
GALILEO NAVIGATION MESSAGE
PROCESSING AND CHANNEL

SIMULATION

Diplomarbeit
durchgeführt von

NEVENA DJAJA

————————————–

Institut für Breitbandkommunikation
Technische Universität Graz

Vorstand: Univ.-Prof. Dr. Gernot Kubin

Graz University of Technology

in Zusammenarbeit mit

Begutachter: Ao. Univ.-Prof. Dr. Erich Leitgeb
Betreuer: Dr. Wolfgang Kogler (EADS Astrium) Graz, im August 2010

Abstract

The Navigation System Galileo is currently going through its test and development phase,
which includes two satellites that broadcast navigation signals. Those signals are acquired
with test receivers worldwide and deliver specially formatted files containing symbols and
measurements parameters which are used for test purposes.
Galileo system in contrast to well-known GPS system, deploys channel encoding in form
of convolutional coding with Viterbi decoding algorithm. The aim of this diploma thesis is
to develop a software that processes raw symbols obtained after despreading. This symbol
stream is still encoded, interleaved and CRC protected. The developed software recovers the
navigation message and compare the results with the hardware decoded reference messages.
After its successful execution, navigation parameters can be extracted from the message and
then used for calculations of satellite coordinates.

II

Kurzfassung

Das Navigationssystem Galileo befindet sich in Entwicklungs- und Testphase, welches zur
Zeit zwei Satelliten umfasst. Diese Signale können mit Testempfängern weltweit empfan-
gen werden um daraus generierte Symbole und Messparameter in entsprechender Form zur
Verfügung zu stellen.
Im Unterschied zum bekannten GPS Navigationssystem, verwendet Galileo eine Kanalco-
dierung und zwar Faltungskodierung zusammen mit Viterbi Decodierung. Das Ziel dieser
Diplomarbeit ist es, eine Software zu entwickeln, die aus den Rohsymbolen die Navigati-
onsnachricht gewinnt. Die Rohsymbole werden direkt nach dem Entspreizen gespeichert
und beinhalten noch die verschachtelte, codierte und CRC geschützte Navigationsnach-
richt. Nach erfolgreicher Ausführung der Software können die Navigationsparameter aus
den Symbolen extrahiert werden und zur Bestimmung der Satellitenposition herangezogen
werden.

III

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, am
(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

date (signature)

IV

Danksagung

Diese Diplomarbeit wurde im Jahr 2009/2010 bei EADS Astrium in Ottobrunn (München)
durchgeführt.

Zu Beginn möchte ich mich bei Professor Erich Leitgeb bedanken, der mir bei der Suche
der Diplomarbeit sehr geholfen hat, sowie bei Herrn Rudolf Kohl der es ermöglicht hat,
die Diplomarbeit bei EADS Astrium zu realisieren. Weiters möchte ich mich bei meinem
Betreuer Wolfgang Kogler und meinem Chef Jan Wendel bei EADS Astrium für die Hilfe
und den Einsatz während der Durchführung meiner Diplomarbeit herzlich bedanken.

An dieser Stelle auch ein herzliches Dankeschön an alle Kollegen aus der Abteilung ”Navi-
gations System Engineering” von EADS Astrium in Ottobrunn.

Graz, im August 2010 Nevena Djaja

V

Contents

1 Introduction 1
1.1 Scope of work . 1
1.2 Overview of Galileo system . 3

1.2.1 System description and development 4
1.2.2 GIOVE System Architecture . 5
1.2.3 Galileo System Architecture . 6

2 Convolutional coding with Viterbi decoding technique 8
2.1 Forward Error Correction . 8
2.2 Convolutional Coding . 10

2.2.1 Encoder Description . 11
2.2.2 Finite state diagram . 12
2.2.3 Tree diagram . 13
2.2.4 Trellis diagram . 14
2.2.5 Encoding with Trellis . 14

2.3 Decoding with Viterbi-algorithm . 16

3 Implementation of channel simulation 20
3.1 Simulation environment . 20

3.1.1 Transmission segment . 20
3.1.2 Simulation channel . 24
3.1.3 Reception segment . 25
3.1.4 Test segment . 28

3.2 Results and evaluation of BER values . 30

4 Navigation Signals and Navigation Message Structure 34
4.1 Galileo Navigation Signals . 34
4.2 GIOVE Navigation Signals . 35
4.3 Navigation Message . 36

4.3.1 Message Generation . 37
4.3.2 Message Transmission . 39

5 Experimental verification 42
5.1 GETR inside . 42
5.2 Examples of test files . 43
5.3 Test environment . 45
5.4 Results evaluation with GIOVE navigation data 47
5.5 Results evaluation with Galileo Navigation Data 50

VI

6 Evaluation of navigation parameters 51
6.1 Output in Rinex . 51
6.2 Output in Yuma . 53

7 Conclusion and future work 56

Bibliography 57

A Software description of the Navigation Channel Simulation A59

B Software description of the Tests with GETR pages B69

C Software description of the Export of RINEX and YUMA files C79
C.1 Main Program . C79
C.2 Rinex and Yuma programs . C90

D Noise in the channel D92
D.1 White Noise . D92
D.2 Error Probability . D95

VII

List of Figures

1.1 GIOVE system architecture . 5

2.1 Block Scheme of Satellite Channel . 9
2.2 Convolutional encoder . 11
2.3 State Diagram . 12
2.4 Tree Diagram . 13
2.5 Trellis diagram . 14
2.6 Encoder Trellis . 15
2.7 Viterbi Decoding Flow . 17
2.8 Decoder Trellis . 17
2.9 Decoder Trellis with Survivor Path . 18

3.1 Block scheme of channel simulation . 21
3.2 CRC computation . 22
3.3 Convolutional coding scheme . 23
3.4 Correlation of the block sequence with synchron pattern 27
3.5 Vector of ideally positioned synchron patterns 28
3.6 Correlation of the first correlation result with the vector of ideally positioned

synch patterns . 29
3.7 Correlation peaks above 98% of the maximum peak value 30
3.8 Synchron pattern indices . 31
3.9 Block sequence with 10 pages . 31
3.10 Bit Error Rate plot . 32

5.1 Data from ’generx_091015_165117.meas’ 43
5.2 Data from ’generx_091015_165117.nav’ 44
5.3 Block diagram of reception segment . 45
5.4 Example of the frame structure from the file ’generx_091015_165117_nav.dat’ 47
5.5 Correlation between block symbol sequence and synchron pattern 49

6.1 Rinex from the file ’generx_091015_163802.nav’ 52
6.2 Yuma from file ’generx_091015_165117.nav’ for GIOVE A 53
6.3 Yuma from file ’generx_091015_165117.nav’ for GIOVE B 54
6.4 Satellite coordinates from ephemeris data 55
6.5 Satellite coordinates from almanac data 55

A.1 Block diagram of navigation channel . A59
A.2 Synchron pattern search procedure . A63
A.3 Tables - output of generate_tables function A65
A.4 Flow chart of the main program for sumulation A68

B.1 Block diagram of the reception segment B69

VIII

B.2 Synchron pattern search procedure . B72
B.3 Tables - output of generate_tables function B74
B.4 Flow chart of the main program . B78

C.1 Block diagram of the reception segment C80
C.2 Synchron pattern search procedure . C82
C.3 Tables - output of generate_tables function C84
C.4 Flow chart of the main program . C88
C.5 Flow chart of Rinex and Yuma . C90

D.1 Autocorrelation of white noise . D93
D.2 Power spectral density of white noise . D94
D.3 Gaussian probability density function . D96
D.4 Likelihood functions . D97

IX

List of Tables

1.1 Galileo constellation parameters, taken from [9] 3

2.1 State transition table with input and output entries 15
2.2 Accumulated metric table . 18
2.3 Selected states when tracing back through survivor 18
2.4 Original transmitted message . 19

3.1 Encoder parameters . 23

4.1 Galileo signals definition [21] . 34
4.2 Signal E1 definition [21] . 35
4.3 Signal E5 definition [21] . 35
4.4 Signal E6 definition [21] . 35
4.5 Giove signals definition [20] . 36
4.6 Page generation . 37
4.7 Page . 38
4.8 F/NAV Page format . 38
4.9 F/NAV Decoded Page . 38
4.10 I/NAV Page format . 39
4.11 E5b Word Format - Part 1 . 39
4.12 E5b Word Format - Part 2 . 40
4.13 E1B Word Format - Part 1 . 40
4.14 E1B Word Format - Part 2 . 40
4.15 GIOVE Page Layout . 40
4.16 GIOVE Page Fields Description . 41

5.1 GETR files description [6] . 43

A.1 List of all functions . A60
A.2 msg_structure . A60
A.3 crc . A61
A.4 encode_conv . A61
A.5 interleave . A61
A.6 sync_pattern . A62
A.7 channel . A62
A.8 sync_pattern_search . A62
A.9 extract_symbols . A64
A.10 deinterleave . A64
A.11 decode_vit . A64
A.12 generate_tables . A65
A.13 convert_i2b, convert_b2i, i2b, b2i A66

X

A.14 crc_check . A67

B.1 List of all functions . B69
B.2 msg_structure . B70
B.3 read_getr_symbols . B70
B.4 sync_pattern_search . B71
B.5 extract_symbols . B72
B.6 deinterleave . B73
B.7 decode_vit . B73
B.8 generate_tables . B74
B.9 convert_i2b, convert_b2i, i2b, b2i B74
B.10 crc and crc_check . B75
B.11 generate_frames . B76
B.12 store_frame_struct . B76
B.13 read_getr_pages . B76
B.14 calculate_err_rate . B77

C.1 List of all functions . C79
C.2 msg_structure . C80
C.3 read_getr_symbols . C81
C.4 sync_pattern_search . C81
C.5 extract_symbols . C82
C.6 deinterleave . C83
C.7 decode_vit . C83
C.8 generate_tables . C84
C.9 convert_i2b, convert_b2i, i2b, b2i C85
C.10 crc and crc_check . C85
C.11 generate_frames . C86
C.12 store_frame_struct . C86
C.13 generate_subframes . C86
C.14 store_subframes . C87
C.15 page_struct_fnav . C87
C.16 page_struct_inav . C89
C.17 calculate_param . C89
C.18 GIOVE Page Layout . C89

XI

1 Introduction

Evolution of European navigation satellite system Galileo includes a couple of stages, some
of them already completed successfully. This chapter provides a short description of the
current state and the following phases in development of the Galileo Navigation System
together with the brief presentation of the accomplished work.

1.1 Scope of work

This work describes and implements a channel model for the navigation system Galileo. The
main part of this model is channel coding, namely the Convolutional coding with Viterbi de-
coding, for the first time employed in such navigation satellite system. It also provides an
overview of the test results with navigation data that are obtained with the use of the associ-
ated software developed within this diploma thesis. Detailed description of the software is
provided within the Appendices.

First part covers the simulation of one navigation channel and investigates its performance
characteristic regarding the Bit Error Rate (BER) for different values of Signal to Noise
Ratio (SNR). For this purpose, the structure of one navigation message type is generated
as described in [21], but with random data instead of the navigation data. These random
generated bits in a specified length are used for the calculation of the Cyclic Redundancy
Checksum (CRC), which is then appended to the end of them. They are all encoded em-
ploying the convolutional coding algorithm and form a sequence of symbols. They are then
interleaved according to the interleaving matrix in [21]. Since at the reception every ac-
quired navigation message contains some pattern that indicates the beginning of the actual
navigation page (the smallest unit that builds a navigation message), this pattern, called the
synchron pattern is randomly added within the symbol sequence. Hence the simulation can
draw nearer to the reality.

In the next step these symbols are transmitted over the channel, which is modeled as an
Additive White Gaussian Noise channel (AWGN). This well known mathematical model is
suitable for the purpose of simulation of the navigation channel because the main source
of the noise in the transmission channel is the noise produced in the receiver, which is
caused by thermal movements of the electrons. This effect is perfectly described using the
Gaussian probability distribution for the amplitude values of the white noise having the
constant spectral density (see Appendix D).

At the reception side, the steps described above are done in a reverse way; synchron pattern
is found and removed, then the pages are deinterleaved and decoded employing the Viterbi
decoding algorithm, and finally the CRC check is performed. These should result in the
same transmitted bit sequence as from the beginning. This sequence together with the input
sequence is used for calculations of BER values and their graphical representation where the
obtained value from simulation is compared with the theoretical value of BER.

1

Chapter 1. Introduction 2

The second part of the work deals with the test data received from two satellites with a Real
Time Receiver (RTR) for test purposes. This RTR used for experimental purposes and test-
ing of the future Galileo signals, is referred to as the Galileo Experimental Test Receiver
(GETR). It outputs files in a specific format, which description is provided in [6]. From
those files two types of data sequences are extracted and processed. These are the sym-
bol sequence that contains the received raw symbols, and the bit sequence that contains the
decoded bits. Therefore, only one part of the software that was used for the simulation,
namely the reception part with Viterbi decoding is applied on the sequence with test sym-
bols. The result of this processing is the data bit sequence which should coincide with the
data bit sequence that is also contained within the same file, in form of the test pages. These
are already hardware deinterleaved and decoded and hence are convenient for a comparison
with the data bits that appeared as output of the decoding algorithm. The results of this
comparison are analyzed and in all cases they show very good correspondence.

Finally, the navigation parameters extracted from the appropriate data sequence are exported
in two specific formats defined for exporting of navigation message parameters. These for-
mats are referred to as the Receiver Independent Exchange Format (RINEX) and the Yuma
format, and they are used to store different kinds of navigation parameters. They are de-
scribed in one of the following chapters (also see [26] for RINEX and [5] for Yuma format).
The results are again compared with the existing files in the same format and the comparison
shows the correctness of the implemented routine. Values of those parameters are further
used for calculations of the positions of the two existing test satellites, at which the ade-
quate algorithm for the computation of satellite coordinates was used [20],[21]. Chapters
are organized in the following structure:

Chapter 1 includes the scope of this work and an introduction to Galileo Navigation System.
It highlights the current stage of design and the structure of the system as well as the plans
for the future development.

Chapter 2 provides the theoretical description of the channel coding technique that is em-
ployed in Galileo, the convolutional coding with Viterbi decoding algorithm. Software im-
plementation of this technique is the essential part of this work.

Chapter 3 represents the simulation of one navigation channel followed by the generation of
one navigation message from Galileo and transmission of this message through the channel.
It is the implementation of the Chapter 2 with parameters defined as in [21]. Therefore, the
implemented structure is a good representation of the future Galileo navigation signal and
navigation message. After reception of this signal and decoding of the extracted symbols,
the results are evaluated and the Bit Error Rate (BER) is computed.

Chapter 4 depicts the structure of navigation messages that are freely and openly accessible
to public users, as well as the signals carrying those messages. These messages are then
evaluated in the subsequent chapter. The encrypted messages that have limited accessibility
and that are provided only to specific group of users are not considered within this work.

Chapter 5 describes briefly the test receiver used for measurements and reception of naviga-
tion signals broadcast from the two test satellites. As mentioned above, the receiver is named
Galileo Experimental Test Receiver (GETR). Test files that are analyzed in this work were
acquired with the GETR that was placed in Weilheim, a town in Germany in the south of
Bavaria. These files are examined and processed, and the results are evaluated and discussed

Chapter 1. Introduction 3

within this chapter. Hence, it includes the application of the second part of the simulation
software, the reception part, on the test data from GETR.

Chapter 6 comments two possible output formats for export of navigation parameters ex-
tracted from navigation messages, RINEX and Yuma. It shows some examples of generated
files with navigation parameters, as well as the examples of the satellite coordinates calcu-
lated from those parameters.

Chapter 7 contains the conclusion of the work and the future aspects within this area of
research.

In Appendices A, B, C and D the thorough descriptions of the implemented software ver-
sions are provided as well as the mathematical explanation of the formulas used for the
channel implementation, respectively. Software used for the accomplishment of this work is
MATLAB (R2009a).

1.2 Overview of Galileo system

Galileo is a Global Navigation Satellite System (GNSS) established by European Union
(EU) and European Space Agency (ESA) in 2002 [4]. It is the first innovative navigation
system for Europe, to be used primarily for civilian purposes. Its constellation characteris-
tics can be taken from table 1.1:

Number of Satellites 30
Number of orbital planes 3

Nominal inclination of each orbit 56◦

Nominal distance betw. satellites in one orbit 40◦

Orbit altitude 23222 km
Nominal semi-major axis 29600 km

Orbital period 14h 4m 22s

Table 1.1. Galileo constellation parameters, taken from [9]

Out of 30 satellites, 27 are fully operational in Walker constellation 1, orbiting in 3 equally
spaced planes in Medium Earth Orbit (MEO). The remaining 3 spare satellites (one per orbit)
are non-operational, and should replace in case of failure one of the operational satellites.
This is performed by shifting the spare satellite to the according position within a short
amount of time (a couple of days).

Since the satellites are orbiting the Earth “faster” than Earth itself rotates around its axis, one
satellite will make 1.7 orbits per sidereal day, which further means that after 10 sidereal days
its ground-track will repeat. This satellite constellation, when nominally operated should
provide minimum 6 visible satellites to be available for positioning to every user in any place
worldwide and at any moment of time, with the appropriate receiving equipment [9].

1Optimal constellation for navigation satellites, here denoted as Walker Delta 56◦ : 27/3/1

Chapter 1. Introduction 4

1.2.1 System description and development

Development of Galileo System can be divided in three phases:

• Definition and Design

• In Orbit Validation (IOV) and Development

• Full Operational Capability (FOC)

Galileo system is currently going through its test and validation phase, namely the last stage
of the Definition and Design phase with two launched satellites named Galileo In-Orbit
Validation Element (GIOVE), hence GIOVE A and GIOVE B. Next step will be the launch
of the four satellites for the IOV and Development phase [19] .

The first one, GIOVE A, was launched in December 2005 and broadcast the future Galileo
ranging signals over two channels simultaneously. Its purpose was to test and validate signal
frequencies that are going to be used in the future Galileo system, to test the two on-board
atomic clocks (Rubidium Atomic Frequency Standard clocks - RAFS) and to characterize
the orbital parameters such as radiation environment of Medium Earth Orbit (MEO), where
it was placed. Currently it is in the graveyard orbit, but still operational for short periods of
time [20].

The second one launched in April 2008 and named GIOVE B, is a further improved version
of GIOVE A, especially from a hardware perspective regarding the signal generation. Up-
graded Navigation Signal Generator Unit (NSGU) is implemented in its payload and it can
generate new type of signal modulation, using the new technique called Multiplexed Binary
Offset Carrier (MBOC). It can transmit over three channels, up to two simultaneously. The
main challenge is the provision of higher signal accuracy in multi-path and interference en-
vironments. GIOVE B is also placed in MEO, and it carries three atomic clocks (two RAFS
and one Passive Hydrogen Maser clock - PHM); one of them, the PHM, used for the first
time on a space mission, should provide the better long-term accuracy [20].

In particular, the user receiver should be tested and the center frequencies and bandwidths
should be verified. Both satellites are tracked and their signals are being received using
Galileo Experimental Test Receiver (GETR) - that is the Galileo/GPS compatible multi-
frequency receiver [6].

The next stage is the IOV phase, as mentioned above, and the launch of four operational
satellites. This will be the first satellites on the final Galileo constellation. The launches are
scheduled for the end of the year 2010 and the beginning of the year 2011. This system will
deliver all Galileo services with full specifications.

The last phase, FOC includes launching the remaining 26 satellites and therefore achiev-
ing the full operational constellation. Long term operations and the maintenance phase of
Galileo system where it will provide complete services to the users with appropriate user
equipment is planned to last about 20 years [9].

One of the goals of Galileo is on one hand to be independent of the currently existing and full
operational navigation system GPS, and on the other hand to be interoperable i.e. compatible
with it. Hence the signals that GETR tracks and receives are not only the Galileo/GIOVE
signals, but also the GPS signals [6].

Chapter 1. Introduction 5

1.2.2 GIOVE System Architecture

Navigation System architecture can generally be divided into three parts, each one executing
its determined function and all working coordinated together to enable the full capability of
navigation services. These parts are Ground Segment, Space Segment and User Segment.

Since Galileo is currently in its test and validation phase, the present architecture is the one
of the GIOVE system [20] (Infrastructure for Galileo is in process of development) and it
is shown schematically in figure 1.1. The User Segment is to be introduced after the full
Galileo implementation, and it can now be seen as the Test segment.

Figure 1.1. GIOVE system architecture

Ground infrastructure of the GIOVE system consists of 2 main segments, the GSC and the
GMS [20],[19]:

1.GCS - Ground Control Segment
It is in charge of the control of both, the whole satellite constellation and the individual
satellites. Maintenance and monitoring are the key features that are done in Telemetry,
Tracking & Control (TT&C) stations network using the TT&C uplinks.

2.GMS - Ground Mission Segment
Its task is to control and monitor the main issues concerning the navigation mission, which
includes computation of parameters for orbit determination and clock synchronization.

There are different facilities comprising the ground segment and they are allocated world-
wide. The functions of the ground segment are accomplished with the following structure
(also see the webpage in [20]):

Chapter 1. Introduction 6

GESS Galileo Experimental Sensor Stations - there are 13 GESS stations located all over
the world and constantly acquiring signals broadcast by the satellites. They receive the
signals coming from GIOVE test satellites and GPS constellation satellites. They generate
raw data, in files of 15 min duration, that is converted and stored in Receiver Independent
Exchange Format (RINEX). This data is delivered to GIOVE Processing Center (GPC) for
further processing. From 13 stations worldwide, eleven of them are connected to the GPC
through Sensor Stations Data Servers (SSDS), and the other two are directly connected to
the GPC (one located in Italy and the other one inside of the GPC internal network). GPC
GIOVE Processing Center - its main function is to configure and generate navigation data.
It collects informations from GESS stations and uses them to calculate parameters that are
going to be uploaded within the navigation message. Beside one GESS station, it contains
three important entities, each one executing the corresponding function:

1.Data Server Facility (DSF) is responsible for data handling and archiving, monitoring and
controlling the system, managing the users and executing the routine processes.

2.Experimental Orbit and Synchronization Processing Facility (E-OSPF) uses the data re-
ceived from GESS stations to evaluate the orbit and clock parameters that are then employed
in generation of navigation message.

3.GIOVE Payload Control Interface (GPCI) provides communication between the GPC and
the two GSC centers. It collects telemetry data, orbital characteristic data, flight dynamic
and attitude data etc. It transfers data to the upload station network.

GSC GIOVE Satellite Control Center - there are two control centers, GSC-A for GIOVE A,
and GSC-B, for GIOVE B, and each one of them executes two functions:

a)Together with the TTC stations satellites are monitored and controlled.

b)When the navigation message is generated in GPC with the data collected from GESS
stations, it is uploaded to the satellites, in order to be disseminated to the users. It col-
lects and checks data every day periodically. This data is then uploaded over the S-band
communication link.

Space segment comprises two satellites, GIOVE A and GIOVE B, as described above.
GIOVE A has currently reached its end of life, and it is already shifted to another orbit
(graveyard orbit), to release the place for new satellites which will be launched within the
next years in order to form the full Galileo constellation. GIOVE B is still providing test
signals. In the scope of this work, navigation data broadcast from both satellites, GIOVE A
and GIOVE B for test purposes is being analyzed and evaluated.

1.2.3 Galileo System Architecture

When achieving its full operational capability phase, Galileo system will have all three men-
tioned segments, Ground segment, Space Segment and User Segment [18].

On the ground two segments will be active, the Ground Control Segment (GCS) and Ground
Mission Segment (GMS), as described in GIOVE section. These will be controlled by
Ground Control Center (GCC), which is planed to be geographically distributed in three
different locations in Europe [4].

Chapter 1. Introduction 7

GMS will contain two separate entities, Galileo Sensor Station (GSS) network and Uplink
Station (ULS) network. Without going into details, here the short review of their character-
istics:

GSS There are 40 stations envisaged for Galileo, each one receiving either navigation/integrity
information or just the integrity information employing two chains of receivers.

ULS There are 9 stations envisaged for Galileo, each one having 5 or 6 antennas responsible
for the uplink of the mission data in C-band. GCS will include 5 TTC stations that will
control the communication with satellites through uplink and downlink processes of the
TTC data in S-band.

Space segment includes 30 satellites, as given above, and should be accomplished during the
following view years, with the participation of several large European satellite companies.

