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Abstract

Effective low-energy Hamiltonians play an important role in theoretical solid
state physics. They have the advantage to describe the important physics of
a quantum-mechanical system in a reduced Hilbert space.

In this thesis, we discuss the so-called Löwdin downfolding technique as a
method to construct such Hamiltonians. It consists in effectively integrating
out some of the bands, yielding a simpler model for the remaining states.

In a first part, we test the approach by applying it to different tight-
binding multi-band models for CuO2-planes in High Temperature Supercon-
ductor materials.

As a practical application, we carry out the method to the transition
metal compound SrV O3 in which the V − 3d − t2g orbitals are identified as
the essential ones around the Fermi level.

In a further step, we add the electron Coulomb interaction to the model
and construct an interacting three-band Hubbard Hamiltonian for the cor-
related material SrV O3. We solve the model within the Variational Cluster
Approach (VCA). Results show a material close to the metal-insulator tran-
sition.
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Kurzfassung

Effektive niedrig-Energie Hamiltonoperatoren spielen eine wichtige Rolle in
der theoretischen Festkörperphysik. Sie haben den Vorteil, die relevante
Physik eines quantenmechanischen Systems in einem reduzierten Hilbertraum
zu beschreiben.

In dieser Diplomarbeit wird die sogenannte Löwdin downfolding Technik
als eine Methode vorgestellt um solche Hamiltonoperatoren zu erzeugen. Sie
besteht darin, einige der Bänder effektiv auszuintegrieren um ein einfacheres
Modell für die übrigen Zustände zu erhalten.

In einem ersten Teil der Arbeit wird diese Näherungsmethode getestet,
indem sie auf verschiedene tight-binding multi-Band Modelle für die CuO2-
Ebenen in Hochtemperatursupraleitern angewendet wird.

Danach wird als praktische Anwendung diese Methode für die Übergangs-
metallverbindung SrV O3 durchgeführt, in der sich die V − 3d− t2g-Orbitale
als die relevanten herausstellen, die sich nahe der Fermienergie befinden.

In einem weiteren Schritt wird die Coulombwechselwirkung dem Modell
hinzugefügt und ein wechselwirkender drei-Band Hubbard-Hamiltonoperator
für das stark korrelierende Material SrV O3 erzeugt. Dieses Modell wird mit-
tels der Variationellen Cluster Strungstheorie (VCA) gelöst. Die Ergebnisse
zeigen ein Material nahe des Metall-Isolator-Überganges.
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Chapter 1

Introduction

In theoretical solid state physics, quantum-mechanical systems are described
by Hamiltonians in a certain Hilbert space representing the degrees of free-
dom considered for this system. In general, when large energy scales are
well separated from the low-energy sector situated around the Fermi En-
ergy, low-energy effective Hamiltonians can be constructed having the ad-
vantage of being formulated in a smaller Hilbert space. The price for this
simplification is often that both the Hamiltonian and the operators take a
form that is more complicated than that of the original theory. Standard
methods used to obtain low-energy Hamiltonians are, for example, the per-
turbative Brillouin-Wigner type methods, the canonical transfromation and
the Löwdin diagonalization. All these methods lead to similar results and
are frequently applied in theoretical solid state physics to describe strong
correlated materials. In these systems, an important role is played by the
Coulomb electron-electron interactions. Therefore suitable methods that go
beyond mean-field theory have to be adopted. A large class of strongly cor-
related materials are transition metal compounds, containing atoms of the
d-block of the periodic system of elements. The unfilled d-orbitals contribute
to a number of interesting properties such as high-temperature superconduc-
tivity and metal-insulator transitions.

At the beginning of this thesis, the general theory for the Löwdin down-
folding technique is presented. The first part of this diploma work was de-
voted to develop a program to realize this method numerically and to test
it on different examples. We apply it to describe the copper-oxide planes in
two representants of high temperature superconducting materials, in partic-
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10 Introduction

ular the single layer compound La2−xSrxCuO4 and the bilayer Y Ba2Cu3O7.
Starting from a multi-orbital tight-binding model we perform downfolding
to effective three and one-band Hamiltonians. We investigate the method
concerning accuracy and dependence on the parameters.

Chapter three presents the basics of the Hubbard model. Several levels of
approximations are discussed, the atomic limit and the Hubbard-I approxi-
mation are presented in detail. As an improvement of the latter, the Cluster
perturbation Theory (CPT) is introduced. Finally, the Variational Cluster
approach (VCA) is presented as an extension of CPT.

The last chapter describes the combination of an ab-initio and many-body
calculation with an application to the strongly correlated material SrV O3.
First, we construct a three-band low-energy Hamiltonian for the V −3d− t2g

orbitals using the NMTO downfolding method, to which local Coulomb in-
teractions are added. We then solve the interacting Hamiltonian using the
Variational Cluster Approach. This chapter contains preliminary results,
which are discussed and compared with previous results obtained by other
approximations such as Dynamical mean Field Theory and with experimen-
tal data.

As an overall conclusion of the present thesis we can say that the combi-
nation of the downfolding technique with many-body calculation provides a
powerful method to describe correlation effects in a realistic way. The quality
of the results obviously depend on the approximations one makes in deriving
the low-energy Hamiltonian as well as in solving the many-body problem. It
is expected that in the future the computational development would trigger
the improvement of both this techniques, such that the combination of the
electronic structure and many-body physics would be developed towards a
more quantitative description of correlated materials.



Chapter 2

Construction of effective

low-energy models

In this chapter, the Löwdin downfolding method [1] is presented. For a given
model Hamiltonian it reduces the number of degrees of freedom creating an
effective Hamiltonian in a smaller Hilbert space. The purpose of this part
of the thesis is to test this method on ’toy’-models. We start from a tight-
binding model restricted to a certain number of bands N1, and reduce the
number of bands to N2, (N2 < N1). We discuss the results of the down-
folding procedure concerning accuracy and dependence on the parameters.
In particular, tight-binding Hamiltonians are derived for the energy bands
of a CuO2-plane, which is the important feature of high-temperature super-
conducting materials (HTSC) [2]. We perform downfolding for the single
layer compound La2−xSrxCuO4 from three to one band, which is presented
in Sec. 2.2, whereas for the bilayer Y Ba2Cu3O7 we do downfolding from
eight band to three and one (Sec. 2.3). For the latter example, results are
also compared to the low-energy bands presented in the work of Andersen et
al. [3].

2.1 The downfolding technique

The idea of the Löwdin downfolding method [1, 4, 5, 6, 7] is to divide the
Hilbert space of a quantum-mechanical system in two subspaces, a subspace
A, containing the states one is interested in, and another subspace B, con-
taining the rest of the states belonging to the full system. Those states will
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12 Construction of effective low-energy models

be integrated out (downfolded), yielding an effective Hamiltonian restricted
to the remaining states. The following derivation follows the paper by E.
Zurek et al. [6].

The Hamiltonian of the full system, H, a hermitian matrix of dimensions
N1 × N1, can be written in blocks of four submatrices:

H =

(
H(A) V
V † H(B)

)

(2.1)

where H(A) is a N2 × N2 matrix in the subspace A, and H(B) a N3 × N3

matrix in the subspace B. Of course, N1 = N2 + N3 is valid. The matrices
V and V † are of dimensions N2 ×N3 and N3 ×N2 respectively, and describe
the overlap between the two subspaces. To get the energy eigenvalues ε, the
Schrödinger equation has to be solved:

H ~U = ε~U (2.2)

The partition of the Hilbert space concerns of course in the same way the
eigenvectors

~U =

(
~U (A)

~U (B)

)

, (2.3)

so that the eigenvalue equation can be written in the form

(
H(A) V
V † H(B)

) (
~U (A)

~U (B)

)

= ε

(
~U (A)

~U (B)

)

, (2.4)

and divided into a system of two equations

H(A)~U (A) + V ~U (B) = ε~U (A) (2.5)

V †~U (A) + H(B)~U (B) = ε~U (B). (2.6)

This system of equations can be solved easily. We are interested in the A-part
of the system. From Eq. (2.6) one obtains

~U (B) = (ε1(B) − H(B))−1V †~U (A), (2.7)
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and by inserting this in Eq. (2.5) one gets the following equation for the
dimensions of interest A only:

(

H(A) + V
(
ε1(B) − H(B)

)−1
V †

)

︸ ︷︷ ︸

Heff

~U (A) = ε~U (A) (2.8)

One can now define an effective, downfolded Hamiltonian:

Heff(ε) = H(A) + V
(
ε1(B) − H(B)

)−1
V † (2.9)

This new Hamiltonian is now of dimensions N2×N2, so it is smaller than
the original matrix in the full basis and one could expect it would be easier
to diagonalize. But the new matrix is now ε-dependent, so the eigenvalue
equation becomes in fact a nonlinear one.

