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Abstract

During the last decades computer simulations have become an important tool in many fields

of science (e.g. in Astrophysics, Biochemistry, Solid-State Physics, or in Fluid Dynamics) and

engineering. Especially molecular dynamics simulations offer a new, alternative approach to

study complex fluid dynamical phenomena.

In this master thesis major concepts as well as theoretical foundations of Molecular Dynam-

ics simulation methods have been summarized and advanced simulation methods have been

presented. Building on this, a classical molecular dynamics simulation software package (con-

sisting of the simulator modelMD and the graphical user interface simEdit), which meets the

requirements of complex Molecular Dynamics simulations with up to 106 particles, has been

developed.

Furthermore two representative, complex, fluid dynamical phenomena (namely the Rayleigh-

Taylor instability and the Rayleigh-Benard convection) have been introduced and discussed.

This representation has been complemented by a series of classical Molecular Dynamics simu-

lations, which have been carried out with the software package modelMD.
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Zusammenfassung

Computersimulationen haben sich in den letzten Jahrzehnten als ein wichtiges Werkzeug in

vielen Bereichen der modernen Wissenschaft (wie beispielsweise der Astrophysik, Biochemie,

Festkörperphysik oder der Fluiddynamik) und der Ingenieurwissenschaft etabliert. Vor allem

Moleküldynamik-Simulationen bieten einen neuen, alternativen Ansatz um komplexe, fluiddy-

namische Phänomene zu untersuchen.

In dieser Diplomarbeit wurden das wesentliche Konzept sowie der theoretische Hintergrund

von Moleküldynamik Simulationen zusammengefasst und fortgeschrittene Simulationsmetho-

den präsentiert. Dies bildete die Grundlage für die Erstellung eines klassischen Moleküldy-

namik Simulations Software-Packages (bestehend aus einem Simulator modelMD und einer

grafischen Benutzeroberfläche simEdit), welches komplexe Simulationen mit bis zu 106 Teilchen

ermöglicht.

Im weiterer Folge wurden zwei repräsentative, fluiddynamische Phänomene (die Rayleigh-

Taylor Instabilität und die Rayleigh-Benard Konvektion) vorgestellt und diskutiert. Diese

Darstellung wurde durch verschiedene Moleküldynamik-Simulationen, welche unter Verwen-

dung des modelMD Software-Packages durchgeführt wurden, ergänzt.
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Preface

During the last three decades computer simulations have become an important tool in many

fields of science and engineering, since they combine theory (that is normally restricted to

simplified models) and experiments (that are restricted by physical parameters). Computer

simulations are not limited by those constraints, as they are based on theory and perform

(virtual) experiments with any set of parameters.

The progress of computational science was especially made possible by the rapid development

of high-performance parallel computer systems. Nowadays it is feasible to mimic and predict

physical phenomena and thereby support or even replace complex and expensive experiments

increasingly.

Chapter 1 gives a brief introduction to computational physics and numerical simulations, in-

cluding the typical approach for numerical simulations, particle models as well as ab-initio and

classical Molecular Dynamics.

Chapter 2 focuses on the theoretical foundations of classical Molecular Dynamics methods. It

looks at the procedure of a typical Molecular Dynamics code and several types of potentials

as well as algorithms to integrate the equations of motion and miscellaneous temperature and

pressure control mechanism are introduced and discussed. Furthermore, measurement meth-

ods are introduced and reduced units are described. Eventually advanced simulation methods

and parallelization strategies are delineated.

In chapter 3 a self-developed, high-performance classical Molecular Dynamics simulation soft-

ware package, including the simulator as well as the graphical user interface, is presented.

Complex fluid dynamical phenomena with focus laid on the Rayleigh-Taylor instability and

the Rayleigh-Benard convection are discussed in chapter 4. Important background knowledge

as well as various publications concerning those topics are summarized and presented. This

is complemented by a series of classical Molecular Dynamics simulations, carried out with the

software-packages that are presented in chapter 3. The results are then evaluated and discussed.
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Chapter 1

A Synopsis of Computational

Physics

The main endeavor of natural science is to describe complex processes in nature as precisely as

possible. The major objective is to create a mathematical formulation of those procedures, or

in other words, to describe (with a system of differential and integral-equations) how specific

quantities depend on other parameters and how they evolve over time. The final aim is to find

a solid mathematical model that describes the phenomenon exactly.

With such a model it is possible to carry out detailed observed processes as well as predict

them on a certain scale.

Most physical models that describe natural phenomena sufficiently, are so complex that they

can’t be solved analytically. Therefore, simplified and easier to solve models are developed,

although their significance is limited compared to original ones. Unfortunately some phenom-

ena can’t be described with simplified mathematical models, as the law of gravitation, which

can only be solved for two bodies at most. However, in many cases, one has to deal with more

than just two interacting bodies, at microscopic as well as at macroscopic scales.

It is very unlikely to find exact physical laws just by observing processes in nature. A much

more effective way is by creating exact conditions artificially in a laboratory. Experiments can

then be carried out in this controlled environment and by modifying various parameters and

comparing several results, physical laws can be derived.

Typically investigated phenomena range over several length and time scales, as from the

quantum-mechanical observation of matter in the nano-scale to studies of the galaxy groups

and clusters. Accordingly these phenomena also differ in their time scales (from 10−12 to 1017

seconds) as well as in their masses (from 10−27kg for a single atom to 1040 kg for whole galax-

ies). Thus it appears that nature phenomena of interests are from a wider range of occurrences,

whereas most of them are not reproducible in a laboratory, be it because of too short/long

observation periods or too small/huge system sizes. Furthermore, expensive laboratory ex-

periments can be avoided and it is possible to study systems, which can’t be reproduced in a

3



Figure 1.1: Schematic presentation of the typical approach for numerical simulation

lab. On this account, the computational physics has established itself as a third major branch,

apart from experimental and theoretical physics. Here it is possible to precalculate complex

technical and physical processes numerically. Furthermore the computation power of modern

computer systems makes it possible to determine more complex and realistic models as it would

be possible with analytic methods.

The typical procedure of a computer simulation (as shown in figure 1.1) is: After a phenomenon

is observed in nature a mathematical model is formulated. This model should describe reality

as precisely as possible, although one has to make a compromise on accuracy and computational

respectively memory effort that is required to solve this model.

Normally the resulting equations are continuous in time and space. Therefore they have to be

discretized in order to be able to handle the problem numerically. Subsequently the system

of equations is solved with an appropriate algorithm at some discrete points (in time or/and

space). The more dense points are chosen, the more accurate the approximation becomes.

4



Finally the results are compared with field studies and either they become verified, or the

simulation model has to be improved or revised.

Particle models play an important role in numerical simulations. In this approach a physical

system is reproduced by a number of discrete particles and their mutual interaction. For this

reason a classical system can be described by particle positions, their velocities and their in-

teraction potential functions. In general, particles don’t have to be constrained to represent

very small bodies as atoms or molecules. They just represent basic modules of a physical

model. Therefore single particles could also describe astronomical structures such as galaxies

with billions of stars. Adequate physical properties (as position, velocity, mass and charge)

are assigned to the particles to mimic those objects.

Many particle models use the laws of classical mechanics like Newton’s equations of motion.

This system of second order, ordinary differential equations describes the dependence of the

acceleration upon a force, that is acting on it. This force results from the particle interaction

and depends on the position of the particles. Trajectories of all particles arise as a result of

the solution (with proper initial conditions) of this set of differential equations. This approach

represents a deterministic method, wherefore all trajectories are predetermined for all times

for certain initial conditions.

Particle models play an important role in many fields of research. In fluid mechanics it of-

fers a new, alternative approach to study complex fluid dynamical phenomena such as the

Rayleigh-Taylor instability or the Rayleigh-Benard convection. Therefore particle models are

used exclusively in this work. In solid-state physics it enables the analysis of the already

known and the research of new materials. Dynamics of macromolecules at atomic level can be

investigated in biochemistry as well as theoretical models that can be validated in astrophysics.

For very small systems at the atomic level the classical Newton mechanics has to be replaced

by the Quantum mechanics. This implies that the Schrödinger equation instead of the Newton

one has to be used as the equation of motion. Then trajectories of all atoms can be achieved by

solving the Schrödinger equations (with an appropriate Hamiltonian). However, an analytical

and numerical solution of the Schrödinger equation is only possible for very simple systems,

consisting of a few particles. Therefore approximations have to be used to solve more complex

problems.

A famous method is the Born-Oppenheimer approximation. This approach involves the equa-

tions of motion of the nucleus and the equations of motion of the electrons are treated sep-

arately, because of the big mass difference. The Schrödinger equation for the core is then

replaced by the Newton equation. Therefore the core moves to the classical model, though

with a potential that results from the solution of the electronic Schrödinger equation. For this

purpose further approximations have to be used, that are obtained by the Hartree-Fock method

or the Density functional theory. This approach is known as Ab Initio Molecular Dynamics

(AIMD). Anyway, even with this method the system size is still limited to a few thousand

5



atoms for complexity reasons.

To handle larger systems further simplifications have to be used, such as parameterized, ana-

lytical potential functions that depend only on the nucleon positions. This method is known

as classical Molecular Dynamics. That approach makes it possible to handle problems with

billions of particles, though quantum mechanical effects are not considered anymore.

In the following, basic methods and different approaches of classical Molecular Dynamics are

described.

6



Chapter 2

Molecular Dynamics Methods

This chapter provides the basic concepts of classical Molecular Dynamics (MD) methods. The

procedure of a typical MD code is presented and described in detail. Furthermore, impor-

tant short-range pair-potentials are presented and complex long-range many-body-potentials

are briefly discussed. Methods to integrate Newton’s equations of motion are pictured and

compared. Moreover miscellaneous temperature and pressure control mechanism are intro-

duced and measurement methods of important observables are discussed and reduced units

are described. Eventually advanced simulation methods and parallelization strategies, as well

as different parallel-computer architectures are delineated and tested for their effectiveness.

2.1 Principle

MD simulations are in many respects, similar to a real, physical experiment. First a simulation

system, that consists of N particles, is selected and initialized with certain parameters. Then

Newton’s equations of motions are solved and several measurements are taken as soon as the

system reaches a state of equilibrium.

In summary it can be said, that MD programs are designed to carry out the following steps:

1. Initialization: Initial positions and velocities are set for all particles in the simulation

system.

2. Calculation of the forces acting on the particles.

3. Integration of Newton’s equation of motion for a small time-step δt.

4. Computation of observables.

Steps 2 and 3 are carried out in a loop and form the main core of MD programs. Subsequently

those steps are described more precisely.

7



2.2 Initialization

To start a simulation, initial positions and velocities have to be set for all particles in the

system. There are various ways to do that, as by defining a regular mesh in which every lattice

point represents a particle position, or by defining a volume in which particles are positioned

randomly for a certain particle density. Since equilibrium properties of a simulation system do

not depend on the initial conditions, all reasonable start configurations are possible. However,

if such dependencies are observed, the simulation was not run long enough in most cases and

therefore the system has not reached an equilibrium state so far.

For the solid state of a certain system the initial conditions are typically chosen to prepare the

system in the crystal structure of interest. For a simulation in a liquid phase the simulation

can be prepared in any convenient crystal structure. At the temperature and density of a

typical liquid state point, the solid state is not thermodynamically stable and therefore the

crystal will melt afterwards.

In practice, the final, well equilibrated, state of an earlier simulation is often chosen as initial

configuration for a new run. This simulation can then be computed with different parameters

as temperature or pressure.

Most important in all positioning strategies is, that the initial particle positions are not too

close to each other. Going below a critical distance-limit results in appreciable overlap of the

atomic cores, which leads to unpredictable effects.

For the initialization of velocity vectors, their norm should follow a given velocity distribution

(representing a distinct temperature) e.g. a Maxwell-Boltzmann velocity distribution, whereas

their direction is distributed randomly.

2.3 Potential and Force Calculation

Interaction energies can be separated into intramolecular and intermolecular contributions.

Former are forces that appear among atoms of a molecule in a covalent, ionic or metallic bond.

Intramolecular forces are caused by diverse deformations as straining and turning of molecular

bonds, or deformation of bond-angles.

Intermolecular forces act between stable molecules or individual atoms and include strong,

long-range interactions (as the Coulomb interaction) and relatively weak, short-ranged ones

(like the van-de-Waals interaction).

Since this work concentrates particularly on interactions between individual particles, inter-

molecular interactions are described in more detail in this chapter.

For a system consisting of N particles, the total potential Utot can be separated into several

8



contributions:

Utot =
∑
i

U1(~xi) +
∑
i<j

U2(~xi, ~xj) +
∑
i<j<k

U3(~xi, ~xj , ~xk) + . . . (2.1)

where ~xi is the position vector of particle i and U1 represents a single-body potential (resulting

from external potential fields), which therefore also includes simulation system walls. U2, U3

and all other potential terms of higher order, are interaction potentials between particle pairs

(i, j), triples (i, j, k) and so on. In many models only single-, two- and three-body potentials

are considered, since the small contribution of higher-order terms can be neglected.

