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Kurzfassung 

 

Die Aufgabe dieser Arbeit war, ein numerisches Model für die Vorhersage eines 

Präzipitationsprozesses, speziell für die Herstellung von neuartigen Polyacrylsäure/Protamin 

Nanopartikeln, zu entwickeln. Damit sollte das Scale-up-Verhalten eines Mikroreaktors 

untersucht werden. Wegen der Komplexität des Prozesses war eine räumliche Auflösung 

(d.h. eine Simulation via Computational Fluid Dynamics) in diesem ersten Modellierungs-

schritt nicht das Ziel. Vielmehr wurde der für das Scale-up relevante Mischeinfluss mit 

einem geeigneten Vermischungsmodell berücksichtigt. 

Als Modell für die Beschreibung des Präzipitationsprozesses wurde die Populationsbilanz-

gleichung (PBE) mit Nukleation, Wachstum und Aggregation gewählt. Nicht alle 

erforderlichen Parameter waren bekannt. Daher wurden in einem ersten Schritt 

Parameterstudien durchgeführt, um sinnvolle Bereiche für die Werte der unbekannten 

Parameter zu finden. Dann wurde die PBE für den mathematisch einfachsten Fall, ein ideal 

durchmischtes System, gelöst. Im nächsten Schritt wurde das Engulfment Modell für die 

Mikrovermischung mit der PBE gekoppelt, um eine Scale-up Abhängigkeit abzubilden. 

Zusätzlich wurden Scale-up relevante Ergebnisse durch die Analyse von charakteristischen 

Zeitmaßstäben erhalten. 

In den Parameterstudien wurde die hohe Sensitivität der Nukleationsrate auf Variationen der 

Grenzflächenenergiekonstante K und der Übersättigung S gezeigt. Durch geeignetes 

Einstellen von K wurde die mittlere Teilchengröße eines experimentellen Ergebnisses 

reproduziert. Die Breite der errechneten Größenverteilung hingegen war deutlich schmäler. 

Im Gegensatz zu den Erwartungen war es nicht möglich, mit dem Engulfment Modell die 

Breite der Verteilung zu erhöhen. Durch die Analyse von charakteristischen Zeitmaßstäben 

wurden Kriterien für das Scale-up gefunden (d.h., Einströmgeschwindigkeit u~d1/3, wobei d 

der Längenmaßstab des Reaktors ist, bzw. Scale-up basierend auf konstantem mittlerem 

spezifischem Energieeintrag � = const.). Diese Kriterien sind im Fall eines konstanten 

Widerstandsbeiwertes des Reaktors identisch. Unsere Ergebnisse zeigen, dass �=const. ein 

gut geeignetes Scale-up Kriterium zur Einhaltung der Mischzeit in einem Mikroreaktor ist. 

Sowohl die Resultate des gekoppelten Modells, als auch die Analyse der charakteristischen 

Zeitmaßstäbe zeigen, dass kleine Längenmaßstäbe in der Größenordnung von Millimetern, 

d.h. Mikroreaktoren, gut geeignet sind, um die erforderliche schnelle Vermischung zu 

erhalten. 
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Abstract 

 

The goal of this work was to develop a numerical model for the prediction of polyacrylic-

acid/protamine nano particle precipitation. The model should allow an investigation of the 

scale-up performance of a micro reactor. Due to the complexity of the process, a spatial 

resolution (i.e., a simulation via computational fluid dynamics) was not targeted in this first 

step of modelling. The scale-up relevant mixing influence was taken into account by an 

adequate mixing model. 

As model for the description of the precipitation process, the Population Balance Equation 

(PBE), including nucleation, growth and aggregation was chosen. Not all of the required 

model parameters were known. Thus, the first step was to perform parameter studies in 

order to get reasonable ranges for the values of the unknown parameters. Then, the PBE was 

solved for the mathematically easiest case, a well-mixed system. In the next stage, the 

engulfment model for micro mixing was coupled with the PBE in order to investigate 

mixing effects during scale-up. Additionally, scale-up relevant results were obtained by the 

analysis of characteristic time scales. 

In the parameter studies, the high sensitivity of the nucleation rate to variations of the 

interfacial energy constant K and the supersaturation S was investigated. The parameter K 

was adjusted to reproduce the mean particle size of an experimental result. The width of the 

calculated distribution, however, was predicted significantly smaller than in the experiment. 

It was not possible to increase the width of the distribution by using a mixing model (i.e., 

the engulfment model). Via the analysis of characteristic time scales, scale-up criteria have 

been identified (e.g., the inlet velocity should scale with u~d1/3, here d is the length scale, or 

scaling based on a constant mean specific power input � = const.). These two criteria are 

equal for a constant friction factor of the reactor. Our simulation results show, that � = const. 

is a suitable scale-up relation to ensure identical mixing conditions in a micro reactor. Both, 

the results of the coupled model, as well as the analysis of time scales show, that relatively 

small length scales in the order of millimeters, i.e. microreactors, are well suited to obtain 

the required fast mixing. 
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1 Introduction 

The aging population, high expectations on quality of life and the changed lifestyle of 

people living in Europe demand an improved, more efficient and affordable health care. 

Serious diseases, like cancer, diabetes, cardiovascular diseases and infections are big 

challenges of medicine. Nanotechnology can provide an important contribution to face 

these challenges. The excellence of nanoparticles in diagnostics, imaging and intelligent 

therapy methods is generally accepted. For example, the project “Nano-Health”, sponsored 

by the Austrian Federal Ministry of Transport, Innovation and Technology, is focused on 

four different types of nanoparticles: particles based on (i) lipids, (ii) protamines, (iii) poly-

lactic-acid-humanserumalbumin and (iv) thiomeres. The part of Nano-Health, where this 

work is related to, investigates the production of polyacrylic-acid/protamine nanoparticles 

by a precipitation process. 

Precipitation is a simple, inexpensive and efficient method for the production of 

nanoparticles. In a precipitation process, the supersaturation of the desired product 

substance leads to a spontaneous particle formation. Precipitation is often used to 

transform dissolved components into solid particles, e.g. the precipitation of proteins and 

other hardly soluble organic components, or inorganic substances in chemical waste water 

treatment.  

However, precipitation is a fast process and can lead to an extremely challenging process 

dynamics. This is due to highly sensitive kinetics of the initial particle nucleation step, 

which requires an adequate description of the mixing process down to the smallest relevant 

length scales. Thus, the numerical simulation of precipitation is still a challenge and 

requires sophisticated methods and models. Especially the precipitation of nanoparticles 

made of organic macromolecules, as investigated in this work, has never been simulated 

before.  

The overall goal of this work was to develop a numerical model for the precipitation of 

polyacrylic-acid/protamine nanoparticles in order to investigate the scale-up behaviour. 

Due to the complexity of the process, a spatial resolution of the process was not the goal in 

this first stage of the project. Therefore, the simulation of a well-mixed system as a simple 

case was studied. Subsequently, the coupling with an appropriate mixing model was 

investigated, in order to capture general qualitative scale-up trends. 
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This thesis is structured as follows: the first step was to document the state-of-the-art in 

numerical simulation of precipitation processes, see Chapter 2. In Chapter 3 the parameters 

required for the calculations are documented and the material balances of the process have 

been calculated. To allocate ranges for the values of some unknown parameters and to get 

a deeper understanding of the models, parameter studies were performed in Chapter 4. In 

Chapter 5 the solution for a well-mixed system is documented. The solution for the 

precipitation coupled with a mixing model is shown in Chapter 6. The coupled model was 

used to predict trends during scale-up, see Chapter 7. Finally, the error due to the 

discretization of the equations was investigated in Chapter 8.  

The results obtained in this work are generally valid for any reactor type or detailed 

geometrical configuration of the reactor. Only for the estimation of characteristic time 

scales a certain geometry had to be chosen. A so-called “confined impinging jet reactor“ 

(CIJR) has been used for this purpose. It can be expected, that the trends obtained for this 

reactor yield also acceptable results for any other geometry, if similar mixing regimes can 

be ensured. 
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2 Background 

2.1 Precipitation 

Precipitation is the spontaneous generation of solid particles in a liquid solution due to 

supersaturation. Precipitation is similar to crystallization, and sometimes it is also called 

“reactive crystallization” (see Aoun et al. [1] and Paschedag [2]). This is because the 

supersaturation in precipitation processes is typically generated by a chemical reaction. 

However, the supersaturation can also be generated by mixing with an antisolvent (see, 

e.g., Beck et al. [3]). 

The initial supersaturation in a precipitation process is usually orders of magnitudes higher 

than in crystallization processes [2]. In the latter the initial supersaturation is typically in 

the metastable region and therefore not high enough to initiate homogeneous nucleation. 

Thus, crystallization is frequently initiated by seeding. In contrast, precipitation never 

requires seeding, but generates particles spontaneously due to the high supersaturation. The 

induction time, i.e., the time needed for nuclei generation, is typically in the order of 

milliseconds. For crystallization processes, however, the induction time can be in the order 

of minutes or more (Aoun et al. [1]).  

Precipitation of inorganic salts has already been studied experimentally and numerically, 

e.g. by Gavi et al. [4], [5], Schwarzer et al. [6], Baldyga et al. [7] or Aoun et al. [1]. The 

precipitation of polyacrylic-acid and protamine was studied in this work. These substances 

are organic macromolecules and behave different from inorganic salts. However, we 

adapted the models used for inorganic salts to study precipitation of these organic 

molecules. 

2.2 Definitions 

Before starting to describe the precipitation model, some basic definitions are given, to 

distinguish between various terms used in literature.   

•  Molecules are the smallest units of the species involved in the process. 

•  Ions are charged molecules (for polyacrylic-acid and protamine the charges are 

caused by acidic and basic groups and depend on the pH-value). 
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•  Clusters are local, temporary accumulations of ions in the solution (i.e., 

concentration fluctuations) with a density in the order of the solid density. Clusters 

are thermodynamically unstable and are part of the liquid phase. 

•  Nuclei are clusters, which have reached the critical size and become stable. Nuclei 

are part of the solid phase. 

•  Particles are units of solid phase larger than or equal to the critical nuclei size. 

•  Nucleation means the generation of nuclei. 

•  Homogeneous nucleation means the generation of nuclei without the contribution 

of a preexisting solid phase, as defined in Myerson [8]. 

•  Growth is the enlargement of particles by attachment of molecules or ions. 

•  Aggregation means the unification of particles after their collision. 

•  Agglomeration is the sum of aggregation plus molecular growth of the bridge at 

the contact point, as described in Paschedag [2]. The mathematical model used in 

this work does not distinguish between agglomeration and aggregation. 

2.3 Description of the Particle Population 

The process steps influencing the particle population are nucleation, growth and 

aggregation. These processes, as well as the particle positions in a reactor have to be 

described mathematically, because they all depend on the local composition and flow field. 

In general two different approaches to describe the particle population can be 

distinguished:  

•  the tracking of individual particles (i.e., the Lagrangian particle tracking), and  

•  the calculation of the number density distribution of the particles. 

In both approaches the particle positions have to be calculated as a function of the external 

variables (time and space) taking into account at least one internal variable to describe the 

particle population (e.g., the particle size). In an approach based on Lagrangian particle 

tracking, the population of the particles can be directly calculated. However, in the case of 

nanoparticle precipitation an extremely high number of particles is expected. Assuming 0.2 

g/l spherical particles with 200 nm diameter and 2 g/ml solid density, the particle number 

is ca. 2�1010 particles per ml. Clearly, this is too much for the tracking of individual 

particles, and an approach based on the number density distribution of particles is 
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favourable. Consequently, the unsteady, spatially inhomogeneous population balance 

equation will be adopted for the description of suspended nanoparticles.  

2.3.1 The Population Balance Equation 

The population balance equation (PBE) is a transport equation for a particle population in 

space, time and one or more internal coordinates. The latter describe the characteristics of 

the particles (e.g., their size, shape, color…). The PBE consists of terms for accumulation, 

convective and diffusive transport and source terms for nucleation, molecular growth and 

aggregation, as shown in Gavi et al. [4]. The unsteady, spatially inhomogeneous PBE for a 

single internal coordinate (i.e., the particle size L) can be written as: 
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The terms on the left hand side and the first term on the right hand side are known from 

other transport equations used in computational fluid dynamics (CFD). They account for 

local accumulation, convection and diffusion, where � is the diffusivity of the particles. 

The remaining terms on the right hand side are source terms accounting for nucleation, 

growth and aggregation, where J is the nucleation source term and G is the growth rate. 

The terms Bagg(L,x,t) and Dagg(L,x,t) accounting for birth and death of particles due to 

aggregation are defined as (see Marchisio et al. [9]): 
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The PBE has been used to describe e.g., nanoparticle precipitation for inorganic salts (see 

e.g. Gavi et al. [4], Baldyga et al. [7] and Schwarzer et al. [10]).  
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The source terms in the PBE accounting for nucleation, growth and aggregation have to be 

described by appropriate models. For the precipitation of inorganic salts, i.e., small ions 

with constant charge and a stoichiometric composition of the solid phase, accurate models 

already exist. In this work, the precipitation of large organic molecules with pH-dependent 

charge numbers and therefore non-stoichiometric composition of the solid phase is 

considered. A suitable mathematical description of such a precipitation process is more 

difficult, and has not been documented in literature before. Clearly, the challenge is to 

adopt existing models developed for inorganic salts and apply them to the system 

discussed in this work. 

2.3.2 Nucleation 

There are various mechanisms of nucleation, which can be divided into two major 

categories: Primary and secondary nucleation. Primary nucleation means the generation of 

new particles in the absence of preexisting particles, whereas secondary nucleation 

originates from particles already present in the system. A typical mechanism for secondary 

nucleation is particle generation due to attrition. Primary nucleation can be homogenous or 

heterogeneous. Homogenous nucleation takes place in a supersaturated solution without 

impurities. In contrast, heterogeneous nucleation means nucleation at preferential sites, 

such as phase boundaries or impurities like dust [8]. 

Depending on the supersaturation and solubility, a dominant nucleation mechanism will 

exist in the system. For high supersaturations, homogeneous nucleation can be expected to 

be dominant, as described by Mersmann [11], [12]. Unfortunately, the solubility of a 

mixture of polyacrylic-acid and protamine cannot be easily quantified. However it is 

expected to be extremely low, which was justified later in this work (see Chapter 4). 

Hence, the initial supersaturation is expected to be high enough for homogeneous 

nucleation. 

The classical theory of nucleation is adopted for this work [8]. Thus, the driving force for 

nucleation is supersaturation and is defined as the ratio of an actual activity a of the 

supersaturated species to the thermodynamical equilibrium-activity a* (see Eqn. 2-4). For 

the reduction of complexity, the activity coefficients are often assumed to be equal to 

unity. Thus, the supersaturation is simply a ratio of concentrations [12]: 
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In the classical nucleation theory, it is hypothized, that local fluctuations are forming 

clusters, which get stable after reaching a critical size. An Arrhenius-type of expression 

gives then the rate of nucleus formation [8], where k is the Boltzmann-constant and T the 

temperature: 
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This nucleation rate is the product of an exponential term involving �Gcr, and a 

preexponential factor, i.e., B’. In this form, the accurate prediction of the exponential term 

is much more important than the preexponential factor, because of the extremely high 

sensitivity of the nucleation rate to the exponent. This has already been demonstrated by 

calculations of Mersmann et al. [12]. 

To estimate the free energy, a thermodynamic consideration has to be done. Two different 

types of energy are relevant for the nucleation process: a certain amount of energy is 

consumed by the generation of the new surface, and another amount of energy is provided 

by the phase transformation from liquid to solid. Balancing these two energies equals the 

free energy change �G for the formation of the solid phase (under the assumption of 

spherical clusters) [8]: 
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The free energy changes versus the cluster size are shown in Figure 2-1. Clusters greater 

than the critical size observe a decrease of free energy, will grow and lead to nucleation. 

The critical cluster size is obtained by maximizing the free energy function (Eqn. 2-6): 
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Figure 2-1: Free energy change versus cluster size for a nucleation process. 

Substitution of �gSL in Eqn. 2-6 gives the critical free energy for nucleation: 
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Small particles (and also clusters) have a higher solubility than large ones, because of their 

higher specific surface. This effect is described by the Gibbs-Thomson equation, where a 

solution with concentration c is in equilibrium with particles of the radius r [8]: 

 

 
rTk

V
S

c

c

D

m

⋅⋅⋅
⋅⋅==�

�

�
�
�

�
ν

σ2
ln

*
ln  (2-9) 

The parameter S is the supersaturation, c* the equilibrium concentration, �D the 

dissociation number and Vm the molecular volume. Substituting the critical particle size in 

Eqn. 2-8 yields in a relation for the critical free energy for nucleation: 
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Substitution of �Gcr in Eqn. 2-5 gives [8]: 
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For crystallizations, the preexponential factor B’ has a theoretical value of 1030 nuclei/cm³s 

[8]. However experiments suggest a value of 103 to 105 nuclei/cm³s for B’. According to 

Mersmann [11], the preexponential factor can be calculated from: 
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Here D is the diffusion coefficient of the supersaturated species with the concentration c 

and NA is the Avogadro-number. For the estimation of the interfacial energy �, Mersmann 

[13] has introduced an equation based on some fundamental thermodynamic relationships. 

A comparison with experimental data showed fairly good agreement for various inorganic 

systems. Because of its theoretical foundation it can also be used for organic systems. 
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Here cS is the molar concentration in the solid phase. The exact value of the interfacial 

energy constant K is difficult to determine and should be between 0.310 and 0.414 [12]. 

However, it is important for the determination of the nucleation rate, which is very 

sensitive to the value of the interfacial energy. To sum up, the nucleation rate for 

homogenous nucleation can be written as: 
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According to Myerson [8] this relation can be simplified in limited ranges of the 

supersaturation to: 
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This kinetic power law equation is frequently used in engineering literature, however the 

constants don’t have a physical meaning and must be determined experimentally. 

The nucleation rate Bhom has to be converted into a size distribution around the critical 

nuclei size. In the simplest case this is done using a uniform distribution within a fixed size 

interval �L around the critical size: 
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The required critical nuclei radius is obtained from Eqn. 2-9: 
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2.3.3 Molecular Growth 

The growth of the particles is a complex phenomenon, which consists of a series of sub-

steps, as described in the work of Mersmann et al. [11]. It can be described as a 

convective/diffusive transport of molecules to the interface and a subsequent surface 

integration step.  

For the estimation of the growth rate it is important to separate surface integration limited 

and transport limited growth. In the case of small supersaturations, as often encountered in 

crystallization, the system is near equilibrium and, due to the principle of energy 

minimization, the crystal surfaces are smooth and homogeneous. This typically causes a 

surface integration limited growth rate. In crystallization processes at high 

supersaturations, inhomogeneous crystal surfaces are present and lots of possibilities for 

surface integration exist. In this case the growth rate is typically limited by the transport of 

molecules to the interface (see Mersmann et al. [11]). Thus, in previous simulations found 
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in the literature the surface integration step was considered to be instantaneous (see, e.g., 

Gavi et al. [5]).  

For transport limited growth, the growth rate can be calculated based on a Sherwood 

number. The nanoparticles are assumed to have the same velocity than the liquid, meaning 

their Reynolds number is zero. Assuming their shape as spherical, the Sherwood number is 

equal to 2. This is the theoretical lower limit for mass transfer due to diffusion around a 

sphere in a static fluid. The Sherwood number Sh can be used to calculate the diffusive 

mass transfer rate and subsequently the growth rate, defined as the time derivative of the 

particle size (see Gavi et al. [4]): 
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It was shown by various authors (e.g., Stahl et al. [14]), that growth rate dispersion, i.e., 

particles of identical size experience different growth rates given by a distribution function, 

is essential to correctly predict the size distribution of crystalline substances. Growth rate 

dispersion was not considered in this work as the organic precipitation product considered 

in this work is amorphous. 

2.3.4 Aggregation 

The aggregation terms of the PBE account for the combination of two particle size classes 

(i.e., binary collisions of particles). The aggregation rate for a certain particle size is 

calculated by integration over all collision partners. The quantity accounting for the 

kinetics of aggregation is the so-called aggregation kernel. It is defined as a rate constant 

for aggregation [11], analogous to the kinetics of a chemical reaction of 2nd order: 

 

 2N
dt

dN
agg ⋅=− β  (2-19) 

The aggregation kernel is formulated as the product of a collision kernel �coll, i.e., the 

collision frequency between two particles, and an aggregation efficiency �, which 

describes the probability, that a collision is successful. The latter is determined by the 

particle interaction forces [4]. 
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In principle there are two mechanisms of aggregation: the orthocinetic and the pericinetic 

aggregation. Pericinetic aggregation is caused by the Brownian motion of particles, which 

is the dominant mechanism for particles smaller than 1 micrometer. For larger particles the 

Brownian motion is negligible and the aggregation is dominated by hydrodynamics [11], 

this is called orthocinetic aggregation. Pericinetic aggregation was originally described by 

Smoluchowski [15], and the collision kernel is (see, e.g., Gavi et al. [4]): 
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For the description of the aggregation efficiency the so-called stability ratio W is used: 
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The stability ratio takes into account the influence of the particle interaction forces on the 

aggregation and, if relevant, the viscous resistance of the continuous medium. The latter 

effects the approach of two particles and therefore reduces the aggregation efficiency. In 

the work of Rollie [16] the stability ratio for two differently sized particles is defined as 

follows: 
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Here, a is the particle surface to surface distance, B the hydrodynamic correction and φtotal 

the total interaction potential. The hydrodynamic correction B accounts for the aggregation 

resistance due to the viscous influence of the fluid. It is defined as the ratio of a particle 

diffusity for an infinitely diluted system to the actual particle diffusity. The following 
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empirical correlation is typically used to estimate the hydrodynamic correction, where the 

value of the fluid viscosity does obviously not appear [16]: 
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The total interaction potential energy φtotal is a superposition of the potentials resulting 

from the attractive Van der Waals forces and the electrostatic repulsion forces [16]: 

 

 )()()( aaa elVdWtotal φφφ +=  (2-26) 

Rollie [16] describes the Van der Waals potential φVdW for two particles with radii r1 and r2 

by the Hamaker model for the Van der Waals interaction energy, where A is the Hamaker 

constant: 
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The electrostatic potential φel describes the effect of the ionic double layer. Schwarzer and 

Peukert [17] used an equation based on the Gouy-Chapman model, which is valid for 

surface potentials up to 100mV. For two different particles with radii r1 and r2, but equal 

surface potentials �P, the electrostatic interaction potential can be calculated according to: 
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Here, e is the unit charge and the concentration ct is the total concentration of all ions, 

meaning ct = c1 + c2. The Debye length � and the ionic strength I are defined as follows: 
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The surface potential of the particles can be approximated by the following relation of 

Gavi et al. [4]. The surface potential in this approximation is determined by one type of 

ions, i.e., the so-called “potential determining ions” (PDI): 
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Here, cPDI is the concentration of PDI and cPDI
pzc is the concentration of PDI at the point of 

zero charge (pzc). The charge number z cancels out after the substitution of �P in Eqn. 2-

28.  

2.4 Solution Methods for the PBE 

The PBE used in this work, i.e., with nucleation, growth and aggregation, is a partial 

integro-differential equation, even in the well-mixed case, where the spatial derivatives are 

zero. In addition, it is coupled with the species balance equations for the liquid phase, i.e., 

partial differential equations in the case of a spatially resolved model, and ordinary 

differential equations in the well-mixed case.  

There exist several approaches to solve the PBE, and here we focus on the most popular 

numerical methods. An overview about the solution methods is provided in Paschedag [2] 

and Marchisio et al. [18]. 
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2.4.1 Classes Methods 

The most obvious approach to solve a PBE is to discretize the internal coordinate 

analogous to the external coordinates, i.e. to define discrete particle size classes. The 

discretization could be equidistant or non-equidistant and is called classes method (CM). 

Moreover, the CM could be adaptive, which is favorable for strongly changing 

distributions as in the case of precipitation processes. Unfortunately, in combination with 

CFD the adaptive (internal) discretization cannot be used, because every computational 

cell requires the same internal discretization [2].   

For more than one internal coordinate the computational effort for CM increases strongly 

with the number of internal coordinates. In practice, the application of CM for more than 

one internal coordinate is only useful for calculations without external coordinates. Thus, 

the CM is prohibitively expensive for CFD [2].  

The main disadvantage of CM is the large number of classes required for good accuracy. 

For every single class a scalar transport equation has to be solved. Especially in the case of 

precipitation processes, where the particle size distribution changes strongly due to 

homogeneous nucleation and growth, the number of classes has to be large for sufficiently 

accurate results [18]. 

2.4.2 Monte-Carlo-Methods 

Monte-Carlo-Simulations are based on the modeling of random events. There is no 

discretization required, but the evolution of the particle population is calculated based on 

discrete random events. These events occur within a predefined probability. In this type of 

statistical calculations, a sufficiently large number of particles has to be considered and a 

very small time-step has to be used. This makes the method numerically expensive [2]. 

Especially for CFD, where spatial inhomogeneities are considered, the required particle 

number would be inacceptable high [18].  

The consideration of more than one internal coordinate is relatively simple in Monte-

Carlo-Simulations and the computational demand increases only moderately with the 

number of internal coordinates. Also, as the history of the particles is known, a realistic 

modeling of breakage and particle morphology is possible. Due to the high numerical 

effort a combination of Monte-Carlo method for solving the PBE with CFD is not feasible 

today. However, the coupling of Monte-Carlo methods with Lattice-Boltzmann 
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simulations seems feasible, because both approaches are based on statistical considerations 

of particles [2]. 

2.4.3 Methods of Moments 

Methods of moments for solving the PBE are frequently used in combination with CFD. In 

the standard method of moments (SMM), the internal coordinate is integrated, and the 

particle size distribution is represented by its moments mj [11], whereas the jth moment of a 

number density distribution n(L) is defined as [2]: 
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Some moments have a physical meaning: the 0th moment is proportional to the particle 

number, the second moment is proportional to the total surface and the third moment is 

proportional to the total volume of the particle population. A wide range of particle size 

distributions is well described by only three or four moments. For each moment a scalar 

transport equation has to be solved, hence the computational demand is much lower than 

using the CM [2].  

A main disadvantage of the SMM is, that size-independent terms for growth and 

aggregation have to be used to close the system. To avoid this, the quadrature method of 

moments (QMOM) has been developed, which is based on the same idea as the SMM. 

QMOM overcomes the closure problem by using an ad hoc quadrature approximation. 

QMOM is a presumed PSD method, where the PSD is represented by a superposition of 

delta functions. A drawback of QMOM is, that it cannot represent bimodal PSD. Its main 

advantage is the combination of good accuracy and relatively low computation cost, which 

makes it ideal for coupling with CFD [18]. 

2.4.4 Selection of an Appropriate Solution Method 

In this work no spatial resolution was considered for the solution of the PBE, i.e., it is not 

required to choose a solution method which can be coupled with CFD. There is only one 

internal coordinate considered (i.e., the particle size), thus the most obvious approach is the 

CM. Its relatively high computational effort is no handicap in this work.   
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Monte Carlo methods are more complex and do not provide any advantage compared to 

CM, because the particle morphology is not considered in this work. Methods of moments 

are also more complex than CM, and their lower computation effort is no benefit for this 

work. Moreover, the moment transformation causes a loss of information, thus the CM 

with a sufficiently high number of classes is more accurate than a QMOM with three or 

four moments, as typically used. Thus, the classes method was used as solution method for 

the PBE in this work. 

2.5 Description of the Continuous Phase 

2.5.1 Basic Flow Considerations 

In the precipitation process we are facing a two phase flow. The continuous phase is liquid 

and the dispersed phase is constituted by the solid particles. In multiphase flow problems 

we usually have to solve one set of flow equations for each phase in order to get the 

complete flow field. In the case of nanoparticles, the influence of the precipitated particles 

on the flow field is negligible, because the particles are smaller than the Kolmogorov 

length [10]. Also, the volume fraction of the solid phase, as well as the mass loading are 

small (i.e., in the order of 10-4) and consequently there is no significant momentum transfer 

between the two phases. Hence, there is only the need to calculate the liquid flow field, 

which means solving a single phase flow.   

Furthermore, for computational fluid dynamic (CFD) simulations of turbulent flow an 

appropriate approach has to be chosen. Thus, these simulations are based on the (i) 

Reynolds-averaged-Navier-Stokes equations, the (ii) filtered Navier-Stokes equations, or 

the (iii) fully resolved Navier-Stokes equations to reconstruct chaotic turbulent fluid 

motion. On the one hand the simulation should allow to study problems of industrial 

relevance, on the other hand it has to be detailed enough to yield physically reasonable 

results for mixing. The latter is especially critical for precipitation processes, as micro 

mixing, i.e., mixing down to the molecular scale, is essential for the process. The filtered 

Navier-Stokes equation, i.e., the so-called Large Eddy Simulation approach, is known to 

accurately predict flow and species transport in micro reactors. This is supported by recent 

studies of Marchisio [19] and Radl et al. [20]. 
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2.5.2 Micromixing Models 

Micromixing effects play a major role in the outcome of a precipitation process [21]. 

Mixing down to the molecular scale is the precondition for precipitation processes, 

otherwise no supersaturation is generated. Due to the nature of precipitation processes, the 

resulting PSD is sensitive to variations in the concentration field, as shown by Schwarzer 

et al. [10]. According to Gavi et al. [4] and Baldyga et al. [22] the kinetics of precipitation 

processes should be applied to completely micromixed regions. This state of 

micromixedness depends on the local fluid motion and molecular diffusion. Consequently 

micromixing has to be described by an appropriate model, if the resolution of the flow 

model is not sufficiently fine. For engineering applications this is typically the case. 

Before implementing the PBE in a CFD-simulation, it is useful to calculate systems with 

concentrated parameters (e.g., a well-mixed reactor). Their reduced complexity enables to 

get first results within a fraction of the time needed for a CFD model. Typically, general 

trends of the real-world system can be already qualitatively correctly predicted. The 

simplest case is to calculate the process in a well-mixed system. This can be easily 

extended by a mixing model. Therefore, a model to mimick concentration variances for a 

well-mixed system is required. Some of the most popular models for these purposes are 

detailed here: 

 

a) Population Balance for Fluid Elements - the Coalescence Dispersion Model 

Ulbert et al [23] used a concentration distribution p(c,t) to describe the microlevel 

segregation in a crystallizer, that is perfectly mixed on the macrolevel. The (average) 

macrolevel concentration is written as: 
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The concentration distribution is calculated by a PBE for fluid elements (Eqn. 2-34) 

including the so-called coalescence-dispersion model to represent the micromixing 

process. R(t) is the rate of concentration degradation due to nucleation and growth, S(t) 

represents the production rate of solid phase, and K is a micro mixing parameter.  

 



 Background   

 19 

 

�
�

�
�
�

� ⋅−⋅⋅�
�

�
�
�

� −+⋅⋅+

−+−=
∂

∂+
∂

∂

� � �
max max max

'),'(),('''
2

'''
),''(),'(2

),(),(
)(

)(),(
)(

),(

c

c

c

c

c

c

in

f

S S S

dctcptcpdcdcc
cc

tcptcpK

tcptcp
c

tS

c

tcp
tR

t

tcp

δ

τ
δ

υ
 (2-34) 

The mean rates of nucleation )t(B
~

and growth )t(G
~

, which are used in the PBE for the 

particle population, are calculated by integration over the concentration distribution: 
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Thus, two population balance equations have to be solved to model the precipitation 

process. 

 

b) ADCR Model 

The axial dispersion-coalescence/redispersion (ADCR) model, developed by Lakatos [24], 

is a relatively new approach. In this model macromixing is described by an axial dispersion 

model. Micromixing is described by the coalescence and redispersion of fluid elements. 

This model is similar to the coalescence dispersion model described in a), however the 

source terms of the population balance equation are not equal. The model was verified with 

experimental data for the case of a tubular reactor [24]. 

 

c) Presumed Probability Density Functions 

Baldyga et al. [25] used a Beta probability density function (PDF) to describe the 

microlevel segregation of the concentration field. This is similar to the approach of Ulbert 

et al., with the exception, that the distribution of the concentration is assumed to be a Beta 

function. Hence, the population balance equation for the concentration distribution is not 

solved. Unfortunately, presumed PDF approaches were only used to describe chemical 
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reactions without subsequent phase change. It is currently unclear, how to incorporate 

nucleation in a presumed PDF approach. The nucleation rate depends on the 

supersaturation, while the presumed PDF describes the concentrations. The dependency of 

the nucleation rate on the concentrations is much more complex (i.e., strongly nonlinear) 

compared to the situation where only a reaction occurs. This makes it difficult to describe 

the precipitation process with a presumed concentration-PDF. 