The idea is now to approximate this Heff(ε) by an ε-independent Hamil-
tonian H̃eff. One defines a set of downfolded ε-dependent orbitals

φa(ε) := ϕa + ϕb(ε1(B) − H(B))−1V ∗
ba (2.10)

where {ϕ} = {ϕ1, . . . , ϕN1
} is the basis, in which the original (full) matrix H

was written. a and b are the indices for the subspaces A and B respectively.
Projection onto the B-orbitals yields:

〈ϕb|H − ε|φa(ε)〉 = 0ba (2.11)

Projection onto the A-dimensions yields:

〈ϕa|H − ε|φa(ε)〉 = Haa + Vab(ε1(B) − H(B))−1V ∗
ba

︸ ︷︷ ︸

Heff

−ε1aa =: −Gaa(ε)
−1

(2.12)
One tries to find an ε-independent approximation χa to the set φa(ε). There-
fore one forms the set of contracted Greens functions φa(ε)Gaa(ε) and adds
an analytical function of ε, a matrix P (ε), such that it coincides with the set

χ
(N)
a Gaa(ε) when ε is on an energy mesh [0 . . . N ] :

χaGaa(ε) = φa(ε)Gaa(ε) + P (ε), for ε = [0 . . . N ] (2.13)
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Taking the so-called divided difference1 ∆N

∆[0...N ]
on both sides yields

χa

∆NGaa

∆[0 . . . N ]
=

∆NφaGaa

∆[0 . . . N ]
(2.14)

provided for P (ε) a polynomial function of ε of N − 1 degree is chosen, since

then ∆NP
∆[0...N ]

= 0 for any function of this class. So with

χ(N)
a =

∆NφaGaa

∆[0 . . . N ]

(
∆NGaa

∆[0 . . . N ]

)−1

(2.15)

one gets a set of (N2) vectors in the reduced Hilbert space of dimension N2,
representing a set of orbitals, the so-called NMTOs, Muffin Tin Orbitals of
order N. This NMTO set is not orthonormal in general. After orthonormal-
izing the set χ

(N)
a , one obtains a new basis for the subspace of interest (A)

and the original Hamiltonian H can be transformed into this basis yielding

(

H̃eff

)

aa′

= χ†
aHχa′ . (2.16)

So one ends up with an effective, energy-independent Hamiltonian of dimen-
sion N2 × N2 which can now be diagonalized easier. The quality of this
approximation depends in a very sensitive way on the choice of the energy-
mesh points ǫν = {ǫ0, . . . , ǫN}.

Thus, the presented downfolding method is able to create low-energy ef-
fective Hamiltonians, which is, in particular, very useful for correlated models
in many-particle physics. Since here, problems become very complex due to
the interactions, one is hardly interested in keeping the dimension of the
Hilbert space as small as possible.

To realize this presented method numerically, we developed a program
code with the use of the software Mathematica. We then applied it to dif-
ferent examples, which is presented in the following sections. Starting from
a three-band model for the CuO2-plane, we downfold to one band. This ap-
proach is presented in Sec. 2.2. Then we perform the downfolding from eight
to three as well as from eight to one band, presented in Sec. 2.3.

1For a definition of the divided difference, see Ref. [5] p. 102.
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2.2 The CuO2 plane in La2−xSrxCuO4

One important parent compound for high-temperature superconducting ma-
terials is La2CuO4. The crystal structure of this material can be seen in
Fig. 2.1. The typical property of all HTSC materials out of the class of the
cuprates is the presence of two-dimensional planes, built up of copper and
oxygen atoms, which appear periodically in the material. The characteristic
properties of these materials are due to the dynamic of the electrons in these
copper-oxide (CuO2) planes, especially charge transport, which is responsible
for the superconducting phase.

Therefore, the important physics takes place in these CuO2-planes but
is, of course, influenced by the region in between the planes. The effect of
this region is to act as a charge reservoir for the planes. By replacing a few

Figure 2.1: Crystal structure of La2−xSrxCuO4. In the middle of the elementary
cell as well as at the top (and bottom) the CuO2-planes can be seen, which are
responsible for the charge transport in the superconducting phase
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percent of the La atoms by Sr atoms one can actively control the number
of conduction electrons in the planes. This is called a doped case and is
symbolized by writing La2−xSrxCuO4, with the variable x quantifying the
amount of La replaced by Sr atoms. Since Sr has one electron less than
La in its outermost shell, the material gets additional charge carriers, or
more exact the CuO2-planes will become doped with holes. The electron
configurations of the constituents of the compound are the following:

number atomic ionisation state
atom of electrons configuration in the crystal
La 57 [Xe]6s25d1 La3+

Sr 38 [Kr]5s2 Sr2+

Cu 29 [Ar]3d104s1 Cu2+

O 8 [He]2s22p4 O2−

In the crystal, the La atoms give away three electrons to get a full shell
configuration with La3+, the O atoms take two electrons to fill their 2p-shell
and get in the O2− state. To assure the neutrality of the whole compound,
the Cu atom has to loose two electrons to get into the Cu2+ state. It looses
the 4s electron and one d electron, remaining at a 3d9 configuration. Since
this means an unpaired electron in the d shell, the copper atom has a net
spin of 1/2. One also can say that there is a hole of spin 1/2 on the Cu atom.

Due to the fact that the Cu − d band is half filled, one should expect
the system to be metallic. However, La2CuO4 is an insulator with a gap of
about 2eV . Experimentally La2CuO4 is an anti-ferromagnet, so that each
3d9 state has an unpaired spin aligned opposite to the spin of its neighbors.
From spectroscopy one knows that in Cu the 3d9 state is lower by about 8eV
than the 3d8 state. In the doped case of La2−xSrxCuO4 one sees from valence
counting that a corresponding number of oxygen atoms will go from O2−(p8)
state to the O−(p7) state, so the oxygen in the CuO2-plane will become doped
with holes. These holes hybridize strongly with the Cu states.

2.2.1 The model Hamiltonian

A simple model Hamiltonian which captures the physics discussed in the
previous section, needs to include both the hybridization of the oxygen p
and copper d orbitals, as well as the effect of strong correlations inhibiting
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the formation of 3d8 state. One therefore needs a three-band tight-binding
model Hamiltonian [8]. The orbitals considered in this three band model are
the following (see Fig. 2.2):

• the 3dx2−y2-orbital of Cu

• the 2px-orbital of O1 (oxygen atom located between two copper atoms
in x-direction)

• the 2py-orbital of O2 (oxygen atom located between two copper atoms
in y-direction)

Figure 2.2: The CuO2-plane of La2−xSrxCuO4: The Cu − dx2−y2 , O1 − px

and O2 − py - orbitals and the hoppings between them. The sign of the hopping
parameters tpd depends on the bonding or antibonding overlap of the wavefuncions.

One can now define the corresponding tight-binding Hamiltonian:

H = H0 + Hdp (2.17)
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with

H0 =
∑

iσ

(
ǫ0
dndiσ

+ ǫ0
pnpixσ

+ ǫ0
pnpiyσ

)
(2.18)

Hdp = − tpd

∑

iσ

(

d†
iσpixσ + d†

iσpiyσ + h.c.
)

+ tpd

∑

iσ

(

d†
iσpjxσ + d†

iσpj′yσ + h.c.
)

(2.19)

Here, d†
iσ (diσ) is the operator creating (annihilating) a hole with spin σ

in the dx2−y2-orbital of the copper atom at position Ri in the unit cell i. In

analogy, p†ixσ (pixσ) and p†iyσ (piyσ) are the operators creating (annihilating)
a hole with spin σ in the px-orbital of the oxygen atom O1 and the py-orbital
of the oxygen atom O2 in the unit cell i. n denote the number operators for
the corresponding orbital, defined e.g. as ndiσ

= d†
iσdiσ. The indices j and

j′ denote the neighbor unit cells of the unit cell i, situated at Ri, in the −x
and −y - directions respectively (see Fig. 2.3). The ǫ0

d and ǫ0
p are the on-site

energies of the Cu − d and O − p orbitals. tpd describe the amplitudes for
hoppings of a hole between the neighboring Cu − d and O − p orbitals.

Figure 2.3: The CuO2-plane of La2−xSrxCuO4: the elementary cell contains one
copper and two oxygen atoms. The cell i is situated at Ri and has the neighbor
cells j and j′.

The first line in (2.19) describes the hoppings between the orbitals in
the unit cell i, the second line those between orbitals belonging to different
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(neighbored) unit cells. In the latter case the sign of the overlapping wave-
functions is different, so we get an additional minus sign which leads to a
positive sign for the tpd. See Fig. 2.2 for details.

