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Abstract

The surface electromyogram (sEMG) of the human forearm provides useful information
about the activation of different muscles during the exertion of movements and can be
used as a reliable control signal for active prostheses. In this diploma thesis an online
classification system to distinguish between ten different hand and wrist movements with
a low latency has been implemented and tested. The classification system for this thesis
is based on an onset detection algorithm and a Support Vector Machine Classifier.
As a first step, the performance of different sEMG feature extraction methods in the time
and frequency domain were compared with regards to their cross validation performance.
Additionally, the online system has been tested on ten subjects in a cue-based scenario
using the best performing single feature for each subject. For seven of the ten subjects the
Willison amplitude feature showed the best performance. The system showed an overall
performance of 92.75% across all subjects in the ten-class problem and the latency was
below 300ms.
The developed system was then used in a self-paced scenario to control the computer
game Portal 2 using nothing but the sEMG signals as control inputs. Two users suc-
cessfully used this system to play two levels of the game. The level completion time has
been compared between the implemented sEMG game control system and the mouse as
a conventional input modality. The level completion times for the sEMG-based system
were about four times as high as those for the mouse-controlled scenario.
In addition to this, a seven class EMG classification system has been combined with a
Steady-State Visual Evoked Potential (SSVEP) BCI to form a hybrid Brain-Computer
Interface (hBCI) and the resulting system has again been used to control Portal 2. Two
users completed the same two levels as before using this system. The level completion
times with this system are in the same range as in the EMG game control scenario.

Keywords: Surface Electromyography, Active Prostheses, Support Vector Machine,
Pattern Recognition, Transradial Amputee
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Kurzfassung

Das Oberflächen-Elektromyogramm (sEMG) des menschlichen Unterarmes liefert wertvolle
Informationen über die Aktivierung verschiedener Muskelgruppen während der Aus-
führung von Bewegungen und kann als zuverlässiges Kontrollsignal für aktive Prothesen
benutzt werden. In dieser Arbeit wurde ein Klassifikationssystem implementiert und
getestet, das in der Lage ist mit geringer Latenzzeit zwischen verschiedenen Hand- und
Handgelenksbewegungen zu unterscheiden. Das in dieser Arbeit implementierte System
basiert auf einem Algorithmus zur Detektion eines Bewegungsanfangs und einer Support
Vector Maschine als Klassifikator.
Als ein erster Schritt wurden verschiedene Featureextraktionsmethoden für das sEMG
im Zeit- und bezüglich ihrer Kreuzvalidierungsergebnisse miteinander verglichen und
das Onlinesystem einem Test mit zehn Probanden unterzogen wobei das jeweils beste
Feature für den jeweiligen Probanden benutzt wurde. Für sieben der zehn Probanden
wurde die Willison Amplitude als bestes Feature ausgewählt. Das Onlinesystem zeigte
eine Gesamtleistung von 92.75% für das Zehn-Klassen-Problem, wobei die Latenzzeit
unter 300ms betrug.
Das System wurde anschließend in einem Experiment zur Steuerung des Computerspiels
Portal 2 benutzt. Hierbei wurden keine anderen Eingabegeräte als das vorgestellte Sys-
tem benutzt. Zwei Probanden testeten das System und waren in der Lage, das Spiel
erfolgreich zu steuern und zwei verschiedene Levels abzuschließen. Die zur Bewältigung
der beiden Levels benötigten Zeiten wurden dabei mit den Zeiten verglichen die benötigt
wurden, wenn das Spiel mit der Maus gesteuert wurde. Die mit dem implementierten
System benötigten Zeiten waren hierbei in etwa viermal so lang wie jene, die mit der
konventionellen Steuerung über die Maus erreicht wurden.
Zusätzlich wurde das Klassifikationssystem mit einem Steady-State Visual Evoked Po-
tential (SSVEP) Brain-Computer Interface (BCI) zu einem hybriden BCI (hBCI) kom-
biniert und das resultierende Gesamtsystem wiederum zur Bewältigung der beiden Lev-
els in Portal 2 genutzt. Die zur Bewältigung der Level benötigten Zeiten liegen hierbei
wiederum im selben Bereich wie im EMG-gesteuerten Fall.

Stichwörter: Oberflächen-Elektromyographie, Aktive Prothesen, Support Vector Mas-
chine, Mustererkennung, Transradiale Amputation
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Introduction

1 Introduction

The human hand is a highly dexterous tool that has 22 degrees of freedom (DOF) [61].
The importance of this tool in our everyday life is extremely high and many of our daily
chores cannot, or at least not in the usual way, be done without using our hands. This
immediately becomes very present to anyone who suffers from a fracture in the upper
extremity and gets a cast on one, or even worse, both arms. But fractures only represent
a temporal handicap since the human body is very good at restoring its functionality.
There are however conditions where the capability of the body to heal itself reaches its
limitations. Some medical conditions or accidents require a total or partial amputation
of the upper extremity. This permanent loss of the hand represents a major limitation
and handicap to the amputee. A total restoration of the functionality of the human
hand would hence represent a huge gain of life quality to those handicapped persons.
This is the reason why a lot of research is conducted in the area of highly dexterous
active hand prostheses (AHP). Due to advances in microelectronics and mechanics, it
is already possible to construct very complex robotic prostheses that offer (almost) the
full functionality of a healthy human hand and a large number of DOF. An overview of
AHP that are currently available or under development can be found in [2; 12].
Providing a device that is capable of replacing the functionality of the human hand is only
one part of the problem, however. The other issue is to actually control the prosthesis.
One of the most intuitive (and very common) ways to derive some sort of control signal
for the artificial limb is to use the activation of the remaining muscles that actually
controlled the movements of the real hand before the amputation. The signal that can
be derived from the activation of the muscle is called the electromyogram (EMG) or,
if only noninvasive recording techniques are used, the surface electromyogram (sEMG).
Using the sEMG has the advantage of being of very little risk to the subject. Also, no
specially trained personnel is needed for the application of the electrodes. In addition,
no significant difference was found when the decoding accuracy of the intramuscular
EMG was compared to that of the sEMG signals in wrist and grip movements [25].
Many research groups are working on the usage of the sEMG to control upper limb
function [8; 13; 20; 34; 38; 44; 45; 52; 61]. However, Zecca et al. in 2002 [61] stated
that no control system offers the high level of control required by the complex active
prostheses and this still is a problem up to now. Also, the latency of the control system
has to be kept low. In fact, the time it takes for the system to respond to a input must
be lower than 300ms in order to reduce the lag perceived by the user [30].
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Introduction

The usage of remaining muscles may not always be possible, especially in the case of
total amputation. Otto Bock (Otto Bock Health-Care Products, Austria) have devel-
oped a prosthesis that is capable of replacing some of the functionality of a complete
lost arm by using the sEMG of the surgically separated and re-innervated pectoralis
muscle (Figure 1.1). This process is called targeted muscle re-innervation (TMR).

Figure 1.1: A prosthesis presented by Otto Bock (Otto Bock HealthCare Products, Austria). This
prosthesis offers seven degrees of freedom and is controlled via signals recorded from the
pectoralis muscle. The muscle has been surgically separated and reinnervated in a process
called targeted muscle reinnervation (TMR).

However, for transradial amputees, where the amputation is conducted above the wrist,
such a complex procedure is not necessary since there are remaining muscles in the
forearm. In this case the sEMG of these muscles can be used to control an artificial
limb.
But how exactly can these signals be used to control a multifunctional prosthesis? One
solution is to relate the muscle activation that once lead to a movement of the real hand
to the control signals for the robotic hand. In principle, there are two different ways of
doing this. One way is to apply a regression algorithm to make a connection between the
muscle activation and an analogue control signal for the prosthesis, allowing progressive
control of the prosthesis. The second way, that is most commonly found in literature,
is to apply classification to map the values of several features that are extracted from
the sEMG signals to integer values representing different class labels. Since most of the
research groups deal with the problem using a classification algorithm, this method will
also be used in this thesis as a first approach. The concept of the movement classification

2
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system that will be implemented for this thesis can be found in Figure 1.2. It basically
starts with the subject performing a movement and the recording of the corresponding
sEMG signal. To keep the latency of the system low, it was decided to use the initial
muscle activity after the beginning of a movement for the classification instead of the
end positions. To achieve this, some sort of onset detection has to be implemented to
find the beginning of a movement and determine the data segment for feature extraction
(indicated by the green and red lines). The used method is shown in 2.1. Different
feature extraction methods are then used to derive characteristic values of the signal
that allow the classification algorithm to distinguish between different movements.

sEMG Signal 
 
 
 

Onset Detection 
 
 
 

Classification 
 
 
 

Feature Extraction 
 
 
 

[ 1 2 … ]  

Movement 
 
 
 

Figure 1.2: The concept of sEMG movement classification. The sEMG signal is recorded, an onset is
detected, a segment defined by this onset and the feature length is used for feature extraction
and these features are the used for classification of the performed movement.
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1.1 The Electromyographic Signal

In order to successfully use the sEMG signal for the classification tasks one first has
to understand the nature of this signal. The signal that is being used is the change of
the motor unit action potential with respect to time. In order to measure useful signals
one must have knowledge about the properties and the origin of sEMG signals, of the
instruments used during signal measurement and basic understanding of the anatomy
of the human muscular system in the region of interest. Only with this knowledge it is
possible to recurringly acquire useful data for the given task.
In this section the reader will be given an overview of the mentioned topics. If the reader
is interested in a more detailed description, references [15; 24] are to be considered.

1.1.1 Origin of the Myoelectric Signal

All the movements of our body are conducted by the various muscles that are connected
to the joints via tendons. Whenever a movement is performed, action potentials are
transferred from the motor cortex via the spinal cord and arrive at a motoneuron. Every
muscle consists of a number of muscle fibers, which are grouped in several motor units.
A motor unit is a group of muscle fibers that is controlled by a single α - motor neuron
(Figure 1.3). These α - motor neurons are large (in case of diameter) motor neurons in
the brain stem and the spinal cord that are heavily myelinated for higher transmission
speeds. They innervate the muscle fibers of skeletal muscles via the neuromuscular
junction and initiate the contraction.
When a muscle is activated, but before the contraction and the production of force starts,
the exchange of ions across the membranes of muscle fibers generate small electrical
currents [24]. The activation of the motor units depends on the required force of the
contraction. For small forces only the small motor units are activated, whereas for larger
forces larger motor units are being activated as well [36]. The electrical response of one
particular motor unit is called the motor unit action potential (MUAP, Figure 1.4).
The actual shape of the action potential is influenced by the geometric properties of
the muscle fibers (e.g. diameter, arrangement), the filtering effect of the tissue between
the muscle and the electrode, as well as the properties of the recording electrode and
the instrumentation [21]. Each electrode detects the sum of the electric signal of all the
MUAPs in its detection area (or within a critical distance) and the recording of this
signal over time is called the electromyogram. This is why the detected signal looks
quite different than a single MUAP (Figure 1.5). In Figure 1.5 one can also observe the
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Figure 1.3: Illustration of a motor unit, modified from [6].

Figure 1.4: Typical motor unit action potential, adopted from [17].
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Figure 1.5: EMG Signals and their spectra as detected with the surface electrodes [16].

importance of proper positioning of the electrodes, that will be covered in chapter 1.2.2.
It should be mentioned, that the sEMG signal can already be measured 10 to 100ms
prior to the output of mechanical force due to a process called "excitation-contraction-
coupling" [24].

1.1.2 EMG Signal Properties

The surface electromyogram is a stochastic signal with an amplitude that is typically in
the range from 0 to 6mV (peak-to-peak) or 0 to 1.5mV (RMS) [24]. The contributions of
the sEMG signal outside the range of 5-10Hz to 400-450Hz are negligible [35]. Therefore
it is very common to apply a bandpass filter to the signal (e.g. fHP = 5Hz and fLP =

500Hz).
The properties of the sEMG signal and its quality depend on several factors, such as the
timing and intensity of the muscle contraction, the distance between the electrode and
the active muscle area, the properties of the tissue between the electrode and the muscle
(e.g. skin thickness, body fat), the properties of the hardware used for signal acquisition
(i.e. the electrodes and amplifiers) and the quality and stability of the electrode-skin
contact [15].
The first factor, the timing and intensity of the muscle contraction, is the relevant
information for each of the muscles involved in the different movements, since the changes
in these factors are what allow us to distinguish between the different movements using

6
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the EMG signal.
The second factor is also very important. It is obvious that the distance between the
electrode and the muscle area that should be recorded has a large impact on the quality
of the measured signal. Hence it is crucial to know about the human anatomy in the
region of interest and to place the electrodes properly, based on this knowledge.
The electrical properties of the tissue in between the electrode and the muscle are also
very important. The impedance of skin tissue is generally higher than that of muscle
tissue and therefore the skin tissue causes filtering of the EMG signal and the amplitude
is decreased. Considering this, it is apparent that when measuring subjects with a higher
impedance of the skin tissue (due to greater thickness or higher body-fat-percentage),
correct placement of the measurement electrodes is even more important.

1.2 Methods of Recording

This section assesses the different recording techniques that are feasible to measure the
sEMG signal.