 

d) Segregated Feed Model 

Zauner et al. [26] tried to use a so called segregated feed model, where instead of a 

concentration distribution (which accounts for every value of the local concentration) two 

well-mixed compartments are used to model spatial concentration gradients. The first 

compartment is called reaction plume and is located near the feeding point of a batch 

stirred tank reactor. The second compartment represents the remaining part of the reactor 

and is called bulk. The total volume Vtot is the sum of the compartment volumes Vf and Vb: 

 

 bftot VVV +=  (2-37) 

The compartment volumes are not constant. There is a permanent feed flow Qf into the 

system, which increases the total volume, and a convective exchange flow from the 

reaction plume to the bulk. The latter is characterized by a mesomixing time scale tmeso: 

 

 f
tot Q

dt

dV =  (2-38) 

 
meso

f
f

f

t

V
Q

dt

dV
−=  (2-39) 

The total transfer of a component j between the two compartments uj,fb is the sum of the 

convective contribution, determined by the mesomixing time scale tmeso and the diffusive 

contribution, determined by the micromixing time scale tmicro: 
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The mass balances for a species j in the two compartments are: 
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Here rj,f and rj,b are concentration sink terms due to nucleation and growth. In both 

compartments the population balance equation for the PSD has to be solved. After stopping 

the feed flow, the feed volume decreases to zero (see Eqn. 2-39), while the bulk volume 

gets equal to the total volume, which contains the final particles after the process is 

finished. 

 

e) Engulfment Model 

The engulfment model, initially developed by Baldyga et al. [27], describes the time 

dependent mixing of two precursors. In principle, the model describes mixing as a batch 

process. It can be applied to a continuous mixing process by following a feed volume 

portion in a Lagrangian manner [14]. The time dependent mixing state of the volume 

portion is characterized by the mesomixed volume fraction Xme and the micromixed 

volume fraction Xmi. Ståhl et al. [14] compared the segregated feed model described in d) 

with the engulfment model. The latter showed a better prediction than the segregated feed 

model. 

As shown in Figure 2-2, the initial state is a macromixed one “i”, i.e., there are regions of 

pure precursors distributed in the reactor. The micromixed volume is defined as sum of 

regions, where A and B are mixed down to the molecular scale, shown by continuously 

colored regions “iv” in Figure 2-2 (notice, that there is micromixed volume also between 

the mesomixed regions). Mesomixing is the precondition for micromixing, hence the 

mesomixed volume is defined as the micromixed volume plus the sum of regions 

containing pure B at any scale between the macroscale and the molecular scale (see the 
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dotted regions “iii” in Figure 2-2). The difference between the total volume and the 

mesomixed volume are regions where only pure B in a macromixed state exists “ii”. 

For the mathematical description, the considered feed volume portion is divided into two 

parts, each of them assumed to be well mixed. The first part is the micromixed volume. It 

contains the species with time dependent concentrations ci and chemical reactions can 

occur in this part. The second part is the difference between the total volume and the 

micromixed volume, called non-micromixed volume. Here only pure B exists in 

macromixed and mesomixed states. It contains the constant concentrations DciE, chemical 

reactions are impossible in this region. 

With increasing time the micromixed volume increases by consuming parts of the non-

micromixed volume. Finally, the micromixed volume reaches the value of the total volume 

of the feed portion and the mixing process is complete. 

 

Figure 2-2: Mixing process as described by the engulfment model in a continuous mixer. 

Model equations to describe the micromixed volume V(t), the micromixed volume fraction 

Xmi(t) and the mesomixed volume fraction Xme(t) have been established. Eqn. 2-45 is 

mentioned for completeness, it is equivalent to Eqn. 2-43 with the condition Xmi(t) = 

V(t)/V total, where Vtotal is the total volume of the feed portion. For continuous processes the 

volumes V(t) and Vtotal can be replaced by volumetric flow rates. 
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With the engulfment constant E, being the inverse of the micromixing time tmi, and the 

mesomixing time tme as parameters [14]: 
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Here, � is the cinematic viscosity, 	 the mean specific power input and d a length scale, 

wherefore often the inlet diameter of the reactor is used. The concentration of a species i ci 

in the micromixed volume is described as: 
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Here ri is a reaction rate and DciE is the concentration of the species i in the non-micromixed 

volume, which is time independent.  

For the initial conditions the macromixed state in Figure 2-2 has to be considered. Here the 

micromixed, and also the mesomixed volume, are equal to the volume of the precursor A, 

thus the initial conditions for the volume fractions are: 
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2.5.3 Selection of an Appropriate Mixing Model 

In this work it was sufficient to choose a relatively simple mixing model, which is able to 

predict general trends. The population balance model for fluid elements described in a) and 

the ADCR Model described in b) are too complex for this intention, because they would 

require to solve a second PBE for the fluid elements. The application of a presumed PDF 

approach to a precipitation process is currently not possible, as described in c). A 

comparison of the segregated feed model and the engulfment model in combination with a 

precipitation process (described in d) and e)) showed, that the engulfment model was able 

to give better predictions [14]. Hence, the engulfment model was used as mixing model in 

this work. 
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3 Parameters and Basic Engineering 

3.1 Materials 

The two components forming the solid particles in this precipitation process are a 

polyacrylic-acid and a protamine. Unfortunately, the molecular structures of these 

materials are not exactly known. Thus, the parameters used for the calculations are based 

on the following assumptions about the structures of the molecules. 

The used polyacrylic-acid is assumed to contain 51 acrylic-acid groups, 3 cysteine-acid 

groups and 3 cysteine-sulfide groups. The pKa values are: acrylic-acid 4.26 [28], cysteine-

acid 1.9 [29] and cysteine-sulfide 8.4 [29]. The molar mass of the polyacrylic-acid is 

assumed to be 5400 g/mol. 

The used protamine is assumed to contain 22 guanidinium groups with a pKa value of 12.1 

[30]. The molar mass of protamine is assumed to be 4300 g/mol. 

3.1.1 Estimation of the Diffusion Coefficients 

The diffusion coefficient Di for a small spherical particle in a liquid with the viscosity � 

and the temperature T can be calculated from the hydrodynamic radius rh,i using the 

Stokes-Einstein equation [31]: 

 

 
ih

i r

Tk
D

,6 ⋅⋅
⋅=
ηπ

 (3-1) 

Here, k is the Boltzmann constant. According to Lochmann et al. [31] the hydrodynamic 

radius for the protamine is 1.35 nm. This corresponds to a diffusion coefficient in water at 

22°C of 1.60.10-10 m²/s (� = 0.001 Pas [32]).  

Unfortunately, the diffusion coefficient for the polyacrylic-acid has not been measured, nor 

is its hydrodynamic radius known exactly. Due to the molar masses, polyacrylic-acid is 

slightly larger than the protamine, and its hydrodynamic radius has been assumed to be 1.4 

nm. This corresponds to a diffusion coefficient of 1.54.10-10 m²/s. 

Furthermore, for the calculation of the nucleation rate (Eqn. 2-14) a mean diffusion 

coefficient D is required. It is calculated by the molar concentrations of the species c1 (i.e., 

polyacrylic-acid) and c2 (i.e., protamine): 
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All material parameters used for the calculations are summarized in Table 3-1. 

 

 Polyacrylic-acid Protamine 

Molecular weight [g/mol] 5400 4300 

Number of acidic groups   

    Acrylic-acidic group (pKa = 4.26) 51 0 

    Cysteine-acidic group (pKa = 1.9) 3 0 

    Cysteine-sulfide group (pKa = 8.4) 3 0 

Number of basic groups   

    Guanidinium group (pKa = 12.1) 0 22 

Hydrodynamic radius [nm] 1.4 1.35 

Diff. coefficient in H2O at 22°C [m²/s] 1.54�10-10 1.60�10-10 

Initial mass concentration [g/l] 0.2 0.6 

Initial molar concentration [mol/l] 3.7�10-5 1.4�10-4 

Density of the solid material [kg/m³] 1400 

 

Table 3-1: Parameters for the polyacrylic-acid/protamine system. 

3.1.2 Process Parameters 

The precipitation process is operated at room temperature. For the calculations a constant 

temperature of 22°C was assumed. Also, the enthalpy change due to the reaction between 

the protamine and the polyacrylic-acid and the subsequent phase change was assumed to 

be negligible. 

The precursor concentrations are shown in Table 3-1, and correspond to a ratio of the mass 

concentrations of polyacrylic-acid to protamine of 1:3. This is to get an excess of 

protamine to stabilize the final particles and prevent further aggregation. 

In Section 3.1.3 the change of the concentrations during the process, i.e., the formation of 

particles, is considered. The concentration change of polyacrylic-acid and protamine 

depend on each other, hence it is beneficial to define the conversion X (i.e., the relative 

amount of precipitated polyacrylic-acid) as: 
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 ( )Xcc −⋅= 1101  (3-3) 

Assuming a constant molar ratio of the components in the product, i.e., constant charge 

numbers of the ions z1 and z2 during the process (see Section 3.1.3), the conversion also 

determines the actual concentration of protamine c2 with the initial concentration c20: 

 

 
2

1
10202 z

z
cXcc ⋅⋅−=  (3-4) 

3.1.3 Charge Numbers 

Polyacrylic-acid and protamine are organic macromolecules with a number of weak acidic 

and basic groups, as described in Section 3.1. The actual charge number of the molecules 

depends on the actual pH-value. The numbers of groups per molecule and their pKa-values 

are known (see Table 3-1). Using this information and the actual species concentrations, 

the pH-value and the molecule charge numbers can be calculated. The following chemical 

reactions have to be considered: 

 

Dissociation of cysteine-acidic group:   R1-COOH + H2O � R1-COO
- + H3O

+ 

Dissociation of cysteine-sulfide group:   R2-SH + H2O � R2-S
- + H3O

+ 

Dissociation of acrylic-acidic group:    R3-COOH + H2O � R3-COO
- + H3O

+ 

Protonation of guanidinium-cationic group:   R4-NH2
+ + H2O � R4-NH + H3O

+ 

Dissociation of water:      2 H2O � H3O
+ + OH- 

 

Note, that the reaction for the base guanidinium is written as acidic-reaction in order to 

apply the pKa-value. Hence, the OH- Ions don’t appear in this reaction equation. The 

equilibrium constants K() are defined by the concentrations of the reaction partners c() as 

follows (for the subscripts see the list of symbols): 

 

 
CysCOOH

OHCysCOO
CysCOOH c

cc
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= 3  (3-5) 
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 +− ⋅= OHOHW ccK 3  (3-9) 

To get the equilibrium constants K(), the definition of the pKa values is used: 

 

 iapK
iK ,10−=  (3-10) 

Furthermore, the following molar balance equations have to be fulfilled, where nCys is the 

number of cysteine groups per molecule, nAA the number of acrylic-acid groups per 

molecule and nGua the number of guanidinium-cationic groups per molecule: 

 

 CysCysCOOHCysCOO nccc ⋅=+− 1  (3-11) 

 CysCysSHCysS nccc ⋅=+− 1  (3-12) 

 AAAACOOHAACOO nccc ⋅=+− 1  (3-13) 

 GuaGuaNHGuaNH nccc ⋅=+ + 22  (3-14) 

Additionally the total charge balance equation has to be guaranteed: 

 ++−−−− +=+++ OHGuaNHOHAACOOCysSCysCOO cccccc 32  (3-15) 
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This is a system of 10 algebraic equations and 10 unknowns. Substituting the 

concentrations of neutral groups (cCysCOOH, cCysSH, cAACOOH and cGuaNH, see Eqn. 3-5 to Eqn. 

3-8) by the concentrations of charged groups (cCysCOO-, cCysS-, cAACOO- and cGuaNH2+, see 

Eqn. 3-11 to Eqn. 3-14) yields: 
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All quantities except cH3O+ in the charge balance Eqn. 3-15 can be substituted by Eqn. 3-16 

to Eqn. 3-19 and Eqn. 3-9. Thus, Eqn. 3-15 can be modified to yield an expression, which 

is here abbreviated with F (which has to be zero then): 
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In this function, the only unknown quantity is cH3O+, which is related to the pH-value: 

 

 )log( 3 +−= OHcpH  (3-21) 

Therefore, the pH-value of the system can be calculated when solving for cH3O+ in Eqn. 3-

20. With the value for cH3O+, the number of charged groups per molecule z() can be 
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calculated by using Eqn. 3-16 to Eqn. 3-19 and z()=c()/c1 for the polyacrylic-acid, and 

z()=c()/c2 for protamine:  
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The total charge numbers for polyacrylic-acid z1 and protamine z2 are the sum of the 

associated numbers of charged groups per molecule z() : 

 

 )(1 −−− ++−= AACOOCysSCysCOO zzzz  (3-26) 

 += 22 GuaNHzz  (3-27) 

The System was solved in MATLAB R2008a (for the code, see Appendix B/I). For six 

different conversions (i.e., see Eqns. 3-3 and 3-4) between 0 and 1 the function F was 

calculated and the result are shown in Figure 3-1. Clearly, the conversion does not have 

any significant impact on F, and a close-up of the region around pH 10.6 (i.e., Figure 3-2) 

shows, that the zero of F is defined, and is unaffected by the conversion. This is because 

the solid phase is assumed to be uncharged. Hence, when increasing the conversion the 

charge sum of polyacrylic-acid (cCysCOO- + cCysS- + cAACOO-) and protamine (cGuaNH2+) in the 

liquid phase are reduced by the same amount (see Eqn. 3-15). Consequently, the values of 

cH3O+ and cOH- remain the same, i.e., the pH-value doesn’t change when the conversion is 

varied. Notice, the pH-value of the educts, i.e., the polyacrylic-acid and the protamine, are 
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of course not identical. However, in the mixed system, the pH-value does not change 

during precipitation. Also, the charge numbers of the involved molecules (which depend 

on the pH-value) are constant during the process. These results in the pH-value and charge 

numbers of molecules are shown in Table 3-2. 
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Figure 3-1: Function F (Eqn. 3-20) used for the determination of the pH-value. 
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Figure 3-2: Close-up of function F around pH=10.6. 

The number of charged groups as function of pH can be calculated via Eqn. 3-22 to Eqn. 3-

25. These curves are shown in Figure 3-3, where the ordinate is scaled to unity (the 

absolute charge numbers can be calculated from Table 3-1. The charge numbers are not 

required to be integers, because they are average numbers over a large amount of 
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molecules. Clearly, with increasing pH value the acidic groups are dissociated (depending 

on their pKa value) and form charged polyacrylic-acid molecules. At a pH above ca. 10, 

the guanidinium cation is de-protonated, and loses its charge. When using a ratio between 

polyacrylic acid and protamine of 1:3, the resulting pH (i.e., pH 10.6) leads to practically 

completely dissociated acid molecules (which are strongly charged), while the deprotona-

tion of the protamine is not complete. 

 

pH = 10.633 

Cysteine-acid zCysCOO- = 3.000 

Cysteine-sulfide zCysS- = 2.983 

Acrylic-acid zAACOO- = 51.000 

Guanidinium zCuaNH2+ = 21.274 

Polyacrylic-acid z1 = -56.983 

Protamine z2 = 21.274 

 

Table 3-2: Results for the pH-value and the charge numbers. 
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Figure 3-3: Amount of charged groups as function of the pH-value. 
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3.1.4 Solid Density, Solid Concentration and Molecu lar Volume 

The solid density of the final particles �S is assumed to be constant and is given in Table 

3-1. The particle porosity is assumed to be zero, which was confirmed by experiments. The 

concentrations of the two components polyacrylic-acid and protamine in the solid phase cS1 

and cS2 are calculated from the condition of electrical neutrality of the particle (Eqn. 3-28) 

and a mass balance (Eqn. 3-29, M1 and M2 are the molar masses): 

 

 02211 =+ zczc SS  (3-28) 

 SSS McMc ρ=+ 2211  (3-29) 
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The total concentration in the solid phase cS is the sum of the two component 

concentrations: 

 

 21 SSS ccc +=  (3-32) 

The molecular volume Vm, i.e., the mean volume per molecule in the solid phase, is 

calculated from the total solid concentration cS as (where NA is Avogadro’s number): 

 

 
AS

m Nc
V

1=  (3-33) 

Data used for the mass balance calculations are shown in Table 3-3, and the results for the 

solid concentrations and the molecular volume are given in Table 3-4. 
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Polyacrylic-acid solution   

Molar mass of PAC M1 = 5400 g/mol 

Charge number of PAC z1 = -56.98 

Initial mass conc. of PAC cM1 = 0.2 g/l 

Protamine solution   

Molar mass of protamine M2 = 4300 g/mol 

Charge number of protamine z2 = 21.27 

Initial mass conc. of protamine cM2 = 0.6 g/l 

Volume flow ratio VFR = V1/V2 = 1 

Particles   

Solid density �s = 1400 kg/m³ 

Expected particle diameter L = 140 nm 
 

Table 3-3: Data used for the mass balances. 

Mixture 

Mixed mass conc. of PAC cM1mix = cM1·VFR/(VFR+1)= 0.1 g/l 

Mixed mass conc. of protamine cM2mix = cM2 / (VFR+1) = 0.3 g/l 

Mixed molar conc. of PAC c1mix = cM1mix / M1 = 1.85�10-5 mol/l 

Mixed molar conc. of protamine c2mix = cM2mix / M2 = 6.98�10-5 mol/l 

Particles 

Mass of a single particle mP = �s · L³ · �/6 2.01�10-18 kg 

Solid mass ratio prot./PAC w21 = –z 1/z2 · M2/M1 = 2.133 

Solid molar frac. of PAC x1 = 1 / (1 – z1/z2) = 0.272 

Solid molar frac. of protamine x2 = 1 – x1 = 0.728 

Mean solid molar mass MS = M1 · x1 + M2 · x2 = 4599 g/mol 

Solid conc. of PAC cS1 = z2 · �S / (z2M1 – z1M2) = 0.083 mol/l 

Solid concentration of protamine cS2 = – cS1 · z1 /z2 = 0.222 mol/l 

Total solid concentration cS = cS1 + cS2 = �S / MS = 0.304 mol/l 

Molecular volume Vm = 1/(cS · NA) = 5.46�10-27 m³ 

Nanoparticle suspension 

Particle mass concentration cMP = cM1mix · (1 + w21) = 0.313 g/l 

Protamine excess concentration cM2,ex = cM2mix – cM1mix · w21 = 0.087 g/l 

Particle number density N = cMP / mP = 1.56�1017 m-3 

Solid phase volume fraction �s = cMP / �s = 2.24�10-4 
 

Table 3-4: Mass balance results. 
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3.1.5 Solubility 

The experimental determination of the solubility of the product molecule (made up from 

polyacrylic-acid and protamine) turned out to be difficult. Thus, we assumed, that the 

solubility can be described by a solubility product, similar to an inorganic salt. In order to 

determine a value for the solubility, the influence of the equilibrium concentration c* on 

the nucleation rate was studied as shown in Chapter 4. Based on the results of this 

parameter study, the arbitrary value of 10-10 mol/l for c*, i.e., 10-20 mol2/l2 for the solubility 

product KS, was chosen. To get a more precise value for KS, the solubility has to be 

investigated experimentally using an appropriate technique.   

3.2 Mass Balances 

To test the plausibility of the simulation results, overall mass balances of the process have 

been calculated (see Figure 3-4, here cMi are the precursor mass concentrations in stream i, 

cMimix are the mixed mass concentrations, cimix are the mixed molar concentrations, Vi are 

the precursor volume flow rates, cMP is the mass concentration of the particles, N is the 

number density of the particles, cM2ex the mass concentration of the protamine excess and 

�S the volume fraction of the solid phase). To simplify these considerations the process was 

divided into two sub steps, i.e., mixing and particle formation. Although they are running 

simultaneously in reality, they can be considered to be separated for the calculation of the 

mass balances. 

 

Figure 3-4: Basic flow sheet. 

The data used for the calculation of the mass balances are shown in Table 3-3, while the 

calculation results are shown in Table 3-4. For the estimation of nanoparticle quantities, 
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the particles are assumed to be equally sized with a diameter L. For the determination of 

the solid mass ratio between protamine and polyacrylic-acid, as well as the solid molar 

fractions, the electro-neutrality condition Eqn. 3-28 was used. The solid concentrations 

were calculated using Eqn. 3-30 to Eqn. 3-32. 

3.3 Estimation of Characteristic Time Scales 

To isolate the rate limiting step in the precipitation reactor, the characteristic time scale of 

each single process step, i.e., mixing, nucleation, growth and aggregation (see Figure 3-5), 

has been analyzed. The reactions involved in particle formation, i.e., proton transfer 

reactions, as well as the reaction between the polyacrylic acid and the protamine, have 

been assumed to occur instantaneously. This is justified, since typical reaction time scales 

of proton transfer reactions are in the order of 40 µs [33].   

 

Figure 3-5: Schematic representation of process steps involved in precipitation. 

3.3.1 Characteristic Time for Mixing 

To estimate a characteristic time for mixing a reactor geometry has to be chosen. The 

experimental reactor will be designed as a confined impinging jet reactor (CIJR). Mixing 

in CIJRs has been already studied by Johnson and Prud’homme [34].  

The characteristic time τm for the total mixing process (mixing at all length scales) found 

by Johnson and Prud’homme [34] is valid in the range of 150<Re<3,000 (the Reynolds 

number is defined by the inlet diameter d, the mean inlet velocity u and the kinematic 

viscosity ν) and for a Schmidt number of 1,000:  
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Although the Schmidt number in the polyacrylic-acid/protamine system is in the order of 

6,000, this correlation was used in lack of a better suited one. The constant KCIJ is equal to 

1,470 for the used reactor [34]. With equal feeding mass flows m1=m2, equal densities of 

precursors and product �1=�3, as well as the geometric ratio �=4.76, the relation simplifies 

to: 

 

 
35400

u

d
m

⋅⋅= ντ  (3-35) 

For an inlet velocity of 0.3 – 6 m/s (corresponding to 150<Re<3,000) and an inlet diameter 

of 0.5 mm the characteristic mixing time is in the range of 0.008 – 0.73 s. 

3.3.2 Characteristic Time for Nucleation 

A characteristic time for nucleation was calculated according to Baldyga et al. [7]: 

 

 
homB

N
nuc =τ  (3-36) 

Here N is the number density of the particles and Bhom is the homogeneous nucleation rate. 

The estimation of the nucleation time has to be interpreted carefully, because the high 

sensitivity of the nucleation rate to its parameters may cause errors of more than one order 

of magnitude. As shown in Table 3-4, the expected final particle number density N is in the 

order of 1.56 ��1017 1/m³. With the initial conditions and parameters given in Table 3-3 and 

Table 3-1, as well as an interfacial energy constant K of 0.414, a nucleation rate Bhom of 

5.8 ��1018 1/m³s is obtained. This results in a characteristic nucleation time of 0.03 s. This 

value represents a lower bound, because the number of nuclei has to be larger than the final 

particle number used in this calculation. 

3.3.3 Characteristic Time for Growth 

A characteristic time for growth according to Baldyga et al. [7] is obtained as the ratio of 

the dissolved amount of species to the mass transfer by growth (where MS is the mean 

molar mass of the solid): 
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2mG

Mc

S

S
growth ⋅⋅

⋅=
ρ

τ  (3-37) 

Substituting the growth rate G given by Eqn. 2-18, and a relation for the total particle 

surface m2 (thus, particles of the same size are assumed yielding m2=L2·�·N), the following 

relation for the growth timescale is obtained:  
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 (3-38) 

Note, cS=�S/MS, and c/(c-c*) cancels out because of the low solubility of the product 

molecule (i.e., c*<<c). The growth timescale is proportional to the inverse of the particle 

size, meaning, that the growth of large particles leads to a higher consumption of dissolved 

molecules than the growth of small particles. This is caused by the higher absolute surface 

of larger particles.  

Using a characteristic particle size of the growing particles L of 50 nm, a particle 

Sherwood number Sh of 2, a mean value for the diffusion coefficients of polyacrylic-acid 

and protamine (D = 1.57 ��10-10 m²/s) and the same particle number density as for the 

nucleation time scale (N = 1.56 ��1017 1/m³), a growth timescale of 0.06 s is obtained. 

3.3.4 Characteristic Time for Aggregation 

Here we consider a characteristic time of particle collisions as a time scale for aggregation. 

This is justified by the assumption that the aggregation efficiency, which describes the 

amount of “successful” collisions, is in the order of unit for significant aggregation. A time 

scale for collisions according to Gavi et al. [5] is: 

 

 
Ncoll

coll ⋅
=

β
τ 1

 (3-39) 

The collision kernel (Eqn. 2-21) depends on the size ratio of two colliding particles. 

Therefore the collision time scale was calculated for three different size ratios of 1:1, 1:10 

and 1:100. For the particle number density N, the final value of 1.56 ��1017 1/m³ was used 
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again. During the aggregation the particle number density has to be larger, because it is 

reduced by aggregation. Therefore the collision time scale is an upper bound, i.e., it will be 

smaller in the initial stages of the precipitation process. The results are shown in Table 3-5. 

 

L1/L2 1 0.1 0.01 

�coll [s] 0.59 0.20 0.02 

 

Table 3-5: Characteristic collision times 

The value of 0.59 s for the 1:1 size ratio is not relevant, because aggregation of equally 

sized collision partners only takes place at small particle sizes below 20 nm. For larger 

ratios the aggregation efficiency is close to zero (shown in Chapter 4). The number of these 

small particles (below 20 nm) is expected to be orders of magnitude higher than the 

number of the large final particles, used for the calculation of the time scales. According to 

Eqn. 3-39 the collision time scale is inversely proportional to the particle number. Thus, 

the exact time between 1:1 collisions can be expected to be significantly lower than 0.59 s.  

The timescale of 0.20 s for the 1:10 size ratio was taken as an upper bound for the collision 

time. Size ratios smaller than 1:10 lead to smaller collision times, which have, however, a 

low probability.  

3.3.5 Comparison of the Characteristic Time Scales 

The characteristic times of the single process steps, calculated in the Sections 3.3.1 to 

3.3.4, are summarized in Table 3-6. 

 

Mixing 0.008 – 0.73 s 

Proton transfer reactions approx. 40 µs 

Nucleation > 0.03 s 

Growth 0.06 s 

Collisions < 0.20 s 

 

Table 3-6: Characteristic time scales of the investigated precipitation process. 
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The mixing time strongly depends on the Re number. Even for the largest considered 

Reynolds number of 3,000, the mixing time is significant compared to the nucleation time. 

Thus, in the considered range of Reynolds numbers the process is controlled by mixing and 

a well-mixed calculation will not give reliable results. Mixing will influence the product 

and is affected by the physical dimensions of the reactor (see Eqn. 3-35). Thus, the product 

size distribution will depend on the length scale of the reactor, and scale-up is a relevant 

issue for this process. 

The particles produced in this process should be in the range of 100 nm. To get a small 

particle size, the number of particles has to be high, i.e., a high nucleation rate is required. 

In order to produce a supersaturation high enough for the required nucleation rate, mixing 

has to be fast compared to nucleation. For the calculation of the mixing time, a typical 

microreactor was considered. As obvious in Eqn. 3-35, the mixing time can be kept low by 

a small length scale. Thus, fast mixing can be done in a microreactor. The characteristic 

times for nucleation, growth and aggregation are in the same order of magnitude, i.e., they 

are expected to run in parallel, and are mainly influenced by the mixing. The already 

shown dependency of the aggregation rate on the size ratio of the collision partners (Table 

3-5) highlights, that aggregation cannot significantly accelerate the growth of particles near 

the mean particle size (slow aggregation for the 1:1 ratio). However, aggregation reduces 

the amount of fine particles by attachment to larger ones (fast aggregation for different 

sized particles). 
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4 Computational Models 

4.1 Basic Model Assumptions 

For the development of the mathematical model the following basic model assumptions 

have been made: 

•  The precursors are in aqueous solutions, i.e., polyacrylic-acid and protamine are 

assumed to be completely soluble in water. Polyacrylic-acid and protamine is a 

weak acid and base, respectively, and change the pH-value of the aqueous solution 

due to dissociation. 

•  The particles are assumed to be amorphous. In contrast to crystalline particles, the 

integration step of growth is assumed to be instantaneous. Consequently the growth 

is assumed to be limited by the transport of molecules to the surface of the particle.  

•  The product particles are a solid mixture of polyacrylic-acid and protamine. The 

composition of the solid particles is non-stoichiometric, i.e., it depends on the 

charge numbers of the molecules involved in their formation. However, the charge 

numbers depend on the pH-value of the solution, which is determined by the ratio 

of polyacrylic-acid and protamine. Hence, it is not possible to define a net chemical 

reaction equation of the particle formation process, and also the kinetics are 

unclear. However, they can be expected to be fast (i.e., in the order of 10-5 s). 

Consequently, all reactions have been modeled to occur instantaneously. 

•  The remaining process steps, which need to be modeled, are mixing, nucleation, 

growth and aggregation. 

•  Nucleation is assumed to be homogeneous. The size of the nuclei is assumed to be 

the critical nuclei radius. 

•  Collisions of particles are assumed to be caused by Brownian motion, which is the 

dominant mechanism for nanoparticles. Furthermore only binary collisions are 

considered. 

•  The protamine molecules are assumed to determine the surface charge of the 

particles. It was shown in preliminary experiments, that the excess of protamine 

prevents the nanoparticle suspension from further aggregation by influencing the 

zeta-potential. 
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•  The dissociation number νD, which is a parameter required for the nucleation rate 

(Eqn. 2-14), is defined as number of ions in one crystal unit (e.g. for BaSO4 �D=2). 

For the substances considered in this work, the composition of the solid material 

depends on the pH-value, hence the definition of the dissociation number cannot be 

applied. Thus, the dissociation number was set to the number of components in the 

solid material, which is 2. 

•  In contrast to the complete solubility of the pure precursors, the mixture of them is 

hardly soluble. That is a precondition to obtain solid particles. To apply the 

classical nucleation theory, the definition of a supersaturation is required, which is 

defined as the ratio of the actual concentration to the equilibrium concentration 

(see. Eqn. 2-4). As explained above, it was not possible to define a chemical 

reaction with a hardly soluble product, as in the case of inorganic salts. Hence the 

solid mixture of the precursors was assumed to be hardly soluble itself. The 

supersaturation had to be defined by the concentrations of the dissolved 

components polyacrylic-acid and protamine. Although there is no physical meaning 

in this case, this was done analogous to the solubility product of inorganic salts: 

 

           
SK

cc

c

c
S 21

*

⋅==  (4-1) 

The square root of the solubility product is the equilibrium concentration: 

 

           SKc =*  (4-2) 

4.2 Nucleation Model 

Based on the model assumptions explained above, the homogeneous nucleation theory is 

applied to the polyacrylic-acid/protamine system. The parameters of the nucleation rate 

(Eqn. 2-14), the required interfacial energy (Eqn. 2-13), and the critical nuclei radius (Eqn. 

2-17) are known (see Chapter 3). The only unknowns are the interfacial energy constant K 

and the equilibrium concentration c*. To find a range for their values and to investigate 
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their influence on the nucleation rate, a parameter study was performed with MATLAB 

R2008a (for the code see Appendix B/II). 

It is interesting to notice, that although the temperature appears in the nucleation rate (Eqn. 

2-14), it cancels out after the substitution of the interfacial energy � by Eqn. 2-13. That 

does not mean there is no temperature dependency of the nucleation rate. It is only hidden 

in the equilibrium concentration c* and the diffusion coefficient D, which are usually 

temperature dependent. 

4.2.1 Comparison of the Nucleation Rate with Litera ture Data 

Molecular weight 233.40 g/mol 

Dissociation number 2 

Hydrodynamic radius 0.44482 nm 

Diffusion coefficient in H2O at 22°C 4.86�10-10 m²/s 

Solid density     4500 kg/m³ 

Solubility product 1.01�10-10 mol²/l² 

 

Table 4-1: Parameters for the precipitation of BaSO4. 
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Figure 4-1: Dependency of the nucleation rate on the supersaturation for the precipitation of BaSO4. 

To verify the calculation of the nucleation rate, a comparison with the results of Schwarzer 

and Peukert [6], who investigated the precipitation of BaSO4, was performed. The 

parameters for the precipitation of BaSO4 are shown in Table 4-1. The used value for the 
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interfacial energy constant K was 0.414. The results shown in Figure 4-1 are identical to 

that reported in Schwarzer and Peukert [6]. 

4.2.2 Parameter Study of the Nucleation Rate 

First of all, the influence of the unknown parameters K and c* on the homogeneous 

nucleation rate Bhom was investigated. According to Mersmann et al. [14], the interfacial 

energy constant K should be in the range of 0.310 to 0.414, hence the variation was done 

within this range. The equilibrium concentration c* must be lower than the initial 

concentration, therefore its variation was considered in the interval 10-12 to 10-6 mol/l.  

As shown in Figure 4-2, the sensitivity of the nucleation rate to the variation of the 

equilibrium concentration is very high at equilibrium concentrations near the actual 

concentration in the system (the concentration after mixing is 3.6�10-5 mol/l, see Eqn. 4-1). 

The lower the equilibrium concentration, the weaker is its influence on the nucleation rate. 

That means for the determination of c*, c* below 10-10 mol/l does not significantly change 

the nucleation rate, values of c* much larger than 10-10 mol/l influence the nucleation rate 

Bhom considerably.  

It is also obvious, that at higher interfacial energy constants K the nucleation rate is lower, 

because higher values of the interfacial energy � (see Eqn. 2-13) lead to a larger cluster 

size required for a stable nucleus. The formation of such larger clusters has a lower 

probability, and consequently the nucleation rate is lower. 

From preliminary experiments the entire process time is known to be in the order of 

seconds or smaller. Together with the expected particle number density of 1.56�1017 1/m³ 

(see Chapter 3) a minimum value for the nucleation rate can be determined. A value in the 

order of 1017 1/m³s is required to obtain a desired number of particles with a size of around 

100 nm. In order to get sufficiently high values for the nucleation rate, the equilibrium 

concentration c* must be below 10-10 mol/l for K in the range of 0.31<K<0.414 (see Figure 

4-2). Hence the value of 10-10 mol/l was chosen for the equilibrium concentration in lack of 

more precise experimental data. 

