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Abstract

Abstract

On the suitability of Random Forests for detecting mental imagery for non-

invasive Brain-Computer Interfacing.

Brain-Computer Interfaces (BCIs) are devices that directly convert a user's brain activity into 

actions. One class of BCI is based on the detection of changes in oscillatory activity of non-

invasive  electroencephalographic  (EEG) signals.  Motor  imagery (MI)  is  typically  used  to 

induce such changes, and machine learning and pattern recognition methods for translating 

corresponding EEG activity pattern into messages for devices.

The aim of this thesis is to explore the usefulness of the Random Forests classifier (RF) for 

the classification of MI tasks. The RF classifier is an ensemble classifier, which consists of 

many uncorrelated decision trees. The output of the RF classifier  is chosen by a vote.  To 

ensure more diverse votes, each decision tree is built up by randomized parameters.

The  RF  method  was  applied  to  EEG data  recorded  from ten  able-bodied  subjects  while 

performing left  hand (L), right hand (R) and feet (F) MI. The results of extensive offline 

cross-validation  tests  and  offline  BCI  simulations  suggest  that  RFs  are  suitable  for  the 

classification of oscillatory EEG activity patterns. Peak (mean ± std computed by averaging 

the peak accuracies for each subject) accuracies of 82% (59 ± 14%) for the 3-class problem, 

and 93% (67 ± 15%) for L vs R, 91% (77 ± 12%) for L vs F and 94% (77 ± 10%) for R vs F, 

respectively,  were  computed.  The  calculated  results  are  comparable  with  state-of-the-art 

methods used in BCI research.  Furthermore, online feedback experiments were performed 

with three able  bodied subjects.  Two were able to  successfully operate the BCI.  Subjects 

achieved peak accuracies of 92% and 88%, respectively.

Key Words: Brain-Computer Interface (BCI), Random Forests classifier, Machine Learning, 

Electroencephalogram (EEG), Event related desynchronization/synchronization 

(ERD/ERS).
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Abstract

Kurzfassung

Über die Anwendbarkeit von Random Forests Klassifikatoren zur 

Detektion von Bewegungsvorstellungen für nichtinvasive Gehirn-

Computer-Kommunikation.

Gehirn-Computer Schnittstellen (BCI) sind Geräte die Gehirnaktivität direkt in Handlungen 

umsetzen. Eine Klasse von BCI basiert auf Änderungen in der oszillatorischen Aktivität von 

nichtinvasiven elektroenzephalographischen (EEG) Signalen. Bewegungsvorstellungen (MI) 

werden  typischerweise  verwendet  um  diese  Änderungen  hervorzurufen,  welche  durch 

maschinelle Lernalgorithmen in Befehle für Geräte übersetzt werden.

Das Ziel dieser Arbeit ist die Anwendbarkeit von Random Forests (RF) Klassifikatoren zur 

Klassifikation von MI zu untersuchen. Der RF Klassifikator ist ein Ensembleklassifikator der 

aus vielen unkorrelierten Entscheidungsbäumen besteht. Die Entscheidung eines RF 

Klassifikators wird mittels Abstimmung bestimmt. Um verschiedene Stimmen sicherzustellen, 

werden für die Erstellung der Entscheidungsbäume Zufallsparameter verwendet.

Die RF Methode wurde auf EEG Daten angewendet, welche während linker Hand (L), rechter 

Hand (R) und Füße (F) MI von zehn gesunden Probanden aufgezeichnet wurden. Die 

Resultate von Kreuzvalidierungstest und BCI Simulationen legen nahe, dass RF 

Klassifikatoren geeignet sind oszillatorische Muster in EEG Daten zu klassifizieren. 

Maximale Genauigkeiten (Mittelwert ± Standardabweichung, errechnet durch Mittelung der 

Maximalgenauigkeiten der Probanden) von 82% (59 ± 14%) im Fall von drei Klassen und  

93% (67 ± 15%) für L gegen R,  91% (77 ± 12%) für L gegen F und 94% (77 ± 10%) für R 

gegen F wurden errechnet. Die berechneten Ergebnisse sind vergleichbar mit denen von 

aktuell im BCI Bereich eingesetzten Klassifikationsalgorithmen. Des weiteren wurden online 

Feedback Experimente mit drei gesunden Probanden durchgeführt. Zwei waren in der Lage 

mit dem BCI zu arbeiten. Sie erreichten Maximalgenauigkeiten von 92% bzw. 88%.

Schlüsselwörter: Gehirn-Computer-Schnittstelle (BCI), Random Forests Klassifikator, 

Maschinelles Lernen, Elektroenzephalogramm (EEG), Event related 

desynchronization/synchronization (ERD/ERS).
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Introduction

1 Introduction

The topic of Brain-Computer Interfaces (BCI) is a relatively young, substantially growing 

field of research which attracts a lot of scientists from many disciplines [1]. The aim of a BCI 

is to provide instructions from the brain to a computer [2]. In some cases, for example for 

patients with locked-in-syndrome, this can be the only alternative left to communicate with 

the outside world.  In other  cases such a possibility for providing instructions can lead to 

easements in the everyday life as it may be used to control different, commonly computer 

based, applications for communication [3] [4] [5] or environmental control [6]. The general 

approach for a BCI is to measure the brain activity in an invasive or non-invasive way and to 

use these measurements to process control signals (see Figure 1.1) [1].

Figure 1.1: Schematic representation of the functional blocks of a BCI [7] [8].

There are many possible methods for measuring the brain activity [1]. A basic criteria for the 

measurement method of an online BCI is a high temporal resolution. Commonly, users do not 

want to wait for a long time to set commands, and in some applications a quick reaction is  

necessary for the task (e.g. control of machines). A second criteria is that the measurement 

method should be non-invasive.  Non-invasive means that  no break in  the skin is  created. 
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Introduction

Invasive methods have to deal with some disadvantages, for example, the surgery itself or 

inflammation reactions of the body. Furthermore, the method should be reliable, fast to setup 

and easy to use. The electroencephalogram (EEG) [9] fulfills a lot of these requirements well 

and is therefore widely used in the field of BCI research [1], including in this work.

A precondition for a BCI is that the measurements of the brain activity contains components 

which  can  be  deliberately  modified  by  the  user.  In  recent  a  multiplicity  of  different 

neurological phenomena have been investigated to address this precondition [1]. One class of 

BCIs uses changes in the power of specific frequencies of the EEG caused by imagery of 

movements as features [1]. These oscillatory changes, induced by different motor imagery 

(MI), varies the power of the Mu rhythm (the Mu rhythm indicates the resting state of motor 

neurons) in the somatotopic correlated areas of the motor cortex [10]. This process is called 

“event-related  desynchronization  and  event-related  synchronization  (ERD/ERS)”  and  is 

described in [11]. Due to the different positions in the somatotopic correlated areas, MIs of 

different parts of the body produce distinguishable EEG measurements (see Figure 1.2) [10].

Figure 1.2: Geometric mapping between body parts and motor/somatosensory cortex [12].

In the past different machine learning algorithms were reviewed on their ability to classify 

oscillatory changes in EEG measurements caused by MIs [13]. (Classifiers use observations 

of EEG measurements during different MIs as examples for finding a differences scheme 

between them.) For this task, the algorithm needs training observations, which consist of two 

parts. On the one hand the features (the power of the frequencies which are modified by the 

MI) and on the other hand the class (the according MI). The algorithm will “compare” a new 

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 2



Introduction

observation with the previous found scheme to find the corresponding MI. Nevertheless,  the 

problem of classification of MI induced oscillations is not solved satisfactorily so far. The 

accuracies of the classifiers are high, but the results were obtained through a high effort of 

partly  manually  optimizations  (e.g.  screening  for  the  best  features  of  a  subject)  [14]. 

Furthermore due to the non-stationarity of the brain activity, the optimizations can become 

ineffective  after  some time and the  optimizations  may have  to  be  repeated.  Therefore,  it 

makes sense to analyze how the characteristics of a classifier could help to overcome this 

problem.

The aim of this work is to investigate, whether a Random Forest (RF) classifier is able to 

detect the correct MI from the EEG data or not. This is especially important as literature  

research brought up that RF classifiers addresses some of the drawbacks of other classifiers 

[15].

Section  2 of this work, will cover the history and the theory of RF classifiers. Thereafter, 

section  3 will  be  about  the  methods  used.  Subsequently,  section  4 will  answer  which 

parameters of the RF classifier will fit the MIs classification task best. Section 5 will cover 

offline tests and, finally, section 6 will demonstrate the online suitability of the classifier.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 3
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2 History and Theory of Random Forests

The Random Forests (RF) classifier was developed by Leo Breiman († 2005) and published in 

the paper “Random Forests” in 2001 [16]. The algorithm was based on many ideas and papers 

written by Breiman (e.g. “Bagging predictors” in 1996 [17]) and others, like Tin Kam Ho's 

papers on “Random decision forests” in 1995 [18] and on “The random subspace method for 

constructing decision forests” in 1998 [19]. Breiman's paper “Bagging predictors”, in which 

he described the method of  “bootstrap aggregating”, also called “bagging”, is one of the most 

important fundamental papers.  In this  paper,  randomly drawn observations  (bootstrap) are 

used  to  build  a  lot  of  classifiers.  A  voting  of  all  classifiers  then  chooses  the  class 

(aggregating). Using decision trees as classifier in “bagging” leads to RF [15].

A RF classifier  is  an  ensemble  classifier,  which  consists  of  many decision  trees  (see  an 

example tree in Figure 2.1). In order to find a decision, each tree gets a vote. The decision of 

the  RF  classifier  equals  the  majority  decision  of  the  decision  trees.  Or  expressed 

mathematically:

Ĉ rf
B
(x )=majority vote {Ĉ b(x)}1

B
. (1)

The prediction Ĉ rf of the RF (rf) classifier with B trees equals the majority decision of the 

predicted classes Cb of each of the B trees, where x is the observation vector. However the 

prediction of a RF classifier is only better than the prediction of a single tree, if the tree 

classifiers are built differently. If they are identical, the decision of the forest would be equal 

to the decision of a single tree and a forest would not be necessary. To understand how the 

creation of a tree works, it is necessary to explain first, how a decision tree work.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 4
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Figure 2.1: A possible decision tree (modified from [15]).