1.2.1 Monopolar versus Bipolar Recording

There are two possible configurations for the electrodes:

• Monopolar electrode configuration: Here a single electrode is used to mea-
sure the sEMG signal against a reference electrode, which is placed on electrically
unrelated tissue. This configuration has the disadvantage of not being able to
filter signals from outside noise sources and also records signals from muscles in a
relatively large distance to the electrode. However, this method has the advantage
of greater simplicity and the smaller number of electrodes leads to a less bulky
setup.

• Bipolar electrode configuration: This is the most common configuration for
recording the sEMG signal. Here two separate electrodes are used to detect the
signal of a single muscle, both with respect to a reference electrode. Then the
two signals are subtracted from one another, hence eliminating signals that are
the same for both electrodes, like 50/60Hz AC - signals from power lines or EMG
signals from distant muscles. Unfortunately bipolar configurations act as a band-
pass filter to the recorded signal, so that a smaller inter-electrode distance shifts
the EMG bandwidth to higher frequencies and lowers the signal amplitude [24].
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1.2.2 Electrode Placement

As already mentioned in 1.1.2, correct electrode placement is essential for the quality
of the sEMG signal (see also Figure 1.5). The goal is to place the sensor at a location
where a good and, equally important, stable sEMG signal can be acquired. The recom-
mendation is to place the electrode in the middle between the distal motor end-plate
(approximated by the muscle belly) and the distal tendon [15].
When using bipolar electrode configuration the conductive surfaces of the electrodes
should be orientated parallel to the muscle fibers for optimal recording. [24]
The reference electrode, used to provide a common reference to the amplifier input,
should be placed over an electrically neutral tissue [17]. The best way would be to place
the reference electrode as far away as possible from the active muscles. However, this
is often inconvenient, so the reference is often placed on a neutral tissue (e.g. bony
prominence) near the target area.

8



Introduction

1.3 Anatomy of the Human Forearm

In order to acquire viable signals from different muscles and subsequently classify differ-
ent movements that are executed through exertion of these muscles a basic knowledge of
the human anatomy in the region of interest is essential. In the following an overview of
the anatomy of the human forearm will be provided. For more information, see [19; 32].

The Anterior Compartment
In the anterior compartment of the forearm the muscles are organized in three layers
(superficial layer, intermediate layer and deep layer). These muscles are responsible for
the flexion of the fingers, movements of the wrist and pronation. The superficial layer
of the anterior compartment consists of the four muscles flexor carpi ulnaris, palmaris
longus, flexor carpi radialis and pronator teres. In the intermediate layer only a single
muscle - the flexor digitorum superficialis - is located. The three muscles flexor digitorum
profundus, flexor pollicis longus and pronator quadratus are found in the deep layer. The
three layers of muscles are illustrated in Figure 1.6 and their individual functions are
listed in Table 1.1.

Muscle Function
Superficial layer
Flexor carpi ulnaris Wrist flexion,

ulnar deviation (adduction)
Palmaris longus Wrist flexion
Flexor carpi radialis Wrist flexion,

radial deviation (abduction)
Pronator teres Pronation
Intermediate layer
Flexor digitorum superficialis Flexion of the fingers
Deep layer
Flexor digitorum profundus Flexion of the fingers
Flexor pollicis longus Flexion of the thumb
Pronator quadratus Pronation

Table 1.1: Function of the muscles in the anterior compartment of the forearm. For more information,
see [19, : Tables 7.10 – 7.12].
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Figure 1.6: The three layers of muscles in the anterior compartment of the human forearm (right hand).
The left image depicts the superficial layer of muscles, the middle image the intermediate
layer and the right image shows the deep layer of muscles. This figure is modified from [19].
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The Posterior Compartment
The posterior compartment of the forearm consists of two layers of muscles (superficial
and deep) that are responsible for the extension of the fingers, movements of the wrist
and supination. There are seven muscles located in the superficial layer of the posterior
compartment. These muscles are the brachioradialis, the extensor carpi radialis longus,
extensor carpi radialis brevis, extensor digitorum, extensor digiti minimi, extensor carpi
ulnaris and the anconeus. Five muscles are located in the deep layer of the posterior
compartment. These muscles are the supinator, abductor pollicis longus, extensor polli-
cis brevis, extensor pollicis longus and extensor indicis. The two muscle layers are shown
in Figure 1.7 and the functions of the muscles are explained in Table 1.2.

Muscle Function
Superficial layer
Brachioradialis Elbow flexion
Extensor carpi radialis longus Wrist extension,

radial deviation (abduction)
Extensor carpi radialis brevis Wrist extension,

radial deviation (abduction)
Extensor digitorum Extension of the fingers
Extensor digiti minimi Extension of the little finger
Extensor carpi ulnaris Wrist extension,

ulnar deviation (adduction)
Anconeus Radial deviation during pronation,

elbow extension
Deep layer
Supinator Supination
Abductor pollicis longus Abduction & Extension of the thumb
Extensor pollicis brevis Extension of the thumb
Extensor pollicis longus Extension of the thumb
Extensor indicis Extension of the index finger

Table 1.2: Function of the muscles in the posterior compartment of the forearm. For more information,
see [19, : Tables 7.13 – 7.14].
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Figure 1.7: The two layers of muscles in the posterior compartment of the human forearm (right hand).
The left image depicts the superficial layer of muscles and the right image shows the deep
layer of muscles. This figure is modified from [19].
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1.4 Motivation

As mentioned earlier, a reliable and robust online system for the classification of sEMG
signals recorded from the forearm during different hand movements could be of great
value to people that lost their hand due to an accident or some medical condition. While
some of the robotic hands available today are already capable of restoring a great part of
the functionality of the human hand, there is unfortunately still a lack of systems that are
able to control all of the functions provided by these devices. Therefore the development
of a robust, fast and accurate control algorithm based on the sEMG signals of the human
forearm could help a lot of people that are handicapped by the consequences of an illness
or an accident that led to a transradial amputation and is hence a goal worth striving
for.

1.5 Goal

The goal of this thesis is to develop a system for the online classification of different
hand and wrist movements. Based on literature research appropriate methods for signal
recording and processing will be chosen. These methods will then be implemented in a
real time system based on Matlab and Simulink. The implemented system should have
a latency of below 300ms and a good overall performance. Based on the results of an
initial experiment with a number of different features, a good general feature set shall
be derived and used for further experiments.

1.6 Organization of Chapters

Introduction
This section describes the motivation that lead to the realization of this thesis. It also
gives an overview about the nature of the EMG signal and its acquisition as well as the
basic anatomy of the muscles in the region of interest for this thesis (i.e. the forearm).
Also, the goal of this thesis is described.

Fundamentals
Here, the methods that are commonly used for all of the experiments conducted in this
thesis are described.

13



Introduction

Feature Comparison Study
In this section the experiment conducted to investigate the performance of different fea-
tures is described including the implemented feature extraction methods, the hard- and
software used for the experiment, a detailed description of the experimental procedure
as well as the results and a discussion of the results.

EMG Game Control
The implemented system has been applied to control a gaming application in a Human-
Computer Interface scenario. The setup of the system and the experiment together with
the gained results and the discussion of these results is provided in this section.

Hybrid System
In addition to the previous experiments the system has been used together with a Brain-
Computer Interface in a hybrid system. The whole setup of this system is described in
this section.

1.6.0.1 Discussion and Conclusion
This thesis is concluded by a discussion of some general aspects that have not already
been addressed in the discussion sections of the individual experiments. Some possible
directions and improvements for future work are also presented.
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2 Fundamentals

This section will give an overview of the commonly used methods for all the experiments
of this thesis.

2.1 Onset Detection

The first very important step in the processing of the sEMG signal is the correct de-
tection of the beginning of a movement. Often the initial parts of the signal during the
execution of a movement are the most significant when it comes to the classification of
this movement. Hence it is very important not to miss these initial MUAPs due to a
belated onset detection. A premature detection of an onset on the other hand would lead
to the recording of data without valuable information about the movement performed.
This would not only add noise to the feature extraction performed later on, but also
precious information would be lost because the time window available for feature extrac-
tion in an online sytem is limited in order to keep latency low. Most of the algorithms
for onset detection consist of some sort of signal conditioning, a detection unit whose
output is an ’alarm’ when an onset is detected and a post-processor that checks these
alarms for their relevance.
Staude et al. in 2001 [51] compared several methods for onset detection, both threshold-
based and statistically enhanced. They came to the conclusion that the statistically
enhanced methods generally promise a better performance, but they are also tainted
with greater complexity and computational effort, which could be hindering in an online
classification system. Hence it has been decided that one of the more simple threshold-
based approaches will be used for the design of the online system in this thesis. Among
the threshold-based methods that have been compared in [51], the method implemented
by Bonato et al. [9] performed best when real sEMG data has been used for the eval-
uation. Also, the performance of the Bonato method came closest to the statistically
enhanced methods ([51, Table 3]). These results suggest that the Bonato method is well
suited for the task at hand and hence it will be used for this thesis.
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2.1.1 Method by Bonato et al.

The algorithm for this method consists of a test function that outputs an alarm if an
onset candidate is found in any of the recorded channels and a post processing unit that
checks these alarms for their relevance. The test function for this algorithm is given by:

gk =
1

σ̂2
0

(
y2k−1 + y2k

)
As can be seen, the decision function sums up the squares of two successive samples of
the EMG signal and divides that sum by σ2

0, which is the variance of the first M samples
of the EMG signal, where no movement should be performed (i.e. the variance of the
resting state). In the Bonato method the test function is only evaluated for odd k’s. The
decision rule for an alarm is a simple comparison of gk for these k’s to a given threshold
h.

ta = min{k = 1, 3, 5, . . . : gk ≥ h}

The post processing stage consists of two rules and the alarm is only accepted if both of
them apply. These rules are:

• at least n out of m samples must exceed the threshold h in order to indicate an
active state

• such an active state has to be at least T1 samples long.

If this check is positive, then the earliest beginning of this active state is taken as t̂0, the
estimate for the onset time.
The parameters n, m and T1 for the Bonato method are chosen in the same way as in [51]
with: n = 1, m = 5 and T1 = 50. The threshold h has been determined iteratively. The
value has been varied and the algorithm has been applied to a data set of 60 executions
of ten different movements (6 per movement). The result of the onset detection has then
be inspected together with the underlying sEMG signal. Since the sEMG is a rather
strong signal, the visual determination of the onset of movement from a resting position
is relatively easy. The threshold has then be adapted in such a way that the onset found
by the algorithm was closest to the visually determined onset for all of the movements.
This resulted in choosing a value of h = 300 for the threshold for all of the channels.
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2.2 Support Vector Machines

SVMs are a popular tool for the classification of EMG signals among a number of
researchers [33; 38; 45; 59]. Oskoei and Hu in 2008 [38] have compared SVMs to linear
discriminant analysis (LDA) and multi layer perceptron (MLP) neural networks. Their
findings regarding the SVM were that "It demonstrates exceptional accuracy, robust
performance, and low computational load" [38]. This encourages the use of a SVM for
the task at hand.
In the next sections some theory about binary SVM and their expansion for multiclass
problems will be provided. For further information, the reader is pointed to [26; 55]

2.2.1 SVM - Theory according to [26]

Support Vector Machines represent the pairs of training data x and corresponding class
labels y through vectors in a vector space. The SVM then tries to fit a hyperplane into
this vector space that separates the training points into two different classes. Because
there are often many different hyperplanes that could separate the training data the SVM
tries to achieve maximum separation between the classes or to maximize the distance
between the decision boundary and the nearest data point on each side. This distance
is called the margin. The hyperplane that can be seen in Figure 2.1 is defined by (2.1)

{x : f(x) = xTβ + β0 = 0} (2.1)

In this equation, the variable β is a unit vector, i.e. ‖β‖ = 1. The separation of the
data into the two classes can then be done by simply calculating the sign of the output
of this equation, as given in (2.2).

G(x) = sign[xTβ + β0] (2.2)

Now there are two possibilities concerning the data:

1. The classes are linearly separable

2. The classes overlap in feature space
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Figure 2.1: Decision boundary in the separable case, from [26]. The solid line is the decision boundary,
the broken lines indicate the maximal margin of width 2M = 2/‖β‖.

Ad 1:
When the classes are separable, it is possible to find a hyperplane that creates the biggest
margin between the data points of the different classes. The search for the biggest margin
is an optimization problem that is given by (2.3)

max
β,β0,‖β‖=1

M

subject to yi(xTi β + β0) ≥M, i = 1, . . . , N
(2.3)

The constraint of β being a unit vector can be dropped by replacing the conditions with:

1

‖β‖
yi
(
xTi β + β0

)
≥M, (2.4)

where β0 is redefined, or

yi
(
xTi β + β0

)
≥M‖β‖. (2.5)

Now ‖β‖ can be arbitrarily set to 1/M . This is due to the fact that for any β and β0
satisfying the inequalities, any positive multiple satisfies them too. Because of this, the
optimization problem can be simplified to (2.6)

min
β,β0
‖β‖

subject to yi(xTi β + β0) ≥ 1, i = 1, . . . , N
(2.6)

WhereM = 1/‖β‖. So the norm of β is minimized with respect to the fact that the class
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label prediction and the true class label have to be on the same side of the hyperplane
(yi · f(xi) ≥ 1).

