
Diploma thesis

Online Signal Separation

Based on Microphone Arrays

in a Multipath Environment

Stefan Richardt

————————————————————–

Signal Processing and Speech Communications Laboratory

Graz University of Technology, Austria

Department of Electronic & Electrical Engineering

University of Sheffield, United Kingdom

Supervisors:

Dipl.-Ing. Dr.sc.ETHHarald Romsdorfer

Dr. Wei Liu

Assessor:

Univ.-Prof. Dipl.-Ing. Dr.techn.Gernot Kubin

Graz, March 2011



Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources.

Graz,

Place, Date Signature

Eidesstattliche Erklärung
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Abstract

This thesis aims at constructing a system, being able to separate the signals of simultaneously
speaking persons in a room. The desired source signal is supposed to be extracted from the
actual mix of appearing sources. It shall be recovered from any noise or interfering sources, such
as other speakers.
The approach is based on a microphone array whereas the received data are processed in

two successive stages. Firstly, a beamforming network, consisting of several fixed beamformers
steering in different directions, scans the room. The second stage, a Blind Source Separation
algorithm, controls the individual beams in order to separate the desired signal from any inter-
ferences as well as possible.
Furthermore, it was required to construct twenty analogue amplifiers in order to complete

the available hardware setup. The final result is a fully functional system consisting of a Mat-
lab Graphical User Interface utilizing the associated hardware. It enables the user to listen
separately to the individual speakers in a room.

Kurzfassung

Ziel dieser Arbeit ist es ein System zu erstellen, welches in der Lage ist Sprachsignale mehrerer
zeitgleich agierender Sprecher in einem Raum zu extrahieren. Das Originalsignal eines bes-
timmten Sprechers soll dabei so gut wie möglich zurück gewonnen werden, wobei es von etwaigen
Störungen wie anderen Sprechern oder Rauschen befreit werden soll.
Der auf einem Mikrophone Array basierende Ansatz arbeitet in zwei Stufen. Ein Netzwerk aus

mehreren unveränderlichen Beamformern bildet die erste Stufe. Jeder dieser Beamformer ist
richtungsabhängig, wobei nur Signale aus einer bestimmten Richtung durchgelassen und Signale
aus anderen Richtungen gedämpft werden. Die Beamformer, welche in verschiedene Richtungen
zeigen, werden von der zweiten Stufe, einem Blind Source Separation Algorithmus gesteuert, um
das gewünschte Signal bestmöglich von Störungen bzw. anderen Sprechern zu befreien.
Zur Vervollständigung der vorliegenden Hardware war es notwendig 20 analoge Verstärker zu

entwerfen und aufzubauen. Als Ergebniss liegt letztendlich ein voll funktionsfähiges System vor,
wobei ein Matlab Graphical User Interface auf die zugehörige Hardware zugreift. Es wird dem
Benutzer ermöglicht, sich die einzelnen Sprecher im Raum unabhänging voneinander anzuhören.
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Stefan Richardt 1 Introduction

1 Introduction

The objective of this thesis is to apply an algorithm being able to separate speech signals in
a reverberant environment by using a microphone array. As there are many different ways
to access this topic this thesis focuses on a specific approach proposed in [Liu and Mandic,
2005] and [Liu, 2010]. Frequency Invariant Beamformer (FIB) technique as well as Blind Source
Separation (BSS) technique are utilized and combined. Several fixed beamformers with different
and unchangeable main steering directions, which are uniformly distributed on a half plane, are
weighted by an adaptive BSS algorithm in order to recover different speakers in a room while
disturbing interferences are suppressed. Therefore, the thesis can be allocated to two main fields
of research:

Acoustic Array Signal Processing / Beamforming

Blind Source Separation (BSS) and Independent Component Analysis (ICA)

Both fields have been studied extensively. The main sources used in the course of this thesis
are introduced here. ‘Independent Component Analysis’ [Hyvärinen et al., 2001] describes the
basic principles of ICA in a comprehensible and descriptive way. ‘Adaptive Blind Signal and
Image Processing’ [Cichocki and Amari, 2002] examines several algorithms in detail. Acoustic
Array Processing and beamforming has been researched for example in ‘Microphone Array Signal
Processing’ [Benesty et al., 2008] or ‘Wideband Beamforming: Concepts and Techniques’ [Liu
and Weiss, 2010].
The main goal of this work is to prove and modify the proposed algorithm [Liu, 2010] in

practice aiming to implement a real time version. All simulations as well as a Graphical User
Interface (GUI) have been implemented in Matlab. Furthermore, it was claimed to build parts
of the required hardware in the course of this thesis. I built twenty analogue amplifiers for what
a proper board layout had to be designed. The amplifiers had to be integrated in the existing
hardware (microphone array, data acquisition card, PC) whereas effects of electromagnetic com-
patibility had to be considered. The MATLAB GUI was developed in order to enable the user
to easily record data and process these immediately by the algorithm. The algorithm itself is
implemented modularly to ensure compatibility and exchangeability of certain stages.

The thesis is divided into three parts: Part I: Theory, Part II: Practical Approach and Part III:
Results.
Part I contains the fundamentals of beamforming which are explained in Chapter 2 followed

by an introduction of blind source separation in Chapter 3. A combination of both techniques
is described in Chapter 4. Furthermore, a series of Matlab simulations is presented in order to
work out suitable parameters for the practical approach.
Part II describes the practical work and is divided in two chapters. Chapter 5 includes the

hardware setup whereas the practical problems and the development of the amplifiers are in the
main focus. In Chapter 6 the developed Matlab GUI is introduced shortly.
Part III contains testing and evaluation of the system. In Chapter 7 the conducted experi-

ments are described with the results being presented and interpreted in Chapter 8. The conclu-
sion as well as the prospects are given in Chapter 9.
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Part I

Theory
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2 Beamforming

2.1 Introduction

Array processing is a broad research field having a long history in various application areas.
It can be found in radar, sonar, communications, seismology but also in medical diagnosis and
treatment [Benesty et al., 2008]. There are many purposes acoustic arrays respectively beam-
formers can be used for, such as estimating the Direction of Arrival (DOA) or gaining a desired
signal with enhanced quality by recovering it from noise, different sources or reverberations.
Facing a huge number of applications we need to classify our approach. Regarding the relative
location of the sensors we can separate sensor arrays in three categories [Liu and Weiss, 2010]:

linear arrays (1-D)

planar arrays (2-D)

volumetric arrays (3-D)

Further, each of them can be divided into two classes:

regular spaced arrays with an either uniform or nonuniform sensor distribution

irregular or random spaced arrays

In general a beamformer can be described as a spatial filter supposed to form a certain beam
certain pattern, also known as directivity pattern. As the requirements to a beamformer and
its pattern differ a lot the complexity can reach from a very simple approach such as a delay
and sum (D&S) beamformer to more complex structures like the Generalized Sidelobe Canceller
(GSC). Therefore, it is useful to distinguish between narrow band and wide band beamformers.
In the following sections a simple narrow band beamformer, the Delay and Sum beamformer,
is explained. Next, a Filter and Sum (F&S) beamformer is deduced whereas a specific design
process of the filter coefficients (window method) is described in particular. As the focus of
this thesis lays on a particular approach, which combines a Frequency Invariant Beamformer
(FIB) and Blind Source Separation (BSS) technique, it is abandoned to give an introduction of
adaptive beamforming algorithms.

Temporal and Spatial Signal Phase

A common perspective of beamformers is the spatial filter. A spatial filter utilizes the different
phases of the impinging signals. The phase of a signal, arriving at a certain point of the array,
is not just time dependent but also dependent on the location of the sensor. It is common to
treat the resulting delays, caused by the different positions of the sensors, as spatial sampling.
Assuming an impinging signal with a specific frequency we sample all sensors signals at a specific
point in time. Treating the values the same as a signal sampled in the time domain the frequency
of the signal will be angle dependent. Several sensors at different locations will cause different
phases for an instant time t. In further consequence, the signal phase is dependent on the
direction of arrival (DOA) as we will show in this section.
A propagating plane wave from a certain DOA causes a different time delay respectively a
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different phase at each sensor. Summing up all sensor signals various output levels according
to the DOA are to be seen. The resulting magnitudes are caused by an either constructive or
deconstructive interference of the sensor signals and leads to the corresponding beam pattern.
Note that this pattern is frequency dependent, therefore, it is three dimensional.
The DOA is described by an azimuth angle φ and an elevation angle θ. The reference plane for
the azimuth angle is at constant height whereas the elevation angle defines the deflation angle
of this plane.
Assuming an impinging signal with a specific frequency we sample all sensors signals at a

specific time. Treating the values the same as a signal sampled in the time domain the frequency
of the signal will be angle dependent. For simplicity, we firstly consider a plane wave signal with

x

y

z

θ

Φ

Figure 2.1: Cartesian coordinate system with an azimuth angle θ and an elevation angle φ describing the
direction of arrival

a frequency f propagating in direction of the z axis. Figure 2.2 shows a plane wave with constant
z plane in the Cartesian coordinate system.

x

y

z

k

r

constant	z	plane

Figure 2.2: Plane wave with constant z plane propagating in z direction with spatial frequency k

As mentioned earlier, the phase of a signal is crucial when it comes to summing up the signals.
The phase term of a signal φ(t, z) is not longer exclusively a function of the time t but also of
the position z and can be described as follows:

φ(t, z) = ωt
︸︷︷︸

temporal

+ kz
︸︷︷︸

spatial

(2.1)
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In order to express the position term we need to introduce the wavenumber k:

k =
ω

c
=

2πf

c
=

2π

λ
(2.2)

k contains the temporal, angular frequency ω respectively the signal frequency f . Additionally,
λ denotes the resulting wavelength and c is the propagation speed in a particular medium. Form
Equation (2.1) it can be seen that ω is used as a fixed factor for the time t whereas k is used as
fixed factor for the position z. As ω is called temporal frequency it is common to name k the
spatial frequency. Instead of giving the number of periods per seconds k represents the number
of periods per meter. Denote that k is also dependent on the signal frequency f . For a more
detailed and well illustrated explanation of the wavenumber k see [Williams, 1999].
Assuming to shift the observation point along the z axis the phase changes according to the
spacial frequency k whereby the phase shift is the same for all points in this plane.
Unlike the temporal frequency ω the spacial frequency k is three dimensional and points in
the directions of the propagating wave. In Cartesian coordinates it can be denoted as a three
dimensional vector:

k = [kx ky kz]
T (2.3)

The length can be calculated as follows:

k =
√

k2x + k2y + k2z (2.4)

In the particular case shown in Figure 2.2 k consits of kx = ky = 0 and kz = k. Defining the
unity vector ẑ along the z axis:

ẑ = [0 0 1]T (2.5)

leads to:

k = kẑ (2.6)

If we want to show the relation between k and f we need to refer to Equation (2.2).
Within the next steps we describe any point in a 3D space. For that reason we introduce r, which
directly gives the coordinates in the Cartesian system. Using k we are now able to formulate the
phase φ(t, r) as function of r, enabling to give the phase of a signal at every possible position in
a room. Therefore, we rewrite Equation (2.1):

φ(t, r) = ωt
︸︷︷︸

temporal

+ kT r
︸︷︷︸

spatial

(2.7)

with:

r = [rx ry rz]
T (2.8)

In order to gain more generality we replace the coordinates by the angles θ and φ. As we assume
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plane waves, analogous to the far field assumption, there is no need to include the distance from
the source to the sensor. Finally we are able to determine a time independent phase term, which
is a function of the DOA as only the angles of an impinging signal are significant.

k =





kx
ky
kz



 = k





sin θ cos φ
sin θ sin φ

cos θ



 (2.9)

Applying Equation (2.8) and Equation (2.9) in Equation (2.7) and focusing on the time inde-
pendent phase term we obtain:

kT r = sin θ cos φ rx + sin θ sin φ ry + cos θ rz (2.10)

Thus, we have expressed the phase of a signal as function of time and DOA. As we are able to
describe the phase of a signal at every point in 3D space we want to utilize the spatial phase
shift. Placing sensors at different locations constitutes an array and in further consequence a
beamformer.

