Chapter 7. Effect of the iron valence in the two types of layers in LiFeO2Fe2Se2

Table 7.1.: Energies (with respect to the non-magnetic configuration) and magnetic mo-
ments of isolated LiFeO2 m(FeLi) and isolated FeSe m(FeSe) for ferromagnetic
(fm), checker-board (cb), single stripe (ss), and double stripe (ds) magnetic
configurations.

isolated LiFeO2 ∆E/Fe (meV) m(FeLi) (µB)

fm -1358.12 3.79
cb -1693.55 3.57
ss -1472.59 3.55

isolated FeSe ∆E/Fe (meV) m(FeSe) (µB)

fm -274.56 2.38
cb -511.29 2.29
ss -564.28 2.51
ds -423.70 2.53

(a) cb - ss (b) ss - ds (c) fm - cb

Figure 7.6.: (Color online) Top view of the Fe lattices in LiFeO2Fe2Se2 for the three most
preferable magnetic configurations in terms of energy. The circles represent
the FeSe and the triangles FeLi. Blue signifies an up-spin on that particular
Fe atom and green a down-spin.
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Table 7.2.: Energies (with respect to the nonmagnetic configuration) and magnetic mo-
ments of LiFeO2Fe2Se2 in different magnetic configurations (compare with
Fig. 7.6).

LiFeO2Fe2Se2 ∆E/Fe (meV) m(FeLi) (µB) m(FeSe) (µB)

fm - fm -247.90 3.71 1.77
cb - ss -738.25 3.55 2.40
ss - ds -655.25 3.60 2.38
fm - cb -575.29 3.81 2.21

Table 7.2 reports the most stable configurations for the full compound; the corre-
sponding patterns are also shown in Fig. 7.6. Note that, since the two Fe sublattices are
rotated by 45◦ with respect to each other, and the reciprocal unit cell of the FeLi sub-
lattice is smaller, we have Qcb,ss = (π, π, 0), Qss,ds = (π, 0, 0), and Qfm,cb = (2nπ, 0, 0);
i.e., the most stable configurations are those in which the ordering vectors of the two
sublattices are commensurate. In particular, we find that the configuration with the
lowest energy is the one where the FeLi have cb order and the FeSe are aligned in an ss
way [see Fig. 7.6(a)]. This is in agreement with what was reported by Liu et al. [187].
The magnetic coupling between the FeSe and LiFeO2 planes is extremely weak; indeed,
we find that an AFM alignment of the spins along the z direction is slightly favorable,
but the energy difference from the FM case is . 3 meV. In addition to the configura-
tions reported in the table, we also found many metastable ones, indicating a very fragile
nature of magnetism and a strong tendency to magnetic fluctuations in this compound.

In all the cases we considered, both layers in LiFeO2Fe2Se2 are metallic in spin-
polarized DFT. Panel (b) of Fig. 7.7 depicts the total and partial DOS of LiFeO2Fe2Se2

in the cb-ss configuration, compared with the non-magnetic one (a). The figure clearly
shows a considerable depletion of the spectral weight at the Fermi level in both layers,
but both FeSe (red) and FeLi (green) contribute states at the Fermi level. Liu et al. [187]
have argued that a small Coulomb interaction U would be sufficient to open a gap at the
Fermi level for FeLi, but not for FeSe. To check this hypothesis, we performed DFT+U
calculations for several values of U , and found that a gap opens simultaneously in the
two layers, for values of U > 2 eV. A calculation for U = 2.7 eV is reported in panel (c)
of Fig. 7.7, and shows fully developed gaps for both layers.

In Fig. 7.8 we plot the values of the magnetic moments obtained in DFT+U calcu-
lations. The results for the full compound are shown as black symbols; they almost
perfectly match those obtained for the isolated layers, shown in red and green, respec-
tively, confirming the small coupling between the two layers. Note that U in this figure
ranges from −7 to 7 eV; positive values of U have a clear physical meaning, while “neg-
ative U” DFT+U calculations have been introduced in the early days of FeSCs as a
phenomenological way to simulate the reduction of the magnetic moment due to spin
fluctuations [194]. We will use them in this context only to visually characterize how
robust the magnetism is.
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Figure 7.7.: (Color online) (a): (p)DOS of non-magnetic LiFeO2Fe2Se2. The total DOS
is shown in black and the pDOS of FeLi in green and of FeSe in red (same as
Fig. 7.2). (b): (p)DOS of cb-ss LiFeO2Fe2Se2. The total DOS is shown in
black and the pDOS of FeLi in green and of FeSe in red, where we summed
over majority and minority spins. (c): (p)DOS of cb-ss LiFeO2Fe2Se2 and
U= 2.7 eV. Otherwise the same as (b). Units are the same as in Fig. 7.2.
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Figure 7.8.: (Color online) Magnetic moment of Fe in ss isolated FeSe (red), cb isolated
LiFeO2 (green) and of FeLi (dotted black, +) and FeSe (dash-dotted black,
×) in cb-ss LiFeO2Fe2Se2.

