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Abstract

The present diploma thesis is about planning and conducting experiments by means

of experimental design. It is a collection of well documented problems and case

studies employing one way analysis of variance, randomized complete block designs,

analysis of covariance, full factorial 2k designs, fractional factorial 2k−p designs, full

factorial 3k designs and Taguchi designs.

Each study follows the same format: (i) description of the problem, (ii) choosing

an adequate statistical model, (iii) statistical modeling, analysis and interpretation,

(iv) problem speci�c summary, (v) listing of the R source code.

All analyses has been carried out with the public domain statistical package R (Ver-

sion 2.11.1).

Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit der Planung und Ausführung von

Experimenten mit Hilfe von Methoden der Versuchsplanung. Sie ist ein Sammlung

von gut dokumentierten Problemen und Fallstudien bei denen folgende Methoden

eingesetzt werden: einfache Varianzanalyse, randomisierte vollständige Blockver-

suchspläne, Kovarianzanalyse, vollständige faktorielle 2k Versuchspläne, fraktion-

ierte faktorielle 2k−p Versuchspläne, vollständige faktorielle 3k Versuchspläne und

Taguchi Versuchspläne.

Jede Studie ist nach demselben Schema aufgebaut: (i) Beschreibung des Problems,

(ii) Auswahl eines adäquaten statistischen Modells, (iii) statistische Modellierung,

Analyse und Interpretation, (iv) problemspezi�sche Zusammenfassung, (v) Auf-

listung des R Quellcodes.

Sämtliche Analysen werden mit dem statistischen Programmpaket R (Version

2.11.1), das lizenzfrei zur Verfügung steht, durchgeführt.
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Chapter 1

Introduction

Experiments are performed by investigators in virtually all �elds of inquiry,

usually to discover something about particular processes or systems. Literally, an

experiment is a test. More formally, we can de�ne an experiment as a test or series

of tests in which purposeful changes are made to the input variables of a processor

system so that we may observe and identify the response for changes in the output

response [Montgomery D. C. (1997)].

The design and analysis of experiments revolves around the understanding of

the e�ects of di�erent variables on other variables. The dependent variable is

called response and the independent variables are called factors. Experiments are

run at di�erent factor values, called levels. Each run of the experiment involves a

combination of the levels of the investigated factors. Each of the combinations are

referred to as a treatment. There are di�erent types of experiment: One factor

designs, factorial designs, response surface methods and reliability of design

of experiments.

One factor designs: These are the designs where only one factor is under in-

vestigation, and the objective is to determine whether the response is signi�cantly

di�erent at di�erent factor levels; and only the e�ect of the factor on the response

can be determined.

Factorial designs: In factorial designs, multiple factors are investigated simul-

taneously during the test. As in one factor designs, qualitative and/ or quantitative

factors can be considered. The objective of these designs is to identify the factors

that have a signi�cant e�ect on the response, as well as the e�ect of the interactions.

General full factorial design: In general full factorial designs, each factor can have a

1



CHAPTER 1. INTRODUCTION 2

di�erent number of levels, and the factors can be quantitative or qualitative or both.

Two level full factorial design: These are factorial designs where the number

of the factors is restricted to two. Restricting the levels to two and running a

full factorial experiment reduces the number of treatments, and allows for the

investigation of all the factors and their interactions. If all factors are quantitative,

then the data from such experiments can be used for predictive purposes, provided

a linear model is appropriate for modeling the response.

Two level fractional factorial design: This is a special category of two level

designs, where not all factor level combinations are considered, and the experi-

menter can choose which combinations are to be excluded. Based on the excluded

combinations, certain combinations can not be determined.

Three level factorial designs and three level fractional factorial designs: These

designs are the same as two level factorial and two level fractional factorial designs,

where the number of factors is restricted to three.

Taguchi's orthogonal arrays: Taguchi's orthogonal arrays are highly fractional

designs, used to estimate main e�ects based on only a few experimental runs. These

designs are not only applicable to two level factorial experiments, but also can

investigate main e�ects when factors have more than two levels. Designs are also

available to investigate the main e�ects of certain mixed level experiments where

the factors included do not have the same number of levels.

This thesis explains a summary of conducting experiments and analyze the

resulting data so that valid and objective conclusions are obtained. Experiments

often involve several factors. Usually, an objective of the person conducting the

experiment, called the experimenter, is to determine the in�uence that these factors

have on the output response of the system. The general approach to planning and

conducting the experiments called the strategy of experimentation.

The late Sir Ronald A. Fisher was the innovator in the use of statistical

methods in experimental design. Fisher developed and �rst used the analysis of

variance as the primary method of statistical analysis in experimental design. Many

of early applications of experimental design methods were in the agricultural and

biological sciences, and as a result, much of the terminology of the �eld is derived

from this heritage. The �rst industrial applications of experimental design began

to appear in the 1930s, initially in the British textile and wooden industry. After
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world war II, experimental design methods were introduced to the chemical and

process industries in the United States and Western Europe. These industry groups

are still very fertile areas for using the experimental design in product and process

development [Montgomery D. C. (1997)].

In this thesis we will give a brief summary of the di�erent methods from a simplest

one way ANOVA (Chapter 2, [Winer B. J. , Brown D. R., Michels K. M. (1991)],

[Stadlober E. (2010)]) up to the most complicated case Taguchi design (Chapter

8, [Dean A., Voss D. (1999)]) used in experimental designs. The main focus is

to deliver corresponding test studies which starts with the description of the

problem and end up with a problem speci�c summary and the corresponding

R-code. The software R (version 2.11) is used for analyzing the di�erent problems

[Crawley M. J. (2005)] and [Dalgaard P. (2002)].
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Chapter 2

One Way ANOVA

2.1 Model

One-way analysis of variance is a method of testing di�erences between more

than two groups or treatments. Multiple comparison procedures and orthogonal

contrasts are described as methods for identifying speci�c di�erences between pairs

of treatments.

Analysis of variance (often referred to as ANOVA) is a technique for analyz-

ing the way in which the mean of a variable is a�ected by di�erent types and

combinations of factors. One-way analysis of variance is the simplest form. It is

an extension of the independent t-test and can be used to compare any number

of groups or treatments. This method can be used, for example, in the analysis

of the e�ect of three di�erent diets on total serum cholesterol or in the investi-

gation into the extent to which severity of illness is related to occurrence of infection.

Let we have a treatments that we wish to compare. The observed response

from each of a treatments is a random variable. Our linear statistical model seems

to be:

yij = µ+ τi + εij, i = 1, 2, . . . , a ; j = 1, 2, . . . , ni ; n =
a∑
i=1

ni,

εij
iid∼ N(0, σ2)

where yij is the ijth observation associated to treatment (or group) i, µ is the

treatment mean, and εij is a random error with normal distribution.

5



CHAPTER 2. ONE WAY ANOVA 6

This model is called a One-Way Analysis of Variance, since the model in-

cludes only one major source of variation, namely; the treatment e�ect, and because

the standard analysis of data using this model involves a comparison of measures

of variation.

In an experiment involving a treatments, an obvious question is wether or

not the treatments di�er at all in terms of their e�ects and the response variable.

The most important hypothesis test in this case is:{
H0 : τ1 = τ2 = ... = τa = 0

H1 : ∃i, τi 6= 0

Source Sum of Squares Degrees of Mean Square F

(SS) Freedom (d.f)

Treat SSA =
∑a

i=1 ni(ȳi − ȳ)2 a− 1 MST = SST
k−1

F0 = MST
MSE

ment

A

Error SSE =
∑a

i=1

∑ni
j=1(yij − ȳi)2 n− k MSE = SSE

n−a

Total SST =
∑a

i=1

∑ni
j=1(yij − ȳ)2 n− 1

We have

yi =
1

ni

ni∑
j=1

yij; y =
1

a

a∑
i=1

niyi =
1

a

a∑
i=1

ni∑
j=1

yij.

The total sum of squares is the sum of squares between groups plus the sum of

squares of within groups:

SST = SSA + SSE

where

SSA =
∑
i

1

ni

(∑
j

yij

)2

− 1

n

(∑
i

∑
j

yij

)2

=
∑
i

ni(yi − y)2 = n
∑
i

(yi − y)2
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SSE =
∑
i

∑
j

y2
ij −

∑
i

1

ni

(∑
j

yij

)2

=
∑
i

∑
j

(yij − yi)2

SST =
∑
i

∑
j

y2
ij −

1

n

(∑
i

∑
j

yij

)2

=
∑
i

∑
j

(yij − y)2

Note that if the null hypothesis H0 is false, and treatment e�ects di�er, then

the SSE under the full model is considerably smaller than SSE0 under the reduced

model (yij = µ + εij). Otherwise if the null hypothesis is true, then SSE and SSE0

will be very similar.

F-Test: The hypothesis H0 is tested by the F-Test, where

F =
MST
MSE

∼ Fa−1,n−a if H0 is true

F-distribution with degrees of freedom a− 1 and n− a.

H0 is rejected if the probability P (F > f0) = P < α, where f0 is the real-

ized value of the test statistic F and α ≤ 0.05.
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2.2 Cement

Example 2.1. (From D. C. Montgomery, (1997), P.117, Problem 3-1 and 3-3) The

tensile strength y of Portland cement is being studied. Four di�erent mixing techniques

can be used economically. The following data have been collected.

Mixing Technique Tensile strength(lb/in2)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

(a) Test the hypothesis that mixing techniques a�ect the strength of the cement. Use

α = 0.05.

(b) Use Tukeys test with α = 0.05 to make comparisons between pairs of means.

(c) Construct a graphical display to compare the mean tensile strengths for the four

mixing techniques. What are your conclusions?

(d) Construct a normal probability plot of the residuals. What conclusion would you

draw about the validity of the normality assumption?

(e) Plot the residuals versus the predicted tensile strength. Comment the plot.

(f) Prepare box plots of the results to aid the interpretation of the results of this exper-

iment.

In this example the four mixing techniques are factors and response y is the strength of

Portland cement. This is an example of a single-factor experiment with a = 4 levels of

the factor and ni = 4, i = 1, ..., 4, replicates. The n = 16 runs are made in a random

order. The randomized test sequence is necessary to prevent the e�ects of unknown

nuisance variables. Questions: Does changing the mixing techniques (level) change the

mean strength? If so, is there a level which results in the maximum mean strength? To

answer this question we carry out an ANOVA.

Figure 2.1 on page 9 shows a scatter plot and a series of boxplots, the scatter plot indi-

cates that the answers are "yes" and "2". The boxplots show that the mixing technique 2

have a much higher strength of Portland cement. Furthermore, the boxplot indicates that

the strength of Portland cement increases as the mixing techniques di�ers; up to about
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Figure 2.1: Scatter plot and Box plot Series

mixing techniques 2. Beyond mixing technique 2; there is a marked decrease in strength of

Portland cement. There is no strong evidence to suggest that the variability in strength of

Portland cement around the average depends on the mixing techniques. Based on this sim-

ple graphical analysis, we strongly suspect that (1) mixing techniques a�ects the strength
of Portland cement and (2) in mixing technique 2 we have a maximum strength.

Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

mixteq 3 489740 163247 12.728 0.0004887 ***

Residuals 12 153908 12826

According to the ANOVA-table; the large value of f0 = 12.728 > 3.490295 indicates

that the hypothesis of treatment e�ects should be rejected. The corresponding P-value

P (F (12, 3) > 12.728) = 0.0004887 is very small. It appears that (at least one of) the

treatment e�ects are signi�cantly di�erent. Note that the P-value of a test is the smallest

choice of α that would allow the null hypothesis to be rejected, reject H0: if P< α. So it

means that for any α larger than 0.0004887 the null hypothesis is rejected. Also we can

conclude from the above results that the mixing techniques have an e�ect on the strength
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of the Portland Cement. The tables of e�ects τ̂i = yi − y, computes tables of results from
a �tted model.

Tables of effects

mixteq

1 2 3 4

39.19 224.44 1.94 -265.56

Plot of design gives univariate e�ects of a design or a model; the supplied function will be

called once for each level of each factor in the design and the plot will show these summary

values. The levels of a particular factor are shown along a vertical line and the overall mean

value for the response is drawn as a horizontal line. Figure 2.2 shows the plot of e�ects.

We see that the mixing technique 4 has the largest negative e�ect and mixing technique 2

has the largest positive e�ect on strength of the Portland cement.
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Figure 2.2: Cement, Plot of E�ects

Now we are interested in the behavior of the residuals. We are interested to �nd out if

the residuals are normally distributed or not. We see that the mixing technique 4 has the

smallest e�ect and mixing technique 2 has the largest e�ect on strength of the Portland

cement.

An extremely useful procedure is to construct a normal Q-Q-plot of the residuals

to check the assumptions of the normality. If the underlying error distribution is normal,

this plot will resemble a straight line. If the model is correct and if the assumptions are

satis�ed, the residuals should be structure less; in particular, they should be unrelated to
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any other variable including the predicted response. A simple check is to plot the residuals

versus the �tted values.
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Figure 2.3: Cement, The four diagnostic plots

In �gure 2.3 you can see four diagnostic plots. The plot of residuals against the �tted

values (row1, column1): from this plot we can inference about the non constancy of an

error variance. It shows similar spread for all levels. The Q-Q plot (row1, column2) shows

us that the residuals are normally distributed. Now we will do the residuals normality test,

one of these non parametric tests is the Shapiro-Wilk test. It tests if the data are from a

normal distribution. Here we will use both the Shapiro-Wilk and the Kolmogorov-Smirnov

test.

1) Shapiro-Wilk normality test

data: residuals(cement.fit)

W = 0.9705, p-value = 0.846

2) One-sample Kolmogorov-Smirnov test

data: residuals(cement.fit)
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D = 0.1185, p-value = 0.9783

alternative hypothesis: two-sided

As the P-values are large >> α we can say that the null hypothesis that the residuals are

normally distributed can not be rejected. In R we test the homogeneity of variances by the

Fligner-Killeen test. It performs a median test of the null that the variances in each of the

groups (samples) are the same. The Fligner-Killeen (median) test has been determined in

a simulation study as one of the many tests for homogeneity of variances which is most

robust against deviations from the normal distribution.

Fligner-Killeen test of homogeneity of variances

data: strength by mixteq

Fligner-Killeen:med chi-squared = 0.8785, df = 3, p-value = 0.8306

We can conclude from the results above that the four variances aren't signi�cant di�er-

ent. The Kruskal-Wallis test is used to test the null hypothesis that the a treatments are

identical against the alternative hypothesis that some of the treatments generate observa-

tions that are larger than others. The Kruskal-Wallis test is a nonparametric alterantive

to the usual analysis of variance. It performs a rank sum test of the null that the location

parameters are the same in each group. The alternative is that they di�er in at least one.

Kruskal-Wallis rank sum test

data: strength by mixteq

Kruskal-Wallis chi-squared = 10.891, df = 3, p-value = 0.01233

What we have learned about these data so far? The F-test and the more robust Kruskal-

Wallis test both claimed that the treatment e�ects are signi�cant, the data are normally

distributed and homogeneity of variances can be assumed.

We can now go to answer our second question, which of the treatment means (µi = µ+ τi)
are signi�cantly di�erent? Can we say with any con�dence that a particular one is largest?

This is a problem of "multiple comparisons" comparing several means with each other.

Hereby we can use TukeyHSD Con�dence Intervals. The TukeyHSD creates a set of

con�dence intervals on the di�erences between the means of the levels of a factor with the

speci�ed family-wise probability of coverage. The intervals are based on the Studentized

range statistic and Tukey's "Honest Signi�cant Di�erence" method. The Hypothesis

µi = µj , i = 1, ..., a; j = 1, ..., a; i 6= j at the level of signi�cance α will be rejected, when

the con�dence intervals for the di�erence µi − µj do not contain zero.

Tukey multiple comparisons of means

95\% family-wise confidence level

Fit: aov(formula = strength ~ mixteq)

mixteq
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diff lwr upr p adj

2-1 185.25 -52.50029 423.00029 0.1493561

3-1 -37.25 -275.00029 200.50029 0.9652776

4-1 -304.75 -542.50029 -66.99971 0.0115923

3-2 -222.50 -460.25029 15.25029 0.0693027

4-2 -490.00 -727.75029 -252.24971 0.0002622

4-3 -267.50 -505.25029 -29.74971 0.0261838

Figure 2.4 shows simultaneous con�dence intervals (level α = 0.95) for µ2 − µ1, µ3 − µ1,

µ4 − µ1, µ3 − µ2, µ4 − µ2, µ4 − µ3 they are (-52.5,423), (-275,200), (-542.5,-67), (-460,15),

(-727.7,-252), (-505,-29.7). While the con�dence intervals 4-1, 4-2,4-3 doesn't contain zero,

we can conclude that between the mixing technique 4 and the others there is a signi�cant

di�erence at α = 0.05.
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95% family−wise confidence level

Differences in mean levels of mixteq

Figure 2.4: Cement, Plot of 95% CI
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Cement R-Code

cement<-read.table("cement data.txt",header=TRUE); attach(cement)

mixteq<-factor(mixteq)

windows(); par(mfrow=c(1,2))

stripchart(strength ~ mixteq, main = "stripchart(cement)",

vertical = TRUE, log = "y",data = cement)

plot(mixteq,strength,names=c("mixteq1","mixteq2","mixteq3","mixteq4"),ylab="obs")

cement.fit<-lm(strength~mixteq); anova(cement.fit); summary(cement.fit)

model<-aov(strength~mixteq)

model.tables(model); plot.design(strength~mixteq)

par(mfrow=c(2,2)); plot(aov(strength~mixteq))

shapiro.test(residuals(cement.fit))

ks.test(residuals(cement.fit),"pnorm",mean(residuals(cement.fit)),

sd(residuals(cement.fit)))

fligner.test(strength~mixteq); kruskal.test(strength,mixteq)

TukeyHSD(model); plot(TukeyHSD(model))
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2.3 Radon

Example 2.2. (From D. C. Montgomery (1997), P. 120, Problem 3-9) An article in

Environment International (Vol.18, No.4, 1992) describes an experiment in which the

amount of radon y released in shower was investigated. Radon enriched water was used in

the experiment, and six di�erent ori�ce diameters were tested in shower heads. The data

from the experiment are shown in the following table.

Ori�ce Diameter Radon Released in %

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Does the size of the ori�ce a�ect the mean percentage of radon released? Use α =
0.05.

(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95 percent con�dence interval on the mean percent of radon released when

the ori�ce diameter is 1.40.

(e) Construct a graphical display to compare the treatment means. What conclusions

can you draw?

In this example the factor x is ori�ce diameter with six levels and response y is the amount

of released radon. This is an example of a single-factor experiment with a = 6 levels of the

factor and ni = 4 replicates resulting in n = 4× 6 = 24 runs. Here we de�ne the variable

ori�ce diameter as OD factor. In �gure 2.5 on page 16 you can see the scatter plot and

the series boxplots. The scatter plot shows that with smallest ori�ce diameter the amount

of released radon is higher. The boxplots indicate that by increasing the size of the ori�ce

diameter the amount of released radon will decreased. We are interested in investigating

the equality of six means. In other words we want to investigate the treatment e�ects; the

appropriate way of investigation is to establish the ANOVA table. The ANOVA results are

as follows:
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Figure 2.5: Radon, Scatter Plot and Boxplot Series

Analysis of Variance Table

Response: Radon

Df Sum Sq Mean Sq F value Pr(>F)

OD 5 1133.38 226.68 30.852 3.160e-08 ***

Residuals 18 132.25 7.35

---

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 2.711 on 18 degrees of freedom

Multiple R-squared: 0.8955, Adjusted R-squared: 0.8665

F-statistic: 30.85 on 5 and 18 DF, p-value: 3.160e-08

Does the size of ori�ce a�ect the mean percentage of radon released? Yes, there is at

least one treatment mean that is di�erent. From the ANOVA table we can see that the

F-value is 30.85, which implies that the model is signi�cant. The P-value is small, here

the null hypothesis that the treatment means are equal will be rejected. By considering

(R2
adj = 0.8665) the six ori�ce diameters determine 86.7% of the variance of the released

radon.

The e�ects of the factors are estimated and the univariate plot of e�ects is displayed in
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�gure 2.6.
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Figure 2.6: Radon, Plot of E�ects

For investigation of homogeneity of variances we can use the Fligner-Killeen test:

Fligner-Killeen test of homogeneity of variances

data: Radon by OD

Fligner-Killeen:med chi-squared = 5.6658, df = 5, p-value = 0.3401

As we can see from the above results the test statistic is the Fligner-Killeen:med

χ2 = 5.6658 with 5 d.f. and the P-value of the test is P[χ2(5) > 5.6658]=0.3401. So we

can conclude that the six variances are equal, they aren't signi�cant di�erent at level of

signi�cant α = 0.05.

Now we are interested in the behavior of the residuals. We try to �nd out if the

residuals are normally distributed or not.

The plot of residuals against �tted values shows no structure. The four diagnostic graphs in

�gure 2.7 on page 18 show that there is nothing unusual about the residuals. The normality

tests are as follows:

1) Shapiro-Wilk normality test

data: residuals(radon.fit)

W = 0.9348, p-value = 0.1247
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Figure 2.7: Radon, The four diagnostic plots

2) One-sample Kolmogorov-Smirnov test

data: residuals(radon.fit)

D = 0.1729, p-value = 0.47

alternative hypothesis: two-sided

The P-values in both tests are larger than α = 0.05 so we conclude that the null hypothesis
that the residuals are normally distributed has not to be rejected. The Kruskal-Wallis test

is written below:

Kruskal-Wallis rank sum test

data: Radon by OD

Kruskal-Wallis chi-squared = 20.6885, df = 5, p-value = 0.0009275

While the Kruskal-Wallis chi-squared value is larger than χ2
0.05,5 = 11.1 the null hypothesis

can be rejected and we conclude that the treatments di�er. This is the same conclusion

as given by the usual analysis of variance F- test.
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The TukeyHSD create a set of con�dence intervals on the di�erences between the

means of the levels of a factor with the speci�ed family-wise coverage. The intervals are

based on the studentized range statistic, Tukey's 'Honest Signi�cant Di�erence' method.

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Radon ~ OD)

OD

diff lwr upr p adj

0,51-0,37 -5.75 -11.841234 0.3412336 0.0707511

0,71-0,37 -7.75 -13.841234 -1.6587664 0.0084181

1,02-0,37 -11.00 -17.091234 -4.9087664 0.0002404

1,40-0,37 -17.75 -23.841234 -11.6587664 0.0000004

1,99-0,37 -20.00 -26.091234 -13.9087664 0.0000001

0,71-0,51 -2.00 -8.091234 4.0912336 0.8968057

1,02-0,51 -5.25 -11.341234 0.8412336 0.1153360

1,40-0,51 -12.00 -18.091234 -5.9087664 0.0000841

1,99-0,51 -14.25 -20.341234 -8.1587664 0.0000089

1,02-0,71 -3.25 -9.341234 2.8412336 0.5513482

1,40-0,71 -10.00 -16.091234 -3.9087664 0.0007059

1,99-0,71 -12.25 -18.341234 -6.1587664 0.0000650

1,40-1,02 -6.75 -12.841234 -0.6587664 0.0249971

1,99-1,02 -9.00 -15.091234 -2.9087664 0.0021152

1,99-1,40 -2.25 -8.341234 3.8412336 0.8432736

It can be observed that 10 of the 15 di�erences are signi�cant. No signi�cant di�erences

are (2-1, 3-2, 4-2, 4-3, 6-5).
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Figure 2.8: Radon, 95% CI

Radon R-Code

radon<-read.table("radon data.txt",header=TRUE); attach(radon)

stripchart(Radon ~ OD,main = "stripchart(radon)"

,vertical = TRUE, log = "y", data = radon)

OD<-factor(OD)

plot(OD,Radon,names=c("0,37","0,51","0,71","1,02","1,40","1,99"),ylab="obs")

summary(aov(Radon~OD)); radon.fit<-lm(Radon~OD)

summary(radon.fit); fligner.test(Radon~OD)

model<-aov(Radon~OD); model.tables(model)

plot.design(Radon~OD); TukeyHSD(model)

plot(TukeyHSD(model)); windows(); par(mfrow=c(2,2))

plot(aov(Radon~OD))

shapiro.test(residuals(radon.fit))

ks.test(residuals(radon.fit),"pnorm",mean(residuals(radon.fit))

,sd(residuals(radon.fit)))

kruskal.test(Radon~OD)
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2.4 Rodding

Example 2.3. (From D. C. Montgomery, 1997, P. 119, Problem 3-8) An article in the ACI

Materials Journal (Vol.84, 1987, pp.213-216) describes several experiments investigating

the rodding of concrete to remove entrapped air. A 3inch×6inch cylinder was used, and

the number of times this rod was used in the design variable. The resulting compressive

strength y of the concrete specimen is the response. The data are shown in the following

table.

Rodding Level Compressive strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

(a) Is there any di�erence in compressive strength due to the rodding level? Use α = 0.05.

(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment. What conclusions can you draw about

the underlying model assumptions?

(d) Construct a graphical display to compare the treatment means.

Here we will discuss the four rodding levels as factor to see if they have an e�ect on the

compressive strength of rodding. And to �nd out if there is a di�erence in compressive

strength due to rodding level. In this problem we have just one factor which is rodding,

the rodding level is our factor. The scatter plot below indicates that in level 3 there is the

largest strength. The boxplots in �gure 2.9 on page 22 show the di�erence between the

medians of the four rodding levels.

We are interested in investigating the equality of the four means, or in other words the

treatment e�ects. To test whether the strengths of the rodding are di�erent due to four

rodding levels or not, we construct the ANOVA table.

Analysis of Variance Table

Response: CS

Df Sum Sq Mean Sq F value Pr(>F)

RL 3 28633 9544 1.8654 0.2138

Residuals 8 40933 5117

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 71.53 on 8 degrees of freedom

Multiple R-squared: 0.4116, Adjusted R-squared: 0.1909

F-statistic: 1.865 on 3 and 8 DF, p-value: 0.2138
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Figure 2.9: Rodding, Scatter plot and Boxplots Series

The model F-value of 1.87 implies that the model is not signi�cant relative due to the

noise. The P-value is larger than α = 0.05, so we can conclude that the null hypothesis

can be hold, i.e. there is no treatment e�ect, or the treatment means are equal.

The e�ects are computed and the plot of univariate e�ects of a design or a model

is drawn in �gure 2.10 on page 23. The homogeneity of variance will be tested by the

Fligner-Killeen test:

Fligner-Killeen test of homogeneity of variances

data: CS by RL

Fligner-Killeen:med chi-squared = 1.6639, df = 3, p-value = 0.6451

The P-value is P[χ2(3) > 1.6639]=0.6452, so there is no doubt against strong evidence of

equality of variances.

Now we are interested in the behavior of the residuals. The four diagnostic plots

are exhibited in �gure 2.11 on page 24. Via these graph we can check the model

assumptions. Slight inequality of variance can be observed in the residual plots below,

how ever, not enough to be concerned about the assumptions.
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Figure 2.10: Rodding, Plot of E�ects

From these computations we �nd out that the residuals have a normal distribution. The

tests of normality show also that the residuals can be assumed as normally distributed.

1) Shapiro-Wilk normality test

data: residuals(rodding.fit)

W = 0.9596, p-value = 0.7785

2) One-sample Kolmogorov-Smirnov test

data: residuals(rodding.fit)

D = 0.1448, p-value = 0.9324

alternative hypothesis: two-sided

The nonparametric one-way ANOVA can be performed using the Kruskal-Wallis test.

Kruskal-Wallis rank sum test

data: CS by RL

Kruskal-Wallis chi-squared = 5.1803, df = 3, p-value = 0.1591

While the Kruskal-Wallis chi-squared is smaller than χ2
0.05,3 = 7.81 we can not reject the

null hypothesis. This is the same conclusion given by the usual analysis of variance F test.

Also the rodding level have no e�ect on the compressive strength of the rodding.
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Figure 2.11: Rodding, Four diagnostic plots

In this problem it isn't necessary to conduct a 95% Tukey multiple comparison

test, because the F-test isn't signi�cant.
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Rodding R-Code

rodding<-read.table("rodding data.txt",header=TRUE)

attach(rodding)

stripchart(CS ~ RL,main = "stripchart(rodding)",

vertical = TRUE, log = "y", data = rodding)

windows(); par(mfrow=c(1,2)); RL<-factor(RL)

plot(RL,CS,names=c("10","15","20","25"),ylab="Compressive Strength")

rodding.fit<-lm(CS~RL);summary(rodding.fit)

model<-aov(CS~RL)

model.tables(model); plot.design(CS~RL)

fligner.test(CS~RL); model<-aov(CS~RL)

model.tables(model); TukeyHSD(model)

plot(TukeyHSD(model)); windows(); par(mfrow=c(2,2))

plot(aov(CS~RL)); shapiro.test(residuals(rodding.fit))

ks.test(residuals(rodding.fit),"pnorm",mean(residuals(rodding.fit))

,sd(residuals(rodding.fit))); kruskal.test(CS~RL)
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Chapter 3

Randomized Complete Block Design

In the previous chapter we have examined the one way ANOVA in which only one

factor is considered at a time.

As one-way analysis of variance (ANOVA) measures signi�cant e�ects of one

factor only, a randomized complete block design (RCBD) measures the e�ects of

two factors simultaneously. For example, an experiment might be de�ned by two

parameters, such as treatment and time point. One-way ANOVA tests would be

able to assess only the treatment e�ect or the time e�ect. On the other hand we

can assess both time and treatment in the same test. RCBD test generates two

P-values, one for each parameter independently. The model is as follows:

yij = µ+ τi + βj + εij, i = 1, . . . , a; j = 1, . . . , b; εij
iid∼ N(0, σ2).