Ad 2:
If the classes given by the training data overlap in the (original) feature space there are
again two ways of how to deal with it:

a) Still maximize M, but allow errors

b) Enlarge the feature space by using basis expansions

Ad a:
To allow errors means to accept that some of the training points to lie on the wrong side
of the decision boundary. Therefore one introduces slack variables ξ = (ξ1, ξ2, . . . , ξN).
An illustration of the non-separable case with slack variables can be found in Figure 2.2

Figure 2.2: Decision boundary in the non separable case with slack variables, taken from [26]. The solid
line is the decision boundary, the broken line indicates the maximal margin. Points labeled
with ξ∗j are on the wrong side of their margin.
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Now the constraint for the optimization problem in (2.3) can be modified in two different
ways:

yi(x
T
i β + β0) ≥M − ξi (2.7)

or

yi(x
T
i β + β0) ≥M(1− ξi) (2.8)

Where ξi ≥ 0 ∀i and
∑N

i=1 ξi ≤ some constant. The two choices (2.7) and (2.8) lead
to different solutions of the problem. While (2.7) measures the overlap of the data
point as the absolute (or actual) distance from the margin, (2.8) measures the overlap
as the relative distance that changes when the width of the margin M changes. But
the important thing is that (2.7) leads to a non convex optimization problem, whereas
(2.8) leads to a convex optimization problem, which has the advantage that if a local
minimum exists, it is always a global minimum.
The idea of the slack variables is that ξi in (2.8) is the proportional amount by which
the prediction based on xi (f(xi) = xTi β + β0) is on the wrong side of its margin. So
bounding the sum

∑
ξi to an upper value bounds the number of errors on the training

set to the given value. In the algorithm the optimization with slack variables is given
by:

min‖β‖ subject to

{
yi(x

T
i β + β0 ≥ 1− ξi ∀i

ξi ≥ 0,
∑
ξi ≤ C

(2.9)

Where C is the "cost parameter". The optimal value for C can be found via cross-
validation.

Ad b:
Enlarging the feature space with basis expansions, such as polynomials or radial basis
functions, leads to a more flexible classifier. This is because linear boundaries in the
enlarged feature space transform to nonlinear boundaries in the original feature space
and generally achieve better separation of the classes. The difference to the case be-
fore is that instead of using xi for the estimation, now the transformed feature vectors
h(xi) = (h1(xi), h2(xi), . . . , hM(xi)) are used. Using this expansion, the input dimension
is allowed to get very large. But since h(x) appears in both the optimization problem
and the solution function (f(x)) through inner products, one does not need to explic-
itly define h(x) at all. All that is needed for the calculation is knowledge of the kernel
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function (2.10) that computes the inner product in the transformed space.

K(x, x′) = 〈h(x), h(x′)〉 (2.10)

Popular choices for K are:

• Polynomial function of degree d: K(x, x′) = (1 + 〈x, x′〉)d

• Radial Basis Functions: K(x, x′) = e−γ‖x−x
′‖2

• Neural network : K(x, x′) = tanh(κ1〈x, x′〉+ κ2)

In this enlarged feature space the cost parameter has the following role: A large value
for C will lead to overfitting while a smaller value for C will lead to a smoother decision
boundary in the original feature space. So C controls the upper boundary of the Vap-
nik Chervonenkis- (VC-) dimension. In the case of (the frequently used) Radial Base
Functions the second parameter γ describes the width of the gaussian bell curve. Two
examples of nonlinear decision boundaries in the original feature space can be found in
Figure 2.3.
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Figure 2.3: Two nonlinear Support Vector Machines, taken from [26]. The upper plot shows the decision
boundary using a 4th-order polynomial kernel, the lower plot uses a radial basis kernel with
γ = 1. The broken purple line in both plots is the decision boundary of the bayes classifier.
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2.2.2 Expansion for Multiclass-Problems

Since a support vector machine is a binary classifier, some adaptations have to be done
in order to solve classification problems with more than two classes. There are several
methods to modify the classification to handle more than two classes (according to [4]
and [28]):

• One-against-all (OAA) classification where there is one binary SVM for each
class, and the SVM for each is trained with all data of this class with positive labels
and all data of the other classes with negative labels. The classification result in
this case is determined via a voting process. As can be seen in Figure 2.4, using
binary decision boundaries in this case can be problematic because this can result
in regions in the feature space that can not be classified. In other words a data
point can only be classified under a certain class if the SVM of that particular
class votes positive and the SVMs of all other classes vote negative. To avoid
this, instead of using only the signs of the decision functions of the SVMs and
hence using binary decision boundaries one has to use the continuous values of the
decision function and assign the data point the label of the class that achieves the
highest value of the decision function. An illustration of this can be seen in the
middle of Figure 2.4

• One-against-one method (Pairwise Classification) where for a classification
Problem with N classes N(N − 1)/2 classifiers are constructed, each one for a pair
of classes and all these classifiers are trained with data from the two classes. The
classification is conducted via a voting process, where the data is then assigned
the class label of the class with the most ’wins’.

• Multiclass ranking SVMs where one single mathematical decision function is
sought that can distinguish between all the different classes.
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Figure 2.4: Decision boundaries of different methods for multiclass SVMs, adopted from [4]. The left
picture shows the decision boundary of a OAA method with binary decision boundaries for
a three class problem. Note that the region in the middle can not be classified. The middle
picture shows the same problem for a OAA classifier with continuous decision boundaries,
where the problem of regions that can not be classified is avoided. The right picture shows
the decision boundaries of the N(N − 1)/2 classifiers used for the pairwise classification
method.

2.2.3 SVM used for this Thesis

There are a lot of SVM implementations that are ready to use available on the internet.
The package used for the work in this thesis is LIBSVM [14]. LIBSVM provides several
different SVM approaches, has a built-in function for cross validation in order to conduct
model selection and contains various kernels that can be used. It also provides the
possibility to get the probability outputs for each class in order to get some sort of
"confidence measure" in addition to the classification result. For multiclass problems
LIBSVM implements the one-against-one method as described earlier. For this work, a
classification SVM Type 1, or C-SVM classification as described in 2.2.1 with a radial
base function kernel has been used. This kind of SVM has two tunable parameters, the
cost factor C and the kernel parameter γ. The ideal values for these parameters are
found in the model selection phase by performing a grid search.

2.3 Cross Validation

Cross validation (CV) is a method that is commonly used for the evaluation of a classifiers
performance and for model selection. In this thesis a 10 x 10 cross validation will be
used. This means that the training data is split up into 10 stratified subsets and in ten
different runs, each of the subsets is once used for testing while the other 9 sets are used
for training the classifier. This process is then repeated 10 times and a mean accuracy
is calculated. For more information the reader is pointed to [7].
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2.4 Confusion Matrix

A confusion matrix is used to visualize the performance of a learning algorithm. It is a
matrix of size n× n where n is the number of classes. The rows of the matrix represent
the true class labels and the columns represent the class labels that were predicted by the
algorithm. The ideal confusion matrix is a unit matrix. Off-diagonal elements represent
misclassifications. The confusion matrix helps to find out if one class is commonly
predicted as another and thus provides more information than the plain classification
accuracy in a multiclass problem.

2.5 Analysis of Variance

The analysis of variance (ANOVA) is a statistical method that, as the name suggests,
calculates the variance of the tested quantities to analyze whether the means of different
data groups are the same or if there is a statistically relevant difference between one
or more of the groups. The null-hypothesis of the ANOVA is that the means of all the
data groups are the same. If the null-hypothesis is rejected, then a post-hoc test has to
be conducted in order to find out which of the groups are significantly different. In this
thesis a univariate ANOVA is used in combination with a Newman-Keuls test. More
information about statistical analysis can be found in [11].
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3 Feature Comparison Study

The first goal of this thesis was to assess the quality of different features that can be
derived from the recorded sEMG signals with respect to their cross validation perfor-
mance on the recorded training data. The performance of the different features across
all ten subjects should then be examined to evaluate the general performance of the
individual features. Based on the results of the feature comparison for each individual
subject the best feature for the respective subject should be chosen and used in an online
classification task to test the performance of the system. The conducted experiments
and the used methods for these tasks are described in this section.

3.1 Signal Recording Hardware

3.1.0.1 Electrodes
For this experiment adhesive, disposable Ag/AgCl electrodes KendallTM ArboTM H124SG
have been used to acquire the sEMG signals of the forearm muscles. A datasheet of
these electrodes can be found on the internet [1]. The preparation of the skin consisted
of cleansing the skin thoroughly with alcohol without shaving the arm or using some sort
of abrasive gel. This procedure was chosen since the focus of this thesis was to develop
a system for possible daily use and hence preparation time and subject discomfort was
kept to a minimum.

3.1.0.2 Biosignal amplifier
A single g.USBamp biosignal amplifier from g.tec (Guger Technologies OEG, Graz, Aus-
tria, www.gtec.at) was used to record the EMG signals from the 16 surface electrodes.
The properties and frequency range of the EMG have already been assessed in 1.1.2
where it has been stated that it is very common to apply a bandpass filter to the signal.
The g.USBamp biosignal amplifier comes with built-in filters that can be adjusted to
predefined values. For this thesis the cutoff frequencies of the high pass and the low
pass filters are set to 5Hz and 500Hz, respectively. The filter type for both filters was
Chebyshev and the order of the filters was 8. The notch filter to cancel out power line
interference has always been turned on and the sampling frequency was 2400Hz for all
measurements.
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3.2 Software

For this thesis Matlab R© and Simulink R© (MathWorks, Natick, Massachusetts, U.S.A.,
www.mathworks.com) were used for all the signal acquisition and signal processing steps
as well as for presenting the paradigms. Features from the BioSig toolbox [48] were used
within Matlab.
The data was stored in the "General Data Format" (.gdf - File) [49].

3.3 Implemented Feature Extraction Methods

The acquisition of a set of one or more different features is a very important step in
the classification process based on the EMG signals. The feature set should be chosen
in a way that the most important properties of the underlying data set are accurately
described while the amount of data should be kept small. There are many different ap-
proaches for feature extraction from EMG signals. It is possible to extract features from
the time domain, the frequency domain or the time-frequency domain. In this chapter
the reader will be given an overview of the feature extraction methods implemented for
this thesis.

3.3.1 Time Domain Features

The feature extraction methods in the time domain are generally easy to implement
and computationally inexpensive which is a desirable characteristic for the online appli-
cation. They are also small and therefore allow to combine several features to a more
powerful feature vector. Dependent on the task at hand, time domain features may even
outperform more complex feature extraction methods, as, for example, shown in [20].
There are numerous approaches of time domain features in literature. An excerpt of
these is used for this thesis and described here.
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3.3.1.1 Mean Absolute Value (MAV)

This feature simply calculates the mean value of the rectified EMG signal xn in a time
window with N samples [61]. It is calculated by:

MAV =
1

N

N∑
n=1

|xn|

3.3.1.2 Slope Sign Changes (SSC)

The Slope Sign Change feature is related to the signal frequency. SSC counts the number
of times that the slope of the signal waveform changes its sign. To avoid unnecessary
noise a threshold is used to check the changes for their relevance. The formula for the
calculation is given by [41]:

SSC =
N−1∑
n=2

f [(xn − xn−1) · (xn − xn+1)] ,

wheref(x) =

{
1, if x ≥ threshold

0, otherwise

where xn is the nth sample of the EMG signal.

3.3.1.3 Variance of the EMG (VAR)

The EMG signal can be modeled as white gaussian noise with a dynamic variance σ2

[51]. Hence, the variance of the EMG signal is a measure of its power [61] and can be
used to distinguish between different movements.
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3.3.1.4 Waveform Length (WL)

The waveform length is the cumulated length of the signal waveform in the inspected
segment. The waveform length is related to the amplitude of the signal, its frequency
and the time [41]. It is calculated by summing up the absolute differences between two
successive data points of the EMG signal xn:

WL =
N−1∑
n=1

|xn+1 − xn|

3.3.1.5 Willison Amplitude (WAMP)

This feature calculates the times that the difference between two consecutive samples
of the EMG signal exceeds a certain threshold [61]. It is an indicator of firing of motor
unit action potentials which is related to the muscle contraction level [61]. The formula
to calculate the WAMP is given by:

WAMP =
N−1∑
n=1

f (|xn − xn+1|)

wheref(x) =

{
1, if x ≥ threshold

0, otherwise

The value for this feature is determined by the number of times the absolute value of
the difference between to consecutive samples of the EMG signal x exceeds a certain
threshold.

3.3.1.6 Histogram of the EMG (HIST)

For this feature introduced by Zardoshti-Kermani et al. in 1995 [60] and also reviewed
by Tkach et al. in 2010 [54], the amplitude range of the EMG signal is divided into
a number of bins and the number of data points that fall into the respective bins is
calculated. This feature has a higher dimension than the other time domain features
used in this work (i.e. #bins ·#channels).
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3.3.1.7 Simple Square Integral (SSI)
The simple square integral, as the name suggests, is the integral of the squares of all the
data points in the observed time segment. It is calculated by:

SSI =
N∑
n=1

x2n

Where xn is the nth data point of the EMG signal that is N samples long.