Several observations are in place at this point: the saturation values are clearly dif-
ferent for LiFeO2 and FeSe, but they are not reached for U = 7 eV, indicating that
charge fluctuations are important in both compounds. Magnetism is much more robust
in LiFeO2, since it takes much larger negative values of U to suppress it; however, the
suppression is much faster, once the critical U is approached. It is possible that in the
full compound the effective value of the Coulomb interaction is different in the two lay-
ers, due to the different nature of the ligands and different Fe-Fe distance. However, in
order to recover (within DFT+U) a solution with no long-range magnetic order in the
FeSe layer and an insulating LiFeO2 layer it would be necessary to assume negative U
values for FeSe and positive values for FeLi. This indicates that DFT+U is not able to
describe this system consistently. An alternative description, which takes into account
the dynamical nature of correlations, is given in the following section.

7.4. Correlated electronic structure

As mentioned in the beginning, the two iron atoms have very different properties related
to their nominal charge. For a half-filled atomic shell, as in FeLi, the Hund’s rule coupling
enhances correlation effects resulting in an insulating behavior, whereas off half filling,
as in FeSe, Hund’s metallicity (small coherence scale but no Mott transition) shows
up [28, 85, 86]. Since in LiFeO2Fe2Se2 we have iron atoms with the two valences in one
single compound, it is interesting to study their response to correlations in DMFT, and
to see whether the general arguments given above hold here.

For the band structure calculations, we again use the WIEN2k code package. For the
treatment of correlations we apply the continuous-time quantum Monte Carlo technique
in the hybridization expansion formulation [191, 192], as implemented in the TRIQS
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Figure 7.9.: (Color online) Left: DFT+DMFT spectral function of paramagnetic
LiFeO2Fe2Se2 for U = 4 eV and J = 0.9 eV. Right: DFT+DMFT DOS of
paramagnetic LiFeO2Fe2Se2 for the same U and J parameters. The pDOS
of FeLi is shown in green and the pDOS of FeSe in red. The contributions
from Se and O are plotted on the negative axis and are displayed in blue
and brown, respectively. For the definition of units, see Fig. 7.2.

package [189, 193]. We use full charge self-consistency [190], as well as spin-flip and
pair-hopping terms in the local Hamiltonian [195]. Wannier functions are constructed
from Fe d, Se p, and O p states within an energy window of [−6, 2.5] eV. Consistent
with previous work on bulk FeSe [87] we choose U = 4 eV and J = 0.9 eV as interaction
values, for both FeLi and FeSe atoms.

The spectral function and the (p)DOS of paramagnetic LiFeO2Fe2Se2 can be seen in
Fig. 7.9. The left panel clearly shows a shrinking of the bandwidth of the bands around
the Fermi level and that excitations become incoherent already at rather low binding
energies of around 0.4 eV. From −5.5 eV to −2 eV the bands have mainly O and Se
character, with only very little Fe contributions. The sharp peak around −1.4 eV has
solely O character.

In order to disentangle the effect of correlations on FeLi and FeSe atoms we show a close-
up of the spectral function around the Fermi level in Fig. 7.10. The contributions from
FeLi to the spectral function are drawn in green, while the FeSe bands are shown in black.
It is immediately clear that the sharp features in the band structure, corresponding to
well-defined quasiparticles, stem solely from the FeSe atom, which has a 3d6 configuration
and is hence in the Hund’s metallic regime. In particular, when comparing with the
DFT band structure (Fig. 7.2, redrawn in Fig. 7.10 as white lines) one can easily see
that correlations remove all coherent contributions of the FeLi atom to the low-energy
band structure. The only contributions from FeLi that survive in the vicinity of EF are
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Figure 7.10.: (Color online) DFT+DMFT spectral function of paramagnetic
LiFeO2Fe2Se2 for U = 4 eV and J = 0.9 eV. The FeLi 3dz2 contri-
butions are drawn in green and the DFT band structure is overlaid in
white.

at the Γ and M points and are of 3dz2 character. They have, however, very incoherent
character and are thus heavily smeared out. The remaining bands from FeSe restore a
very familiar picture of the Fermi surface topology: three hole pockets at the Γ point
and two electron pockets near the M points.

The FeSe orbital character of the bands is shown in Fig. 7.11. While the FeSe 3dz2 has
distinct features exclusively below the Fermi energy and the FeSe 3dx2+y2 contributes
only slightly to the middle hole pocket, the main parts of the Fermi surface come from
FeSe 3dxy and 3dxz/yz. The outer hole pocket has almost only FeSe 3dxy character, while
the two inner hole pockets have 3dxz/yz character. The electron pocket at the M point is
a combination of those two, with 3dxz/yz being the stronger one. The mass enhancements
of these orbitals are between ∼ 2 for the eg orbitals, 2.8 dxz/yz, and 3.2 for dxy. Again,
let us stress that there is no coherent contribution from the FeLi atom to the bands
forming the Fermi surface.