The solution of the tight binding hamiltonian leads to two hybridized
Cu − O bands and one non-hybridized oxygen level. In a real three dimen-
sional crystal the non-hybridized level will couple to atoms from other planes
and move down to lower energies, so we do not consider it further.

In order to calculate the band structure, the Fourier representations are
introduced:

diσ =
1√
N

∑

k

ei~k ~Rdkσ (2.20)

pixσ =
1√
N

∑

k

ei~k(~Ri+
a
2
~ex)pkxσ (2.21)

piyσ =
1√
N

∑

k

ei~k(~Ri+
b
2
~ey)pkyσ (2.22)

Then, with the field operator

Ψ†
kνσ =

(

dkσ, p
†
kxσ, p

†
kyσ

)

(2.23)

one can write the quadratic part of the Hamiltonian H = H0 + Hdp:

H =
∑

kνν
′
σ

Ψ†
kνσHkνν

′Ψkν
′
σ (2.24)

Thus, the Hamiltonian matrix can be written as

Hkνν
′ =





ǫ0
d 2itpd sin a

2
kx 2itpd sin b

2
ky

−2itpd sin a
2
kx ǫ0

p 0
−2itpd sin b

2
ky 0 ǫ0

p



 (2.25)

2.2.2 Downfolding results

We now want to replace the three orbitals in the unit cell, the Cu − dx2−y2 ,
O1− px and O2− pz orbitals by just one orbital at the Cu site. The oxygen-
p orbitals are not simply removed, but are downfolded into this new Cu −
dx2−y2-orbital. We therefore apply the downfolding procedure as described in
section 2.1 to the three-band Hamiltonian Hkνν

′ in Eq. (2.25). We downfold
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to the first dimension, i.e. the one for the Cu−dx2−y2-band. For the numerical
calculation we take the following values: a = b = 1, ǫ0

d = 0, ǫ0
p = 3 and

tpd = 1. A plot of the original band structure of the three band Hamiltonian
together with the downfolded band is shown in Fig. 2.4. For the chosen
energy-points ǫν = {−0.5,−1.5} we observe a good agreement.

H0,0 L H0, ΠL HΠ, ΠL H0,0 L

-1

0

1

2

3

4

H0,0 L H0, ΠL HΠ, ΠL H0,0 L

Figure 2.4: The band structure for the CuO2-plane of La2−xSrxCuO4 (black)
and the downfolding to the Cu−dx2−y2-band (dotted red) with the chosen ǫν-points
(green). The energy scale is relative to ǫ0d.

As already mentioned above, the quality of the downfolding method, i.e.
the agreement of the downfolded band to the exact one, depends strongly on
the position and the number of the ǫν-points chosen for the energy mesh in
Eq. (2.14).

In order to have a measure of the quality of the approximation, we intro-
duce an error E defined by

E =

√
∑

k

(εdf (k) − εex(k))2, (2.26)

which is a suitable quantity for the deviation between the downfolded band
εdf (k) and the exact band εex(k) in k-space. This error is computed for each
calculation and compared.
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We now investigate the accuracy of the downfolding approach depending
on the choice of the energy mesh ǫν = {ǫ0, . . . , ǫN}. We carry out calculations
for three different energy meshes, containing one, two, and three energy
points ǫν defined in the following way (see Fig. 2.5):

ǫ(1)
ν = {ǫ} (green)

ǫ(2)
ν = {ǫ − δ(2), ǫ + δ(2)} (red)

ǫ(3)
ν = {ǫ − δ(3), ǫ, ǫ + δ(3)} (blue)

-2

-1.5

-1

-0.5

0

∈
δ (2)

δ(3)

Figure 2.5: The energy mesh points used for the downfolding of La2−xSrxCuO4:
the unrenormalized Cu − dx2−y2-band in black and the one-point mesh in green,
the two point mesh in red and the three-point mesh in blue, each at the optimal
position (see Fig. 2.6).

First, we do the calculations for the one-point mesh ǫ
(1)
ν , depending on

ǫ. We find a minimal error E = 0.007 for a value of ǫ = −1.17. For the
following calculations, the two and three-point mesh ǫ

(2)
ν and ǫ

(3)
ν take this

value as their center. For each mesh we investigate the dependence of the
error E on the spacing-parameter δ. The results are shown in Fig. 2.6. From
δ = 0, where of course all the three meshes condense to the one-point mesh,
we observe for increasing δ a decreasing error until we reach a minimum,
before it increases again very strongly. For the two-point mesh the minimal
error is found for an optimal spacing at δ

(2)
min ≈ 0.5 and for the three-point

mesh at δ
(2)
min ≈ 0.8. The illustration in Fig. 2.5 corresponds to this situation.
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0 1 2 3 4
δ 

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

E

Figure 2.6: The Error E of the downfolded Cu − dx2−y2-band in dependence of
the distance δ between the mesh-points for one (green), two (red) and three points
(blue). (see Fig. 2.5)

In the region of optimal spacing δ, we observe a decrease of the error
between one and two orders of magnitude for each additional energy point.
However, due to the strong dependence on δ, it cannot be generally stated,
that increasing the number of energy points leads automatically to a reduc-
tion of the error. We see that for large δ, i.e. for mesh-points far away from
the searched band, the error for taking more points is even bigger than for
just one point. But, of course, this one single point is chosen at its optimal
position, which in general, we don’t know in advance. Therefore, adding
more points will reduce the error, as long as their spacing is not too big
(compared to the bandwidth of the downfolded band), that means the mesh
becomes more dense. In practice, the number of points is limited by the
computation time.
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Another interesting question is how the accuracy of the downfolding pro-
cedure depends on the orbital separation energy ∆ = ǫ0

d − ǫ0
p between the

Cu − dx2−y2 and O − p orbitals. Fig. 2.7 shows the error of the downfolded
band in dependence of ∆. Since ∆ changes the bandwidth W of the band
(the bandwidth decreases with increasing ∆), the error must be taken relative
to the bandwidth to produce a meaningful plot.

We consider a mesh of three energy points, ǫν = {ǫ1, ǫ2, ǫ3} with the

0 2 4 6 8 10
∆

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E

Figure 2.7: The Error E of the downfolded Cu − dx2−y2-band relative to the
bandwidth in dependence of the orbital separation ∆ to the O − p-orbitals. For a
3-point mesh at fixed position (black) and at ∆-dynamical positions (point distance
δ depending on the bandwidth) (red).
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following values

ǫ1 = ǫ0
d −

1

4
W

ǫ2 = ǫ0
d −

1

2
W

ǫ3 = ǫ0
d −

3

4
W

in which the value of W is obtained in two different ways: In a first calculation
(black), a fixed mesh with W (∆ = 3) is used for all ∆. In a second calculation
(red), the mesh is set to ∆-dynamical positions at W (∆), so the mesh-points
change for every calculation.

Since the bandwidth W chances with ∆, the latter method is of course
more efficient than the first case, which is plotted in comparison in Fig. 2.7.
As we would expect, it shows in general a bigger error, except in the interval
from ∆ = 3 to about 5.5. This is due to the fact, that the chosen position
of the mesh points (at 1/4, 1/2, 3/4 of the bandwidth) is obviously not the
optimal one.

Generally we observe an exponential decrease of the relative error with
the band separation energy ∆. This result we would expect, since increasing
∆ means that the overlap of the orbitals becomes smaller, i.e. a relative
decrease of the non-diagonal elements in the Hamilton matrix H (Eq. 2.25),
to which we apply the downfolding (see Eq. 2.9).

To conclude, it can be said that the choice of the position and the number
of energy-mesh points ǫν is of significant importance for the accuracy of the
downfolded band with respect to the original one. The points have to lie in
the region of the downfolded band, and an increasing number will increase
the accuracy, as long as they have ’reasonable’ spacing and positions with
respect to the bandwidth.
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2.3 The bilayer CuO2 planes in YBa2Cu3O7

cuprate

Another important HTSC material out of the class of the cuprates is Y Ba2Cu3O7.
This compound is, concerning the CuO2-planes, very similar to La2−xSrxCuO4

described in section 2.2. Its crystal structure is shown in Fig. 2.8. The re-
gion of interest is again the CuO2 planes. Due to the crystal structure of
Y Ba2Cu3O7, i.e. the difference between Y and Ba atoms, these planes are
not completely flat, but are dimpled, which means that the oxygen atoms
are slightly out of plane. This is an important property of this material.
Due to this fact, the two CuO2 planes are not identical any more and cannot
be described independently. Thus, in contrast to the previously described
La2−xSrxCuO4, this material forms a bilayer, consisting of two CuO2 planes
around the Yttrium atom. Since there are two possibilities to combine the
wavefunctions of the two single planes, we have to consider two types of
wavefunctions, the even and odd ones, for the bilayer.