Source Sum of Squares Degrees of Freedom Mean Square F statistics

(SS) (df)

A SSA a− 1 MSA F = MSA
MSE

B SSB b− 1 MSB F = MSB
MSE

Error SSE (a− 1)(b− 1) MSE

Total SST ab− 1

We may interpret factor A as treatment and factor B as block. The di�erent sums

of squares are computed as follows:

27
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SST = SSA + SSB + SSE

SSA = a
b∑

j=1

(ȳi. − ȳ..)2

SSB = b
a∑
i=1

(ȳ.j − ȳ..)2

SSE =
a∑
i=1

b∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)
2

SST =
a∑
i=1

b∑
j=1

(yij − ȳ..)2

The means are de�ned as follows:

yi. =
1

b

b∑
j=1

yij mean of i

y.j =
1

a

a∑
i=1

yij mean of j

y.. =
1

a

a∑
i=1

yi. =
1

b

b∑
i=1

y.j =
1

ab

a∑
i=1

b∑
j=1

yij overall mean
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3.1 Nozzle Design

Example 3.1. (from D. C. Montgomery, 1997, P. 220, Problem 5-5) An article in the

Fire Safety Journal ("The E�ect of Nozzle Design on the Stability and Performance of

Turbulent Water Jets," Vol.4, Aug 1981) describes an experiment in which a shape factor

y was determined for �ve nozzle designs (factor A) at six levels of jet e�ux velocity

(factor B). Interest focused on potential di�erences between nozzle designs, the velocity

considered as a nuisance variable. The data are shown below:

Nozzle Design Jet E�ux Velocity (m
s
) B

A 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78

2 0.85 0.85 0.92 0.86 0.81 0.83

3 0.93 0.92 0.95 0.89 0.89 0.83

4 1.14 0.97 0.98 0.88 0.86 0.83

5 0.97 0.86 0.78 0.76 0.76 0.75

(a) Does nozzle design a�ect the shape factor? Compare the nozzles with box plots and

with an analysis of variance, using α = 0.05.

(b) Analyze the residuals from this experiment.

(c) Which nozzle designs are di�erent with respect to shape factor y? Draw a graph of the

average shape factor for the nozzle type and compare this to a scaled t distribution.

Compare the conclusions that you draw from this plot to those from TukeyHSD test.

In this problem we have two factors one with 5 levels and the other one with 6 levels. It is

useful to solve this problem via a completely randomized block design. We can use the 6

Jet E�ux Velocities as Blocks and apply each of the 5 nozzles as treatments to the Jet

E�ux Velocity. The treatments are applied in random order, so each block can be viewed

as one CR designed experiment. This is a Randomized Complete Block Design (RCBD).

"Complete" means that each block contains all of the treatments.

A basic idea is that the responses y should be less highly varied within a block

than between blocks. We �rst, draw the boxplot in �gure 3.1 on page 30. It shows that

the 4th nozzle (4th treatment) has the largest e�ect on the shape factor y.

The ANOVA table results show that both factors are signi�cant due to their P-value which

are smaller than the signi�cance level α = 0.05.
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Figure 3.1: Nozzle, Boxplots Series

Analysis of Variance Table

Response: SF

Df Sum Sq Mean Sq F value Pr(>F)

treatment 4 0.102180 0.025545 8.9162 0.0002655 ***

block 5 0.062867 0.012573 4.3886 0.0073642 **

Residuals 20 0.057300 0.002865

---

Residual standard error: 0.05353 on 20 degrees of freedom

Multiple R-squared: 0.7423, Adjusted R-squared: 0.6263

F-statistic: 6.401 on 9 and 20 DF, p-value: 0.0002787

Thus at any level α > 0.0002655, we can reject the null hypothesis of no treatment e�ects

(H0 : τ1 = ... = τa = 0). It also appears that the blocks have a signi�cant e�ect. The

randomization ensures that the F-test for treatments is approximately valid even if the

errors aren't nearly normal. Because of the randomization restriction, the same isn't true

for testing the signi�cance of the blocks by MSBl
MSE

. Thus the P-value of 0.00073642 for

blocks should be used as a guide, unless we are sure of the normality.
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Suppose that we analyze the data as a CRD, what would the ANOVA table be?

We have just one factor Nozzle.

Analysis of Variance Table

Response: SF

Df Sum Sq Mean Sq F value Pr(>F)

treatment 4 0.10218 0.0255450 5.3145 0.003079 **

Residuals 25 0.12017 0.0048067

---

Since there are no replications (only one observation per combination of treatment of block)

we cannot test the additive model against a model with an interaction. However, we may

get an idea of the adequacy of the additive model from an interaction plot.
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Figure 3.2: Interaction Plot

Figure 3.2 shows that pro�les for treatments 1, 2 and 3 are almost parallel, just treatment

5 shows a somewhat di�erent pattern.

Checking the assumptions and viewing the residuals:

1. QQ-plot of the residuals eij = yij − ŷij . Where the �tted values are ŷij = µ̂+ τ̂i + β̂j
with µ̂ = y.., τ̂i = yi. − y.. and β̂j = y.j − y...
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2. residuals vs. treatment labels, block labs, �tted values. Figure 3.3 shows the four

diagnostic plots.
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Figure 3.3: Nozzle, The four diagnostic plots

The normality tests are done and the results are as follows:

1) Shapiro-Wilk normality test

data: residuals(g)

W = 0.9699, p-value = 0.5369

2) One-sample Kolmogorov-Smirnov test

data: residuals(g)

D = 0.1005, p-value = 0.8929

alternative hypothesis: two-sided

From the results and the plots above we can conclude that the residuals are normally

distributed, and the P-value is much larger than α = 0.05, so we can't reject H0 that the
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residuals are normally distributed.

Does the error variance depend on the treatment, or on the block? To answer this

question we will do the variance homogeneity test one for the blocks and one for the

treatments:

Fligner-Killeen test of homogeneity of variances

Fligner-Killeen test of homogeneity of variances

data: SF by treatment

Fligner-Killeen:med chi-squared = 9.9619, df = 4, p-value = 0.04107

Fligner-Killeen test of homogeneity of variances

data: SF by block

Fligner-Killeen:med chi-squared = 4.9236, df = 5, p-value = 0.4253

While in the �rst test (shape factor by treatment) the P-value is slightly smaller than α

we can conclude that the variances aren't equal and we reject the null hypothesis.

The analogue of the Kruskal-Wallis test, for a RCBD is "Friedman's test". The ob-

servations are replaced by their ranks within each block, and the usual ANOVA is

run.

Friedman rank sum test

data: y, treatments and blocks

Friedman chi-squared = 17.1034, df = 4, p-value = 0.001846

So the assumptions seems to be met, and at least some of the di�erences in the treatment

means, i.e. in the mean readings µi. = µ+ τi, are signi�cant. The shape factor depends on

nozzles used. It's time for looking to a con�dence interval by applying the TukeyHSD test.

Figure 3.4 on page 34 shows the 95% TukeyHSD con�dence intervals.

From the con�dence intervals we can conclude that treatment 1 is signi�cant di�erent

from treatments 3 and 4, and block 1 is signi�cant di�erent from blocks 5 and 6.

To answer the question of which nozzle designs are di�erent with respect to shape

factor y, we will conduct a 95% TukeyHSD con�dence Interval

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = SF ~ treatment)
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Figure 3.4: 95% CI

$treatment

diff lwr upr p adj

2-1 0.07166667 -0.04588973 0.18922307 0.4009767

3-1 0.12000000 0.00244360 0.23755640 0.0437691

4-1 0.16166667 0.04411027 0.27922307 0.0037468

5-1 0.03166667 -0.08588973 0.14922307 0.9307964

3-2 0.04833333 -0.06922307 0.16588973 0.7471280

4-2 0.09000000 -0.02755640 0.20755640 0.1952713

5-2 -0.04000000 -0.15755640 0.07755640 0.8531635

4-3 0.04166667 -0.07588973 0.15922307 0.8339577

5-3 -0.08833333 -0.20588973 0.02922307 0.2099634

5-4 -0.13000000 -0.24755640 -0.01244360 0.0249866

From the results above we conclude that the Nozzle 1 and 3 are signi�cant di�erent from

others.
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Nozzle R-Code

nozzle<-read.table("nozzle.txt", header=TRUE)

attach(nozzle);treatment<-factor(Nozzle)

block<-factor(JEV)

par(mfrow=c(1,2)); plot(SF~blocks,xlab="blocks")

plot(SF~treatments,xlab="treatments")

#get anova table for RCBD; model1<-lm(SF~treatment+block); anova(model1)

model2<-lm(SF~treatment); anova(model2); windows(); par(mfrow=c(2,2))

plot(aov(SF~treatment+block));fligner.test(SF~treatment);

fligner.test(SF~block);

data.matrix<-as.matrix(data); friedman.test(y,treatments,blocks)

model<-aov(SF~treatment+block); TukeyHSD(model)

windows(); par(mfrow=c(1,2)); plot(TukeyHSD(model))

shapiro.test(residuals(g))

ks.test(residuals(g),"pnorm",mean(residuals(g))

,sd(residuals(g)))

interaction.plot(blocks,treatments,y,xlab="Blocks",ylab="mean",

ylim=c(0.7,1.5),fixed=T,legend=F)

legend(2.79,1.4,c("1","2","3","4","5"), title="Treatment",lty=c(5,4,3,2,1))
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3.2 Ratio Control Algorithm Experiment

Example 3.2. (From D. C. Montgomery, 1997, P. 132) Consider a ratio control

algorithm experiment. The experiment was actually conducted as a randomized block

design, where six time periods were selected as the blocks (factor A), and all four ratio

control algorithms (factor B) were tested in each time period. The voltage y of ratio

control algorithm and the standard deviation of voltage are as follows:

Ratio Time Period

Control

Algor.

1 2 3 4 5 6

1 4.93(.05) 4.86(.04) 4.75(.05) 4.95(.06) 4.79(.03) 4.88(.05)

2 4.85(.04) 4.91(.02) 4.79(.03) 4.85(.05) 4.75(.03) 4.85(.02)

3 4.83(.09) 4.88(.13) 4.90(.11) 4.75(.15) 4.82(.08) 4.90(.12)

4 4.89(.03) 4.77(.04) 4.94(.05) 4.86(.05) 4.79(.03) 4.76(.02)

(a) Analyze the average cell voltage data. (Use α = 0.05) Does the choice of the ratio
control algorithm a�ect the average cell voltage?

(b) Perform an appropriate analysis on the standard deviation of voltage. (Recall that

this is called "pot noise".) Does the choice of the ratio control algorithm a�ect the

pot noise?

(c) Conduct any residual analysis that seems appropriate.

(d) Which ratio control algorithm would you select if your objective is to reduce both

the average cell voltage and the pot noise?

Aluminium is produced by combining alumina with other ingredients in a reaction cell and

applying heat by passing electric current through the cell. Alumina is added continuously

to di�erent ratio control algorithms while investigated in this experiment. The response

variables studied were related to cell voltage.

We have a RCBD problem in which the time period is taken as blocks and the ra-

tio control algorithm is taken as treatments. The treatments are applied in random order

to each block. First we draw the boxplots. Figure 3.5 on page 37 shows that the 5th block
has the smallest e�ect on the average cell voltage.
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Figure 3.5: RCA, Boxplots Series, Average cell voltage

The ANOVA result for the average cell voltage is as follows:

Analysis of Variance Table

Response: Avcv

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 0.002746 0.0009153 0.1902 0.9014

block 5 0.017438 0.0034875 0.7248 0.6154

Residuals 15 0.072179 0.0048119

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06937 on 15 degrees of freedom

Multiple R-squared: 0.2185, Adjusted R-squared: -0.1983

F-statistic: 0.5243 on 8 and 15 DF, p-value: 0.8205

As you can see non of these two factors have an e�ect on the response variable average cell

voltage. So we can not reject the null hypothesis of no treatment e�ects. We conclude that

the choice of the ratio control algorithm doesn't have any e�ect on the average cell voltage.
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Now we are interested in studying the behavior of the residuals. Figure 3.6 shows

the four diagnostic plots. It shows that the residuals are normally distributed.
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Figure 3.6: RCA, The four Diagnostic plots for average cell voltage

Now we analyze the data for pot noise as response variable. We �rst draw boxplots, �gure

3.7 on page 39 shows that the 4th time period and the third treatment (third ratio control

algorithm) have the largest e�ect on the pot noise.

The ANOVA results for pot noise is as follows:

Analysis of Variance Table

Response: Pn

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 0.0260125 0.0086708 50.7561 4.345e-08 ***

block 5 0.0027208 0.0005442 3.1854 0.03711 *

Residuals 15 0.0025625 0.0001708

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 3.7: RCA, Boxplots Series; Pot noise

Residual standard error: 0.01307 on 15 degrees of freedom

Multiple R-squared: 0.9181, Adjusted R-squared: 0.8745

F-statistic: 21.02 on 8 and 15 DF, p-value: 7.97e-07

As you can see both factors have an e�ect on the standard deviation (pot noise), and the

treatments are much more signi�cant as blocks. That at any level α > 4.345e−8, we would

reject the null hypothesis of no treatment e�ects. So we can conclude that the algorithm

does a�ect the pot noise. It also appears that the blocks are signi�cant. Blocking the time

period is a good idea for reducing the mean square error. Now we are interested in studying

the behavior of the residuals. Figure 3.8 on page 40 shows the four diagnostic plots. It shows

that the residuals are normally distributed, and the variability of the residuals seems to be

fairly constant across the �tted value of the response.

From the results of the normality tests we can conclude that the residuals are normally

distributed while the P-values are larger than the signi�cance level α = 0.05.

1) Shapiro-Wilk normality test

data: residuals(g)

W = 0.9461, p-value = 0.2225
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Figure 3.8: RCA, The four Diagnostic plots for Pot noise

2) One-sample Kolmogorov-Smirnov test

data: residuals(g)

D = 0.1484, p-value = 0.6661

alternative hypothesis: two-sided

The normality-based tests can be justi�ed here since we have little evidence of non-

normality. It's a good idea to run nonparametric tests too, to reassure ourselves that

we reach the same conclusions without assuming normality. The Fligner-Killeen test for

equal variances in each block is as follows:

Fligner-Killeen test of homogeneity of variances

data: Avcv by treatment by block

Fligner-Killeen:med chi-squared = 2.2098, df = 3, p-value = 0.53

While the P-value is larger than α = 0.05 so we can't reject the null hypothesis that the

variances are equal.
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The analogue of Kruskal-Wallis test, for a RCBD is "Friedman's test". The obser-

vations are replaced by their ranks within each block, and the usual ANOVA is

run.

Rank:

X1 X2 X3 X4 X5 X6

r1 3 2.5 2.5 3.0 2 3.0

r2 2 1.0 1.0 1.5 2 1.5

r3 4 4.0 4.0 4.0 4 4.0

r4 1 2.5 2.5 1.5 2 1.5

Friedman rank sum test

data: y, treatments and blocks

Friedman chi-squared = 15.4615, df = 3, p-value = 0.001462

As you can see from the table above, r3 has the largest rank each time, it indicates that its

standard deviation e�ect is the largest. So the assumptions seems to be met, and at least

some of the di�erences in the treatment means, i.e. in the mean readings µi. = µ+ αi, are

signi�cant.

It's time for looking for a con�dence interval by applying the TukeyHSD test. Fig-

ure 3.9 shows the 95% TukeyHSD con�dence intervals.

Figure 3.10 on page 42 shows the interaction plot between these two factors , i.e,

treatments and blocks. You can see from the con�dence interval plots that the treatment

3 is signi�cantly di�erent from other treatments, also we can conclude that blocks 4 and

5 are signi�cantly di�erent. As we see in �gure 3.10, the interaction plots show that the

treatments 1, 2 and 3 are almost parallel, but the treatment 4 shows a somewhat di�erent

pattern.

Lastly, we can conclude that only algorithm 3 results in a larger population stan-

dard deviation than the other algorithms. Because the conclusion of part (a) is that the

choice of algorithm has no e�ect on the average cell voltage, it makes no di�erence which

algorithm we use, with respect to average cell voltage. Because of the above results. to

reduce the pot noise, we use only algorithms 1, 4 or 2.
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Figure 3.9: RCA, 95% CI
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Figure 3.10: RCA, Interaction plot
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Ratio Control Algorithm R-Code

data<-read.table("RCA.txt", header=TRUE); attach(data)

block<-factor(TP); treatment<-factor(RCA)

par(mfrow=c(1,2)); boxplot(Avcv~block, xlab="block")

boxplot(Avcv~treatment, xlab="treatment")

#get the anova table of RCBD

model1<-lm(Avcv~treatment+block); anova(model1); summary(model1)

#to check the normality assumption and view residuals

windows(); par(mfrow=c(2,2)); plot(aov(model1))

#homogeneity of variance

fligner.test(Avcv~treatment+block)

#friedman's test depends on the ranks within each blocks

data.ranks<-apply(data,2,rank); data.ranks

friedman.test(Avcv,treatment,block)

model<-aov(Avcv~treatment+block); TukeyHSD(model)

windows(); par(mfrow=c(2,2)); plot(TukeyHSD(model))

interaction.plot(block,treatment,Avcv)

shapiro.test(residuals(model1))

ks.test(residuals(model1),"pnorm",mean(residuals(model1))

,sd(residuals(model1)))

par(mfrow=c(1,2)); boxplot(Pn~block, xlab="block")

boxplot(Pn~treatment, xlab="treatment")

model2<-lm(Pn~treatment+block); anova(model2); summary(model2)

#to check the normality assumption and view residuals

windows(); par(mfrow=c(2,2)); plot(aov(model2))

data.ranks<-apply(data,2,rank); data.ranks

friedman.test(Pn,treatment,block)
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3.3 Aluminium master Alloy

Example 3.3. (From D. C. Montgomery, 1997, P. 222, problem 5-7) An aluminium

master alloy manufacturer produces grain re�ners in ingot form. The company produces

the product in four furnaces. Each furnace is known to have its own unique operating

characteristics. So any experiments run in the foundry that involves more than one

furnace. We will consider furnaces as a nuisance variable. The process engineers suspect

that stirring rate impacts the grain size y. The block design is run for a particular re�ner

and the resulting grain size data are shown below.

Stirring Rate (rpm) Furnace

1 2 3 4

5 8 4 5 6

10 14 5 6 9

15 14 6 9 2

20 17 9 3 6

(a) Is there any evidence that the stirring rate impacts grain size?

(b) Graph the residuals from this experiment on a normal probability plot. Interpret

this plot.

(c) Plot the residuals versus furnace and stirring rate. Does this plot convey any useful

information?

(d) What should process engineers recommend concerning the choice of stirring rate and

furnace for this particular grain re�ner if small grain size is desirable?

We de�ne furnace as blocks and the stirring rate as treatments. Each treatment is applied

to the blocks in random way. Figure 3.11 on page 45 shows the boxplot, it indicates that

the fourth block (4th furnace) has the largest e�ect on the grain size.

The ANOVA table below shows that there is no di�erence in mean grain size due

to the di�erent stirring rates, so we can conclude null hypothesis, but there is an evidence

that the blocks are signi�cant, and have an e�ect on grain size. The model F-value of 0.85

implies that the model is not signi�cant relative to the treatments. So the answer to part

(a) is no, there is no evidence concerning that the stirring rate impacts grain size.
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Analysis of Variance Table

Response: Gs

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 22.187 7.396 0.8527 0.49954

block 3 165.188 55.063 6.3483 0.01334 *

Residuals 9 78.063 8.674

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.945 on 9 degrees of freedom

Multiple R-squared: 0.7059, Adjusted R-squared: 0.5099

F-statistic: 3.6 on 6 and 9 DF, p-value: 0.04196

1 2 3 4

5
10

15

block

5 10 15 20

5
10

15

treatment

Figure 3.11: AMA, Boxplot

Now we study the behavior of the residuals; �gure 3.12 on page 46 shows the four diagnostic

plots. It shows that the normality assumption is valid.

The normality tests indicate no signi�cant deviation from normality, here the normality

assumption can be made.
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Figure 3.12: AMA, The four diagnostic plots

1) Shapiro-Wilk normality test

data: residuals(g)

W = 0.9301, p-value = 0.2447

2) One-sample Kolmogorov-Smirnov test

data: residuals(g)

D = 0.1146, p-value = 0.9685

alternative hypothesis: two-sided

The residuals plots against stirring rate and furnace are shown in �gure 3.13 on page 47.

The variance is consistent at di�erent stirring rates. Note only that the validity assumption

of uniform variance also identi�es that the di�erent stirring rates do not a�ect the variance.

Now there is a question: Does the error variance depend on the treatment, or on

the block? The variance homogeneity test con�rms that there is no dependency:
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Figure 3.13: AMA, Residual plots Vs. Furnace and Stirring rate

Fligner-Killeen test of homogeneity of variances

data: Gs by treatment by block

Fligner-Killeen:med chi-squared = 2.9766, df = 3, p-value = 0.3952

The analogue of Kruskal-Wallis test, for a RCBD is "Friedman's test". The observations

are replaced by their ranks within each block, and the usual ANOVA is run. Here there is

also no evidence of a treatment e�ect (P=0.4429).

X1 X2 X3 X4

s5 1.0 1 2 2.5

s10 2.5 2 3 4.0

s15 2.5 3 4 1.0

s20 4.0 4 1 2.5

Friedman rank sum test

data: Gs, treatment and block

Friedman chi-squared = 2.6842, df = 3, p-value = 0.4429
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It's time for looking for con�dence intervals by applying the TukeyHSD test. Figure 3.14

shows the 95% TukeyHSD con�dence intervals and the interaction plot is given in �gure

3.15 on page 49.
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Figure 3.14: AMA, 95% CI

From the con�dence interval plots we can conclude that block 1 is signi�cantly di�erent

from the other blocks.

The answer to the last part is that there is no e�ect due to the stirring rate.
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Figure 3.15: AMA, Interaction plot

Aluminium Master Alloy R-Code

data<-read.table("AMA.txt",header=TRUE); attach(data)

#generate the block index and the treatment level for response value

block<-factor(Fur); treatment<-factor(SR)

par(mfrow=c(1,2)); boxplot(Gs~block, xlab="block")

boxplot(Gs~treatment, xlab="treatment")

#get the anova table of RCBD

model1<-lm(Gs~treatment+block); anova(model1); summary(model1)

#to check the normality assumption and view residuals

windows(); par(mfrow=c(2,2)); plot(aov(model1))

#residuals against stirring rate and furnace

rsd<-residuals(model1); plot(Fur,rsd); plot(Gs,rsd)

#homogeneity of variance

fligner.test(Gs~treatment+block)

#friedman's test depends on the ranks within each blocks

data.ranks<-apply(data,2,rank); data.ranks

friedman.test(Gs,treatment,block)

model<-aov(Gs~treatment+block); TukeyHSD(model)

windows(); par(mfrow=c(1,2)); plot(TukeyHSD(model))

interaction.plot(block,treatment,Gs,xlab="Blocks",ylab="mean",

ylim=c(3,17),fixed=T,legend=F)

legend(2.79,14,c("1","2","3","4"), title="Treatment",

lty=c(4,3,2,1)); shapiro.test(residuals(model1))

ks.test(residuals(g),"pnorm",mean(residuals(model1))

,sd(residuals(model1)))
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Chapter 4

Analysis of Covariance

The analysis of covariance (generally known as ANCOVA) combines regression

and ANOVA. Here the response variable y is continuous, we have one ore more

explanatory factors (treatments) and one or more continuous explanatory variables.

The goal of analysis of covariance is to reduce the error variance. This in-

creases the power of tests and narrows the con�dence interval. There may be

measurable variables that a�ect the response but have nothing to do with the

factors (treatments) in the experiment. Analysis of covariance adjust for those

variables [Montgomery D. C. (1997)].

4.1 Analysis

Along with the usual terms in the e�ects model for a single factor CRD, we include

a term expressing the departure of the covariate from its overall average, and

assume that y is linearly related to this departure.

If yij is the j
th observation in the ith treatment group, then the model is

yij = µ+ τi + β(xij − x..) + εij, εij
iid∼ N(0, σ2), i = 1, . . . , a; j = 1, . . . , r.

Here τi is the e�ect of the ith treatment and we assume
∑

i τi = 0, and that the

covariate is not a�ected by the treatments.

• The main hypothesis of interest is H0 : τ1 = τ2 = ... = τa. This is equivalent

to the statement that all µ+ τi are equal, and so is tested by comparing their

estimated � adjusted treatment means � with each other.

The analysis of covariance for one linear covariate is as follows:

51
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Source Sum of Squares Degrees of Mean Square F

(SS) Freedom(d.f.)

T |β SST |β a− 1 MST |β = SST
a−1

MST |β
MSE

β|T SSβ|T 1 MSβ|T = SST
1

MSβ|T
MSE

Error SSE n− a− 1 MSE = SSE
n−a−1

Total SSyy n− 1

Where the formulas for computation of this table are:

SST |β =

(
ssyy −

(ssxy)
2

ssxx

)
−
(
ss∗yy −

(ss∗xy)
2

ss∗xx

)

SSβ|T =
(ss∗xy)

2

ss∗xx

SSE = ss∗yy −
(ss∗xy)

2

ss∗xx

ssxx =
∑
i

∑
j

(xij − x..)2, ss∗xx =
∑
i

∑
j

(xij − xi.)2

ssyy =
∑
i

∑
j

(yij − y..)2, ss∗yy =
∑
i

∑
j

(yij − yi.)2

ssxy =
∑
i

∑
j

(xij − x..)(yij − y..), ss∗xy =
∑
i

∑
j

(xij − xi.)(yij − yi.)

Assumptions in Ancova

We need to verify the following assumptions:

1. The covariate xij is not a�ected by the experimental factors.

2. The regression relationship measured by parameter β must be the same for all

factor levels.
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4.2 General Approach to Ancova

• First we look at the e�ect of xij. If it isn't signi�cant, do an Anova.

• Check to see that xij is not signi�cantly a�ected by the factor values.

• Test to see that β is not signi�cantly di�erent for all factor levels. This is an

interaction between the factors and the covariate.

• Order matters: the covariate comes after the factors in the model because

they're less important.

• If both tests pass, do the ANCOVA.
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4.3 Mono�lament Fiber

Example 4.1. (From D. C. Montgomery, 1997, p. 150) Consider a study performed to

determine if there is a di�erence in the strength y of mono�lament �ber produced by three

di�erent machines. The data are shown in the table below.

Machine 1 Machine 2 Machine 3

y x y x y x

36 20 40 22 35 21

41 25 48 28 37 23

39 24 39 22 42 26

42 25 45 30 34 21

49 32 44 28 32 15

The process engineer is interested in determining if there is a di�erence in the breaking

strength of the �ber produced by the three machines. Analyze the data and draw

conclusions.

In this problem the response variable is y = strength. However the thickness x of

the �ber will clearly a�ect strength. This varies both between and within machines,

and can be measured but not controlled. The layout of the design is as for a complete

randomized design.

Here we have 3 treatments (machines) and 5 observations made in each treatment

group, these are carried out in random order. From the design standpoint the only

di�erence is that the covariate is measured along with the response variable.

The strength of the �ber is related to its diameter, with thicker �bers being gener-

ally stronger than thinner ones. Figure 4.1 on page 55 shows the scatter diagram, which

shows a strong suggestion of a linear relationship between breaking strength and diameter,

and it seems appropriate to remove the e�ect of diameter on strength by an analysis of

covariance.

The Ancova table is shown below (in this case we get the P-value and adjusted sum of

squares for machine).

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 305.130 305.130 119.9330 2.96e-07 ***

machine 2 13.284 6.642 2.6106 0.1181

Residuals 11 27.986 2.544



CHAPTER 4. ANALYSIS OF COVARIANCE 55

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

15 20 25 30

35
40

45

x

y

Figure 4.1: Mono�lament Fiber, Scatter plot

From this, the P-value for the machine is 0.1181. We conclude that there is no signi�cant

di�erence between the machines, once their output is adjusted for �ber thickness, (ignoring

x, gives a P-value of 0.4 and it is an incorrect one-way ANOVA). The 13.284 in the output

is referred to as SS(machine|x), the sums of squares for machines adjusted for thickness,

it means that the machines have no e�ect on the mono�lament �ber. The Ancova table for

thickness is as follows:

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

machine 2 140.400 70.200 27.593 5.170e-05 ***

X 1 178.014 178.014 69.969 4.264e-06 ***

Residuals 11 27.986 2.544

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.595 on 11 degrees of freedom

Multiple R-squared: 0.9192, Adjusted R-squared: 0.8972

F-statistic: 41.72 on 3 and 11 DF, p-value: 2.665e-06

Entering X last shows that the variation in �ber thickness accounts for a signi�cant

amount of the variation in strength (P-value= 4.264 × 10−6, SS(x|machine) = 178.014).
Of course this P-value is also that for the hypothesis H0 : β = 0.
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Now it's time to do the regression analysis with factor x (diameter), while the

machines have no e�ect on the �ber thickness. So you can see the ANOVA table below:

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 305.130 305.130 96.116 2.263e-07 ***

Residuals 13 41.270 3.175

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.782 on 13 degrees of freedom

Multiple R-squared: 0.8809, Adjusted R-squared: 0.8717

F-statistic: 96.12 on 1 and 13 DF, p-value: 2.263e-07

As you can see this model is appropriate with r2adj = 87%. The regression model is then:

yij = 14.143 + 1.0797xi. From the above computation we conclude that diameter has an

e�ect on �ber thickness.

Now the question is: Does the factor machine have an e�ect on the variable x? To

answer this question we have to apply the one-way ANOVA with response variable x and

machine as factor. Below you can see the results:

Analysis of Variance Table

Response: X

Df Sum Sq Mean Sq F value Pr(>F)

machine 2 66.133 33.067 2.0286 0.1742

Residuals 12 195.600 16.300

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.037 on 12 degrees of freedom

Multiple R-squared: 0.2527, Adjusted R-squared: 0.1281

F-statistic: 2.029 on 2 and 12 DF, p-value: 0.1742

We can conclude from the results above that the factor machine doesn't have any e�ect

on variable x, so we can do our process as already described.

Figure 4.2 on page 57 shows the four diagnostic plots, and the following normality tests

show that the residuals assumed to be normally distributed, so the covariance analysis is

an appropriate model for thickness of the mono�lament �ber.

1) Shapiro-Wilk normality test

data: residuals(g0)

W = 0.9616, p-value = 0.72
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Figure 4.2: Mono�lament Fiber, The four diagnostic plots

2) One-sample Kolmogorov-Smirnov test

data: residuals(g0)

D = 0.1588, p-value = 0.789

alternative hypothesis: two-sided

The second important question is: What will happen if the variable X is not as a covariate

in the model (i.e. we ignore it from the model)? One way ANOVA leads to the result that

machine is signi�cant (hidden by in�uence of diameter):

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

machine 2 140.400 70.200 4.0893 0.04423 *

Residuals 12 206.000 17.167

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.143 on 12 degrees of freedom
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Multiple R-squared: 0.4053, Adjusted R-squared: 0.3062

F-statistic: 4.089 on 2 and 12 DF, p-value: 0.04423

The con�dence intervals are shown in �gure 4.3.
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Differences in mean levels of machine

Figure 4.3: Mono�lament Fiber, CI

Machines 3 and 2 are signi�cantly di�erent from each other while their con�dence interval

doesn't contain zero.

Without considering covariate X the machines have an e�ect on the thickness of

the �bers. Figure 4.4 on page 59 shows the boxplot, it indicates the di�erence in the thick-

ness median of the mono�lament �bers. This di�erence is approved in the Kruskal-Wallis

test.