2.2 Problem description, Assumptions and Specifications

Before explaining the D&S beamformer as well as the FIB it is useful to give a general problem
description. Besides, we need to make some basic assumptions of the environment conditions.
In addition, we give the specifications of the particular approach, implemented in course of this
thesis.
Our approach is an one-dimensional linear array with an uniform spacing d, the distance between
two microphones. Therefore, our considerations are constrained to a plane. As DAO of the
impinging signals we consequently only regard the azimuth angle θ, which is constrained to
θ ∈ [−π/2 π/2]. It is useful just to consider a half plane as the results are mirrored at the
broadside of the beamformer. Figure 2.3 shows a linear array structure with an impinging plane
wave.

s
l
(t) x0(t)

x1(t)

xM-1(t)

τ
m,l

θ
l

d

Figure 2.3: Linear array with uniform spacing and impinging plane wave
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sl . . . l-th source signal

L . . . number of sources

xM . . . x-th microphone signal

M . . . number of microphones

d . . . distance between microphones

θl . . . DOA / angle of impinging signal of l-th source

τm,l . . . time delay to reference micrphone

We suppose that sl(t) is the l-th impinging signal with l = 0, 1, . . . , L − 1 where L is the
number of source signals. According to each of the source signals we describe the direction
of arrival by θl. Basically our model contains M sensors, which provide the received signals
x0(t), x1(t), . . . , xM−1(t). We consider the zeroth sensor to be our reference. Hence, we are
able to define τm,l as time delay from the reference sensor to the m-th sensor according to the
l-th source. The delay τm,l depends on the angle of the impinging signal θl and the distance
of the m-th sensor form the reference. As we have an uniform sensor distribution with a fixed
distance d between the microphones the delay τm,l can be considered as:

τm,l = sin(φl)
m · d
c

(2.11)

The wave propagation speed of sound waves in air is:

c ≈ 340
m

s
(2.12)

In general the signal at the m-th sensor can be described by:

xm(t) = αms(t− tl − τm,l) + υn(t) (2.13)

with:

αm . . . attenuation factor of microphone m

tl . . . time delay from the source l to the reference sensor

υn(t) . . . uncorrelated noise

Ideally the attenuation factor αm is the same for all microphones as we assume plane waves
respectively far field conditions. Apart from the additional noise we basically obtain the same
signal s(t) whose differences in terms of time delay are exclusively determined by τm,l. The noise
υn(t) is caused by the microphones themselves and by the Analogue Digital (AD) converters. It
is supposed to be uncorrelated.
Furthermore, we want to introduce a signal model for a multipath environment. In general,
reflections in a room can be described as attenuated and delayed versions of the original signal.
All basic assumptions remain. Based on Equation (2.13) we add a term for a certain number of
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reflections:

xm(t) = αms(t− tl − τm,l) + υn(t) +
R∑

r=1

αm,rs(t− tl,r − τm,l,r) (2.14)

with:

R . . . Number of reflections

tl,r . . . time delay of the r-th path from source l to the reference sensor

αm,r . . . attenuation factor of the m-th microphone according to the r-th path

We assume that all array sensors have the same characteristics. This means that the varieties
of gains and frequency responses in terms of magnitude and phase should ideally be zero. It is
also supposed that the sensors are omni directional meaning their responses to any impinging
signals are independent of their DOA. As we deal exclusively with acoustic signals the used
microphones need to provide a capsule with an omni directional directivity pattern.
As mentioned earlier we assume that all impinging signals are plane waves. Depending on the
array aperture and the distance between microphones and source this assumption can not always
complied. A more detailed discussion can be found in Chapter 7.3.

2.3 Delay and Sum Beamformer

The D&S beamformer can be described by a general model of a narrow band beamformer. A
D&S beamformer normally consists of two stages.
The first stage delays the sensor signals whereas the seconds sums up all the signals. Without

the delaying stage the main steering direction would be zero degree. Delaying the incoming
signals at first enables to adjust the main steering direction θ0. Due to the fact of being a narrow
band beamformer the output of the D&S beamformer is a function of the frequency. Optimal
results in terms of attenuating interferences or rejecting noise can just achieved at a very narrow
frequency range. Figure 2.4 shows the general structure of a narrow band beamformer:

s(t) x0(t)

x1(t)

xM-1(t)

τ
1

τ
M-1

θ

Figure 2.4: A general narrow band beamformer

Note that this model does not contain the delaying stage. The output y(t) is a weighted sum of
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the sensor signals, whereas wm is the weighting factor according to the m-th signal:

y(t) =
M−1∑

m=0

xm(t)wm (2.15)

In order to describe the frequency response of the beamformer in the following we define the
complex sensor signal x(t) for one source with a DOA angle θ. We assume a signal with the
angular frequency ω and zero phase shift at the reference sensor:

x0(t) = ejωt (2.16)

Hence, the signal at all sensors can be described by utilizing τm introduced in Equation (2.11):

xm(t) = ejω(t−τm) = ejωte−jωτm (2.17)

Applying Equation (2.17) to Equation (2.15) leads to:

y(t) = ejωt
M−1∑

m=0

e−jωτmwm (2.18)

Excluding the temporal part we are able to define the beampattern P (ω, θ):

P (ω, θ) =
M−1∑

m=0

e−jωτmwm (2.19)

The beampattern is a function of the temporal angular signal frequency ω and the DAO angle
θ, contained by the time delay τm. Dealing with a discrete aperture brings along the problem
of spatial aliasing. Comparable to temporal aliasing a certain frequency of the incoming signal
should not be exceeded. The Nyquist criterion is also valid in terms of spatial sampling. For a
more detailed explanation and several examples concerning this problem please see [Williams,
1999] and [Dollfuß, 2010]. We consider λ to be the smallest possible wavelength of the source
signal. According to this we can set a suitable distance d.

d =
λmin

2
(2.20)

Defining the weighting vector w and the steering vector d(ω, θ) enables to rewrite Equa-
tion(2.19) in vector form:

P (ω, θ) = wT d(ω, θ) (2.21)

with:

w = [ w0 w1 w2 . . . wM−1 ]
T (2.22)
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and:

d(ω, θ) = [ 1 ejωτ1 ejωτ2 . . . ejωτM−1 ]T (2.23)

The weighting vector w can be seen as spacial window function. Regarding parameters such
as main beam width or side lobe attenuation various spatial windows are possible. The very
simplest case is the D&S beamformer with:

w =
1

M
[ 1 1 . . . 1 ]T (2.24)

This conforms a rectangular window. In general, spatial windows conform temporal windows,
which has been studied extensively in [Oppenheim et al., 2004]. Considering a window function
in time it is useful to transfer the function from the time domain in the frequency domain via
Fourier transformation. Transforming a rectangular leads to a sinc function. The results are the
same if we transfer a spatial filter. The sinc function is to be seen in the beam pattern. The
beam pattern (BP) is calculated as follows:

BP = 20log10
|P (θ, ω)|

max |P (θ, ω)| [dB] (2.25)

As an example a beam pattern of a D&S beamformer with a main steering direction of zero
degree and a spatial, rectangular window w, defined in Equation (2.24), is shown in Figure 2.5.

Figure 2.5: 3D beam pattern of a D&S beamformer; main steering direction: θ0 = 0◦; number of sensors:
M = 19
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2.4 Frequency Invariant Beamformer

Unlike the D&S beamformer the Frequency Invariant Beamforming (FIB) technique is an array
design for wideband signals. Ideally, the response is exclusively a function of the DOA angle of
the impinging signal and, thus, not frequency dependent. However, it is practically not possible
to design a frequency invariant beamformer valid for the whole spectrum. Consequently, the
signals have to be restricted to the valid range.
Regarding a FIB also known as Filter and Sum (F&S) beamformer every sensor signal xm(t)

is convoluted by a Finite Impulse Response (FIR) filter. The aim is to design a fixed set of
filter coefficients (non-adaptive) in order to achieve frequency independence. Furthermore, the
delaying stage is implemented by the filters, hence, a set of filter coefficients for each steering
direction is required.
The method which is used here is proposed in [Liu and Weiss, 2008], [Sekiguchi and Kara-

sawa, 2000]. To achieve frequency-independence we exploit the Fourier transform. The spatio-
temporal distribution P (ω, θ) of a 1D array, which is dependent on the DOA angle θ of the
impinging signal and its frequency ω, can be characterized by a two dimensional discrete Fourier
transformation. With the help of specific substitutions we are able to design a beam pattern
dependent on normalized angular frequencies such as P (Ω1,Ω2). If we can define an appropriate
beam pattern it is possible to apply the 2D inverse Fourier transformation to gain the desired
filter coefficients. A detailed description of the process and the filter design is given below.

2.4.1 Design Procedure

Figure 2.6 shows a wideband beamforming structure with M sensors and J filter taps.
Each real valued signal xm(n), with m ∈ [0, 1, . . . ,M − 1], sampled with a sampling period
of Ts is processed by a FIR filter wm. Every individual filter of the m-th sensor contains J
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Figure 2.6: filter and sum beamformer
(with friendly permission of Dr Wei Liu)
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coefficients wm,j , which are also claimed to be real. These coefficients need to be calculated.
The acquired 2D filter exceeds to a 3D filter as a 2D set for each main steering direction θ0 has to
be calculated. Criteria for the performance of these filters are for example side lobe attenuation,
the valid frequency range but also error robustness and stability [Pape, 2005].
In order to avoid aliasing in the time domain the sampling frequency fs should be larger

then twice of the maximum frequency of interest fmax. To prevent spatial aliasing the distance
between two microphones d should be less then half of the minimal wavelength of interest λmin

according to the maximal frequency. Finally we can denote two simple requirements:

2fmax < fs =
1

Ts
(2.26)

λmin =
c

fmax
< 2d (2.27)

Combining both conditions we set the sensor spacing d pursuant to the maximal signal frequency:

d =
λmin

2
= cTs (2.28)

According to the signal model for a linear, equally spaced array in chapter 1.2 the beam response
P (ω, θ) from Equation (2.19) can be exceeded to:

P (ω, θ) =
M−1∑

m=0

J−1∑

k=0

wm,k · e−jmωτ · e−jkωTs (2.29)

whereas the time delay between two adjacent microphones is:

τ = sinθ · d
c

(2.30)

With consideration of the assumption being made in Equation (2.28) we define a constant µ,
however, we are instantly able to simplify the problem:

µ =
d

cTs
=

cTs

cTs
= 1 (2.31)

As a result we can rewrite Equation (2.29) as follows:

P (Ω, θ) =
M−1∑

m=0

J−1∑

k=0

wm,k · e−jmµΩ sinθ · e−jkΩ (2.32)

with the normalized angular frequency:

Ω = ωTs (2.33)

The next step is to apply a spectral transformation. To achieve a beam pattern P (Ω1,Ω2),
which is only dependent on normalized angular frequencies, we substitute as follows:
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Ω1 = µΩsinθ = Ωsinθ (2.34)

Ω2 = Ω (2.35)

which yields to:

P (Ω1,Ω2) =
M−1∑

m=0

J−1∑

k=0

wm,k · e−jmΩ2 · e−jkΩ1 (2.36)

Ω1 represents the spatial normalized angular frequency, while Ω2 stands for the temporal nor-
malized angular frequency. Denote that the simplification of µ = 1 which yields to a much easier
equation is only possible as we set d according to the sampling frequency fs as already done
in Equation (2.28). Regarding the relationship: Ω1 = Ω2 sinθ it can easily be seen that the
impinging signals must comply the following expression:

|Ω1| ≤ |Ω2| (2.37)

The area for valid signals is located between the two lines Ω1 = Ω2 and Ω1 = −Ω2. The
possible locations for a spatial temporal spectrum of an impinging signal can is depicted in
Figure 2.9.
As we have to derive a proper beam pattern P (Ω1,Ω2) later on, we are allowed to chose the
remaining area arbitrarily as no signals occur. For a better understanding of how the 1-D and
2-D spectra are connected it is useful to pick out a few specific lines of a 2-D spectrum. Each
line represents a 1-D spectrum according to a fixed angle θ being represented by the spatial
angular frequency Ω2.
As an example lets take a look at the line according to θ = 45deg, which results to Ω1 = 1/

√
2

for a maximum temporal frequency Ω1 = 1. The magnitude of this line is the 1D spectrum for
this specific angle. Indeed, it is reasonable to consider these lines as we want to obtain a

Ω2
-π π

Ω1=Ω2	

Ω1
Ω1=	-Ω2	

Figure 2.7: possible location of an impinging signal at the spatial temporal spectrum on the (Ω1,Ω2) plane
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Ω2
-π π

Ω1=Ω2	

Ω1=	-Ω2	

Ω1

π

-π

Figure 2.8: Relationship between 1D and 2D frequency; d = c/fs; main steering direction θ0 = 0

frequency invariant beamformer. The ideal 2D pattern for a 100 per cent frequency invariant
beamformer would exclusively contain straight lines of a constant magnitude.
Unfortunately, we are not able to achieve the same performance for lower frequencies as it

is possible for higher frequencies. It is already proven that a design approach, treating all
frequencies equally yields to a non robust beamformer [Pape, 2005]. We can consider this in
our design process by using a low pass filter as prototype function in order to build P (Ω1,Ω2).
Thus, the beamformer can not gain the optimal results below a certain frequency.