Figure 2.8: The crystal structure of Y Ba2Cu3O7. Above and below the Yttrium
atom in the center, the dimpled CuO2-planes, which form the bilayer, can be seen.
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2.3.1 The model Hamiltonian

By downfolding from the full LDA multi-band Hamiltonian, Andersen et
al. [9, 3] derived an eight-band, tight-binding Hamiltonian, H8, for the CuO2

bilayer. The remaining orbitals are Cu − dx2−y2 , Cu − s, O1 − px, O2 − py,
O1 − pz, O2 − pz, Cu − dxz, Cu − dyz and are shown in Fig. 2.9. Four of
these eight orbitals have σ character and four have π character. According
to Ref. [3], is ”the reason for keeping in the Hamiltonian particularly those
eight orbitals, that these orbitals are the ones which after orthogonalization
describe the LDA plane-bands accurately over a ±1eV range with nearest
neighbor hoppings only, that is, with the minimal number of parameters.
The eight-band Hamiltonian is thus the one which is ’chemically’ meaningful
and sufficiently simple” for further treatments.

Figure 2.9: The copper-oxide plane of Y Ba2Cu3O7: the considered orbitals
forming σ -bonds (left) and those forming π -bonds (right).

The Hamiltonian matrix is written in the following form:

H8 =

(
Hσ Hσπ

Hπσ Hπ

)

(2.27)

with Hσ, the Hamiltonian restricted to the σ-bonding orbitals |Cu−dx2−y2〉,
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|Cu − s〉, |O1 − px〉, |O2 − py〉:

Hσ =







ǫd 0 2txd sin a
2
kx −2tyd sin b

2
ky

0 ǫs 2tsx sin a
2
kx 2tsy sin b

2
ky

2txd sin a
2
kx 2tsx sin a

2
kx ǫp 0

−2tyd sin b
2
ky 2tsy sin b

2
ky 0 ǫp







(2.28)

and Hπ restricted to the π-bonding orbitals |O1− pz〉, |O2− pz〉, |Cu− dxz〉,
|Cu − dyz〉:

Hπ =







ǫza −4tzz cos a
2
kx cos b

2
ky 2tz,xz sin a

2
kx 0

−4tzz cos a
2
kx cos b

2
ky ǫzb 0 2tz,yz sin b

2
ky

2tz,xz sin a
2
kx 0 ǫxz 0

0 2tz,yz sin b
2
ky 0 ǫyz







(2.29)
Finally,

Hσπ = HT
πσ =







2ta sin a
2
kx −2tb sin b

2
ky 0 0

0 0 0 0
0 0 0 0
0 0 0 0







(2.30)

is the block mixing the σ- and π-orbitals.
Here, a and b are the lattice parameters in x and y direction of the plane,

the ǫ’s denote the on-site energies for the corresponding orbitals. For the
indices the following abbreviations are used: d for the Cu − dx2−y2 orbital,
s for Cu − s, x for O1 − px, y for O2 − py, za for O1 − pz, zb for O2 − pz,
xz for Cu − dxz, yz for Cu − dyz.For the odd (o) and the even (e) plane the
numerical values, given in meV , are the following:

meV ǫd ǫs ǫx ǫy ǫza = ǫzb ǫxz = ǫyz

o −2308 +4844 −3199 −3082 −1602 −3639
e −2402 +3378 −3476 −3267 −2304 −3056

The t’s denote the hopping parameters in between the eight considered
orbitals for nearest-neighbor sites, the meaning of the indices is in analogy to
above. The only case where second-nearest neighbor hopping is considered,
is the hopping between O1− pz, and O2− pz with the parameter tzz. ta and
tb describe the hopping between the Cu − dx2−y2 orbital and the oxygen pz

orbitals (on the a and b axis respectively). This hybridisation of σ and π
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bonds is a result of the dimpling of the CuO2 plane. The hopping parameter
depends on the dimpling angle α, which is about 7◦, with the relation ta, tb ∝
sin α. The numerical values for the hopping parameters are the following:

meV txd tyd tsx tsy tzz tz,xz tz,yz ta tb
o 1576 1556 2024 2006 120 829 831 228 223
e 1599 1588 2582 2517 12 543 524 267 249

2.3.2 Downfolding Results

Downfolding to three bands

In this section, we show how the downfolding procedure of section 2.1 is
applied to the eight-band Hamiltonian H8 discussed above. The aim is to
have a single orbital per atomic site to describe the physics in the plane.
Since the σ-orbitals cause the strongest hybridisations, i.e. have the biggest
hopping parameters, we downfold to the corresponding three orbitals: Cu−
dx2−y2 , O1 − px, O2 − py. The fact, that we choose the Cu − d and not the
Cu−s orbital is due to the fact that the Cu−s band lies at too high energy.
In Fig. 2.10 the projections of those three orbitals to the eight orbitals are
shown.

As energy-mesh we take two points at ǫ1 = −5 and ǫ2 = 5 relative to ǫd.
This covers the energy range where the bands of interest are situated. The
result of the downfolding is shown in Fig. 2.11. Even for just two ǫ-points we
observe a rather good agreement with the bands obtained from full diago-
nalisation of H8. The big deviations near the Γ-point at k = (0, 0) especially
for the Cu − dx2−y2-band are explained by the strongly mixed character of
the bands in this region and is something we would have expected.

Downfolding to one band

A further step is to keep in the final model just one orbital per CuO2-unit
cell, i.e. one orbital around the copper site, where all the others are folded
into. We therefore downfold the eight-band Hamiltonian H8 to the single
Cu − dx2−y2 band.

The result is plotted in Fig. 2.12 together with the original bands of H8.
Again we observe a rather good agreement with the Cu − dx2−y2 band ob-
tained from full diagonalisation. As energy-mesh we take here two points
at ǫ1 = 1.5 and ǫ2 = 3eV above ǫd. This is within the energy range of the
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concerned band. For a good result, it is important to choose no energy-mesh
point in the energy region of another band, which has some (not negligible)
Cu − dx2−y2 character.

This reduced one-band model contains not only hoppings between nearest-
neighbor orbitals, but also longer range hoppings. These can be obtained by
observing that the Fourier transformation of the one-band Hubbard model
is given by:

H1(k) =ǫ − 2t(cos akx + cos bky) + 4t′ cos akx cos bky − 2t′′(cos 2akx + cos 2bky)

+ 4t(3)(cos akx cos 2bky + cos 2akx cos bky) + 4t(4) cos 2akx cos 2bky

− 2t(5) (cos 3akx + cos 3bky) + . . . (2.31)

in terms of the hopping parameters t(n) for the (n + 1)-nearest neighbor.
By fitting with Eq. (2.31) the band obtained by downfolding, we obtain the
following numerical values for the hopping parameters up to the 6th nearest
neighbor for the odd (o) and even (e) bilayer:

meV t t′ t′′ t(3) t(4) t(5)

o 348 102 59 16 0.07 9.1
e 420 121 111 20 5.8 33

This is in very good agreement with the result obtained for the exact
diagonalized band by Andersen et al. [3]:

meV t t′ t′′ t(3) t(4) t(5)

o 349 96 62 18 1 10
e 422 113 110 20 5 32
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Figure 2.10: Band structure of Y Ba2Cu3O7 obtained by diagonalizing H8, to-
gether with the weights of the projections to the Cu−dx2−y2 , O1−px and O2−py

orbitals. The energy scale is relative to ǫd.
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Figure 2.11: Downfolding to three bands for Y Ba2Cu3O7: comparison of the
exact bands (black) of H8 and the downfolded bands (dotted in color) for Cu −
dx2−y2 , O1−px and O2−py. The green lines correspond to the energy-mesh points
used for the downfolding. The energy scale is relative to ǫd.
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Figure 2.12: Downfolding to one band for Y Ba2Cu3O7: comparison of the exact
bands (black) of H8 and the downfolded band (dotted in color) for Cu − dx2−y2 .
The green lines correspond to the energy-mesh points used for the downfolding.
The energy scale is relative to ǫd.