A decision tree partitions the feature space into a set of rectangles (see Figure  2.2). Then a 

simple  model  for  each  rectangle  is  fitted,  normally  using  a  constant  value.  This  can  be 

mathematically expressed as:

Ĉ t=∑
m=1

M

cm I ( x∈Rm) . (2)

The prediction Ĉ t of the decision tree classifier is the value of c of the region (R) m in 

which the observation vector x end up after its path through the decision tree (see Figure 2.1 

and Figure 2.2).

This partitioning of the feature space and the fitting of the simple models is called “growing 

of the tree” and can be performed iteratively with the following algorithm according to [15]:

1. Start at the Root with all training observations.

2. Use the trainings observations to calculate the “best” split criterion at this node.

3. Split the node into two daughter nodes.

4. Allocate  the  trainings  observations  to  the  daughter  nodes,  according  to  the  split 

criterion.

5. Continue at point 2 for each node.
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History and Theory of Random Forests

Figure 2.2: Possible partition of the feature space by a decision tree (modified from [15]).

The above described algorithm grows the tree iteratively and will stop if there is only one 

trainings observation left at each node. Such a node is then called a leaf and has the value of  

the class label of the training observation. A fully grown tree will highly over-fit the problem. 

For practical use such a tree has to be pruned back. During this procedure some of the leaves 

are cut off and the corresponding training observations of the pruned leaves are allocated to 

the new leaf, which now contains many training observations. The value of the new leaf is the 

mean of all values of the class labels of the training observations in this leaf. The search for 

the  best  pruned  back  tree  is  done  by  cross-validation,  keeping  in  mind  that  this  whole 

procedure works iteratively, global optimization is being done. The algorithm always uses the 

best criterion for a specific node, but there are many cases where a worse split criterion in one 

situation  would  lead  to  a  better  accuracy  in  the  end.  These  two  problems,  the  iterative 

procedure  and  the  over-fitting,  are  the  main  reasons  for  the  relatively  bad  accuracies  of 

decision trees. Pruning is only a solution for the over-fitting problem, but not for the iterative 

procedure. In an iterative procedure, where a global view is missing, the “best” split criterion 

is:

“For each node,  find splitting dimension and  point to maximize proportion of  

class k observations in node m, when class k is the majority class in node m.” [15]
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History and Theory of Random Forests

This means that it is the best to use the feature which contains the most information about the 

class membership of the training observations. There are different approaches for this task. 

Very often, an index is calculated and the minimization of the index is then the target. There 

are different indexes with different properties:

• Misclassification Error (MCE)

• Gini-Index

• Cross-entropie or diviance

The Gini-index is used in the very popular CART algorithm (Classification And Regression 

Trees, invented by Leo Breiman in 1983 [20]). The decision trees in a RF classifier are built 

up with the CART algorithm. Therefore only the CART algorithm and its Gini-index will be 

considered. The Gini-index is defined as follows:

Gini index=∑
k=1

K

p̂mk (1− p̂mk) , (3)

in which p̂mk is the proportion of class k ( k th class of all K classes) observations in node 

m:

p̂mk=
1

N m

⋅∑
x i∈Rm

I ( yi=k ) , (4)

with I as the identity function (is one if condition is true), N m as the number of training 

observations in node m, x i as feature vector of observation i, y i as class of observation i 

and Rm as  region  m.  For  each  node,  calculate  the  Gini-index  for  the  splitting  points 

(dimension and point in dimension) and choose the minimum. This yields the best split point. 

Now the decision trees can be created.

As already mentioned, decorrelated trees are mandatory to improve the accuracy of the RF 

classifier compared to a single decision tree. To grow decorrelated trees some parameters need 

to be randomized. First of all, an individual set of training observations, which is generated by 

drawing with replacement (also called a bootstrap set) is assigned to each tree. The size of the 

bootstrap set is equivalent to the size of the trainings observations set. Secondly, at each node 

only  a  number  of  random  features  are  used  to  calculate  the  split  criterion.  With  this 
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randomness  it  is  possible  to  create  an enormous  amount  of  decision  trees,  which  are  all 

different from each other.

Besides  classifying,  the  RF  classifier  offers  a  number  of  other  useful  options.  After  the 

training of  the  RF classifier,  an approximation  of  the importance  of  the features  and the 

expected error is calculated.

The approximation of the importance of the features is performed in the following way: 

Separately sum up the improvements in the split criterion in each node of each tree for each 

feature.  Divide  each  value  by  the  number  of  trees.  In  other  words  this  is  the  mean 

improvement in accuracy induced by each feature. Features with high mean improvements are 

important features.

The approximation of the expected error for regression is calculated this way: 

“For each observation zi=(x i , yi) , construct its Random Forest predictor by  

averaging only those trees corresponding to bootstrap samples in which z i does 

not appear.” [15] 

In  case  of  classification,  no  averaging  is  done,  but  the  approach  is  the  same.  For  each 

observation z i=(x i , yi) , construct its own RF classifier using only those trees for voting, 

which correspond to bootstrap sets not containing z i . The result is quite similar to cross-

validation, if the number of trees is big enough. These expected errors are called Out-Of-the-

Box errors (OOB errors).

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 8
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3 Methods

 3.1 Experimental paradigm

Due to the necessity of a controlled conduct of the experiments a paradigm was set up. One 

effect of the usage of a paradigm was that the corresponding MI (the class) of a feedback 

period was known. This was realized by an instructing cue. In the case of the paradigm for the 

EEG measurements used in Section  4 and  5, a brief explanation is presented below. These 

EEG measurements were originally recorded for [14], therefore a detailed description can be 

found there.

Ten able bodied subjects (6 males and 4 females) were sitting in a chair in front of an LCD 

display, which provided randomized instructions for different MIs. A single trial consisted of 

the following steps (see also Figure 3.1):

• Second 0: A cross showed up on the screen.

• Second 2: A beep sounded to focus the subject's attention.

• Second 3: One of three cues was displayed for 1.25 seconds. The three cues were: 

Right pointing arrow for right hand MI, left pointing arrow for left hand MI and down 

pointing arrow for feet MI.

• Second 4: The subject was instructed to keep the imagery until the cross disappeared.

• Second 8: End of the MI phase. A break with a randomized length (0.5 to 2.5 s) was 

the last part of the trial.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 9
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Figure 3.1: Recording paradigm for the EEG measurements used in Section 4 and 5.

One run consisted of 30 trials, ten for each class. A session consisted of 8 runs, resulting in 80 

trials for each class.

 3.2 Signal acquisition 

The corresponding areas of the hands and the feet on the motor cortex in the international 10-

20-system are the positions C3, Cz and C4 (Figure  1.2) [21]. Hence signals acquired from 

these positions were used.

In case of the EEG measurements used in Section  4 and  5, the EEG was recorded with 32 

Ag/AgCl electrodes, which covered the sensorimotor area over C3, Cz and C4. The reference 

electrode was attached at the left and the ground electrode at the right mastoid (see Figure 

3.2).  The recording was  performed with  a  monopolar  amplifier  (Synamps,  Compumedics 

Germany GmbH, Singen, Germany) at a sampling rate of 1 kHz, including a bandpass with 

0.05-200 Hz and a notch filter at 50 Hz. The full description of the signal acquisition can be 

found in [14].

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 10
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Methods

Figure 3.2: Mounting of the electrodes [14].

 3.3 Signal preprocessing

Due to other bio-signals (e.g. electromyography signals), the EEG is afflicted with artifacts 

which cover the brain signals. In offline data a visual screening was performed to exclude 

contaminated parts of the EEG signal. This rejection was executed for the data used in Section 

4 and 5.

EEG signals are often very noisy, hence the signal to noise ratio (SNR) is very low [12]. To 

improve the SNR of a specific electrode position, the Laplace derivation of this position was 

used instead of the raw signal [12]. The derivation was calculated sample-by-sample with:

C LAP=CCenter−
1
4
⋅∑

i=1

4

C surr ,i (5)

Where CCenter was C3, Cz and C4, respectively, and C surr was one of the four surrounding 

electrode positions.

 3.4 Feature extraction

The frequency of the Mu band can vary from one subject to another [11]. Hence a search for 

the specific frequency of the Mu band for each subject would be necessary. But, according to 

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 11



Methods

literature [15], RF classifiers can deal with features carrying no information about the class 

membership of an observation. Therefore a simple approach was chosen. The powers of each 

frequency between 1 and 40 Hz in steps of 1 Hz of each of the three electrode positions (C3, 

Cz  and  C4)  were  used  as  features  for  detection  of  MIs.  In  total,  120  features  for  an 

observation. The calculations of the powers of the frequencies were done as follows:

1. A period of one second was picked out of the signal.

2. The Fourier transformation (FT) was applied on the picked signal period.

3. The powers of the frequencies were obtained through squaring of the absolute values 

of the results of the FT.

4. For  comparison  with  other  classifiers  the  powers  of  the  frequencies  were  used 

logarithmically.

A trainings observation z i consists of 120 features x i (the powers of the frequencies) and 

in addition a class label y i .

 3.5 Software & tools

For computations in Section 4 and 5 MATLAB 2010a (Mathworks Inc., Natick, USA) and in 

Section  6 MATLAB / Simulink 2011b (Mathworks Inc.,  Natick,  USA) was used. The RF 

classifier  was  implemented  by  using  the  MATLAB  RF  package,  downloaded  from 

http://code.google.com/p/randomforest-matlab/ on Nov 26th 2010 (published under the GNU 

GPL v2 license). This package is using precompiled mex files for importing code from other 

languages to MATLAB. Here, the R implementation of the Random Forests classifier of Andy 

Liaw is used. This again, is a port from the original Fortran code by Leo Breiman and Adele 

Cutler.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 12
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4 Influence of parameters on the Random Forests classifier

Like any algorithm, there are many “adjusting screws” for the RF classifier which have an 

influence  on  the  classification  accuracy [15].  Several  parameters  are  resulting  out  of  the 

trainings procedure of the RF classifier (Number of trees, Tree correlation factor, Tree leaf 

size).  Others  are  modifications  on  the  trainings  observations  (Logarithmic  power  of 

frequencies vs power of frequencies, noisy observations). The finding of the best values for 

the parameters is a necessity for obtaining the highest classification accuracies.