User segment should provide services to users, depending on navigation signals. Local
receiver technologies, various user applications and value added services compose the User
segment.

Galileo is a civil navigation system controlled by civil institutions, hence the high accurate
signal will be available to all users possessing the appropriate receiving equipment. Here
it should be distinguished between the encrypted services that are provided only to specific
user groups, and the open services that are freely accessible for all user groups without a
service fee.

Further readings about this topic are provided in [9], [21], [20], [4] and [22].

2 Convolutional coding with Viterbi
decoding technique

Galileo is the first navigation system that employs a channel coding technique for protection
and correction of possible errors during the transmission, and as already stated this is the
main topic of this work. For the reasons of better understanding, the theoretical description
of this method is first given within this chapter, and in the next chapter its implementation
in the simulation of a navigation channel.

2.1 Forward Error Correction

Channel coding is a class of signal transformations that is deployed to improve communica-
tion performances of the transmission channel regarding impairments of the channel, such as
noise, interference and fading. Therefore, it is denoted as Forward Error Correction (FEC)
and comprises a number of techniques applied on a communication/transmission channel to
detect and correct errors that occurred during transmission of the signal over the channel.
Basically all of this methods add redundancy in a specific, determined way to the data being
transmitted and hence protect them. Their goal is to provide error-free (or with very low
bit error rate) transmission over noisy channels. Since the procedure is performed in the
receiver and since there is no need for sending request for retransmission in case of errors;
it is referred to as the one-link (as its name declares, Forward) correction [16], [10].

As the two main problems in one satellite channel are the limited transmitter power and
the permitted bandwidth [16], by adding redundant bits to the signal, two effects can be
observed; on one hand it will reduce the required power at the receiver(expressed in terms
of Signal to Noise Ratio, SNR), while on the other hand it will require a lot more bandwidth
to transmit the coded signal. Therefore, some trade-off should be made. For satellite channel
applications, more important is the gain of the transmitter power.

Figure 2.1 shows a simplified block scheme of one satellite navigation channel (also see
[25]) and each block represents its own independent functionality.

Encryption Encoder is optional and it is used to scramble the information data, so it can
not be detected by the person not knowing the encryption code. In Galileo there are two
encrypted signals, with commercial and governmental encryption, however these are not
examined within this work.

Channel Encoder is responsible for error detection and correction. Channel coding adds
redundancy in a determined, structured way to provide the necessary protection of the data
conveyed through the channel. There are a lot of types of channel coding such as Convo-
lutional coding, Block coding, LDPC, Turbo codes etc. All of them deliver the so called
message or information symbols (or just symbols - it is the term that is going to be used in

8

Chapter 2. Convolutional coding with Viterbi decoding technique 9

Encryption
Encoder

Channel
Encoder

Encryption
Decoder

Channel
Decoder

C
h
an
n
e
l

 Source

 Sink

Modulator
&

Multiplexer

Receiver
Correlator

Figure 2.1. Block Scheme of Satellite Channel

this work and refers to the encoded bits), after encoding the input bit sequence. Here the
convolutional encoder is used.

Modulator converts the symbol sequence into the signal form most suitable for the transmis-
sion over the channel. It can be continuous in time and bounded in some specific frequency
band. In the case of satellite navigation channel, this signal form actually represents one
signal component, and more signal components are going to be multiplexed to form the fi-
nal composite signal, which is then broadcast over satellites (for details about the broadcast
signals see [21],[13]).

Multiplexer combines the signal components obtained after modulation of symbol sequence,
according to the given multiplexing scheme. Result of this operation is the signal in a certain
frequency band and with the certain carrier frequency. Multiplexer together with Modulator
is presented as one block.

Channel is the actual transmission medium. It can be wired, such as telephone lines, Internet
cables, optic lines; or wireless such as mobile and satellite channels. In satellite navigation,
channel can be seen as the "space" between the satellites and the broad network of ground
stations.

Receiver Correlator correlates the received signal with the one generated with the signal
generator inside the receiver and looks for the best match that corresponds to the transmitted
signal. Its functionality can be represented as a more complex structure, however it does not
enter into the scope of this work.

Channel Decoder corrects possible errors that might have occurred during the transmis-
sion. It decodes the symbols sequence depending on the encoding method employed at
the transmission part of the channel. Its performance will depend on the characteristics of

Chapter 2. Convolutional coding with Viterbi decoding technique 10

the decoder as well as of the Signal to Noise Ratio (SNR) of the received signal. Channel
decoder employed in Galileo is the Viterbi decoder.

Encryption Decoder is responsible for decryption of encrypted data. As already mentioned,
it is not relevant for this work, since the encrypted signals were not processed with the
developed software.

Convolutional code deals with the serial data on one or a few bits at a time. It is usually
forced into some block structure, i.e. it is applied on appropriate length of the input bit
sequence. There are generally three well-known ways of decoding convolutional codes;
the Sequential decoding, the Threshold decoding and the Viterbi (Maximum Likelihood)
decoding [10],[24] and [15].

Although a relatively new coding method, called Turbo coding took place of the convolu-
tional coding for its better performance and its capability of achieving very low Bit Error
Rates (BER) for small values of Signal to Noise Ratio (SNR) with information rate very
close to the Shannon limit 1; the convolutional coding together with the Viterbi decoding is
still widely used in satellite applications.

Encoding is done on-board the satellite, where the signal is generated [21] and it is not so
complex compared to the decoding which is done in the receiver equipment, since it requires
a lot of memory registers.

In principle the term channel coding usually refers to FEC techniques together with the
bit interleaving, which is not a coding technique, but only the permutation of bits in some
specific manner. It is done after the encoding procedure, for better protection of data since
the convolutional code is not capable of correcting very large burst errors [16].

2.2 Convolutional Coding

Convolutional coding methods date from the year 1955 [24] and appeared as alternative to
Block codes widely used during that time. The first application of convolutional codes to-
gether with block codes (one as so called “inner” code and the other one as “outer” code)
was in deep space applications, since it was efficient method to achieve very low error prob-
abilities.

In satellite communications and now in navigation, convolutional codes together with Viterbi
decoding are used due to their good performance and their advantageous characteristic that
the decoding is accomplished after some deterministic period of time. From the hardware
perspective, convolutional codes are quite easy to implement, since they only contain mem-
ory registers and some logic circuits, usually xor (see figure 2.2).

Convolutional coding is a linear coding method and can be systematic or non-systematic.
The first one refers to a code where the unencoded input sequence is a part of the output
sequence (it does not enter the xor logic, it just appears at one of the outputs) and it is almost
always a recursive code. Recursive means that one of the outputs is added to the input
recursively. The second coding method, non-systematic is the opposite one, and usually
non-recursive [25].

1Shannon limit is a theoretical limit that describes the maximum possible channel capacity i.e. information
rate that one given transmission channel can achieve

Chapter 2. Convolutional coding with Viterbi decoding technique 11

2.2.1 Encoder Description

In general, output of the convolutional encoder can be found as the convolution of input
bits and the states of the linear shift register of the encoder [16],[10],[11],[7]. A simple
convolutional encoder is given in figure 2.2.

FF FF

+

+

SEL
up/

down

Input
bits

Output
 bits (symbols)

g1

g2

Figure 2.2. Convolutional encoder

The shift register comprises two latches (register cells, or flip-flops) and represents the states
of the encoder. In every cycle of time (corresponding one clock edge) one bit enters one
register cell at appropriate input and one bit exits at the output of the same register cell
and enters the next one. Hence with every cycle bits are shifted through the register. The
encoding is performed with combinatorial logic that is established by the use of generator
polynomials (here two, g1 and g2), implemented with xor gates. Output of each gate is a
combination of input bits that are currently in the register and the input bit (in this example
as well as usual just one input bit at each time is shifted into encoder) that are entering the
first register cell [11]. Parameters that describe the encoder are:

• Generator polynomials - implemented with xor logic and shift register. The number
of the non-zero polynomials represents the number of encoded bits in each time cycle,
and the highest degree in polynomial represents the length of the shift register. The
notation for generator polynomials is typically octal.

• Constraint length - it is the length of the shift register, which is used to store the
states of the encoder plus one input bit that is entering the first register cell in each
time cycle. If r is representing the length of register, then K = r+1 is the constraint
length. The output i.e. the encoded sequence will depend on this number of bits.

• Code Rate - it is defined as a number of input bits to the encoder divided with the
number of symbols (encoded bits) that outputs the encoder each time it produces them,
hence in each time cycle. It is denoted as CR = k/n and represents the measure of

Chapter 2. Convolutional coding with Viterbi decoding technique 12

efficiency of the code. Since the code adds redundancy, the CR will always be smaller
than one; since k < n implies that CR < 1.

In the example above, these parameters have the following values:

G1 = 111,G2 = 101,K = 3,CR = 1/2 (2.1)

Where G1 and G2 are the first and the second generator polynomial, respectively and they
are written in binary form, because of simplicity. K is the constraint length and CR the Code
Rate of the code.

The encoding process can be shown by employing one of the three (or more) possible dia-
grams such as Finite State machine, Trellis Diagram and/or Tree structure [10],[12].

2.2.2 Finite state diagram

In this representation, shown in figure 2.3, the different states of encoder are written in
circles (nodes) and transition from one state to another as lines connecting the circles. This
is a static representation, that gives no information about the time. One state shows the
content of each shift register in corresponding period of time (one time cycle). The transition
happens every time a new bit enters the encoder.

00

1110

01

0/00

 0/11

 1/01

0/01

 1/10

 0/10

 1/00
 1/11

Figure 2.3. State Diagram

In this example, the states are 00,01,10,11 and the possible transitions are as noted in the
diagram. Possible outputs for each transition together with the input bit entering the encoder
are written on the lines connecting the states (input bit/output bits). Since there are only two
different bits at the input, zero or one, maximum two transition lines will exit and enter each

Chapter 2. Convolutional coding with Viterbi decoding technique 13

state. Note that not every state transition is allowed, and not every possible output will result
from it. Only the allowed outputs are the correct ones.

2.2.3 Tree diagram

Information about the time flow is present in the tree diagram, as in the figure 2.4, together
with all possible states and outputs of the encoder. The encoded output bits are written on
the branches of the tree, where the upper blue branch corresponds to the input bit zero and
the lower red branch to the input bit one. The states are written on the nodes, using the
letters a, b, c, d, where a = 00, b = 10, c = 01, d = 11. With every time instant, the tree is
expanded and new paths are added. Which path is going to be followed depends on the input
bit that enters the encoder.

After some depth or after the tree reaches some determined expansion of branches, the
states seem to repeat, as seen in the vertical lines containing the nodes. For instance, with
four states in the example, these will start to repeat after the fourth “group” of branches is
achieved, i.e. starting with the fourth time instant, t3.

It is unfavorable to work with tree diagram, especially when working with big codes, since
the tree will expand to infinity. Better solution in this case would be the Trellis diagram
representation.

11

10

11

10

01

11

01

11

00

01

10

01

11

00

01

10

00

11

10

01

11

00

01

10

b

a

b

a
b

 a

c

d

 c

 d
c

d

c

d

d

 a

 a

 b

 c

 b

a

 a

b

 a

 b

 c

 d

 d

 c

 b

 a

00

00
00

11

10

00

t3 t4t0 t1 t2

a = 00
b = 10
c = 01
d = 11

Figure 2.4. Tree Diagram

Chapter 2. Convolutional coding with Viterbi decoding technique 14

2.2.4 Trellis diagram

Trellis diagram also contains the time sequence of the encoding process, and also together
with all possible states, transitions, and output bits. From each state or node, there are only
two lines that emerge from that node, determined by one of the input bits, one or zero. For
the same reasons, only two branches are merged in the same node. At the beginning of
trellis (see figure 2.5) not all state transitions are reached. For every new input bit, one new
transition is accomplished until the trellis reaches its full structure, here at time instant t4.
From that point it repeats horizontally.

Usually the trellis is terminated in all zero state, the same as it started. That is done by
passing the zero bit sequence in the length equivalent to the length of the shift register (here
2) through the encoder. It is called “flushing” the encoder [11].

As new input bit arrives, one can make a unique path through the trellis, just going from one
node to another, following the lines with corresponding input and output bits.

This is the most convenient representation of the convolutional coding, and it will be used
in the description of the encoding as well as of the decoding process. It is also used for the
software implementation of the Viterbi algorithm.

00 000000 00000000
00

11

10

01 11 1111 111111 11

01 01010101 01 01

10 10101010 10

11 11 11 111111

01 010101 01

00
00000000

10 10101010 10

t0 t1 t3t2 t5 t6 t7t4

Figure 2.5. Trellis diagram

2.2.5 Encoding with Trellis

Encoding process is shown using the Trellis diagram and the example in figure 2.2 (also
see [10],[16],[25],[11],[7],[12]). At each time instant t j, one state transition is made, which
means that one input bit entered the encoder, and two output bits exited it. Hence, each
transition means that new bits have arrived and they are to be placed into the trellis. As the
nodes refer to possible states, here four, they can be seen either in the present moment or in
the moment of past (i.e. as current and/or previous state).

The trellis diagram is built up starting from the time instant t = 0 and state 00. From that
state, there are two possibilities i.e. two transitions that can be made for two different input
bits. Dashed lines stand for the input bit equal to one and solid lines for the input bit equal to
zero. These branches of the trellis represent the transitions and the numbers written on the

Chapter 2. Convolutional coding with Viterbi decoding technique 15

branches are the encoded output bits (referred to as symbols or codewords) corresponding
to those state transitions. The initial state is 00, hence two right-most shift register cells are
filled with zeros. In the time instant from t = 0 to t = 1, there will be only 2 branches, one
going to state 00 and the other one to state 10. Continuing from these two states, in the
next time cycle from t = 1 to t = 2, each of them will also have 2 transitions, hence four
branches will be formed. The same procedure is repeated for as many cycles as the input
bits are entering the encoder, each cycle resulting in possible transitions and outputs of the
codewords, written on each branch. After the depth 3 is reached (at the third time instant)
the trellis structure is filled with all allowed state transitions and continues repeating period-
ically. In general, the constraint length K (here equal to 3)determines the trellis depth. State
transitions, output pair of bits and input are shown in the table 2.1.

Input Current State Next State Output
0 0 0 0 0 00
0 0 1 0 0 11
0 1 0 0 1 10
0 1 1 0 1 01
1 0 0 1 0 11
1 0 1 1 0 00
1 1 0 1 1 01
1 1 1 1 1 10

Table 2.1. State transition table with input and output entries

Now, having the input sequence in = 01011100101000 the path can be made through the
trellis as shown in figure 2.6, where every pair of output bits on each branch represents the
encoded bits and it is referred to as the branch codeword. Length of the input sequence is 14
bits, where the last two bits represent the so called flushing bits. Their function is to “clean”
the encoder so it can finish in all zero state. The corresponding output sequence of encoded
symbols is equal to out = 00 11 10 00 01 10 01 11 11 10 00 10 11 00 and can be read directly
from the encoder trellis.

00 000000 00000000
00

11

10

01 11 1111 111111 11

01 01010101 01 01

10 10101010 10

11 11 11 111111

01 010101 01

00
00000000

10 10101010 10

t0 t1 t3t2 t5 t6 t7t4
00 00 00 00 00 00

11 11 11 11 11 11

10 10 10 10 10 10

11 11 11 11 11

00 00 00 00 00

01 01 01

01 01 01 01

10 10 10 10

01

01

t8 t9 t10 t11 t12 t13 t14

Figure 2.6. Encoder Trellis

Chapter 2. Convolutional coding with Viterbi decoding technique 16

2.3 Decoding with Viterbi-algorithm

With the full encoder trellis diagram, the decoding algorithm can be implemented. Viterbi
decoder examines the entire received sequence of a given length. In this process, there are
some important concepts that need to be introduced [16],[25],[11]:

HAMMING DISTANCE is a distance between two symbols that displays the number of
bits at which these symbols differ.

BRANCH METRIC is the Hamming distance between every pair of the received sequence
symbols and the branch codeword corresponding to that particular branch in the appropriate
instant of time, extracted from the encoder trellis in figure 2.6.

PATH METRIC is a sum of metrics of all branches in the path through trellis.

The branch codewords in the trellis are nothing but the code symbols that would be expected
to come as the output of the encoder for each state transition. Important issue here is that
they are known to both, to encoder as well as to decoder.

Viterbi decoder relies on Maximum Likelihood concept, which is aimed at minimizing the
error probability of the decoding process [16],[10],[11],[7]. Decoder does this by choosing
the path in the trellis with a minimum branch metric. First it calculates the Hamming dis-
tance i.e. the branch metric between the received pair of bits and possible codewords. Then
from the two paths that merge in the same state, it chooses the path with the smallest metric.
Hence from eight possibilities four of them will proceed to the next step (since the choice
is made four times between the two possible metrics). In the next step, this metric will be
added to the previously calculated branch metrics, again eight Hamming distances and the
minimum is chosen again. This leads to another important concept, namely:

ACCUMULATED PATH METRIC: It is the minimum sum of each two possible branch
metrics for every time instant along the path until that time.

For example, in time instant t3, from two branches emerging in state 00, one with the smaller
metric will be chosen. Then again, in the same time instant from two branches emerging
in the state 01, one with a smaller metric will enter the path metric and so on. With these
accumulated smallest metric values, a path metric can be created.

This path is called the “survivor path” since it contains only the metrics that “survived” in the
trellis and will be used in the decoding process. Actually this path and the knowledge about
the previous state that led to this path (the one for which a minimum decision was made) are
the essential part of the Viterbi algorithm. With them, one can trace back through the trellis
diagram in order to find out which state transition is made at which time. Hence by knowing
the received bit sequence and the state transition table 2.1, the transmitted sequence can be
revealed [11].

These separate steps can easily be shown with the help of the block diagram in figure 2.7:

The logic included above is called the ADD-COMPARE-SELECT (ACS) procedure [16].
It is repeated for every encoder state, or equally, for every time instant.

If the input sequence from the example above enters the encoder, it will result in the follow-
ing output sequence:

Chapter 2. Convolutional coding with Viterbi decoding technique 17

Calculate branch metric
(Hamming distances)

For each state add the
metric from the previous

two states that merged in it

Compare two results that
you have obtained

Select the one having the
smaller metric and drop the

other one

Remember the survivor
path together with all state

transitions that led to it

Trace back through the
trellis and with given

previous information find
the encoded sequence

Encoded data

 Decoded data

Figure 2.7. Viterbi Decoding Flow

in = 01011100101000, out = 00 11 10 00 01 10 01 11 11 10 00 10 11 00 (2.2)

Let assume that this sequence is affected with errors and the received sequence is:

rx = 00 11 11 00 01 10 01 11 11 10 00 00 11 00 (2.3)

First step in the decoding process will be to look at the encoder trellis diagram and to make
the corresponding decoder trellis diagram as in figure 2.8.

0 022 211100

11

10

01 2 00 112 0

1 2011 0 1

1 0211 2

0 2 1 011

1 201 0

2 1110

1 2021

0 2

2

3

0

3

3 3 3 3 4 1

1 2 2 3

2 1 3 3 4

1 2 1 1 3 4

2 1 0 0 02

0 1 2 2 0 2

0 1 2 2

1 1 0 1 1 1

2 2 1 0 0

1 1

1 1

2 1 1 1

1 2 1 1

0 1 1

1
 41

3

 3

4

1

4

4

1

4

3

3

4

1

4

3

2

4

4

3

2 2

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

Figure 2.8. Decoder Trellis

In this diagram, the metric calculations are given for each branch, and for each state node the
accumulated path metric for that node is calculated (using the ACS and the state transition
table).

On the decoder trellis, one can see the metric calculations for each of the branches, as well
as the accumulated path metric for each of the nodes. These accumulated metric values are
used to form the table 2.2 of accumulated metric for every time instant.

As mentioned above, at the end of the input sequence K− 1 “flushing” bits are added in
order to clear the encoder and to put more coding power to the last input bit. Since every
input bit affects the following K = 3 output pair of bits, the last one should do it too. Hence

Chapter 2. Convolutional coding with Viterbi decoding technique 18

for a given sequence of 14 input bits including the two flushing zero bits, which passes the
encoder in 14 instants of time, there will be 14 ∗ 2 = 28 output bits (considering the code
rate of 1/2).

Table of accumulated path metric 2.2 contains minimum Hamming distances calculated for
every time instant and every state.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
State 00 0 0 2 3 3 3 3 4 1 3 4 3 3 2 2
State 01 3 1 2 2 3 1 4 4 1 4 2 3 4
State 10 2 0 2 1 3 3 4 3 1 4 1 4 3 3
State 11 3 1 2 1 1 3 4 4 3 4 2 3 4

Table 2.2. Accumulated metric table

These states are called the survivors and are used to determine the unencoded sequence
which was transmitted. Starting from the time instant t = 14 the path with the minimum
accumulated path metric is tracked back until the beginning of the trellis, as shown in figure
2.9.

0
022 211100

11

10

01 2 0

0

112 0

1 2

0

11 0 1

1 021

1

2

0 2 1 011

1 201 0

2 111

0

1 2021

0 2

2

3

0

3

3 3 3 3 4 1

1 2 2 3

2 1 3 3 4

1 2 1 1 3 4

2 1 0 0 2

0 1 2 2

0

2

0
1 2 2

1 1

0

1 1 1

2 2 1

0

0

1 1

1 1

2 1 1 1

1 2 1 1

0 1 1

1
 41

3

 3

4

1

4

4

1

4

3

3

4

1

4

3

2

4

2

3

2 2

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

00

Figure 2.9. Decoder Trellis with Survivor Path

The states selected when tracing back through the survivor are listed in table 2.3. Each tran-
sition determines one input bit, starting from the beginning of the table. For example, the
first bit will result from the transition 0→ 0, the second from 0→ 2 and the third one from
2→ 1 and so on.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
States 0 0 2 1 2 3 3 1 0 2 1 2 1 0 0

Table 2.3. Selected states when tracing back through survivor

Now look at the state transition table from the beginning (table 2.1) and find the unencoded
input bits corresponding to every state transition. The decoded bit sequence is given in table
2.4 and as it can be seen it is the same as the input sequence before it was encoded. Hence
the decoder succeeded in correcting the induced errors and retrieving the original sequence
of bits.

Chapter 2. Convolutional coding with Viterbi decoding technique 19

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bits 0 1 0 1 1 1 0 0 1 0 1 0 0 0

Table 2.4. Original transmitted message

Viterbi decoder is able to correct maximum K number of errors, where K is the constraint
length. This example introduces the type of decoding called hard-decision decoding. It is
based on hard-decision quantization that employs two quantization levels at the demodula-
tor, one and zero, which are then fed to the decoder, and on Hamming distance computation.
The other implementation, called soft-decision decoding employs a quantized value greater
than two levels at the demodulator (usually eight level quantization). It feeds the decoder
with more information compared to the hard-decision decoding. Instead of Hamming dis-
tance metric, the Euclidean distance is used [25],[10].

3 Implementation of channel simulation

Every transmission channel is modeled with some mathematical model that more or less
demonstrates its real characteristics. In space/satellite communications as well as in satellite
navigation, the essential problem to deal with is a decrement of power since the signal is
passing a long way down to the Earth. There are various sources of error that can affect the
signal on its way trough different transmission mediums, such as: ionospheric and tropo-
spheric effects, interference, multipath etc [14],[22] and there are various correction models
that handle them. However, the most pronounced one is the thermal noise in the receiver
equipment. It is modeled with a well known Additive White Gaussian Noise (AWGN) chan-
nel model.

This chapter will demonstrate the simulation of a navigation channel which includes data
transmission and reception. It implements the convolutional coding with Viterbi decoding,
then Cycle Redundancy Check (CRC) and interleaving techniques as described in [21]. The
obtained results are discussed in the separate section.

3.1 Simulation environment

The channel that is simulated is shown in figure 3.1 where each block represents one sep-
arate functionality. Some of the steps need to be explained carefully, for the other ones
(convolutional encoder and Viterbi decoder) see Chapter 2.

3.1.1 Transmission segment

Input data are random generated bits with format of Free Accessible Navigation message,
F/NAV according to [21]. Transmission segment that can be seen on the block diagram in
figure 3.1 shows the steps in generation of the smallest unit of navigation message, namely
the page. Every page is generated in the same way and all generated pages are concatenated
to form one symbol sequence. This sequence is transmitted over an AWGN channel and
in the receiver section those pages are extracted and compared with the transmitted ones,
in order to prove the correctness of the transmission chain. This is done for the purpose of
testing the functionality of the program, i.e. of every block that is going to be used later,
when dealing with navigation data from test satellites.