3.3.1.8 Log-Detector (LD)
The log-Detector feature is related to the muscle force [60]. The Feature is defined by:

LD = e
1
N

N∑
n=1

log(|xn|)

Again, xn represents the nth sample of the EMG signals consisting of N samples.

3.3.2 Frequency Domain Features

3.3.2.1 Median Frequency (MDF)
For this feature the spectrum of the EMG signal is calculated via Fast Fourier Transform
(FFT). The MDF is defined as the frequency at which the area under the spectrum curve
(i.e. the integral) is divided into two equal parts [41]. To calculate the spectrum the
signal has been zero padded to the next integer power of two and a hamming window
has been applied. The median frequency can be defined via the following equation:

NMDF∑
n=1

Sn =
N∑

n=NMDF

Sn =
1

2

N∑
n=1

Sn

Where Sn is the amplitude at the nth frequency bin of the spectrum consisting of N
bins and NMDF is the frequency bin of the median frequency.
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3.3.2.2 Mean Frequency (MNF)
The second feature based on the spectrum of the EMG is the mean frequency. The
steps to calculate the spectrum were the same as for MDF. The feature is calculated as
the weighted sum of the spectrum divided by the total sum of the spectrum [41]. It is
defined by:

MNF =

N∑
n=1

fnSn

N∑
n=1

Sn

Where Sn denotes the amplitude of the spectrum at a certain frequency bin n.[41]

3.3.3 Feature Parameter Selection

Some of the presented features have tunable parameters. The Features WAMP and SSC
have a threshold value that can be adapted while for HIST, the number of bins can be
adjusted. The threshold values have been found by evaluating the performance of the
(single) features on a data set with 10 classes and 120 trials in total. This data set
has been divided into a training set and a test set of equal size. The threshold values
have then been optimized to gain optimal performance on the test set. This resulted in
the usage of threshold value of 30µV for WAMP and 100µV2 for SSC. For HIST, the
number of bins has been set to a fixed value of 9 to have results that are comparable
to [54]. The bins have been spaced equally between the minimum and maximum voltage
of the recorded signals.

3.3.4 Segment Length for Feature Extraction

As already mentioned, the goal is to keep the latency of the system small. In order to keep
the time between a movement and a classification result below 300ms, a segment length
of 250ms has been chosen. This leaves 50ms for feature extraction and classification.
The absolute execution time of the implemented method has been investigated in order
to make sure that this goal is fulfilled. On the machine used for this work (Intel i5-2500K
@3.3GHz, 8GB RAM), none of the S-Functions for feature extraction implemented in
Simulink took longer than 1ms for execution and the SVM classlabel prediction took a
similar timespan. These times were measured with the built-in Matlab functions ’tic’
and ’toc’.
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3.4 Experimental Procedure

This next section provides information about the different aspects of the experiment
procedure including the movements chosen for the classification problem, the placement
of the electrodes and information about the subjects and the different phases of the
experiment.

3.4.1 Movements to Classify

In order to evaluate the performance of the online system a number of gestures has
to be defined that should be classified. For this thesis it has been decided to aim for
classifying 10 different movements against each other based on the sEMG signals of the
proximal part of the forearm. The following list presents those chosen movements and
the abbreviations used in the results section:

• Flexion and extension of the wrist (W.E. and W.F.)

• Wrist deviation ulnar and radial (D.U. and D.R.)

• Pronation and supination (Pro. and Sup.)

• Making a fist (Fi.)

• Extension of all fingers (E.A.)

• Extension of the thumb (Th.)

• Pinch grasp (Pi.)

These movements have already been mentioned in 1.3 where the relationship between
the individual muscles and the movements has been explained (see Tables 1.1 and 1.2).
The muscles for the recording of the sEMG have been chosen based on this knowledge.

3.4.2 Electrode Placement

As already mentioned, the electrodes for this thesis should be placed on the proximal
part of the forearm. This is necessary to have a system that is also suitable for tran-
sradial amputees since electrodes on the distal part of the forearm or even the hand
are not applicable in this case. The electrodes to record the EMG signals during the
movements mentioned above were placed over the following muscles of the subjects right
forearm (Figure 3.1):
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• M. flexor carpi radialis

• M. flexor carpi ulnaris

• M. flexor pollicis longus

• M. extensor carpi radialis longus

• M. extensor carpi radialis brevis

• M. extensor carpi ulnaris

• M. extensor digitorum

• M. extensor pollicis longus

Figure 3.1: Illustration of the muscles that were used for the acquisition of sEMG signals. The images
show the anterior and posterior side of a left human forearm. The left image shows the
anterior side with the flexor carpi radialis (blue), the flexor carpi ulnaris (green) and the
flexor pollicis longus (orange). The right image shows the extensor carpi radialis longus
(blue) and brevis (yellow), the extensor carpi ulnaris (green), the extensor digitorum (red)
and the extensor pollicis longus (orange, in the deep layer - see label). Both images are
modified from [23].
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A pair of electrodes was placed over each muscle belly in order to calculate a bipolar
derivation. The location of the muscle belly was felt out during the execution of move-
ments to exert the muscles of interest. The reference electrode was placed on the elbow
since firstly this is a very prominent bone and secondly it is close to the region of interest
on the forearm.

3.4.3 Subjects

The experiment has been conducted with a total of 10 subjects. Four of the subjects
were female, six male, and the mean age was 31.1 years. One of the subjects was left-
handed. This has not been a reason for exclusion from the experiment or for placing
the electrodes on the other arm, since for the application in prosthetics the implemented
system should also work with the non-dominant hand, of course.

3.4.4 Phases of the Experiment

The whole test consisted of a preparation phase, a training session and a testing session.
Between each of these steps a questionnaire with visual analog scales (VAS) was used
to assess the users comfort and muscle fatigue. The VAS used in the questionnaire was
10 cm long so the score ranged from 0 (worst) to 10 (best). An illustration of the whole
experimental procedure can be found in Figure 3.2. An example of the used VAS is
shown in Figure 3.3.

Prep. Training Session Test Session 
V 
A 
S 

V 
A 
S 

V 
A 
S 

0:15 0 0:50 1:30 t 
(h:min) 

Questionnaire 

Figure 3.2: Illustration of the experimental procedure consisting of a preparation phase of approximately
15 minutes duration followed by the training and test session. After each of these steps the
subjects filled out a questionnaire with VAS.
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Figure 3.3: Example of the VAS used in the questionnaire.

Preparation Phase
During the preparation phase the whole experiment has been explained to the subjects.
They were shown the cue images and a demonstration of the upcoming paradigm without
data recording has been performed. During this introduction the electrodes have been
placed on the subjects forearm. After the subjects understood the procedure of the
experiment they all signed an informed consent form. Also, the derived signals have
been inspected visually by a scope. After this, a resting file of approximately 10 s length
has been recorded where the subjects were asked not to perform any movements and keep
their hand in the resting position. This was necessary to calculate the rest variance from
400ms of data that is used in the test function of the Bonato onset detection algorithm.
The 400ms of data have been extracted beginning after 3.5 s after the beginning of the
file.

Training Session
The training session consisted of a total of four training runs with 70 trials each (i.e. 7
per class). Each of these runs took about six minutes. The runs were controlled by a
paradigm that is illustrated in Figure 3.4. A single trial consisted of:

• An initial beep

• A break of 0.75s duration

• 1.5 s where one of the 10 cues is displayed in pseudo-random order and the subjects
should perform the indicated movement

• A random break of 2 to 3.5 seconds duration

The cue images for the chosen movements are shown in Figure 3.5.
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t (sec) 0 2.5 4.5 0.5 1 1.5 2 3 3.5 4 5 5.5 

Break Cue Presentation Random Break 2 – 3.5s 

Initial Beep 

Figure 3.4: Illustration of a single trial of the paradigm used to control the training session. Each trial
consists of an initial beep, a break of 750ms, 1.5 s of cue presentation and a random pause
of 2 s - 3.5 s.

a b c d 

e f g h 

i j 

Figure 3.5: The different cue images that were shown to the subjects. Wrist extension (a), radial devi-
ation (b), fist (c), pronation (d), wrist flexion (e), ulnar deviation (f), all fingers extension
(g), supination(h), pinch grasp (i), and thumb extension (j).

After the 280 training trials have been recorded, the onset detection algorithm has been
used to find the beginning of the movement in each of the trials. The investigated
data segment were the 1.5 s during cue presentation. The first index at which an active
state in any of the 8 bipolar channels was detected was then used as the beginning of
the 250ms data segment for the 10 different feature extraction methods. The resulting
features have then been normalized to a range of -1 to 1 and these normalized features
were used to train the support vector machine. This training consisted of two steps.
In the first step, the ideal parameters C and γ for the SVM have been determined by
using a grid search and 10 x 10 cross validation for each feature separately. This grid
search has been performed in the range [C = 2c|c = 2 . . . 11] and [γ = 2g|g = −6 . . . 2]
with integer values for c and g. This step size has been chosen to find the optimal
parameters, or at least parameters close to the optimal value, in a reasonable amount
of time. The best cross validation result for each feature and the respective parameters
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have been stored and in the second step, only the best feature for the respective subject
has been used to train the classifier for the test session.

Test Session
The paradigm that controlled the trials during the test session was very similar to
that of the training session. Again, the subject was presented a cue image in pseudo-
random order. The only difference was that in this run the subject was provided with
acoustic feedback during the cue presentation time. A Matlab-S-Function looked for new
classifications within the presentation time and if the result of the online classification
matched the class that was related to the cue image a tone with a frequency of 1000Hz
and a duration of 0.6 s was played. If the classes did not match a tone with a frequency
of 330Hz was played. An illustration of the paradigm can be found in Figure 3.6. The
complete test session consisted of 4 runs with 80 trials each, so a total of 320 trials (32
trials per class) has been recorded. Each of these runs took about 7 minutes.

t (sec) 0 2.5 4.5 0.5 1 1.5 2 3 3.5 4 5 5.5 

Break Cue Presentation Random Break 2 – 3.5s 

Initial Beep 

Acoustic Feedback 

Figure 3.6: Illustration of a single trial of the paradigm used to control the test session. Each trial
consists of an initial beep, a break of 750ms, 1.5 s of cue presentation during which acoustic
feedback is provided and a random pause of 2 s - 3,5 s.
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3.5 Results

The section shows the results obtained during the experiment.

3.5.1 Performance of the Different Features

The CV accuracies of the best feature for each subject and the parameters C and γ for
the SVM found with the grid search are given in Table 3.1.

Subject Best Feature log2(C) log2(γ) CV acc. (%)
S1 WL 5 −3 97.50
S2 WAMP 2 −1 99.64
S3 WAMP 5 −4 98.89
S4 WL 3 −3 95.89
S5 WAMP 7 −4 99.93
S6 WAMP 8 −6 96.36
S7 WAMP 2 1 96.00
S8 WAMP 2 0 97.50
S9 WAMP 7 −6 89.64
S10 HIST 4 −5 98.86

Table 3.1: Results of the training session. Best performing feature for each subject and the chosen
parameters C and γ for the SVM.

An illustration of the performance of the different features is given in the box plot in
Figure 3.7.
Table 3.2 shows the mean CV accuracies and the standard deviation for the different
features.
The differences in the performances of the 10 different features for the 10 subjects have
been tested by the means of an univariate ANOVA with a subsequent Newman-Keuls
test to find out if the differences between the features were statistically significant. The
result of the ANOVA was:

F(9,81) = 68.85 , p << 0.01

The post hoc test showed that the performance of the features MDF and MNF is sig-
nificantly lower than the performance of the other features. Also, the mean frequency
feature (MNF) is significantly worse than the median frequency feature (MDF). Between
the other 8 features no significant difference was found.
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Figure 3.7: Box plot of the CV results of the ten different features for all subjects. The features are
sorted from left to right according to their mean accuracies

3.5.2 Results of the Online Test

In this section the overall results of the online test are shown. Also, for some subjects a
more detailed view on the individual results is provided.
The overall accuracies of the 10 subjects were in the range between 84.375% and 99.0625%
with a mean of 92.75% and a median of 94.5313%. The individual results are given in Ta-
ble 3.3.
Figure 3.8 illustrates the combined confusion matrix of all 10 subjects for the cue-based
online test. The entries in the main diagonal are the class accuracies or the detection
rate of the individual classes. An illustration of the class accuracies can also be found
in Figure 3.9.
The differences in the class accuracies have been tested for their statistical relevance by
the means of an univariate ANOVA. However, no statistical significance between the
different classes has been found in terms of classification accuracy (F(9,81) = 1.73 , p =

0.0964).
The detection rate of the different classes has not been the same for each subject, how-
ever. In fact, some subjects had quite low accuracies for some classes. The resulting
online accuracies per class for all subjects are given in Table 3.4. The corresponding
confusion matrices for the individual subjects are shown in Figure 3.10.
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Figure 3.8: Combined confusion matrix for all 10 subjects over 3200 Trials. The best feature used for
each individual subject and the respective SVM parameters are given in Table 3.1. The
movements are labeled according to the abbreviations introduced in 3.4.1.
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Figure 3.9: Resulting online accuracies for the individual classes.
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Figure 3.10: The individual confusion matrices for each of the ten subjects.
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Feature CV Result (%)
WL 96.74± 3.05
WAMP 96.72± 3.00
MAV 96.12± 3.33
SSC 95.91± 3.23
HIST 95.45± 4.16
LD 95.05± 4.33
Var 93.74± 3.74
SSI 93.70± 3.76
MDF 73.36± 9.76
MNF 68.07± 11.26

Table 3.2: Comparison of the CV results for the different features. All values are mean ± standard
deviation. MDF and MNF features are significantly worse than the other features and MNF
is significantly worse than MDF.