It is interesting to compare our band structure with that of bulk FeSe. In Ref. [87] this
band structure is shown and reveals a striking similarity with our compound here. In
agreement with bulk FeSe [87] we have 3 hole pockets at the Γ point, where the outermost
pocket is of dominantly dxy character. In both compounds we have orbital-dependent
mass renormalization, with the dxy being the most heavy orbital.

However, differently from what was argued based on DFT+U calculations [187], we
do not find a strict Mott insulator for the LiFeO2 layer, when the interaction values

97



Chapter 7. Effect of the iron valence in the two types of layers in LiFeO2Fe2Se2

0

−0.5

0.5

E
n
er
gy

(e
V
)

0

0.5

−0.5

E
n
er
gy

(e
V
)

Γ X M Γ Z Γ X M Γ Z

Figure 7.11.: (Color online) Contributions of FeSe to the spectral function of param-
agnetic LiFeO2Fe2Se2 for U = 4 eV and J = 0.9 eV separated into orbital
contributions. Top left: FeSe 3dz2 orbital, top right: FeSe 3dx2+y2 , bottom
left: FeSe 3dxy, bottom right: FeSe 3dxz+yz.

are taken as U = 4.0 eV and J = 0.9 eV. Instead, FeLi is in a strongly orbital-selective
Mott regime [28, 88, 89, 196], with 4 out of 5 orbitals being insulating, and only one
(the dz2) with some finite, but very incoherent, weight at zero energy. An increase of
the interaction values for FeLi to U = 6 eV and J = 1.0 eV, however, results in the
suppression of also the FeLi dz2 states from the Fermi surface. We relate this to the
fact that a completely incoherent state can be reached with not too large values for the
interaction parameters due to the atomic configuration (half-filled) of the FeLi atom.

However, as already discussed above, there is some intrinsic charge transfer from FeSe

to FeLi in this compound. Calculating the charge of the iron atoms from DFT, using
d-only Wannier functions, gives 5.12 electrons for FeLi, which is slightly above the integer
value for half filling. That means that correlations have to overcome this small charge
transfer and push the FeLi closer to half filling, before a complete suppression of the FeLi

contributions can take place.
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7.5. Conclusions

We presented calculations for the electronic and magnetic behavior of the recently syn-
thesized Fe-based superconductor LiFeO2Fe2Se2 using first-principles DFT methods and
DFT+DMFT calculations.

The most favourable magnetic configuration in DFT has checkerboard order in the
LiFeO2 and single stripe order in the FeSe layer. When correlations in the framework
of DFT+U are included, the magnetic moments of FeLi and FeSe react very differently
to the Coulomb interaction U . While m(FeLi) of the LiFeO2 layer is robust over a wide
range of interactions and breaks down at a negative U of −4 eV in a sharp transition,
the moment m(FeSe) of the FeSe layer changes rather smoothly with U . We find that
the pDOS of FeLi and FeSe of cb-ss LiFeO2Fe2Se2 have states at the Fermi energy for
U < 2 eV, while for U > 2 eV this compound is fully gapped, in contrast to previous
reports [187].

We also observed that there are many magnetic configurations that are very close
in energy to the ground state. This means that the spins are able to fluctuate as the
magnetic configuration of the whole compound can change easily.

The nonmagnetic DFT electronic band structure is much richer compared to other
FeSCs, due to the presence of LiFeO2-derived states at the Fermi level. However, the
picture is strongly modified when including correlation effects by means of DFT+DMFT.
Almost all contributions from the intercalated FeLi in the LiFeO2 are removed from the
vicinity of the Fermi energy with the exception of the FeLi 3dz2 band. This has, however,
a much smaller and incoherent weight than the contributions from FeSe, which means
that the low-energy physics of LiFeO2Fe2Se2 is governed by the FeSe of the FeSe layer.
This low-energy electronic structure, stemming from FeSe, is very similar to what was
found for bulk FeSe [87]. Three hole pockets are located in the vicinity of the Γ-point and
two electron pockets near the M-point, recovering the usual Fermi surface picture of Fe-
based superconductors. Our calculations show unambiguously that the topology of the
Fermi surface, even above a magnetic ordering temperature, should be very similar to the
well-known pocket structure of other iron-based pnictides; this should be immediately
verifiable in ARPES experiments.

The striking difference between the behavior of FeLi- and FeSe-derived states, related
to the different valences of the two atoms, is one of the most spectacular realizations so
far of qualitatively different effects of Hund’s rule coupling, depending on the valence
state of the atoms, in one single compound.

Note: Recently, we became aware of another paper which discusses an alternative
antiferromagnetic order in FeSe monolayers and LiFeO2Fe2Se2 [197]. We note that the
ordering pattern is consistent with the slight maximum along the X-M line in the full
susceptibility in Fig. 7.5.
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Chapter 8.