2.4.2 Applying the Window Method

To make the design procedure more comprehensible it is useful to outline the following three
steps in detail. At first we have to find a beam pattern P (Ω1,Ω2) which is achievable in reality.
Having found an appropriate pattern we can apply the inverse Fourier transform which finally
yields to the desired coefficients.

1D Prototype FIR Filter

The first task is to design a 1D prototype narrow band zero phase FIR low pass filter with a
filter length of L. For simplicity we chose L to be odd. Furthermore, L is crucial as the overall
number of all lobes is determined directly by L. The frequency response P (Ω) is expressed as:

P (Ω) = p(0) +

(L−1)/2
∑

l=1

p(l) cos(2πlΩ) (2.38)

We set our prototype low pass filter function to:

p(l) = 1/L (2.39)

where L is the length of the prototype. Conducting the simulations L is either set to L = 5
or L = 7.
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Transform the 1D Filter in a 2D Filter

Next, we have to apply the transformation to the derived frequency response. The main steering
direction should be considered at this point. Each main direction leads to an own 2D filter. The
2D pattern can be calculated if Ω in Equation (2.38) is replaced by TD as follows:

P (Ω1,Ω2) = p(0) +

(L−1)/2)
∑

l=1

p(m)cos(2πlTD) (2.40)

with:

TD =
Ω2

Ω1
− sinθ0 (2.41)

Denote, that in the area of |Ω1| ≥ |Ω2| the values can be chosen arbitrary. For this area we
can set a fixed value [Sekiguchi and Karasawa, 2000]:

TD = 1− sinθ0 (2.42)

Figure 2.9 and Figure 2.10 show two different 2D prototypes for different main steering direc-
tions θ0 and different side lobe numbers L.
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Figure 2.9: 2D frequency response of prototype filter P (Ω1,Ω2); main steering direction theta0 = 0◦ ; L = 5
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Figure 2.10: 2D frequency response of prototype filter P (Ω1,Ω2); main steering direction theta0 = −25◦ ;
L = 7
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Fourier transformation

As we have finally derived P (Ω1,Ω2) we can now apply the two dimensional inverse discrete
Fourier transformation of our desired beam pattern. For the desired beam pattern we need to
choose a resolution which affects the maximal sensor number as well as the number of filter taps.
Setting the resolution to [128 × 128] leads to a maximal number of filter taps J and sensors M:
J = M = 128, which has to be truncated according to requirements of the beamformer. Note
that it is necessary to apply a shift of the FFT results.
The resulting filter coefficients, computed with a different main steering direction θ0 are

displayed in the Figure 2.11 and Figure 2.12. Both filters are truncated to a dimension of
[19 × 19].
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Figure 2.11: Final filter coefficients with: M = 19 ; J = 19 ; L = 5 ; θ0 = 0◦

4 8 12 16

4

8

12

16

COEFFICIENTS J

S
E

N
S

O
R

S
 N

 

 

−0.04

−0.02

0

0.02

0.04

0.06

Figure 2.12: Final filter coefficients with: M = 19 ; J = 19 ; L = 7 ; θ0 = −25◦
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2.4.3 Simulations

The following simulation serves as a basis for the choosing the parameters utilized in the practical
approach later on. Some simulation results of the designed FIB are shown in order to compare
significant parameters. Its influence of the beamformers performance is evaluated and illustrated.
All shown results refer to the former suggested method and are implemented in Matlab. Different
possibilities of depicting a beam pattern are introduced.
Even if different beam patterns are produced, the method of simulation is basically the same.

For every possible DOA angle and every possible frequency a set of data respectively source
signals are produced and applied to the beamformer. By measuring the RMS power of the all
resulting signals we are able to depict a beam pattern by calculating the ratio. As we apply
this process step by step for different DOA angles (with a resolution of one degree) and different
frequencies (with changing resolution) the pattern is a function of DAO and frequency. Hence,
a three dimensional representation is useful.
As source signal a sinusoidal signal with a certain frequency is utilized. To comply the

requirement of a certain numberM of microphone signals the DOA angle is simulated by delaying
each channel signal by the according delay τm,l.
A common way to present the results is a 3D plot where x axis and y axis are frequency and

DOA angle whereas the z axis depicts the magnitude. Such a 3D plot can be seen in Figure 2.13
Figure 2.18 and Figure 2.19. A flat version of this plot is possible when a colored representation
for the z axis is used as shown in Figure 2.16 and Fig 2.17 .
If we want illustrate a single beam pattern for one frequency a 2D plot can be chosen, repre-

senting a pattern for a specific frequency per line. Such a pattern can be seen in Figure 2.15 and
Figure 2.14. It is also possible to utilize broadband signals, such as bandpass noise, as source
in order to combine several frequencies if they are supposed to cause the same pattern. This is
conducted in experiment Ia in the anechoic chamber (chapter 7.1).
Fig 2.13 shows a 3D pattern for a number of sensors M = 19 , a number of filter taps J = 121,

a side lobe number of L = 5 and a main steering direction of θ0 = 0◦.

Figure 2.13: 3D Beam pattern: M = 19; J = 121; L = 5; θ0 = 0◦
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2D Pattern Considering the Number of Microphones M and Different Normalized

Frequencies Ω with a Constant Filter Length J
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Figure 2.14: 2D Beam pattern; 6 different frequencies 0.15 ≤ Ω ≤ 0.5; M = 11; J = 121; L = 7; θ0 = −34◦
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Figure 2.15: 2D Beam pattern; 6 different frequencies 0.15 ≤ Ω ≤ 0.5; M = 19; J = 121; L = 7; θ0 = −34◦
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Flat 3D Pattern Considering the Number of Filter Taps J with a Constant Microphone

Number M and Same Steering Direction θ0

Figure 2.16: Flat 3D beam pattern; M = 19; J = 19; L = 7; θ0 = −39◦

Figure 2.17: Flat 3D beam pattern; M = 19; J = 121; L = 7; θ0 = −39◦
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3D Pattern with Parameters Chosen in the Practical Approach Compared to a Pattern

with a Lower Number of Microphones and Filter Taps

Figure 2.18: 3D beam pattern with insufficient performance: M = 11; J = 19; L = 7; θ0 = −37◦

Figure 2.19: 3D beam pattern with parameters chosen for the practical approach: M = 19; J = 121; L = 7;
θ0 = −37◦
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2.4.4 Conclusion

The former results illustrate the impact of three parameters:

Filter length of the 1D prototype L . . . respectively the side lobe number L− 1

Number of microphones M

Number of filter taps J

As already mentioned in Chapter 2.4.2 the choice of the filter length L of the 1D prototype
directly determines the number of side lobes. A certain number is needed as we want to cancel
several interfering signals. This will be discussed later in Chapter 4 as well as in Chapter 8.2.3.
For now, a number of L = 7 is chosen.
The Number of microphones M is evaluated in Figure 2.14 and Figure 2.15. It can be seen

that an increasing number of microphonesM extends the frequency range where the beamformer
is working frequency independently. Hence, the maximal, practically available number is chosen:
M = 19.
The Number of filter taps J is considered in Figure 2.16 and Figure 2.17. It is shown that

a smaller number of filter taps J has an impact of the beamformers performance in the valid
frequency range as the main lobe as well as some side lobes are distorted. Therefore, a sufficiently
high number of filter taps is chosen: J = 121.
Concluding with Figure 2.19 a simulation with the finally chosen parameters is conducted:

L = 7, M = 19 and J = 121.

2.4.5 Fractional Delay

When dealing with beamforming the topic of delaying signals is important. For example, it is
possible to change the steering direction of a beamformer by adding appropriate delays (Chapter
2.3). Furthermore, it is essential for any kind of simulation. A filter delaying a signal by an
integer number of samples is defined as follows:

h[n] = δ[n− n0] (2.43)

Utilizing exclusively integer delays is far and away insufficient. Therefore, some considerations
are given to assemble a fractional delay FIR filter. As a result we want to gain a filter which
delays the signal by convoluting it with this filter.
Basically, the approach works like a conversion from a digital signal to an analogue one, or

more general, from a discrete to a continuous one. Considering the discrete signal x[n] we
interpolate as exactly as possible. Afterwards we pick out the specific points according to the
required decimal delay. There are many ways to accomplish an interpolation of a signal. The
most exact one can be achieved by using a sinc function. Hence, we take a look at a model of
an ideal reconstruction system.
The input is the discrete signal x[n] which we want to delay by a fractional number of samples.
As an output the filter yields the reconstructed, continuous signal xc(t). Intermediately we
obtain the weighted, periodic impulse train xs(t), which is already a continuous signal. As
reconstruction filter we are using an ideal low pass filter with a frequency response Hr(jω) and
an impulse response hr(t). The output of the system can be described as follows:

xc(t) =
∞∑

n=−∞

x[n]hr(t− nT ) (2.44)
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Figure 2.20: Ideal reconstruction system with discrete input x[n], weighted impulse train xs(t) and continuous
signal xc(t)
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Figure 2.21: reconstruction filter in frequency domain Hr(jω) and time domain hr(t)

The frequency response of the ideal low pass filter is shown below. It is common to choose
ωc = ωs/2 = π/T with regard to aliasing. For simplicity the filter has a gain of T. If we apply
the inverse Fourier transform to the given frequency response Hr(jω) we obtain the impulse
response hr(t), which is generally known as sinc function.

Hr(jω) =

{
T |ω| ≤ π/T

0 |ω| ≥ π/T
(2.45)

hr(t) =
sin(πt/T )

πt/T
(2.46)

Applying the ideal low pass filter of Equation (2.46) in Equation (2.44) yields to:

xc(t) =
∞∑

n=−∞

x[n]
sin(π(t− nT )/T )

π(t− nT )/T
(2.47)

This equation is the result of an ideal reconstruction. We are now able to calculate the value x
for every point in time t which obviously includes points between the original samples. Utilizing
the former consideration we rewrite this equation and describe the reconstructed signal xr(t).

xr(t) =

∞∑

k=−∞

x[k]
sin(π(t− kT )/T )

π(t− kT )/T
(2.48)

Furthermore, we want to find a solution of the following problem. h[n] is demanded whereas
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y[n] shall be the final fractionally delayed signal.

y[n] = x[n] ∗ h[n] (2.49)

If we delay xr(t) it corresponds to y[n]. To fit this requirement we delay xr(t) about αT
whereas α is the fractional delay factor with 0 ≤ α ≤ 1.

xr(t− αT ) =
∞∑

k=−∞

x[k]
sin(π(t− αT − kT )/T )

π(t− αT − kT )/T
(2.50)

With the definition of t = nT we finally replace xr(t− αT ) by y[n].

y[n] = xc(t− αT )|t=nT (2.51)

After a few simplifications we accomplish our calculations. As a result we obtain h[n].

y[n] =
∞∑

k=−∞

x[k]
sin(π(nT − αT − kT )/T )

π(nT − αT − kT )/T
(2.52)

y[n] =

∞∑

k=−∞

x[k]
sin(π(n− α− k))

π(n− α− k)
(2.53)

y[n] = x[n] ∗ h[n] (2.54)

h[n] =
sin(π(n− α))

π(n− α)
(2.55)

Using the filter h[n] with infinite length the results will be a perfect and frequency independent
interpolation. The necessary truncation of the filter leads to inaccuracies especially at higher
frequencies near ωc/2 also called the Gibbs phenomenon. For further information please see
[Oppenheim et al., 2004]. Effectively this will not be a big issue if the number of taps is chosen
high enough. The simulations of the beamformer are conducted with M = 101 which does not
cause any problems.
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3 Blind Source Separation by Independent

Component Analysis

3.1 Introduction

According to Hyvärinen the research field of Independent Component Analyses (ICA) is very
closely related to Blind Source Separation (BSS), also known as Blind Signal Separation. ICA
is supposed to be the most widely used method in BSS [Hyvärinen and Oja, 2000]. Hence, it
does not seem useful to strictly separate this two disciplines.
In this chapter, the basic idea of BSS and the corresponding mathematic model is shown.

Furthermore, the natural gradient approach is presented shortly, although, it is not derived in
this thesis.
The goal of BSS is to separate or to recover a number of original sources, which has been

mixed in an unknown way. The process is called blind as there is very few a priori knowledge and
just weak assumption on the original signals. A source in the BSS case means an independent
component such as a speaker in a cocktail party situation. The mixing process is described
by a mixing matrix. As well as the source signals the mixing matrix is unknown and needs
to be estimated in order to recover the original signal. Therefore, we have to consider certain
conditions. Furthermore, the restrictions and ambiguities of the approach are shown.