Now the blocks from the transmission chain in block diagram in figure 3.1 are described in
detail:

CRC stands for Cyclic Redundancy Check, which represent a Cycle Code, also called CRC
code. It is a coding technique used for error detection, specially suited for burst transmission
and often used in satellite communication and navigation. Like other error detection and
correction techniques, it adds redundancy to input information data that is to be transmitted.
The CRC algorithm generate the redundant bits by division of data bits with a specially

20

Chapter 3. Implementation of channel simulation 21

CRC
generation

InterleaverEncoder

Synchron
pattern

generation

+

Channel

Extract
symbols

Decoder
CRC

check
De-

interleaver

Synchron
pattern
search

Transmission
segment

Reception
segment

BER SER

Figure 3.1. Block scheme of channel simulation

designed generator polynomial, where not the quotient but the reminder is taken into account
[1]. This reminder is then appended to the input data stream that will be transmitted, and the
same algorithm is employed on the received data, after the decoding process.

The result of this operation determines whether the decoding was successful (data correct
and can be used) or not (data false and it is to be rejected). This information cannot be
gained directly from the decoding process. Galileo system employs the following algorithm
for generation of the CRC code according to [21],[1].

CRC checksum computation: Generator polynomial G(x) used for the checksum compu-
tations in Galileo should be generated from the primitive and irreducible polynomial P(x)
as following:

G(X) = (1+X) ·P(x) (3.1)

where:

Chapter 3. Implementation of channel simulation 22

P(x) = X23 +X17 +X13 +X12 +X11 +X9 +X8 +X7 +X5 +X3 +1 (3.2)

After this binary computation, the generator polynomial is obtained as:

G(x) = X24+X23+X18+X17+X14+X11+X10+X7+X6+X5+X4+X3+X +1 (3.3)

Having m(X) as the sequence of input bits, CRC parity bits are computed as the reminder
of the division of m(X) ·X24 by generator polynomial G(X). Since they are binary numbers,
this operation is performed using xor computation. The CRC checksum will have the length
of 24 bits. For better understanding, the division is shown on one small example:

Example of checksum computation: Let the generator polynomial be in a binary form 101
and the input bits used for computation 1001. Since the polynomial has a degree of r = 3
then the r− 1 = 2 zeros are appended to input bits, and the input sequence 100100 is ob-
tained. These are then divided with the polynomial using the xor operation (binary algebraic
division).

100100
101

001100
101

0110
101

011

Figure 3.2. CRC computation

In each step the following operation is made: if the input bit above the first divisor bit (MSB
of the divisor) is zero, the divisor is shifted one bit to the right; if it is one, the xor operation is
performed. This is executed until the LSB of the divisor reaches the last input bit. The result
of the computation is the actual remainder of polynomial division. In this example, it is
equal to 011 and this is the CRC checksum. It is appended to the original input bit sequence
before transmission through the channel. In our example the sequence to be transmitted
after appending the CRC checksum is 1001011. When received, the same computation is
made and the received and computed CRC bits are compared. If they match exactly, the data
is received correctly. If not, the received sequence is not equal to the transmitted one, and
therefore not correct; it contains some errors.

In the current GIOVE test system, the CRC computation is done in the same manner as
envisaged for Galileo, with a generator polynomial having the form of:

G(x) = X12 +X11 +X7 +X5 +X3 +X2 +X +1 (3.4)

and with CRC checksum 12 bits long [20].

After appending the CRC checksum to the randomly generated input bits used for the sim-
ulation, one more step has to be done, before data can enter the encoder; and that are the

Chapter 3. Implementation of channel simulation 23

six zero bits, called Tail bits, that also need to be appended to input bits after the checksum
field. Their role is to “flush” the encoder as explained in Chapter 2. Since the length of the
shift register of the convolutional encoder (see figure 3.1) is six, the number of the zero bits
appended has to be six as well.

Encoder: Encoder is a typical convolutional encoder with characteristics as listed in table
3.1.

Code rate 1/2
Constraint length 7
Generator polynomials G1 = 171,G2 = 133(octal)
Encoder output G1G2

Table 3.1. Encoder parameters

These parameters have the same value in GIOVE as in Galileo, only the second output
bit of encoder, namely the G2 should be inverted when working with the future Galileo
configuration [21].

The encoder used in this simulation is shown in figure 3.3:

D D D DDD

+

+

++

+ ++

+

SEL
up/

down Input Output

 G1

 G2

Figure 3.3. Convolutional coding scheme

Since the Code Rate is equal to 1/2, it means that each input bit will be encoded to produce
the two output bits, hence the sequence of symbols 1 that exits the encoder will have twice
the length of the sequence of bits that enters it. In Galileo, as already mentioned, the smallest
unit that contains navigation data is called page. It has a specific length depending on the
navigation message type. In this simulation, the F/NAV message type is used (see Chapter
4 for details) with 244 bits entering the encoder and 488 encoded bits (symbols) obtained
afterwards. This symbols, together with the synchron pattern appended at the beginning
comprise one page [21].

Interleaver: For a purpose of better correction of burst errors that can occur in the channel
and for improvement of the error correction performance, the interleaving is employed on
the appropriate part of the sequence of symbols (on one page without the pattern), here 488
bits.

It is done with the Interleaver Block Matrix, whose dimensions will differ for each naviga-
tion message type. According to [21], the matrix dimensions for F/NAV will be 61×8, with

1In the following text, the encoded bits are referred to as symbols and the bits before encoding and after
decoding simply as data bits

Chapter 3. Implementation of channel simulation 24

61 column bits and 8 row bits. The symbols are written into the matrix column by column
and read out of the matrix row by row.

Synchron pattern generation: The essential part for synchronizing the beginning of navi-
gation message, i.e. to determine the part containing navigation data is the synchron pattern.
It indicates the beginning of the navigation page. Finding the correct position of the pattern
determines also the beginning of the symbols of navigation message needed for further pro-
cessing. These symbols will be decoded and deinterleaved in the reception segment. In the
case of F/NAV, the pattern is 12 bits long, and together with encoded symbols one page of a
total length of 500 bits is obtained.

In order to achieve a more realistic simulation environment for one navigation data trans-
mission channel, the simulation in the case of errors is performed also with the pattern that
was included in the page and modified. It provides a good test environment for different
situations that can occur during transmission:

• Case 1: Synchron pattern is affected with errors, hence some of the bits are alternated
and the pattern does not have a form as the original one.

• Case 2: Synchron pattern is completely missing at the beginning of one or more pages.

• Case 3: Synchron pattern appears in its original form within the navigation page one
or more times.

All this cases are analyzed with one separate stand-alone test program. In order to analyze
possible worst cases scenarios mentioned above, the pattern is added randomly at the be-
ginning, as well as in the actual symbol sequence. In some cases instead of the pattern,
a sequence of zeros is appended at the beginning of the page. Important thing to have in
mind is that this operation is performed on the symbols, i.e. after the data is being encoded.
Therefore, the synchron pattern does not enter the encoder!

The description of the synchron pattern search block from the block diagram 3.1 is given
within the section 3.1.3. It is implemented in a final software version after the tests with
worst cases are done and verified.

Before transmitting the symbol sequence over the channel, it is shifted circularly for a ran-
dom number of bits, hence the first synchron pattern does not appear at the beginning, but
after some period of time (some bit length).

3.1.2 Simulation channel

Channel is implemented as the Additive White Gaussian Noise (AWGN) channel model.
In first step the BPSK 2 modulation is employed, where the symbols are mapped to signals
with two different (antipodal) values. The symbols (0,1) are mapped to the signals with
values (-1,1). Then the Gaussian white noise is added. The variance of such noise is defined
according to the equation 3.5 (also see [25],[10]).

2BPSK refers to Binary Phase Shift Keying; it is a type of modulation where the carrier is switched between
two phases by the modulating data signal

Chapter 3. Implementation of channel simulation 25

σ =

√
1

2 ·10
Es/N0

10

(3.5)

with Es/N0 as Energy per Symbol to Noise Power spectral density ratio, defined as [25]:

Es/N0 = Eb/N0 +10logCR [dB] (3.6)

where Eb/N0 is the Energy per Bit to Noise Power spectral density ratio and CR is the Code
Rate of the code as defined in Chapter 2. For more details about this topic see Appendix
D.

After adding noise, the signal has to pass the quantizer, which makes either hard or soft de-
cision. Hard decision corresponds to one-bit quantization, and soft decision is implemented
here as three-bit quantization [16],[10].

The steps described in the following section are done at the receiver side i.e. they simulate
the reception part of the transmission channel and therefore they are executed reversely to
the transmitter side.

3.1.3 Reception segment

Synchron pattern search: This is an important step at the receiver part of the channel,
since the synchron pattern is intentionally added at the beginning of each block of symbols
that has to be decoded and it is repeated periodically after a specific length; in this case it is
the length of one page. The pattern has to be removed before symbols enter the decoder. It
does not contain any useful information about navigation parameters, it acts as an indicator
for a start of the page, i.e. of the part of the symbol sequence that contains navigation data.

Algorithm for searching the synchron pattern is developed with appliance of correlation
function on the received symbol sequence and on the synchron pattern. Correlation function
is useful to find the match of one function with another. Since the received symbol sequence
contains the pattern multiple times, the result of the correlation function applied on the sym-
bols and the pattern should represent the indices of the positions of the synchron patterns
within the sequence. Recall that the symbols are affected with noise and that the pattern is
added randomly at the transmission part of the channel. Therefore some additional check
function should be provided in order to find the exact indices which are placed in a distance
of one page length to each other. This examination is again done with the correlation func-
tion. One example is provided for this procedure, which is implemented according to the
following steps:

1. Correlate one block length of the received symbol sequence with the synchron pattern
for that specific navigation message type. In the example shown in figure 3.4, one
block with 10 pages is considered (hence 10 · 500 = 5000 bits length), and the result
of correlation is presented. The highest peaks and their distribution can be recognized
easily, there are 10 of them, but there is still a lot of interference from the lower peaks.
In order to be sure about the right decision, the second correlation is performed.

Chapter 3. Implementation of channel simulation 26

2. Correlate the result of the first correlation with one sequence of the same length,
namely with vector of the ideally placed synchron patterns. This vector is shown
in figure 3.5, where the height of the peaks is equal to the length of the synchron pat-
tern, and they are placed in equal distances (here equal to 500) as the pattern should
be placed in the block sequence, starting from the beginning. The result of this cor-
relation can be seen in figure 3.6 - now the highest peaks are more obvious, and the
other values are drawn back into the lower parts of the y-axis.

3. Look for the peaks that lay above 98% of the maximum value of the result of the
second correlation. These peaks correspond to the indices of the synchron pattern
within the sequence. The value of 98% is choosen after a number of simulation with
different block lengths of the received sequence (i.e. different block sequences) and
it is here taken as the threshold value. Figure 3.7 demonstrates the peaks which are
ideally placed, between 500 points, and have the unit value of one.

In order to give more certainty to the correctness of the indices, another verification
step is performed, and that is:

4. Divide the block sequence into the “portions of symbols” that correspond to one page
length and count the number of peaks (indices) that reside in each “portion”. For the
case of 10 pages the graphical representation is shown in figure 3.8. The peaks are
summed over the whole block sequence and the maximum number of this summation
(here 8) gives the number of repetitions of the “true” synchron pattern (since it can
appear more times in one block, hence it could also be the “false” pattern) and rep-
resents the index of the first synchron pattern that is found in the block sequence. If
correct, it will appear in the whole received symbols sequence with identical distances
equal to one page length.

In this simulation, the length of one page i.e. one page length is equal to 500 bits, and the
block sequence used for examination and finding the pattern is optional, having in mind that
longer blocks give more security for the obtained synchron pattern index. Optimal solution
is found for the block length equal to 10 times page length.

Symbols extraction: When the first synchron pattern is found correctly, it repeats period-
ically with the page length as discussed in the previous part. In order to extract the needed
symbols between the patterns and to further process them, synchron patterns from the whole
received symbol sequence have to be removed. Since the algorithm for finding them op-
erates on blocks that contain 10 pages length (or more) with randomly generated data and
appended patterns, the first encountered pattern might not appear exactly at the beginning of
the block. Hence, the first page is usually “cut off” and discarded. If the sequential process-
ing is performed (several blocks concatenated), these cut pages have to be considered and
stored for the next block iteration. Figure 3.9 highlights this scenario. There is one block
sequence with 10 pages presented, where the first cut page is discarded only if it is the first
in the whole processed sequence. If that is not the case, it is stored and concatenated with
the reminder of the last page of the previous block. This procedure is repeated until the end
of the sequence is reached. The last reminder in the last sequence block is discarded also.

After extraction of the symbols, they are stored in a matrix array, where each row corre-
sponds to symbols from one page without the synchron pattern.

Chapter 3. Implementation of channel simulation 27

Figure 3.4. Correlation of the block sequence with synchron pattern

Deinterleaver: Deinterleaving is the inverse operation of interleaving, hence one row from
the symbols matrix representing one page content is stored into another matrix, called
interleaver matrix, with specific dimension according to [21]. It is written row by row
and read out of the same matrix column by column. So the symbols in one page are re-
ordered/permuted to obtained the original form as before the interleaving.

Decoder: Decoder is implemented as the Viterbi decoder. The symbols from the previous
step are decoded employing the Viterbi algorithm as described in Chapter 2 and according
to specifications defined in [21]. At the input of the decoder are the symbols from one page
and after decoding the corresponding bit sequence exits the decoder, hence the decoding is
performed page by page. The length of the bit sequence that exits decoder will be half of
the length of the symbol sequence that entered the decoder, since the code rate is equal to
1/2. In the case of F/NAV message that is simulated, the 488 symbol bits were decoded
to 244 data bits. These are then processed to the computation of the CRC checksum and
calculation of the error rate.

Chapter 3. Implementation of channel simulation 28

Figure 3.5. Vector of ideally positioned synchron patterns

3.1.4 Test segment

Following tests are executed considering the data bits from the transmitter side, before and
after entering encoder as well as from the receiver side, before and after entering the de-
coder:

1. Calculation of CRC checksum and determination of its correctness

The calculation of CRC is done in the same manner as it was generated at the trans-
mission segment, employing the same algorithm. This algorithm is calculated with
the determined length of the received sequence, and that is the length of the data bits
decoded from one page after subtracting the Tail and CRC bits. These are 6 and 24
bits respectively, and when subtracted from 244 bits, it gives 204 bits that are involved
in the calculation of the CRC checksum. Again the reminder of the polynomial divi-
sion is computed, and it results in a 24 bits long bit sequence. The latter is compared
with the corresponding CRC bits of the original data sequence. If they are exactly the
same, the CRC flag is set to ’Y’, if at least one bit is different, then the flag is set to ’N’.

2. Calculation of Bit Error Rate (BER)

Chapter 3. Implementation of channel simulation 29

Figure 3.6. Correlation of the first correlation result with the vector of ideally positioned
synch patterns

It is done by comparison of the transmitted bits before encoding with the received bits
after decoding. The number of bits that differ is summed up and divided by the number
of all bits in the transmitted sequence. There are three cases to be considered, namely
this calculated value of BER of the coded channel, the calculated value of BER of
the uncoded channel (done using the same channel, as usually in simulations) and the
theoretical value of BER of the uncoded channel. The calculation of the uncoded BER
is performed by comparing the bits that exited the encoder and before they entered the
decoder (hereby the name “uncoded” does not correspond exactly the reality, but it is
convenient to compute it in that way, since it is computed for the same channel and
the decoder performance does not enter into the calculation). This theoretical value is
computed using the formula 3.7 (also see Appendix D for details):

BERuncoded = 0.5 · er f c

(√
1
2
·10

Eb/N0
10

)
(3.7)

The values for each BER for the simulation of F/NAV message sequence 500 · 103

bits long are plotted in graphic 3.10 and they show very good correspondence. The
iterations are executed over the Energy per Bit to Noise power spectral density ratio

Chapter 3. Implementation of channel simulation 30

Figure 3.7. Correlation peaks above 98% of the maximum peak value

with values Eb/N0 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and then compared. The computed
theoretical BER values are almost identical with the calculated values for the uncoded
case from the simulation for the different values of the Eb/N0, as seen in the graphic.
Green color stands for the obtained BER value from the simulation, and red color for
the theoretically computed BER value. As it can be seen in figure 3.10, they overlap
completely. The coding gain, defined as the reduction in the required Eb/N0 in a case
when coding methods are used compared with the uncoded case for the same BER,
coincides with the estimated value as found in various sources [10],[16],[25],[24],[15].
Obtained results are discussed with more details in the next section.

Detailed explanation of the software used for simulation of the navigation channel described
above is provided in Appendix A.

3.2 Results and evaluation of BER values

Simulations are executed with various sequence lengths and the Bit Error Rate (BER) com-
putation is performed for various values of Eb/N0 as it is usually the case in channel sim-

Chapter 3. Implementation of channel simulation 31

8

Corr_peaks

Pages

Page bits
(index of time samples)

1 2 1 2

Figure 3.8. Synchron pattern indices

synchron
pattern

First cut
page to be
discarded

Reminder of
the page to be
added to the
next block

symbols to
be extracted

Figure 3.9. Block sequence with 10 pages

ulations. Results are shown in figure 3.10. The simulation is done for values Eb/N0 =
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] as mentioned before, and the x−axis is actually the Energy per
Symbol to Noise power spectral density ratio as defined in the equation 3.5 and which is
further equal to Es/N0 = Eb/N0−3dB.

Chapter 3. Implementation of channel simulation 32

Figure 3.10. Bit Error Rate plot

Blue line refers to the BER for the coded channel, whereby here the hard decision coding
is presented. The input bit sequence before the encoding and the output bit sequence after
decoding are taken into calculation, as described in the previous section. It approaches the
value of 10−5 for the minimum BER, which says about the length of the generated sequence
for the simulation.

Green line refers to the BER for the uncoded channel. In the simulation, since the channel is
coded and the noise on the channel is added randomly, uncoded case is approximated with
the following model: symbols that exit the encoder are compared with symbols before they
enter the decoder and the value of BER is calculated. It has the same effect as if there was
no channel coding implemented, due to the fact that the decoder performance does not enter
into calculation. Whether the input bits are encoded or not, does not make any difference
here. It is a typical and well-known method used for such channel simulations.

Theoretical value for BER according to equation 3.7 coincide almost perfectly with the
estimated value as in [15],[16],[10],[25],[24]. The reason why the coded curve requires a
smaller Eb/N0 for the same value of BER as the uncoded one lays in the fact that the Viterbi
error correcting code is used and it has a good performance, hence it is able to correct
occurred errors up to some very low values of Eb/N0. This difference in amount of Energy
per bit to Noise power spectral density, actually the reduction in required Eb/N0 for the same
value of BER in the case of coded channel compared to the uncoded one and expressed in

Chapter 3. Implementation of channel simulation 33

dB is called Coding gain.

Although this type of channel coding does enhance the characteristic of the transmission
channel by reducing possible errors, it seems that it does not achieve the same performance
for very low values of Eb/N0. This occurs due to the fact that every error-correction code has
some determined error-correction capability. When the threshold value of Eb/N0 is reached,
which corresponds to the crosspoint between the coded and uncoded curve (in the figure
3.10 it resides between Eb/N0 = 10−1 and Eb/N0 = 10−2), there are burst errors in trans-
mission that decoder is not able to correct, and its redundant bits are only taking energy
from the channel without performing their initial function [10],[16]. Hence in that situation
the uncoded BER values are lower than the coded BER values and the performance of the
channel is better without the coding. Those burst errors have the length which is greater than
the constraint length of the Viterbi encoder (see also Chapter 2).

4 Navigation Signals and Navigation
Message Structure

A short overview of Galileo signals, services and types of navigation messages that it will
provide to the users that belong to certain user groups is described in this chapter. It also
gives an overview over the GIOVE signals previously and currently broadcast.

4.1 Galileo Navigation Signals

Navigation Signals that are envisaged for Galileo use frequencies from Radio Navigation
System Service (RNSS) bands, as well as the frequencies from Aeronautical Radio Navi-
gation System (ARNS) bands [13],[21]. These carry out three different composite signals,
namely E1,E5 and E6.

Each composite signal generated on board the satellites [21],[8] has a certain carrier fre-
quency and occupies a certain band as defined in table 4.1. Its components, Data and Pilot
channel are modulated with a ranging code, multiplexed to form a composite signal and then
transmitted in a specific carrier frequency [21]. Signal components that contain navigation
data provide different type of navigation services depending on their navigation message
content. Those services are Safety of Life Service (SoL), Open Service (OS), Commer-
cial Service (CS) and Public Regulated Service (PRS). They will be described in the next
section.

Signal Carrier Frequency Bandwidth
E1 1575.420 MHz 24.552 MHz
E6 1278.750 MHz 40.920 MHz
E5 1191.795 MHz 51.150 MHz

Table 4.1. Galileo signals definition [21]

Signal E1 includes three components; two data channels carrying navigation message and
one pilot channel containing only the ranging code. Data channels, containing navigation
parameters are therefore referred to as navigation signals. Pilot channel provides more pre-
cise and robust navigation measurements. Both of them can be used for determination of
pseudoranges between satellites and receiver. They all provide different services to users
according to table 4.2.

Signal E5 is composed of two navigation signals: E5a, containing data for navigation and
timing and E5b, containing navigation and integrity data. They are mapped to services as in
the table 4.3 and they are both open service signals.

34

Chapter 4. Navigation Signals and Navigation Message Structure 35

Signal Channel Content Message Type Services
A Data G/NAV PRS

E1 B Data
I/NAV OS,CS,SoL

C Pilot

Table 4.2. Signal E1 definition [21]

Signal Channel Content Message Type Services

E5a
Data

F/NAV OS
E5 Pilot

E5b
Data

I/NAV OS,CS,SoL
Pilot

Table 4.3. Signal E5 definition [21]

Signal E6 includes three components, two of them used as navigation data signals. They
provide different services that can be seen in table 4.4. Both navigation signals are en-
crypted, either with governmental or with commercial encryption code.

Signal Channel Content Message Type Services
A Data G/NAV PRS

E6 B Data
C/NAV CS

C Pilot

Table 4.4. Signal E6 definition [21]

4.2 GIOVE Navigation Signals

Test signals that are broadcast from two test satellites, GIOVE-A and GIOVE-B represent
the future Galileo signals, regarding the frequencies and modulations used, as well as the
data rates. Navigation message parameters are provided in the ground segment as described
in Chapter 1; the signals are generated and broadcast over the satellites, and received with a
GETR receiver in various stations worldwide [2],[23]. Although GIOVE-A signals should
be fully representative of the Galileo Signals, its Navigation Message parameters serve only
for experimental purposes; hence its content and structure does not exactly reflect the struc-
ture of the Galileo message. Also, GIOVE A spreading codes are different from the Galileo
codes, and it can transmit only two signals at a time. GIOVE B is an improvement of GIOVE
A [2]. Signal definitions provided by GIOVE A and B [20] are given in table 4.2.

Both test satellites, GIOVE A and GIOVE B can transmit only two signals at a time, and
these are either E1-E5 or E1-E6. These signals correspond to the future Galileo signals also
named as E1-E5 and E1-E6 (see [20]). In the practical work described in the following sec-
tions, the signals E1 and E5 are being evaluated.

Chapter 4. Navigation Signals and Navigation Message Structure 36

Signal Carrier Frequency Reference Bandwidth Message Type
E1 1575.420 MHz 32.736 MHz −
E5 1191.795 MHz 51.150 MHz −
E5a 1176.450 MHz 20.460 MHz F/NAV
E5b 1207.140 MHz 20.460 MHz I/NAV
E6 1278.750 MHz 40.920 MHz I/NAV

Table 4.5. Giove signals definition [20]

4.3 Navigation Message

Galileo system employs four types of navigation messages [4],[9] and these are:

F/NAV Freely Accessible Navigation Message Type - its signals are used for provision of
Open Service and it is freely available to all public users.

I/NAV Integrity Navigation Message Type - its signals are used for provision of Open Ser-
vice, Commercial Service and Service of Life. As the name states, this message type con-
tains additional information about Integrity of navigation message i.e. whether the parame-
ters sent in the message are reliable and can be used for positioning and timing.