 4.1 Number of trees

 4.1.1 Scope

It is not clear in advance how many trees are to be used, during training of an RF classifier. 

On the one hand, it is necessary to reach an amount that is high enough for stable voting 

results, but on the other hand a lot of trees are more complex with respect to computational 

effort. The OOB error could be a feature for a stop criterion. If the OOB error is not changing 

with the number of trees anymore, the training could be stopped. However, the OOB error is 

not obtained until the training is done. In practice a standard value is used for the sake of 

simplicity.  Usually it  is  based on values  of  500 to  1000 trees.  500 trees  are  used as  the  

standard value in the used program library (see Section  3.5). 1000 is the amount of trees 

recommended by Leo Breiman [12]. Due to the fact that the training of a RF classifier using 

500  trees  is  very  fast  (about  1  s  on  a  3  GHz  CPU)  lower  amounts  of  trees  were  not  

investigated.  Unfortunately  there  are  no  references  whether  this  values  fits  for  EEG 

measurements or not. [15] [16]
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 4.1.2 Methods

The 10×10-fold cross-validation computations were performed for a specific observation time 

(4.5  to  5.5  seconds  after  starting  the  trial),  but  for  different  amounts  of  trees.  For  the 

visualization of the achieved misclassification error (MCE) improvements through more than 

500 trees, the MCE results of one subject were related to the MCE results of 500 trees of this 

subject with:

MCEDiff =MCEact−MCE500 . (6)

Where “act” means the actual amount of trees. The results of the ten subject were averaged 

for each amount of trees. See section 9.1 in the appendix for coding details.

 4.1.3 Results

Figure 4.1 shows the mean differences in MCE over all ten subjects between using 500 trees 

and  different  amounts  of  trees.  Negative  values  indicate  that  500  trees  showed  a  worse 

performance. 

Figure 4.1: Differences between MCEs using 500 trees and different amounts of trees, respectively.
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Influence of parameters on the Random Forests classifier

 4.1.4 Discussion

As shown in Figure 4.1, using more than 500 trees has on average no influence on the MCE. 

The MCE is not decreasing with more trees. A statistically relevant amount of trees is already 

reached with 500 trees. A bigger quantity is not necessary, which is why 500 trees are used for 

all further calculations.

 4.2 Tree correlation factor

 4.2.1 Scope

A RF classifier consists of decorrelated decision trees. Two mechanisms ensure that the trees 

are  not  correlated,  bootstrap  sets  and  random features  at  each  node of  each  tree  for  the 

splitting, respectively. However, it is not the best idea to create completely uncorrelated trees, 

as the feature at each splitting point of each tree must be chosen randomly. If the trainings  

observations contains many features, the probability to randomly pick a relevant feature, is 

very small. This leads to many trees with a low accuracy. On the other hand, if more features 

are chosen at random and the best one is used, the trees are not uncorrelated (parts of the trees 

are  the same).  This  results  in  lower accuracy again,  because the finding of  the results  is 

performed in the same way. The quantity of randomly chosen features is called the correlation 

factor.  Finding the  best  correlation  factor  is  not  easy.  The  only known way is  to  try  all  

different correlation factors. This is computationally very time consuming. To overcome this 

effort, a standard value is used. The standard value of the correlation factor for classification 

is √ Number of features . Again there are no references if this value is suitable for EEG 

measurements. [15] [16]

 4.2.2 Methods

For all ten subjects 10×10-fold cross-validations were calculated for each possible correlation 

factor (1 to 120, because of 120 features). The observation time was the same as in Section 

4.1.2. Out of averaging reasons, the MCE of a subject were based on the minimum MCE of 

this subject with:
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MCEDiff =MCEact−MCEmin . (7)

MCEmin denotes  the  minimum  value  in  this  specific  data  set, MCEact describes  the 

current  MCE for  the  different  correlation  factors.  The  outcomes  were  averaged  over  the 

subjects. See Section 9.1 in the appendix for coding details.

 4.2.3 Results

Figure 4.2 shows the mean difference over all ten subjects between MCEs using different tree 

correlation factors. The global minimum of this curve is, on average, the most accurate tree 

correlation factor.

Figure 4.2: Differences between MCEs using different tree correlation factors.

 4.2.4 Discussion

The fact that small values of the correlation factor lead to worse results is shown in Figure 

4.2. The best  results  are  achieved for  values  of  the  correlation  factor  of  around 60.  The 

standard value would be √120=10,9544…≈11 , however this is not in the field of the best 

values.  As the difference between the best values and the standard value is very small (on 

average  smaller  than  1%),  it  is  therefore  possible  to  use  the  standard  value.  Hence  the 
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Influence of parameters on the Random Forests classifier

standard  value, √ Number of features for  the  correlation  factor,  is  used  for  further 

calculations.

 4.3 Tree leaf size

 4.3.1 Scope

Decision trees are the basis of RF classifiers. In the normal proceeding for classification, each 

decision tree is  fully grown. This  means that  the trees are  grown until  there is  only one 

training observation in every leaf. For regression this standard proceeding is different. There, 

each tree is grown until every leaf contains 3 trainings observations. In case of using a single 

tree for classification, it is not a good idea to grow the tree fully. This leads to overfitting. For 

better results of a single tree, the tree is pruned back. In this case, each leaf contains more than 

one trainings observation. Thus, a better generalization can be achieved. It could be a good 

idea  to  check whether  RF classifiers  generalize  better,  if  there  is  more than one training 

observation in each leaf of each tree. [15] [16]

 4.3.2 Methods

Again, a specific observation time was used for the 10×10-fold cross-validation to obtain the 

MCE (same as in Section 4.1.2). The difference was the amount of samples in each leaf (1 to 

50). This amount is called the tree leaf size. For each subject the lowest MCE was subtracted 

from all other MCE of the subject by using (7). Averaging was done over the results of the ten 

subjects. See Section 9.1 in the appendix for coding details.
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 4.3.3 Results

Figure  4.3 shows  the  mean  difference  in  MCEs  over  all  ten  participants  between  using 

different tree leaf sizes. The global minimum of this curve represents, on average, the most 

accurate tree leaf size.

Figure 4.3: Differences between MCEs using different tree leaf sizes.

 4.3.4 Discussion

Figure  4.3 shows that a tree leaf size above ten is having an influence on the classification 

accuracy, the MCE is increasing. Smaller leaf sizes below twenty, lead to better results, but 

there is little change between one and twenty (the change is smaller than 1%). Because of 

that, the standard value, one, is used further on. This result was expected, because RFs are 

using the method of “bagging”. This means, many simple classifiers are voting for a class and 

the result of the voting is much more accurate than the result of a single simple classifier. A 

stand-alone classification accuracy of slightly higher than 50% is sufficient to get accurate 

results, if the number of simple classifiers is big enough. 500 trees are appropriate for a tree 

leaf size between one and about twenty. If the accuracies of the trees are getting worse, a 

higher amount of trees would be necessary for compensation. [15]

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 18

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Leaf size

C
ha

ng
e 

in
 th

e 
M

C
E

 b
as

ed
 o

n 
th

e 
be

st
 le

af
 s

iz
e

 

 

mean
mean +/- std



Influence of parameters on the Random Forests classifier

 4.4 Logarithmic power of frequencies vs power of frequencies

 4.4.1 Scope

Many  classifiers  require  a  special  distribution  of  the  observations.  Linear  Discriminant 

Analysis (LDA), for example calls for a normal distribution [15]. In case of using LDA for the 

classification of EEG measurements of MIs, the observations are not normally distributed. To 

obtain a normal like distribution, the observations are normally used logarithmically (Chi-

squared  distribution  with  high degrees  of  freedoms).  According to  the literature,  no such 

special distribution is needed for RF classifiers, but for drawing comparisons it is necessary to 

know if the identical observations basis can be used. [15] [16]

 4.4.2 Methods

10×10-fold cross-validation was used for calculating the MCE for every half of a second over 

the lapse of the trials of all subjects. The observation time was overlapping in time from one 

observation  to  the  next.  The  computation  was  carried  out  twice,  first  on  the  power  of 

frequencies  observations,  then  on the logarithmic power  of  frequencies  observations.  The 

differences in the MCE between them were calculated for each subject using:

MCEDiff =MCE raw−MCE log bp (8)

The results  were averaged over  the subjects.  See Section  9.1 in  the appendix  for  coding 

details.
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 4.4.3 Results

Figure 4.4 shows the mean difference over all ten participants between MCEs using power of 

frequencies or logarithmic power of frequencies as features for classification. If values are 

negative,  the  power  of  frequencies  produces  lower  MCEs than the  logarithmic  power  of 

frequencies.

Figure 4.4: Difference between MCEs using power of frequencies or logarithmic power of frequencies.

 4.4.4 Discussion

Figure  4.4 shows that there is  no difference whether  power of frequencies  or logarithmic 

power of frequencies are used as features for classification. The differences are below 1% on 

average  (smaller  than  0.01).  This  result  was  expected  as,  according  to  literature,  a  RF 

classifier does not depend on a special distribution of the observations. There is no need for a 

Gaussian like distribution of the observations, but to have an equal basis for comparison, the 

logarithmic power of frequencies was used for all calculations. [16] [15]
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Influence of parameters on the Random Forests classifier

 4.5 Noisy observations

 4.5.1 Scope

Another means of generating higher accuracies is the use of noisy observations. The method 

uses an observation more than one time, once in a raw, the other times in a noisy form. Thus it 

becomes very easy to generate a huge amount of “new” observations. The assumption is, that 

more observations lead to a higher accuracy.