Typically, computing three-body potentials is a very time-consuming task. Therefore those

potentials are not considered explicitly in most models. However, they can be taken into

account indirectly by combining them with a pair-interaction potential U2 to an effective

potential Ueff :

Ueff =
∑
i<j

U2(rij) (2.2)

with rij = |~xi − ~xj |.

2.3.1 Pair Potentials

Determining thermodynamical material properties with MD simulations requires accurate po-

tential models, that reproduce realistic particle interactions. Usually such models are hard

to specify. However, if the focus lays just on the computation of basic structural and dy-

namical properties, much more simple potential models, that emulate atoms or molecules as

spherical-symmetrical balls with the mass mi, can be used.

Lennard-Jones Potential

One of the most important and widely used potential model is the Lennard-Jones (LJ) poten-

tial. It consists of an attractive and a repulsive term and reads, in its original form:

U(rij) =
p

p− q

(
p

q

) q
p−q

ε

[(
σ

rij

)p
−
(
σ

rij

)q]
(2.3)

Typically for the attractive term q = 6 and for the repulsive term p = 12 is chosen, which leads

to the well known Lennard-Jones-(12-6) potential:

U(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2.4)

where the energetic parameter ε donates the depth of the potential well. σ accords to the zero

crossing of the potential and is interpreted as the particle diameter. The potential is repulsive

for small intermolecular distances and has it’s minimum U(rmin) = −ε at rmin = 6
√

2σ. The
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Figure 2.1: Lennard-Jones potential function for spherical-symmetrical Argon with ε = 1.00
kJ/mol and σ = 3.41 Å. Additionally, the attractive and the repulsive term are plotted as well.

steep slope of the repulsive term for small distances, can be explained quantum mechanically

with the Pauli exclusion principle, which states that two electrons, in a single atom, can not

have the same four quantum numbers. Therefore, overlapping electron shells are forbidden.

On the other hand, the attractive term, the so-called van der Waals interaction or disper-

sion interaction, dominates for long intermolecular distances. This interaction is relatively

weak compared to normal chemical bonds and are caused by correlations in the fluctuating

polarizations of nearby particles. Figure 2.1 shows the Lennard-Jones potential function for

spherical-symmetrical Argon.

The resulting force of the Lennard-Jones-(12-6) potential reads:

~Fij = −∇U(rij) =
48ε

σ2

[(
σ

rij

)14

− 1

2

(
σ

rij

)8
]
~rij (2.5)

Equations (2.1) and (2.5) act on the simplified assumption, that only one type of particles,

which properties are characterized by the parameters ε and σ, are used. However, in prac-

tice interactions between different particle types have to be modeled as well. To compute

the interaction parameters ε and σ for disparate particles, empiric combination rules like the

Lorentz-Berthelot mixing rules are used:

σ =
1

2
· (σkk + σll) (2.6)
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εkl =
√
εkk · εll (2.7)

where k and l represent different particle types.

The Lorentz-Berthelot mixing rules allow an empirical motivated modeling of simple hetero-

geneous simulation systems.

Long-Range Pair-Potentials

In computational physics, the most important criterion for the implementation of a potential

function, is its effective range. Short-range potentials, as the Lennard-Jones one, that can be

approximated with a cutoff radius after that the potential function vanishes can be modeled

relative easily, since for force calculations only the nearest neighbors have to be taken into

account (see section 2.8.1).

For long-range potentials a cutoff radius can not be defined without taking a massive loss

of accuracy into account. Therefore all possible particle pairs have to be considered, which

complicates the computation task.

Important examples for slow-decreasing, long-range potentials are the intermolecular gravita-

tion potential

Ugrav(rij) = −Ggrav
mimj

rij
(2.8)

and the Coulomb potential

Ucoul(rij) =
1

4πε0

qiqj
rij

(2.9)

where Ggrav represents the gravitational constant, mi and mj the particle masses, rij is the

distance between two ions, qi and qj the electric charges of particle i and j respectively and ε0

is the electrical permittivity of space.

Such long-range potential functions that can be separated in a short-range and a long-range

term, which are examined separately:

U = Ushort + Ulong (2.10)

Ushort can be any fast-decreasing potential. The long-range term yields in the case of the

Coulomb potential with the electrostatic potential for N point charges at positions ~x:

Uelstat =
1

4πε0

∑
i

∑
i<j

qiqj
1

|~xj − ~xi|
(2.11)

With a given charge distribution, it is possible to compute the overall potential Φ, using the

Poisson equation for electric fields. All other forces can be derived as gradient from this
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equation. The Poisson equation, or potential equation, for the electric fields is:

−∆Φ(~x) =
1

ε0
ρ(~x) (2.12)

which reads in its integral expression:

Φ(~x) =
1

4πε0

∫
R3

ρ(~x′)

|~x− ~x′|
d~x′. (2.13)

where ρ(~x) is the charge distribution of the simulation system and ε0 represents the permit-

tivity.

In simulation systems with long-range potentials and periodic boundary conditions, in addition

to the particle interactions in the original box interactions with virtual particles in all other

copies of the primary system have to be considered as well. The total electrostatic energy of a

periodic system yields:

Uelstat =
1

2

1

4πε0

∑
~n∈Z3

∑
i

∑
j

i6=j for n=0

qiqj
1

|~x ~nj − ~xi|
(2.14)

where
∑

i summarizes only over all particles within the simulation box, whereas
∑

~n =∑
~n1

∑
~n

∑
~n3
. . . summarizes over all periodic images of the simulation space. ~x ~nj = ~xj +

(n1 · L1, n2 · L2, n3 · L3) indicates the positions of all periodic replicas of particle j. Here the

interaction of a particle with itself is excluded, though an interaction with its copies is consid-

ered.

Equation 2.14 is the origin for most methods to solve the electrostatic problem (see [12,14,30]).

2.3.2 Complex Many-Body Potentials

The modelizing power of the pair-potentials discussed above is limited in their implementation.

They are absolute capable to model noble gases as well as fluids, where atoms interact only

by Van der Waals forces, though they can’t be used to simulate complex interactions, as those

which occur in metals or molecules, realistically. For this task, potential functions, that also

consider interactions between atoms of the same molecule, have to be used. The idea behind

that approach is to use the particle density, respectively the coordination number (which rep-

resents the number of nearest neighbors in a molecule or crystal). The bond between the atoms

decreases with increasing particle density. This fact leads to potential functions which include

a pair-potential term as well as an additional term, that considers the coordination number and

therefore the density. Example potential methods are the Glue-Model, the Embedded-Atom-

Method, the Finnis-Sinclair-Potentials or the Effective-Medium-Theory. They all differ in the

way how the coordination number is included in the potential.

Even more complex models are used to model e.g. semiconductors like silicon. Those potentials
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Figure 2.2: Periodic boundary conditions applied for a two-dimensional simulation space: This
approach results in an infinite array of boxes, which are replicas of the original box (shaded in gray).
If a particle moves from the central box into another one (indicate by the arrow), it is replaced by
it’s own image that moves into the central box. This movement is replicated across all the boxes.

use the Bond Order concept, which declares that the strength of a chemical bond depends on

its local environment. This approach is closely related to the Glue-Model.

2.3.3 Boundary Conditions

In MD simulations the simulation space has to be truncated to a size, that is computationally

ascertainable. Therefore, artificial boundaries, that consider and replace the removed atoms,

have to be defined. On this account, an important task of boundary conditions is to limit the

effects of an artificially introduced finite simulation space.

Ideal, so-called, exact boundary conditions provide an approximated solution, that accord to a

system without applied boundaries.

In order to simulate huge particle systems, as they are needed especially for fluid simula-

tions, boundary conditions that mimic the presence of a virtual, infinite particle system, which

surrounds the original simulation box, have to be introduced. Typically, periodic boundary

conditions (pbc) are applied in such cases. In this approach the original system represents a

cell of an infinite periodic lattice of identical cells, as shown in figure 2.2. A particle interacts

with all other particles in the infinite simulation space, including its own images in duplicated

cells. This method makes it possible to perform complex simulations with a relatively small

number of particles which experience forces as though they were in a bulk solution.

For certain simulations, periodic boundary conditions are not convenient, namely for long-

range potentials. Here all possible particle pairs have to be taken into account and therefore

infinite sums rather than finite ones have to be calculated. Solution methods for this kind of

problem were already discussed in section 2.3.1. However, in most cases short-range potentials

are used, which can be approximated to vanish after a certain cutoff radius (see section 2.8.1).
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Therefore periodic boundary conditions don’t represent a complex problem for these potential

functions.

Additionally there are other important boundary conditions like perfectly reflecting and dif-

fusely reflecting walls. Here new velocities and directions are assigned to particles that approach

the boundary. At perfectly reflecting walls one component of the velocity vector is multiplied

by −1, at diffusely reflecting ones the original velocities are changed to new ones with the same

magnitudes but randomly chosen inward directions. In this case the determinism is lost.

Boundaries also provide a simple opportunity to connect heat-bathes to the system (see section

2.5), or to remove particles from the simulation space.

Furthermore it is possible to apply any kind of additional force field to the boundaries.

2.4 Integrating the Equations of Motion

The intention of MD simulations is to compute the chronological development of a system in

the molecular scale.

Knowing the force acting on each particle in the simulation and using Newton’s equation of

motion

mi~̈xi = ~Fi, (2.15)

where mi is the mass, ~xi the position and ~Fi the force acting on the i-th particle, one gets a

system of N second-order differential equations, which solutions equals to the trajectories of

the particles. It is also possible to convert equation (2.15) to a system of first-order equations:

~̇xi = ~vi ~̇vi =
1

mi

~Fi. (2.16)

Hence a suitable algorithm to integrate Newton’s equation of motion is essential for MD pro-

grams. There are different numerical approaches that intend to solve such problems. In the

following a brief introduction to the most important methods is provided.

The first step to make a mathematical problem suitable for numerical computing, is the process

of transferring continuous equations into it’s discrete counterparts, also known as discretization

[30]. These second-order differential equations have to be transferred to a system of equations,

which solutions approximate the solutions of the original system at some selected points. This

corresponds to the computation of new particle positions and velocities out of old ones via the

according forces.

2.4.1 Störmer-Verlet Method

The Störmer-Verlet algorithm [30] computes the position at the time-step tn+1 from the posi-

tions at time tn−1 and tn and the corresponding force at time tn, whereas the velocity is not

needed.
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A Taylor expansion of the position vector ~x at tn + δt and tn + δt yields:

x(tn + δt) = x(tn) + δtẋ(tn) +
δt2

2
ẍ(tn) +

δt3

6

···
x(tn) +O(δt4) (2.17)

x(tn − δt) = x(tn)− δtẋ(tn) +
δt2

2
ẍ(tn)− δt3

6

···
x(tn) +O(δt4) (2.18)

Adding (2.18) to (2.17) yields for time evolution the Standard-Form of the Strömer-Verlet-

Algorithm:

~x n+1
i = 2~x ni − ~x n−1

i + δt2
~F n
i

mi
+O(δt4) (2.19)

with ~x ni := ~xi(tn), ~v ni := ~vi(tn) and ~F n
i := ~Fi(tn). It can be seen that only positions at

time-steps tn, tn−1 and the force at time-step tn are needed for the calculation. Velocities are

not explicitly calculated in (2.19), but they can be approximated as:

~v ni =
~x n+1
i − ~x n−1

i

2δt
(2.20)

A major disadvantage of this method are potential numerical rounding errors that arise from

the addition of numbers with very different sizes. There are two other formulations of the

Störmer-Verlet-Algorithm, namely the Leap-Frog-Algorithm and the Velocity-Störmer-Verlet-

Algorithm, which both reduce the effect of such roundoff errors.

Leap-Frog-Algorithm

The Leap-Frog-Algorithm calculates new velocities ~v
n+1/2
i directly from velocities ~v

n−1/2
i and

the force ~F n
i :

~v
n+1/2
i = ~v

n−1/2
i +

δt

mi

~F n
i (2.21)

The positions of all atoms are one time-step in advance compared to the new velocities:

~x n+1
i = ~x ni + δt~v

n+1/2
i (2.22)

Since now the velocities are not calculated for the same time-step as the new positions, ~v n+1
i

is computed by the average determination:

~v ni =
1

2
(~v

n+1/2
i + ~v

n−1/2
i ) (2.23)

Velocity-Störmer-Verlet-Algorithm

The Velocity-Störmer-Verlet-Algorithm calculates new velocities by combining (2.19) and (2.20):

~v ni =
~x n+1
i − ~x n−1

i

2δt
=
~x ni
δt
−
~x n−1
i

δt
+

~F n
i

2mi
δt (2.24)
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Figure 2.3: Calculation processes of the three Störmer-Verlet methods: The first line shows the
Standard-Form of the Strömer-Verlet-Algorithm (2.19), the second line the Leap-Frog-Algorithm
((2.21) and (2.22)) and the third line the Velocity-Störmer-Verlet-Algorithm ((2.25) and (2.26)).
Dark-gray areas symbolize calculated data (evaluated at an earlier time-step), while light-gray ones
denote data that is computed at this time-step. Arrows represent calculation processes.