Subject Result (%)
S1 85.625
S2 99.0625
S3 96.875
S4 93.125
S5 95.9375
S6 92.1875
S7 85.625
S8 97.8125
S9 96.875
S10 84.375

Table 3.3: Results of the cue-based online test.
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Subject with the best performance
Subject S2 had the best online result, as can be seen in Table 3.3. The confusion matrix
for this subject is illustrated in Figure 3.11. It can be seen that this result is very close
to an ideal classification represented by the identity matrix. Only some instances of the
"ulnar deviation"-class have been misclassified as pronation and wrist extension.
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Figure 3.11: Confusion matrix of subject S2.

Subject with the worst performance
The lowest online accuracy was achieved for subject S10. Figure 3.12 shows the confusion
matrix for this subject. It can be seen that especially the classes "pronation" and
"supination" achieved low detection rates (78.13% and 40%, respectively). The confusion
matrices of the four individual test runs of subject S10 are given in Figure 3.13. These
images depict a degradation of the classification accuracy over time.

Subject S6 The results of subject S6 are also quite interesting. The overall online
accuracy of S6 was in the middle range with 92.19% (see also Figure 3.14). However,
looking at the detection rates of the individual test runs shows a high performance of
98.75% ind the beginning and a vast decrease of this performance over time (Figure 3.15)
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Figure 3.12: Confusion matrix of subject S10.
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Figure 3.13: Confusion matrices of subject S10 for the four test runs.
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Figure 3.14: Confusion matrix of subject S6.
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Figure 3.15: Confusion matrices of subject S6 for the four test runs.
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3.5.3 Questionnaire Results

The results of the VAS on the questionnaires that were filled out by the subjects are
provided in the following.
Table 3.5 shows the mean values and standard deviations for electrode disturbance
and muscle fatigue throughout the experiments. The development of the investigated
properties for each subject are shown in Figure 3.16.

Wearing Time 0 min 35 min 75 min
Electrode Disturbance 8.60± 1.68 9.14± 1.30 9.16± 1.16
Muscle Fatigue 8.51± 1.57 7.81± 2.03 7.18± 2.66

Table 3.5: Results from the VAS in the questionnaires for electrode disturbance and muscle fatigue. 10
always represents the highest score, 0 the lowest. In the case of electrode disturbance 10
means "not disturbing at all" and 0 means "extremely disturbing". In the case of muscle
fatigue 10 means "not exhausted at all" and 0 means "extremely exhausted". All values are
mean± std.

Figure 3.16: Development of the electrode disturbance- and fatigue scores from the VAS questionnaires.
The blue bars represent the difference between the second and the first questionniare (after
a wearing time of 35 minutes), the red bars show the difference between the third and the
first questionnaire (after 75 minutes).
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The differences of the values for electrode disturbance and muscle fatigue have been
tested on their statistical relevance. The results are:

Fatigue F(2,18) = 3.04 , p = 0.0729

Electrode Disturbance F(2,18) = 2.35 , p = 0.1238

Which means that the observed differences over time are not statistically significant.

3.6 Discussion of the Results

In this section the results of the experiments that were presented in the preceding section
will be discussed thoroughly.

3.6.1 Performance of the Different Features

As already mentioned, the performance of the features MDF and MNF is significantly
lower than the performance of the other features and the performance of the MNF feature
is significantly worse than the MDF feature, while there is no statistically significant
difference between the other features. The question arises why the only two features
based on the spectrum of the EMG signal perform significantly worse than the time
based features. Boostani and Moradi in 2003 [10] evaluated a variety of features with
respect to their ability to separate 15 different classes (including the resting class) and
their robustness against noise with data from 10 disabled people. In their comparison,
the median frequency did not perform much worse than, for example, the waveform
length feature. The sensitivity against noise, however, has been reported to be higher in
this feature. So maybe the fact that, with regards on the user comfort and ease of use,
no excessive skin preparation like dry shaving and abrasion has been performed led to
increased noise in the EMG signal due to the higher electrode-skin impedance and hence
led to the decreased performance. However, the results of this study can not be compared
to the results of this thesis due to the fact that they used data from disabled people. But
Oskoei and Hu [38] also investigated the performance decrease of different features when
shortening the segment length of the data used for classification. They used data from
11 healthy subjects and found that the frequency domain features showed a decrease in
classification performance when the segment length was shortened while the performance
of the used time domain features was almost stable. The origin of their investigations
was a segment length of 500ms, so the segment length of 250ms used in this thesis
could be another reason for the lower performance of the two frequency domain features.
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However, a longer segment length leads directly to a greater latency of the system and is
thus undesirable. Another result is that, although no statistical significance is given, the
mean accuracy of the waveform length feature was the highest, which is consistent with
findings for single features in literature [38], closely followed by the Willison amplitude
feature. This indicates that the usage of the waveform length feature would generally
lead to good results when there is no time to perform a comparison of different features.

3.6.2 Results of the Online Test

Overall performance of the online system
The online system implemented in this thesis showed a good overall performance over
10 subjects and 3200 trials of 92.75%. However, the classification accuracy has not been
the same for all different types of performed movements. Looking at the classification
results per class given in 3.4, it seems that especially the supination, radial deviation
and pinch classes performed worse than the others in general. Figure 3.10 shows that for
four subjects at least one class had a quite low detection rate. In the case of supination,
this could be caused by the fact that, like in [10] for example, no exclusive electrode
has been assigned to the pronator teres muscle. But because the carpi radialis mus-
cle is adjacent to this muscle, classification of this movement should still be possible.
However, only a slight misplacement of the electrode could result in a relatively large
decrease of detected activation from the pronator muscle. The radial deviation class has
mostly been confused with an extension of the thumb or supination. When performing
a radial deviation it is, however, quite common among all subjects to extend the thumb
during the movement. The subjects stated that this would be the natural way of them
performing this movement. The confusion with supination probably occurred due to a
slightly pronated resting postition. Since only the 250ms of the signal are extracted
for classification this could easily result in such a misclassification. The pinch class has
quite often been confused with the class for making a fist. These movements however
have relatively similar patterns, at least with regard to the muscles the signals are de-
rived from. A very strong pinch grasp is therefore quite likely to be confused with a fist.
The confusion of both the pinch and the fist movement with wrist flexion most likely
results from the observed tendency of the subjects to slightly flex their wrist during
these motions. Generally, some subjects stated that the individual movements did not
seem totally natural to them and that in normal everyday situations they performed
combinations of the movements more often.
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Subject S2
Subject S2 showed an almost perfect performance during the online test. Only 3 out of
320 movements have been classified incorrectly and one of the was because the subject
missed the cue due to a lack of focus at this moment.

Subject S10
As mentioned before, the online system showed the worst performance for subject S10.
Especially the classes pronation and supination achieved low accuracies of 78.13% and
only 40% respectively. This means that the supination class did hardly work with this
subject. In fact, subject S10 stated that performing this movement was exhausting and,
with an increasing number over time, even failed to exceed the threshold for onset de-
tection in some of the trials. Also, according to the VAS results from the questionnaires,
subject S10 stated to be most exhausted among all subjects (see Figure 3.16). Of course,
a dispositioning of the electrodes is another possible explanation for the shown results.
Especially since the supinator muscle is in the deep layer of the posterior compartment
and a bipolar derivation has been used, a suboptimal electrode position could result in
a greatly attenuated signal from this muscle. Unfortunately, there is no perfect solution
to the problem of electrode dispositioning since the location of the individual muscles
varies slightly for each subject.

Subject S6
Subject S6 (left handed) showed vastly decreasing performance over the 4 testing trials.
When using the non-dominant hand for EMG measurements several factors have to
be taken into account. A number of researches have addressed the influence of hand
dominance on muscle fatigue, motor unit firing behavior, differences in the EMG signals
and differences in movement coordination [3; 5; 18; 22; 46]. It has been found that the
EMG activity varies between the same movements performed with the dominant and the
non-dominant side [18]. However, this should not have an influence on the performance
of the system since the classifier is trained based on the underlying EMG signals and the
CV-accuracy has been quite high. But it has also been found that hand dominance has
an impact on the manifestation of muscle fatigue in the upper trapezius muscle. It has
been shown that the non-dominant side has a statistically significant higher fatigability
in both the right- and the left handed subject group [22]. Although this investigation has
been performed on a different muscle group it seems reasonable that the non-dominant
arm would show larger liability for fatigue to occur since the dominant side is usually
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better trained because of preferred use in daily activities. However, this is a real issue,
since a system for the application in the control of an active prosthesis should work for
both the dominant and the non-dominant hand for obvious reasons.
Another issue could be overfitting. Looking at Table 3.1, the parameter C (i.e. the
slack variable) that was used to train the classifier for subject S6 shows a high value of
28 = 256. As mentioned in 2.2.1, C controls the upper boundary of the VC-dimension
and hence a large value for C indicates a tendency towards overfitting which leads to a
bad generalization of the trained classifier. Such an overfitting classifier would be very
sensitive to changes of the features used as input data. This could explain the vast
decrease in classification performance observed in subject S6. The features could have
undergone small changes over time due to increasing muscle fatigue, maybe worsened
because of the fact that the non-dominant hand was used for the experiment, which
would lead to the observed behavior when a classifier with bad generalization is used.

3.6.3 Questionnaire Results

The questionnaire assessed the questions whether the subjects were bothered by the
electrodes or if the movements that have to be performed to control the system caused
uncomfortable exhaustion in the muscles of the forearm. The discomfort caused by the
electrodes mounted to the skin generally did not seem to be unreasonably high. It is
however quite interesting that most of the subjects felt less disturbed by the electrodes
at the end of the measurement than at the beginning. However, across all subjects this
decrease in the disturbance level has not been statistically significant. The exhaustion
of the muscle on the other hand could, at least in some subjects, represent a major
limitation of the system. This fact would become even more critical for users that do
not have a fully functional muscular structure in the forearm (e.g. transradial amputees
or post-stroke patients). But also for this value, even though some subjects stated
that they felt an exhaustion of their muscles, the differences over time have not been
statistically significant. But this only means that exhaustion does not seem to be a
general problem and for individual subjects it could still represent a limitation of the
system.
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4 EMG Game Control

The intention of this thesis was to implement a system that can be used for the control
of an active prosthesis. However, such a device has not been available in order to test the
real life performance of the algorithm. Instead it has been decided to use the system as
an input device for Human-Computer Interaction (HCI). This area is also an important
possible application for a control system based on sEMG signals. For example, using a
system based on the EMG signal of facial muscles, like presented in [39], could provide
easier access to computers for persons with paralyzing medical conditions. In the area of
rehabilitation (e.g. post-stroke rehabilitation), an EMG HCI could be used to motivate
patients to exercise by assigning them an entertaining task [50]. For healthy users, EMG
based HCI could offer new and enhanced experience in computer games. For example,
natural movements of the human arm could be mapped to different control signals for
the computer in order to make the interaction with the computer more intuitive. This
application for computer games is what has been implemented for this thesis. Research
in this area has also been conducted by MicrosoftTM [29] who have also been granted a
patent for a wearable EMG device that can be used to acquire input signals for games.
The experiment that has been conducted will be explained in the following section.

4.1 System Setup

The signal recording hardware used for this experiment as well as the respective settings
have been the same as in 3. However, in this experiment two separate computers have
been used - one for signal acquisition and classification and the other one for translat-
ing the classifier commands into game commands via the Graz BCI Game Controller
developed by Markus Pröll [43], presenting visual feedback as an overlay on the game
screen and running the gaming application (Figure 4.1). The communication between
those two machines has been realized via TCP/IP. The signal processing on machine A
has again been accomplished in Matlab and Simulink.

4.2 Gaming Application

The computer game Portal 2 ( c© 2011 Valve Corporation) has been chosen for the gaming
application. Portal 2 is a first person puzzle platform game in which the user has
to control an avatar in a 3D environment and solve different puzzles without a time
constraint. To do this, the player can use a device to shoot two different portals (orange
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Result 
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Figure 4.1: Illustration of the game control system consisting of two separate computers. The first
machine runs the EMG Hand And Wrist movement Classifier (HAWC), while the sec-
ond machine interpretes the commands that are sent from the Classifier via TCP/IP and
translates them into game commands to control the avatar. The gaming application itself
represents the feedback to the user.

and blue) that are capable of transferring any object bidirectionally from source to
destination. The player can also use a cube as an auxiliary device to solve some of the
tasks. The cube can be used to deflect a laser beam or to trigger switches by its weight.
Figure 4.2 (a-c) shows the usage of the cube for laser beam deflection and how portals
can be used to pass the laser beam from source to destination. In Figure 4.2 (d-f) the
cube is used to trigger a switch by its weight.
In order to control the game with the results of the sEMG classification system, the
most important commands of the game had to be mapped to the different movements
the system is able to distinguish. This command mapping can be found in Table 4.1.
For the action controls a dwell timer of 1s has been introduced in order to minimize false
activations. This is important since an unwanted activation of one of these commands
can have a large negative impact on the level progress.
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Figure 4.2: Usage of portals and the cube in Portal 2. The cube can be used to redirect laser beams (a)
or to trigger switches (d-f). The two portals transport any object from source to destina-
tion (b,c).