3.2 Model

We assume a number of simultaneously speaking persons L and a number of sensors M . We
determine that the number of sources and the number of microphones is equal:

M = L (3.1)

For simplicity we choose three as random number to be the amount of sources and speakers.
The examples in this chapter will refer to this number. Note that this could be any number
larger than one and is chosen to explain the problem in a simple and comprehensible way.
Therefore, the original source signal is denoted by s0(t), s1(t) and s2(t) whereas the sensor

signals are x0(t), x1(t) and x2(t). Each signal x(t) , arriving at a microphone, is a mixture of
source signals which are individually weighted by a factor αm l. The set of linear equations can
be expressed as follows:

x0(t) = α00s0(t) + α01s1(t) + α02s2(t) (3.2)

x1(t) = α10s0(t) + α11s1(t) + α12s2(t) (3.3)

x2(t) = α20s0(t) + α21s1(t) + α22s2(t) (3.4)

As example the mixing and demixing process is shown in the following figures. The independent
source signals s0(t), s1(t) and s2(t) in Figure 3.1 are multiplied by the unknown mixing matrix
A which leads to the observed signals x0(t), x1(t) and x2(t) in Figure 3.2. The estimated signals
ŝ0(t), ŝ.1(t) and ŝ2(t) are depicted in Figure 3.3.
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Figure 3.1: original source signals s1, s2 and s3 of an BSS Instantaneous Mixing Problem
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Figure 3.2: mixed signals x1, x2 and x3 of an BSS Instantaneous Mixing Problem

Remember that x0(t), x1(t) andx2(t) are the only available signals in order to recover s. Despite
from signal order and amplitudes (see Ambiguities) it is possible to recover the signals.
A general notation for a certain number of sources L and microphones M whereas M = L
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Figure 3.3: recovered source signals ŝ1, ŝ2 and ŝ3 of an BSS Instantaneous Mixing Problem

can be given as follows:

xm(t) = αm0s0(t) + αm1s1(t) + . . . + αmlsl(t) (3.5)

Note that this is a simplified model where any kind of time delays or additional noise is omitted.
In order to rewrite the former equations in matrix notation we need to drop the time index
t. This is possible because the mixture xm as well as the independent source signal sl are
supposed to be random variables. As this model neglects any time delays it is usually called the
instantaneous mixing model:

x = As (3.6)

comprised of:








x0
x1
...

xm








=








α00 α01 . . . α0l

α10 α11 . . . α1l

...
. . .

...
αm0 αm1 . . . αml








·








s0
s1
...
sl








(3.7)

As already shown our goal is to recover the original signals s only by knowing x. The problem
can not be solved directly as we do not know neither the weighting matrix A nor the source
signals s. These variables are called latent variables as they can not be directly observed. A is
also known as mixing matrix. If we can find an inverse of the matrix A we can multiply this
inverse by x and hence recover s. The task is to find the inverse of the mixing matrix: A−1

often called demixing matrix and denoted by D.
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D

ŝ0

ŝL-1

A

x0

xL-1

s0

sL-1

Figure 3.4: Instantaneous Mixing Problem with mixing matrix A and demixing matrix D

The calculated demixing matrix is always an estimate, thus, we define the estimated recovered
signal vector ŝ. The flow chart of the mixing and demixing process is shown in Figure 3.4.

3.2.1 Restrictions

To make sure that an algorithm, such as the natural gradient algorithm, can successfully be
applied we need to make some restrictions and assumptions.

All sources must statistically be independent.

Basically this means that random variables y0, y1, . . . yN−1 are declared to be independent
if the information given by the value yi does not contribute any information on a different
value yj for i 6= j. A common way to define independence can be done with help of the
Probability Density Function (PDF). We consider the joint PDF of yi by p(y0, y1, . . . yN−1)
and the marginal PDF of a specific signal by pi(yi). Independence is given if the joint PDF
can be factorized by all marginal PDF:

p(y0, y1, . . . yN−1) = p0(y0)p0(y0) . . . pN−1(yN−1) (3.8)

The distribution of all sources must be non Gaussian.

To apply ICA we need to rely on higher order statistics. As we will show in Chapter 3.3 the
third and fourth cumulant for a Gaussian distribution is zero. This information is essential.
Further, if the observed signals do not contain any higher order statistics it is impossible to
separate the signals. Note that it is not required to know the exact distribution, although
this would considerably simplify the problem. This restriction becomes more obvious when
the mixing process for different distributions such as Gaussian and super Gaussian signals
is regarded [Hyvärinen and Oja, 2000].

The mixing matrix has to be squared.

From Figure 3.4 can be seen that the optimal solutions for the demixing matrixD would be
an inverted matrix A−1. This requires not just a squared matrix A but also invertibility.
This assumption simplifies our model although we have to find a solution for the non
squared case later on. There are two cases: the number of sources is higher then the
number of microphones L > M or the number of microphones is higher then the number
of sources: M > L. In our approach we have to deal mostly with case number two. There
are different possibilities to solve the problem, which will we discussed later in Chapter
4.4.
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3.2.2 Ambiguities

There are two ambiguities of ICA. It is important to consider them when implementing the
algorithm as this will affect but also restrict the algorithm.

The signal energy can not be determined.

The problem is that neither A nor s is known. Introducing an additional random scalar
γl we scale the source vector s while dividing every column of A by the corresponding γl.
Although the variance of s is changed the same result is provided. Based on Equation
(3.6) the problem can be noted as follows:

x = As (3.9)

introducing the scalar γl:








x0
x1
...

xm








=










1
γ0
α00

1
γ1
α01 . . . 1

γl
α0l

1
γ0
α10

1
γ1
α11 . . . 1

γl
α1l

...
. . .

...
1
γ0
αm0

1
γ1
αm1 . . . 1

γl
αml










·








γ0 s0
γ1 s1
...

γl sl








(3.10)

Hence, there is a need in constraining the signal energy in our approach. For example,
this can be done by a simple normalization of the recovered signals.

The order of the independent components can not be determined.

Again, we are facing the problem that neither A nor s is known. It is possible to freely
change the order of the independent sources. Any of the sources can considered to be first.
We can easily change the order of sources s without affecting x. As an example, referring
again to Equation (3.6), we interchange s0 and s1 while shifting the corresponding columns
of A:








x0
x1
...

xm








=








α01 α00 . . . α0l

α11 α10 . . . α1l

...
. . .

...
αm1 αm0 . . . αml








·








s1
s0
...
sl








(3.11)

Having explained the basic idea of BSS respectively ICA with all its assumptions and ambiguities
we need to find an algorithm in order to estimate the demixing matrix D referring to figure 3.4.
The algorithm should work reliably and fast. At this point we want to introduce the natural
gradient algorithm.
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3.3 Natural Gradient Algorithm

ŝ0

ŝL-1

A

x0

xL-1

s0

sL-1

Figure 3.5: Instantaneous Mixing Problem with mixing matrix A and adaptive demixing matrix D

The Natural Gradient Algorithm is a standard learning algorithm for adaptive blind source
separation (BSS) and independent component analyses (ICA). The algorithm is supposed to
solve the former explained demixing problem. It can be allocated to Maximum Likelihood (ML)
estimation which is a fundamental method of statistical estimation. The parameter values with
the highest possibility for the observation are estimated. Those are the results of the algorithm.
Regarding Figure 3.5 it can be seen that the best solution for D would be the inverse Matrix of
A.

D
!
= A−1 (3.12)

The adaptive estimation process of D is defined as follows. A detailed derivation of this
algorithm is given in [Cichocki and Amari, 2002].

D[n+ 1] = D[n] + µ
[

I− f(ŝ[n]) ŝT [n]
]

D[n] (3.13)

with:

ŝ[n] = [ŝ0[n], ŝ1[n], . . . , ŝM−1[n]]
T (3.14)

while ŝ[n] is calculated as follows:

ŝ[n] = D[n]x[n] (3.15)

Furthermore, I is the unity matrix and µ the step size of the adaptation. Note that the choice
of an appropriate step size can be difficult as the convergence is dependent on the signal.
Moreover, we have to define the function f(y). In our case it is defined as follows:

f(ŝ[n]) = [sign(ŝ0[n]), sign(ŝ1[n]), . . . , sign(ŝM−1[n])]
T (3.16)

This function is introduced as activating function f(x) [Cichocki and Amari, 2002]. It relies on
the estimated statistics of a signal and can directly be derived from the Probability Density
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Function (PDF), q(x).

f(x) = −d log q(x)

dx
(3.17)

Knowing or estimating the PDF of a signal, the activating function can be derived and applied
to the Natural Gradient Algorithm. Therefore, in order to implement the Natural Gradient
Algorithm we need to know the statistics of the expected signals. A different PDF leads to a
different activating function. Hence, two well known examples are given: The PDF q(x) and
the corresponding, activating function f(x) of a Gaussian and a Laplace distribution.

Gauss: q(x) =
1√
2πσ2

e−
(x− µ)2

2σ2
⇒ f(x) =

x

σ2
(3.18)

Laplace: q(x) =
1

2σ
e−

|x− µ|
σ

⇒ f(x) =
sign(x)

σ
(3.19)

For other distributions and its corresponding activating functions see [Cichocki and Amari,
2002]. Note that zero-mean signals with µ = 0 are assumed and for simplicity the variance is
set by σ2 = 1.
It is common to classify signals due to their statistical properties. Statistical moments like the

mean value µ or the variance σ2 describe the distribution of a signal. From Equation 3.18 can be
seen that the normal or Gaussian distribution can fully be described by these two parameters.
Another distribution, fitting the features of speech best, is the Laplace distribution. At this point
we want to introduce the third moment and fourth satistical moment which are: skewness γ and
kurtosis γ2. Although the third moment is zero the fourth moment of the Laplace distribution is
known to be γ2 = 3. It is not needed to define the distribution, however, it is inherent. According
to [Hyvärinen and Oja, 2000], where a detailed explanation is given, higher order statistics are
necessary if a successful BSS using ICA shall be applied. This leads to a nonlinear activating
function as shown in Equation 3.19. A good overview of stochastic signals and estimations is
given in [Vary and Martin, 2006].
The Laplace distribution is known to match the statistical properties of speech best. Conse-

quently, the corresponding activation function f(x) is implemented. It is obvious that if another
distribution is expected its corresponding function needs to be implemented.
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4 Blind Source Separation by Frequency

Invariant Beamforming

The applied approach, suggested in [Liu and Mandic, 2005] and [Liu, 2010], combines the former
explained techniques. The algorithm contains two successive stages:

Frequency Invariant Beamforming Network

Blind Source Separation Algorithm

A beamforming network, consisting of several FIB, scans the room while the BSS algorithm
is supposed to estimate a set of coefficients whereby the beamformers are weighted. The rela-
tionship of the beamformers coefficients determines from which DOA angle signals are either
enhanced or suppressed.

4.1 Concept

In order to explain the concept of this approach the principle signal flow is depicted in Figure 4.1.
All notations of the former chapters remain. The beamforming network, consisting of N parallel
working FIB, is the first stage and processes the microphone signals x0, x1 . . . xM−1. The
beamformers are denoted by w0, w1, . . . wN−1 whereas the corresponding outputs are denoted
by y0, y1, . . . yN−1, which is the input of the BSS algorithm with its adaptive demixing matrix
D. Finally, the estimated and recovered source signals are denoted by ŝ0, ŝ1, . . . ŝN−1.
A number of unknown source signals L, denoted by s0, s1, . . . sL−1 with corresponding DOA

angle θl shall be recovered as best as possible. The demixing process provides N estimated
respectively recovered signals.
Any estimated source signal ŝ, is a mixture of several beams, weighted by a set of coefficients.

These coefficients are calculated by the proposed BSS algorithm. Each column of of the demixing
matrix D represents a set of coefficients. Weighting every beamformer with its corresponding
coefficient and add up these signals yields to one of the recovered signals ŝl. Each resulting beam
is a linear combination of all FIB. It is possible to create a mixture of the beamformers which
enhances parts of the half plane while others are suppressed. This mixing process is described

sl(t)
x0[n]

xm[n]

xM-1[n]

w0

wN-1

D

ŝ0[n]

ŝN-1[n]

θ
l

τ
m,l

y0[n]

yN-1[n]

Figure 4.1: Frequency Invariant Beamforming network for instantaniuos BSS
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and depicted in Chapter 4.3. The optimization process of the adaptive coefficients is performed
by the BSS algorithm, described in Chapter 3. Note that the input signals in this case are
already the outputs of the beamformers.
As we most likely have more then one source we want to recover all source signals. Hence,

we determine several mixes in parallel, which are supposed to recover the inputs from different
DOA angles as best as possible. The BSS algorithm is creating several mixes of the beamformers
outputs. According to Equation (3.1) the demixing Matrix D has to be squared and with a
number of beamformers N = 7 the same number of recovered signals is received accordingly,
even if we expect or know that the number of speakers is lower. Hence, we have to reduce
the number of recovered signals or simply spot the right results. The method of singular value
decomposition reduces the number of signals before the BSS algorithm is applied and is explained
in chapter 4.4. Another possibility would be a modified BSS algorithm addressing the problem of
an overdetermined model, which is proposed in [Zhang et al., 1999] but has not been implemented
yet.