Adding ~v n+1
i and using equation (2.20) leads to:

~v n+1
i = ~v ni +

(~F n
i + ~F n+1

i )δt

2mi
(2.25)

Positions are calculated from (2.19) and (2.20):

~x n+1
i = ~x ni + δt~v ni +

~F n
i δt

2

2mi
(2.26)

The calculation processes of the three Störmer-Verlet methods are shown in figure 2.3.

2.4.2 Runge-Kutta Method

The Runge-Kutta method [30] is a single-value method that is used to approximate solutions

of ordinary differential equations. The most commonly used Runge-Kutta method is probably

the classical fourth-order Runge-Kutta method, also referred as RK4 :

~x n+1
i = ~x ni +

1

6
δt (k11 + 2k12 + 2k13 + k14) (2.27)

~v n+1
i = ~v ni +

1

6
δt (k11 + 2k12 + 2k13 + k14) (2.28)

with coefficients:

k11 = ~v ni k21 = ~a(t, ~r ni , ~v
(i)(t))

k12 = ~v ni + δt
2 k21 k22 = ~a

(
t+ δt

2 , ~r
n
i + δt

2 k11, ~v
n
i + δt

2 k21

)
k13 = ~v ni + δt

2 k22 k23 = ~a
(
t+ δt

2 , ~r
n
i + δt

2 k12, ~v
n
i + δt

2 k22

)
k14 = ~v ni + δt k23 k24 = ~a (t+ δt, ~r ni + δt k13, ~v

n
i + δt k23)

(2.29)

16



This method features a much more accurate approximation than the Störmer-Verlet approach,

though such a high precision is not always required in MD simulations.

2.4.3 Predictor-Corrector Method

The Predictor-Corrector method [12] belongs to the family of the multiple-value methods. In

contrast to single-value methods like the Leap-Frog or Runge-Kutta method, this approach

uses data of one or more earlier time-steps. There are two major forms of the Predictor-

Corrector method, whereas the Adams-Bashforth-Moulton approach uses a certain amount of

accelerations of earlier time-steps. The Nordsieck method uses higher order derivations of the

acceleration at the current time-step. Both methods require higher computation amount than

the Leap-Frog method, since more calculations have to be executed and additional data has

to be saved. However, compared to the Runge-Kutta method the computation amount is still

significant lower. In the following we will focus on the Adams-Bashforth-Moulton approach.

This algorithm proceeds in three steps. First, the predictor step calculates estimated positions

and velocities.

~x n+1
i = ~x ni + δt~v ni + δt2

k−1∑
i=1

αi~a
n+(1−i)
i (2.30)

δt~v n+1
i = ~x n+1

i − ~x ni + δt2
k−1∑
i=1

α′i~a
n+(1−i)
i (2.31)

with coefficients αi and α′i that satisfy

k−1∑
i=1

(1− i)qαi =
1

(q + 1)(q + 2)
and

k−1∑
i=1

(1− i)qα′i =
1

(q + 2)
. (2.32)

Using these new positions (2.30) and velocities (2.31), forces and the resulting accelerations can

be calculated in the second step. In general they will differ from the predicted accelerations. In

the third step, this difference can be used to calculate corrected positions and their derivatives.

~x n+1
i = ~x ni + δt~v ni + δt2

k−1∑
i=1

βi~a
n+(2−i)
i (2.33)

δt~v n+1
i = ~x n+1

i − ~x ni + δt2
k−1∑
i=1

β′i~a
n+(2−i)
i (2.34)

with ~a ni := ~ai(tn) and the coefficients αi and α′i that satisfy

k−1∑
i=1

(2− i)qβi =
1

(q + 1)(q + 2)
and

k−1∑
i=1

(2− i)qβ′i =
1

(q + 2)
. (2.35)
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2.5 Temperature and Pressure Control Mechanism

An important question of MD simulations is the choice of the ensemble type. In statistical

mechanics terms, basic MD simulations work with microcanonical (NVE) ensembles, where

number of particles (N), volume (V) and energy (E) are constant. Constant volume (V) and

temperature (T) experiments accord to Canonical (NVT) ensembles and experiments with

constant pressure (P) and temperature (T) (like in a laboratory) to isothermal-isobar (NPT)

ensembles. Among them, NPT ensembles are definitely the most important ones.

Temperature and pressure control mechanisms are powerful tools to provide NPT ensembles as

well as control over temperature and pressure during a simulation (in order to study physical

and chemical phenomenons like phase transitions). After initializing the system, those tech-

nique are used to prepare the ensemble in the so-called equilibrium-phase. Subsequently the

actual simulation run (production phase) starts.

There are various ways to achieve constant temperature and pressure. A naive approach would

be the velocity scaling method, where velocities of all particles are repeatedly adjusted to en-

force a certain, constant temperature.

There are more serious procedures to achieve constant temperatures such as by coupling the

system to a virtual, ideal heat-bath. In this approach a stochastic mechanism is required to

adjust particle velocities in order to reproduce the effects of a heat-bath, which, unfortunately,

infracts the deterministic nature of the dynamics.

Well investigated and widely used approaches are feedback and constraint methods. In the

former, feedback algorithms are used to correct derivations from the preset mean value of

the controlled parameters. These corrected values fluctuate, but these fluctuations can be

adjusted. In the constraint methods, the controlled parameters are kept strictly constant by

extending Newton’s equations of motion with additional constraints. Then the temperature

can be controlled by introducing constraints that adjust the the system’s kinetic energy. In

the following these different approaches are described in detail.

2.5.1 Velocity Scaling Method

In this naive, but relatively simple to implement approach, the temperature, which is propor-

tional to the mean square velocity, is repeatedly scaled by multiplying all particle velocities

with a time-depended factor β:

~v ni := βn~v ni (2.36)

with

βn =

(
TDkin

Tnkin

)1/2

=

(
TD

Tn

)1/2

(2.37)

where TDkin respectively TD represent the desired kinetic energy and the corresponding tem-

perature. Tnkin respectively Tn represent the kinetic energy and the temperature at time-step

n. Depending on TD and Tn, β can cover a wide range of values, which can strongly affect
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the energy distribution of the simulation system. Therefore in most cases the temperature is

scaled with a modified factor:

βnγ =

[
1 + γ

(
TDkin

Tnkin

)]1/2

=

[
1 + γ

(
TD

Tn

)]1/2

(2.38)

where γ ∈ [0, 1] represents a dumping factor. γ = 1 yields (2.37), while γ = 0 results in no

velocity scaling.

2.5.2 Stochastic Method

Another approach to effect the temperature of a simulation system is by coupling it to a virtual,

ideal heat-bath. However, a major disadvantage of this method is that the deterministic nature

of the dynamics is destroyed.

The coupling can easily be realized by using the boundary conditions, i.e. by setting the walls

to a certain, fixed temperature. To particles that interact with these walls random directions

with a magnitude based on the temperature from a Maxwell-Boltzmann velocity distribution

are assigned:

P (v) = 4π

(
m

2πkBT

)3/2

v2 exp

{
− mv2

2kBT

}
(2.39)

where m is the mass of the particle, kB the Maxwell-Boltzmann constant and T the thermo-

dynamical temperature of the wall.

Typically it is easier to determine each component of the velocity separately from a Gaussian

distribution (2.40), since it is a complex task to invert
∫ V

0 P (v) dv analytically.

P (vi) =

(
m

2πkBT

)1/2

exp

{
− mv2

i

2kBT

}
(2.40)

Despite the easy implementation, this method can’t be used for simulation systems where

boundary conditions are already applied in another way, as in periodic or open systems. More-

over, due to the decreasing wall-volume ratio for increasing simulation space, this approach is

little effective to bigger systems.

An alternative approach to avoid those problems is the, Langevin dynamic. The idea behind

this mathematical model is that all particles suspend in a fictional, viscous medium, where

they encounter a fluctuating, random force due to the Brownian motion of the virtual fluid-

particles. Therefore Newton’s equations of motion (2.16) are extended with additional terms

and read:

~̇xi = ~vi ~̇vi =
1

mi

~Fi − η~vi + ~G(t, T ). (2.41)

where η denotes the viscosity of the virtual medium and ~G(t, T ) a random force with zero

mean, that satisfies: 〈
Gi(t)Gi(t

′)
〉

= 2ηkBTδ(t− t′) (2.42)
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in order to ensure that the work done by ~G(t, T ) is dissipated by viscous friction (fluctuation-

dissipation theorem). An analog approach was implemented in the modelMD software package

(see section 3.1). Here the particles that are connected to a heat-bath, are surrounded and

repeatedly hit by a virtual medium, consisting of smaller particles with a Maxwell-Boltzmann

velocity distribution. Therefore, an additional force ~G is applied to hit particles:

~Gi = 2η
(
~v rand − ~vi

)
(2.43)

where ~v rand is the random velocity of the fictional particles and η represents the density and

therefore the viscosity of the virtual fluid [26].

2.5.3 Feedback Method

Controlled Temperature

Since the temperature is proportional to the mean square velocity, the idea is to control the

temperature by adjusting the time progression rate. Therefore the virtual, scaled time variable

t′ has to be introduced:

dt′ = s(t) dt (2.44)

where s represents a strictly positive function to rescale time and t represents the real, physical

time.

The Lagrangian for this extended system yields:

L =
1

2
ms2

∑
i

(
~̇xi

)2
−
∑
i<j

U (~rij) +
1

2
Msṡ

2 − nfT ln s (2.45)

where the dot donates d/dt′, T is the desired temperature, ~rij = ~xi − ~xj and nf = 3Na + 1 is

the number of degrees of freedom (which can be reduced due to momentum conservation). Ms

represents a ”virtual mass”, that is required in order to define an equation of motion for the

new ”coordinate” s.

The lagrangian equations of motion yield:

~̈xi =
1

ms2
~Fi −

2ṡ

s
~̇xi (2.46)

Mss̈ = ms
∑
i

(
~̇xi

)2
−
nfT

s
(2.47)

where the dot donates again d/dt′.

The virtual time t′ depends on the entire history of the system:

t′ =

∫ t

0
s(t) dt (2.48)
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The Lagrangian (2.45) is defined in terms of virtual time. In physical time units (2.45) reads:

~̈xi =
1

m
~Fi −

2ṡ

s
~̇xi (2.49)

s̈ =
ṡ

s
+
G1s

Ms
(2.50)

with

G1 = m
∑
i

(
~̇xi

)2
− nfT (2.51)

where the dot now donates d/dt.

Here (2.49) represents Newton’s equation of motion with an additional friction-like term, pro-

portional to the velocity, while (2.50) defines the feedback mechanism, where s is varied to

regulate the temperature.

Controlled Pressure and Temperature

The feedback method also allows to control the pressure by adjusting the volume of the simu-

lation space. Therefore the virtual space coordinate ~x′ has to be introduced:

~x′ =
1

V 1/3
~x (2.52)

where V represents a function that controls the volume of the simulation space and therefore

the pressure.

The Lagrangian for this extended system (including temperature as well as pressure control)

takes the form:

L =
1

2
mV 2/3s2

∑
i

(
~vi
′)2 −∑

i<j

U
(
V 1/3~rij

′
)

+
1

2
Msṡ

2 +
1

2
MV V̇

2

− nfT ln s− pV
(2.53)

where the dot donates d/dt′, p is the desired pressure and Ms another ”virtual mass”. After

transforming into physical time units and coordinates equation (2.53) reads:

~̈xi =
1

mV 1/3s2
~Fi −

(
2ṡ

s
+

2V̇

3V

)
~̇xi (2.54)

s̈ =
ṡ

s
+
G1s

Ms
(2.55)

V̈ =
ṡV̇

s
+

G2s
2

3MvV
(2.56)
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with

G1 = mV 2/3
∑
i

(
~̇xi

)2
− nfT (2.57)

G2 = mV 2/3
∑
i

(
~̇xi

)2
+ V 1/3

∑
i<j

~rij · ~Fij − 3pV (2.58)

where the dot donates d/dt and ~Fij represents the two-body force, that acts on particles i and

j.

2.5.4 Constraint Method

Controlled Temperature

An alternative approach to control the temperature is by introducing mechanical constraints

into Newton’s equations of motion to adjust the kinetic energy and therefore the temperature

of the simulation system. Hence the constraint equation reads:

1

2
m

Na∑
i=1

(
~̇xi

)2
= NaEk (2.59)

The constrained equations of motion are:

~̈xi =
~Fi
m

+ α~̇xi (2.60)

with a friction-like term and the Lagrangian multiplier α. Since Ėk = 0 respectively
∑

i ~̇xi ·~̈xi =

0, the value of α yields:

α = −
∑

i ~̇xi · ~Fi

m
∑

i

(
~̇xi

)2 (2.61)

Controlled Pressure and Temperature

The constraint method allows to control the pressure of a simulation system as well. The

unconstrained Lagrangian, formulated in scaled coordinates is:

L =
1

2
mV 2/3

∑
i

(
~̇xi

)2
−
∑
i<j

U(V 1/3~rij) (2.62)

The constraints equations for pressure and temperature are:

1

2
mV 2/3

∑
i

(
~̇xi

)2
= NEk (2.63)

mV 2/3
∑
i

(
~̇xi

)2
+ V 1/3

∑
i<j

~rij · ~Fij = 3pV (2.64)
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The equation of motion takes the form

~̈xi =
~Fi

mV 1/3
+ (α′ − 2γ)~̇xi (2.65)

with the dilation rate γ := V̇ /3V and the Lagrange multiplier α′.