Conclusion

In this thesis, we have investigated the electronic properties of iron-based supercon-
ductors ab initio. In particular, we have calculated bare susceptibilities and studied
their behavior with the application of pressure or doping in these materials. To do
that, we developed a new implementation of the tetrahedron method that allowed us
to calculate bare susceptibilities from full potential first-principles calculations very ac-
curately. Our code was built on the foundations provided my MacDonald, Vosko and
Coleridge [119] and uses an integration algorithm similar to the one described by Rath
and Freeman [116]. Different to many other methods reported in literature, we rewrite
the difference of Heaviside functions appearing in the nominator of the susceptibility for-
mula as a product of these functions and reshape our tetrahedron mesh to occupy only
the region of the first Brillouin zone that is physically relevant, thus avoiding the compu-
tation of many contributions that cancel each other. The benefit of this implementation
lies in the fact that we already achieve a very high accuracy for a very small number of
k points in the Brillouin zone. This in turn allows us to drop common approximations
and evaluate the susceptibility from first-principles with properly included matrix ele-
ments and converge the results with respect to the number of bands. In addition, we
are also able to compute dynamical bare susceptibilities without any approximations.
A schematical description of the implementation and its application to chromium and
FeSe as prime examples have been published in Ref. [80], which constitutes chapter 4
of this work, while a more detailed elaboration of the working principles is presented in
chapter 3.

With this new algorithm at our disposal, we investigated several different members
of the family of iron-based superconductors. This novel class of materials opened a
new field of research for unconventional high-Tc superconductivity. While they do share
some features with other unconventional superconductors, such as the close proximity of
antiferromagnetic order and superconductivity in the phase diagram or the emergence
of a collective magnon mode, they also have unique properties [2]. One of these unique
features is, for example, the low-energy bandstructure and in particular the characteristic
Fermi surfaces. For many materials of the class of iron-based superconductors there is
strong evidence that the appearance of the magnetic order is caused by the nesting of the
Fermi surfaces and some theories explain the emergent superconductivity with a pairing
induced by spin fluctuations [7].

Here, accurate susceptibility calculations can provide important insights, as the long
range magnetic order should be visible as a strong response of the static susceptibility
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function and spin excitations can be studied by examining the dynamical susceptibility.
In chapters 5 and 6 we presented results of bare susceptibility calculations for two pro-

totypical examples of iron-based superconductors. In chapter 5 we considered LaFeAsO,
the first iron-based superconductor [1], and investigated the effects of fluorine and hy-
drogen doping on the electronic structure. In accordance with other studies, we found a
strong response of the static bare susceptibility at the nesting vector, indicating an insta-
bility of the system towards a single-stripe antiferromagnetic ordering. With increasing
doping, this response becomes weaker due to the growing mismatch of the Fermi sur-
faces. We showed that the weight removed at the nesting wave vector is redistributed to
other areas of the Brillouin zone. This may be connected to the experimentally observed
phase diagram, where the superconducting phase grows at the cost of the antiferro-
magnetic phase. We also presented calculations of the dynamical bare susceptibilities,
where we considered the undoped parent compound as well as various dopings. While
the magnetic order of the undoped parent material could be determined correctly in our
calculations, no connections of the bare susceptibility to experimentally observed spin
waves and the evolution of Tc could be drawn due to the neglected interactions in our
calculations.

Another interesting iron-based superconductor is FeSe, which becomes superconduct-
ing upon the application of pressure. Several experiments have been performed on this
compound, which either apply pressure hydrostatically [161] or non-hydrostatically [138].
Intriguingly, the phase diagram looks very similar for both of these cases. To investigate
this behavior theoretically, we have carried out static susceptibility calculations for a
variety of different hydrostatic and non-hydrostatic pressures, simulated by a compres-
sion of the crystal structure. This work has been made available under Ref. [81] and is
reproduced in chapter 6 of this thesis. Our calculations showed that the peak observed
in the susceptibility curve of the untreated compound is again connected to a nesting
of the Fermi surfaces and that hydrostatic pressure leaves the Fermi surface topology to
great extend unchanged. For medium and high non- hydrostatic pressures, however, a
reshaping of the Fermi surface occurs and the strong response seen in the susceptibility
is lost. We have therefore concluded that superconductivity in this compound, which
seems to be independent from the way the pressure is applied, cannot be explained by
scrutinizing results obtained with bare susceptibility calculations.