4.2 Frequency Invariant Beamforming Network

To cover the whole half plane several beams in different directions scan the room whereas
adaptive weights determine the value of the individual beams as these weighted beamformers
are added up in the end. Interference signals can be canceled by choosing the right linear
combination. A similar idea has already been introduced in [Sekiguchi and Karasawa, 2000]. In
order to suppress interferences by a linear combination of the beams effectively two conditions
for the beamforming network have been postulated:

a) The beamformers must have an identical phase characteristic which allows the output
signals of the beamformers to be added without any delay compensation.

b) The beam pattern of each beamformer must be virtually frequency independent for
every angle of the half plane in a way that an interference signal received in any sidelobe
direction is not distorted. If this complies replicas of interferences signals can be generated
and cancelled.

−90 −60 −30 0 30 60 90
−40

−30

−20

−10

0

DOA θ

M
A

G
N

IT
U

D
E

 R
E

S
P

O
N

S
E

 [d
B

]

Figure 4.2: beam shapes of seven frequency invariant beamformers
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Both of these conditions are accomplished by the the FIBs proposed in chapter 2.4. The following
specifications of the parameters are chosen:

Number of microphones: M = 19

Number of filter taps: J = 121

Valid frequency range: 0.4 ≤ Ω ≤ 1

Furthermore, a number of beamformers N = 7 seems to be sufficient. The steering direction
of the beamformers are chosen so that the entire energy of all beamformers is constant for all
DOA angles. The main steering directions of all seven beams are:

θ0,n = [−59 − 35 − 17 0 17 35 59] (4.1)

Note that for the main steering direction of one beamformer the magnitude response of all other
beamformer is almost zero. Figure 4.2 shows seven parallel working beamformers distributed in
a half plane.

4.3 Scaling the Beamforming Network

Consider one source from a certain direction it would be imaginable that all weights are zero
except the one for the beamformer having the best matching steering direction. This case is
very rare, especially in a multipath environment, where interferences shall be suppressed.
To illustrate the functioning of the scaled beamforming network an example, based on real

data, is given. A desired source signal with a DOA angle of θ = 40◦ is corrupted by an interfering
signal with a DOA angle of θ = −10◦. The coefficient set with the best performance in terms of
SNR is the following:

D(:, 1) =













9.0118
3.5604

−8.4623
−5.3323
2.5859
70.3469
7.7584













(4.2)

The beam patterns of Figure 4.2 are scaled by these coefficients. The beams, which are normal-
ized to the beam with the highest coefficient, yield in a beam pattern enhancing the source while
suppressing the interference. Figure 4.3 depicts all beams with a positive coefficient whereas
Figure 4.4 shows the beams with a negative coefficient. The bold line represents the sum of
all beams. If positive and negative beams have the same magnitude at a certain DOA angle
any impinging signal disappears. The negative beam contains the same signal as the positive
one but with a phase rotated by 180◦. Consequently, a deconstructive interference cancels the
signal.
This can be seen in Figure 4.5 where the resulting beam pattern is shown. The data from

Equation (4.2) are taken from the experiment in a reverberant environment and is explained
in Chapter 7.2. It can be seen that the main steering direction is directed towards the desired
source (θ = 40◦) whereas th interference (θ = −10◦) is canceled.
Note that the small variations concerning the main steering direction and the direction of the

canceled signals may result from inaccuracies of the experiment and the hardware. However, it
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Figure 4.3: Weighted beams with positive coefficients; bold line: resulting beam pattern; signal phase: 0◦
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Figure 4.4: Weighted beams with negative coefficients; bold line: resulting beam pattern; signal phase: 180◦
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Figure 4.5: Resulting beam pattern (black line); combination of zero phase pattern (blue line) and 180◦ phase
pattern (red line)
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is shown that the final beamformer is working properly. Even if the interference source matches
not exactly the minimum of the resulting beam the interference is at least attenuated by 20 dB.
Figure 4.5 shows that more than one minimum exists. Hence, the algorithm is capable to cancel
multiple interferences. It is conceivable that a major interference is a specific reflection of an
interfering source whereas the beamformer is capable to cancel this reflection.

4.4 Singular Value Decomposition

As Singular Value Decomposition is utilized in order to reduce the number of resulting signals
a short introduction to the topic is given. Furthermore, it is explained how this method can be
integrated in the proposed algorithm.
Singular Value Decomposition (SVD) is a method to factorize a non squared matrix. It is

closely related to Eigen Value Decomposition (EVD), also known as eigendecomposition, whereas
this mathematical problem requires a squared matrix.
A general mathematical description of eigendecomposition can be given by:

A = QΛQH (4.3)

A squared Matrix A with dimensions [N × N ] and N linear independent eigenvectors qi with
i ∈ [1, 2, . . . , N ] can be factorized by the eigen vector matrix Q. It contains the eigen vectors
qi in the i-th column whereas the diagonal matrix Λ contains the corresponding eigenvalues λi.
Hence, A is represented by its eigen values and its eigen vectors. In Matlab the function eig is
available in order to execute a EVD.
Singular value decomposition is closely related to eigendecomposition. A non squared matrix

Y with dimensions [N × S] can be factorized as follows:

Y = UΛV H (4.4)

Similar to the eigen vector matrix Q the columns of U are the eigenvectors of Y Y H and are
called left singular vectors. The columns of V are the eigenvectors of Y HY and named right
singular vectors. The non zero elements of Λ, labeled as non zero singular values, are the square
roots of the non zero eigenvalues of either Y HY or Y Y H . The corresponding Matlab function,
which is also utilized in course of this work is called svd.
SVD in our case is applied to reduce the number of recovered signals. In order to make use

of the BSS algorithm, which provides the same number of outputs as inputs, the number of
input signals has to be reduced before applying the BSS algorithm. We assume that the number
of sources is known and described by L. It is supposed that the number of beamformers N is
higher then the number of sources:

N > L (4.5)

Additionally, we need to define S as the number of samples. The goal of the applied SVD is
to reduce the number of output vectors of the beamforming network to L. We suppose that
the outputs of the beamformer, described by the matrix Y , only contain L linear independent
signals. Hence, the rank of the matrix Y equals L, this means that only L eigenvalues with
λ 6= 0 exist. The problem can be explained best by regarding the matrices and the according
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dimensions from Equation (4.4):

Y
︸︷︷︸

[N×S]

= U
︸︷︷︸

[N×N ]

· Λ
︸︷︷︸

[N×S]

· V H
︸︷︷︸

[S×S]

(4.6)

We assume a number of non zero singular values σi with i ∈ [1, . . . , L], corresponding to the
source number L. As the diagonal of the singular value matrix partly equals zero because of
N > L it is useful to separate U in two Matrices Ur and Ũr whereas the second part is completely
nullified by Λ:

Y =
[

Ur, Ũr

]

·












σ1 0

. . . 0

0 σL

0 0












· V H (4.7)

If we apply Ur to the original signal we obtain a Matrix Ỹ with the required dimensions of
[L× S] containing the linear independent vectors of Y .

Ỹ = Ur
H · Y (4.8)

The Matlab function svd sorts the results by starting with the highest singular value. In practice
the singular values do not equal zero σi>L 6= 0. Nevertheless, the vectors corresponding to the
highest σi contain the source signals.
This method is implemented in the Graphical User Interface, which is described in Chapter 6.2.

Note that this is only one possibility to reduce the number of resulting signals. An alternative
would be to adjust the BSS algorithm itself, as proposed in [Zhang et al., 1999], [Joho et al.,
2000], [Amari, 1999]. Conceivable would also be the development of an algorithm choosing the
right signals after the BSS is applied, by considering the properties of the weighting coefficients.
Most likely an implementation of a the former suggested approach yields to a more robust
algorithm. Note that further research concerning this topic is not subject of this work.
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Part II

Practical Approach
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5 Hardware

The hardware setup used in course of this work consists of a microphone array, 20 suitable
amplifiers, a data acquisition card and a PC (Windows 7; 32-bit). Whereas the array was
already constructed the amplifiers had to be built. Note that the data acquisition card as well
as the PC were already available. Figure 5.2 shows the general hardware setup.

Microphone

Array

Figure 5.1: hardware setup

In this chapter the components of the hardware setup are documented. Moreover, the design
process of the amplifiers is described. Furthermore, the occurring problems due to the hardware
are outlined and solutions are given.

5.1 Microphone Array

The utilized microphone array was built in course of a previous work. It consists of 20 micro-
phones. Sub miniature electret microphone cartridges are used and fitted in an appliance made
of plastic. Each can be mounted easily on a metal bar with a length of 1m constructed for this
purpose. Concerning the microphone the following specifications are offered by the distributer.
The microphone is supposed to have a omni directional directivity pattern. It requires a DC

voltage between 1.5V and 10V by a maximum current consumption of 0.5mA. The sensitivity
at 1kHz is indicated by 5mV/Pa. As diameter 6mm are denoted.

Figure 5.2: microphone array consisting of 20 sub-miniature electret microphone cartridges

It is worth mentioning that a conventional audio amplifier does not fit the specifications of
these microphones since they usually provide 48V phantom power coming with a 3-pin connector.
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Furthermore, the frequency response of the individual cartridges differs a lot. This can be
stated by simply listen to recorded signals without conducting any measurements. Moreover,
I believe that the directivity pattern of these microphones is not omni directional. Especially
higher frequencies are concerned meaning the attenuation is increased by choosing a DOA angle
apart from zero degree.

5.2 Amplifiers

Building the required 20 amplifiers was the first main step of my project. The department of
Electronic and Electrical Engineering (EEE) of Sheffield University suggests a circuit, which was
already proven in previous works, and is described immediately. The task was to create a proper
board layout for 20 of these amplifiers. Furthermore, I had to build them and integrate them in
the existing hardware. Above all, Electro Magnetic Compatibility (EMC) had to be considered
in order to avoid attributable errors. After a first test setup consisting of 5 amplifiers I finally
constructed a modified version which included 20 amplifiers.

5.2.1 Utilized Circuit

The built up amplifiers have two main purposes. They must supply the microphones with a
certain voltage and, of course, amplify the signals while a low pass filter is implemented.
The suggested circuit is based on the operational amplifier TL072 and works in two stages.

One single TL072 IC includes two operational amplifiers (data sheet see appendix). From Figure
5.3 it can be seen that the circuit consists of two successive stages. The first one has a fixed gain
of 100, while the second stage is adjustable with a gain factor between 1 and 100. The ratio of
the resistors R4 to R3 at the first stage and the ratio of R6 to R7 at the second stage set the

Figure 5.3: suggested circuit containing to successively working operational amplifiers TL072
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gain:

A1 =
R3

R4
=

100 kΩ

1 kΩ
= 100 (5.1)

A2 =
R6

R7
=

1 . . . 100 kΩ

1 kΩ
= 1 . . . 100 (5.2)

Furthermore, the dimensioning of C2 is crucial in terms of the cutoff frequency of the first order
low pass at the first stage. A value of C = 18pF was chosen which entails a cutoff frequency
of 22 kHz. To preserve flexibility we did not chose a lower cutoff frequency although it would
have been more effectively in order to avoid aliasing. Besides, a second order or even higher
order low pass would have been desirable. At first appearance another low pass at the second
stage would have made sense. Unfortunately, the cutoff frequency changes when adjusting R7

in order to change the gain. Consequently, we must be satisfied with a first order low pass.
The electrolytic capacitors C1, C3 and C4 are for common mode rejection. As the built up circuit
provides a DC power of 8V the purpose of C1 is to suppress the DC-voltage in the signal path.
Summarizing the specifications of the circuit are:

Gain adjustable from A = 100 . . . 10000

DC-voltage supply: 8V

First order low pass with a cutoff frequency of 22 kHz

5.2.2 Creating the Board Layout

The discussed circuit has to be implemented. Therefore, we have to create a proper board layout
by using the software Proteus. As mentioned earlier we have to consider the electromagnetic
compatibility of our device. Basically this means that any possible unwanted effects or interfer-
ences caused by electromagnetic energy are to be avoided. A simple and very common example
for an unwanted reception of electromagnetic energy in audio equipment is a 50Hz hum. It is
obviously caused by the conventional power supply but can be receipted in many different ways.
Starting to build the amplifiers the first prototype was a board with five amplifiers in a row.
When testing the amplifiers it turned out that they worked in principle. Nevertheless, some ir-
regularities occurred as a result of an insufficient electromagnetic compatibility. A few channels
had a significant voltage offset, some unknown broadband noise occurred and the 50Hz hum
was large. As we do not have any lines carrying 50Hz AC voltage in our circuit this interference
is caused by an external source. A grounded housing would have been a solution. Since the
lower frequencies are cut off anyway the performance is not affect essentially. To solve the other
issues the second layout was developed by following the principles:

Separating the power supply from any signal path as well as possible.