In Figure 4-3 the sensitivity of the nucleation rate with respect to the parameter K for 

different values of the supersaturation is shown (using the value of 10-10 mol/l for c*). The 

variation of K between 0.31 and 0.414 causes a change of the nucleation rate by more than 

3 orders of magnitude. This high sensitivity can be used to adjust the simulation results by 
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fitting the interfacial energy constant K to yield the experimentally determined mean 

particle size. 
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Figure 4-2: Dependency of the nucleation rate on the equilibrium concentration. 
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Figure 4-3: Sensitivity of the nucleation rate to variations of the interfacial energy constant for 

different values of the supersaturation. 

 

Moreover, it is interesting to know the size of the critical nuclei. In Figure 4-4 the 

dependency of the critical nuclei size on the supersaturation is shown. The comparison of 
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these results to the hydrodynamic radius rh of the molecules (approx. 1.4 nm) shows, that 

for supersaturations between 103 and 105 (depending on the value of K) the critical nuclei 

radius is smaller than rh. Thus, at sufficiently high supersaturations the large molecules of 

polyacrylic-acid and protamine are nuclei themselves and precipitate spontaneously. The 

interfacial energy constant K influences the interfacial energy proportionally (Eqn. 2-13), 

therefore at higher values of K the nuclei get a higher surface energy and for stability a 

higher nuclei radius is required. 
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Figure 4-4: Critical nuclei radius as function of the supersaturation for different values of the 

interfacial energy constant. 

In the case of polyacrylic-acid and protamine, the molar mass and hence the mean volume 

of a single molecule (5.5�10-27 m³) is much larger than in the case of barium sulfate (8.6�10-

29 m³) or similar inorganics. Therefore, it is interesting, to investigate the influence of the 

molecule size on the nucleation rate. For this calculation the molecular volume and the 

solid concentration (which is directly related to the molecular volume by Eqn. 3-33) have 

been varied, while the other parameters have kept constant. For K a value of 0.414 was 

used. 

As shown in Figure 4-5, the nucleation rate changes by more than 3 orders of magnitude 

for a ten-fold increase of the molecular volume. That means, the nucleation is considerably 

faster for larger molecules. The probability for the generation of stable clusters is higher 
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for larger molecules, caused by the lower number of molecules required for one stable 

cluster. 
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Figure 4-5: Dependency of the nucleation rate on the molecular volume. 
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Figure 4-6: Dependency of the nucleation rate on the supersaturation. 

Finally, the dependency of the nucleation rate on the supersaturation, which controls the 

evolution of the nucleation rate during the process, is shown in Figure 4-6. Clearly, for a 

nucleation rate of 1017 1/m³s a minimum initial supersaturation of about 104 to 105 

(depending on K) is required. 
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For small supersaturations the nucleation rate decreases strongly. Thus, during the mixing 

of the precursors the supersaturation has to overcome a threshold in order to yield a 

significant nucleation rate. At supersaturations below this threshold, there is no significant 

particle generation, although a certain supersaturation is present in the system. After 

overcoming the threshold, a significant amount of nuclei is generated, enabling growth and 

aggregation. By the consumption of dissolved precursor molecules, the supersaturation 

decreases after reaching a maximum value. The critical threshold for (significant) 

nucleation is then passed, nucleation is essentially stopped and the remaining 

supersaturation will be decreased via mass transport to the surface of the particles (i.e., 

particle growth). Finally the equilibrium is reached, where the supersaturation is unity. 

4.3 Aggregation Model 

The kinetics of aggregation are described by an aggregation kernel (Eqn. 2-20). It consists 

of the collision kernel (Eqn. 2-21) and the aggregation efficiency (Eqn. 2-22), including 

sub-models for particle interaction forces (Eqn. 2-23 – Eqn. 2-31). Most of the required 

parameters are known, only the Hamaker constant A, describing the Van der Waals forces, 

and the concentration of potential determining ions (PDI) at the point of zero charge (pzc) 

cPDI
pzc, determining the electrostatic forces, are unknown. To investigate the influence of 

the unknown parameters and to get a deeper understanding of the model, a parameter study 

was performed. 

4.3.1 Collision Kernel 

The collision kernel accounting for Brownian motion �coll (Eqn. 2-21) can be written as a 

product of a size-independent, constant prefactor and a dimensionless part �coll
*. The latter 

depends only on the ratio of the two particle sizes �: 
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 with 
1

2

L

L=λ  (4-5) 

A plot of the dimensionless kernel, i.e., βcoll
*, is shown in Figure 4-7. Clearly, the 

frequency of particle collisions increases with increasing particle size ratio λ. This is due to 

the different mobility (i.e., diffusion coefficients) of differently sized particles. A surface 

plot of the collision kernel as function of the size of the colliding particles is shown in 

Figure 4-8.  
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Figure 4-7: Dimensionless collision kernel as a function of the particle size ratio. 

 

 

Figure 4-8: Dimensionless collision kernel as a function of two particle sizes. 
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4.3.2 Hamaker Potential 

The attractive Van der Waals interaction forces between two spherical particles with the 

radii r1 and r2 are described by the Hamaker theory. The Hamaker potential φVdW, which is 

a function of the surface-to-surface distance “a” between the particles, can be transformed 

into a dimensionless formulation. Thus, the dimensionless surface-to-surface distance � is 

introduced:  
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Figure 4-9: Hamaker potential for different particle size ratios λλλλ. 

Typical values for the Hamaker constant A for polymers dissolved in water are in the order 

of 10-20 J. According to Visser [35] e.g., the Hamaker constant for polytetrafluorethylene in 
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water is 0.64�10-20 J, for polyethylene in water 6.4�10-20 J and for polyvinyl-acetate in water 

8.7�10-20 J. The value for the polyacrylic-acid/protamine system is unknown, hence a value 

of 1�10-20 J was chosen.  

In Figure 4-9 a plot of the Hamaker potential for three different size ratios � is shown. The 

Hamaker potential is symmetrical with respective to the particle radii r1 and r2 of course, 

the different curves for �=0.1 and �=10 are only caused by the reference for the 

dimensionless surface-to-surface distance �, which changes when r1 and r2 are 

interchanged. For a constant particle size r1, an increase in r2 (and consequently λ) results 

in a decrease in the Hamaker potential, i.e., Van der Waals attraction forces increase (the 

force is the gradient of the potential). 

4.3.3 Electrostatic Potential 

The electrostatic potential, calculated by the Gouy-Chapman model, describes the 

repulsive electrostatic forces due to particle surface potentials. The relative permittivity �r 

of water at 22°C has been assumed to be equal to 80 [33]. The surface potential of the 

particles is influenced by the concentration of the PDI. As assumed in Section 4.1, 

protamine determines the surface potential, hence it is the PDI. The only unknown 

parameter in this model is the concentration cPDI
pzc of the PDI at the pzc.  

The initial concentration of PDI is ca. 7�10-5 mol/l, during the process the concentration of 

PDI decreases to the final value of ca. 2�10-5 mol/l (respectively 0.087 g/l as shown in 

Chapter 3). To enable aggregation at the beginning of the process and to prevent 

aggregation of the final particles, the concentration of PDI at pzc is chosen to be 1�10-4 

mol/l, which is near the initial concentration of PDI. To get a precise value for cPDI
pzc, 

experimental data of the zeta potential of the particles as function of the excess-

concentration of protamine are required. 

In Figure 4-10 the electrostatic potential for different combinations of particle sizes is 

shown. The concentrations in the solution are kept constant at the values of the finished 

process (i.e., the conversion X=1), where polyacrylic-acid is completely consumed and 

only the protamine excess is remaining. The larger the particles, the larger is the 

electrostatic potential and also the electrostatic repulsion forces (which are the gradient of 

the potential). If at least on particle involved in a collision is small (e.g., L = 10 nm), the 
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electrostatic potential is reduced. That means, large particles repulse each other much 

stronger than small particles, or a combination of a large and a small particle.  
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Figure 4-10: Electrostatic potential for different particle sizes (conversion X = 1). 
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Figure 4-11: Electrostatic potential for different conversions (particles 160nm/160nm). 

The influence of the concentrations in the solution is illustrated in Figure 4-11, where the 

electrostatic potential is shown for three different conversions. The value of cPDI
pzc (1�10-4 

mol/l) was chosen in order to prevent aggregation at the end of the process by electrostatic 
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repulsion. Hence, the electrostatic potential for the conversion X=1 is the largest, while for 

X=0 it is vanishing, meaning that at the beginning of the process no significant repulsion is 

existing and aggregation can take place. For the conversion X=0.5 the electrostatic 

potential is near X=0. Thus, the change of the repulsion forces during the first half of the 

process is relatively low.  

4.3.4 Total Interaction Potential 

The total interaction potential is the superposition of the Hamaker and electrostatic 

potential. Figure 4-12 is basically the same as Figure 4-10, but includes the Hamaker 

potential. Only in the case of a surface-to-surface distance below 10 nm a significant 

contribution of the Van der Waals potential is apparent. This nicely illustrates the 

difference in the range of Van der Waals and electrostatic forces. Van der Waals forces are 

short-range forces, influencing the interaction potential only at small distances (typically in 

the range of nm and below), while the long-range electrostatic forces interact over more 

than 100 nm. The influence of different particle sizes is the same than discussed in Section 

4.3.3. 
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Figure 4-12: Total interaction potential for different particle sizes (conversion X=1). 



 Computational Models 

 54   

4.3.5 Hydrodynamic Correction 

The hydrodynamic correction (Eqn. 2-24) accounts for the viscous resistance of the fluid, 

which decreases the aggregation efficiency. The parameter r* is a mean value of the 

collision partner sizes r1 and r2. As shown in Figure 4-13, for specific surface-to-surface 

distances over 10, the hydrodynamic correction is nearly one, which means that its 

influence is negligible. Only for specific surface-to-surface distances below 10 it will 

impact the aggregation significantly. 
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Figure 4-13: Hydrodynamic correction. 

4.3.6 Aggregation Efficiency and Aggregation Kernel  

The aggregation efficiency takes into account the effects of the interaction potentials and 

the hydrodynamic correction. These effects are combined by an integral over the particle 

separation, which is called stability ratio (Eqn. 2-23), and is the inverse of the aggregation 

efficiency. The integral was solved numerically by MATLAB R2008a (for the code see the 

Appendix B/III). 

Most of the parameters influencing the aggregation efficiency are known, only the 

Hamaker constant A and the concentration of PDI at point of zero charge have been 

estimated. In the following, the influence of their variation on the aggregation efficiency 

was studied. 
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Figure 4-14: Aggregation efficiency as function of the concentration of PDI at pzc for different 

Hamaker constants A (cPDI is 6.98�10-5 mol/l, particle sizes 5nm/100nm). 
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Figure 4-15: Aggregation efficiency as function of the Hamaker constant. 

In Figure 4-14 the influence of the parameter cPDI
pzc on the aggregation efficiency is shown 

for different values of the Hamaker constant A and for a particle collision scenario 

involving a 5 nm and 100 nm particle. For the concentrations the initial mixed 

concentrations of the reactants (conversion X=0) was used (see Chapter 3).  

As shown in Figure 4-14 the aggregation efficiency reaches a maximum when the 

parameter cPDI
pzc is equal to the concentration of the PDI cPDI (i.e., the concentration of the 
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protamine, 6.98�10-5 mol/l in this case). Then the system is at the point of zero charge, 

meaning the particles are uncharged and the electrostatic repulsion is zero. This makes 

aggregation most likely. The more cPDI
pzc differs from cPDI, the smaller gets the aggregation 

efficiency, caused by the increasing electrostatic repulsion due to adsorption of ions on the 

surface. The variation of the Hamaker constant A in the range of 0.01-100�10-20 J causes 

only moderate changes of the aggregation efficiency.  

In Figure 4-15 the influence of the Hamaker constant A on the aggregation efficiency for 

different particle sizes is shown. The initial concentrations (i.e., a conversion of X=0 was 

assumed) were used again, while the parameter cPDI
pzc was set to the value of 1�10-4 mol/l, 

i.e., the system is near the pzc. The Hamaker constant A was varied between 0.01 and 

100�10-20 J again. 

The aggregation efficiency (i.e., the probability for aggregation in the case of a collision) 

shown in Figure 4-15 increases with an increasing Hamaker constant, due to increasing 

Van der Waals forces. For a collision of large particles (e.g., 100nm/100nm) the 

aggregation efficiency is much lower than for a collision of particles including at least one 

small particle (10 nm). The reason is the electrostatic potential. As discussed in Section 

4.3.3, it causes a much stronger repulsion during a collision of large particles, compared to 

a collision including at least one small particle. The repulsion during a l00nm/100nm 

collision is as significant, that for Hamaker constants below 1�10-20 J no aggregation is 

possible. 

In Figure 4-16 the aggregation efficiency α is shown as function of two particle sizes, 

where again the initial concentrations have been used (i.e., a conversion of X = 0 was 

assumed). The Hamaker constant A was set to 1�10-20 J and for the concentration of PDI, 

cPDI
pzc, the value of 1�10-4 mol/l was used again. As already discussed, for pairs of large 

particles (over 80 nm) aggregation is very unlikely for the used parameters. If at least one 

particle of the collision partners is below 20 nm, the aggregation efficiency is over 0.3, 

meaning over 30% of the collisions lead to aggregation. Aggregation efficiencies over 0.7 

are only obtained if one collision partner is in the range of some nanometers. That means, 

the smaller a particle, the higher is the probability to aggregate in the case of a collision, 

but between too large particles aggregation is unlikely. 

Finally, a surface plot of the aggregation kernel as a function of two particle sizes is shown 

in Figure 4-17, which represents the rate of aggregation. The aggregation kernel differs 

from the aggregation efficiency, because it takes into account also the collision frequency. 
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Between particles over 20 nm there is no significant aggregation. Either their aggregation 

efficiency is zero (for particles over 80 nm), caused by too high electrostatic repulsion, or 

their collision kernel is too low (in case of particles with a similar size). Only if the size 

ratio of the collision partners is sufficiently high (over 10) a significant aggregation rate 

can be observed. 
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Figure 4-16: Aggregation efficiency as function of two particle sizes. 
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Figure 4-17: Aggregation kernel as function of two particle sizes. 
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5 Solution for a Well-Mixed System 

The first step on the way to the simulation of the precipitation process is the solution of the 

PBE for the case of a well-mixed system. As solution method for the numerical solution of 

the PBE, i.e., the classes method was used (see Chapter 2). 

5.1 Governing Equations 

Basically, the precipitation process is described by the PBE (Eqn. 2-1). In the case of a 

well-mixed system the spatial derivatives are zero. This yields: 
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Here, the nucleation source term J is defined by Eqn. 2-16, the growth rate G by Eqn. 2-18 

and the aggregation rates Bagg and Dagg by Eqn. 2-2 and Eqn. 2-3. The supersaturation S is 

defined by Eqn. 4-1. To close the system, the balance equations for the species 

concentrations c1 and c2 in the liquid phase are required. The concentration decrease of 

species i due to nucleation is calculated as the amount of species i in one nucleus, �i,Nucleus, 

multiplied by the nucleation rate Bhom (Eqn. 2-14), which is the number of generated nuclei 

per volume and time: 
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The amount of species i in one nucleus is calculated by the concentration of species i in the 

solid phase (Eqn. 3-30, 3-31) and the volume of the nucleus, determined by its radius rcr: 

 

 πν ⋅⋅⋅= 3
, 3

4
crSiNucleusi rc  (5-3) 



 Solution for a Well-Mixed System 

 59  

The molar flow rate of species i consumed by the growth of a single, spherical particle 

with the diameter L, is due to the definition of the Growth rate G = ∂L/∂t as time derivative 

of the diameter L: 
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The concentration decrease of species i due to growth follows by integration over all 

particle classes: 
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The total concentration decrease dci/dt of species i due to nucleation and growth is: 
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Substitution of Eqn. 5-3 in 5-2, Eqn. 5-4 in 5-5, and finally in Eqn. 5-6 gives the changes 

of the concentrations c1 and c2 due to nucleation and growth: 
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Here, the solid concentrations cS1 and cS2 are calculated by Eqn. 3-30 and Eqn. 3-31, the 

critical nuclei radius rcr by Eqn. 2-17, the homogeneous nucleation rate Bhom by Eqn. 2-14 

and the growth rate G by Eqn. 2-18. 
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5.2 Discretization 

The internal coordinate of the PBE (i.e., the particle size L) was discretized non-equidistant 

in order to get a finer resolution for smaller particle sizes. The minimum size Lmin was 

chosen to be 2 nm, because the critical nuclei radius is at least 1 nm for supersaturations 

below 106 (see Chapter 4). The maximum size Lmax was determined to be 300 nm. The 

following rule was used for the lower bound of class i (i.e. Li), where the total number of 

classes is called M: 
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Figure 5-1: Discretization of the particle size with an exemplary size distribution. 

The mean size of class i is calculated as the arithmetic mean of upper and lower bound: 
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By the discretization the particle number density n(L,t) is split into a number of M values 

n(Lmi,t), called ni(t). The discretization of the particle size with an exemplary size 

distribution is illustrated in Figure 5-1. 

The growth term in the PBE (Eqn. 5-1) was discretized by the first order upwind scheme, 

while the integrals in Eqn. 5-7 and 5-8 have been approximated by sums: 
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According to Ramkrishna [36] the change of the discrete number density Ni due to 

aggregation can be described as (where the class j is related to the class k by Eqn. 5-17): 
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The number density Ni of a class i is related to the number density distribution by Ni = ni � 

(Li+1 - Li). This, and Eqn. 5-14 yields for the aggregation birth rate Bagg,i and death rate 

Dagg,i: 
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In the aggregation birth rate Bagg,i of the class i, the size Lm,j of the collision partner j is 

related to Lm,k via a simple mass conservation consideration and assuming constant particle 

densities: 
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5.3 Implementation 

The system of equations (i.e., Eqns. 5-11 to 5-13, 5-15 and 5-16) was implemented in 

MATLAB R2008a. MATLAB has also been used in other works for population balance 

models, e.g. Ward and Yu [37], who implemented the PBE in MATLAB/Simulink. For the 

solution of the ordinary differential equations (i.e., Eqn. 5-11 to 5-13) the MATLAB built-

in solver “ode45”, which is based on the Runge-Kutta algorithm, was used. 

The calculation of the aggregation birth rate Bagg according to Eqn. 5-16 would produce a 

mass conservation error, because due to the discretization of the particle size there is no 

collision partner with the exact size Lm,j (see Eqn. 5-17). In order to calculate the 

aggregation birth rate Bagg mass conservative, the algorithm described in the following has 

to be applied for every combination of collision partners i and j.  

The resulting particle size Lres after the successful collision of two particles with the sizes 

Lm,i and Lm,j is: 
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Two adjacent mean sizes Lm,p and Lm,p+1 have to be located, where the resulting size Lres is 

between: 

 

 1,, +<< pmrespm LLL  (5-19) 

The particle, resulting of the collision, has to be partitioned between the two sizes Lm,p and 

Lm,p+1, under the condition of mass conservation: 
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Eqn. 5-20 and 5-21 can be solved to obtain the weights w1 and w2: 
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The aggregation birth rates Bagg,p and Bagg,p+1 are increased by the contributions due to the 

collision of particles of classes i and j �Bagg,i,j,p and �Bagg,i,j,p+1 (analogous to Eqn. 5-16): 
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The total aggregation birth rate of a class p Bagg,p is the sum of the contributions of 

collision partners i and j smaller than the particles in class p, while the classes i and j are 

related to each other by Eqn. 5-18: 
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The calculation of the aggregation efficiency � is relatively time-consuming, because the 

stability ratio involves a numerical integral, which has to be solved for every time step and 

for each pair of size classes. To keep the calculation time acceptable, a look-up table for 
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the aggregation efficiency as function of two discretized particle sizes L1 and L2 (each M 

discrete values) and 11 discrete values of the conversion X  (0, 0.1, … 1) was 

precalculated. During the solution of the ODE system, the values for the aggregation 

efficiency are interpolated from this look-up table. A structogram of the implementation is 

included in Appendix A and the code is included in Appendix B/IV. 

5.4 Results 

5.4.1 Base Case 

In total there are four parameters unknown for the well-mixed system, namely the 

interfacial energy constant K, the equilibrium constant c*, the Hamaker constant A and the 

concentration cPDI
pzc of the PDI at pzc. In the parameter studies, shown in Chapter 4, the 

influence of their values was investigated. Consequently, the equilibrium concentration c* 

was set to 10-10 mol/l, while for the Hamaker constant A the value of 1�10-20 J was chosen. 

In order to prevent aggregation of the final particles, and to reproduce an aggregation 

influence at the beginning of the process, the concentration of PDI at pzc cPDI
pzc was set to 

7�10-5 mol/l, which is approximately the concentration of protamine in the initial mixture. 

The value of the interfacial energy constant K, which influences the nucleation rate 

strongly, determines the mean size of the product particles. It was set to 0.39 in order to get 

particles in the range of 140 nm. For the discretization of the particle size a number of 40 

classes was used. 

The resulting concentration and supersaturation profiles are shown in Figure 5-2. Starting 

from the values of the initial mixture, the curves descend with increasing time. After ca. 

310 ms the concentration of polyacrylic-acid c1 is zero, meaning that polyacrylic-acid is 

totally consumed, while the protamine concentration c2 remains at a certain value greater 

than zero, representing the excess of protamine. It is obvious, that the tangents to the 

concentrations curves at the beginning (t=0) are nearly horizontal. At this point of time 

growth and aggregation cannot occur, because there are no particles existing, thus 

nucleation is the only process step which consumes dissolved species at t=0. Due to the 

well-mixed assumption, the supersaturation has its maximum value at the beginning, 

hence, also the nucleation rate has its maximum value at t=0. Thus, the (nearly) horizontal 

tangents imply, that the species consumption by nucleation is negligible, due to the 

vanishingly small size of the nuclei. 
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In Figure 5-3 the time dependent number density distribution of the particles is shown. 

Cross sections of this function for certain times are shown in Figure 5-4. Clearly, the mean 

size of the particles increases with increasing time (caused by growth and aggregation). 

Also the total particle number, represented by the area below the curve, grows with 

increasing time, which is caused by nucleation and slightly counteractive aggregation. 

After 300 ms the number density distribution does not change significantly, i.e., after the 

consumption of the precursors the process is finished and no further aggregation takes 

place. This is due to the choice of the concentration of PDI at pzc cPDI
pzc.  
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Figure 5-2: Concentrations and supersaturation over time, well-mixed base case. 
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Figure 5-3: Number density distribution as function of time, well-mixed base case. 
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Figure 5-4: Number density distribution for different times, well-mixed base case. 
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Figure 5-5: Volume distribution for different times, well-mixed base case. 

The total number of the particles is represented by the area below the number density 

distribution. For the final particles, a number of approximately 1.5�1017 1/m³ with a mean 

size of 148.4 nm (volume based, see Figure 5-6) is obtained. This value is close to the 

estimation of 1.56�1017 1/m³ (for a particle size of 140 nm), which was obtained in Section 

3.2, thus, the resulting particle number is plausible. 
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The volume distribution might have a greater importance than the number density 

distribution. This is because in the latter (which is a non-normalized number distribution) 

fine particles contribute proportional to their number, although their volumetric amount is 

low. Thus, the normalized volume distributions for different times are shown in Figure 5-5. 

The volume distribution of the final particles is shown in Figure 5-6. The mean particle 

size based on volume is 148.4 nm, while the standard deviation of the volume distribution 

is 25.9 nm.  

 

Figure 5-6: Volume distribution of the product particles, well-mixed base case. 

5.4.2 Influence of Aggregation 

In order to get an insight into the contributions of growth and aggregation, the simulation 

was run with an aggregation efficiency �=0, i.e., without aggregation. Also, a case with an 

aggregation efficiency of unity, meaning every collision is successful, was studied. The 

other parameters are equal to the base case (Section 5.4.1).  

The results for the volume distribution of the final particles and for the supersaturation 

decay are shown in Figure 5-7 and Figure 5-8. The base case (0<�<1) does not 

significantly differ from the case �=0. Hence, the aggregation has only little influence in 

the base case. Here, the system is at the point of zero charge in the beginning of the 

process, where no particles are existing. The more particles are generated, the more differs 
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the actual concentration from the point of zero charge. Thus, the little influence of 

aggregation is plausible. 
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Figure 5-7: Volume distribution of the final particles (resp. t=600ms for ���� with different 

aggregation efficiencies ���
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Figure 5-8: Supersaturation over time with different aggregation efficiencies �. 

The case �=1 deviates much more from the base case. As shown in Figure 5-9, it is not 

possible to reach a finished product here, because aggregation does not stop after the 

supersaturation has reached its final value of 1 (after about 330 ms). The width of the 

number density distribution is increased with increasing time then. The area below the 

number density distribution (i.e., the total number of particles) decreases with increasing 
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time after 300 ms, because aggregation reduces the number of particles and nucleation 

does not occur at this time.  

As the profile for the supersaturation for �=1 shows (see Figure 5-8), the time required for 

the consumption of the supersaturation is slightly longer here than for the cases with �=0 

and 0<�<1. This is caused by the additional enlargement of the particles (due to the strong 

aggregation), which reduces the total surface and slows down particle growth. 
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Figure 5-9: Number density distribution for different times (case �=1). 
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Figure 5-10: Number density distribution for different times (cPDI
pzc = 2�10-5 mol/l) 
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To show the influence of the point of zero charge, another case was calculated with a 

concentration of PDI at pzc cPDI
pzc of 2�10-5 mol/l. This is approximately the excess 

concentration of protamine in the product. As shown in Figure 5-10, the number density 

distribution does not become constant, which is again caused by aggregation at the end of 

the process. Compared to the case of �=1 (Figure 5-9), the distributions are more narrow 

and the mean particle size is lower. This means that a stronger aggregation (in the case of 

�=1) leads to larger particle sizes and to a wider PSD, which was expected. 

5.4.3 Influence of the Interfacial Energy Constant 

As shown in Chapter 4, the influence of the interfacial energy constant K on the nucleation 

rate is high. A variation of K was done in order to investigate the influence on the results 

of the well-mixed system. 
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Figure 5-11: Volume distribution of the final particles for different values of K. 

In Figure 5-11 and Figure 5-12 the volume distributions of the final particles and the 

supersaturation decay is shown for three different values of K, respectively. Clearly, both 

the mean size of the particles and the time required for the consumption of the 

supersaturation increase with increasing K. A slight increase of K significantly decreases 

the nucleation rate, which leads to a reduced total number of particles. This causes an 

increase of the mean particle size and a slowed growth, i.e., a longer process time. 



 Solution for a Well-Mixed System 

 71  

0 200 400 600
10

0

10
2

10
4

10
6

Time [ms]

S
up

er
sa

tu
ra

tio
n

 

 

K = 0.38
K = 0.39
K = 0.40

 

Figure 5-12: Supersaturation over time for different values of K. 

5.4.4 Influence of the Equilibrium Concentration 

A similar dependency was found by the variation of the equilibrium constant c*. As shown 

in Figure 5-13 and Figure 5-14, with increasing c* the mean particle size and the process 

time both increase, whereas the initial supersaturation decreases. Due to the lower 

supersaturation level, the nucleation rate decreases, which leads to a lower total number of 

particles, and a longer process time (analogous to Section 5.4.3).  
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Figure 5-13: Volume distribution of the final particles for different values of c*. 
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On the contrary to the interfacial energy constant K, the equilibrium concentration c* not 

only influences the nucleation rate Bhom (Eqn. 2-14), but also the growth rate G (Eqn. 2-

18). However, the influence of c* on the growth rate G is small, because G is proportional 

to the diffusion driving force c – c*. During the whole process (except the end) c is much 

larger than c*. Thus, the growth rate is not significantly influenced by variations of c*. 

Considering this, a variation of c* has the similar effect as a variation of K. However, for 

the adjustment of the simulation results, the interfacial energy constant is better suited than 

the equilibrium constant c*, because the increase of the nucleation rate by variations of c* 

is limited (see Figure 4-2). Moreover the value of c* can be measured with acceptable 

accuracy, which is not easily possible for K. 
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Figure 5-14: Supersaturation over time for different values of c*. 

5.4.5 Comparison with Experimental Data 

The interfacial energy constant K was adjusted in order to reproduce a mean particle size 

of 138.8 nm, which was obtained in preliminary experiments (Figure 5-15), performed by 

the Institute of Pharmaceutical Sciences, University of Graz [38], using the dynamic light 

scattering equipment “Zetasizer Nano ZS (Green badge)” (Malvern Instruments Ltd.). 

Originally, an intensity distribution was obtained, which has been transformed into the 

shown volume distribution by the Zetasizer software [39]. In the calculation, the other 

unknown parameters have been set to the values used in Section 5.4.1 (i.e., c* = 10-10 

mol/l; A = 10-20 J; cPDI
pzc = 7�10-5 mol/l). With the value of K = 0.3871 a mean particle size 

of the volume distribution of 138.8 nm was obtained (see Figure 5-16).  
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It is obvious, that the width of the simulated PSD (s = 24.5 nm) is significantly lower than 

the experimental one (s = 59.07 nm). As the simulations were based on the well-mixed 

assumption, this is plausible, since incomplete mixing will cause a wide distribution of 

nucleation rates. Clearly, the mixing influence is expected to result in a wider PSD. This 

expectation was investigated in Chapter 6. 

 

Figure 5-15: Experimental volume distribution (Lmean=138.8nm, s=59.07nm) 

Provided by the Institute of Pharmaceutical Sciences, University of Graz. 
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Figure 5-16: Volume distribution of the final particles for K=0.3871. 
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6 Coupling with a Mixing Model 

6.1 Analytical Solution for the Engulfment Model  

The engulfment model, mathematically described by Eqn. 2-43 to Eqn. 2-45, was solved 

analytically. Eqn. 2-44 only contains the unknown Xme, hence it can be solved alone by 

separation of variables and integration. The initial condition Xme(t=0) = Xme
0 determines 

the integration constant C1: 
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Substituting Xme(t) (Eqn. 6-4) in Eqn. 2-43 gives an equation for Xmi(t): 
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This is a nonlinear ordinary differential equation of Bernoulli’s type. Using the 

transformation shown in Eqn. 6-6, the ODE gets linear and inhomogeneous (Eqn. 6-7). 
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This equation can be solved by an Ansatz (Eqn. 6-8) for the homogeneous solution, and 

Eqn. 6-9 for the particular solution: 
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After solution and backward transformation to Xmi = 1/z the solution for Xmi(t) is achieved 

with the use of the initial condition Xmi(t=0)=Xmi
0: 
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Figure 6-1: Analytical solution for Xme and Xmi (vertical lines represent tmi and tme). 
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Exemplary plots of the solutions for Xmi(t) and Xme(t) with the parameters � = 10-6 m²/s, � = 

1000 W/kg, d = 0.5 mm and Xmi
0 = Xmi

0 = 0.5 are shown in Figure 6-1. The obtained time 

scales are tmi = 0.40 ms and tme = 1.26 ms (by Eqn. 2-46 and Eqn. 2-47). 

The solution for V(t) (Eqn. 2-45) is easily obtained by dividing Eqn. 2-45 with Eqn. 2-43 

and integration with the initial conditions Xmi(t=0) = Xmi
0 and V(t=0) = V0: 
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The limit of V(t) for t�� is V0/Xmi
0, which is the total volume Vtotal (Eqn. 2-49), i.e., after 

a sufficiently high mixing time the total volume is micromixed. 

6.2 Governing Equations for the Coupled Model 

The engulfment model describes the time dependencies of the mixromixed and mesomixed 

volume fraction, i.e. it models mixing as a batch process. Also the used form of the PBE 

describes only the time dependency of the precipitation process, thus the coupled Model 

can only describe a batch process. However, the results of these batch calculations can be 

transferred to a continuous process by a Lagrangian flow consideration, assuming a plug 

flow and negligible axial dispersion. Then the time coordinate of the batch process is 

related to the axial coordinate of the continuous process. 

The governing equations for the coupled model are analogous to the well-mixed case. 

However, the equations for the concentrations and the particle number density have to be 

extended by adequate terms, accounting for the transfer from the non-micromixed volume 

and for the dilution of the growing, micromixed volume, analogous to Eqn. 2-48: 
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Here, Fn(L,t)� is zero, because no particles are existing before mixing takes place. The 

discretization is identical to the well-mixed case (Section 5.2), because the additional 

algebraic mixing terms (i.e., the terms that involve the engulfment rate E) do not require a 

special discretization procedure.  

6.3 Implementation 

The implementation is similar to the well-mixed case (Section 5.3). There is no additional 

numerical procedure to solve the mixing model, because the mixing model was solved 

already analytically. The additional algebraic mixing terms were added to the well-mixed 

implementation. The code (for MATLAB R2008a) is also shown in Appendix B/VI.  

6.4 Results 

For the calculations the same parameters have been used as for the well-mixed case (see 

Section 5.4.1). In addition, two mixing parameters had to be determined, the engulfment 

constant E (which is the inverse micromixing time tmi) and the mesomixing time tme (Eqn. 