 4.5.2 Methods

Like before, a specific observation period was used for the 10×10-fold cross-validation to 

calculate the MCE (same period as in Section 4.1.2). Copies were made of each observation. 

One copy of each observation was not changed, to all others white Gaussian noise was added. 

Hence noise with a Gaussian distribution was used, as this distribution is the most common. 

Two parameters were varied: The number of noisy observations and the amplitude of the 

noise. To each observation an individual noise with the same statistical properties was added. 

The distribution was Gaussian, the mean value was zero and the standard deviation was the 

maximum value in this observation, multiplied with the percent of noise, divided by 100. Or 

expressed mathematically:

added noise=observationact +
observationmax⋅percent of noise

100
⋅N (0,1) (9)

Where N (0,1) is the normal distribution. The goal was to check, whether the average MCE 

is becoming lower with more observations or not. See Section 9.1 in the appendix for coding 

details.
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 4.5.3 Results

Figure  4.5 shows  the  mean  differences  over  all  ten  subjects  between  using  no  noisy 

observations and different amounts of noisy observations and different amplitudes of noise. 

Positive values mean that  the unmodified observations  were performing better  than noisy 

observations.

Figure 4.5: Differences between MCEs using unmodified observations and different amounts of noisy  
observations, respectively.

 4.5.4 Discussion

Neither changing the amplitude of noise nor adding more noisy observations lead to better 

classification results  (see Figure  4.5).  The RF classifier  recognizes  the important  features 

without using noisy observations. Because of that, noisy observations are not used for further 

calculations.

 4.6 Summary

The  results  suggest  that  the  standard  values  of  the  parameters  of  a  RF  classifier  fit  the 

problem of classifying EEG measurements best. Due to the difficulty of multidimensional 
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Influence of parameters on the Random Forests classifier

parameter optimizations, in this work only individual parameters were tuned. Therefore, there 

is the possibility that combinations of parameters can result in higher accuracies. This could 

be a topic for further research.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 23



Cross-validation tests and offline BCI operation simulations

5 Cross-validation tests and offline BCI operation simulations

After finding proper parameters in Section 4 of the thesis, extensive tests on the distinguishability 

between  different  classes,  the  offline  BCI  operation  simulations  and  the  behavior  of  the  RF 

classifier on different amounts of trainings observations were performed on offline data.

 5.1 Cross-validation tests

 5.1.1 Scope

This  Section  will  answer  the  questions  about  the  distinguishability  and  about  the  optimal 

observation time as well as the questions about the OOB error and the importance of the features.

 5.1.2 Methods

10×10-fold  cross-validation  tests  were  computed  for  different  class  combinations  and  different 

observation times. Due to the time difference of half a second between two observation times, the 

observations times are overlapping (segments [t-1 t] with t = 1:0.5:9). For the observation time 

between second 4.5 and 5.5 the  OOB errors  were calculated as  well  as  the importance of  the 

features. See Section 9.1 in the appendix for coding details.
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 5.1.3 Results

 5.1.3.1 3 Classes cross-validations

Figure  5.1 shows the 10×10-fold cross-validation MCEs of all ten subjects for the three classes 

case.

Figure 5.1: MCE over time for three classes (left hand vs right hand vs feet).

Table 5.1 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the cross-validation results shown in Figure 5.1.

Table 5.1: Peak, mean and standard deviation of the accuracies of three classes cross-validation tests.
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 5.1.3.2 2 Classes cross-validations

Figure 5.2 shows the 10×10-fold cross-validation MCEs of all ten subjects for the two classes case 

of left hand vs right hand.

Figure 5.2: MCE over time for two classes (left hand vs right hand).

Table 5.2 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the cross-validation results shown in Figure 5.2.

Table 5.2: Peak, mean and standard deviation of the accuracies of two classes cross-validation tests.
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Figure 5.3 shows the 10×10-fold cross-validation MCEs of all ten subjects for the two classes case 

of left hand vs feet.

Figure 5.3: MCE over time for two classes (left hand vs feet).

Table 5.3 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the cross-validation results shown in Figure 5.3.

Table 5.3: Peak, mean and standard deviation of the accuracies of two classes cross-validation tests.
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Figure 5.4 shows the 10×10-fold cross-validation MCEs of all ten subjects for the two classes case 

of right hand vs feet.

Figure 5.4: MCE over time for two classes (right hand vs feet).

Table 5.4 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the cross-validation results shown in Figure 5.4.

Table 5.4: Peak, mean and standard deviation of the accuracies of two classes cross-validation tests.
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 5.1.3.3 3 Classes OOB errors

Figure  5.5 shows the OOB error of all ten subjects over the number of trees for the three classes 

problem of left hand vs right hand vs feet.

Figure 5.5: OOB error over number of trees, for three classes (left hand vs right hand vs feet).

 5.1.3.4 2 Classes OOB errors

Figure  5.6 shows the OOB error of all ten subjects over the number of trees for the two classes 

problem of left hand vs right hand.

Figure 5.6: OOB error over number of trees, for two classes (left hand vs right hand).
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Cross-validation tests and offline BCI operation simulations

Figure  5.7 shows the OOB error of all ten subjects over the number of trees for the two classes 

problem of left hand vs feet.

Figure 5.7: OOB error over number of trees, for two classes (left hand vs feet).

Figure  5.8 shows the OOB error of all ten subjects over the number of trees for the two classes 

problem of right hand vs feet.

Figure 5.8: OOB error over number of trees, for two classes (right hand vs feet).
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 5.1.3.5 Importance of the features

Figure  5.9 shows the mean importance of the features over all ten subjects in the three classes 

problem of left hand vs right hand vs feet. The magnitude is an indicator of the importance of the 

features.

Figure 5.9: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Three classes (left hand vs right  

hand vs feet).

Figure  5.10 shows the mean importance of the features over all ten subjects in the two classes 

problem of left hand vs right hand.

Figure 5.10: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (left hand vs right  

hand).
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Figure  5.11 shows the mean importance of the features over all  ten subjects in the two classes 

problem of left hand vs feet.

Figure 5.11: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (left hand vs feet).

Figure  5.12 shows the mean importance of the features over all ten subjects in the two classes 

problem of right hand vs feet.

Figure 5.12: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (right hand vs feet).
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Figure 5.13 shows the importance of the features of subject ak10 for demonstrating the importance 

of Cz for some of the subjects in the two class problem of right hand vs feet.

Figure 5.13: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (right hand vs feet).

 5.1.4 Discussion

In the three classes problem (see Figure 5.1 and Table 5.1), only three subjects were able to reach 

high accuracies. The mean accuracies during the feedback period of these three subjects (ak10, al4 

and al5) were higher than 55%, this was, according to [22], better  than chance (α = 1%). The 

subject with the highest accuracy (ak10) achieved about 82% in peak. There are two more subjects 

who were potentially better than chance (al8 and al10), but due to the limited amount of samples, 

the mean accuracies of these subjects, with about 45%, were lower than the chance level of 50% (α 

= 1%) [22].

Comparing Figures  5.2,  5.3,  5.4 and Tables  5.2,  5.3,  5.4 shows that the accuracies of two class 

problems are much higher. Peak accuracies over 80% are not a rarity, on the contrary, accuracies up 

to 94% are reachable. Another conclusion is that more subjects are able to distinguish two classes 

than three classes (up to five, with 70% mean accuracy as boundary for distinction, according to 

[22]). Summing up, distinguishability is better in two class problems and with the data at hand, the 

highest accuracies are achieved between right hand and feet motor imagery.
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Cross-validation tests and offline BCI operation simulations

Table 5.5: Best RF cross-validation results.

Table  5.5 shows the best cross-validation results achieved through the subjects. This results in a 

mean peak accuracy of 79%.

Table 5.6: Cross-validation accuracies of Distinction Sensitive Learning Vector Quantization (DSLVQ) vs RF  
(vs LDA online feedback accuracies with DSLVQ found setup) [14].

Table  5.6 shows the comparison of Distinction Sensitive Learning Vector Quantization (DSLVQ) 

with RF. The results of DSLVQ are from [14]. The resulting mean of peak accuracy of RF is about 

5% less than the accuracy of DSLVQ. This is mainly caused by three subjects (al6, al7 and al9). It is 

not clear why these accuracies reached with RF were as low, compared with the accuracies reached 

with DSLVQ.

Comparing Figures 5.1, 5.2, 5.3 and 5.4 shows that the observation period from second 3.5 to 4.5 

holds the promise for the highest classification accuracies. However, this observation period cannot 

be  used,  because  it  is  not  clear,  if  the  classification  would  be  done  on  some  brain  processes 

triggered by the cue, or really triggered by imagery itself [23]. A closer look on the cross-validation 

results  shows  that  the  classification  is  getting  worse  the  more  time  passes  after  the  cue  has 

disappeared. The first data without influence of the cue should be the best choice. As the cue ends  

4.25 seconds after starting the trial,  the EEG measurements recorded later on should be free of 

influence of the cue. Hence, the focus is on EEG measurements recorded from second 4.5 to 5.5.