Kruskal-Wallis rank sum test

data: y by machine

Kruskal-Wallis chi-squared = 5.5147, df = 2, p-value = 0.06346

While the P-value is slightly larger than α = 0.05 so we can not reject the null hypothesis.



CHAPTER 4. ANALYSIS OF COVARIANCE 59

●

●

1 2 3

35
40

45

machine

y

Figure 4.4: Mono�lament Fiber, Boxplot

Mono�lament Fiber R-Code

y<-c(36,41,39,42,49,40,48,39,45,44,35,37,42,34,32)

x<-c(20,25,24,25,32,22,28,22,30,28,21,23,26,21,15)

X<-x-mean(x); machine<-as.factor(rep(1:3,each=5))

data<-data.frame(y,x,machine,X); data; plot(y,x)

#To get p-value and adjusted SS for machine

g<-lm(y~X+machine); anova(g)

#To get p-value and adjusted SS for thickness

g0<-lm(y~machine+X); anova(g0); summary(g)

predict(g, new=data.frame(machine=as.factor(1),X=0), se.fit=T)

g1<-lm(y~X); anova(g1); summary(g1)

#one-way anova

g2<-lm(X~machine); anova(g2); summary(g2)

#residual analysis

windows(); par(mfrow=c(2,2)); plot(aov(y~machine+X))

shapiro.test(residuals(g0))

ks.test(residuals(g0),"pnorm",mean(residuals(g0))

,sd(residuals(g0)))

kruskal.test(y~machine+X)

#one-way anova (x isn't in the model)

g3<-lm(y~machine); anova(g3); summary(g3)

model<-aov(y~machine); TukeyHSD(model)

plot(TukeyHSD(model)); plot(y~machine)

kruskal.test(y~machine)
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4.4 Glue

Example 4.2. (From D. C. Montgomery, 1997, p. 169, Problem 4-19) Four di�erent

formulations of an industrial glue are being tested. The tensile strength of the glue when it

is applied to join parts is also related to the application thickness. Five observations on the

strength y in pounds and thickness x in 0.01 inches are obtained for each formulation. The

data are shown in the following table. Analyze these data and draw appropriate conclusions.

1 2 3 4
y x y x y x y x

46.5 13 48.7 12 46.3 15 44.7 16
45.9 14 49.0 10 47.1 14 43.0 15
49.8 12 50.1 11 48.9 11 51.0 10
46.1 12 48.5 12 48.2 11 48.1 12
44.3 14 45.2 14 50.3 10 48.6 11

In this problem we have 4 treatments (glue formulation) and 5 observations for each treat-

ment. The tensile strength of the glue when it is applied to join parts is also related to

the application thickness. Figure 4.5 shows the scatter plot, it indicates a negative linear

relation between x and y, thats why we can use x as a covariate.
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Figure 4.5: Glue, Scatter plot

Question 1: Does the formulation has an e�ect on the strength of the glue? The Ancova

table is shown below (in this case we get the P-value and adjusted sums of squares for

glue).
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Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 68.852 68.852 55.5413 2.038e-06 ***

glue 3 4.138 1.379 1.1128 0.3749

Residuals 15 18.595 1.240

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.113 on 15 degrees of freedom

Multiple R-squared: 0.797, Adjusted R-squared: 0.7428

F-statistic: 14.72 on 4 and 15 DF, p-value: 4.471e-05

In this case, the P-value for the glue is 0.3749. Here there is no signi�cant di�erence

between the glue, once their output is adjusted for glue thickness, (ignoring x, gives a P-

value=0.5142 and it is an incorrect one way ANOVA). The 4.138 in the output is referred

to as SS(glue|x), the SS for glue adjusted for thickness, it means that the tickness have

no e�ect on the glue. The Ancova table for thickness reads

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

glue 3 11.886 3.962 3.1959 0.05399 .

X 1 61.105 61.105 49.2919 4.134e-06 ***

Residuals 15 18.595 1.240

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.113 on 15 degrees of freedom

Multiple R-squared: 0.797, Adjusted R-squared: 0.7428

F-statistic: 14.72 on 4 and 15 DF, p-value: 4.471e-05

From the results above we can conclude that the formulation has no signi�cant e�ect on

glue. While there is no e�ect of formulation to thickness we will do the regression analysis

with factor x.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 68.852 68.852 54.517 7.53e-07 ***

Residuals 18 22.733 1.263

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.124 on 18 degrees of freedom

Multiple R-squared: 0.7518, Adjusted R-squared: 0.738

F-statistic: 54.52 on 1 and 18 DF, p-value: 7.53e-07
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As you see this model is appropriate with r2adj = 0.738, and the regression model is

yij = 60.5356 − 1.0458xi. From the results above it is obvious that the thickness has an

a�ect on the glue.

Question 2: Does the formulation has an e�ect on the thickness x? In this case we

have a one way ANOVA.

1) Analysis of Variance Table

Response: X

Df Sum Sq Mean Sq F value Pr(>F)

glue 3 20.150 6.717 2.5109 0.09557 .

Residuals 16 42.800 2.675

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.636 on 16 degrees of freedom

Multiple R-squared: 0.3201, Adjusted R-squared: 0.1926

F-statistic: 2.511 on 3 and 16 DF, p-value: 0.09557

Since the variable x isn't a�ected by the formulation so it can be used as a covariate. Now

it's time to do the residual analysis. Figure 4.6 on page 63 shows the four diagnostic plots.

The two normality tests are as follows:

1) Shapiro-Wilk normality test

data: residuals(g)

W = 0.9489, p-value = 0.3503

2) One-sample Kolmogorov-Smirnov test

data: residuals(g)

D = 0.1147, p-value = 0.9284

alternative hypothesis: two-sided

We conclude that the residuals are normally distributed.

Question 3: What will happen if we eliminate x from the model? Then we have

the following one way ANOVA.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

glue 3 11.886 3.962 0.7953 0.5142

Residuals 16 79.700 4.981

Residual standard error: 2.232 on 16 degrees of freedom

Multiple R-squared: 0.1298, Adjusted R-squared: -0.03339

F-statistic: 0.7953 on 3 and 16 DF, p-value: 0.5142



CHAPTER 4. ANALYSIS OF COVARIANCE 63

44 46 48 50

−
2

−
1

0
1

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Residuals vs Fitted

8 6

9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s Normal Q−Q

8 6

9

44 46 48 50

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Scale−Location
8 6

9

0.00 0.10 0.20 0.30

−
2

−
1

0
1

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Cook's distance
0.5

Residuals vs Leverage

86
13

Figure 4.6: Glue, The four diagnostic plots

In this case the "wrong" analysis of variance gives us the correct answer. The boxplot

in �gure 4.7 on page 64 indicates that there is no di�erence in the median of the four

formulations even though we didn't use covariate x.

Kruskal-Wallis rank sum test

data: y by glue

Kruskal-Wallis chi-squared = 2.6571, df = 3, p-value = 0.4476

The Kruskal-Wallis test shows also no signi�cant di�erence in the mean of the formulations.

From the con�dence intervals we can conclude that none of these formulations di�ers from

each other so we reject the null hypothesis while all con�dence intervals contain the value

zero.



CHAPTER 4. ANALYSIS OF COVARIANCE 64

●

●

●

●

●

1 2 3 4

44
46

48
50

−4 −2 0 2 4 6

4−
3

4−
2

3−
2

4−
1

3−
1

2−
1

95% family−wise confidence level

Differences in mean levels of glue

Figure 4.7: Glue, Boxplot and CI

Glue Formulation R-code

y<-c(46.5,48.7,46.3,44.7,45.9,49.0,47.1,43.0,49.8,50.1,48.9,51.0,46.1,48.5

,48.2,48.1,44.3,45.2,50.3,48.6)

x<-c(13,12,15,16,14,10,14,15,12,11,11,10,12,12,11,12,14,14,10,11)

X<-x-mean(x); glue<-as.factor(rep(1:4,each=5))

data<-data.frame(y,x,glue,X); data

plot(x,y); g<-lm(y~glue+X); anova(g); summary(g)

g0<-lm(y~x+glue); anova(g0); summary(g0)

#Regression analysis

g1<-lm(y~x); anova(g1); summary(g1)

#one-way Anova

g2<-lm(X~glue); anova(g2); summary(g2)

windows(); par(mfrow=c(2,2)); plot(aov(y~glue+X))

shapiro.test(residuals(g))

ks.test(residuals(g),"pnorm",mean(residuals(g))

,sd(residuals(g)))

#one way anova without X

g3<-lm(y~glue); anova(g3); summary(g3)

windows(); par(mfrow=c(1,2)); plot(glue,y)

model<-aov(y~glue); TukeyHSD(model)

plot(TukeyHSD(model)); kruskal.test(y~glue)



Chapter 5

Factorial Designs

We study the e�ects of two or more factors, each at several levels. A Factorial

Design has observations at all combinations of these levels. Factorial ANOVA can

be used when factors are crossed with each other, rather than nested. We have to

be careful that all the combinations of factors are included in the design. Note that

every level of each factor occurs in combination with every level of the other factors

[Montgomery D. C. (1997)].

De�ning Factorial Design

• Means-

Cell means: means of all replicates for that combination of treatments.

Marginal means: means for one factor in analysis.

Grand mean: overall mean.

• Main e�ects-

The e�ect of a factor is de�ned to be the change in response produced by a

change in the level of the factor.

• Interaction-

When the di�erence in response between the levels of one factor is not the

same at all levels of the other factors then we have an interaction.

Kinds of Factorial Models

• Model 1- all factors are �xed

Tests for e�ect of main e�ects and interaction e�ects. E�ects tested over mean

square errors (MSE).

65
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• Model 2- all factors are random

Fairly uncommon in biology. Main e�ects tested over interaction terms, inter-

action e�ects over MSE.

• Model 3- Some factors are �xed and the others are random

This model is called a mixed model.

In the following we discuss only factorial models where all factors are �xed (Model 1).

Note that factorial designs have several advantages. They are more e�cient

than one-factor- at a time experiments. Furthermore a factorial design is necessary

when the interactions may be present to avoid misleading conclusions. Finally,

factorial designs allow the e�ects of a factor to be estimated at several levels of the

factors, yielding conclusions that are valid over a range of experimental conditions.

5.1 The Two-Factor Factorial Design

The e�ects model, including terms for interaction, is that the kth observation at level

i of A, j of B is:

yijk = µ+ τi + βj + (τβ)ij + εijk, εijk
iid∼ N(0, σ2)

i = 1, . . . , a (levels of factor A); j = 1, . . . , b (levels of factor B); k = 1, . . . , t.

Constraints are
∑

i τi = 0 (average e�ect of levels of A is 0),
∑

j βj = 0 (average

e�ect of levels of B is 0), and average interaction
∑

i(τβ)ij = 0 for j = 1, . . . , b;∑
j(τβ)ij = 0 for i = 1, . . . , a.

Reasonable estimates of these e�ects, obeying these constraints, are

µ̂ = y.., τ̂i = yi.. − y... β̂j = y.j. − y...

(τ̂β)ij = yij. − y... − τ̂i − β̂j = yij. − yi.. − y.j. + y... (grand mean)
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where

y.. =
1

abt

∑
i

∑
j

∑
k

yijk

yi.. =
1

bt

∑
j

∑
k

yijk (mean for A at level i)

y.j. =
1

at

∑
i

∑
k

yijk (mean for B at level j)

yij. =
1

t

∑
k

yijk (mean of cell (i,j))

The ANOVA table for a two factor factorial experiment with t observations per cell

is (n = abt):

Source SS df MS F0

A SSA a− 1 MSA = SSA
a−1

F0 = MSA
MSE

B SSB b− 1 MSB = SSB
b−1

F0 = MSB
MSE

AB SSAB (a− 1)(b− 1) MSAB = SSAB
(a−1)(b−1)

F0 = MSAB
MSE

Error SSE ab(t− 1) MSE = SSE
ab(t−1)

Total SST abt− 1

We have

SST = SSA + SSB + SSAB + SSE =
∑
i

∑
j

∑
k

(yijk − y...)2

SSA = tb
∑
i

τ̂ 2
i , SSB = ta

∑
j

β̂2
j , SSAB = t

∑
i

∑
j

τ̂β
2

ij,

SSE =
∑
i

∑
j

∑
k

(yijk − yij.)2

5.2 The General Factorial Design

In the general factorial design more than two factors should be investigated, a levels

of factor A, b levels of factor B, c levels of factor C, ..., and t replicates. The total
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number of observations is abc...t.

For example, consider the three-factor analysis of variance model:

yijkl = µ+ τi + βj + γk + (τβ)ij + (τγ)ik + (βγ)jk + (τβγ)ijk + εijkl,

εijkl
iid∼ N(0, σ2); i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , c; l = 1, . . . , t.

The ANOVA table in this case is as follows:

Source SS df MS F0

A SSA a− 1 MSA = SSA
a−1

F0 = MSA
MSE

B SSB b− 1 MSB = SSB
b−1

F0 = MSB
MSE

C SSC c− 1 MSC = SSC
c−1

F0 = MSC
MSE

AB SSAB (a− 1)(b− 1) MSAB = SSAB
(a−1)(b−1)

F0 = MSAB
MSE

AC SSAC (a− 1)(c− 1) MSAC = SSAC
(a−1)(c−1)

F0 = MSAC
MSE

BC SSBC (b− 1)(c− 1) MSBC = SSBC
(b−1)(c−1)

F0 = MSBC
MSE

ABC SSABC (a− 1)(b− 1)(c− 1) MSABC = SSABC
(a−1)(b−1)(c−1)

F0 = MSABC
MSE

Error SSE abc(t− 1) MSE = SSE
abc(t−1))

Total SST abct− 1

Where the sum of squares are easily generalized:

SST =
∑
i

∑
j

∑
k

∑
l

(yijkl − y....)2

The sum of squares for the interactions are:
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SSA = bct
∑
i

(yi... − y....)2

SSB = act
∑
j

(y.j.. − y....)2

SSC = abt
∑
k

(y..k. − y....)2

SSAB = ct
∑
i

∑
j

(yij.. − y....)2 − SSA − SSB

SSAC = bt
∑
i

∑
k

(yi.k. − y....)2 − SSA − SSC

SSBC = at
∑
j

∑
k

(y.jk. − y....)2 − SSB − SSC

SSABC = t
∑
i

∑
j

∑
k

(yijk. − y....)2 − SSA − SSB − SSC − SSAC − SSBC

SSE =
∑
i

∑
j

∑
k

∑
l

(yijkl − yijk.)2
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5.3 Soft Drink Bottling Problem

Example 5.1. (From D. C. Montgomery, 1997, p. 259) A soft drink bottler is interested

on obtaining more uniform �ll heights in the bottles produced by his manufacturing pro-

cess. The �lling machine theoretically �lls each bottle to the correct target height, but in

practice, there is variation around this target, and the bottler would like to understand

better the source of this variability and eventually reduce it.

The process engineer can control three variables during the �lling process: the percent

carbonation (A), the operating pressure in the �ller (B), and the bottles produced per

minute or the line speed (C). The pressure and speed are easy to control during actual

manufacturing because it varies with product temperature. However, for purpose of an

experiment, the engineer can control carbonation at three levels: 10, 12, and 14 percent.

He chooses two levels for pressure (25 and 30 psi) and two levels for line speed (200 and

250 bpm). He decides to run two replicates for a factorial design in these three factors,

with all 24 runs taken in random order. The response variable y observed is the average

deviation from the target �ll height observed in a production run of bottles at each set of

conditions. The data that resulted from this experiment are shown in the table below:

Operating Pressure (B)

25 psi 30 psi

Percent Line Speed (C)

Carbonation (A) 200 250 200 250

10 −3 −1 −1 1

−1 0 0 1

12 0 2 2 6

1 1 3 5

14 5 7 7 10

4 6 9 11

Analyze the data.

Soft drink bottlers must maintain targets for �ll heights, and any variation is a

cause for concern. The deviation y from the target is a�ected by % carbonation (A),

pressure in the �lter (B) and the line speed (C). In this problem we have 24 runs in

random order.

To �t an ANOVA model to this data, we simply generalize the single factor com-

pletely randomized design. Figure 7.1 on page 71 shows the interaction plots and the

univariate e�ects of the model.

Figure 5.1 indicates no interaction e�ects between factors. Notice that all three main

variables have positive main e�ects; that is, increasing the variable moves the average
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Figure 5.1: Soft Drink, Interaction plots

deviation from the �ll target upward. We have a full three-factor model (5.1).

The ANOVA table of this full model is constructed below:

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

carbon 2 252.750 126.375 178.4118 1.186e-09 ***

press 1 45.375 45.375 64.0588 3.742e-06 ***

speed 1 22.042 22.042 31.1176 0.0001202 ***

carbon:press 2 5.250 2.625 3.7059 0.0558081 .

carbon:speed 2 0.583 0.292 0.4118 0.6714939

press:speed 1 1.042 1.042 1.4706 0.2485867

carbon:press:speed 2 1.083 0.542 0.7647 0.4868711

Residuals 12 8.500 0.708

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 '' 1
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Residual standard error: 0.8416 on 12 degrees of freedom

Multiple R-squared: 0.9747, Adjusted R-squared: 0.9516

F-statistic: 42.11 on 11 and 12 DF, p-value: 7.417e-08

It seems that interactions are largely absent, and that all three main e�ects are signi�cant.

The R2
adj shows that about 95% of the variability in the �ll heights is explained by the %

carbonation, pressure in the �lter, the line speed and their interactions.

For checking ANOVA model assumption, the best way is analysis of residuals. We

take a model with three main e�ects and an interaction carbon pressure.

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

carbon 2 252.750 126.375 191.6766 2.178e-12 ***

press 1 45.375 45.375 68.8216 2.218e-07 ***

speed 1 22.042 22.042 33.4312 2.210e-05 ***

carbon:press 2 5.250 2.625 3.9814 0.03818 *

Residuals 17 11.208 0.659

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 '' 1

Residual standard error: 0.812 on 17 degrees of freedom

Multiple R-squared: 0.9667, Adjusted R-squared: 0.955

F-statistic: 82.26 on 6 and 17 DF, p-value: 1.294e-11

Note that within each of the 12 groups the residuals tend to be of the same sign, with the

signs alternating as we move from group to group.

The error would show up in the residual plot against the �tted values. Normal Q-

Q plots and residual plots. In factorial designs, though, we should plot residuals against

the predicted values (i.e. treatment means) and the levels of each factor 5.3 on page

74. This safe guards against any unstable variance being embedded within the factorial

treatment structure.

The Q-Q plot looks �ne. The residual plots are showing what appears to be a mild

non-constancy of variance. Here there is no need for transformation.

The last step is a multiple comparison test, by computing the TukeyHSD con�-

dence intervals in �gure 5.4 on page 75. As you see just three combinations of the

carbon:pressure interaction contain zero which means that they are not signi�cant.

Since the company wants the average deviation from the �ll target to be close to

zero, the engineer decides to recommend the low level of operating pressure (25 psi) B−
and the high level of line speed (250 bpm) C+ which maximize the production rate.
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Figure 5.2: Soft Drink, The four diagnostic plots with one interaction
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Soft Drink Bottlers- R Code

y<-c(-3,-1,0,1,5,4, -1,0,2,1,7,6, -1,0,2,3,7,9, 1,1,6,5,10,11)

carbon<-as.factor(rep(c(10,12,14),each=2, times=4))

press<-as.factor(rep(c(25,30), each=12))

speed<-as.factor(rep(c(200,250), each=6, times=2))

data<-data.frame(y, carbon, press, speed); data

par(mfrow=c(2,2)); plot.design(data)

interaction.plot(carbon,press,y,xlab="carbonation percentage",

ylab="Mean of hight", main="interaction plot",ylim=c(-3,12),

fixed=T,legend=F); legend(0.90,11.50,c("1","2"),

title="Pressure",lty=c(2,1)); interaction.plot(carbon,speed,y,

xlab="carbonation percentage",ylab="Mean of hight",

main="interaction plot",ylim=c(-3,12),fixed=T,legend=F)

legend(0.90,11.50,c("1","2"),title="Speed",lty=c(2,1))

interaction.plot(press,speed,y,xlab="Pressure",

ylab="Mean of hight", main="interaction plot",ylim=c(-3,12),

fixed=T,legend=F)) legend(0.90,11.50,c("1","2"),

title="Speed",lty=c(2,1))

g<-lm(y~carbon+press+speed+carbon*press+carbon*speed+press*speed

+carbon*press*speed)

anova(g); summary(g)

h<-lm(y~carbon+press+speed+carbon+carbon*press); anova(h); par(mfrow=c(2,2))

plot(aov(y~carbon+press+speed+carbon+carbon*press))

model<-aov(y~carbon+press+speed+carbon+carbon*press)

plot(TukeyHSD(model))

ncarbon<-rep(c(10,12,14),each=2, times=4)

npress<-rep(c(25,30), each=12)

nspeed<-rep(c(200,250), each=6, times=2)

windows(); par(mfrow=c(2,2)); plot(ncarbon,y)

plot(npress,y); plot(nspeed,y)
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5.4 Strength of a paper

Example 5.2. (D. C. Montgomery, 1997, P. 286, Problem 6-16) The percentage of hard-

wood concentration (A) in row pulp, the vat pressure (C), and the cooking time of the

pulp (B) are being investigated for their e�ects on the strength of paper y. Three levels

of hardwood concentration, three levels of pressure, and two cooking times are selected.

A factorial experiment with two replicates is conducted (n = 36 runs), and the following

data are obtained:

Cooking times 3.0 Hours Cooking times 4.0 Hours

Percentage of Pressure Pressure

Hardwood

Concentration 400 500 650 400 500 650

2 196.6 197.7 199.8 198.4 199.6 200.6

196.0 196.0 199.4 198.6 200.4 200.9

4 198.5 196.0 198.4 197.5 198.7 199.6

197.2 196.9 197.6 198.1 198.0 199.0

8 197.5 195.6 197.4 197.6 197.0 198.5

196.6 196.2 198.1 198.4 197.8 199.8

(a) Analyze the data and draw conclusions. Use α = 0.05.

(b) Prepare appropriate residual plots and comment on the models's adequacy.

(c) Under what set of conditions would you operate this process? Why?

For the experimenter the strength of a paper and any variation in it is a cause of concern,

the deviation from the target y is a�ected by % of hardwood concentration (A), the

pressure in vat the cooking time of the pulp (B) and (C). In this problem we have n = 36
runs in a random order.

We will examine the main e�ects and the interactions e�ects by the full factorial

model.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

hardwood 2 7.7639 3.8819 10.6193 0.0008996 ***

time 1 20.2500 20.2500 55.3951 6.745e-07 ***

press 2 19.3739 9.6869 26.4992 4.327e-06 ***

hardwood:time 2 2.0817 1.0408 2.8473 0.0842597 .
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Figure 5.5: Strength of paper dependent on their factos and their combinations, Box

plots Series

hardwood:press 4 6.0911 1.5228 4.1657 0.0146262 *

time:press 2 2.1950 1.0975 3.0023 0.0749564 .

hardwood:time:press 4 1.9733 0.4933 1.3495 0.2903053

Residuals 18 6.5800 0.3656

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6046 on 18 degrees of freedom

Multiple R-squared: 0.9008, Adjusted R-squared: 0.807

F-statistic: 9.611 on 17 and 18 DF, p-value: 7.797e-06

From the results above we may conclude that the three main e�ects are highly signi�cant,

and the hardwood-time, hardwood-press and time-press interactions with P-values 0.08,
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0.01, 0.07 indicate some interactions between these factors. R2
adj indicates that about the

80% of the variability in the strength of the paper is explained by the model.
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Figure 5.6: Strength of paper, Interaction plots and plot of main e�ects

Figure 5.6 shows that there is only slight interaction between cooking time and hardwood

concentration. At 4 hours cooking time and 2% hardwood concentration we will have the

largest strength in the paper. The two other plots show that by choosing the high level

of pressure (650), (C+) and the lowest hardwood percentage (2%) (A−) and (4 hours)

cooking time (B+) we will have the largest strength in the paper.

We take a model with the three main e�ects and an interaction factor hardwood-

pressure as a new model and we investigate the behavior of the residuals. The four

diagnostic plots for the new model are shown in �gure 5.7 on page 80.
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Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

hardwood 2 7.7639 3.8819 7.8668 0.00213 **

time 1 20.2500 20.2500 41.0366 8.711e-07 ***

press 2 19.3739 9.6869 19.6306 6.370e-06 ***

hardwood:press 4 6.0911 1.5228 3.0859 0.03322 *

Residuals 26 12.8300 0.4935

---

Residual standard error: 0.7025 on 26 degrees of freedom

Multiple R-squared: 0.8065, Adjusted R-squared: 0.7395

F-statistic: 12.04 on 9 and 26 DF, p-value: 3.153e-07
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As you can see the Q-Q plots doesn't show any major concerns in the normality of the

residuals.

As we see from the above plots in �gure 5.7, the normal probability plot and the

other plots do not indicate any major concerns. The last thing we can do is the TukeyHSD

test, you can see the 95% TukeyHSD con�dence intervals in �gure 5.8 on page 81.

Figure 5.8 indicates that the hardwood concentration at level 2 is signi�cantly dif-

ferent from the other two levels and the pressure 650 is signi�cantly di�erent from the

others.
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Hardwood R-Code

y<-c(196.6,196.0,198.5,197.2,197.5,196.6,197.7,196.0,196.0,196.9,195.6,

196.2,199.8,199.4,198.4,197.6,197.4,198.1,198.4,198.6,197.5,198.1,197.6,

198.4,199.6,200.4,198.7,198.0,197.0,197.8,200.6,200.9,199.6,199.0,198.5,

199.8); hardwood<-as.factor(rep(c(2,4,8),each=2,times=6))

press<-as.factor(rep(c(400,500,650),each=6,times=2))

time<-as.factor(rep(c(3.0,4.0),each=18))

data<-data.frame(y,hardwood,time,press); attach(data); data

windows(); par(mfrow=c(2,2))

interaction.plot(hardwood,time,y,xlab="Hardwood concentration",ylab="Mean

of strength", main="interaction plot",ylim=c(195,202),fixed=T,legend=F)

legend(1.65,202,c("1","2"),title="Time",lty=c(2,1))

interaction.plot(hardwood,press,y,xlab="Hardwood concentration",ylab="Mean

of strength", main="interaction plot",ylim=c(195,202),fixed=T,legend=F)

legend(1.65,202,c("1","2"),title="Pressure",lty=c(2,1))

interaction.plot(time,press,y,xlab="Time",ylab="Mean of strength",

main="interaction plot",ylim=c(195,202),fixed=T,legend=F)

legend(1.65,202,c("1","2"),title="Pressure",lty=c(2,1))

plot.design(data); g<-lm(y~hardwood+time+press+hardwood*time+hardwood*press

+time*press+hardwood*time*press); anova(g); summary(g)

h<-lm(y~hardwood+time+press+hardwood*press); anova(h)

windows(); par(mfrow=c(2,2))

plot(aov(y~hardwood+time+press+hardwood*time+hardwood*press))

windows(); par(mfrow=c(2,2))

model<-aov(y~hardwood+time+press+hardwood*press)

TukeyHSD(model); plot(TukeyHSD(model))
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5.5 Metal Part Surface

Example 5.3. (D. C. Montgomery, 1997, p. 282, Exp.6-2) An engineer suspects that the

surface �nish of a metal part y is in�uenced by feed rate (A) and the depth of cut (B). She

selects three feed rates and four depths of cut. She then conducts a factorial experiment

and obtains the following data:

Depth of Cut (in)

Feed Rate (in/min) 0.15 0.18 0.20 0.25

0.20 74 79 82 99

64 68 88 104

60 73 92 96

0.25 92 98 99 104

86 104 108 110

88 88 95 99

0.30 98 99 110 111

99 104 108 114

102 95 99 107

(a) Analyze the data and draw conclusions. Use α = 0.05.

(b) Prepare appropriate residual plots and comment on the model's adequacy.

(c) Obtain point estimates of the mean surface �nish at each feed rate.

(d) Find the P-values for the tests in part (a).

In this problem we have a two factor-factorial design with n = 36 runs in a random order.

The surface �nish y of a metal part is a�ected by feed rate (A) and the depth of cut (B).

The Anova table is shown below:

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

feedrate 2 3160.50 1580.25 55.0184 1.086e-09 ***

depth 3 2125.11 708.37 24.6628 1.652e-07 ***

feedrate:depth 6 557.06 92.84 3.2324 0.01797 *

Residuals 24 689.33 28.72

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.359 on 24 degrees of freedom

Multiple R-squared: 0.8945, Adjusted R-squared: 0.8461

F-statistic: 18.49 on 11 and 24 DF, p-value: 4.111e-09
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Figure 5.9: Metal Surface, Boxplots Series

The plots in �gure 5.9 show that by choosing the feed rate of 0.3 (A3) and and the depth

of 0.25 (B4) we will have the best surface in a metal part.

From the above results (ANOVA table) we can conclude that the main e�ects are highly

signi�cant and the feed rate-depth interaction with P-value of 0.01797 is also signi�cant.

R2
adj indicates that the 85% of the variability in the surface of a metal part is explained

by the main e�ects and their interactions.

Figure 5.10 on page 85 shows the interaction e�ect and the plot of the design. As

we see from �gure 5.11 on page 86 the normal probability plot and the other plots do not

indicate any major concerns. Figure 5.12 on page 87 shows the 95% TukeyHSD con�dence

intervals. It indicates that the levels of the feed rate are signi�cantly di�erent from each

other while the con�dence interval doesn't contain zero. This conclusion can be made also

for the depth of cut levels just the two levels (0.18 and 0.15) don't di�er from each other.
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Metal Surface R-code

y<- c(74, 64,60,92,86,88,99,98,102,79,68,73,98,104,88,104,99,95,82,88,92,99,

108,95,108,110,99,99,104,96,104,110,99,114,111,107)

feedrate<-as.factor(rep(c(0.20,0.25,0.30),each=3, times=4))

depth<- as.factor(rep(c(0.15,0.18,0.20,0.25),each=9))

data<-data.frame(y,feedrate,depth); attach(data); data

windows(); par(mfrow=c(1,2))

interaction.plot(feedrate,depth,y,xlab="Rate",ylab="Mean of Surface",

main="interaction plot",ylim=c(60,115),fixed=T,legend=F)

legend(1.65,70,c("1","2"),title="Dept of cut",lty=c(2,1))

plot.design(data)

g<-lm(y~feedrate+depth+feedrate:depth); anova(g); summary(g)

h<-lm(y~feedrate+depth); anova(h)

windows(); par(mfrow=c(2,2)); plot(aov(y~feedrate+depth))

windows(); par(mfrow=c(2,2))

plot(aov(y~feedrate+depth+feedrate*depth))

model<-aov(y~feedrate+depth+feedrate*depth)

TukeyHSD(model); windows(); par(mfrow=c(2,2)); plot(TukeyHSD(model))



Chapter 6

Two-Level Factorial Design

Two-Level Factorial designs are widely used in experiments involving several factors

where it is necessary to study the joint e�ect of the factors on a response variable.

