Alexander Luschan

SiPeb® Biomasse-Kraft-Wärme-Kopplung

DIPLOMARBEIT

zur Erlangung des akademischen Grades eines Diplom-Ingenieurs der Studienrichtung Verfahrenstechnik erreicht an der Technischen Universität Graz

Dipl.-Ing. Dr.techn. Univ.-Doz. Prof. Ingwald Obernberger Institut für Prozess- und Partikeltechnik Technische Universität Graz

Zusammenfassung

Diese Diplomarbeit beschreibt den Kraft-Wärme-Kopplungsprozeß einer Biomasse-Anlage unter Verwendung eines Siemens Pebble-Heaters – SiPeb[®]. Zielsetzung ist, die technischen Möglichkeiten einer solchen Anlage bezüglich Verschaltungsvarianten und Wirkungsgrad-optimierungen im elektrische Leistungsbereich von 100 kW bis 5 MW zu untersuchen. In dieser Arbeit wird das Anlagenkonzept bezüglich der Stoff- und Energiebilanzen dargelegt, um Eckdaten für Auslegungen von Realanlagen zu bieten.

Die Hauptkomponenten dieser Anlage ergeben sich durch deren prinzipiellen Aufbau: Wärmekraftmaschine und Wärmeübertragungseinheit. Schwierigkeiten, die sich durch direkte Verwendung von Rauchgasen aus biogenen Brennstoffen in Wärmekraftmaschinen ergeben, können durch Einsatz einer neuen Wärmeübertragungskomponente für den Betrieb einer indirekt befeuerten Wärmekraftmaschine vermieden werden: dem Pebble-Heater. Dieser regenerative Wärmetauscher überträgt die thermische Energie vom Rauchgas über ein Feststoffbett an Luft, die in einer Gasturbine genutzt wird. Die eingangsseitigen Betriebspunkte für den Pebble-Heater sind von Siemens mit 860 °C bei Umgebungsdruck für das Rauchgas und 120, 6 °C bei 4, 3 bar für Luft vorgegeben.

In der Einleitung wird die Arbeitsweise des Pebble-Heaters und eine, den kontinuierlichen Betrieb ermöglichende, aus drei Pebble-Heatern bestehende Konfiguration dargestellt. Zur Elektrizitätsgewinnung werden die Komponenten Brennkammer, Pebble-Heater, Gasturbine und Generator verwendet. Die Restwärme von Rauchgas und Luft wird zur Wärmeauskopplung verwendet. Durch Rückführung der Gasströme bei verschiedenen Temperaturniveaus kann die Anlagenleistung beeinflußt werden.

Mit dem im Rahmen der Diplomarbeit entwickelten Softwareprogramm werden die elektrischen und Wärme-Effizienzen berechnet. Im Teil "Umsetzung" werden die Anlagenkomponenten und ihre Verschaltungsmöglichkeiten beschrieben. Aus den thermodynamischen Grundformeln wird die Komponenten-Modellierung und deren Kombination zum "SiPeb-Programm" dargestellt.

Die "Sensitivitätsanalyse" zeigt die erzielbaren elektrischen und thermischen Leistungen der SiPeb-Anlage. Dazu werden zwei Referenzbetriebspunkte definiert, um den Einfluß unterschiedlicher Verschaltungsvarianten zu demonstrieren: strom- und wärmeoptimierter Betrieb. Die Anlagenführungsgröße ist in beiden Fällen die elektrische Leistungsabgabe von 1 MW. Weiters wird der Einfluß der (umgebungsbedingten) Störgrößen und wichtigsten Sollwertvorgaben untersucht.

Abschließend wird die technisch positiv zu bewertende Gesamtanlagenleistung dargestellt. So wird bei stromoptimierter Führungsweise ein elektrischer Wirkungsgrad von 22 % und 62 % Gesamtwirkungsgrad erreicht. Bei wärmeoptimiertem Betrieb ergibt sich ein Gesamtanlagenwirkungsgrad von 69 %, bei 17 % Stromausbeute. Weiters sind zwei Maßnahmen zur Wärmeeffizienzerhöhung, die keine Änderung der Referenzanlagen-Arbeitsweise bedingen, ausgeführt.

Abstract

This thesis describes the process of a combined heat and power generation plant for biomass fuels using a Siemens Pebble Heater – $SiPeb^{\textcircled{B}}$. The range of interest for the electrical power out was defined with 100 kW to 5 MW. The objective is to evaluate the technical possibilities of this kind of plant regarding the connection options and efficiency optimization. Scope of this thesis is to get an overview of the mass and energy flows of a concept plant.

Describing the principles of a combined heat and power process results in the needed main components: heat engine and heat transfer unit. The direct use of flue gas from biomass combustion causes difficulties in heat engines. The innovation of this approach for an indirect fired combined heat and power generation plant is the Pebble-Heater. This regenerative heat exchanger transfers the heat from the flue gas to clean air via a packed bed. This air is used in a gas turbine as heat engine. The operating point for the inlets of the Pebble-Heater is defined by Siemens with 860 °C at ambient pressure for the flue gas and 120.6 °C at 4.3 bar for air.

The introduction shows the working principles of a Pebble-Heater and a configuration to enable continuous operation. The combination of a biomass combustor, the Pebble-Heater configuration, gas turbine and generator allows the generation of electrical power. The remaining heat of the flue gas and air is used for heat extraction. By partially recycling the gas streams at different temperature levels the overall efficiency of the plant can be influenced.

The evaluation of electrical and thermal efficiencies is made with a software program, which was developed during this thesis. In part "implementation" describes the components of this plant and their possible interconnectivities. Using the listed thermodynamical formulas the modelling of the components and their composition resulting in the SiPebprogram is described.

The "sensitivity analysis" shows the abilities of a SiPeb plant. Two reference solutions one for optimized power generation, one for optimized heat extraction, are used to illustrated the variety of different operating states that can be achieved by choosing different interconnectivity of gas streams. In both cases the process set value is the electrical power output with 1 MW. Furthermore the influence of (ambient) disturbance variables and the most significant demand values is evaluated.

The final part describes the technically good overall efficiency. The power optimized reference solutions achieves an electrical efficiency of 22 % with 62 % overall efficiency. With the heat extraction optimized solution the overall efficiency rises to 69 % with 17 % electrical efficiency. Finally two heat efficiency rising measures without changing the operations of the reference solutions are described.

Di	plom	arbeit:	SiPeb [®] Biomasse-Kraft-Wärmekopplung	Ι
Ir	nhal	tsver	zeichnis	
\mathbf{A}	bbild	lungsv	erzeichnis	VI
Ta	abelle	enverz	eichnis	VIII
Ι	Eir	leitur	ıg	1
1	Ziel	der A	rbeit	1
	1.1	ökono	mische Aspekte einer dezentralen Biomasse-KWK-Anlage	. 1
	1.2	techni	sche Aspekte einer dezentralen Biomasse-KWK-Anlage	. 2
2	Peb	ble-He	eater	5
3	Aus	swahl o	ler Wärmekraftmaschine	9
4	SiP	eb-An	lagenkonzept	9
5	Anl	agen-I	Berechnungsprogramm	12
II	\mathbf{U}_{1}	msetz	ung	13
6	\mathbf{Anl}	agenm	odell	13
	6.1	Name	nskonventionen	. 14
		6.1.1	Komponentennamen	. 14
		6.1.2	Stromnamen der gasförmigen Stoffströme	. 14
	6.2	Fließb	ild des Anlagenmodells	. 15
	6.3	Versch	naltungsmöglichkeiten	. 16
		6.3.1	Rauchgasseite	. 17
		6.3.2	Luftseite	. 19
7	Ber	ücksic	htigte chemische Verbindungen	22
	7.1	Gassti	röme	. 22
	7.2	Brenn	stoff	. 22

8	The	Thermodynamische Modelle		
	8.1	Molekulargewichte		
	8.2	Berechnung der Gasströme		
	8.3	Relative Feuchtigkeit der Luft		
	8.4	Brennstoffberechnung		
	8.5	Mischungsvorgänge		
9	Mo	delleingänge		
	9.1	System-Eingaben		
	9.2	Eingaben Verbrennung		

10 Formelapparat der Anlagenberechnungen 10.1 Konstanten 10.2 Zusammenhang mol- und massenbezogene Größen

10.2	Zusammenhang mol- und massenbezogene Größen	36			
10.3	Zusammenhang spezifische und extensive Größen	36			
10.4	Zustandsgleichungen	37			
	10.4.1 Thermische Zustandsgleichung	37			
	10.4.2 Spezifische Wärmekapazität, Enthalpie und Entropie	37			
	10.4.3 Abschätzung der Temperatur bei isentroper Entspannung	39			
10.5	chemische Reaktionen	40			
10.6	Brennwert und Heizwert	40			
10.7	Antoine-Gleichung	41			
10.8	Umrechnung zwischen relativer und absoluter Feuchtigkeit	41			
10.9	Allgemeine Form der Stoffbilanzen	42			
10.10	Allgemeine Form der Energiebilanzen	42			
10.11	10.11Kombinierte Stoff- und Energiebilanz der Brennkammer				

-	-
-	-

 $\mathbf{24}$

24

26

26

28

29

36

36

.

. 24

. 24

. 24

. 25

.

.

11	Bere	echnungsmodelle der Komponenten	44
	11.1	Brennkammer	44
		11.1.1 Brennstoff-Berechnungen	46
		11.1.2 Verbrennungsreaktion	47
		11.1.3 Energiebilanz minimaler RG-Strom	48
		11.1.4 Temperatur-Ausgleich	49
		11.1.5 Stromgrößenbestimmung	51
		11.1.6 Gesamtsystem	53
	11.2	Mixer	55
		11.2.1 Temperaturgesteuerter Mixer	55
		11.2.2 Massenstromgesteuerter Mixer	57
	11.3	Wärmetauscher	58
	11.4	Pebble-Heater	59
	11.5	Splitter	61
	11.6	Turbine	62
	11.7	zwischengekühlter Verdichter	64
		11.7.1 Gesamtsystem	64
		11.7.2 Verdichter 1	66
		11.7.3 Verdichter 2	67
		11.7.4 Zwischenkühlung	69
12	Bere	echnungsergebnisse	70
	12.1	Ergebnisse der Verbrennungsrechnung	70
		12.1.1 Zusammenfassung der Verbrennungsergebnisse	70
		12.1.2 Stromtabellen der Verbrennungsberechnungen	72
	12.2	Ergebnisse der Anlagenberechnung	72
		12.2.1 Ergebnisse der energetischen Anlagenbetrachtung	72
		12.2.2 Stoffstromtabellen	73

Diplomarbeit: SiPeb [®] Biomasse-Kraft-Wärmekopplung	IV
III Sensitivitätsanalyse	75
13 Eingabewertdefinitionen	76
13.1 Störgrößen	76
13.1.1 Brennstoff \ldots	76
13.1.2 Umgebungsbedingungen	78
13.2 Konstante Anlagengrößen	79
13.3 Sollgrößen	79
13.3.1 invariable Sollgrößen und Konstanten	79
13.3.2 variierbare Sollgrößen	81
13.4 Führungsgröße	81
14 Referenz-Anlage	82
14.1 stromoptimierter Betrieb	82
14.2 wärmeoptimierter Betrieb	84
14.3 Effizienzvergleich der Betriebsvarianten	85
14.3.1 Beschreibung der Energieströme	86
15 Auswirkung der Variation von Störgrößen	90
15.1 Druckabhängigkeit	90
15.2 Einfluß der Umgebungstemperatur	92
15.3 Einfluß des Wassergehalts	92
15.4 quantitativer Vergleich der Störgrößeneinflüsse	94
16 Auswirkung der Variation von Sollgrößen	96
16.1 Einfluß der Brennkammer-Eintrittstemperatur	96
16.2 Einfluß der Brennkammer-Austrittstemperatur	97
16.3 Einfluß des Sauerstoffgehalts am Brennkammeraustritt	98
16.4 quantitativer Vergleich der Sollgrößeneinflüsse	98

IV Ausblick und Schlußfolgerung

100

17 Möglichkeiten der Effizienzsteigerung	100
17.1 Potential der Abwärmenutzung des Verdichter-Zwischenkühl	ers 101
17.2 Potential der Restwärmenutzung des Abgases	102
17.3 Zusammenfassung der Effizienzsteigerungsmöglichkeiten $\ .$.	104
18 Schlußfolgerung	105
Literatur	106
Anhang	107

${\bf Abbildungs verzeichnis}$

1	Prinzipieller Aufbau eines Pebble-Heaters	5
2	Arbeitsweise eines Pebble-Heaters	6
3	radiales Temperaturprofil im Pebble-Bett	7
4	Verschaltung dreier Pebble-Heater für den kontinuierlichen Anlagenbetrieb .	8
5	Zentrale Komponenten der SiPeb-Anlage	9
6	Fließbild der Stoffströme der Gesamtanlage	11
7	Fließbild Rauchgasseite	17
8	Fließbild Luftseite	19
9	System-Eingaben Brennstoff	27
10	System-Eingaben Umgebungsluft	27
11	Eingaben Verbrennung	28
12	Eingaben Anlage luftseitige Größen	30
13	Eingaben Anlage rauchgasseitige Größen	32
14	Entscheidungsdiagramm betreffend Sp $$ TL3 und Mx $$ RG2 $$	34
15	Entscheidungsdiagramm Stromauswahl	34
16	Entscheidungsdiagramm Führungsgröße	35
17	Fließbild des Verbrennungs-Subsystem	45
18	Simulationsfließbild Brennstoffberechnung der Brennkammer	46
19	Simulations-Schaltbild der Verbrennungsrechnung der Brennkammer	47
20	Simulations-Schaltbild der Energiebilanz des minimalen Rauchgasstroms der Brennkammer	48
21	Simulations-Schaltbild des Temperaturausgleichs der Brennkammer	50
22	Simulations-Schaltbild der Stromgrößenberechnung der Brennkammer	51
23	Simulations-Schaltbild der Brennkammer	53
24	Simulations-Schaltbild des temperaturgesteuerten Mixers	56
25	Simulations-Schaltbild des massenstromgesteuerten Mixers	57
26	Simulations-Schaltbild Wärmetauscher	59

27	Simulations-Schaltbild des Pebble-Heaters	60
28	Simulations-Schaltbild des Splitters	61
29	Simulations-Schaltbild der Heißluftturbine	62
30	Fließbild der Stoffströme im zwischengekühlten Verdichter	64
31	Übersicht Simulations-Schaltbild des zwischengekühlten Verdichters $\ .\ .\ .$	65
32	Simulations-Schaltbild des 1. Verdichters	66
33	Simulations-Schaltbild des 2. Verdichters	68
34	Simulations-Schaltbild der Zwischenkühlung	69
35	Zusammenfassende Darstellung der Verbrennungsergebnisse	71
36	Stromtabelle der Verbrennungsergebnisse	73
37	Ergebnisse der energetischen Anlagenbetrachtung	74
38	Stoffstromtabellen der Gesamtanlagenberechnung	74
39	Fließbild der stromoptimierten Referenzanlage	83
40	Fließbild der wärmeoptimierten Referenzanlage	85
41	Übersicht der verwerteten Energieflüsse der Referenzanlage	86
42	Energieströme der stromoptimierten Referenzanlage	87
43	Energieströme der wärmeoptimierten Referenzanlage	88
44	Umgebungsdruckeinfluß auf die Anlageneffizienz	91
45	Umgebungstemperatureinfluß auf die Anlageneffizienz	92
46	Einfluß des Wasserdampfs auf die Anlageneffizienz	94
47	Einfluß der Brennkammer-Eintrittstemperatur auf die Anlageneffizienz	96
48	Einfluß der Brennkammer-Austrittstemperatur auf die Anlageneffizienz	97
49	Einfluß des Sauerstoffgehalts am Brennkammeraustritt auf die Anlagenef-	
	fizienz	98
50	Fließbild der Stoffströme der Gesamtanlage	101

Tabellenverzeichnis

1	Vergleich der indirekt befeuerten WKM $\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	9
2	Definition der Störgröße Brennstoff-Wassergehalt	6
3	Definition der brennstoffbezogenen Störgrößen	7
4	Störgrößendefinition aus der Umgebungsluft	8
5	Definition der Konstanten	9
6	Definition der invariablen Sollgrößen 8	0
7	Definition der variierbaren Sollgrößen	1
8	Sollgrößendefinition im stromoptimierten Betrieb	4
9	Sollgrößendefinition im wärmeoptimierten Betrieb	5
10	Formelzeichen Exergiestromberechnung	7
11	Formelzeichen Normierung der Ergebniswerte	0
12	Umgebungsdruckeinfluß auf die Anlageneffizienz 9	1
13	Einfluß der Umgebungstemperatur	2
14	Formelzeichen absoluter Wassergehalt	3
15	Vergleich der eingebrachten Wasserströme	4
16	Einfluß des Wassergehalts	4
17	Quantitativer Vergleich der Störgrößeneinflüsse 9	5
18	Einfluß der Brennkammer-Eintrittstemperatur	7
19	Einfluß der Brennkammer-Austrittstemperatur	7
20	Einfluß des Sauerstoffgehalts am Brennkammeraustritt 9	8
21	quantitativer Vergleich der Sollgrößeneinflüsse	9
22	Rauchgaskondensationstemperaturen	3
23	Steigerung der Gesamtanlagen-Effizienzen	5
24	Tabelle der Atomgewichte	7
25	Antoine-Parameter des Wassers	7
26	Shomate-Parameter	8

Teil I

Einleitung

1 Ziel der Arbeit

Das Projekt "SiPeb[®] Biomasseverstromungsanlage" diente der Evaluierung ökonomischtechnischer Möglichkeiten, eine dezentrale Kraft-Wärme-Kopplungsanlage (KWK) unter Einsatz biogener Brennstoffe wettbewerbsfähig betreiben zu können. Der Anlagenleistungsbereich wurde in der Größenordnung von 100 bis 5000 kW elektrischer Leistung definiert[1].

Um Anlagenkonzepte bezüglich (energetischer) Effizienzen und Stoffstromgrößen bewerten zu können, wurde im Rahmen einer Industriearbeit ein Prozeßberechnungsprogramm beauftragt, welches die Basis dieser Arbeit darstellt. Mit diesen Berechnungsdaten ist die Auslegung der einzelnen Komponenten, damit deren Kostenabschätzung, und die Kosten/Nutzen-Abschätzung durch Werte für (Brennstoff-)Bedarf und daraus erzielbaren Nutzen einer Anlage möglich. Weiters wird die Darstellung der Zusammenhänge zwischen Stör-, Soll- und Komponentenkenn-Größen (wie z.B. dimensionsabhängiger Wirkungsgrade von Turbinen) bei unterschiedlichen Verschaltungsoptionen der Anlage abbildbar. In dieser Arbeit ist die Komponentenauslegung, Untersuchung von Teillastverhalten oder Bewertung der Rauchgase bezüglich Verunreinigungen, nicht berücksichtigt.

1.1 ökonomische Aspekte einer dezentralen Biomasse-KWK-Anlage

Die ökonomischen Rahmenbedingungen für Biomasse-betriebene Anlagen werden durch zwei gegenläufige Kosteneinflüsse bestimmt:

- * die spezifischen Investitionskosten pro kWh (elektrische) Nutzenergie, sinken mit der Anlagengröße, während
- * Transport- und Logistikkosten für die Biomasse-Beschaffung mit steigender Anlagengröße wachsen[1].

Obgleich der erste Punkt klar für Großanlagen spricht, sind diese an die Nähe zu entsprechenden Biomasse-Lieferanten gebunden – z.B. große holzverarbeitende Betriebe, Papierfabriken, etc. Deren Anzahl ist begrenzt und ihr Potential in vielen Fällen bereits genutzt. Neben der Erschließung kleinerer Biomasselieferanten, ist bei mittelgroßen KWK-Anlagen weiters die Nutzung der ausgekoppelten Abwärme in einem Nahwärmenetz (geringer Pumpstrombedarf) und die Stromversorgung über ein lokales Stromnetz – ohne die sonst anfallenden Umspann-und Leitungsverluste – möglich.

Für einen wirtschaftlichen Einsatz einer mittelgroßen KWK-Anlage ergeben sich folgende Anforderungen:

- * Verfügbarkeit der benötigten Biomasse in der Nähe;
- * regionaler Strom- und Wärmeenergiebedarf im Bereich der Anlagenleistung;
- * Relation der Investitionskosten zur Anlagen-Rentabilität;

Die beiden ersten Punkte sind Anforderungen an die Standortwahl, der dritte an die technischen Umsetzungsmöglichkeiten.

1.2 technische Aspekte einer dezentralen Biomasse-KWK-Anlage

Ganz allgemein wird in einer KWK-Anlage

- * die im Brennstoff gespeicherte chemische Energie als thermische Energie (direkt oder indirekt) an ein Arbeitsmedium f
 ür eine W
 ärmekraftmaschine (Abk
 ürzung: WKM) übertragen.
- * Die dabei generierte mechanische Energie wird in elektrische Energie übergeführt und als Nutzenergie in ein Stromnetz eingespeist.
- * Die in der Wärmekraftmaschine nicht umsetzbare Restwärme wird an ein Wärmenetz ausgekoppelt.

Hierbei sind die Erzeugung elektrischer aus mechanischer Energie (typischer Weise mittels Synchrongeneratoren) und die Auskopplung thermischer Energie an ein Wärmenetz (Wärmetauscher) mittels Standardkomponenten realisierbar. Die Umwandlung der thermischen in mechanische Energie erfolgt in einer Wärmekraftmaschine, für die es verschiedenste Arbeitsprinzipien und Bauformen gibt:

- 1. direkt befeuerte WKM:
 - (a) Gasturbine,
 - (b) Gasmotor;

- 2. indirekt befeuerte WKM:
 - (a) Dampfturbine,
 - (b) Dampf-Kolbenmotor bzw. -Schraubenmotor,
 - (c) Stirlingmotor,
 - (d) Heißluftturbine,

Allen WKM gemeinsam ist ihre prinzipielle, 4-stufige Arbeitsweise, wobei der Betrachtungsort davon abhängig ist, ob die WKM kontinuierlich (wie Turbinen), oder diskontinuierlich (z.B. Kolbenmaschinen) arbeiten. Bei Ersterem verfolgt man den Verlauf des Arbeitsmediums durch die WKM, im zweiten Fall den Arbeitsraum in der WKM.

- 1. Druckerhöhung des (relativ) kühlen Arbeitsmediums;
- 2. Druck- und/oder Temperaturerhöhung durch Wärmezufuhr;
- 3. Expansion des Arbeitsmediums, wobei mechanische Arbeit vom Arbeitsmedium an der WKM verrichtet wird;
- 4. Ausstoß des "verbrauchten" Arbeitsmediums und Neubefüllung mit frischem.

In Kreisprozessen wird das verbrauchte Arbeitsmedium wieder in seinen Ausgangszustand versetzt (z.B. Stirlingmotor), während andernfalls eine stetig neue Zu- und Abfuhr des Arbeitsmediums über die Anlagen-Systemgrenzen erfolgt. Grundvoraussetzung eines im Kreislauf geführten Mediums ist dessen chemische Unverändertheit durch den Kraftprozeß.

Der Unterschied zwischen den direkt und indirekt befeuerten WKM ist die Art wie die thermische Energie in den Arbeitsprozeß eingebracht wird. Im Falle der direkten Befeuerung wird Luft bzw. Rauchgas als Arbeitsmedium verwendet. Die Oxidationsreaktion des Brennstoffs mit Luftsauerstoff – unter Druck, vgl. Punkt 2 in obiger Beschreibung der Arbeitsweise – findet in der WKM statt. Für diese Maschinen sind allerdings nur flüssige und gasförmige Brennstoff geeignet.

Bei indirekter Befeuerung wird der Brennstoff bei Umgebungsdruck mit Luftsauerstoff oxidiert und die Wärmeenergie über einen Wärmetauscher an das Arbeitsmedium der WKM übertragen. Der Aggregatzustand des Brennstoffs spielt in diesem Fall keine Rolle.

Damit bieten sich zwei Varianten für den Betrieb an:

1. direkte Befeuerung: durch Biomasse-Vergasung wird die feste Biomasse durch Pyrolyse und Teiloxidation in einen gasförmigen Brennstoff umgewandelt. Das entstehende Schwachgas besteht aus weiter oxidierbaren Bestandteilen (primär sind CO, H_2 , CH_4 zu nennen), neben den nicht oxidierbaren Gasen N_2 und $CO_2[2, Seite 382]$. Dieser gasförmige Brennstoff wird zum Betrieb der WKM verwendet.

2. indirekte Befeuerung: Verbrennung (möglichst vollständige Oxidation) der Biomasse in einer Brennkammer und Übertragung der freigesetzten thermischen Energie an das Arbeitsmedium der WKM.

Verunreinigungen, wie Chlor-, Schwefel-, Alkaliverbindung und Aschepartikel, erschweren bzw. verhindern jedoch in beiden Fällen den unmittelbaren Einsatz in Wärmekraftmaschinen. Während Chlor- und Schwefelverbindungen korrosiv sind, bilden Alkaliverbindungen und Aschepartikel Ablagerungen. Durch Einsatz – kostenintensiver – korrosionsbeständiger Materialien kann die notwendige chemische Beständigkeit erkauft werden.

Die Ablagerungen führen bei direkt befeuerten WKM zur mechanischen Zerstörung der Maschine (bei Gasturbinen durch Unwuchtbildung am Turbinenläufer, bzw. bei Gasmotoren durch Abrieb von Kolben/Zylinder). Um Schwachgas aus Biomassevergasung nutzen zu können, muß es einem aufwendigen Reinigungsprozeß unterzogen werden. "Technologisch und wirtschaftlich vertretbare Verfahren zur Gasreinigung [...] stellen derzeit noch weitgehend ungelöste Probleme dar."[2, Seite 383] Unter diesen Voraussetzung fallen die direkt befeuerten WKM weg.

In Brennkammer und Wärmetauscher der indirekt befeuerten WKM verschlechtern die Ablagerungen den Wirkungsgrad, wodurch regelmäßige Wartungs-/Reinigung-Arbeiten notwendig sind. Durch Anlagenstillstand senkt das wiederum den Wirkungsgrad. Um die Ablagerungsrate am Wärmetauscher zu verringern, werden z.B. Heißgaszyklone verwendet, in denen Feststoffpartikel (Flugasche und Restkohlenstoffpartikel) abgeschieden werden. Eine alternative Art der Wärmeübertragung, die im Bereich der Biomasse-KWK eine Neuheit darstellt, wurde im sogenannten Pebble-Heater gefunden.

Der Pebble-Heater wurde ursprünglich für metallurgische Prozesse entwickelt und ist auch noch bei weit höheren Temperaturen (bis über 1500 °C), als sie bei Biomasseverbrennungsanlagen auftreten, einsetzbar[3]. Dieser regenerative Wärmetauscher zeichnet sich durch seinen hohen Rekuparationswirkungsgrad (d.h. das Verhältnis zwischen übertragener zu eingebrachter Wärmemenge) von 95 - 98%, geringe Investitionsmittel und Robustheit im Betrieb – damit geringen Wartungskosten – aus.

Mit diesen vielversprechenden technischen Eckdaten wurde von Siemens als Lizenznehmer der Pebble-Heater-Technologie der Handelsmarkenname SiPeb[®] für Pebble-Heater in biomassebefeuerten KWK-Anlagen registriert. Im folgenden Abschnitt werden Aufbau und Arbeitsweise eines Pebble-Heaters in Hinblick auf den Einsatz als Biomasse-befeuerter, regenerativer Wärmetauscher dargestellt.