The corresponding OOB error plots (Figures 5.5,  5.6, 5.7 and 5.8) reflect the results of the cross-

validation  tests.  Good  results  in  the  cross-validation  tests  are  having  equally  good  OOB error 

results. The ranking of accuracies provided by the cross-validation is the same as shown in the 

corresponding  OOB  error  plots.  The  absolute  values  are  a  relatively  good  estimation  with  a 

difference of about 5% to the results from the cross-validation. Therefore, the results suggests that 

the OOB error is a reliable estimation of the expected error.
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ak10 al2 al3 al4 al5 al6 al7 al8 al9 al10
0,94 0,69 0,75 0,91 0,90 0,64 0,66 0,83 0,79 0,77 0,79 0,11
0,84 0,55 0,57 0,73 0,85 0,58 0,58 0,75 0,60 0,70 0,68 0,11
0,07 0,06 0,08 0,12 0,04 0,04 0,04 0,05 0,10 0,07 0,07 0,03

best Subjects
best mean std

peak during imagery period
mean over imagery period
standard deviation over imagery period
classes RvsF RvsF RvsF LvsF RvsF RvsF RvsF LvsF LvsF RvsF

Peak DSLVQ 94,00 72,00 70,00 94,00 92,00 78,00 84,00 88,00 82,00 84,00 83,80 8,56
Peak RF 94,00 69,00 75,00 91,00 90,00 64,00 66,00 82,00 68,00 76,00 77,50 11,14
Peak LDA 72,80 51,88 76,88 90,00 X 70,36 80,63 X 91,56 88,90 77,88 13,21

Accuracies Subjects

Method
Ak10
R vs F

Al2
R vs F

Al3
R vs F

Al4
L vs F

Al5
L vs F

Al6
R vs F

Al7
R vs F

Al8
R vs F

Al9
R vs F

Al10
L vs F mean std
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Figures 5.9, 5.10, 5.11 and 5.12 presents the affiliated importance of the feature plots. These figures 

show that the most relevant features are the powers of frequencies of C3 and C4 at about 10 Hz 

(alpha rhythm) and slightly over 20 Hz (beta rhythm). Such an outcome was expected [11]. As 

Figures  5.9,  5.10,  5.11 and  5.12 suggest,  the powers of frequencies of Cz seem not to be that 

important. But the features importance are an average of ten subjects. Thus, there are subjects, who 

are benefiting from features of Cz (see Figure 5.13).

 5.2 Offline BCI simulations

The  results  in  Section  5.1 suggests  that  RFs  are  suitable  for  the  classification  of  MI  in  EEG 

measurements. However the suitability for a real setting is not yet clear. Therefore, in a first step, an 

offline simulation of a BCI was performed.

 5.2.1 Scope

The question is, if the RF classifier is able to classify MIs out of completely unseen runs of EEG 

measurements. In case of cross-validation, the observations used for the training of the classifiers 

were picked from all runs. In this Section coherent runs were used for the training and following 

runs for the testing. This division is closer to real BCI behavior than cross-validations. 

 5.2.2 Methods

The trainings of the RF classifiers were based on the observation periods from second 4.5 to 5.5 of  

the trials of the first five runs of a subject. The remaining 3 runs of the subject were used to perform 

a  BCI  simulation.  In  the  simulation  process  the  obtained  RF classifier  was  used  to  execute  a 

classification every tenth of a second during each trial. Due to the length of an observation (one 

second)  and  the  repetition  every  tenth  of  a  second,  the  observations  used  overlapping 

measurements. The strict partitioning of training and testing is like in a real BCI. This simulation 

was performed for different combinations of classes and in each combination for all ten subjects. 

The corresponding OOB errors and importance of the features were calculated too. Coding details 

can be found in the appendix, Section 9.1.
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 5.2.3 Results

 5.2.3.1 3 Classes BCI simulations

Figure 5.14 shows the MCEs of all ten subjects in the three classes problem of left hand vs right 

hand vs feet.

Figure 5.14: MCEs over time. Three classes (left hand vs. right hand vs. feet).

Table 5.7 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.14.

Table 5.7: Peak, mean and standard deviation of the accuracies of three classes BCI simulation.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 36

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time in seconds

M
is

sc
la

ss
if

ic
at

io
n 

er
ro

r

 

 

ak10
al2
al3
al4
al5
al6
al7
al8
al9
al10

ak10 al2 al3 al4 al5 al6 al7 al8 al9 al10
0,77 0,52 0,43 0,71 0,70 0,49 0,53 0,60 0,43 0,59 0,58 0,12
0,64 0,36 0,32 0,55 0,58 0,38 0,39 0,51 0,35 0,50 0,46 0,11
0,08 0,06 0,04 0,08 0,09 0,05 0,06 0,05 0,04 0,05 0,06 0,02

3 classes Subjects
L vs R vs F mean std

peak during feedback period
mean during feedback period
std during feedback period



Cross-validation tests and offline BCI operation simulations

 5.2.3.2 2 Class BCI simulations

Figure 5.15 shows the MCEs of all ten subjects in the two class problem of left hand vs right hand.

Figure 5.15: MCEs over time. Two classes (left hand vs. right hand).

Table 5.8 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.15.

Table 5.8: Peak, mean and standard deviation of the accuracies of two classes BCI simulation.
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Figure 5.16 shows the MCEs of all ten subjects in the two class problem of left hand vs feet.

Figure 5.16: MCEs over time. Two classes (left hand vs. feet).

Table 5.9 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.16.

Table 5.9: Peak, mean and standard deviation of the accuracies of two class BCI simulation.
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Figure 5.17 shows the MCEs of all ten subjects in the two class problem of right hand vs feet.

Figure 5.17: MCEs over time. Two classes (right hand vs. feet).

Table 5.10 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.17.

Table 5.10: Peak, mean and standard deviation of the accuracies of two class BCI simulation.
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 5.2.3.3 3 Classes OOB errors

Figure 5.18 shows the OOB errors of all ten subjects over the number of trees for the three class 

problem of left hand vs right hand vs feet.

Figure 5.18: OOB error over number of trees, for three classes (left hand vs. right hand vs. feet).

 5.2.3.4 2 Classes OOB errors

Figure  5.19 shows the OOB errors of all ten subjects over the number of trees for the two class 

problem of left hand vs right hand.

Figure 5.19: OOB error over number of trees, for two classes (left hand vs. right hand).
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Cross-validation tests and offline BCI operation simulations

Figure  5.20 shows the OOB errors of all ten subjects over the number of trees for the two class 

problem of left hand vs feet.

Figure 5.20: OOB error over number of trees, for two classes (left hand vs. feet).

Figure  5.21 shows the OOB errors of all ten subjects over the number of trees for the two class 

problem of right hand vs feet.

Figure 5.21: OOB error over number of trees, for two classes (right hand vs. feet).
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 5.2.3.5 Importance of the features

Figure 5.22 shows the mean importance of the features of all ten subjects in the three class problem 

of left hand vs right hand vs feet.

Figure 5.22: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Three classes (left hand vs right  

hand vs feet).

Figure 5.23 shows the mean importance of the features of all ten subjects in the two class problem 

of left hand vs right hand.

Figure 5.23: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (left hand vs right  

hand).
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Figure 5.24 shows the mean importance of the features of all ten subjects in the two class problem 

of left hand vs feet.

Figure 5.24: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (left hand vs feet).

Figure 5.25 shows the mean importance of the features of all ten subjects in the two class problem 

of right hand vs feet.

Figure 5.25: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (right hand vs feet).

 5.2.4 Discussion

Figures  5.14,  5.15,  5.16 and  5.17 show that the classifier is able to detect the correct classes on 

unseen EEG measurements, but not for all subjects. Comparing the results with those from section 
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5.1.3 shows that the same subjects are good performers. The accuracies are a little worse. That is 

not surprising, because in the case of cross-validation, the training was done with 144 observations 

(2 class case) and in the case of BCI simulation with 100 observations only. Less observations lead 

to less accuracy [15]. This behavior will be investigated more detail in the next Section.

Once again,  like in the cross-validation Section,  the OOB error gives a good estimation of the 

prospective accuracies (see Figures 5.18, 5.19, 5.20 and 5.21). 

The  importance  plots  (see  Figures  5.22,  5.23,  5.24 and  5.25)  show,  again,  that  the  important 

frequencies were in the alpha and beta band.

 5.3 Behavior on different amounts of trainings observations

After  successful  results  in  classification  of  unseen  EEG  measurements  in  Section  5.2,  the 

unanswered question about the amount of trainings observations is addressed on this Section.

 5.3.1 Scope

In  the  context  of  machine  learning  it  is  clear  that  more  trainings  observations  lead  to  higher 

accuracies, assuming separable classes [15]. But the consistency of the trainings observations, a 

precondition for the previous statement, cannot be guaranteed when using bio-signals, because of 

their non-stationarity. Therefore the behavior of the RF classifier on different amounts of trainings 

observations was investigated.

 5.3.2 Methods

Offline BCI simulations were performed with different amounts of trainings observations. Due to 

the fact that not all subjects were able to operate a BCI, only the observations of previously found 

good performer (ak10, al4 and al5) were used for simulation. See Section 9.1 in the appendix for 

coding details.
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 5.3.3 Results

Figure 5.26 shows the MCEs of subject ak10 in the three class problem of left hand vs right hand vs 

feet.

Figure 5.26: MCE over time for data set ak10.

Table 5.11 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.26.

Table 5.11: Peak, mean und standard deviation of the accuracies for different amounts of  
trainings observations.
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Figure 5.27 shows the MCEs of subject al4 in the three class problem of left hand vs right hand vs 

feet.

Figure 5.27: MCE over time for data set al4.

Table 5.12 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.27.

Table 5.12: Peak, mean und standard deviation of the accuracies for different amounts of  
trainings observations.
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Figure 5.28 shows the MCEs of subject al5 in the three class problem of left hand vs right hand vs 

feet.

Figure 5.28: MCE over time for data set al5.

Table 5.13 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI simulation results shown in Figure 5.28.

Table 5.13: Peak, mean und standard deviation of the accuracies for different amounts of  
trainings observations.

 5.3.4 Discussion

The results in Figures 5.26, 5.27, 5.28 and Tables 5.11, 5.12, 5.13 show that previously determined 

good performers benefited from using more training observations. The accuracies improved to 15%, 

14% and 16%, respectively, between using 30 and 120 trainings observations (Table 5.11, 5.12 and 

5.13). But saturation effects were showing up. Table 5.11 shows that the peak accuracy was rising 

by 6% from using 30 to 60 trainings observations, but was only rising by 1% from using 120 to 150 

trainings observations. This saturation effects are showing up for each tested subject.
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 5.4 Summary

The results suggests that RF classifiers are able to detect the correct MIs in offline cross-validation 

tests  and  in  offline  BCI  simulations.  More  training  observations  lead  to  higher  classification 

accuracies (with upcoming saturation effects). The provided OOB errors are a good estimation of 

the accuracies. The provided importance estimations are showing which features are crucial for 

classification. Moreover they conform with literature [11].
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6 Online BCI using Random Forests

After successful demonstration of the ability of RF to classify MIs in cross-validation and offline 

BCI simulations, the last Section of this work covers the online detection abilities of RF classifiers.