In the previous chapter we presented general methods for the analysis of factorial

designs.

The most important special case of factorial design is the case of k factors,

each at only two levels (2k design). These levels can be quantitative or qualitative.

Throughout this chapter we assume that: (1) the factors are �xed, (2) the designs

are completely randomized, and (3) the usual normality assumptions are satis�ed.

The 2k design provides the smallest number of runs on which k factors can

be studied in a complete factorial design. However, as the number of factors grows,

the number of required observations grows very quickly (exponentially). Our goal

is to examine via experiment a large number of factors in a small number of runs.

To accomplish this goal we shall do the following:

1. Reduce the number of levels of each factor to 2. If we have k factors to inves-

tigate and each is at 2 levels, the result is a design with 2k cells; and this is

called a 2k factorial design.

2. Occasionally we shall reduce the number of observations per cell to 1.

6.1 The Simplest Case: 22 Factorial Designs

We'll start with a basic 22 design, where it is easy to see what is going on. These

designs are very widely used in industrial experiments. Assume that we have two

factors (A and B) each with two levels low "�" and high "+", with number of

89
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replicates equal to t. In the case of a 22 factorial design we have four treatment

combinations.

A B Yates Notation

� � (1)

+ � a

� + b

+ + ab

The Yates notation used for denoting the factor combinations is as follows:

• (1) = sum of observations at low levels of both factors,

• a = sum of observations with A high and B low ,

• b = sum of observations with A low and B high ,

• ab = sum of observations at high levels of both factors.

Suppose that our model is as follows:

yijk = µ+ Ai +Bj + (AB)ij + εijk, ε
iid∼ N(0, σ2); i, j = 1, 2; k = 1, ..., t.

What is the e�ect of A? Since A is the e�ect of changing factor A from high to low,

we expect

A =
a+ ab

2t
− (1) + b

2t
=
a+ ab− (1)− b

2t
.

Similarly,

B =
a+ ab− (1)− a

2t

and the interaction e�ects is denoted by

AB =
ab− b

2t
− a− (1)

2t
=
ab− b− a+ (1)

2t
.

Contrasts. In the estimates of the e�ects we have used only the terms ab, a, b and

(1), each is the sum of t independent terms.
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A =
CA
2t
, B =

CB
2t
, AB =

CAB
2t

Where CA, CB, CAB are orthogonal contrasts in ab, a, b and (1). We can display the

contrast coe�cients table as follows:

E�ects (1) a b ab

A � + � +

B � � + +

AB + � � +

The estimation of the sum of squares for factors A, B and AB are :

SSA =
[ab+ a− b− (1)]2

4t
=
C2
A

4t

SSB =
[ab+ b− a− (1)]2

4t
=
C2
B

4t

SSAB =
[ab+ (1)− a− b]2

4t
=
C2
AB

4t

The total sum of squares is found in the usual way, that is,

SST =
2∑
i=1

2∑
j=1

t∑
k=1

y2
ijk −

y2
...

4t
=

2∑
i=1

2∑
j=1

t∑
k=1

(yijk − y...)2.

The error sum of squares, with 4(t− 1) degrees of freedom, is usually computed by

subtraction as

SSE = SST − SSA − SSB − SSAB.

All of this can be generalized to the 2k factorial design, in which k factors are

investigated, each at two levels. To easily write down the estimates of the e�ects,

and the contrasts, we start with a table of ± signs. We will construct the 23 ((1), a,

b, ab, c,ac, bc, abc) table as follows.
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E�ects (1) a b ab c ac bc abc

I + + + + + + + +

A � + � + � + � +

B � � + + � � + +

AB + � � + + � � +

C � � � � + + + +

AC + � + � � + - +

BC + + � � � � + +

ABC � + + � + � � +

In the next section we will study the general form of the factorial design.

6.2 The General 2K Design

The method of analysis that we have presented may be generalized to the case of a

2K factorial design, that is a design with K factors each at two levels. The statistical

model for a 2K design would include K main e�ects, K(K−1)
2

two factor interactions,

. . . , and oneK-factor interaction. That is, for a 2K design the complete model would

contain 2K − 1 e�ects. The notation introduced earlier for treatment combinations

is also used here. The general approach to the statistical analysis of the 2K design

is summarized in the table below.
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Table 6.1: Table of 2K Design
Sources Sum of Degrees of

of Variation Squares Freedom

Kmain e�ects

A SSA 1

B SSB 1

. . .

. . .

. . .

K SSK 1

two factor interaction

AB SSAB 1

AC SSAC 1

. . .

. . .

. . .

JK SSJK 1

three factor interaction

ABC SSABC 1

ABD SSABD 1

. . .

. . .

. . .

IJK SSIJK 1

. . .

. . .

. . .

K factor interaction

ABC....K SSABC...K 1

Error SSE 2K(t− 1)

Total SST t2K − 1
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6.3 Router

Example 6.1. (From D. C. Montgomery, 1997, P. 342, Problem 7-5) A router is used

to cut location notches on printed circuit board. The vibration level y at the surface of

the board as it is considered to be a major source of dimensional variation in the notches.

Two factors are thought to in�uence vibration: bit size (A) and cutting speed (B). Two bit

sizes ( 1
16 and 1

8 inch) and two speeds (40 and 90 rpm) are selected, and four boards are

cut at each set of conditions shown below. The response variable is vibration measured as

the resultant vector of three accelerometers (x, y, and z) on each test circuit board.

A B Treatment combination 1 2 3 4

� � (1) 18.2 18.9 12.9 14.4

+ � a 27.2 24.0 22.4 22.5

� + b 15.9 14.5 15.1 14.2

+ + ab 41.0 43.9 36.3 39.9

(a) Analyze the data from this experiment.

(b) Construct a Q-Q-plot of the residuals, and plot the residuals versus predicted vibra-

tion level. Interpret these plots.

(c) Draw the AB interaction plot. Interpret this plot. What level of bit size (A) and

cutting speed (B) would you recommend for routine operation?

In this problem we have a 22 factorial design with four replicates (n = 16 runs). The two

factors that may in�uence the response variable (vibration) are bit size and the cutting

speed.

We may �rst conduct the ANOVA table to see which factor is signi�cant and have

an e�ect on the vibration of circuit board. Below you can see that both main e�ects and

the interaction e�ect are highly signi�cant.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 1107.23 1107.23 185.252 1.175e-08 ***

B 1 227.26 227.26 38.023 4.826e-05 ***

A:B 1 303.63 303.63 50.801 1.201e-05 ***

Residuals 12 71.72 5.98

---

Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.445 on 12 degrees of freedom

Multiple R-squared: 0.9581, Adjusted R-squared: 0.9476

F-statistic: 91.36 on 3 and 12 DF, p-value: 1.569e-08
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The F-statistic of 91.36 implies that the model is signi�cant. The R2
adj indicates that the

94.8% of the vibration at the surface of the circuit board is explained by main e�ects and

their interaction.
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Figure 6.1: Router, Plot of main e�ects

The e�ects can be computed as follows:

Tables of effects

A

A

1 2

-8.319 8.319

effect of A: 8.319-(-8.319)=16.638

B

B

1 2

-3.769 3.769\

effect of B: 3.769-(-3.769)=7.538

A:B

B\

A 1 2

1 4.356 -4.356

2 -4.356 4.356

effect of AB: -4.356-4.356=-8.712
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As we can see from the plot of main e�ects in �gure 6.1 on page 95 the best case is when

both factors A and B are at their low level. In this case we have the smallest vibration

mean. Note that e�ects of AB in R is given with the reversed sign.

To estimate the regression model we �rst analyze the linear model with interaction:

Call:

lm(formula = vib ~ speedA * sizeB, data = vibration.dat)

Residuals:

Min 1Q Median 3Q Max

-3.975 -1.550 -0.200 1.256 3.625

Coefficients:

*********** Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.8312 0.6112 38.991 5.22e-14 ***

speedA 8.3187 0.6112 13.611 1.17e-08 ***

sizeB 3.7687 0.6112 6.166 4.83e-05 ***

speedA:sizeB 4.3562 0.6112 7.127 1.20e-05 ***

---

Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.445 on 12 degrees of freedom

Multiple R-squared: 0.9581, Adjusted R-squared: 0.9476

F-statistic: 91.36 on 3 and 12 DF, p-value: 1.569e-08

So the estimated regression surface is

ŷ = 23.8312 + 16.638
2 x1 + 7.538

2 x2 + 8.712
2 x1x2.

The regression model can be used to generate the response surface plots. Since the

model contains interaction, the �tted response surface is a "twisted" plane and as well for

the contour, the contour lines of less vibration are curved. From examining the contour

plot, we see that the vibration decreases as both factors are in low level. You can see the

response surface plot and the contour plot in �gure 6.2 on page 97 and in �gure 6.3 on

page 98.

The interaction plot is shown in �gure 6.3 on page 98. It indicates that at the high level

of A and high level of B (1
8 inch of bit size and with the speed of 90 rpm) we have more

vibration at the surface of the board. To reduce the vibration we have to use the smaller

bit size.

Now we are interested in the behavior of the residuals. We are interested to �nd out if the

residuals are normally distributed. Figure 6.4 on page 99 shows the four diagnostic plots.

The QQ-plot shows that the residuals are normally distributed.

The test of normality are as follows:
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Figure 6.2: Router, Response Surface Plot

1) Shapiro-Wilk normality test

data: residuals(g)

W = 0.9714, p-value = 0.861

2) One-sample Kolmogorov-Smirnov test

data: residuals(g)

D = 0.0934, p-value = 0.9966

alternative hypothesis: two-sided

From the results above we can conclude that the residuals can be taken as normal

distributed.

The 95% con�dence intervals for multiple comparisons will be drawn and the re-
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sult is shown in �gure 6.5 on page 100. The con�dence interval for the di�erence of (-1,-1)

to (-1,1) contains zero, so the two combinations (-1,1), (-1,-1) aren't signi�cant from each

other.
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Router R-Code

vibration.dat<-data.frame(vib=c(18.2,18.9,12.9,14.4,27.2,24.0

,22.4,22.5,15.9,14.5,15.1,14.2,41.0,43.9,36.3,39.9),

A=gl(2,4,16),B=gl(2,8,16)); vibration.dat

#Anova Table:

vib.mod<-aov(vib~A*B, data=vibration.dat)

summary(vib.mod)

#Effects:

model.tables(vib.mod)

#QQ-plot and residual plot:

qqnorm(residuals(vib.mod))

qqline(residuals(vib.mod))

plot(fitted(vib.mod),residuals(vib.mod),main="scatterplot")

#four diagnostic plots:

windows(); par(mfrow=c(2,2))

plot(aov(vib~A*B,data=vibration.dat))

#plot of design

plot.design(vib~A*B,data=vibration.dat)

#Interactionplot:

interaction.plot(vibration.datA,vibration.datB,vibration.datvib,

xlab="Bit size",ylab="Mean of vibration",main="interaction plot",

ylim=c(15,40),fixed=T,legend=F)

legend(1.79,32.25,c("1","2"),title="Cutting speed",lty=c(2,1))

#linear model:

speedA<-rep(c(-1,1),each=4,times=2)

sizeB<-rep(c(-1,1),each=8,times=1)

vib.lm<-lm(vib~speedA*sizeB,data=vibration.dat)

summary(vib.lm)

#Surfaceplot and contour plot:

x<-seq(-1,1,0.1); y<-seq(-1,1,0.1)

model<-function(a,b){23.832+(8.3187)*a+(3.7687)*b+(4.3563)*a*b}

z<-outer(x,y,model);z

persp(x,y,z,theta=30,phi=30,ticktype="detailed")

contour(x,y,z,nlevels=10)

#TukeyHSD CI:

model1<-aov(vib~A*B, data=vibration.dat)

TukeyHSD(model1); windows(); par(mfrow=c(2,2))

plot(TukeyHSD(model1))
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6.4 Nickel-Titanium allloy

Example 6.2. (From D. C. Montgomery, 1997, P. 345, Problem 7-15) A nickel−titanium
alloy is used to make components for jet turbine aircraft engines. Cracking is a potentially

serious problem in the �nal part, as it can lead to nonrecoverable failure. A test is run at

the parts procedure to determine the e�ect of four factors on cracks. The four factors are

pouring temperature (A), titanium content (B), heat treatment method (C), and amount

of grain re�ner used (D). Two replicates of a 24 design are run, and the length of crack (in

mm) y induced in a sample coupon subjected to a standard test is measured. The data

are shown below.

A B C D Treatment combination 1 2

− − − − (1) 1.71 2.01

+ − − − a 1.42 1.58

− + − − b 1.35 1.63

+ + − − ab 1.67 1.65

− − + − c 1.23 1.48

+ − + − ac 1.25 1.36

− + + − bc 1.46 1.52

+ + + − abc 1.29 1.37

− − − + d 2.04 2.29

+ − − + ad 1.86 1.95

− + − + bd 1.79 2.05

+ + − + abd 1.42 1.69

− − + + cd 1.81 2.02

+ − + + acd 1.34 1.39

− + + + bcd 1.46 1.63

+ + + + abcd 0.85 1.00

(a) Estimate the factor e�ects. Which four e�ects appear to be large?

(b) Conduct an analysis of variance. Do any of the factors a�ect cracking? Use α = 0.05.

(c) Write down a regression model that can be used to predict crack length as a function

of the signi�cant main e�ects and interactions you have identi�ed in part (b).

(d) Analyze the residuals from this experiment.

(e) Is there an indication that any of the factors a�ect the variability in cracking?

In this problem we have a 24 factorial design with two replicates (n = 32 runs). We have

four factors and we are interested to �nd out if these factors have an e�ect on cracking, so

we will do the analysis of variance, where the ANOVA table is shown as follows:
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Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

A 1 0.60225 0.60225 32.7701 3.133e-05 ***

B 1 0.26463 0.26463 14.3991 0.001591 **

C 1 0.99758 0.99758 54.2807 1.587e-06 ***

D 1 0.21288 0.21288 11.5832 0.003634 **

A:B 1 0.00750 0.00750 0.4083 0.531893

A:C 1 0.03990 0.03990 2.1712 0.160015

B:C 1 0.00300 0.00300 0.1634 0.691390

A:D 1 0.24325 0.24325 13.2360 0.002214 **

B:D 1 0.22950 0.22950 12.4878 0.002759 **

C:D 1 0.07315 0.07315 3.9804 0.063351 .

A:B:C 1 0.04575 0.04575 2.4895 0.134169

A:B:D 1 0.04425 0.04425 2.4079 0.140276

A:C:D 1 0.03445 0.03445 1.8747 0.189854

B:C:D 1 0.04278 0.04278 2.3277 0.146615

A:B:C:D 1 0.05695 0.05695 3.0990 0.097441 .

Residuals 16 0.29405 0.01838

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2868 on 16 degrees of freedom

Multiple R-squared: 0.5878, Adjusted R-squared: 0.2013

F-statistic: 1.521 on 15 and 16 DF, p-value: 0.2072

From the result above we may conclude that the four main factors A, B, C and D and

the two-factor interactions AD and BD are highly signi�cant at the signi�cance level of

α < 0.05. The two-factor interaction CD is slightly signi�cant at the signi�cant level of

α = 0.063.

The e�ects of the model are shown below:

A=-0.274374 , B=-0.181874, C=0.353124, D=0.166876

AB=0.030624, AC=-0.070626, BC=-0.009687, AD=-0.174376

BD=-0.169376, CD=-0.095626, ABC=-0.075624, ABD=0.074374

ACD=-0.0656246, BCD=-0.073124, ABCD=0.084374

Figure 6.6 on page 104 is the normal plot of e�ects, it shows the same result as the ANOVA

table.

The �tted regression line needs to be estimated for drawing the surface plot and the

contour plot. The estimated parameters are as follows. These estimates are for a new

model containing four main e�ects and two interactions:
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Figure 6.6: Nickel-Titanium, Normal Plot

Call:

lm(formula = crack ~ nA + nB + nC + nD + nA * nD + nB * nD, data = NickTit.dat)

Residuals:

Min 1Q Median 3Q Max

-0.369062 -0.086250 0.002812 0.097344 0.278438

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.58031 0.02832 55.794 < 2e-16 ***

nA -0.13719 0.02832 -4.843 5.59e-05 ***

nB -0.09094 0.02832 -3.211 0.00362 **

nC -0.17656 0.02832 -6.234 1.61e-06 ***

nD 0.08156 0.02832 2.880 0.00805 **

nA:nD -0.08719 0.02832 -3.078 0.00500 **

nB:nD -0.08469 0.02832 -2.990 0.00619 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1602 on 25 degrees of freedom

Multiple R-squared: 0.7989, Adjusted R-squared: 0.7507

F-statistic: 16.56 on 6 and 25 DF, p-value: 1.27e-07

So the regression line will be:

ŷ = 1.5803− 0.13719x1 − 0.0909x2 − 0.017656x3 + 0.081564 − 0.08719x1x4 − 0.08469x2x4
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Let us consider that both factors B and C are at the high level. The correspond-

ing surface plot with x2 = 1 and x3 = 1 and the contour plot will be shown in �gure 6.7

and �gure 6.8 on page 106.
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Figure 6.7: Nickel-Titanium, Response Surface Plot

Plot of main e�ects is drawn in �gure 6.9 on page 107, from this plot we may conclude

that the best case is when we set factor A, B and C at their high level and factor D at it's

low level.

As you can see from �gure 6.9 on page 107, when factor A has the highest level and the

factors B, C and D have the highest level then we have the smallest cracks. When B is

high and C is high we have a smallest crack. In the case of B high and D low we have a

smallest crack and when C high and D low we have the smallest cracks.
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Figure 6.8: Nickel-Titanium, Contour Plot

From these �gures we can see that in the following univariate cases we have a

smallest crack: A+, B+, C+, D+ and A+, B+, C+, D− and by interactions the best cases

are: A+D+, B+D+, C+D−.

Now we are interested in the behavior of the residuals, we are interested to �nd out if the

residuals are normally distributed. The normality test result is shown below

Shapiro-Wilk normality test

data: residuals(mod1)

W = 0.9822, p-value = 0.8604

From the above results and the normality test we can conclude that the residuals are

normal distributed.

From �gure 6.10 on page 108 we can conclude that the residuals are normal distributed.

The 95% Con�dence Interval for multiple Comparisons will be drawn in �gure 6.11

on page 109.
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Figure 6.10: Nickel-Titanium, The four diagnostic plots
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Nickel-Titanium R-Code

NickTit.dat<-data.frame(crack=c(1.71,1.42,1.35,1.67,1.23,1.25,1.46,

1.29,2.04,1.86,1.79,1.42,1.81,1.34,1.46,0.85,2.01,1.58,1.63,1.65,

1.48,1.36,1.52,1.37,2.29,1.95,2.05,1.69,2.02,1.39,1.63,1.00),

A=factor(rep(c(-1,1),each=1,times=8)),B=factor(rep(c(-1,1),each=2,

times=4)); C=factor(rep(c(-1,1),each=4,times=2));

D=factor(rep(c(-1,1),each=8,times=1))); NickTit.dat

#Anova Table:

crack.mod<-aov(crack~A*B*C*D, data=NickTit.dat); summary(crack.mod)

#Effects and Linear Model:

model.tables(crack.mod); nA=rep(c(-1,1),each=1,times=16);

nB=rep(c(-1,1),each=2,times=8); nC=rep(c(-1,1),each=4,times=4);

nD=rep(c(-1,1),each=8,times=2)

crack.lm<-lm(crack~nA*nB*nC*nD, data=NickTit.dat)

summary(crack.lm)

#Q-Q plot of Effects:

eff<-summary(crack.lm)$coef[2:16]; eff

qq<-qqnorm(eff,main="Normal Plot of Effects",col="blue")

qqline(eff); identify(qq$x,qq$y,1:length(qq$x))

crack1.lm<-lm(crack~nA+nB+nC+nD+nA*nD+nB*nD, data=NickTit.dat)

summary(crack1.lm)

#Plot of Design and Interactionplots:

plot.design(crack~A+B+C+D+A:D+B:D+C:D, data=NickTit.dat)

windows(); par(mfrow=c(2,2))

interaction.plot(NickTit.datA, NickTit.datD, NickTit.datcrack,

xlab="Temperature", ylab="Cracks", main="Interaction plot:

Temperature vs.Amount of Grain",ylim=c(1.2,2), fixed=T, legend=F)

legend(1.50,2.00,c("-1","1"),title="Method",lty=c(2,1))

interaction.plot(NickTit.datB, NickTit.datD, NickTit.datcrack,

xlab="Titanium content", ylab="Cracks", main="Interaction plot:

Temperature vs.Amount of Grain",ylim=c(1.2,2), fixed=T, legend=F)

legend(1.50,2.00,c("-1","1"),title="Method",lty=c(2,1))

interaction.plot(NickTit.datC, NickTit.datD, NickTit.datcrack,

xlab="Heat treattment method", ylab="Cracks", main="Interaction plot:

Temperature vs.Amount of Grain",ylim=c(1.2,2), fixed=T, legend=F)

legend(1.50,2.00,c("-1","1"),title="Method",lty=c(2,1))

#Surface Plot and contour Plot:

x<-seq(-1,1,0.1);y<-seq(-1,1,0.1)

func<-function(a,b){1.31284-0.1371*a-0.00313*b-0.08719*a*b}

z<-outer(x,y,func);z ; persp(x,y,z,theta=30,phi=30,

ticktype="detailed"); contour(x,y,z,nlevels=10)

crack.mod1<-aov(crack~A+B+C+D+A:D+B:D,data=NickTit.dat)

summary(crack.mod1)

#The four diagnostic plots, Hemogenity of variance Test and 95% CI:

windows();par(mfrow=c(2,2)); plot(crack.mod1)

shapiro.test(residuals(crack.mod1))

windwos();par(mfrow=c(1,2)); plot(TukeyHSD(crack.mod1))
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6.5 Etch rate for silicon nitride

Example 6.3. (From D. C. Montgomery, 1997, P. 347, Problem 7-18) An article in Solid

State Technology ("Orthogonal Design for Process Optimization and its Application in

Plasma Etching," May 1987, pp. 127-132) describes the application of factorial designs in

developing a nitride etch process on a single wafer plasma etcher. The process uses C2F6 as

the reactant gas. Four factors are of interest: anode-cathode gap (A), pressure in a reactor

chamber (B), C2F6 gas �ow (C), and power applied to the cathode (D). The response

variable y of interest is the etch rate for silicon nitride. A single replicate of a 24 design is

run, and the data are shown below.

Run Number Actual Run Order A B C D Etch Rate Factor Levels

1 13 � � � � 550 A(cm) 0.80 1.20

2 8 + � � � 669 B(mTorr)4.50 550

3 12 � + � � 604 C(SCCM) 125 200

4 9 + + � � 650 D (W) 275 325

5 4 � � + � 633

6 15 + � + � 642

7 16 � + + � 601

8 3 + + + � 635

9 1 � � � + 1037

10 14 + � � + 749

11 5 � + � + 1052

12 10 + + � + 868

13 11 � � + + 1075

14 2 + � + + 860

15 7 � + + + 1063

16 6 + + + + 729

(a) Estimate the factor e�ects. Construct the Q-Q-plot of the factor e�ects. Which e�ects

appear large?

(b) Conduct an analysis of variance to con�rm your �ndings for part (a).

(c) What is the regression model relating etch rate to the signi�cant process variables?

(d) Analyze the residuals from this experiment. Comment on the model's adequacy.

(e) If not all the factors are important, project the 24 design into a 2k design with k ≤ 3
and conduct the analysis of variance.

(f) Draw a graph to interpret any signi�cant interactions.

(g) Plot the residuals versus the actual run order. What problems might be revealed by

this plot?
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In this problem we have a 24 factorial design with four factors and one replicate. We are

interested to �nd out if these four factors have an e�ect on the etch rate for silicon nitride.

First we will compute the e�ects and draw the normal plot to �nd out which e�ects appear

to be large. We �rst conduct the ANOVA Table.

Df Sum Sq Mean Sq

A 1 41311 41311

B 1 11 11

C 1 218 218

D 1 374850 374850

A:B 1 248 248

A:C 1 2475 2475

B:C 1 7700 7700

A:D 1 94403 94403

B:D 1 2 2

C:D 1 18 18

A:B:C 1 977 977

A:B:D 1 68 68

A:C:D 1 127 127

B:C:D 1 2576 2576

A:B:C:D 1 6440 6440

From the table above we can see that factors A and D and the two factor interaction AD

have large e�ects on the response variable.

From the �gure 6.12 on page 113 we can see that the signi�cant terms are A, D and the

interaction AD.

The estimated e�ects are as follows:

A=-101.625, B=-1.625, C=7.375, D=306.125

AB= -7.875, AC=-24.875,AD=-153.62,

BC=-43.875, BD=-0.625, CD=-2.125,

ABC=-15.625, BCD=-25.375, ABCD=-40.125

Now we eliminate the two factors B and C from our data, and we will conduct the ANOVA

table for a 22 design with 4 replicates:

Df Sum Sq Mean Sq F value Pr(>F)

A 1 41311 41311 23.767 0.0003816 ***

D 1 374850 374850 215.661 4.951e-09 ***

A:D 1 94403 94403 54.312 8.621e-06 ***

Residuals 12 20858 1738

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 6.12: Etch rate for silicon nitride, Normal plot

The main factors A and D and their interaction are highly signi�cant at the signi�cance

level of α < 0.0004.

The estimation of the regression parameters are:

Call:

lm(formula = nitride ~ nA * nD, data = plasma1.dat)

Residuals:

Min 1Q Median 3Q Max

-72.50 -15.44 2.50 18.69 66.50

Coefficients:

*********** Estimate Std. Error t value Pr(>|t|)

(Intercept) 776.06 10.42 74.458 < 2e-16 ***

nA -50.81 10.42 -4.875 0.000382 ***

nD 153.06 10.42 14.685 4.95e-09 ***

nA:nD -76.81 10.42 -7.370 8.62e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 41.69 on 12 degrees of freedom

Multiple R-squared: 0.9608, Adjusted R-squared: 0.9509

F-statistic: 97.91 on 3 and 12 DF, p-value: 1.054e-08

So the regression equation is as follows:
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ŷ = 776.06− 50.81x1 + 153.06x2 − 76.81x1x2

The surface plot and the contour plot are shown in �gures 6.13 and 6.14 on page 115.
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Figure 6.13: Etch rate for silicon nitride, Surface Plot

The plot of residuals against the actual run order is shown in �gure 6.14 on page 115. The

actual run order, represents the order of execution of each treatment combination, then a

plot of the residuals of these observations versus the actual run order will test for any time

dependency. With help of this plot we can reveal the problems of variation of observations

and �nding the outliers.

Notice that the contours are curved while there is an interaction in the model, we can

conclude from this plots that when the two factors A and D (i.e. the anode-cathode gap

and the power applied to the cathode) increases then the silicon nitride etch rate increases

as well.

From the plots of main e�ects and interaction plot �gure 6.15 on page 116 the

best case would be to set factor A at its high level and factor D at its high level for

observing a better response (A+D−).
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Figure 6.14: Etch rate for silicon nitride, Residuals against Actual Run Order

Figure 6.16 on page 117 shows the four diagnostic plots. From the residual plots

we conclude that there is no indication of problems with assumptions of model adequacy,

The plot of residuals shows high variability at the levels (A−D+).
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Figure 6.16: Etch rate for silicon nitride, Four diagnostic plots
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Etch rate for silicon nitride R-code

A<-rep(c(-1,1),times=8);B<-rep(c(-1,1),each=2,times=4)

C<-rep(c(-1,1),each=4,times=2);D<-rep(c(-1,1),each=8)

y<-c(550,669,604,650,633,642,601,635,1037,749,1052,868,1075,860,1063,729)

ARO<-c(13,8,12,9,4,15,16,3,1,14,5,10,11,2,7,6)

A<-as.factor(A);B<-as.factor(B); C<-as.factor(C);D<-as.factor(D)

data<-data.frame(A,B,C,D,y,ARO)

g<-lm(y~A+B+C+D+A*B*A*C+A*D+B*C+B*D+C*D+A*B*C+A*B*D+A*C*D+B*C*D+A*B*C*D)

anova(g);geffects

effects<-abs(geffects[-1]);qq<-qqnorm(effects,type="n")

text(qq$x, qq$y,labels=names(effects))

interaction.plot(A,D,y,xlab="Pressure",

ylab="Nitride",main="Interaction plot"ylim=c(550,1100),fixed=T,legend=F)

legend(1.50,2.00,c("-1","1"),title="Power",lty=c(2,1));

x<-seq(-1,1,0.1);y<-seq(-1,1,0.1)

func<-function(a,b){776.063-99.375*a+303.875*b-154.25*a*b}

z<-outer(x,y,func);z

windows();par(mfrow=c(1,2))

persp(x,y,z,theta=30,phi=30,ticktype="detailed")

contour(x,y,z,nlevels=10); h<-lm(y~A+D+A*D);anova(h)

model<-aov(y~A+D+A*D);model.tables(model)

windows();par(mfrow=c(3,2))

plot(aov(y~A+D+A*D);plot.design(y~A+D+A*D)

windows();par(mfrow=c(2,2)); plot(TukeyHSD(model))

kruskal.test(y~A+D+A*D); rsd<-residuals(h);plot(ARO,rsd)
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6.6 Chemical process

Example 6.4. (From D. C. Montgomery, 1997, P. 343, Problem 7-7) An experiment was

performed to improve the yield y of a chemical process. Four factors were selected, and

two replicates of a completely randomized experiment were run. The results are shown in

the following table:

Treatment Replicate Treatment Replicate

Combination 1 2 Combination 1 2

(1) 90 93 d 98 95

a 74 78 ad 72 76

b 81 85 bd 87 83

ab 83 80 abd 85 86

c 77 78 cd 99 90

ac 81 80 acd 79 75

bc 88 82 bcd 87 84

abc 73 70 abcd 80 80

(a) Estimate the factor e�ects.

(b) Prepare an analysis of variance table, and determine which factors are important in

explaining yield.

(c) Write down a regression model for predicting yield, assuming that all four factors

were varied over the range from −1 to +1 (in coded units).

(d) Plot the residuals versus the predicted yield on a normal probability scale. Does the

residual analysis appear satisfactory?