2-46 and 2-47). They were calculated from the reactor inlet diameter d and a mean specific 
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power input �. The reactor geometry chosen for the time scale considerations in Section 

3.3.1 has an inlet diameter of 0.5 mm (which is a typical value for microreactors).  

To investigate the mixing influence, a case with a relatively high mean specific power 

input � of 100 W/kg (fast mixing) and a case with a relatively low mean specific power 

input � of 0.1 W/kg (slow mixing) has been calculated. The parameters are summarized in 

Table 6-1, where also the mixing-times tmi and tme and the Damköhler number Da is 

shown. The latter is defined as ratio of a characteristic mixing time to a characteristic 

reaction time. As the characteristic mixing time the sum of micromixing and mesomixing 

time was taken, while for the characteristic reaction time the characteristic growth time of 

nano particles (equal to 60 ms) was used (see Section 3.3.3). This is motivated by the fact, 

that not the (very fast) protonation reactions are critical for particle formation, but particle 

growth. The characteristic nucleation time could also be used as the characteristic reaction 

time. However, the precise estimation of the nucleation time is more complicated, as 

detailed in Section 3.3.2. 
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 � [W/kg] d [m] tmi [ms] tme [ms] Da 

Well-mixed � - 0 0 0 

Fast-mixed 100 0.0005 1 3 0.07 

Slow-mixed 0.1 0.0005 40 27 1.12 

 

Table 6-1: Mixing parameters for the three different considered conditions. 

The resulting time profiles for the concentrations and the supersaturation are shown in 

Figure 6-2 and Figure 6-3. Clearly, the fast-mixed case does not much differ from the well-

mixed case, only the first milliseconds are influenced by mixing. On the contrary, the slow 

mixed case is strongly influenced by mixing and differs from the well-mixed case over the 

total process time. 

The volume distributions of the final particles for the three considered cases are shown in 

Figure 6-4, while the related data are shown in Table 6-2. The difference between the well-

mixed and the fast-mixed case is little, as expected. However, also the volume distribution 

of the slow-mixed case is relatively similar to the well-mixed case. The main difference is, 
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that the mean particle size in the slow-mixed case is recognizably larger than in the well-

mixed case. That is caused by a lower maximum supersaturation, i.e., a lower nucleation 

rate in the slow-mixed case, as shown in Figure 6-3.  
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Figure 6-2: Concentrations in the micro mixed compartment over time for different mixing conditions. 
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Figure 6-3: Supersaturation over time for different mixing conditions. 

 

 � [W/kg] d [m] Lmean [nm] s [nm] srelative [%] 

Well-mixed � - 148.4 25.9 17.5 

Fast-mixed 100 0.0005 150.0 26.4 17.6 

Slow-mixed 0.1 0.0005 159.1 28.9 18.2 

 

Table 6-2: Results for the mean particle size and the standard deviation for different mixing 

conditions. 
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Figure 6-4: Volume distribution of the final particles for different mixing conditions. 
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Figure 6-5: Number density distribution for different times for the slow-mixed case. 

Unexpectedly, the relative standard deviation srelativ of the slow-mixed case is nearly equal 

to the well-mixed case. This can be explained by the high sensitivity of the nucleation rate 

with respect to the supersaturation (for details see Chapter 4). As obvious in Figure 6-3, the 

maximum supersaturation in the slow-mixed case is reached after about 100 ms. During a 

certain amount of these first 100 ms, the supersaturation (and also the nucleation rate) is 

significantly lower than the maximum value (notice the logarithmic scaling). Thus, during 

this first stage the generated number of particles is negligibly small, hence also growth and 



 Coupling with a Mixing Model 

 81  

aggregation cannot set in. This is also confirmed by Figure 6-5, where the number density 

until t = 30 ms s is nearly zero. Thus, the process starts as soon as the supersaturation has 

overrun a threshold value, over which significant nucleation occurs. The remaining process 

after the first 100 ms has a similar supersaturation decay than the well-mixed case, only the 

total time is longer, caused by the lower maximum supersaturation level. Thus, the basic 

difference in the supersaturation profiles of the well-mixed and the slow-mixed case (i.e., 

the difference in mixing times during the first stage where the supersaturation is relatively 

low) does not much influence the product.  

As shown in Section 5.4.5 the size distribution obtained in a preliminary experiment is 

significantly wider than the simulated size distribution of the well-mixed case. It is not 

possible to reproduce the width of the experimental distribution with the mixing model, 

because the latter does not change the relative standard deviation of the PSD significantly. 
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7 Scale-up 

There are different approaches to investigate scale-up. In the simplest case an analysis of 

the characteristic time scale for each process step can already provide valuable information 

for scale-up. Thus, the limiting process steps are identified, and their ratio (i.e., a 

dimensionless number) is held constant during scale-up. The precondition for such an 

approach is, that relations for all characteristic time scales are available. A more 

sophisticated approach is, to perform simulations at different length scales and to derive 

scale-up relations from the results. The quality of these results depends on the simulation 

model used. 

In this work we have concentrated on scale-up relevant time scales for the precipitation 

process. Note, the well-mixed precipitation model (see Chapter 5) does not depend on a 

length scale of the reactor, hence its scale-up analysis is trivial. The precipitation model 

coupled with the engulfment model depends on the length scale of the reactor. Thus, this 

model is able to provide a basic understanding of scale effects on product properties, i.e., 

the product particle size distribution. However, the engulfment model for mixing is a 

relatively simple description of the mixing process, and only requires a single parameter 

for the reactor geometry (i.e., the inlet diameter d). Thus, more sophisticated scale-up 

considerations have to use improved mixing models, e.g., based on CFD, coupled with the 

dynamics of the precipitation process. We have not performed such sophisticated 

computations, and addressed this extremely challenging task to future work. 

7.1 Scale-up via Characteristic Time Scales 

The characteristic time scales for the process steps have been analyzed in Section 3.3. The 

time scales for nucleation, growth and aggregation are length scale independent. The only 

time scale which depends on the length scale of the reactor is the mixing time (see Eqn. 3-

35). Theoretical and experimental investigations on mixing in relevant reactor geometries 

(i.e., CIJRs) were performed by Johnson and Prud’homme [34]. To ensure equal process 

conditions during scale-up, the characteristic mixing time has to be constant (Eqn. 7-1), as 

the dynamics of the precipitation process are scale invariant. The results of Johnson and 

Prud’homme [34] suggest the following relation between the inlet diameter d (i.e., the 

length scale) and the inlet velocity u: 
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 .5400 3 const
u

d
m =⋅⋅= ντ , thus (7-1) 

 3/1du ∝  (7-2) 

Furthermore, scale-up relations for the flow rate FV (Eqn. 7-3), Reynolds number Re (Eqn. 

7-4) and residence time � (Eqn. 7-5) can be derived from this result: 

 

 3/72 dduFV ∝⋅∝  (7-3) 

 3/4d
du

Re ∝⋅=
ν

 (7-4) 

 3/2
2

3

d
du

d

F

V

V

R ∝
⋅

∝=τ  (7-5) 

As already noticed in Section 3.3.1, the relation for the characteristic mixing time was 

developed for Reynolds number of 150<Re<3,000 and a Schmidt number of Sc=1,000. In 

our work the Schmidt number is about 6,000. However, due to missing data for Sc>1,000, 

we have to assume that the principal functional dependency shown in Eqn. 7-1 is also valid 

for our system. This is supported by the statement of Johnson and Prud’homme [34], that 

mixing in this regime of high Sc has only little dependency on the diffusion coefficient in 

the system. Also, Sc is constant during scale up, hence its relative impact on mixing 

performance between scales can be expected to be small. 

Plots of the variations of the inlet velocity, Reynolds number and residence time (Eqn. 7-2 

to Eqn. 7-5) during scale-up are shown in Figure 7-1. Clearly, the enlargement of the 

reactor by factor of 10 corresponds to an increase of the inlet velocity by a factor of 

approximately 2. This results in an increase of the flow rate by a factor of ca. 200. The 

Reynolds number increases by factor 20, which may cause a change of the flow regime. 

This is critical, since the used relation for the characteristic mixing time is only valid in the 

Reynolds number range of 150 to 3,000. The mean residence time for the length scale 
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factor 10 is about 5 times longer. This may be critical for precipitation processes, in which 

the product is not stabilized, and aggregation occurs after full conversion of the precursors. 
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Figure 7-1: Variation of various process parameters during scale-up based on Eqn. 7-1.  

Johnson and Prud’homme [34] showed in their work that various mixing time scales in the 

case of engulfment limited micromixing have the same scaling as momentum diffusion 

(i.e., �m ~ (�/�)1/2, for 150<Re<4,000). Hence, the condition � = const. keeps the mixing 

time constant, which yields: 

 

 .
3

3

22

const
d

u

d

udu

V

Fp

m

P

R

V =⋅=
⋅

⋅⋅⋅⋅∝
⋅
⋅∆== ζ

ρ
ρζ

ρ
ε  (7-6) 

Here, P is the power input, m the mass of the reactor content, �p the pressure loss in the 

reactor, V the reactor volume, � the density of the reactor content and � the friction factor 

of the reactor. Commonly the friction factor � depends on the Reynolds number Re. For 

sufficiently high Reynolds numbers, i.e., in the fully turbulent regime, it typically reaches a 

constant value. For this case the condition of � = const. leads to the same dependency than 

Eqn. 7-2. 
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7.2 Scale-up based on the Engulfment Model 

In addition to the analysis of time scales (see Chapter 7.1), we calculated scale-up relevant 

information using the engulfment model coupled with the precipitation model. The 

parameters for the PBE are the same as the ones used in Chapter 5 and Chapter 6 (i.e., K = 

0.39; c* = 10-10 mol/l; A = 10-20 J; c2
pzc = 7.10-5 mol/l). 

In the engulfment model, mixing is determined by two parameters, the mean specific 

power input � and the inlet diameter d. For four different values of the mean specific power 

input � (i.e., 1, 10, 100 W/kg and � = well-mixed) the relative inlet diameter d/d0 was 

varied from 1 to 100 (with d0=0.5 mm) and the product particle size distribution has been 

calculated. The influence of these conditions on the mean product particle size is shown in  

Table 7-1 and Figure 7-2. 

 

d/d0 � = 1 10 100 � [W/kg] 

1 151.8 150.3 150.0 148.4 

3 154.2 151.0 150.2 148.4 

10 161.4 153.8 151.0 148.4 

30 174.7 160.6 153.6 148.4 

100 199.1 175.4 161.1 148.4 

 

Table 7-1: Mean particle size Lmean [nm] for different length scales d/d0 and specific power inputs �. 

 

 

Figure 7-2: Scale-up dependency of the mean particle size for different mean specific power inputs �. 
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Clearly, in the well-mixed case the mean particle size is independent on the length scale. 

The higher the mean specific power input �, i.e., the higher the turbulence of the flow field, 

the smaller is the impact on the particle size distribution during scale-up. 

For micro reactors (i.e., reactors with length scales in the range of 1 mm and below) the 

results are close to the well-mixed case. In the case of larger length scales the results differ 

more from the well-mixed results, meaning, mixing is more critical in these reactors. The 

larger the reactor, the higher is the required mean specific power input (i.e., the turbulence) 

to obtain a product similar to the well-mixed product. 

The simulation results obtained with the engulfment-model show, that for a constant 

specific power input � the mean particle size is not scale-up independent. The reason for 

the scale-up dependency of the mean particle size for � = const. is the definition of 

characteristic time scales. The time scales in the engulfment model (Eqn. 2-46 and Eqn. 2-

47) depend on the viscosity �, the mean specific power input �, and on the inlet diameter d. 

Clearly, for constant values of � and � the mean particle size of the product must be length 

scale dependent in the case of the engulfment model. 

However, for sufficiently fast mixing conditions, i.e., a sufficiently high mean specific 

power input � (e.g., � ~ 10 W/kg) and moderate changes in the length scales (i.e., d/d0 ~ 

10), the scale-up dependency of the mean particle size is small. Thus, for fast mixing 

conditions the results agree approximately with the scale-up relation � = const. shown in 

Section 7.1. 
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8 Estimation of the Discretization Uncertainty  

A generally accepted procedure for the estimation of the discretization uncertainty in CFD-

simulations is the grid convergence index (GCI, see Celik et al. [40]). This index is 

applicable to a spatial discretization necessary in CFD simulations. The discretization used 

in this work concerns the particle size, i.e., the recommended concept is not strictly valid 

here. However, the general concept was adapted. 

The recommended procedure by Celik et al. uses three different grids to quantify the 

discretization error. That is useful for CFD, where the duration of one simulation run is 

typically relatively long (i.e., several hours to days). Compared to a 3-dimensional CFD-

simulation, the 1-dimensional well-mixed PBE solved in this work is much less time 

consuming. Therefore, it was possible to use a larger number of different grid sizes and 

analyze the trends via a curve fit. The data generated by seven simulations are shown in 

Table 8-1, where the number of grid nodes (size classes) was varied from 30 to 100. Also, 

the relative error for different grids was calculated (with respect to the extrapolated values) 

and the relative calculation time has been computed. Notice, that for a decrease of 50% in 

the discretization error the calculation time has to be increased by a factor of 6.  

 

M 1/M Lmean [nm] rel. error [%] � rel. calc. time 

30 0.033 154.2 20.0 0.5 

40 0.025 150.0 16.7 1.0 

50 0.020 147.5 14.8 2.0 

60 0.017 140.9 9.6 3.5 

70 0.014 139.7 8.7 5.5 

80 0.013 138.8 8.0 8.0 

100 0.010 135.8 5.7 16.0 

� 0 128.5   

 

Table 8-1: Dependency of the mean particle size Lmean on the number of classes M. 

In Figure 8-1 the data points are plotted and a linear trend line was fitted. The extrapolated 

value of Lmean for an infinite number of classes is shown in the last line of Table 8-1. 
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Figure 8-1: Dependency of the mean particle size on the number of classes. 
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9 Conclusions and Outlook 

9.1 Conclusions 

The aim of this work was to develop a numerical tool to study the precipitation of 

polyacrylic-acid/protamine nanoparticles. Also, the scale-up behaviour of this complex 

process was studied.  

For the precipitation of inorganic salts, state-of-the-art simulation approaches based on the 

population balance equation (PBE) exist in literature. Thus, numerical investigations using 

these approaches have been recently used, e.g., for the prediction of BaSO4 precipitation. 

In combination with the quadrature method of moments (QMOM) to solve the PBE, it is 

even possible to couple PBE with computational fluid dynamics (CFD). Such a 

sophisticated CFD simulation of has not been performed here. However, we were the first 

who studied precipitation of organic nanoparticles, as well as the impact of mixing, various 

other process parameters and scale-up. Our sensitivity analysis of the most critical 

parameters revealed, that the prediction of organic nano particle precipitation is 

significantly more challenging than that of, e.g., inorganic salts. This is due to the fact, that 

the structure of the molecules (polyacrylic-acid and protamine) is not exactly known. 

Assumptions had to be made in order to perform numerical simulations. Our model is 

robust in the sense, that the general trends of our predictions do not depend on the exact 

values of the parameters and fit experimental data reasonably well. A parameter study for 

the nucleation model was done, in order to find reasonable ranges for the values of the 

unknown parameters (interfacial energy constant K and equilibrium constant c*). The 

nucleation rate is highly sensitive to the values of K and c*. Especially the parameter K, 

which cannot be determined experimentally, is well suited to adjust the results of the 

simulation. However, the correct prediction of the width of the particle size distribution is 

difficult, and even the inclusion of a mixing model did not significantly improve the 

results. Moreover, the high sensitivity of the nucleation rate on the supersaturation was 

shown, which causes a supersaturation threshold. Below this threshold, no significant 

nucleation is possible, because of the properties of the precursor molecules.  

Furthermore, a parameter study of the aggregation model was performed. We found, that 

the aggregation behaviour depends strongly on the particle sizes and on the deviation of the 

actual concentration from the point of zero charge (pzc). E.g., setting the pzc near the final 
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concentration, the particles continue to grow after the supersaturation approaches unity, 

because of the vanishing electrostatic repulsion. Aggregation is only possible if the actual 

concentration is in a certain range around the pzc. Otherwise, the electrostatic repulsion 

forces prevent aggregation. Aggregation occurs mostly between pairs of collision partners 

with different sizes. This is caused by the different mobility of different sized particles, 

leading to higher collision rates. Aggregation between large particles (i.e., particles in the 

range of 100 nm) is unlikely, compared to relatively small particles with a size around 10 

nm. This is due to the increased electrostatic potentials between large particles. 

We included the engulfment model in order to investigate the effect of incomplete mixing 

on the product particle size distribution. It was shown, that the mixing model influences the 

time profiles of the concentrations and the supersaturation significantly. Also, the mean 

size of the particles is influenced by the mixing model. However, the expected increase of 

the PSD width due to the mixing influence (compared to the well-mixed solution) was not 

observed. The reason is assumed to be the high sensitivity of the nucleation rate on the 

supersaturation. Clearly, the PBE coupled with the engulfment-model was not able to 

reproduce the width of the experimentally determined PSD.  

Our predictions of product properties were checked with mass balances, in order to prove 

the plausibility of the simulation results. Also, an estimation of characteristic time scales 

for the process steps was performed. Clearly, the time scales for nucleation, growth and 

aggregation are in the same order of magnitude, while the time scale for mixing depends 

strongly on the length scale of the reactor and the energy dissipation in the reactor. It was 

also shown, that a microreactor, i.e., a reactor with dimensions of a few millimetres 

maximum, is well suited to ensure the required short mixing time for this precipitation 

process. 

9.2 Future Directions 

It is currently unclear what causes the experimentally observed relative wide spread in the 

PSD. In the preliminary experimental investigations, the mixing conditions were not 

quantified, and it may be anticipated, that the wide PSD was caused by this undefined 

mixing conditions. However, it is also possible, that the engulfment model (which assumes 

well-mixed conditions in the micromixed volume) is not fully appropriate to reconstruct 

the experimental mixing conditions. If the mixing conditions are not the reason for the 

experimentally observed width of the PSD, other phenomena have to be considered, e.g., 
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growth rate dispersion, which is frequently used in PBE modeling of precipitation 

processes involving crystalline substances (see, e.g. Stahl et al. [14]). Also, a dependency 

of the surface tension on the actual liquid concentrations could lead to the spread in the 

PSD. Such an approach seems more realistic for the amorphous substance studies in our 

work, since growth rate dispersion is caused by differences in the crystalline structure of 

product particles. 

The analysis of characteristic time scales shows, that the mean inlet velocity should scale 

with u~d1/3 in a CIJR. In the case of a constant reactor friction factor this is equal to � = 

const. The result u~d1/3 is only valid for Reynolds numbers between 150 and 3,000. The 

relation for the characteristic mixing time, see Eqn. 7-1, depends on the geometrical details 

of the reactor. For other reactor geometries, an adequate relationship for the mixing time 

has to be found. A way to determine such relationships would be, to analyze mixing in new 

reactors via the simulation of a tracer experiment. Thus, at t=0 a concentration jump of a 

non-reacting scalar at the inlet of such a reactor could be imposed. Measuring the residence 

time distribution, and fitting this distribution with a simple model, e.g., a plug-flow reactor 

with axial dispersion, could be an easy way to quantify the (overall) mixing time (Note, 

�mix = l2/Dax for such a simple axial dispersion model, where l is the length of the reactor, 

and Dax the axial dispersion coefficient). However, a micro mixing time could not be 

deducted from such an estimate of the overall mixing time. Micro mixing should be faster, 

and Johnson and Prud’homme [34] showed, that a single mixing time is sufficient to 

characterize the performance of a reactor. The key issue is, however, to find a correlation 

for the mixing time for low and intermediate Reynolds numbers (i.e., below 150), as well 

as for Re > 3,000. This is because the Reynolds numbers increases during scale up when 

using u~d1/3 and a constant fluid viscosity. Thus, a too massive increase in the geometrical 

size of the reactor cannot be done, as there are no correlations for the mixing time available 

for a wide range of Re.  

Another approach would be to start from the condition of a constant mean specific power 

input � and to simulate the flow field via CFD (not the total precipitation process). For 

different reactor length scales the corresponding volumetric flow rates (and the mean inlet 

velocities) can be found by holding � = const. However, it is unclear if this approach is also 

valid for low Re numbers, since there is a change in the flow regime. Anyhow, single-

phase fluid flow simulations are standard nowadays, and could be done with relatively high 

precision at comparably low costs. 



 Conclusion and Outlook 

 92  

For sufficiently fast mixing conditions, i.e., sufficiently high values of the mean specific 

power input �, predictions with the coupled PBE/mixing model showed only a low 

sensitivity of the particle size distribution with the scale of the reactor. However, the 

predicted trends are plausible only for the mean value of the particle size (i.e., increasing 

particle size with increasing scale of the reactor). The (relative) width of the PSD does not 

well agree with experimental results. Improvement is needed here in future work. Other 

mixing models, e.g. the segregated-feed-model (described in Section 2.5.2), which 

calculate the precipitation process within two well-mixed compartments with different 

conditions in parallel, could be used to investigate this problem. However, other authors 

(e.g., Alvarez and Myerson [41]) found, that neither a plug flow model, nor an axial 

dispersion model could describe the width of the product PSD accurately. Spatially 

resolved simulations, i.e., a CFD-simulation of the precipitation process, could lead to a 

deeper insight here. However, 

 

“Turbulent precipitation still poses a challenge for comprehensive models integrating fluid 

dynamics and PBE modelling.” 

 

as noticed by Rigopoulos [21]. 
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Appendix A: Structogram of the PBE Implementation 

 

Precalculation of aggregation efficiency �(L1, L2,X)  (Eqn. 2-22) as 

look-up table for interpolation during time loop 

Set initial values for concentrations c1, c2 and number densities ni 

t=t+�t 

Number densities ni or 

conc. c1, c2 < 0 ? 
Set to 0 

Calculate supersaturation S (Eqn. 4-1) and critical radius rCr (Eqn. 2-17) 

Calculation of mean diffusion coefficient D (Eqn. 3-2) 

and nucleation rate Bhom (Eqn. 2-14) 

Interpolate aggregation efficiency �(L1, L2,X) for 

actual conversion X from look-up table 

Calculate aggregation birth rate Bagg,i (Eqn. 5-26) and 

death rate Dagg,i (Eqn. 5-15) for for every class i 

Calculate nucleation source term J (Eqn. 2-16) and 

growth source term �G/�L (Eqn. 5-11) for every class 

Calculate time derivatives of number densities dni/dt (Eqn. 5-11) 

and concentrations dc1/dt, dc2/dt (Eqn. 5-12 and 5-13) 

t > tmax ? 

Yes 

No 

No Yes 
Postprocessing, output 

Initialization of constants and parameters 

Supersaturation S < 1 ? Set to 1 
Yes 

No 
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Appendix B: Code (MATLAB R2008a) 

I. Calculation of the Molecular Charge Numbers 

MoleculeChargeNumbers.m 

%% Molecule Charge Numbers  
% (c) by Andreas Eitzlmayr  
  
clear 
  
  
%% Input:  
  
% pKs-Values and numbers of acidic/basic groups per  molecule:  
    % Polyacrylic acid:  
pKs1=1.9;  % Cystein-COOH  
n1=3; 
pKs2=8.4;  % Cystein-SH  
n2=3; 
pKs3=4.26; % Acrylic acid-COOH  
n3=51; 
    % Protamine:  
pKs4=12.1; % Arginine-NH  
n4=22; 
  
% Ionic product of water:  
Kw=10^-14;  % [molÂ²/lÂ²]  
  
% Initial mass concentrations before mixing:  
cm10=0.2;     %[g/l] Polyacrylic acid  
cm20=0.6;     %[g/l] Protamine  
  
% Mixing volume ratio V1/V2:  
VolRatio=1; 
  
% Molecular weight:  
M1=5400; %[g/mol] Polyacrylic acid  
M2=4300; %[g/mol] Protamine  
  
% Graphic format:  
figFontSize=18; 
labelFontSize=18; 
lineWidth=2; 
  
%% Calculation:  
  
% Initial molar concentrations:  
c10ini=cm10/M1; 
c20ini=cm20/M2; 
  
% Molar concentrations in the mixture:  
c10=c10ini*VolRatio/(1+VolRatio); 
c20=c20ini*1/(1+VolRatio); 
  
% pH-Range:  
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pH=linspace(0,14,14001); 
  
% H3O+ Concentration:  
cH3O=10.^-pH; 
  
% Equilibrium constants:  
K1=10^-pKs1; 
K2=10^-pKs2; 
K3=10^-pKs3; 
K4=10^-pKs4; 
  
% Conversion of Polyacrylic acid:  
X=linspace(0,1,6); 
m=size(X,2); 
  
n=size(pH,2); 
F=zeros(m,n); 
pH_F0=zeros(1,m); 
  
% Initial estimation of charge numbers (completely dissociated):  
zPAAmean=n1+n2+n3; 
zPROTmean=n4; 
  
zPAAmeanOLD=0; 
zPROTmeanOLD=0; 
  
ItCount=0; 
  
while  (zPAAmean-zPAAmeanOLD)^2 + (zPROTmean-zPROTmeanOLD )^2 > 1e-6 
  
    ItCount=ItCount+1; 
     
    % Actual concentrations:  
    c1=c10*(1-X); 
    c2=c20-c10*X*zPAAmean/zPROTmean; 
  
    zPAAmeanOLD=zPAAmean; 
    zPROTmeanOLD=zPROTmean; 
  
    zPAAmean=0; 
    zPROTmean=0; 
  
    for  j=1:m 
        for  i=1:n 
            F(j,i)=n1*K1*c1(j)/(cH3O(i)+K1) + n2*K2 *c1(j)/ ...  
                (cH3O(i)+K2) + n3*K3*c1(j)/(cH3O(i) +K3) + ...  
                Kw/cH3O(i) - cH3O(i) - n4*c2(j)*cH3 O(i)/(cH3O(i)+K4); 
        end  
        % Look for zero point of F (= Solution for pH):  
        [F0,Idx(j)]=min(abs(F(j,:))); 
        pH_F0(j)=pH(Idx(j)); 
  
        % Evaluate molecule charge numbers:  
        zPAA(j)=n1*K1/(cH3O(Idx(j))+K1)+n2*K2/(cH3O (Idx(j))+K2) + ...  
            n3*K3/(cH3O(Idx(j))+K3); 
        zPROT(j)=n4*cH3O(Idx(j))/(cH3O(Idx(j))+K4);  
  
        zPAAmean=zPAAmean+zPAA(j); 
        zPROTmean=zPROTmean+zPROT(j); 
    end  
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    % Mean molecule charge numbers:  
  
    zPAAmean=zPAAmean/size(zPAA,2); 
    zPROTmean=zPROTmean/size(zPROT,2); 
  
end  
  
  
% Evaluate number of charged groups at different pH -Values:  
% (independent of conversion!!)  
  
% for Cystein-COOH:  
  
p1=zeros(1,n); % Amount of dissociated Cystein-COOH per Molecule  
  
for  i=1:n 
    p1(i)=K1/(cH3O(i)+K1); 
end  
  
  
% for Cystein-SH:  
  
p2=zeros(1,n); % Amount of dissociated Cystein-SH per Molecule  
  
for  i=1:n 
    p2(i)=K2/(cH3O(i)+K2); 
end  
  
  
% Evaluate Molecule charge numbers at different pH- Values and conversions:  
  
% for Polyacrylic acid-COOH:  
  
p3=zeros(1,n); % Amount of dissociatedPolyacrylic acid-COOH Groups  per 
Molecule  
  
for  i=1:n 
    p3(i)=K3/(cH3O(i)+K3); 
end  
  
  
% Evaluate Molecule charge numbers at different pH- Values and conversions:  
  
% for Arginine-NH:  
  
p4=zeros(1,n); % Amount of dissociated Arginine-NH Groups per Mole cule  
  
for  i=1:n 
    p4(i)=cH3O(i)/(cH3O(i)+K4); 
end  
  
  
% Evaluate Charge numbers per molecule for conversi on 0 and 1:  
  
% Cystein-COOH:  
  
z10=p1(Idx(1))*n1; 
z11=p1(Idx(6))*n1; 
  
% Cystein-SH:  
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z20=p2(Idx(1))*n2; 
z21=p2(Idx(6))*n2; 
  
% PAA-COOH: 
  
z30=p3(Idx(1))*n3; 
z31=p3(Idx(6))*n3; 
  
% Arginine-NH:  
  
z40=p4(Idx(1))*n4; 
z41=p4(Idx(6))*n4; 
  
%% Output:  
  
% Plot Function F:  
  
plot(pH,F(1,:), '-b' , 'LineWidth' ,2) 
hold on 
plot(pH,F(2,:), '-b' , 'LineWidth' ,1) 
plot(pH,F(3,:), '--r' , 'LineWidth' ,2) 
plot(pH,F(4,:), '--r' , 'LineWidth' ,1) 
plot(pH,F(5,:), '-.k' , 'LineWidth' ,2) 
plot(pH,F(6,:), '-.k' , 'LineWidth' ,1) 
plot([min(pH) max(pH)],[0 0], ':k' , 'LineWidth' ,1) 
hold off  
  
% Graphic format:  
set(gca, 'FontSize' ,figFontSize); 
xlabel( 'pH' ); 
ylabel( 'Function F [mol/l]' ); 
  
%legend(['X = ',num2str(X(1))], ...  
%    ['X = ',num2str(X(2))], ...  
%    ['X = ',num2str(X(3))], ...  
%    ['X = ',num2str(X(4))], ...  
%    ['X = ',num2str(X(5))], ...  
%    ['X = ',num2str(X(6))]);  
  
axis([min(pH) max(pH) min(min(F)) max(max(F))]) 
  
% Save graphic:  
fileSaveName= 'MoleculeChargeNumF.eps'  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
  
% Plot zoomed graph of F:  
  
axis([10.5 10.7 -1e-4 1e-4]) 
legend([ 'X = ' ,num2str(X(1))], ...  
    [ 'X = ' ,num2str(X(2))], ...  
    [ 'X = ' ,num2str(X(3))], ...  
    [ 'X = ' ,num2str(X(4))], ...  
    [ 'X = ' ,num2str(X(5))], ...  
    [ 'X = ' ,num2str(X(6))], 'Location' , 'EastOutside' ); 
  
% Save graphic:  
fileSaveName= 'MoleculeChargeNumFzoom.eps'  
set(gcf, 'PaperpositionMode' , 'auto' ) 
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print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
  
  
% Plot Amount of dissociated Groups per Molecule p1 :  
  
  
plot(pH,p1, '-b' , 'LineWidth' ,2) 
hold on 
plot(pH,p3, '--r' , 'LineWidth' ,2) 
plot(pH,p2, '-.m' , 'LineWidth' ,2) 
plot(pH,p4, ':k' , 'LineWidth' ,2) 
plot([pH_F0(1) pH_F0(1)],[0 1], '-k' , 'LineWidth' ,0.5) 
plot([pH_F0(6) pH_F0(6)],[0 1], '-k' , 'LineWidth' ,0.5) 
hold off  
  
legend( 'Cysteine carboxy' , 'Acrylic acid carboxy' , 'Cysteine 
sulfide' , 'Guanidinium' , ...  
    'Location' , 'EastOutside' ) 
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
  
% Graphic format:  
set(gca, 'FontSize' ,figFontSize); 
xlabel( 'pH' ); 
ylabel( 'Charged amount' ); 
  
axis([min(pH) max(pH) min(min(p1)) max(max(p1))]) 
  
% Save graphic:  
fileSaveName= 'MoleculeChargeNumGroups.eps'  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
  
%% Text Output:  
  
disp([ 'pH at Conversion X = ' ,num2str(X(1)), ': ' ,num2str(pH_F0(1))]) 
disp([ 'pH at Conversion X = ' ,num2str(X(2)), ': ' ,num2str(pH_F0(2))]) 
disp([ 'pH at Conversion X = ' ,num2str(X(3)), ': ' ,num2str(pH_F0(3))]) 
disp([ 'pH at Conversion X = ' ,num2str(X(4)), ': ' ,num2str(pH_F0(4))]) 
disp([ 'pH at Conversion X = ' ,num2str(X(5)), ': ' ,num2str(pH_F0(5))]) 
disp([ 'pH at Conversion X = ' ,num2str(X(6)), ': ' ,num2str(pH_F0(6))]) 
disp([ 'Charged Cystein-carboxy per molecule: ' ,num2str(z10), ' - ' , ...  
    num2str(z11)]) 
disp([ 'Charged Cystein-sulfide per molecule: ' ,num2str(z20), ' - ' , ...  
    num2str(z21)]) 
disp([ 'Charged PAA-carboxy per molecule: ' ,num2str(z30), ' - ' , ...  
    num2str(z31)]) 
disp([ 'Charged Guanidinium per molecule: ' ,num2str(z40), ' - ' , ...  
    num2str(z41)]) 
  
disp([ 'Total charge number PAA (negative): ' ,num2str(z10+z20+z30), ...  
    ' - ' ,num2str(z11+z21+z31), ', Mean: ' , ...  
    num2str((z10+z20+z30+z11+z21+z31)/2)]) 
disp([ 'Total charge number Protamine (positive): ' ,num2str(z40), ...  
    ' - ' ,num2str(z41), ', Mean: ' ,num2str((z40+z41)/2)]) 
  
disp([ 'Iteration Counter = ' ,num2str(ItCount)]) 
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II. Nucleation Parameter Study 