 6.1 Scope

Although the offline abilities of RF classifiers were demonstrated in Section 5, the online abilities 

cannot be derived from these results. But they can be considered as a precondition. A BCI with 

feedback  after  the  training  was  set  up  for  demonstrating  the  classification  of  MIs  in  online 

applications.

 6.2 Methods

The trainings observations period was fixed at second 4.5 to 5.5. All the observations obtained in 

runs one to five were used for training. Feedback was given to the subject in the following three 

runs. Therefore, a classification was performed every tenth of a second. If more than five of the last 

ten classifications were accurate the feedback bar grew. Due to the rapid sequence of classification, 

the observation periods were overlapping.

The BCI system was created in MATLAB Simulink, using the Tobi SignalServer [24] and the Graz-

BCI libraries. Details on the Simulink model can be found in the appendix, Section 9.2.

 6.2.1 Addition on experimental paradigm

In the case of the paradigm used for the EEG measurements in this Section, which were especially 

recorded for this work, the design was slightly different.

Three able bodied subjects, all male, aged between 26 and 28, one without experience in using a 

BCI, were seated in a chair in front of an LCD screen, with a distance of one meter, on which 

randomized instructions for different MIs were showing up. A single trial was built up as follows 

(see also Figure 1.2):
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• Second 0: A green cross faded up.

• Second 3:  One of  two cues  was displayed for  1.25 seconds.  The two cues  were:  Right 

pointing arrow for right hand MI and down pointing arrow for feet MI.

• Second 4: The subject was hold on to start the MI after the cue was displayed and stop the 

MI if the green cross disappeared. During the testing phase (runs six to eight) feedback was 

provided with a horizontal bar. The bar grew, if the results of the classification were correct.

• Second 13: End of MI phase. The fixation cross disappeared and a break with a variable 

length (between two and three seconds) followed.

Figure 6.1: Recording paradigm for EEG measurements used in Section 6.

A run consisted of 20 trials, ten for each class, a session consisted of 8 runs. Therefore, all in all 160 

trials were recorded. Each session was divided into two phases. The first phase (runs one to five) 

was used to record EEG data during the MI. In the second phase (runs six to eight), the classifiers  

results were used to provide feedback on the classification accuracy.

 6.2.2 Addition on EEG measurement

In the case of the EEG measurements used in this Section the sensorimotor area over C3, Cz and C4 

was covered with 15 Ag/AgCl electrodes, the reference electrode was mounted on the left mastoid 

and  the  ground  electrode  was  mounted  on  the  right  mastoid.  The  mounting  followed  the 

international 10-20-system (see Figure 6.2). For the recording of the EEG, a bio-signal USB amp 

build by the company g.tec (g.USBamp, g.tec Guger Technologies, Graz, Austria) was used with the 

following settings: Sampling rate at 512 Hz, a bandpass filter (chebyshev filter of 8 th order and cut 

off frequencies at 0.1 and 200 Hz) and a notch filter at 50 Hz.
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Figure 6.2: Mounting of the electrodes according to the 10-20-system.

 6.2.3 Additional signal preprocessing

In this Section the EEG measurements were processed online. Therefore there was no possibility to 

perform a visual screening for artifacts in online data and there was no artifact rejection in this 

Section.

 6.2.4 Addition on software & tools

In  addition,  for  constructing  the  BCI  Simulink  model  in  this  Section,  the  TOBI  SignalServer 

(http://bci.tugraz.at/downloads.html)  developed  under  the  TOBI  project  (http://www.tobi-

project.org) and the Graz-BCI libraries, primarily for giving feedback, were used.
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 6.3 Results

Figure 6.3 shows the MCEs over the test trials of the three subjects.

Figure 6.3: Online MCE over all test trials.

Table 6.1 shows the peak, mean and standard deviation values of the accuracies, corresponding to 

the BCI results shown in Figure 6.3.

Table 6.1:Peak, mean and standard deviation of the accuracies of two class  
BCI.

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in seconds

M
is

sc
la

ss
if

ic
at

io
n 

er
ro

r

 

 

MCE (Al)
MCE (AT7)
MCE (St)

Al AT7 ST
0,73 0,92 0,88 0,84 0,10
0,53 0,72 0,71 0,65 0,11
0,06 0,08 0,09 0,08 0,02

2 classes Subjects
R vs F mean std

peak during feedback period
mean during feedback period
std during feedback period



Online BCI using Random Forests

Figure 6.4 shows the OOB errors of the three subjects over the number of trees for the two class 

problem of right hand vs feet.

Figure 6.4: OOB error of the used RFclassifiers in online application.

Figure 6.5 shows the importance of the features of subject Al in the two class problem of right hand 

vs feet.

Figure 6.5: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (right hand vs feet).
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Figure 6.6 shows the importance of the features of subject AT7 in the two classes problem of right 

hand vs feet.

Figure 6.6: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (right hand vs feet).

Figure 6.7 shows the importance of the features of subject ST in the two class problem of right hand 

vs feet.

Figure 6.7: Importance of the features. Feature sectioning: 1 to 40 log power of frequencies of C3, 41 to 80  
log power of frequencies of Cz, 81 to 120 log power of frequencies of C4. Two classes (right hand vs feet).
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 6.4 Discussion

Figure 6.3 and Table 6.1 show the MCE over all test trials of the three subjects. Two of the three 

subjects were able to operate the RF BCI. These two subjects were previously known to be good 

performer in BCI interaction. The peak accuracy was up to 92%. An interesting detail about subject 

St is, that he comes up with his peak performance relatively late in the feedback period. This is not 

a common result, but in other studies, he shows a similar characteristic. Subject AT7 shows a more 

common result. Best performance was reached shortly after the cue and degraded over time [25]. 

The naïve subject (Al) was not able to use the BCI. His results were around chance level.

In the case of online data, the OOB error does not seem to be a good estimation of the MCE. Figure 

6.4 shows the OOB errors of the two subjects. This error estimation is not totally wrong for the 

observed time interval from second 4.5 to 5.5 (compare with Figure  6.3), but the behavior of the 

MCE of the subjects shifts completely over time. Thus, the OOB error becomes a bad estimation for 

the MCE later on. There are two possible reasons for this behavior: On the one hand, there was no 

outlier  rejection.  This  could  have  a  strong  impact  on  the  OOB  error,  because  some  of  the 

observations could have been inconsistent with others. On the other hand, the possible adaptation of 

the brain to the behavior of the RF classifier. Further investigations would be necessary.

The results in MCEs are also reflected in the corresponding importance plots (Figure 6.5, 6.6 and 

6.7). Subject Al does not show important features in the alpha band (where Mu rhythms would be 

expected [11]) (Figure 6.5). On the contrary, subjects AT7 and St were show important features in 

the alpha band and beta band of C3 and C4, respectively.

 6.5 Summary

This Section of the work has demonstrated that RF classifiers are able to detect mental imagery 

online.
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7 Conclusion and perspective

The aim of this work was to investigate the suitability of the RF classifier to detect MI in EEG. For 

that purpose, a multiplicity of topics were covered.

In Section 2 a brief historical overview and theoretical background on RF were presented. Section 3 

addressed  the  used  methods  and  tools.  Following,  it  was  shown  in  Section  4 that  standard 

parameters  are  proper  for  MI  classification  too.  An  individual  search  for  each  parameter  was 

performed. A multidimensional search was due to the complexity not performed and could bring up 

a different conclusion. The first part of Section  5 covered extensive cross-validation calculations 

and showed the principal ability of RF for the classification of MIs. In part two, an offline BCI 

simulation was successfully performed to show the classification on unseen runs of the data. A third 

part covered the behavior of the RF classifier on rising amounts of trainings observations. It turned 

out,  that  the  behavior  is  as  expected.  Higher  amounts  of  training  observations  lead  to  higher 

classification accuracies, but saturation effects were observed. Analysis  of the saturation effects 

could lead to a recommended amount of trainings observations in further research. And finally in 

Section 6 the successful application of the RF classifier in a real BCI was demonstrated.

The  additional  options  of  the  RF  classifier  (OOB  error,  importance  of  the  features)  were 

investigated too and the results suggest their validity for providing accurate estimations.

The applicability of the RF classifier in real BCI environments, such as asynchronous BCIs, would 

be an interesting research topic for the future.
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9 Appendix

This section provides all used MATLAB scripts and MATLAB / Simulink models.