Avoiding parallel lines. If parallel lines are necessary separate them with a grounded line.

Avoiding long signal lines by putting the input and output plugs close to the individual
amplifier.

The resulting, improved layout can be seen on the next picture. The screen shot is an extract
from the Proteus design showing one amplifier and the electrical connections for the power
supply.
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-18V

+18V

GROUNDInput

Output

TL072

Figure 5.4: Proteus screen shot of the implemented circuit (one amplifier) // Proteus screen shot of the
board layout (one out of twenty amplifiers including the connectors; blue lines button side; red
lines top side)

Figure 5.5: Photo of all twenty amplifiers built on the board
Photo of one out of the twenty amplifiers

For practical reasons most lines are located at the bottom of the board and are depicted as
blue lines while wires on the top side are marked red. The three connectors at the bottom
right corner starting from the top are −18V , +18V and the ground. Unlike the first design the
positive and negative power supply is separated by ground lines from every individual amplifier
circuit. With the exception of the 50Hz hum every preceding EMC problem could be solved
due to this design.
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5.3 DAQ - card

5.3.1 Specifications

The utilized data acquisition card Adlink DAQ-2205 is the main interface of our system. It
links the analogue equipment directly with the PC via PCI bus. In interaction with the Matlab
data acquisition toolbox a direct data access with Matlab is possible. The data acquisition card
supports 64 single ended analog input channels or 32 differential analog input channels. As the
occurring signals share a common ground the maximal possible utilization of the card are 64
channels in theory. The A-D converter operates with a resolution of 16 bit with an input range
of +/- 10 V . Furthermore, the card allocates programmable gains of x1, x2, x4 and x8, which
allows the user to adapt the systems in terms of signal range by software. The card also provides
two analogue outputs with 12-bit resolution and several digital in - and outputs.
Utilizing Adlink DAQ-2205 a certain number of problems occurred, which are discussed in the

following sections. The manufacturer claims a 500 kS
s acquisition. The sampling rate has to be

divided by the number of used channels as a multiplexer for AD conversion is used. Due to the
multiplexer two major problems result. Firstly, we face a limited sample rate, thus, the problem
of a proper anti aliasing filter occurs. Secondly, we have to deal with a non-simultaneously data
acquisition. Furthermore, coupling appears mainly caused by the breakout cable which connects
the DAQ card and the amplifiers.

5.3.2 Limited Sample Rate and Aliasing

The first issue we have to deal with is a decreasing sampling rate when increasing the number
of channels. Using all of the 64 channels yields to a theoretical sampling rate of:

fs =
f

Mchan
=

500000Hz

64
≈ 7800Hz (5.3)

Considering the Nyquist theorem we obtain the following maximum frequency:

fmax =
fs
2

= 3900Hz (5.4)

To effectively achieve the calculated frequency an ideal, analogue, rectangular anti aliasing filter
would be required. However, even higher order analogue filters do not fully accomplish these
requirements consequently the maximum frequency decreases again. In our case the built up
amplifiers provide just a first order low pass so that oversampling is absolutely nessecairy when
additional higher order filters are not used. Our specific approach with 19 channels leads to a
theoretical sampling rate of:

fs =
f

Mchan
=

500000Hz

19
≈ 26316Hz (5.5)

In practice the sample rate is determined by fs = 24999Hz. A good explanation how to avoid
aliasing by utilizing oversampling and a simple analogue filter is given in [Oppenheim et al.,
2004]. Our approach is quite similar. We use oversampling to simplify an anti aliasing filter
while making it more cost effective via a software implementation. A simple low pass filter
is provided by the amplifiers. Note the the cutoff frequency actually is too high. Due to the
fact that the signal energy at higher frequencies (f > 12.5 kHz) is low enough aliasing of these
frequencies does not affect the results significantly. According to the signal specification we now
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apply the A-D conversion in a way that we are not affected by any aliased signals or noise. The
sample rate of the converter is high enough to ensure that no significant signal components over
fs/2, which would cause aliasing, occur. In our case this is accomplished when using a sampling
rate of 24999Hz.
Under these conditions we can easily apply a sharp digital low pass. The cutoff frequency in

our case is 4150Hz and, therefore, matched with our sampling rate reduction of F = 3. As a
result fs = 8333Hz and, consequently, fmax = 4161Hz.
As mentioned earlier, dealing with speech signals a maximum frequency of at least 4000Hz

is desirable. The reason for that is that the majority of the information is situated in frequency
ranges below 4000 Hz. Besides, we can assume that signals with frequencies over 12500 Hz,
which equals fs/2 are not crucial simply because of their low magnitudes. In our case this is
really important whereas it is not possible to avoid aliasing in this frequency range due to the
lack of a appropriate analogue filters.
Regarding the current setup leads to the conclusion that its maximum of channels is reached.

If it is necessary to increase the number of channels, higher order analogue low pass filters would
be required. Increasing the number of channels without adding additional analogue filters would
entail either a reduction of the sampling rate or a significant deterioration of the anti aliasing
filter. This in turn, would lead to clearly perceptible distortions in the recordings.

5.3.3 Non Simultaneously Acquisition

The second issue is the successive A-D conversion of every single channel. Unfortunately, the
card does not include any on board sample and hold devices. To ensure simultaneous data
acquisition sample and hold devices are necessary when using a multiplexer. Usually they
are already part of a multichannel A-D converter. The impact caused by not reading in the
channels simultaneously can easily be compared with a shift of the angle of the incoming signal.
Considering a signal with an impinging angle of zero degree we should obtain the same signal at
every microphone if the above mentioned conditions are complied. If the processing of the A-D
conversion is successive every channel is delayed by a multiple of the time delay TAD. This leads
to a constant shift of the steering direction of the hole system. According to the manufacturer
the additional time delay between two sampled channels can be calculated as followed:

TAD =
counter sampling interval

timebase
=

80

40MHz
= 2µs (5.6)

which equals:

TAD =
1

fs
=

1

500000Hz
= 2µs (5.7)

To circumvent the problem Adlink provides a signal for external sample and hold devices. So
it would be possible to insert a sample and hold device for each of the channels between the
amplifiers output and the signal input of the card. The card itself would provide a control signal
for every of these devices. As a result the analog inputs would be sampled at the same time.
Making use of this feature the problems could be solved in hardware. Compared with a

software solution no additional latency is caused while saving performance of the PC which
could be a crucial point in terms of a real time implementation. Nevertheless, it would be quite
a big effort to build and include all the hardware.
Another solution is to compensate the delay via software. This solution requires one FIR filter

per channel to apply the appropriate delay. For further information concerning fractional delay
please refer to Chapter 2.4.5.
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Figure 5.6: AD conversion process of DAQ-2205 with a multiplexer; providing a control signal SSHOUT for
additional sample and hold devices

The last possibility is to simply accept the delay of 2µs knowing we have a shift of the steering
direction. As we know the delay and the dimensions of our array we can calculate the shift as
followes:

φ = arcsin

(
TAD

T

)
360

2π
= 0.96◦ (5.8)

with T the time difference between two microphones:

T =
d

c
=

0.0408m

340m
s

= 0.119ms (5.9)

In our specific case an inaccuracy of not even one degree is acceptable as considering the blind
beamforming approach. However, note that a change of the array dimensions and a change of
the sampling rate can cause a much higher shift than in our approach.

5.3.4 Coupling

The term coupling describes an unwanted transmission from two adjoining channels. It is also
known as cross talk. In the field of analogue audio technology this is a well known problem.
When processing several parallel analogue signals it can be difficult to avoid coupling completely.
Hence, it appears in many analogue device to a certain degree. Usually the problem is caused
by inducted voltage of another analogue channel. The cross talk of two adjoining channels can
be calculated as follows:

C = 20 log10

(
RMSxtalk

RMSorig

)

[dB] (5.10)
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RMSorig is the original signal energy of an unwanted source and RMSxtalk is the signal energy
captured at another channel. Note that coupling can be frequency dependent, which is not
regarded here. An reasonable standard value could be C = −80 dB. In our case coupling is
caused by unshielded, parallel wires. The connection cable, linking the accessory connectors box
with the DAQ card in the PC, contains 68 wires which are not shielded. With a length of one
metre coupling occurs in a non tolerable magnitude. A coupling of C = −10 dB occurred.
In order to measure the energy of every channel I implemented the matlab GUI crosstalk.m.

Measuring the impact of one channel to its surrounding channels the most effective method was
to ground as much as possible channels in between the data channels. As 20 channels were
required it was possible to ground 44 of the 64 available data channels.
Figure 5.7 shows the used channels and the remaining grounded channels. Due to the addi-

tional grounding a minimum value of Cmin was achieved:

Cmin = −35 dB (5.11)

Note that this is the best result in terms of coupling which can be achieved by using the
accessory cable and connectors box of the DAQ card when using 20 channels.

Figure 5.7: resulting CN1 Pin Assignment for DAQ card
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6 Software

6.1 Data Acquisition with Matlab Data Acquisition Toolbox

6.2 Graphical User Interface

The Matlab GUI Beamformer Gui2 1.m, which I developed in the course of this thesis, is an easy
to use development tool. It enables the user to record data and apply the algorithm immediately.
For a maximum number of three speech signals the results are represented. In addition, the user
can listen to every recovered signal. Furthermore, previously recorded data can be loaded and
processed. Moreover, if data have either been recorded or loaded onces, the algorithm can be
applied again while changing significant parameters.

6.2.1 Parameters and Handling

To accomplish the requirements of a simple and easy accessible interface the options of the user
interface are restricted. In the section on the top left side new data can be recorded while the
maximum input voltage of the DAQ card is required in order to control the signal level and

Figure 6.1: Graphical User Interface
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increase the accuracy of the AD converters. If the user decides to load data all files previously
saved in the folder mixed signals RoomB59 21 01 11 are available. The current data set is a
part of the recordings described in Experiment II. Activating the Record Data or the Load Data
button includes the prompt execution of the algorithm with the chosen parameters. If the user
wants to process the data again with a different set of parameters these can be changed in the
top right section.
The number of sources is required, whereas the GUI is restricted to a maximum number of

three sources as a signal separation of more then three speakers under real conditions utilizing
the proposed system seems to be an unrealistic task. It is possible to change the normalized
lower cutoff frequency. The suggested value is Ω = 0.4, which corresponds to f = 1666Hz
because it is known that the Beamforming network is working frequency independent at least in
a range of 0.4 ≤ Ω ≤ 1. Nevertheless, good results might be obtained by setting a lower cutoff
and, therefore, having a wider spectrum of the signals. Note that a modification of the sample
rate fs = 8333Hz is not necessary as the sample rate is already matched to the spectrum of a
speaking person. Moreover, the array would have to be adjusted according to a different sample
rate. The last accessible parameter is the step size of the BSS algorithm which sets the adaption
speed. An appropriate range of values is suggested.
The bottom section depicts the recovered signals in time. Comparing the time signals a visual

clue for a fast evaluation of the signal separation is provided. The recovered signals can be
listened by pressing the corresponding play button.

6.2.2 Structure

The current algorithm is implemented in modular way. Every major step is implemented as
a single Matlab function. Therefore, it is easily possible to adjust and manipulate parts of
the algorithm. Moreover, it would be conceivable to remove a segment and replace it by an
alternative function. The idea to reduce the number of signals before the BSS algorithm is
applied by Single Value Decomposition, described in Chapter 4.4, is implemented in this GUI.
The Matlab script Beamformer Gui2 1.m creates the GUI. All actions taken by the user are

executed by one of the following callback functions, whereas pb call processing.m is the func-
tion containing the algorithm:

pb call record.m: Callback function recording data from the microphone array and saves
the unprocessed data.

pb call loading: Callback function loading requested data which are saved in the folder
Data RoomB59 21 01 11/mixed signals RoomB59 21 01 11. It is possible and recommended
to store new files in this folder.

pb call gui2.m: Callback function enabling the user to listen to the final results.

pb call processing.m: Callback function applying the whole algorithm. The main steps
are implemented in separate functions, which are shortly introduced next.

The following functions are executed step by step by pb call processing.m:

postprocess.m: Scales the recorded data according to the maximum input voltage. An
anti aliasing filter is applied before the signals are down sampled by the factor 3 to fs =
8333. Additionally, a low cut filter with an adjustable cutoff frequency is applied.