With the constant-temperature condition Ėk = 0 it follows that

∑
i

~̇xi · ~̈xi + γ
∑
i

(
~̇xi

)2
= 0 (2.66)

and

α := α′ − γ = −
∑

i ~̇xi · ~Fi

mV 1/3
∑

i

(
~̇xi

)2 (2.67)

With the constant-pressure condition it is possible to compute γ:

d

dt
(pV ) = pV̇ = 3γpV =

1

3

∑
i<j

d

dt

(
~rij · ~Fij

)
(2.68)

For pair potentials, that depend only on the distance ~rij , one has ~r · ~F = −r dUdr and it follows:

d

dt
(~r · ~F ) = −ψ~r · ~̇xi (2.69)

with

ψ :=
d2U

dr2
+

1

r

dU

dr
(2.70)

Thus

γ = −
V 2/3

∑
i<j ψij~r

′
ij · ~̇r′ij

9pV + V 2/3
∑

i<j ψij(~r
′
ij)

2
(2.71)

with ψij = ψ(rij). In addition to solving the equations of motion, the (numerical) solution of

the dilation equation

V̇ = 3γV (2.72)

has to be found as well.

2.6 Measurements

Typically observables are measured after the simulation system has reached an equilibrium

state. They can be measured either periodically for certain time-steps or by averaging over

time. For the second case the expectation value for a quantity O reads:

〈O〉 = lim
T→∞

1

T

∫ T

0
dt O(t) (2.73)
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Normally observables depend on positions and velocities of the particle in the simulation system

as well as on the time:

On = O(~x n1 , . . . , ~x
n
N , ~v

n
1 , . . . , ~v

n
N , t) (2.74)

2.6.1 Energy

The kinetic energy of a simulation system can easily be calculated:

Tnkin =
N∑
i=1

(~p ni )2

2mi
=

1

2

N∑
i=1

mi (~v ni )2 (2.75)

To evaluate the potential energy, single and many-body forces have to be taken into account.

In case of simple pair-potentials this yields:

Un =
N∑
i=1

Usingle(~x
n
i , ~v

n
i ) +

∑
i<j

Upair(~x
n
i , ~x

n
j ) (2.76)

The total energy of a system

En = Tnkin + Un (2.77)

should be constant over time. However, due to numerical and rounding errors it typically

fluctuates around the total initialization energy of the simulation system.

2.6.2 Temperature

With the equipartition theorem, the temperature of a simulation system in equilibrium state

can be derived from:

Tnkin =
1

2
fNkBT

n (2.78)

where f represents the degrees of freedom, N the number of particles in the system and kB

the Boltzmann constant. For the total temperature in a system this yields:

Tn =

N∑
i=1

mi (~v ni )2

fkB
(2.79)

In the non-equilibrium state, complex thermodynamic quantities like temperature lack signifi-

cation have to be taken into account as well.
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2.6.3 Pressure

The virial pressure is commonly used to obtain the pressure of MD simulations.

p =
NkBT

V
− 1

d V

〈∑
i<j

~xij · ~Fij

〉
(2.80)

where p represents the pressure, N the number of particles in the system, kB the Boltzmann

constant, T the temperature, V the volume and d the dimension of the problem. ~xij is the

position vector from particle i to particle j and ~Fij is the force acting on particle i caused by

particle j. The first term in (2.80) refers to an ideal gas contribution, the second to the virial.

〈. . .〉 denotes a time average along the system’s trajectory.

For an ideal gas (~Fij ≡ ~0), equation (2.80) reduces to:

p =
NkBT

V
(2.81)

2.7 Reduced Units

Dimensionless variables (or reduced units) are often used in simulations to express quantities

like energy, density, pressure or temperature. The idea behind is to choose convenient units

for energy, length and mass and express all other quantities with them.

For a system that uses a Lennard-Jones interaction potential typically the unit of energy is

expressed in terms of ε, the unit of length in terms of σ and the unit of mass in m (the mass of

atoms in the system). All other units can be obtained by combinations of them. An overview

of important reduced quantities and their transformation rules is shown in table 2.1. Those

rules make a transformation from reduced units back to real ones (and vice versa), relatively

easy.

The most important reason to introduce reduced units results from the law of corresponding

states: There are infinite combinations of ρ∗, T ∗, ε∗ and σ∗, that correlate to the same state

in dimensionless variables. For instance, a simulation of a system (that uses the Lennard-

Jones interaction potential) with ρ∗ = 0.5 and T ∗ = 0.5 corresponds to a system of Ar at a

temperature of 60K with a density of 840kg/m3 and a system of Xe at a temperature of 112K

with a density of 1617kg/m3 [14].

Another reason to use reduced units is to avoid critical roundoff errors. When using real

physical units (e.g. SI), one has to deal with quantities with values of very different sizes.

Hence, rounding errors can arise due to several floating-point multiplications. This problem

can be avoided by using reduced units, since all quantities of interest are normally of the same

order. Therefore dimensionless variables can also be appropriated for a control mechanism,

because a huge or a small variable always indicates a problem in the simulation.
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name symbol definition

dimensionless distance r∗ r/σ

dimensionless energy E∗ E/ε

dimensionless temperature T ∗ kBT/ε

dimensionless number density ρ∗ ρ/σ3

dimensionless internal energy U∗ U/ε

dimensionless time t∗ t/
(
σ(M/ε)1/2

)
dimensionless velocity v∗ v/(ε/M)1/2

dimensionless force F ∗ Fσ/ε

dimensionless pressure p∗ pσ3/ε

dimensionless self diffusion coefficient D∗ D/
(
σ/ε/M)1/2

)
Table 2.1: Important dimensionless variables: Reduced units are donated with superscript ∗.

2.8 Advanced Simulation Methods

The most constraining limitation of MD simulations is the computational effort to study mi-

croscopic effects over appropriate time scales. Current studies investigate complex systems

with up to 107 or even more particles. For such models, reaching meaningful simulation times

(typically between 10−9 and 10−6 seconds) is a serious issue due to the time-step limitation

(usually less than 10−15 seconds), used in the integration of Newton’s equation of motion.

Although the computing power improved exponentially during the last years, a classical MD

algorithm is not roughly powerful enough to handle such problems. To deal with these com-

plex simulations, advanced simulations methods like the Linked-Cell-Method and parallelized

algorithms were developed. In this chapter the major methods are described.

In addition to those methods, there are some much more complex methods of performance im-

provement regarding processor characteristics. Without going into details, some of them should

be mentioned: primary and secondary cache, address-space-mapping and memory interleaving.

2.8.1 Cutoff Radius

In MD simulations, forces acting on every single particle are evaluated at each time-step. This is

the most time consuming part of the simulation process. To speed up this step, it is reasonable

to include only particles, that make a contribution to the force-computation. For example, it

would be pointless to include all particles in the force calculation of a potential, which acts only

on the nearest neighbor particles. Similar considerations apply to fast decreasing potential like

the Lennard-Jones potential (see section 2.4). Here, fast decreasing means that the potential

drops faster than 1
rd

, where d describes the dimension of the problem. In such a case a cutoff

radius rcut can be introduced, after that the potential vanishes. With this approximation, only
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(a) Lennard-Jones potential functions (b) Detailed view

Figure 2.4: Lennard-Jones potential functions with and without smooth cutoff for spherical-
symmetrical Argon (ε = 1.00 kJ/mol and σ = 3.41 Å): a) shows the complete attractive part
of the potentials, while b) shows a detailed view in the range of rc. The solid line illustrates the
original Lennard-Jones potential function, while the dotted line indicates the potential with cutoff
at rc = 2.5σ = 8.525 Å.

particles with rij ≤ rcut are considered in the force evaluation. Typically rcut = 2.5σ is chosen.

Methods that implement this cutoff radius need to ensure that energies and resulting forces

are still continuous functions of the distance rij . This is the case for:

U(~r)→ Uc(~r) =


U(~r)− U

(
rc
r ~r
)
−∇U

∣∣∣
rc
r
~r
·
(
1− rc

r

)
~r for r < rc

0 for r ≥ rc
(2.82)

Figure 2.4 shows the original Lennard-Jones potential energy function as well as the cut one.

For spherical symmetric potential energy functions (as for the Lennard-Jones one) the eval-

uation of this expression is simplified by the fact that U( rcr ~r) and ∇U | rc
r
~r do not depend on

~r, but have fixed values for a given rcut. Differentiating (2.82) yields the foce (U beeing the

Lennard-Jones potential from equation (2.4)):

~Fij =


48ε
σ2

[(
σ
rij

)14
−
(
σ
rc

)14
− 1

2

(
σ
rij

)8
+ 1

2

(
σ
rc

)8
]
~rij for r < rc

~0 for r ≥ rc
(2.83)

Due to this simplification forces are not calculated accurately and the total energy of the

simulation system is slightly changed. This calculation error can be disregarded, if rcut is

chosen to be great enough.

Introducing a cutoff radius decreases the force computation complexity from O(N2) to O(N),

if the particles are uniformly distributed in the simulation space.
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Figure 2.5: Schema of the Verlet-Neighbor-List-Method: For a particle i, a Verlet-list is created
that includes all particles which are within a certain distance rm. The, so-called, skin region
represents a reservoir of particles, which has to be updated repeatedly. If in successive time-steps
particles from outside rcut enter the interaction space, they originate from the skin region and are
therefore stored in the list as well.

2.8.2 Verlet-Neighbor-List-Method and Linked-Cell-Method

The first step towards performance increase is to minimize the number of computations that

have to be performed. Most methods for non-bonded force calculations can be classified into

two categories: the Verlet-Neighbor-List-Method and the Linked-Cell-Method (or a combination

of both). Those methods are common approaches to evaluate approximated, fast decreasing

potentials like (2.83).

In the Verlet-Neighbor-List-Method [28] for every particle a Verlet-list is generated after a

certain number Nm of time-steps. This list includes all possible particles that are close enough

to interact with that particle during the time period Nmδt. These are all atoms within a

certain distance rm. rm and Nm are chosen such that

rm = rcut +Nmvδt (2.84)

where v is a typical atom velocity within this simulation (Fig. 2.5). The updating process

of the Verlet-Neighbor-List is still an operation with a complexity of O(N2). However, this

approach increases the performance of the algorithm, since it is only done every Nm time-

steps. The performance can still be enhanced by using the Linked-Cell-Method to update the

Verlet-Neighbor-Lists.

The idea behind the Linked-Cell-Method [47] is to separate the simulation space into uniform

cells with a side length not less than rcut. Because of the cut potential, the interaction between

particles is limited to particles in the same cell or a neighbor cell (8 cells in two dimensions,

26 cells in three dimension) as shown in figure 2.6 for a two-dimensional problem.
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Figure 2.6: Linked-Cell-Method: The simulation space is separated into quadratic cells with a
size of rcut · rcut. The dark hatched circle symbolizes the interaction radius rcut of particle i. The
light hatched area indicates all effected cells.

The force, acting on a particle i in cell ic yields then:

~Fi ≈
∑
kc

kc ε N (ic)

∑
j

j ε {particle of cell kc}
i6=j

~Fij (2.85)

where N (ic) represents cell ic as well as all its neighbor cells.

This method decreases the force-summation complexity from O(N2) to O(N). It is even pos-

sible to improve this result by using a modified Linked-Cell-Method [49].

In order to implement this algorithm in an effective way, abstract data structures, so-called

single-linked list structures are used.

To verify the Linked-Cell-Method, a series of fourteen benchmarks, using the modelMD soft-

ware package (see section 3.1), were performed. The simulations consisted of 50 to 3200 gas

particles, which were uniformly distributed in boxes with sizes between 6.30 Å x 6.30 Å x

6.30 Å and 31.75 Å x 31.75 Å x 31.75 Å, in order to keep a constant relative particle density

of 0.1. All simulations were performed for 104 time-steps with a single time-step length of

∆t = 0.0005. The total runtime was measured for simulations using the basic algorithm and

for simulations using the Linked-Cell-Method. The results are shown in table 2.2 and figure 2.7.

It can be clearly seen that computation times for classical simulations grow proportional to

N2, while computation times for the advanced algorithm (using the Linked-Cell-Method), grow

proportional to N .

2.8.3 Parallel-Computing-Methods

Beyond the use of cells and linked neighbor lists, another method to increase the computational

efficiency of a simulation software is parallel computing. Here a large problem is broken into

discrete parts and spread over several processors, which carry out the computation simultane-

ously.
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particles tsim [s] tsim lc [s]

50 8 8

100 24 15

200 87 31

400 332 63

800 1308 114

1600 5143 227

3200 21608 492

Table 2.2: Benchmark results of the
Linked-Cell-Method: tsim represents
the total simulation runtime of the
basic algorithm while tsim lc is the
runtime for the Linked-Cell Method.