After having presented results of bare susceptibility calculations for two prototypical
examples of iron-based superconductors, we presented a more comprehensive study on a
member of a new subclass of iron-based superconductors comprising magnetic atoms in
the intercalated layers. So far, the only compounds of this family are Sr2VO3FeAs [186],
rare-earth pnictides and LiFeO2Fe2Se2 [183]. Especially the latter is of great interest to
the scientific community, as the magnetic atom is itself iron. In chapter 7 we present a
study on the electronic and magnetic structure of LiFeO2Fe2Se2 that has been published
in Ref. [95]. In order to present an extensive picture of the physical behavior of this
material, we not only concentrated on bare susceptibility calculations, but also took
into account interaction and correlation effects within the framework of LDA+U and
DMFT. In particular, we investigated the effects of the different iron valences in the
two types of layers that build up this superconductor. In the framework of density
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functional theory, we showed that both irons - FeSe in the FeSe layer and FeLi in the
LiFeO2 layer - have a strong tendency towards magnetism. We found the lowest energy
for a state in which both layers are antiferromagnetically ordered and upon introducing
a Hubbard-type interaction, both layers are either metallic or insulating at the same
time. In addition, many metastable states with very low energy exist, thus hinting
towards a paramagnetic behavior of LiFeO2Fe2Se2. We simulated this situation with
the dynamical mean field theory, which also takes correlations into account. In this
framework, the different valences of the iron atoms have a great effect. FeLi, with a 3d5

configuration, is an incipient Mott insulator, while FeSe has to be placed in the Hund’s
metal regime due to its 3d6 configuration. LiFeO2Fe2Se2 therefore constitutes a highly
intruiging example of a single compound where qualitatively different effects of Hund’s
rule coupling are observed.

With the highly efficient and accurate method, presented in this thesis, at our disposal,
it would of course be interesting to consider continuative methods that are based on these
non-interacting results and take into account interaction effects. One possible way has
been presented in Sec. 2.4.3 along the lines of RPA. In order not to lose many advantages
of our approach, it would be favorable to stay in a band basis instead of the orbital basis
used in many model Hamiltonians. The interaction matrix in this picture, however, is a
lot more complicated and while we described the theoretical line of approach, time has to
be invested in the numerical implementation. Another highly interesting enhancement
would be to stay in the framework of ab initio methods and to consider local field
effects, as described in Sec. 2.4.2, and in this way avoid the need to introduce interaction
parameters by hand. Work in this direction has already been presented by Essenberger
et al. [52] and yields very promising results. By refining our method and going beyond
bare susceptibilities, we would move the numerical results closer to the experimentally
measured quantities and in turn widening the field of application of these calculations
to many other materials.
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Appendix A.

Integration Formulas

Analytical Integration of I =
∫
V

d3k
εk+q−εk

We want to integrate the function f = (εk+q− εk)−1 over the volume of a small tetrahe-
dron with corner coordinates {k0,k1,k2,k3}. The tetrahedron is spanned by the three
basis vectors vi = ki − k0, as depicted in Fig. A, and each point inside the tetrahedron
with coordinate k can be expressed as

k− k0 =
3∑
i=1

pivi with 0 ≤ pi ≤ 1 and
3∑
i=1

pi ≤ 1 .

If we choose the tetrahedrons to be small enough, the energies can be considered to
vary linearly within a tetrahedron and the energy denominator can be expanded about
the vertex point k0 in a similar way

εk+q − εk = εk0+q − εk0 + g · (k− k0)

= εk0 +
3∑
i=1

pi g · vi , (A.1)

where g is the vector of the energy gradient, i.e. gi = εki+q− εki
− (εk0+q− εk0). Hence

the function to be integrated becomes

f(p) =
1

ε0 +
∑3

i=1 cipi
with ci = g · vi and ε0 = εk0 . (A.2)

The integral can be transformed into

1

det (v1,v2,v3)
I =

∫ 1

0
dp1

∫ 1

0
dp2

∫ 1

0
dp3 f(p) Θ(1− (p1 + p2 + p3))

=

∫ 1

0
dp1

∫ 1−p1

0
dp2

∫ 1−p1−p2

0
dp3 f(p) , (A.3)

where the first factor takes into account the transformation of the tetrahedron volume
when going from ki to vi. The remaining integral I has the structure

I =− ε20 ln(ε0)

2c1c2c3
+

(c1 + ε0)2 ln(|c1 + ε0)|)
2c1(c1 − c2)(c1 − c3)

+
(c2 + ε0)2 ln(|c2 + ε0)|)
2c2(c2 − c1)(c2 − c3)

+

+
(c3 + ε0)2 ln(|c3 + ε0)|)
2c3(c3 − c1)(c3 − c2)

. (A.4)
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Figure A.1.: Schematic depiction of the corner coordinates ki and the vectors vi spanning
the tetrahedron over which we have to integrate.

This sum of quotients has to be carefully analyzed to deal with the singularities of
the quotients and the logarithms properly. For this, we consider all possible cases and
perform the limits accordingly.