2 Pebble-Heater

Ein Pebble-Heater ist ein diskontinuierlich betriebener Wärmetauscher, wie er in Abbildung 1 auf Seite 5 gezeigt ist. Durch Umschaltung der Durchströmungsrichtung wird im Beladungsvorgang Wärme eines, für die weitere Prozeßanforderung ungeeigneten, gasförmigen Mediums im Apparat zwischengespeichert. Während des Entladevorgangs wird diese Wärmeenergie an ein prozeßgeeignetes, gasförmiges Arbeitsmedium abgegeben. Als Zwischenspeicher wird ein Schüttgutbett verwendet, das als Hohlzylinder in einem Kessel verbaut ist.

Abbildung 1: Prinzipieller Aufbau eines Pebble-Heaters

Der Schüttgutraum wird auf der außenliegenden Kaltgasseite durch ein permeables Stahlgitter begrenzt. Auf der inneren Heißgasseite dient ein Gitternetz aus keramischem, feuerfestem Material als Begrenzung. Als Schüttgut kommen die namensgebenden Pebbles zum Einsatz: rundliche mineralische Feststoffe: Steine. Um das Schüttgut zu erneuern, bzw. um es zu reinigen, ist am unteren Bettende ein Entnahme- und am Deckel eine Beschickungsstelle vorgesehen (auf deren Darstellung in der Prinzipdarstellung verzichtet wurde). Dieser Austausch ist auch im Betrieb möglich, wobei nur Teilmengen ersetzt und so Stillstandszeiten vermieden werden.

Beladezyklus:

- 1. Zufuhr des heißen Rauchgases bei Umgebungsdruck ($T = 860 \ ^{\circ}C, p = 1bar$);
- radiales Durchströmen der Schüttgutschicht, wobei die Wärmeenergie auf die Pebbles übertragen wird.
- 3. Abfuhr des abgekühlten Rauchgases $(T = 127 \ ^{\circ}C, p = 1bar);$

Abbildung 2: Arbeitsweise eines Pebble-Heaters

Entladezyklus:

- 1. Zufuhr der komprimierten, kühlen Luft $(T = 121 \ ^{\circ}C, p = 4, 3bar);$
- Durchströmen der Schüttgutschicht, wobei die Wärmeenergie der Pebbles an die Luft übertragen wird.
- 3. Abfuhr der heißen, komprimierten Luft zur Turbine ($T = 830 \ ^{\circ}C, p = 4, 3bar$);

Die geringe thermische und mechanische Belastung¹ ermöglichen den Einsatz von kostengünstigem Stahl als Mantelmaterial des Kessels und des kaltgasseitigen Gitternetzes.

Generell wird im Pebble-Heater die Wärmeenergie eines Gasstroms an einen anderen übertragen. Da dies nur bei unterschiedlichen Eigenschaften (z.B. chemische Zusammensetzung) der beiden Gasströme sinnvoll ist, wird im Weiteren zur einfacheren Erklärung von der Wärmeübertragung eines heißen Rauchgasstroms an einen kalten Luftstrom ausgegangen.

Die diskontinuierliche Arbeitsweise besteht aus 2 Phasen: dem (thermischen) Be- und Entladezyklus (siehe Abbildung 2). An der oberen Öffnung laufen die Kaltgasseiten der beiden Gasströme an einem Dreiwege-Ventil zusammen. Gleiches gilt für die Heißgasseite an der unteren Öffnung. Während des Beladevorgangs läßt das untere Ventil den heißen Rauchgasstrom in den Pebble-Heater und das Ventil an der Oberseite öffnet den Zugang zum Rauchgas-Abzugsrohr. Die luftseitigen Ventile sind abgesperrt.

Das Rauchgas strömt vom inneren Bereich radial durch die Pebble-Schicht und gibt kontinuierlich seine Wärmeenergie an die Pebbles ab. Dabei kühlt das Gas aber ebenfalls kontinuierlich ab. Je höher die Temperaturdifferenz zwischen Feststoff und Gas ist, desto höher ist die übertragene Wärmemenge. Dadurch bildet sich der typische S-förmige Temperaturverlauf über die Schichtdicke aus (siehe Abbildung 3).

In dieser idealisierten Darstellung des radialen Temperaturprofils in der Pebbleschicht ist dargestellt, wie sich das Temperaturniveau über den Radius im zeitlichen Verlauf verändert. Dabei steht **r_i** für die innenseitige Begrenzung des Pebble-Betts und **r_a** für die äußere Grenze. Die Gastemperatur an der Innenseite wird mit **T_max** und der Außenseite mit **T_min** als konstant angenommen. Die Kurven stellen die Temperatur **T** an der Stelle **r** zu den drei diskreten Zeitpunkten **t_0**, **t_1** und **t_2** dar.

Abbildung 3: radiales Temperaturprofil im Pebble-Bett

Zu Beginn des Beladevorgangs (Zeitpunkt t_0) fällt das Temperaturniveau nahe dem Innenrand des Schüttgutbetts (bei r_i) stark ab und nähert sich dann langsam der Aus-

¹In Abbildung 2 auf Seite 6 sind die Zahlenwerte für Druck und Temperatur, wie sie in der SiPeb-Anlage auftreten, angegeben.

trittstemperatur T_min . Am Ende des Beladevorgangs zum Zeitpunkt t_2 ist der Temperaturabfall nahe der Außenseite (bei r_a) verschoben. Der Pebble-Heater ist aufgeladen und durch Ventilumstellung (des oberen und unteren Ventils) wird nun der aufzuheizende Luftstrom von der kalten Außenseite durch die Pebble-Schicht zum unteren Auslaß geführt. Bei bei idealisierter Darstellung verschiebt sich der zeitliche Temperaturverlauf des Pebble-Bettes in die Gegenrichtung: von t_2 nach t_0 .

In Bezug auf Rauchgase aus Biomassefeuerungen bringt die Arbeitsweise von Pebble-Heatern einen weiteren Vorteil mit sich: Ablagerungen, wie z.B. durch Flugasche und Alkaliverbindungen, können durch Entnahme und Nachfüllen von Pebbles im Betrieb beseitigt werden.

Durch die Unempfindlichkeit bezüglich der Rauchgasbeschaffenheit können Rost- oder Wirbelschichtfeuerungen gleichermaßen eingesetzt werden. Die Art der Biomasseverbrennung wird dabei durch die Art der Biomasse bestimmt.

Um einen kontinuierlichen Prozeß unter Einsatz von Pebble-Heatern zu ermöglichen, sind mindestens 2 Stück notwendig. Während der Ventilumschaltung kommt es aber zu Unstetigkeiten der Prozeßführung, welche bei Verwendung von 3 Pebble-Heatern, wie in Abbildung 4 dargestellt ist, vermieden werden können. Kurz bevor die Entladekapazität eines Pebble-Heaters erschöpft ist, wird ein zweiter von Be- auf Entladen umgeschalten. Sobald der Vorgang abgeschlossen ist, wird der erste – entladene – Pebble-Heater auf Beladen geschalten.

PH < n >: Pebble-Heater n=1..3;

Pebble-Heater1 wird entladen und gibt dabei die gespeicherte Wärmeenergie an Luft ab. Pebble-Heater2 und 3 werden – durch die Wärmeenergie des heißen Rauchgases – aufgeladen.

Abbildung 4: Verschaltung dreier Pebble-Heater für den kontinuierlichen Anlagenbetrieb

3 Auswahl der Wärmekraftmaschine

In Tabelle 1 werden die indirekt befeuerten Wärmekraftmachinen bezüglich ihres Wirkungsgrades verglichen.

	Arbeits-	elektrischer	Leistungsbereich
	meduim	Wirkungsgrad	P_{el}
Dampfturbine	Wasser	8-18~%	500kW - 5MW
Dampfkolbenmotor	Wasser	8-18~%	20kW-1, 2MW
Dampfschraubenmotor	Wasser	8-18~%	100kW - 2MW
Stirlingmotor	Gas	10 - 14 %	1kW - 40kW
Gasturbine	Gas	20-25~%	100kW - 40MW

Tabelle 1: Vergleich der indirekt befeuerten WKM

Gasturbinen erreichen den höchsten Wirkungsgrad und decken den vorgegebenen Leistungsbereich von 100kW - 5MW ab. Da indirekt befeuerte Gasturbinen nicht die Ablagerungsproblematik der direkt befeuerten haben, wird diese WKM gewählt.

4 SiPeb-Anlagenkonzept

Abbildung 5: Zentrale Komponenten der SiPeb-KWK-Anlage

Eine SiPeb-KWK-Anlage besteht aus den, in Abbildung 5 graphisch dargestellten, zentralen Komponenten

- 1. Brennkammer,
- 2. Pebble-Heater,
- 3. Luft-Verdichter,
- 4. Heißluft-Turbine,
- 5. Wärmeauskopplung.

Diesen können zur Anlagensteuerung und Steigerung der Nutzenergieausbeute noch

- * Mixer,
- * Splitter und
- * Wärmetauscher

vor- bzw. nachgeschalten sein. Diese Zusatzkomponenten sind an den Stellen, wo sie in einer realen Anlage sinnvoller Weise auftreten können, vorgesehen. Abbildung 6 auf Seite 11 zeigt das "generalisierte Fließbild" der Gesamtanlage. Durch die gewählte Positionierung der Zusatzkomponenten zwischen den notwendigen, zentralen Komponenten ist jede denkbare Anlagenverschaltung modellierbar.

Der Aufbau aus 3 Pebble-Heater, wie in Abbildung 4 auf Seite 8 dargestellt, ermöglicht einen kontinuierlichen Betrieb zur Wärmeübertragung von Rauchgas aus der Biomasseverbrennung an das Heißluft-Arbeitsmedium Luft. Daher wird im weiteren dieser aus drei Einzelkomponenten bestehende Anlagenteil als eine Einheit "Pebble-Heater" referenziert.

Komponentennamen Komponenten-Namenszusatz: * Bk: Brennkammer * RG: Rauchgasseite V: Verdichter * TL: Turbinenluft * Ph: Pebble-Heater Stromnamen T: Turbine * L<i>: Luftstrom mit Laufnummer (i: * 01..14)Wt: Wärmetauscher * * R<i>: Rauchgasstrom mit Laufnum-* Sp: Splitter mer (i: 01..09) * Mx: Mixer * BS: Brennstoff

Abbildung 6: Fließbild der Stoffströme der Gesamtanlage

Wie das Fließbild der Gesamtanlage (Abbildung 6) zeigt, bestehen unterschiedlichste Möglichkeiten der Stoffstromführung. Ziel dieser Verschaltungen ist, die Anlageneffizienzmaximierung.

So wird beispielsweise der Rauchgasstrom vor dem Pebble-Heater mit Turbinenabluft vermischt, um damit die gewünschte Pebble-Heater-Eintrittstemperatur einzustellen. Je höher die Temperatur der beigemischten Luft ist, desto größer kann – da die Rauchgastemperatur davon unbeeinflußt ist – der Luftanteil sein. Gleichzeitig ist der benötigte Massendurchsatz an Rauchgas-Luft-Gemisch durch den Pebble-Heater konstant. Ergo wird durch Beimischung heißerer Luft, ein geringerer Rauchgasstrom und damit weniger Brennstoff bei konstantem Betriebszustand der Turbine benötigt. Andererseits steht weniger auskoppelbare Wärmeenergie in der verbleibenden Turbinenabluft zur Verfügung.

Die Vielzahl der Verschaltungsmöglichkeiten, ihre gegenseitigen Abhängigkeiten, die Einflüsse von Stell, Soll- und Störgrößen bedingen einen komplexen Gesamtanlagen-Prozeß. Um den Einfluß der variierbaren Parameter auf die Gesamtanlage zu identifizieren, bedarf es einer thermodynamischen Modellierung des Prozesses, die die Erfassung sämtlicher stofflichen und energetischen Strom- und Komponentendaten ermöglicht. Die Brennkammer nimmt bezüglich der Parameterabhängigkeit eine Sonderstellung im Prozeß ein: ihr Betriebszustand hängt nicht nur von Betriebsparametern anderer Komponenten ab, sondern, durch die Rauchgasrückführung, auch von ihrem eigenen. Erhöht man den Sauerstoffgehalt im austretenden Rauchgas (Sollwert), wird dieser auch im rezirkulierten Rauchgasstrom erhöht, was wiederum zur Erhöhung des Sauerstoffgehalts am Brennkammer-Austritt (durch mehr Sauerstoffeintrag über das rezirkulierte Rauchgas) führt.

Durch Festlegung von Kenngrößen, die zur Leistungsbewertung geeignet sind, können unterschiedliche Parametervariationen miteinander verglichen werden. Ergebnis dieser Sensitivitätsanalysen ist die Optimumsfindung für die gewählten Kenngrößen.

5 Anlagen-Berechnungsprogramm

Im Auftrag von Siemens wurde ein Software-Programm zur Evaluierung der thermodynamischen und mechanisch/elektrischen Leistungsdaten einer SiPeb-Anlage erstellt, um Aufschluß über die Einflüsse unterschiedlichster Betriebs- und Verschaltungsmöglichkeiten zu geben. Alle Anlagenberechnungen, die in dieser Arbeit angegeben sind, wurden mit diesem Programm durchgeführt. Weiters sind teilweise Darstellungen direkt aus dem Programm übernommen.

In diesem Softwarepaket sind die stofflichen und thermodynamischen Zusammenhänge der Ausgangsgrößen von Eingangs-, Soll-, Fix- und Störgrößen der Komponenten und deren gegenseitige Beeinflussung abgebildet. Damit kann beispielsweise der Einfluß verschiedenster Verschaltungsoptionen auf die Gesamtanlage evaluiert werden, oder Sensitivitätsanalysen bezüglich z.B. Umgebungsbedingungen/Sollgrößenvariation erstellt werden – wie im Abschnitt "Sensitivitätsanalyse" ab Seite 75 dargestellt wird.

Teil II

Umsetzung

6 Anlagenmodell

Den Anlagen-Berechnungen liegt die Implementierung des Stationärbetrieb-Verhaltens der einzelnen, in einer SiPeb-Anlage möglichen, Komponenten zugrunde.² Die Bilanzgrenzen sind hierbei so gelegt, daß jene Bereiche, die den Betriebszustand der Anlage nicht beeinflussen und deren weitere Einsatzform nicht allgemein festlegbar ist, aus der Berechnung ausgeklammert sind. Als Beispiele sind hier die Wärmetauscher zur Wärmeauskopplung, als nicht vollständig festgelegte Komponenten, anzuführen:

Wärmetauscher: Die Bilanzgrenze schneidet die Wärmetauscher in zwei Bereiche, wobei nur im in der Simulation verwendeten Bereich, die Wärmebilanz berechnet wird. Daraus ergibt sich ein Wärmeenergiestrom zur anderen Wärmetauscherhälfte. Da keinerlei Festlegung bezüglich der Stoffbilanz auf dieser "freigeschnittenen" Seite getroffen wird, ist es dadurch auf einfache Weise möglich, die Ergebnisse des SiPeb-Programms als Eingabewerte für andere Berechnungen oder auch weitere Simulationen zu verwenden (beispielsweise Nutzung in ORC-Prozessen).

Die einzige Ausnahme von dieser Regel bildet die Erzeugung der elektrischen Energie. Da ausschließlich die Umwandlung von thermischer Energie in mechanische direkten Einfluß auf den Betriebszustand hat, wird die weitere Nutzung der mechanischen Energie im Modell berücksichtigt. Die im Generator aus mechanischer Energie erzeugte elektrische Energie stellt eine zentrale Ergebnisgröße zur Bewertung der Anlagenleistung dar. Im Stoffstrom-Fließbild der Gesamtanlage (Abbildung 6 auf Seite 11) wurde aus Übersichtlichkeitsgründen auf die Darstellung der Komponenten zur Umwandlung von mechanischer in elektrische Energie – Generator – verzichtet. In Abbildung 8 auf Seite 19, der detaillierteren Darstellung der luftseitigen Verschaltungsmöglichkeiten, ist dies jedoch nachgetragen.

Die Bilanzgrenze der Stoffströme stellt die Umgebung mit folgenden Einspeise- und Entnahmestellen dar:

²Das Einregelverhalten der Anlage bei Betriebspunktänderungen wird nicht berücksichtigt. Betrachtet werden die stofflichen und thermodynamischen Größen, wie sie im Stationärbetrieb vorliegen.

eintretende Stoffströme:	austretende Stoffströme		
* Brennstoff	* Rauchgas		
* Verbrennungsluft	* Turbinenabluft		
* Turbinenluft	* Asche (aus der Brennkammer)		

Anhand des in Abbildung 6 dargestellten Fließbildes werden die einzelnen Konfigurationsmöglichkeiten (inklusive Einschränkungen) für die betriebspunktbestimmenden Parameter im Überblick angeführt. Eine detaillierte Beschreibung erfolgt in Abschnitt 9 ab Seite 26. Zunächst sind die verwendeten Namenskonventionen definiert.

6.1 Namenskonventionen

Durch das statische Anlagenmodell sind alle Komponenten und Ströme zur einfacheren Referenzierung mit eindeutigen Namen versehen, die sich aus folgenden Konventionen ergeben.

6.1.1 Komponentennamen

- $\ast\,$ Alle Bezeichnungen stellen Abkürzungen ihres Komponentennamens dar.
- * Sie beginnen mit einem Großbuchstaben, optional gefolgt von einem Kleinbuchstaben.
- * Bei mehrmaligem Vorkommen einer Komponente, ist durch ein Leerzeichen getrennt, die Positionsbezeichnung RG (für Rauchgas-Seite) oder TL (Turbinenluft-Seite), gefolgt von einer mit 1 beginnenden Laufziffer, angehängt. Eine Ausnahme von dieser Konvention ist die Bezeichnungsweise des Verbrennungsluftmixers der als Mx VL bezeichnet wird (die Begründung erfolgt im Rahmen der Komponentenbeschreibung).

Beispiel:

 $\label{eq:windowski} \begin{array}{ll} \mbox{Wt RG2} & \mbox{Wärmetauscher Rauchgasseite2} \Rightarrow \mbox{zweiter Wärmetauscher auf der Rauchgasseite2} \\ & \mbox{seite} \end{array}$

6.1.2 Stromnamen der gasförmigen Stoffströme

 * Stromnamen bestehen aus einem Großbuchstaben, der angibt, ob es sich um einen Luftstrom (L) oder Rauchgasstrom (R) handelt,

- $\ast\,$ direkt gefolgt von einem Ziffernpaar, daß bei01 beginnend fortlaufend inkrementiert wird.
- * Optional ist ein Kleinbuchstabe beginnend bei a angehängt. Hierbei handelt es sich um Ströme, von denen – je nach Verschaltungsvariante – nur einer real existieren kann (für Details siehe unten angeführtes Beispiel).

Beispiel:

L10a Luftstrom 10 (optionaler Strom) bedeutet: der zehnte Strom auf der Luftseite, wobei dieser nur dann eine von Null verschiedene Stromgröße hat, wenn die entsprechende Verschaltungsoption der Anlageeingaben gesetzt ist. Andernfalls wird der Strom L10b verwendet.

Feststoffströme

In der SiPeb-Anlage sind zwei Feststoffströme vorhanden: der Brennstoffstrom, mit BS bezeichnet und der sich nach dem Verbrennungsvorgang daraus direkt ergebenden Aschestrom, mit der Bezeichnung Asche. Beide sind ein- bzw. austretende Ströme der Brennkammer. Auf Grund ihres Aggregatzustandes kommt ihnen in der simulationstechnischen Betrachtungsweise eine Sonderstellung zu:

- Brennstoff: Er tritt ausschließlich als abstrakter Gasstrom in der Brennstoffberechnung auf; d.h. seine thermodynamischen Eigenschaften sind ausschließlich durch seinen Heizwert bestimmt, sein Temperatur- und Druckniveau sind undefiniert. Auf Grund seiner chemischen Zusammensetzung wird einerseits der Brenn- und Heizwert errechnet (falls nicht durch explizite Angabe definiert), andererseits erfolgt sofort die Bestimmung des sich aus der vollständigen Oxidationsreaktion ergebenden Rauchgasstrom (Details siehe Abschnitt 8.4).
- Asche: Bei der oben angesprochenen "Aufbereitung" des Brennstoffs ergibt sich auch die Stromgröße des Aschestroms. Der Aschegehalt des Brennstoffs beeinflußt zwar den Brennwert, auf die weiteren Berechnungen im Rahmen des SiPeb-Programms hat er jedoch keinen Einfluß. Der an diesen Stoffstrom gekoppelte Wärmeenergiestrom wird in der Energiebilanz nicht berücksichtigt.

6.2 Fließbild des Anlagenmodells

In der Anlagenmodellierung sind folgende Komponentenmodelle (mit den Kurzbezeichnungen) verwendet:

- * Verdichter (V)
- * Pebble-Heater (Ph)
- * Turbine (T)
- * Wärmetauscher (Wt)
- * Splitter (Sp)
- * Mixer (Mx)
- * Brennkammer (Bk)

Durch die diskontinuierliche Prozeßführung im Bereich des Pebble-Heaters kann die Gesamtanlage in zwei Subsysteme unterteilt werden:

- * Rauchgasseite (Abbildung 7)
- * (Turbinen)-Luftseite (Abbildung 8)

In dieser Darstellung ist die Komponente Pebble-Heater in beiden Fließbildern vorhanden, wobei jene Wärmemenge, die auf der Rauchgasseite entnommen wird, auf der Luftseite eingebracht wird.³ Die Trennung ermöglicht auch die stationäre Betrachtung der beiden Subsysteme.

Die Erklärungen zu den Verschaltungsmöglichkeiten der einzelnen Anlagenkomponenten erfolgt anhand der beiden Subsysteme.

6.3 Verschaltungsmöglichkeiten

Da der aus der Heißluft-Turbine austretende Stoffstrom noch (exergetisch) hochwertige Wärmeenergie beinhaltet, wird es in den meisten Fällen nicht sinnvoll sein, diese Energie nur zur Bereitstellung von exergetisch minderwertiger Fernwärme zu nutzen. Stoffströme mit niedrigerem Temperaturniveau, wie beispielsweise der aus dem Pebble-Heater austretende Rauchgasstrom, bieten sich hingegen zur Energieauskopplung an ein Wärmenetz an. Mit den im folgenden beschriebenen Verschaltungsvarianten werden alternative Nutzungsarten dieser Energie ermöglicht.

 $^{^{3}}$ durch Angabe des thermischen Wirkungsgrades besteht dabei die Möglichkeit, Wärmeverluste zu berücksichtigen (siehe Abschnitt 9).

6.3.1 Rauchgasseite

Abbildung 7: Fließbild der Stoffströme der Rauchgasseite. Erläuterungen der Abkürzungen siehe Abschnitt 6.1 auf Seite 14.

Brennkammer

Die physikalischen und thermischen Eigenschaften des aus der Brennkammer austretenden Rauchgases sind abhängig von den Eigenschaften

- * des Brennstoffs (BS),
- * der Verbrennungsluft (L12),
- * des rezirkulierten Rauchgases (R08).

Bei der Verbrennung definierbare Parameter sind:

- 1. Rauchgastemperatur am Brennkammer-Austritt.
- 2. O_2 -Gehalt im Rauchgas.
- 3. Temperatur des rezirkulierten Rauchgases.
- 4. Anteil von Luft im rezirkulierten Rauchgas. Diese Verhältniszahl ist eine Einparameterdarstellung der chemischen Zusammensetzung des zirkulierten Rauchgases.
- 5. Temperatur der eingesetzten Verbrennungsluft.

Erster Wärmetauscher / erster Rauchgas-Mixer (Wt RG1 bzw. Mx RG1)

Zur Temperaturregelung des Rauchgases, das in den Pebble-Heater eintritt, bestehen neben der Wahl der obengenannten Brennkammeraustrittstemperatur zwei weitere Möglichkeiten:

- 1. Entnahme von Wärmeenergie im Wärmetauscher und / oder
- 2. Mischen des Rauchgases mit Turbinenabluft (siehe Luftseite).

Pebble-Heater (Ph)

Auf der Rauchgasseite sind für den Pebble-Heater sowohl die Ein- als auch die Austrittstemperatur anzugeben.

Weitere Nutzung des Rauchgases

Dem Pebble-Heater kann ein **Wärmetauscher** (Wt RG2) nachgeschalten werden. Wird die Austrittstemperatur der Eintrittstemperatur gleichgesetzt, ist dieser Wärmetauscher de facto nicht vorhanden.

Vor Eintritt in diesen Wärmetauscher ist optional die Zumischung von Turbinenabluft (im **zweiten Rauchgas-Mixer Mx RG2**) vorgesehen. Die Zusammenführung von Turbinenabluft und Rauchgas ist allerdings nur dann sinnvoll, wenn das Temperaturniveau der Turbinenabluft höher oder mindestens dem des Rauchgases gleich ist (Konfiguration dieses Luftstroms siehe Abschnitt 6.3.2 auf Seite 20).

Die beiden **Splitter** (Sp RG1 und Sp RG1) sind die vorgesehenen Entnahmestellen für die Rauchgasrezirkulation in die Brennkammer, von denen eine auszuwählen ist.

Rezirkuliertes Rauchgas

Wie aus Abbildung 7 zu erkennen ist, bestehen zwei Möglichkeiten der Abzweigung zur Rauchgasrezirkulation:

- 1. Entnahme direkt nach dem Pebble-Heater oder
- 2. nach dem Wärmetauscher $\tt Wt \ RG2$

Die beiden Verschaltungsvarianten geben dem Benutzer folgende Möglichkeit:

- 1. Entnahme von Rauchgas bei Sp RG1: an dieser Stelle entnommenes Rauchgas hat den geringeren O_2 -Gehalt, aber die höhere Temperatur (vgl. unten).
- 2. Entnahme von Rauchgas bei Sp RG2: die Änderungen der Rauchgaseigenschaften an dieser Stelle sind abhängig von den gewählten Betriebszuständen von:

- (a) Mx RG2: wenn das Rauchgas mit Turbinenluft vermischt wurde, erhöht sich der O_2 -Gehalt des rezirkulierten Rauchgases.
- (b) Wt RG2: wenn für diesen Wärmetauscher eine niedrigere⁴ Aus- als Eintrittstemperatur festgelegt wird, ist die Temperatur des rezirkulierten Rauchgases geringer.

6.3.2 Luftseite

Abbildung 8: Fließbild der Stoffströme der Luftseite. Erläuterungen der Abkürzungen siehe Abschnitt 6.1 auf Seite 14.

Verdichter (V)

Im zwischengekühlten, zweistufigen Verdichter wird das Druckniveau des aus der Umgebung angesaugten Luftstroms erhöht. Die hierzu notwendige mechanische Leistung stellt die Turbine bereit.

Pebble-Heater (Ph)

Die zuvor dem Rauchgasstrom entzogene Wärmeenergie wird auf den Luftstrom übertragen.

Turbine (T)

Bei der Expansion der Luft über die Turbine wird Druck- und Wärmeenergie (teilweise) in mechanische Energie umgesetzt. Diese mechanische Energie wird einerseits im Verdichter, andererseits im Stromgenerator genutzt.

 $^{^{4}}$ Die Möglichkeit einer höheren Austritts- als Eintrittstemperatur (also eine Wärmezufuhr) erscheint zwar nicht sinnvoll, diese Option ist aber dennoch berücksichtigt, um eine größtmögliche Flexibilität des Programms zu gewährleisten.

Wärmetauscher-Splitter-Kombinationen

Die Restwärme der austretenden Turbinenabluft kann auf unterschiedliche Arten genutzt, oder aber als Verlustwärme an die Umgebung abgegeben werden.