Chapter 3

The interacting Hubbard model

In the previous chapter the non-interacting low-energy Hamiltonian (a tight-
binding model) was described. The results of these calculations are now used
to construct an extended model Hamiltonian, where to the tight-binding
model (which considers hoppings) an interaction term is added, which takes
into account the Coulomb interaction between the electrons. This is called
the Hubbard model [10, 11] and is introduced in the first section of this
chapter. In the following sections, different levels of approximations are dis-
cussed. Starting from a local picture in the limit of isolated atoms, i.e. the
atomic limit, the so-called Hubbard-I approximation [10] is derived. Then,
the Cluster perturbation theory (CPT)[12] is presented as an improvement
of the latter method. Finally, an extension of CPT is introduced, the Vari-
ational Cluster Approach (VCA) [13, 14, 15, 16, 17, 18, 19], which requires
self-consistent calculations. The latter method is then applied in chapter 4
to analyze the electronic properties of SrV O3.

3.1 Hubbard model and different approxima-

tions

Many of the most interesting properties of materials such as magnetic or-
dering or superconductivity require theories that go beyond the independent
electron approximation. In order to understand the physical phenomena it
is necessary to take into account electron correlations. The simplest model
of correlated electrons is the Hubbard model [10, 11, 20] which has to be
formulated in terms of localized orbitals, e.g. in terms of Wannier functions.

33
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This section follows mainly the presentation in the book of F.Gebhard [20].
In the one-band Hubbard model there is one electron orbital per unit cell.

It is assumed that one can restrict to only one valence orbital per atom. Ob-
viously each orbital can accommodate 0, 1, or 2 electrons. The hamiltonian
consists of a kinetic energy term describing the hopping amplitude, denoted
by t, and an interaction term describing the on-site Coulomb repulsion, de-
noted by U . In second quantized form, the Hubbard Hamiltonian can, thus,
be written:

HHubbard =
∑

Ri,σ

(ǫ0 − µ)nRiσ − t
∑

Ri,Rj ,σ

c†Riσ
cRjσ + U

∑

Ri

nRi↑nRi↓ (3.1)

where nRσ = c†RσcRσ with c†Rσ (cRσ) creating (annihilating) an electron with
spin σ at position R. The first term considers the on-site energy ǫ0 and the
chemical potential µ.

The model is first studied for the atomic limit (t=0) [10] and then solved
within the Hubbard-I approximation[10, 20].

3.1.1 Atomic limit

One limit case of the one band Hubbard model is, when the hopping pa-
rameters t are set to zero. This means that electrons cannot move between
different atomic sites, so each atom is isolated from the others. Thus, this
case is called the atomic limit. The Hubbard Hamiltonian then reads:

H(t=0) =
∑

σ

(ǫ0 − µ)nRσ +
U

2

∑

σ

nRσnR−σ (3.2)

The one-particle retarded Green’s function is defined as

Gret
σ (R1, R2, t) = Θ(t)

〈[

cR1σ(t), c†R2σ

]

+

〉

(3.3)

with [A,B]− = AB−BA and [A,B]+ = AB +BA denoting the commutator
and anticommutator of the operators A and B, respectively. Its Fourier

transformation is denoted as
〈〈

cR1σ; c†R2σ

〉〉

ω
.
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In order to calculate the Green’s function, the equation of motion theory is
applied. One gets

ω
〈〈

cR1σ; c†R2σ

〉〉

ω
=

〈[

cR1σ(t), c†R2σ

]

+

〉

+
〈〈

[cR1σ, H]− ; c†R2σ

〉〉

ω
(3.4)

One inserts the t = 0 Hubbard Hamiltonian (Eq. 3.2) in the commutator and
after some computation one obtains

[cR1σ, H]− = (ǫ0 − µ) cR1σ + UcR1σnR1−σ (3.5)

So equation 3.4 becomes

ωGR1R2σ (ω) = 1 + (ǫ0 − µ) GR1R2σ (ω) + UΓR1R2σ (ω) (3.6)

Here the higher order two particle Green’s function Γ(ω) has been defined.

ΓR1R2σ (ω) =
〈〈

cR1σn−σ; c†R2σ

〉〉

ω
(3.7)

For this Green’s function one now calculates again the equation of motion:

ωΓR1R2σ (ω) =

〈[

cR1σnR1−σ, c
†
R2σ

]

+

〉

+
〈〈

[cR1σnR1−σ, H]− ; c†R2σ

〉〉

ω

= δR1R2
〈nR1−σ〉 + (ǫ0 − µ)

〈〈

cR1σnR1−σ; c†R2σ

〉〉

ω

+U
〈〈

cR1σn
2
R1−σ; c†R2σ

〉〉

ω

= δR1R2
〈nR1−σ〉 + (ǫ0 − µ + U) ΓR1R2σ (ω) (3.8)

thus one gets the result for the two particle Green’s function:

ΓR1R2σ (ω) =
δR1R2

〈nR1−σ〉
ω + µ − ǫ0 − U

(3.9)

inserting this result in the upper expression 3.6 one obtains

ωGR1R2σ (ω) = 1 + (ǫ0 − µ) GR1R2σ (ω) + U
δR1R2

〈n−σ〉
ω + µ − ǫ0 − U

(3.10)

and so the resulting one-particle Green’s function for the same site R is:

GRRσ (ω) =
1 − 〈nR−σ〉
ω + µ − ǫ0

+
〈nR−σ〉

ω + µ − ǫ0 − U
(3.11)
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From this result one can easily see that the poles of the Green’s function
lie for ω at ǫ0 − µ and ǫ0 − µ + U . So the density of states consists of two
delta-peaks with energy distance U from each other. The electronic states
are just allowed for these two energy values. This describes the two possible
energies required to add a particle, ǫ0−µ and ǫ0−µ+U for single and double
occupation respectively.

3.1.2 Hubbard-I approximation

Another limiting case apart from the atomic limit is the non-interacting limit,
i.e. there is no interaction U in the Hubbard model (U = 0). In this case
one has the very simple non-interacting Green’s function

G(0) (ω) =
1

ω + µ − t
(3.12)

Our goal is to solve the full model which includes interaction and hoppings,
i.e. U and t, to describe the physics of our problem properly. Since the
solution of the full Hubbard model is impossible, we have to look for approx-
imations. Therefore the above two limits will be used in combination.

The following, so called Dyson, equation provides a relation between the
Green’s function of the full problem and the non-interacting Green’s function:

G (ω) = G(0) (ω) + G(0) (ω) Σ (ω) G (ω) (3.13)

with the unknown self energy Σ(ω). The main idea of the so called Hubbard-
I approximation [10, 20] is to replace this unknown quantity Σ by the self
energy of the atomic limit

Σ (ω) = Σatomic (ω) (3.14)

By using the results of the previous section, i.e. Eq. (3.11) the atomic self
energy is calculated:

Σatomic (ω) = G
(0)
atomic (ω)−1 − Gatomic (ω)−1 (3.15)

= (ω + µ − ǫ0) −
(

1 − 〈n−σ〉
ω + µ − ǫ0

+
〈n−σ〉

ω + µ − ǫ0 − U

)−1

= U 〈n−σ〉 +
U2 〈n−σ〉 (1 − 〈n−σ〉)

ω + µ − ǫ0 − U (1 − 〈n−σ〉)
(3.16)
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This leads to the resulting Green’s function

Gk (ω) =
ω + µ − U (1 − 〈n−σ〉)

(ω + µ) (ω + µ − U) − ǫ (k) (ω + µ − U (1 − 〈n−σ〉))
(3.17)

which can also be written in the form

Gk (ω) =
α1 (k)

ω − ω1 (k)
+

α2 (k)

ω − ω2 (k)
(3.18)

In comparison with the atomic limit, where the Green’s function has two
δ-peaks, one sees that the Green’s function 3.18 corresponds to two bands
described by ω1(k) and ω2(k).

3.2 Cluster perturbation theory: an improved

Hubbard-I approximation

The idea of the cluster perturbation theory (CPT) [12, 21, 14] is to divide the
whole lattice into identical clusters, forming a superlattice (see Fig. 3.1). So
in the Hubbard Hamiltonian one separates the hopping into those between
different atomic sites in one cluster and those in between different clusters.

Figure 3.1: The Tiling of the lattice into identical clusters. The solid lines
indicate hoppings within one cluster and the dashed lines the hopping between
different clusters.
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Thus, the hopping matrix t, a matrix in site indices which describes the
hoppings in the original lattice, is splitted in the following way:

t =

(
t̃′ T̃

T̃ t̃′

)

=

(
t̃′ 0
0 t̃′

)

︸ ︷︷ ︸

t′

+

(
0 T̃

T̃ 0

)

︸ ︷︷ ︸

T

(3.19)

where t′ denotes the hoppings within a single (isolated) cluster and T the in-
tercluster hoppings between different clusters. So one can write the relation:

t = t′ + T (3.20)

This means, that one can write the Hamiltonian H of the full lattice (Eq. 3.2)
in the following form

H = H0(t
′) + H1(U)

︸ ︷︷ ︸

Hcluster

+H0(T ), (3.21)

where H0 is the (now splitted) hopping term and H1 is the interaction term
of the Hubbard model. Hcluster denotes the Hamiltanian for the cluster only.