C/NAV Commercial Access Message Type - provides Commercial Service with higher data
rate and with commercial encrypted signals.

G/NAV Governmental Access Message Type - provides Public Regulated Service to specific
group of users with governmental encrypted signals.

Correspondingly to different message types, Galileo offers services to different groups of
users [4],[9]. There are 4 service types and these are:

OS Open Service - it is free to use and accessible free of charge with a small, low cost
receiver. It provides information about positioning, timing and velocity with a certain ac-
curacy. Users will be able to receive combined Galileo and GPS signals. Currently these
signals (OS Galileo and C/A code of GPS) are located in different frequency bands. Hence, a
dual-frequency receiver can be used for better accuracy due to the corrections of ionospheric
errors.

SoL Safety of Life - it is also free of charge, with global high level performance and integrity
information provision, in order to increase safety in areas where human safety is critical
(aviation, rail, maritime). It provides authentication of a signal, so users can be sure of
reception of the right Galileo signal. The SoL signals are also separated in two frequencies
and received with dual-frequency receiver.

CS Commercial Service - it is bounded with a fee payment and hence with restricted access.
It provides additional information with higher and preciser performance characteristics and
value-added applications. It also includes service guarantees, high precise timing and posi-
tioning informations. CS signals are encrypted with commercial encryption.

PRS Public Regulated Service is also restricted, used for governmental applications. It
provides continuity of service and protection against threats to Galileo signals due to in-
terferences. It improves the continuous availability of signals for the use in security and
emergency services, i.e. government-authorized applications. Nevertheless, this service

Chapter 4. Navigation Signals and Navigation Message Structure 37

is controlled by civil institutions, having the signals encrypted with governmental encryp-
tion.

Galileo is currently going through its test phase with two test satellites, GIOVE A and
GIOVE B broadcasting the future Galileo signals, as already mentioned. Their navigation
messages slightly differ from ones foreseen in Galileo, hence it is of importance to empha-
size the differences between Galileo message structure and GIOVE test message structure.

4.3.1 Message Generation

Navigation message that is going to be used in Galileo, as well as its version now broad-
cast from GIOVE A and GIOVE B, is generated both on Earth and on board the satellites.
First part of the message, actually the navigation parameters are obtained by the means of
measurements of the parameters that GESS stations receive from satellites and proceed to
Galileo Control Center (GCC) as described in Chapter 1. It is then uploaded to the satellites,
where the other part of the message is generated on-board, and then broadcast to the users.
This on-board generated part includes error protections of the data and enhancement of the
error correction methods.

The smallest unit that contains navigation data is called Page. The format of one page is
defined for each message type in Galileo as well as in GIOVE according to [21],[8] and
[20].

On-board generation of page includes the following steps:

1. CRC - Cyclic Redundancy Check

2. FEC - Forward error correction with Tail bits

3. Interleaving of encoded bits

It is done by employing the scheme in table 4.6.

Step 1:
Navigation data CRC Tail

Step 2:
Navigation data CRC Tail

FEC symbols
Step 3:

Navigation data CRC Tail
FEC symbols
Interleaving

Table 4.6. Page generation

After completing these three steps, the synchron pattern is added in the next step (see table
4.7) and one page with symbols is obtained. A certain amount of such pages is concatenated
to build a frame that is then to be transmitted in a sequence with other frames generated in
the same way.

Chapter 4. Navigation Signals and Navigation Message Structure 38

Step 4: PAGE
Synchron pattern Interleaved FEC symbols

Table 4.7. Page

At the reception, these steps are done in a reverse order. Firstly, the synchron pattern is re-
moved and the symbols are deinterleaved. Then they are passed through the Viterbi decoder.
After being decoded, navigation data is extracted.

Since the scope of this work is the evaluation of navigation data from F/NAV and I/NAV
messages, in further discussion only those two messages will be presented.

Galileo Page Layout: One page will have certain length depending on the message type
being transmitted [21]. All pages are generated in the same way.

F/NAV General Message Format

One F/NAV page has the format according to table 4.8

Sync pattern Symbols Total Bits
12 488 500

Table 4.8. F/NAV Page format

After being received and decoded, the bits are distributed as in table 4.9:

Page Type Navigation Data CRC Tail Total Bits
6 208 24 6 244

Table 4.9. F/NAV Decoded Page

I/NAV General Message Format

One I/NAV page has the format according to table 4.10

After decoding, the page is evaluated differently from F/NAV; it has to be distinguished be-
tween two navigation channels, namely E5b and E1B (also see Chapter 5, [8]). Furthermore,
when dealing with I/NAV, two consequent messages have to be taken into consideration be-
cause they both contain parts of the same navigation stream. The pages are here called words
and each word could represent the even or the odd page [21]. For the signal E5b one word
will have the format as in table 4.11.

Since it is a nominal page layout, after 1 second the other part of the word is transmitted
(either the even or the odd page) and has the format as in table 4.12.

Hence, the first part of one word contains the first part of the data, and the second part of one
word the second part, together with External Region Integrity Status (ERIS), Spare, CRC,
Region Status (RS).

On the other hand, signal E1-B employs slightly different scheme, where the two parts of
the same word are switched and hence transmitted in a different order, according to tables
4.13 and 4.14. The second part of the word is transmitted also 1 second after the first one.

Chapter 4. Navigation Signals and Navigation Message Structure 39

Sync pattern Symbols Total Bits
10 240 250

Table 4.10. I/NAV Page format

Even/odd=0 Type Data i(1/2) Tail Total Bits
1 1 112 6 120

Table 4.11. E5b Word Format - Part 1

GIOVE Page Layout: GIOVE Message is generated in the same way as one that is going
to be used in Galileo (and described above), but with different page structure. Yet the page
layout is the same for each message type, and it is shown in the table 4.15.

Each field has different length depending on the navigation signal. The lengths of the fields
(represented as number of bits) for the signals used for test and evaluation purposes are
shown in table 4.16.

According to this scheme and message generation rule from the beginning of this chapter,
navigation messages are generated before they are transmitted and the same procedure has
to be applied when receiving and evaluating them.

4.3.2 Message Transmission

Navigation message is transmitted in units called frames. Frames are divided into smaller
units called sub-frames that are again divided into the smallest units called pages. Each
message type has different number of subframes and pages.

As announced in the previous section, only the E5a signal that corresponds to F/NAV mes-
sage, and the signals E5b and E1-B that correspond to I/NAV message will be taken into
account. Again there is a small difference between the format of the frame in Galileo com-
pared to GIOVE, that will be discussed bellow.

Galileo Frame format: Without going into details, (these can be taken from [21],[8]) there
are the two types of evaluated messages.

F/NAV: Free Accessible Navigation message is composed of 12 subframes, each one of 5
pages; hence one frame will contain 60 pages and will be transmitted in 600 seconds. Each
page have a duration of 10 seconds.

This pages contain the following parameters: Satellite Vehicle Identification Number (SVID),
Signal in Space Accuracy (SISA), Ionospheric correction, Broadcast Group Delay (BGD),
Signal Health Status (HS), Galileo System Time (GST), Data Validity Status (DVS), Ephemeris,
Almanac as well as GST-UTC 1 and GST-GPS conversion.

I/NAV: One frame is composed of 24 subframes, each one containing 15 Words that are
transmitted withing the 30 seconds. Hence, every Word has a duration of 2 seconds, and the
whole frame requires 720 seconds for the transmission. The contents of the pages are the
same as in F/NAV only with another distribution of bits.

1UTC stands for Universal Coordinate Time

Chapter 4. Navigation Signals and Navigation Message Structure 40

Even/odd=1 Type Data j(2/2) ERIS Spare CRC j RS Tail Total Bits
1 1 16 40 24 24 8 6 120

Table 4.12. E5b Word Format - Part 2

Even/odd=1 Type Data i(2/2) ERIS SAR Spare CRC i RS Tail Total Bits
1 1 16 40 22 2 24 8 6 120

Table 4.13. E1B Word Format - Part 1

Even/odd=0 Type Data j(1/2) Tail Total Bits
1 1 112 6 120

Table 4.14. E1B Word Format - Part 2

Sync Res-1 PGCNT SNF NAVDATA Res-2 CRC Tail

Table 4.15. GIOVE Page Layout

GIOVE Frame format: Because of the differences in format of the Galileo and GIOVE
messages, the latter one need to be considered separately. Here is also given only the short
description, further details can be taken from [20].

F/NAV: One Frame consists of 12 Subframes, each one containing 5 Pages as in Galileo.
Page numbers are evaluated from Page Counter (PGCNT) field (see table 4.15); it begins
counting from one for the first page in the frame, and it is incremented with every new page,
until it reaches the number of the pages in one frame, and that is 60. First four pages in
one subframe have the same content as first four pages in every other subframe. These are
namely the parameters that describe Ionosphere, UTC Conversion, Ephemeris and Clock
correction data, as well as the GIOVE A/B System Time, Satellite Health, Broadcast Group
Delay, GPS to GIOVE A/B System Time Offset. The fifth page of every subframe contains
the Almanac parameters.

I/NAV: There are two Signals for I/NAV: E5b and E1-B. Each of them has distinctive frame
format. E5b frame is divided into 25 subframes, each one having 24 pages. That makes
600 pages withing one frame. E1-B frame is composed of 24 subframes, with one subframe
containing 25 pages, hence it has 600 pages. As in F/NAV the page numbers are evaluated
with the PGCNT field.

Chapter 4. Navigation Signals and Navigation Message Structure 41

Fields/Signals E5a E5b E1A E1B
Length SP 12 10 10 10

Sync Pattern 10110111000 0101100000 0101100000 0101100000
Length Res-1 N/A 1 1 1

Length PGCNT 6 10 10 10
Length SNF 3 3 3 3

Length NAVDATA 217 64 64 64
Length Res-2 N/A 24 24 24
Length CRC 12 12 12 12
Length Tail 6 6 6 6

Table 4.16. GIOVE Page Fields Description

Test analysis is done with GIOVE E5a, E5b and E1-B signals from several test files and
represented in Chapter 5. Only few files with simulation of Galileo signals E5a, E5b and
L1B are examined; these are also given within the same chapter.

5 Experimental verification

This chapter, i.e. the first part describes the Galileo Experimental Test Receiver (GETR)
used for acquirement of the signals from GIOVE satellites [6]. Also the description of the
files that the receiver outputs and that are used for the verification of the signals is included.
For better understanding of the format and content of these files, some examples are high-
lighted. In the second part the description of the relevant software developed for testing and
processing the GIOVE navigation messages is provided together with the evaluation of the
received files.

5.1 GETR inside

GETR is a Galileo/GPS combined test receiver that works in a dual frequency mode and it
is able to track all kinds of Galileo and GPS signals. It collects and outputs the following
type of data [17],[6]:

• Ranging measurements from GIOVE/Galileo and GPS such as: Pseudorange mea-
surements, Carrier Phase, Doppler and Carrier to Noise ratio C

N0
measurements.

• GPS-based PVT (Positioning Velocity Timing), since only the two GIOVE satellites
cannot be used for calculation of those parameters (minimum 4 satellites are required).

• Navigation Symbols (before deinterleaving and decoding)

• Navigation Pages (after deinterleaving and decoding and CRC check)

• Real-time complex correlation peak samples

• Raw IF samples

GETR is able to track up to 7 signals/channels at a time. GIOVE/Galileo signals have Data
and Pilot component, hence the GETR will track both of them, with the Pilot component as
the default one. However, the tracking mode can be switched. GPS signals do not have the
Pilot component, therefore only the Data component is tracked.

In Chapter 4 it was mentioned that the current test satellites, GIOVE A and GIOVE B can
only broadcast two signals at the time. These are either E1+E5 or E1+E6. GIOVE B
was emitting the signal combination E1+E5 from July 2008 until January 2009. Then it
changed to E1+E6 from January until March 2009, and returned broadcasting E1+E5
again since March 2009 [2].

GIOVE A was emitting both signal combinations E1+E5 and E1+E6 during its opera-
tional life, until July/August 2009. Then it was moved to another (higher) orbit, to release
the place for the fully Galileo constellation and prepare the satellite for its end-of-life. Nev-
ertheless, its operational functionality was prolonged and after this manoeuvre, it was able
to broadcast E1+E5 signals. It was operational until the end of the march 2010.

42

Chapter 5. Experimental verification 43

Navigation data files that are analyzed date from October 2009, and therefore contain only
the E1+E5 signal combination.

GETR outputs data in ASCII files. Due to different types of measurements, different types
of data files are generated and the appropriate names are given to them. Complete name of
each GETR file includes information about the filename which is given in a form of date
and time when the file was generated and its content. The word that describes the content of
the file or at least gives some indication about it, is appended after the underline. Possible
files generated by GETR and their filenames are listed in table 5.1 and some example of
evaluated files are given within the next section.

filename_meas In ’$@meas’ messages are all measurements
filename_nav In ’$@Symb’ messages are raw symbols and in ’$@Page’ messages navigation pages
filename_corr In ’$@Corr’ messages are correlation peak samples
filename_log This file contains all error messages from the receiver

Table 5.1. GETR files description [6]

For the purpose of testing the navigation signals, and decoding and evaluation of naviga-
tion messages, only two files were needed and used; namely the filename_nav and file-
name_meas. They provided all necessary information about the channel number with the
corresponding signal component, Pseudo Random Noise number (PRN) which is assigned
to each satellite and the received navigation data sequences. Detailed description of each
file is given in the GETR User Manual [6].

5.2 Examples of test files

These are two examples of the file types that were generated by GETR and used for exami-
nation and verification of navigation messages.

Example 1: File ’generx_091015_165117.meas’ Figure 5.1 represents a fragment of
the file generated on 15.10.2009. at 16h 51min 17sec and contains the measurements from
GIOVE B satellite.

 0,53, L1A_1,D,1553,400037,Y, 22940955.530, -30048.51060, 334.523, ,43.0, , 354.31, 0
 1,53,L1BC_2,D,1553,400037,Y, 22940955.144, 216085.27488, 334.422, ,42.4, , 1124.60, 0
 2,53,L1BC_2,P,1553,400037,Y, 22940955.002, 218275.83850, 334.410,42.3,42.4, , 1121.52, 0
 3,53, E5a,D,1553,400037,Y, 22940690.985, 233247.66512, 250.125, ,46.7, , 1094.08, 0
 4,53, E5a,P,1553,400037,N, 1955218.943, -4474.60478, 249.540,46.6,46.7, , 2.92, 0
 6,53, E5,P,1553,400037,Y, 22940691.311, 214689.86158, 252.819,49.7,46.7,45.7, 1050.32, 0

Figure 5.1. Data from ’generx_091015_165117.meas’

First number in each row refers to the channel number. Channels 0−7 are GIOVE channels
(future Galileo channels). The second number is the PRN number of the satellite, where
PRN = 53 refers to GIOVE B, and PRN = 51 to GIOVE A. After this number, the signals
and their components, data (D) or pilot (P) are given. These signals can be any of 16 signals
broadcast by GIOVE and GPS satellites [6]. The ones that are processed were only the

Chapter 5. Experimental verification 44

L1BC_2, L1BC_1 signal components as in the files, which correspond to GIOVE signal
E1B; and E5 signal, which comprises E5a and E5b, as in [20].

Channel 6 in ’$@meas’ file stands always for the composite signal E5, actually only for
one component E5a (corresponds to F/NAV message). Channel 7 is a virtual channel, hence
not present in ’$@meas’. It is included in channel 6 and represents the E5b component
(corresponds to I/NAV message).

These are all parameters that were taken from “filename_meas” files. With the knowledge
about them, navigation data from files named “filename_nav” could be analyzed.

Example 2: File ’generx_091015_165117.nav’ In figure 5.2 a fragment of the file which
is also generated on 15.10.2009. at 16h 51min 17sec and should be processed together with
the previous file, is presented. It contains navigation symbols and navigation pages.

$@Symb, 1,53,
INAV,1000,051f4eafb87dfa3467e8864ec7851e111f01be147a29fff5ef7c68981ff4805287f37bf21ffea94ff9ac8efdec52e91
7ace57c5f3a7f9843fffb778afc27dae7f8ced8e7fb30521e79d3ed785baccff93d853f869f97fff7ce7ffffffb80007d6e0001fc7
fffff91dfffde1680017e2a0005eaa7e3fffdf187ffffe2a0
$@Page, 1,53, INAV,399256.0,Y, 0,120,202155555555555555540000017500
$@Page, 2,53, INAV,399258.0,Y, 0,120,20615555555555555554000002e940
$@Symb, 2,53,
INAV,1000,47fff80e000001b8800087a5fffa0757ffe8556070000839e00000757fff8055fffe01a000002aa000200b7ffe8791ff
fa12581e000203700000159fffe0267fff806800000b9800082e9fffa0667ffe8316060000805a00000277fff825dfffe03800000
6ae00021587ffe87ddfffa0b5812000200400000159fffe03

Figure 5.2. Data from ’generx_091015_165117.nav’

Lines that start with the word ’$@Symb’, which is an indicator for symbols, contain raw
symbol sequences. This indicator is followed by the channel number, PRN number and
the name of the message type, that can be either F/NAV or I/NAV. Last number in a line
before the sequence of hexadecimal numbers represents the length of the symbol sequence
proceeding it, which is multiplied by 4, since the symbols are written in hexadecimal form.
This number is followed by the sequence of raw symbols. Raw symbols are acquired from
the test satellites, where they were generated and contain synchron pattern starting from
some index that could be anywhere inside of the symbol sequence. These symbols are
extracted and used for further processing with the appropriate algorithm.

Another lines start with the identifier ’$@Page’, which refers to the pages already processed
by the hardware components implemented in GETR receiver. This identifier is followed by
the channel number, PRN number, name of the message type, transmission Time of Week
(TOW), CRC check field (that can be set either to ’Y’ or to ’N’), then Viterbi distance field,
which is a minimum distance in Viterbi decoder and finally with the number referring to
the length of the sequence multiplied with 4, and the actual bit sequence [6]. The length
of this sequence is the length of the symbols sequence of one page divided by 2, since the
code rate is equal to 1/2. Here the expression bit sequence is used intentionally because
these bits are already deinterleaved and decoded (by the mean of hardware implementation
of deinterleaver and decoder), therefore they cannot be refer to as symbols anymore. Their
purpose within this work is for testing and verification of the implemented algorithm.

The pages are used for a comparison with the results of evaluation of the symbols from the
same file. Some pages are discarded right after being received with GETR since they were
erroneous, and therefore not useful. That explains the fact that in some files the number

Chapter 5. Experimental verification 45

of pages that were processed from raw symbols differs from the number of pages simply
extracted from the same file. Also the synchron pattern that is found within the symbol
sequence usually cuts the first page after some length, hence the number of actual pages
from raw symbols is almost always at least by one smaller than the actual length of the
symbols divided by the length of one page.

These and further files are processed and analyzed with the algorithm developed for that
purposes, which detailed explanation is given in Appendix B. The results of the tests as well
as the brief description of the actual algorithm are provided in the next section. From many
files that were received and examined, only the outcome of the four of them is presented
bellow, since they are sufficient for the purposes of this work. Furthermore, those files are
sufficient in achieving the main goal, which was to test the validity of navigation messages
acquired with the test receiver, as well as to test the performance of the developed software.
In addition to this, the most important part of the algorithm, to find a synchron pattern in the
received sequence of symbols and correctly decode the symbols, was also proven.

5.3 Test environment

Since the receiver part is of interest, the simulation algorithm described in Chapter 3 is
restricted only to the reception segment. This had to be adapted to the new environment
which was accomplished by including an interface section between the GETR files and the
first block in the reception segment, the synchron pattern search. Due to the fact that all files
were in the same format, the same procedure of reading the file and extracting data from it
could be used for them. This procedure extracts the raw symbols as well as the pages from
the same file. As they are written in hexadecimal notation, the conversion to binary format
is also included within the routine. The output sequence of raw symbols is then processed
using the implemented algorithm.

In figure 5.3 a block diagram of the reception segment is presented, and it can be seen
that after the symbols are extracted, the following steps remain unchanged compared to the
Chapter 3, where the simulation of a navigation channel was discussed with the deployment
of the corresponding software version. At the end of the block chain in a diagram, i.e. after
the CRC check is made, the data is stored in form of frames with the structure as defined in
[20] for different types of messages.

Extract
symbols

Decoder
CRC

check
De-

interleaver

Synchron
pattern
search

Make
Frames

Read
symbols

 GETR files

Compare
pages &

Calculate BER
Read pages

Make
Frames

CRC
check

Figure 5.3. Block diagram of reception segment

Chapter 5. Experimental verification 46

Following is the description of the blocks from the figure 5.3. As already mentioned, the de-
tailed presentation of each of the functions implemented within this version of the software
is provided in Appendix B.

Read symbols is a routine that extracts symbols from GETR files. Example of such file is
given in the previous section. The routine reads only the lines starting with ’$@Symb’ word
and with the given channel number. Each channel is handled separately, since it refers to
one, distinctive signal component. For example, channel 1 could refer to signal component
E5a, and channel 2 to E5b. The symbols are written in hexadecimal format, hence they are
converted to binary values. Symbols from one channel are stored in one ASCII file in a
form of either long sequence of all lines with symbols or an array where each row contains
symbols from one ’$@Symb’ line of the same input file.

Read pages does the same as Read symbols, only operating on ’$@Page’ lines. Channel
numbers and signal components correspond to those from ’$@Symb’ and are extracted in
the same way. The page sequences from each channel are also stored in separate ASCII files
for a latter use for calculations of the Bit Error Rate (BER).

Synchron pattern search procedure is the same as described in Chapter 3. It is performed
over some optimally long portion of the symbol sequence, usually 10 pages length. When
the first index is found, it is then updated in every loop iteration, i.e. one page length is added
to the previous index to make the new synchron pattern index. During the examination of
test data some conclusions concerning the synchron pattern arrangement were made. In
some examples, when plotting the correlation function of symbols and the synchron pattern,
a huge amount of the highest peaks resided in the negative part of the y-axis. That lead to
conclusion that the input sequence was inverted, i.e. the whole data sequence was inverted
at the time of the reception. Thus after careful investigation of the highest correlation peaks
a flag had to be set to indicate whether the symbols are inverted or not.

Extract symbols reads the symbols between two adjacent synchron patterns found in the
sequence. The part of the data before the first pattern in the whole sequence is discarded
as well as the rest after the last one. There is no sense of taking these symbols into ac-
count, since the navigation message which they were carrying is irreversibly lost. In every
loop iteration the symbols from one page are extracted and proceeded to deinterleaver and
decoder.

Deinterleaver and Decoder are implemented exactly as in the simulation of the navigation
channel (see again Chapter 3 for details). Here the hard decision decoding is used, hence
the corresponding decision flag is set accordingly. Also the soft decision decoding could be
used without changing anything in the actual algorithm, only the flag had to be set depending
on which type of decoding is chosen.

CRC calculation is performed employing the usual CRC computational algorithm on the
received and decoded page. If the CRC checksum is correct, the flag is set to ’Y’, otherwise
to ’N’. Both, correct and incorrect pages are written in one ASCII file, which has the form
of the frame structure: every line starts with the page number, computed from the PGCNT
field according to [20] (also look Chapter 4), then the CRC flag is given followed by the
navigation data from one page. Every such file contains all pages extracted from only one
channel from one GETR file. This is done within the block Make Frames. An example of
one such ASCII file with the frame structure can be seen in figure 5.4. The pages are written
in the order in which they were found in the GETR file with the corresponding page number

Chapter 5. Experimental verification 47

that not necessarily begins with one, as in this example. Here the page counter of the first
extracted page is equal to 92, hence the pages with lower counter value are not present in
the generated ASCII file.

090, ,
091, ,
092,Y,00001
093,Y,00001
094,Y,00001
095,Y,00001
096,Y,00111111111100000000010
097,Y,00111111111100000000010
098,Y,00111111111100000000010
099,Y,00001
100,Y,00001
101,Y,0001101101001010011001011111111110100000100011100110000000011110101
102,Y,0000000000011011110101000010010001110101001110111001010000110110110
103,Y,0000111100001110011010001001010000100100111110011010011000001000101
104,Y,0000111100110110111110001000011111100000111100000010101010101010101
105,Y,0001000010001011000010111000000000000000000000000011100100011001001
106,Y,0000000000000000011010110100000111101011111000100010000000001010101
107,Y,00001
108,Y,00001
109,Y,00001
110,Y,00001

Figure 5.4. Example of the frame structure from the file ’generx_091015_165117_nav.dat’

The same function generates also the same frame structure from the pages extracted from the
GETR files with the Read pages routine. Both, the extracted pages and the decoded pages
from raw symbols enter the Compare pages and calculate BER block where pages with the
same page number are compared and the differing bits are counted and divided by the length
of all pages that were found with the same counter number, in order to calculate the error
rate of the appropriate channel. In most of the files that were examined the correspondence
between the decoded pages from raw symbols with the extracted pages found in the same
GETR file was error-free.