(e) Two Three-factor interactions, ABC and ABD, apparently have large e�ects. Draw

a cube plot in the factors A, B, and C with the average yields shown at each corner.

Repeat using the factors A, B, and D. Do these two plots aid in data interpreta-

tion? Where would you recommend that the process be run with respect to the four

variables?

In this problem we have a 24 factorial design with four factors and two replicates (n =
32 runs). We want to investigate the e�ects of these factors on the response variable y.

You can see from �gure 6.17 on page 120 that the main factors A, C and D and the

interactions e�ects AB, ABC, ABD and ABCD are signi�cant. Since factor B is included

in an interaction, it will also be added to the model in the next step. The e�ects of this

model are:

A=-9.06 AB=4.06 BD=-0.19 ACD=-0.94

B=-1.31 AC=0.69 CD=1.69 BCD=-0.94

C=-2.69 AD=-2.19 ABC=-5.19 ABCD=2.44

D=3.94 BC=-0.56 ABD=4.69
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Figure 6.17: Chemical process, The normal plot

The factors A and ABC e�ects are strongly negative, but the other three are positive. We

begin our investigation with the full model, the ANOVA table is shown below.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

A 1 657.03 657.03 85.8163 7.875e-08 ***

B 1 13.78 13.78 1.8000 0.1984451

C 1 57.78 57.78 7.5469 0.0143171 *

D 1 124.03 124.03 16.2000 0.0009794 ***

A:B 1 132.03 132.03 17.2449 0.0007491 ***

A:C 1 3.78 3.78 0.4939 0.4923019

A:D 1 38.28 38.28 5.0000 0.0399447 *

B:C 1 2.53 2.53 0.3306 0.5732962

B:D 1 0.28 0.28 0.0367 0.8504174

C:D 1 22.78 22.78 2.9755 0.1037933

A:B:C 1 215.28 215.28 28.1184 7.146e-05 ***

A:B:D 1 175.78 175.78 22.9592 0.0001997 ***

A:C:D 1 7.03 7.03 0.9184 0.3521621

B:C:D 1 7.03 7.03 0.9184 0.3521621

A:B:C:D 1 47.53 47.53 6.2082 0.0240766 *

Residuals 16 122.50 7.66

---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.767 on 16 degrees of freedom

Multiple R-squared: 0.9247, Adjusted R-squared: 0.8542

F-statistic: 13.1 on 15 and 16 DF, p-value: 2.919e-06

The main e�ects A, C and D and the interactions e�ects AB, AD, ABC and ABD are

signi�cant. The ABCD interaction with P-value of 0.024077 is also signi�cant, but we try

to omit it from the model. The model F-value of 13.1 indicates that the model is signi�cant.

The best model to �t our data is to have these factors in our model: (A, B, C, D,

AB, AC, BC, BD, ABC, ABD), so the �tted regression model will be:

ŷ = 82.78− 4.531x1 − 0.656x2 − 1.344x3 + 1.969x4 + 2.031x1x2 + 0.344x1x3 − 1.094x1x4

−0.281x2x3 − 0.009375x2x4 − 2.594x1x2x3 + 2.344x1x2x4

1.22x1x2x3x4

While the above model contains factor combinations which are not signi�cant. Consider a

new model with the factor combination (A, C, D, AB, AD, ABC and ABD).

Analysis of Variance Table

Response: y

********* Df Sum Sq Mean Sq F value Pr(>F)

A 1 657.03 657.03 63.5196 1.235e-07 ***

B 1 13.78 13.78 1.8000 0.1984451

C 1 57.78 57.78 5.5861 0.028340 *

D 1 124.03 124.03 11.9909 0.002458 **

A:B 2 145.81 72.91 7.0483 0.004821 **

A:D 1 38.28 38.28 3.7009 0.068733 .

A:C:B 3 221.59 73.86 7.1410 0.001907 **

A:D:B 2 176.06 88.03 8.5106 0.002117 **

Residuals 20 206.87 10.34

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this model all factors are signi�cant so the �tted regression model could be:

ŷ = 82.78− 4.531x1 − 1.344x3 + 1.969x4 + 2.031x1x2 − 1.094x1x4

−2.594x1x2x3 + 2.344x1x2x4 + 1.22x1x2x3x4

Consider both factors B and C are at their high level, the response surface plot and the

contour plots are shown in �gure 6.18 on page 122 and 6.19 on page 123. It displays the
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Figure 6.18: Chemical process, Response surface plot

curvature of the response in the design region, possibly indicating where robust operating

conditions can be found.

The residual plots ares shown in �gure 6.20 on page 124. The Q-Q-plot shows that the

residuals are normally distributed. The two normality tests indicate that the residuals are

normal distributed.

1) Shapiro-Wilk normality test

data: residuals(h)

W = 0.9496, p-value = 0.1406

2) One-sample Kolmogorov-Smirnov test

data: residuals(h)

D = 0.1568, p-value = 0.4112

alternative hypothesis: two-sided

The two-factor interaction plots are shown in �gure 6.21 on page 125 and the three-factor

interaction plots are shown in �gure 6.22 on page 126.

The interaction plot indicates that there is just one two-factor interaction e�ect which is

AB, the others are approximately parallel lines. By the three-factor interactions as we see
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Figure 6.19: Chemical process, Contour plot

from �gure 6.22 that one time we have parallel lines and the other one are crossed lines.

In these �gures the best response which is maximized are: A and B the low level, A and C

at the low level, A at low level and D at high level, B and C at their low levels, B at low

level and D at high level, when A, B and C are at low levels and A and B at low levels

and D at high level. The response is optimized for A−B−C−D+.

Figures 6.23 on page 127 shows the cube plots for three-interaction factors ABC and ABD.

The recommended setting for maximizing yield is A−B−C−D+. This information comes

from studying the two cube plots and determining which side of the cube for each factor

has the higher average response. The selection is con�rmed by examining the regression

equation and seeing that it agrees with the results listed above (factors A, B, and C at the

low level and factor D at the high level).
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Figure 6.20: Chemical process, The four diagnostic plots
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Figure 6.21: Chemical process, 2-factor interaction plot
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Chemical process R-code

A<-rep(c(-1,1),times=8); B<-rep(c(-1,1),each=2,times=4)

C<-rep(c(-1,1),each=4,times=2); D<-rep(c(-1,1),each=8)

e<-c(90,74,81,83,77,81,88,73,98,72,87,85,99,79,87,80)

f<-c(93,78,85,80,78,80,82,70,95,76,83,86,90,75,84,80)

data<-data.frame(A,B,C,D,e,f); data

A<-as.factor(rep(A,2)); B<-as.factor(rep(B,2))

C<-as.factor(rep(C,2)); D<-as.factor(rep(D,2))

y<-c(e,f); data<-data.frame(A,B,C,D,y)

g<-lm(y~A+B+C+D+A*B+A*C+A*D+B*C+B*D+A*B*C+A*B*D+B*C*D+A*B*C*D); anova(g)

geffects; effects<-abs(geffects[-1]); qq<-qqnorm(effects,type="n")

text(qq$x,qq$y,labels=names(effects))

model<-aov(y~A+B+C+D+A*B+A*C+A*D+B*C+B*D+A*B*C+A*B*D+B*C*D+A*B*C*D)

model.tables(model); h<-lm(y~A+B+C+D+A:B+A:D+A:B:C+A:B:D); anova(h)

x<-seq(-1,1,0.1); y<-seq(-1,1,0.1)

func<-function(a,b){81.436-5.094*a+1.969*b+2.47*a*b}

z<-outer(x,y,func);z

persp(x,y,z,theta=30,phi=30,ticktype="detailed")

contour(x,y,z,nlevels=10); windows(); par(mfrow=c(2,2))

plot(aov(y~A+C+D+A:B+A:D+A:B:C+A:B:D)); windows(); par(mfrow=c(3,2))

interaction.plot(A,B,y,xlab="A",ylab="Obs",

main="interaction plot",ylim=c(70,95),fixed=T,legend=F)

legend(0.90,83,c("1","2"),title="B",lty=c(2,1))

interaction.plot(A,C,y,xlab="A",ylab="Obs",

main="interaction plot",ylim=c(70,95),fixed=T,legend=F)

legend(0.90,83,c("1","2"),title="C",lty=c(2,1))

interaction.plot(A,D,y,xlab="A",ylab="Obs",

main="interaction plot",ylim=c(70,95),fixed=T,legend=F)

legend(0.90,83,c("1","2"),title="D",lty=c(2,1))

interaction.plot(B,C,y,xlab="B",ylab="Obs",

main="interaction plot",ylim=c(70,95),fixed=T,legend=F)

legend(0.90,83,c("1","2"),title="C",lty=c(2,1))

interaction.plot(B,D,y,xlab="B",ylab="Obs",

main="interaction plot",ylim=c(70,95),fixed=T,legend=F)

legend(0.90,83,c("1","2"),title="D",lty=c(2,1))

windows(); par(mfrow=c(1,2))

interaction.plot(C,A:B,y,xlab="C",ylab="Obs",

main="interaction plot",ylim=c(70,100),fixed=T,legend=F)

legend(1.40,99,c("-1:-1","1:1","-1:1","1:-1"),title="A:B",lty=c(2,1))

interaction.plot(D,A:B,y,xlab="D",ylab="Obs",

main="interaction plot",ylim=c(70,100),fixed=T,legend=F)

legend(1.0,99,c("-1:-1","1:1","-1:1","1:-1"),title="A:B",lty=c(2,1))

cubePlot(g,"A","B","C"); cubePlot(g,"A","B","D")



Chapter 7

Fractional Factorial Design

Motivation for a fractional factorial design is obvious; as the number of factors

becomes large to be interesting, the size of designs grows very quickly. For example,

consider a 25 factorial. Even without replicates, there are 25 = 32 observations

required to estimate the e�ects: 5 main e�ects, 10 two factor interactions, 10 three

factor interactions, 5 four factor interactions and 1 �ve factor interaction.

If three or more factor interactions are not of interest then only 15 e�ects

are left so that (including 1 d.f. for µ) perhaps only one half as many observations

are needed.

Question- Why do fractional factorial designs work?

• The sparsity of e�ects principle

- There may be lots of factors, but few are important.

- System is dominated by main e�ects, low-order interactions.

• The projection property

- Every fractional factorial contains full factorials in fewer factors.

• Sequential experimentation

- To resolve di�culties (or ambiguities) on interpretation.

7.1 The One-Half Fraction of the 2k Design

A 2k−1 design or "one-half fraction of the 2k design", is one in which only half of

the 2k treatment combinations are observed. Let us have K binary factors A, B, C,

..., K with (−1/+ 1) high/low; and we have 2k combinations. Note that because the

design has 2k

2
runs, it's referred to as a 2k−1.

129
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Consider a really simple case, the 23−1; which k = 3. The table of plus and minus

signs for the 23 is shown as below:

*******************************************************

Factorial Effect

Treatment ************************************

Combination I A B C AB AC BC ABC

*******************************************************

a + + - - - - + +

b + - + - - + - +

c + - - + + - - +

abc + + + + + + + +

*************************************

ab + + + - + - - -

ac + + - + - + - -

bc + - + + - - + -

(1) + - - - + + + -

*****************************************************

In this example, ABC is called the generator of this fraction (only + in ABC column).

The identity column I is always plus, so we call I = ABC the de�ning relation of our

design. To estimate the main e�ects of A, B and C we use the linear combinations

of observations:

lA = 1
2
(a− b− c+ abc), lB = 1

2
(−a+ b− c+ abc), lC = 1

2
(−a− b+ c+ abc)

The two-factor interactions estimations are as follows:

lBC = 1
2
(a− b− c+ abc), lAC = 1

2
(−a+ b− c+ abc), lAB = 1

2
(−a− b+ c+ abc)

lA = lBC , lB = lAC , lC = lAB

So we may note that the contrast for estimating the main e�ect A is exactly the

same as the contrast we used for estimating the BC interaction. These phenomena

are called aliasing and they occur in all fractional designs. Aliases can be found

directly from the columns in the table with + and − signs.
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Aliasing in the one-half fraction of the 23

Aliases can be found from the de�ning relation I = ABC by multiplication.

AI = A(ABC) = A2BC = BC, BI = B(ABC) = AB2C = AC

CI = C(ABC) = ABC2 = AB

Also for estimating the main e�ects A, B and C we are really estimating A+BC,

B+AC and C+AB so the aliases are:

lA −→ A+BC, lB −→ B + AC, lC −→ C + AB

The alternate fraction of the 23−1

Let I = −ABC as the de�ning relation implies slightly di�erent aliases.

When we estimate A, B and C using this design, we are really estimating A-BC,

B-AC and C-AB, i.e. ĺA −→ A−BC, ĺB −→ B − AC, ĺC −→ C − AB.

Both designs belong to the same family I = ±ABC. Suppose after running

the principal fraction, the alternate fraction was also run, the two groups of runs

can be combined to form a full factorial. The de-aliased estimates of all e�ects by

analyzing the eight runs as a full 23 design in two blocks. Hence

1

2

(
lA + ĺA

)
=

1

2
(A+BC + A−BC) −→ A

1

2

(
lA − ĺA

)
=

1

2
(A+BC − A+BC) −→ BC
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Design Resolution

1. Resolution III Designs:

I = ABC =⇒ 23−1
iii

No main e�ect is with another main e�ect aliased. Main e�ects and two-factor

interactions are with two-factor interactions aliased.

2. Resolution IV Designs:

I = ABC =⇒ 24−1
iv

No main e�ect is with another main e�ect or with one two-factor interactions

aliased. Two-factor interactions are aliased with two-factor interactions. Main

e�ects are aliased only with three-factor interactions.

3. Resolution V Designs:

I = ABC =⇒ 25−1
v

No main e�ect or two-factor interactions are with other main e�ects or two-

factor interactions aliased. Two-factor interactions aliased with three factor

interactions.

In general, the resolution of a two-level fractional factorial design is the smallest

number of letters in any word in the de�ning relation. The higher the resolution,

the less restrictive the assumptions that are required regarding which interactions

are negligible to obtain a unique interpretation of the data.

Constructing one-half fraction

• Write down a full 2k−1 design

• Add the Kth factor by identifying its plus minus levels with the signs of

ABC...(K-1)

• K = ABC...(K − 1) =⇒ I = ABC...K

• Another way is to partition the runs into two blocks with the highest-order

interaction ABC...K confounded.
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7.2 25−1 factorial design

Example 7.1. (From D. C. Montgomery, 1997, P. 423, Problem 9-6) R.D.Snee ("Exper-

imenting with a Large Number of variables," in Experiments in Industry: Design, Analysis

and Interpretation of Results, by R.D.Snee, L.B Hare, and J.B.Trout, Editors, ASQC,

1985) describes an experiment in which a 25−1 design with I=ABCDE was used to in-

vestigate the e�ects of �ve factors on the y=color of a chemical product. The factors are

A=solvent/reactant, B=catalyst/reactant, C=temperature, D= reactant purity, and E=

reactant PH. The results obtained were as follows:

e=-0.63 d=6.79

a=2.51 ade=5.47

b=-2.68 bde=3.45

abe=1.66 abd=5.68

c=2.06 cde=5.22

ace=1.22 acd=4.38

bce=-2.09 bcd=4.30

abc=1.93 abcde=4.05

(a) Prepare a normal probability plot of the e�ects. Which e�ect seems active?

(b) Calculate the residuals. Construct the normal probability plot of the residuals and

plot the residuals versus the �tted values. Comment on the plots.

(c) If any factors are negligible, collapse the 25−1 design into a full factorial in the active

factors. Comment on the resulting design and interpret the results.

We attain resolution V (the best possible choice) with the de�ning relation I=ABCDE to

investigate the e�ects of �ve factors on the color of a chemical product. Note that:

1. The de�ning relationship implies that E=ABCD.

2. The principal (or complementary) half of a 2k factorial is a full 2k−1 factorial for

k − 1 of the factors.

We can get the basic design by writing down a full 24 factorial for A, B, C and D, and

computing the signs for E from E=ABCD. The resulting 25−1
V design with simulated data

is:
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*************************************************************

Basic Design

****************** Treatment

A B C D E=ABCD Combination

*************************************************************

- - - - + e 0.63

+ - - - - a 2.51

- + - - - b -2.68

+ + - - + abe 5.68

- - + - - c 2.06

+ - + - + ace 1.22

- + + - + bce -2.09

+ + + - - abc 1.93

- - - + - d 6.79

+ - - + + ade 5.47

- + - + + bde 3.45

+ + - + - abd 5.68

- - + + + cde 5.22

+ - + + - acd 4.38

- + + + - bcd 4.30

+ + + + + abcde 4.05

************************************************************

We note that each main e�ect is aliased with a four-factor interaction:

lA −→ A+BCDE, lB −→ B +ACDE, lC −→ C +ABDE,

lD −→ D +ABCE, lE −→ E +ABCD

and each two-factor interaction is aliased with a three-factor interaction:

lAB −→ AB + CDE, lBD −→ BD +ADE, lAC −→ AC +BDE,

lBE −→ BE +ACD, lAD −→ AD +BCE, lCD −→ CD +ABE,

lAE −→ AE +BCD, lCE −→ CE +ABD,

lBC −→ BC +ADE, lDE −→ DE +ABC

Figure 7.1 on page 135 shows the normal plot and indicates that the factors A, B and D

and the interactions e�ects AB and AD are signi�cant.
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Figure 7.1: 25−1 factorial design, Normal Plot

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

A 1 6.864 6.864

B 1 7.182 7.182

C 1 0.087 0.087

D 1 78.146 78.146

E 1 2.739 2.739

A:B 1 6.502 6.502

A:C 1 2.481 2.481

A:D 1 7.344 7.344

A:E 1 0.366 0.366

B:C 1 0.112 0.112

B:D 1 0.240 0.240

B:E 1 0.331 0.331

C:D 1 2.031 2.031

C:E 1 0.230 0.230

D:E 1 0.031 0.031

Residuals 0 0.000

From the above results we can conclude that the main e�ects A, B and D and the two

two-factor interaction e�ects AB and AD are signi�cant. Remember because of aliasing,

these e�ects are really A+BCDE, B+ACDE, D+ABCE, AB+CDE, and AD+BCE. We
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now omit factors C and E from our model, and again we construct an ANOVA for a new

model.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

A 1 6.864 6.864 7.3484 0.02397 *

B 1 7.182 7.182 7.6888 0.02165 *

D 1 78.146 78.146 83.6557 7.481e-06 ***

A:B 1 6.502 6.502 6.9610 0.02699 *

A:D 1 7.344 7.344 7.8619 0.02058 *

B:D 1 0.240 0.240 0.2570 0.62436

Residuals 9 8.407 0.934

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9665 on 9 degrees of freedom

Multiple R-squared: 0.9267, Adjusted R-squared: 0.8778

F-statistic: 18.96 on 6 and 9 DF, p-value: 0.0001235

The model F-value of 18.96 implies that the model is signi�cant. The estimated e�ects of

these factors are as below:

Term Effect

A 1.31

B -1.34

D 4.42

AB 1.275

AD -1.355

Now we investigate the residuals by drawing the four diagnostic plots in �gure 7.2 on page

137. The residual plots are satisfactory, the residuals are normally distributed.

In this case the 25−1 model is reduced to a 23 design with two replicates.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

A 1 6.864 6.864 6.7160 0.03204 *

B 1 7.182 7.182 7.0271 0.02922 *

D 1 78.146 78.146 76.4559 2.29e-05 ***

A:B 1 6.502 6.502 6.3619 0.03568 *

A:D 1 7.344 7.344 7.1853 0.02790 *

B:D 1 0.240 0.240 0.2349 0.64090

A:B:D 1 0.230 0.230 0.2254 0.64763
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Figure 7.2: 25−1 factorial design, The four diagnostic plots

Residuals 8 8.177 1.022

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9665 on 9 degrees of freedom

Multiple R-squared: 0.9267, Adjusted R-squared: 0.8778

F-statistic: 18.96 on 6 and 9 DF, p-value: 0.0001235

This model has 87.8% explanation . The interaction plots show us which factor has an e�ect

on the response variable. In other words what is the role of interactions on the response.

Figure 7.3 on page 138 shows the two-factor interactions. As we see for the higher value

we have to take the main e�ects A+, B−, D+. It means we have to take the solvent with

high values, low values of catalysts and high reactant purity. We can conclude that by

two-factor interaction AB we have always a uniform high value for all combinations just

not for A−B+. For AD it is just important to have a high value of reactant purity.
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Figure 7.3: 25−1 factorial design, Interaction plots
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The �tted regression model in this case is:

ŷ = 3.0375 + 1.31x1 − 1.34x2 + 4.424 + 1.275x1x2 − 1.355x1x4

The response surface plot and the contour plot are shown in �gures 7.4 on page 139 and

7.4 on page 139 respectively. When we set factor D (the reactant purity) at its high level

(x4 = 1). We will conclude the same result as in the interaction plots.
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Figure 7.4: 25−1 factorial design, Response surface plot and Contour plot
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25−1 factorial design R-code

A<-rep(c(-1,1),times=8); B<-rep(c(-1,1),each=2,times=4)

C<-rep(c(-1,1),each=4,times=2); D<-rep(c(-1,1),each=8)

y<-c(-0.63,2.51,-2.68,1.66,2.06,1.22,-2.09,1.93,6.79,5.47,3.45,5.68,

5.22,4.38,4.30,4.05)

E<-A*B*C*D; A<-as.factor(A); B<-as.factor(B)

C<-as.factor(C); D<-as.factor(D)

data<-data.frame(A,B,C,D,E,y); data

g<-lm(y~(A+B+C+D+E)^5); anova(g)

g$effects; effects<-abs(g$effects[-1])

qq<-qqnorm(effects,type="n")

text(qq$x,qq$y,labels=names(effects))

h<-lm(y ~(A+B+D)^2); anova(h); summary(h)

model<-aov(y~(A+B+D)^2); model.tables(model)

windows(); par(mfrow=c(2,2))

plot(aov(y ~(A+B+D)^2))

windows(); par(mfrow=c(3,2))

interaction.plot(A,B,y,xlab="A",ylab="Obs",

main="interaction plot",ylim=c(0.5,4.0),fixed=T,legend=F)

legend(0.90,2.80,c("1","2"),title="B",lty=c(2,1))

interaction.plot(A,D,y,xlab="A",ylab="Obs",

main="interaction plot",ylim=c(-1,5.0),fixed=T,legend=F)

legend(0.90,3.0,c("1","2"),title="D",lty=c(2,1))

interaction.plot(B,D,y,xlab="B",ylab="Obs",

main="interaction plot",ylim=c(-1,5.0),fixed=T,legend=F)

legend(0.90,2.80,c("1","2"),title="D",lty=c(2,1))

interaction.plot(A:B,D,y,xlab="A:B",ylab="Obs",

main="interaction plot",ylim=c(-2,6.0),fixed=T,legend=F)

legend(0.90,2.80,c("1","2"),title="D",lty=c(2,1))

interaction.plot(A:D,B,y,xlab="A:D",ylab="Obs",

main="interaction plot",ylim=c(-1,5.0),fixed=T,legend=F)

legend(0.90,2.80,c("1","2"),title="B",lty=c(2,1))

x<-seq(-1,1,0.1); y<-seq(-1,1,0.1)

func<-function(a,b){7.4575-0.045*a-1.34*b+1.275*a*b}

z<-outer(x,y,func);z

persp(x,y,z,theta=30,phi=30,ticktype="detailed")

contour(x,y,z,nlevels=10)
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7.3 Monte Carlo Simulation Model

Example 7.2. An industrial engineer is conducting an experiment using a Monte Carlo

Simulation Model of an inventory system. The independent variables in her model are the

order quantity (A), the reorder point (B), the setup cost (C), the back order cost (D), and

the carrying cost rate (E). The response variable y is average annual cost. To conserve

computer time, she decides to investigate these factors using a 25−2
III design with I=ABD

and I=BCE. The results she obtains are:

de=95, ae=134, b=158, abd=195, cd=92, ac=187, bce=155,and abcde=185.

(a) Verify that the treatment combinations given are correct. Estimate the e�ects, as-

suming three-factor and higher interactions are negligible.

(b) Suppose that a second fraction is added to the �rst, for example:

ade=136, e=93, ab=187, bd=153, acd=139, c=99, abce=191, and bcde=150

How was this second fraction obtained? Add this data to the original fraction, and

estimate the e�ects.

(c) Suppose that the fraction :

abc=189, ce=96, bcd=154, acde=135, abe=193, bde=152, ad=137, and (1)=98

was run. How was the fraction obtained? Add this fraction to the original fraction

and estimate the e�ects.

First we verify the correctness of the treatment combination given in part (a). For this

particular design, the experimenter used only 8 runs (1
4 fraction) of a 32 run or (25) design.

For each of these runs D=AB and E=BC. If we multiply both sides of the �rst equation

by D; we obtain:

DD = ABD I = ABD

Likewise, if we multiply both sides of E=BC by E, we obtain:

EE = BCE I = BCE

We can say the design is comprised of the 8 runs for which both ABD and BCE are equal

to one, I=ABD=BCE.

L1 = x1 + x2 + x4, L2 = x2 + x3 + x5
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***********************************************************************

Factor Combination *L_{1}=x_{1}+x_{2}+x_{4} *L_{2}=x_{2}+x_{3}+x_{5} *

***********************************************************************

DE *1+0=1(mod2) *0+1=1 (mod2) *

AE *1+0=1 (mod2) *0+1=1(mod2) *

B *1+0=1 (mod2) *0+1=1(mod2) *

ABD *1+1+1=1(mod2) *0+1+0=1(mod2) *

CD *0+1=1 (mod2) *1+0=1(mod2) *

AC *1+0=1(mod2) *0+1=1 (mod2) *

BCE *1+0+0=1(mod2) *1+1+1=1(m0d2) *

ABCDE *1+1+0+1+0=1(mod2) *0+1+1+0+1=1(mod2) *

***********************************************************************

An experimenter wants to study the design in 8 runs by assigning D=AB and E=BC in

the three factor 8 runs signs table:

*********************************************

A B C D=AB E=BC Factor

*********************************************

- - - + + ABCDE

+ - - - + BCE

- + - - - CD

+ + - + - AC

- - + + - ABD

+ - + - - B

- + + - + AE

+ + + + + DE

*********************************************

We see from this table that, for each of the given generators we have L1 = L2 = 1. So
the given factor combination is correct. Now we have to estimate the e�ects. Assume that

the three-factor interactions and the interactions of higher power can be eliminated. The

normal plot is shown in �gure 7.5.

*****************************

Factor Combination *Effects

*****************************

l_{A}->A+BD * 50.25

l_{B}->B+AD+CE * 46.25

l_{C}->C+BE * 9.25

l_{D}->D+AB * -16.75

l_{E}->E+BC * -15.75

l_{AC}->AC+DE * 12.25
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Figure 7.5: Monte Carlo, Normal plot

l_{AE}->AE+CD * -15.75

*****************************

From the above results we conclude that the two �rst e�ects are positive, the estimates

of A+BD and B+AD+CE, the e�ect of D is the smallest from others. The ANOVA table

indicates that the main two factors A and B have high e�ect on response variable but they

aren't signi�cant, and the F-value of 3.647 implies that the model isn't signi�cant. The

69.4% of variability in the model is caused by these two e�ects.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

A 1 5050.1 5050.1 10.1791 0.1934

B 1 4278.1 4278.1 8.6231 0.2090

C 1 171.1 171.1 0.3449 0.6619

D 1 561.1 561.1 1.1310 0.4804

E 1 496.1 496.1 1.0000 0.5000

A:C 1 300.1 300.1 0.6049 0.5792

Residuals 1 496.1 496.1

---

Residual standard error: 22.27 on 1 degrees of freedom

Multiple R-squared: 0.9563, Adjusted R-squared: 0.6941
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F-statistic: 3.647 on 6 and 1 DF, p-value: 0.3807

We have received new data that we have to add to the fractions. There are 3 other equivalent
1
4 fraction, the experimenter could have used:

ABD=1, BCE=-1, (I=ABD=-BCE)

ABD=-1, BCE=1, (I=-ABD=BCE)

ABD=-1, BCE=-1, (I=-ABD=-BCE)

We construct the following table with factor D=-AB and E=BC and I=BCE:

*********************************************

A B C D=-AB E=BC Factor

*********************************************

+ - - + + E

- - - - + ADE

+ + - - - BD

- + - + - AB

+ - + + - C

- - + - - ACD

+ + + - + BCDE

- + + + + ABCE

*********************************************

Here we have a 25−1
IV with 16 runs. The normal plot is drawn in �gure 7.6 on page 145.

As we see from the normal plot, we can conclude the same as in part (a) that the two �rst

e�ects are positive, these are the estimators of A and B+CE. AB is the third largest e�ect.

It's value is obviously smaller. Now we estimate the e�ects.

*****************************

Factor Combination *Effects

*****************************

A * 44.88

B+CE * 49.88

C+BE * 5.88

D * -7.38

E+BC * -8.88

AB * -9.38

AC * 6.62

AD * 3.63

*****************************

Factor Combination *Effects

*****************************
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Figure 7.6: Montecarlo, Normal plot

AE * -6.62

BD * 5.38

CD * -9.12

DE * 5.63

ABD * 6.62

ACD * -6.88

ADE * 3.38

*****************************

In the third part (c), we add a new fraction to our data. The table of signs is as follows:

*********************************************

A B C D E Factor

*********************************************

+ + + - - E

- - + - + ADE

+ - + + - BD

+ - + + + AB

+ + - - + C

- + - + + ACD

+ - - + - BCDE

- - - - - ABCE

*********************************************



CHAPTER 7. FRACTIONAL FACTORIAL DESIGN 146

Now we have to combine all the data together so we will have 24 observations. As we have

seen the factors A, B, D and AB are the most important. So we can have a full 23 factorial

design with 3 replicates. We will do the analysis of variance and the ANOVA table shows

that just the two factors A and B are signi�cant.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 11745.3 11745.3 104.4025 0.06211 .

B 1 15167.0 15167.0 134.8175 0.05469 .