Figure 2.7: Benchmark results of the Linked-Cell-
Method: The total simulation runtime (for 104 time-
steps) depending on the number of particles in the sim-
ulation is illustrated.

There are different kinds of parallel computer architectures, which are classified by whether

they are operating using a single set or multiple sets of instructions (instruction stream),

whether or not those instructions are using single or multiple sets of data (data stream), as

proposed by Flynn [22] in 1966. The four basic types are: SISD (Single Instruction stream,

Single Data stream - classical microprocessor), SIMD (Single Instruction stream, Multiple

Data stream - vector processors), MISD (Multiple Instruction stream, Single Data stream)

and MIMD (Multiple Instruction stream, Multiple Data stream).

Nowadays most parallel computer systems are of the MIMD type, wherefore this architecture

is described here in more detail.

A MIMD machine uses a number of processors, that execute independently and asynchronously

different instructions with different data. They can be categorized as multiple processor ma-

chines using a distributed memory or a shared memory architecture.

In distributed memory machines (Fig. 2.8) every processor has its private memory, which

can not be accessed by another processor. In order to perform computations, data has to

be exchanged between these private memories over a network - the so-called message passing

approach. A parallelized programm on a distributed memory machine doesn’t consist only of a

sequence of computational tasks, like a sequential one, but also has to perform communication

tasks at some points. Since this tasks can’t be carried out automatically the parallelization

of a sequential program for distributed memory machines is much more complicated than on

shared memory machines.

A shared memory machine (Fig. 2.9) uses a big, global memory, which can be accessed by
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Figure 2.8: Schema of a Distributed-Memory-Machine

Figure 2.9: Schema of a Shared-Memory-Machine

all processors. This global memory can be designed as one big memory block, or smaller

distributed memory blocks, that are allocate as a virtual one with a global address space.

However, all data is stored in this shared memory, only computations are distributed among

the processors. For an efficient performance it is essential that those tasks are uniformly spread

and that they don’t interfere with each other (for example by trying to read/write the same

data at the same time).

Typically shared memory supercomputers are equipped with 16 to 64 processors of the same

type. Greater processor numbers are not suitable, since the performance of the system is

limited by the bandwidth of the memory system. Hence a performance decrease is noticeable

at a certain hardware-depending number of processors.

Parallelization-Strategies for Molecular Dynamics Programs

Parallelization methods for sequential MD programs heavily depend on the parallel computer

architecture the program should work on.

Processors of distributed memory machines have to communicate with each other in order to

exchange their data. The Replicated-Data-Method would be a naive parallelization strategy for

this task on these machines. Every processor receives a copy of all data that is needed in the

simulation, but works only on a small, allocated data field. After every computation step, the

data has to be synchronized among all processors. This yields in a huge communication com-

plexity, since all data has to be exchanged, which also includes data not needed by a processor

for its calculations. If the particles are uniformly distributed, this method has a computation

complexity of O(N/P ), where N is the number of particles in the simulation and P represents

to number of processors used. However, the communication and memory complexity yields

O(N) and dominates the overall performance with an increasing number of processor.

An adequate solution would be the Data-Decomposition-Method. Here a processor only receives

data needed for its calculations, so N/P particles (that can be, for example, chosen by their

particle-number) and their interacting neighbor particles (which can be easily determined by
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Verlet-Linked-Lists) have to be exchanged. At every communication step, a processor has to

receive and send maximally O(N/P ) particles. This results in a communication and memory

complexity of O(N/P ). In contrary to the Replicated-Data-Method, the communication and

memory complexity decreases with an increasing number of processors.

Another advanced parallelization-strategy is the Domain-Decomposition-Method. The particles

are shared among the processors in a way, that only little communication complexity is neces-

sary. This is achieved by splitting the simulation area into small sections, which are assigned to

the processors. If a particles leaves such a domain, it is allocated to another processor, which

makes only communication between those two processors necessary. At equipartition, every

processor receives O(N/P ) particles. Since all these particles belong to the same domain, the

processors already possess almost all data they need for their calculations. Missing particles

belong to neighbor sections, so only their data has to be exchanged at every communication

step. The complexity of data that has to be received decreases to O(
√
N/P ) for a two di-

mensional and O(N/P 2/3) for a three-dimensional problem. If the particles are not uniformly

distributed this method can be improved by dynamical splitting of the simulation area.

During the last years, the Message Passing Interface (MPI) standard [1] established itself for

parallelization on distributed memory machines [8, 36].

The shared memory architecture makes a parallelization of a sequential program comparatively

easy. As all data is stored globally, there is no need for changing the data structure of the

sequential code or data traffic between processors. Parallelization can be done with only a few

changes to the original code, which basically is still sequential. Code sections that should be

parallelized are encapsulated in special blocks. If special parallelization instructions are neces-

sary in addition to parallelization blocks, they are masked by compiler directives (eg. $OMP

directives in Fortran).

Parallelization of MD algorithms on shared memory machines have been extensively studied

(e.g. [7, 35]), therefore only the basic idea is represented here.

At MD programs it is reasonable to parallelize the most CPU-time-consuming parts of the

algorithm, namely the force calculation, the neighbor-list update and the boundary conditions

evaluation. This method has several advantages compared to full parallelization, for example

the easy implementation.

Loops are particularly suitable for parallelization on shared memory machines. If the linked-

cell-method is used, for instance, the force calculation for all particles is performed by iterating

over all particles in the current cell and its neighbor cells. These forces are stored and used to

integrate the equations of motion. Such calculations can be easily parallelized by sharing the

cells among all processors, which compute the forces acting on the contained particles. Similar

techniques are used to parallelize the neighbor-list update and the boundary conditions eval-

uation.

There are some standards and utilities, that provide parallelization and data synchronization

on many different platforms, like the OpenMP (Open Multi-Processing) application program-
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processors tsim [s]

1 1945

2 1794

3 1453

4 1218

5 1090

6 1011

7 906

8 826

9 745

10 717

11 712

12 698

Table 2.3: Benchmark results of
the parallelized MD program package
modelMD: tsim represents the total
simulation runtime of the algorithm
for 103 time-steps.

Figure 2.10: Benchmark results of the parallelized MD
program package modelMD: The total simulation runtime
(for 103 time-steps) depending on the number of proces-
sors used for simulation is illustrated.

ming interface [2], which is also used in the modelMD software package.

To verify this parallelization strategy a series of benchmarks were performed, using modelMD

with openMP. The simulations consisted of 85.000 gas particles, which were uniformly dis-

tributed in a box with a size of 75 Å x 75 Å x 75 Å. All simulations were computed for 103

time-steps with a single time-step size of ∆t = 0.0005. The simulations were performed on

a shared memory machine using between 1 (no parallelization) and 12 processors. The total

runtime tsim was measured. The results are shown in table 2.3 and figure 2.10.
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Chapter 3

Software Packages modelMD and

simEdit

A main part of this thesis was the development of a high-performance classical MD simulation

software package in order to understand the important processes, routines and algorithms that

are used in a MD simulation tool. During an earlier project at the Technical University of

Graz, a basic classical MD simulator modelMD, including the graphical-user-interface simEdit

was developed [26]. These software packages were redesigned and further improved to meet

the requirements of complex MD simulations with up to 106 particles. All simulations in this

work were performed with the modelMD software suite. Subsequently a brief, introductive

description for both program packages is presented.

3.1 modelMD

3.1.1 Introduction

modelMD is a classical MD simulation software package, designed to perform on parallel as

well as on sequential computers. The code was implemented in FORTRAN95 and parallelized

with the openMP standard [2] for machines that use a shared-memory architecture.

To integrate Newton’s equations of motion the Leap-Frog (section 2.4.1), the Runge-Kutta

(section 2.4.2) and the Predictor-Corrector (section 2.4.3) algorithms were implemented.

The Linked-Cell-Method with Verlet-Neighbor-Lists (section 2.8.2) was realized and paral-

lelized for high-performance computations.

Further features of modelMD include the possibility to run simulations in two or three di-

mensions, reduced (see section 2.7 as well as real physical units, several boundary-conditions,

an astrophysical mode and a basic thermostat implementation. The Lennard-Jones potential

(2.3.1) was realized as interacting potential.
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3.1.2 Input

The required simulation data for modelMD is allocated in a class of input files: simulation.inp,

posvel.inp, extforce.inp and thermostat.inp. Those files can be manually created or automati-

cally by using the simEdit GUI.

The simulation.inp file contains the basic simulation parameters. A detailed format description

is listed in table 3.1. A sample input file is shown in figure 3.1.

parameter description

dimension Dimension of the problem. Simulations can be run in two or three dimen-

sions.

units Units that are used for the simulation. Either reduced units (value ”re-

duced”) or physical units (value ”real”) can be chosen. In case of real

physical units, energies are calculated in electron Volt (eV), times in pi-

coseconds (10−12 seconds), temperatures in Kelvin and the unit of length is

Ångström (10−10 meters).

spatrange Size of the simulation space in each dimension. Coordinates are centered at

the origin, therefore spatrange = a permits xi ∈ (−a
2 ,

a
2 ].

leftbound

rightbound

Boundary conditions of the simulation space, where leftbound defines the

conditions at xi < 0 and rightbound the conditions at xi > 0.

Possible values are:

”p” periodic boundary conditions

”r” hard reflecting wall

”d” diffuse reflecting wall

”f ” hard reflecting wall, where the perpendicular velocity-vector-

component is multiplied with a constant factor

”w” hard wall with an applied Lennard-Jones potential

”h” heat-bath with fixed temperature

”l” heat-bath, that is linearly increased by time

”e” heat-bath, that is exponentially increased by time

”c” delete particles from the simulation

Table 3.1: File format description for a simulation.inp input file
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name description

lwallpara

rwallpara

Additional parameters for boundary conditions. Depending on the param-

eters chosen for leftbound and rightbound, none, one or two supplementary

parameters have to be set:

”f ” constant multiplication factor

”w” Lennard-Jones parameters ε and σ

”h” initial temperature

”l” initial temperature and linear change per time-step

”e” initial temperature and exponential change per time-step

For all other values leftbound and rightbound no additional parameters

have to be set.

cutoff Cutoff radius (rcut) of the Lennard-Jones potential, valid for all interactions

in the simulation.

simtimetot Total simulation time (ttotal).

timestep Length of a single time-step (∆t).

integrator Algorithm that should be used to integrate Newton’s equations of motion

(see section 2.4). Possible parameters are:

”lf ” Leap-Frog-Method

”rk” Runge-Kutta-Method

”pr” Predictor-Corrector-Method

statwrite Time intervals between specific data output. Three parameters have to

be set: observables (statistics.out), positions (trajectories.out), complete

system state (snapshots.out).

parttypes Number of particle types that are used in the simulation.

partnames Names of particle types that are used in the simulation.

masses Masses of particle types that are used in the simulation.

epsilon Lennard-Jones potential parameter ε for all particle types that are used in

the simulation.

sigma Lennard-Jones potential parameter σ for all particle types that are used in

the simulation.

charges Electric charges of particle types used in the simulation.

Table 3.1: File format description for a simulation.inp input file
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name description

mbform

mbpart

These two parameters are reserved for the many-body part of modelMD,

which has not been implemented yet.

posvel Position-Velocity mode. Possible values are:

”data” Positions and velocities are read from data file posvel.inp.

”rand”Positions and velocities are generated randomly, using an initial-

ization temperature set in termtemp.

partdistr Number of particles for each particle type.

thermtemp Initialization temperature of particle types that are used in the simulation.

This parameter is only required, if ”rand” is chosen for the parameter posvel.

gravaccel Global, external gravity force.

elecfield Global, external electric field vector.

magnfield Global, external magnetic field vector.

forcelist Additionally to global external forces, it is possible to include special forces,

that act only on some particle groups. Possible values are:

”yes” Additional forces are used and required parameters are read from

the input file extforce.inp.

”no” No external forces are used.

thermostat Indicates if thermostats are used in the simulation. Possible values are:

”yes” Thermostats are used. Required parameters are read from the input

file thermostat.inp.

”no” No thermostats are used.

astrograv Astrophysics gravitation constant. If astrograv 6= 0, the astrophysical mode

(an intermolecular Newton gravitation potential) is activated.

threadnum Number of threads that should be used for the simulation run at parallelized

regions.

dynamic

threads

Parameter that indicates if the number of threads in parallel regions can be

adjusted automatically during the simulation runtime. Possible values are:

”yes” Dynamical adjustment is used.

”no” Dynamical adjustment is not used.