In addition to above commented GETR files from GIOVE satellites, a couple of Galileo test
files were also examined. They were simulated with the Galileo Test-Simulator from Spirent
[3] and acquired with the same test receiver. The same procedure as in block diagram 5.3 was
deployed, except for the part with BER calculations, since there were no test pages included
in the files for comparison, only the raw symbols. Corresponding discussion concerning the
evaluation of those Galileo test files is also given in the separate section.

5.4 Results evaluation with GIOVE navigation data

This section highlights some examples of files with GIOVE navigation messages that were
processed with corresponding algorithm for test purposes. It does not include all files exam-
ined in the scope of this work, but rather those that showed some interesting behavior, i.e.
some possible scenarios with navigation message at the reception. Not only the data was
tested, but also the software performance.

Chapter 5. Experimental verification 48

Files that are analyzed were generated during October and November 2009. Evaluated mes-
sages are F/NAV and I/NAV, and the signals mapped to them and supported by GETR are
E5a for F/NAV and E5b, L1BC_1, L1BC_2 for the I/NAV. Those signals represent either
data or pilot signal components, each one transmitted on one separate channel. Another
additional signal appears in the files, namely the L1A_1 and it is here mapped to the I/NAV
message. That does not actually correspond to Galileo signal specifications [21] and [8],
where this signal is mapped to Governmental Navigation Message, G/NAV. However it
is not encrypted and it does correspond to E1A signal according to [20], from which the
message format was taken. Therefore the information about the particular parameters for
GIOVE signals could be attained.

Another important issue that needs to be considered is that the pilot component involves also
the navigation data sequence, which is not foreseen in Galileo. It seems in most of the cases
that the channel containing data component of the signal acquired with GETR is copied into
the channel reserved for pilot component of the same signal. Thus if both channels exist
within the same file, they are identical and only one needs to be processed.

In the following part some files are described, together with the remarks about the channel;
especially the cases with inverted navigation symbols were considered.

Example of the file ’generx_091015_163802_nav.dat’: This file contains five channels.
Channel 0 corresponds to the signal L1A_1 and I/NAV message as commented above. The
analysis of this channel lead to the conclusion that all symbols in the symbol sequence were
inverted. It further means that the phase of the signal is 180◦ shifted. The constellation
diagram that represents the signal structure can be taken from [21]. The symmetry of this
constellation causes a phase ambiguity of 180◦. This phase ambiguity has an impact on
the symbols and their inversion; in binary sense - one becomes zero and zero becomes one.
Consequently, the highest correlation peaks in equal distances that correspond to one page
length will now reside in negative part of y-axis, as it can be seen in figure 5.5. Here the
negative peaks have the value of 10, since the synchron pattern is 10 bits long. This is one
indicator for the inversion of the symbols, if the number of negative peaks with maximum
value is larger as the number of the positive ones. Thus those symbols needed to be in-
verted, before decoding them. Another indicator is the CRC check, which fails in case when
received symbols are inverted at the reception without correcting them previously. If there
are a lot of pages with false CRC, it could refer to the inversion of the symbols.

When deinterleaving and decoding part are executed, the resulted pages are inserted in the
appropriate frame structure. Test pages from GETR files are also evaluated and placed in the
same frame structure. The same amount of pages was found. By comparing the pages from
both structures and calculation of BER, the CRC is performed and in the case of successful
CRC check it was equal to zero, hence no errors were found. Nevertheless there were two
pages with false CRC check (equal to ’N’) in both frame structures with the same page
numbers. This kind of detailed analysis is employed on every GETR file, especially on
those where specific results (uncertainties) were obtained.

Channel 1 and Channel 2 of the same file contain the signals L1BC_2 and E5a respectively,
and are occupied with pilot components, where the second one seams to be a copy of the
Channel 3 which also contains the signal E5a but here the data component. Channel 4 and
5 refer to the pilot and to the data component of the same signal, namely the E5b for the

Chapter 5. Experimental verification 49

0 500 1000 1500 2000 2500
-15

-10

-5

0

5

10

symbol bits

co
rr

el
at

io
n

pe
ak

s

Figure 5.5. Correlation between block symbol sequence and synchron pattern

INAV message. The pages evaluated from those channels coincide perfectly with the test
pages from GETR files, hence the BER is everywhere equal to zero.

Example of the file ’gkir042j-k_10e.dat’: An interesting example provides this file gener-
ated by the GESS station named GKIR, in Kiruna, Sweden. Symbols originated from the
signals E1A and E6A were examined. First one, transmitted on the Channel 0 suffered from
inversion of the symbols starting after one determined bit length. That manifested also in a
change of the synchron pattern index. Then at some other point, i.e. after some time period
the data is inverted again, which resulted in another synchron pattern index. Hence from this
second index the original data was received again.

This behavior occurred as a consequence of some external disturbance or interferer on the
transmission channel. The receiver had to resynchronize, which resulted in a change of the
positions of the synchron pattern within the file due to the symbols that were lost during this
process. It could not be corrected before the data entered the last part of the channel, namely
the decoding part. There are assumptions that the moment of time when the inversion of the
part of the data sequence occurred is related to the activation of the blanking function of the
receiver (see [6]). However, detailed description of this phenomena does not fall into the
scope of this work.

When the “true” synchron pattern was found, the CRC check was performed over that spe-
cific part of the sequence and it showed correct results for every page. Actually the computa-
tion of CRC was essential in finding that kind of errors, since it firstly appeared as false over
a long part of the sequence, i.e. over lots of pages. This was an indication that those parts of
the sequence needed to be investigated carefully and the plots of the correlation peaks yield

Chapter 5. Experimental verification 50

to the results observed above. Also the another synchron pattern is found correctly after the
inversion of the symbols.

Another signal, E6A, assigned to the Channel 2 was also affected with the change of the
synchron pattern index after some specific length. However, the symbols were not inverted,
only the pattern position within the sequence of the symbols was altered. The resynchro-
nization of the receiver was again the cause of the position change of the synchron pattern
index.

5.5 Results evaluation with Galileo Navigation Data

Galileo signals are generated using the RF-constellation simulator from Spirent [3]. It en-
ables controlled performance testing in all conditions; here it is operated in Galileo fre-
quency bands and employs modulation schemes available in [21] as public information. The
signals are acquired using the same GETR receiver as in the case of GIOVE signals and the
according files are analyzed using the other, additional version of the software adapted for
Galileo signals. The following three signals are generated for the following satellites that
are foreseen in the future constellation:

• Galileo Satellite nr. 17, broadcasting signal E1-B and message type I/NAV

• Galileo Satellite nr. 24, broadcasting signal E5b and message type I/NAV

• Galileo Satellite nr. 24, broadcasting signal E5a and message type F/NAV

Corresponding files were generated in August 2009. Unfortunately they all contain only
short symbol sequences, since the data was recorded over the short periods of time. Only
two subframes could be extracted from each of them, usually not comprising all the pages;
yet they correspond exactly to the subframe format as defined in [21].

In the file ’tm_binary_log_20090812_0942_rawSymbol_E1B.txt’ from the simulation of
the satellite nr. 17 for the signal E1-B one whole subframe with all 16 data words was
found, hence it could be used for the parameter extraction described in the Chapter 6. In
the other file were the satellite nr. 24 was simulated i.e. the E5b signal, with the name
’tm_binary_log_20090813_1235_rawSymbol_E5B_I.txt’ all data was inverted (the same
situation as it occurred with some of the GIOVE signals), and after inversion, the CRC
check was proven and it resulted in correct values. No full subframe was found, since the
structure does not start exactly from the beginning of the first frame. The file with the
signal E5a, and the name ’tm_binary_log_20090813_1235_rawSymbol_E1A_I.txt’, simu-
lating the same satellite nr. 24 provided two full subframes. From some unknown reason,
the last pages in each subframe, which should contain Almanac parameters according to
[21] appeared as incorrect after the CRC computation.

After the tests with GETR files with both, GIOVE and simulated Galileo navigation mes-
sages were performed and the confirmation about the correctly transmitted navigation mes-
sages was gained, they are then processed with another software implementation. This soft-
ware part performs the extraction of navigation parameters from navigation messages, i.e.
from the subframes with pages that have the correct CRC checksum. This parameter values
are exported in ASCII files in appropriate form and could be used for further computa-
tions.

6 Evaluation of navigation parameters

In this chapter the description about the extraction and evaluation of navigation parameters
that were processed with the corresponding and modified software is provided. Also the
calculation of satellite coordinates from those navigation parameters is performed and the
results are presented bellow. Software algorithm that is used is basically the same as de-
scribed in Chapter 5 for tests and verification of symbols and pages from GETR files, here
with some adaptation to the new environment. It is here applied only on symbols with the
correct CRC check, in order to extract correct navigation parameters out of them. Results of
the execution of this software version are the files with navigation parameters, written in two
special formats, called Rinex and Yuma, depending on navigation data which is exported in
those formats. Some examples of those files are given within this chapter.

After building a frame structure from navigation symbols, as described in chapter 5 and
according to [20] for GIOVE navigation messages and to [21] for simulated Galileo naviga-
tion messages, the frames are divided into subframes and the similar structure was generated.
Those subframes with pages and page numbers are written in separate ASCII files and can
be used for extraction of navigation parameters. First of all, a view words about the output
formats used in this work.

6.1 Output in Rinex

RINEX stands for Receiver Independent Exchange Format and it is used for exchange of
navigation data, in form of raw data (see [26]). It is defined for three types of ASCII files:
Observation data file, Navigation Message file and Meteorological data file.

Since it is the Navigation message which is being evaluated, the obtained parameter values
are provided in the Navigation Message file. It contains values of open accessible messages
F/NAV and I/NAV in a form similar to GPS messages. In the Header of such Rinex navi-
gation file appears general information about the Rinex version, File Type, Satellite System,
Name of Program and Agency creating a file, as well as the information about the date and
time when the file was created. This is followed by the Ionospheric Corrections parameters
and Time System correction parameters (conversion from GST to UTC time). The other
part of the file, Data Record Description contains information about the System time and
Clock corrections, Issue of Data (IOD) value, Signal in Space Accuracy value (SISA) and
all Ephemeris parameters.

As already highlighted in previous chapters, navigation messages are sent in form of frames,
where each frame consists of some amount of subframes, and each subframe comprises some
determined number of pages, depending on the message type. In order to produce Rinex file,
only one full subframe is necessary in the case of F/NAV message and two full subframes
in the case of I/NAV message, since navigation parameters that are written in Rinex files
describe only one satellite, namely the one from which they are broadcast. Therefore even

51

Chapter 6. Evaluation of navigation parameters 52

with a short data records from the receiver, evaluation of maximum two subframes is enough
to deliver the desired parameters. One Rinex file looks as in the figure 6.1.

3.00 N E RINEX VERSION / TYPE
S2R Astrium 20091015 163802 UTCPGM / RUN BY / DATE
GAL 0.0000E+00 -8.2031E-02 2.1942E-02 0.0000E+00 IONOSPHERIC CORR

GAUT 2.7226284146E-05 7.620570841E-13 389120 1553 GSTB 0 TIME SYSTEM CORR
END OF HEADER

E16 2009 10 11 00 00 00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
4.320000000000E+02 8.646875000000E+01 2.628680923683E-09 2.987405206149E+00
4.004687070847E-06 1.698527834378E-03 1.445785164833E-05 5.435578960419E+03
3.888000000000E+05-4.470348358154E-08 2.956294301661E+00 9.126961231232E-08
9.768762177641E-01 3.662500000000E+01-2.631160825838E+00-5.322007397256E-09
1.714357124141E-10 2.000000000000E+00 1.553000000000E+03 0.000000000000E+00
0.000000000000E+00 7.300000000000E+01 0.000000000000E+00 0.000000000000E+00
3.984300000000E+05 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00

Figure 6.1. Rinex from the file ’generx_091015_163802.nav’

It is generated from the file with navigation data named ’generx_091015_163802.nav’. It
contains two sections, the upper one is the Header, as already described above. Parameters
such as the date and the time of file generation are the same as in the file name (date:
15.10.09 and time: 16h38min02s), then the name of the company creating the file (Astrium)
is given and the other relevant informations (e.g GAL for Galileo system). In addition to
that, there are also Ionospheric Correction and Time System correction parameters [26].
Reference time for the calculation of the time system correction polynomial is here given in
seconds of the Galileo week (389120), which is broadcast within the navigation message, as
well as the corresponding week number (1553), which is also one of the parameters carried
within the navigation message. Number 1553 refers to the number of weeks elapsed since
the start epoch of the GIOVE system time, which was on Sunday 06.01.1980 at 00:00 UT
(Universal Time scale, based on the rotation of the Earth) [20]. Galileo/GIOVE System
Time is defined in consistence with the GPS System Time since one of the main goals is that
both systems should be interoperable [9].

After the END OF THE HEADER there is a line with the satellite number, here E16 refer-
ring to GIOVE B, and after that the date of the first day of the week (one week in Galileo
begins at 00:00 UT Sunday) when the file was generated. It is here the first day of the week
number 1553. Every proceeding line comprises Ephemeris and other parameters and it is
listed as a BROADCAST ORBIT; there are seven of them defined in Rinex. One of those
lines contains SISA (Signal In Space Accuracy) value, whereby in GIOVE navigation mes-
sage it is set to zero (not valid). Other values that are equal to zero, such as satellite clock
bias, clock drift and clock drift rate (in broadcast orbit 1) are also used only for experimental
purposes and therefore not for positioning of timing services. For further details see [20] and
[26].

Chapter 6. Evaluation of navigation parameters 53

6.2 Output in Yuma

Yuma format is used for exporting almanac parameters from navigation messages. The
format is taken from the GPS system [5], since it is currently the only one suitable that can
be used for this purpose. Almanac parameters are given for all satellites in the constellation
and therefore every page within one frame contains the values for one satellite, altogether
one frame contains parameters from all satellites. Those pages with almanac are divided into
slots and the same parameters are repeated in every page, but with different slot number that
refers to a different satellite. Some of the pages comprise parameters about orbital planes,
and since there are three planes, parameters also appear multiplied within different pages in
the frame, but with distinctive values corresponding to each plane. For this reasons, a long
data record is needed with at least one frame with all subframes and all pages.

Almanac delivers basically the same information as Ephemeris, but with lower accuracy.
Hence, the correction parameters are not present within almanac. There is also one parame-
ter, which does not belong to correction yet it is also not present in almanac part of GIOVE
navigation message; and that is the Longitude of Ascending node of Orbit plane at Weekly
Epoch, OMEGA0. It should be present in the final Galileo message definition, the reasons
why it is missing at GIOVE will not be further discussed. In cases where this parameter is
needed for calculations it is taken from Ephemeris data for the corresponding orbit.

Comparison of ephemeris and almanac data showed very good correspondence in the files
that were processed. In case of Yuma almanac files, valid parameter values were allocated
only in two almanac slots, for each GIOVE satellite. They have the slot number equal to 01
for GIOVE A, and 16 for GIOVE B. These information is contained within the header of
every such file, in example in figure 6.2 PRN-01 corresponds to GIOVE A and in example
in figure 6.3 PRN-16 corresponds to GIOVE B. They are both taken from the same ASCII
file with almanac data. PRN-numbers are incremented for each satellite.

******** Week 1553 almanac for PRN-01 ********
ID: 01
Health: 1
Eccentricity: 9.2887878418E-004
Time of Almanac(s): 388800
Orbital Inclination(rad): 9.7876855909E-001
Rate of Right Ascen(r/s): -5.2802199424E-009
SQRT(A) (m 1/2): 5.451213E+003
Right Ascen at Week(rad): 2.9562943017E+000
Argument of Perigee(rad): 4.7030592613e-002
Mean Anom(rad): 2.2534863122E+000
Af0(s): 0.0000000000E+000
Af1(s/s): 0.0000000000E+000
week: 1553

Figure 6.2. Yuma from file ’generx_091015_165117.nav’ for GIOVE A

Chapter 6. Evaluation of navigation parameters 54

******** Week 1553 almanac for PRN-16 ********
ID: 16
Health: 1
Eccentricity: 1.6984939575E-003
Time of Almanac(s): 388800
Orbital Inclination(rad): 9.7687505156E-001
Rate of Right Ascen(r/s): -5.3259361323E-009
SQRT(A) (m 1/2): 5.435579E+003
Right Ascen at Week(rad): 2.9562943017E+000
Argument of Perigee(rad): -2.6311609209e+000
Mean Anom(rad): 2.9874051140E+000
Af0(s): 0.0000000000E+000
Af1(s/s): 0.0000000000E+000
week: 1553

Figure 6.3. Yuma from file ’generx_091015_165117.nav’ for GIOVE B

Both, the ephemeris and almanac data values from GIOVE satellites can be used for com-
putation of satellite coordinates. This computation is performed employing the algorithm
taken from [21]. In the case of ephemeris data, it includes 6 Keplerian parameters and the
corrections of those as well as the time of ephemeris needed for computations. The eccen-
tric anomaly is computed iteratively, with the initial value taken from [9]. In the case of
almanac data, it included also 6 Keplerian parameters, but here without corrections, and the
almanac reference time. The initial value for computation of the eccentric anomaly is also
taken from [9], and the value for the Longitude of Ascending node of Orbit plane at Weekly
Epoch, OMEGA0 from ephemeris data as already mentioned.

These calculations of satellite position within its orbit are performed for different time in-
stants (GST) with ephemeris as well as with almanac values and both results coincide up to
some decimal point. When graphically presented, one can clearly see the movement of the
satellite in its orbit which has the form of ellipsoid. When compared with the existing values
of satellite position from the measurements at the same date and time (here 15.10.2009 at
16h51min17s), corrected values are obtained, especially in case of the ephemeris data. In
figure 6.4 satellite coordinates from ephemeris data for one whole orbital period can be seen,
and in figure 6.5 the same coordinates are computed from almanac data.

Chapter 6. Evaluation of navigation parameters 55

week second X[m] Y[m] Z[m]

1553 399600 12409582.794 11359888.125 24310503.039
1553 403200 9357564.475 19013986.803 20582714.852
1553 406800 8758208.929 25118655.144 12799622.319
1553 410400 9368846.453 27866440.151 2489483.244
1553 414000 9170497.697 26773487.672 -8312630.420
1553 417600 6405766.899 22888851.134 -17468969.670
1553 421200 497239.637 18268503.182 -23167920.755
1553 424800 -7606286.727 14970198.508 -24286821.413
1553 428400 -15826781.692 14061740.299 -20612882.207
1553 432000 -21902577.426 15125422.286 -12879298.576
1553 435600 -24422719.283 16494276.390 -2613939.292
1553 439200 -23452774.421 16098904.385 8164786.100
1553 442800 -20456527.071 12512187.733 17342904.265
1553 446400 -17556596.218 5689282.869 23120639.447
1553 450000 -16490452.648 -2951028.415 24360824.967

Figure 6.4. Satellite coordinates from ephemeris data

week second X[m] Y[m] Z[m]

1553 399600 12411790.187 11357293.421 24310958.162
1553 403200 9360188.631 19011699.080 20584099.013
1553 406800 8761309.380 25116694.722 12801985.269
1553 410400 9372558.867 27865101.712 2492790.087
1553 414000 9175026.983 26773226.581 -8308929.844
1553 417600 6411169.636 22889804.791 -17465936.359
1553 421200 503175.478 18270359.284 -23166527.115
1553 424800 -7600398.938 14972571.254 -24287448.921
1553 428400 -15821400.724 14064504.165 -20615438.693
1553 432000 -21898020.789 15128754.984 -12883559.341
1553 435600 -24419359.303 16498619.940 -2619474.786
1553 439200 -23450905.762 16104798.121 8158957.645
1553 442800 -20456031.841 12519817.736 17338246.349
1553 446400 -17556999.990 5698140.213 23118452.524
1553 450000 -16491368.104 -2941896.001 24361687.270

Figure 6.5. Satellite coordinates from almanac data

7 Conclusion and future work

First part of this work was the development of the software that simulates a navigation chan-
nel. The outcome were Bit Error Rate (BER) curves of the channel, which were simulated
for coded channel as well as for uncoded channel for the same values of Energy per Bit to
Noise power spectral density ratio Eb/N0. Also the theoretical value of BER for uncoded
channel was computed. The resulting curve was almost identical to the simulated value from
the channel simulation. Also the BER curve for the coded case coincide with the estimated
value according to various sources [16],[10],[25],[24].

The second part of this work uses another software implementation for testing and verifica-
tion of raw symbols and decoded pages from test receiver, and the comparison of both. Pages
obtained from symbols after processing them with the software are equal to the pages that
were already decoded with appropriate hardware equipment in the receiver. After successful
decoding calculated BER values delivered very good results.

Third and the last part of the work was to export navigation parameters from decoded sym-
bols and verify their values by computing coordinates of the satellite from which the signal
was broadcast. Again the obtain results coincided with the ones provided for comparison.
Calculation of satellite coordinates was performed with ephemeris parameters as well as
with almanac parameters (that usually have lower accuracy) and the obtained values showed
very good correspondence.

When four operational satellites within the next phase of Galileo development are launched,
the same implemented algorithm for extraction of navigation data and calculation of the
positions of the satellites can be used. Future work in this field can be accomplished by
expansion of the algorithm to include the calculation of the user position with the parameters
from navigation messages. The accurate solution could be possible with minimum four
operational satellites in the space.

56

Bibliography

[1] http://en.wikipedia.org/wiki/Cyclic_redundancy_check.

[2] http://www.giove.esa.

[3] http://www.spirent.com/Positioning-and-Navigation.aspx.

[4] ESA galileo homepage. http://www.esa.int/esaNA/
galileo.html.

[5] Yuma almanac format. http://www.navcen.uscg.gov/
?pageName=gpsAlmanacs.

[6] GETR User Manual, 12 2007.

[7] A.J.Viterbi. Convolutional Codes and Their Performance in Communi-
cation Systems. IEEE Xplore.

[8] Signal Team EADS Astrium. Galileo IOV System Support SIS ICD. 06
2009.

[9] B.Hofmann-Wellenhof, H.Lichtenegger, and E.Wasle. GNSS Global
Navigation Satellite Systems. SpringerWienNewYork, 2008.

[10] B.Sklar. Digital Communications:Fundamentals and Applications.
Prentice Hall, 2001.

[11] C.Fleming. A Tutorial on Convolutional Coding with Viterbi Decod-
ing, 2006. http://home.netcom.com/~chip.f/viterbi/
tutorial.html.

[12] Ch.Langton. Tutorial 12:Coding and decoding with Convolu-
tional Codes. http://www.complextoreal.com/chapters/
convo.pdf.

[13] E.A.Miret. Galileo signal in space design, 5 2005. http://
www.galileoic.org/la/files/SignalPresentation_
MasterPolito_9thMay2005.pdf.

[14] E.D.Kaplan. Understanding GPS principles and applications. Artech
House, 1996.

57

http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://www.giove.esa
http://www.spirent.com/Positioning-and-Navigation.aspx
http://www.esa.int/esaNA/galileo.html
http://www.esa.int/esaNA/galileo.html
http://www.navcen.uscg.gov/?pageName=gpsAlmanacs
http://www.navcen.uscg.gov/?pageName=gpsAlmanacs
http://home.netcom.com/~chip.f/viterbi/tutorial.html
http://home.netcom.com/~chip.f/viterbi/tutorial.html
http://www.complextoreal.com/chapters/convo.pdf
http://www.complextoreal.com/chapters/convo.pdf
http://www.galileoic.org/la/files/SignalPresentation_MasterPolito_9thMay2005.pdf
http://www.galileoic.org/la/files/SignalPresentation_MasterPolito_9thMay2005.pdf
http://www.galileoic.org/la/files/SignalPresentation_MasterPolito_9thMay2005.pdf

Bibliography 58

[15] G.C.Clark and J.B.Cain. Error-Correction Coding for Digital Commu-
nications. Plenium Press, 1981.