C 1 95.0 95.0 0.8443 0.52690

D 1 105.3 105.3 0.9361 0.51050

E 1 266.3 266.3 2.3670 0.36692

A:B 1 481.9 481.9 4.2836 0.28654

A:C 1 103.9 103.9 0.9233 0.51270

A:D 1 82.1 82.1 0.7295 0.55000

A:E 1 106.6 106.6 0.9477 0.50854

B:C 1 124.6 124.6 1.1078 0.48371

B:D 1 140.5 140.5 1.2493 0.46465

B:E 1 116.7 116.7 1.0375 0.49414

C:D 1 143.4 143.4 1.2750 0.46143

C:E 1 0.3 0.3 0.0030 0.96501

D:E 1 35.8 35.8 0.3183 0.67298

A:B:C 1 207.1 207.1 1.8409 0.40435

A:B:D 1 222.6 222.6 1.9789 0.39342

A:B:E 1 145.7 145.7 1.2947 0.45900

A:C:D 1 144.9 144.9 1.2881 0.45982

A:C:E 1 14.2 14.2 0.1266 0.78236

A:D:E 1 23.5 23.5 0.2089 0.72706

B:C:E 1 5.6 5.6 0.0501 0.85985

Residuals 1 112.5 112.5

We have seen in the �rst two parts that factors A, B and D and the interaction AB are

the most important factors, so we reduce our model in to a model with these three factors.

Now we will do the full factorial design, the ANOVA table is as follows:

Df Sum Sq Mean Sq F value Pr(>F)

A 1 11745.3 11745.3 107.0205 1.710e-08 ***

B 1 15167.0 15167.0 138.1982 2.770e-09 ***

D 1 108.2 108.2 0.9856 0.33559

A:B 1 470.1 470.1 4.2839 0.05502 .

A:D 1 58.1 58.1 0.5295 0.47734

B:D 1 124.8 124.8 1.1374 0.30204
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A:B:D 1 161.5 161.5 1.4716 0.24271

Residuals 16 1756.0 109.7

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.48 on 16 degrees of freedom

Multiple R-squared: 0.9407, Adjusted R-squared: 0.9147

F-statistic: 36.23 on 7 and 16 DF, p-value: 1.193e-08

As we can see from the following result, factors A and B are highly signi�cant and their

interaction is rare signi�cant.So we omit factor D from our model.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 11745.3 11745.3 98.5053 3.590e-09 ***

B 1 15167.0 15167.0 127.2023 4.035e-10 ***

A:B 1 294.0 294.0 2.4658 0.1320

Residuals 20 2384.7 119.2

---

Residual standard error: 10.92 on 20 degrees of freedom

Multiple R-squared: 0.9194, Adjusted R-squared: 0.9073

F-statistic: 76.06 on 3 and 20 DF, p-value: 4.116e-11

The model F-statistic of 76.06 indicates that the model is signi�cant. The e�ects of model

are:

*****************************

Factor Combination *Effects

*****************************

A * 44.4

B * 50.45

*****************************
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Monte-Carlo-Simulation R-Code

A<-c(-1,1,-1,1,-1,1,-1,1); B<-c(-1,-1,1,1,-1,-1,1,1)

C<-c(-1,-1,-1,-1,1,1,1,1); D<-c(1,-1,-1,1,1,-1,-1,1)

E<-c(1,1,-1,-1,-1,-1,1,1)

y<-c(95,134,158,195,92,187,155,185)

A<-as.factor(A); B<-as.factor(B); C<-as.factor(C)

D<-as.factor(D); E<-as.factor(E)

data<-data.frame(A,B,C,D,E,y); data

mod1<-aov(y~(A+B+C+D+E)^5); summary(mod1)

model.tables(mod1); g<-lm(y~(A+B+C+D+E)^5)

g$effects; effects<-abs(g$effects[-1])

qq<-qqnorm(effects,type="n")

text(qq$x,qq$y,labels=names(effects))

***********************************************************

A<-c(-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1)

B<-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)

C<-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)

D<-c(1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1)

E<-c(1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1)

y1<-c(95,134,158,195,92,187,155,185,136,93,187,153,139,99,191,150)

data1<-data.frame(A,B,C,D,E,y1)

A<-as.factor(A); B<-as.factor(B); C<-as.factor(C)

D<-as.factor(D); E<-as.factor(E)

mod2<-aov(y1~(A+B+C+D+E)^4); summary(mod2)

model.tables(mod2); g<-lm(y1~(A+B+C+D+E)^4)

g$effects; effects<-abs(g$effects[-1])

qq<-qqnorm(effects,type="n")

text(qq$x,qq$y,labels=names(effects))

*************************************************************************

A<-c(-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,1,-1)

B<-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1)

C<-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1)

D<-c(1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1)

E<-c(1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1)

y3<-c(95,134,158,195,92,187,155,185,136,93,187,153,139,99,191,150,189,96,

154,135,193,152,137,98); A<-as.factor(A); B<-as.factor(B); D<-as.factor(D)

data3<-data.frame(A,B,C,D,E,y3); data3

mod3<-aov(y3~(A+B+C+D+E)^3); summary(mod3)

mod4<-aov(y3~(A+B+D)^3); summary(mod4); model.tables(mod4)

mod5<-aov(y3~(A+B)^2); summary(mod5); model.tables(mod5)



Chapter 8

Three-Level Factorial Design

In the previous chapters we studied two level factorial and fractional factorial de-

signs, which have widely used in industrial research and development. There are

some intentions and variations of these designs that are occasionally useful, such

as the designs for cases where all the factors are present at three levels. These 3k

designs will be discussed in this chapter [Montgomery D. C. (1997)].

8.1 The 3k Factorial Design

In this chapter we discuss the 3k factorial design, that is a factorial arrangement

with k factors each at three levels. Each treatment combination in the 3k design

will be denoted by k digits, where the �rst digit indicates the level of factor A, the

second digit the level of factor B and so on.

The 3k design is certainly a possible choice by an experimenter who is con-

cerned about curvature in the response functions. However, two points must be

considered:

1. The 3k design is not the most e�cient way to model a quadratic relationship.

2. The 2k design augmented with center points, is an excellent way to obtain an

indication of curvature.

8.2 The 32 design

The simplest design in the 3k system is the 32 design, which has 2 factors, each at

three levels. In this model we have three-levels (�1,0,1) for each factor; and we have

149
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t ≥ 2 replicates for each treatment combination. The ANOVA model for this case

is:

yijk = µ0 + αi + βj + γij + eijk

where

eijk
iid∼ N(0, σ2), for i, j = 1, 2 and k = 1, 2, . . . , t

and the following conditions may noticed:

α1 + α2 + α3 = β1 + β2 + β3 = 0, γ1j + γ2j + γ3j = γi1 + γi2 + γi3 = 0

Since there are 32 = 9 treatment combinations, there are 8 degrees of freedom

between these treatment combinations. The main e�ects of A and B each have two

degrees of freedom, and the AB interaction has four degrees of freedom.

If there are t replicates, there will be 32(t − 1) degrees of freedom for er-

ror.

This model has the following sum of squares:

3∑
i=1

3∑
j=1

t∑
k=1

(yijk − y...)2 = 3t
3∑
i=1

(yi.. − y...)2 + 3t
3∑
j=1

(y.j. − y...)2 +

t

3∑
i=1

3∑
j=1

(yij. − yi.. − y.j. + y...))
2 +

3∑
i=1

3∑
j=1

t∑
k=1

(yijk − yij.)2

In other words:

SST = SSA + SSB + SSAB + SSE

with the following degrees of freedom:

df(SST ) = df(SSA) + df(SSB) + df(SSAB) + df(SSE)

9t− 1 = 2 + 2 + 4 + 9(t− 1)
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Note that the sum of squares for any main e�ect may be partitioned in to a linear

and a quadratic component, each with one degree of freedom, using the orthogonal

contrast constants. This is only meaningful if the factor is quantitative and if the

three levels are equally spaced. The two-factor interaction AB maybe partitioned in

two-ways:

1. This method consists of subdividing AB into the four single-degree-of-freedom

components corresponding to ABL×L, ABL×Q, ABQ×L and ABQ×Q. The tech-

nique for computing the single degree of freedom interaction components re-

quires the call totals (recall the di�erences between calls de�ne an interaction

e�ect) and the orthogonal contrast coe�cients. To illustrate the approach,

consider the coe�cients for the ABL×L interaction components as below:

*******************************************

B

A ********************************

-1 0 +1

-1 +1 0 -1

0 0 0 0

+1 -1 0 +1

********************************************

 +1 0 −1

0 0 0

−1 0 +1



ABL×L =
3∑
i=1

3∑
j=1

cijyij., SSABL×L =
(ABL×L)2

t
∑

i

∑
j c

2
ij

*******************************************

B

A ********************************

1 -2 1

-1 -1 2 -1

0 0 0 0

+1 1 -2 +1

********************************************
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 −1 2 −1

0 0 0

1 −2 1



ABL×Q =
3∑
i=1

3∑
j=1

cijyij., SSABL×Q =
(ABL×Q)2

t
∑

i

∑
j c

2
ij

*******************************************

B

A ********************************

-1 0 1

1 -1 0 1

-2 2 0 -2

1 -1 0 1

********************************************

 −1 0 1

2 0 −2

−1 0 1



ABQ×L =
3∑
i=1

3∑
j=1

cijyij., SSABQ×L =
(ABQ×L)2

t
∑

i

∑
j c

2
ij

*******************************************

B

A ********************************

1 -2 1

1 1 -2 1

-2 -2 4 -2

1 1 -2 1

********************************************

 1 −2 1

−2 4 −2

1 −2 1
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ABQ×Q =
3∑
i=1

3∑
j=1

cijyij., SSABQ×Q =
(ABQ×Q)2

t
∑

i

∑
j c

2
ij

So we can write:

SSAB = SSABL×L + SSABL×Q + SSABQ×L + SSABQ×Q

The polynomial approximation is:

y = α0 + α1P1(x) + α2P2(x) + ε; ε
iid∼ N(0, σ2)

Where Pi(x) are the orthogonal polynomials, and α̂ can be estimated as fol-

lows:

α̂1 =

∑3
i=1 yiP1(xi)∑3
i=1 P

2
1 (xi)

, α̂2 =

∑3
i=1 yiP2(xi)∑3
i=1 P

2
2 (xi)

2. The second method is based on orthogonal Latin squares. Consider the two

factors A and B, they correspond to the rows and columns respectively, of a

3× 3 Latin square.

Q R S

R S Q

S Q R

Q R S

S Q R

R S Q

These two Latin squares are orthogonal; that is, if one square is superimposed

on the other, each letter in the �rst square will appear exactly once with each

letter in the second square.

The sum of squares computed from the �rst square is called the AB

component of interaction, and the sum of squares computed from the second
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square is called the AB2 component of interaction. The components AB and

AB2 each has two degrees of freedom. This terminology is used because if we

denote the levels (−1, 0, 1) for A and B by X1 and X2 respectively, then we

�nd that the letters occupy cells according to the following pattern, for the

�rst square we will have:

Q : (−1,−1); (0, 1); (1, 0)

Q : X1 +X2 ≡ 0 mod 3

R : (−1, 0); (0,−1); (1, 1)

R : X1 +X2 ≡ 1 mod 3

S : (−1, 1); (0, 0); (1,−1)

S : X1 +X2 ≡ 2 mod 3

For the second square we have the following equations:

Q : X1 + 2X2 ≡ 0 mod 3

S : X1 + 2X2 ≡ 1 mod 3

R : X1 + 2X2 ≡ 2 mod 3
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When considering expressions of the form ApBq, we establish the convention

that the only exponent allowed on the �rst letter is one. If the �rst letter isn't

one, the entire expression is squared and the exponents are reduced modulus

3. For example, A2B is the same as AB2 since A2B = (A2B)2 = A4B2 = AB2.

Yates called these components of interactions the I and J components

of interaction, respectively. We use both notations interchangeably, that is:

I(AB) = AB2, J(AB) = AB

SSAB = I(AB) + J(AB)

I(AB) =
1

3t

(
SQ2 + SR2 + SS2

)
a
− 1

9t
(SQ+ SR + SS)2

b

I(AB) =
1

3t

(
SQ2 + SR2 + SS2

)
b
− 1

9t
(SQ+ SR + SS)2

a

8.3 The 33 design

Now suppose there are three factors A, B and C. Each factor is at three levels

arranged in a factorial experiment. This is a 33 factorial design. In this case we have

27 treatment combinations having 26 degrees of freedom. Each main e�ect has two

degrees of freedom, each two-factor interaction has four degrees of freedom, and the

three-factor interaction has eight degrees of freedom. If there are t replicates, there

are t33−1 total degrees of freedom and 33(t− 1) degrees of freedom for error.

The sum of squares may be calculated using the standard methods for facto-

rial designs. Here we have a same computation as in the 32-design. It is also possible

to partition the two-factor interactions into their I and J components. These are

designated AB, AB2, AC, AC2, BC and BC2 and each component has two degrees

of freedom.

The three-factor interaction ABC may be partitioned into four orthogonal

two degrees of freedom components, which are usually called the W , X, Y and Z
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components of the interaction. They are also referred to as the AB2C2, AB2C,

ABC2, and ABC components of the ABC interaction, respectively. The two

notations are used interchangeably, that is:

W (ABC) = AB2C2, X(ABC) = AB2C, Y (ABC) = ABC2, Z(ABC) = ABC

Note that the �rst letters have an exponent equal to 1.

8.4 The General 3k Design

The concepts utilized in the 32 and 33 designs can be readily extended to the

case of k factors, each at three levels, that is, to a 3k factorial design. There are

3k treatment combinations with 3k − 1 degrees of freedom between them. These

treatment combinations allow sums of squares to be determined for k main e�ects,

each with two degrees of freedom;
(
k
2

)
two-factor interactions, each with four degrees

of freedom; etc and one k-factor interaction with 2k degrees of freedom. If there

are t replicates, there are t3k − 1 total degrees of freedom and 3k(t − 1) degrees of

freedom for error.

For example, the four-factor interaction ABCD has 24−1 = 8 orthogonal two

degrees of freedom components, denoted by ABCD2, ABC2D, ABCD, ABC2D2,

AB2C2D, AB2CD2.

In writing these components, note that the only exponent allowed on the

�rst letter is 1. If the exponent on the �rst letter isn't 1 then the entire expression

must be squared and the exponents reduced modulus 3.

8.5 Confounding the 3k factorial design

Even when a single replicate of the 3k design is considered, the design requires so

many runs that it is unlikely that all 3k runs can be made under uniform conditions.

That's why confounding in blocks is often necessary. The 3k design may be con-

founded in 3p incomplete blocks, where p < k. So these designs may be confounded

in three blocks, nine blocks and so on.

8.5.1 Confounding the 3k factorial design in three blocks

Suppose we wish to confound the 3k design in three incomplete blocks. These three

blocks have two degrees of freedom among them; thus there must be two degrees of
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freedom confounded with blocks.

In the 3k factorial design each main e�ect has two degrees of freedom, every

two-factor interaction has four degrees of freedom and can be decomposed into

two components of interaction for example (AB, AB2) each with two degrees

of freedom; every three-factor interaction has eight degrees of freedom and can

be decomposed in to four components of interaction (ABC, ABC2, AB2C and

AB2C2), each with two degrees of freedom, and etc. Therefore, it is convenient

to confound a component of interaction with blocks. The general procedure is to

construct a de�ning contrast:

L = α1x1 + α2x2 + ...+ αkxk

Where αi represents the exponent on the ith factor in the e�ect to be confounded

and xi is the level of the i
th factor in a particular treatment combination. For the

3k factorials, we have αi = 0, 1, 2 with the �rst non zero αi being unity, and xi = 0

(low level), 1 (intermediate level), 2 (high level).

The treatment combinations in the 3k design are assigned to blocks based on

the value of L (mod 3). Since L (mod 3) can take only the values 0, 1, 2, three

blocks are uniquely de�ned. The treatment combinations satisfying L = 0 (mod 3)

constitute the principal block.

In general, for the 3k design in three blocks, we would always select a com-

ponent of the highest order interaction to confound with blocks. The remaining

unconfounded components of this interaction could be obtained by computing the

k-factor interaction in the usual way and subtracting from this quantity the sum of

squares for blocks.

8.6 The 3k Factorial Design in Nine Blocks

In some experimental situations it is useful to confound the 3k design in nine blocks,

so that eight degrees of freedom will be confounded with blocks. For constructing

these designs, we choose two components of interaction and, as a result two more

will be confounded automatically, yielding the required eight degrees of freedom.

In the 3k system, the generalized interactions of two e�ects (P,Q) are de�ned as

PQ and PQ2 (P 2Q). The two components of interaction initially chosen yield two

de�ning contrasts:
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L1 = α1x1 + α2x2 + ...+ αkxk = u mod 3, u = 0, 1, 2

L1 = β1x1 + β2x2 + ...+ βkxk = vmod 3, v = 0, 1, 2

Where αi, βi ∈ {0, 1, 2} are the exponents in the �rst and second generalized

interactions respectively.

The de�ning contrasts imply nine simultaneous equations speci�ed by the

pair of values for L1 and L2. Treatment combinations having the same pair of

values for (L1, L2) are assigned to the same block. Consider the 34 factorial design

confounded in nine blocks of nine runs each. Suppose we choose to confound ABC

and AB2D2. Their generalized interactions

(ABC)(AB2D2) = A2B3CD2 = (A2B3CD2)2 = AC2D

(ABC)(AB2D2)2 = A3B5CD4 = B2CD = (B2CD)2 = BC2D2

are also confounded with blocks. The de�ning contrasts for ABC and AB2D2 are:

L1 = X1 +X2 +X3, L2 = X1 + 2X2 + 2X4

The nine blocks may be constructed by using the de�ning contrasts. For the 3k

design in nine blocks, there will be four components of interaction confounded.

8.7 The 3k Factorial Design in 3p Blocks

The 3k factorial design is confounded in 3p blocks of 3k−p observations each, where

p ≤ k. The procedure is to select p independent e�ects to be confounded with blocks.

As a result, exactly 3p−2p−1
2

other blocks are automatically confounded.

8.8 The one-third fraction of the 3k factorial design

The largest fraction of the 3k design is a one-third fraction containing 3k−1 fractional

factorial designs. For constructing a 3k−1 fractional factorial design, �rst we select
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a two degrees of freedom component of interaction (the highest-order interaction)

and then we partition the full 3k design in three blocks, we have to de�ne a de�ning

relation

I = ABα2Cα3 ...Kαk

Each main e�ect of component of interaction estimated from the 3k−1 design has

two aliases, which may be found by multiplying the e�ect by both I and I2 modulus

3.

The treatment combinations in a 3k−1 design with the de�ning relation

I = ABα2Cα3 ...Kαk can be constructed using a method similar to that em-

ployed in the 2k−p series. First, write down the 3k−1 runs for a full three-level

factorial design in k − 1 factors, with the unusual 0, 1, 2 notation. This is

the basic design terminology, then introduce the kth factor by equating its

levels xk to the appropriate component of the highest-order interaction, say

I = ABα2Cα3 ...(K − 1)αk−1 , through the relationship

xk = β1x1 + β2x2 + ...+ βk−1xk−1

where

βi = (3− αk)αi mod 3 for1 ≤ i ≤ k − 1

8.9 Other 3k−p Fractional Factorial Designs

For moderate to large values of k, even further fractioning of the 3k design is desir-

able. In general, we may construct a (1
3
)p fraction of the 3k design for p < k, where

the fraction contains 3k−p runs. Such a design is called a 3k−p fractional factorial

design. The de�ning relation I of any fraction consists of the p e�ects initially chosen

and their 3p−2p−1
2

generalized interactions. The alias of any main e�ect or component

of interaction is produced by multiplication modulus 3 of the e�ect by I and I2.
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8.10 Dye Experiment

Example 8.1. (From Dean/Voss page 467) An experimenter investigates three reactants

(the base material and two ignoric materials, called here M and N) in the manufacture of

a cotton dye stu� y. The three factors of interest in the experiment were the concentration

of M in the water in the reaction mixture (factor A at three equally spaced levels), the

volume of the water in the reaction mixture (factor B at three equally spaced levels), and

the concentration of N in the free water in the reaction mixture (factor C at three equally

spaced levels). The experimenters divided the treatment combinations into three blocks of

size nine. The data are as follows:

Block I Block II Block III

Comb. Volume Comb. Volume Comb. Volume

000 74 020 69 010 13

021 130 011 46 001 112

012 56 002 71 022 125

110 110 100 211 120 199

101 166 121 220 111 218

122 227 112 216 102 201

220 195 210 147 200 74

211 146 201 47 221 198

202 90 222 164 212 102

(a) What structure is behind this experimental design? Which two contrasts are aliased?

(b) Prepare an analysis of variance for the data, assuming that the three factor interac-

tion is negligible.

(c) Investigate the linear and quadratic trends of main e�ects.

(d) Draw any plot that help to illustrate any important features of the analysis.

To answer the question in part (a) we select a contrast with high component which gave

us the same results for blocks confounded above. So the e�ect AB2C2 is our contrast. For

running a 33 factorial in 3 blocks we have a de�ning contrast

L = α1x1 + α2x2 + α3x3.

ABC interactions: ABC, ABC2, AB2C, AB2C2, where AB2C2 gives us the same blocks as

above. We now would exponentiate these contrasts to get other redundant contrasts which

accounts for two d.f:

(ABC)2 ≡ A2B2C2, (ABC2)2 ≡ A2B2C
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(AB2C)2 ≡ A2BC2, (AB2C2)2 ≡ A2BC

Now we will illustrate an ANOVA without three-factor interaction e�ect:

Df Sum Sq Mean Sq F value Pr(>F)

A 2 64196 32098 34.5947 0.0001154 ***

B 2 16858 8429 9.0844 0.0087343 **

C 2 2335 1167 1.2582 0.3348696

A:B 4 12513 3128 3.3715 0.0674709 .

A:C 4 4045 1011 1.0899 0.4231899

B:C 4 2699 675 0.7272 0.5977302

Residuals 8 7423 928

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we see at the level of signi�cance of α = 0.05 the main factors A and B are highly

signi�cant. We can also investigate to see if both the linear and quadratic component of

these two factors have an e�ect on the response variable or not. The two-factor interaction

AB is at level of signi�cance α = 0.1 rare signi�cant.

We can also investigate to see if the blocks have an e�ect on the response variable,

the related ANOVA results are shown below:

Df Sum Sq Mean Sq F value Pr(>F)

A 2 64196 32098 26.5982 0.001041 **

B 2 16858 8429 6.9845 0.027126 *

C 2 2335 1167 0.9674 0.432358

Block 2 182 91 0.0754 0.928230

A:B 4 12513 3128 2.5922 0.142840

A:C 4 4045 1011 0.8380 0.548069

B:C 4 2699 675 0.5591 0.701477

Residuals 6 7241 1207

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we see from the results above the two main factors A and B are still signi�cant at

α = 0.05, furthermore the block as factor isn't signi�cant and there is no di�erence

between the blocks; the other results are the same as in the �rst table. So the model

containing just the two main factors A and B is a good model.

Now we will see if the linear and quadratic component of these factors have an ef-

fect on the response variable.
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Factor A:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 134.333 8.414 15.966 2.77e-14 ***

A.L 36.691 14.573 2.518 0.0189 *

A.Q -76.070 14.573 -5.220 2.38e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Factor B:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 134.33 11.99 11.201 5.14e-11 ***

B.L 37.79 20.77 1.819 0.0814 .

B.Q 21.09 20.77 1.015 0.3201

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Factor C:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 134.33 12.89 10.418 2.19e-10 ***

C.L 12.57 22.33 0.563 0.579

C.Q -10.07 22.33 -0.451 0.656

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Factor A has both linear and quadratic e�ects, factor B has just a linear e�ect on the

response variable. Factor C isn't signi�cant in both linear and quadratic.

The e�ect of these factors can be estimated and here are the results:

Call:

lm(formula = reactant ~ nA + nB + nA2, data = reactant.dat)

Residuals:

Min 1Q Median 3Q Max

-86.444 -25.694 8.056 22.472 61.389
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 196.444 12.630 15.554 1.07e-13 ***

nA 25.944 8.931 2.905 0.00798 **

nB 26.722 8.931 2.992 0.00651 **

nA2 -93.167 15.468 -6.023 3.84e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 37.89 on 23 degrees of freedom

Multiple R-squared: 0.7, Adjusted R-squared: 0.6609

F-statistic: 17.89 on 3 and 23 DF, p-value: 3.258e-06

The �tted Regression line is estimated:

ŷijk = 196.444 + 25.944x1 − 93.167x2
1 + 26.722x2
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Figure 8.1: Dye Experiment, Scatter plot

The scatter plot 8.1 shows no abnormalities, so the hypothesis of equality of variance can

be justi�ed. The QQ-Plot 8.2 on page 164 shows light waves, but we can't even reject the

null hypothesis of non normality because of the Shapiro-Wilks test with signi�cance level

of 30%.
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Figure 8.2: Dye Experiment, QQ-plot

Shapiro-Wilk normality test

data: residuals(reactant.lm)

W = 0.9568, p-value = 0.3118

Now we are interested to see the behavior of these factors, so we will construct the pro�le

plots. A and B are main factors that are important. The e�ect of A on y is not linear

(�gure 8.3 on page 165). The level 0 di�ers greatly from the other two levels. From level

0 to level 1 is a decent decrease. A should probably used on the intermediate level to

maximize the volume y.

With B (�gure 8.3 on page 165) as the second important factor is just linearity in-

teresting. It is obvious that B at its high level has the largest volume. From �gure 8.3 on

page 165 it is obvious that the factor A is the most important and then factor B. Factor

C and Block factors do not have any e�ect on the response variable.

The interaction plots in �gure 8.4 on page 166 show us approximately parallel

lines. It means that there is no interaction e�ect which we have seen in the analysis of

variance that they aren't signi�cant.

The best setting for observing an optimized volume y are:

• A = 0 and B = 1

• A = 0 and C = 0 or C = 1
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Figure 8.3: Dye Experiment, Pro�l plot of factors A, B, C

So the best case would be : A = 0 and B = 1 and C = 0 or C = 1
Figure 8.4 on page 166 is a plot of design.
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Figure 8.4: Dye Experiment, AB, AC, BC Interaction Plot and the Plot of Design
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Dye experiment R-Code

reactant.dat<-data.frame(reactant=c(74,112,71,13,46,56,69,130,125,211,166,201,

110,218,216,199,220,227,74,47,90,147,146,102,195,198,164),

A=factor(rep(c(-1,0,1),1,each=9)), B=factor(rep(c(-1,0,1),3,each=3)),

C=factor(rep(c(-1,0,1),9,each=1)), Block=factor(c(1,3,2,3,2,1,2,1,3,2,1,3,1,3,

2,3,2,1,3,2,1,2,1,3,1,3,2)))

reactant.dat

#Analysis of variance without three-factor interaction:

reactant.mod<-aov(reactant~A+B+C+A*B+A*C+B*C, data=reactant.dat)

summary(reactant.mod)

#Analysis of variance with blocks:

reactant.mod1<-aov(reactant~A+B+C+Block+A*B+A*C+B*C, data=reactant.dat)

summary(reactant.mod1)

#Analysis of variance of reduced model:

reactant.mod2<-aov(reactant~A+B, data=reactant.dat)

summary(reactant.mod2)

#Fitting linear model using orthogonal polynomials:

reactpoly<-lm(reactant~A, contrasts=list(A="contr.poly"),

data=reactant.dat); summary(reactpoly)

reactpoly<-lm(reactant~B, contrasts=list(B="contr.poly"),

data=reactant.dat): summary(reactpoly)

reactpoly<-lm(reactant~C, contrasts=list(C="contr.poly"),

data=reactant.dat); summary(reactpoly)

#Effects computing:

nA=rep(c(-1,0,1),1,each=9); nB=rep(c(-1,0,1),3,each=3)

nC=rep(c(-1,0,1),9,each=1)

reactant.lm<-lm(reactant~nA+nB+nC+nA*nB+nA*nC+nB*nC,data=reactant.dat)

summary(reactant.lm)

reactant.lm1<-lm(reactant~nA+nB+nC+nA2+nB2+nC2+Block+nA*nB+nA*nC+nB*nC,

data=reactant.dat); summary(reactant.lm1)

nA2<-nA^2; nB2<-nB^2; nC2<-nC^2

reactant.lm<-lm(reactant~nA+nB+nA2,data=reactant.dat)

summary(reactant.lm)

#Plot of the Design:

plot.design(reactant~A*B*C+Block, data=reactant.dat)

#Plot for regression model:

plot(fitted(reactant.lm), residuals(reactant.lm),

main="scatterplot response surface model"); abline(h=0,lty=2)

qqnorm(residuals(reactant.lm)); qqline(residuals(reactant.lm))

shapiro.test(residuals(reactant.lm))

#Profle Plots (factor diagramm)

library(effects)

plot(effect("A",reactant.mod),main="",xlab="A",ylab="mean", ylim=c(13,230))

plot(effect("B",reactant.mod),main="",xlab="B",ylab="mean", ylim=c(13,230))

plot(effect("C",reactant.mod),main="",xlab="C",ylab="mean", ylim=c(13,230))

#Interaction Plots:

interaction.plot(reactant.dat$A, reactant.dat$B, reactant.dat$reactant,
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xlab="A", ylab="mean", ylim=c(10,230), fixed=T, legend=F)

legend(1.79,75,c("-1","0","1"), title="B", lty=c(3,2,1))

interaction.plot(reactant.dat$A, reactant.dat$C, reactant.dat$reactant,

xlab="A", ylab="mean", ylim=c(10,230), fixed=T, legend=F)

legend(1.79,75,c("-1","0","1"), title="C", lty=c(3,2,1))

interaction.plot(reactant.dat$B, reactant.dat$C, reactant.dat$reactant,

xlab="B", ylab="mean", ylim=c(10,230), fixed=T, legend=F)

legend(1.79,72.25,c("-1","0","1"), title="C", lty=c(3,2,1))
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8.11 Re�nery Experiment

Example 8.2. (From Dean/Voss, page 497) P.W.M. John (1971) describes an experiment

of Vance (1962), to �nd a set of operating conditions to optimize the quality of lube oil

treated as a re�nery. There were four factors of interest called here A, B, C and D, and

three equally spaced levels were selected for each of these, so that quadratic trends could

be measured. Since this was a preliminary, experiment, a 1
3 -fraction of resolution IV was

thought to be adequate. The data are shown in the table below:

TC y Al Aq Bl Bq Cl Cq Dl Dq

0000 4.2 -1 1 -1 1 -1 1 -1 1

0012 5.9 -1 1 -1 1 0 -2 1 1

0021 8.2 -1 1 -1 1 1 1 0 -2

0102 13.1 -1 1 0 -2 -1 1 1 1

0111 16.4 -1 1 0 -2 0 -2 0 -2

0120 30.7 -1 1 0 -2 1 1 -1 1

0201 9.5 -1 1 1 1 -1 1 0 -2

0210 22.2 -1 1 1 1 0 -2 -1 1

0222 31.0 -1 1 1 1 1 1 1 1

1002 7.7 0 -2 -1 1 -1 1 1 1

1011 16.5 0 -2 -1 1 0 -2 0 -2

1020 14.3 0 -2 -1 1 1 1 -1 1

1101 11.0 0 -2 0 -2 -1 1 0 -2

1110 29.0 0 -2 0 -2 0 -2 -1 1

1122 55.0 0 -2 0 -2 1 1 1 1

1200 8.5 0 -2 1 1 -1 1 -1 1

1212 37.4 0 -2 1 1 0 -2 1 1

1221 66.3 0 -2 1 1 1 1 0 -2

2001 11.4 1 1 -1 1 -1 1 0 -2

2010 21.1 1 1 -1 1 0 -2 -1 1

2022 57.9 1 1 -1 1 1 1 1 1

2100 13.5 1 1 0 -2 -1 1 -1 1

2112 51.6 1 1 0 -2 0 -2 1 1

2121 76.5 1 1 0 -2 1 1 0 -2

2202 31.0 1 1 1 1 -1 1 1 1

2211 74.5 1 1 1 1 0 -2 0 -2

2220 85.1 1 1 1 1 1 1 -1 1

(a) Save the data in a R-�le, test if the de�ning relation I = ABCD = A2B2C2D2 is

right for this design.