In order to calculate the Green’s function of the whole lattice G(ω) the
Dyson equation is used

G−1 (ω) = G−1
0 (ω) − Σ (ω) , (3.22)

where again the self energy Σ(ω) has to be determined. In contrary to the
Hubbard-I approximation, one now approximates this with the self energy of
an isolated cluster Σcluster(ω):

Σ (ω) ∼= Σcluster (ω) (3.23)

since here short range hoppings t′ in the cluster are considered, this means an
improvement with respect to the Hubbard-I approximation, where no hop-
pings at all were considered (atomic limit) for Σ.

So the cluster self energy

Σcluster (ω) =
(

G
(0)
cluster (ω)

)−1

− (Gcluster (ω))−1

= −
(

ω + µ − t
′

)

+ (Gcluster (ω))−1 (3.24)
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is used to calculate the lattice Green’s function

G (ω) =
1

G−1
0 (ω) − Σcluster(ω)

(3.25)

=
1

(ω + µ − t) − (ω + µ − t′) + (Gcluster (ω))−1

=
1

(Gcluster (ω))−1 − t + t′

G(ω) =
1

(Gcluster (ω))−1 − T
(3.26)

3.2.1 CPT by hand

To illustrate the cluster perturbation theory technique we will calculate by
hand a simple example. We consider a single-band Hubbard model on one-
dimensional lattice decomposed into clusters containing two sites. Thus, we
have the effective spatial indices of 1 and 2. In this way we can write the
cluster Green’s function in real space in the following matrix form:

Gcluster
ij =

(
G11 G12

G21 G22

)

(3.27)

For simplicity of the calculation, we consider here the non-interacting limit of
the Hubbard Hamiltonian, i.e. the U = 0 case only. So the Green’s function
in k-space reads:

G(k, ω) =
1

ω − ǫ(k)
with ǫ(k) = −t cos k (3.28)

The cluster Green’s function in real space is then obtained by Fourier trans-
formation

G
(i,j)
cluster =

1

2

∑

k

G(k, ω)eik(ri−rj) ; k = 0, π (3.29)

where the sum is over all (two) possible k within one cluster. Thus the
normalization factor is 1/2.
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We now can compute in real space

G11 =
1

2

(
1

ω − ǫ(0)
+

1

ω − ǫ(π)

)

=
1

2

(
1

ω + t
+

1

ω − t

)

, (3.30)

G12 =
1

2

(
1

ω − ǫ(0)
+

1

ω − ǫ(π)
e−iπ

)

=
1

2

(
1

ω + t
− 1

ω − t

)

, (3.31)

G21 =
1

2

(
1

ω − ǫ(0)
+

1

ω − ǫ(π)
e+iπ

)

=
1

2

(
1

ω + t
− 1

ω − t

)

, (3.32)

G22 = G11, (3.33)

which leads to

Gij =
1

ω2 − t2

(
ω −t
−t ω

)

(3.34)

and finally
(
Gij

)−1
=

(
ω t
t ω

)

. (3.35)

In order to combine all the clusters forming the lattice, we have to calcu-
late the intercluster hopping T. We define a superlattice, which contains one
cluster at each superlattice point. The translation vector in this superlattice
is a = 2 in units of the original lattice. The corresponding reciprocal vector is
denoted Q (in the reciprocal superlattice space). ∆ is the distance between
two clusters, give in original lattice units ∆ = +2,−2. The intercluster
hopping matrix T is then

T ij(Q) =
∑

superlattice

−tije
−iQ(RA−RB), (3.36)

where the indices ij denote different atomic sites (in the sense of the original
lattice) and A,B denote different clusters (as index of the superlattice). Since
the intercluster hopping just takes place between neighbor clusters, the sum
condenses in fact to just one Fourier component. So we can calculate

T 12(Q) = (−t)e−iQ(+2) = −te−2iQ (3.37)

T 21(Q) = (−t)e−iQ(−2) = −te+2iQ (3.38)
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T 11 = T 22 = 0 since intercluster hopping just takes place between the edges
of two clusters. We then get

T ij(Q) =





0 −te−2iQ

−te+2iQ 0



 (3.39)

In order to derive the Green’s function for the whole lattice Gij
CPT , we

insert the obtained results for Gcluster (Eq. 3.35) and T (Eq. 3.39) into the
CPT equation (3.26).

(
Gij

CPT

)−1
(Q,ω) =

(
Gij

cluster

)−1 − T (Q) (3.40)

=





ω t + te−2iQ

t + te+2iQ ω





=





ω 2te−iQ cos Q

2te+iQ cos Q ω



 . (3.41)

Inverting yields

Gij
CPT (Q,ω) =

1

ω2 − 4t2 cos2 Q





ω −2te−iQ cos Q

−2te+iQ cos Q ω



 , (3.42)

which can also be written in the following form

Gij
CPT (Q,ω) =

1

2







1
ω−2t cos Q

+ 1
ω+2t cos Q

e−iQ
(

1
ω+2t cos Q

− 1
ω−2t cos Q

)

eiQ
(

1
ω+2t cos Q

− 1
ω−2t cos Q

)
1

ω−2t cos Q
+ 1

ω+2t cos Q







(3.43)
This Green’s function is still in a mixed representation, ij and Q. We obtain
the representation in full momentum space by Fourier transformation

GCPT (Q,ω) =
1

N

∑

ij

Gij
CPT (Q,ω)e−iQ(ri−rj) (3.44)

=
1

2

(
G11

CPT + G12
CPT eiQ + G21

CPT e−iQ + G22
CPT

)

=
1

4

4

ω + 2t cos Q
(3.45)
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So we obtain the final result

GCPT (ω,Q) = 1
ω−ǫ(Q)

ǫ(Q) = −2t cos Q

(3.46)

This result gives the dispersion ǫ(Q) for the case of non-interacting elec-
trons (U = 0), for which the CPT method yields the exact solution.

3.3 The Variational Cluster Approach

The CPT method yields good results in many cases, but cannot describe
symmetry broken phases, since there is no self consistent procedure involved.
The method presented in this section (following mainly [22]), the so called
Variational Cluster Perturbation Theory is a variational extension of CPT
and overcomes this limitation.

We recall the equation for the full Hamiltonian in the CPT:

H =
∑

R

(
Hcluster

0 + H1(R)
)

︸ ︷︷ ︸

Hcluster

+
∑

R,R′

H i
0(R,R′), (3.47)

where to the Hamiltonian describing the cluster, the term H i
0 which describes

the hopping between different clusters, is added as a perturbation. But in
fact, this perturbation term need not necessarily to be restricted to the inter-
cluster hopping term, but could be any single-particle operator. This means
that the decoupled Hamiltonian (3.47) is invariant under the transformation

Hcluster
0 (R) → Hcluster

0 (R) + H ′(R)

H i
0(R,R′) → H i

0(R,R′) − δR,R′H ′(R) (3.48)

with an arbitrary intra-cluster single-particle operator

H ′(R) =
∑

i,j

∆i,jc
†
R,icR,j (3.49)

with i, j general single-particle quantum numbers in the cluster. In terms of
CPT this means that a one particle operator is added to the cluster Hamil-
tonian and substracted again perturbatively.
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The reason for including additional terms is that one may think of choos-
ing the parameters ∆ such that the single-particle dynamics of the cluster
problem is as close as possible to the exact dynamics of the whole lattice.

To specify this, one considers a thermodynamical function, e.g. the grand
potential Ω, and search for a stationary point with respect to δ. The so called
Self-Energy-Functional Approach (SFA) [15, 16, 13] yields the form

Ω
(
Σcl

)
= Ωcl + Tr ln

(
−(G−1

0 − Σ−1
cl )

)
− Tr ln

(
−Gcl

)
(3.50)

= Ωcl + Tr ln (−G) − Tr ln
(
−Gcl

)
(3.51)

where Ωcl, Gcl and Σcl are the grand potential, the Green’s function and the
self energy of the cluster, whereas G0 and G are the free and the interacting
Greens function of the lattice, respectively.

Depending on the problem under consideration, the additional one parti-
cle operator Eq. (3.49) can be chosen to represent different external fields.
For the following application of the VCA method to SrV O3 we restrict to the
chemical potential µ as variational parameter. The results of this calculation
are presented in chapter 4.