[16] J.G.Proakis. Digital Communications. McGraw-Hill, 2000.

[17] J.M.Sleewaegen, A.Slimsky, and M.Hollreiser. Galileo Receivers Ex-
perimentation.

[18] M.Falcone. Galileo Overall Architecture. European Space Agency,
ESA/ESTEC.

[19] M.Tossaint, S.Binda, J.Hahn, M.Falcone, R.P.Cardeira, and F.Giuntini.
Galileo Initial Validation Step: GIOVE Navigation Message. http://
www.giove.esa.int/images/userpage/GPCNavmsg.pdf.

[20] Galileo Project Office. GIOVE A+B Public SIS ICD. http://www.
giove.esa.int, 08 2008.

[21] Galileo Project Office. Galileo OS SIS ICD. http://www.esa.
int/esaNA/SEMTHVXEM4E_galileo_0.html, 02 2010.

[22] P.D.Groves. Principles of GNSS,Inertial and Multisensor Integrated
Navigation Systems. Artech House, 2008.

[23] R.Piriz, V.Fernandez, M.Cueto (GMV S.A.), P.Tavella, I.Sesia,
G.Cerretto (INRiM), J.Hahn, and D.Navarro-Reyes (ESA). Towards
a Galileo Navigation Message. http://www.giove.esa.int/
images/userpage/PIRIZ_1137_TimeNav07_Piriz.pdf.

[24] S.Lin and JR. D.J.Costello. Error Control Coding: Fundamentals and
Applications. Prentice-Hall, 2004.

[25] T.K.Moon. Error Correction Coding: mathematical methods and algo-
rithms. Wiley, 2005.

[26] University of Bern W. Gurtner, Astronomical Institute. rinex - the
receiver independent exchange format, version 3.00. ftp://ftp.
unibe.ch/aiub/rinex/rinex300.pdf, 11 2007.

http://www.giove.esa.int/images/userpage/GPCNavmsg.pdf
http://www.giove.esa.int/images/userpage/GPCNavmsg.pdf
http://www.giove.esa.int
http://www.giove.esa.int
http://www.esa.int/esaNA/SEMTHVXEM4E_galileo_0.html
http://www.esa.int/esaNA/SEMTHVXEM4E_galileo_0.html
http://www.giove.esa.int/images/userpage/PIRIZ_1137_TimeNav07_Piriz.pdf
http://www.giove.esa.int/images/userpage/PIRIZ_1137_TimeNav07_Piriz.pdf
ftp://ftp.unibe.ch/aiub/rinex/rinex300.pdf
ftp://ftp.unibe.ch/aiub/rinex/rinex300.pdf

A Software description of the Navigation
Channel Simulation

This program is used for the simulation of a navigation channel. It comprises Transmit-
ter section, Channel section and Receiver section, then Test section and Output section.
Navigation message that is conveyed through the channel is generated with random data,
and has the format of F/NAV message according to Galileo OS SIS ICD [21]. Block dia-
gram of navigation channel is given in figure A.1.

CRC
generation

InterleaverEncoder

Synchron
pattern

generation

+

Channel

Extract
symbols

Decoder
CRC

check
De-

interleaver

Synchron
pattern
search

Transmission
segment

Reception
segment

BER SER

Figure A.1. Block diagram of navigation channel

All programs and functions are written in M-files with the use of Matlab Software, Version
7.8.0 (R2009a). Functions that are implemented and executed in the main program main.m

A59

Appendix A. Software description of the Navigation Channel Simulation A60

are listed in table A.1 and discussed within this text.

Function name:
msg_structure
crc
encode_conv
interleave
sync_pattern
channel
sync_pattern_search
extract_symbols
deinterleave
decode_vit
generate_tables
convert_i2b
i2b
convert_b2i
b2i
crc_check

Table A.1. List of all functions

Function [msg] = msg_structure(type)

This function outputs parameters of different navigation message formats in form of struc-
ture in msg. Input argument is the type of navigation message and for simulation purposes,
it is equal to a string ‘fnav’. Input/output arguments are given in table A.2.

Function name INPUT OUTPUT
msg_structure type - message type msg.sync_pattern - vector of synchron pattern

msg.sp_length - length of synchron pattern
msg.page_length - length of one encoded page
msg.uncoded_length - length of one uncoded page
msg.data_length - length of navigation data field
msg.crc_length - length of crc checksum field
msg.tail_length - length of tail field
msg.tail - vector of tail bits
msg.nr_PGinSF_length - nr pages in subframe
msg.nr_SFinFR_length - nr subframes in frame
msg.interleave_columns - nr columns in interleaver matrix

Table A.2. msg_structure

Function [x_crc] = crc(tx,gen_crc,crc_length)

This function is used for CRC computation employing the procedure described in [21].
Having tx as the sequence of input bits, CRC parity bits are computed as the reminder of
the division of [tx zeros(1,24)] by generator polynomial gen_pol. Since they are both binary

Appendix A. Software description of the Navigation Channel Simulation A61

numbers, this operation is performed using the xor computation. The CRC checksum will
have the length of 24 bits. Input/output arguments are given in table A.3.

Function name INPUT OUTPUT
crc tx - input bits for crc computation x_crc - checksum vector

gen_crc - crc generator polynomial
crc_length - length of crc field

Table A.3. crc

Function [symb_enc] = encode_conv(data,gen_pol)

This function implements the convolutional encoder as in [21]. Every input bit is encoded
to 2 output bits. It is performed as the xor operation between the current state of the shift
register together with the input bit entering the encoder and each generator polynomial. In
every cycle the current state is evaluated to the next state. Input/output parameters are given
according to table A.4.

Function name INPUT OUTPUT
encode_conv data - vector of input bits to encode symb_enc - vector of encoded symbols

gen_pol - matrix with generator polynomials,
each row corresponds to one polynomial

Table A.4. encode_conv

Function [symb_interleaved] = interleave(symb_enc,N)

The function is used to interleave the encoded symbols. Interleaver matrix for the simulated
F/NAV message is provided in [21]. Symbols are written column by column and read row
by row. Input/output parameters are shown in table A.5.

Function name INPUT OUTPUT
interlaeve symb_enc - vector of encoded symbols symb_interleaved - vector of interleaved symbols

N - nr of columns in interleaver matrix

Table A.5. interleave

Function [symb_trans] = sync_pattern(symb_interleaved,sp)

This function is used to insert synchron pattern in the symbol sequence. It is inserted ran-
domly, where in one case the pattern is added, and in the other instead of the pattern a vector
of zeros in the same length. This is done for test purposes. Input/output parameters are
shown in table A.6.

Appendix A. Software description of the Navigation Channel Simulation A62

Function name INPUT OUTPUT
sync_pattern symb_interleaved - vector of interleaved symbols symb_trans - vector of symbols with sync pattern

sp - synchron pattern

Table A.6. sync_pattern

Function [symb_soft,symb_hard] =
channel(symb_trans,gen_pol,EbN0)

This function is used to implement an AWGN channel. Symbols are firstly mapped to sig-
nals, then the noise is added as the function of Eb/N0 - Energy per Bit to Noise power
spectral density ratio. Afterwards the symbols are either quantized with 3 bits for the soft
decision decoder, or with 1 bit for the hard decision decoder. Input/output arguments are
given in table A.7.

Function name INPUT OUTPUT
channel symb_trans - vector of symbols symb_soft - vector of symbols after soft decision

gen_pol - matrix with generator polynomials, symb_hard - vector of symbols after hard decision
each row corresponds to one polynomial
EbN0 - Energy per bit to Noise power spectral
density ratio

Table A.7. channel

Function [sp_index] =
sync_pattern_search(block_symb,sync_pattern,length_page)

This function takes one sequence of symbols, that is labeled as block_symb and searches for
the synchron pattern in it. Input/output parameters are given in table A.8. It comprises three
sections:

Function name INPUT OUTPUT
sync_pattern_search block_symb - symbol sequence sp_index - index of the first

sync_pattern - synchron pattern synch pattern
length_page - length of one page

Table A.8. sync_pattern_search

Parameter definition - Parameters needed for the execution of correlation function that is
used in searching algorithm. Vectors with binary values [0,1] are mapped to vectors with
values [−1,1] respectively and the zeros are appended to match the length of the symbol
sequence with which they will correlate. Vector of ideal positions of the synchron patterns
in the examined block sequence is also defined here.

Correlation section - Firstly the correlation between symbol sequence and synchronization
pattern is performed with the use of ifft and fft functions. Multiplication of these two func-
tions of two vectors results in a convolution of both vectors in time domain. Taking one result
of the fft as conjugated, the outcome is the correlation of time domain signals. Conjugated
vector in this case is the synchron pattern. After this first correlation another correlation is

Appendix A. Software description of the Navigation Channel Simulation A63

6 1 1 2

Corr_peaks

Pages

Page bits
(index of time samples)

Figure A.2. Synchron pattern search procedure

made, namely the result of the first correlation is correlated again with the vector of ideal
position of synchron patterns (spacing of bursts). Resulting values larger than 98% of the
maximum value of the peaks are stored into the vector corr_peaks and they represent the
positions of the synchron patterns found in the examined symbol sequence. This threshold
value is chosen after number of simulations with various symbol sequences.

Index extraction - In this part the corr_peaks vector is divided into equal lengths, each one
corresponding to the length of one page. Since this vector is mostly filled with zeros, the
values different from zero will point to bit sequences similar to the pattern. It is assumed that
the number of correct positions is greater than the number of incorrect ones, when summed
over all pages.
For better understanding one small example is depicted in figure A.2. From vector corr_peaks
a matrix is formed where each row corresponds to one page. In this example there are 8
pages. This matrix is summed vertically, row by row to build up a vector of the occurrences
of the synchron patterns (showed as arrows) within the pages. The numbers bellow corre-
spond to these occurrences. Maximum number is here 6, which means that the synchron
pattern appears 6 times correctly at the beginning of each page in the block sequence of 8
pages. Its index in the page corresponds to correct synchron pattern position, and represents
the index of the first bit of the first synchron pattern in a given symbol sequence.

Function [symbols,rest] =
extract_symbols(sp_index,block_symb,length_page,length_sp,rest_old)

This function is used to extract symbols from one block sequence. Synchron pattern is
removed and the symbols from each page are stored into one matrix. Since the whole trans-
mitted sequence is divided into blocks, this separation into blocks might also split pages,
so the according symbols at the end of each block should be added to the beginning of the
next block. Both of them are stored and used in the next call of this function. Input/output
parameters are given in table A.9.

Appendix A. Software description of the Navigation Channel Simulation A64

Function name INPUT OUTPUT
extract_symbols sp_index - index of the first sync pattern symbols - matrix with symbols

block_symb - vector of one block of symbols rest - vector with new rest symbols
length_page - length of one page
length_sp - length of synch pattern
rest_old - vector of previous rest symbols

Table A.9. extract_symbols

Function [symb_deinterleaved] = deinterleave(symbols,N)

This function deinterleaves the symbols from each page according to the interleaving scheme
employed at the transmitter section. Result of this operation is the vector of encoded sym-
bols as they were before interleaving. Input/output parameters are given in table A.10.

Function name INPUT OUTPUT
deinterleave symbols - vector of symbols to deinterleave symb_deinterleaved - vector of deinterleaved

N - nr of columns in symbols
interleaver matrix

Table A.10. deinterleave

Function [data_decoded] =
decode_vit(symb_rec,gen_pol,flag_hard_soft)

This function is used for decoding the encoded symbols employing the Viterbi algorithm.
Result of this operation is a bit sequence that has half of the length of the sequence that en-
tered the decoder. Input/output parameters are given in table A.11. The other functions that
are implemented and needed for the execution of decode_vit are generate_tables,
convert_i2b and convert_b2i. These are explained bellow as well as the Viterbi
algorithm procedure.

Function name INPUT OUTPUT
decode_vit symb_rec - vector of received symbols data_decoded - vector of decoded bits

gen_pol - generator polynomials matrix
flag_hard_soft - flag for hard or soft decision

Table A.11. decode_vit

Function [poss_out,next_state,transitions] =
generate_tables(gen_pol)

Three types of tables are necessary for the decoding procedure and they are generated within
this function. They can be shown on a small example in figure A.3, where input argument
gen_pol is equal to [1,1,1;1,0,1] . Input/output parameters are given in table A.12.

The first one, poss_out contains the encoded pair of bits that are generated for the input bit
equal to 0 and for the input bit equal to 1, and for all allowed state transitions. Its size along
the rows will always be twice the number of states. First ”vertical half” is the outcome for
the input bit 0, and the second ”vertical half” for the input bit 1.

Appendix A. Software description of the Navigation Channel Simulation A65

poss_out =

 0 0
 1 1
 1 0
 0 1
 1 1
 0 0
 0 1
 1 0

next_state =

 0 2
 0 2
 1 3
 1 3

transitions =

 0 0 1 0
 0 0 1 0
 0 0 0 1
 0 0 0 1

gen_pol = [1,1,1;1,0,1]

Figure A.3. Tables - output of generate_tables function

Next_state table contains all possible next states for the given current state and for the given
input bit that is encoded. Two different current states and the same input bit (either 1 or 0)
can produce the same next state. First column corresponds to input bit 0 and the second to
input bit 1.

Transitions table comprises unencoded input bits that imposed all allowed state transitions.
Row index correspond to the current state value incremented for one (since the state starts
at zero) and column index is the next state value also incremented for one. Input bit 1 in the
example causes 4 transitions from current to next state, hence there will be four 1s in the
table. Input bit 0 causes also 4 transitions, however the rest of the matrix is also filled with
zeros. Hence, if the decoding failed, the ‘’incorrect” zeros will take the place of unencoded
input bits. In successful decoding, where decoded bits are equal to unencoded input bits,
they are extracted from this table and correspond to correct zeros and ones.

Function name INPUT OUTPUT
generate_tables gen_pol - generator polynomials matrix poss_out - matrix of encoded output bits

next_state - next states matrix
transitions - matrix of transitions
betw.the states

Table A.12. generate_tables

Functions [data_bin] = convert_i2b(data_int) and [data_int] =
convert_b2i(data_bin)

In order to carry out binary to integer conversion and vice versa, four functions are imple-
mented, and that are: convert_i2b converts array of integer values into array of binary
values, convert_b2i converts array of binary values into array of integer values; b2i
makes binary to integer conversion with just one number (not an array) as output, and fi-
nally the i2b accepts only one integer value as input and outputs its binary value with the
number of bits assigned to the other input parameter. They are all listed in table A.13.

Now the function decode_vit can be seen as divided into three sections:

Get parameters - defines and generates the parameters needed for the decoding algorithm.
These are the number of states, the number of input bits that are decoded and the path metric

Appendix A. Software description of the Navigation Channel Simulation A66

Function name INPUT OUTPUT
convert_i2b data_int - array with data_bin - array with

integer values binary values
convert_b2i data_bin - array with data_int - array with

binary values integer values

i2b
int - integer number bin - binary vector
b - number of bits

b2i
bin - binary vector int - integer value

Table A.13. convert_i2b, convert_b2i, i2b, b2i

initial value. Path metric matrix is initialized to huge values, called maximum values. This
is done because when new metric values are written into the matrix, a minimum has to be
chosen. To be sure that it will not come to confusion with the old values, they are assigned
to maximum. Function generate_tables is also executed within this section.

Accumulated path metric - It includes few loops, where the outer one is executed for each
time instant, when one bit is encoded. Firstly the pair of encoded bits from the poss_out
table are compared with the pair of received symbols in the same time instant. In the case of
hard decision decoding the Hamming distance is computed, and in the case of soft decision
decoding the Euclidian distance. It is then added to the path metric matrix on the corre-
sponding position. This new value represent the new path metric. On Trellis diagram for
every time instant there are only two branches that merge in the same node and whose met-
rics are stored within the path metric matrix. For each node, the minimum of those metric is
choosen and then stored in a new matrix, called Min_metr. The previous states that yield to
this minimum metric are stored in Prev_state matrix.

Survivor path - After termination of the outer loop, the survivor path is found in Prev_state
matrix. This survivor path gives the information about the most probable state transitions
that were made, and by employing the transitions table from the get_tables function the
decoded bit sequence is found.

At the end of the function, all variables are cleared, since this function is executed a lot of
times in the main program, in every iteration for one page of the symbol sequence, therefore
it must be assured that old values do not overlap with the new ones.

Function [crc_flag] =
crc_check(data_decoded,gen_crc,crc_length,tail_length)

This function performs CRC calculation with the decoded data. It executes crc function,
which calculates the checksum that is appended at the end of input data at the transmission
segment. After crc calculation the result is compared with the existing crc field in the cor-
responding page. If they are the same, the flag ‘Y’ is output, otherwise ‘N’. Input/output
parameters are given in table A.14.

These function are executed within the main program main.m and the flow of execution is
shown in figure A.4.

Appendix A. Software description of the Navigation Channel Simulation A67

Function name INPUT OUTPUT
crc_check data_decoded - data bits for crc computation crc_flag - flag referring to correct or

gen_crc - crc generator polynomial incorrect crc
crc_length - length of crc field
tail_length - length of tail field

Table A.14. crc_check

Symbols are generated in Transmission segment from the randomly generated input bits. In
every loop iteration they are encoded, interleaved and the synchron pattern is added, hence
one page is generated. The pages are concatenated to form a sequence of symbols, that
is then transmitted over the channel. At the Reception segment, this sequence is divided
into blocks of equal lengths. First block is used for finding the synchron pattern. Then the
pages without the sync pattern are extracted out of that block, and stored into matrix. Each
page is written into one row. In the next loop, pages from the matrix are deinterleaved,
decoded and the crc check is performed. This is done until the end of the block, and after
completing this step the next block is processed. When the end of the symbol sequence
is reached, the obtained data bits from pages are compared with the input bits from the
beginning. This procedure is executed for different values of Eb/N0. It lead to BER (Bit
Error Rate)calculation for the coded case. Symbols before decoding and after encoding are
also compared, which lead to SER (Symbol Error Rate) calculation that is an abstraction of
BER for the uncoded case (see block diagram in figure A.1). The theoretical value of BER
uncoded is computed and represented graphically together with the other values over the
Eb/N0 vector.

Appendix A. Software description of the Navigation Channel Simulation A68

sync_pattern
_search

extract_
symbols

deinterleave

decode_vit

crc_check

generate_
tables

convert_
i2b

convert_
b2i

symb_seq_rec
(block)

sp_index

symb,rest

symb_deinter
leaved

data_decoded
tables

calculate_
err_rate

crc

encode_conv

interleave

channel

sync_pattern

countSeq

Y
N

input,x_crc,tail

symb_enc

symb_interleaved

symb_trans
(page)

symb_seq_trans

countPage

countBlock

data_decoded
_vect

data_decoded
_seq

Input bits

over EbN0

pages

blocks

BER coded
BER uncoded

(page)

Figure A.4. Flow chart of the main program for sumulation

B Software description of the Tests with
GETR pages

This program implements the Reception segment of navigation channel (with Viterbi decod-
ing) and analyzes files with navigation data from the GETR test receiver. It extracts symbols
from those files, deinterleaves and decodes them to obtain single pages, and then performs
CRC calculation. Since those pages are also contained in the files, they are used for testing -
comparison and BER calculation. Block diagram of the program is given in figure B.1. List
of functions executed within the main program main_getr.m can be seen in table B.1.

Function name:
msg_structure
read_getr_symbols
sync_pattern_search
extract_symbols
deinterleave
decode_vit
generate_tables
convert_i2b
i2b
convert_b2i
b2i
crc_check
crc
generate_frames
store_frame_struct
read_getr_pages
calculate_err_rate

Table B.1. List of all functions

Extract
symbols

Decoder
CRC

check
De-

interleaver

Synchron
pattern
search

Make
Frames

Read
symbols

 GETR files

Compare
pages &

Calculate BER
Read pages

Make
Frames

CRC
check

Figure B.1. Block diagram of the reception segment

B69

Appendix B. Software description of the Tests with GETR pages B70

All functions are written in form of M-files with use of Matlab Software, Version 7.8.0
(R2009a). Description of each function together with its input and output parameters as
well as the flowchart of their execution order is presented within this text.

Function [msg] = msg_structure(type)

This function outputs parameters of navigation message format in form of structure in msg.
Input argument is the type of navigation message together with its signal. It is a string, and it
can take following values: ‘fnavE5a’, ‘inavE1B’, ‘inavE5b’. The output parameters within
the structure are listed in table B.2 and their values are taken from [20].

Function name INPUT OUTPUT
msg_structure type - message type msg.sync_pattern - synchron pattern

msg.sp_length - length of sync pattern
msg.page_length - length of encoded page
msg.uncoded_length - length of uncoded page
msg.res1_length - length of res-1 field
msg.page_cnt_length - length of counter field
msg.snf_length - length of snf field
msg.navdata_length - length of navdata field
msg.res2_length - length of res-2 field
msg.crc_length - length of crc checksum
msg.tail_length - length of tail field
msg.nr_PGinSF_length - nr pages in subframe
msg.nr_SFinFR_length - nr subframes in frame
msg.interleave_columns - nr columns in interleaver matrix

Table B.2. msg_structure

Function [symb_seq] =
read_getr_symbols(ch_nr,filename_read,filename_write)

Function name INPUT OUTPUT
read_getr_symbols ch_nr - channel number symb_seq - extracted symbol sequence

filename_read - name of the file to read
filename_write - name of the file to write

Table B.3. read_getr_symbols

This function represents the interface section between GETR file and decoding algorithm. It
processes one ASCII file with navigation data from GETR and has input/output parameters
according to table B.3. It comprises three sections:

Extraction - Symbols are read only from the lines beginning with ’$@Symb’. Each line
taken from the file should have the corresponding channel number, which is given in the
input parameter. The symbol sequence extracted from the corresponding line is given in
hexadecimal format. It is stored in a vector inside of the loop every time when it is found in
the appropriate line. The procedure is repeated until the end of the file is reached.

Conversion - These hexadecimal symbols are then converted to binary values, 0 and 1. For
that purpose one simple function is implemented, called i2b. It converts integer values to

Appendix B. Software description of the Tests with GETR pages B71

binary vectors with the determined number of bits (here 4, since every hexadecimal symbol
is presented with 4 bits), according to table B.9.

Export - When converted, one long vector containing the binary symbol sequence is written
in one ASCII file.

Function [sp_index,flag_invert] =
sync_pattern_search(block_symb,sync_pattern,length_page)

Function name INPUT OUTPUT
sync_pattern_search block_symb - symbol sequence sp_index - index of the first

synch_pattern - synchron pattern synch pattern
length_page - length of one page flag_invert - inversion flag

Table B.4. sync_pattern_search

This function takes one sequence of symbols, that is labeled as block_symb and searches for
the synchron pattern in it. Input/output parameters are given in table B.4. It comprises three
sections:

Parameter definition - Parameters needed for the execution of correlation function that is
used in searching algorithm. Vectors with binary values [0,1] are mapped to vectors with
values [−1,1] respectively and the zeros are appended to match the length of the symbol
sequence with which they will correlate. Vector of ideal positions of the synchron patterns
in the examined block sequence is also defined here.

Correlation section - Firstly the correlation between symbol sequence and synchronization
pattern is performed with the use of ifft and fft functions. Multiplication of these two func-
tions of two vectors results in a convolution of both vectors in time domain. Taking one result
of the fft as conjugated, the outcome is the correlation of time domain signals. Conjugated
vector in this case is the synchron pattern. After this first correlation another correlation is
made, namely the result of the first correlation is correlated again with the vector of ideal
position of synchron patterns (spacing of bursts). Resulting values larger than 98% of the
maximum value of the peaks are stored into the vector corr_peaks and they represent the
positions of the synchron patterns found in the examined symbol sequence. This threshold
value is chosen after number of simulations with various symbol sequences.

Index extraction - In this part the corr_peaks vector is divided into equal lengths, each one
corresponding to the length of one page. Since this vector is mostly filled with zeros, the
values different from zero will point to bit sequences similar to the pattern. It is assumed
that the number of correct positions is greater than the number of incorrect ones, when
summed over all pages. For better understanding one small example is depicted in figure
B.2. From vector corr_peaks a matrix is formed where each row corresponds to one page.
In this example there are 8 pages. This matrix is summed vertically, row by row to build up
a vector of the occurrences of the synchron patterns (showed as arrows) within the pages.
The numbers bellow correspond to these occurrences. Maximum number is here 6, which
means that the synchron pattern appears 6 times correctly at the beginning of each page in
the block sequence of 8 pages. Its index in the page corresponds to correct synchron pattern
position, and represents the index of the first bit of the first synchron pattern in a given
symbol sequence.