NucleationRate.m 

%% Nucleation Rate (classical nucleation theory, Me rsmann 2000)  
  
function  B=NucleationRate(D,c,cequ,sig,T,Vm,nd) 
  
  
global  NA 
global  k 
  
  
% Nucleation rate:  
B = 1.5*D*(c*NA*1000)^(7/3)*sqrt(sig/(k*T))*Vm * ...  
    exp(-16*pi*sig^3*Vm^2/(3*(k*T)^3*(nd*log(c/cequ ))^2)); 
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Nucleation.m 

%% Nucleation  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  z1 
global  z2 
global  cequ 
global  D1 
global  D2 
global  rh1 
global  rh2 
global  D 
global  cS1 
global  cS2 
global  c 
global  S 
  
global  k 
global  NA 
global  K 
global  c10 
global  c20 
global  T 
global  Vm 
global  sig 
global  cS 
global  nd 
global  Spezies 
  
% Select Calculation:  
  
ID1=3; 
  
% ID1 =  
% 0 ... Investigate Nucleation Rate  
% 1 ... Calculate free energy vs. cluster size  
  
Spezies=0; 
  
% 0 ... Polyacrylic acid + Protamine  
% 1 ... Bariumsulfate  
  
%% Input:  
  
% Constants:  
  
k=1.380650424e-23;      % [J/K] Boltzmann's constant  
NA=6.0221417930e23;       % [1/mol] Avogadro's constant  
  
K=0.414;   % Interfacial energy constant  
           % according to Mersmann 2000 between 0.310 and 0.41 4 
Kad=0;     % free variable for adjusted K  
  
  
% Spezies specific parameters:  
switch  Spezies 
    case  0 % Polyacrylic acid + Protamine  
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        name1= 'Polyacrylic acid cysteine' ; 
        name2= 'Protamine' ; 
        M1=5400;                 % [g/mol] Molar masses  
        M2=4300; 
        z1=-56.98;                  % [] molecular charge numbers  
        z2=21.27; 
        rh1=1.40;           % [nm] hydrodynamic radius  
        rh2=1.35;           % (corresponding to diffusion coefficient)  
        rhoS=1400;               % [kg/m³] Solid density  
        etaW=0.001;              % [Pa s] dynamic viscosity  
  
        cequ=1e-10;              % [mol/l] Equilibium concentration  
  
        B_Desired=1e17;     % [1/m³s] Desired nucleation rate to adjust K  
  
        % Initial conditions:  
        cm10=0.2;     %[g/l] Polyacrylic acid  
        cm20=0.6;     %[g/l] Protamine  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
    case  1 % Bariumsulfate  
         
        name1= 'Barium' ; 
        name2= 'Sulfate' ; 
        M1=137.3;              % [g/mol] Molar masses  
        M2=96.1; 
        z1=2;                  % [] molecular charge numbers  
        z2=-2; 
        rh1=0.44482;           % [nm] hydrodynamic radius  
        rh2=0.44482;           % (corresponding to diffusion coefficient)  
        rhoS=4500;             % [kg/m³] Solid density  
        etaW=0.001;            % [Pa s] dynamic viscosity  
  
        cequ=sqrt(1.01e-4)*1e-3;  % [mol/l] Equilibium concentration  
  
        B_Desired=1.18e11;     % [1/m³s] Desired nucleation rate to adjust 
K 
  
        % Initial conditions:  
        cm10=0.2746;           %[g/l] Polyacrylic acid  
        cm20=0.1922;           %[g/l] Protamine  
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
         
end  
  
  
% Integration parameters:  
timeStep=2; % [s]  
tmax=480;      % [s]  
  
% Conditions:  
T=295.15;                      % [K] Temperature  
  
% Graphic format:  
figFontSize=18; 
labelFontSize=18; 
lineWidth=2; 
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%% Calculation:  
  
%Diffusion coefficients [m²/s]:  
D1=k*T/(6*pi*etaW*rh1*1e-9); 
D2=k*T/(6*pi*etaW*rh2*1e-9); 
  
% Initial molar concentrations [mol/l]:  
c10ini=cm10/M1; 
c20ini=cm20/M2; 
  
% Molar concentrations in the mixture:  
c10=c10ini*VolRatio/(1+VolRatio); 
c20=c20ini*1/(1+VolRatio); 
  
% Solid concentrations [mol/l]:  
% (due to electrical neutrality)  
cS1=z2*rhoS/(z2*M1-z1*M2); % Polyacrylic acid (1)  
cS2=-cS1*z1/z2;            % Protamine (2)  
nd=2; %1-z1/z2;                % Dissociation number  
cS=cS1+cS2;           % Total  
  
% Mean solid molecular volume:  
Vm=1/(1000*NA*cS);    %[m³]  
  
% Interfacial energy:  
sig=K*k*T*(1000*cS*NA)^(2/3)*log(cS/cequ); %[J/m²]  
  
switch  ID1 
    case  0 
        % Investigate Nucleation Rate:  
  
        % Initial Supersaturation:  
        c=sqrt(c10*c20); 
        S=c/cequ; 
  
        % Initial diffusion coefficient:  
        D=(D1*c10+D2*c20)/(c10+c20); 
         
        NucPlots 
    case  1 
        % Calculate Free energy vs. cluster size  
        n=51;                % number of points  
        r=linspace(0,5,n)*1e-9;  % [m] cluster sizes1  
         
        Gsurf=zeros(1,n); 
        Gvol=zeros(1,n); 
        Gtot=zeros(1,n); 
         
        S=1000; % Supersaturation  
        DgSL=nd*k*T*log(S)/Vm;  % [J/m³] volume specific phase transf. 
energy  
        rc=2*sig/DgSL;   % [m] critical radius  
         
        for  i=1:n 
            Gsurf(i)=4*pi*r(i)^2*sig;     % Surface free energy [J]  
            Gvol(i)=-4/3*pi*r(i)^3*DgSL;   % Volume free energy [J]  
            Gtot(i)=Gsurf(i)+Gvol(i);     % Total free energy [J]  
        end  
         
        % Print Results:  
        r=r*1e9; 
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        rc=rc*1e9; 
        plot(r,Gsurf, '-.r' , 'LineWidth' ,lineWidth/2); 
        hold on 
        plot(r,Gtot, '-b' , 'LineWidth' ,lineWidth); 
        plot(r,Gvol, ':k' , 'LineWidth' ,lineWidth/2); 
        plot([rc rc],[-1e-18 1e-18], '--k' , 'LineWidth' ,lineWidth/2); 
        hold off ; 
  
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Cluster radius r [nm]' ); 
        ylabel( 'Free energy \DeltaG [J]' ); 
        axis([0 4 -1e-18 1e-18]); 
         
        Pos=[560 530 560 420]; 
        set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
         
        legend( 'Surface energy' , 'Total energy' , ...  
            'Phase transf. energy' , 'Critical radius' , 'Location' , ...  
            'EastOutside' ); 
         
        % Save graphic:  
        fileSaveName= 'FreeEnergyClusterSize.eps' ; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    otherwise  
end  
     
%% Output:  
  
% Text:  
  
disp( 'NUCLEATION' ) 
disp( '************************************************** ************' ) 
disp( ' ' ) 
  
disp( 'INPUT:' ) 
  
disp([name1, ' (1):' ]) 
disp([ 'Molar mass:                       ' , num2str(M1), ' g/mol' ]) 
disp([ 'Electrical charge number:         ' , num2str(z1)]) 
disp([ 'hydrodynamic radius:              ' , num2str(rh1), ' nm' ]) 
disp([ 'Initial mass concentration:       ' , num2str(cm10), ' g/l' ]) 
disp( ' ' ) 
  
disp([name2, ' (2):' ]) 
disp([ 'Molar mass:                       ' , num2str(M2), ' g/mol' ]) 
disp([ 'Electrical charge number:         ' , num2str(z2)]) 
disp([ 'hydrodynamic radius:              ' , num2str(rh2), ' nm' ]) 
disp([ 'Initial mass concentration:       ' , num2str(cm20), ' g/l' ]) 
disp( ' ' ) 
  
disp([ 'Interfacial energy constant:      ' , num2str(K)]) 
disp([ 'Dissociation number:              ' , num2str(nd)]) 
disp([ 'Solid density:                    ' , num2str(rhoS), ' kg/m³' ]) 
disp([ 'Dynamic fluid viscosity:          ' , num2str(etaW), ' Pa s' ]) 
disp([ 'Solubility product:               ' , num2str(cequ^2), ...  
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    ' (mol/l)²' ]) 
disp([ 'Temperature:                      ' , num2str(T), ' K' ]) 
disp( ' ' ) 
disp( ' ' ) 
  
disp( 'OUTPUT:' ) 
  
disp([ 'Diffusion coefficient 1:          ' , num2str(D1), ' m²/s' ]) 
disp([ 'Diffusion coefficient 2:          ' , num2str(D2), ' m²/s' ]) 
disp([ 'Initial concentration 1:          ' , num2str(c10), ' mol/l' ]) 
disp([ 'Initial concentration 2:          ' , num2str(c20), ' mol/l' ]) 
disp([ 'Solid concentration 1:            ' , num2str(cS1), ' mol/l' ]) 
disp([ 'Solid concentration 2:            ' , num2str(cS2), ' mol/l' ]) 
disp([ 'Total solid concentration:        ' , num2str(cS), ' mol/l' ]) 
disp([ 'Mean solid molecular volume:      ' , num2str(Vm), ' m³' ]) 
disp([ 'Equilibrium concentration:        ' , num2str(cequ), ' mol/l' ]) 
disp([ 'Interfacial energy:               ' , num2str(sig), ' J/m²' ]) 
  
if  Kad==0 
else  
    disp([ 'Adjusted interf. energy const. K: ' , num2str(Kad)]) 
end  
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NucPlots.m 

%% Nucleation Plots  
% (c) by Andreas Eitzlmayr  
  
global  k 
global  NA 
global  c10 
global  c20 
  
global  c 
global  S 
global  D 
global  cequ 
global  K 
  
global  T 
global  Vm 
global  sig 
global  cS 
global  nd 
global  rh1 
global  rh2 
global  Spezies 
  
% Graphic format:  
figFontSize=18; 
lineWidth=2; 
  
  
  
%% Nucelation vs. equilibrium conc./K-Sigma  
  
fileSaveName= 'FigNucEquK.eps' ; 
  
n=100;  % Number of different equilibrium concentrations CE qu 
m=3;    % Number of different Interfacial energy constants Ksig  
  
CEqu=logspace(-12,-6,n);      % equilibrium concentrations  
Ksig=linspace(0.310,0.414,m); % Interfacial energy constants  
  
Sigma=zeros(m,n);   % Interfacial energy [J/m²]  
B=zeros(m,n);       % Nucleation rate [1/m³s]  
rc=zeros(m,n);      % Critical radius [nm]  
  
for  i=1:m   % Change Ksig  
    for  j=1:n      % change CEqu  
       Sigma(i,j)=Ksig(i)*k*T*(1000*cS*NA)^(2/3)*lo g(cS/CEqu(j)); 
       B(i,j)=NucleationRate(D,c,CEqu(j),Sigma(i,j) ,T,Vm,nd); 
       rc(i,j)=2*Sigma(i,j)*Vm/(nd*k*T*log(c/CEqu(j )))*1e9; 
    end  
end  
  
% look for maximum nucleation rate:  
[Bmax,I]=max(max(B)); 
CEquMax=CEqu(I); 
  
% Print nucleation rate results:  
loglog(CEqu,B(1,:), '-b' ,CEqu,B(2,:), '--r' ,CEqu,B(3,:), '-.m' , ...  
    'LineWidth' ,lineWidth); 
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% Graphic format:  
legend([ 'K = ' ,num2str(Ksig(1))],[ 'K = ' ,num2str(Ksig(2))],[ 'K = ' , ...  
    num2str(Ksig(3))], 'Location' , 'SouthWest' ); 
set(gca, 'FontSize' ,figFontSize); 
set(gca, 'XTick' ,[1e-10 1e-9 1e-8 1e-7 1e-6 1e-5]); 
xlabel( 'Equilibrium concentration c* [mol/l]' ); 
ylabel( 'Nucleation rate B_{hom} [1/m^{3}s]' ); 
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
% Print critical radius results:  
fileSaveName= 'FigRCEquK.eps' ; 
semilogx(CEqu,rc(3,:), '-b' ,CEqu,rc(2,:), '--r' ,CEqu,rc(1,:), '-.m' , ...  
    'LineWidth' ,lineWidth); 
  
% Graphic format:  
legend([ 'K = ' ,num2str(Ksig(3))],[ 'K = ' ,num2str(Ksig(2))],[ 'K = ' , ...  
    num2str(Ksig(1))], 'Location' , 'NorthWest' ); 
set(gca, 'FontSize' ,figFontSize); 
set(gca, 'XTick' ,[1e-10 1e-9 1e-8 1e-7 1e-6 1e-5]); 
xlabel( 'Equilibrium concentration c* [mol/l]' ); 
ylabel( 'Critical radius r_{cr} [nm]' ); 
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
%Text Output:  
disp([ 'Saved as: ' , fileSaveName]); 
disp([ 'Maximum Nucleationrate:           ' , num2str(Bmax), ' 1/m^{3}s' ]) 
disp([ 'at equilibrium Concentration:     ' , num2str(CEquMax), ' mol/l' ]) 
  
  
%% Nucleation and Critical nuclei radius vs. supers aturation:  
  
fileSaveName= 'FigNucSup.eps' ; 
  
m=100;              % Number of different Supersaturations  
  
if  Spezies==0;  % Polyacrylic acid & protamine  
    Sup=logspace(1,8,m); % Supersaturations  
elseif  Spezies==1; % Bariumsulfate  
    Sup=logspace(1,4,m); % Supersaturations  
end  
  
KSig1=[0.310 0.362 0.414]; % 3 different interfacial energies  
Sigma1=KSig1*k*T*(1000*cS*NA)^(2/3)*log(cS/cequ);   
  
if  Spezies==1; % Bariumsulfate  
    Sigma1=[0.1 0.12 0.14];   % [N/m]  
end  
  
n = size(Sigma1,2); 
  
B=zeros(n,m);      % Nucleation rates [1/m³s]  
rc=zeros(n,m);     % Critical radius [nm]  
  
for  i=1:n 
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    for  j=1:m 
        B(i,j)=NucleationRate(D,cequ*Sup(j),cequ,Si gma1(i),T,Vm,nd); 
        rc(i,j)=2*Sigma1(i)*Vm/(nd*k*T*log(Sup(j))) *1e9; 
    end  
end  
  
% Print nucleation rate results:  
loglog(Sup,B(1,:), '-b' ,Sup,B(2,:), '--r' ,Sup,B(3,:), '-.m' , ...  
    'LineWidth' ,lineWidth); 
  
% Graphic format:  
axis([min(Sup) max(Sup) 1e0 1e32]); 
set(gca, 'FontSize' ,figFontSize); 
xlabel( 'Supersaturation S' ); 
ylabel( 'Nucleation rate B_{hom} [1/m^{3}s]' ); 
  
if  Spezies==0;  % Polyacrylic acid & protamine  
    legend([ 'K = ' ,num2str(KSig1(1))],[ 'K = ' ,num2str(KSig1(2))], ...  
        [ 'K = ' ,num2str(KSig1(3))], 'Location' , 'SouthEast' ); 
elseif  Spezies==1; % Bariumsulfate  
    legend([ '\sigma = ' ,num2str(Sigma1(1)), ' N/m' ],[ '\sigma = ' , ...  
        num2str(Sigma1(2)), ' N/m' ],[ '\sigma = ' ,num2str(Sigma1(3)), ...  
        ' N/m' ], 'Location' , 'SouthEast' ); 
end  
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
  
  
% Print critical radius results:  
fileSaveName= 'FigRCSup.eps' ; 
semilogx(Sup,rc(3,:), '-b' ,Sup,rc(2,:), '--r' ,Sup,rc(1,:), '-.m' , ...  
    'LineWidth' ,lineWidth); 
hold on 
semilogx([min(Sup) max(Sup)],[rh1 rh1], '--b' ,[min(Sup) max(Sup)], ...  
    [rh2 rh2], '-.k' , 'LineWidth' ,0.5); 
hold off  
  
% Graphic format:  
set(gca, 'FontSize' ,figFontSize); 
axis([min(Sup) max(Sup) 0 10]); 
xlabel( 'Supersaturation S' ); 
ylabel( 'Critical radius r_{cr} [nm]' ); 
legend([ 'K = ' ,num2str(KSig1(3))],[ 'K = ' ,num2str(KSig1(2))], ...  
    [ 'K = ' ,num2str(KSig1(1))], 'r_{h} protamine' , ...  
    'r_{h} polyacrylic acid' , 'Location' , 'NorthEast' ); 
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
  
  
%% Nucleation rate vs. interfacial energy constant K 
  
fileSaveName= 'FigNucIntE.eps' ; 
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n=100;                       % Number of different  
Ksig=linspace(0.25,0.45,n);   % Interfacial energy constants  
  
m=4;                        % Number of different supersaturations  
Sup=[1e7 1e6 1e5 1e4]; 
  
  
B=zeros(m,n);               % Nucleation Rates [1/m³s]  
Sigma=zeros(1,n);           % Interfacial energies [J/m²s]  
  
for  j=1:m 
    for  i=1:n 
        Sigma(i)=Ksig(i)*k*T*(1000*cS*NA)^(2/3)*log (cS/cequ); 
        B(j,i)=NucleationRate(D,cequ*Sup(j),cequ,Si gma(i),T,Vm,nd); 
    end  
end  
  
% Print Results:  
semilogy(Ksig,B(1,:), '-b' , 'LineWidth' ,lineWidth) 
hold on 
semilogy(Ksig,B(2,:), '--r' , 'LineWidth' ,lineWidth) 
semilogy(Ksig,B(3,:), '-.m' , 'LineWidth' ,lineWidth) 
semilogy(Ksig,B(4,:), ':k' , 'LineWidth' ,lineWidth) 
hold off  
  
% Graphic format:  
set(gca, 'FontSize' ,figFontSize); 
xlabel( 'Interfacial energy constant K' ); 
ylabel( 'Nucleation rate B_{hom} [1/m^{3}s]' ); 
axis([min(Ksig),max(Ksig),10^0,10^30]); 
legend([ 'S = 10^{' ,num2str(log10(Sup(1))), '}' ], ...  
    [ 'S = 10^{' ,num2str(log10(Sup(2))), '}' ], ...  
    [ 'S = 10^{' ,num2str(log10(Sup(3))), '}' ], ...  
    [ 'S = 10^{' ,num2str(log10(Sup(4))), '}' ], 'Location' , 'SouthWest' ) 
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
  
%% Nucleation vs. Molecular volume (Solid concentra tion)  
  
fileSaveName= 'FigNucv.eps' ; 
  
n=100;                       % Number of different solid conc.  
CS=logspace(-3,2,n);        % Solid concentrations [mol/]  
  
m=3;                        % Number of different constants K  
Ksig=[0.310 0.362 0.414]; 
  
V=zeros(1,n);               % Molecular volumes [m³]  
Sigma=zeros(m,n);           % Interfacial energies [J/m²]  
B=zeros(m,n);               % Nucleation Rates [1/m³s]  
  
for  j=1:m 
    for  i=1:n 
        V(i)=1/(1000*NA*CS(i)); 
        Sigma(j,i)=Ksig(j)*k*T*(1000*CS(i)*NA)^(2/3 )*log(CS(i)/cequ); 
        B(j,i)=NucleationRate(D,c,cequ,Sigma(j,i),T ,V(i),nd); 
    end  
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end  
  
% Print results:  
loglog(V,B(1,:), '-b' , 'LineWidth' ,lineWidth); 
hold on 
loglog(V,B(2,:), '--r' , 'LineWidth' ,lineWidth); 
loglog(V,B(3,:), '-.m' , 'LineWidth' ,lineWidth); 
hold off  
  
% Graphic format:  
axis([min(V),max(V),0.1*min(min(B)),10*max(max(B))] ); 
set(gca, 'FontSize' ,figFontSize); 
xlabel( 'Molecular volume V_{m} [m^{3}]' ); 
ylabel( 'Nucleation rate B_{hom} [1/m^{3}s]' ); 
legend([ 'K = ' ,num2str(Ksig(1))],[ 'K = ' ,num2str(Ksig(2))], ...  
    [ 'K = ' ,num2str(Ksig(3))], 'Location' , 'SouthEast' ); 
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
         
  
%% Nucleation vs. Temperature  
  
fileSaveName= 'FigNucT.eps' ; 
  
n=10;                           % Number of different Temperatures  
Temp=linspace(273.15,323.15,n); % Temperatures [K]  
  
Sigma=zeros(1,n);           % Interfacial energies [J/m²]  
B=zeros(1,n);               % Nucleation Rates [1/m³s]  
  
for  i=1:n 
    Sigma(i)=K*k*Temp(i)*(1000*cS*NA)^(2/3)*log(cS/ cequ); 
    B(i)=NucleationRate(D,c,cequ,Sigma(i),Temp(i),V m,nd); 
end  
  
% Print results:  
plot(Temp,B, 'LineWidth' ,lineWidth); 
  
% Graphic format:  
set(gca, 'FontSize' ,figFontSize); 
xlabel( 'Temperature T [K]' ); 
ylabel( 'Nucleation rate B_{hom} [1/m^{3}s]' ); 
title([ 'cequ=' ,num2str(cequ), ' mol/l, S=' ,num2str(S), ', K=' , ...  
    num2str(K)]); 
  
% Save graphic:  
set(gcf, 'PaperpositionMode' , 'auto' ) 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
disp([ 'Saved as: ' , fileSaveName]) 
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III. Aggreation Parameter Study 

Collisionkernel.m 

%% Collision kernel for brownian motion (Smoluchows ki 1917)  
  
function  Beta=Collisionkernel(z) 
  
% z = L1/L2 ... size ratio of 2 colliding particles   
  
global  k 
global  T 
global  etaW 
  
Beta=2*k*T/(3*etaW)*(2+z+1/z); % [m³/s] 
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HydrodynCorr.m 

%% Hydrodynamic correction  
  
function  BHyd=HydrodynCorr(a,L1,L2) 
  
% a ... surface to surface distance  
% L1, L2 ... Particle sizes  
  
z=a*(L1+L2)/(L1*L2); 
  
BHyd=(6*z.^2+13*z+2)./(6*z.^2+4*z); 
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HamakerPotential.m 

%% Hamaker Potential  
  
function  PhiVDW=HamakerPotential(a,r1,r2) 
  
% a ... Surface to surface distance [m]  
% r1, r2 ... particle radii [m]  
  
global  A 
  
x=a/r1;   % dimensionless surface to surface distance  
  
z=r2/r1;  % particle size ratio  
  
PhiVDW = -A/6 * ( 2*z./(x.^2+2*x*(1+z)) + 2*z./(x.^ 2+2*x*(1+z)+4*z) + ...  
    log( (x.^2+2*x*(1+z)) ./ (x.^2+2*x*(1+z)+4*z) )  ); 
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GouyChapman.m 

%% Gouy-Chapman electrostatic potential  
  
function  PhiEl=GouyChapman(a,r1,r2,c1,c2) 
  
% a ... Surface to surface distance [m]  
% r1, r2 ... particel radii [m]  
% c1, c2 ... component concentrations [mol/l]  
  
global  NA 
global  k 
global  T 
global  e 
global  c2pzc 
global  eps0 
global  epsr 
global  z1 
global  z2 
  
I=0.5*(c1*z1^2+c2*z2^2);  % ionic strength [mol/l]  
  
kappa=sqrt(2*e^2*NA*I/(eps0*epsr*k*T));  % reciprocal Debye length [m]  
  
PsiP=log(c2/c2pzc);  % surface potential; factor kT/ze is canceled out!  
  
PhiEl = 128*pi*1000*(c1+c2)*NA*k*T/kappa^2 * (tanh( PsiP/4))^2 * ...  
    r1*r2./(r1+r2+a) .* exp(-kappa*a); %[J]  
% Factor 1000 because c1 and c2 are in mol/l !  
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StabilityIntegrand.m 

%% Stability ratio Integrand  
  
function  StIn=StabilityIntegrand(a) 
  
% a ... Surface to surface distance [m]  
% L1_SI, L2_SI ... particle sizes [m]  
% c1_SI, c2_SI ... component concentrations [mol/l]  
  
global  k 
global  T 
  
global  L1_SI 
global  L2_SI 
global  c1_SI 
global  c2_SI 
global  ScaleFac 
  
r1=L1_SI/2; 
r2=L2_SI/2; 
c1=c1_SI; 
c2=c2_SI; 
  
  
StIn = HydrodynCorr(a,L1_SI,L2_SI) .* exp((HamakerP otential(a,r1,r2) + ...  
    GouyChapman(a,r1,r2,c1,c2)) / (k*T)) ./ (r1+r2+ a).^2; 
StIn = StIn/ScaleFac; 
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 AggregationEfficiency.m 

%% Aggregation efficiency (dimensionless)  
  
function  Alpha=AggEfficiency(L1,L2,c1,c2) 
  
global  L1_SI 
global  L2_SI 
global  c1_SI 
global  c2_SI 
global  ScaleFac 
  
L1_SI=L1; 
L2_SI=L2; 
c1_SI=c1; 
c2_SI=c2; 
  
%Evaluate scaling factor (to avoid numerical proble ms with integration):  
  
ScaleFac=1;   % Scaling factor for Stability integrand  
  
n=20; 
a=logspace(-11,-6,n); 
StIn=zeros(1,n); 
  
for  i=1:n 
    StIn(i)=StabilityIntegrand(a(i)); 
end  
  
ScaleFac=max(StIn); 
  
if  isinf(ScaleFac)==1 || ScaleFac>1e100 
    % Integral is infinity  
    Integral=0; 
    Alpha=0; 
else  
  
    % Integration:  
  
    LowerB=1e-20; 
     
    Integral=quad(@StabilityIntegrand,LowerB,1e-10) ; 
    Integral=Integral+quad(@StabilityIntegrand,1e-1 0,1e-9); 
    Integral=Integral+quad(@StabilityIntegrand,1e-9 ,1e-8); 
  
    OldIntegral=0; 
    Bound=1e-8; 
  
    while  (Integral-OldIntegral)/Integral > 0.01 
        OldIntegral=Integral; 
        Integral=Integral+quad(@StabilityIntegrand, Bound,10*Bound); 
        Bound=Bound*10; 
    end  
  
    W=Integral*(L1+L2)/2*ScaleFac; 
  
    % Complete kernel:  
    Alpha = 1 / W; 
end  
end  
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PlotCollisionkernel.m 

%% Plot Collisionkernel and Hydrodynamic Correction  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  z1 
global  z2 
global  D1 
global  D2 
  
global  k 
global  NA 
global  e 
global  c10 
global  c20 
global  T 
global  etaW 
global  A 
global  c2pzc 
global  eps0 
global  epsr 
  
% variables *_SI are arguments for function  
% StabilityIntegrand, they must be defined global, because  
% for integration of StablityIntegrand only 1 argum ent is  
% allowed  
                 
  
% Select Calculation:  
  
ID1=1; 
  
% ID1 =  
% 0 ... Collision kernel depending on L1 and L2  
% 1 ... Collision kernel depending on ration L1/L2  
% 2 ... Hydrodynamic correction  
  
  
Spezies=0; 
  
% 0 ... Polyacrylic acid + Protamine  
% 1 ... Bariumsulfate  
  
%% Input:  
  
% Constants:  
  
k=1.381e-23;      % [J/K] Boltzmann's constant  
NA=6.022e23;     % [1/mol] Avogadro's constant  
e=1.602e-19;    % [As] elementary charge  
eps0=8.854e-12;         % [As/Vm] electric constant  
epsr=80;                 % [] relative permittivity  
  
K=0.414;   % Interfacial energy constant  
           % according to Mersmann 2000 between 0.310 and 0.41 4 
Kad=0;     % free variable for adjusted K  
  
A=1e-20;    % Hamaker constant [J]  
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% Spezies specific parameters:  
switch  Spezies 
    case  0 % Polyacrylic acid + Protamine  
         
        name1= 'Polyacrylic acid cysteine' ; 
        name2= 'Protamine' ; 
        M1=5400;                 % [g/mol] Molar masses  
        M2=4300; 
        z1=-56.99;                  % [] molecular charge numbers  
        z2=20.72; 
        rh1=1.40;           % [nm] hydrodynamic radius  
        rh2=1.35;           % (corresponding to diffusion coefficient)  
        rhoS=1400;               % [kg/m³] Solid density  
        etaW=0.001;              % [Pa s] dynamic viscosity  
  
        % Initial conditions:  
        cm10=0.2;     %[g/l] Polyacrylic acid  
        cm20=0.6;     %[g/l] Protamine  
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
         
         
        c2pzc=1e-4;       %[mol/l] concentr. of Potential determining ions  
         
    case  1 % Bariumsulfate  
         
        name1= 'Barium' ; 
        name2= 'Sulfate' ; 
        M1=137.3;              % [g/mol] Molar masses  
        M2=96.1; 
        z1=2;                  % [] molecular charge numbers  
        z2=-2; 
        rh1=0.44482;           % [nm] hydrodynamic radius  
        rh2=0.44482;           % (corresponding to diffusion coefficient)  
        rhoS=4500;             % [kg/m³] Solid density  
        etaW=0.001;            % [Pa s] dynamic viscosity  
  
        % Initial conditions:  
        cm10=0.1373;           %[g/l] Polyacrylic acid  
        cm20=0.0961;           %[g/l] Protamine  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
end  
  
  
% Integration parameters:  
timeStep=2; % [s]  
tmax=480;      % [s]  
  
% Conditions:  
T=293.15;                       % [K] Temperature  
  
% Graphic format:  
figFontSize=18; 
labelFontSize=14; 
lineWidth=2; 
  
%% Calculation:  
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% Diffusion coefficients [m²/s]:  
D1=k*T/(6*pi*etaW*rh1*1e-9); 
D2=k*T/(6*pi*etaW*rh2*1e-9); 
  
% Initial molar concentrations [mol/l]:  
c10ini=cm10/M1; 
c20ini=cm20/M2; 
  
  
% Molar concentrations in the mixture:  
c10=c10ini*VolRatio/(1+VolRatio); 
c20=c20ini*1/(1+VolRatio); 
  
switch  ID1 
    case  0 
     
         
        % Collision kernel (depending on L1 and L2):  
  
        n=50; % number of points  
  
        x=linspace(10,100,n); % particle sizes [nm]  
  
        Beta=zeros(n,n); 
        BetaDimless=Beta; 
         
        for  i=1:n 
            for  j=1:n 
                % collision frequency for sizes x(i) and x(j):  
                Beta(i,j)=Collisionkernel(x(i)/x(j) );    
                BetaDimless(i,j)=Beta(i,j)*3*etaW/( 2*k*T); 
            end   
        end  
  
    case  1 
         % Collision kernel (depending on the ratio L1/L2):  
          
         n=80;  % Number of points  
         v=4;   % Maximum ratio L1/L2  
         z=logspace(0,v,n); 
         Beta=zeros(1,n); 
         BetaDimless=Beta; 
          
         for  i=1:n 
             Beta(i)=Collisionkernel(z(i)); 
             BetaDimless(i)=Beta(i)*3*etaW/(2*k*T);  
         end  
          
    case  2 
         
        % Hydrodynamic correction:  
  
        n=50;   % number of points BHyd(r/r*)  
         
        r=logspace(-1,2,n); % surface to surface distance  
        BHyd=zeros(1,n);    % hydrodynamic correction  
         
        for  i=1:n 
            BHyd(i)=HydrodynCorr(r(i),2,2); 
            % For L1=L2=2 is r*=1  
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        end  
  
    otherwise  
end  
  
%% Grafic output  
  
switch  ID1  
    case  0 
        % Plot collision kernel (depending on L1 and L2)  
  
        colormap(jet); 
        surf(x,x,Beta); 
        view([0,0,1]); 
        colorbar( 'location' , 'EastOutside' ); 
  
        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Particle size L_{1} [nm]' ); 
        ylabel( 'Particle size L_{2} [nm]' ); 
        axis([min(x) max(x) min(x) max(x)]); 
        title( 'Collision kernel \beta_{coll} [m^{3}/s]' ); 
  
        % Save graphic:  
        fileSaveName= 'Collisionkernel_Smol1.eps'  
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
  
        surf(x,x,BetaDimless); 
        view([0,0,1]); 
        colorbar( 'location' , 'EastOutside' ); 
  
        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Particle size L_{1} [nm]' ); 
        ylabel( 'Particle size L_{2} [nm]' ); 
        axis([min(x) max(x) min(x) max(x)]); 
        title( 'Dimensionless collision kernel \beta^{*}_{coll}' ); 
  
        % Save graphic:  
        fileSaveName= 'Collisionkernel_Smol1dimless.eps'  
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
  
    case  1 
        % Plot collision kernel (depending on ratio L1/L2)  
  
        loglog(z,Beta, 'LineWidth' ,lineWidth); 
  
        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Particle size ratio L_{1}/L_{2}' ); 
        ylabel( 'Collision kernel [m^{3}/s]' ); 
  