At first let us take a look at the expressions when ε0 is equal to zero:

• ε0 = 0 & ci 6= 0

– (0,abc): All ci are different

I =
c1(c2− c3) ln(c1) + c2(c3 − c1) ln(c2) + c3(c1 − c2) ln(c3)

2(c1 − c2)(c1 − c3)(c2 − c3)

– (0,aab): 2 ci are equal but different from the third

I =
c1 − c3 − c3 ln(c1) + c3 ln(c3)

2(c1 − c3)2

– (0,aaa): All ci are equal

I =
1

4c1

• ε0 = 0 & one ci = 0, the other ci 6= 0

– (0,ab0): The two non-zero ci are different

I =
ln(c1)− ln(c2)

2(c1 − c2)
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– (0,aa0): The two non-zero ci are equal

I =
1

2c1

• ε0 = 0 & two ci = 0, the other ci 6= 0, i.e. (0,a00)

I =
∞
c1

• ε0 = 0 & all ci = 0, i.e. (0,000)

This case leads to an undefined expression

It is checked in our numerical implementation that the last two expressions never
appear. If ε0 is non-vanishing, we get the following expressions for I:

• ε0 6= 0 & ci 6= 0

– (ε,abc): All ci are different

I =− ε20 ln(ε0)

2c1c2c3
+

(c1 + ε0)2 ln(|c1 + ε0)|)
2c1(c1 − c2)(c1 − c3)

+
(c2 + ε0)2 ln(|c2 + ε0)|)
2c2(c2 − c1)(c2 − c3)

+

+
(c3 + ε0)2 ln(|c3 + ε0)|)
2c3(c3 − c1)(c3 − c2)

– (ε,aab): 2 ci are equal but different from the third
if ci 6= −ε0

I =− 1

2c2
1(c1 − c3)2c3

(
(c1 − c3)2ε20 ln(ε0)+

c3(c1 + ε0)(c1(c3 + 2ε0)− c3ε0) ln(c1 + ε0)−
c1((c3(c1 − c3)(c1 + ε0) + c1(c3 + ε0)2 ln(c3 + ε0)))

)
if ci = −ε0

I =− 1

2c2
1(c1 − c3)2c3

(
(c1 − c3)2ε20 ln(ε0)+

− c2
1(c3 + ε0)2 ln(c3 + ε0)

)
– (ε,aaa): All ci are equal

I =
1

4c3
1

(c2
1 − 2c1ε0 − 2ε20 ln(ε0) + 2ε20 ln(c1 + ε0))

• ε0 6= 0 & one ci = 0, the other ci 6= 0
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– (ε,ab0): The two non-zero ci are different

I =
1

2c2
1c

2
2(c1 − c2)

(
ε0(c1 − c2)(c2ε0 + c1(2c2 + ε0)) ln(ε0)+

c2
2(c1 + ε0)2 ln(c1 + ε0)− c1(c2ε0(c2 − c1) + c1(c2 + ε0)2 ln(c2 + ε0))

)
– (ε,aa0): The two non-zero ci are equal

I =
1

2c3
1

(
c1(c1 + 2ε0) + 2ε0(c1 + ε0) ln(ε0)− 2ε0(c1 + ε0) ln(c1 + ε0)

)
• ε0 6= 0 & two ci = 0, the other ci 6= 0, i.e. (ε,a00)

I = − 1

4c3
1

(
c1(3c1 + 2ε0) + 2(c1 + ε0)2 ln(ε0)− 2(c1 + ε0)2 ln(c1 + ε0)

)
• ε0 6= 0 & all ci = 0, i.e. (ε,000)

I =
1

6ε0
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GH Hubbard local field factor
~ reduced Planck’s constant
kB Boltzmann’s constant
µB Bohr magneton
N(EF ) density of states at the Fermi energy
r0 classical electron radius
S(q, ω) (S±(q, ω)) dynamical (spin-flip) structure factor
U s (U c) spin (charge) Hubbard interaction matrix
Vxc exchange-correlation potential
W effective electronic potential
χc (χ±) fully interacting charge (spin) susceptibility
χir
c (χir

±) irreducible charge (spin) susceptibility function
χ0
c (χ0

±) non-interacting bare charge (spin) susceptibility

129





List of Figures

1.1. Schematic phase diagram of a typical pnictide high-Tc superconductor,
reprinted with permission from Macmillan Publishers Ltd: Nature Com-
munications 4, 1914, Blomberg et al., copyright 2013. . . . . . . . . . . . . 2

2.1. Graphical representation of Eq. (2.10) to calculate the effective interaction
potential W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Graphical representation of Eq. (2.14) to approximately calculate the ef-
fective interaction potential W . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Single particle-hole polarization insertion χ0
c , which is identical to χ0

±. . . 16

2.4. Simplified picture of the Fermi surface of a two-band iron-based super-
conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. Graphical representation of the terms considered in an RPA formulation
of W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6. Graphical representation of the vertex correction to χ0. . . . . . . . . . . 24

2.7. Diagrammatic depiction of the terms considered in U . . . . . . . . . . . . 27

3.1. Details of the integration over k-space for a homogeneous electron gas in
a 2D square lattice according to (a): Eq. (3.1) and (b): Eq. (3.2). . . . . . 31

3.2. Tetrahedron tessellation of the IW of a simple tetragonal lattice. . . . . . 33

3.3. Panel (a): Tetrahedron tessellation of the IW. The red area indicates
where the product of Heaviside functions equals unity while the green
shading represents the area, where only Θ(εF − εmk ) equals unity. Panel
(b): First step of the tetrahedron reshaping to get fully occupied tetrahe-
drons where εmk < εF . Panel (c): Second step of the tetrahedron reshaping
to represent only the area where Eq. (3.3) is fulfilled. . . . . . . . . . . . . 35