FIBeam.m: Applies several frequency invariant beamformers. The filter coefficients are
loaded from coeff 3D m7 K121.mat

svd reduce B.m: Reduces the number of signals by utilizing single value decomposition.
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BSS.m: A blind source seperation algorithm based on the natural gradient algorithm is
applied.

reconstruct singnal.m: Reconstructs the signals with the coefficients estimated by the
BSS algorithm. The current set of coefficients is utilized. The recovered signals are nor-
malized.

Moreover, the GUI requires a few additional functions: norm signal.m, design lowcut.m,

getfilenames.m. The filter coefficients for the anti aliasing filter are loaded from AA fs24999.mat

whereas the coefficients for the beamforming network are loaded from coeff 3D m7 K121.mat.
Both files could be replaced if, for example, a different filter design shall be tested.
Due to the fact that the algorithm is implemented separately from the interface it is possible

to develop new algorithms while using the same framework. The algorithm, implemented in a
modular way, enables the user to change or replace parts quite easily in order to observe the
resulting signals. On this account, this application is supposed to be used as basis for further
development.
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Part III

Results
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7 Experiments

7.1 Experiment I

The first experiment was accomplished in a non reverberant environment. For that reason, we
utilized the anechoic chamber in the Portobello Centre of the University of Sheffield. With
respect to errors caused by curved waveforms the distance from the source to the microphone
array was chosen with r = 6 m. For a more detailed discussion of this problem please see
Chapter 7.3. With a microphone number M = 19 and a distance of two adjoining microphones
d = 0.0408 m the dimension of the array was a = 0.7344 m. The microphone array and the
source were located at the same height. As we had a non reverberant environment, meaning
a single path scenario, we were allowed to turn the array in order to change the DOA angle
instead of moving the source.

7.1.1 Experiment I a

First and foremost the purpose of this measurement was to review the performance of the
beamformer. A customary loudspeaker was utilized as source. The source signal was white
Gaussian noise. Applying the noise from a DOA angle in a range from 0 ≤ θ ≤ 90 with a
resolution of 5◦ we are able to calculate the beam pattern later on.

Figure 7.1: Microphone array in anechoic chamber

– 55 –



Stefan Richardt 7 Experiments

7.1.2 Experiment I b

Furthermore, we realized a small experiment with real speaking persons as sources. The voices of
two male speakers are recorded from a certain DOA angle. To ensure that the male speakers are
easily to distinguish one of them talked in Chinese while the other person spoke in German. Due
to flexibility the voices are recorded successive and the data was combined after the experiment.

Figure 7.2: Microphone array in anechoic chamber
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7.2 Experiment II

The second experiment took place in a multipath environment. The lecture hall B59 in the
Portobello Centre of the University of Sheffield with around 110 m2 was utilized. The exact
dimensions of the room were: [11.10 × 9.80 × 3.30] m. To comply the assumption of a constant
plane both the microphone array and the source were located at a height of h = 1.50.
Basically a huge number of speech signals was recorded in order to combine them afterwards.

As sources four different female speech samples and four different male samples were available.
They were played back by a customary loudspeaker.
With a microphone numberM = 19 and a distance of two adjoining microphones d = 0.0408m

the dimension of the array is a = 0.7344m. Three different distances were chosen: r ∈ [2, 3, 4]m.
Note that with the current dimensions of the array and r = 2m the effect of the curved wave is
noticeable. On the other hand the direct signal to reverberation ratio is significantly higher at
this point, which increase the performance of the algorithm in terms of signal separation.
The range of DOA angles was set from −70 ≤ θ ≤ 70 with a resolution of 10◦. The speaker

was moved from one position to another successively while the microphone array remained on its
position. Figure 7.3 gives a true to scale view on the measurement situation in the lecture hall.
The sources s0 and s1 are examples with a DOA angle θ0 = −30◦ and θ1 = 50◦ and a distance
from source to array of r = 3 m. In total 45 different positions were measured. In the main
steering direction θ = 0 all eight different speech samples were recorded. On all other positions
two female and two male samples, which were chosen more randomly, were recorded.
Additionally a few moving sources were recorded. This means that the loudspeaker was moved

during the recording.
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Array
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1
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Figure 7.3: Plan of Measurement setup in Room B59; Portobello Centre; Sheffield University (true to scale)
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Figure 7.4: Test setup in an echoic environment; Room B59, Portobello Centre, Sheffield

Figure 7.5: Measurement situation in an echoic environment; loudspeaker with a distance of d = 4m; DOA
angle of θ = 0◦
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7.3 Considerations of the Effect of Curved Waveforms

Though, the input signal was assumed to be a plane wave. This assumption makes it possible
to define a delay τm,l, only according to the m-th microphone and the DOA angle of the the l-th
source signal. However, this assumption does not fit to the real world very well. One possibility
to qualify sources is to regard them as point sources with an isotropic radiation. In fact, this
model suits as the propagating wave is curved. It should be noted that real sources are usually
not isotropic radiators but have a main radiation direction.
As the condition of a plane wave can not be fulfilled completely errors are caused and the

delay τm,l is biased by an error.
Regarding the simplest case of an impinging signal with φ = 0◦ all delays are zero τm = 0

if we assume plane waves. This is not the case if a curved wave is supposed to be the source.
Considering a point source in one line with the microphone array, the more the sensors diverge
from the centre of the array the bigger the delay shift becomes. Figure 7.6 depicts two identical
arrays with different distances from the source to the array. The resulting errors τe1 and τe2 are
dependent on the ratio of the overall array dimensions to the distance from the source to the
microphone array. Increasing the distance the curved wave front converges more and more into
a plane wave and consequently the error disappears. On the other hand, increasing the overall
dimensions of the array leads to bigger delay shift. These thoughts become crucial when it gets
to the practical approach. To put it simply, if the speaker gets too close the beamformer will
work significantly worse.
In Figure 7.7 the simulation results of the effect of a curved waveform is depicted. In order

to estimate the shortest possible distance approximately for the measurements in Experiment
II different distances are compared with a maximum distance of r = 1000m. Utilizing the
pythagoreom theorem we are able to calculate the additional delay τe. It is a function of the
distance from source to the centre of the array r, the DOA angle and the distance between
the different microphones d. It describes the delay (in space) of a sensor next to the centre
microphone of the array:

τe(θ) =
√

r2 + cos(θ) d2 − r (7.1)

Figure 7.6: Comparison of errors τe1 and τe2 evolved by a curved waveform for two arrays; distances r1, r2
from the source S to the arrays A1, A2; distance between two microphones: d

– 59 –



Stefan Richardt 7 Experiments

The delay of any microphone having with a distance of k · d from the centre microphone can
be calculated as follows:

τe(θ, k) =
√

r2 + cos(θ) (kd)2 − r (7.2)

Note that the case shown in Figure 7.6 and simulated in Figure 7.7 with a DOA angle of θ = 0◦

is the worst case. From Equation (7.2) can be seen that the effect has its biggest impact for
θ = 0◦, whereas for θ = 90◦ or θ = −90◦ it is zero and no errors occur. The simulation shows
that even if the source is in a distance of two metres the results might be still sufficient. It was
the basis for our decision in terms of distances in Experiment II.
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Figure 7.7: Comparing the responses of a beamformer for different distances from the source to the array;
main steering direction of θ0 = 0◦; DOA angle θ = 0◦
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8 Results

8.1 Anechoic chamber

This section refers to the measurement setup described in Experiment Ia. Its main purpose is
to test the performance of the frequency invariant beamformer proposed in Chapter 2.4. To
evaluate the quality of the results they are compared to appropriate simulations.
The source signal is Gaussian noise. The recorded data are processed as it is described in

Chapter 6.2 excluding SVD and BSS. A low cut filter with a normalized cutoff frequency Ω = 0.4
ensures that the FIB is exclusively applied in a valid frequency range. To calculate the signal
energy a sample of five seconds is taken and the RMS is derived. The beam pattern is calculated
by building the ratio of the signals energy in steering direction RMSθ=0 and the signals energy
of the current DOA angle RMSθ as follows:

BP = 20 log10

(
RMSθ=0

RMSθ

)

[dB] (8.1)

Note that with this setup it is not possible to evaluate the frequency dependence of the beam-
former as sinusoidal signals would be required. However, the overall performance can be mea-
sured. The simulations are conducted with the identical bandpass filter. In order to provide
vividness the results for 0 ≤ θ ≤ 90 are mirrored to depict the whole half plane. The effect of a
curved waveform is neglected in Figure 8.1 and considered in Figure 8.2.
It can be perceived that the results fit the simulation in general. The slight divergences can

be caused by many effects. First of all, the accuracy of the setup is restricted. The DOA angle θ
and the distance of the microphones d are affected by errors. Furthermore, the anechoic chamber
is not 100 per cent anechoic, hence, reflection affect the results. Moreover, the attenuation of
the propagating wave alters the magnitude at the microphones, which is not simulated. Another
source of errors is the hardware itself as described in Chapter 5. It is a noticeable fact that the
zeros of the real beamformer are not as clearly distinct as the simulation results are. First of all,
this is caused by the limited resolution of the DOA angle of 5◦ whereby it is not always possible
to match the corresponding zeros. Furthermore, the inaccuracies described above are the reason
for the incomplete cancellation.
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Figure 8.1: Comparing simulations results with the results of real data; recorded in the anechoic chamber
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Figure 8.2: Simulations results include the effect of a curved waveform in 6m distance compared to real data
recorded in the anechoic chamber

Additionally, short real speech samples were recorded, referring to Experiment Ib. The algorithm
was able to recover the signals sufficiently. The reflection of the results is abandoned here. A
comprehensive evaluation of the algorithm in terms of signal separation is done in course of the
experiments in a multipath environment and described in the following section.

8.2 Reverberant Environment

This section refers to the measurement setup described in Experiment II. It is the final perfor-
mance test as a lecture hall seems to be a suitable environment for this application. Although,
not every relevant parameter can be evaluated, the recorded data constitute a data base enabling
the analyses of several aspects of the approach.
In order to keep a maximum of flexibility every source was recorded at its own. Hence, if

we want to evaluate the signal separation of several signals two or more recordings are mixed.
Eight different sources, whereas four are male and four are female speech samples, are utilized.
Before applying the algorithm we need to filter the signal by a bandpass to ensure that the
beamformers work properly. The relevant frequency range is 0.4 ≤ Ω ≤ 1 , which corresponds
to a frequency of 1666 Hz ≤ f ≤ 4166 Hz . If we use a bandpass filter with a smaller low
cut frequency the pass band of the speech signals is increased while the performance of the
beamformers decreases. The Matlab GUI provides an input where it is possible to chose the
lower cutoff. Another way to let lower frequencies pass through would be a lower sampling rate.
This would entail the modification of the array because the distance between two microphones
would have to be increased.
The utilized sources have different energies in the relevant frequency range of 0.4 ≤ Ω ≤ 1 .

Name of Source Energy [dB]

Female1 0
Female2 -4.5
Female3 -0.5
Female4 -8.0
Male1 -8.5
Male2 -6.5
Male3 -2.0
Male4 -7.0

Table 8.1: signal energy in valid frequency range
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An overview of the signals and its energy is given in Table 8.1 whereas the signal with the most
energy within this frequency range is supposed to be the reference.
In order to keep generality it is abandoned to include SVD if not declared differently. As there

are seven beamformers implemented the BSS algorithm provides seven output signals. The main
goal is to test the performance of this algorithm not being affected by the reduction of the signal
number. Hence, the right recovered signals have to be found. Calculating the SNR we simply
chose the signal or the signals with the best SNR.
The SNR is computed with the intention to compare various impacts affecting the approach.

Its calculation turns out to be more sophisticated then assumed. The difficulty is to estimate the
noise. The approach of calculating the residual by subtracting the original time signal directly
from the recorded one failed. Hence, the SNR has to be calculated in the frequency domain.

8.2.1 Calculation of SNR in Frequency Domain

A Short Time Fast Fourier Transformation (SFFT) is applied first to both signals: The original
and the recorded signal. A hanning window with a length of 512 samples, which corresponds
to 60ms, is utilized. With a hop size of 256 samples the energy is kept constantly. The Power
Spectral Density (PSD) can be calculated as follows:

φt(ω) =
Ft(ω) F

∗

t (ω)

2π
(8.2)

where Ft(ω) is supposed to be the Fourier transformation of a signal at a certain time instance.
Note that every 256 samples a new PSD is calculated so alterations in time are considered. If we
subtract the PSD of the original signal from the PSD of the recorded one we obtain the residual.