(b) Find the factor combinations which have the largest e�ect. Prepare the analysis of

variance and see which interaction e�ects are important. Draw interaction plots.
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(c) Investigate the linear and quadratic trends of main e�ects. Draw any plot that help

to illustrate any important features of the analysis.

(d) Prepare the analysis of variance in part (c).

We �rst study the treatment combinations, where we want to see if the treatment combina-

tions de�ne the same block. Therefore with the de�ning relation I = ABCD = A2B2C2D2

we will �nd if the generator L = x1 + x2 + x3 + x4 modulus 3 con�rms the same block.

*********************************************************

TC L=x1+x2+x3+x4 TC L=x1+x2+x3+X4

*********************************************************

0000 0 1122 1+1+2+2=0

0012 1+2=0 1200 1+2=0

0021 2+1=0 1212 1+2+1+2=0

0102 1+2=0 1221 1+2+2+1=0

0111 1+1+1=0 2001 2+1=0

0120 1+2=0 2010 2+1=0

0201 2+1=0 2022 2+2+2=0

0210 2+1=0 2100 2+1=0

0222 2+2+2=0 2112 2+1+1+2=0

1002 1+2=0 2121 2+1+2+1=0

1011 1+1+1=0 2202 2+2+2=0

1020 1+2=0 2211 2+2+1+1=0

1101 1+1+1=0 2220 2+2+2=0

1110 1+1+1=0

********************************************************

The value of L for all 27 treatment combinations is 0. Alternatively we can show that

relating to the three �rst factors there is a 33 factorial design. Let I = ABCD so we have

α1 = α2 = α3 = α4 = 1 then we have due to the following formulation:

βi = (3− αk)αi (mod 3) for 1 ≤ i ≤ k − 1

β1 = β2 = β3 = 2 and therefor :

x4 = 2x1 + 2x2 + 2x3

The alias structure of main e�ects and interactions is produced by multiplying the e�ects

by I and I2 modulus 3.
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Components Alias of ABCD Alias of A2B2C2D2

AB AB ∗ABCD = (A2B2CD)2 = ABC2D2 AB ∗A2B2C2D2 = C2D2

AC AC ∗ABCD = (A2BC2D)2 = AB2CD2 AC ∗A2B2C2D2 = B2D2

AD AD ∗ABCD = (A2BCD2)2 = AB2C2D AD ∗A2B2C2D2 = B2C2

A2B2 A2B2 ∗ABCD = CD A2B2 ∗A2B2C2D2 = ABC2D2

A2C2 A2C2 ∗ABCD = BD A2C2 ∗A2B2C2D2 = AB2CD2

A2D2 A2D2 ∗ABCD = BC A2D2 ∗A2B2C2D2 = AB2C2D

Each component of a two-factor interaction is confounded with two- and four-factor

interactions.

We do the analysis of variance test, because of the alias structure we can just ana-

lyze three of the two-factor interactions. Each two-factor interaction is almost with

another two-factor interaction aliased (A2B2 = CD). In the complete model we use the

four main e�ects and their four-factor interaction.

We now do an analysis of variance test to see which e�ect is signi�cant and has an

e�ect on the response variable:

Analysis of Variance Table

Response: oil

Df Sum Sq Mean Sq F value Pr(>F)

Al 2 4496.3 2248.14

Bl 2 2768.7 1384.35

Cl 2 5519.8 2759.89

Dl 2 283.4 141.68

Al:Bl 4 310.8 77.70

Al:Cl 4 1232.9 308.23

Bl:Cl 4 669.7 167.42

Al:Dl 2 83.4 41.71

Bl:Dl 2 151.3 75.66

Cl:Dl 2 28.2 14.10

Residuals 0 0.0

From the above results of testing the complete model we see that the three main e�ects A,

B and C are the largest and they could play a role in our model. The two-factor interaction

AC has a large value. We now try our new model which contains main e�ects and two-

factor interactions. The ANOVA table of a new model is shown below and it con�rms that
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the main e�ects A, B and C and the two-factor interaction AC are signi�cant at the level

of signi�cance α = 0.05.

Analysis of Variance Table

Response: oil

Df Sum Sq Mean Sq F value Pr(>F)

Al 2 4496.3 2248.14 37.4763 0.0004072 ***

Bl 2 2768.7 1384.35 23.0769 0.0015226 **

Cl 2 5519.8 2759.89 46.0070 0.0002294 ***

Dl 2 283.4 141.68 2.3619 0.1751524

Al:Bl 4 310.8 77.70 1.2953 0.3693413

Al:Cl 4 1232.9 308.23 5.1381 0.0383308 *

Al:Dl 4 572.7 143.17 2.3866 0.1633890

Residuals 6 359.9 59.99

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 8.5: Re�nery, Plot of Design

From the plot of design, �gure 8.5 we see the same result as in the ANOVA table; the

linear terms of main e�ect A, B and C have the largest a�ect on the response variable and

the interaction e�ect AlCl is signi�cant. Now we study the pro�le plots and the interaction

plots of these factors.

As we see from �gure 8.6 on page 173 the factors A, B and C have a large linear e�ect.

From the interaction plots, �gure 8.7 on page 176 we will see by the interactions between

factors A and C three curves that behave almost the same. (Note that AC is signi�cant.)
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Figure 8.6: Re�nery, Pro�l plot of factors A, B, C

So the reduced model which seems to be a good model is a model containing three main

e�ects A, B and C and the two-factor interaction AC.

Analysis of Variance Table

Response: oil

Df Sum Sq Mean Sq F value Pr(>F)

Al 2 4496.3 2248.14 23.5597 1.705e-05 ***

Bl 2 2768.7 1384.35 14.5074 0.0002547 ***

Cl 2 5519.8 2759.89 28.9226 4.857e-06 ***

Al:Cl 4 1232.9 308.23 3.2301 0.0401436 *

Residuals 16 1526.8 95.42

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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For computing the linear and quadratic terms of each e�ect we will use the polynomial

contrasts. The following table shows the quadratic and linear terms of each factor and

proof their signi�cance.

Factor A:

-35.556 -14.478 -2.589 12.978 39.000

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.981 4.129 7.261 1.68e-07 ***

Al.L 22.109 7.152 3.091 0.00499 **

Al.Q 3.284 7.152 0.459 0.65022

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Factor B:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.981 4.440 6.752 5.53e-07 ***

Bl.L 17.151 7.691 2.230 0.0354 *

Bl.Q -3.670 7.691 -0.477 0.6376

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Factor C:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.9815 3.9332 7.623 7.34e-08 ***

Cl.L 24.7566 6.8125 3.634 0.00132 **

Cl.Q -0.6487 6.8125 -0.095 0.92493

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The e�ects of the model are shown in table below:

nAl nAq nBl nBq nCl

31.2666667 2.6814815 24.2555556 -2.9962963 35.0111111

nCq nDl nDq

-0.5296296 6.8888889 -2.2740741

We can see from these results that the linear terms of A, B and C have large values of

e�ects and contrasts. We can see the Q-Q-plot of the e�ects in �gure 8.8 on page 177.

From this plot it is obvious again that the factors A (1), B (3), C(5) are signi�cant.
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Analysis of Variance Table

Response: oil

Df Sum Sq Mean Sq F value Pr(>F)

Al 2 4496.3 2248.14 23.5597 1.705e-05 ***

Bl 2 2768.7 1384.35 14.5074 0.0002547 ***

Cl 2 5519.8 2759.89 28.9226 4.857e-06 ***

Al:Cl 4 1232.9 308.23 3.2301 0.0401436 *

Residuals 16 1526.8 95.42

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When we analyze the reduced model with A, B and C we have 2 degrees of freedom for

each factor; and it is obvious from the ANOVA table that all three main e�ects and the

AC interaction is signi�cant.

The Q-Q-plot �gure 8.9 on page 178 shows no abnormality and the scatter plot shows that

the variance is constant, so it shows the homogeneity of variances.
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Re�nery R-Code

refinery.dat<-data.frame(oil=c(4.2,5.9,8.2,13.1,16.4,30.7,9.5,22.2,31.0,

7.7,16.5,14.3,11.0,29.0,55.0,8.5,37.4,66.3,11.4,21.1,57.9,13.5,51.6,76.5,

31.0,74.5,85.1); Al=factor(rep(c(-1,0,1),each=9)),Aq=factor(rep(c(1,-2,1),

each=9)); Bl=factor(rep(c(-1,0,1),each=3,times=3)),Bq=factor(rep(c(1,-2,1)

,each=3,times=3)); Cl=factor(rep(c(-1,0,1),times=9)),Cq=factor(rep(c(1,-2,1)

,times=9)); Dl=factor(c(-1,1,0,1,0,-1,0,-1,1,1,0,-1,0,-1,1,-1,1,0,0,-1,1,-1,

1,0,1,0,-1)); Dq=factor(c(1,1,-2,1,-2,1,-2,1,1,1,-2,1,-2,1,1,1,1,-2,-2,1,1,

1,1,-2,1,-2,1))); refinery.dat

#Analysis of variance without three-factor interaction:

refinery.mod<-aov(oil~Al*Aq*Bl*Bq*Cl*Cq*Dl*Dq, data=refinery.dat)

summary(refinery.mod)

anova(refinery.mod)

#Effects computing:

nAl=rep(c(-1,0,1),each=9); nAq=rep(c(1,-2,1),each=9)

nBl=rep(c(-1,0,1),each=3,times=3); nBq=rep(c(1,-2,1),each=3,times=3)

nCl=rep(c(-1,0,1),times=9); nCq=rep(c(1,-2,1),times=9)

nDl=c(-1,1,0,1,0,-1,0,-1,1,1,0,-1,0,-1,1,-1,1,0,0,-1,1,-1,1,0,1,0,-1)

nDq=c(1,1,-2,1,-2,1,-2,1,1,1,-2,1,-2,1,1,1,1,-2,-2,1,1,1,1,-2,1,-2,1)

nAl2<-nAl^2; nBl2<-nBl^2; nCl2<-nCl^2;nDl2<-nDl^2

refinery.lm<-lm(oil~nAl*nAq*nBl*nBq*nCl*nCq*nDl*nDq, data=refinery.dat)

anova(refinery.lm)

#Plot of Design

plot.design(oil~Al*Aq*Bl*Bq*Cl*Cq*Dl*Dq,data=refinery.dat)

refinery1.mod<-aov(oil~Al+Bl+Cl+Dl+Al*Bl+Al*Cl+Al*Dl, data=refinery.dat)

summary(refinery1.mod)

anova(refinery1.mod)

#Profle Plots (factor diagramm)

library(effects)

plot(effect("Al",refinery1.mod),main="",xlab="A",ylab="mean", ylim=c(4,90))

plot(effect("Bl",refinery1.mod),main="",xlab="B",ylab="mean", ylim=c(4,90))

plot(effect("Cl",refinery1.mod),main="",xlab="C",ylab="mean", ylim=c(4,90))

#Interaction Plots:

interaction.plot(refinery.dat$Al, refinery.dat$Bl, refinery.dat$oil,

xlab="A", ylab="mean", ylim=c(4,90), fixed=T, legend=F)

legend(1.79,75,c("-1","0","1"), title="B", lty=c(3,2,1))

interaction.plot(refinery.dat$Al, refinery.dat$Cl, refinery.dat$oil,

xlab="A", ylab="mean", ylim=c(4,90), fixed=T, legend=F)

legend(1.79,85,c("-1","0","1"), title="C", lty=c(3,2,1))

interaction.plot(refinery.dat$Al, refinery.dat$Dl, refinery.dat$oil,

xlab="A", ylab="mean", ylim=c(4,90), fixed=T, legend=F)

legend(1.79,72.25,c("-1","0","1"), title="D", lty=c(3,2,1))

#Reduced Model:

refinery2.mod<-aov(oil~Al+Bl+Cl+Al*Cl, data=refinery.dat)

summary(refinery2.mod)

anova(refinery2.mod)

#Fitting linear model using orthogonal polynomials:
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refinpoly<-lm(oil~Al, contrasts=list(Al="contr.poly"),data=refinery.dat)

summary(refinpoly)

refinpoly<-lm(oil~Bl, contrasts=list(Bl="contr.poly"),data=refinery.dat)

summary(refinpoly)

refinpoly<-lm(oil~Cl, contrasts=list(Cl="contr.poly"),data=refinery.dat)

summary(refinpoly)

refinpoly<-lm(oil~Dl, contrasts=list(Dl="contr.poly"),data=refinery.dat)

summary(refinpoly)

#Effects computing:

refinery1.lm<-lm(oil~nAl+nAq+nBl+nBq+nCl+nCq+nDl+nDq,data=refinery.dat)

eff<-2*refinery1.lm$coef[2:9];eff

#Q-Q-Plot of effects :

qq<-qqnorm(eff,main="Q-Q-Plot of Effects",col="blue");qqline(eff)

identify(qq$x,qq$y,1:length(qq$x))

#Reduced model:

refinery2.mod<-aov(oil~Al+Bl+Cl+Al*Cl, refinery.dat)

anova(refinery2.mod)

summary(refinery2.mod)

windows()

par(mfrow=c(1,2))

qqnorm(residuals(refinery2.mod))

qqline(residuals(refinery2.mod))

plot(fitted(refinery2.mod),residuals(refinery2.mod),main="Residuals Plot")

#Linear model of reduced model:

refinery1.lm<-lm(oil~nAl+nBl+nCl+nAl*nCl, data=refinery.dat)

anova(refinery1.lm)

summary(refinery1.lm)



Chapter 9

Taguchi-Method

9.1 Design for the control of noise variability

Experiments that involve both design and noise factors are often known col-

loquially as Taguchi experiments. There are two di�erent types of designs for

such an experiment "product arrays" and "mixed arrays". The product arrays

are composed of two fractional factorial experiments, one for the design fac-

tors and one for the noise factors, and every combination of design factors is

observed in conjunction with every combination of noise factors. Mixed arrays,

on the other hand, are ordinary fractional factorial designs in which the di�er-

ence between the design and noise factors is ignored at the design stage except to

ensure that the design-by-noise interactions are estimable.[Dean A., Voss D. (1999)]

Product arrays are usually observed in the following way. The order of the

design combinations is randomized. For each design combination in turn, observa-

tions are taken across all of the noise combinations in a random order.

Such designs are usually analyzed by calculating, for each design combina-

tion, the average and log sample variance of the responses obtained under the

di�erent noise combinations. The average response and the log variance are taken

as separate set of data values for the design factor combinations. The objective of

the experiment is to �nd out which factors most a�ect the log variance response,

and which factor most a�ect the average response.

181
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9.2 What are Taguchi designs?

Genichi Taguchi (1980), a Japanese engineer, proposed several approaches to ex-

perimental designs that are sometimes called "Taguchi Methods". These methods

utilize two-, three-, and mixed-level fractional factorial designs. Taguchi refers to

experimental design as "o�-line quality control" because it is a method of ensuring

good performance in the design stage of products or processes. "Taguchi" designs

are similar to our familiar fractional factorial designs. However Taguchi has intro-

duced several noteworthy new ways of conceptualizing an experiment that are very

valuable, especially in product development and industrial engineering. He has three

main ideas, namely System Design, Parameter Design and Tolerance Design.

9.2.1 System Design

This is design at the conceptual level, involving creativity and innovation.

9.2.2 Parameter Design

The aim here is to make a product or process less variable (more robust) in the face

of variation over which we have little or no control.

9.2.3 Tolerance Design

This deals with the problem of how, and when, to specify tightened tolerances for

a product or a process so that quality and performance/productivity are enhanced.

Every product or process has a number - perhaps a large number - of components.

It is explained how to identify the critical components to target when the tolerances

have to be tightened.
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9.3 Inclinometer Experiment

Example 9.1. (From Dean/Voss, P. 516) A collaborative study involving statisti-

cians and mechanical engineers was described. The experiment sought to improve the

performance of an inclinometer, which is an instrument that records the angle of an ob-

ject such as a crane jib. The design of the inclinometer is described in the article as follows.

The basic design of a product is composed in four parts: a bob-weight and �exure,

a �anged �ywheel and a copper-plated disc (PCB). All are attached to a shaft supported

in low-friction bearings. When the object to which the �ywheel is attached is tilted, the

bob-weight assembly moves to stay perpendicular to the earth, causing the PCB to rotate

relative to the casing. The main performance di�culty of the inclinometer is that it

doesn't immediately register the true angle of tilt. Spurious swing of the disc is produced

by movement of the object.

The purpose of the experiment was to vary the relative sizes of the parts of the

inclinometer to �nd a combination of factors that would reduce the swing. The engineers

identi�ed 7 factors that could be altered and that might a�ect the swing. Three levels

were selected for each factor so that linear and quadratic trends could be investigated.

The levels of the �rst six factors were selected to be equally spaced. The factors were:

• A: Flexure length (30.00, 31.25, 32.5)

• B: Flexure thickness (0.05, 0.275, 0.5)

• C: Flexure width (4.0, 5.0, 6.0)

• D: Flange thickness (1.0, 3.5, 6.0)

• E: Flange width (6.0, 10.5, 15.0)

• F: Bob-weight length (12.0, 20.0, 28.0)

• G: Copper plating thickness (0.0175, 0.035, 0.07)

All measurements are in millimeters, and the levels of all factors are coded as 0, 1and 2. A 1
9

fraction would have been possible except for the fact that there were other considerations

that needed to be taken into account. Under designed experimental conditions, it was

possible to produce the factor levels exactly as speci�ed, but in mass production variability

naturally creeps in. The experimenters decided to build a production variability into the

experiment as noise factors as follows:

• H: Flexure length (-0.25,+0.25)

• P: Flexure thickness (-0.005,+0.005)

• J: Flange thickness (-0.025,+0.025)
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• K: Flange width (-0.025,+0.025)

• L: Copper plating thickness (-0.005,+0.005)

• M: Tolerance on bob weight mass (-9.0,+9.0)×( 1
1000)g

• N: Maximum horizontal amplitude of vibration (5,25)

The two levels of each noise factor were coded as 0 and 1. The data are shown in the table

below:

Noise factors

H : 0 0 0 0 1 1 1 1

P : 0 0 1 1 0 0 1 1

J : 0 0 1 1 1 1 0 0

K : 0 1 0 1 0 1 0 1

L : 0 1 0 1 1 0 1 0

Design factors M : 0 1 1 0 0 1 1 0

ABCDEFG N : 0 1 1 0 1 0 0 1

0000000 0.62 3.54 3.56 0.62 3.09 0.71 0.73 3.20

0011111 0.59 3.11 3.11 0.59 2.98 0.63 0.64 3.02

0022222 0.59 3.01 3.02 0.59 2.97 0.61 0.62 3.00

0101122 0.51 2.65 2.65 0.50 2.53 0.53 0.54 2.56

0112200 0.18 0.96 0.96 0.18 0.89 0.19 0.20 0.90

0202211 0.19 1.03 1.03 0.19 0.97 0.21 0.21 0.93

0210022 1.85 9.46 9.42 1.82 9.19 1.90 1.92 9.35

0221100 0.52 2.73 2.72 0.51 2.61 0.55 0.56 2.64

1001212 0.29 1.56 1.56 0.29 1.45 0.31 0.32 1.47

1012020 0.95 4.98 4.93 0.94 4.79 0.99 1.00 4.82

1020101 1.16 6.09 6.09 1.13 5.70 1.21 1.26 5.93

1102001 0.26 1.45 1.45 0.25 1.30 0.29 0.30 1.30

1110112 1.15 5.99 5.92 1.13 5.69 1.19 1.22 5.84

1121220 0.85 4.31 4.30 0.84 4.23 0.86 0.88 4.28

1200120 1.10 5.74 5.67 1.07 5.43 1.14 1.17 5.57

1211201 0.29 1.55 1.55 0.28 1.45 0.31 0.32 1.47

1222012 0.91 4.64 4.66 0.90 4.56 0.94 0.95 4.57

2002121 0.39 2.05 2.06 0.39 1.96 0.41 0.42 1.97

2010202 0.67 3.61 3.57 0.65 3.27 0.72 0.74 3.41

2021010 1.42 7.31 7.38 1.41 7.14 1.48 1.51 7.24

2100210 0.69 3.66 3.60 0.67 3.37 0.73 0.74 3.47

2111021 1.18 6.04 6.06 1.17 5.90 1.21 1.23 5.95

2122102 0.37 1.95 1.95 0.37 1.87 0.39 0.40 1.88

2201002 0.39 2.15 2.16 0.38 1.94 0.44 0.44 1.96

2212110 0.44 2.29 2.29 0.43 2.21 0.46 0.47 2.22

2220221 1.84 9.35 9.19 1.79 9.06 1.85 1.89 9.28
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(a) Analyze the data when response variable is ln(s2).

(b) Analyze the data for mean of the data as a response variable.

(c) Which e�ect is more e�ective as a control factor and noise factor? Determine the

contrasts.

This experiment is a 37 × 27 factorial experiment. The objective of this experiment is

to select the combination of the design factors that gave the least amount of swing.

In terms of producing a product of consistently high quality, it was also important

that the variability of the amount y of swing also remain low across the di�erent noise

combinations. The experimenter selects a product array formed from a (1
3)4 fraction of

the 37 design treatment combination and a (1
2)4 fraction of the 27 noise combinations.

In summary we have 7 control factors each with three levels: A, B, C, D, E, F, G;

and 7 noise factors each with 2 levels: H, P, J, K, L, M, N.

The alias structure is as follow:

Design Generators: D = AB, E = AC, F = BC, G = ABC

De�ning Relation: I = ABD = ACE = BCDE = BCF = ACDF = ABEF =
DEF = ABCG = CDG = BEG = ADEG = AFG = BDFG = CEFG = ABCSEFG

Aliases: A = BD = CE = FG, B = AD = CF = EG, C = AE = BF = DG,

D = AB = EF = CG E = AC = DF = BG, F = BC = DE = AG,

G = CD = BE = AF

First we compute for each factor the mean and the variance, and the logarithm of

variance will also be computed. In the �rst analysis of variance our response variable will

be ln(var). The ANOVA table is shown below:

Df Sum Sq Mean Sq F value Pr(>F)

A 2 0.6316 0.3158 12.3828 0.001209 **

B 2 0.1358 0.0679 2.6626 0.110411

C 2 9.8448 4.9224 192.9982 7.513e-10 ***

D 2 18.8987 9.4493 370.4922 1.638e-11 ***

E 2 7.0366 3.5183 137.9464 5.244e-09 ***

F 2 9.5150 4.7575 186.5325 9.160e-10 ***

G 2 0.0354 0.0177 0.6942 0.518444

Residuals 12 0.3061 0.0255

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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From the above results we can conclude that the factors A, C, D, E and F are signi�cant

at level of signi�cance α = 0.05. We can see that the control factors except B and G have

a large e�ect on the variability of the swing. Now we will investigate the factors for linear

and quadratic trends.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 0.5798 0.5798 22.7325 0.0004579 ***

A2 1 0.0519 0.0519 2.0331 0.1793949

B 1 0.0581 0.0581 2.2781 0.1570847

B2 1 0.0777 0.0777 3.0471 0.1064062

C 1 9.8241 9.8241 385.1843 1.738e-10 ***

C2 1 0.0207 0.0207 0.8121 0.3852435

D 1 18.3769 18.3769 720.5282 4.391e-12 ***

D2 1 0.5217 0.5217 20.4561 0.0006983 ***

E 1 7.0044 7.0044 274.6287 1.237e-09 ***

E2 1 0.0322 0.0322 1.2641 0.2828660

F 1 9.4043 9.4043 368.7269 2.242e-10 ***

F2 1 0.1106 0.1106 4.3382 0.0593247 .

G 1 0.0244 0.0244 0.9567 0.3473210

G2 1 0.0110 0.0110 0.4317 0.5235370

Residuals 12 0.3061 0.0255

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As you see the control factors A, C, D, E and F behave linear on the swing, also factors

D and F have quadratic e�ect on swing. So we can say that these factors have an e�ect

on the variability of our process. The alias structure here plays no role in our experiment.

You can see the behavior of the factors in �gure 9.1 on page 187.
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Figure 9.1: Inclinometer, Pro�le plot of control factors; ln(var) as response variable
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Factors A, C and F have linear positive contrasts, it means that by increasing the factors

their variability will increase too. As we see from these pro�le plots we can say that the

factors A, C and F at lower level and the factor D and E must be used at high level to

keep the variability concerning noise factors as low as possible.

As a result our reduced model contains factors A, C, D, E and F with the ANOVA table

as follows:

Df Sum Sq Mean Sq F value Pr(>F)

A 1 0.5798 0.5798 19.4360 0.0004393 ***

A2 1 0.0519 0.0519 1.7383 0.2059161

C 1 9.8241 9.8241 329.3282 4.259e-12 ***

C2 1 0.0207 0.0207 0.6943 0.4169731

D 1 18.3769 18.3769 616.0433 3.350e-14 ***

D2 1 0.5217 0.5217 17.4897 0.0007044 ***

E 1 7.0044 7.0044 234.8044 5.547e-11 ***

E2 1 0.0322 0.0322 1.0808 0.3139786

F 1 9.4043 9.4043 315.2572 5.947e-12 ***

F2 1 0.1106 0.1106 3.7091 0.0720759 .

Residuals 16 0.4773 0.0298

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The table of e�ects are shown below:

lin A lin C lin D quad D lin E lin F quad F

0.358 1.478 -2.021 0.589 -1.248 1.446 0.272

For the second part of this experiment we take the mean of each factor as a response

variable. The ANOVA table is shown below:

Df Sum Sq Mean Sq F value Pr(>F)

A 2 0.1288 0.0644 0.3323 0.7237

B 2 0.2899 0.1449 0.7477 0.4943

C 2 12.9528 6.4764 33.4096 1.245e-05 ***

D 2 24.6042 12.3021 63.4626 4.153e-07 ***

E 2 9.0561 4.5281 23.3588 7.286e-05 ***

F 2 11.5710 5.7855 29.8455 2.199e-05 ***

G 2 0.6725 0.3362 1.7345 0.2179

Residuals 12 2.3262 0.1938

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



CHAPTER 9. TAGUCHI-METHOD 189

As we see the factors C, D, E and F are highly signi�cant at the level of signi�cance

α = 0.05. Now we will estimate the linear and quadratic terms of each factor.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 0.1024 0.1024 0.5281 0.48133

A2 1 0.0264 0.0264 0.1364 0.71830

B 1 0.2850 0.2850 1.4703 0.24863

B2 1 0.0049 0.0049 0.0251 0.87677

C 1 12.8863 12.8863 66.4761 3.094e-06 ***

C2 1 0.0665 0.0665 0.3431 0.56892

D 1 22.9193 22.9193 118.2331 1.439e-07 ***

D2 1 1.6850 1.6850 8.6922 0.01218 *

E 1 7.9385 7.9385 40.9519 3.406e-05 ***

E2 1 1.1177 1.1177 5.7656 0.03345 *

F 1 11.2476 11.2476 58.0229 6.188e-06 ***

F2 1 0.3234 0.3234 1.6682 0.22083

G 1 0.0030 0.0030 0.0155 0.90301

G2 1 0.6694 0.6694 3.4535 0.08781 .

Residuals 12 2.3262 0.1938

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we see from the results above, factors C, D, E and F behave linearly and factors D and

E have also a quadratic e�ect on the response variable. Factors C and F are positive and

factors D and E are negative. Now we study the behavior of the signi�cant factors.
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Figure 9.2: Inclonometer, Pro�le plot of control factors; mean as response variable
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As you can see from the �gure 9.2 on page 190 the factors D, E and F have a small quadratic

e�ect. To minimize the variability of the swing we will take C and F at the low level, D

and E at high level; this would be the best case. The table of e�ects are shown below:

lin C lin D quad D lin E quad E lin F

1.692 -2.257 1.059 -1.328 0.863 1.581

So from these two parts we can conclude that the most signi�cant factors concerning mean

and concerning logarithm of variance are: C (linear), D (linear and quadratic), E (linear)

and F (linear). Generally we can say that the best case that the variability of the swing

will be as small as possible is A−1C−1D1E1F−1.

Now we will investigate the complete model, a model containing both control and noise

factors. The ANOVA table is as follow:

Df Sum Sq Mean Sq F value Pr(>F)

Acontrol 2 1.03 0.52 1.1393 0.32434

Bcontrol 2 2.32 1.16 2.5636 0.08229 .