Chapter 4

Correlation effects in SrVO3:

an LDA + VCA study

The family of prevovskite SrMO3, where M is a 3d-metal, attracts a lot of
attention in material science because of its interesting combined electronic,
magnetic and transport properties. Among these perovskites, some attention
is given to the SrV O3 which is a 3d1- metal, in particular this cubic structure
is treated as a model system for discussing correlation effects [23, 24]. From
a theoretical point of view, the electronic structure description is still an area
of active research, and there are a large number of publications such as the
LCAO-based, as well as full-potential LAPW or linear muffin tin orbitals
(LMTO) or pseudopotentials, ab-initio band structure calculations.

This chapter presents results using the LDA+VCA approach to describe
electron correlations in SrV O3. We analyze the results and compare them
with recent theoretical LDA+DMFT data, as well as with experimental PES
measurements. In the first section we discuss the crystal and electronic struc-
ture as obtained from an ab-initio LSDA description. Based on these results,
we identify that the three Vanadium−3d(t2g) orbitals play the crucial role in
this compound.

In the following section, we construct the real-space Hamiltonian for these
V (t2g) orbitals using the downfolding technique within the NMTO formalism.
This provides us the hopping parameters for the low-energy model Hamil-
tonian. Finally, to this non-interacting Hamiltonian, we add the interaction
part by introducing U and form the three-orbital Hubbard Hamiltonian.

In the third section of this chapter, we solve this interacting three-band
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Hubbard model Hamiltonian using the many-body Variational Cluster Ap-
proach (VCA). We perform the calculations for different cluster geometries
and different values for the on-site Coulomb parameter U . The results are
discussed and the conclusions are presented at the end of this chapter.

4.1 Crystal and electronic structure of SrVO3

The transition metal compound SrV O3 is of Perovskite type and has an
ideal cubic structure with the space group Pm − 3m. Its crystal structure
is illustrated in Fig. 4.1. The positions of the atoms in the elementary cell
are (0, 0, 0) for Vanadium in the (1a) site, (1/2, 1/2, 1/2) for Strontium in
the (1b) site and Oxygen occupies the (3d) site situated at (0, 0, 1/2). Each
Vanadium atom is surrounded by six Oxygen atoms forming an octahedron.
The atomic electronic configurations for the constituents of this compound
are [Ar]3d34s2 for V , [Kr]5s2 for Sr, and [He]2s22p4 for O.

Figure 4.1: Crystal structure for SrV O3 forming an ideal cubic structure. Blue
spheres represent Vanadium, green spheres Strontium and red spheres Oxygen
atoms.
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We performed the band structure calculations using the Stuttgart TB-
LMTO47 computer program code[25]. The exchange correlation potential
was treated by the Local Density Approximation (LDA), and a scalar rela-
tivistic scheme was used for the valence electrons. The lattice constant was
assumed to be a = 7.26a.u., and self-consistency calculation was iterated
until the difference in the total energy was less then 10−6Ry. The density of
states was obtained by using a modified tetrahedron method.
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Figure 4.2: The LDA band structure for cubic SrV O3. The V − 3d states are
situated at the Fermi level (see also Fig. 4.3).

In Fig. 4.2 the dispersion curves E(k) along some high-symmetry points
of the Brillouin zone are represented in a large energy range of ±8eV around
the Fermi Energy. The lower bands between −7 and −2eV contain Sr − 5s
and O − 2p states and they form the upper valence band with a width of
about 5eV . Some admixture of V states also present. The bottom of the
conducting band around the Fermi level is composed mainly of V − 3d(t2g)-
orbtials and V − 3d(eg), but also little admixture of O− 2p states contribute
in this range. At higher energy range the Sr − 4d-like bands are placed.
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As one can see from the crystal structure, the Vanadium ion is octahe-
draly surrounded by six oxygen ions. The octahedral crystal field splits the
V − 3d states according to their symmetries into t2g and eg orbitals. Since
in the cubic symmetry the hybridization between t2g and eg is forbidden, the
orbitals in both subbands are degenerate.
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Figure 4.3: LDA density of states (DOS) for SrV O3 as calcualted by the LMTO.
Left: The upper panel shows the V − 3d and O − 2p contributions and the lower
panel shows the partial density of states for the t2g and eg orbitals of the V − 3d

states. Right: The t2g only contribution to the Density of states, which has a
bandwidth of 2.6eV in the energy range of interest around the Fermi energy EF .

The calculated total and partial densities of states are shown in Fig. 4.3.
The total density of states is almost entirely composed of V − 3d and O− 2p
states. In the energy range between −7 and −2eV , the O − 2p states are
dominant, while around −1eV and above, the V − 3d states have the most
spectral weight. In the lower left panel of Fig. 4.3, the V − 3d states are
decomposed into t2g and eg orbitals. Below the Fermi level both t2g and eg

states have a small spectral weight, and around the Fermi energy EF the t2g

contribution is essential.

Since the important physics of electrons takes place near the Fermi energy,
we now have learned by the above LDA bandstructure calculations which
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orbitals are of interest in this SrV O3 compound. We find a bandwidth of
about 2.6eV for the V −3d(t2g)-states crossing the Fermi energy. Thus, these
orbitals should be taken into account in a many body calculation. In order
to do that, we have to derive a low-energy Hamiltonian for these states. This
will be discussed in the following section.

4.2 Model Hamiltonian for the t2g orbitals

After having identified the V − 3d− t2g orbitals as the ones of interest in the
SrV O3 material, we now want to construct a model Hamiltonian restricted
to these three bands only. For this purpose, we downfold the full bandstruc-
ture obtained by LDA in the previous section to the V − t2g orbitals. This
is done using the Nth order muffin tin orbital (NMTO) method (see sec-
tion 2.1) in the Stuttgart-NMTO program [4, 6]. By massive downfolding,
this approach generates a minimal basis set of symmetrically orthonormal-
ized NMTO’s forming a set of localized Wannier functions. The result of
this downfolding calculation is shown in Fig. 4.4. For the present calculation
we use energy mesh points ǫν of 0.4 and 1.3eV . We observe a rather good
agreement with the bandstructure of the full basis obtained by LDA.

By Fourier transformation of the orthonormalized NMTO Hamiltonian,
HLDA(k), we obtain the real-space Hamiltonian, yielding on-site energies and
hopping integrals,

HNMTO
R′m′,Rm ≡

〈
χ⊥

R′ m′

∣
∣HLDA − εF

∣
∣ χ⊥

Rm

〉
≡ t∆m′,m, (4.1)

in the Wannier representation χ⊥
Rm. The matrix element between orbitals m′

and m, both on site R′=R, is t0m′,m, and the hopping integral from orbital

m′ on site R′ to orbital m on site R is t∆m′,m, with ∆ = R − R′.

The one-particle Hamiltonian matrix elements are presented below. We
use the convention in which m = 1, 2, 3 corresponds to the t2g-subset of the
V-d orbitals in the following order: {dxy, dyz, dzx}. The matrix elements for
the on-site energies ǫm ≡ t0m,m are obtained to be

ǫV
m = (−1433,−1433,−1433) , (4.2)
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Figure 4.4: The NMTO downfolded t2g-bands (red line) in comparison with the
full LDA bands (green line).

For the nearest-neighbor hopping terms with ∆1 ≡ (1, 0, 0) we obtain

t∆1

m′,m =





−270 0 0
0 −31 0
0 0 −270



 , (4.3)

and for the second-nearest-neighbor terms with ∆2 ≡ (1, 1, 0)

t∆2

m′,m =





−88 0 0
0 7 5
0 5 7



 , (4.4)

Here, all hoppings are given in units of meV, and only one representative
hopping integral is shown for each class. Other hopping terms can be derived
from proper unitary transformation using crystal symmetry (see, e.g., Ref.
[23] for details). As one can see from Eq. (4.3), the largest hoppings follow
the symmetry of the orbital in question, e.g. the dxy and the dzx-orbitals
show large hopping amplitudes along the x-direction. In addition, there
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are further hopping terms in the Hamiltonian, which we don’t show here
for simplicity. We have taken into account hoppings up to a range of r =
2.7a. Neglected hoppings are more than a factor 1000 smaller than the
largest nearest-neighbor hopping. The non-interacting part of the effective
Hamiltonian for SrVO3, thus, has the form

HLDA
0 =

∑

R′,R,σ

∑

{m′,m}

tR
′−R

m′,m c†
R′m′σcRmσ. (4.5)

The many-body hamiltonian contains the hopping part described within
the LDA, HLDA

0 to which the interacting part is added, such that the total
Hamiltonian can be written as:

H = HLDA
0 + Hint (4.6)

The interaction part Hint takes into account the correlation effects and is
written as

Hint =
∑

R,m

UnRm↑nRm↓ (4.7)

+
∑

R,m<m′,σ,σ′

(U ′ − Jδσ,σ′)nRmσnRm′σ′

+
∑

R,m<m′

Jc†
Rm′↑c

†
Rm↓cRm′↓cRm↑ + h.c.