- * Wärmetauscher: Abgabe von Wärmeenergie an andere Prozesse oder Nutzung in einem (Fern-)Wärmenetz.
- * Splitter: Zuführung zur Rauchgasseite bzw. Abgabe an die Umgebung in Form von Abluft.

Auf der Rauchgasseite sind zwei Schnittstellen für die Einspeisung von Turbinenluft vorgesehen (vgl. Abschnitt 6.3.1):

- 1. Temperatur
regelung des Rauchgasstroms am Pebble-Heater-Eintritt in Mixer
 \mathtt{Mx} RG1.
- 2. Gemeinsame Verwertung der Restwärmeenergie von Rauchgas und Turbinenluft durch Beimischung der Abluft zum Rauchgas nach dessen Austritt aus dem Pebble-Heater im Mixer Mx RG2.

Um die Temperaturniveaus der Zuführung der Turbinenluft zur Rauchgasseite benutzerdefiniert steuern zu können sind drei Wärmetauscher-Splitter-Kombinationen hintereinandergeschalten.

Die beiden Kombinationen Wt TL1 und Sp TL1 bzw. Wt TL2 und Sp TL2 bieten die Möglichkeit, Luft mit unterschiedlichen Temperaturniveaus zum Mixer Mx RG1 der Rauchgasseite oder zum Verbrennungsluftmixer Mx VL abzuzweigen. Für beide Verzweigungsvarianten gilt allerdings, daß entweder beim ersten oder beim zweiten Splitter die Luft entnommen wird.

Dritter Wärmetauscher Wt TL3

Wt TL3 wird hauptsächlich dann zum Einsatz kommen, wenn die Luft nach ihm - durch entsprechende Konfiguration von Sp TL3 - an die Umgebung abgegeben wird. Andernfalls wird die Nutzung der verbleibenden Wärmeenergie von Wärmetauscher Wt TL2 (siehe Seite 19) übernommen.

Dritter Splitter Sp TL3

Bei der Konfiguration von Sp $\,TL3$ wird entschieden, ob bzw. in welchem Ausmaß die Luft an die Umgebung abgegeben wird, oder dem Rauchgasstrom in Mixer Mx $\,TL2$ zugegeben wird.

Verbrennungsluftmixer Mx VL

Wenn die der Brennkammer zugeführte Luft eine höhere Temperatur als die Umgebungsluft haben soll, wird zur Temperaturerhöhung der von Sp TL1 oder Sp TL2 kommende Turbinenluft-Teilstrom verwendet. Die Bezeichnungsweise weicht von der Standardbenennung der übrigen Komponenten ab. Dadurch soll die Sonderstellung des Mixers verdeutlicht werden. Alle mit ihm verbundenen Stoffströme sind zwar Luftströme, wodurch die Zuordnung zur Luftseite erfolgt. Aus Sicht seiner Funktionalität, als Temperaturregulator der Brennkammereintrittsluft, sollte er allerdings der Rauchgasseite angehören.

7 Berücksichtigte chemische Verbindungen

7.1 Gasströme

In der Betrachtung werden jene Gase berücksichtigt, die relevanten Einfluß auf die Stoffund Energiebilanz haben. Neben den Hauptbestandteilen der Luft und den gasförmigen Hauptreaktionsprodukten der vollständigen Biomasseverbrennung

- * Stickstoff (N_2)
- * Sauerstoff (O_2)
- * Wasser (H_2O)
- * Kohlendioxid (CO_2)

sind in einigen Brennstoffen Schwefel und Chlor in nicht vernachlässigbaren Konzentrationen vorhanden (z.B. Altholz). Dadurch ist obige Liste um deren Verbrennungs-Hauptprodukte

- * Schwefeldioxid (SO_2)
- * Salzsäure (HCl)

erweitert.

7.2 Brennstoff

In die Definition des Brennstoffs werden jene Elemente bzw. Verbindungen einbezogen,

- $\ast\,$ die relevanten Einfluß auf den Brennwert bzw.
- * den Heizwert haben und
- $\ast\,$ deren Verbrennungsprodukte in der Gasphase vorliegen.

Bei der Definition des Brennstoff berücksichtigt sind:

- * Kohlenstoff
- * Wasserstoff

- * Sauerstoff
- * Stickstoff
- * Schwefel
- * Aschegehalt
- * Wassergehalt des Brennstoffs
- * Chlor

Die Konzentrationen anorganischer Bestandteile werden als Aschegehalt zusammengefaßt. Den Massenanteil der Asche bildet dabei die Summe der einzelnen Massenanteile der oxidierten anorganischen Substanzen. Der Sauerstoff der in diesen Oxiden gebunden ist, scheint in der Brennstoffdefinition nicht explizit auf.
8 Thermodynamische Modelle

8.1 Molekulargewichte

Alle Werte für Molekulargewichte werden entsprechend ihrer chemischen Summenformel aus den Atomgewichten, die dem Periodensystem der Elemente [4] entnommen sind, berechnet.

8.2 Berechnung der Gasströme

Zur Berechnung der Gaszustände wurde das ideale Gasgesetz verwendet.

Die thermodynamischen Größen der Gasströme, wie (spezifische) Enthalpie, (spezifische) Entropie und die Wärmekapazität, werden nach der empirischen Zustandsgleichung nach Shomate (siehe Abschnitt 10.4.2) berechnet.

Für die Berechnung der Zusammenhänge von Druck und Temperatur (zur Modellierung der Vorgänge in den Wärmekraftmaschinen) wird isentrope Zustandsänderung angenommen. Die Abweichungen vom idealen Verhalten wird über die isentropen Wirkungsgrade ausgedrückt.

8.3 Relative Feuchtigkeit der Luft

Zur Umrechnung der relativen in die absolute Feuchtigkeit der Gase in Abhängigkeit von Druck und Temperatur, muß der Dampfdruck des Wassers bei der jeweiligen Temperatur berechenbar sein. Dies ist über die Antoine-Gleichung (siehe Gleichung 9 auf Seite 41) möglich. Die benötigten Parameter für den Temperaturbereich von 0 bis 60 °C sind der NIST-Onlinedatenbank [5] entnommen. Die Obergrenze des Gültigkeitsbereichs ist dem (frei definierten) Temperaturmaximum der Umgebungsluft entsprechend gewählt. Die untere Temperaturgrenze der Umgebungsluft liegt tiefer als 0 °C. Für diesen Bereich waren jedoch keine Antoine-Parameter auffindbar, weshalb in diesem Temperaturbereich ausschließlich die absolute Feuchtigkeit angebbar ist.

8.4 Brennstoffberechnung

Der Brennstoffstrom in die Brennkammer wird als einziger Nichtgasstrom in der Berechnung gesondert behandelt. In die Verbrennungsberechnung fließt der Brennstoffstrom als "abstrakter" Gasstrom ein, der folgend dargestellt wird:

- * Der Druck des Brennstoff-Gasstroms ist undefiniert und wird implizit dem der Verbrennungsluft gleichgesetzt.
- * Die Temperatur des Brennstoffs ist undefiniert.
- * Die spezifische Enthalpie des Brennstoffs ist gleich seinem Heizwert; diese Annahme ist für eine Brennstofftemperatur gleich dem "Thermodynamischen Bezugspunkt " (von 25 °C in diesem Programm) mathematisch korrekt; bei Abweichung der realen Brennstoff-Einsatztemperatur von der Bezugstemperatur ergibt sich ein vernachlässigbarer Fehler (zumal sämtliche derzeit zur Verfügung stehenden Brenn- und Heizwert-Berechnungsformeln für biogene Brennstoffe empirischer Art sind und deren relativer Fehler größer ist als der, durch diese Annahme verursachte).
- * Die chemische Zusammensetzung des abstrakten Gasstroms wird durch die Reaktionsprodukte der berücksichtigen Elemente des Brennstoffs (siehe Abschnitt 7.2), wie sie bei der stöchiometrischen Verbrennung auftreten, dargestellt. Da vom Brennstoff selbst natürlich nicht die zur vollständigen Verbrennung benötigte Sauerstoffmenge bereitgestellt wird, ergibt sich für diesen abstrakten Gasstrom eine negative Sauerstoffkonzentration. Dieser Weg erlaubt allerdings in weiterer Folge die Modellierung der Verbrennung als Mixer zweier eintretender Gasströme zu einem austretenden Rauchgasstrom.

8.5 Mischungsvorgänge

Allen Komponenten, in denen Gasströme miteinander vermischt werden, liegt das Konzept des "idealen Rührkessels" zugrunde. Da ausschließlich stationäre Betriebszustände betrachtet werden – als keine Speicherterme in den verwendeten Gleichungen Anwendung finden –, folgt aus diesen Voraussetzungen, daß aus Komponenten austretende Ströme aus chemischer und thermodynamischer Sicht ideal durchmischt sind.

9 Modelleingänge

Um die im Minimalfall 55 simulationsrelevanten Eingangsparameter zu beschreiben, erfolgt eine Unterteilung in logische Gruppen. Diese Kategorisierung erfolgt anhand der funktionalen Gruppen der Anlage:

- * Systemeingaben
- * Eingaben der Verbrennung
- * Anlageneingaben

Da in der folgende Beschreibung der Eingangsgrößen zur Veranschaulichung Abbildungen der Excel-Eingabemasken verwendet werden, ist die Erklärung der Farbcodierung hilfreich:

Farbliche Kennzeichnungen der Eingabemasken im SiPeb-Programm

Auf allen Eingabeblätter ist die Bedeutung der Felder entsprechend folgender Konvention durch ihre Hintergrundfarbe angezeigt:

blau	Werteingaben.
rot	Um-/Berechnungsergebnisse, die sich direkt aus den Eingabewerten ergeben, aber ihrerseits als Eingabewerte in die weiteren Berechnungen einfließen. Sie sind zur Kontrolle und Information dargestellt.
gelb	aus einer (DropDown-)Liste auswählbare Werte, auch Optionsfelder genannt.
grau	abhängige Optionsfelder. Wie bei den Berechnungsergebnissen sind auch diese Werte nicht direkt eingebbar, sondern vom Eingabewert eines anderen Opti- onsfeldes bestimmt und der Vollständigkeit wegen angeführt.

9.1 System-Eingaben

Brennstoff Der in der Simulation verwendete Brennstoff kann aus bis zu 10 einzelnen Brennstoffen bestehen (siehe Abbildung 9). Die Zusammensetzung des Gemischs wird durch Mittelung errechnet. Die für jeden einzelnen Brennstoff benötigen Daten sind:

* Massenanteil des jeweiligen Brennstoffs am feuchten Brennstoffgemisch in $[Gew.\%_{FS}]$; es ist nicht notwendig, daß die Summe aller eingegeben Werte 100 ergibt, da sie normiert werden.

Brennstoff		Ges BS	BS 1	BS 2	BS 3	BS 4	BS 5	BS 6	BS 7	BS 8	BS 9	BS 10
		Brennstoff- mischung	Stroh Winter- weizen NÖ	Ganzpfla nzen Triticale, NÖ	Rinde Fichte Stmk	Hackgut o. Rinde Fichte Stmk (S. 50)						
Massenanteil	[Gew-% FS]	100	0	0	0	0	100					
Wassergehalt	[Gew-% FS]	55	50	0	23,5	20	55					
С	[Gew-% TS]	46,5	43,53	43,59	50,00	50,16	46,5					
Н	[Gew-% TS]	5	5,04	5,73	6,00	6,15	5					
0	[Gew-% TS]	40	47,90	47,41	42,16	43,36	40					
N	[Gew-% TS]	0,62	0,4100	0,6500	0,4000	0,1200	0,62					
S	[Gew-% TS]	1	0,0777	0,1076	0,0332	0,0067	1					
CI	[Gew-% TS]	0	0,2380	0,0988	0,0055	0,0057	0					
Aschegehalt	[Gew-% TS]	6,88	2,8051	2,4215	1,4000	0,2044	6,88					
Brennwert	[MJ/kg TS]	17,93462										
Heizwert	[MJ/kg FS]	6,22866093			13,73							

Abbildung 9: System-Eingaben Brennstoff

- * Wassergehalt in Gewichtsprozent bezogen auf den feuchten Brennstoff $[Gew.\%_{FS}]$; gültige Eingabewerte: 0-90.
- * Chemische Zusammensetzung: Anteil der Elemente C, H, O, N, S, Cl und der Asche bezogen auf die wasserfreie Biomasse in $[Gew.\%_{TS}]$; gültige Eingabewerte: 0-100; der Sauerstoffgehalt des Brennstoffs ist nicht einzugeben, da er sich aus der Differenz der Summe aller übrigen Werte auf 100 % ergibt.
- * Optional: Brennwert und/oder Heizwert in $[MJ/kg_{TS}]$ für den Brennwert und für den Heizwert in $[MJ/kg_{FS}]$. Sollte keine Angabe erfolgen, werden die Werte nach den Formeln für Biomassebrennstoffe [2, Seiten 55 und 56] berechnet. Werden jedoch Brenn- und/oder Heizwert eingegeben, finden diese Werte in der Berechnung Verwendung. Gültige Eingabewerte: 0-50.

Umgebungsluft Zur Festlegung der Umgebungsbedingungen sind folgende Eingaben notwendig:

Umaebunasluft						
Temperatur	[°C]	1	5,00			
Druck	[bar]	0,	,955			
chemische Zusa	mmensetzung d	er trocken	nen Luft			
N2	[vol-% tr]	79	9,00			
02	[vol-% tr]	21,	,00			
						-
Definition des Fe	euchtegehalts de	er Luft				
rel. Feuchte	[%]		60			
abs. Feuchte	[vol-%]	(0,50			_
Zusammenfassu	ing der Eingaber	n der Umg	ebungs	luft		
	Temperatur	Druck	N2		02	H2O
	[°C]	[bar]	[vol	-%]	[vol-%]	[vol-%]
	15,00) 0,	,955	78,13	20,7	7 1,1

Abbildung 10: System-Eingaben Umgebungsluft

- * Temperatur: Wert in °C; Gültigkeitsbereich: -30 bis 60.
- * Druck: Wert in bar; Gültigkeitsbereich: 0.7 bis 1.2.
- * chemische Zusammensetzung $(N_2 \text{ und } O_2)$ der trockenen Luft in Volums-%; Gültigkeitsbereich: 0 bis 100;
- * Feuchtegehalt der Luft. Bei Temperaturen über 0 °C ist die relative Feuchtigkeit, bezogen auf den Sättigungs-Wassergehalt bei der jeweiligen Temperatur, in Prozent anzugeben. Gültige Werte sind 0 - 100 %. Die relative Feuchtigkeit wird in den Volumsanteil umgerechnet.

Für niedrigere Temperaturen muß, in Ermangelung der Dampfdruckdaten in diesem Bereich, der Wassergehalt in Volumsprozent bezogen auf die feuchte Luft angegeben werden. Gültige Eingaben sind in diesem Fall 0 - ~ 0.6 Vol-%; die obere Grenze bildet der prozentuelle Anteil des Wasserdampfs am Luftvolumen bei 100 % relativer Feuchte bei 0 °C. Dieser Wert stellt eine absolute Obergrenze dar, da bei sinkender Temperatur der Wasserdampfsättigungsgehalt logarithmisch abnimmt.

9.2 Eingaben Verbrennung

Die Eingaben der Verbrennungsrechnung bestehen aus einem Teil, der für jeden Anwendungsfall notwendig ist und einem zweiten - durch die horizontale Linie graphisch vom ersten getrennt - der nur im Falle der Verbrennungsberechnung notwendig ist.

Abbildung 11: Eingaben Verbrennung

Für jeden Anwendungsfall notwendige Eingaben

- * Luft-Eintritts-Temperatur in °C; Gültigkeitsbereich: -30 bis 800.
- * thermischer Verlust der Brennkammer in $\mathcal{H}_{kJ_{FS}}^{kJ}$ (= prozentuelle Verlustwärme bezogen auf den Heizwert des Brennstoffs); Gültigkeitsbereich: 0 bis 50.
- * Rauchgas-Austrittstemperatur in °C; Gültigkeitsbereich 750 bis 1500.
- * O_2 -Gehalt des Rauchgases (bezogen auf das trockene Rauchgas) in Vol-%; Gültigkeitsbereich 0 bis $Y_{O_2,Umgeb.Luft}$ (= O_2 -Gehalt der Umgebungsluft).

Zusätzliche Eingaben für den Anwendungsfall Verbrennung Soll ausschließlich die Verbrennungsrechnung durchgeführt werden, sind zusätzliche Angaben notwendig, die bei Berechnung der Gesamtanlage Berechnungsergebnisse darstellen:

- * Temperatur des rezirkulierten Rauchgases in °C; Gültigkeitsbereich: -30 bis 800 (die Grenzwerte sind der der Lufteintrittstemperatur gleich);
- * Prozentueller Anteil von Luft im rezirkulierten Rauchgas in Vol-%; Gültigkeitsbereich 0 bis 99;

Diese Eingabe stellt eine Einparameterdarstellung der chemische Zusammensetzung des rezirkulierten Rauchgases dar. Eine Eingabe von 0 (%) bedeutet, daß das rezirkulierte und das aus der Brennkammer austretende Rauchgas die selbe chemische Zusammensetzung haben. Für den Fall, daß, wie in der Anlagenverschaltung vorgesehen, dem austretenden Rauchgas z.B. zum Einstellen von Temperaturen vor gewissen Komponenten, Luft beigemischt wird, kann die dadurch entstehende Änderung der Zusammensetzung des rezirkulierten Rauchgases auch für die ausschließliche Berechnung der Verbrennung eingegeben werden. Die Eingabe des Wertes 100 bedeutete, daß reine Luft zugeführt wird (da dies sinnlos wäre, ist diese Eingabe nicht erlaubt).

9.3 Eingaben Anlage

Luftseite

Verdichter

- * $\eta_{V,St1,mech}$ mechanischer Wirkungsgrad der ersten Verdichterstufe in kW/kW; Gültigkeitsbereich: 0 1.
- * $\eta_{V,St2,mech}$ mechanischer Wirkungsgrad der zweiten Verdichterstufe in kW/kW; Gültigkeitsbereich: 0 1.
- * $\eta_{V,St1,is}$ is
entroper Wirkungsgrad der ersten Verdichterstufe in kW/kW; Gültigkeitsbereich: 0 1.
- * $\eta_{V,St2,is}$ is
entroper Wirkungsgrad der zweiten Verdichterstufe in kW/kW; Gültigkeitsbereich: 0 1.
- * $p_{V,St1_{aus}}$ Austrittsdruck aus der ersten Verdichterstufe in *bar*; Gültigkeitsbereich: $\geq p_{Umgebung}$.
- * p_{L02} (= $p_{V_{aus}} = p_{V,St2_{aus}}$) Austrittsdruck aus dem Verdichter in *bar*; Gültigkeitsbereich: $\geq p_{V,St1_{aus}} \Delta p_{V,Zk}$.

Luftseite	V	mWG_St1	0,94	[-]	mechanischer Wirkungsgrad der 1. Sufe
		mWG_St2	0,94	[-]	mechanischer Wirkungsgrad der 2. Sufe
		isWG St1	0.83	i-i	isentroper Wirkungsgrad der 1. Sufe
		isWG St2	0.80	i-i	isentroper Wirkungsgrad der 2. Sufe
		p aus St1	2.23	(bar)	Austrittsdruck 1. Stufe
		p_L02	4.32	(bar)	Austritts-Druck
		do Wt V	4,400	[Pa]	Druckverlust Zwischenküler
		T L02	120.60	i°Ci	Austritts-Temperatur
	Ph TL	T L03	830.00	l'CI	Austritts-Temperatur
		Ph TL	1.200	(Pa)	Druckverlust Pebbleheater Luftseite
	т	m₩G	0.98	[-]	mechanischer Wirkungsorad
		T L04	533,70	เว่า	Austritts-Temperatur
		p_L04	0.99	(bar)	Austritts-Druck
	Welle-Geno	P W/(P T + P V)	0.98	[-]	mech. WG Getriebe Verdichter-Turbine-Welle
		P el/P W	0,97	i-i	elektr. WG Geno
	Wt TL1	T L05	533,70	[°C]	Austritts-Temperatur
	Sp TL1	Ph_connect	j	[-]	Luft-Entnahme zu Ph Rauchgasseite? (j/n)
		Bk_connect	j	[-]	Luft-Entnahme zu Brennkammer? (j/n)
	Wt TL2	T_L07	110,00	[°C]	Austritts-Temperatur
	Sp TL2	Ph_connect	n	[-]	Luft-Entnahme zu Ph Rauchgasseite? (j/n)
		Bk_connect	n	[-]	Luft-Entnahme zu Brennkammer? (j/n)
	Wt TL3	T L13	110,00	[°C]	Austritts-Temperatur

Abbildung 12: Eingaben Anlage luftseitige Größen

- * $\Delta p_{V,Zk}$ Druckverlust im Zwischenkühler des Verdichters in Pa; Gültigkeitsbereich: $\geq 0.$
- * T_{L02} (= $T_{V,aus}$) Austrittstemperatur aus dem Verdichter in °C; Gültigkeitsbereich: > -30.

Luftseitiger Pebble-Heater

- * T_{L03} (= $T_{Ph,Luft,aus}$) Austrittstemperatur aus dem Pebble-Heater in °C; Gültigkeitsbereich: $T_{Ph,RG,aus} \leq T_{L03} \leq T_{Ph,RG,ein}$.
- * $\Delta p_{Ph,Luft}$ Druckverlust im Pebble-Heater in Pa; Gültigkeitsbereich: ≥ 0 .

Turbine

- * $\eta_{T,mech}$ mechanischer Wirkungsgrad der Turbine in kW/kW; Gültigkeitsbereich: 0 1.
- * T_{L04} Austrittstemperatur aus der Turbine in °C; Gültigkeitsbereich: > $p_{T,aus}^{-0.3} \cdot T_{T,ein}$ (die Untergrenze der Austrittstemperatur stellt die bei isentroper Entspannung erreichbare Temperatur dar. Da dieser Wert jedoch nur während der Anlagenberechnung iterativ ermittelt werden kann, wird er – mit ausreichender Sicherheit – abgeschätzt. Für Details der Berechnung siehe Formel 6 auf Seite 39.).

* p_{L04} (= $p_{T,aus}$) Austrittsdruck aus der Turbine in *bar*; Gültigkeitsbereich: > 0.

Welle-Geno

- * $\eta_{Getriebe,mech}$ mechanischer Wirkungsgrad des Getriebes in kW/kW; Gültigkeitsbereich: 0 1.
- * $\eta_{Geno,elektr.}$ Wirkungsgrad der Stromerzeugung des Generators in $kW_{el.}/kW_{mech.}$; Gültigkeitsbereich: 0 - 1.

Erster luftseitiger Wärmetauscher

* T_{L05} Austrittstemperatur aus dem Wärmetauscher Wt TL1 in °C; Gültigkeitsbereich: > -273.15.

Erster luftseitiger Splitter

- * j/n: Abzweigung von Luft zum Mixer Mx RG1 vor dem Pebble-Heater (rauchgasseitig) im Splitter Sp TL1;
- * j/n: Abzweigung von Luft zum Verbrennungsluft-Mixer Mx VL im Splitter Sp TL1;

Zweiter luftseitiger Wärmetauscher

* T_{L07} Austrittstemperatur aus dem Wärmetauscher Wt TL2 in °C; Gültigkeitsbereich: > -273.15.

Zweiter luftseitiger Splitter

- * j/n: Abzweigung von Luft zum Mixer Mx RG1 vor dem Pebble-Heater (rauchgasseitig) im Splitter Sp TL2;
- * j/n: Abzweigung von Luft zum Verbrennungsluft-Mixer Mx VL im Splitter Sp TL2;

Dritter luftseitiger Wärmetauscher

* T_{L13} Austrittstemperatur aus dem Wärmetauscher Wt TL3 in °C; Gültigkeitsbereich: > -273.15.

Rauchgass	elte				
	Mx VL	T_L12	467,00	[°C]	Luft Eintritts-Temperatur
	Bk	T_R01	1.000,00	[°C]	Rauchgas Austritts-Temperatur
		Q/H_u	3,00	[% kJ/kJ_FS]	Wärmeenergieverlust bezogen auf H_u in %
		y_02_R01	12,00	[vol-%]	O2-Gehalt des austretenden (trockenen) RG
	Wt RG1	T_R02	1.050,00	[°C]	Austritts-Temperatur
	Mx RG1	T_R03	860,00	[°C]	Austritts-Temperatur
	Ph RG	T_R04	127,00	[°C]	Austritts-Temperatur
		(Q_TL/Q_RG)_Ph	0,98	[-]	therm. Wirkungsgrad der Wärmeübertragung
	Sp RG1	Bk_connect	j	[-]	Entnahme des rezirkulierten Rauchgases (j/n)
	Mx RG2	temp/flow	n	[-]	Mixer ist temperaturgesteuert? (j/n)
		V_L14/n_L13	100	[Vol-%]	Verhältnis L14 zu L13
	Wt RG2	T_R07	110,00	[°C]	Austritts-Temperatur
	Sp RG2	Bk_connect	n	[-]	Entnahme des rezirkulierten Rauchgases (j/n)
Führungsg	röße				
	Anlage	typeBS	a	[-]	Auswahl der Systemleistungs-Führungsgröße
			1.000,00	[kW]	Klemmenleistung

Abbildung 13: Eingaben Anlage rauchgasseitige Größen

Rauchgasseite

Erster rauchgasseitiger Wärmetauscher

* T_{R02} Austrittstemperatur aus dem Wärmetauscher Wt RG1 in °C; Gültigkeitsbereich: $\leq T_{R01}$;

Erster rauchgasseitiger Mixer

* T_{R03} Austrittstemperatur aus dem Mixer Mx RG1 in °C; Gültigkeitsbereich: $T_{L09} \leq T_{R03} \leq T_{R02};$

Pebble-Heater

* T_{R04} Austrittstemperatur aus dem Pebble-Heater Ph in °C; Gültigkeitsbereich: $\geq T_{L02}(=T_{V_{aus}});$

Erster rauchgasseitiger Splitter

* j/n: Entnahme des rezirkulierten Rauchgases in Splitter Sp RG1; Gültigkeitsbereich: "j" oder "n"; Optionsdetails siehe 9.3 auf Seite 34.

Zweiter rauchgasseitiger Mixer

- * j/n: Ist Mixer Mx RG2 temperatur- oder (strom-)flußgesteuert? Gültigkeitsbereich:
 "j" oder "n";
- * Werteingabe zur oben ausgewählten Steuerungs-Option von Mixer Mx RG2; Temperaturwerte in °C;
 Gültigkeitsbereich: min(T_{R05}, T_{L13}) ≤ T_{R06} ≤ max(T_{R05}, T_{L13});
 bei Stoffstromsteuerung in Vol-% von Strom L13 (= Turbinenluftstrom nach Wt TL3); Gültigkeitsbereich: 0 100;

Zweiter rauchgasseitiger Wärmetauscher

* T_{R07} Austrittstemperatur aus dem Wärmetauscher Wt RG2 in °C; Gültigkeitsbereich: > -273.15;

Zweiter rauchgasseitiger Splitter

* j/n-Wert: Entnahme des rezirkulierten Rauchgases in Splitter Sp RG2; der Wert ist durch die bei Splitter Sp RG1 gewählte Option bestimmt;

Führungsgröße

Die Führungsgröße legt fest, auf welches Anlagen-Leistungsmerkmal die Ergebnisse der Simulation bezogen werden sollen.

In der Bilanzrechnung werden alle Daten auf einen Brennstoffeinsatzstrom von $1kg_{FS}/s$ bezogen. Entsprechend dem eingegebenen Wert der Führungsgröße wird der tatsächliche Brennstoffstrom errechnet, wodurch die Führungsgröße zum Bezugspunkt wird.