        % Save graphic:  
        fileSaveName= 'Collisionkernel_Smol2.eps'  
        set(gcf, 'PaperpositionMode' , 'auto' ) 
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        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
         
        % Plot dimensionless collision kernel (depending on  ratio L1/L2)  
  
        loglog(z,BetaDimless, 'LineWidth' ,lineWidth); 
  
        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Particle size ratio L_{1}/L_{2}' ); 
        ylabel( 'Dimensionless collision kernel' ); 
  
        % Save graphic:  
        fileSaveName= 'Collisionkernel_Smol2dimless.eps'  
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    case  2 
        % Plot hydrodynamic correction      
        semilogx(r,BHyd, 'LineWidth' ,lineWidth); 
        hold on 
        semilogx([min(r) max(r)],[1 1], '--' , 'LineWidth' ,lineWidth/2); 
        hold off  
         
        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        axis([min(r),max(r),0,max(BHyd)*1.1]); 
        xlabel( 'Specific surface to surface distance r/r*' ); 
        ylabel( 'Hydrodynamic correction' ); 
  
        % Save graphic:  
        fileSaveName= 'HydrodynCorr.eps'  
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    otherwise  
end  
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PlotInteracPotentials.m 

%% Plot Interaction Potentials  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  z1 
global  z2 
global  D1 
global  D2 
  
global  k 
global  NA 
global  e 
global  c10 
global  c20 
global  T 
global  etaW 
global  A 
global  c2pzc 
global  eps0 
global  epsr 
  
% variables *_SI are arguments for function  
% StabilityIntegrand, they must be defined global, because  
% for integration of StablityIntegrand only 1 argum ent is  
% allowed  
  
% Select Calculation:  
  
ID1=1; 
  
% ID1 =  
% 0 ... Hamaker potential  
% 1 ... electrostatic potential + Total interaction  potential  
% 2 ... Surface potential  
  
  
Spezies=0; 
  
% 0 ... Polyacrylic acid + Protamine  
% 1 ... Bariumsulfate  
  
%% Input:  
  
% Constants:  
  
k=1.381e-23;      % [J/K] Boltzmann's constant  
NA=6.022e23;     % [1/mol] Avogadro's constant  
e=1.602e-19;    % [As] elementary charge  
eps0=8.854e-12;         % [As/Vm] electric constant  
epsr=80;                 % [] relative permittivity  
  
K=0.414;   % Interfacial energy constant  
           % according to Mersmann 2000 between 0.310 and 0.41 4 
Kad=0;     % free variable for adjusted K  
  
A=1e-20;    % Hamaker constant [J]  
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% Spezies specific parameters:  
switch  Spezies 
    case  0 % Polyacrylic acid + Protamine  
         
        name1= 'Polyacrylic acid cysteine' ; 
        name2= 'Protamine' ; 
        M1=5400;                 % [g/mol] Molar masses  
        M2=4300; 
        z1=-56.99;                  % [] molecular charge numbers  
        z2=20.72; 
        rh1=1.40;           % [nm] hydrodynamic radius  
        rh2=1.35;           % (corresponding to diffusion coefficient)  
        rhoS=1400;               % [kg/m³] Solid density  
        etaW=0.001;              % [Pa s] dynamic viscosity  
  
        % Initial conditions:  
        cm10=0.2;     %[g/l] Polyacrylic acid  
        cm20=0.6;     %[g/l] Protamine  
        c2pzc=1e-4;       %[mol/l] concentr. of Potential determining ions  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
    case  1 % Bariumsulfate  
         
        name1= 'Barium' ; 
        name2= 'Sulfate' ; 
        M1=137.3;              % [g/mol] Molar masses  
        M2=96.1; 
        z1=2;                  % [] molecular charge numbers  
        z2=-2; 
        rh1=0.44482;           % [nm] hydrodynamic radius  
        rh2=0.44482;           % (corresponding to diffusion coefficient)  
        rhoS=4500;             % [kg/m³] Solid density  
        etaW=0.001;            % [Pa s] dynamic viscosity  
  
        % Initial conditions:  
        cm10=0.1373;           %[g/l] Polyacrylic acid  
        cm20=0.0961;           %[g/l] Protamine  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
end  
  
  
% Integration parameters:  
timeStep=2; % [s]  
tmax=480;      % [s]  
  
% Conditions:  
T=293.15;                       % [K] Temperature  
  
% Graphic format:  
figFontSize=18; 
labelFontSize=18; 
lineWidth=2; 
  
%% Calculation:  
  
% Diffusion coefficients [m²/s]:  
D1=k*T/(6*pi*etaW*rh1*1e-9); 
D2=k*T/(6*pi*etaW*rh2*1e-9); 
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% Initial molar concentrations [mol/l]:  
c10ini=cm10/M1; 
c20ini=cm20/M2; 
  
  
% Molar concentrations in the mixture:  
c10=c10ini*VolRatio/(1+VolRatio); 
c20=c20ini*1/(1+VolRatio); 
  
switch  ID1 
     
    case  0 
  
        % Hamaker potential (Van der Waals):  
  
        n=40;   % number of points  
        m=3;    % number of different size ratios;  
         
        r=logspace(-3,-1,n); % different dimensionless distances (a/r1)  
        z=logspace(-1,1,m); % different size ratios (r2/r1)  
  
        PhiVDW=zeros(m,n); 
  
        for  j=1:m 
            for  i=1:n 
                PhiVDW(j,i) = HamakerPotential(r(i) ,1,z(j)); 
            end  
        end  
  
    case  1 
        % Gouy-Chapman electrostatic potential + total inte raction pot.  
        % for model I (nucleation + aggregation)  
         
        n=50; % number of points  
         
        a=logspace(-11,-7,n); % [m] different distances  
        % [m] different combinations r1, r2:  
        r=[80 80;30 80;30 30;5 80;5 30;5 5]*1e-9;  
        X=[0 0.5 1];    % Reaction conversion (% consumed Polyacrylic acid)  
         
        m=size(r,1); % number of different combinations of radii r1 and r2  
        p=size(X,2); % number of different reaction conversions  
         
        PhiEl=zeros(n,m,p); 
        PhiTot=zeros(n,m,p); 
        c1=zeros(1,p); 
        c2=zeros(1,p); 
         
        for  l=1:p  % loop for different conversions  
            c1(l)=c10*(1-X(l)); 
            c2(l)=c20-c10*X(l)*(-z1/z2); 
  
            for  j=1:m      % loop for different radii r2, r2  
                for  i=1:n  % loop for different distances a  
                    PhiEl(i,j,l) = GouyChapman(a(i) ,r(j,1),r(j,2), ...  
                        c1(l),c2(l)); 
                    PhiTot(i,j,l) =  PhiEl(i,j,l) +  ...  
                        HamakerPotential(a(i),r(j,1 ),r(j,2)); 
                end  
            end  
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        end  
         
     case  2 
        %Surface potential  
         
        n=20; % number of points  
        cPDI=linspace(1e-5,1e-4,n); 
        cPDIpzc=[1e-9 1e-8 1e-7 1e-6 1e-5 1e-4]; 
        m=size(cPDIpzc,2); 
         
        PSI=zeros(n,m); 
  
        for  j=1:m % change cPDIpzc  
            for  i=1:n % change cPDI  
                PSI(i,j)=k*T/(z2*e)*log(cPDI(i)/cPD Ipzc(j)); 
            end  
        end  
  
    otherwise  
end  
  
%% Grafic output  
  
switch  ID1  
         
    case  0 
        % Plot Hamaker potential  
         
        semilogx(r,PhiVDW(1,:), '-b' , 'LineWidth' ,lineWidth); 
        hold on 
        semilogx(r,PhiVDW(2,:), '--r' , 'LineWidth' ,lineWidth); 
        semilogx(r,PhiVDW(3,:), '-.k' , 'LineWidth' ,lineWidth); 
        hold off  
         
  
        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Dimensionless surface to surface distance \xi = a/ r_{1}' ); 
        ylabel( 'Hamaker potential \phi_{VdW} [J]' ); 
        axis([min(r), max(r), -2e-18, 0.5e-18]); 
        %title('Hamaker potential for two particles with si ze ratio \lambda  
        %= r_{2}/r_{1} (r_{1}=const.)');  
  
        legend([ '\lambda = ' ,num2str(z(1))],[ '\lambda = ' , ...  
            num2str(z(2))],[ '\lambda = ' ,num2str(z(3))], ...  
            'location' , 'SouthEast' ) 
         
        % Save graphic:  
        fileSaveName= 'HamakerPotential.eps' ; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    case  1 
        % Plot Gouy-Chapman electrostatic potential and tot al interac. pot.  
        % for model I (nucleation + aggregation)  
         
        a=a*1e9; % [m] -> [nm]  
        L=r*2*1e9; % [m] -> [nm]  
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        Xmin=0; 
        Xmax=100; 
        Ymin=-0.5e-18; 
        Ymax=3e-18; 
         
        % Plot Gouy-Chapman potential for different sizes  
         
        for  l=1:p 
            plot(a,PhiEl(:,1,l), '-r' , 'LineWidth' ,lineWidth) 
            hold on 
            plot(a,PhiEl(:,2,l), '--b' , 'LineWidth' ,lineWidth) 
            plot(a,PhiEl(:,3,l), '-.b' , 'LineWidth' ,lineWidth) 
            plot(a,PhiEl(:,4,l), '-k' , 'LineWidth' ,lineWidth/2) 
            plot(a,PhiEl(:,5,l), '--k' , 'LineWidth' ,lineWidth/2) 
            plot(a,PhiEl(:,6,l), '-.k' , 'LineWidth' ,lineWidth/2) 
            hold off  
  
            % Graphic format:  
            set(gca, 'FontSize' ,labelFontSize); 
            set(gca, 'FontSize' ,figFontSize); 
            xlabel( 'Surface to surface distance a [nm]' ); 
            ylabel( 'Electrostatic potential \phi_{el} [J]' ); 
            axis([Xmin Xmax 0 Ymax]); 
  
            legend([num2str(L(1,1)), ' nm / ' ,num2str(L(1,2)), ' nm'  ], ...  
                [num2str(L(2,1)), ' nm / ' ,num2str(L(2,2)), ' nm'  ], ...  
                [num2str(L(3,1)), ' nm / ' ,num2str(L(3,2)), ' nm'  ], ...  
                [num2str(L(4,1)), ' nm / ' ,num2str(L(4,2)), ' nm'  ], ...  
                [num2str(L(5,1)), ' nm / ' ,num2str(L(5,2)), ' nm'  ], ...  
                [num2str(L(6,1)), ' nm / ' ,num2str(L(6,2)), ' nm'  ], ...  
                'location' , 'EastOutside' ); 
  
            Pos=[560 530 560 420]; 
            set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
  
            % Save graphic:  
            fileSaveName=[ 'GouyChapmanPotential' , ...  
                num2str(round(X(l)*100)), '.eps' ]; 
            set(gcf, 'PaperpositionMode' , 'auto' ) 
            print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
            disp([ 'Saved as: ' , fileSaveName]) 
        end  
         
        % Plot Gouy-Chapman potential for for different con versions  
         
        plot(a,PhiEl(:,1,1), '-b' , 'LineWidth' ,lineWidth) 
        hold on 
        plot(a,PhiEl(:,1,2), '--r' , 'LineWidth' ,lineWidth) 
        plot(a,PhiEl(:,1,3), '-.k' , 'LineWidth' ,lineWidth) 
        hold off  
  
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Surface to surface distance a [nm]' ); 
        ylabel( 'Electrostatic potential \phi_{el} [J]' ); 
        axis([Xmin Xmax 0 Ymax]);   
  
        legend([ 'X = ' ,num2str(X(1))], ...  
            [ 'X = ' ,num2str(X(2))], ...  
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            [ 'X = ' ,num2str(X(3))], ...  
            'location' , 'EastOutside' ); 
         
        Pos=[560 530 560 420]; 
        set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
  
        % Save graphic:  
        fileSaveName=[ 'GouyChapmanPotentialConversion.eps' ]; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
         
        % Plot total interaction potential for different si zes  
         
        for  l=1:p 
            plot(a,PhiTot(:,1,l), '-r' , 'LineWidth' ,lineWidth) 
            hold on 
            plot(a,PhiTot(:,2,l), '--b' , 'LineWidth' ,lineWidth) 
            plot(a,PhiTot(:,3,l), '-.b' , 'LineWidth' ,lineWidth) 
            plot(a,PhiTot(:,4,l), '-k' , 'LineWidth' ,lineWidth/2) 
            plot(a,PhiTot(:,5,l), '--k' , 'LineWidth' ,lineWidth/2) 
            plot(a,PhiTot(:,6,l), '-.k' , 'LineWidth' ,lineWidth/2) 
            plot([0 200], [0 0], '-k' , 'LineWidth' ,0.25) 
            hold off  
  
            % Graphic format:  
            set(gca, 'FontSize' ,labelFontSize); 
            set(gca, 'FontSize' ,figFontSize); 
            xlabel( 'Surface to surface distance a [nm]' ); 
            ylabel( 'Total interaction potential \phi_{tot} [J]' ); 
            axis([Xmin Xmax Ymin Ymax]); 
  
            legend([num2str(L(1,1)), ' nm / ' ,num2str(L(1,2)), ' nm'  ], ...  
                [num2str(L(2,1)), ' nm / ' ,num2str(L(2,2)), ' nm'  ], ...  
                [num2str(L(3,1)), ' nm / ' ,num2str(L(3,2)), ' nm'  ], ...  
                [num2str(L(4,1)), ' nm / ' ,num2str(L(4,2)), ' nm'  ], ...  
                [num2str(L(5,1)), ' nm / ' ,num2str(L(5,2)), ' nm'  ], ...  
                [num2str(L(6,1)), ' nm / ' ,num2str(L(6,2)), ' nm'  ], ...  
                'location' , 'EastOutside' ); 
  
            Pos=[560 530 560 420]; 
            set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
  
            % Save graphic:  
            fileSaveName=[ 'TotalInteracPotential' , ...  
                num2str(round(X(l)*100)), '.eps' ]; 
            set(gcf, 'PaperpositionMode' , 'auto' ) 
            print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
            disp([ 'Saved as: ' , fileSaveName]) 
        end  
         
        % Plot total interaction potential for for differen t conversions  
         
        plot(a,PhiTot(:,1,1), '-b' , 'LineWidth' ,lineWidth) 
        hold on 
        plot(a,PhiTot(:,1,2), '--r' , 'LineWidth' ,lineWidth) 
        plot(a,PhiTot(:,1,3), '-.k' , 'LineWidth' ,lineWidth) 
        semilogx([0 200], [0 0], '-k' , 'LineWidth' ,0.25) 
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        hold off  
  
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Surface to surface distance a [nm]' ); 
        ylabel( 'Total interaction potential \phi_{tot} [J]' ); 
        axis([Xmin Xmax Ymin Ymax]); 
  
        legend([ 'X = ' ,num2str(X(1))], ...  
            [ 'X = ' ,num2str(X(2))], ...  
            [ 'X = ' ,num2str(X(3))], ...  
            'location' , 'EastOutside' ); 
         
        Pos=[560 530 560 420]; 
        set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
  
        % Save graphic:  
        fileSaveName=[ 'TotalInteracPotentialConversion.eps' ]; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    case  2 
        % Plot surface potential  
  
        PSI=PSI*1000; % [V -> mV]  
         
        plot(cPDI,PSI(:,1), '-b' , 'LineWidth' ,lineWidth); 
        hold on 
        plot(cPDI,PSI(:,2), '--r' , 'LineWidth' ,lineWidth); 
        plot(cPDI,PSI(:,3), '-.k' , 'LineWidth' ,lineWidth); 
        plot(cPDI,PSI(:,4), '-b' , 'LineWidth' ,lineWidth/2); 
        plot(cPDI,PSI(:,5), '--r' , 'LineWidth' ,lineWidth/2); 
        plot(cPDI,PSI(:,6), '-.k' , 'LineWidth' ,lineWidth/2); 
  
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Concentration of PDI [mol/l]' ); 
        ylabel( 'Particle surface potential [mV]' ); 
        title( 'Surface potential' ); 
        axis([min(cPDIpzc) max(cPDIpzc) -20 20]); 
        legend([ 'c_{PDI}^{pzc} = ' ,num2str(cPDIpzc(1))], ...  
            [ 'c_{PDI}^{pzc} = ' ,num2str(cPDIpzc(2))], ...  
            [ 'c_{PDI}^{pzc} = ' ,num2str(cPDIpzc(3))], ...  
            [ 'c_{PDI}^{pzc} = ' ,num2str(cPDIpzc(4))], ...  
            [ 'c_{PDI}^{pzc} = ' ,num2str(cPDIpzc(5))], ...  
            [ 'c_{PDI}^{pzc} = ' ,num2str(cPDIpzc(6))], ...  
            'Location' , 'SouthEast' ); 
         
        % Save graphic:  
        fileSaveName= 'SurfacePotential.eps'  
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName])     
         
    otherwise  
end  
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PlotAggregationEfficiency.m 

%% Plot Aggregation efficiency  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  z1 
global  z2 
global  D1 
global  D2 
  
global  k 
global  NA 
global  e 
global  c10 
global  c20 
global  T 
global  etaW 
global  A 
global  c2pzc 
global  eps0 
global  epsr       
  
% Select Calculation:  
  
ID1=2; 
  
% ID1 =  
% 0 ... Aggregation efficiency and -kernel as funct ion of L1, L2  
% 1 ... Aggregation efficiency as function of unkno wn parameter cPDIpcz  
% 2 ... Aggregation efficiency as function of unkno wn parameter A  
  
  
Spezies=0; 
  
% 0 ... Polyacrylic acid + Protamine  
% 1 ... Bariumsulfate  
  
%% Input:  
  
% Constants:  
  
k=1.381e-23;      % [J/K] Boltzmann's constant  
NA=6.022e23;     % [1/mol] Avogadro's constant  
e=1.602e-19;    % [As] elementary charge  
eps0=8.854e-12;         % [As/Vm] electric constant  
epsr=80;                 % [] relative permittivity  
  
K=0.414;   % Interfacial energy constant  
           % according to Mersmann 2000 between 0.310 and 0.41 4 
Kad=0;     % free variable for adjusted K  
  
A=1e-20;    % Hamaker constant [J]  
  
  
% Spezies specific parameters:  
switch  Spezies 
    case  0 % Polyacrylic acid + Protamine  
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        name1= 'Polyacrylic acid cysteine' ; 
        name2= 'Protamine' ; 
        M1=5400;                 % [g/mol] Molar masses  
        M2=4300; 
        z1=-56.98;                  % [] molecular charge numbers  
        z2=21.27; 
        rh1=1.4;           % [nm] hydrodynamic radius  
        rh2=1.35;           % (corresponding to diffusion coefficient)  
        rhoS=1400;               % [kg/m³] Solid density  
        etaW=0.001;              % [Pa s] dynamic viscosity  
  
        % Initial conditions:  
        cm10=0.2;     %[g/l] Polyacrylic acid  
        cm20=0.6;     %[g/l] Protamine  
        c2pzc=1e-4;       %[mol/l] concentr. of Potential determining ions  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
    case  1 % Bariumsulfate  
         
        name1= 'Barium' ; 
        name2= 'Sulfate' ; 
        M1=137.3;              % [g/mol] Molar masses  
        M2=96.1; 
        z1=2;                  % [] molecular charge numbers  
        z2=-2; 
        rh1=0.44482;           % [nm] hydrodynamic radius  
        rh2=0.44482;           % (corresponding to diffusion coefficient)  
        rhoS=4500;             % [kg/m³] Solid density  
        etaW=0.001;            % [Pa s] dynamic viscosity  
  
        % Initial conditions:  
        cm10=0.1373;           %[g/l] Polyacrylic acid  
        cm20=0.0961;           %[g/l] Protamine  
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
end  
  
  
% Integration parameters:  
timeStep=2; % [s]  
tmax=480;      % [s]  
  
% Conditions:  
T=293.15;                       % [K] Temperature  
  
% Graphic format:  
figFontSize=16; 
labelFontSize=14; 
lineWidth=2; 
  
%% Calculation:  
  
% Diffusion coefficients [m²/s]:  
D1=k*T/(6*pi*etaW*rh1*1e-9); 
D2=k*T/(6*pi*etaW*rh2*1e-9); 
  
% Initial molar concentrations [mol/l]:  
c10ini=cm10/M1; 
c20ini=cm20/M2; 
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% Molar concentrations in the mixture:  
c10=c10ini*VolRatio/(1+VolRatio); 
c20=c20ini*1/(1+VolRatio); 
  
switch  ID1 
         
     case  0 
        % Calculate aggregation efficiency as function of s izes L1, L2  
         
        X=[0 0.5 1];    % Reaction conversion (% consumed Polyacrylic acid)  
        l=1; 
        c1(l)=c10*(1-X(l));   % Concentrations due to determined conversion  
        c2(l)=c20-c10*X(l)*(-z1/z2); 
         
        m=100; % number of different particle sizes  
        x=linspace(1,100,m)*1e-9; % particle sizes [m]  
         
        W=zeros(m,m); % Stabilito ratio  
        alpha=W;      % Aggregation efficiency  
        betaAgg=W;    % Aggregation kernel  
         
        n=100;  % number of points (distances)  
        a=logspace(-11,-7,n); % [m] different distances  
         
        for  l=1:m      % change particle size L1  
            for  j=l:m  % change particle size L2  
                 
                % variables *_SI are arguments for function  
                % StabilityIntegrand, they must be defined global, because  
                % for integration of StablityIntegrand only 1 argum ent is  
                % allowed  
                 
                L1=x(l);   % determine L1 and L2 due to index l  
                L2=x(j); 
                 
                alpha(l,j)=AggEfficiency(L1,L2,c1(1 ),c2(1)); % Agg. 
efficiency  
                alpha(j,l)=alpha(l,j); 
                 
                 
                %Aggregationkernel:  
                betaAgg(l,j)=alpha(l,j)*Collisionke rnel(x(l)/x(j)); 
                betaAgg(j,l)=betaAgg(l,j); 
            end  
        end  
  
    case  1 
        % Calculate aggregation efficiency as function of u nknown cPDIpzc  
         
        X=[0 0.5 1];    % Reaction conversion (% consumed Polyacrylic acid)  
        l=1; 
        c1(l)=c10*(1-X(l)); 
        c2(l)=c20-c10*X(l)*(-z1/z2); 
         
        L1=5e-9;      % [nm ]constant particle sizes  
        L2=100e-9; 
         
        n=160; % number of points (different cPDIpzc concentration s)  
         
        cPDIpzc=logspace(-5,-3,n); % different point of zero charge conc.  
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        AHam=[0.01 1 100]*1e-20;  % [J] different Hamaker constants  
        %AHam=[3 10 20 30 100 200]*1e-20;  % [J] different Hamaker  
        %constants  
        m=size(AHam,2);  % number of different Hamaker constants  
         
        W=zeros(n,m); % Stabilito ratio  
        alpha=W;      % Aggregation efficiency  
         
        p=100;  % number of points (surface/surface distances)  
        a=logspace(-11,-6,p); % [m] different distances  
                 
        for  l=1:m      % change Hamaker constant  
            A=AHam(l); 
            for  j=1:n  % change concentration cPDIpzc  
  
                c2pzc=cPDIpzc(j); 
                 
                alpha(l,j)=AggEfficiency(L1,L2,c1(1 ),c2(1)); % Agg. 
efficiency  
            end  
        end  
         
    case  2  % Aggregation efficiency as function of unknown par ameter A  
         
        X=[0 0.5 1];    % Reaction conversion (% consumed Polyacrylic acid)  
        l=1; 
        c1(l)=c10*(1-X(l)); 
        c2(l)=c20-c10*X(l)*(-z1/z2); 
         
        L1=5e-9;      % [nm ]constant particle sizes  
        L2=50e-9; 
        L=[100 100;10 100;10 10]*1e-9; % [m] different size combinations  
        m=size(L,1);  % number of different size combinations  
         
        n=160; % number of points (different Hamaker constants A)  
         
        cPDIpzc=1e-4; % [mol/l] point of zero charge conc.  
         
        AHam=logspace(-22,-18,n);  % [J] different Hamaker constants  
         
        W=zeros(n,m); % Stabilito ratio  
        alpha=W;      % Aggregation efficiency  
         
        p=100;  % number of points (surface/surface distances)  
        a=logspace(-11,-5.5,p); % [m] different distances  
  
                 
        for  l=1:m      % change sizes  
             
            L1=L(l,1);   % determine L1 and L2 due to index l  
            L2=L(l,2); 
             
            for  j=1:n  % change Hamaker constant  
  
                A=AHam(j); 
                alpha(l,j)=AggEfficiency(L1,L2,c1(1 ),c2(1)); % Agg. 
efficiency  
            end  
        end  
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        % Electrostatic potential with HHF Theory  
        % for model II (only aggregation)  
  
% stability ratio / aggregation efficiency:  
  
    otherwise  
end  
  
%% Grafic output  
  
switch  ID1  
         
    case  0 % Aggregation efficiency as funktion of particle si zes L1, L2  
 
        % Plot aggregation efficiency as funktion of partic le sizes L1, L2  
         
        x=x*1e9; % [m] -> [nm]  
         
        alpha=alpha+0.001*max(max(alpha)); 
  
        colormap(jet); 
        surf(x,x,alpha); 
        view([0,0,1]); 
        colorbar( 'location' , 'EastOutside' ); 
                 
        load AggColorMap ; 
        set(gcf, 'Colormap' ,AggColorMap) 
         
        %colorbar('location','EastOutside');  
  
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Particle size L_{1} [nm]' ); 
        ylabel( 'Particle size L_{2} [nm]' ); 
        title( 'Aggregation efficiency \alpha' ); 
        axis([min(x) max(x) min(x) max(x)]); 
  
        % Save graphic:  
        fileSaveName= 'AggregationEfficiency.eps' ; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
  
         
        % Plot aggregation kernel as funktion of particle s izes L1, L2  
  
        %betaAgg=betaAgg+0.001*max(max(alpha));  
         
        surf(x,x,betaAgg); 
        view([0,0,1]); 
        colorbar( 'location' , 'EastOutside' ); 
  
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Particle size L_{1} [nm]' ); 
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        ylabel( 'Particle size L_{2} [nm]' ); 
        title( 'Aggregation kernel \beta_{agg} [m^{3}/s]' ); 
        axis([min(x) max(x) min(x) max(x)]); 
  
        % Save graphic:  
        fileSaveName= 'AggregationKernel.eps' ; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
         
        disp([ 'Saved as: ' , fileSaveName]) 
         
    case  1  % Aggregation efficiency as function of unknown par ameter 
cPDIpzc  
         
        % Plot aggregation efficiency as function of unknow ns A, cPDIpzc  
         
        semilogx(cPDIpzc,alpha(3,:), '-b' , 'LineWidth' ,lineWidth) 
        hold on 
        semilogx(cPDIpzc,alpha(2,:), '--r' , 'LineWidth' ,lineWidth) 
        semilogx(cPDIpzc,alpha(1,:), '-.k' , 'LineWidth' ,lineWidth) 
        hold off  
         
        % Graphic format:  
        set(gca, 'FontSize' ,labelFontSize); 
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Concentration of PDI at pzc [mol/l]' ); 
        ylabel( 'Aggregation efficiency' ); 
        %axis([3e-5 3e-4 0 1.5]);  
  
        L1=L1*1e9; % [m] -> [nm]  
        L2=L2*1e9; % [m] -> [nm]  
         
        AHam=AHam*1e20; 
         
        legend([num2str(AHam(3)), 'x10^{-20} J' ], ...  
            [num2str(AHam(2)), 'x10^{-20} J' ], ...  
            [num2str(AHam(1)), 'x10^{-20} J' ], 'Location' , 'EastOutside' ); 
         
        Pos = get(gcf, 'Position' ); 
        set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.5 Pos(4)]); 
         
        % Save graphic:  
        fileSaveName=[ 'AggregationEffVaryUnknowns_L1-' ,num2str(L1), ...  
            '_L2-' ,num2str(L2), '_X-' ,num2str(X(1)*100), '.eps' ]; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    case  2  % Aggregation efficiency as function of unknown par ameter A          
         
        % Plot aggregation efficiency as function of unknow ns A, cPDIpzc  
         
        AHam=AHam*1e20; 
         
        semilogx(AHam,alpha(1,:), '-b' , 'LineWidth' ,lineWidth) 
        hold on 
        semilogx(AHam,alpha(2,:), '--r' , 'LineWidth' ,lineWidth) 
        semilogx(AHam,alpha(3,:), '-.k' , 'LineWidth' ,lineWidth) 
  
        hold off  
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        % Graphic format:  
        set(gca, 'FontSize' ,figFontSize); 
        xlabel( 'Hamaker constant [10^{-20} J]' ); 
        ylabel( 'Aggregation efficiency' ); 
        %axis([3e-5 3e-4 0 1.5]);  
  
        L=L*1e9; % [m] -> [nm];  
         
         
        AHam=AHam*1e20; 
         
        legend([num2str(L(1,1)), ' nm / ' ,num2str(L(1,2)), ' nm' ], ...  
            [num2str(L(2,1)), ' nm / ' ,num2str(L(2,2)), ' nm' ], ...  
            [num2str(L(3,1)), ' nm / ' ,num2str(L(3,2)), ' nm' ], ...  
            'Location' , 'NorthWest' ); 
         
        % Save graphic:  
        fileSaveName=[ 'AggregationEfficiencyHam_cPDIpzc-' , ...  
            num2str(cPDIpzc), '_X-' ,num2str(X(1)*100), '.eps' ]; 
        set(gcf, 'PaperpositionMode' , 'auto' ) 
        print(gcf, '-depsc' , '-r250' ,fileSaveName) 
  
        disp([ 'Saved as: ' , fileSaveName]) 
         
    otherwise  
end  
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IV. Solution for the Well-Mixed System 

WellMixedCM.m 

%% Precipitation well mixed, PBE solution with clas ses method  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  z1 
global  z2 
global  cequ 
global  D1 
global  D2 
global  rh1 
global  rh2 
global  cS1 
global  cS2 
global  S 
global  rhoS 
  
global  k 
global  NA 
global  K 
global  c10 
global  c20 
global  T 
global  etaW 
global  Vm 
global  sig 
global  cS 
global  nd 
global  Spezies 
global  c2pzc 
global  A 
  
global  ClassesNum 
global  L 
global  Lm 
global  GrowthConst 
global  MP 
  
global  e 
global  eps0 
global  epsr 
global  fid 
global  CollFactor 
global  c2Excess 
global  c1End 
  
Spezies=0; 
  
% 0 ... Polyacrylic acid + Protamine  
% 1 ... Bariumsulfate  
  
Calculate=1; 
  
% 0 ... Don'T solve the sytem (only pre- and postpr ocessing)  
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% 1 ... Solve the system (prec. + solving + postpro cessing)  
  
%% Input:  
  
% Constants:  
  
k=1.380650424e-23;      % [J/K] Boltzmann's constant  
NA=6.0221417930e23;       % [1/mol] Avogadro's constant  
e=1.602e-19;    % [As] elementary charge  
eps0=8.854e-12;         % [As/Vm] electric constant  
epsr=80;                 % [] relative permittivity  
  
A=1e-20;    % Hamaker constant [J]  
  
K=0.39;   % Interfacial energy constant  
           % according to Mersmann 2000 between 0.310 and 0.41 4 
  
Sh=2;      % particle sherwood number for molecular growth  
  
rhoW=997.77;  % density of water [kg/m³]  
  
% Spezies specific parameters:  
switch  Spezies 
    case  0 % Polyacrylic acid + Protamine  
         
        name1= 'Polyacrylic acid cysteine' ; 
        name2= 'Protamine' ; 
        M1=5400;                 % [g/mol] Molar masses  
        M2=4300; 
        z1=-56.98;                  % [] molecular charge numbers  
        z2=21.27; 
        rh1=1.40;           % [nm] hydrodynamic radius  
        rh2=1.35;           % (corresponding to diffusion coefficient)  
        rhoS=1400;               % [kg/m³] Solid density  
        etaW=0.001;              % [Pa s] dynamic viscosity  
  
        cequ=1e-10;              % [mol/l] Equilibium concentration  
  
        % Initial concentrations:  
        cm10=0.2;     % [g/l] Polyacrylic acid  
        cm20=0.6;     % [g/l] Protamine  
        c2pzc=7e-5;       %[mol/l] concentr. of Potential determining ions  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
  
    case  1 % Bariumsulfate  
         
        name1= 'Barium' ; 
        name2= 'Sulfate' ; 
        M1=137.3;              % [g/mol] Molar masses  
        M2=96.1; 
        z1=2;                  % [] molecular charge numbers  
        z2=-2; 
        rh1=0.44482;           % [nm] hydrodynamic radius  
        rh2=0.44482;           % (corresponding to diffusion coefficient)  
        rhoS=4500;             % [kg/m³] Solid density  
        etaW=0.001;            % [Pa s] dynamic viscosity  
  
        cequ=sqrt(1.01e-4)*1e-3;  % [mol/l] Equilibium concentration  
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        B_Desired=1.18e11;     % [1/m³s] Desired nucleation rate to adjust 
K 
  