+
∑

R,m<m′

Jc†
Rm′↑c

†
Rm′↓cRm↓cRm↑ + h.c.,

where U and U ′ denote the Coulomb-interactions and J the Hund’s rule cou-
pling constant. In Eqs. (4.5) and (4.7), cRmσ (c†

Rmσ) are the usual fermionic
annihilation (creation) operators acting on an electron with spin σ at site R

in the orbital m. The third and fourth term in 4.7 are describing the spin-flip
and the pair-flip of two electrons.

In order to determine all possible local Coulomb interactions between two
electrons with spin σ′ and σ in the orbitals m′ and m on the same atomic
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Figure 4.5: The Coulomb interactions U taken into account in Hint

site, we can introduce an interaction matrix Uσ′σ
m′m (see Fig. 4.5).

Uσ′σ
m′m =

m0 ↑ m1 ↑ m2 ↑ m0 ↓ m1 ↓ m2 ↓
m0 ↑ 0 U ′ − J U ′ − J U U ′ U ′

m1 ↑ U ′ − J 0 U ′ − J U ′ U U ′

m2 ↑ U ′ − J U ′ − J 0 U ′ U ′ U
m0 ↓ U U ′ U ′ 0 U ′ − J U ′ − J
m1 ↓ U ′ U U ′ U ′ − J 0 U ′ − J
m2 ↓ U ′ U ′ U U ′ − J U ′ − J 0

(4.8)

Here, U is the interaction between two electrons with different spin on the
same orbital, U ′ and U ′ − J are the interactions for electrons in different
orbitals with antiparallel and parallel spin respectively. We have the following
simple relations for these values

U ′ = U − 2J

U ′ − J = U − 3J
(4.9)

The strengths of the local interactions can be calculated by means of the
constrained LDA method [26, 27], allowing the eg states to participate in
screening [28, 29]. Therefore, a value for U = 5.5eV can be found, which
motivates the choice of the considered values for U in the range of 4 to 6eV
in the following numerical calculations. The Hund’s coupling constant is
assumed to be J = 1eV [29].

4.3 Correlation effects: Variational Cluster

Approach

In the previous section we have derived an effective model Hamiltonian
which describes our problem, that we now are going to solve. This is done
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by the Variational Cluster Approach, which was introduced in section 3.3
[12, 30, 13, 17].

First of all, we have to determine the cluster for the calculations, more
specifically, we need its geometrical shape and its size. The choice of the
clusters must be in a way, that they fill the whole lattice space by transfor-
mation with suitable translation vectors. The model will be solved exactly
within these clusters, whereas the hoppings between these clusters are treated
perturbatively. Self consistency is achieved within the VCA by taking the
chemical potential µ as a variational parameter.

We consider three different types of cluster, presented in Fig. 4.6.

• Cluster 1: A cluster containing two sites in z-direction. The corre-
sponding translation vectors are (1, 0, 0), (0, 1, 0), and (0, 0, 2)

• Cluster 2: A cluster containing four sites in a quadratic form in the
x,z-plane, with translation vectors (2, 0, 0), (0, 1, 0), and (0, 0, 2)

• Cluster 3: A cluster containing four sites on the spatial axes forming a
tetragon. The whole lattice space is filled with the translation vectors
(2, 0, 0), (0, 0, 2), and (1, 1, 1). Obviously this cluster is isotropic.

Figure 4.6: The different cluster geometries taken into account.

We performed the calculations for all three cluster types and for different
particle sectors (number of particles with spin up and spin down) in the
clusters, such as the 1-1, 2-2 and 3-3.
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The resulting density of states (DOS) of these calculations is shown in
Fig. 4.7. The interaction parameter was assumed to be U = 5.55eV . For
the cluster 1, the results show that two orbitals are preferentially occupied,
while the remaining third orbital is empty. This demonstrates that cluster
geometry breaks the degeneracy of the t2g-orbitals. The situation is similar
in cluster 2, where also no equal occupation is achieved for the three t2g-
orbitals. That is why we consider for the following the isotropic cluster 3,
for which the 2-2 particle sector corresponds to the realistic description.
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Figure 4.7: Density of states for the LDA+VCA calculations for different cluster
geometries and occupations.

Having chosen the best cluster, the cluster 3, we investigate the depen-
dence of the results on different values of the interaction parameter U . In
Fig. 4.8 the results of DOS for different values of U are presented.

We can observe a behavior typical for a material close to the metal-
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insulator transition. For a value of U = 4eV the figure shows a metallic
density of states, and a little change of the on-site Coulomb parameter to
a value of 4.25eV determines the appearance of a pseudo-gap at the Fermi
level. Increasing further the value of U , the density of states are continuously
depleted, such that already at U = 6eV there is a large energy distance to the
next states situated at about 2eV . This indicates that the system reached
the insulating state.
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Figure 4.8: Density of states of SrV O3 for different values of the interaction
parameter U . We observe a metal to insulator transition for increasing U .
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In Fig. 4.9 we compare the LDA+VCA results with previous calcula-
tions using Dynamical Mean Field Theory (DMFT) and with experimental
measurements obtained by photoemission spectroscopy (PES).
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Figure 4.9: Comparison of results obtained with different methods, i.e. LDA,
LDA+VCA, LDA+DMFT [32], and with experimental PES measurements [24].

Previous LDA+DMFT calculations have been performed using the Quan-
tum Monte Carlo solver and the Maximum Entropy Method to extract the
density of states [31, 32]. In the LDA+DMFT calculations [32], the k-resolved
spectral function shows the presence of the Lower and the Upper Hubbard
band and the quasiparticle band close to the Fermi level. In the density of
states, the Lower Hubbard band is centered about −2eV , the maximum of
the quasiparticle peak is centered about 0.5eV above the Fermi level, and
the Upper Hubbard band is situated at about 3eV .
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The experimental data were extracted from the work of Sekiyama et al. [24],
obtained by PES measurements. The LDA+DMFT results and the experi-
mental spectra compare very well. These results demonstrate that SrV O3 is a
strongly correlated metal but not on the border of the Mott-Hubbard metal-
insulator transition. The differences between the computed LDA+DMFT
results and the experimental spectra are explained due to some uncertain-
ties in the ab-inito calculations for the Coulomb parameter and the specific
treatment of the experimental data to extract the d-electrons spectra.

The LDA+VCA results, do not compare well with the LDA+DMFT cal-
culations. Both calculations use the same downfolding procedure, with very
similar results. Therefore the difference can only be attributed to the differ-
ent treatment of the many-body problem. The LDA+VCA density of states
results show the Lower Hubbard band at around −0.75eV and an Upper
Hubbard band centered around 0.5eV . As the values for U are increased, the
Lower Hubbard band is maintaining its position, while the upper Hubbard
band is gradually shifted to higher energies. No clear quasiparticle states
are evidenced. A possible explanation of the discrepancy could be connected
with the different dynamics which is captured in DMFT in comparison with
VCA.





Chapter 5

Conclusion

In this diploma work we created a code to implement the Löwdin downfolding
method [6]. By effectively integrating out some of the orbitals, this method
generates effective low-energy Hamiltonians in a reduced Hilbert space. We
applied this method to different tight-binding multi-band models for CuO2

planes in High Temperature Superconductor materials.

We have seen that the accuracy of this method, in which the effective
reduced model describes the initial full one, depends strongly on the energy
mesh used in the calculation. These parameters have to be chosen appropri-
ately ’by experience’, which is of course a certain drawback of this method.
The energy mesh points have to lie in the region around the downfolded
bands to get a good result. When possible, they should not be chosen close
to energies of other bands where hybridization with the remaining orbitals
is significant. Furthermore, an increasing number of mesh-points increases
the accuracy, provided that they lie in a reasonable region. The calculations
yield good results even for just two or three energy mesh points.

It would have been interesting to investigate also interacting models with
the developed downfolding program. This remains to be done in the future.

In a second part of this thesis, we used the downfolding technique in
the ab-initio framework of the Stuttgart NMTO package to create a mini-
mal Hubbard-Hamiltonian to describe the physics of the correlated material
SrV O3 within the LDA+VCA approach.

In this 3d1 system, we identified the three V − 3d(t2g) orbitals as the
ones responsible for the important physics. We find out that for the VCA
calculation an isotropic four-site cluster does not break the degeneracy of the
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orbitals and is thus a good choice.
By varying the interaction parameter U , we see that SrV O3 is close to

the metal-insulator transition. The results of the LDA+VCA calculation
deviate from the PES experimental data. There are also differences with
LDA+DMFT results, which could be explained by the different dynamics
captured in this method.
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