φt,res(ω) = φt,record(ω)− φt,orig(ω) (8.3)

As a result the development of the power spectral density of the recorded signal in time, the
original signal and the residual are obtained. Note that it is required to align the PSDs in time
before applying Equation (8.3).
In order to build a meaningful, time dependent energy value every frequency bin for a certain

time instance is averaged.

E(t) =
1

N

∫ π

ω=0
φt(ω) (8.4)

N = 256 denotes the number of relevant frequency bins. At this stage it is possible to build the
ratio of the energies:

SNR = 20log10(
Eorig

Eres
) (8.5)

Due to the ambiguities of the BSS described in Chapter 3.2.2 the recovered signal has to be
normalized. If this is done at once for the whole adaption process the result is altering a lot and
no convincing results can be gained. In order to evaluate the quality of the coefficients a single
set of coefficients is applied to the signal on its complete length. This is done for several points
in time. So it can be ensured that not the absolute values, which have no relevance actually,
but the development of the relation of the coefficients is considered.
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Figure 8.3: 3 spectrograms: 1. corresponding original source signal (male1); 2. recovered signal; 3. residual;
original sources: female1 θ = 0◦ and male1 θ = 40◦

Figure 8.3 depicts the spectrogram of the original signal, the recovered signal, and the corre-
sponding residual, which are the relevant signals for a SNR calculation.

8.2.2 Single Source

Regarding a single speech source the noise in this case consists of echoes as well as noise produced
by various other non speech sources. The echoes represent a major part of the noise. Compared
to any kind of noise echoes are perceived less disturbing as they contain original information.
Therefore, the following SNR calculations are to be treated as relative measure to consider the
influence of several parameters.
Figure 8.4, Figure 8.5 and Figure 8.6 show the influence of r, the distance from a source to

the array. Depicted is the SNR, which increases slightly while its adaption process. Changing
the DOA angle leads to different results, which can be explained by the influence of a curved
waveform, explained in Chapter 7.3.
Referring to Chapter 8.2.1 note that a normalization of the reconstructed signal is applied

to the data before calculating every single SNR value. For that reason, the alteration of the
resulting SNRs is in such a small range. The results are determined with a step size of 0.0001
and a valid frequency range of 0.4 ≤ Ω ≤ 1. The depicted SNRs are an average of 5 trials each,
as the start values of the demixing matrix are chosen randomly.
Figure 8.4 shows the development of the SNR for three different distances r ∈ [2, 3, 4]m and

a DOA angle of θ = −40◦. The utilized source signal is Female1. Due to the fact that the
ratio of direct sound to reverberation decreases with an increasing distance the SNR is best at
r = 2m. Regarding Figure 8.5, the results of a different DOA angle θ = 20◦ and a different
source Female3 the statement according to Figure 8.4 still remains although the varieties become
less.
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The third experiment, depicted in Figure 8.6, seems to be in contrast to the former statement.
The DOA angle in this case is θ = 0◦ whereas the source Male3 is utilized. Effectively, it shows
the influence of a curved waveform again. The effect has its biggest impact for a DOA angle of
θ = 0◦ and converges to zeros for θ = −90◦ or θ = 90◦. The performance of the beamformer is
significantly worse and, therefore, the SNR in distance of r = 3m is better.

0 2 4 6 8 10 12
−10

−5

0

5

S
N

R
 [d

B
]

time [s]

 

 

2m
3m
4m

Figure 8.4: SNR of a single signal; varying distances r ∈ [2, 3, 4]m; Source Female1; DOA angle θ = −40◦;

0 2 4 6 8 10 12
−10

−5

0

5

S
N

R
 [d

B
]

time [s]

 

 
2m
3m
4m

Figure 8.5: SNR of a single signal; varying distances r ∈ [2, 3, 4]m; Source Female3; DOA angle θ = 20◦;
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Figure 8.6: SNR of a single signal; varying distances r ∈ [2, 3, 4]m; Source Male3; DOA angle θ = 0◦;
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8.2.3 Multiple Sources

The main purpose of this approach is to separate different speech sources in a multipath envi-
ronment. This is evaluated in the following section. We consider one speech signal to be our
desired signal where all other speech sources are regarded as interferences. Therefore, the for-
mer introduced Signal to Noise Ratio (SNR) is renamed Signal to Noise and Interference Ratio
(SNIR). The computing of the SNIR remains while SNIR incorporates the appearance of an
interfering source.
First of all, we can declare that the proposed algorithm as well as the applied hardware enables

a signal separation in general.
An example is shown in Figure 8.7 and Figure 8.8. Referring to Experiment II two independent

sources from different DOA angles are supposed to be separated in a reverberant environment.
The results of the former Chapter 8.2.2 suggest a constant distance of r = 3m. The processed
signal contains two sources: Female1, with a DOA angle θ = 0◦, and Male1, with a DOA angle
θ = 30◦. Again, the results are determined with a step size of 0.0001 and a valid frequency range
of 0.4 ≤ Ω ≤ 1. Each figure depicts three spectrograms:

1. Spectrogram of both original source signals.

2. Spectrogram of the desired source signal.

3. Spectrogram of the recovered signal.

Comparing the desired and the recovered spectrogram illustrates that the characteristic sequence
remains. Referring to Table 8.1 the signal energy of Female1 is significantly higher. Hence, the
corresponding SNIR of this signal is better. In Figure 8.8, which shows the spectrogram of the
second source with lower energy, parts of the first source can be spotted. In contrast, it is much
more difficult to spot parts of the second signal in Figure 8.7, which is mainly caused by the
higher energy and the density of the first source itself. This is reflected by the resulting SNIR.

Another interesting question is: How close are two sources allowed to be placed nearby without
effecting the performance of the algorithm?
In order to answer this question the following analysis is accomplished. In a scenario with

two speakers several SNIRs, which are a function of the relative angle ∆DOA, are calculated.
Two sources, whereas one is regarded as desired signal and one as interference are played back
simultaneously. The difference of the impinging angle ∆DOA determines the condition of the
SNIR. While one source is kept at the broadside of the beamformer (DOA angle θ = 0◦) several
positions for the second source are tested whereas both SNIRs are computed.
In Figure 8.10 the results are outlined. The red lines represent the signals with a constant

DAO angle. The blue lines show the SINRs of sources with a varying angle. Furthermore, the
data are summarised by the bold lines. The results are obtained by computing the SINR from
five adaptation trials. The last 6 values, which corresponds to 2 seconds, of all five signals are
averaged. An example of the calculation process of an appropriate average is shown in Figure
8.9. Again, it is mentioned that the step size is a significant parameter. In order to achieve
converging results the step size is set to 0.00015. Figure 8.11 shows the overall average of the
appearing signals.
To answer the former question, a good separation seems to be achieved if the sources have

at least a angle difference of ∆θ = 20◦. This result is actually no surprise. The main steering
directions of the beamforming network are arranged in a distance of about ∆θ0 ≈ 20◦. This
corresponds to the measured ∆DOA, where an increasing ∆DOA does not significantly enhance
the SNIR. The conclusion is, that the beamwidth of one beamformer respectively the distance
of two beams is crucial in terms of a minimum spacing of multiple signals. Hence, increasing
the number of beams would enhance the efficiency if sources are in close positions.
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In order to evaluate the improvement of our algorithm, the SNIR of a single microphone is
calculated. The computation is conducted in the same way as it is done to assess the results of
the algorithm. Both are compared in Figure 8.11. A clear improvement can be seen. We can
calculate the difference between the SNIRs with and without using the algorithm as follows:

∆SNIR = SNIRalgo − SNIRmic (8.6)

where SNIRalgo is the signal to noise and interference ratio when the algorithm is applied and
SNIRmic the calculated measure for a single microphone. Figure 8.12 shows the improvement
in terms of SNIR for the case of two speaking persons in a distance of r = 3m. The following
overall enhancement of ∆SNIR can be achieved when neglecting values of ∆DOA ∈ [−10, 0, 10]:

∆SNIR ≈ 9 dB (8.7)
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Figure 8.7: 3 spectrograms: 1. original mixed source signals Female1 and Male1; 2. original source1 in
order to be recovered; 3. recovered signal; DOA: female1 θ = 0◦ and male1 θ = 30◦

Figure 8.8: 3 spectrograms: 1. original mixed source signals Female1 and Male1; 2. original source2 in
order to be recovered; 3. recovered signal ; DOA: female1 θ = 0◦ and male1 θ = 30◦
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Figure 8.9: SNIR development of five signals with random start values; desired source: Male2 θ = 10◦;
interfering source: Female2 θ = 0◦,
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Figure 8.10: SNIR of six signals with fixed distances d = 3m while playing back two sources simultaneously;
red lines: signals with constant DOA angle θ = 0◦; blue lines: signals with varying DOA angle
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Figure 8.11: averaged results of two corresponding sources with a relative angle ∆DOA; SNIR of signals
recovered by the algorithm (bold line) compared to SNIR of signals recorded by one microphone
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Figure 8.12: SNIR improvment: ∆SNIR compares the SNIR of signals processed by the algorithm and SNIR
of a single microphone; dependent on the relative angle ∆DOA of two corresponding sources;
distance 3m
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9 Conclusion and Prospects

The scope of this work was to build a system that enables the user to apply the proposed
algorithm and to apply access to the results immediately. As a result a fully functional hardware
setup as well as an easy to use Matlab GUI was developed.

9.1 Conclusion

It is shown that the proposed algorithm can be applied under real conditions in a reverberant
environment whereby the limits of the approach are exposed. The performance of the system
is signal and environment dependent. The experiment in a lecture hall demonstrates the de-
pendency on the source location and the relative location of multiple sources in detail. The
performance decreases with an increasing ratio of reverberations to direct sound at the location
of the microphone array. Therefore, smaller rooms are unsuitable as the source location with a
proper ratio can be in a very close position to the array. Noise or interfering signals which are
non directional can not be canceled by this algorithm. However, even if the issue of a multipath
environment can not fully be solved, the system is capable to enhance the SNIR by suppressing
interfering sources effectively. Furthermore, the algorithm is able to cancel a small number of
reflected interferences, if the DOA angle does not match with the DOA angle of the desired
source.
The Matlab GUI Beamformer Gui2 1.m is a fully functional tool, enabling the user to easily

apply experiments in order to evaluate the performance of the algorithm. Due to its mod-
ular structure it is suggested to modify or replace certain parts of the algorithm gaining an
improvement of the approach.
The single stages of the proposed algorithm can be modified separately. The FIB network

and the BSS algorithm are independent and work successively. Hence, a separate development
is possible. If one of these parts is improved it can be replaced while retaining the other part.
Besides, it is achievable to modify the BSS algorithm in order to recover different kinds of signals,
as the applied approach is optimized in terms of speech separation. Thereby, an extension of the
valid frequency range of the FIB network would be desirable. Further to this approach, which
aims at a good speech discrimination, the frequency range is sufficient.
Different from comparable beamforming systems a priori knowledge of the DOA is not re-

quired. Moreover, it should be possible to calculate the DOA angles of the desired sources
by evaluating the corresponding set of coefficients. The only a priori knowledge needed is the
number of sources L.
Summarizing, the proposed system can be described as unconventional and valid approach in

order to separate several speech signals.
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9.2 Prospects

The system is supposed to work in real time. To a certain level this requirement is complied.
The computation of a certain recording can be performed in a shorter time than the lengths of
this recording. The system shall be extended with the final goal of enabling the user to directly
listen to the results while one or more persons are speaking. Additionally, the optimization of the
system can be further refined. A remaining question is if an increasing number of beamformers
leads to a better performance. As block processing is required in order to replay the processed
data with a minimum delay it is suggested to abandon the SVD stage. Therefore, a modified BSS
needs to be implemented. Suggestions can be found in Chapter 4.4. Furthermore, the constraints
of the coefficients respectively the normalization of the signals could become a problem.
In principle, the system including the hardware can be used as basis for a further development

of such a real time system. The data acquisition toolbox enables a direct data access in Matlab.
It is recommended to implement a software being able to record and replay data virtually
simultaneously while a simple FIR filter is applied. If such a application is doable, a block by
block implementation of the whole algorithm should be possible.
Last but not least, I want to mention an alternative possibility of an online, Matlab-based

signal processing approach. In the course of the diploma thesis [Dietze, 2010], conducted at
the Graz University of Technology, a convincing concept, utilizing Matlab for real time data
processing is introduced. The Matlab-compatible software ‘playrec’ is used in order to achieve
access to a standardized multichannel audio format such as ASIO (Audio Stream Input/Output),
which is provided by a various number of sound cards. This, of course, would require professional
audio equipment, which would solve the majority of the hardware caused problems on the other
hand.
I hope that my work will be continued and contributes to the research and development

accomplished by the Department of Electronic and Electrical Engineering in Sheffield.
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