        % Initial concentrations:  
        cm10=0.1373;           %[g/l] Polyacrylic acid  
        cm20=0.0961;           %[g/l] Protamine  
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
  
end  
  
  
% Integration parameters:  
  
tmax=0.6;  
timeStep=0.001; % [s]  
SampleTime=[0.001 0.01 0.03 0.1 0.2 0.3 0.4 0.6]; % [s]  
 
% Conditions:  
T=295.15;                      % [K] Temperature  
  
% Graphic format:  
FontSize=18; 
lineWidth=2; 
  
%% Initialize Logfile  
  
LogFile= 'Results/LogWellMixed.txt' ; 
  
fid=fopen(LogFile, 'w' ); 
fclose(fid); 
fid=fopen(LogFile, 'a' ); 
  
  
cequPot=fix(log10(cequ)); 
c2Pot=fix(log10(c2pzc))-1; 
APot=fix(log10(A)); 
         
DataName=[ 'Results/K0_' ,num2str(round(10000*K)), ...  
    'cEqu' ,num2str(round(cequ/10^cequPot)), 'e' ,num2str(cequPot), ...  
    'c2pzc' ,num2str(round(c2pzc/10^c2Pot)), 'e' ,num2str(c2Pot), ...  
    'A' ,num2str(round(A/10^APot)), 'e' ,num2str(APot), ...  
    'cm10_0_' , num2str(round(100*cm10)), ...  
    'cm20_0_' , num2str(round(100*cm20)), ...  
    'OnlyAgg' , num2str(OnlyAgg), '.mat' ]; 
         
disp(DataName); 
%% Calculation of parameters:  
  
%Diffusion coefficients [m²/s]:  
D1=k*T/(6*pi*etaW*rh1*1e-9); 
D2=k*T/(6*pi*etaW*rh2*1e-9); 
  
% Initial molar concentrations [mol/l]:  
c10ini=cm10/M1; 
c20ini=cm20/M2; 
  
% Molar concentrations in the mixture:  
c10=c10ini*VolRatio/(1+VolRatio); 
c20=c20ini*1/(1+VolRatio); 
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%Excess concentration of protamine [mol/l]:  
c2Excess=c20+c10*z1/z2; 
  
%Remaining concentration of PAC [mol/l]:  
c1End=cequ^2/c2Excess; 
  
% Solid concentrations [mol/l]:  
% (due to electrical neutrality)  
cS1=z2*rhoS/(z2*M1-z1*M2); % Polyacrylic acid (1)  
cS2=-cS1*z1/z2;            % Protamine (2)  
nd=2; %1-z1/z2;                % Dissociation number  
cS=cS1+cS2;           % Total  
  
% Mean solid molecular volume:  
Vm=1/(1000*NA*cS);    %[m³]  
  
% Interfacial energy:  
sig=K*k*T*(1000*cS*NA)^(2/3)*log(cS/cequ); %[J/m²]  
  
% Growth constant:  
GrowthConst=2*Sh*cequ/cS; % [-]  
  
% Mean molecular weight of particles:  
MP = (M1*cS1+M2*cS2)/(cS1+cS2); % [g/mol]  
  
% Dimensioned part of collision kernel:  
CollFactor=2*k*T/(3*etaW); % [m³/s]  
  
  
%% Calculate Timescales:  
  
EpsTurb=10;            % dissipation rate [W/kg]  
CharLength=0.001;      % characteristic length of the reactor [m]  
Dmean=(D1+D2)/2;       % mean diffusion coefficient [m²/s]  
Sc=etaW/(rhoW*Dmean);  % Schmidt-Number  
Nexpected=3.3e17;      % Expected final particle number [1/m³]  
Lgrowth=50e-9;         % mean particle size for growth timemscale [m]  
SizeRatio=0.1;         % Size ratio for collision timescale  
  
Tmacro=5*(CharLength^2/EpsTurb)^(1/3); 
Tmicro=5*log(Sc)*sqrt(etaW/(rhoW*EpsTurb)); 
Tnuc=Nexpected/NucleationRate(Dmean,sqrt(c10*c20),c equ,sig,T,Vm,nd); 
Tgrowth=1/(2*Sh*Dmean*Lgrowth*pi*Nexpected); 
Tcoll=1/(Collisionkernel(SizeRatio)*Nexpected); 
  
% Print timescales  
disp([ 'Timescale for Macromixing:        ' , num2str(Tmacro), ' s' ]) 
disp([ 'Timescale for Micromixing:        ' , num2str(Tmicro), ' s' ]) 
disp([ 'Timescale for Nucleation:         ' , num2str(Tnuc), ' s' ]) 
disp([ 'Timescale for Growth:             ' , num2str(Tgrowth), ' s' ]) 
disp([ 'Timescale for Collisions:         ' , num2str(Tcoll), ' s' ]) 
  
%% Solve System  
  
% Discretisation of internal coordinate (size class es):  
  
 
ClassesNum=40;  % Number of classes  
Lmin=2;    %[nm]  
Lmax=300;  %[nm]  
L=ones(1,ClassesNum+1)*Lmin*1e-9 + linspace(0,1,Cla ssesNum+1).^2* ...  
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    (Lmax-Lmin)*1e-9;  % upper and lower sizes of classes   
  
Lm=zeros(1,ClassesNum);   % mean sizes of classes  
  
Lm(1)=(L(2)+L(1))/2; % [m]  
  
for  i=3:ClassesNum+1 
    Lm(i-1)=(L(i)+L(i-1))/2; 
end  
  
if  Calculate==1 
    % Precalculate Aggregation Efficiency (for Interpol ation):  
    CalcAggEfficiency; 
end  
  
disp( 'Solving ODE-System ...' ) 
  
% Initial conditions:  
  
y0=zeros(1,ClassesNum+2); 
y0(ClassesNum+1)=c10; 
y0(ClassesNum+2)=c20; 
  
         
if  Calculate==1 
    % Solve ODE System:  
    options = odeset( 'RelTol' ,1e-3); 
    %,'AbsTol',ones(1,ClassesNum+2)*1e-1  
    [t,y]=ode45( 'OdeWellmixedCM' ,0:timeStep:tmax,y0,options); 
    data=[t,y]; 
    save(DataName, 'data' , '-mat' ) 
else  
    load(DataName) 
    t=data(:,1); 
    y=data(:,2:size(data,2)); 
end  
         
% Calculate Supersaturation, critical Radius:  
 [m,n]=size(y); 
  
S=zeros(m,1); 
rC=zeros(m,1); 
  
for  i=1:m 
    S(i)=sqrt(y(i,ClassesNum+1)*y(i,ClassesNum+2))/ cequ; 
    S(i)=real(S(i)); % complex numbers occur due to inaccuracy  
    if  S(i)<1   % Solution not exact, make correction:  
        S(i)=1; 
        y(i,ClassesNum+1)=cequ^2/y(i,ClassesNum+2);  
    end  
    rC(i)=2*sig*Vm/(nd*k*T*log(S(i)))*1e9; % [nm]  
             
    for  j=1:ClassesNum 
        if  y(i,j)<0 
                    y(i,j)=0; 
        end  
    end  
             
    % Convert PSD from q0 to q3:  
    y3Sum=0; 
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    for  j=1:ClassesNum 
        y3(i,j)=y(i,j)*Lm(j)^3; 
        y3Sum=y3Sum+y3(i,j)*(L(j+1)-L(j)); 
    end  
  
    for  j=1:ClassesNum 
        y3(i,j)=y3(i,j)/y3Sum; 
    end  
             
end  
 
  
  
% Calculate PSD Mean and Variance:  
  
ns=size(SampleTime,2); 
Lmean_q3=zeros(ns,1); 
LSigma_q3=zeros(ns,1); 
Lmean_n=zeros(ns,1); 
LSigma_n=zeros(ns,1); 
nSum=zeros(ns,1); 
  
n=zeros(ns,ClassesNum); % number density distribution  
q3=zeros(ns,ClassesNum); % Volume distribution  
  
for  j=1:ns 
    Idx=1+int16(SampleTime(j)/timeStep); 
     
    % Separate Samples  
    for  i=1:ClassesNum   
        n(j,i)=y(Idx,i); 
        q3(j,i)=y3(Idx,i); 
    end  
     
    % Calculate PSD Mean Values:  
    for  i=1:ClassesNum 
        Lmean_q3(j)=Lmean_q3(j)+q3(j,i)*Lm(i)*(L(i+ 1)-L(i)); 
        Lmean_n(j)=Lmean_n(j)+n(j,i)*Lm(i)*(L(i+1)- L(i)); 
        nSum(j)=nSum(j)+n(j,i)*(L(i+1)-L(i)); 
    end  
    Lmean_n(j)=Lmean_n(j)/nSum(j); 
    
    % Calculate PSD Variances:  
    for  i=1:ClassesNum 
        LSigma_q3(j)=LSigma_q3(j)+(Lm(i)-Lmean_q3(j ))^2*q3(j,i)* ...  
            (L(i+1)-L(i)); 
        LSigma_n(j)=LSigma_n(j)+(Lm(i)-Lmean_n(j))^ 2*n(j,i)* ...  
            (L(i+1)-L(i)); 
    end  
    LSigma_q3(j)=sqrt(LSigma_q3(j)); 
    LSigma_n(j)=sqrt(LSigma_n(j)/nSum(j)); 
     
    % Convert to nm and round:  
    Lmean_n(j)=0.1*round(Lmean_n(j)*1e10); 
    Lmean_q3(j)=0.1*round(Lmean_q3(j)*1e10); 
    LSigma_n(j)=0.1*round(LSigma_n(j)*1e10); 
    LSigma_q3(j)=0.1*round(LSigma_q3(j)*1e10); 
end  
  
% Select data for 3D Plot:  
num=101; 
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n3D=zeros(num,ClassesNum); 
q33D=zeros(num,ClassesNum); 
t3D=zeros(num,1); 
  
for  i=1:num 
    Idx=fix((m-1)/num*i)+1; 
    n3D(i,:)=y(Idx,1:ClassesNum); 
    q33D(i,:)=y3(Idx,1:ClassesNum); 
    t3D(i)=t(Idx)*1000; 
end  
  
fclose(fid); 
  
%% Graphical Output:  
  
% PSD: 
     
for  j=1:ns 
     
    % Plot single PSD n (one point of time):  
    plot(Lm*1e9,n(j,:), 'LineWidth' ,lineWidth); 
     
    fileSaveName=[ 'Results/FigWellmixedPSDn' ,num2str(j), '.eps' ]; 
    set(gca, 'FontSize' ,FontSize); 
    xlabel( 'Particle size L [nm]' ); 
    ylabel( 'Number density distribution n [1/m^{4}]' ); 
    title([ 't=' ,num2str(SampleTime(j)*1000), 'ms, L_{mean}=' , ...  
        num2str(Lmean_n(j)), 'nm, s=' ,num2str(LSigma_n(j)), 'nm' ]); 
     
    Pos = get(gcf, 'Position' ); 
    set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.2 Pos(4)]); 
  
    set(gcf, 'PaperpositionMode' , 'auto' ); 
    print(gcf, '-depsc' , '-r250' ,fileSaveName) 
    disp([ 'Saved as: ' , fileSaveName]); 
    close 
     
    % Plot single PSD q3 (one point of time):  
    plot(Lm*1e9,q3(j,:), 'LineWidth' ,lineWidth); 
     
    fileSaveName=[ 'Results/FigWellmixedPSDq3' ,num2str(j), '.eps' ]; 
    set(gca, 'FontSize' ,FontSize); 
    xlabel( 'Particle size L [nm]' ); 
    ylabel( 'Volume distribution q_{3} [1/m]' ); 
    title([ 't=' ,num2str(SampleTime(j)*1000), 'ms, L_{mean}=' , ...  
        num2str(Lmean_q3(j)), 'nm, s=' ,num2str(LSigma_q3(j)), 'nm' ]); 
     
    Pos = get(gcf, 'Position' ); 
    set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.2 Pos(4)]); 
  
    set(gcf, 'PaperpositionMode' , 'auto' ); 
    print(gcf, '-depsc' , '-r250' ,fileSaveName) 
    disp([ 'Saved as: ' , fileSaveName]); 
    close 
end  
  
% Plot final q3 PSD logarithmical:  
semilogx(Lm*1e9,q3(ns,:), 'LineWidth' ,lineWidth); 
  
fileSaveName=[ 'Results/FigWellmixedPSDfinal_log.eps' ]; 
set(gca, 'FontSize' ,FontSize); 



 Appendix B 

 145 

xlabel( 'Particle size L [nm]' ); 
ylabel( 'Volume distribution q_{3} [1/m]' ); 
axis([10 1000 0 2e7]); 
title([ 't=' ,num2str(SampleTime(ns)*1000), 'ms, L_{mean}=' , ...  
    num2str(Lmean_q3(ns)), 'nm, s=' ,num2str(LSigma_q3(ns)), 'nm' ]); 
  
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.2 Pos(4)]); 
  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
close 
  
% Plot single PSD q3 (one point of time):  
LineFormat=char( '-ro' , '-b^' , '-k*' , '-mx' , '-rd' , '-bs' , '-k+' , '-m' ); 
lineWidth=[0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6]; 
  
% LineFormat=char('-k','-b',':m',':r','-.g','-.c',' --y','--k');  
% lineWidth=[1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5];  
  
% Plot all n PSDs in 1 plot:  
  
plot(Lm*1e9,n(1,:),LineFormat(1,:), 'LineWidth' ,lineWidth(1)); 
hold on 
  
for  i=2:ns    
    plot(Lm*1e9,n(i,:),LineFormat(i,:), 'LineWidth' ,lineWidth(i)); 
end  
  
hold off  
  
fileSaveName=[ 'Results/FigWellmixedPSDn_all.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Number density distribution n [1/m^{4}]' ); 
legend([ 't = ' ,num2str(SampleTime(1)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(2)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(3)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(4)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(5)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(6)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(7)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(8)*1000), ' ms' ], ...  
    'location' , 'EastOutside' ) 
  
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.6 Pos(4)]); 
  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
close 
  
  
% All q3 PSDs in one plot:  
plot(Lm*1e9,q3(1,:),LineFormat(1,:), 'LineWidth' ,lineWidth(1)); 
hold on 
  
for  i=2:ns    
    plot(Lm*1e9,q3(i,:),LineFormat(i,:), 'LineWidth' ,lineWidth(i)); 
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end  
  
hold off  
  
lineWidth=2; 
  
fileSaveName=[ 'Results/FigWellmixedPSDq3_all.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Volume distribution q_{3} [1/m]' ); 
legend([ 't = ' ,num2str(SampleTime(1)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(2)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(3)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(4)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(5)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(6)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(7)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(8)*1000), ' ms' ], ...  
    'location' , 'EastOutside' ) 
  
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.6 Pos(4)]); 
  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
close 
  
  
% 3D Plot of n PSDs:  
surf(Lm*1e9,t3D,n3D(:,1:ClassesNum)); 
colormap( 'Jet' ); 
view([1,-5,10]); 
  
fileSaveName=[ 'Results/FigWellmixed_3D_PSDn.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Time [ms]' ); 
title( 'Number density distribution n [1/m^{4}]' ); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
  
% 3D Plot of p6 PSDs:  
surf(Lm*1e9,t3D,q33D(:,1:ClassesNum)); 
view([1,-5,10]); 
  
load MyColormap ; 
set(gcf, 'Colormap' ,MyColorMap) 
  
fileSaveName=[ 'Results/FigWellmixed_3D_PSDq3.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Time [ms]' ); 
title( 'Volume distribution q_{3} [1/m]' ); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
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% Concentrations:  
t=t*1000; 
  
fileSaveName= 'Results/FigWellmixed_Concentrations.eps' ; 
plot(t,y(:,ClassesNum+1),t,y(:,ClassesNum+2), 'LineWidth' ,lineWidth); 
legend( 'c_{1}' , 'c_{2}' ); 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Concentrations [mol/l]' ); 
%axis([min(t), max(t),0, max(y(:,ClassesNum+2))]);  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
ConcWellMixed=[t,y(:,ClassesNum+1),y(:,ClassesNum+2 )]; 
save( 'ConcWellMixed.mat' , 'ConcWellMixed' , '-mat' ) 
  
% Supersaturation:  
fileSaveName= 'Results/FigWellmixed_Supersat.eps' ; 
semilogy(t,S, 'LineWidth' ,lineWidth); 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Supersaturation' ); 
axis([min(t) max(t) 1 10^(fix(log10(max(S))/2)*2+2) ]); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
SupWellMixed=[t,S]; 
save( 'SupWellMixed.mat' , 'SupWellMixed' , '-mat' ) 
  
Matrix1=[Lm,Lmean_q3(ns)]; 
Matrix2=[q3(ns,:),LSigma_q3(ns)]; 
FinalQ3WellM=[Matrix1;Matrix2]; 
save( 'FinalQ3WellM.mat' , 'FinalQ3WellM' , '-mat' ) 
  
% Critical Radius:  
fileSaveName= 'Results/FigWellmixed_CriticalRadius.eps' ; 
plot(t,rC, 'LineWidth' ,lineWidth); 
axis([min(t), max(t), 0, max(rC)]); 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Critical Radius [nm]' ); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
     
%% Output:  
  
% Text:  
  
disp( ' ' ) 
disp( '************************************************** *************' ) 
disp( ' ' ) 
  
disp( 'INPUT:' ) 
  
disp([name1, ' (1):' ]) 
disp([ 'Molar mass:                       ' , num2str(M1), ' g/mol' ]) 
disp([ 'Electrical charge number:         ' , num2str(z1)]) 
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disp([ 'hydrodynamic radius:              ' , num2str(rh1), ' nm' ]) 
disp([ 'Initial mass concentration:       ' , num2str(cm10), ' g/l' ]) 
disp( ' ' ) 
  
disp([name2, ' (2):' ]) 
disp([ 'Molar mass:                       ' , num2str(M2), ' g/mol' ]) 
disp([ 'Electrical charge number:         ' , num2str(z2)]) 
disp([ 'hydrodynamic radius:              ' , num2str(rh2), ' nm' ]) 
disp([ 'Initial mass concentration:       ' , num2str(cm20), ' g/l' ]) 
disp( ' ' ) 
  
disp([ 'Interfacial energy constant:      ' , num2str(K)]) 
disp([ 'Dissociation number:              ' , num2str(nd)]) 
disp([ 'Solid density:                    ' , num2str(rhoS), ' kg/m³' ]) 
disp([ 'Dynamic fluid viscosity:          ' , num2str(etaW), ' Pa s' ]) 
disp([ 'Solubility product:               ' , num2str(cequ^2), ...  
    ' (mol/l)²' ]) 
disp([ 'Temperature:                      ' , num2str(T), ' K' ]) 
disp( ' ' ) 
disp( ' ' ) 
  
disp( 'OUTPUT:' ) 
  
disp([ 'Diffusion coefficient 1:          ' , num2str(D1), ' m²/s' ]) 
disp([ 'Diffusion coefficient 2:          ' , num2str(D2), ' m²/s' ]) 
disp([ 'Initial concentration 1:          ' , num2str(c10), ' mol/l' ]) 
disp([ 'Initial concentration 2:          ' , num2str(c20), ' mol/l' ]) 
disp([ 'Solid concentration 1:            ' , num2str(cS1), ' mol/l' ]) 
disp([ 'Solid concentration 2:            ' , num2str(cS2), ' mol/l' ]) 
disp([ 'Total solid concentration:        ' , num2str(cS), ' mol/l' ]) 
disp([ 'Mean solid molecular volume:      ' , num2str(Vm), ' m³' ]) 
disp([ 'Equilibrium concentration:        ' , num2str(cequ), ' mol/l' ]) 
disp([ 'Interfacial energy:               ' , num2str(sig), ' J/m²' ]) 
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CalcAggEfficiency.m 

%% Calculate Aggregation efficiency  
% (c) by Andreas Eitzlmayr  
  
global  z1 
global  z2 
global  c10 
global  c20 
  
global  ClassesNum 
global  Lm 
  
global  CollFactor 
global  AggregationTable 
global  AggT 
global  Conversion 
  
%% Calculation  
  
disp( ' ' ) 
disp( 'Precalculating Aggregation Efficiency ...' ) 
  
sx=11; 
f=1;    % natural number  
% (Factor to reduce Classes in look-up table for Ag gregation efficiency)  
CalculatedClasses=(ClassesNum-1)/f+1;   
% Classes wherefore Aggregation kernel will be calc ulated (others 
interpolated)  
  
Conversion=linspace(0,1,sx); 
AggregationTable=ones(ClassesNum, ClassesNum, sx); 
AggT=ones(sx,CalculatedClasses,CalculatedClasses); 
  
  
f=(ClassesNum-1)/(CalculatedClasses-1); 
if  int8(f)==f 
    % OK 
else  
    disp( 'ClassesNum+1 is not equal CalculatedClasses*f+1 !' ) 
end  
  
% Calculate Aggregation Efficiency:  
  
for  iC=1:CalculatedClasses 
    for  jC=1:iC 
        for  l=1:sx 
            c1=c10*(1-Conversion(l)); 
            c2=c20-c10*Conversion(l)*(-z1/z2); 
            i=(iC-1)*f+1; 
            j=(jC-1)*f+1; 
            AggregationTable(i,j,l)= ...  
                CollFactor*(2+Lm(i)/Lm(j)+Lm(j)/Lm( i)) ...  
                *AggEfficiency(Lm(i),Lm(j),c1,c2); 
            AggregationTable(j,i,l)=AggregationTabl e(i,j,l); 
            AggT(l,i,j)=AggregationTable(i,j,l); 
            AggT(l,j,i)=AggregationTable(i,j,l); 
        end   
    end   
    disp([ 'Class ' , num2str(i), ' finished ...' ]) 
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end  
  
% Interpolate missing values:  
  
for  l=1:sx 
    for  iC=1:CalculatedClasses 
        i=(iC-1)*f+1; 
        for  j=1:ClassesNum 
            y=(j-1)/f+1; 
             
            if  y==fix(y) 
                % no interpolation  
            else  
                % interpolate in j direction:  
                j1=(fix(y)-1)*f+1; 
                j2=j1+f; 
                AggregationTable(i,j,l)=(Aggregatio nTable(i,j1,l)* ...  
                    (j2-j)+ AggregationTable(i,j2,l )*(j-j1))/f; 
                AggregationTable(j,i,l)=Aggregation Table(i,j,l); 
            end  
        end  
    end  
     
    for  i=1:ClassesNum 
        for  j=1:i 
            x=(i-1)/f+1; 
            y=(j-1)/f+1; 
             
            if  fix(x)==x || fix(y)==y % || = logical or  
                % no interpolation  
            else  
                % interpolate in i direction:  
                i1=(fix(x)-1)*f+1; 
                i2=i1+f; 
                AggregationTable(i,j,l)=(Aggregatio nTable(i1,j,l)* ...  
                    (i2-i)+ AggregationTable(i2,j,l )*(i-i1))/f; 
                AggregationTable(j,i,l)=Aggregation Table(i,j,l); 
            end  
        end  
    end  
end  
  
  
%surf(Lm,Lm,AggregationTable(:,:,11));  
surf(Lm,Conversion,AggT(:,:,1)); 
disp( 'Precalculation of Aggregation Efficiency finished' ) 
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OdeWellMixedCM.m 

function  dy=OdeWellmixedCM(t,y) 
% ODE-System for Nucleation + Growth + Aggregation  
  
global  cequ 
global  D1 
global  D2 
global  cS1 
global  c10 
global  k 
global  T 
global  Vm 
global  sig 
global  nd 
global  z1 
global  z2 
  
global  ClassesNum 
global  L 
global  Lm 
global  GrowthConst 
global  fid 
global  Conversion 
global  AggregationTable 
  
dy=zeros(ClassesNum+2,1); 
  
% y(1 - ClassesNum) ... particle number density of every class  
% y(ClassesNum+1) ... Concentration of Polyacrylic acid [mol/l]  
% y(ClassesNum+2) ... Concentration of Protamine [m ol/l]  
  
for  i=1:ClassesNum+2 
    %y(i)=real(y(i));  
    if  y(i)<0 
        y(i)=0; 
    end  
end  
  
% Mean concentration:  
c=sqrt(y(ClassesNum+1)*y(ClassesNum+2)); %[mol/l]  
  
% Supersaturation:  
S=c/cequ; %[-]  
  
if  S<=1 
    S=1; 
    y(ClassesNum+1)=cequ^2/y(ClassesNum+2); 
    c=cequ; 
end  
  
% Critical radius:  
rc=2*sig*Vm/(nd*k*T*log(S+1e-10)); 
     
% Mean diffusion coefficient:  
D = (D1*y(ClassesNum+1) + D2*y(ClassesNum+2)) / ... .  
    (y(ClassesNum+1) + y(ClassesNum+2)); 
  
% Nucleation rate:  
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Bhom = NucleationRate(D,c,cequ,sig,T,Vm,nd); 
  
% Write data to Log File:  
fprintf(fid, 't = %2.8f    ' ,t); 
  
  
% Evaluate Aggregation Kernel:  
valueAggKernel=zeros(ClassesNum,ClassesNum); 
  
X=1-y(ClassesNum+1)/c10; % Actual conversion  
  
  
% determine Conversion Index:  
if  X==1 
    CIdx=size(Conversion,2); 
    IntFac=0; 
else  
    i=1; 
    while   X>=Conversion(i) 
         if  X<Conversion(i+1) 
             % Conversion Index:  
             CIdx=i; 
             % Interpolation factor:  
             IntFac=(X-Conversion(i))/(Conversion(i +1)-Conversion(i)); 
         end  
         i=i+1; 
    end  
end  
  
for  i=1:ClassesNum 
    for  j=1:i          
        if  X==1 
            valueAggKernel(i,j)=AggregationTable(i, j,CIdx); 
        else  
            valueAggKernel(i,j)=AggregationTable(i, j,CIdx)*(1-IntFac)+ ...  
                AggregationTable(i,j,CIdx+1)*IntFac ; 
        end  
        valueAggKernel(j,i)=valueAggKernel(i,j); 
    end  
end  
  
TotalBirth=0; 
TotalDeath=0; 
ySum=0; 
  
% Aggregation:  
  
AggBirth=zeros(ClassesNum,1); 
AggDeath=zeros(ClassesNum,1); 
  
for  i=1:ClassesNum 
    ySum = ySum + y(i) * (L(i+1)-L(i)); 
     
    for  p=1:ClassesNum 
        CollisionRate = valueAggKernel(i,p) * y(p) * y(i) * ...  
            (L(p+1)-L(p)) * (L(i+1)-L(i)); % [1/m³s]  
         
        AggDeath(i) = AggDeath(i) + CollisionRate /  (L(i+1)-L(i)); 
        TotalDeath = TotalDeath + CollisionRate; 
         
        Lresult=(Lm(i)^3+Lm(p)^3)^(1/3);  % Size of the resulting particle  
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        if  Lresult<=Lm(1) 
            l=1; 
            AggBirth(l) = AggBirth(l) +  0.5 * Coll isionRate / ...  
                (L(l+1)-L(l)); 
            TotalBirth = TotalBirth + CollisionRate /2; 
             
        elseif  Lresult>Lm(ClassesNum) 
            l=ClassesNum; 
            AggBirth(l) = AggBirth(l) +  0.5 * Coll isionRate / ...  
                (L(l+1)-L(l)); 
            TotalBirth = TotalBirth + CollisionRate /2; 
        else  
            j=1; 
            while  Lresult>Lm(j)   % Is Lresult in this class j ?  
                if  Lresult<=Lm(j+1) 
                    l=j; % Resulting particle is between Lm(l) and Lm(l+1)  
                     
     % Resulting particle is partitioned between 2 class es Lm(l) and 
Lm(l+1):  
     % (due to particle number conservation and mass con servation)  
  
                    w1 = (1 - (Lresult/Lm(l+1))^3) / ...  
                        (1 - (Lm(l)/Lm(l+1))^3); 
                    w2 = 1 - w1; 
  
                    AggBirth(l) = AggBirth(l) +  w1 /2 * ...  
                        CollisionRate / (L(l+1)-L(l )); 
                    AggBirth(l+1) = AggBirth(l+1) +  w2/2 * ...  
                        CollisionRate / (L(l+2)-L(l +1)); 
                    TotalBirth = TotalBirth + Colli sionRate/2; 
                end  
                j=j+1; 
            end  
        end  
         
    end  
     
end  
  
if  TotalDeath==TotalBirth*2 
    % OK 
else  
    disp( 'Collision Number conservation Error' ) 
    disp( 'TotalDeath = ' ,num2str(TotalDeath)) 
    disp( 'TotalBirth x 2 = ' ,num2str(TotalBirth*2)) 
end  
  
% ODE's:  
% Particle classes  
for  i=1:ClassesNum 
     
    %Nucleation:  
     
    Nuc=0;  % Set Nucleation to zero (default)  
    if  2*rc>=L(i)  % Is critical nuclei size within this class?  
        if  2*rc<L(i+1) 
            Nuc = Bhom/(L(i+1)-L(i)); % Set Nucelation term  
        end  
    end  
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    % Growth (Upwind Discretisation)  
     
    if  i==1 % lower boundary of internal coordinate L  
        Growth=0; 
        %Growth=GrowthConst*D*(S-1)*(y(i+1)/Lm(i+1) - ...  
        % y(i)/Lm(i))/(Lm(i+1)-Lm(i));  
    elseif  i==ClassesNum % upper boundary of internal coordinate L  
        Growth=GrowthConst*D*(S-1)*(y(i)/Lm(i) - ... .  
            y(i-1)/Lm(i-1))/(Lm(i)-Lm(i-1)); 
    else  
        Growth=GrowthConst*D*(S-1)*(y(i)/Lm(i) - ...  
            y(i-1)/Lm(i-1))/(Lm(i)-Lm(i-1)); 
    end  
     
    % Balance:  
     
    dy(i) = Nuc - Growth + AggBirth(i) - AggDeath(i ); 
     
end  
  
  
GrowthSum=0; 
  
for  i=1:ClassesNum 
    GrowthSum = GrowthSum + Lm(i)*y(i)*(L(i+1)-L(i) ); % [1/m²]  
end  
  
GrowthSum = GrowthSum*GrowthConst*D*(S-1)*pi*cS1/2;  % [kmol/m³s]  
  
% Polyacrylic acid concentration  
dy(ClassesNum+1) = -Bhom * 4*pi/3*rc^3*cS1 - Growth Sum; 
  
% Protamine concentration  
dy(ClassesNum+2) = dy(ClassesNum+1)*(-z1/z2);  % (cS2/cS1=-z1/z2)  
  
% Write data to Log File:  
fprintf(fid, '  Sup %6.3f  ' ,S); 
% dc1/dt due to nucleation  
fprintf(fid, '  Nuc %1.10f  ' ,-Bhom * 4*pi/3*rc^3*cS1);  
% dc1/dt due to growth  
fprintf(fid, '  Growth %1.10f  ' ,-GrowthSum/(1-z1/z2));   
% disappered Particles per second and sum of partic les  
fprintf(fid, '  Agg.TotalBirth %3.10f  ' ,TotalDeath/ySum);   
  
% Write data to Log File:  
fprintf(fid, '%1.0f **\n' ,0); 
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V. Engulfment Model 

XMeso.m 

%% Mesomixed volume fraction  
  
function  X=XMeso(t) 
  
global  tmeso 
global  X0 
  
% Calculate:  
X = exp(t/tmeso)/(exp(t/tmeso)-1+1/X0); 
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Xmicro.m 

%% Micromixed volume fraction  
  
function  X=XMicro(t) 
  
global  tmeso 
global  E 
global  X0 
  
% Calculate:  
X = 1/(E*(1-X0)/((E-1/tmeso)*X0)*(exp(-t/tmeso)-exp (-E*t))+ ...  
    (1/X0-1)*exp(-E*t)+1); 
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EngulfmentModel.m 

%% Engulfment Model  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  tmeso 
global  E 
global  X0 
  
FontSize=16; 
  
%% Input  
  
n=50; 
t=linspace(0,0.005,n); % Calculation time [s]  
  
ny=1e-6;  % viscosity [m²/s]  
eps=1000; % power input [W/kg=m²/s³]  
d=0.0005; % [m] inlet diameter  
  
%% Calculation  
  
% Model parameters:  
E=1/(12.7*(ny/eps)^0.5); % [1/s]  
tmeso=2*(d^2/eps)^(1/3); % [s]  
  
% Initial condition:  
X0=0.5; 
  
% Calculate mesomixed and micromixed volume fractio n:  
  
XMe=zeros(n,1); 
XMi=XMe; 
  
for  i=1:n 
   XMe(i)=XMeso(t(i)); 
   XMi(i)=XMicro(t(i)); 
end  
  
%% Graphical output  
  
t=t*1000; 
fileSaveName= 'ResultFig_EngulfmentModel.eps'  
plot(t,XMe, '-b' ,t,XMi, '--k' , 'lineWidth' ,2) 
hold on 
plot([tmeso,tmeso]*1000,[0 1], '-.k' ,[1000/E, 1000/E],[0 1], ...  
    ':k' , 'lineWidth' ,1) 
legend( 'X_{Meso}' , 'X_{Micro}' , 't_{meso}' , 't_{micro}=1/E' , ...  
    'Location' , 'SouthEast' ) 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Volume fraction' ); 
axis([min(t), max(t),0, 1]); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
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VI. Solution for the Coupled Model 