- * Führungsgröße; Eingabeoptionen:
 - (a) elektrische Leistung der Anlage
 - (b) Brennstoffeinsatzstrom
 - (c) Wärmestrom vom Rauchgas an den Pebble-Heater
 - (d) Luftmassenstrom über die Turbine oder
 - (e) mechanische Leistungsabgabe der Turbine;
- * Wert der durch obiges Menü ausgewählten Führungsgröße; in kW bei Auswahl von (a), (c) oder (e), bzw. kg_{FS}/s bei Option b bzw.und kg/s bei (d). Gültigkeitsbereich: > 0;

Entscheidungsdiagramme für abhängige Eingaben

Um die Abhängigkeiten der Eingaben bei drop-down-Menüs genauer darzustellen, werden diese mit Hilfe von Entscheidungsdiagrammen nochmals betrachtet.

Verschaltungsoptionen betreffend Sp TL3 und Mx RG2

Abbildung 14 zeigt, welche Werteingabe durch Festlegen der Option "temperatur- oder flußgesteuert" ermöglicht wird.

Der Eingabewert "j" im Optionsfeld bewirkt, daß im direkt darunter stehenden Werteingabefeld die gewünschte Temperatur des aus dem Mixer Mx RG2 austretenden Rauchgases in °C einzugeben ist. Vom Mixer wird dann die benötigte Stromgröße an Turbinenluft berechnet, um die Eingabe zu erfüllen.

Bei Optionsauswahl "n" ist das prozentuelle Verhältnis der Volumensstromgrößen der beiden Turbinenluft-Ströme L13 (= in den Sp TL3 eintretender Strom) und L14 (= von Sp TL3 zu Mx RG2 geführter Strom) einzugeben.

Abbildung 14: Entscheidungsdiagramm betreffend Sp TL3 und Mx RG2

Abbildung 15: Entscheidungsdiagramm Stromauswahl

Auswahl von Stromverschaltungen

Auswahloptionen sind bei den Eingaben mit ja (j) oder nein (n) gekennzeichnet. Betroffen von dieser Eingabevariante sind die Auswahl:

- 1. Welcher Strom zum Einstellen der Temperatur der Verbrennungsluft genutzt wird: Entnahme in Sp TL1 oder Sp TL2.
- 2. Welcher Strom zum Einstellen der Temperatur vor dem Pebble-Heater (rauchgasseitig) eingesetzt wird: Entnahme in Sp TL1 oder Sp TL2.

3. Wo das rezirkulierte Rauchgas entnommen wird: Sp RG1 oder Sp RG2.

Bei Festlegung der auswählbaren Optionseingabe ändert sich der Wert des abhängigen (der Übersichtlichkeit wegen dargestellten) Feldes. Abbildung 15 zeigt stellvertretend für alle drei davon betroffenen Eingaben die Entscheidung und ihre Auswirkung anhand der Definition des rezirkulierten Rauchgases.

Festlegen der Anlagenleistung – Führungsgröße

Wie in Abbildung 16 gezeigt ist, stehen zur Festlegung der Anlagenleistung insgesamt 5 Option zur Verfügung. Durch Eingabe eines der Buchstaben a, b, c, d bzw. e im Options-Eingabefeld, werden neben dem (direkt darunter stehenden) Werteingabefeld die physikalische Einheit und der beschreibende Text automatisch entsprechend geändert.

- (a) Klemmenleistung = abgegebene elektrische Leistung der Anlage in kW,
- (b) Massenstrom des Brennstoffs in kg_{FS}/s ,
- (c) Vom Rauchgas an den Pebble-Heater abgegebener Wärmestrom in kW,
- (d) Massenstrom der durchgesetzten Turbinenluft in kg/s und
- (e) Abgegebene mechanische Leistung der Turbine in kW.

Abbildung 16: Entscheidungsdiagramm Führungsgröße

10 Formelapparat der Anlagenberechnungen

Konstanten 10.1

 $\left[\frac{J}{mol \cdot K}\right]$ ideale Gaskonstante R = 8.3141

Zusammenhang mol- und massenbezogene Größen 10.2

$$m(n, y_i) = n \cdot MG(y_i) \tag{1-a}$$

$$n(m, y_i) = \frac{m}{MG(x_i)} \tag{1-b}$$

$$m, y_i) = \frac{1}{MG(y_i)} \tag{1-b}$$

Formelzeichen

m	Masse	[g]
n	Molenzahl	[mol]
y_i	Molenbruch der Komponente i	$\left[\frac{mol}{mol}\right]$
MG	Molgewicht	$\left[\frac{g}{mol}\right]$

10.3Zusammenhang spezifische und extensive Größen

Begriffsdefinition (inhaltlich übernommen von [6]):

- * Extensive Größen verändern sich mit Teilung eines Systems in Untersysteme, sind also der Stoffmenge proportional.
- * Spezifische Größen sind auf die Masse bezogene extensive Zustandsgrößen.

Extensive Größen sind im Allgemeinen mit Großbuchstaben bezeichnet, während das gleiche Formelzeichen als Kleinbuchstabe die spezifische Größe bezeichnet. Bei gasförmigen Stoffen oder Stoffströmen werden die spezifischen Größen auf Mol(ströme) bezogen (siehe Gleichung 2-a), bei Feststoffen auf die Massen(ströme) (Gleichung 2-b).

$$Z(n,z) = n \cdot z$$
 bzw. $\dot{Z}(n,z) = \dot{n} \cdot z$ (2-a)

$$Z(m,z) = m \cdot z$$
 bzw. $\dot{Z}(m,z) = \dot{m} \cdot z$ (2-b)

10.4 Zustandsgleichungen

10.4.1 Thermische Zustandsgleichung

Die Gültigkeit des, in Gleichung 3 dargestellten, idealen Gasgesetzes wird angenommen. Diese Annahme ist bei vernachlässigbaren Wechselwirkungskräften zwischen den Molekülen gerechtfertigt. Wie in [7, Seite 74 und 104] beschrieben ist, ist das für die im SiPeb-Programm auftretenden Temperaturen, Drücke und chemischen Verbindungen erfüllt.

$$p \cdot v = R \cdot T \tag{3}$$

Formelzeichen

pDruck[Pa]vspezifisches Volumen $\left[\frac{m^3}{mol}\right]$ Rideale Gaskonstante $\left[\frac{J}{mol \cdot K}\right]$ TTemperatur[K]

10.4.2 Spezifische Wärmekapazität, Enthalpie und Entropie

Die spezifische Wärmekapazität wird mittels der empirischen Zustandsgleichung nach Shomate berechnet. Spezifische Enthalpie und Entropie werden durch Integration der Formel der Wärmekapazität berechnet. Die dafür notwendigen Parameter sind aus der NIST-Online-Datenbank [5] entnommen und im Anhang in Tabelle 26 aufgelistet.

Spezifische Wärmekapazität

$$c_p(T) = A + B \cdot \tau + C \cdot \tau^2 + D \cdot \tau^3 + \frac{E}{\tau^2}$$
(4-a)

Spezifische Enthalpie

$$h^{\circ}(T) - h^{\circ}_{T^{\circ}} = A \cdot \tau + \frac{B}{2} \cdot \tau^{2} + \frac{C}{3} \cdot \tau^{3} + \frac{D}{4} \cdot \tau^{4} - \frac{E}{\tau} + F - \Delta h^{\circ}_{f,T^{\circ}}$$
(4-b)

Spezifische Entropie

$$s_{1bar}^{\circ}(T) = A \cdot \ln \tau + B \cdot \tau + \frac{C}{2} \cdot \tau^2 + \frac{D}{3} \cdot \tau^3 - \frac{E}{2 \cdot \tau^2} + G$$
(4-c)

Der in obigen drei Formel verwendete Parameter τ ist definiert als:

$$\tau = f(T) = \frac{T}{1000}$$

Der Bezugspunkt für die Parameter wurde bei der Temperatur T° mit 25 °C (=298.15 K) und einem Druck von 1 bar festgelegt. Die spezifische Wärmekapazität und Enthalpie sind beim idealen Gas vom Druckniveau unabhängig, die Entropie allerdings nicht. Die Gleichung zur Entropieberechnung unter Berücksichtigung des Druckes lautet:

$$s(T,p) = s_{1bar}^{\circ}(T) - R \ln\left(\frac{p}{p^{\circ}}\right)$$
(4-d)

Umkehrfunktionen nach der Temperatur aufgelöst

Eine explizite Darstellung der Temperatur als Funktion von Enthalpie bzw. Entropie ist nicht möglich. Im Simulationsprogramm sind die Berechnungen

$$T = f(H)$$
 (5-a) $T = f(S(p))$ (5-b)

als Iterationschleifen ausgeführt. Die Analyse der beiden betroffenen Funktionen zeigte, daß sich über den gesamten Definitionsbereich stetig steigende Funktionsgraphen ergeben. Als Lösungsansatz wird eine einfach Bereichseinschränkung durchgeführt:

- 1. Als Startwerte sind der Enthalpie- bzw. Entropiewert des Stroms und die Temperaturgrenzen bekannt.
- 2. Aus dem Temperaturminimum und -maximum wird der geometrische Mittelwert, als dritte Temperatur, bestimmt.
- 3. Nun wird zu jeder dieser Temperaturen der Enthalpie-/Entropiewert bestimmt und von diesem berechneten Wert, der bekannte Zielwert subtrahiert und damit die (absoluten) Abweichungen berechnet.
- 4. Sollte ein Wert nahe genug (für diese Bestimmung wird die relative Abweichung mit der maximal erlaubten 10^{-6} verglichen) am Zielwert liegen, ist das Ergebnis bestimmt.

5. Sind die relativen Abweichungen zu groß, werden für den nächsten Iterationsschritt die neuen, eingeschränkten, Grenztemperaturen bestimmt. Betrachtet man die Abweichungen in allen drei Punkten, so hat die Abweichung des Temperaturmittelwertes und einer der Randtemperaturwerte das gleich Vorzeichen. Daraus folgt, daß diese beiden größer (bzw. kleiner) als der gesucht Wert sind und der Randtemperaturwert mit dem von den beiden anderen verschiedenen Vorzeichen demzufolge kleiner (bzw. größer) als der gesuchte Wert sein muß. Für den nächsten Iterationsschritt werden nun der Temperaturmittelwert und jene schon zuvor verwendete Randtemperatur verwendet, deren Ergebnisdifferenzwert sich im Vorzeichen unterscheiden.

Formelzeichen

c_p	spezifische, molare Wärmekapazität	$\left[\frac{J}{mol \cdot K}\right]$
p	Druck	[bar]
T	Temperatur	[K]
τ	temperaturäquivalenter Parameter	[K]
A,\ldots,G	Shomate-Parameter siehe Anhang Tabelle 26	
$h^{\circ}(T)$	temperaturabhängige spezifische Enthalpie	$\left[\frac{kJ}{mol}\right]$
$h^{\circ}(T^{\circ})$	spezifische Enthalpie am Bezugspunkt	$\left[\frac{kJ}{mol}\right]$
$\Delta h_{\boldsymbol{f},\boldsymbol{T}}^{^{\mathrm{o}}}$	spezifische Standardbildungsenthalpie am Bezugspunkt	$\left[\frac{kJ}{mol}\right]$
$\overset{\circ}{s_{1bar}}(T)$	spezifische Entropie bei 1 bar Druck, temperaturabhängig	$\left[\frac{J}{mol\cdot K}\right]$
s(T,p)	druck- und temperaturabhängige, spezifische Entropie	$\left[\frac{J}{mol \cdot K}\right]$

10.4.3 Abschätzung der Temperatur bei isentroper Entspannung

Zur Wertabschätzung der Austrittstemperatur bei isentroper Entspannung wird folgende Formel verwendet

$$T_{aus} = T_{ein} \cdot \left(\frac{p_{aus}}{p_{ein}}\right)^{\frac{\kappa-1}{\kappa}} \tag{6}$$

Formelzeichen

p_{ein}	Eintrittsdruck	[Pa]
p_{aus}	Austrittsdruck	[Pa]
T	Eintrittstemperatur	[K]
T	Austrittstemperatur	[K]
κ	Isentropenkoeffizient	[—]

chemische Reaktionen 10.5

Nachstehend sind die Oxidationsreaktionen der Brennstoffelemente, die bei der Verbrennung berücksichtigt sind (siehe Abschnitt 7.2 auf Seite 22), angeführt.

 $2H + \frac{1}{2}O_2 \implies H_2O$ (7-a)

$$C + O_2 \implies CO_2$$
 (7-b)

$$S + O_2 \implies SO_2$$
 (7-c)

$$2N \implies N_2$$
 (7-d)

$$H + Cl \implies HCl$$
 (7-e)

10.6 Brennwert und Heizwert

Aus der Zusammensetzung des biogenen Brennstoffs wird nach den beiden untenstehenden Formel, die speziell auf Biomasse-Brennstoffe ausgelegt sind, der Brenn- und Heizwert berechnet. Quelle: [2, Seiten 54 und 55]

$$H_o = 0,3491 \cdot X_C + 1,1783 \cdot X_H + 0,1005 \cdot X_S$$

$$-0,0151 \cdot X_N - 0,1034 \cdot X_O - 0,0211 \cdot X_{Asche}$$
(8-a)

$$H_u = H_o \cdot \left(1 - \frac{WG}{100}\right) - 2,447 \cdot \frac{WG}{100} - 2,447 \cdot \frac{h}{100} \cdot 8,01 \cdot \left(1 - \frac{WG}{100}\right)$$
(8-b)

Formelzeichen

(**-**)

H_o	Brennwert bzw. oberer Heizwert	$\left[\frac{MJ}{kg_{TS}}\right]$
X_i	Massenanteil der Elemente: Kohlenstoff (C), Wasserstoff (H),	
	Schwefel (S), Stickstoff (N), Sauerstoff (O) bzw. Asche	[Gew - %]
H_u	(unterer) Heizwert	$\left[\frac{MJ}{kg_{FS}}\right]$
WG	Wassergehalt des Brennstoffs	$[Gew - \%_{FS}]$
h	Wasserstoffgehalt in der Trockensubstanz	$[Gew - \%_{TS}]$

10.7 Antoine-Gleichung

Zur Berechnung des Wasserdampfdrucks, in Abhängigkeit von der Temperatur wird die Antoine-Gleichung verwendet. Die dazu notwendigen Parameter sind aus der NIST-Online-Datenbank [5] entnommen und im Anhang in Tabelle 25 aufgelistet.

$$\log\left(p^*(T)\right) = A - \frac{B}{C+T} \tag{9}$$

Formelzeichen

p^*	Dampfdruck des Wasser	[bar]
Т	Temperatur	[K]
A, B, C	Antoine-Parameter	[-]

10.8 Umrechnung zwischen relativer und absoluter Feuchtigkeit

Aus der Antoine-Gleichung kann der Dampfdruck des Wassers berechnet werden, womit der Temperatureinfluß auf die relative Feuchtigkeit ausgedrückt wird. Folgende Gleichungen stellen den vollständigen Zusammenhang von relativer und absoluter Feuchtigkeit dar.

$$y_{H_2O}(p,T,\varphi) = \frac{p_{H_2O}^*(T)}{p} \cdot \varphi$$
(10-a)

bzw. als Umkehrfunktion

$$\varphi(p, T, y_{H_2O}) = \frac{p}{p_{H_2O}^*(T)} \cdot y_{H_2O}$$
 (10-b)

Formelzeichen

φ	relative Feuchtigkeit	[—]
y_{H_2O}	absolute Feuchtigkeit = molarer Wasseranteil	$\left[\frac{mol}{mol}\right]$
$p_{H_2O}^*$	Dampfdruck des Wassers nach Antoine	[bar]
p	Druck des Gases	[bar]
T	Temperatur des Gases	[K]

10.9 Allgemeine Form der Stoffbilanzen

$$\sum \dot{n}_{ein} = \sum \dot{n}_{aus} \tag{11-a}$$

bzw. für einzelne Moleküle i

$$\sum_{j} y_{i,ein_j} \cdot \dot{n}_{ein_j} = \sum y_{i,aus_j} \cdot \dot{n}_{aus_j}$$
(11-b)

Formelzeichen

 $\begin{array}{ll} \dot{n}_{ein} & \text{eintretender Molenstrom} & \left[\frac{mol}{s}\right] \\ \dot{n}_{aus} & \text{austretender Molenstrom} & \left[\frac{mol}{s}\right] \\ y_i & \text{Molenbruch der Komponente i} & \left[\frac{mol}{mol}\right] \end{array}$

10.10 Allgemeine Form der Energiebilanzen

$$\sum_{j} h_{ein_j}(T, y_{i, ein_j}) \cdot \dot{n}_{ein_j} = \sum_{j} h_{aus_j}(T, y_{i, aus_j}) \cdot \dot{n}_{aus_j}$$
(12)

Formelzeichen

h spezifische Enthalpie	$\left[\frac{kJ}{mol}\right]$
-------------------------	-------------------------------

- \dot{n} Molenstrom $\left[\frac{mol}{s}\right]$
- y_i Molenbruch der Komponente i $\left[\frac{mol}{mol}\right]$
- T Temperatur [K]

10.11 Kombinierte Stoff- und Energiebilanz der Brennkammer

Dieser Formelapparat wird ausschließlich in der Berechnung der Brennkammer benötigt. Zur übersichtlicheren Darstellung sind daher auch die Variablennamen, die bei der Brennkammer Verwendung finden, eingesetzt. Diese Namen stellen allerdings einen Vorgriff auf Abschnitt 11.1 auf Seite 44 dar.

Aus den drei Basisgleichungen

$$\dot{n}_{RG_{aus}} = \dot{n}_{RG_{aus}} + \dot{n}_{L_{\ddot{U}}} + \dot{n}_{RG_{rez}}$$
(13-a)

$$0 = \dot{Q}_{\ddot{U},RG_{min}} + q_{L_{\ddot{U}}} \cdot \dot{n}_{L_{\ddot{U}}} + q_{RG_{rez}} \cdot \dot{n}_{RG_{rez}}$$
(13-b)

$$y_{O_2,RG_{aus}} \cdot \dot{n}_{RG_{aus}} = y_{O_2,L} \cdot \dot{n}_{L_{\ddot{U}}} + y_{O_2,RG_{rez}} \cdot \dot{n}_{RG_{rez}}$$
(13-c)

erhält man die Lösungen der drei unbekannten Variablen

$$\dot{n}_{L_{\ddot{U}}} = \frac{\frac{y_{O_2,RG_{aus}}}{y_{O_2,RG_{rez}} - y_{O_2,RG_{aus}}} \cdot \dot{n}_{RG_{min}} - \frac{\dot{Q}_{\ddot{U},RG_{min}}}{\dot{q}_{RG_{rez}}}}{\frac{y_{O_2,L} - y_{O_2,RG_{aus}}}{y_{O_2,RG_{rez}} - y_{O_2,RG_{aus}}} - \frac{\dot{q}_{L_{min}}}{\dot{q}_{RG_{rez}}}}$$
(13-d)

$$\dot{n}_{RG_{rez}} = \frac{\dot{Q}_{\dot{U},RG_{min}}}{\dot{q}_{RG_{rez}}} - \frac{\dot{q}_{L_{min}}}{\dot{q}_{RG_{rez}}} \cdot \dot{n}_{L_{\ddot{U}}}$$
(13-e)

$$\dot{n}_{RG_{aus}} = \dot{n}_{RG_{min}} + \dot{n}_{L_{\vec{U}}} + \dot{n}_{RG_{rez}}$$

$$(13-f)$$

Berechnungsmodelle der Komponenten 11

Dieser Abschnitt führt die Implementierung der Komponentenmodelle mit den zuvor dargestellten Formeln aus. Da die Komponentenmodelle anwendungsfallunspezifisch definiert sind, werden Variablennamen auch in ihrer allgemeinen Form verwendet – so werden eintretende Ströme z.B. im Falle vom Mixer als ein_i mit i = 1,2,... bezeichnet. Für Komponenten, die nur einmalig in der Anlagen-Simulation auftreten, ist diese Verallgemeinerung unter Umständen verwirrend, jedoch gewährleistet diese die Eindeutigkeit im Falle der mehrfach verwendeten Modelle, wie Wärmetauscher, Mixer oder Splitter.

Da die einzelnen Modelle als gekapselte Objekte modelliert sind, wird bei jedem Einzelmodell eine, vom Gesamtsystem unabhängige, allgemein jedoch einheitliche Berechnungsbasis definiert. Allen gemeinsam ist die stoffstrombasierte Auslegung, wobei für die meisten Komponenten $1\frac{mol}{s}$ als Bezugsgröße gewählt wird.⁵ Die einzelnen Modelle können auf diese Weise problemlos miteinander verknüpft werden und ausschließlich die extensiven Größen sind für den speziellen Anwendungsfall zu adaptieren.

11.1 Brennkammer

Die Brennkammer stellt, simulationstechnisch gesehen, das komplexeste System dar. Aus diesem Grund ist die Aufteilung in Subsysteme, wie sie in Abbildung 17 dargestellt ist, sinnvoll. Als Berechnungsbasis wird ein Brennstoffeintrittsstrom von $1\frac{kg}{s}$ festgelegt. Über die Bilanzgrenzen der Brennkammer treten folgende Stoffströme ein bzw. aus:

eintretende Ströme austretende Ströme

- * Brennstoff * Asche
- * Luft

* Rauchgas

* rezirkuliertes Rauchgas

Bei der Unterteilung der Vorgänge in der Brennkammer werden folgende Subsysteme verwendet:

* Brennstoffberechnung (BB). Der feste Brennstoff wird in die zwei Stoffströme Asche und flüchtiger Anteil (vgl. Abschnitt 8.4) aufgeteilt.

 $^{^{5}}$ Dieser Ansatz liegt nahe, da bestimmte Komponenten mehrfach – mit gleicher Modellschnittstelle – vorliegen; d.h. die gesamte Berechnung kann vollständig übernommen werden, einzig der stoffliche Durchsatz ist unterschiedlich.

Abbildung 17: Fließbild des Verbrennungs-Subsystem

- * Der Luftstrom wird in die minimale Verbrennungsluft und Luftüberschuß aufgeteilt.
- * Die stöchiometrische Verbrennung des gasförmigen Brennstoffs mit der minimalen Verbrennungsluft erfolgt im mit Rk bezeichneten Reaktor. Dabei entsteht der minimale Rauchgasstrom, der jedoch die gesamte Brennstoff-Reaktionsenthalpie enthält und somit die bei der Verbrennung maximal austretende Temperatur hat.
- * Der minimale Rauchgasstrom wird im Wärmetauscher Wt RG auf die benutzerdefinierte Brennkammer-Austrittstemperatur abgekühlt. Der dabei freigesetzte Energiestrom wird auf die beiden anderen Wärmetauscher Wt L und Wt rez aufgeteilt (siehe unten).
- * Im Wärmetauscher Wt L wird die Temperatur des Luftüberschuß-Stroms auf die Austrittstemperatur erhöht.
- * Wärmetauscher Wt rez dient der Temperatureinstellung des rezirkulierten Rauchgasstroms auf die Brennkammer-Austrittstemperatur.
- * Nach Mischen der drei internen Gasströme minimales Rauchgas RG_{min} , Luftüberschuß $L_{\ddot{U}}$ und rezirkuliertes Rauchgas RG_{rez} tritt der Rauchgasstrom über die Bilanzgrenze der Brennkammer aus.

In den nachfolgenden fünf Berechnungssystemen ist dieses Fließbild mathematisch abgebildet. Die ersten vier Systeme dienen dabei der Vereinfachung bzw. Aufbereitung der verschiedenen Variablenbeziehungen, während im fünften der eigentliche Lösungsansatz implementiert ist. Das letzte Berechnungs-Schaltbild zeigt die Verknüpfung der Einzelsysteme.

11.1.1 Brennstoff-Berechnungen

In diesem Schritt wird der feste Brennstoff für die weiteren Berechnungen stofflich und energetisch "aufbereitet".

Abbildung 18: Simulationsfließbild Brennstoffberechnung der Brennkammer

Eingangsvariablen

 μ_i

massenbezogene Anteile der Elemente i. Mit i sind hierbei die chemischen Elemente bzw. Asche- und Wassergehalt des Brennstoffs bezeichnet (siehe Abschnitt 7.2 auf Seite 22).

Ausgangsvariablen

\dot{n}_{i,BS^*}	Molenströme des, aus der Oxidationsreaktion entstehenden Rauchgase des
	Brennstoffs. Der benötigte Sauerstoff wird dabei jedoch nicht zugegeben. Der
	molare Sauerstoffbedarf ist aus der Größe des mit negativen Vorzeichen aus
	dieser Berechnung austretenden O_2 -Rauchgasstroms ersichtlich.

- \dot{m}_{Asche} Massenstrom der im Brennstoff enthaltenen Asche.
- H_o observer Heizwert (= Brennwert) des Brennstoffs.
- H_u unterer Heizwert (= Heizwert) des Brennstoffs.

Berechnung

Der Brennstoff wird hinsichtlich seiner energetischen und stofflichen Eigenschaften analysiert:

Aus der chemischen Zusammensetzung wird einerseits der Energieeintrag in die chemische Reaktion mit den Gleichungen 8-a und 8-b bestimmt, andererseits wird die Zusammensetzung des aus den Reaktionsgleichungen resultierende, "virtuelle" Rauchgas ermittelt (für die Reaktionsgleichungen siehe in Abschnitt 10.5). Der Aschemassenstrom wird ebenfalls in diesem Schritt berechnet.

Im Programm besteht die Möglichkeit für den Anwender, den Brenn- und/oder Heizwert vorzugeben. Ist dies der Fall, wird der berechnete Wert durch die Benutzervorgabe ersetzt.

Abhängigkeiten

H_o	=	$f(\mu_i)$	(14 - a)	\dot{n}_{i,BS^*}	=	$f(\mu_i)$	(14-c)
H_u	=	$f(\mu_i, H_o)$	(14-b)	\dot{m}_{Asche}	=	$f(\mu_i)$	(14-d)

11.1.2 Verbrennungsreaktion

Als Ergebnis dieses Schrittes ergibt sich die chemische Zusammensetzung des (realen) Rauchgases bei stöchiometrischer Verbrennung des Brennstoffs.

Abbildung 19: Simulations-Schaltbild der Verbrennungsrechnung der Brennkammer

Berechnung

Aus der molaren Stromgröße des Sauerstoffs im zuvor aufbereiteten Brennstoffstrom (siehe 11.1.1), die ein negatives Vorzeichen hat⁶, ergibt sich der minimale Luftbedarf. Durch Mischen des "virtuellen" Brennstoffgases mit dem minimalen Luftstrom erhält man den minimalen Rauchgasstrom und seine chemische Zusammensetzung (der Sauerstoffgehalt ist dabei definitionsgemäß $\equiv 0$).

Eingangsvariablen

 \dot{n}_{i,BS^*} aus der Brennstoffberechnung kommender "virtueller" Rauchgasstrom.

 $y_{i,L}$ molare chemische Zusammensetzung der Luft.

⁶Die Sauerstoffmenge drückt aus, wieviel Sauerstoff zur vollständigen Verbrennung durch die Luft bereitgestellt werden muß. Sollte dieser Wert positiv sein, bedeutet dies, daß der "Brennstoff" selbst schon ausreichend viel Sauerstoff beinhaltet.

Ausgangsvariablen

$\dot{n}_{L_{min}}$	minimaler molarer (Verbrennungs-)Luftstrom zur vollständigen Oxidationsre-
	aktion.
$\dot{n}_{RG_{min}}$	minimaler molarer Rauchgasstrom, der bei der Reaktion mit $\dot{n}_{L_{min}}$ entsteht.
$y_{i,RG_{min}}$	molare chemische Zusammensetzung des minimalen Rauchgasstroms.