Game Action Mapped Movement
Action Controls
Blue Portal Pronation (Pro.)
Activate Pinch Grasp (Pi.)
Orange Portal Supination (Sup.)
Movement Controls
Walk Forward Fist (Fi.)
Walk Backwards All fingers extension (E.A.)
Turn Left Wrist flexion (W.F.)
Turn Right Wrist extension (W.E.)
Look Up Radial Deviation (D.R.)
Look Down Ulnar deviation (D.U.)
Jump Forward Thumb extension(Th.)

Table 4.1: Mapping of hBCI signals to the game commands.
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4.3 Experimental Procedure

This section describes the experiment conducted to test the performance of the system
in a self-paced online scenario controlling a gaming application. The movements that
had to be classified and the placement of the electrodes has been the same as in 3.4.1
and 3.4.2, respectively, and will hence not be covered again here.

4.3.1 Subjects

This experiment has been conducted with two subjects. Both of the subjects were male
and right-handed. The age of the subjects was 26 years and 27 years, respectively. Both
of the subjects already had experience with first person games.

4.3.2 Phases of the Experiment

The experiment in total consisted of four different phases (Figure 4.3). A preparation
phase where the electrodes have been applied and the subjects have been informed
about the experiment, a training session, a cue-based testing session to get an objective
measure of the classifiers performance and the self-paced gaming application.

Prep. Training Session Test Session 

0:15 0 0:50 1:30 t (h:min)  

Self-paced Game Control 

Figure 4.3: The different phases of the game control experiment. The first step is a preparation phase,
where the electrodes are applied, followed by a training session, a cue-based test session and
finally the self-paced gaming application.

The first three phases have been conducted in the same manner as in 3.4.4 and hence
will not be described again in this section. Also, like in 3, the best performing feature
for each subject has been calculated for 250 ms of data and used for the online test.

Game Control Session
The game control session started with an introduction of the subject to the game in
general and the two levels (Level 2.1 and 2.2) that had to be completed during the test.
After this introduction the subject first completed the level using the mouse only as a
reference. To eliminate the experience of the subjects with computer games to some
degree, all of the essential control signals have been mapped to the different buttons of
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the mouse instead of using both mouse and keyboard. After this, the sEMG classification
system has been used as the only control input to complete the same two levels. In this
scenario the system worked in a self-paced manner, so no cues have been presented. The
subjects navigated freely in the levels trying to solve the necessary tasks.

4.4 Results

The results of the training session, the cue-based online test and the game control session
are presented in this section.

4.4.1 Results of the Training Session

After the training session the classifier has been trained with the best performing feature
for each of the subjects based on the CV results, like in the feature comparison study, to
find out if the best performing features of this study would also be chosen in this scenario.
The cross validation results and the chosen feature with the respective parameters are
presented in Table 4.2.

Subject Best Feature log2(C) log2(γ) CV acc. (%)
SP1 WAMP 6 −4 99.89
SP2 WAMP 4 0 96.71

Table 4.2: Results of the training session including the best performing feature for each subject and the
chosen parameters C and γ for the SVM.

4.4.2 Results of the Cue-based Online Test

Also in this experiment a cue-based online test has been performed. This has been done
in order to have some sort of objective measure for the performance of the classifier
used in the self-paced scenario. The result of this test are the two confusion matrices
in Figure 4.4. The achieved accuracies for the two subjects have been 95.94% and
97.81%, respectively.

4.4.3 Results of the Game Control Session

In the game control session the in-game commands had to be addressed via the differ-
ent hand movements. Two examples of this are shown in Figure 4.5 and Figure 4.6,
respectively.
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Figure 4.4: Confusion matrices of SP1 and SP2 for the cue-based online test that has been conducted
prior to the gaming application.

Both of the subjects completed the two levels using the EMG control system. The time
taken to complete the levels is given in Table 4.3.

Level Input modality SP1 SP2

2.1 Mouse 0:36 0:39
EMG 1:48 1:15

2.2 Mouse 1:24 1:13
EMG 7:16 4:45

Table 4.3: Comparison of level completion times using the mouse and the sEMG classification system
as input modalities.
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Figure 4.5: Shooting an orange Portal in Portal2. The images are sorted from left to right, the images
in the upper row show the in-game screen and the users actions while lower row show the
actions of the user, only zoomed. On the left hand side the user has already aimed at the
right position and is now ready to initiate the portal action. In the middle the user performs
a supination which causes the dwell timer to start rising. On the right hand side the dwell
timer has reached its maximum and the portal has been fired. The user has returned to his
resting position.

Figure 4.6: Dropping the cube in Portal2. Again, the images are sorted from left to right. The left hand
side shows the starting position of the cube drop action where the user has already aimed
in the right direction. The images in the middle show the user performing a pinch grasp,
the dwell timer for the "activate" command starts rising. On the right hand side the dwell
timer has reached its maximum and the action was triggered resulting in a cube drop.
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4.5 Discussion of the Results

4.5.1 Results of the Training Session

From Table 4.2 it can be seen that for both of the subjects the best performing feature
was WAMP. This feature has already been chosen for the majority of subjects in the
feature comparison study. This suggests that this feature is generally well suited for dis-
tinguishing between the different movements in this setup. The cross validation accuracy
has been quite high for both subjects with moderate choices for the SVM parameters.

4.5.2 Results of the Cue-based Online Test

The results of the cue-based online test have been quite high for both subjects. Look-
ing at the confusion matrix for subject SP1 (Figure 4.4 shows that the system had
some problems with classifying the pronation and the radial deviation classes. The per-
formance for subject SP2 has been a bit higher, but the confusion matrix indicates a
bias of the classifier towards the pinch grasp class, since nearly all of the misclassified
movements have been classified with this label. This issue could be addressed by using
different electrode positions or different movements for classification in the future.

4.5.3 Results of the Game Control Session

Both subjects were able to complete the levels without any assistance. However, subject
SP1 had a relatively high completion time for level 2.2 of over 7 minutes. One problem
for S1 was that during the gaming session it was suddenly very difficult to achieve a
sustained activation for some classes. The problem was that between the cue-based test
and the gaming session the subject and the recording hardware had to be repositioned.
This was necessary because the cues have been presented on the machine that was
doing the classification and the gaming application was running on the other machine.
During this repositioning tensile loading of the electrodes occurred which may be one
explanation for this behavior. Due to this issue, the perceived level of control for SP1
has been quite low. For subject SP2 this repositioning has been avoided by putting the
screens of the two computers next to each other. Because of this the gaming application
could be controlled from the same position as the cue-based test. Subject SP2 reported
no issues regarding the sustained activation of commands and the perceived level of
control was high. The tensile loading for subject SP1 is also partly caused by the bulky
measurement setup that would have to be changed for future applications.
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5 Hybrid System

In addition to the previous experiments the sEMG classification system, this time only
distinguishing between 7 classes, has been combined with a with a three-class Steady-
State Visual Evoked Potential (SSVEP) Brain-Computer Interface (BCI) in order to
form a hybrid BCI (hBCI). A BCI is a system that is able to derive control signals from
the users electroencephalogram (EEG) SSVEPs are responses of the human brain in the
visual cortex that occur when the user focuses on flickering lights and can be measured
in the EEG [56]. Hybrid BCIs are combinations of a BCI and and another system that
can be another BCI ore some other system [40]. The use of a hybrid system only makes
sense if the combined system achieves specific goals better than the conventional BCI. In
the case of a SSVEP BCI in combination with an sEMG classification system the benefit
would be a higher Information Transfer Rate (ITR) and a lower latency. A comparison
of the ITRs and latencies of different BCI paradigms and a system based on EMG can
be found in Table 5.1. For more information on BCIs and the different Paradigms the
reader is pointed to [47; 58].

Paradigm ITR (bits/min) Latency (sec)
LRP 20 −0.120
P300 28.2 1.58
ERD/ERS 28.8 1.5
SSVEP 26.4 2.10
Sensorimotor cortex rythms 16.8 2.20
SCP 3.6 65.75
EMG 99.6 0.96

Table 5.1: Comparison of the ITR and the latency of different BCI Paradigms and EMG [42].
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5.1 Signal Recording Hardware

For this experiment again two computers have been used that communicated via TCP/IP.
One machine was again responsible for the acquisition of the sEMG and EEG signals
and subsequent classification while the other machine was presenting the SSVEP stimuli
and feedback, translating the commands and running the game application (Figure 5.1).
The biosignals were recorded using two g.USBamps. The amplifier for the sEMG again
recorded with a sampling frequency of 2400Hz and a band pass filter from 5Hz to 500Hz
as well as a notch filter were applied. The EEG (13 channels over the occipital cortex,
Figure 5.2) was recorded using a sampling frequency of 1200Hz, a 0.5Hz to 100Hz
bandpass filter and notch filtering.
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Figure 5.1: The hybrid system consisting of a three class SSVEP BCI combined with the seven class on-
line EMG classification system. The classification results of the two systems are transmitted
to the second computer via TCP/IP. The second machine translates these commands into
mouse and keyboard inputs to move the avatar and controls the interface extension engine
(IEE) that provides feedback for the user.
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Figure 5.2: Electrode positions according to the 10/20 system. The 13 used occpital electrodes are
marked in green.
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5.2 Biosignal Classification

The classification algorithm for the frequency-coded SSVEP system has been provided
by Tobias Oesterlein [37]. This system is based on Canonical Correlation Analysis
(CCA) [27; 31] in combination with a Linear Discriminant Analysis.
For the 7-class sEMG classification system the same onset detection and classification
algorithms as in the previous experiments has been used. However, instead of using
a single feature a combined feature vector consisting of three features has been used.
These three features have been WL, WAMP and MAV, since in 3.5.1 these features had
the highest mean values when comparing the CV results of all 10 feature extraction
method applied to the data of 10 subjects (Figure 3.7, Table 3.2). The intention was
that a combination of three features would lead to a more powerful feature vector and
hence a better overall performance.

5.3 Gaming Application

The gaming application for this experiment was the same as in 4.1. The 10 in-game
commands have been divided into two sets of 3 and 7 commands, to be addressed by
the two classification systems. The action commands in Table 4.1 have hereby been
controlled by the SSVEP system, the movement controls have been addressed by the
sEMG system. The respective hand movements for the 7 movement controls have been
the same as in the EMG game control experiment.

5.4 Experimental Procedure

As already mentioned the movements to address the 7 EMG-controlled in-game com-
mands were the same as in the previous experiment, only excluding pronation, supination
and pinch grasp. Since the movements have been mostly identical also the same electrode
position have been chosen for signal acquisition.

5.4.1 Subjects

The experiment has been conducted with two subjects that have already participated
in the previous experiments (i.e. S1 and SP2). Both of these subjects are right-handed
and already had experience with the game Portal 2.
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5.4.2 Phases of the Experiment

The procedure of the experiment is illustrated in Figure 5.3. First the preparation for
the EMG recording and the EMG training session consisting of two runs of 70 trials
each have been conducted. The training paradigm was the same as for the previous
experiments, but only showing 7 cue images of course. After that the EEG electrodes
have been applied and a screening session has been conducted in order to find the three
best suitable stimulation frequencies in the range of 9-30 Hz. Then the subjects had to
complete the two levels in the game. Finally the performance of the EMG classifier has
been assessed by a cue-based online test. This test consisted of three runs with 70 trials
each.

EMG 
Prep. EMG Training 

0 t 

Self-paced Game Control EEG 
Prep. 

SSVEP 
Screening EMG Cue-based 

Figure 5.3: The different phases of the hybrid experiment. First the preparation for the EMG record-
ing and the EMG training has been conducted, followed by the preparation for the EEG
recording and the SSVEP screening and the game control. After this, the performance of
the EMG classifier has been assessed by a cue-based test.

5.5 Results

In this section the results of the EMG part of the hybrid system are presented.

5.5.1 Results of the Training Session

The CV results on the training set and the parameters for the SVM found via grid search
are given in Table 5.2.

Subject log2(C) log2(γ) CV acc. (%)
S1 0 −4 96.86
SP2 0 −3 99.29

Table 5.2: Results of the training session in the hybrid experiment including the chosen parameters C
and γ for the SVM.
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5.5.2 Results of the Cue-based Online Test

Again a cue-based test has been performed to assess the performance of the EMG clas-
sifier. The classification accuracies have been 97.14% for S1 and 99.52% for SP2 on the
data set of 210 trials. The confusion matrices are illustrated in Figure 5.4.
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Figure 5.4: Confusion matrices of S1 and SP2 for the cue-based online test that has been conducted in
the hybrid experiment.