 9.1 Appendix on Section 4 and 5

 9.1.1 MATLAB code for offline calculations

The  Matlab  script  offline_new.m  was  written  to  perform  the  preprocessing  (feature 

extraction), the tests for finding proper parameter,  the cross-validations tests, the offline BCI 

simulations and the tests with different amounts of samples. The functional core is shown 

below:

 
%% Data preprocessing %%
%%%%%%%%%%%%%%%%%%%%%%%%
 
% parameters
channel_c3=1; %set to 1 if you want this channel (0 else)
channel_cz=1; %set to 1 if you want this channel (0 else)
channel_c4=1; %set to 1 if you want this channel (0 else)
class_1=1; %set to 1 if you want this class (0 else)
class_2=2; %set to 2 if you want this class (0 else)
class_3=0; %set to 3 if you want this class (0 else)
frequence_selection=2:41; %vector of selected frequences (entry 1 is frequence 0)
no_noised_samples=0; %how many noised copies of the data should be made?
percent_noise=0; %percent of noise 0 bis 100% (percent of maximum value in this sample as 
standard deriviation of the noise)
 
% define sizes of data (X) and classlabels (Y)
no_channels=channel_c3+channel_cz+channel_c4;
no_frequences=length(frequence_selection)*no_channels;
no_timepoints=LengthOfSample/time_offset*SampleRate;
no_samples=0;
for ind1=1:length(data)
    TRIG=data(ind1).h.TRIG;
    CL=data(ind1).h.Classlabel;
    if al6==1 && ind1==5 || al10==1
        ArtifactSelection=zeros(1,length(TRIG));
    else
        ArtifactSelection=data(ind1).h.ArtifactSelection;
    end
    for ind2=1:length(TRIG)
        if ArtifactSelection(ind2)==0 && (CL(ind2)==class_1 || CL(ind2)==class_2 || 
CL(ind2)==class_3)
            no_samples=no_samples+1;
        end        
    end
    if ind1==1
        no_samples_1=no_samples;
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    elseif ind1==2
        no_samples_2=no_samples;
    elseif ind1==3
        no_samples_3=no_samples;
    elseif ind1==4
        no_samples_4=no_samples;
    elseif ind1==5
        no_samples_5=no_samples;
    elseif ind1==6
        no_samples_6=no_samples;
    elseif ind1==7
        no_samples_7=no_samples;
    elseif ind1==8
        no_samples_8=no_samples;
    end
end
% define size of X
X=zeros(no_frequences,no_timepoints,no_samples,no_noised_samples+1);
% define size of Y
Y=zeros(1,no_timepoints,no_samples,no_noised_samples+1);
 
% processing
ind4=0;
for ind1=1:length(data)
    data_c3=data(ind1).s(:,1)';
    data_cz=data(ind1).s(:,2)';
    data_c4=data(ind1).s(:,3)';
    TRIG=data(ind1).h.TRIG;
    CL=data(ind1).h.Classlabel;
    
    if al6==1 && ind1==5 || al10==1      
        ArtifactSelection=zeros(1,length(TRIG));
    else
        ArtifactSelection=data(ind1).h.ArtifactSelection;
    end
    
    for ind2=1:length(TRIG)
        if ArtifactSelection(ind2)==0 && (CL(ind2)==class_1 || CL(ind2)==class_2 || 
CL(ind2)==class_3)
            ind4=ind4+1;
            for ind3=0:(8/time_offset*SampleRate-1)                
                features=zeros(length(frequence_selection),channel_c3+channel_cz+channel_c4);
                if channel_c3==1
                    
data_c3_part=data_c3(TRIG(ind2)+ind3*time_offset:TRIG(ind2)+ind3*time_offset+SampleRate-1);
                    data_c3_part=fft(data_c3_part);
                    data_c3_part=data_c3_part(frequence_selection);
                    data_c3_part=log(abs(data_c3_part).^2);
                    features(:,1)=data_c3_part;
                end               
                if channel_cz==1
                    
data_cz_part=data_cz(TRIG(ind2)+ind3*time_offset:TRIG(ind2)+ind3*time_offset+SampleRate-1);
                    data_cz_part=fft(data_cz_part);
                    data_cz_part=data_cz_part(frequence_selection);
                    data_cz_part=log(abs(data_cz_part).^2);
                    if channel_c3==1
                        features(:,2)=data_cz_part;
                    elseif channel_c3==0
                        features(:,1)=data_cz_part;
                    end
                end
                if channel_c4==1
                    
data_c4_part=data_c4(TRIG(ind2)+ind3*time_offset:TRIG(ind2)+ind3*time_offset+SampleRate-1);
                    data_c4_part=fft(data_c4_part);
                    data_c4_part=data_c4_part(frequence_selection);
                    data_c4_part=log(abs(data_c4_part).^2);
                    if channel_c3==1 && channel_cz==1
                        features(:,3)=data_c4_part;
                    elseif channel_c3==0 && channel_cz==1
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                        features(:,2)=data_c4_part;
                    elseif channel_c3==0 && channel_cz==0
                        features(:,1)=data_c4_part;
                    end
                end
                features=features';
                X(:,ind3+1,ind4,1)=features(:)';
                Y(:,ind3+1,ind4,1)=CL(ind2);
                
                if no_noised_samples>0
                    for ind5=2:no_noised_samples+1
                        
features=zeros(length(frequence_selection),channel_c3+channel_cz+channel_c4);
                        if channel_c3==1
                            
data_c3_part=data_c3(TRIG(ind2)+ind3*time_offset:TRIG(ind2)+ind3*time_offset+SampleRate-1);
                            
data_c3_part=data_c3_part+max(data_c3_part)*percent_noise/100*randn(1,length(data_c3_part));
                            data_c3_part=fft(data_c3_part);
                            data_c3_part=data_c3_part(frequence_selection);
                            data_c3_part=log(abs(data_c3_part).^2);
                            features(:,1)=data_c3_part;
                        end               
                        if channel_cz==1
                            
data_cz_part=data_cz(TRIG(ind2)+ind3*time_offset:TRIG(ind2)+ind3*time_offset+SampleRate-1);
                            
data_cz_part=data_cz_part+max(data_cz_part)*percent_noise/100*randn(1,length(data_cz_part));
                            data_cz_part=fft(data_cz_part);
                            data_cz_part=data_cz_part(frequence_selection);
                            data_cz_part=log(abs(data_cz_part).^2);
                            if channel_c3==1
                                features(:,2)=data_cz_part;
                            elseif channel_c3==0
                                features(:,1)=data_cz_part;
                            end
                        end
                        if channel_c4==1
                            
data_c4_part=data_c4(TRIG(ind2)+ind3*time_offset:TRIG(ind2)+ind3*time_offset+SampleRate-1);
                            
data_c4_part=data_c4_part+max(data_c4_part)*percent_noise/100*randn(1,length(data_c4_part));
                            data_c4_part=fft(data_c4_part);
                            data_c4_part=data_c4_part(frequence_selection);
                            data_c4_part=log(abs(data_c4_part).^2);
                            if channel_c3==1 && channel_cz==1
                                features(:,3)=data_c4_part;
                            elseif channel_c3==0 && channel_cz==1
                                features(:,2)=data_c4_part;
                            elseif channel_c3==0 && channel_cz==0
                                features(:,1)=data_c4_part;
                            end
                        end
                        features=features';
                        X(:,ind3+1,ind4,ind5)=features(:)';
                        Y(:,ind3+1,ind4,ind5)=CL(ind2);
                    end
                end
            end
        end
    end
end
 
%% n times k fold cross validation %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% parameters
no_used_samples=1:no_samples; %number of samples for cv (no_samples for all samples, 
no_samples_x for samples until trial x)
n=10; %number of reiterations
k=10; %number of folds

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 62



Appendix

number_of_trees=0; %0 mean 500 trees, is standart value (you can use a vector of number of 
trees for searching best number of trees)
m_try=0; %0 mean sqrt(number of data), is standart value (you can use a vector of m for 
searching best m)
date=0:0.1:14.9; %date of trainings dataset in s after trigger (you can use a vector of dates 
for searching the best date)
use_noised_samples=0; %eg. [0,1,2] max no_noised_samples (you can use a vector of number of 
noised samples for searching best number of noised samples)
number_of_lin_comb=0; %how many linear combinations do you want? (use 0 if you don't want 
linear combinations) (you can use a vector of number of linear combinations for searching best 
number of linear combinations)
clear extra_options; clear model;
extra_options.importance=0; %0=(Default) Don't, 1=calculate importance
nodesize=1; %1=Default for classification, bigger nodesize leads to smaller trees (you can use 
a vector of nodesizes for searching best nodesize)
 
 
% number of used samples
X_use=X(:,:,no_used_samples,:);
Y_use=Y(:,:,no_used_samples,:);
 
% cross validation
results=[];
for ind10=1:length(m_try)
for ind11=1:length(date)
for ind12=1:length(nodesize)
for ind13=1:length(number_of_trees)
for ind14=1:length(use_noised_samples)
for ind16=1:length(number_of_lin_comb)
    if number_of_lin_comb(ind16)>0 %linear combinations
        
X_lin=zeros(number_of_lin_comb(ind16),no_timepoints,length(no_used_samples),no_noised_samples+
1);
        rand1=randi(no_frequences,1,number_of_lin_comb(ind16));
        rand2=randi(no_frequences,1,number_of_lin_comb(ind16));
        for ind21=1:no_noised_samples+1
            for ind22=1:length(no_used_samples)
                for ind23=1:no_timepoints
                    for ind24=1:number_of_lin_comb(ind16)
                        X_lin(ind24,ind23,ind22,ind21)=X_use(rand1(ind24),ind23,ind22,ind21)-
X_use(rand2(ind24),ind23,ind22,ind21);
                    end
                end
            end
        end
        X_CV=X_lin;
        Y_CV=Y_use;
    else
        X_CV=X_use;
        Y_CV=Y_use;
    end    
    no_errors=0; %cross validation
    no_tests=0;
    for ind17=1:n %n times
        ind=crossvalind('Kfold',no_used_samples, k);
        for ind18=1:k %k fold
            [no_features,~,~,~]=size(X_CV);
            X_CV_trn=X_CV(:,int32(date(ind11)/time_offset*SampleRate+1),ind~=ind18,1);         
            X_CV_trn=reshape(X_CV_trn,no_features,sum(ind~=ind18))';
            Y_CV_trn=Y_CV(:,int32(date(ind11)/time_offset*SampleRate+1),ind~=ind18,1);
            Y_CV_trn=reshape(Y_CV_trn,1,sum(ind~=ind18))';
            X_CV_tst=X_CV(:,int32(date(ind11)/time_offset*SampleRate+1),ind==ind18,1);
            X_CV_tst=reshape(X_CV_tst,no_features,sum(ind==ind18))';
            Y_CV_tst=Y_CV(:,int32(date(ind11)/time_offset*SampleRate+1),ind==ind18,1);
            Y_CV_tst=reshape(Y_CV_tst,1,sum(ind==ind18))';
            if use_noised_samples(ind14)>0
                for ind19=1:use_noised_samples(ind14)
                    