Abhängigkeiten

$$\dot{n}_{L_{min}} = f(\dot{n}_{i,BS^*}, y_{i,L})$$
 (15-a)

$$\dot{n}_{RG_{min}} = f(\dot{n}_{i,BS^*}, y_{i,L}, \dot{n}_{L_{min}})$$
(15-b)

$$y_{i,RG_{min}} = f(\dot{n}_{i,BS^*}, y_{i,L}, \dot{n}_{L_{min}})$$
 (15-c)

11.1.3 Energiebilanz minimaler RG-Strom

Auf die Stoffbilanz des minimalen Rauchgases folgt die Energiebilanz.

Berechnung

Der Enthalpiestrom des minimalen Rauchgases ist die Summe des Luftenthalpiestroms und dem nutzbaren Anteil des Brennstoff-Heizwertstroms. Letzterer wird durch den thermischen Brennkammer-Wirkungsgrad bestimmt. Als weiteres Ergebnis erhält man den Verlustwärmestrom der Brennkammer.

Abbildung 20: Simulations-Schaltbild der Energiebilanz des minimalen Rauchgasstroms der Brennkammer

Eingangsvariablen

$T_{L_{ein}}$	Eintrittstemperatur der Luft.
$y_{i,L}$	molare chemische Zusammensetzung der Luft.
$\dot{n}_{L_{min}}$	minimaler molarer Luftstrom.
H_u	Heizwert des Brennstoffs.
η_{Bk}	thermischer Wirkungsgrad der Brennkammer, definiert als Anteil der in den Rauchgasstrom eingebrachten Enthalpie, bezogen auf auf den Heizwert des Brennstoffs.

Ausgangsvariablen

$\dot{H}_{RG_{min}}^{max}$	größtmöglicher Enthalpiestrom des minimalen Rauchgasstroms.
\dot{Q}_F	Wärmeenergiestrom, der vom Heizwert- in den Rauchgasstrom übergeht.
\dot{Q}_V	Verlustwärmestrom der Brennkammer.

Abhängigkeiten

$$\dot{Q}_F = f(H_u, \eta_{Bk}) \tag{16-a}$$

$$\dot{Q}_V = f(H_u, \eta_{Bk}) \tag{16-b}$$

$$H_{RG_{min}} = f\left(Q_F, T_{L_{ein}}, n_{L_{min}}, y_{i,L}\right) \tag{16-c}$$

11.1.4 Temperatur-Ausgleich

Die Energiebilanz der drei, im Blockfließbild der Brennkammer (Abbildung 17) dargestellten Wärmetauscher wird hier berechnet.

Berechnung

Die drei Ströme minimaler Rauchgasstrom, rezirkulierter Rauchgasstrom und Luftüberschußstrom werden auf die vorgegebene Austrittstemperatur abgekühlt bzw. aufgeheizt. Da die molare Stromgröße des minimalen Rauchgases bekannt ist, erhält man als Ergebnis

Abbildung 21: Simulations-Schaltbild des Temperaturausgleichs der Brennkammer

dieser Teil-Energiebilanz einen Wärmestrom, während das Ergebnis der beiden anderen, hinsichtlich ihrer Stromgröße noch undefinierten Ströme der spezifische, molare Wärmebedarf ist.

Als "Nebenprodukt" wird die Temperatur des in den Wärmetauscher eintretenden, minimalen Rauchgasstroms berechnet. Dieser Wert sagt aus, welche maximale Temperatur in der Brennkammer auftreten könnte, wenn der Brennkammer ausschließlich der minimalen Luftstrom zugeführt wird.

Eingangsvariablen

$\dot{H}_{RG_{min}}^{max}$	größtmöglicher Enthalpiestrom des minimalen Rauchgasstroms.
$y_{i,RG_{min}}$	molare chemische Zusammensetzung des minimalen Rauchgases.
$\dot{n}_{RG_{min}}$	minimaler molarer Rauchgasstrom.
$T_{L_{ein}}$	Eintrittstemperatur des Luftstroms.
T_{aus}	Austrittstemperatur des Rauchgasstroms aus der Brennkammer.
$T_{rez_{ein}}$	Eintrittstemperatur des rezirkulierten Rauchgasstroms.

Ausgangsvariablen

$T_{RG_{min}}^{max}$	maximale Temperatur des minimalen Rauchgasstroms.
$\dot{Q}_{\ddot{U},RG_{min}}$	Wärmeenergie-Überschußstrom des minimalen Rauchgasstroms.
$\dot{q}_{L_{\ddot{U}}}$	spezifischer, molarer Wärmebedarf des Luftüberschußstroms.
\dot{q}_{rez}	spezifischer, molarer Wärmebedarf des rezirkulierten Rauchgasstroms.

Abhängigkeiten

$$T_{RG_{min}}^{max} = f(\dot{H}_{RG_{min}}^{max}, y_{i,RG_{min}}, \dot{n}_{RG_{min}})$$
(17-a)

$$\dot{Q}_{\ddot{U},RG_{min}} = f(\dot{H}_{RG_{min}}^{max}, y_{i,RG_{min}}, \dot{n}_{RG_{min}}, T_{aus})$$
(17-b)

$$\dot{q}_{L_{\dot{U}}} = f(T_{L_{ein}}, T_{aus}) \tag{17-c}$$

$$\dot{q}_{rez} = f(T_{rez_{ein}}, T_{aus}) \tag{17-d}$$

11.1.5 Stromgrößenbestimmung

Nach der bisherigen Vereinfachung der Variablenzusammenhänge, kann nun die gleichzeitige – nur iterativ mögliche – Lösung der Stoff- und Energiebilanz der Brennkammer erfolgen. Der iterative Berechnungsschritt ergibt sich durch die Festlegung der Sauerstoffkonzentration des austretenden, trockenen Rauchgases $Y_{O_2,RG_{aus}}$. Um daraus die Größe $y_{O_2,RG_{aus}}$ (Sauerstoffkonzentration des feuchten Rauchgases) bestimmen zu können, muß die Wasserdampf-Konzentration im Rauchgas bekannt sein. Diese steht allerdings erst nach abgeschlossener Berechnung fest.

So wird aus $Y_{O_2,RG_{aus}}$ der $y_{O_2,RG_{aus}}$ -Wert gewählt und so lange angepaßt, bis die Differenz von berechneten und vorgegebenen $Y_{O_2,RG_{aus}}$ -Wert kleiner als die im Marco festgelegt Toleranz ist.

Abbildung 22: Simulations-Schaltbild der Stromgrößenberechnung der Brennkammer

Berechnung

Das Subsystem "Stromgrößenbestimmung" löst die Variablenbeziehungen zwischen Einund Ausgangsgrößen durch ein Gleichungssystem, daß die Abhängigkeit der Stoff- und Energiebilanz zusammenfaßt, auf. Die Einhaltung der Vorgabe des Wertes für den Sauerstoffgehalt des austretenden, trockenen Rauchgases wird dabei iterativ bestimmt. Die direkte Berechnung ist nicht möglich (s.o.).

Eingangsvariablen

$Y_{O_2,RG_{aus}}^{def}$	molarer Sauerstoffanteil auf das trockene (wasserfreie) Rauchgas am Brenn-kammer-Austritt bezogen.
$y_{i,rez}$	chemische Zusammensetzung des rezirkulierten Rauchgases.
$y_{i,L}$	chemische Zusammensetzung der Luft.
$y_{i,RG_{min}}$	chemische Zusammensetzung des minimalen Rauchgasstroms.
$\dot{n}_{RG_{min}}$	Molenstrom des minimalen Rauchgases.
\dot{q}_{rez}	spezifischer Wärmebedarf des rezirkulierten Rauchgases um dessen Temperatur auf die Brennkammer-Austrittstemperatur zu bringen.
$\dot{q}_{L_{\ddot{U}}}$	spezifischer Wärmebedarf der Luft um die Temperatur auf die Brennkammer-Austrittstemperatur zu bringen.
$\dot{Q}_{\ddot{U},RG_{min}}$	Wärmeenergie-Überschußstrom des minimalen Rauchgases bei dessen Abküh- lung auf die Brennkammer-Austrittstemperatur.
$\dot{n}_{L_{min}}$	minimaler Luftstrom.

Ausgangsvariablen

$\dot{n}_{L,ein}$	molarer Luftstrom in die Brennkammer.
$\dot{n}_{rez,ein}$	molarer rezirkulierter Rauchgasstrom in die Brennkammer.
$\dot{n}_{RG,aus}$	molarer aus der Brennkammer austretender Rauchgasstrom.
$y_{i,RG_{aus}}$	molare chemische Zusammensetzung des, aus der Brennkammer austretenden Rauchgasstroms.

Abhängigkeiten

$$\dot{n}_{L,ein} = f(Y_{O_2,RG_{aus}}^{aef}, y_{i,rez}, y_{i,L}, y_{i,RG_{min}}, \dot{n}_{RG_{min}}, \dot{n}_{ef}, \dot{q}_{rez}, \dot{q}_{L_{\dot{U}}} \dot{Q}_{\dot{U},RG_{min}}, \dot{n}_{L_{min}})$$

$$(18-a)$$

$$\dot{n}_{rez,ein} = f(Y_{O_2,RG_{aus}}^{aej}, y_{i,rez}, y_{i,L}, y_{i,RG_{min}}, \dot{n}_{RG_{min}}, \dot{q}_{rez}, \dot{q}_{L_{\ddot{U}}}Q_{\ddot{U},RG_{min}})$$
(18-b)

$$\dot{n}_{RG,aus} = f(\dot{n}_{L,ein}, \dot{n}_{rez,ein}, \dot{n}_{RG_{min}})$$
(18-c)

$$y_{i,RG_{aus}} = f(\dot{n}_{L,ein}, \dot{n}_{rez,ein}, \dot{n}_{RG_{min}}, y_{i,L}, y_{i,rez}, y_{i,RG_{min}})$$
(18-d)

Iterations-Abbruchkriterium
$$\left|Y_{O_2,RG_{aus}}^{def} - Y_{O_2,RG_{aus}}(y_{i,RG_{aus}})\right| \le \varepsilon$$
 (18-e)

11.1.6 Gesamtsystem

Abbildung 23: Simulations-Schaltbild der Brennkammer

Berechnung

Das Gesamtschaltbild der Brennkammer setzt nur mehr die obigen Prozeßeinheiten zusammen. Die Berechnungsdetails sind in den jeweiligen Subsystemen ausgeführt.

Eingangsvariablen

 $\mu_{i,BS}$ massenbezogene Anteil der Elemente *i* des Brennstoffs.

$y_{i,L}$	molare chemische Zusammensetzung der Luft.
η_{Bk}	thermischer Wirkungsgrad der Brennkammer, definiert als dem Rauchgas zu- geführte Wärmeenergie im Verhältnis zum zugeführten Heizwert des Brenn- stoffs.
T_{aus}	Austrittstemperatur des Rauchgases
$T_{L_{ein}}$	Lufteintrittstemperatur.
$T_{rez_{ein}}$	Eintrittstemperatur des rezirkulierten Rauchgases.
$y_{i,rez}$	molare chemische Zusammensetzung des rezirkulierten Rauchgases.
$Y_{O_2,RG_{aus}}$	molare Sauerstoffkonzentration des trockenen Rauchgases.

Ausgangsvariablen

\dot{m}_{Asche}	Massenstrom der austretenden Asche.
H_o	Brennwert des Brennstoffs.
H_u	Heizwert des Brennstoffs.
$y_{i,RG_{min}}$	molare chemische Zusammensetzung des minimalen Rauchgases.
$\dot{n}_{RG_{min}}$	Molenstrom des minimalen Rauchgases.
$\dot{n}_{L_{min}}$	Molenstrom des minimal benötigten Verbrennungsluft.
\dot{Q}_F	Wärmeenergiestrom des nutzbaren Anteils am Heizwert des Brennstoffs.
\dot{Q}_V	Verlust-Wärmeenergiestrom der Brennkammer.
$y_{i,RG_{aus}}$	molare chemische Zusammensetzung des austretenden Rauchgases.
$\dot{n}_{RG_{aus}}$	Molenstrom des austretenden Rauchgases.
\dot{n}_{rez}	Molenstrom des rezirkulierten Rauchgases.
$\dot{n}_{L_{ein}}$	Molenstrom der eintretenden Luft.

Abhängigkeiten

$$\dot{m}_{Asche} = f(\mu_{i,BS}) \tag{19-a}$$

$$H_o = f(\mu_{i,BS}) \tag{19-b}$$

$$H_o = f(\mu_{i,BS}) \tag{19-b}$$

$$H_u = f(\mu_{i,BS}) \tag{19-c}$$

$$n_{L_{min}} = f(\mu_{i,BS}, y_{i,L}) \tag{19-d}$$

$$y_{i,RG_{min}} = f(\mu_{i,BS}, n_{L_{min}}, y_{i,L})$$

$$(19-e)$$

$$(10-f)$$

$$n_{RG_{min}} = f(\mu_{i,BS}, n_{L_{min}}, y_{i,L}) \tag{19-1}$$

$$Q_F = f(H_u, \eta_{Bk}) \tag{19-g}$$

$$Q_V = f(H_u, \eta_{Bk}) \tag{19-h}$$

$$n_{rez} = f(T_{aus}, Y_{O_2, RG_{aus}}, T_{L_{ein}}, y_{i,L}, T_{rez_{ein}}, y_{i,rez}, Q_F)$$
(19-1)

$$\dot{n}_{L_{ein}} = f(T_{aus}, Y_{O_2, RG_{aus}}, T_{L_{ein}}, y_{i,L}, T_{rez_{ein}}, y_{i,rez}, Q_F)$$
(19-j)

$$y_{i,RG_{aus}} = f(\dot{n}_{RG_{min}}, \dot{n}_{L_{ein}}, \dot{n}_{rez})$$
(19-k)

$$\dot{n}_{RG_{aus}} = f(\dot{n}_{RG_{min}}, \dot{n}_{L_{ein}}, \dot{n}_{rez})$$
(19-1)

11.2 Mixer

Allgemein erlaubt diese Anlagenkomponente die Zusammenführung zweier eintretender Stoffströme zu einem austretenden. Im SiPeb-Programm werden zwei unterschiedliche Berechnungsmodelle für Mixer verwendet:

- * entweder ist die Temperatur am Mixeraustritt die benutzerdefinierte Bezugsgröße (= temperaturgesteuert) ,
- * oder es sind am Eintritt die Massenstromgrößen vordefiniert (= massenstromgesteuert).

11.2.1 Temperaturgesteuerter Mixer

Einer der beiden Eintrittsströme soll bezüglich der Stromgröße so gewählt werden, daß der Austrittsstrom die benutzerdefinierte Temperatur hat. Per Definition wird jener Strom, dessen Massenstromgröße bekannt ist, als erster Eintrittsstrom benannt.

Abbildung 24: Simulations-Schaltbild des temperaturgesteuerten Mixers

Berechnung

Das Modell des Mixers ist so definiert, daß jener eintretende Strom, von dem auch der Molenstrom bekannt ist⁷, als erster Eintrittstrom bezeichnet wird, während die Stromgröße des zweiten eintretenden Stroms aus der Wärmebilanz bestimmt wird. Als zu erfüllende Randbedingung dient die benutzerdefinierte Austrittstemperatur.

Im Simulationsmodell wird keine Überprüfung der physikalischen Sinnhaftigkeit der Eingabewerte vorgenommen. Sollte die Austrittstemperatur nicht zwischen den Temperaturniveaus der beiden eintretenden Ströme liegen, wird die aus der Wärmebilanz resultierende Stromgröße des zweiten Eintrittstroms negativ sein, was mathematisch korrekt, aber physikalisch sinnlos ist.

Eingangsvariablen

y_{i,ein_1}	molare chemische Zusammensetzung des ersten Eintrittstroms.
y_{i,ein_2}	molare chemische Zusammensetzung des zweiten Eintrittstroms.
\dot{n}_{ein_1}	Molenstrom des ersten Eintrittstroms.
T_{ein_1}	Temperatur des ersten Eintrittstroms.
T_{ein_2}	Temperatur des zweiten Eintrittstroms.
T_{aus}	Temperatur des Austrittstroms.

 $^{^7 {\}rm S\"amtlich}$ anderen Größen beider Ströme sind bekannt – festgelegt durch die, dem Mixer vorgeschaltenen Komponenten.

Ausgangsvariablen

$y_{i,aus}$	molare chemische Zusammensetzung des Austrittstroms
\dot{n}_{aus}	Molenstrom des Austrittstroms.
\dot{n}_{ein_2}	Molenstrom des zweiten Eintrittstroms.

Abhängigkeiten

 $\dot{n}_{ein_2} = f(T_{ein_1}, T_{ein_2}, T_{aus}, \dot{n}_{ein_1})$ (20-a)

$$\dot{n}_{aus} = f(\dot{n}_{ein_1}, \dot{n}_{ein_2}) \tag{20-b}$$

 $y_{i,aus} = f(\dot{n}_{ein_1}, y_{i,ein_1}, \dot{n}_{ein_2}, y_{i,ein_2})$ (20-c)

11.2.2 Massenstromgesteuerter Mixer

Dieses Modell deckt den Anwendungsfall ab, in dem die Stromgrößen beider eintretender Ströme vorgegeben ist.

Abbildung 25: Simulations-Schaltbild des massenstromgesteuerten Mixers

Berechnung

Die Werte des Austrittstroms ergeben sich aus den Lösungen der Stoff- und der Energiebilanz. Die Bestimmung der Temperatur am Austritt erfolgt aus dem Enthalpiestrom des Austrittstroms.

Eingangsvariablen

T_{ein_1}	Temperatur des ersten Eintrittstroms.
y_{i,ein_1}	molare chemische Zusammensetzung des ersten Eintrittstroms.
\dot{n}_{ein_1}	Molenstrom des ersten Eintrittstroms.
T_{ein_2}	Temperatur des zweiten Eintrittstroms.
y_{i,ein_2}	molare chemische Zusammensetzung des zweiten Eintrittstroms.
\dot{n}_{ein_2}	Molenstrom des zweiten Eintrittstroms.

Ausgangsvariablen

T_{aus}	Austrittstemperatur.
\dot{n}_{aus}	austretender Molenstrom.
$y_{i,aus}$	molare chemische Zusammensetzung des Austrittstroms.

Abhängigkeiten

$\dot{n}_{aus} = f(\dot{n}_{ein_1}, \dot{n}_{ein_2})$	$(21 \cdot$	-a)
---	-------------	----	---

$y_{i,aus}$	=	$f(y_{i,ein_1}, \dot{n}_{ein_2})$	$(h_1, y_{i,ein_2}, \dot{n}_{ein_2})$		(21-b)	1
T				•	(01)	

$$I_{aus} = f(I_{ein_1}, I_{ein_2}, y_{i,ein_1}, n_{ein_1}, y_{i,ein_2}, n_{ein_2})$$
(21-C)

11.3 Wärmetauscher

Das Simulationsmodell des Wärmetauschers berechnet jenen Energiestrom, der zum Erreichen der vorgegebenen Austrittstemperatur bei bekannter Eintrittstemperatur zu- bzw. abgeführt werden muß, bezogen auf einen Stoffstrom bekannter und im Apparat unveränderter Zusammensetzung von $1 \frac{mol}{s}$. Das Ergebnis ist somit der spezifische molare Wärmebedarf, dessen weitere Verwendungsart im Programm unberücksichtigt bleibt (vgl. Abschnitt 6).

Abbildung 26: Simulations-Schaltbild Wärmetauscher

Berechnung

Die Lösung des spezifischen molaren Wärmebedarfs ergibt sich direkt aus der Wärmebilanz um den Wärmetauscher. In untenstehenden Variablen-Abhängigkeiten ist die Zusammensetzung des Stoffstroms nicht explizit angeführt, da diese Werte Konstanten im Wärmetauschermodell sind (keine Stoffbilanz notwendig ist).

Eingangsvariablen

 \dot{q} spezifischer molarer Wärmebedarf.

Ausgangsvariablen

 T_{ein} Eintrittemperatur.

 T_{aus} Austrittstemperatur.

Abhängigkeiten

$$\dot{q} = f(T_{ein}, T_{aus}) \tag{22-a}$$

11.4 Pebble-Heater

Der Pebble-Heater stellt simulationstechnisch zwei miteinander über den Wärmeenergiestrom verknüpfte Wärmetauscher dar. Es wird die Übertragung der Wärmeleistung der Rauchgasseite auf die Turbinenluftseite berechnet.

Abbildung 27: Simulations-Schaltbild des Pebble-Heaters

Berechnung

Für beide, stofflich voneinander unabhängigen Seiten sind sowohl die Ein- als auch die Austrittstemperatur bekannt, woraus sich die jeweiligen spezifischen molaren Wärmeströme aus dem Wärmetauschermodell (siehe Abbildung 26) ergeben.

Weiters ist der Wert des rauchgasseitigen Molenstroms bekannt, der den molaren Wärmestrom, der dem Rauchgas entnommen wird, ergibt.

Unter Berücksichtigung des thermischen Wirkungsgrades erhält man als Ergebnis einerseits den Verlust-Wärmeenergiestrom des Pebble-Heaters, andererseits den Molenstrom der Turbinenluft.

Eingangsvariablen

\dot{n}_{RG}	Molenstrom des Rauchgases.
$T_{RG,ein}$	Eintrittstemperatur auf der Rauchgasseite.
$T_{RG,aus}$	Austrittstemperatur auf der Rauchgasseite.
η_{Ph}	thermischer Wirkungsgrad der Wärmeübertragung im Pebble-Heater, definiert als Anteil der der Turbinenluft zugeführten Wärmeleistung bezogen auf die dem Rauchgas entzogene.
$T_{TL,ein}$	Eintrittstemperatur auf der Luftseite.
$T_{TL,aus}$	Austrittstemperatur auf der Luftseite.

Ausgangsvariablen

\dot{Q}_V	Verlust-Wärmestrom.							
\dot{n}_{TL}	Molenstrom der Turbinenluft.							

Abhängigkeiten

$$\dot{Q}_V = f(\eta_{Ph}, \dot{n}_{RG}, T_{RG,ein}, T_{RG,aus})$$
(23-a)

$$\dot{n}_{TL} = f(\dot{n}_{RG}, T_{RG,ein}, T_{RG,aus}, T_{TL,ein}, T_{TL,aus})$$
(23-b)

11.5 Splitter

Das Splitter-Modell erlaubt die Berechnung der Aufteilung eines Stoffstroms, auf genau zwei andere. Eine Austritts-Stromgröße ergibt sich dabei aus den festgelegten Stoffstrom-Werten des Eintrittsstroms und des zweiten Austrittstroms. Die Definition der bekannten Stromgrößen kann auf zwei unterschiedliche Arten erfolgen:

- * als Verhältnis einer austretenden zur eintretenden Stromgröße, oder
- * durch explizite Angabe der Stromgröße eines austretenden Stroms.

Beiden gemeinsam ist, daß der Wert der eintretenden Stromgröße bekannt ist. Im Standardmodell des Splitter sind durch Normierung aller molaren Stromgrößen auf den eintretenden Molenstrom beide Eingabedefinitionen äquivalent.

$$\begin{array}{c|c} \dot{n}_{aus_1} \\ \hline \dot{n}_{ein} \\ \dot{n}_{aus_1} \\ \end{array} \begin{array}{c} \dot{n}_{aus_2} \\ \hline \dot{n}_{aus_2} \\ \end{array}$$

Abbildung 28: Simulations-Schaltbild des Splitters

Berechnung

Die Lösung für die unbekannte Stromgröße ergibt sich direkt aus der Stoffbilanz.

Eingangsvariablen

 \dot{n}_{ein} Molenstrom am Eintritt.

 \dot{n}_{aus_1} erster austretender Molenstrom.

Ausgangsvariablen

 \dot{n}_{aus_2} zweiter austretender Molenstrom.

Abhängigkeiten

$$\dot{n}_{aus_2} = f(\dot{n}_{ein}, \dot{n}_{aus_1}) \tag{24-a}$$

11.6 Turbine

Das Modell der Heißluftturbine berechnet aus den Vorgabewerten für Druck und Temperatur an Ein- und Austritt die abgebbare mechanische Leistung.

Abbildung 29: Simulations-Schaltbild der Heißluftturbine

Berechnung

Durch die Bekanntheit der Werte von Temperatur und Druck, sowohl am Eintritt als auch am Turbinenaustritt, sind die Werte der spezifischen molaren Enthalpie ebenfalls festgelegt. Ihre Differenz stellt die Größe der mechanisch nutzbaren Energie dar. Die Eingangsvariable mechanischer Wirkungsgrad definiert wie viel von dieser Energie an der Welle nach Abzug der (mechanischen) Reibungsverluste tatsächlich abnehmbar ist. Die Reibungsverluste werden als Verlustwärme ausgegeben. Als weiteren Ergebniswert erhält man den (inneren) isentropen Wirkungsgrad der Turbine. Dieser ist definiert als Quotient von mechanischer Nutzenergie (reibungsfrei) zu jener mechanischen Nutzenergie, die sich bei isentroper Entspannung⁸ ergäbe.

Eingangsvariablen

T_{ein}	Temperatur am Turbineneintritt.
p_{ein}	Druck am Turbineneintritt.
T_{aus}	Temperatur am Turbinenaustritt.
p_{aus}	Druck am Turbinenaustritt.
η_m	mechanischer (Wellen-)Wirkungsgrad; definiert als an der Welle abnehmbare Leistung im Verhältnis zum durch die nicht-isentrope Expansion zur Verfügung stehende.

Ausgangsvariablen

P_W	Wellenleistung.
\dot{Q}_V	mechanische Wellenverluste, die als Wärmeenergiestrom abgegeben werden.
η_{is}	innerer isentroper Wirkungsgrad; Verhältnis der mechanischen Leistung bei nicht-isentroper zu isentroper Expansion jeweils ohne mechanische Verluste.

Abhängigkeiten

η_{is}	=	$f(T_{ein}, T_{aus}, p_{ein}, p_{aus})$	((25-a)

$$Q_V = f(T_{ein}, T_{aus}, p_{ein}, p_{aus}, \eta_m)$$
(25-b)

$$P_W = f(T_{ein}, T_{aus}, p_{ein}, p_{aus}, \eta_m)$$
(25-c)

 $^{^{8}}$ Bei der Berechnung des isentropen Arbeitszustandes der Turbine wird die Austrittstemperatur zu einer Ausgangsvariablen gemacht, während die drei anderen Eingangsvariablen (Druck am Ein- und Austritt und Temperatur am Eintritt) solche bleiben.

11.7 zwischengekühlter Verdichter

Zur Modellierung des zweistufigen, zwischengekühlten Verdichters wird das Gesamtsystem, wie in Abbildung 30 dargestellt, in drei komponentenbezogene Subsysteme aufgeteilt:

- 1. erste Verdichterstufe (in der Abbildung mit V1 bezeichnet),
- 2. Wärmetauscher zur Zwischenkühlung (Wt) und
- 3. zweite Verdichterstufe (V2).

Abbildung 30: Fließbild der Stoffströme im zwischengekühlten Verdichter

In den folgenden Ausführungen wird in diesem Fall – im Gegensatz zum Brennkammermodell – zuerst das Gesamtsystem beschrieben und anschließend auf die Details eingegangen.

11.7.1 Gesamtsystem

Im Programm ist der Verdichter als eine Einheit eingesetzt. Als realer Apparat ist er allerdings eine Hintereinanderschaltung dreier Einzelapparate und auch im Simulationsmodell derart aufgebaut. Die Bezeichnungsweisen der Stoffströme ist aus Abbildung 30 ersichtlich. Die beiden systeminternen Ströme sind der Reihenfolge ihres Auftretens nach mit einer Laufnummer gekennzeichnet, die über die Gesamtsystem ein- und austretenden Stoffströme, wie auch in den übrigen Modellen, mit "ein" bzw. "aus".