Appendix B. Software description of the Tests with GETR pages B72

6 1 1 2

Corr_peaks

Pages

Page bits
(index of time samples)

Figure B.2. Synchron pattern search procedure

Since the received symbol sequence can be inverted, there is a flag that is set to one in case
when inversion occurs. The condition to set the flag is the number of maximum correlation
peaks, which should be greater in the negative part of y-axis than in the positive part.

Function [block_symb_seq] =
extract_symbols(symbolsfile,block_length,index,length_sp)

Function name INPUT OUTPUT
extract_symbols symbolsfile - filename with symbol sequence block_symb_seq - one block of symbols

block_length - length of one block of symbols
index - synchron pattern position
length_sp - length of synch pattern

Table B.5. extract_symbols

This function extracts symbols from the ASCII file produced by execution of read_getr_symbols.
Length of the symbols that are read is determined with the input parameter block_length. If
the input argument index is assigned, then the synchron pattern beginning at this index is
removed and the symbols from one page are extracted. If the index is not assigned, then
only one part of the sequence is read. In both cases character strings from ASCII file are
converted to their binary values [0,1]. Input/output parameters are given in table B.5.

Function [symb_deinterleaved] = deinterleave(symbols,N)

This function deinterleaves the symbols from each page according to the interleaving scheme
employed at the transmitter section. Result of this operation is the vector of encoded symbols
as they were before interleaving. Input/output parameters are given in table B.6.

Appendix B. Software description of the Tests with GETR pages B73

Function name INPUT OUTPUT
deinterleave symbols - vector of symbols to deinterleave symb_deinterleaved - vector of deinterleaved

N - nr of columns in symbols
interleaver matrix

Table B.6. deinterleave

Function [data_decoded] =
decode_vit(symb_rec,gen_pol,flag_hard_soft)

This function is used for decoding the encoded symbols employing the Viterbi algorithm.
Result of this operation is a bit sequence that has half of the length of the sequence that
entered the decoder. Input/output parameters are given in table B.7. The other functions that
are implemented and needed for the execution of decode_vit are generate_tables,
convert_i2b and convert_b2i. These are explained bellow as well as the Viterbi
algorithm procedure.

Function name INPUT OUTPUT
decode_vit symb_rec - vector of received symbols data_decoded - vector of decoded bits

gen_pol - generator polynomials matrix
flag_hard_soft - flag for hard or soft decision

Table B.7. decode_vit

Function [poss_out,next_state,transitions] =
generate_tables(gen_pol)

Three types of tables are necessary for the decoding procedure and they are generated within
this function. They can be shown on a small example in figure B.3, where input argument
gen_pol is equal to [1,1,1;1,0,1] . Input/output parameters are given in table B.8.

The first one, poss_out contains the encoded pair of bits that are generated for the input bit
equal to 0 and for the input bit equal to 1, and for all allowed state transitions. Its size along
the rows will always be twice the number of states. First ”vertical half” is the outcome for
the input bit 0, and the second ”vertical half” for the input bit 1.

Next_state table contains all possible next states for the given current state and for the given
input bit that is encoded. Two different current states and the same input bit (either 1 or 0)
can produce the same next state. First column corresponds to input bit 0 and the second to
input bit 1.

Transitions table comprises unencoded input bits that imposed all allowed state transitions.
Row index correspond to the current state value incremented for one (since the state starts
at zero) and column index is the next state value also incremented for one. Input bit 1 in the
example causes 4 transitions from current to next state, hence there will be four 1s in the
table. Input bit 0 causes also 4 transitions, however the rest of the matrix is also filled with
zeros. Hence, if the decoding failed, the ‘’incorrect” zeros will take the place of unencoded
input bits. In successful decoding, where decoded bits are equal to unencoded input bits,
they are extracted from this table and correspond to correct zeros and ones.

Appendix B. Software description of the Tests with GETR pages B74

poss_out =

 0 0
 1 1
 1 0
 0 1
 1 1
 0 0
 0 1
 1 0

next_state =

 0 2
 0 2
 1 3
 1 3

transitions =

 0 0 1 0
 0 0 1 0
 0 0 0 1
 0 0 0 1

gen_pol = [1,1,1;1,0,1]

Figure B.3. Tables - output of generate_tables function

Function name INPUT OUTPUT
generate_tables gen_pol - generator polynomials matrix poss_out - matrix of encoded output bits

next_state - next states matrix
transitions - matrix of transitions
betw.the states

Table B.8. generate_tables

Functions [data_bin] = convert_i2b(data_int) and [data_int] =
convert_b2i(data_bin)

In order to carry out binary to integer conversion and vice versa, four functions are imple-
mented, and that are: convert_i2b converts array of integer values into array of binary
values, convert_b2i converts array of binary values into array of integer values; b2i
makes binary to integer conversion with just one number (not an array) as output, and fi-
nally the i2b accepts only one integer value as input and outputs its binary value with the
number of bits assigned to the other input parameter. They are all listed in table B.9.

Function name INPUT OUTPUT
convert_i2b data_int - array with data_bin - array with

integer values binary values
convert_b2i data_bin - array with data_int - array with

binary values integer values

i2b
int - integer number bin - binary vector
b - number of bits

b2i
bin - binary vector int - integer value

Table B.9. convert_i2b, convert_b2i, i2b, b2i

Now the function decode_vit can be seen as divided into three sections:

Get parameters - defines and generates the parameters needed for the decoding algorithm.
These are the number of states, the number of input bits that are decoded and the path metric
initial value. Path metric matrix is initialized to huge values, called maximum values. This
is done because when new metric values are written into the matrix, a minimum has to be

Appendix B. Software description of the Tests with GETR pages B75

chosen. To be sure that it will not come to confusion with the old values, they are assigned
to maximum. Function generate_tables is also executed within this section.

Accumulated path metric - It includes few loops, where the outer one is executed for each
time instant, when one bit is encoded. Firstly the pair of encoded bits from the poss_out
table are compared with the pair of received symbols in the same time instant. In the case of
hard decision decoding the Hamming distance is computed, and in the case of soft decision
decoding the Euclidian distance. It is then added to the path metric matrix on the corre-
sponding position. This new value represent the new path metric. On Trellis diagram for
every time instant there are only two branches that merge in the same node and whose met-
rics are stored within the path metric matrix. For each node, the minimum of those metric is
choosen and then stored in a new matrix, called Min_metr. The previous states that yield to
this minimum metric are stored in Prev_state matrix.

Survivor path - After termination of the outer loop, the survivor path is found in Prev_state
matrix. This survivor path gives the information about the most probable state transitions
that were made, and by employing the transitions table from the get_tables function the
decoded bit sequence is found.

At the end of the function, all variables are cleared, since this function is executed a lot of
times in the main program, in every iteration for one page of the symbol sequence, therefore
it must be assured that old values do not overlap with the new ones.

Function [x_crc] = crc(data,crc_length) and [crc_flag] =
crc_check(data_decoded,crc_length,tail_length)

This function performs CRC calculation with the decoded data. It executes crc function,
which calculates the checksum that is appended at the end of input data at the transmission
segment. After crc calculation the result is compared with the existing crc field in the cor-
responding page. If they are the same, the flag ‘Y’ is output, otherwise ‘N’. Input/output
parameters are given in table B.10.

Function name INPUT OUTPUT

crc
data - data bits for crc computation x_crc - checksum vector
crc_length - length of crc field

crc_check
data_decoded - data bits for crc computation crc_flag - flag referring to correct or
crc_length - length of crc field incorrect crc
tail_length - length of tail field

Table B.10. crc and crc_check

Function [frames] = generate_frames(page,nr_PGinSF,nr_SFinFR)

This function is used to make a frame structure from all decoded pages from one channel
extracted from one GETR file. Pages are stored in form of structure with parameters: navi-
gation data, page number and flag. Each page structure is assigned to one cell and allocated
to one frame where it should belong according to its page number. Page number equal to
1 determines the beginning of the new frame. Input/output parameters are shown in table
B.11.

Appendix B. Software description of the Tests with GETR pages B76

Function name INPUT OUTPUT
generate_frames page - symbols from one page frames - cell structure with frames

nr_PGinSF - nr pages in one subframe from one file
nr_SFinFR - nr subframes in one frame

Table B.11. generate_frames

Function store_frame_struct(frames,file)

This function is used to write previously generated frame structure into an ASCII file, where
each row contains parameters page nr, crc flag, navigation data from the page structure
respectively, separated with commas. It has only input parameters and thay can be seen in
table B.12.

Function name INPUT OUTPUT
store_frame_struct - frames - cell structure with frames

file - name of the file to write

Table B.12. store_frame_struct

Function [page_seq] =
read_getr_pages(ch_nr,filename_read,filename_write)

This function does the same as read_getr_symbols function, only deployed on lines
beginning with ’$@Page’ in GETR files. It extracts the symbols from those lines, converts
them to binary values and exports them in one file for each channel. Its input/output values
are shown in table B.13.

Function name INPUT OUTPUT
read_getr_pages ch_nr - channel number page_seq - extracted sequence of pages

filename_read - name of the file to read
filename_write - name of the file to write

Table B.13. read_getr_pages

Function [ber_channel,ber_indx] =

calculate_err_rate(frames_symb,frames_page,nr_PGinSF,nr_SFinFR,navdata_length,snf_length)

This function is used for error rate calculations. It takes the pages obtained from ’$@Symb’
lines out of the frame structure from one channel and the pages obtained from ’$@Page’
lines out of the frame structure from the same channel. It then compares the pages having
the same page number bit by bit. Number of different (erroneous) bits divided with the
length of the whole sequence from that channel is equal to the Bit Error Rate (BER). Indices
of erroneous pages are also given as output. Input/output parameters can be seen in table
B.14.

All these functions are executed within the main program main_getr.m and the flow of
execution is presented in figure B.4.

GETR Symbols are first extracted from the file, and stored into a long vector of symbols.
Then the first synchron pattern is found in that vector of symbols. With the index of the

Appendix B. Software description of the Tests with GETR pages B77

Function name INPUT OUTPUT
calculate_err_rate frames_symb - frames with symbols ber_channel - bit error rate of channel

frames_page - frames with pages ber_indx - indices of erroneous pages
nr_PGinSF - nr pages in one subframe
nr_SFinFR - nr subframes in one frame
navdata_length - length of navdata field
snf_length - length of snf field

Table B.14. calculate_err_rate

synchron pattern, one loop is performed over the sequence. It takes one page in each itera-
tion, extracts the symbols from it, deinterleaves and decodes them, after which the crc check
is performed. Those pages are written in the frame structure and stored in files. Each file
contains frames from only one channel.

Since GETR files contain also decoded pages, they are extracted in the same way as symbols
and stored into the same frame structure as the pages obtained from symbols. The pages with
the same page number are compared and the BER is calculated.

Appendix B. Software description of the Tests with GETR pages B78

read_
getr_symbols

sync_pattern
_search

extract_
symbols

deinterleave

decode_vit

crc_check

generate_
frames

store_frame
_struct

generate_
tables

convert_
i2b

convert_
b2i

GETR
$@Symb

symb_seq

sp_index,
flag_invert

page_symb

symb_deinter
leaved

data_decoded

crc_flag

frames

tables

flag_invert1-page_symb

crc_flag
Increment

crc
counter

symbolsfile

framesfile

GETR
$@Page

read_
getr_pages

crc_check

generate_
frames

store_frame
_struct

calculate_
err_rate

page_seq

crc_flag_page
crc_flag
_page

Increment
crc

counter

N

N

BER_ channel,
BER_indx

frames_pages

framesfile

Y

N

Y

Y

countPage
pages

Figure B.4. Flow chart of the main program

C Software description of the Export of
RINEX and YUMA files

This program is used to process navigation symbols from GETR files and extract navigation
parameters out of them. It exports these parameters in form of ASCII files, that are written
either in Rinex or in Yuma format, depending on the type of parameters.

C.1 Main Program

All functions are written in form of M-files with use of Matlab Software, Version 7.8.0
(R2009a). Description of each function together with its input and output parameters as
well as the flowchart of their execution order is presented within this text. Main program for
one part of the developed software is main_getr.m and it executes the functions given
in the above part of the table C.1. The other main programs are implemented in the form
of run_rinex.m and run_yuma.m and execute the other three functions in table C.1.
Block diagram of the implemented structure is shown in figure C.1.

Function name:
msg_structure
read_getr_symbols
sync_pattern_search
extract_symbols
deinterleave
decode_vit
generate_tables
convert_i2b
i2b
convert_b2i
b2i
crc_check
crc
generate_frames
store_frame_struct
generate_subframes
store_subframes
page_struct_fnav
page_struct_inav
calculate_param

Table C.1. List of all functions

C79

Appendix C. Software description of the Export of RINEX and YUMA files C80

Extract
symbols

Decoder
CRC

check
De-

interleaver

Synchron
pattern
search

Store
Frames

Read GETR
symbols

 GETR files

Store
Subframes

Make
Rinex &

Yuma files

Figure C.1. Block diagram of the reception segment

Function [msg] = msg_structure(type)

This function outputs parameters of navigation message format in form of structure in msg.
Input argument is the type of navigation message together with its signal. It is a string, and it
can take following values: ‘fnavE5a’, ‘inavE1B’, ‘inavE5b’. The output parameters within
the structure are listed in table C.2 and their values are taken from GIOVE A+B SIS ICD
[20].

Function name INPUT OUTPUT
msg_structure type - message type msg.sync_pattern - synchron pattern

msg.sp_length - length of sync pattern
msg.page_length - length of encoded page
msg.uncoded_length - length of decoded page
msg.res1_length - length of res-1 field
msg.page_cnt_length - length of counter field
msg.snf_length - length of snf field
msg.navdata_length - length of navdata field
msg.res2_length - length of res-2 field
msg.crc_length - length of crc checksum
msg.tail_length - length of tail field
msg.nr_PGinSF_length - nr pages in subframe
msg.nr_SFinFR_length - nr pages in frame
msg.interleave_columns - nr columns in interleaver matrix

Table C.2. msg_structure

Function [symb_seq] =
read_getr_symbols(ch_nr,filename_read,filename_write)

This function represents the interface section between GETR file and decoding algorithm. It
processes one ASCII file with navigation data from GETR and has input/output parameters
according to table C.3. It comprises three sections:

Extraction - Symbols are read only from the lines beginning with ’$@Symb’. Each line
taken from the file should have the corresponding channel number, which is given in the

Appendix C. Software description of the Export of RINEX and YUMA files C81

Function name INPUT OUTPUT
read_getr_symbols ch_nr - channel number symb_seq - extracted symbol sequence

filename_read - name of the file to read
filename_write - name of the file to write

Table C.3. read_getr_symbols

input parameter. The symbol sequence extracted from the corresponding line is given in
hexadecimal format. It is stored in a vector inside of the loop every time when it is found in
the appropriate line. The procedure is repeated until the end of the file is reached.

Conversion - These hexadecimal symbols are then converted to binary values, 0 and 1. For
that purpose one simple function is implemented, called i2b. It converts integer values to
binary vectors with the determined number of bits (here 4, since every hexadecimal symbol
is presented with 4 bits), according to table B.9.

Export - When converted, one long vector containing the binary symbol sequence is written
in one ASCII file.

Function [sp_index,flag_invert] =
sync_pattern_search(block_symb,sync_pattern,length_page)

Function name INPUT OUTPUT
sync_pattern_search block_symb - symbol sequence sp_index - index of the first

synch_pattern - synchron pattern synch pattern in block sequence
length_page - length of one page flag_invert - inversion flag

Table C.4. sync_pattern_search

This function takes one sequence of symbols, that is labeled as block_symb and searches for
the synchron pattern in it. Input/output parameters are given in table C.4. It comprises three
sections:

Parameter definition - Parameters needed for the execution of correlation function that is
used in searching algorithm. Vectors with binary values [0,1] are mapped to vectors with
values [−1,1] respectively and the zeros are appended to match the length of the symbol
sequence with which they will correlate. Vector of ideal positions of the synchron patterns
in the examined block sequence is also defined here.

Correlation section - Firstly the correlation between symbol sequence and synchronization
pattern is performed with the use of ifft and fft functions. Multiplication of these two func-
tions of two vectors results in a convolution of both vectors in time domain. Taking one result
of the fft as conjugated, the outcome is the correlation of time domain signals. Conjugated
vector in this case is the synchron pattern. After this first correlation another correlation is
made, namely the result of the first correlation is correlated again with the vector of ideal
position of synchron patterns (spacing of bursts). Resulting values larger than 98% of the
maximum value of the peaks are stored into the vector corr_peaks and they represent the
positions of the synchron patterns found in the examined symbol sequence. This threshold
value is chosen after number of simulations with various symbol sequences.

Appendix C. Software description of the Export of RINEX and YUMA files C82

6 1 1 2

Corr_peaks

Pages

Page bits
(index of time samples)

Figure C.2. Synchron pattern search procedure

Index extraction - In this part the corr_peaks vector is divided into equal lengths, each one
corresponding to the length of one page. Since this vector is mostly filled with zeros, the
values different from zero will point to bit sequences similar to the pattern. It is assumed
that the number of correct positions is greater than the number of incorrect ones, when
summed over all pages. For better understanding one small example is depicted in figure
C.2. From vector corr_peaks a matrix is formed where each row corresponds to one page.
In this example there are 8 pages. This matrix is summed vertically, row by row to build up
a vector of the occurrences of the synchron patterns (showed as arrows) within the pages.
The numbers bellow correspond to these occurrences. Maximum number is here 6, which
means that the synchron pattern appears 6 times correctly at the beginning of each page in
the block sequence of 8 pages. Its index in the page corresponds to correct synchron pattern
position, and represents the index of the first bit of the first synchron pattern in a given
symbol sequence.

Since the received symbol sequence can be inverted, there is a flag that is set to one in case
when inversion occurs. The condition to set the flag is the number of maximum correlation
peaks, which should be greater in the negative part of y-axis than in the positive part.

Function [block_symb_seq] =
extract_symbols(symbolsfile,block_length,index,length_sp)

Function name INPUT OUTPUT
extract_symbols symbolsfile - filename with symbol sequence block_symb_seq - one block of symbols

block_length - length of one block of symbols
index - synchron pattern position
length_sp - length of synch pattern

Table C.5. extract_symbols

This function extracts symbols from the ASCII file produced by execution of read_getr_symbols.
Length of the symbols that are read is determined with the input parameter block_length. If

Appendix C. Software description of the Export of RINEX and YUMA files C83

the input argument index is assigned, then the synchron pattern beginning at this index is
removed and the symbols from one page are extracted. If the index is not assigned, then
only one part of the sequence is read. In both cases character strings from ASCII file are
converted to their binary values [0,1]. Input/output parameters are given in table C.5.

Function [symb_deinterleaved] = deinterleave(symbols,N)

This function deinterleaves the symbols from each page according to the interleaving scheme
employed at the transmitter section. Result of this operation is the vector of encoded symbols
as they were before interleaving. Input/output parameters are given in table C.6.

Function name INPUT OUTPUT
deinterleave symbols - vector of symbols to deinterleave symb_deinterleaved - vector of deinterleaved

N - number of columns in symbols
interleaver matrix

Table C.6. deinterleave

Function [data_decoded] =
decode_vit(symb_rec,gen_pol,flag_hard_soft)

This function is used for decoding the encoded symbols employing the Viterbi algorithm.
Result of this operation is a bit sequence that has half of the length of the sequence that
entered the decoder. Input/output parameters are given in table C.7. The other functions that
are implemented and needed for the execution of decode_vit are generate_tables,
convert_i2b and convert_b2i. These are explained bellow as well as the Viterbi
algorithm procedure.

Function name INPUT OUTPUT
decode_vit symb_rec - vector of received symbols data_decoded - vector of decoded bits

gen_pol - generator polynomials matrix
flag_hard_soft - flag for hard or soft decision

Table C.7. decode_vit

Function [poss_out,next_state,transitions] =
generate_tables(gen_pol)

Three types of tables are necessary for the decoding procedure and they are generated within
this function. They can be shown on a small example in figure C.3, where input argument
gen_pol is equal to [1,1,1;1,0,1] . Input/output parameters are given in table C.8.

The first one, poss_out contains the encoded pair of bits that are generated for the input bit
equal to 0 and for the input bit equal to 1, and for all allowed state transitions. Its size along
the rows will always be twice the number of states. First ”vertical half” is the outcome for
the input bit 0, and the second ”vertical half” for the input bit 1.

Next_state table contains all possible next states for the given current state and for the given
input bit that is encoded. Two different current states and the same input bit (either 1 or 0)
can produce the same next state. First column corresponds to input bit 0 and the second to
input bit 1.

Appendix C. Software description of the Export of RINEX and YUMA files C84

poss_out =

 0 0
 1 1
 1 0
 0 1
 1 1
 0 0
 0 1
 1 0

next_state =

 0 2
 0 2
 1 3
 1 3

transitions =

 0 0 1 0
 0 0 1 0
 0 0 0 1
 0 0 0 1

gen_pol = [1,1,1;1,0,1]

Figure C.3. Tables - output of generate_tables function

Transitions table comprises unencoded input bits that imposed all allowed state transitions.
Row index correspond to the current state value incremented for one (since the state starts
at zero) and column index is the next state value also incremented for one. Input bit 1 in the
example causes 4 transitions from current to next state, hence there will be four 1s in the
table. Input bit 0 causes also 4 transitions, however the rest of the matrix is also filled with
zeros. Hence, if the decoding failed, the ‘’incorrect” zeros will take the place of unencoded
input bits. In successful decoding, where decoded bits are equal to unencoded input bits,
they are extracted from this table and correspond to correct zeros and ones.

Function name INPUT OUTPUT
generate_tables gen_pol - generator polynomials matrix poss_out - matrix of encoded output bits

next_state - next states matrix
transitions - matrix of transitions
betw.the states

Table C.8. generate_tables

Functions [data_bin] = convert_i2b(data_int) and [data_int] =
convert_b2i(data_bin)

In order to carry out binary to integer conversion and vice versa, four functions are imple-
mented, and that are: convert_i2b converts array of integer values into array of binary
values, convert_b2i converts array of binary values into array of integer values; b2i
makes binary to integer conversion with just one number (not an array) as output, and fi-
nally the i2b accepts only one integer value as input and outputs its binary value with the
number of bits assigned to the other input parameter. They are all listed in table C.9.

Now the function decode_vit can be seen as divided into three sections:

Get parameters - defines and generates the parameters needed for the decoding algorithm.
These are the number of states, the number of input bits that are decoded and the path metric
initial value. Path metric matrix is initialized to huge values, called maximum values. This
is done because when new metric values are written into the matrix, a minimum has to be
chosen. To be sure that it will not come to confusion with the old values, they are assigned
to maximum. Function generate_tables is also executed within this section.

Appendix C. Software description of the Export of RINEX and YUMA files C85

Function name INPUT OUTPUT
convert_i2b data_int - array with data_bin - array with

integer values binary values
convert_b2i data_bin - array with data_int - array with

binary values integer values

i2b
int - integer number bin - binary vector
b - number of bits

b2i
bin - binary vector int - integer value

Table C.9. convert_i2b, convert_b2i, i2b, b2i

Accumulated path metric - It includes few loops, where the outer one is executed for each
time instant, when one bit is encoded. Firstly the pair of encoded bits from the poss_out
table are compared with the pair of received symbols in the same time instant. In the case of
hard decision decoding the Hamming distance is computed, and in the case of soft decision
decoding the Euclidian distance. It is then added to the path metric matrix on the corre-
sponding position. This new value represent the new path metric. On Trellis diagram for
every time instant there are only two branches that merge in the same node and whose met-
rics are stored within the path metric matrix. For each node, the minimum of those metric is
choosen and then stored in a new matrix, called Min_metr. The previous states that yield to
this minimum metric are stored in Prev_state matrix.

Survivor path - After termination of the outer loop, the survivor path is found in Prev_state
matrix. This survivor path gives the information about the most probable state transitions
that were made, and by employing the transitions table from the get_tables function the
decoded bit sequence is found.