In this experiment also the issue of erroneously detected onsets when no action was
intended by the user was investigated. For this purpose the inter-trial periods have been
investigated. In these periods a total number of 34 false onsets has been detected for
both subjects with a mean length of 75.4ms. The effect that the application of a dwell
timer would have on the number of erroneous onsets is shown in Figure 5.5.
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Figure 5.5: Illustration of the influence of a dwell timer on the number of false activations.
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5.5.3 Results of the Game Control Session

In the game control session the completion time for the two levels have again been
compared for the two different input modalities (i.e. hBCI and mouse). The results can
be found in Table 5.3.

Level Input modality S1 SP2

2.1 Mouse 0:33 0:32
hBCI 1:56 1:15

2.2 Mouse 1:06 0:54
hBCI 3:30 4:40

Table 5.3: Completion times for the 2 played levels in Portal 2 using the hBCI system and the mouse
as a reference input modality.

5.6 Discussion of the Results

5.6.1 Results of the Training Session

Both subjects achieved high CV accuracies based on the training data. The chosen
values for the parameter C suggest that the tendency of the classifier to overfit could
be less distinct than in 3. This could be caused by the fact that a combined feature
vector has been used for this experiment, but also by the fact that this was only a 7-class
problem. Another factor is that the subject already had experience with the experiment
and hence maybe performed better during the training phase, for instance by performing
the movements more consistently.

5.6.2 Results of the Cue-based Online Test

Both subjects showed a very good performance of 97.14% and 99.52%, respectively. For
subject SP2 only one class (ulnar deviation) had a detection rate below 1. For subject
S1 misclassifications occurred in four of the classes, many of which were classified as an
extension of the thumb. This indicates a bias of the classifier towards this class. The
investigation of the effect that a dwell timer would have on the number of erroneous
onsets showed that the introduction of a dwell timer of only 50ms would lead to a
decrease of erroneous onset detections from 34 to 15 without a decrease of true positive
onsets and the latency of the whole classification system would still be within the 300ms
range.
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5.6.3 Results of the Game Control Session

The time to finish the individual levels with the hBCI systems has been 2 – 4 times as
large as the completion time with casual input devices for both subjects. This difference
can not be explained with the latency of the system only. Especially because once
a movement, e.g. walk forward, is detected the user usually keeps up the action for
several seconds so that the influence of the latency is smaller. However, aiming in a 3D
environment using the EMG signals is not as precise as aiming with a mouse since there
is a latency between the users return to the resting position and the recognition of this
resting position by the onset detection unit. Hence the mouse speed had to be lowered
in order to accomplish the necessary aiming tasks.
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6 Discussion and Conclusion

6.1 General Aspects

Measurement Setup
The implemented system consisted of a (stationary) measurement PC, a biosignal ampli-
fier and 17 electrode cables and electrodes that have been attached to the users forearm.
This setup is pretty much fixed to a single location and limits the users movement
range. Additionally, the 17 single electrode cables had to be formed into a strand of
cables and attached to the users arm for artifact prevention. For a practical use of the
presented system on a regular base some adaptations would be desirable. For instance,
the measurement hardware would have to become smaller and, ideally, attached to the
user (e.g. his arm) to guarantee mobility. Also the 17 electrode cables seemed quite
bulky, so either a reduction of necessary electrodes or a more sophisticated setup would
be advantageous. Also, using dry electrodes that are integrated in some sort of sleeve
that can simply be pulled over the forearm, like in [57], seems very advantageous.

Electrodes
The electrodes used for this work were monopolar electrodes. Bipolar electrodes, ideally
with only a single connection cable would be of great advantage since this would reduce
the application time and the number of electrode cables. It has also been observed that
for subjects with hairy forearm, the adhesion of the electrodes decreased over time and
the electrodes tended to lose contact to the skin. This could be overcome by using some
sort of sleeve with dry electrodes in it instead of adhesive electrodes.

Cue Presentation
Even though it was attempted to present cue images that present the required move-
ments in a comprehensible way, some of the subjects expressed that they had problems
distinguishing some of the cues, at least in the relatively short time they were presented.
Maybe an animation showing the movement itself and not just the final position would
be more suitable for the task and would prevent possible wrong movements. Especially
in the training phase a minimization of wrong movements would be desirable since oth-
erwise the training data is contradictory.
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SVM Training Time
One problem concerning the cue-based online test was related to the training time of
the SVM. Because of the fact that 10 different features have been evaluated, the grid
search for the parameters C and γ for the SVM had to be conducted for each of the
possible features. If combined feature vectors of multiple features are to be evaluated
this problem becomes even bigger, because the number of possible combinations depends
on the number of available features and the number of features chosen to combine into
one vector.
If there are n different features, and every combination of k of those features should be
tested, the number of possible combinations is determined by:

n!

k!(n− k)!
It can be seen easily that this number tends to get quite big really fast, for instance
for all possible combinations of up to two Features already 55 grid searches for the
best parameters would have to be conducted. The big problem with this is that the
comparison of the different feature combinations has to be done between training and
online test, while the subjects are still connected to the measurement hardware. So it
is clear that this time has to be kept as short as possible. Unfortunately, even though
the source code of LIBSVM has been optimized to operate on all four processors of
the computer used in this work, the calculations to find the best single feature for the
subject (i.e. 10 grid searches with CV) already took six minutes. For future work, the
best single feature of the feature comparison study or a combination of the best features
could be used to avoid this long training time.

Experiment time
Another issue regarding the training is the time it takes to record all the necessary data.
Each training run consisted of 70 Trials (i.e. 7 per class) and a took about six minutes
to finish. Four of these runs have been conducted to get 28 training samples per class
in order to limit the possibility of overfitting. However, looking at the parameters that
were chosen during the grid search in Table 3.1 and keeping in mind that a large value
for C leads to overfitting on the training data (as described in 2.2.1) it can be seen
that there is potential overfitting for some subjects. This could mean that there are
still too few training samples to train a robust classifier. On the other hand, recording
more data means elongated training sessions, and some of the subjects mentioned that
the training is kind of repetitive. Most of the subjects said that the feedback run,
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although the only difference was the acoustic feedback if a movement was correctly
classified, was much more interesting. Maybe this could be used to ones advantage if
the classifier is first only trained with a few samples per class and the data from each of
the online runs is then added to the training set. Of course one could implement some
kind of more sophisticated feedback like a simple game which would probably result in a
higher subject motivation. Applying these changes to the training phase that has to be
conducted before an application can be controlled would result in a subject with higher
motivation and a more robust classifier.
Another option could be to restrict the parameter C to lower values, which could result
in lower CV results but a better generalization. Also, instead of the C-SVM used in this
thesis, a ν-SVM could be used. In this variant of the SVM the parameter ν is in the
range between 0 and 1 and indicates the fraction of training samples that are used as
support vectors and hence allows better control of the number of support vectors used.

Erroneous Onset detections
For an online control application a good classification accuracy alone is not enough.
While playing Portal 2 it became obvious that erroneous detections of a movement
onset have a negative impact on the gaming experience since in the worst case they
could lead to a situation where all the work that has been done so far in the level is
annihilated. It has been shown that the introduction of a dwell timer could significantly
reduce the number of erroneous onsets. But of course there will always be a trade-off
between these erroneous detections and the latency of the control system.
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6.2 Conclusion and Future Perspectives

The system presented in this thesis is capable of distinguishing between 10 different
gestures with a high overall performance. Based on the results of the feature comparison
experiment, a combined feature vector that promises good general performance has been
found and it has been shown that the system can operate in a self-paced manner. The
experiments in this thesis have been conducted with healthy subjects, however, Tenore
et. al in 2009 [53] have compared the accuracies of able-bodied subjects with those of a
transradial amputee and there was no significant difference. This means that the system
presented in this thesis would also be applicable for transradial amputees and could thus
be used to control actice hand prostheses. But of course there is room for improvement
in the future. For example a more mobile setup would be desirable, maybe using an
electrode sleeve and some embedded system for signal processing. Also the application
of a regression algorithm could be beneficial for the control of active prosthesis and thus
would be worth investigating in the future.

71



References

References

[1] http://bio-medical.com/media/support/H124SG.pdf
(accessed April 2012).

[2] http://www.shadowrobot.com/hand/competitors.shtml
(accessed April, 2012).

[3] Alexander Adam, Carlo J. De Luca, and Zeynep Erim. Hand Dominance and
Motor Unit Firing Behavior. Journal of Neurophysiology, 80(3):1373–1382, 1998.
URL http://jn.physiology.org/content/80/3/1373.abstract.

[4] Ben Aisen. A Comparison of Multiclass SVM Methods. http://courses.

media.mit.edu/2006fall/mas622j/Projects/aisen-project/index.html, De-
cember 2006.

[5] Leia B. Bagesteiro and Robert L. Sainburg. Handedness: Dominant Arm Advan-
tages in Control of Limb Dynamics. Journal of Neurophysiology, 88(5):2408–2421,
2002. doi: 10.1152/jn.00901.2001. URL http://jn.physiology.org/content/

88/5/2408.abstract.

[6] Mark F. Bear, Barry W. Connors, and Michael A. Paradiso. Neuroscience: Explor-
ing the Brain. Lippincott Williams & Wilkins, 2006. ISBN 0781760038.

[7] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[8] S. Bitzer and P. van der Smagt. Learning EMG control of a robotic hand: towards
active prostheses. In Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, pages 2819 –2823, may 2006. doi: 10.
1109/ROBOT.2006.1642128.

[9] Paolo Bonato, Tommaso D’Alessio, and Marco Knaflitz. A Statistical Method for
the Measurement of Muscle Activation Intervals from Surface Myoelectric Signal
During Gait. IEEE Transactions on Biomedical Engineering, 45(3):287–299, March
1998.

[10] Reza Boostani and Mohammad Hassan Moradi. Evaluation of the forearm EMG
signal features for the control of a prosthetic hand. Physiological Measurement, 24
(2):309, 2003. URL http://stacks.iop.org/0967-3334/24/i=2/a=307.

72

http://bio-medical.com/media/support/H124SG.pdf
http://www.shadowrobot.com/hand/competitors.shtml
http://jn.physiology.org/content/80/3/1373.abstract
http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/index.html
http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/index.html
http://jn.physiology.org/content/88/5/2408.abstract
http://jn.physiology.org/content/88/5/2408.abstract
http://stacks.iop.org/0967-3334/24/i=2/a=307


References

[11] Jürgen Bortz. Statistik: für Sozialwissenschaftler (German Edition). Springer,
1999. ISBN 3540650881.

[12] J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger. DLR-Hand II: next gen-
eration of a dextrous robot hand. In Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, volume 1, pages 109 – 114 vol.1,
2001. doi: 10.1109/ROBOT.2001.932538.

[13] Claudio Castellini and Patrick van der Smagt. Surface EMG in advanced hand
prosthetics. Biological Cybernetics, 100:35–47, 2009. ISSN 0340-1200. URL http:

//dx.doi.org/10.1007/s00422-008-0278-1. 10.1007/s00422-008-0278-1.

[14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2(3):27:1 – 27:27,
2011.

[15] Scott Day. Important Factors in Surface EMG Measurement. Bortec Biomedical.
http://www.bortec.ca/pages/resources.htm (accessed October 11, 2011).

[16] Carlo J. de Luca. The use of surface electromyography in biomechanics. Journal of
Applied Biomechanics, 13(2):135 – 163, 1997.

[17] Carlo J. de Luca. Surface Electromygraphy: Detection and Recording. DelSys
Incorporated, 2002.

[18] Louise Pyndt Diederichsen, Jesper Nørregaard, Poul Dyhre-Poulsen, Annika
Winther, Goran Tufekovic, Thomas Bandholm, Lars Raundal Rasmussen, and
Michael Krogsgaard. The effect of handedness on electromyographic activity of hu-
man shoulder muscles during movement. Journal of Electromyography and Kinesiol-
ogy, 17(4):410 – 419, 2007. ISSN 1050-6411. doi: 10.1016/j.jelekin.2006.03.004. URL
http://www.sciencedirect.com/science/article/pii/S1050641106000393.

[19] Richard Drake, Wayne Vogl, and Adam Mitchell. Gray’s Anatomy for Students.
Churchill Livingstone, 2004. ISBN 0443066124.

[20] K. Englehart and B. Hudgins. A robust, real-time control scheme for multifunction
myoelectric control. Biomedical Engineering, IEEE Transactions on, 50(7):848 –
854, july 2003.

73

http://dx.doi.org/10.1007/s00422-008-0278-1
http://dx.doi.org/10.1007/s00422-008-0278-1
http://www.bortec.ca/pages/resources.htm
http://www.sciencedirect.com/science/article/pii/S1050641106000393


References

[21] Kevin Brian Englehart. Signal Representation for Classification of the Transient
Myoelectric Signal. PhD thesis, The University of New Brunswick, October 1998.

[22] Dario Farina, LauraA.C. Kallenberg, Roberto Merletti, and HermieJ. Hermens.
Effect of side dominance on myoelectric manifestations of muscle fatigue in the hu-
man upper trapezius muscle. European Journal of Applied Physiology, 90:480–488,
2003. ISSN 1439-6319. URL http://dx.doi.org/10.1007/s00421-003-0905-4.
10.1007/s00421-003-0905-4.