Berechnung

Das Gesamtsystem stellt nur eine Verknüpfung der einzelnen Subsysteme dar. Abgesehen von einigen trivialen Additionsoperationen – z.B. Summierung der Wellenleistungen der beiden Verdichter – werden keine Berechnungen durchgeführt.

Eingangsvariablen

 p_{ein} Eintrittsdruck des ersten Verdichters.

Abbildung 31: Übersicht Simulations-Schaltbild des zwischengekühlten Verdichters

p_1	Austrittsdruck des ersten Verdichters.
Δp_{Wt}	Druckverlust im Zwischenkühlungs-Wärmetauscher.
p_{aus}	Austrittsdruck des zweiten Verdichters.
T_{ein}	Eintrittstemperatur des ersten Verdichters.
T_{aus}	Austrittstemperatur des zweiten Verdichters.
η_{m_1}	mechanischer Wirkungsgrad der Welle des ersten Verdichters.
η_{is_1}	innerer isentroper Wirkungsgrad des ersten Verdichters.
η_{m_2}	mechanischer Wirkungsgrad der Welle des zweiten Verdichters.
η_{is_2}	innerer isentroper Wirkungsgrad des zweiten Verdichters.

Ausgangsvariablen

\dot{Q}_{Zk}	Wärmeenergiestrom der Zwischenkühlung.
P_W	mechanische Leistungsaufnahme der Verdichterwelle.
\dot{Q}_V	mechanische Verlustleistung der Welle, in Form von Wärme abgegeben.

Abhängigkeiten

Da alle drei Ausgangsvariablen Funktionen der 10 Eingangsvariablen sind, wird für das Gesamtsystem auf die Darstellung in mathematischer Form verzichtet. Die Reihenfolge der Subsystem-Ausführungen entspricht der der Berechnungsfolge.

11.7.2 Verdichter 1

Die Eintrittsparameter des ersten Verdichters sind vollständig bekannt. Aus den Wirkungsgraden und dem ebenfalls bekannten Austrittsdruck wird der Austrittszustand und die benötigte Leistungsaufnahme ermittelt.

Abbildung 32: Simulations-Schaltbild des 1. Verdichters

Berechnung

Im ersten Berechnungsschritt wird über die isentrope Verdichtung des eintretenden Stoffstroms auf den Austrittsdruck die isentrope spezifische Enthalpiedifferenz berechnet. Aus dieser folgt unter Einbeziehung des isentropen Wirkungsgrades die tatsächliche spezifische Enthalpiedifferenz des Luftstroms, womit gleichzeitig die Austrittstemperatur feststeht. Weiters stellt diese Enthalpiedifferenz auch den idealen mechanischen Leistungsbedarf dar, wobei die Reibungsverluste noch nicht berücksichtigt sind.

Die Wellenleistung und die mechanischen Verluste ergeben sich aus der idealen mechanischen Leistung und dem mechanischen Wirkungsgrad.

Eingangsvariablen

T_{ein}	Eintrittstemperatur des ersten Verdichters
p_{ein}	Eintrittsdruck des ersten Verdichters.

- p_1 Austrittsdruck des ersten Verdichters.
- η_{is_1} innerer isentroper Wirkungsgrad des ersten Verdichters.
- η_{m_1} mechanischer Wirkungsgrad des ersten Verdichters.

Ausgangsvariablen

T_1	Austrittstemperatur des ersten Verdichters.
P_{m_1}	mechanischer Leistungsbedarf des ersten Verdichters.
\dot{Q}_{V_1}	mechanischer Verlustwärmestrom des ersten Verdichters .

Abhängigkeiten

$$T_{1} = f(T_{ein}, p_{ein}, p_{1}, \eta_{is_{1}})$$

$$P_{m_{1}} = f(T_{ein}, T_{1}, p_{ein}, p_{1}, \eta_{m_{1}})$$
(26-b)

$$\dot{Q}_{V_1} = f(P_{m_1}, \eta_{m_1})$$
 (26-c)

11.7.3 Verdichter 2

Das Berechnungsmodell des zweiten Verdichter unterscheidet sich grundlegend von dem des ersten. Es ist nämlich der Eintrittszustand des Luftstrom bezüglich der Temperatur nicht bekannt. Da dieser Wert nicht direkt berechnet werden kann⁹, erfolgt die Lösungsfindung auf numerischen, iterativen Weg.

Berechnung

Durch Annahme des Wertes der Eintrittstemperatur kann, wie für den ersten Verdichter, die Temperatur und damit der voll definierte Zustand am Verdichteraustritt berechnet werden. Da dieser Austrittszustand festgelegt ist, wird das Ergebnis jedes iterativen Schrittes mit der Vorgabe verglichen und die Eintrittstemperatur so lange variiert, bis berechneter und vorgegebener Austrittszustand übereinstimmen.

Die Bestimmung des mechanischen Leistungsbedarfs an der Welle und die mechanischen Verluste erfolgt gleich wie beim ersten Verdichter.

 $^{^9 {\}rm Die}$ Umformung der Gleichungen, sodaß die Variable Eintrittstemperatur explizit dargestellt werden kann, ist formell nicht möglich.

Abbildung 33: Simulations-Schaltbild des 2. Verdichters

Eingangsvariablen

p_{2}	Eintrittsdruck des zweiten Verdichters.
p_{aus}	Austrittsdruck des zweiten Verdichters.
T_{aus}	Austrittstemperatur des zweiten Verdichters.
η_{is_2}	innerer isentroper Wirkungsgrad des zweiten Verdichters.
η_{m_2}	mechanischer Wirkungsgrad des zweiten Verdichters.

Ausgangsvariablen

T_2	Eintrittstemperatur des zweiten Verdichters.
P_{m_2}	mechanischer Leistungsbedarf des zweiten Verdichters .
\dot{Q}_{V_2}	mechanischer Verlustwärmestrom des zweiten Verdichters.

Abhängigkeiten

$$T_2 = f(p_2, p_{aus}, T_{aus}, \eta_{is_2})$$
(27-a)

$$P_{m_2} = f(p_2, p_{aus}, T_2, T_{aus}, \eta_{m_2})$$
(27-b)

 $\dot{Q}_{V_2} = f(p_2, p_{aus}, T_2, T_{aus}, \eta_{m_2})$ (27-c)

11.7.4 Zwischenkühlung

Die Zwischenkühlung erfolgt in einem Wärmetauscher. Die benötigten Eingangsvariablen sind aus den Verdichter-Berechnungen bekannt. Die einzige Abweichung vom Standardmodell des Wärmetauschers ist, daß der Druckverlust berücksichtigt wird.

Abbildung 34: Simulations-Schaltbild der Zwischenkühlung

Berechnung

Der Wärmestrom wird auch im Fall des druckverlustbehafteten Wärmetauscher aus der Enthalpiedifferenz des ein- und austretenden Stoffstromes gebildet. Da von beiden Strömen der Zustand vollständig bekannt ist, bedarf es keiner weiteren Berücksichtigung der Druckänderung.

Eingangsvariablen

- T_1 Eintrittstemperatur des Zwischenkühlers.
- T_2 Austrittstemperatur des Zwischenkühlers.

Ausgangsvariablen

 \dot{Q}_{Zk} Wärmeenergiestrom des Zwischenkühlers.

Abhängigkeiten

$$\dot{Q}_{Zk} = f(T_1, T_2)$$
 (28)

12 Berechnungsergebnisse

Im Folgenden sind die Ergebnisdaten der Berechnungen zusammengefaßt. Auch erfolgt wiederum die Unterteilung nach Verbrennungs- und Gesamtanlagenberechnung.

12.1 Ergebnisse der Verbrennungsrechnung

Die Bezugsgröße der Verbrennungsrechnung bildet ein Brennstoffstrom von 1 $[kg_{FS}/s]$. Die Datenzusammenstellung umfaßt vier Gruppen:

- * Stöchiometrische Verbrennung; die Eingabe zur Verbrennungsführung bleiben hierbei gänzlich unbeachtet.
- * Standardberechnung; alle benutzerdefinierten Bedingungen sind in die Berechnung einbezogen.
- * Spezialfälle; Berechnungen von Variationsmöglichkeiten der drei verbrennungsspezifischen Eingabeparameter:
 - 1. $Y_{O_2,RG_{aus}}$
 - 2. $T_{RG_{aus}}$
 - 3. $T_{VL_{ein}}$

Bei diesen Betrachtungen werden jeweils zwei Parameter auf die definierten Eingabewerte gesetzt und für den dritten die Grenzwerte ermittelt.

* ausführliche Stromtabellen aller Verbrennungsergebnisse oben angeführten Berechnungsszenarien.

12.1.1 Zusammenfassung der Verbrennungsergebnisse

Die Zusammenfassung der Ergebnisse ist in der Form

eintretende Ströme \Rightarrow austretender (Rauchgas-)Strom

dargestellt (siehe Abbildung 35).

Eraebnisse		[kg/kg_FS]	[m3/kg FS]	[mol/ ka FS]	[°C]	[Vol-%]	[Vol-%]		[kg/kg_FS]	[m3/kg FS]	[mol/ ka FS1	[°C]	[Vol-%]	[Vol-%]		
Zusammei	Zusammenfassung		Massen- Strom	Volums- Ströme	Molen- Strom	Temp.	y_02	Y_02		Massen- Volums- Strom Ströme	Volums- Ströme	Molen- Strom	Temp.	y_02	Y_02	Lambda
	minimaler Luftbedarf	L_min	3,24	5,63	112,87	300,0	20,69	21,00	==> RG	4,20	25,75	150,15	1695,9	0,00	0,00	1.1
	Berechnung it Vorgaben															
	Vorgaben erfullt	L	3,94	6,85	137,33	300,0	20,69	21,00	==> RG	8,96	33,89	318,16	950,0	6,42	7,90	1,87
	Sonderfälle	TezRG	4,00	4,07	143,30	100,0	10,70	12,49								
	nur Lufteinsatz (rezRG = 0)														
	T_aus variabel	Ĺ	5,23	9,11	182,45	300,0	20,69	21,00	==> RG	6,19	30,59	219,73	1325,5	6,55	8,00	1,62
	Y_O2 aus variab	8 L	9,60	16,71	334,70	300,0	20,69	21,00	==> RG	10,56	39,62	371,98	950,0	12,34	13,91	2,97
	T_L ein variabel	L	5,23	3,86	182,45	-30,0	20,69	21,00	==> RG	6,19	23,40	219,73	950,0	6,55	8,00	1,62
	min. Luft & rez RG (L = Lm	nin)														
	T_aus variabel	L	3,24	5,63	112,87	300,0	20,69	21,00	==> RG	10,74	35,94	381,76	808,0	6,49	8,00	2,06
	-	rezRG	6,55	7,53	231,61	100,0	10,70	12,49								
	Y_O2 aus variab	e L	3,24	5,63	112,87	300,0	20,69	21,00	==> RG	8,76	33,18	311,50	950,0	5,54	6,92	1,74
		rezRG	4,56	5,24	161,35	100,0	10,70	12,49								
	T_L ein variabel	L	3,24	11,14	112,87	860,0	20,69	21,00	==> RG	10,74	40,66	381,76	950,0	6,49	8,00	2,06
		rezRG	6,55	7,53	231,61	100,0	10,70	12,49								

Abbildung 35: Zusammenfassende Darstellung der Verbrennungsergebnisse

minimaler Luftbedarf

Der Brennstoff wird unter Einsatz des zur stöchiometrischen Verbrennung minimalen Luftbedarfs umgesetzt.

Der wichtigste Ergebniswert ist die Temperatur des dabei entstehenden Rauchgases. Dies ist die maximal mit diesem Brennstoff und der benutzerdefinierten Lufttemperatur erreichbare Temperatur in der Brennkammer.

Berechnung lt. Vorgabe – Standardberechnung

Unter Einhaltung aller benutzerdefinierten Vorgaben erreichte Ergebnisse. Die wichtigste Werte dieser Berechnung sind

- $\ast\,$ der Massenstrom der Verbrennungsluft und
- * der Massenstrom des rezirkulierten Rauchgases.

Berechnung von Spezialfällen

Um Aufschluß über die Variationsmöglichkeiten der drei Hauptsteuer-Parameter der Verbrennung zu erhalten, sind die Ergebnisse verschiedener Extremfälle der Verbrennungsführung dargestellt. Angenommen wird,

- 1. daß die Verbrennung ohne Zufuhr von rezirkuliertem Rauchgas durchgeführt wird, bzw.
- daß der Brennstoff unter Einsatz der minimale Verbrennungsluft umgesetzt und zum Erreichen der energetischen und stoffbilanzlichen Rahmenbedingungen nur rezirkuliertes Rauchgas verwendet wird.

Für beide Annahmen sind die Berechnungen unter Beibehaltung zweier Eingabeparameter durchgeführt. Die Ergebnisse sind

- * $T_{RG,aus} = f(T_{L,ein}, Y_{O_2,aus})$ bei $\dot{m}_L = \dot{m}_{L_{min}}$ bzw. $\dot{m}_{rezRG} = 0$: Ermitteln der Rauchgastemperatur bei Verwendung der Vorgabewerte für die Lufteintrittstemperatur und den O_2 -Gehalt des Rauchgases (wenn die Stromgröße der Luft gleich der des Minimalluftbedarfs ist bzw. der rezirkulierte Rauchgastrom gleich 0 ist).
- * $Y_{RG,aus} = f(T_{L,ein}, T_{RG,aus})$ bei $\dot{m}_L = \dot{m}_{L_{min}}$ bzw. $\dot{m}_{rezRG} = 0$: Ermitteln des O_2 -Gehalts des Rauchgases bei Verwendung der Vorgabewerte für die Lufteintrittstemperatur und die Rauchgastemperatur.
- * $T_{L,ein} = f(T_{RG,aus}, Y_{O_2,aus})$ bei $\dot{m}_L = \dot{m}_{L_{min}}$ bzw. $\dot{m}_{rezRG} = 0$: Ermitteln der Lufteintrittstemperatur bei Verwendung der Vorgabewerte für die Rauchgastemperatur und den O_2 -Gehalt des Rauchgases (wenn die Stromgröße der Luft gleich der des Minimalluftbedarfs ist bzw. der rezirkulierte Rauchgastrom gleich 0 ist);

Die erhaltenen Werte sind Ergebnisse der Stoff- und Energiebilanzen und können außerhalb der Gültigkeitsbereiche der jeweiligen Eingabewerte liegen. Die Ergebnisse dienen der Überprüfung von *theoretisch möglichen* Eingaben.

12.1.2 Stromtabellen der Verbrennungsberechnungen

In der zusammenfassenden Darstellung (siehe Abbildung 35) sind nur die wichtigsten Daten der Ströme enthalten. So ist zwar der Sauerstoffgehalt der Ströme dargestellt, nicht aber die gesamte chemische Zusammensetzung. Die übrigen Daten sind in der Stromtabelle (siehe Abbildung 36) angeführt.

12.2 Ergebnisse der Anlagenberechnung

Die Daten der Anlagenberechnung sind zusammengefaßt in

- * Ergebnisse der energetischen Anlagenbetrachtung und
- * Stoffstromtabellen.

12.2.1 Ergebnisse der energetischen Anlagenbetrachtung

Die primären Ergebnisse der Simulation sind die Leistungsdaten einer Anlage. In vier Tabellen sind die relevantesten Informationen zusammengefaßt:

			[m3/kg FS]	[kg/kg_FS]	[mol/ kg_ES]	[°C]	[bar]	[kJ/ ka ES]	[J/mol K]	[kJ/mol]	[Vol-%]	[Vol-%]	[Vol-%]	[Vol-%]	[Vol-%]	[Vol-%]
		Strom-Name	Volums- Ströme	Massen- Strom	Molen- Strom	Temp.	Druck	Enth Strom	c_p	spez Enth.	N2	02	H2O	CO2	SO2	нсі
stöchiometrische '	Verbrennung		E 00	2.04	110.07	200.0	0.0547	0.06 5	20.70	0.04	77 95	20.60	1 40	0.00	0.05+0	0.05+0
		RG aus	25.75	4.20	150.15	1695.9	0,9547	9682.3	43.20	64.48	58.61	20,09	25.80	15,47	1.2E-1	0,0E+0 0.0E+0
Berechnung It Vor	gaben	_														
erfüllte l	Bedingungen															
T_aus		L	6,85	3,94	137,33	300,0	0,9547	200,8	30,79	8,21	77,85	20,69	1,46	0,00	0,0E+0	0,0E+0
Y_02		rezRG	4,67	4,06	143,56	100,0	0,9547	327,7	30,86	2,28	67,77	10,70	14,34	7,34	5,9E-2	2,9E-5
T_L ein		RG_aus	33,89	8,96	318,16	950,0	0,9547	10210,7	38,10	32,09	64,22	6,42	18,75	10,61	8,6E-2	1,3E-5
Berechnung von s erfüllte I Y_O2	peziellen Sonde Bedingungen Annahmen	emfällen														
T_L ein	rezRG=0	L	9,11	5,23	182,45	300,0	0,9547	571,2	30,79	8,21	77,85	20,69	1,46	0,00	0,0E+0	0,0E+0
		RG	30,59	6,19	219,73	1325,5	0,9547	10253,4	39,77	46,66	64,70	6,55	18,09	10,57	8,5E-2	0,0E+0
	L = L_min	L rezRG RG	5,63 7,53 35,94	3,24 6,55 10,74	112,87 231,61 381,76	300,0 100,0 808.0	0,9547 0,9547 0,9547	926,5 528,7 10210,9	30,79 30,86 37,21	8,21 2,28 26,75	77,85 67,77 64,17	20,69 10,70 6,49	1,46 14,34 18,84	0,00 7,34 10,54	0,0E+0 5,9E-2 8,5E-2	0,0E+0 2,9E-5 1,7E-5
erfüllte l	Bedinaunaen															
T_aus T_L ein	Annahmen rezRG=0	L RG	16,71 39,62	9,60 10,56	334,70 371,98	300,0 950,0	0,9547 0,9547	2747,5 11503,3	30,79 36,38	8,21 30,92	77,85 70,08	20,69 12,34	1,46 11,28	0,00 6,24	0,0E+0 5,0E-2	0,0E+0 0,0E+0
	L = L_min	L rezRG RG	5,63 5,24 33,18	3,24 4,56 8,76	112,87 161,35 311,50	300,0 100,0 950,0	0,9547 0,9547 0,9547	926,5 368,3 10050,5	30,79 30,86 38,36	8,21 2,28 32,27	77,85 67,77 63,35	20,69 10,70 5,54	1,46 14,34 19,86	0,00 7,34 11,26	0,0E+0 5,9E-2 9,1E-2	0,0E+0 2,9E-5 1,5E-5
erfüllte I T_aus	Bedingungen Annahmen															
Y_02	rezRG=0	L RG	3,86	5,23 6,19	182,45 219,73	-30,0 950,0	0,9547 0,9547	-290,6 7035,0	28,64 37,99	-1,59 32,02	77,85 64,70	20,69 6,55	1,46 18,09	0,00 10,57	0,0E+0 8,5E-2	0,0E+0 0,0E+0
	L = L_min	L rezRG	11,14 7,53	3,24 6,55	112,87 231,61	860,0 100,0	0,9547	2968,5 528,7	33,67 30,86	26,30 2,28	77,85	20,69 10,70	1,46 14,34	0,00 7,34	0,0E+0 5,9E-2	0,0E+0 2,9E-5
		RU	40,60	10,74	301,75	950,0	0,9547	12252,9	30,11	32,10	04,17	0,49	10,04	10,54	0,3E-2	1,7E-0

Abbildung 36: Stromtabelle der Verbrennungsergebnisse

- 1. Brennstoffbedarf der Anlage,
- 2. Zusammenfassung der Nutz- und Verlustenergieströme,
- 3. energetische Betrachtung der einzelnen Komponenten und
- 4. detaillierte Daten des Verdichters.

Um die Details zu den Verdichterleistungsdaten zu erhalten, sind diese in einer eigenen Tabelle angeführt. Der Verdichter besteht aus insgesamt drei Subkomponenten: nämlich zwei Verdichterstufen und einem Zwischenkühler. Für die Anlagenbilanzen ist nur der Gesamtverdichter relevant, nicht aber die Leistungsdaten der Subkomponenten.

Auf eine Besonderheit in der Zusammenfassung der Nutz- und Verlustenergieströme sei hingewiesen: thermische Leistung des Zwischenkühlers ist als Verlustleistung kategorisiert. Dies erscheint bei stationärer Anlagenbetrachtung zwar wenig sinnvoll, da die Temperatur des Luftstroms nach der ersten Verdichterstufe i.A. > 100 °C (also durchaus für Wärmeauskopplung nutzbar) ist, aber die Austrittstemperatur muß einen Vorgabewert erreichen. Dies bedingt die exakte Steuer-/Regelbarkeit, welches Kriterium ein Wärmenetz-Rückflußstrom nicht erfüllt.

12.2.2 Stoffstromtabellen

Die Stoffströme der Anlage sind in zwei Tabellen angeführt. Die Aufteilung entspricht den beiden Subsystemen Luft- und Rauchgasseite (vgl. Abschnitt 6). Für jeden Strom

Brennstof	f		
	Massenstrom	0,406	[kg_FS/s]
	Heizwert	9,12	[MJ/kg FS]
	Asche	16,76	[g/s]
Gesamtan	lage		
genutze Er	nergien	[kW]	[%]
	über Brennstoff	3 703	100.00
	zugeführte Leistung	0.700	100,00
	Wellenleistung T	1.031	27,84
	Klemmenleistung	1 000 00	27.00
	Geno	1.000,00	27,00
	über WT abgeführte	1.816	49.03
	thermische Leistung		
Verluste		[kW]	[%]
	mechanische	152.08	4,11
	Gesamtverluste	,	,
	Mechanischer Verlust	58,68	1,58
	werdichter maabanischer Vorlugt		
	Turbine	41,43	1,12
	Turbine		
	mechanischer Verlust	21.04	0.57
	Getriebe Welle V-T	21,04	0,07
	Verluste Geno	30,93	0,84
	thermische	740.00	40.00
	Gesamtverluste	740,22	19,99
	thermischer Verlust	149 14	4.00
	Brennkammer	140,14	4,00
	thermischer Verlust	88 22	2 38
	Pebbleheater	00,22	2,30
	Restwärmestrom	0.00	0.00
	Turbinenabluft	0,00	0,00
	Restwärmestrom	129.10	3.49
	Rauchgas		-1
	Leistung	374,77	10,12
	Zwischenkühler V	.,	,.=

Energiebi	lanzen der l	Komponen	len
		Р	Q
		[kW]	[kW]
RG-Seite	Wt RG1	0,00	100,60
RG-Seite	Wt RG2	0,00	-464,19
TL-Seite	Wt TL1	0,00	0,00
TL-Seite	Wt TL2	0,00	-1360,31
TL-Seite	Wt TL3	0,00	-91,86
RG-Seite	Ph	0,00	-4410,90
TL-Seite	Ph	0,00	4322,69
TL-Seite	v	978,08	-374,77
TL-Seite	Т	-2030,05	0,00
zwischeng	ekühlter Ver	dichter (V)	
		Wärme	mech.
		[kW]	[kW]
Leistung	St. 1	33,18	553,00
	ZK	374,77	-
	St. 2	25,50	425,08
		Temp	Druck
		[°C]	[bar]
Ströme	Eintritt	15,00	0,95
	nach St. 1	115,85	2,34
	nach ZK	43,40	2,30

Austrtitt

120.60

4.32

Abbildung 37: Ergebnisse der energetischen Anlagenbetrachtung

sind Stromgröße, Temperatur, Druck, thermodynamische Eigenschaften und die chemische Zusammensetzung angeführt.