Table 3.1: Format description for an simulation.inp file
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ModMD input file created with simedit.m on 26-Jan-2010 at 18:22

-----

i) Space and boundary conditions:

DIMENSION, 2

UNITS, real

SPATRANGE, 1000.00, 500.00

LEFTBOUND, p, r

RIGHTBOUND, p, r

1LWALLPARA1, 0, 0

2RWALLPARA1, 0, 0

3LWALLPARA2, 0, 0

4RWALLPARA2, 0, 0

CUTOFF, 8.6000

-----

ii) Time and integration:

SIMTIMETOT, 100000.0000

TIMESTEP, 0.2000

INTEGRATOR, lf

STATWRITE, 5000, 100, 5000

-----

iii) Particle parameters:

PARTTYPES, 2

PARTNAMES, heavy, light

MASSES, 40, 20

EPSILON, 0.011, 0.011

SIGMA, 2.8, 3.4

CHARGES, 0, 0

MBFORM, 0, 0

MBPART, 0, 0

POSVEL, data

PARTDISTR, 32130, 21462

THERMTEMP, 150, 150

-----

iv) External forces:

GRAVACCEL, 0, -0.02

ELECFIELD, 0, 0

MAGNFIELD, 0, 0

FORCELIST, yes

THERMOSTAT, no

ASTROGRAV, 0

-----

v) Parallel Processing:

THREADNUM, 8

DYNAMICTHREADS, no

Figure 3.1: Sample simulation.inp file
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column name description

1 particle type Indicates the particle type, to which the particle belongs.

2 activity index The activity index signalizes if the particle is active or will
be ignored in the simulation. Possible values are:
”1 ” the particle is active

”0 ” the particle will be ignored

3 xi initial position vector

4 ẋi initial velocity vector

Table 3.2: File format description for a posvel.inp file

The posvel.inp file contains initial positions and velocities for all particles in the simulation.

The first line corresponds to the number of particles in the simulation. Each following line

represents one particle, which parameters are listed in columns that are separated by whites-

pace. A detailed format description is listed in table 3.2.

It is possible to include special, external forces, that act only on some particle groups. Those

forces defined in the extforce.inp file. Each line represents one group, whose parameters are

listed in columns that are separated by commas. Since all particles are numbered, a group can

be defined by specifying a first and last particle. All particles with a number in between are

then included in this group. A detailed format description is listed in table 3.3. The start and

end particle have to be set to ”0” in the last line to signalize the end of the file.

Thermostats can be included in a simulation as well. They are defined in the thermostat.inp

file, which formation is quite similar to the one of the extforce.inp file: Here each line represents

one group, which parameters are listed in columns that are separated by commas. A detailed

format description is shown in table 3.4. Again, the start and end particle have to be set to

”0” in the last line to signalize the end of the file.

3.1.3 Output

modelMD creates several output files, that contain trajectories and end positions as well as

other observables like kinetic and potential energies or temperatures.

Particle trajectories are stored in the trajectories.xyz file, using the XYZ-file-format. All posi-

tions are saved repeatedly at certain time-steps (which are set in the simulation.inp file). This

data can be easily analyzed and visualized with tools like VMD [48].

Position files like positions temp.xyz and positions end.xyz are similar formatted like the tra-

jectories.xyz file, though they only contain particle positions of a single time-step. The posi-

tions temp.xyz file is updated repeatedly at certain time-steps. Therefore it can be used to
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column name description

1 Nstart Number of the first particle of the group

2 Nend Number of the last particle of the group

3 Fextx1 x1 component of an external force vector

4 Fextx2 x2 component of an external force vector

5 Fextx3 x3 component of an external force vector

6 γ Coefficient of friction

7 η Density (viscosity) of a virtual fluid (see section 2.5.2)

8 T0 Temperature of an ideal heat-bath, to which the group is connected to

9 dT/dt Linear temperature growth coefficient (per time-step) of an ideal heat-
bath

10 αharm Harmonic oscillation force. The center of the harmonic oscillating force
conforms to the initial position of every particle it is applied to

11 A0x1
x1 component of the amplitude of an harmonic oscillation force

12 A0x2
x2 component of the amplitude of an harmonic oscillation force

13 A0x3
x3 component of the amplitude of an harmonic oscillation force

14 ω Angular frequency of the harmonic oscillation force

Table 3.3: File format description for an extforce.inp file

column name description

1 Nstart Number of the first particle of the group

2 Nend Number of the last particle of the group

3 T Designated temperature

4 γ Dumping factor of the Velocity Scaling thermostat (see section 2.5.1)

5 δN Number of computation steps between temperature adjustment

Table 3.4: File format description for a thermostat.inp file
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control simulation results during runtime. By contrast, the positions end.xyz file is created at

the end of the simulation and contains all particle positions at the last time-step.

When a simulation finishes, all final particle positions and velocities, as well as activity indices

and particle types are saved in the posvel.out file. This file is formatted in the same way as the

posvel.inp file, in order to be able to use the data to continue a previous simulation. There-

fore an already completed simulation can be continued just by changing the file extension of

posvel.out to posvel.inp.

The statistics.out file stores frequently energies and temperatures during the simulation run-

time.

The complete system state is repeatedly saved to the snapshots.out file.

3.1.4 Further Work

The current version of modelMD is already capable to perform complex MD simulations.

However, there is a number of interesting features left to be implemented that would improve

computation performance and enhance simulation possibilities:

modelMD was parallelized using the openMP standard to run simulations on machines with

a shared-memory architecture. Including an implementation of the MPI standard with the

Domain-Decomposition approach for the Linked-Cell-Method would make additional advanced

parallelization-strategies for distributed-memory machines possible. This would mean a fur-

ther improvement of the computation performance.

Long-range potentials (as the Coulomb potential or the intermolecular gravitation potential -

see section 2.3.1) as well as many-body potentials (as briefly discussed in section 2.3.2) can not

be used in modelMD so far. A treatment of this kind of potentials would represent a major

feature.

Furthermore, there is only one basic temperature control mechanism, namely the Velocity Scal-

ing Method (see section 2.5.1) implemented yet. Additional temperature and pressure control

mechanisms (as described in section 2.5) would mean a clear improvement to modelMD.

3.2 simEdit

3.2.1 Introduction

simEdit is a graphical-user-interface (GUI), designed to create input files for the modelMD

packages quickly and easily. The main program was implemented in MATLAB, computation-

intensive subroutines in C++. These functions are dynamically loaded by the MEX (Matlab
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Executable) data interface. Since simEdit creates all required input files for modelMD, it

uses the same input parameters, which have been already described in detail in section 3.1.

Therefore they wont be listed here again. In the following a brief introduction to the user

interface is provided.

3.2.2 Graphical User Interface

The GUI (figure 3.2) is arranged into three main domains: A parameter section on the left

where all simulation parameters can be set, a preview window on the right that provides a

dynamic preview of the simulation box and a menu at the bottom of the window.

To keep track of all input parameters, the parameter section consists of five basic tabs: Basics,

Space, Particles, External Forces and Groups.

As the name implies, in the Basics section, primary settings like the simulation name, unit

adjustments, time and integration parameters as well as performance and data output options

are set.

The dimension of the problem, boundary condition parameters and the size of the simulation

space are set in the Space tab.

The Particles section allows to adjust all particle parameters like name, mass, charge, Lennard-

Jones potential parameters and many-body options.

Parameters for global external forces are set in the External Forces tab. This includes gravi-

tation

~Fg i = −mi~g (3.1)

as well as electric and magnetic forces, that cause Lorentz forces on charged particles

~FL = q
(
~Eext(~x

n
i ) + ~v ni × ~B(~x ni )

)
(3.2)

The Groups section is probably the most powerful and important part of simEdit. Here

particle groups (a cluster of particles of the same type) are assembled and initial positions,

initial temperatures as well as additional velocities are assigned. According to a chosen initial

temperature, velocities with random directions and a magnitude from a Maxwell-Boltzmann

velocity distribution

T (x, y, z) = T0 + Tx · (x− x0) + Ty · (y − y0) + Tz · (z − z0) (3.3)

are applied. Here T0, Tx, Ty, Tz, x0, y0 and z0 can be set.

The position of a group can be specified by a combination of right parallelepiped and spheres

in three dimensions, respectively rectangles and circles in two-dimensional problems. These

geometric bodies are then filled with particles which positions are determined by using a regular

lattice, by randomly positioned particles (for a certain density) or by randomly oriented particle

43



Figure 3.2: Screenshot of the Groups section of the SimEdit GUI
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chains of a maximum length.

External forces, like harmonic oscillation forces (3.4), friction or connections with ideal heat-

bathes, can be allocated to certain particle groups as well.

Fharm i = −αi(~x ni − ~x 0
i )2 (3.4)

If more than one particle group is used in the simulation their order has to be considered as

well, since groups that are disposed further down in the group-list have a lower priority (e.g. in

figure 3.2 group ”Ar drop” has a higher priority as ”Ar gas”, but a lower one than ”Si plate”).

Particles of groups with low-priority get deleted, if they are placed too close to particles of

groups with higher ones. The minimum distance for particles of different groups can be set

with the minimum distance parameter at the particles tab. On this account, a swap button

allows simple exchanging of two groups and accordingly changing the group order.

The menu includes the following functions: Plot updates the preview window and creates a

two or three-dimensional plot of the current group. All particle groups can be plotted together

with the Plot All command. Save Data creates all input files that is required by modelMD

and saves all parameters to a simulation.mat file. This data can later be retrieved with the

Load Data command. Quit ends the program.

3.2.3 Output Data

simEdit creates all input files (imulation.inp, posvel.inp, extforce.inp and thermostat.inp),

which are required by modelMD. These files and their formation have been already described

in detail in section 3.1.2.

3.2.4 Further Work

Although simEdit is already a powerful tool to create all necessary input files for modelMD,

there are some important features left to be added:

The particle arrangement is limited to random positioning and positioning on a cubic lattice,

in spheres or boxes. Positioning on other grids (hcp, fcc) and shapes would mean a good

improvement to the program.

Although all simulation parameters can be adjusted using simEdit, some options were planned

and created in the graphical frontend, but not implemented in the program routines yet. These

options include parallelization and thermostat parameters.
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Chapter 4

Complex Fluid-Dynamical

Phenomena

This chapter concentrates on complex fluid dynamical phenomena with focus laid on the

Rayleigh-Taylor instability and the Rayleigh-Benard convection. Important background knowl-

edge as well as various publications concerning those topics are summarized and presented.

This is complemented by a series of classical MD simulations, carried out with the software

package modelMD. The results are evaluated and discussed.

All simulations in this chapter were carried out in two dimensions in order to observe more

complex structures. With this restriction various phenomena can be already simulated with

approximately 104 particles, while in three-dimensional simulations at least 107 particles would

be necessary. Such complex simulations with approximately 106 time-steps would even nowa-

days require high-end supercomputer power.

4.1 Rayleigh-Taylor Instability

4.1.1 Introduction

The Rayleigh-Taylor (RT) instability is a classical example of a turbulence and was first in-

vestigated by Lord Rayleigh [37] in 1882 and later theoretically described by Taylor [20] in

1950. This phenomenon concerns a hydrodynamical instability at an interface between two

fluids of different densities and masses, that occurs when the lighter fluid is pushing the heavier

one [15]. Related processes develop when shock-waves pass through the interface (see figure

4.1).

There is a great number of certain phenomena associated with the development of the unsta-

ble interface, as for instance the formation of bubbles and spikes (including Kelvin-Helmholtz

instabilities at their margin), formation of droplets or interaction processes between bubbles

(which leads to their fusion and furthermore to turbulent mixing and chaotic behavior of the

system).
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Figure 4.1: Development of a RT instability with a single wavelength perturbation: Formation of
Kelvin-Helmholtz instabilities are shown in the second and later snapshots and the formation of a
typical mushroom cap in the third and fourth frame of the sequence.

The relevance of this instability ranges from various terrestrial phenomena such as weather

inversions and geophysical formations like salt domes or volcanic islands to astrophysical phe-

nomena such as supernova explosions.

Most of the previous theoretical work on the RT instability concentrated on single wavelength

perturbations [15]. Later, different MD methods were used by Youngs [29], Alda and Dzwinel

et al. [45,46] or Kadau et al. [24,25] to describe the phenomenon for many different wavelength

modes.

The purpose of this work was to perform MD simulations on the well studied RT instability,

as an example of complex hydrodynamic phenomena, to reproduce and combine the results of

earlier works on the microscope scale and to verify the modelMD code. The major goal was to

perform state-of-the-art MD simulations of the RT instability phenomenon with random initial

perturbations (where various different wavelength modes are present), since this occurrence is

normally more relevant to practical applications.

To describe the growth process of the instability it is helpful to subdivide it into four distinctive

stages [15]. They are discussed in the following for a system, consisting of two infinitely

extended inviscid fluids, that meet at an interface (see figure 4.2).

The upper fluid is defined to be the heavier one:

mH > mL

where subscript H hereinafter indicates the heavy fluid at the top and L the light fluid at

the bottom. Both fluids are exposed to an effective external force, acting orthogonally to the
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Figure 4.2: Rayleigh-Taylor Instability: Two infinitely extended, incompressible fluids of different
densities meet at an interface. for t < 0 the interface is unperturbed an therefore perfectly flat at
z = 0. For times t > 0, the interface is perturbed.

interface:

~Feff = (~a− ~g) = (a+ g)~ez = Feff~ez (4.1)

where ~a = a~ez is an uniform external acceleration applied to the whole system and ~g = −g~ez
the gravitational acceleration. Here g > 0 and ~ez represents an unit vector orthogonal to the

interface, pointing upwards into the heavy fluid.