Ccontrol 2 103.62 51.81 114.5506 < 2.2e-16 ***

Dcontrol 2 196.83 98.42 350.90 < 2.2e-16 ***

Econtrol 2 72.45 36.22 129.16 < 2.2e-16 ***

Fcontrol 2 92.57 46.28 165.02 < 2.2e-16 ***

Gcontrol 2 5.38 2.69 9.59 0.00002 ***

Hnoise 1 0.12 0.12 0.2621 0.60988

Pnoise 1 0.01 0.01 0.0256 0.87333

Jnoise 1 0.04 0.04 0.0934 0.76062

Knoise 1 0.01 0.01 0.0218 0.88288

Lnoise 1 0.01 0.01 0.0195 0.88925

Mnoise 1 0.48 0.48 1.0691 0.30374

Nnoise 1 559.83 559.83 1237.7417 < 2.2e-16 ***

Acontrol:Hnoise 2 0.00 0.00 3.787e-05 0.99996

Acontrol:Pnoise 2 0.00 0.00 1.024e-06 1.00000

Acontrol:Jnoise 2 0.00 0.00 0.0011 0.99890

Acontrol:Knoise 2 0.00 0.00 0.0001 0.99986

Acontrol:Lnoise 2 0.00 0.00 3.992e-05 0.99996

Acontrol:Mnoise 2 0.00 0.00 0.0002 0.99978

Acontrol:Nnoise 2 0.46 0.23 0.5059 0.60458

Bcontrol:Hnoise 2 0.00 0.00 0.0043 0.99566

Bcontrol:Pnoise 2 0.00 0.00 0.0023 0.99766

Bcontrol:Jnoise 2 0.00 0.00 0.0003 0.99973

Bcontrol:Knoise 2 0.00 0.00 0.0001 0.99995

Bcontrol:Lnoise 2 0.00 0.00 0.0007 0.99932
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Bcontrol:Mnoise 2 0.01 0.01 0.0127 0.98735

Bcontrol:Nnoise 2 1.03 0.51 1.1366 0.32519

Ccontrol:Hnoise 2 0.01 0.00 0.0088 0.99124

Ccontrol:Pnoise 2 0.00 0.00 0.0019 0.99813

Ccontrol:Jnoise 2 0.00 0.00 0.0034 0.99664

Ccontrol:Knoise 2 0.00 0.00 0.0009 0.99915

Ccontrol:Lnoise 2 0.00 0.00 0.0014 0.99856

Ccontrol:Mnoise 2 0.01 0.00 0.0073 0.99269

Ccontrol:Nnoise 2 46.05 23.03 50.9089 8.478e-16 ***

Dcontrol:Hnoise 2 0.02 0.01 0.0259 0.97448

Dcontrol:Pnoise 2 0.01 0.00 0.0060 0.99399

Dcontrol:Jnoise 2 0.03 0.02 0.0371 0.96364

Dcontrol:Knoise 2 0.02 0.01 0.0177 0.98246

Dcontrol:Lnoise 2 0.01 0.00 0.0071 0.99294

Dcontrol:Mnoise 2 0.08 0.04 0.0886 0.91525

Dcontrol:Nnoise 2 78.50 39.25 86.7788 < 2.2e-16 ***

Econtrol:Hnoise 2 0.00 0.00 0.0015 0.99852

Econtrol:Pnoise 2 0.00 0.00 0.0003 0.99971

Econtrol:Jnoise 2 0.00 0.00 0.0004 0.99959

Econtrol:Knoise 2 0.00 0.00 0.0002 0.99983

Econtrol:Lnoise 2 0.00 0.00 0.0003 0.99967

Econtrol:Mnoise 2 0.01 0.00 0.0096 0.99050

Econtrol:Nnoise 2 35.72 17.86 39.4874 3.063e-13 ***

Fcontrol:Hnoise 2 0.01 0.00 0.0077 0.99228

It is obvious that the control factors B, C, D, E, F and G are signi�cant. From the noise

factors just factor N is signi�cant, and the interactions CN, DN, EN, FN and GN are

signi�cant too. The interaction plots are shown in �gure 9.3 on page 193.
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Figure 9.3: Inclinometer, Interaction plots
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The interactions of the �rst four plots show obvious interactions between factors. The last

one between control factor G and noise factor N where the lines are almost parallel so

there is no interaction between them. If we want to minimize the variability of the swing

the best case therefore is C−1D1E1F−1G−1 or G1.

The linear and quadratic term of control factor B is as follows:

Df Sum Sq Mean Sq F value Pr(>F)

Bcontrol 1 2.28 2.28 8.13 0.0053

Bcontrol2 1 0.04 0.04 0.14 0.7104

Residuals 213 270.36 5.9641
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Inclinometer R-Code

menge<-matrix(c(0.62, 3.54, 3.56, 0.62, 3.09, 0.71, 0.73, 3.20,

0.59, 3.11, 3.11, 0.59, 2.98, 0.63, 0.64, 3.02,

0.59, 3.01, 3.02, 0.59, 2.97, 0.61, 0.62, 3.00,

0.51, 2.65, 2.65, 0.50, 2.53, 0.53, 0.54, 2.56,

0.18, 0.96, 0.96, 0.18, 0.89, 0.19, 0.20, 0.90,

1.88, 9.58, 9.55, 1.85, 9.30, 1.92, 1.94, 9.48,

0.19, 1.03, 1.03, 0.19, 0.97, 0.21, 0.21, 0.93,

1.85, 9.46, 9.42, 1.82, 9.19, 1.90, 1.92, 9.35,

0.52, 2.73, 2.72, 0.51, 2.61, 0.55, 0.56, 2.64,

0.29, 1.56, 1.56, 0.29, 1.45, 0.31, 0.32, 1.47,

0.95, 4.98, 4.93, 0.94, 4.79, 0.99, 1.00, 4.82,

1.16, 6.09, 6.09, 1.13, 5.70, 1.21, 1.26, 5.93,

0.26, 1.45, 1.45, 0.25, 1.30, 0.29, 0.30, 1.30,

1.15, 5.99, 5.92, 1.13, 5.69, 1.19, 1.22, 5.84,

0.85, 4.31, 4.30, 0.84, 4.23, 0.86, 0.88, 4.28,

1.10, 5.74, 5.67, 1.07, 5.43, 1.14, 1.17, 5.57,

0.29, 1.55, 1.55, 0.28, 1.45, 0.31, 0.32, 1.47,

0.91, 4.64, 4.66, 0.90, 4.56, 0.94, 0.95, 4.57,

0.39, 2.05, 2.06, 0.39, 1.96, 0.41, 0.42, 1.97,

0.67, 3.61, 3.57, 0.65, 3.27, 0.72, 0.74, 3.41,

1.42, 7.31, 7.38, 1.41, 7.14, 1.48, 1.51, 7.24,

0.69, 3.66, 3.60, 0.67, 3.37, 0.73, 0.74, 3.47,

1.18, 6.04, 6.06, 1.17, 5.90, 1.21, 1.23, 5.95,

0.37, 1.95, 1.95, 0.37, 1.87, 0.39, 0.40, 1.88,

0.39, 2.15, 2.16, 0.38, 1.94, 0.44, 0.44, 1.96,

0.44, 2.29, 2.29, 0.43, 2.21, 0.46, 0.47, 2.22,

1.84, 9.35, 9.19, 1.79, 9.06, 1.85, 1.89, 9.28

),27,8,byrow=T)

#Mean and Variance and logarithm of variance computing:

menge.means<-apply(menge,1,mean)

menge.means

lnvar<-function(x) {log(sum((x -mean(x))^2)/(length(x)-1))}

menge.lnvar<-apply(menge,1,lnvar)

menge.var

SNL<-function(x){-10*log(sum(1/x^2)/length(x),10)}

menge.SNL<-apply(menge,1,SNL)

menge.SNL

#Constructing inner and outer Design:

menge.dat<-data.frame(menge.means,menge.lnvar,menge.SNL,A=factor(rep(c(-1,0,1),

each=9)) ,B=factor(rep(c(-1,0,1),each=3,times=3)),C=factor(rep(c(-1,0,1),9)),

D=factor(c(-1,0,1,0,1,-1,1,-1,0,0,1,-1,1,-1,0,-1,0,1,1,-1,0,-1,0,1,0,1,-1)),

E=factor(c(-1,0,1,0,1,-1,1,-1,0,1,-1,0,-1,0,1,0,1,-1,0,1,-1,1,-1,0,-1,0,1)),

F=factor(c(-1,0,1,1,-1,0,0,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,0,0,1,-1,-1,0,1)),

G=factor(c(-1,0,1,1,-1,0,0,1,-1,1,-1,0,0,1,-1,-1,0,1,0,1,-1,-1,0,1,1,-1,0)))

menge.dat

#Analysis of variance for the logarithm of variance:
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menge.mod.lnvar<-aov(menge.lnvar~A+B+C+D+E+F+G, data=menge.dat)

summary(menge.mod.lnvar)

A<-rep(c(-1,0,1),each=9); A2<-A^2

B<-rep(c(-1,0,1),each=3,times=3); B2<-B^2

C<-rep(c(-1,0,1),9); C2<-C^2

D<-c(-1,0,1,0,1,-1,1,-1,0,0,1,-1,1,-1,0,-1,0,1,1,-1,0,-1,0,1,0,1,-1)

E<-c(-1,0,1,0,1,-1,1,-1,0,1,-1,0,-1,0,1,0,1,-1,0,1,-1,1,-1,0,-1,0,1)

F<-c(-1,0,1,1,-1,0,0,1,-1,0,1,-1,-1,0,1,1,-1,0,1,-1,0,0,1,-1,-1,0,1)

G<-c(-1,0,1,1,-1,0,0,1,-1,1,-1,0,0,1,-1,-1,0,1,0,1,-1,-1,0,1,1,-1,0)

D2<-D^2; E2<-E^2; F2<-F^2; G2<-G^2

menge.mod.lnvar<-aov(menge.lnvar~A+A2+B+B2+C+C2+D+D2+E+E2+F+F2+G+G2)

summary(menge.mod.lnvar)

#Profil Plots:

library(effects)

plot(effect("A",menge.mod.lnvar),main="",xlab="A",ylab="logvar", ylim=c(-0.5,2))

plot(effect("C",menge.mod.lnvar),main="",xlab="C",ylab="logvar", ylim=c(-0.5,2))

plot(effect("D",menge.mod.lnvar),main="",xlab="D",ylab="logvar", ylim=c(-0.5,2))

plot(effect("E",menge.mod.lnvar),main="",xlab="E",ylab="logvar", ylim=c(-0.5,2))

plot(effect("F",menge.mod.lnvar),main="",xlab="F",ylab="logvar", ylim=c(-0.5,2))

#Reduced model analysis:

reduce.mod.lnvar<-aov(lnvar~A+C+D+E+F, data=menge.dat)

summary(reduce.mod.lnvar)

menge.mod2.lnvar<-aov(menge.lnvar~A+B+C+D+E+F+G)

model.tables(menge.mod2.lnvar)

#Analysis with mean as a response variable:

menge.mod.means<-aov(menge.means~A+B+C+D+E+F+G, data=menge.dat)

summary(menge.mod.means)

menge.poly<-lm(menge.means~A,contrasts=list(A="contr.poly"),data=menge.dat)

summary(menge.poly)

menge.poly<-lm(menge.means~B,contrasts=list(B="contr.poly"),data=menge.dat)

summary(menge.poly)

menge.poly<-lm(menge.means~C,contrasts=list(C="contr.poly"),data=menge.dat)

summary(menge.poly)

menge.poly<-lm(menge.means~D,contrasts=list(D="contr.poly"),data=menge.dat)

summary(menge.poly)

menge.poly<-lm(menge.means~E,contrasts=list(E="contr.poly"),data=menge.dat)

summary(menge.poly)

menge.poly<-lm(menge.means~F,contrasts=list(F="contr.poly"),data=menge.dat)

summary(menge.poly)

menge.poly<-lm(menge.means~G,contrasts=list(G="contr.poly"),data=menge.dat)

summary(menge.poly)

plot(effect("C",menge.mod.means),main="",xlab="C",ylab="logvar", ylim=c(1,4))

plot(effect("D",menge.mod.means),main="",xlab="D",ylab="logvar", ylim=c(1,4))

plot(effect("E",menge.mod.means),main="",xlab="E",ylab="logvar", ylim=c(1,4))

plot(effect("F",menge.mod.means),main="",xlab="F",ylab="logvar", ylim=c(1,4))

#PART C: Defining new data set:

menge1.dat<-data.frame(menge1=c(0.62,3.54,3.56,0.62,3.09,0.71,0.73,3.20,0.59,
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3.11,3.11,0.59,2.98,0.63,0.64,3.02,0.59,3.01,3.02,0.59,2.97,0.61,0.62,3.00,

0.51,2.65,2.65,0.50,2.53,0.53,0.54,2.56,0.18,0.96,0.96,0.18,0.89,0.19,0.20,

0.90,1.88,9.58,9.55,1.85,9.30,1.92,1.94,9.48,0.19,1.03,1.03,0.19,0.97,0.21,

0.21,0.93,1.85,9.46,9.42,1.82,9.19,1.90,1.92,9.35,0.52,2.73,2.72,0.51,2.61,

0.55,0.56,2.64,0.29,1.56,1.56,0.29,1.45,0.31,0.32,1.47,0.95,4.98,4.93,0.94,

4.79,0.99,1.00,4.82,1.16,6.09,6.09,1.13,5.70,1.21,1.26,5.93,0.26,1.45,1.45,

0.25,1.30,0.29,0.30,1.30,1.15,5.99,5.92,1.13,5.69,1.19,1.22,5.84,0.85,4.31,

4.30,0.84,4.23,0.86,0.88,4.28,1.10,5.74,5.67,1.07,5.43,1.14,1.17,5.57,0.29,

1.55,1.55,0.28,1.45,0.31,0.32,1.47,0.91,4.64,4.66,0.90,4.56,0.94,0.95,4.57,

0.39,2.05,2.06,0.39,1.96,0.41,0.42,1.97,0.67,3.61,3.57,0.65,3.27,0.72,0.74,

3.41,1.42,7.31,7.38,1.41,7.14,1.48,1.51,7.24,0.69,3.66,3.60,0.67,3.37,0.73,

0.74,3.47,1.18,6.04,6.06,1.17,5.90,1.21,1.23,5.95,0.37,1.95,1.95,0.37,1.87,

0.39,0.40,1.88,0.39,2.15,2.16,0.38,1.94,0.44,0.44,1.96,0.44,2.29,2.29,0.43,

2.21,0.46,0.47,2.22,1.84,9.35,9.19,1.79,9.06,1.85,1.89,9.28),

Acontrol=factor(rep(c(-1,0,1),each=72)), Bcontrol=factor(rep(c(-1,0,1),

each=24,times=3)),Ccontrol=factor(rep(c(-1,0,1),each=8,times=9)),

Dcontrol=factor(c(-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,

0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,

-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,

-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,

-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,

-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,

-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1)),

Econtrol=factor(c(-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,

-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1)),

Fcontrol=factor(c(-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,

-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,

-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,

0,0,0,0,0,1,1,1,1,1,1,1,1)),

Gcontrol=factor(c(-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0)),Hnoise=factor(rep(c(-1,1),each=4,times=27)),

Pnoise=factor(rep(c(-1,1),each=2,times=54)),Jnoise=factor(c(-1,-1,1,1,1,1,-1,-1,

-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,
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-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,

-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,

-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,

-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,

-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,

-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1)),Knoise=factor(rep(c(-1,1),each=1,

times=108)),Lnoise=factor(c(-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1)),Mnoise=factor(c(-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1)),Nnoise=factor(c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1)))

#Analysis of variance:

menge9.mod<-aov(menge1~Acontrol+Bcontrol+Ccontrol+Dcontrol+Econtrol+Fcontrol+

Gcontrol+Hnoise+Pnoise+Jnoise+Knoise+Lnoise+Mnoise+Nnoise+

Acontrol*Hnoise+Acontrol*Pnoise+Acontrol*Jnoise+Acontrol*Knoise+Acontrol*Lnoise

+Acontrol*Mnoise+Acontrol*Nnoise+

Bcontrol*Hnoise+Bcontrol*Pnoise+Bcontrol*Jnoise+Bcontrol*Knoise+Bcontrol*Lnoise

+Bcontrol*Mnoise+Bcontrol*Nnoise+

Ccontrol*Hnoise+Ccontrol*Pnoise+Ccontrol*Jnoise+Ccontrol*Knoise+Ccontrol*Lnoise

+Ccontrol*Mnoise+Ccontrol*Nnoise+

Dcontrol*Hnoise+Dcontrol*Pnoise+Dcontrol*Jnoise+Dcontrol*Knoise+Dcontrol*Lnoise

+Dcontrol*Mnoise+Dcontrol*Nnoise+

Econtrol*Hnoise+Econtrol*Pnoise+Econtrol*Jnoise+Econtrol*Knoise+Econtrol*Lnoise

+Econtrol*Mnoise+Econtrol*Nnoise+

Fcontrol*Hnoise+Fcontrol*Pnoise+Fcontrol*Jnoise+Fcontrol*Knoise+Fcontrol*Lnoise

+Fcontrol*Mnoise+Fcontrol*Nnoise+

Gcontrol*Hnoise+Gcontrol*Pnoise+Gcontrol*Jnoise+Gcontrol*Knoise+Gcontrol*Lnoise

+Gcontrol*Mnoise+Gcontrol*Nnoise, data=menge1.dat)

summary(menge9.mod)

#Interaction effects:
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interaction.plot(Nnoise,Ccontrol,menge1,lwd=2,xlab="N",ylab="Mean of the Swing",

ylim=c(0,10))

interaction.plot(Nnoise,Dcontrol,menge1,lwd=2,xlab="N",ylab="Mean of the Swing",

ylim=c(0,10))

interaction.plot(Nnoise,Econtrol,menge1,lwd=2,xlab="N",ylab="Mean of the Swing",

ylim=c(0,10))

interaction.plot(Nnoise,Fcontrol,menge1,lwd=2,xlab="N",ylab="Mean of the Swing",

ylim=c(0,10))

interaction.plot(Nnoise,Gcontrol,menge1,lwd=2,xlab="N",ylab="Mean of the Swing",

ylim=c(0,10))

#Linaer and quadratic term of factor B:

Bcontrol=rep(c(-1,0,1),each=24,times=3); Bcontrol2<-Bcontrol^2

menge10.mod<-aov(menge1~Bcontrol+Bcontrol2,data=menge1.dat)

summary(menge10.mod)

Gcontrol=c(-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

0,0,0,0,0,0,0,0)
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Chapter 10

Summary

10.1 Content

• Cement (Ch. 2, Sec. 2-2, P. 8)

• Radon (Ch. 2, Sec. 2-3, P. 15)

• Rodding (Ch. 2, Sec. 2-4, P. 21)

• Nozzle Design (Ch. 3, Sec. 3-1, P. 29)

• Ratio Control Algorithm (Ch. 3, Sec. 3-2, P. 36)

• Aluminium Master Alloy (Ch. 3, Sec. 3-3, P. 44)

• Mono�lament Fiber (Ch. 4, Sec. 4-3, P. 54)

• Glue (Ch. 4, Sec. 4-4, P. 54)

• Soft Drink Bottlers (Ch. 5, Sec. 5-3, P. 70)

• Strength of a paper (Ch. 5, Sec. 5-4, P. 77)

• Metal Surface Part (Ch. 5, Sec. 5-5, P. 83)

• Router (Ch. 6, Sec. 6-3, P. 94)

• Nickel-Titanium (Ch. 6, Sec. 6-4, P. 102)

• Etch rate for silicon-nitride (Ch. 6, Sec. 6-5, P. 113)

• Chemical Process (Ch. 6, Sec. 6-6, P. 122)

• 25−1 Factorial Design (Ch. 7, Sec. 7-2, P. 137)
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• Monte Carlo Simulation Model (Ch. 7, Sec. 7-3, P. 146)

• Dye Experiment (Ch. 8, Sec. 8-10, P. 164)

• Re�nery Experiment (Ch. 8, Sec. 8-11, P. 174)

• Inclinometer (Ch. 9, Sec. 9-3, P. 187)
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10.2 Summary Cement

The data are saved in the �le "cement

data.txt". The Boxplot shows that

when by using the mixing technique 2

there is a larger strength in Portland ce-

ment.

With one way analysis of variance we �nd

out that mixing techniques have an ef-

fect on the strength of Portland cement.

By using a multiple comparison test es-

pecially Tukey-HSD con�dence intervals

we �nd out that the mean 4 is signi�cant

di�erent from others.

The residuals are approximately nor-

mally distributed, and the ANOVA test

indicates that 70% of variability in the

model is explained by the mixing tech-

niques.

If we want to have a strongest cement we

have to work with mixing technique 2.
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10.3 Summary Radon

The data are saved in the �le "radon

data.txt". The Boxplot shows the larger

the ori�ce diameter, the smaller the

amount of released radon.

The one way ANOVA indicates that

there is at least one treatment mean that

is di�erent. The model F-value is 30.85

and it implies that the model is signi�-

cant.

The QQ-plot shows no abnormality in

the residuals. The residual analysis also

indicates that the ori�ce diameter "1.40"

has the largest residuals skewness.

The Tukey-HSD con�dence intervals give

us the result that the treatments 5 and 6

are di�erent from the other means; and

the treatments 2, 3 and 4 are also di�er-

ent from other means.
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10.4 Summary Rodding

The data are saved in the �le "rodding

data.txt". The Boxplot shows the dif-

ference between the median of the four

rodding levels, also by using rod 20 we

have a larger compressive strength.

The one way ANOVA indicates there is

no e�ect on the response variable due to

rodding level. The model F-value is 1.865

with the P-value 0.2138 indicating that

the model is not signi�cant.

From the Tukey-HSD con�dence inter-

vals we can say that non of the treatment

means are di�erent from others.
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10.5 Summary Nozzle Design

The two way ANOVA gives us the signi�-

cant e�ects of the factor nozzle on the re-

sponse variable shape factor. The model

F-value of 6.401 implies that the model

is signi�cant, in this case we have a R2 of

63%.

The ANOVA table indicates that there

is no interaction e�ect between these two

factors.

The residual analysis veri�es that the

residuals are normally distributed. From

the Tukey-HSD con�dence interval we

can conclude that nozzle 1 and 5 are sig-

ni�cant di�erent from the nozzle 3 and

4.

For larger shape factor values we have to

select nozzles 3 and 4.
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10.6 Summary Ratio Control Algorithm

The two way ANOVA indicates that both

factors have a signi�cant e�ect on the av-

erage cell voltage, also there is no interac-

tion e�ect between these two factors. The

model F-value implies that the model is

signi�cant.

The QQ-plot indicates the normality of

residuals.

The Tukey-HSD con�dence intervals in-

dicate that the treatment 3 is signi�cant

di�erent from others. If we want to have a

better cell voltage we have to select treat-

ment 3.
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10.7 Summary Aluminium Master Alloy

The two way ANOVA indicates that fac-

tor furnace (here blocks) is signi�cant,

but the stirring rate (here treatments)

with the F-value of 0.85 and the P-value

of 0.4995 isn't signi�cant. The model F-

value of 3.6 implies that the model is sig-

ni�cant.

From the ANOVA table we can say there

is no di�erence in mean grain size due to

the di�erent stirring rates.

The QQ-plot indicates that the normal-

ity assumption is valid. From the plot of

residuals versus furnace and stirring rate

we can conclude that the variance is con-

sistent at di�erent stirring rates, it also

indicates that the di�erent stirring rate

does not a�ect variance.

From the Tukey-HSD con�dence inter-

vals we can see that none of the treat-

ments are signi�cant di�erent from oth-

ers so there is no e�ect on the grain size

due to stirring rate.
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10.8 Summary Mono�lament Fiber

All conditions of mono�lament �ber are

ful�lled. From the scatter plot we can

�nd out that the variables X and Y are

linear dependent.

From the ANOVA table we conclude that

H1 : β 6= 0 at the signi�cance level of

< 0.0001

The one-way ANOVA gives us the result

that the covariate X isn't independent

from the machine with R2
adj of 0.174.

The residual analysis shows that the

residuals are normally distributed.

In total the covariance analysis indicates

that the factor machine has no e�ect on

the breaking strength of the mono�la-

ment �ber.
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10.9 Summary Glue

The scatter plot shows that there is a

negative linear relationship between X

and Y.

The ANOVA table gives us the result

that H1 : β 6= 0 with signi�cance level

of < 0.0001, and the covariate X isn't in-

dependent from the type of formulation

with R2
adj of 0.744.

The QQ-plot shows that the residuals are

normally distributed.

In total, the covariance analysis says that

the formulation doesn't have any e�ect

on the strength of the glue.
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10.10 Summary Soft Drink Bottlers

As we see from the interaction plots and

also from the ANOVA table there is no

interaction between three factors, but all

three main e�ects are highly signi�cant.

In particular, the low level of pressure re-

sults in smaller mean deviance from the

target. This can be seen in the con�dence

intervals.
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10.11 Summary Strength of a paper

From the boxplots we can see that the

factors do have an e�ect on the strength

of a paper. By doing the three way anal-

ysis of variance we �nd out that the three

main e�ects are highly signi�cant.

From the interaction plots we see

that there is an interaction between

hardwood-pressure and rare interac-

tion between hardwood-time and time-

pressure.

The F-value of 9.611 implies that the

model is signi�cant. The R2 implies that

about the 81% of the variability in the

strength of the paper is explained by the

percentage of the hardwood, the pres-

sure, the cocking time and their interac-

tions.

The interaction plot shows that the

hardwood-time lines are approximately

parallel. The hardwood-pressure and

pressure-time lines are approximately

parallel. Just in two cases, the lines of

pressure 400 and 500 aren't parallel, they

are crossed.

The residuals are approximately nor-

mally distributed. To observe a higher

strength of a paper the combination of

pressure=650, hardwood percentage=2%

and the cooking time=4 will be e�ective.
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10.12 Summary Metal Part Surface

From the boxplots we can see that the

factors do have an e�ect on the surface

�nish of a metal part. By doing the two-

way analysis of variance we �nd out that

the two main e�ects are highly signi�-

cant.

From the interaction plots we see that

there is an interaction between feed rate

and depth when the cutting depth lines

are at level 0.15 and 0.18.

The F-value of 18.49 implies that the

model is signi�cant. The R2 implies that

about 85% of the variability in the sur-

face �nish of a metal part is explained by

the feed rate, the cutting depth and their

interactions.

The residuals are approximately normal

distributed. To observe a better result

the combination of feed rate at high level

(0.3) and the cutting depth of (0.25) will

be e�ective.
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10.13 Summary Router

The boxplots show that by the smaller

bit size 1
16

the vibration is almost equal

for each cutting speed. The analysis of a

22 factorial design gives us the result that

the main e�ect and their interactions are

signi�cant and that they have an e�ect

on the vibration of the circuit board.

The F-value of 91.36 implies that the

model is signi�cant. The R2 implies that

about 95.8% of the variability in the vi-

bration is explained by the bit size, the

cutting speed and their interactions.

The residual analysis veri�es that the

residuals are normally distributed, and

we can see that the larger vibration is

caused when we are at the high level of

both factors.

To have a smaller vibration during the

work, the bit size must be in the low level.

The interaction plot shows that by the

combination form we have to select the

bit size 1
16

and the cutting speed of 90

for observing a smaller vibration.
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10.14 Summary Nickel-Titanium

The normal plot indicates that the four

main e�ects and the two interaction ef-

fects AD and BD are signi�cant. The

F-value of 10.51 implies that the model

is signi�cant and 82% of the variabil-

ity is explained by the signi�cant factors

above.

As we see from the interaction plots

the following combinations lead to small-

est length of the cracks: A+B−D−,

A+D−C+, B+D+A+ and B+D+C+.

The residual analysis veri�es the normal-

ity assumption of the model. To observe

a smaller cracking length the best solu-

tion is to have all four factors at their

high levels.
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10.15 Summary Etch rate for silicon-nitride

The normal plot indicates that the two

main e�ects A and D and their interac-

tion e�ects AD are signi�cant. The 22 fac-

torial design has a F-value of 97.91 and it

implies that the model is signi�cant and

95% of the variability is explained by the

signi�cant factors above.

As we see from the interaction plots when

both factors A and D are at their high

level we will have a larger response. The

residual analysis veri�es the normality

assumption of the model.
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10.16 Summary Chemical Process

The normal plot indicates that the main

factors A, C and D and the interaction

e�ects AB, ABC and ABD are signi�-

cant. The F-value of 13.1 implies that the

model is signi�cant.

In analyzing the reduced model we see

that 86% of the variability is explained

by the factors above.

The QQ-plot veri�es that the residuals

are normally distributed. The interaction

plots show that when the factors A, B

and C are at their low level and D at high

level then we will have a better yield.
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10.17 Summary 25−1 Factorial Design

As we can see from the normal plot the

main e�ects A, B and D and the two fac-

tor interaction e�ects AB and AD are

signi�cant. The ANOVA table approves

the above results. The F-value of 18.96

implies that the model is signi�cant and

88% of the variability is explained by the

above e�ects. The residual analysis veri-

�es the normality of the residuals.

The analysis of a reduced 23 factorial de-

sign implies that BD and ABD aren't sig-

ni�cant, but the other factors are signi�-

cant. The interaction plot indicates that

for observing higher values we have to set

A and D at their high level and B at low

level.
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10.18 Summary Monte Carlo Simulation Model

As we see in the �rst part the two gener-

ators are equal, the factors D and E can

be aliased with AB and BC respectively.

From the normal plot we indicate that

the main e�ects A and B are very large.

Recall that we are estimating A+BD and

B+AD+CE.

As we have seen from the ANOVA table

the two main e�ects A and B are signif-

icant. Here D is the smallest e�ect and

is negative. In the second part D will be

estimated as -AB. As we see in this case

A and B are still large.
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10.19 Summary Dye Experiment

The analysis of variance indicates that

the two main factors A and B are sig-

ni�cant at signi�cance level of α = 0.05

and their interaction is rare signi�cant at

α = 0.1. Factor Block doesn't have any

e�ect on the response variable and it isn't

signi�cant.

As we see from the factor diagram, factor

A behaves quadratic; at the intermediate

level (0) it has the largest value, but fac-

tor C shows no di�erence, and the value

of each level is almost the same, factor

B behave the same from level (-1) to (0),

from level (0) to (1) it increases and has

the largest value at level (1). It behaves

linearly. One can also see the interaction

plots below.

Factor A is the most important followed

by factor B, The best setting for observ-

ing an optimized volume is A = 0, B = 1,

C = 0 or C = 1
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10.20 Summary Re�nery Experiment

The analysis of variance table gives us

the result that factors A, B and C have

the largest e�ect on the response variable

and the interaction e�ect AlCl is also sig-

ni�cant. From the factor diagram below

we can also see that these three factors

behave linearly, their linearity increases

from level 0 to level 1, and the largest

value is observed at their highest level.

The plot of the main e�ects and their in-

teraction e�ects is shown below.
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10.21 Summary Inclinometer

From the analysis of the logarithm of

variance ln(var) as response variable we

have seen that factors A, C, D, E and F

have an e�ect on the response variable.

Factors C, D, E, F behave linearly as one

can see.
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From the analysis of the mean as a re-

sponse variable factors C, D, E and F are

highly signi�cant and have an e�ect on

the response variable. These factors also

behave linearly, as you can see from the

�gures below. The best case in this re-

gard is when factors A, C and F are at

their lowest level (-1) and factors D and

E are at their high level (1).
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By analyzing the model with both con-

trol and noise factor we discover that the

control factors B, C, D, E, F and G are

signi�cant. From the noise factors only

factor N is signi�cant. Here interactions

CN, DN, EN, FN and GN are also signif-

icant.
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