3.4. Comparison of results obtained with the MVC code and our newly devel-
oped algorithm for 506 k points in the IW. . . . . . . . . . . . . . . . . . 36

3.5. Comparison of results obtained with the MVC code and our newly devel-
oped algorithm for 1015 k points in the IW. . . . . . . . . . . . . . . . . . 37

3.6. Comparison of results obtained in the CMA with our newly developed
algorithm with 506 k points in the IW and the MVC code for 506 and
1015 k points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7. Schematic drawing of a single tetrahedron with its corner coordinates ki
to illustrate the integration of Eq. (3.13). . . . . . . . . . . . . . . . . . . 40

131



4.1. (a) Tetrahedral mesh of the irreducible wedge of an fcc lattice. The other
panels show the mesh after the first (b) and after the second (c) cut with
the Fermi surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2. LDA bandstructure of Cr, decorated with partial characters. . . . . . . . . 48

4.3. FS of Cr in the kz=0 plane. The different colors indicate different orbital
character as described in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . 49

4.4. Static bare susceptibility χ0 for Cr. CMA results are compared with the
exact results. The upper panel (a) shows the converged results, while in
the lower panel (b) only the contributions of the bands at the Fermi level
have been included in the susceptibility. . . . . . . . . . . . . . . . . . . . 51

4.5. LDA bandstructure for FeSe at ambient pressure with the bands labeled
according to their dominant orbital character. . . . . . . . . . . . . . . . . 52

4.6. Static bare susceptibility in CMA χ0
CMA for FeSe calculated by including

different sets of bands, as shown in Fig. 4.5. . . . . . . . . . . . . . . . . . 53

4.7. Static bare susceptibility χ0 for FeSe at ambient pressure calculated by
including different sets of bands, as explained in Fig. 4.6. . . . . . . . . . 54

4.8. Contributions of the band transitions to χ0 for FeSe at ambient pressure
at the M point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9. Imaginary part of the dynamic bare susceptibility χ0 for FeSe halfway
between Γ and M. The black line represents the result obtained with
exact matrix elements and the red line depicts the CMA result. . . . . . . 56

4.10. Imaginary part of the dynamic bare susceptibility for FeSe at ambient
pressure. The left panel (a) shows Imχ0 whereas the right panel (a)
contains the results for Imχ0

CMA. . . . . . . . . . . . . . . . . . . . . . . . 57

5.1. Electronic phase diagram for LaFeAsO1−xHx and LaFeAsO1−xFx (Ref. [141]).
Reprinted by permission from Macmillan Publishers Ltd: Nature Com-
munications 3, Article number: 943, Iimura et al., copyright 2012. . . . . 62

5.2. Crystal structure of LaFeAsO with the unit cell indicated by the solid
black lines. The Fe plane is indicated by the red shading. . . . . . . . . . 63

5.3. DFT bandstructure for LaFeAsO showing the Fe d and As p bands. . . . 64

5.4. Fermi surface of LaFeAsO . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5. DOS of LaFeAsO1−xFx near the Fermi energy at εF = 0 as a function of
doping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6. DFT bandstructure for LaFeAsO1−xFx as a function of doping. . . . . . . 68

5.7. Static bare susceptibility χ0 for LaFeAsO, LaFeAsO0.9F0.1, LaFeAsO0.8F0.2

and LaFeAsO0.7F0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8. Top view of the Fermi surface at kz = 0 of LaFeAsO (left) and LaFeAsO0.8F0.2

(right). Different colours indicate different bands. . . . . . . . . . . . . . . 70

5.9. χ0(q) as a function of q = (qx, qy, 0) for undoped LaFeAsO (left) and
LaFeAsO0.8F0.2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10. Imχ0(q, ω) along high symmetry lines for undoped LaFeAsO (left) and
LaFeAsO0.8F0.2 (middle) and LaFeAsO0.7F0.3 (right). . . . . . . . . . . . . 72

132



5.11. Imχ0(q, ω) at X (upper panel) and M (lower panel) for undoped LaFeAsO
and Land LaFeAsO0.7F0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1. Static susceptibility χ0 in the (qx, qy, 0)-plane of FeSe at a hydrostatic
pressure of 2.8 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2. Static susceptibility χ0 in the (qx, 0, 0) direction of FeSe for different hy-
drostatic pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3. Static susceptibility χ0 in the (qx, qy, 0)-plane for FeSe at a non-hydrostatic
pressure of 4 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4. Static susceptibility χ0 in the (qx, qy, 0)-plane for FeSe at a non-hydrostatic
pressure of 12.9 GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5. Static susceptibility χ0 in the (qx, 0, 0) direction for FeSe for different
non-hydrostatic pressures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.6. Fermi surface kz = 0 cut for FeSe at a non-hydrostatic pressure of 4 GPa. 82