EngulfMixedCM.m 

%% Precipitation + Engulfment mixing Model, PBE sol ution with classes 
method  
% (c) by Andreas Eitzlmayr  
  
clear 
  
global  z1 
global  z2 
global  cequ 
global  D1 
global  D2 
global  rh1 
global  rh2 
global  cS1 
global  cS2 
global  S 
global  rhoS 
  
global  k 
global  NA 
global  K 
global  c10 
global  c20 
global  T 
global  etaW 
global  Vm 
global  sig 
global  cS 
global  nd 
global  Spezies 
global  c2pzc 
global  A 
  
global  ClassesNum 
global  L 
global  Lm 
global  GrowthConst 
global  MP 
  
global  e 
global  eps0 
global  epsr 
global  fid 
global  CollFactor 
global  c2Excess 
global  c1End 
  
global  tmeso 
global  E 
global  X0 
global  Conversion 
  
Spezies=0; 
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% 0 ... Polyacrylic acid + Protamine  
% 1 ... Bariumsulfate  
  
Calculate=1; 
% 0 ... Don'T solve the sytem (only pre- and postpr ocessing)  
% 1 ... Solve the system (prec. + solving + postpro cessing)  
  
%% Input:  
  
% Constants:  
  
k=1.380650424e-23;      % [J/K] Boltzmann's constant  
NA=6.0221417930e23;       % [1/mol] Avogadro's constant  
e=1.602e-19;    % [As] elementary charge  
eps0=8.854e-12;         % [As/Vm] electric constant  
epsr=80;                 % [] relative permittivity  
  
A=1e-20;    % Hamaker constant [J]  
  
K=0.39;   % Interfacial energy constant  
           % according to Mersmann 2000 between 0.310 and 0.41 4 
  
Sh=2;      % particle sherwood number for molecular growth  
  
rhoW=997.77;  % density of water [kg/m³]  
  
% Spezies specific parameters:  
switch  Spezies 
    case  0 % Polyacrylic acid + Protamine  
         
        name1= 'Polyacrylic acid cysteine' ; 
        name2= 'Protamine' ; 
        M1=5400;                 % [g/mol] Molar masses  
        M2=4300; 
        z1=-56.99;                  % [] molecular charge numbers  
        z2=20.72; 
        rh1=1.40;           % [nm] hydrodynamic radius  
        rh2=1.35;           % (corresponding to diffusion coefficient)  
        rhoS=1400;               % [kg/m³] Solid density  
        etaW=0.001;              % [Pa s] dynamic viscosity  
  
        cequ=1e-10;              % [mol/l] Equilibium concentration  
  
        B_Desired=1e17;     % [1/m³s] Desired nucleation rate to adjust K  
  
        % Initial concentrations:  
        cm10=0.2;     % [g/l] Polyacrylic acid  
        cm20=0.6;     % [g/l] Protamine  
        c2pzc=7e-5;       %[mol/l] concentr. of Potential determining ions  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
    case  1 % Bariumsulfate  
         
        name1= 'Barium' ; 
        name2= 'Sulfate' ; 
        M1=137.3;              % [g/mol] Molar masses  
        M2=96.1; 
        z1=2;                  % [] molecular charge numbers  
        z2=-2; 
        rh1=0.44482;           % [nm] hydrodynamic radius  
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        rh2=0.44482;           % (corresponding to diffusion coefficient)  
        rhoS=4500;             % [kg/m³] Solid density  
        etaW=0.001;            % [Pa s] dynamic viscosity  
  
        cequ=sqrt(1.01e-4)*1e-3;  % [mol/l] Equilibium concentration  
  
        B_Desired=1.18e11;     % [1/m³s] Desired nucleation rate to adjust 
K 
  
        % Initial concentrations:  
        cm10=0.1373;           %[g/l] Polyacrylic acid  
        cm20=0.0961;           %[g/l] Protamine  
         
        % Mixing volume ratio V1/V2:  
        VolRatio=1; 
end  
  
% Mixing parameters:  
InletDia=0.005;  % [m] inlet diameter  
EpsTurb=1;  % [W/kg] Mean power input  
  
% Integration parameters:  
LongTime=1; 
if  LongTime==0 
    tmax=0.6;  
    timeStep=0.001; % [s]  
    SampleTime=[0.001 0.01 0.03 0.1 0.2 0.3 0.4 0.6 ]; % [s]    
else  
    tmax=2;  
    timeStep=0.001; % [s]  
    SampleTime=[0.1 0.2 0.4 0.6 1 1.4 1.8 2]; % [s]   
end  
  
% Conditions:  
T=295.15;                      % [K] Temperature  
  
% Graphic format:  
FontSize=18; 
lineWidth=2; 
  
%% Initialize Logfile  
  
LogFile= 'Results/LogEngulfMixed.txt' ; 
  
fid=fopen(LogFile, 'w' ); 
fclose(fid); 
fid=fopen(LogFile, 'a' ); 
  
  
cequPot=fix(log10(cequ)); 
c2Pot=fix(log10(c2pzc))-1; 
APot=fix(log10(A)); 
         
DataName=[ 'Results/Engulf_K0_' ,num2str(round(10000*K)), ...  
    'cEqu' ,num2str(round(cequ/10^cequPot)), 'e' ,num2str(cequPot), ...  
    'c2pzc' ,num2str(round(c2pzc/10^c2Pot)), 'e' ,num2str(c2Pot), ...  
    'A' ,num2str(round(A/10^APot)), 'e' ,num2str(APot), ...  
    'cm10_0_' , num2str(round(100*cm10)), ...  
    'cm20_0_' , num2str(round(100*cm20)), ...  
    'd_' ,num2str(1e4*InletDia), 'e-4EPS_' ,num2str(EpsTurb*100), ...  
    'e-2.mat' ]; 
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disp(DataName); 
%% Calculation of parameters:  
  
%Diffusion coefficients [m²/s]:  
D1=k*T/(6*pi*etaW*rh1*1e-9); 
D2=k*T/(6*pi*etaW*rh2*1e-9); 
  
% Initial molar concentrations [mol/l]:  
c10=cm10/M1; 
c20=cm20/M2; 
  
%Excess concentration of protamine [mol/l]:  
c2Excess=c20+c10*VolRatio*z1/z2; 
c2End=c2Excess/(VolRatio+1); 
  
%Remaining concentration of PAC [mol/l]:  
c1End=cequ^2/c2End; 
  
% Solid concentrations [mol/l]:  
% (due to electrical neutrality)  
cS1=z2*rhoS/(z2*M1-z1*M2); % Polyacrylic acid (1)  
cS2=-cS1*z1/z2;            % Protamine (2)  
nd=2; %1-z1/z2;                % Dissociation number  
cS=cS1+cS2;           % Total  
  
% Mean solid molecular volume:  
Vm=1/(1000*NA*cS);    %[m³]  
  
% Interfacial energy:  
sig=K*k*T*(1000*cS*NA)^(2/3)*log(cS/cequ); %[J/m²]  
  
% Growth constant:  
GrowthConst=2*Sh*cequ/cS; % [-]  
  
% Mean molecular weight of particles:  
MP = (M1*cS1+M2*cS2)/(cS1+cS2); % [g/mol]  
  
% Dimensioned part of collision kernel:  
CollFactor=2*k*T/(3*etaW); % [m³/s]  
  
% Mixing parameters:  
tmicro=12.7*sqrt(etaW/(rhoW*EpsTurb));  % [s] Micromixing time for E-model  
E=1/tmicro;                             % [1/s] Engulfment constant  
tmeso=2*(InletDia^2/EpsTurb)^(1/3);     % [s] Mesomixing time for E-model  
X0=1/(VolRatio+1);                      % Initial value for Xmicro and 
Xmeso 
  
disp([ 'Mesomixing time for engulfment model:       ' , ...  
    num2str(tmeso), ' s' ]) 
disp([ 'Micromixing time for engulfment model:      ' , ...  
    num2str(tmicro), ' s' ]) 
  
%% Calculate Timescales:  
  
CharLength=InletDia;   % characteristic length of the reactor [m]  
Dmean=(D1+D2)/2;       % mean diffusion coefficient [m²/s]  
Sc=etaW/(rhoW*Dmean);  % Schmidt-Number  
Nexpected=3.3e17;      % Expected final particle number [1/m³]  
Lgrowth=50e-9;         % mean particle size for growth timemscale [m]  
SizeRatio=0.1;         % Size ratio for collision timescale  
Tmacro=5*(CharLength^2/EpsTurb)^(1/3); 
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Tmicro=5*log(Sc)*sqrt(etaW/(rhoW*EpsTurb)); 
Tnuc=Nexpected/NucleationRate(Dmean,sqrt(c10*c20),c equ,sig,T,Vm,nd); 
Tgrowth=1/(2*Sh*Dmean*Lgrowth*pi*Nexpected); 
Tcoll=1/(Collisionkernel(SizeRatio)*Nexpected); 
  
% Print timescales  
disp([ 'Timescale for Macromixing:        ' , num2str(Tmacro), ' s' ]) 
disp([ 'Timescale for Micromixing:        ' , num2str(Tmicro), ' s' ]) 
disp([ 'Timescale for Nucleation:         ' , num2str(Tnuc), ' s' ]) 
disp([ 'Timescale for Growth:             ' , num2str(Tgrowth), ' s' ]) 
disp([ 'Timescale for Collisions:         ' , num2str(Tcoll), ' s' ]) 
  
%% Solve System  
  
% Discretisation of internal coordinate (size class es):  
ClassesNum=40;  % Number of classes  
Lmin=2;    %[nm]  
Lmax=300;  %[nm]  
  % upper and lower sizes of classes  
L=ones(1,ClassesNum+1)*Lmin*1e-9 + ...  
    linspace(0,1,ClassesNum+1).^2*(Lmax-Lmin)*1e-9;  
  
Lm=zeros(1,ClassesNum);   % mean sizes of classes  
  
Lm(1)=(L(2)+L(1))/2; % [m]  
  
for  i=3:ClassesNum+1 
    Lm(i-1)=(L(i)+L(i-1))/2; 
end  
  
if  Calculate==1 
    % Precalculate Aggregation Efficiency (for Interpol ation):  
    CalcAggEfficiency; 
    %load('AggregationTable.mat')  
    %Conversion=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];  
end  
  
disp( 'Solving ODE-System ...' ) 
  
% Initial conditions:  
  
y0=zeros(1,ClassesNum+2); 
y0(ClassesNum+1)=0; 
y0(ClassesNum+2)=c20; 
  
  
if  Calculate==1 
    % Solve ODE System:  
    options = odeset( 'RelTol' ,1e-2); 
    %,'AbsTol',ones(1,ClassesNum+2)*1e-1  
    [t,y]=ode45( 'OdeEngulfMixedCM' ,0:timeStep:tmax,y0,options); 
    data=[t,y]; 
    save(DataName, 'data' , '-mat' ) 
else  
    load(DataName) 
    t=data(:,1); 
    y=data(:,2:size(data,2)); 
end  
  
% Calculate Supersaturation, critical Radius:  
[m,n]=size(y); 
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S=zeros(m,1); 
rC=zeros(m,1); 
  
% factor to prevent numerical inaccuracies in Super saturation:  
SupFac=1; 
  
for  i=1:m 
    for  j=1:ClassesNum 
        if  y(i,j)<0 
            y(i,j)=0; 
        end  
    end  
    S(i)=sqrt(y(i,ClassesNum+1)*y(i,ClassesNum+2))/ cequ; 
    S(i)=real(S(i)); % complex numbers occur due to inaccuracy  
    if  S(i)<1   % Solution not exact, make correction:  
        S(i)=1; 
        y(i,ClassesNum+1)=cequ^2/y(i,ClassesNum+2);  
    end  
     
    if  i>1 && S(i-1)-S(i)>0 && S(i)==1 
        SupFac=0; % For all later timesteps set S=1  
    end  
     
    S(i)=(S(i)-1)*SupFac+1; 
     
    rC(i)=2*sig*Vm/(nd*k*T*log(S(i)))*1e9; % [nm]  
  
  
    % Convert PSD from q0 to q3:  
    y3Sum=0; 
  
    for  j=1:ClassesNum 
        y3(i,j)=y(i,j)*Lm(j)^3; 
        y3Sum=y3Sum+y3(i,j)*(L(j+1)-L(j)); 
    end  
  
    for  j=1:ClassesNum 
        y3(i,j)=y3(i,j)/y3Sum; 
    end  
  
end  
  
% Calculate PSD Mean and Variance:  
  
ns=size(SampleTime,2); 
Lmean_q3=zeros(ns,1); 
LSigma_q3=zeros(ns,1); 
Lmean_n=zeros(ns,1); 
LSigma_n=zeros(ns,1); 
nSum=zeros(ns,1); 
  
n=zeros(ns,ClassesNum); % number density distribution  
q3=zeros(ns,ClassesNum); % Volume distribution  
  
for  j=1:ns 
    Idx=1+int16(SampleTime(j)/timeStep); 
     
    % Separate Samples  
    for  i=1:ClassesNum   
        n(j,i)=y(Idx,i); 
        q3(j,i)=y3(Idx,i); 
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    end  
     
    % Calculate PSD Mean Values:  
    for  i=1:ClassesNum 
        Lmean_q3(j)=Lmean_q3(j)+q3(j,i)*Lm(i)*(L(i+ 1)-L(i)); 
        Lmean_n(j)=Lmean_n(j)+n(j,i)*Lm(i)*(L(i+1)- L(i)); 
        nSum(j)=nSum(j)+n(j,i)*(L(i+1)-L(i)); 
    end  
    Lmean_n(j)=Lmean_n(j)/nSum(j); 
    
    % Calculate PSD Variances:  
    for  i=1:ClassesNum 
        LSigma_q3(j)=LSigma_q3(j)+(Lm(i)-Lmean_q3(j ))^2*q3(j,i)* ...  
            (L(i+1)-L(i)); 
        LSigma_n(j)=LSigma_n(j)+(Lm(i)-Lmean_n(j))^ 2*n(j,i)* ...  
            (L(i+1)-L(i)); 
    end  
    LSigma_q3(j)=sqrt(LSigma_q3(j)); 
    LSigma_n(j)=sqrt(LSigma_n(j)/nSum(j)); 
     
    % Convert to nm and round:  
    Lmean_n(j)=0.1*round(Lmean_n(j)*1e10); 
    Lmean_q3(j)=0.1*round(Lmean_q3(j)*1e10); 
    LSigma_n(j)=0.1*round(LSigma_n(j)*1e10); 
    LSigma_q3(j)=0.1*round(LSigma_q3(j)*1e10); 
end  
  
% Select data for 3D Plot:  
num=101; 
n3D=zeros(num,ClassesNum); 
q33D=zeros(num,ClassesNum); 
t3D=zeros(num,1); 
  
for  i=1:num 
    Idx=fix((m-1)/num*i)+1; 
    n3D(i,:)=y(Idx,1:ClassesNum); 
    q33D(i,:)=y3(Idx,1:ClassesNum); 
    t3D(i)=t(Idx)*1000; 
end  
  
fclose(fid); 
  
%% Graphical Output:  
  
% PSD: 
     
for  j=1:ns 
     
    % Plot single PSD n (one point of time):  
    plot(Lm*1e9,n(j,:), 'LineWidth' ,lineWidth); 
     
    fileSaveName=[ 'Results/FigEngmixedPSDn' ,num2str(j), '.eps' ]; 
    set(gca, 'FontSize' ,FontSize); 
    xlabel( 'Particle size L [nm]' ); 
    ylabel( 'Number density distribution n [1/m^{4}]' ); 
    title([ 't=' ,num2str(SampleTime(j)*1000), 'ms, L_{mean}=' , ...  
        num2str(Lmean_n(j)), 'nm, s=' ,num2str(LSigma_n(j)), 'nm' ]); 
     
    Pos = get(gcf, 'Position' ); 
    set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.2 Pos(4)]); 
    set(gcf, 'PaperpositionMode' , 'auto' ); 
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    print(gcf, '-depsc' , '-r250' ,fileSaveName) 
    disp([ 'Saved as: ' , fileSaveName]); 
    close 
     
    % Plot single PSD q3 (one point of time):  
    plot(Lm*1e9,q3(j,:), 'LineWidth' ,lineWidth); 
     
    fileSaveName=[ 'Results/FigEngmixedPSDq3' ,num2str(j), '.eps' ]; 
    set(gca, 'FontSize' ,FontSize); 
    xlabel( 'Particle size L [nm]' ); 
    ylabel( 'Volume distribution q_{3} [1/m]' ); 
    title([ 't=' ,num2str(SampleTime(j)*1000), 'ms, L_{mean}=' , ...  
        num2str(Lmean_q3(j)), 'nm, s=' ,num2str(LSigma_q3(j)), 'nm' ]); 
     
    Pos = get(gcf, 'Position' ); 
    set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.2 Pos(4)]); 
  
    set(gcf, 'PaperpositionMode' , 'auto' ); 
    print(gcf, '-depsc' , '-r250' ,fileSaveName) 
    disp([ 'Saved as: ' , fileSaveName]); 
    close 
end  
  
% Plot final q3 PSD logarithmical:  
semilogx(Lm*1e9,q3(ns,:), 'LineWidth' ,lineWidth); 
  
fileSaveName=[ 'Results/FigEngmixedPSDfinal_log.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Volume distribution q_{3} [1/m]' ); 
axis([10 1000 0 2e7]); 
title([ 't=' ,num2str(SampleTime(ns)*1000), 'ms, L_{mean}=' , ...  
    num2str(Lmean_q3(ns)), 'nm, s=' ,num2str(LSigma_q3(ns)), 'nm' ]); 
  
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.2 Pos(4)]); 
  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
close 
  
% Plot single PSD q3 (one point of time):  
LineFormat=char( '-ro' , '-b^' , '-k*' , '-mx' , '-rd' , '-bs' , '-k+' , '-m' ); 
lineWidth=[0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6]; 
  
% Plot all n PSDs in 1 plot:  
  
plot(Lm*1e9,n(1,:),LineFormat(1,:), 'LineWidth' ,lineWidth(1)); 
hold on 
  
for  i=2:ns    
    plot(Lm*1e9,n(i,:),LineFormat(i,:), 'LineWidth' ,lineWidth(i)); 
end  
  
hold off  
  
fileSaveName=[ 'Results/FigEngmixedPSDn_all.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Number density distribution n [1/m^{4}]' ); 
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legend([ 't = ' ,num2str(SampleTime(1)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(2)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(3)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(4)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(5)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(6)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(7)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(8)*1000), ' ms' ], ...  
    'location' , 'EastOutside' ) 
  
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.6 Pos(4)]); 
  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
close 
  
  
% All q3 PSDs in one plot:  
plot(Lm*1e9,q3(1,:),LineFormat(1,:), 'LineWidth' ,lineWidth(1)); 
hold on 
  
for  i=2:ns    
    plot(Lm*1e9,q3(i,:),LineFormat(i,:), 'LineWidth' ,lineWidth(i)); 
end  
  
hold off  
  
lineWidth=2; 
  
fileSaveName=[ 'Results/FigEngmixedPSDq3_all.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Volume distribution q_{3} [1/m]' ); 
legend([ 't = ' ,num2str(SampleTime(1)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(2)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(3)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(4)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(5)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(6)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(7)*1000), ' ms' ], ...  
    [ 't = ' ,num2str(SampleTime(8)*1000), ' ms' ], ...  
    'location' , 'EastOutside' ) 
  
Pos = get(gcf, 'Position' ); 
set(gcf, 'Position' ,[Pos(1) Pos(2) Pos(3)*1.6 Pos(4)]); 
  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
close 
  
  
% 3D Plot of n PSDs:  
surf(Lm*1e9,t3D,n3D(:,1:ClassesNum)); 
colormap( 'Jet' ); 
view([1,-5,10]); 
  
fileSaveName=[ 'Results/FigEngmixed_3D_PSDn.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
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xlabel( 'Particle size L [nm]' ); 
ylabel( 'Time [ms]' ); 
title( 'Number density distribution n [1/m^{4}]' ); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
  
% 3D Plot of p6 PSDs:  
surf(Lm*1e9,t3D,q33D(:,1:ClassesNum)); 
view([1,-5,10]); 
  
load MyColormap ; 
set(gcf, 'Colormap' ,MyColorMap) 
  
fileSaveName=[ 'Results/FigEngmixed_3D_PSDq3.eps' ]; 
set(gca, 'FontSize' ,FontSize); 
xlabel( 'Particle size L [nm]' ); 
ylabel( 'Time [ms]' ); 
title( 'Volume distribution q_{3} [1/m]' ); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
  
% Concentrations:  
t=t*1000; 
  
fileSaveName= 'Results/FigEngmixed_Concentrations.eps' ; 
plot(t,y(:,ClassesNum+1),t,y(:,ClassesNum+2), 'LineWidth' ,lineWidth); 
legend( 'c_{1}' , 'c_{2}' ); 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Concentrations [mol/l]' ); 
%axis([min(t), max(t),0, max(y(:,ClassesNum+2))]);  
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
ConcEngCM=[t,y(:,ClassesNum+1),y(:,ClassesNum+2)]; 
save( 'ConcEngCM.mat' , 'ConcEngCM' , '-mat' ) 
  
  
% Supersaturation:  
fileSaveName= 'Results/FigEngmixed_Supersat.eps' ; 
semilogy(t,S, 'LineWidth' ,lineWidth); 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Supersaturation' ); 
axis([min(t), max(t), 1, 10^(fix(log10(max(S))/2)*2 +2)]); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
SupEngCM=[t,S]; 
save( 'SupEngCM.mat' , 'SupEngCM' , '-mat' ) 
  
Matrix1=[Lm,Lmean_q3(ns)]; 
Matrix2=[q3(ns,:),LSigma_q3(ns)]; 
FinalQ3EngM=[Matrix1;Matrix2]; 
save( 'FinalQ3EngM.mat' , 'FinalQ3EngM' , '-mat' ) 
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% Critical Radius:  
fileSaveName= 'Results/FigEngmixed_CriticalRadius.eps' ; 
plot(t,rC, 'LineWidth' ,lineWidth); 
axis([min(t), max(t), 0,max(rC)]); 
set(gca, 'FontSize' ,FontSize*1.33); 
xlabel( 'Time [ms]' ); 
ylabel( 'Critical Radius [nm]' ); 
set(gcf, 'PaperpositionMode' , 'auto' ); 
print(gcf, '-depsc' , '-r250' ,fileSaveName) 
disp([ 'Saved as: ' , fileSaveName]); 
  
     
%% Output:  
% Text:  
  
disp( ' ' ) 
disp( '************************************************** ***********' ) 
disp( ' ' ) 
  
disp( 'INPUT:' ) 
  
disp([name1, ' (1):' ]) 
disp([ 'Molar mass:                       ' , num2str(M1), ' g/mol' ]) 
disp([ 'Electrical charge number:         ' , num2str(z1)]) 
disp([ 'hydrodynamic radius:              ' , num2str(rh1), ' nm' ]) 
disp([ 'Initial mass concentration:       ' , num2str(cm10), ' g/l' ]) 
disp( ' ' ) 
  
disp([name2, ' (2):' ]) 
disp([ 'Molar mass:                       ' , num2str(M2), ' g/mol' ]) 
disp([ 'Electrical charge number:         ' , num2str(z2)]) 
disp([ 'hydrodynamic radius:              ' , num2str(rh2), ' nm' ]) 
disp([ 'Initial mass concentration:       ' , num2str(cm20), ' g/l' ]) 
disp( ' ' ) 
  
disp([ 'Interfacial energy constant:      ' , num2str(K)]) 
disp([ 'Dissociation number:              ' , num2str(nd)]) 
disp([ 'Solid density:                    ' , num2str(rhoS), ' kg/m³' ]) 
disp([ 'Dynamic fluid viscosity:          ' , num2str(etaW), ' Pa s' ]) 
disp([ 'Solubility product:               ' , num2str(cequ^2), ...  
    ' (mol/l)²' ]) 
disp([ 'Temperature:                      ' , num2str(T), ' K' ]) 
disp( ' ' ) 
disp( ' ' ) 
  
disp( 'OUTPUT:' ) 
  
disp([ 'Diffusion coefficient 1:          ' , num2str(D1), ' m²/s' ]) 
disp([ 'Diffusion coefficient 2:          ' , num2str(D2), ' m²/s' ]) 
disp([ 'Initial concentration 1:          ' , num2str(c10), ' mol/l' ]) 
disp([ 'Initial concentration 2:          ' , num2str(c20), ' mol/l' ]) 
disp([ 'Solid concentration 1:            ' , num2str(cS1), ' mol/l' ]) 
disp([ 'Solid concentration 2:            ' , num2str(cS2), ' mol/l' ]) 
disp([ 'Total solid concentration:        ' , num2str(cS), ' mol/l' ]) 
disp([ 'Mean solid molecular volume:      ' , num2str(Vm), ' m³' ]) 
disp([ 'Equilibrium concentration:        ' , num2str(cequ), ' mol/l' ]) 
disp([ 'Interfacial energy:               ' , num2str(sig), ' J/m²' ]) 
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OdeEngulfMixedCM.m 

function  dy=OdeEngulfMixedCM(t,y) 
% ODE-System for Nucleation + Growth + Aggregation with Engulfment mixing  
  
global  cequ 
global  D1 
global  D2 
global  cS1 
global  c10 
global  c20 
global  k 
global  T 
global  Vm 
global  sig 
global  nd 
global  z1 
global  z2 
  
global  ClassesNum 
global  L 
global  Lm 
global  GrowthConst 
global  fid 
global  Conversion 
global  AggregationTable 
global  E 
global  c2Excess 
global  X0 
  
dy=zeros(ClassesNum+2,1); 
  
% y(1 - ClassesNum) ... particle number density of every class  
% y(ClassesNum+1) ... Concentration of Polyacrylic acid [mol/l]  
% y(ClassesNum+2) ... Concentration of Protamine [m ol/l]  
  
for  i=1:ClassesNum+2 
    %y(i)=real(y(i));  
    if  y(i)<0 
        y(i)=0; 
    end  
end  
  
% Mean concentration:  
c=sqrt(y(ClassesNum+1)*y(ClassesNum+2)); %[mol/l]  
  
% Supersaturation:  
S=c/cequ; %[-]  
  
if  S<=1 
    S=1; 
    y(ClassesNum+1)=cequ^2/y(ClassesNum+2); 
    c=cequ; 
end  
  
% Critical radius:  
rc=2*sig*Vm/(nd*k*T*log(S+1e-10)); 
     
% Mean diffusion coefficient:  
D = (D1*y(ClassesNum+1) + D2*y(ClassesNum+2)) / ...  
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    (y(ClassesNum+1) + y(ClassesNum+2)); 
  
% Nucleation rate:  
  
Bhom = NucleationRate(D,c,cequ,sig,T,Vm,nd); 
  
% Write data to Log File:  
fprintf(fid, 't = %2.8f    ' ,t); 
  
  
% Evaluate Aggregation Kernel:  
valueAggKernel=zeros(ClassesNum,ClassesNum); 
  
%X=1-y(ClassesNum+1)/c10;  
X=1-(y(ClassesNum+2)*XMicro(t)/X0-c2Excess)/(c20-c2 Excess); % Actual 
conversion  
  
if  X<0 % repair inaccuracies;  
    X=0; 
elseif  X>1 
    X=1; 
end  
  
% determine Conversion Index:  
if  X==1 
    CIdx=size(Conversion,2); 
    IntFac=0; 
else  
    i=1; 
    while   X>=Conversion(i) 
         if  X<Conversion(i+1) 
             % Conversion Index:  
             CIdx=i; 
             % Interpolation factor:  
             IntFac=(X-Conversion(i))/(Conversion(i +1)-Conversion(i)); 
         end  
         i=i+1; 
    end  
end  
  
for  i=1:ClassesNum 
    for  j=1:i          
        if  X==1 
            valueAggKernel(i,j)=AggregationTable(i, j,CIdx); 
        else  
            valueAggKernel(i,j)=AggregationTable(i, j,CIdx)*(1-IntFac)+ ...  
                AggregationTable(i,j,CIdx+1)*IntFac ; 
        end  
        valueAggKernel(j,i)=valueAggKernel(i,j); 
    end  
end  
  
TotalBirth=0; 
TotalDeath=0; 
ySum=0; 
  
% Aggregation:  
  
AggBirth=zeros(ClassesNum,1); 
AggDeath=zeros(ClassesNum,1); 
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for  i=1:ClassesNum 
    ySum = ySum + y(i) * (L(i+1)-L(i)); 
     
    for  p=1:ClassesNum 
        CollisionRate = valueAggKernel(i,p) * y(p) * y(i) * ...  
            (L(p+1)-L(p)) * (L(i+1)-L(i)); % [1/m³s]  
         
        AggDeath(i) = AggDeath(i) + CollisionRate /  (L(i+1)-L(i)); 
        TotalDeath = TotalDeath + CollisionRate; 
         
        Lresult=(Lm(i)^3+Lm(p)^3)^(1/3);  % Size of the resulting particle  
         
        if  Lresult<=Lm(1) 
            l=1; 
            AggBirth(l) = AggBirth(l) +  0.5 * Coll isionRate / ...  
                (L(l+1)-L(l)); 
            TotalBirth = TotalBirth + CollisionRate /2; 
             
        elseif  Lresult>Lm(ClassesNum) 
            l=ClassesNum; 
            AggBirth(l) = AggBirth(l) +  0.5 * Coll isionRate / ...  
                (L(l+1)-L(l)); 
            TotalBirth = TotalBirth + CollisionRate /2; 
        else  
            j=1; 
            while  Lresult>Lm(j)   % Is Lresult in this class j ?  
                if  Lresult<=Lm(j+1) 
                    l=j; % Resulting particle is between Lm(l) and Lm(l+1)  
                     
   % Resulting particle is partitioned between 2 class es Lm(l) and Lm(l+1):  
   % (due to particle number conservation and mass con servation)  
  
                    w1 = (1 - (Lresult/Lm(l+1))^3) / ...  
                        (1 - (Lm(l)/Lm(l+1))^3); 
                    w2 = 1 - w1; 
  
                    AggBirth(l) = AggBirth(l) +  w1 /2 * ...  
                        CollisionRate / (L(l+1)-L(l )); 
                    AggBirth(l+1) = AggBirth(l+1) +  w2/2 * ...  
                        CollisionRate / (L(l+2)-L(l +1)); 
                    TotalBirth = TotalBirth + Colli sionRate/2; 
                end  
                j=j+1; 
            end  
        end  
         
    end  
     
end  
  
if  TotalDeath==TotalBirth*2 
    % OK 
else  
    disp( 'Collision Number conservation Error' ) 
    disp( 'TotalDeath = ' ,num2str(TotalDeath)) 
    disp( 'TotalBirth x 2 = ' ,num2str(TotalBirth*2)) 
end  
  
% Mixing-term:  
MixVolIncrease = E*(1-XMicro(t)/XMeso(t)); 
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% ODE's:  
% Particle classes  
for  i=1:ClassesNum 
     
    %Nucleation:  
     
    Nuc=0;  % Set Nucleation to zero (default)  
    if  2*rc>=L(i)  % Is critical nuclei size within this class?  
        if  2*rc<L(i+1) 
            Nuc = Bhom/(L(i+1)-L(i)); % Set Nucelation term  
        end  
    end  
     
    % Growth (Upwind Discretisation)  
     
    if  i==1 % lower boundary of internal coordinate L  
        Growth=0; 
    elseif  i==ClassesNum % upper boundary of internal coordinate L  
        Growth=GrowthConst*D*(S-1)*(y(i)/Lm(i) - y( i-1)/Lm(i-1))/ ...  
            (Lm(i)-Lm(i-1)); 
    else  
        Growth=GrowthConst*D*(S-1)*(y(i)/Lm(i) - y( i-1)/Lm(i-1))/ ...  
            (Lm(i)-Lm(i-1)); 
    end  
     
    % Balance:  
     
    dy(i) = Nuc - Growth + AggBirth(i) - AggDeath(i ) - ...  
        MixVolIncrease*y(i); 
     
end  
  
  
GrowthSum=0; 
  
for  i=1:ClassesNum 
    GrowthSum = GrowthSum + Lm(i)*y(i)*(L(i+1)-L(i) ); % [1/m²]  
end  
  
GrowthSum = GrowthSum*GrowthConst*D*(S-1)*pi*cS1/2;  % [kmol/m³s]  
  
% Polyacrylic acid concentration  
dc1WellMixed = -Bhom * 4*pi/3*rc^3*cS1 - GrowthSum;  
dy(ClassesNum+1) = dc1WellMixed + MixVolIncrease*(c 10-y(ClassesNum+1)); 
  
% Protamine concentration  
dy(ClassesNum+2) = dc1WellMixed*(-z1/z2) + MixVolIn crease* ...  
    (0-y(ClassesNum+2)); 
  
% Write data to Log File:  
fprintf(fid, '  Sup %6.3f  ' ,S); 
% dc1/dt due to nucleation  
fprintf(fid, '  Nuc %1.10f  ' ,-Bhom * 4*pi/3*rc^3*cS1);  
 % dc1/dt due to growth  
fprintf(fid, '  Growth %1.10f  ' ,-GrowthSum/(1-z1/z2));  
% born Particles per second and sum of particles  
fprintf(fid, '  Agg.TotalBirth %3.10f  ' ,TotalBirth/ySum);   
  
% Write data to Log File:  
fprintf(fid, '%1.0f **\n' ,0); 