LSeite von zu (lig/s) (m/s/s) (m/s/s) [m/s/s) [m/s/s)<	mol-%] 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,
L01 Umgeb-Luft V 5.06 4.42 176.3 1.14 115.0 0.95 -53,14 28.96 -0.30 77.85 20.69 1.46 0.00 0.00 L02 V Ph 5.06 1.34 4.24 176.3 37.86 120.6 4.24 491.48 29.67 2.78 72.85 20.69 1.46 0.00 0.00 L03 Ph T 5.06 1.34 4.24 176.3 1.28 890.0 4.31 4.814.17 33.80 27.31 77.85 20.69 1.46 0.00 0.00 L03 Ph T 5.06 11.94 4.24 176.3 0.42 533.7 0.99 27.42.69 32.10 15.66 77.85 20.69 1.46 0.00 0.00 L04 T WtTL1 5.06 11.94 4.24 176.3 0.42 533.7 0.99 2.742.69 32.10 15.66 77.85 20.69 1.46 0.00 <td< th=""><th>0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0</th></td<>	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
L02 V Ph 5,06 1,34 4,24 176,3 3,78 120,6 4,32 491,48 29,87 2,79 77,85 20,69 1,46 0,00 0,00 L03 Ph T 5,06 3,96 4,24 176,3 1,28 890,0 4,31 4,814,17 33,80 27,31 77,85 20,69 1,46 0,00 0,00 L04 T WtTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00 L04 T WtTL1 SpTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00 L05 WtTL1 SpTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
L03 Ph T 5,06 3,96 4,24 176,3 1,28 890,0 4,31 4,814,17 33,80 27,31 77,85 20,69 1,46 0,00 0,00 L04 T WtTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00 L05 WtTL1 SpTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
L04 T WLTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00 L05 WLTL1 SpTL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
L05 Wt TL1 Sp TL1 5,06 11,94 4,24 176,3 0,42 533,7 0,99 2,742,69 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00
	0,00 0,00 0,00 0,00 0,00 0,00
L06 Sp TL1 Wt TL2 2,98 7,04 2,50 104,0 0,42 533,7 0,99 1.617,56 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00 0,00 0,00 0,00 0,00
L09a Sp TL1 L09 1,13 2,67 0,95 39,4 0,42 533,7 0,99 613,72 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00 0,00 0,00 0,00
L10a Sp TL1 L10 0,94 2,23 0,79 32,9 0,42 533,7 0,99 511,42 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00 0,00 0,00
L07 Wt TL2 Sp TL2 2,98 3,35 2,50 104,0 0,89 110,0 0,99 257,25 29,60 2,47 77,85 20,69 1,46 0,00 0,00	0,00 0,00
L08 Sp TL2 Wt TL3 2,98 3,35 2,50 104,0 0,89 110,0 0,99 257,25 29,60 2,47 77,85 20,69 1,46 0,00 0,00	0,00
L09b Sp TL2 L09 0,00 0,00 0,00 0,0 n/a 110,0 0,99 0,00 29,60 2,47 77,85 20,69 1,46 0,00 0,00	
L10b Sp TL2 L10 0,00 0,00 0,00 0,0 n/a 110,0 0,99 0,00 29,60 2,47 77,85 20,69 1,46 0,00 0,00	0,00
L09 L09a/b Mx RG1 1,13 2,67 0,95 39,4 0,42 533,7 0,99 613,72 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00
L10 L10a/b Mx VL 0,94 2,23 0,79 32,9 0,42 533,7 0,99 511,42 32,10 15,56 77,85 20,69 1,46 0,00 0,00	0,00
L11 Umgeb Luft Mx VL 0,81 0,71 0,68 28,4 1,14 15,0 0,95 -8,56 28,96 -0,30 77,85 20,69 1,46 0,00 0,00	0,00
L12 Mx VL Bk 1,76 3,06 1,47 61,3 0,57 300,0 0,95 502,86 30,79 8,21 77,85 20,69 1,46 0,00 0,00	0,00
L13 Wt TL3 Sp TL3 2,98 3,08 2,50 104,0 0,97 80,0 0,99 165,39 29,40 1,59 77,85 20,69 1,46 0,00 0,00	0,00
L14 Sp TL3 Mx RG2 2,98 3,08 2,50 104,0 0,97 80,0 0,99 165,39 29,40 1,59 77,85 20,69 1,46 0,00 0,00	0,00
L15 Sp TL3 Umgeb 0,00 0,00 0,00 0,0 n/a 80,0 0,99 0,00 29,40 1,59 77,85 20,69 1,46 0,00 0,00	0,00
Research Massen- Volums- Volums- Molen- Diable Topp Datak Enthalpie- on spez Na 03 H20 003 S00 H01 La	mbda-
ströme ströme ströme ströme ströme fröme inne fernp. Dick Strom C_P Enthalpie 12 02 120 002 302 101 Wi	erte
RG-Seite von zu [kg/s] [m3/s] [Nm3/s] [mol/s] [kg/m3] [°C] [bar] [kJ/s] [J/mol K] [kJ/mol] [mol-%] [mol-%] [mol-%] [mol-%] [mol-%] [mol-%] [mol-%]	[-]
R01 Bk Wt RG1 3,73 14,08 3,18 132,2 0,26 950,0 0,95 4.232,32 38,00 32,02 64,70 6,55 18,09 10,57 0,09 0,00	1,91
R02 Wt RG1 Mx RG 3,73 14,31 3,18 132,2 0,26 970,0 0,95 4.332,93 38,11 32,78 64,70 6,55 18,09 10,57 0,09 0,00	1,91
R03 Mx RG Ph 4,86 17,24 4,13 171,6 0,28 880,0 0,95 4,946,65 36,69 28,82 67,72 9,80 14,27 8,14 0,07 0,00	2,63
R04 Ph Sp RG1 4,86 5,96 4,13 171,6 0,81 127,0 0,95 535,74 31,12 3,12 67,72 9,80 14,27 8,14 0,07 0,00	2,63
R05 Sp RG1 Mx RG2 3,28 4,04 2,79 115,8 0,81 127,0 0,95 361,59 31,12 3,12 67,72 9,80 14,27 8,14 0,07 0,00	2,63
R08a Sp RG1 R08 1,58 1,94 1,34 55,8 0,81 127,0 0,95 174,15 31,12 3,12 67,72 9,80 14,27 8,14 0,07 0,00	2,63
R06 Mx RG2 Wt RG2 6,26 7,25 5,29 219,8 0,86 105,4 0,95 527,03 30,28 2,40 72,51 14,95 8,21 4,29 0,03 0,00	4,90
KU/ WT KSZ SP KGZ 5,20 5,20 5,20 213,6 1,05 35,0 0,95 62,83 29,70 0,29 72,51 14,95 8,21 4,29 0,03 0,00	4,90
RUBD Sp.RSz RUB U,UU U,UU U,UU U,U V,0 ra 35,0 0,95 0,00 29,70 0,29 67,72 9,80 14,27 8,14 0,07 0,00	4,90
тив пивейи вк 1,56 1,54 1,54 55,6 0,61 127,0 0,95 174,15 31,12 3,12 67,72 9,80 14,27 8,14 0,07 0,00 РОВ Съ.РС2 Шахар 6,23 500 520 310,8 1,06 250 0,06 528 2,070 0,06 577 0,80 14,27 8,14 0,07 0,00	2,63

Abbildung 38: Stoffstromtabellen der Gesamtanlagenberechnung

Teil III Sensitivitätsanalyse

Abschließend werden die energetischen Leistungsdaten der SiPeb-Anlage untersucht. Hierzu wird ein Referenz-Arbeitspunkt jeweils für die strom- und wärmeoptimierte Verschaltung festgelegt und auf diesen Ergebnissen aufbauend, werden verschiedene Einflußfaktoren untersucht.

Die Vielzahl der einstellbaren Anlagenwerte macht eine Einteilung der Werte notwendig. Hierzu werden die Größen entsprechend der allgemeinen Notation in der Simulationstechnik folgendermaßen gruppiert:

- * Störgrößen: all jene Eingabewerte, die nicht vom Anlagenbetreiber beeinflußt werden können und für die nur Grenzen angebbar sind. Dies sind hauptsächlich die Umgebungsbedingungen, aber auch die Brennstoffdaten. Die Ergebnisse bei der Variation über ihre Schwankungsbreite liefern vor allem Aussagen über die Sinnhaftigkeit des Anlagenbetriebs.
- * Sollgrößen: in dieser Kategorie werden Werte zusammengefaßt, die sozusagen "Zielwerte" im Betrieb darstellen: so ist die Brennkammertemperatur "fix" eingestellt und der Wert wird in der stationären Anlagensimulation auch exakt erreicht, in der Realität führen jedoch die Störgrößen-Schwankungen zu Abweichungen. Das Erreichen des Vorgabewertes ermöglicht eine entsprechende Steuerung/Regelung. Den möglichen Wertebereich legen technische Grenzen fest.
- * Führungsgröße: frei zu bestimmender Wert, der als Dimensionierungsfaktor angesehen werden kann. Beispielsweise ist es für die spezifischen thermodynamischen Stoffdaten irrelevant, ob die Anlage 1 oder 1000 kW elektrische Leistung abgibt.¹⁰ Die Festlegung dieser Größe muß die Vergleichbarkeit verschiedenster Berechnungsergebnisse gewährleisten.
- * Konstanten: invariant in die Berechnung einfließende Größen. Beispielsweise sind die mechanischen Wirkungsgrade hier zu nennen. Die Fixierung der Werte stellt in den meisten Fällen eine Vereinfachung dar: so wird etwa der mechanische Verdichter-Wirkungsgrad von Baugröße und -art abhängen, aber für die Abschätzung sind die Abhängigkeitsdetails von untergeordneter Relevanz und es werden die von Siemens genannten Werte beibehalten.

 $^{^{10}\}mathrm{vgl.}$ Abschnitt 9.3 auf Seite 33

* Stellgrößen: Stellgrößen unterscheiden sich von Sollgrößen durch die fehlende Abhängigkeit von betriebszustandbedingten Einflußfaktoren. Da die einzigen unabhängigen Größen der SiPeb-Anlage in der Kategorie "Führungsgrößen" vorhanden sind, sind sie in diese Liste nur der Vollständigkeit halber aufgenommen.

13 Eingabewertdefinitionen

Im Folgenden sind die Zahlenwerte der Eingabedaten nach obiger Einteilung zusammengestellt. Für Details und Erklärungen zur Bedeutung der Eingabewerte sei auf Abschnitt 9 ab Seite 26 verwiesen.

Die Tabellen geben nach der Eingabewertdefinition in jedem Fall den Referenzwert, bei allen variablen Werten noch den minimalen und maximalen Grenzwert an. Die physikalische Einheit ist am Zeilenende angeführt.

13.1 Störgrößen

13.1.1 Brennstoff

Bei Biomassebrennstoffen hängt der Heizwert (H_u) primär vom Wassergehalt ab, da der Brennwert (H_o) bei typischen biogenen Brennstoffen nur geringfügig schwankt, wie aus nachstehenden Vergleich¹¹ ersichtlich ist:

 $H_{o,Holz} \sim 20,0 [MJ/kg_{TS}] = 100\%$ $H_{o,Stroh} \sim 18,8 [MJ/kg_{TS}] = 94\%$

also 6% Unterschied, während sich der Heizwert bei Holz mit einem Wassergehalt von 50% $(H_{u,50} \sim 8, 1 [MJ/kg_{FS}])$ im Vergleich zu dem bei 15% Wassergehalt $(H_{u,15} \sim 15, 48 [MJ/kg_{FS}])$ senkt. Dies entspricht einer relativen Änderung von beinahe 50%. Der betrachtete Schwankungsbereich ist in Tabelle 2 angegeben.

	Wertebereich						
Größe	Zeichen	Ref	Min	Max	Einheit		
Wassergehalt	x_{H_2O}	35,0	15,0	60,0	$[Gew - \%_{FS}]$		

Tabelle 2: Definition der Störgröße Brennstoff-Wassergehalt

¹¹Die Wahl fiel auf Holz vs. Stroh, da hier die Differenz die größte ist. Quelle: [2, Seite 54]

Aus einem anderen Grund werden aber dennoch zwei Brennstoffe untersucht: die unterschiedliche chemische Zusammensetzung wirkt sich stark auf den Ascheschmelzpunkt und damit auf die maximale adiabate Feuerraumtemperatur aus. Der eine Brennstoff ist Hackgut aus steirischem Fichtenholz ohne Rinde (und dient als Referenz-Brennstoff), der andere ist Stroh aus niederösterreichischem Winterweizen, welcher für die Minimumberechnung eingesetzt wird (Quelle: [2, Seite 50]). Die Daten sind in Tabelle 3 auf Seite 77 dargestellt.

		Wertebereich					
Größe	Zeichen	Ref	Min	Max	Einheit		
Kohlenstoffgehalt	X_C	50,16	$43,\!53$	50,16	$[Gew - \%_{TS}]$		
Wasserstoffgehalt	X_H	6,16	5,04	6,16	$[Gew - \%_{TS}]$		
Stickstoffgehalt	X_N	$0,\!12$	0,41	0,12	$[Gew - \%_{TS}]$		
Schwefelgehalt	X_S	0,0067	0,0777	0,0067	$[Gew - \%_{TS}]$		
Chlorgehalt	X_{Cl}	0,0057	0,238	0,0057	$[Gew - \%_{TS}]$		
Aschegehalt	X_{Asche}	0,2044	2,8051	0,2044	$[Gew - \%_{TS}]$		

Die Zahlenwerte beziehen sich auf die Stoffdaten des Brennstoffs mit dem geringsten (Minimum) und höchsten (Maximum) Brennwert. Dadurch ist z.B. der Wert des Aschegehalts bei der Minimum- größer als bei der Maximum-Definition.

Tabelle 3: Definition der brennstoffbezogenen Störgrößen

13.1.2 Umgebungsbedingungen

Die Referenzwerte für die Umgebungsbedingungen sind so gewählt, daß sie etwa mitteleuropäischen Jahresdurchschnittswerten entsprechen, allerdings unter Verzicht auf exakte Daten. Eine Ausnahme bildet die chemische Zusammensetzung der trockenen Luft: da diese nicht variiert wird, sind die exakten Zahlenwerte eingesetzt – nach der Normierung, die durch Nichtberücksichtigung von Argon und Spurengasen notwendig ist (Quelle: [8]).

Die Temperaturgrenzen sind unter dem Aspekt des "normalen" Einsatzbereichs einer KWK-Anlage gewählt worden. Spätestens bei über 30 °C wird eine Wärmeauskopplung nicht sinnvoll sein. Der Druckbereich entspricht dem maximalen in Deutschland gemessenen Druck (Quelle: [9]) und dem Druckniveau in etwa 2400m Seehöhe¹². Für die relative Luftfeuchtigkeit sind die physikalischen Grenzen eingesetzt.

	wertebereich						
Größe	Zeichen	Ref	Min	Max	Einheit		
Umgebungstemperatur	T_U	10,0	-30,0	30,0	$[^{\circ}C]$		
Umgebungsdruck	p_U	1,0	0,75	$1,\!05$	[bar]		
relative Feuchte	φ	60,0	0,0	100,0	[%]		
Stickstoffgehalt	Y_{N_2}	78,852	fix	fix	$[vol - \%_{TL}]$		
Sauerstoffgehalt	Y_{O_2}	21,148	fix	fix	$[vol - \%_{TL}]$		

Tabelle 4: Störgrößendefinition aus der Umgebungsluft

¹²Die Höhenabhängigkeit des Drucks wird nach $p(h) = p_0 \cdot exp\left(-\frac{h}{7990m}\right)$ berechnet.(Quelle: [9]). Die gewählte Maximalhöhe liegt im Bereich der "Alpinen Baumgrenze" (Quelle: [10]).

13.2 Konstante Anlagengrößen

Die Wirkungsgrade und Verlustgrößen von Verdichter, Pebble-Heater und Turbine werden als konstant, mit den Von Siemens genannten Zahlenwerten, wie in Tabelle 5 angegeben, angesehen.

Größe	Zeichen	Ref	Einheit
mechanischer WG der 1. Verdichterstufe	$\eta_{V_1,m}$	0,94	[—]
mechanischer WG der 2. Verdichterstufe	$\eta_{V_2,m}$	0,94	[—]
isentroper WG der 1. Verdichterstufe	$\eta_{V_1,is}$	0,83	[-]
isentroper WG der 2. Verdichterstufe	$\eta_{V_2,is}$	0,80	[-]
Druckverlust des Verdichterzwischenkühlers	$\Delta p_{V,Wt}$	4400,0	[Pa]
Druckverlust luftseitiger Pebble-Heater	Δp_{Ph_L}	1200,0	[Pa]
mechanischer WG der Turbine	$\eta_{V_2,m}$	0,98	[-]
mechanischer WG V-T-Welle	$\eta_{Welle,m}$	0,98	[-]
mechanischer WG Generator	$\eta_{Geno,m}$	0,97	[—]
Wärmeverlust der Brennkammer	$q_{Bk,Verlust}$	3,0	[%]

WG steht für Wirkungsgrad.

Tabelle 5: Definition der Konstanten

13.3 Sollgrößen

13.3.1 invariable Sollgrößen und Konstanten

Eine starke Einschränkung stellt die Fixierung der mechanischen und thermischen Eigenschaften des Pebble-Heaters – und damit verbunden der Daten von sowohl der Heißluft-Turbine als auch des zwischengekühlten Verdichters – dar. Auch all diese Werte müssen als "Allgemein Gültig" betrachtet werden. Da der Pebble-Heater das Kernstück einer SiPeb-Anlage ist, wird die vorangegangene technisch-ökonomische Optimierung durch Siemens vorausgesetzt. -

Eine weitere Festlegung betrifft die Austrittstemperatur von sowohl (überschüssiger) Turbinenluft als auch des Rauchgases (in der Tabelle als Kamintemperatur bezeichnet): diese bleibt mit 110 °C konstant, wodurch sichergestellt ist, daß es zu keiner Kondensation im Abgas kommt. Diese Forderung begründet sich daraus, daß sich im Abgaskondenstat beispielsweise Schwefeldioxid und Salzsäure lösen, wodurch eine darauf ausgerichtete Behandlung/Auslegung notwendig wird. Dieser Fall ist im SiPeb-Programm nicht behandelt. Die gemeinsame Abführung der beiden austretenden Gasströme ist naheliegend und daher fixiert.

Größe	Zeichen	Ref	Einheit
Austrittsdruck 1. Verdichterstufe	$p_{V_1,aus}$	2,23	[bar]
Austrittsdruck des Verdichter	$p_{V,aus}$	4,32	[bar]
Austrittstemperatur Verdichter	$T_{V,aus}$	120,6	$[^{\circ}C]$
Austrittstemperatur des Pebble-Heaters luftseitig	$T_{Ph_L,aus}$	830,0	$[^{\circ}C]$
Eintrittstemperatur des Rauchgases Ph	$T_{Ph_RG,ein}$	860,0	$[^{\circ}C]$
Austrittstemperatur der Turbine	$T_{T,aus}$	533,7	$[^{\circ}C]$
Austrittsdruck der Turbine	$p_{T,aus}$	$= p_U$	[bar]
Kamintemperatur	T_{Kamin}	110,0	$[^{\circ}C]$
Austrittstemperatur Wt RG2	$T_{WtRG2,aus}$	110,0	$[^{\circ}C]$
Splitterverhältnis L14 zu L13	_	$1,\!0$	[—]

Tabelle 6: Definition der invariablen Sollgrößen

13.3.2 variierbare Sollgrößen

Neben den in Tabelle 7 angegebenen Eingabewerten sind auch alle Verschaltungsparameter variabel. Mit ihrer Hilfe kann zwischen elektrischer und Wärmenutzungsoptimierung gewählt werden. Da für beide Varianten eine Referenzanlage (siehe Abschnitt 14) definiert wird, bleibt die Standarddefinition an dieser Stelle ausgespart.

Für die Brennkammer-Austrittstemperatur ergibt sich die untere Grenze aus der fixierten Pebble-Heater-Eintrittstemperatur – auf 900 °C aufgerundet. Die einsetzende Ascheschmelze stellt die technisch gegebene Maximaltemperatur dar(Quelle: [11]).

	Wertebereich				
Größe	Zeichen	Ref	Min	Max	Einheit
Lufteintrittstemperatur Bk	$T_{Bk,ein}$	400,0	50,0	500,0	$[\circ C]$
$RG-O_2$ -Gehalt Bk-aus	$Y_{O_2,Bk_{aus}}$	8,0	5,0	14,0	[%]
Austrittstemperatur der Bk	$T_{Bk,aus}$	1000,0	900,0	1200,0	$[^{\circ}C]$
Austrittstemperatur Wt RG2 $$	$T_{Wt_{RG1},aus}$	110,0	fix	fix	$[^{\circ}C]$
Austrittstemperatur Wt TL2	$T_{Wt_{TL2},aus}$	400,0	110,0	400,0	$[^{\circ}C]$

Tabelle 7: Definition der variierbaren Sollgrößen

13.4 Führungsgröße

Die Klemmenleistung – abgebbare elektrische Leistung – soll $1000 \, kW$ betragen.

14 Referenz-Anlage

Mit den bisher getroffenen Definitionen ist der Betriebszustand der Referenzanlage weitestgehend festgelegt. Die bisher nicht definierte Verschaltung bietet insgesamt 8 unterschiedliche Optionen (3 Schaltpunkte, mit jeweils 2 Möglichkeiten bietet $\Rightarrow 2^3$), von denen die beiden "Extremata" untersucht werden:

- * strom- und
- * (fern-)wärmeoptimierte Verschaltung.

Durch Wahl der Führungsgröße "Klemmenleistung" ist in beiden Betriebsweisen der Referenzanlage der Block Verdichter–luftseitiger Pebble-Heater–Turbine stofflich und energetisch gleich.

14.1 stromoptimierter Betrieb

Ziel dieser Betriebsart ist, die möglichst hohe Ausbeute an elektrischer Energie (bezogen auf den eingesetzten Heizwert des Brennstoffs).

In diesem Fall soll so viel Wärmeenergie wie möglich im Prozeßkreislauf gehalten werden:

- * Heißest mögliche Rück- bzw. Zuführung von Stoffströmen.
- * Die Wärmetauscher führen erst Wärmeenergie jener (Gas-)Ströme ab, die aus stoffbilanzlichen Gründen nicht anderwärtig einsetzbar sind, oder deren Energieniveau niedriger ist als das alternativer Quelle.

In Abbildung 39 sind jene Komponenten der allgemeinen Anlage (vgl. Abbildung 6 auf Seite 11) ausgeblendet, die bei der stromoptimierten Führungsweise keine energetische oder stoffliche Änderung bedingen.

Abbildung 39: Fließbild der stromoptimierten Referenzanlage

Aus diesen Vorgaben resultieren folgende Definition:

Inaktive/nicht vorhandene Komponenten und Ströme im Vergleich zur Gesamtanlage:

- * Wärmetauscher Wt TL1
- * Wärmetauscher Wt TL3
- * Splitter Sp TL3
- * Wärmetauscher Wt RG1
- * Splitter Sp Sp2

Die Austrittstemperatur des einzigen Wärmetauschers auf der Turbinenluft-Seite (vgl. Tabelle 8) entspricht der Lufttemperatur am Brennkammereintritt. Der Verbrennungsluft-Mixer ist – obgleich im Referenzfall auch nicht in Verwendung – zur Steuerung der variablen Lufttemperatur am Brennkammereintritt berücksichtigt. Dies wird bei der Untersuchung der Störgrößeneinflüsse benötigt, wenn die Brennkammer-Eintrittstemperatur unter 110 °C (der Minimaltemperatur der dem Kamin zugeführten Gasströme) beträgt.

	Wertebereich				
Größe	Zeichen	Ref	Min	Max	Einheit

Austrittstemperatur Wt TL2 $T_{Wt_{TL2},aus}$ 400,0 110,0 533,7 [°C]

Tabelle 8: Sollgrößendefinition im stromoptimierten Betrieb

14.2 wärmeoptimierter Betrieb

Bei diesem Betriebszustand soll, unter Beibehaltung der Pebble-Heater-Definitionen, so viel Wärmeenergie wie möglich entnommen werden.

Daraus resultieren an inaktiven Komponenten der wärmeoptimierten Referenzanlage (siehe Abbildung 40 auf Seite 85):

- $\ast\,$ Wärmetauscher Wt TL3
- \ast Splitter Sp TL3
- * Wärmetauscher Wt RG1
- * Splitter Sp RG1

Obgleich durch Kühlung des aus der Brennkammer austretenden Rauchgases im Wärmetauscher Wt RG1 auf Pebble-Heater-Eintrittstemperatur die Wärmeabfuhr der Gesamtanlage weiter erhöht werden könnte, ist diese Variante nicht im Einsatz. Wäre die direkte Wärmeauskopplung aus dem Rauchgasstrom bei hoher Temperatur in "normalen" Wärmetauschern möglich, könnte ja auf den Pebble-Heater verzichtet werden.

Der Verbrennungsluft-Mixer ist wiederum zur Temperaturregulierung vorhanden.

Die Sollgrößendefinitionen sind in Tabelle 9 zusammengefaßt.

Abbildung 40: Fließbild wärmeoptimierten Referenzanlage

	Wertebereich				
Größe	Zeichen	Ref	Min	Max	Einheit
Austrittstemperatur Wt TL1	$T_{Wt_{TL1},aus}$	400.0	110.0	500.0	$[^{\circ}C]$
Austrittstemperatur Wt TL2	$T_{Wt_{TL2},aus}$	110.0	fix	fix	$[\circ C]$

Tabelle 9: Sollgrößendefinition im wärmeoptimierten Betrieb

14.3 Effizienzvergleich der Betriebsvarianten

Zur Vergleichbarkeit der Ergebnisse sind alle energetischen Leistungsdaten auf den über den Brennstoff zugeführten Energiestrom bezogen. Die zugeführte Brennstoffenergie wird als Produkt des Massenstroms des feuchten Brennstoffs und des Heizwertes festgelegt.

stromoptimierte Betriebsweise

Abbildung 41: Übersicht der verwerteten Energieflüsse der Referenzanlage

In Abbildung 41 sind die Effizienzen der nutzbaren Energieströme der beiden Betriebsvarianten gegenübergestellt. Wie daraus erkennbar ist, bewirkt die Stromausbeuteoptimierung einen geringeren Gesamtwirkungsgrad der Anlage.

14.3.1 Beschreibung der Energieströme

Im Anhang ab Seite 109 sind die Eingabe- und Ergebniswerte der beiden Referenzanlagen zusammengefaßt. Zur Beurteilung der Effizienz der Anlage werden die Exergieströme der Stoffströme, bzw. die aus der Anlage abgeführten Energieströme herangezogen. In der prozentualen Betrachtung dient die über den Brennstoff zugeführte Leistung als Bezugswert.

Berechnet wird der Exergiestrom mit:

$$\Delta \dot{H}_i = \dot{n}_i \cdot (h_i(T_i) - h_i(T_U)) \tag{29-a}$$

Formelzeichen

$\Delta \dot{H}_i$	Exergiestrom	$\left[\frac{kJ}{s}\right]$
\dot{n}_i	Molenstrom	$\left[\frac{mol}{s}\right]$
$h_i(T_i)$	spezifische Enthalpie bei der jeweiligen Temperatur	$\left[\frac{kJ}{mol}\right]$
$h_i(T_U)$	spezifische Enthalpie bei Umgebungstemperatur	$\left[\frac{kJ}{mol}\right]$

Tabelle 10: Formelzeichen Exergiestromberechnung

- * BK: Brennkammer
- * V: Verdichter
- * Ph: Pebble-Heater
- * T: Turbine

Abbildung 42: Energieströme der stromoptimierten Referenzanlage

- * BK: Brennkammer
- * V: Verdichter
- * Ph: Pebble-Heater
- * T: Turbine

Abbildung 43: Energieströme der wärmeoptimierten Referenzanlage

Anm.: Die Zahlenangaben oberhalb, bzw. neben den Strömen sind die, auf die über den Brennstoff zugeführte Leistung bezogenen Exergieströme. Die in den Komponenten angeführte Zahlen stellen die jeweilige Verlustleistung dar. Da die Zahlenwerte der Übersichtlichkeit wegen auf Ganzzahlen gerundet sind, kann es in dieser Darstellung zu Differenzbeträgen bei der Komponentenbilanzierung kommen. Wie aus Abbildung 42 ersichtlich, werden in der stromoptimierten Variante dem Pebble-Heater neben der Brennstoffenergie von 100% durch die gewählte Verschaltung zusätzlich 48% zugeführt: 42% aus der Restwärme der Turbinenabluft und weiter 6% vom rezirkulierten Rauchgas, abzüglich der Wärmeverluste der Brennkammer. Im Gegensatz dazu beträgt die rückgeführte Energiemenge bei der wärmeoptimierten Referenzanlage nur 18% (siehe Abbildung 43).

Die Auswirkung der variantenbezogenen Verschaltungsoptionen ist am Turbinenaustritt deutlich zu sehen: In der wärmeoptimierten Variante werden von den 69% direkt 50% über Wärmetauscher als Nutzwärme abgeführt. Dem gegenüber stehen 38% als Nutzwärme entnommener von 87% aus der Turbine austretender Exergie.

15 Auswirkung der Variation von Störgrößen

In diesem Abschnitt werden die Abhängigkeiten der Wirkungsgrade für elektrische Leistung und Nutzwärme von den Störgrößen betrachtet. Dazu wird jeweils eine Störgröße über ihren in Abschnitt 13.1 definierten Schwankungsbereich variiert, während alle übrigen Größen auf ihren Referenzwert gesetzt sind. Um die direkte Vergleichbarkeit der betragsmäßig unterschiedlichen Wirkungsgrade zu erhalten, werden diese in Relation zum Wert bei Referenzbedingungen gestellt:

$$y = \frac{\eta(x)_i}{\eta_{ref,i}} \tag{30}$$

- y Ergebniswert
- x Störgröße $x : [T_u, p_u, \varphi_U, x_{H_2O}]$

i i : [elektrische Leistung .. Nutzwärmeleistung]

 $\eta(x)_i$ Wirkungsgrad in Abhängigkeit von x

 $\eta_{ref,i}$ Wirkungsgrad der Referenzanlage

Tabelle 11: Formelzeichen Normierung der Ergebniswerte

Zur Beurteilung werden zwei Punkte betrachtet:

- * qualitativer Einfluß: wie verhält sich der Wirkungsgrad bei steigendem Wert der Störgröße;
- * quantitativer Einfluß: wie stark verändern sich die Werte;

In den folgenden Unterabschnitten wird die qualitative Beurteilung getroffen und am Ende des Abschnitts erfolgt die quantitative Bewertung durch Gegenüberstellung der einzelnen Extremata.

Für diese Betrachtungen wird einzig die stromoptimierte Referenzanlage herangezogen, da die Bewertung – wenn auch betragsmäßig unterschiedlich – für jede andere Anlagenführung analog ausfallen.