X_CV_trn_noise=X_CV(:,int32(date(ind11)/time_offset*SampleRate+1),ind~=ind18,ind19+1);
                    X_CV_trn_noise=reshape(X_CV_trn_noise,no_features,sum(ind~=ind18))';
                    X_CV_trn=[X_CV_trn;X_CV_trn_noise];
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Y_CV_trn_noise=Y_CV(:,int32(date(ind11)/time_offset*SampleRate+1),ind~=ind18,ind19+1);
                    Y_CV_trn_noise=reshape(Y_CV_trn_noise,1,sum(ind~=ind18))';
                    Y_CV_trn=[Y_CV_trn;Y_CV_trn_noise];
                end
            end
            extra_options.nodesize=nodesize(ind12);
            model = 
classRF_train(X_CV_trn,Y_CV_trn,number_of_trees(ind13),m_try(ind10),extra_options);
            Y_hat = classRF_predict(X_CV_tst,model);
            no_errors=no_errors+sum(Y_hat~=Y_CV_tst);
            no_tests=no_tests+length(Y_CV_tst);
        end
    end
    results=[results,no_errors/no_tests];
end
end
end
end
end
end
 
 
%% Test time series %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% parameters
no_used_samples_training=1:no_samples_5; %number of samples for training (no_samples for all 
samples, no_samples_x for samples until trial x)
no_used_samples_testing=no_samples_5+1:no_samples_8; %number of samples for testing 
(no_samples for all samples, no_samples_x for samples until trial x)
number_of_trees=0; %0 mean 500 trees, is standart value
m_try=0; %0 mean sqrt(number of data), is standart value
date=4.5; %date of trainings dataset in s after trigger
use_noised_samples=0; %eg. 0,1,2 max no_noised_samples
number_of_lin_comb=0; %how many linear combinations do you want? (use 0 if you don't want 
linear combinations)
clear extra_options; clear model;
extra_options.importance=0; %0=(Default) Don't, 1=calculate importance
nodesize=1; %1=Default for classification, bigger nodesize leads to smaller trees
 
% number of used samples for training
X_use=X(:,:,no_used_samples_training,:);
Y_use=Y(:,:,no_used_samples_training,:);
 
% train
if number_of_lin_comb>0 %linear combinations
    
X_lin=zeros(number_of_lin_comb,no_timepoints,length(no_used_samples_training),no_noised_sample
s+1);
    rand1=randi(no_frequences,1,number_of_lin_comb);
    rand2=randi(no_frequences,1,number_of_lin_comb);
    for ind21=1:no_noised_samples+1
        for ind22=1:length(no_used_samples_training)
            for ind23=1:no_timepoints
                for ind24=1:number_of_lin_comb
                    X_lin(ind24,ind23,ind22,ind21)=X_use(rand1(ind24),ind23,ind22,ind21)-
X_use(rand2(ind24),ind23,ind22,ind21);
                end
            end
        end
    end
    X_CV=X_lin;
    Y_CV=Y_use;
else
    X_CV=X_use;
    Y_CV=Y_use;
end
[no_features,~,no_trials,~]=size(X_CV);
X_CV_trn=X_CV(:,int32(date/time_offset*SampleRate+1),:,1);            
X_CV_trn=reshape(X_CV_trn,no_features,no_trials)';
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Y_CV_trn=Y_CV(:,int32(date/time_offset*SampleRate+1),:,1);
Y_CV_trn=reshape(Y_CV_trn,1,no_trials)';
if use_noised_samples>0
    for ind19=1:use_noised_samples
        X_CV_trn_noise=X_CV(:,int32(date/time_offset*SampleRate+1),:,use_noised_samples+1);
        X_CV_trn_noise=reshape(X_CV_trn_noise,no_features,no_trials)';
        X_CV_trn=[X_CV_trn;X_CV_trn_noise];
        Y_CV_trn_noise=Y_CV(:,int32(date/time_offset*SampleRate+1),:,use_noised_samples+1);
        Y_CV_trn_noise=reshape(Y_CV_trn_noise,1,no_trials)';
        Y_CV_trn=[Y_CV_trn;Y_CV_trn_noise];
    end
end
extra_options.nodesize=nodesize;
model = classRF_train(X_CV_trn,Y_CV_trn,number_of_trees,m_try,extra_options);
 
% number of used samples for testing
X_use=X(:,:,no_used_samples_testing,:);
Y_use=Y(:,:,no_used_samples_testing,:);
 
% test
if number_of_lin_comb>0 %linear combinations
    X_lin=zeros(number_of_lin_comb,no_timepoints,no_used_samples,no_noised_samples+1);
    for ind21=1:no_noised_samples+1
        for ind22=1:length(no_used_samples)
            for ind23=1:no_timepoints
                for ind24=1:number_of_lin_comb
                    X_lin(ind24,ind23,ind22,ind21)=X_use(rand1(ind24),ind23,ind22,ind21)-
X_use(rand2(ind24),ind23,ind22,ind21);
                end
            end
        end
    end
    X_CV=X_lin;
    Y_CV=Y_use;
else
    X_CV=X_use;
    Y_CV=Y_use;
end
mce=zeros(1,no_timepoints);
for ind10=1:no_timepoints
[no_features,~,no_trials,~]=size(X_CV);
X_CV_tst=X_CV(:,ind10,:,1);            
X_CV_tst=reshape(X_CV_tst,no_features,no_trials)';
Y_CV_tst=Y_CV(:,ind10,:,1);
Y_CV_tst=reshape(Y_CV_tst,1,no_trials)';
Y_hat = classRF_predict(X_CV_tst,model);
mce(ind10)=sum(Y_hat~=Y_CV_tst)/length(Y_CV_tst);
end
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 9.2 Appendix on Section 6

 9.2.1 MATLAB / Simulink model for recording

The BCI MATLAB model shown in Figure  9.1 was used for data recording in runs one to 

five. 

Figure 9.1: MATLAB / Simulink model used for recording the trainings data.

The MATLAB script trainRandomForests.m contains code for extracting and calculating the 

features of the recorded EEG data and training a RF classifier. The core of this script is shown 

below: 

% Calculate Laplace derivation
s1=signals{1,1}(:,:);
s2=signals{2,1}(:,:);
s3=signals{3,1}(:,:);
s4=signals{4,1}(:,:);
s5=signals{5,1}(:,:);

Institute for Knowledge Discovery / Laboratory of Brain-Computer Interfaces 66



Appendix

s6=signals{6,1}(:,:);
s7=signals{7,1}(:,:);
s8=signals{8,1}(:,:);
s9=signals{9,1}(:,:);
s10=signals{10,1}(:,:);
s11=signals{11,1}(:,:);
s12=signals{12,1}(:,:);
s13=signals{13,1}(:,:);
s14=signals{14,1}(:,:);
s15=signals{15,1}(:,:);
 
Lap_C3=s3-1/4*(s1+s2+s4+s5);
Lap_CZ=s8-1/4*(s6+s7+s9+s10);
Lap_C4=s13-1/4*(s11+s12+s14+s15);
 
% Make classlabels
time=[];
classlabel=[];
 
for i=1:length(events.event_code)
    if events.event_code(i)==770
        time=[time,events.position(i)];
        classlabel=[classlabel,1];
    elseif events.event_code(i)==771
        time=[time,events.position(i)];
        classlabel=[classlabel,2];
    end    
end
 
% Make training samples
sample_rate=512;
features=2:41;
 
for i=1:length(classlabel)
    part_C3_1=Lap_C3(int32(time(i)+1.5*sample_rate):int32(time(i)+2.5*sample_rate-1))';
    part_C3_2=fft(part_C3_1);
    part_C3=((abs(part_C3_2(features))).^2);
    
    part_CZ=Lap_CZ(int32(time(i)+1.5*sample_rate):int32(time(i)+2.5*sample_rate-1))';
    part_CZ=fft(part_CZ);
    part_CZ=((abs(part_CZ(features))).^2);
    
    part_C4=Lap_C4(int32(time(i)+1.5*sample_rate):int32(time(i)+2.5*sample_rate-1))';
    part_C4=fft(part_C4);
    part_C4=((abs(part_C4(features))).^2);
    
    X_trn=[X_trn;part_C3,part_CZ,part_C4];
end
 
Y_trn=[Y_trn;classlabel'];
 
%% Train a Random Forests classifier
extra_options.importance=1;
 
modelRF=classRF_train(X_trn,Y_trn,0,0,extra_options);
 
save('modelRF','modelRF');
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 9.2.2 MATLAB / Simulink model for feedback

The MATLAB / Simulink model shown in Figure  9.2 was used for data recording and for 

giving feedback on the online classification accuracy.

Figure 9.2: MATLAB / Simulink model built and used for recording and giving feedback on the accuracies of the  
online classifications.

Relevant part of the MATLAB code for s-function “RandomForests” in Figure 9.2:

function [sys,x0,str,ts] = RandomForests(t,x,u,flag)
.
.
.
case 3
      sys=classRF_predict(u',rtBCI.modelRF);
.
.
.
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Figure 9.3 shows the inner life of block “feature extraction” used in Figure 9.2.

Figure 9.3: MATLAB / Simulink model of the feature extraction (powers of the frequencies of the Laplace  
derivations of C3, Cz and C4).

Figure 9.4 shows the inner life of block “event decoder” used in Figure 9.2.

Figure 9.4: MATLAB / Simulink model for the extraction of the active class.
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MATLAB code of the embedded function in Figure 9.4:

function y = fcn(u)
 
y = zeros(2,1);
 
if u(1) > 0
    for k=2:1+u(1)
        if u(k) == hex2dec('302') % class 1
            y(1) = 0;
            y(2) = 1;
        elseif u(k) == hex2dec('303') % class 2
            y(1) = 1;
            y(2) = 0;
        end
    end
end

Figure 9.5 shows the calculations for feedback. Feedback was only provided, if at least 50% 

of the last ten samples were correctly classified. If this was the case, the amount of correctly 

classified samples was normalized to values between zero and one.

Figure 9.5: MATLAB / Simulink model for summing up the last results on classification.

Relevant part of the MATLAB code for s-function “Better than chance” in Figure 9.5:

function [sys,x0,str,ts] = BetterThanChance(t,x,u,flag) 
.
.
.
case 3
      if u>=5
          sys=u-5;
      else
          sys=0;
      end
.
.
.
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