6.7. Fermi surface kz = 0 cut for FeSe at a non-hydrostatic pressure of 12.9 GPa. 82

7.1. Nonmagnetic unit cell of LiFeO2Fe2Se2. . . . . . . . . . . . . . . . . . . . 87

7.2. Left: DFT band structure of nonmagnetic LiFeO2Fe2Se2, isolated LiFeO2,
and isolated FeSe. Right: (p)DOS of nonmagnetic LiFeO2Fe2Se2. . . . . . 88

7.3. Left: Zoom of Fig. 7.2 with the bands of LiFeO2Fe2Se2 in solid black.
Right: Band structure of bulk FeSe calculated for the experimental crystal
structure at ambient pressure from Ref. [161]. . . . . . . . . . . . . . . . . 89

7.4. Top view of the Fermi surface at kz = 0 (left) and kz = π/c (right) of
non-magnetic LiFeO2Fe2Se2. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.5. Static bare susceptibility χ0 for isolated FeSe, isolated LiFeO2, and the
full LiFeO2Fe2Se2 compound. . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6. Top view of the Fe lattices in LiFeO2Fe2Se2 for the three most preferable
magnetic configurations in terms of energy. . . . . . . . . . . . . . . . . . 92

7.7. (a) (p)DOS of non-magnetic LiFeO2Fe2Se2, (b) (p)DOS of cb-ss LiFeO2Fe2Se2,
and (c): (p)DOS of cb-ss LiFeO2Fe2Se2 and U= 2.7 eV. . . . . . . . . . . 94

7.8. Magnetic moment of Fe in ss isolated FeSe, cb isolated LiFeO2 and of FeLi

and FeSe in cb-ss LiFeO2Fe2Se2. . . . . . . . . . . . . . . . . . . . . . . . . 95

7.9. Left: DFT+DMFT spectral function of paramagnetic LiFeO2Fe2Se2 for
U = 4 eV and J = 0.9 eV. Right: DFT+DMFT DOS of paramagnetic
LiFeO2Fe2Se2 for the same U and J parameters. . . . . . . . . . . . . . . 96

7.10. DFT+DMFT spectral function of paramagnetic LiFeO2Fe2Se2 for U =
4 eV and J = 0.9 eV with the DFT band structure overlaid. . . . . . . . . 97

7.11. Contributions of FeSe to the spectral function of paramagnetic LiFeO2Fe2Se2

for U = 4 eV and J = 0.9 eV separated into orbital contributions. Top left:
FeSe 3dz2 orbital, top right: FeSe 3dx2+y2 , bottom left: FeSe 3dxy, bottom
right: FeSe 3dxz+yz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1. Schematic depiction of the corner coordinates ki and the vectors vi span-
ning the tetrahedron over which we have to integrate. . . . . . . . . . . . 106

133





List of Tables

5.1. Experimentally determined As positions zAs for various dopings (see Ref. [142]).
The dopings not coinciding with the exact experimental values were cal-
culated using a linear fit. Additionally, the Fermi energies εF in eV and
the DOS at εF are given. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1. Energies (with respect to the non-magnetic configuration) and magnetic
moments of isolated LiFeO2 m(FeLi) and isolated FeSe m(FeSe) for fer-
romagnetic (fm), checker-board (cb), single stripe (ss), and double stripe
(ds) magnetic configurations. . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2. Energies (with respect to the nonmagnetic configuration) and magnetic
moments of LiFeO2Fe2Se2 in different magnetic configurations (compare
with Fig. 7.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

135


	Abstract
	Kurzfassung
	Introduction
	Background
	Theoretical Background
	The Response Functions  and c
	The Bare Susceptibility 0
	The Static Bare Susceptibility
	Inter- and Intraband Contributions and the Limit |q| 0

	Going Beyond the Bare Susceptibility
	Random Phase Approximation
	Local Field Effects
	Including Interactions in the Case of Iron-Based Superconductors


	Numerical Implementation
	Introduction
	Different Conventions for 0
	Implementation of the Tetrahedron Method
	Comparison of the MVC code and our new implementation
	Calculation of the dynamic susceptibility



	Results
	Accurate bare susceptibilities from full-potential ab initio calculations
	Introduction
	Method
	Static Bare Susceptibility
	Dynamic Bare Susceptibility
	Conclusions

	LaFeAsO and the Effects of Doping
	Introduction
	Static Bare Susceptibility
	Dynamic Bare Susceptibility
	Conclusions

	Static susceptibility and Fermi surface nesting in FeSe under pressure from first-principle calculations
	Introduction
	Method
	Results
	Discussions and Conclusions

	Effect of the iron valence in the two types of layers in LiFeO2Fe2Se2
	Introduction
	Computational Details
	Electronic Structure
	Correlated electronic structure
	Conclusions

	Conclusion
	Integration Formulas
	Acknowledgements
	List of Publications and Preprints
	List of Abbreviations and Symbols