At the end of the function, all variables are cleared, since this function is executed a lot of
times in the main program, in every iteration for one page of the symbol sequence, therefore
it must be assured that old values do not overlap with the new ones.

Function [x_crc] = crc(data,crc_length) and crc_flag =
crc_check(data_decoded,crc_length,tail_length)

This function performs CRC calculation with the decoded data. It executes crc function,
which calculates the checksum that is appended at the end of input data at the transmission
segment. After crc calculation the result is compared with the existing crc field in the cor-
responding page. If they are the same, the flag ‘Y’ is output, otherwise ‘N’. Input/output
parameters are given in table C.10.

Function name INPUT OUTPUT

crc
data - data bits for crc computation x_crc - checksum vector
crc_length - length of crc field

crc_check
data_decoded - data bits for crc computation crc_flag - flag referring to correct or
crc_length - length of crc field incorrect crc
tail_length - length of tail field

Table C.10. crc and crc_check

Appendix C. Software description of the Export of RINEX and YUMA files C86

Function [frames] = generate_frames(page,nr_PGinSF,nr_SFinFR)

This function is used to make a frame structure from all decoded pages from one channel
extracted from one GETR file. Pages are stored in form of structure with parameters: navi-
gation data, page number and flag. Each page structure is assigned to one cell and allocated
to one frame where it should belong according to its page number. Page number equal to
1 determines the beginning of the new frame. Input/output parameters are shown in table
C.11.

Function name INPUT OUTPUT
generate_frames page - symbols from one page frames - cell structure with frames

nr_PGinSF - nr pages in one subframe from one file
nr_SFinFR - nr subframes in one frame

Table C.11. generate_frames

Function store_frame_struct(frames,file)

This function is used to write previously generated frame structure into an ASCII file, where
each row contains parameters page nr, crc flag, navigation data from the page structure
respectively, separated with commas. It has only input parameters and thay can be seen in
table C.12.

Function name INPUT OUTPUT
store_frame_struct - frames - cell structure with frames

file - name of the file to write

Table C.12. store_frame_struct

Function [subframe_struct] =
generate_subframes(filename,nr_PGinSF,nr_SFinFR)

This function reads the pages from the frame structure and makes subframes out of it ac-
cording to [20]. Only the pages with correct crc check (equal to ‘Y’) are taken into account.
Page number and navigation data are then assigned to a new structure, which is stored in
cell array that has a size of one subframe. Then all subframes from one frame are assigned
to a frame cell, which has the size of one frame. Then again all frames from one channel
are stored in another cell array. Hence 3 cell arrays are allocated within this function. It
is worth mentioning that not the whole subframe and/or frame structure will be completely
filled with pages. It depends on the length of the data record from the receiver file. The
structures are filled with the existing pages as they appear in the file according to their page
numbers. Input/output parameters are given in table C.13.

Function name INPUT OUTPUT
generate_subframes filename - name of the file to read subframe_struct - extracted symbol sequence

nr_PGinSF - nr of pages in one subframe
nr_SFinFR - nr of subframes in one frame

Table C.13. generate_subframes

Appendix C. Software description of the Export of RINEX and YUMA files C87

Function store_subframes(subframe_struct,filename,pathname)

This function is used to write subframes into separate ASCII files. Each file corresponds to
one subframe.Firstly the frames are extracted out of the frame structure, then the subframes.
Page number and navigation data are written into the file in each row. Format inside of the
file is page number, page data. Input/output arguments are given in table C.14.

Function name INPUT OUTPUT
store_subframes subframe_struct - subframe structure -

filename - name of the file to write
pathname - name of the full path of the file

Table C.14. store_subframes

Flow chart of the main program where the functions are executed, main_getr.m, is pre-
sented in figure C.4.

GETR Symbols are first extracted from the file, and stored into a long vector of symbols.
Then the first synchron pattern is found in that vector of symbols. With the index of the
synchron pattern, one loop is performed over the sequence. It takes one page in each itera-
tion, extracts the symbols from it, deinterleaves and decodes them, after which the crc check
is performed. Those pages are written in the frame structure and stored in files. Each file
contains frames from only one channel. From each frame the subframes are extracted and
written into ASCII files.

The second part of this program implements some additional functions that are executed
within the M-files in a form of run_rinex.m and run_yuma.m. First one writes navi-
gation message parameters, such as Ephemeris, Clock corrections, GST to UTC corrections,
Ionospheric corrections in Rinex files (see [26]), and the second one writes Almanac param-
eters to Yuma files.

Following functions need to be executed in order to export those files.

Function [page] =
page_struct_fnav(page_data,page_type,page_nr,plane_nr)

This function is used to make a structure with navigation parameters obtained pages for the
message type FNAV and the signal E5a. Structure of each page can be taken from [20] and
input/output arguments are given in table C.15.

Function name INPUT OUTPUT
page_struct_fnav page_data - navigation data page - structure with nav parameters

page_type - type of page
page_nr - page number
plane_nr - orbital plane number

Table C.15. page_struct_fnav

Appendix C. Software description of the Export of RINEX and YUMA files C88

read_
getr_symbols

sync_pattern
_search

extract_
symbols

deinterleave

decode_vit

crc_check

generate_
frames

store_frame
_struct

generate_
tables

convert_
i2b

convert_
b2i

GETR
$@Symb

symb_seq

sp_index,
flag_invert

page_symb

symb_deinter
leaved

data_decoded

crc_flag

frames

tables

flag_invert1-page_symb

crc_flag
Increment

crc
counter

symbolsfile

framesfile

N

Y

N

Y

countPage
pages

store_subfram
e_struct

subframefile

Figure C.4. Flow chart of the main program

Appendix C. Software description of the Export of RINEX and YUMA files C89

Function [page] =

page_struct_inav(page_data,page_type,page_nr,packet_nr,SF_nr,plane_nr,k,msg_type)

This function is used to make a structure with navigation parameters obtained from pages
for the message type INAV and both signals, E5b and E1B. Structure of each page can be
taken from [20] and input/output arguments are given in table C.16.

Function name INPUT OUTPUT
page_struct_inav page_data - navigation data page - structure with nav parameters

page_type - type of page
page_nr - page number
plane_nr - orbital plane number
packet_nr - nr of packet with data
SF_nr - subframe number
k - almanac slot
msg_type - message type

Table C.16. page_struct_inav

Function [int_value] = calculate_param(bin_num,flag)

This functions computes the values of navigation parameters, that are given in binary form,
and can be in two’s complement notation. Input argument flag is set to 1 when two’s com-
plement computation has to be executed. MSB value (0 or 1) determines the sign for this
operation. If number is not in two’s complement notation it is simply converted to its integer
value. Input/output parameters are given in table C.17.

Function name INPUT OUTPUT
calculate_param bin_num - binary vector with nav data param int_value - integer value of param

flag - indicator of two’s compliment

Table C.17. calculate_param

Before going into explanation of run_rinex.m and run_yuma.m, one important issue
has to be discussed. According to GIOVE A+B SIS ICD [20] one Navigation Message Page
is generated and has the format as in table C.18.

Sync Res-1 PGCNT SNF NAVDATA Res-2 CRC Tail

Table C.18. GIOVE Page Layout

Theoretically only the NAVDATA field is needed for evaluation of navigation parameters.
However, one of parameters, namely the System Issue of Data (SIOD) is calculated em-
ploying the SNF field as well as the NAVDATA field. From this reason, the pages stored in
the frame and subframe structures contain data from NAVDATA field expanded by the SNF
field, which is appended at the beginning, hence their length will be the length of SNF plus
the length of NAVDATA field. This has to be considered when evaluating pages from the
subframe structure.

Appendix C. Software description of the Export of RINEX and YUMA files C90

page_struct_fnav,
page_struct_inav

Read
Subframe

Files

Export Rinex
and Yuma files

page_eval

calculate_
param

Figure C.5. Flow chart of Rinex and Yuma

C.2 Rinex and Yuma programs

RINEX: There are three main programs to run, all of them produce Rinex files, but for dif-
ferent messages. These programs are: run_rinex_E5a, run_rinex_E5b, run_rinex_E1B.
For details about Rinex format, see [26]. YUMA: The same discussion stays for the Yuma
format and the details can be taken from [5].

Program run_rinex_E5a

This program is used to evaluate one subframe from F/NAV message, signal E5a and write
the extracted values in Rinex files. Pages from which navigation parameters are extracted,
are the first four pages in each subframe. They are evaluated with execution of the function
page_struct_fnav. Parameters are exported according to Rinex file description. Since
most of the values have exponential format, which is in Matlab under Windows equal to
’E+000’ or ’E-000’, hence with three digits, and the original file provided in Rinex format
under Unix has the notation ’E+00’ or ’E-00’, the conversion has to be made. It is done with
string replace function, where the exponential value is first converted to a string and then
replace with another string.

Program run_rinex_E5b

This program is used for the evaluation of two consequent subframes from I/NAV mes-
sage, signal E5b and for writing the extracted values in Rinex files. Pages from which
navigation parameters are extracted, are taken for both subframes. They are evaluated with
execution of the function page_struct_inav. The same conversion is made here as in
run_rinex_E5a.

Appendix C. Software description of the Export of RINEX and YUMA files C91

Program run_rinex_E1B

This program is used for the evaluation of two consequent subframes from I/NAV mes-
sage, signal E1B and for writing the extracted values in Rinex files. Pages from which
navigation parameters are extracted, are taken for both subframes. They are evaluated with
execution of the function page_struct_inav. The same conversion is made here as in
run_rinex_E5a.

Programs run_yuma_E5a, run_yuma_E5b and run_yuma_E1B

These programs are used to produce files in Yuma format, for different navigation messages.
The files contain Almanac parameters and those parameters reside in all pages of one frame.
Hence a long data record with all full subframes within a frame is needed to extract those
parameters. Programs are divided into segments using the cell mode and can be executed
independently in most of the cases.

A small flow chart with execution of the used functions for Rinex and Yuma files is depicted
in figure C.5.

D Noise in the channel

For the purpose of navigation channel simulation and as usual in transmission channel sim-
ulations, the model applied on the channel is the Additive White Gaussian Noise (AWGN)
model. Its main characteristic is a white noise signal and it will be explained in the following
section.

D.1 White Noise

White noise is a noise signal that contains all frequencies at the same time, similar as the
white light contains all the colors of the spectrum.

In technical applications it is a random signal that has a flat power spectral density function
(PSD), which is independent and constant over all frequencies. That implies an infinite
power spectrum (integral of PSD over all frequencies), which is in praxis impossible to
generate. However, some approximation can be made over a limited bandwidth where the
PSD function still remains constant.

White noise model is used to describe a lot of real world processes, which are then modeled
with some mathematical system model. If white noise is considered to be normally or Gaus-
sian distributed (one important and often employed probability distribution) it is called the
Gaussian noise. This kind of noise is used in communication system models to simulate the
channel behavior and this kind of channel is named Additive White Gaussian Noise channel
AWGN.

One of the important properties of White Gaussian Noise (WGN) is that its values are sta-
tistically independent. It means that the existence of one value does not have any influence
on the existence of another value. From a statistical point of view, the conditional probabil-
ity of one event, given the other one is equal to unconditional probability of the first event
as the second event was not taken into account. Since the independence of two variables
implies that they are also uncorrelated (but not vice versa!), it can be established that the
white Gaussian noise is statistically uncorrelated. This holds for a case of autocorrelation of
the white noise in time that gives a degree to which two time samples of the same random
process are correlated. Autocorrelation function of a random process x(t) can be defined as
expected value of the product of two different time samples of this random process:

Rx(t, t + τ) = E[x(t)x(t + τ)] (D.1)

In an AWGN channel model, uncorrelated white noise with a constant spectral density and
Gaussian distributed amplitude is added to the channel. Due to the central limit theorem
which emphasizes that the sum of a large number of statistically independent random vari-
ables (e.g. white noise) will also have a normal (Gaussian) distribution, it can be used as a
very good approximation in the description of a channel.

D92

Appendix D. Noise in the channel D93

Any random process n(t) is considered to be a white Gaussian noise process if it meets the
following conditions:

1. E[n(t)] = µ = 0 zero mean value

2. At every distinct time instant t1, t2, . . . , tn the n(t1),n(t2), . . . ,n(tn) are the independent
Gaussian variables

Rn()

N0/2

Rn(t)

N0/2

t

Figure D.1. Autocorrelation of white noise

The autocorrelation function of n(t) is a delta-distribution at the zero point, with an ampli-
tude of N0/2 and can be seen in figure D.1.

Rn =
N0

2
·δ (τ) f or −∞≤ τ ≤ ∞ (D.2)

N0 is the power density of the noise in general; it is a noise power per unit of bandwidth,
given by a formula in equation D.3:

N0 = k ·T (D.3)

Whereby k is the Boltzmann constant and T is the system noise temperature.

Since the PSD is calculated as the Fourier transformation of the auto-correlation function,
it follows that the PSD of white noise is equal to N0/2 - which coincides with the previous
assumption about the constant (flat) spectral density of white noise processes. It is shown in
figure D.2.

Sn(f) =
N0

2
f or −∞≤ τ ≤ ∞ (D.4)

The average power has an infinite value since its bandwidth is infinite.

Pn = E[n2(t)] = ∞ (D.5)

Appendix D. Noise in the channel D94

N0/2

f

Sn(f)

Figure D.2. Power spectral density of white noise

In a sampled signal, where the period of sampling is equal to Ts and the corresponding
sample frequency is fs, the power or variance of the WGN is given as in equation D.6:

σ
2 =

PSD
Ts

= PSD · fs (D.6)

It is further equal to:

σ
2 =

N0

2 ·Ts
since PSD =

N0

2
(D.7)

In lot of practical channel simulations, in order to view the performance of the channel, the
Energy per bit to Noise power spectral density ratio (Eb/N0) has been used. It is a parameter
known as ”normalized version of signal-to-noise ratio (SNR)” whereby Eb is the energy of
the bit calculated from the power of each sampled bit Eb =Ps ·Ts. Combining this expression
with the expression for the Power density of the noise, obtained from the Equation D.7 as:
N0 = 2 ·Ts ·σ2 one can obtain the relation for EbN0:

Eb

N0
=

Ps ·Ts

2 ·Ts ·σ2 =
Ps

2σ2 (D.8)

The power of a sampled signal is equal to a square of its amplitude, which is usually nor-
malized to one, i.e. Ps = 1. Hence, one can obtain an expression for a parameter known as
standard deviation as:

σ =
1√
2 Eb

N0

(D.9)

This expression can be used in Eb/N0 calculations and simulations of the AWGN channel.
In a practical applications, the best way to generate noise is to:

Appendix D. Noise in the channel D95

• generate random variable that is normally (Gaussian) distributed, with the mean value
equal to zero and the standard deviation equal to one, and multiply it with obtained
value for standard deviation.

• add it to the signal which is affected by the noise, and transmit that signal through the
channel.

D.2 Error Probability

In communication systems noise can occur in various forms. Much of those can be reduced,
except the one that always follows electrical transmissions and cannot be eliminated - it is
the thermal noise. Thermal noise is caused by the thermal movements of electrons.

It can be modeled as a white Gaussian noise, i.e. its amplitude will have normal or Gaussian
distribution. This distribution describes the data as a cloud concentrated around one value,
the mean value. It has probability density function (PDF) in characteristic bell form, where
its maximum is its mean value at the same time. In the case of thermal noise, since it is
modeled as white noise, the mean value will be zero - and that is where the name zero-mean
Gaussian random process come from.

Power spectrum of thermal noise has its maximum at zero frequency, and goes to infinity
slowly converging towards zero. Hence, white noise represents a good approximation of
it.

If n(t) is a random function, its Gaussian PDF is characterized by the expression:

pd f = p(n) =
1

σ
√

2π
· exp

(
−1

2

(n
σ

)2
)

(D.10)

Here σ2 is the variance of n. Standard Gaussian distribution has variance equal to one,
σ2 = 1 , hence its PDF will be:

pd f = p(n) =
1√
2π
· exp

(
−n2

2

)
(D.11)

Graphical presentation of pdf function is given in figure D.3.

A random signal is often represented as the sum of a Gaussian noise random variable n and
a dc signal a.

z = a+n (D.12)

Inserted in equation D.10 the PDF will be

pd f = p(z) =
1

σ
√

2π
· exp

(
−1

2

(
z−a

σ

)2
)

(D.13)

Appendix D. Noise in the channel D96

 -4s - 3s -2s -s 0 s 2s 3s 4s

pdf

n

Figure D.3. Gaussian probability density function

After the transmitted signal passed various phases in its way to receiver, it finally comes to
demodulator/detector. In a process of signal demodulation and detection the main task of the
demodulator/detector is to recover the transmitted signal making the right decision based on
probability criterion described bellow.

When receiving a signal that is disturbed by an additive white noise, it can be written in a
form

r(t) = s(t)+n(t) (D.14)

Where r(t) stands for the received signal, s(t) for the transmitted signal and n(t) for the
noise. When such a signal reaches the demodulator/detector, the correct decision about the
original transmitted signal should be made. This process is usually implemented in two
steps:

1. The received waveform is sampled to symbols with duration Ts

r(T) = a j(T)+n0(T) j = 1,2 (D.15)

Here is a(t) desired signal component, and n0(T) white noise as described above. Since it is
a Gaussian random variable with a zero mean, it implies that r(T) is also Gaussian random
variable with mean around a1 or a2 depending whether binary one or zero was transmitted.

Considering the probability density function of a Gaussian random variable n0 as defined in
D.10, the conditional probability density functions can be expressed as:

pd f (r|s1) =
1

σ0
√

2π
· exp

(
−1

2

(
z−a1

σ0

)2
)

(D.16)

for the first probable transmitted signal

pd f (r|s2) =
1

σ0
√

2π
· exp

(
−1

2

(
z−a2

σ0

)2
)

(D.17)

Appendix D. Noise in the channel D97

for the second probable transmitted signal.

These two PDFs are called likelihood functions and refer to the probability that the symbol
that was transmitted through the channel was s1 or s2 having the received symbol r. One
example of likelihood functions is presented in figure D.4.

 ?0

p(r|s1) p(r|s2)

a1a2

Figure D.4. Likelihood functions

Hereby, p(r|s1) is the likelihood function of s1 and p(r|s2) likelihood of s2, and γ0 is a
threshold value.

2. In a second step the measurement will be made; whether the symbol energy is greater
or smaller than a threshold value. According to that value the appropriate decision for a
symbol s1 or s2 will be made. One way to choose the threshold level is to minimize the error
probability. For the case that the symbols s1 and s2 have the same likelihood probabilities,
the optimum threshold value is represented by a1+a2

2 and passes exactly through the inter-
section line of the two likelihood functions. The decision made on this way corresponds
to the signal with maximum likelihood function. This kind of detector is called maximum
likelihood detector.

When an error occurs e.g. if s1 is sent, but because of the noise the received signal r(T)
is less then a threshold γ0 , it will result in a probability of error to be equal to the area
left from the γ0 and bellow the likelihood function of s1. It can be expressed by cumulative
conditional probability (cumulative because of the integral):

P(e|s1) =
∫

γ0

−∞

p(z|s1)dz (D.18)

The same discussion holds for a case that signal s2 is sent, and the received signal is greater
than a threshold γ0.

P(e|s2) =
∫ −∞

γ0

p(z|s2)dz (D.19)

In case of a binary detection and according to the probability theory, the resulting probability
of bit error will be:

PB = P(e|s1)P(s1)+P(e|s2)P(s2) (D.20)

As observed, a priori probabilities are equal P(s1) = P(s2) =
1
2 and due to the symmetry of

the PDFs:

Appendix D. Noise in the channel D98

PB =
1
2

P(e|s1)+
1
2

P(e|s2) = P(e|s1) = P(e|s2) (D.21)

It leads to a conclusion that probability of bit error is equal to the shadowed area under
the left or right tail part of the likelihood functions. Integral over likelihood functions with
appropriate limit values will have the form:

PB =
∫

∞

γ0

1
σ0
√

2π
· exp

(
−1

2

(
z−a2

σ0

)2
)

dz (D.22)

Considering that γ0 =
a1+a2

2

Having u = (z−a2)/σ0 follows that σ0du = dz and

PB =
∫

∞

a1−a2
2σ0

1√
2π
· exp

(
−u2

2

)
du (D.23)

which is further equal to Q− f unction in a form Q(a1−a2
2σ0

).

In mathematics, Q− f unction is denoted as a special function (non elementary) whose val-
ues are listed in tabular form.

Q(x) =
∫

∞

x

1√
2π
· exp

(
−u2

2

)
du (D.24)

Knowing this, the expression in D.23 gives a probability of a bit error as:

PB = Q
(

a1−a2

2σ0

)
(D.25)

This probability should be minimized in order to obtain an optimal detector decision. In
the AWGN channel it could be achieved with the filter that maximizes the argument of
Q− f unction. Hence, minimizing the error probability PB equals to maximizing (a1−a2)

2σ0
.

When maximizing this, the maximum distance between a1 and a2 will be obtained (maxima
of the likelihood functions), with (a1−a2) as a difference of the desired signal components
at the time instant t = T .

For this case, the filter that is applied and that achieves the best performance is called
matched filter. It delivers the maximum possible output SNR equal to 2E

N0
(see Appendix),

where N0
2 is a power spectral density of the white noise as demonstrated in Section 1.1.

Since the filter is matched to the input difference signal [s1(t)− s2(t)] the output SNR at
time t = T can be written as:

Appendix D. Noise in the channel D99

S
N

=
(a1−a2)

2

σ2
0

=
2Ed

N0
(D.26)

Here is the (a1−a2)
2 equal to instantaneous power of the difference signal, and the variance

σ2
0 corresponds to the power of noise.

Combining this equation with the Equation D.25 yields to important result:

PB = Q
(√

Ed

2N0

)
(D.27)

1. Case of unipolar signaling Here are the signals defined as following:

s1(t) = A 0≤ t ≤ T for binary 1
s2(t) = 0 0≤ t ≤ T for binary 0

With energy of distance Ed = (A−0)2T = A2T and average bit energy of Eb =
A2T

2 having
two possibilities for each symbol, the error probability becomes:

PB = Q

√A2T
2N0

= Q
(√

Eb

N0

)
(D.28)

2. Case of bipolar signaling Here are the signals defined as following:

s1(t) = A 0≤ t ≤ T for binary 1
s2(t) =−A 0≤ t ≤ T for binary 0

With energy of distance Ed = (A+A)2T = 4A2T and average bit energy of Eb =
2A2T

2 = A2T
having two possibilities for each symbol, the error probability becomes:

PB = Q

√2A2T
N0

= Q
(√

2Eb

N0

)
(D.29)

In technical simulations of the AWGN channels, the other special function if often used,
called complementary error function. The relation between the Q− f unction is defined
as:

Q(x) =
1
2

er f c
(

x√
2

)
(D.30)

For the both cases of signaling it can be calculated that

Appendix D. Noise in the channel D100

1. PB = Q
(√

Eb

N0

)
=

1
2

er f c
(

Eb

2N0

)
(D.31)

for unipolar signaling and

2. PB = Q
(√

2Eb

N0

)
=

1
2

er f c
(

Eb

N0

)
(D.32)

for bipolar signaling.

	Contents
	Introduction
	Scope of work
	Overview of Galileo system
	System description and development
	GIOVE System Architecture
	Galileo System Architecture

	Convolutional coding with Viterbi decoding technique
	Forward Error Correction
	Convolutional Coding
	Encoder Description
	Finite state diagram
	Tree diagram
	Trellis diagram
	Encoding with Trellis

	Decoding with Viterbi-algorithm

	Implementation of channel simulation
	Simulation environment
	Transmission segment
	Simulation channel
	Reception segment
	Test segment

	Results and evaluation of BER values

	Navigation Signals and Navigation Message Structure
	Galileo Navigation Signals
	GIOVE Navigation Signals
	Navigation Message
	Message Generation
	Message Transmission

	Experimental verification
	GETR inside
	Examples of test files
	Test environment
	Results evaluation with GIOVE navigation data
	Results evaluation with Galileo Navigation Data

	Evaluation of navigation parameters
	Output in Rinex
	Output in Yuma

	Conclusion and future work
	Bibliography
	Software description of the Navigation Channel Simulation
	Software description of the Tests with GETR pages
	Software description of the Export of RINEX and YUMA files
	Main Program
	Rinex and Yuma programs

	Noise in the channel
	White Noise
	Error Probability