At times t < 0 the fluids are unperturbed, therefore the surface is perfectly flat at z = 0 and

the system is in a metastable state. At stage 1 (t > 0) a perturbation P (here a cosine function

is chosen for instance) occurs and the system is disturbed.

P = η(t) cos kx (4.2)

where η is the time depended amplitude, k represents the wave number and x the position.

The time evolution of the perturbation amplitude (4.2) can be determined either by using a

potential theory argument via Bernoulli’s equation or by an energy analysis. It yields:

η̈(t) = α2(k)η(t) (4.3)

with

α(k) =

[
Feff

(
ρH − ρL
ρH + ρL

)
k −

(
σ

ρH − ρL

)
k3

]1/2

(4.4)

where σ is the coefficient of interfacial tension, ρH is the density of the upper fluid and ρL the

density of the lower one.

The solution of (4.3) for both fluids at rest yields:

η(t) = η(0) cosh αt (4.5)

From this result it follows that the system is stable, as long as α is imaginary. This results in
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stable gravity waves at the interface. If α is real, the perturbed interface destabilizes. This is

the case if σ = 0, Feff > 0 and ρH > ρL. In other words, the lighter fluid pushes the heavier

fluid and the system is, by definition, not stable anymore.

Furthermore, from (4.5) with α as a real number it follows, that any perturbation grows

exponentially with time at this stage.

In stage 2 the amplitude of the the perturbation continues to grow non-linearly. The behavior

of the system is influenced by three-dimensional effects and particularly characterized by the

Atwood number, a dimensionless density ratio that is defined as

A =
ρH − ρL
ρH + ρL

(4.6)

Depending on the Atwood number, two general cases can be recognized: If A . 1, the light

fluid penetrates the heavy one and forms round topped bubbles with circular cross sections,

while the heavy fluid starts to form spikes and walls between those bubbles.

In case A & 0, typically both fluids form bubbles while penetrating each other.

In stage 3 one encounters interactions between the bubbles and the development of character-

istic structures on the spikes. Those effects result from several causes. Kelvin-Helmhotz effects

occur at the sides of the spikes, what finally can result in the formation of typical mushroom

shapes on their top (normally at lower Atwood numbers). This increases the effects of the re-

tarding force on the spikes. At this stage larger bubbles assimilate smaller ones, which makes

them grow larger and move faster.

Stage 4 is characterized by the breakup of spikes, the penetration of bubbles through a slab of

fluid of finite thickness and other intricate effects through various complex mechanisms. The

final stage correspond to a system of chaotic or turbulent mixing of two fluids.

4.1.2 Modeling and Computational Details

The simulations have been carried out in a completely filled, closed, two-dimensional (2D) box

configuration with a length of 1000 Å and a height of 250 Å. Periodic boundary conditions

were applied in x-dimension, the top and bottom box walls were set to reflect the particles. A

layout of the simulation system is shown in figure 4.3.

In this model two different types of particles, PH (heavy particles) and PL (light particles),

with different masses and interaction potential parameters were used. Argon was chosen as

the heavier particle type. All other types and their parameters were derived relatively from

this element. The total number of particles in the simulations varied from 2.1 · 104 to 2.7 · 104.

They were initially placed on a periodical square-lattice, where PH were placed in the upper

half and PL in the lower half of the simulation box. Initial velocities for both particle types

were chosen to satisfy a Maxwell-Boltzmann velocity distribution for T = 150K.

The external gravitation acceleration constant g, was set to act downwards with a magnitude

of g = 0.02 Å/ps2. In order to accelerate the mixing process and to make it observable during
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Figure 4.3: Simulation system of the Rayleigh-Taylor Instability.

name NH NL mH [au] mL [au] A σH [Å] σL [Å] εH [eV] εL [eV]

A1 10878 10584 40 40 0.01 3.4 3.4 0.011 0.011

A2 10878 10584 40 20 0.35 3.4 3.4 0.011 0.011

B1 16065 10584 40 20 0.50 2.8 3.4 0.011 0.011

B2 16065 10584 100 20 0.77 2.8 3.4 0.011 0.011

B3 16065 10584 200 20 0.88 2.8 3.4 0.011 0.011

B4 16065 10584 2000 20 0.99 2.8 3.4 0.011 0.011

Table 4.1: Simulation parameters: name indicates the simulation name, N is the numbers of
particles in the upper or the lower half of the system, m represent the particle masses, σ and ε are
parameters of the LJ potential.

a reasonable simulation time, this value was chosen to be much stronger than gearth.

The simulations were performed using the leap-frog integrator and a LJ interaction potential.

A single time-step length δt of 2.0 · 10−13 seconds was chosen, which yields for 5.0 · 105 time-

steps a total simulation time of 0.1 · 10−6 seconds.

Different simulations were carried out, varying masses and particle sizes. Table 4.1 shows a

complete overview of all simulations with the pertinent particle parameters.

4.1.3 Results and Discussion

Simulation results are shown in figure 4.6, 4.4 and 4.5, where figure 4.6 shows the growth of

the mixing layer, figure 4.4 the particle trajectories and figure 4.5 the density distribution of

light particles in the system.

At t = 0 the external gravitation field is activated, which is equivalent to an initial shacking of

the whole system. The particles start to accelerate towards the bottom wall, where they are

compressed and hard reflected. This results in a slightly disturbed interface and an oscillating

shockwave in the system. The shockwave compresses and decompresses the entire simula-

tion system periodically from antiparallel, vertical directions (figure 4.5a and 4.5b). Hence

the lighter fluid pushes the heavier one and vice versa, consequently the system destabilizes.

Therefore all essential conditions for the formation of a RT instability are present and random
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initial disturbances at the interface of the heavy and the light fluid start to shape (figure 4.4a

and 4.4b).

First, light particles start to form sharp spikes and instability patterns, like mushrooms (figure

4.4c and 4.4d as well as 4.5c and 4.5d). Those patterns expand quickly and decrease the local

particle density (from figure 4.4e to 4.4h and figure 4.5e to 4.5h).

The heavy particles start at the same time to penetrate the light particle-layer at the bottom.

The chaotic phase begins, when the mushrooms start to interact and merge with each other,

destroying regular instability patterns and starting the chaotic mixing of the system (figure

4.4d and 4.5d).

The size of the mixing layer (the penetration distance of spikes and bubbles) can be defined in

a wide variety of ways. One possibility [29] is by defining a line average of the density of the

light or the heavy fluid:

f̄L(z) =

∫
dxfL(x, z)∫

dx
(4.7)

where fL(x, z) indicates the volume fraction of the light or the heavy fluid at point (x, z).

The size of the mixing region is then defined as the difference in height of the two points where

f̄L(z) = 0.01 and f̄L(z) = 0.99.

Figure 4.6 shows the growth of the mixing layers for different mass and size ratios. It is obvious

that the development of the instability strongly depends on the mass ratio of the light and the

heavy particles. A dependency of the starting time of the mixing process on the size ratio was

not observed. The mixing of both fluids started in all simulations approximately at the same

moment. Subsequently an exponential growth of the penetration distance until approximately

0.6·105 time-steps can be observed (see figure 4.6b). Afterwards the disturbances grow linearly,

which is already the change-over to the non-linear (turbulent) phase. This growth behavior

conforms with the data of macroscopic experiments. The linear growth of the mixing layer is

interfered with an oscillation that represents the repeatedly compression and decompression

of the system that results from the shockwave caused by the initial shacking. Among the

simulations, the highest growth rate can be observed for a mass ratio of mH/mL = 100, the

lowest when both particle types have the same mass mH/mL = 1.
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(a) t = 0.75 · 105 time-steps

(b) t = 1.50 · 105 time-steps

(c) t = 1.75 · 105 time-steps

(d) t = 2.25 · 105 time-steps

Figure 4.4: Time development of particle positions: Heavy particles are colored in light gray, light
particles in black. This figure continues on the following page.
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(e) t = 2.50 · 105 time-steps

(f) t = 2.75 · 105 time-steps

(g) t = 3.25 · 105 time-steps

(h) t = 3.75 · 105 time-steps

Figure 4.4: Time development of particle positions: Heavy particles are colored in light gray, light
particles in black. This figure is continued from the previous page.
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(a) t = 0.75 · 105 time-steps

(b) t = 1.50 · 105 time-steps

(c) t = 1.75 · 105 time-steps

(d) t = 2.25 · 105 time-steps

Figure 4.5: Time development of the particle density distribution for the light particles: The
density changes from red (high) to blue (no particles). This figure continues on the following page.
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(e) t = 2.50 · 105 time-steps

(f) t = 2.75 · 105 time-steps

(g) t = 3.25 · 105 time-steps

(h) t = 3.75 · 105 time-steps

Figure 4.5: Time development of the particle density distribution for the light particles: The
density changes from red (high) to blue (no particles). This figure is continued from the previous
page.
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(a) Penetration distances

(b) Detailed view

Figure 4.6: Growth of the mixing layer for different mass and size ratios: Figure a) illustrates
the growth of the mixing layers of all simulations (compare table 4.1). Two horizontal lines at 0 Å
and 250 Å mark the horizontal boundaries of the system. Figure b) shows a detailed view in the
range of the exponential growth of simulation B4.
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Figure 4.7: Schema of the Rayleigh-Benard Convection: When the temperature of the bottom plate
(Thot) is slightly higher than the temperature of the upper one (Tcold) a permanent flow of thermal
energy will conduct through the system. Convection patterns arise because of thermal conductivity
and convection cells arise due to gravitational forces.

4.2 Rayleigh-Benard Convection

4.2.1 Introduction

The Rayleigh-Benard (RB) system is one of the most representative nonequilibrium hydrody-

namic systems. The phenomenon was first described by Benard in 1900 and later complemented

by Baron Rayleigh.

The RB problem deals with a fluid layer confined between two horizontal parallel plates,

which are kept at different temperatures. If the temperature- difference (or more precisely,

the Rayleigh number) between the lower and the upper plate is smaller than a critical value,

a heat conduction state is established. However, if the temperature-difference exceeds this

critical value, convection offers a more efficient method of heat transfer and convection flow

patterns (as convection rolls due to gravitational forces) emerge (see figure 4.7).

The relevance of the RB convection reaches from solar astrophysics phenomena (like the for-

mation of convection bubbles in hot stars) and meteorological phenomena (as the convective

shifting and mixing of huge gas masses that are responsible for the creation of storms) to

industrial processes (such as used in cooling systems for example).

RB convection has been studied in detail experimentally and numerically. A review of all

relevant studies was published by Ahlers [17] and Cross et al. [9]. During the last two decades

the RB phenomenon was also observed at the microscopic level using a wide range of different

computer-simulation approaches like the MD method, the Dynamical Non-Equilibrium Molecu-

lar Dynamics (D-NEMD) method [18], the Direct Simulation Monte Carlo (DSMC) method [3]

or the Smooth-Particle Applied Mechanics (SPAM) method [19].

The earliest work to investigate the RB convection phenomenon using the MD method was

published by Mareschal et al. [31, 32] in 1987. They showed that RB convection cells can be

already observed within a hard-disk fluid system consisting of about 5.0 · 103 particles. The

58



RB convection was also simulated using the MD method by Rapaport [10, 11], who observed

the development of convective rolls in a hard-disk fluid driven by opposed temperature and

gravitational fields. In a recent work Rapaport [13] used MD simulations to model pattern for-

mation in three-dimensional RB convection. Mareschal [33], Puhl et al. [6] and Given et al. [4]

compared the macroscopic simulations results to the corresponding analytical and numerical

solution of the macroscopic hydrodynamic equations. Watanabe et al. [41] concentrated in

their work on the chaotic motions of particles in RB convection rolls.

In a recent work Mugnai et al. [27] applied the D-NEMD method to describe the formation of

convective rolls in two-dimensional fluid systems of soft-disks.

Garcia [21] and Sefanov et al. [39] studied the convection rolls using the DSMC method.

The phenomenon has also been extensively studied using the DSMC method by Watanabe

et al. [42–44], who showed the transition between conduction and convection as well as the

growth of the spatial correlations of temperature fluctuations in this transition.

Posch, Hoover and Kum [5,34] used the SPAM method to investigate the RB problem.

The purpose of this work was to perform state-of-the-art MD simulations on the well studied

RB convection, as an other example of complex hydrodynamic phenomena, to reproduce and

combine the results of earlier works in the microscope scale and to verify the modelMD code.

The numerical and analytical investigation of the RB problem bases on the Navier-Stokes equa-

tions as well as on energy, mass and momentum conservation. Together with the Boussinesq

approximation [23] and the assumption that the material properties of the fluid are constant

this can be transformed into a simplified system of equations. Here all fluid properties and the

driving forces are represented by two dimensionless quantities, namely the Rayleigh number

Ra and the Prantl number Pr:

Ra =
αgL3

z∆T

νκ
(4.8)

Pr =
ν

κ
(4.9)

where α is the thermal expansion coefficient, g the gravitational acceleration and Lz the height

of the layer. ∆T represents the temperature difference between the horizontal plates, ν the

kinematic viscosity and κ the diffusivity.