[23] FNIMH Henry Gray F.R.S. Gray’s Anatomy: The Unabridged Running Press Edi-
tion Of The American Classic. Running Press, 1974. ISBN 0914294083.

[24] Björn Gerdle, Stefan Karlsson, Scott Day, and Mats Djupsjöbacka. Acquisition,
Processing and Analysis of the Surface Electromyogram. Springer, 1999.

[25] L. J. Hargrove, K. Englehart, and B. Hudgins. A comparison of surface and in-
tramuscular myoelectric signal classification. IEEE Transactions on Biomedical
Engineering, 54(5):847–853, May 2007.

[26] Trevor Hastie, Robert Tibshirani, and Jerome Friedmann. The Elements of Statis-
tical Learning. Springer Verlag, 2 edition, 2009. ISBN 978-0-387-84857-0.

[27] P. Horki, T. Solis-Escalante, C. Neuper, and G. Müller-Putz. Combined motor
imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Medical
and Biological Engineering and Computing, 2011. doi: 10.1007/s11517-011-0750-2.

[28] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. Neural Networks, IEEE Transactions on, 13(2):415 –425, March
2002. ISSN 1045-9227. doi: 10.1109/72.991427.

[29] Jeremy Hsu. The Future of Video Game Input: Muscle Sensor. http://www.

livescience.com/5836-future-video-game-input-muscle-sensors.html, Oc-
tober 2009.

[30] B. Hudgins, P. Parker, and R.N. Scott. A new strategy for multifunction myoelectric
control. Biomedical Engineering, IEEE Transactions on, 40(1):82 –94, jan. 1993.
ISSN 0018-9294. doi: 10.1109/10.204774.

[31] Zhonglin Lin, Changshui Zhang, Wei Wu, and Xiaorong Gao. Frequency Recogni-
tion Based on Canonical Correlation Analysis for SSVEP-Based BCIs. Biomedical
Engineering, IEEE Transactions on, 54(6):1172 –1176, june 2007. ISSN 0018-9294.

74

http://dx.doi.org/10.1007/s00421-003-0905-4
http://www.livescience.com/5836-future-video-game-input-muscle-sensors.html
http://www.livescience.com/5836-future-video-game-input-muscle-sensors.html


References

[32] Herbert Lippert. Anatomie Text und Atlas. Urban u. Schwarzenberg, 6 edition,
1995. ISBN 3-541-07216-4.

[33] Yi-Hung Liu, Han-Pang Huang, and Chang-Hsin Weng. Recognition of Elec-
tromyographic Signals Using Cascaded Kernel Learning Machine. Mechatronics,
IEEE/ASME Transactions on, 12(3):253 –264, june 2007. ISSN 1083-4435. doi:
10.1109/TMECH.2007.897253.

[34] Marie-Françoise Lucas, Adrien Gaufriau, Sylvain Pascual, Christian Don-
carli, and Dario Farina. Multi-channel surface EMG classification using
support vector machines and signal-based wavelet optimization. Biomed-
ical Signal Processing and Control, 3(2):169 – 174, 2008. ISSN 1746-
8094. doi: 10.1016/j.bspc.2007.09.002. URL http://www.sciencedirect.com/

science/article/pii/S1746809407000791. <ce:title>Surface Electromyogra-
phy</ce:title> <ce:subtitle>Surface Electromyography</ce:subtitle>.

[35] Roberto Merletti. Standards for Reporting EMGData. Journal of Electromyography
and Kinesiology, 9:III–IV, 1999.

[36] G. Müller-Putz and C. Neuper. Trends in der Neurorehabilitation. Lecture notes,
Graz University of Technology, 2011.

[37] T.G. Oesterlein. Monocular steady-state visual evoked potential based brain-
computer interfaces by utilizing frequency/phase relationships. Master’s thesis,
Graz University of Technology, 2012.

[38] M.A. Oskoei and Huosheng Hu. Support Vector Machine-Based Classification
Scheme for Myoelectric Control Applied to Upper Limb. Biomedical Engineer-
ing, IEEE Transactions on, 55(8):1956 –1965, aug. 2008. ISSN 0018-9294. doi:
10.1109/TBME.2008.919734.

[39] C. Perez-Maldonado, A.S. Wexler, and S.S. Joshi. Two-Dimensional Cursor-to-
Target Control From Single Muscle Site sEMG Signals. Neural Systems and Re-
habilitation Engineering, IEEE Transactions on, 18(2):203 –209, april 2010. ISSN
1534-4320. doi: 10.1109/TNSRE.2009.2039394.

[40] G. Pfurtscheller, B. Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante,
R. Scherer, T. O. Zander, G. Müller-Putz, C. Neuper, and N. Birbaumer. The
hybrid BCI. Frontiers in Neuroscience, 4:30, 2010. doi: 10.3389/fnpro.2010.00003.

75

http://www.sciencedirect.com/science/article/pii/S1746809407000791
http://www.sciencedirect.com/science/article/pii/S1746809407000791


References

[41] Angkoon Phinyomark, Chusak Limsakul, and Pornchai Phukpattaranont. A Novel
Feature Extraction for Robust EMG Pattern Recognition. Journal of Computing,
1:71 – 80, 2009.

[42] Danny Plass-Oude Bos, Boris Reuderink, Bram Laar, Hayrettin Gürkök, Christian
Mühl, Mannes Poel, Anton Nijholt, and Dirk Heylen. Brain-Computer Interfacing
and Games. In Desney S. Tan and Anton Nijholt, editors, Brain-Computer Inter-
faces, Human Computer Interaction Series, pages 149–178. Springer London, 2010.
ISBN 978-1-84996-272-8.

[43] Markus Pröll. Using a Low-Cost Gyro and EEG-based Input Device in Interactive
Game Design. Master’s thesis, Graz University of Technology, 2012.

[44] J. Rafiee, M.A. Rafiee, F. Yavari, and M.P. Schoen. Feature extraction of fore-
arm EMG signals for prosthetics. Expert Systems with Applications, 38(4):4058
– 4067, 2011. ISSN 0957-4174. doi: 10.1016/j.eswa.2010.09.068. URL http:

//www.sciencedirect.com/science/article/pii/S0957417410010250.

[45] N.S. Rekhi, A.S. Arora, S. Singh, and D. Singh. Multi-Class SVM Classification of
Surface EMG Signal for Upper Limb Function. In Bioinformatics and Biomedical
Engineering , 2009. ICBBE 2009. 3rd International Conference on, pages 1 –4, june
2009. doi: 10.1109/ICBBE.2009.5163093.

[46] Robert L. Sainburg and Sydney Y. Schaefer. Interlimb Differences in Control
of Movement Extent. Journal of Neurophysiology, 92(3):1374–1383, 2004. doi:
10.1152/jn.00181.2004. URL http://jn.physiology.org/content/92/3/1374.

abstract.

[47] R. Scherer, G. R. Müller-Putz, and G. Pfurtscheller. Flexibility and practicality:
Graz brain-computer interface approach. International Review of Neurobiology, 86:
119–131, 2009. doi: 10.1016/S0074-7742(09)86009-1.

[48] A. Schlogl and C. Brunner. BioSig: A Free and Open Source Software Library
for BCI Research. Computer, 41(10):44 –50, oct. 2008. ISSN 0018-9162. doi:
10.1109/MC.2008.407.

[49] Alois Schlögl. GDF - A general dataformat for BIOSIGNALS. CoRR,
abs/cs/0608052, 2006.

76

http://www.sciencedirect.com/science/article/pii/S0957417410010250
http://www.sciencedirect.com/science/article/pii/S0957417410010250
http://jn.physiology.org/content/92/3/1374.abstract
http://jn.physiology.org/content/92/3/1374.abstract


References

[50] Xing Shusong and Zhang Xia. EMG-driven computer game for post-stroke rehabil-
itation. In Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference
on, pages 32 –36, june 2010. doi: 10.1109/RAMECH.2010.5513218.

[51] Gerhard Staude, Claus Flachenecker, Martin Daumer, and Werner Wolf. Onset De-
tection in Surface Electromyographic Signals: A Systematic Comparison of Meth-
ods. EURASIP Journal on Applied Signal Processing, 2:67–81, 2001.

[52] F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, and N.V.
Thakor. Towards the Control of Individual Fingers of a Prosthetic Hand Using
Surface EMG Signals. In Engineering in Medicine and Biology Society, 2007. EMBS
2007. 29th Annual International Conference of the IEEE, pages 6145 –6148, aug.
2007. doi: 10.1109/IEMBS.2007.4353752.

[53] F.V.G. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, and N.V.
Thakor. Decoding of Individuated Finger Movements Using Surface Electromyogra-
phy. Biomedical Engineering, IEEE Transactions on, 56(5):1427 –1434, may 2009.
ISSN 0018-9294. doi: 10.1109/TBME.2008.2005485.

[54] Dennis Tkach, He Huang, and Todd A Kuiken. Study of stability of time-domain
features for electromyographic pattern recognition. Journal of Neuroengineering
and Rehabilitation, 7(21):13, 2010.

[55] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag,
1995. ISBN 0-387-94559-8.

[56] François-Benoît Vialatte, Monique Maurice, Justin Dauwels, and Andrzej Cichocki.
Steady-state visually evoked potentials: Focus on essential paradigms and fu-
ture perspectives. Progress in Neurobiology, 90(4):418 – 438, 2010. ISSN 0301-
0082. doi: 10.1016/j.pneurobio.2009.11.005. URL http://www.sciencedirect.

com/science/article/pii/S0301008209001853.

[57] K.R. Wheeler and C.C. Jorgensen. Gestures as input: neuroelectric joysticks and
keyboards. Pervasive Computing, IEEE, 2(2):56 – 61, april-june 2003. ISSN 1536-
1268. doi: 10.1109/MPRV.2003.1203754.

[58] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan.
Brain-computer interfaces for communication and control. Clinical Neurophysiology,
113:767–791, 2002. doi: 10.1016/S1388-2457(02)00057-3.

77

http://www.sciencedirect.com/science/article/pii/S0301008209001853
http://www.sciencedirect.com/science/article/pii/S0301008209001853


References

[59] M. Yoshikawa, M. Mikawa, and K. Tanaka. Hand Pose Estimation Using EMG
Signals. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th
Annual International Conference of the IEEE, pages 4830 –4833, aug. 2007. doi:
10.1109/IEMBS.2007.4353421.

[60] M. Zardoshti-Kermani, B.C. Wheeler, K. Badie, and R.M. Hashemi. EMG feature
evaluation for movement control of upper extremity prostheses. IEEE Transactions
onRehabilitation Engineering, 3(4):324 –333, dec 1995. doi: 10.1109/86.481972.

[61] M. Zecca, S. Micera, M. Carrozza, and P. Dario. Control of multifunctional
prosthetic hands by processing the electromyographic signal. Critical Reviews in
Biomedical Engineering, 30(4–6):459–485, 2002.

78


	Introduction
	The Electromyographic Signal
	Origin of the Myoelectric Signal
	EMG Signal Properties

	Methods of Recording
	Monopolar versus Bipolar Recording
	Electrode Placement

	Anatomy of the Human Forearm
	Motivation
	Goal
	Organization of Chapters
	Discussion and Conclusion


	Fundamentals
	Onset Detection
	Method by Bonato et al.

	Support Vector Machines
	SVM - Theory
	Expansion for Multiclass-Problems
	SVM used for this Thesis

	Cross Validation
	Confusion Matrix
	Analysis of Variance

	Feature Comparison Study
	Signal Recording Hardware
	Electrodes
	Biosignal amplifier


	Software
	Implemented Feature Extraction Methods
	Time Domain Features
	Mean Absolute Value (MAV)
	Slope Sign Changes (SSC)
	Variance of the EMG (VAR)
	Waveform Length (WL)
	Willison Amplitude (WAMP)
	Histogram of the EMG (HIST)
	Simple Square Integral (SSI)
	Log-Detector (LD)

	Frequency Domain Features
	Median Frequency (MDF)
	Mean Frequency (MNF)

	Feature Parameter Selection
	Segment Length for Feature Extraction

	Experimental Procedure
	Movements to Classify
	Electrode Placement
	Subjects
	Phases of the Experiment

	Results
	Performance of the Different Features
	Results of the Online Test
	Questionnaire Results

	Discussion of the Results
	Performance of the Different Features
	Results of the Online Test
	Questionnaire Results


	EMG Game Control
	System Setup
	Gaming Application
	Experimental Procedure
	Subjects
	Phases of the Experiment

	Results
	Results of the Training Session
	Results of the Cue-based Online Test
	Results of the Game Control Session

	Discussion of the Results
	Results of the Training Session
	Results of the Cue-based Online Test
	Results of the Game Control Session


	Hybrid System
	Signal Recording Hardware
	Biosignal Classification
	Gaming Application
	Experimental Procedure
	Subjects
	Phases of the Experiment

	Results
	Results of the Training Session
	Results of the Cue-based Online Test
	Results of the Game Control Session

	Discussion of the Results
	Results of the Training Session
	Results of the Cue-based Online Test
	Results of the Game Control Session


	Discussion and Conclusion
	General Aspects
	Conclusion and Future Perspectives

	References