Equations (4.8) and (4.9) represent the basic theoretical parameters for studies of the RB

convection problem. Although this set of equations is a rough approximation it remains very

complex and further simplifications have to be made before the system can be used for numer-

ical studies [38].

The linear stability analysis can be used to calculate the critical value Rac of the Rayleigh
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Figure 4.8: Simulation system of the Rayleigh-Benard Convection.

number at which convection flow patterns start to appear. For an infinite horizontal layer it

yields: Rac = 1708 [11].

With the same method it is possible to calculate the preferred wavelength of the convective

vertices. This method yields that the preferred width of convection rolls is equal to the height

of the simulation system and therefore the rolls have typically a square cross-section [11].

4.2.2 Modeling and Computational Details

The simulations have been carried out in a completely filled, closed, two-dimensional (2D) box

configuration with a length varying between Lx = 200 Å and Lx = 800 Å and a height of

Lz = 200 Å. This correspondents to aspect ratios from Lx : Lz = 1 : 1 to Lx : Lz = 4 : 1.

Periodic boundary conditions were applied in x-dimension, the top and bottom box wall were

connected to an ideal heat bath with temperature ratios varying from Thot : Tcold = 1 : 1 to

Thot : Tcold = 1000 : 1.

The particle type used in this model was Argon with with the mass m = 40au and Lennard-

Jones parameters σ = 3.4 Å and ε = 0.011 eV. The total number of particles in the simulations

varied from 3.6 · 103 to 1.4 · 104. Initially they were placed on a periodical square-lattice.

Initial velocities were chosen to satisfy a Maxwell-Boltzmann distribution for T = 3.5 · 104K.

Very high initial temperatures as well as very high wall temperatures and a high external

gravitation acceleration constant g of 0.02 Å/ps2, were chosen to expedite the formation process

of convection cells and to make it observable during a reasonable simulation time.

A schema of the simulation system is shown in figure 4.8.

The simulations were performed using the leap-frog integrator and a LJ interaction potential.

A single time-step length δt of 2.0 · 10−13 seconds was chosen, which yields for 4.5 · 106 time-

steps a total simulation time of 0.9 · 10−5 seconds.

Different simulations were carried out, varying vertical wall temperature- and aspect-ratios.

Table 4.2 shows a complete overview of all simulations with the pertinent particle parameters.
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name N Lx [Å] Lz [Å] Lx : Lz Thot [K] Tcold [K] Thot : Tcold Tinit [K]

A1 14762 800 200 4:1 3.50 · 106 3.50 · 106 1:1 3.50 · 104

A2 14762 800 200 4:1 3.50 · 106 1.75 · 106 2:1 3.50 · 104

A5 14762 800 200 4:1 3.50 · 106 7.00 · 105 5:1 3.50 · 104

A10 14762 800 200 4:1 3.50 · 106 3.50 · 105 10:1 3.50 · 104

A100 14762 800 200 4:1 3.50 · 106 3.50 · 104 100:1 3.50 · 104

A100b-e 14525 800 200 4:1 3.50 · 106 3.50 · 104 100:1 3.50 · 104

A1000 14762 800 200 4:1 3.50 · 106 3.50 · 103 1000:1 3.50 · 104

B1 7381 400 200 2:1 3.50 · 104 3.50 · 106 100:1 3.50 · 104

B2 3660 200 200 1:1 3.50 · 104 3.50 · 106 100:1 3.50 · 104

B3 14641 400 400 1:1 7.00 · 104 7.00 · 106 100:1 7.00 · 104

Table 4.2: Simulation parameters: name indicates the simulation name, N the number of particles
in the system, Lx and Lz represent the system size, Thot and Tcold are the temperatures at the lower
(hot) and upper (cold) boundary and Tinit is the initialization temperature of the simulation system.

4.2.3 Results and Discussion

A series of simulations were performed over a wide range of temperature ratios from Thot :

Tcold = 1 : 1 (simulation A1) to Thot : Tcold = 1000 : 1 (simulation A1000). As as-

sumed, no indication of convective flow were observed for the lowest temperature gradients

Thot : Tcold = 1 : 1 and Thot : Tcold = 2 : 1. For simulations with a temperature ratio of

Thot : Tcold = 5 : 1 and higher, convective rolls started to appear after approximately 0.2 · 106

time-steps and were fully developed at 2.0 · 106 time-steps.

The formation process of the convection vortices for simulation A100 (with a temperature

ratio of Thot : Tcold = 100 : 1) is described in the following. Figure 4.9 illustrates the particle

trajectories and figure 4.10 the density distribution of the simulation system.

At time t = 0 the bottom and top box wall were connected with ideal heat bathes with temper-

atures of Thot = 3.50 · 106 K and Tcold = 3.50 · 104 K. The system (with an initial temperature

of Tinit = 3.50 ·104 K started to heat up at the bottom and cool down at the top. Six unevenly

spaced convection rolls (where adjacent vortices rotate in opposite directions) began to appear

after 0.2 · 106 time-steps (figures 4.9a and 4.10a), grew (figures 4.9b and 4.9c as well as 4.10b

and 4.10c) and were fully developed after 0.9 · 106 time-steps (figure 4.9d and 4.10d).

At 1.25 · 106 time-steps a fusion of four adjacent rolls occurred (figure 4.9e and 4.10e). This

process was accompanied by a broadening of the four resulting vortices (figure 4.9f and 4.10f).

These four rolls remained stable (figures 4.9g and 4.9h as well as 4.10g and 4.10h) until the end

of the simulation run, which was terminated after 4.5 · 106 time-steps. The number of result-

ing vortices conforms with the predicted number of convection rolls from the linear stability

analysis for a simulation system with an aspect ratio of Lx : Lz = 4 : 1.
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(a) t = 0.10 · 106 to 0.80 · 106 time-steps

(b) t = 0.20 · 106 to 0.90 · 106 time-steps

(c) t = 0.55 · 106 to 1.25 · 106 time-steps

(d) t = 0.90 · 106 to 1.60 · 106 time-steps

Figure 4.9: Time development of streamlines: Particle positions are plotted for a period of 0.7·106

time-steps. Only particles are shown, which are at positions z < 10 Å at the first time-step of each
each sub figure. This figure continues on the following page.
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(e) t = 1.25 · 106 to 1.95 · 106 time-steps

(f) t = 1.60 · 106 to 2.30 · 106 time-steps

(g) t = 2.30 · 106 to 3.00 · 106 time-steps

(h) t = 3.00 · 106 to 3.70 · 106 time-steps

Figure 4.9: Time development of streamlines: Particle positions are plotted for a period of 0.7·106

time-steps. Only particles are shown, which are at positions z < 10 Å at the first time-step of each
sub figure. This figure is continued from the previous page.
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(a) t = 0.10 · 106 time-steps

(b) t = 0.20 · 106 time-steps

(c) t = 0.55 · 106 time-steps

(d) t = 0.90 · 106 time-steps

Figure 4.10: Time development of the particle density distribution for the light particles: The
density changes from red (high) to blue (no particles). This figure continues on the following page.
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(e) t = 1.25 · 106 time-steps

(f) t = 1.60 · 106 time-steps

(g) t = 2.30 · 106 time-steps

(h) t = 3.00 · 106 time-steps

Figure 4.10: Time development of the particle density distribution for the light particles: The
density changes from red (high) to blue (no particles). This figure is continued from the previous
page.
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Figure 4.11: Temperature distribution of simulation A100 after 3.0 · 106 time-steps: The temper-
ature changes from red (hot) to blue (cold).

Figure 4.12: Time development of streamlines for simulation system A100b: Particle positions
are plotted from t = 3.00 · 106 to 3.70 · 106 time-steps. Only particles are shown, which are at a
positions z < 10 Å at the beginning of the period.

Figure 4.11 shows a temperature distribution profile of the simulation system after 3.0 · 106

time-steps. The contour plot indicates two hot convection cells centered at x = 200 Å and

x = 600 Å, respectively. By comparing this result with the particle trajectories (figure 4.9h)

and the density distribution (figure 4.10h) at the same time-step, it is obvious that at these

positions hot particles are accelerated upwards. Afterwards they are cold down at the upper

plate, move downwards (because of gravitational forces) at x = 0 Å and x = 400 Å, and the

process repeats. This procedure results in four vortices located at approximately x = 50 Å,

x = 300 Å, x = 450 Å and x = 750 Å, where adjacent rolls rotate in opposite directions.

Four further simulations (A100b-A100e) with the same conditions as simulation A100, but

with different random initial velocity directions, were performed to verify the appearance of

the long-live four-roll state. Unlike similar experiments performed by Rapaport [10], who

couldn’t reproduce an equal state, the simulations resulted again in the formation of four

vortex patterns (as shown in figure 4.12).
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(a) Simulation system A100 (b) Simulation system A100b

Figure 4.13: Horizontal density profile of the simulation systems a) A100 and b) A100b as
function of x after 3.0 · 106 time-steps. The center of the convection vortices are located at the
inflection points of the fitted sine function.

Figure 4.13 illustrates the horizontal density profile of the simulation systems A100 and A100b

as function of x after 3.0 · 106 time-steps. Here higher densities indicate cold sections of the

simulation system, while lower ones indicate hot parts. The measured data were fitted with

a sine function to illustrate the periodicity of the phenomenon due to the horizontal periodic

boundary conditions.

This simulation was repeated for systems with different aspect ratios. Two fully developed and

stable vortices (as predicted by the linear stability analysis) were observed for Lx : Lz = 1 : 2

(simulation B1) after a simulation runtime of 3.0 · 106 time-steps.

However, no stable convection flow patterns appeared for a simulation system with an aspect

ratio of Lx : Lz = 1 : 1 (simulation B2), not even after 6.0 · 106 time-steps. An explanation for

this result could be the relatively low number of particles (N = 3660) used in the simulation,

since convection cells haven’t been observed for systems consisting of less than 5000 particles

so far [32]. For that reason a box configuration with the same aspect ratio of Lx : Lz = 1 : 1

but with an extended length and height of Lx = Lz = 400 Å and therefore a higher number

of particles (N = 14641) was chosen (simulation B3). In this simulation system one fully

developed vortex was observed after a simulation runtime of 3.0 · 106 time-steps.
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Conclusion

In this master thesis, theoretical foundations of classical Molecular Dynamics simulation meth-

ods were presented and summarized.

Furthermore a high-performance classical Molecular Dynamics simulation software package,

including a simulator as well as a graphical user interface, has been developed. Although the

current version of this software is already capable to perform complex Molecular Dynamics

simulations, there is still a number of interesting features (such as a parallelized implementa-

tion for distributed memory machines, long-range potentials, many-body potentials as well as

additional temperature and pressure control mechanism) left to be implemented that would

improve computation performance and enhance simulation possibilities.

With the developed software package various simulations were performed on complex fluid-

dynamical phenomena, namely on the Rayleigh-Taylor instability and on the Rayleigh-Benard

convection.

The Rayleigh-Taylor instability phenomenon was successfully simulated for a completely filled,

closed, two-dimensional box configuration with random initial perturbations. Various particle

parameter combinations, which were relatively derived from the element Argon, were used

in the simulations and the results conformed with the data of macroscopic experiments. All

stages of the growth process of the instability as well as characteristically structures, such as

bubbles, spikes and mushroom shapes, have been observed.

Moreover it was possible to simulate the Rayleigh-Benard convection phenomenon effectively

for a completely filled, closed, two-dimensional Argon system with various aspect ratios and a

wide range of temperature ratios between the bottom and the top plate. The formation process

of the convection vortices, which number conforms with the predicted number of convection

rolls from the linear stability analysis, has been observed.
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plex fluid-dynamical phenomena modeled by large-scale molecular-dynamics simulations.

Computers in Physics, 12(6):595–600, 1998. 48

[46] Dzwinel W., Alda W., Pogoda M., and Yuen D. A. Turbulent mixing in the microscale:

a 2d molecular dynamics simulation. Physica D: Nonlinear Phenomena, 137(1-2):157 –

171, 2000. 48

[47] Hockney R. W. and Eastwood J. W. Computer simulation using particles. Taylor &

Francis, Inc., Bristol, PA, USA, 1988. 28

[48] Humphrey W., Dalke A., and Schulten K. VMD – Visual Molecular Dynamics. Journal

of Molecular Graphics, 14:33–38, 1996. 40

[49] Mattson W. and Rice B. M. Near-neighbor calculations using a modified cell-linked list

method. Computer Physics Communications, 119(2-3):135–148, 1999. 29

74



Acknowledgments

I want to express my gratitude to my supervisor Univ. Prof. Dipl.-Phys. Dr.rer.nat. Wolfgang

von der Linden who was abundantly helpful and offered invaluable assistance, support and

guidance.

Deepest gratitude are also due to the members of the supervisory committee Prof. Dipl.-Ing.

Dr.techn. Winfried Kernbichler and Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Kindl.

Furthermore I would like to thank particularly Dipl.-Ing. Mag. Klaus Lichtenegger, Dipl.-Ing.
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