15.1 Druckabhängigkeit

Der Einfluß des Umgebungsdrucks auf die Anlage kann durch die Festlegung der Turbinenaustrittstemperatur (vgl. Abschnitt 13.3.1) nicht korrekt abgebildet werden. Wenn der

Abbildung 44: Umgebungsdruckeinfluß auf die Anlageneffizienz

Umgebungsdruck geringer als in der Referenzdefinition ist, benötigt der Verdichter mehr Leistung um den Luftstrom auf den ebenfalls festgelegten Druck am Pebble-Heatereintritt zu verdichten. Der Austrittsdruck aus der Turbine ist aber auch geringer: bei gleichem Isentropenwirkungsgrad, wie im Referenzfall, ergibt sich eine niedrigere Austrittstemperatur und damit eine höhere mechanische Leistungsabgabe. Durch die fixierte Austrittstemperatur wird allerdings nur der isentrope Turbinenwirkungsgrad verschlechtert und die zusätzliche Leistung fließt in die Anlagenverluste ein. Daher fällt der Wirkungsgrad der stromoptimierten Anlage bei geringeren Drücken stark ab, während die auskoppelbare Wärmeleistung unbeeinflußt bleibt.

Der Vollständigkeit halber ist das Ergebnis der Druckabhängigkeit in Abbildung 45 und Tabelle 12 graphisch dargestellt.

$p_U[bar]$	$rac{\eta(p_U)_{el}}{\eta_{el,ref}}$	$\frac{\eta(p_U)_{th}}{\eta_{th,ref}}$
0.75	0,730	0,999
1.05	1,044	1,000

Tabelle 12: Umgebungsdruckeinfluß auf die Anlageneffizienz

Der Einfluß des Umgebungsdruck kann durch die Konstantsetzung der Turbinen-Austrittstemperatur nicht beurteilt werden.

Abbildung 45: Umgebungstemperatureinfluß auf die Anlageneffizienz

15.2 Einfluß der Umgebungstemperatur

Bei steigender Umgebungstemperatur sinkt – wie aus Abbildung 45 ersichtlich ist – der elektrische Wirkungsgrad. Dies ist vor allem auf die höhere Kühlleistung im zweistufigen Luftverdichter zurückzuführen (welche ja in die Anlagenverluste eingerechnet wird). Die als Nutzwärme abgeführte Leistung ist betragsmäßig durch die steigende Lufttemperatur kaum beeinflußt, obgleich ein leichter Abfall bei steigender Temperatur vorliegt.

$T_U[\circ C]$	$\frac{\eta(T_U)_{el}}{\eta_{el,ref}}$	$\frac{\eta(T_U)_{th}}{\eta_{th,ref}}$
-20	1,068	1,002
30	0,963	0,994

Tabelle 13: Einfluß der Umgebungstemperatur

Beachtenswert ist in diesem Fall, daß nicht eine geringe Stromausbeute die, Nutzwärmeeffizienz erhöht: steigende Umgebungstemperaturen führen zu einer allgemein niedrigeren Effizienz der Gesamtanlage.

15.3 Einfluß des Wassergehalts

Wasser wird der Anlage aus zwei¹³ Quellen zugeführt:

1. Umgebungsluft über die Störgröße φ und

¹³Natürlich entsteht auch bei der Verbrennungsreaktion Wasser, durch Festlegung der wasserfreien Brennstoffzusammensetzung ist dieser Anteil jedoch konstant und wird daher nicht miteinbezogen.

2. Wassergehalt des Brennstoffs über x_{BS} .

Um den Einfluß des Wassergehaltes zu bewerten, werden die beiden unabhängigen Quelle gemeinsam über ihren Schwankungsbereich variiert. Eine weitere Abweichung von der Standardvorgehensweise stellt die Änderung der Umgebungstemperatur auf deren Maximum von 30 °C dar:

Gefordert ist den maximalen Wassereintrag über die Luft zu erzielen. Dies wird wegen der Abhängigkeit des absoluten Feuchtegehalts

$$y_{H_2O} = f(T_U, \varphi) \tag{31}$$

mit

y_{H_2O}	Ergebniswert	[vol - %]
T_U	Umgebungstemperatur	$[^{\circ}C]$
φ	relative Luftfeuchte	[%]

Tabelle 14: Formelzeichen absoluter Wassergehalt

bei $\varphi = 100\%$ und 30 °C erreicht.¹⁴ Die Referenzwirkungsgrade $\eta_{el,ref}$ und $\eta_{th,ref}$ sind bei $T_U = 30$ °C berechnet.

Die unabhängige Laufvariable ξ wird im Bereich [0..1] variiert und die beiden Störgrößen in Abhängigkeit der Laufvariable gesetzt:

$$\varphi(\xi) = \varphi_{min} + \frac{\varphi_{max} - \varphi_{min}}{\xi_{max} - \xi_{min}} \cdot \xi$$
$$x_{BS}(\xi) = x_{BS,min} + \frac{x_{BS,max} - x_{BS,min}}{\xi_{max} - \xi_{min}} \cdot \xi$$

Um einen zahlenmäßigen Überblick über die eingebrachten Wasserströme zu vermitteln, sind die molaren Größen für die Grenzwerte der Laufvariablen in Tabelle 15 angeführt:

Diese Zahlenwerte verdeutlichen den Grund der gewählte Erhöhung der Lufttemperatur, da bei Referenzbedingungen der Wassereintrag über die Umgebungsluft im Vergleich zur Wassermenge über den Brennstoff um etwa ein Drittel kleiner und somit vernachlässigbar wäre (vgl. Fußnote 14 auf Seite 93).

 $^{^{14}}$ Bei 100% relativer Luftfeuchtigkeit beträgt die absolute Feuchte 4vol-%vs. nur 1,26% bei der Referenztemperatur.

ξ	$y_{H_2O,U}$	$x_{H_2O,BS}$	Luft $\left[\frac{mol}{s}\right]$	Brennstoff $\left[\frac{mol}{s}\right]$
[—]	[vol - %]	[Gew-% FS]		
0	0	15	0,0	2,56
1	100	60	10,5	24,6

Tabelle 15: Vergleich der eingebrachten Wasserströme

Abbildung 46: Einfluß des Wasserdampfs auf die Anlageneffizienz

Wie aus Abbildung 46 und 16 ersichtlich ist, steigt der elektrische Wirkungsgrad bei steigendem Wassereintrag, jedoch sinkt die Nutzwärmeeffizienz in stärkerem Maße.

ξ	$y_{H_2O,U}$	$x_{H_2O,BS}$	$\frac{\eta(\xi)_{el}}{\eta_{el,ref}}$	$\frac{\eta(\xi)_{th}}{\eta_{th,ref}}$
[-]	[vol - %]	[Gew-% FS]		
0	0	15	0,972	1,032
1	100	60	1,044	0,916

Tabelle 16: Einfluß des Wassergehalts

15.4 quantitativer Vergleich der Störgrößeneinflüsse

Bei Beurteilung der elektrischen Leistungseffizienz stellt die Umgebungsluft die maßgebliche Störgröße dar: über den betrachteten Temperaturschwankungsbereich von -20 bis 30 °C ist hierbei eine Effizienzabnahme von 10,5% zu verzeichnen. Dem gegenüber stehen

7,2% Effizienzzuwachs bei steigendem Wassereintrag – wobei dieser Wert bei maximaler Umgebungstemperatur ermittelt wurde und bei niedrigerer Temperatur, durch Reduktion des über Luft eingebrachten Wasserdampfes, kleiner wird.

Im Gegensatz dazu hat die Lufttemperatur beinahe keine Auswirkung auf die abgebbar thermische Leistung: lediglich 0,8% Abnahme über die Schwankungsbreite. Dieser Wert ist jedoch aus zwei Gründen zu relativieren:

- Die Effizienz ist als Verhältnis zum energetischen Wirkungsgrad bei Referenzbedingungen ausgedrückt. Bei Heranziehen des Exergiegehaltes wäre ein deutlicherer Abfall der thermischen Anlagenleistung zu verzeichnen. Allerdings bleibt die Art der Abwärmenutzung undefiniert¹⁵, wofür die Energieleistung geeigneter ist
- 2. Durch die Festlegung der Kamintemperatur auf 110 $^{\circ}C$ ist die Erhöhung der Wärmeabgabe durch Rauchgaskondensation – speziell bei niedriger Umgebungstemperatur und Nutzung in einem Niedrigtemperatur-Wärmenetz sinnvoll – nicht berücksichtigt.

Die Steigerung des Wassereintrags hat einen stark negativen Einfluß auf die thermische Wärmeleistung: ein Abfall von 11,6%.

Störgröße	$\Delta\eta_{el} [\%]$	$\Delta \eta_{th} [\%]$
p_U	nicht angegeben	
T_U	-10,5	-0,8
ξ_{H_2O}	7,2	-11,6

Es sei an dieser Stelle nochmals auf die Erklärung bezüglich des Druckeinflußes auf Seite 90 verwiesen.

Tabelle 17: Quantitativer Vergleich der Störgrößeneinflüsse

 $^{^{15}}$ Die ausgekoppelte Wärme kann sowohl an einen Dampfturbinenkreislauf – z.B. ORC-Prozeß – zur weiteren Stromerzeugung, als auch direkt an ein Wärmenetz abgeben werden.
16 Auswirkung der Variation von Sollgrößen

Analog zur Betrachtung der Störgrößenvariation werden in diesem Abschnitt die Sollgrößen, die durch den Anlagenbetreiber direkt wähl-/regelbar sind, über den in Abschnitt 13.3.2 auf Seite 81 definierten Schwankungsbereich variiert. Durch die Festlegung der Wärmetauscher-Austrittstemperaturen im Zuge der Referenzanlagen-Definition bleiben 3 Sollwerte:

- 1. Brennkammer-Eintrittstemperatur
- 2. Brennkammer-Austrittstemperatur
- 3. Sauerstoffgehalt am Brennkammer-Austritt

Zur quantitativen Beurteilung werden die Ergebnisse der drei Sollgrößenvariation einander gegenübergestellt.

16.1 Einfluß der Brennkammer-Eintrittstemperatur

Abbildung 47: Einfluß der Brennkammer-Eintrittstemperatur auf die Anlageneffizienz

Je höher die Lufteintrittstemperatur in die Brennkammer ist, desto mehr Abwärme der Turbinenluft wird im System gehalten und der Anteil an rezirkulierten Rauchgas steigt. Daher steigt der elektrische Wirkungsgrad – da weniger Brennstoff zum Erreichen der Austrittstemperatur nötig ist – und es kann weniger Wärmeenergie ausgekoppelt werden.

$T_{Bk_{ein}}[\ ^{\circ}C]$	$\frac{\eta(T_{Bk_{ein}})_{el}}{\eta_{el,ref}}$	$\frac{\eta(T_{Bk_{ein}})_{th}}{\eta_{th,ref}}$
50	0,866	1,181
500	1,003	0,904

Tabelle 18: Einfluß der Brennkammer-Eintrittstemperatur

16.2 Einfluß der Brennkammer-Austrittstemperatur

Die mögliche Brennkammer-Austrittstemperatur wird primär durch den eingesetzten biogenen Brennstoff – und dessen Ascheschmelzpunkt – begrenzt.

Abbildung 48: Einfluß der Brennkammer-Austrittstemperatur auf die Anlageneffizienz

$T_{Bk_{aus}}[\ ^{\circ}C]$	$\frac{\eta(T_{Bk_{aus}})_{el}}{\eta_{el,ref}}$	$\frac{\eta(T_{Bk_{aus}})_{th}}{\eta_{th,ref}}$
900	0,911	1,120
1200	1,160	0,785

Tabelle 19: Einfluß der Brennkammer-Austrittstemperatur

Die höhere Brennkammer-Austrittstemperatur des Rauchgases ermöglicht einen höheren Anteil an beigemischter Turbinenabluft, um die geforderte Pebble-Heater-Eintrittstemperatur zu erreichen. Dadurch wird ein größerer Abwärmeanteil des Kraftprozesses diesem wieder als nutzbare Energie zugeführt – auf Kosten der auskoppelbaren Wärmeenergie.

16.3 Einfluß des Sauerstoffgehalts am Brennkammeraustritt

Abbildung 49: Einfluß des Sauerstoffgehalts am Brennkammeraustritt auf die Anlageneffizienz

$Y_{O_2,BK_{aus}}[vol - \%]$	$\frac{\eta(Y_{O_2,BK_{aus}})_{el}}{\eta_{el,ref}}$	$\frac{\eta(Y_{O_2,BK_{aus}})_{th}}{\eta_{th,ref}}$
5	0,965	1,047
14	1,158	0,787

Tabelle 20: Einfluß des Sauerstoffgehalts am Brennkammeraustritt

Je höher der Sauerstoffgehalt im trockenen Rauchgas, siehe Abschnitt 11.7.1 auf Seite 64, sein soll, desto mehr Turbinen-Abluft – mit relativ hohem Temperaturniveau – kann in der Brennkammer zugeführt werden, um die definierte Austrittstemperatur zu erreichen werden. Bei Herabsetzung der gewünschten O_2 -Konzentration wird auf rezirkuliertes Rauchgas zurückgegriffen. Da das Rauchgas zuvor durch den Pebble-Heater geführt wurde, ist seine Temperatur wesentlich niedriger als das der Turbinenabluft.

16.4 quantitativer Vergleich der Sollgrößeneinflüsse

Alle drei Sollgrößen beeinflussen direkt proportional den im Kreislauf gehaltenen Energiestrom, wodurch eine Erhöhung der Sollwerte eine Steigerung der Stromeffizienz, auf Kosten der auskoppelbaren Wärmeenergie, bedingt. In Tabelle 21 sind die Effizienzänderungen zwischen Sollgrößen-Minimum und -Maximum zusammengefaßt.

Sollgröße	$\Delta \eta_{el} [\%]$	$\Delta \eta_{th} [\%]$
$T_{Bk_{ein}}$	13,7	-27,7
$T_{Bk_{aus}}$	24,9	-33,5
$Y_{O_2,BK_{aus}}$	19,3	-26,0

Tabelle 21: quantitativer Vergleich der Sollgrößeneinflüsse

Obige Tabelle zeigt deutlich die Flexibilität im Anlagenbetrieb durch Änderung der Sollwerte. Deren Einfluß übersteigt betragsmäßig bei Weitem den Einfluß der Störgrößen (vgl. 15.4 auf Seite 94).

Teil IV Ausblick und Schlußfolgerung

Die untersuchte KWK-Anlage erreicht bei den Referenzwerten für Stör- und Sollgrößen (vgl. Abschnitt 14) bei stromoptimierter Führungsweise einen elektrischen Anlagenwirkungsgrad von 22,08 % und einen Gesamtanlagenwirkungsgrad von 62,48 %. Bei wärmeoptimierter Führungsweise erhöht sich der Gesamtanlagenwirkungsgrad auf 69,44 %, jedoch sinkt der elektrischem Wirkungsgrad auf 17,33 %. Die prozentuelle Aufteilung der über den Brennstoff der Anlage zugeführten Energie, in elektrische, Wärme- und Verlustenergie ist für beide Referenzanlagen in Sankey-Diagrammen in Abbildung 50 auf Seite 101 dargestellt.

Die für die Leistungsberechnung der Referenzanlagen festgelegten Sollgrößen sind aus den Parameter-Definitionen durch Siemens übernommen (siehe Tabellen 6 und 7). Wie in der Sensitivitätsanalyse der Sollgrößen (Abschnitt 16 ab Seite 96) gezeigt wird, kann der elektrische Wirkungsgrad durch Optimierung gesteigert werden. Dabei sinkt allerdings der Gesamtanlagenwirkungsgrad.

Eine nennenswerte Effizienzsteigerung der einzelnen Komponenten steht nicht zu erwarten, da, außer dem Pebble-Heater, ausschließlich technisch ausgereifte Komponenten verwendet werden und deren Optimierungspotential gering ist. Die, von Siemens genannte, Verlustleistung im Pebble-Heater, in der Größenordnung von ca. 2%, ist ebenfalls niedrig.

17 Möglichkeiten der Effizienzsteigerung

Eine Möglichkeit zur direkten Effizienzsteigerung ist, bei Vorhandensein von Niedertemperatur-Wärmeabnehmern, die, bisher als Abwärme in den Anlagenverlusten berücksichtigten, Restwärmeströme teilweise zu nutzen.

Der größte Teil der Anlagen-Verlustleistung ergibt sich, wie in Abbildung 50 ersichtlich ist, durch die ungenutzte Abwärme des Verdichter-Zwischenkühlers¹⁶ und Restwärme im Abgasstrom.

In den folgenden Unterabschnitten wird die Auswirkung auf den Anlagen-Gesamtwirkungsgrad abgeschätzt.

 $^{^{16}\}mathrm{Die}$ Wärme
abgabe dieses Kühlers als Verlustleistung zu bewerten, wurde von Siemens so gefordert.

Abbildung 50: Sankey-Diagramme der Referenzanlagen

17.1 Potential der Abwärmenutzung des Verdichter-Zwischenkühlers

Die Anforderung an den Verdichter-Zwischenkühler sind (diese Daten sind der Verdichterbilanz des SiPeb-Berechnungsprogramms der Referenzanlagen entnommen):

 $\ast~$ Luftaustritts-Temperatur: 43, 34 $~^\circ C.$ Dieser Wert ist durch die festgelegte Verdichter-

Austrittstemperatur von 120,6 °C bei einem Austrittsdruck von 4,317 bar,vorgegeben.

* Lufteintritts-Temperatur: 103, 64 °C. Die Eintrittstemperatur in den Zwischenkühler ist abhängig von Umgebungstemperatur und -druck ab. Der angegebene Betrag ist für die Referenzumgebungsbedingungen zutreffend.

Um die im Zwischenkühler abzuführende Wärmemenge zu nutzen, darf die Rücklauftemperatur des Niedertemperatur-Wärmenetzes etwa 30-35 °C nicht übersteigen.¹⁷ Sollte diese Bedingung erfüllt werden können, ergibt sich eine Anlageneffizienzsteigerung von 9,75% im stromgeführten Fall, bzw. 7,68% bei wärmeoptimierter Fahrweise. Die Auskopplung der Kühlwärme erfolgt bei Energiebetrachtung ohne Verluste, da der gesamte Wärmestrom an das Kühlmedium abgegeben wird. Nur das Exergieniveau sinkt durch die notwendige (den Wärmetransport treibende) Temperaturdifferenz zwischen wärme-abgebendem und -aufnehmendem Medium.

Die Wärmenetz-Rücklauftemperatur muß allerdings stets sichergestellt werden können. Als Anwendungsfall ist beispielsweise Glashausbeheizung in Gärtnereien denkbar.

17.2 Potential der Restwärmenutzung des Abgases

In den Referenzanlagen ist die gemeinsame Abführung von Rauchgas und Turbinenabluft vorgesehen. Das Temperaturniveau des Abgases ist mit 110 $^{\circ}C$ festgelegt, um Rauchgaskondensation auszuschließen (vgl. Abschnitt 13.3.1 auf Seite 79). Bei Verfügbarkeit eines Niedertemperatur-Wärmenetzes kann jedoch entweder

- 1. nur die Turbinenabluft abgekühlt werden,
- 2. Rauchgas und Turbinenabluft getrennt von einander, oder
- 3. beide Ströme erst zusammengeführt und gemeinsam gekühlt werden.
- 4. Nur das Rauchgas abzukühlen, ist eine Variante jedoch nicht sinnvoll (siehe unten).

Die getrennte Behandlung der beiden Gasströme für die Nutzung als Wärmelieferanten an Niedertemperatur-Wärmenetze ergibt sich wegen der möglicher Weise eintretenden Rauchgaskondensation.

Der erste Fall bietet eine hohe Flexibilität bezüglich der Ansprüche an das Wärmenetz: die Rücklauftemperatur sollte nur geringer als die Gastemperatur sein. Schlechtesten Falls

¹⁷Die notwendige Temperaturspreizung hängt vom Kühler ab.

wird die Anlageneffizienz negativ beeinflußt, wenn die Rücklauftemperatur höher als die Abgastemperatur wäre, aber es hat keine Auswirkung an den Anlagenbetrieb oder die Umwelt. Die Abluft sollte aber getrennt vom Rauchgas abgeführt werden, um Rauchgaskondensation zu vermeiden.

Wird das Rauchgas getrennt von der Turbinenabluft abgekühlt, ist der Wasser(-dampf)gehalt des Rauchgases höher. Dadurch kann – bei ausreichender Abkühlung und/oder entsprechend höher Wasserkonzentration im Rauchgas – auch Kondensationswärme an das Wärmenetz übertragen werden und getrennt davon die Vorteile der nicht vorhandenen Anforderungen an das Wärmenetz durch die Turbinenluft genutzt werden. Die Zusammenführung der beiden Abgasströme verringert den Wassergehalt des Rauchgases und damit die Kondensationstemperatur, wie in Tabelle 22 dargestellt ist.

	Rauch	gas	vermischte	s Abgas
	$y_{O_2}[mol-\%]$	$T_{kond}[\ ^{\circ}C]$	$y_{O_2}[mol - \%]$	$T_{kond}[\ ^{\circ}C]$
stromgef. RefA.	11,04	47,67	7,16	39,33
wärmegef. RefA.	13,32	51,44	8,06	41,56

Tabelle 22: Rauchgaskondensationstemperaturen

Um das Potential abzuschätzen, wird eine getrennte Abkühlung des Rauchgas- und Abluftstroms auf 35 °C angenommen. Bei dieser Temperatur beträgt der Wasserpartialdruck, nach Gleichung 9 auf Seite 41, 566[Pa], was einem maximalen Wassergehalt von $y_{H_2O,T=35} \circ_C = 5,66[mol - \%]$ entspricht. Wird das Rauchgas der wärmegeführten Referenzanlage (das den höchsten Wassergehalt der betrachtenden Varianten hat) herangezogen, so ergibt sich die Kondensatmenge $y_{H_2O,kond}$:

$$y_{H_2O,kond} = y_{H_2O,RG} - y_{H_2O,T=35} \circ_C = 13,32 - 5,66 = 7,66[mol - \%]$$

Der Molenstrom des Rauchgases, vor Abluftzumischung, beträgt 229, 5[mol/s].

Damit werden 229, $5 \cdot 7, 66 \cdot 10^{-2} = 17, 58[mol/s]$ Wasser kondensiert. Die Kondensationswärme von Wasser beträgt bei 40 °C 43, 350[kJ/mol](Quelle: [12]). Somit wird die Kondensationswärme von 17, $58 \cdot 43, 35 = 762[kW]$ freigesetzt. Bezogen auf die Leistungszufuhr durch den Brennstoff von 5771[kW] ergibt sich eine zusätzliche Wärmeenergieausbeute von $762/5771 \cdot 100[\%] = 13, 21[\%].$

Weiters beinhalten die Abgasströme gemeinsam etwa 14% der eingesetzten Energie bei der bisherigen Austrittstemperatur von 110 °C. Durch Abkühlung auf 35 °C ergibt sich – unter Annahme konstanter Wärmekapazität der Gasströme, was zur Abschätzung und über den geringen Temperaturbereich vertretbar ist – der verbleibende Verlust bei 10 °C Bezugstemperatur zu: $(35[\ ^{\circ}C] - 10[\ ^{\circ}C])/(110[\ ^{\circ}C] - 10[\ ^{\circ}C]) \cdot 14[\%] = 3,5[\%]$. Damit konnten weitere 10,5[\%] der Brennstoffenergie an das Wärmenetz ausgekoppelt werden.

Insgesamt kann die Anlageneffizienz der wärmegeführten Referenzanlage um 23,7% angehoben werden – bei entsprechendem Bedarf nach Niedertemperatur-Wärme.

Obige Berechnung für die stromgeführte Referenzanlage ergibt eine nutzbare Wärmeleistung von $(11, 04 - 5, 66)[mol - \%] \cdot 10^{-2}[mol - \%/mol] \cdot 150, 1[mol/s] \cdot 43, 35[kJ/mol] = 350, 1[kW]$. Mit den über den Brennstoff zugeführten 4530[kW] erhöht die Kondensationswärme den Anlagenwirkungsgrad um 7,7%.

Die Verlustleistung der von 110 auf 35[°C] abgekühlten Gasströme (Abluft und Rauchgas) ergeben sich analog zu oben: $(35[°C] - 10[°C])/(110[°C] - 10[°C]) \cdot 17, 4[\%] = 4, 4[\%]$. Damit können weitere 17, 4 – 4, 4 = 13, 0[\%] Wärmeenergie ausgekoppelt werden.

Für die stromgeführte Referenzanlage ergibt sich eine potentielle Effizienzsteigerung durch die Rauchgaskondensation von 20, 7[%].

Im Vergleich dazu ergibt sich bei Zusammenführung von Rauchgas und Abluft vor der Abkühlung für die Kondensationswärme-Nutzung:

- * strongeführte Analge: $(7, 16 5, 66)[mol \%] \cdot 10^{-2}[mol \%/mol] \cdot 265, 2[mol/s] \cdot 43, 35[kJ/mol] = 172, 4[kW]$ statt 350, 1[kW].
- * wärmeoptimierte Analge: $(8, 06-5, 66)[mol-\%] \cdot 10^{-2}[mol-\%/mol] \cdot 260, 3[mol/s] \cdot 43, 35[kJ/mol] = 270, 8[kW]$ statt 762[kW].

In beiden Fällen ist nicht annähernd die Effizienzsteigerung der getrennt behandelten Ströme möglich.

17.3 Zusammenfassung der Effizienzsteigerungsmöglichkeiten

Die beiden Maßnahmen können, da sie von einander unabhängige Verlustleistungsquellen teilweise in Nutzwärme übertragen, gleichzeitig verwendet werden. Der Betriebszustand der Referenzanlagen (strom- oder wärmegeführt) wird dadurch nicht beeinflußt.

Wie in Tabelle 23 gezeigt ist, sind durch die beiden Verlustwärme-nutzenden Maßnahmen sogar Anlagen-Gesamtwirkungsgrad über 100[%] möglich. Dies ist auf die Definition der eingebrachten Brennstoffenthalpie zurückzuführen, bei der der untere Brennwert (oder auch Heizwert) des Brennstoffs als Nutzenergie-Eintrag betrachtet wird. Darin ist vom (oberen) Brennwert des wasserfreien Brennstoffs, die zur Verdampfung des Wassergehalts nötige Enthalpie abgezogen. Durch Rauchgaskondensation kann diese verloren geglaubte thermische Energie jedoch teilweise genutzt werden.

Referenz-	Nutze	energie	Zusatz	maßname	Gesamt-
Anlage	elektr.	Wärme	Zwischenkühler	RG-Kondensation	Wirkungsgrad
	[%]	[%]	[%]	[%]	[%]
stromgeführt	22,1	40,4	9,8	20,7	103,0
wärmegeführt	17,3	52,1	7,7	23,7	111,4

Tabelle 23: Steigerung der Gesamtanlagen-Effizienzen

18 Schlußfolgerung

Aus technologischer Sicht ist die Anlagenleistung durchaus positiv zu bewerten, da beispielsweise der elektrische Wirkungsgrad mit 22% über jenem, von Dampfturbinen (mit 8 - 18%) getriebener Stromerzeugung liegt und bei Möglichkeiten zur Niedertemperatur-Wärmeauskopplung der Gesamtanlagen-Wirkungsgrad 100% übersteigt.

Da das Projekt von Siemens jedoch nie über eine Pilotanlage hinaus kam, scheint die ökonomische Umsetzbarkeit negativ bewertet worden zu sein.

Literatur

- STEVANOVIC D., MOCKER M., FAULSTICH M., DICHTL H., KLAUS R., 8. Oktober 2012: "Decentralized biomass power plant based on pebble-heater technology and hot air turbine (SiPeb[®])", http://www.pebble-heater.com/Artikel SiPeb.pdf
- [2] OBERNBERGER I., 1999: "Thermische Biomassenutzung", 4. Auflage, Technische Universität Graz
- [3] STEVANOVIC D., BROTZMANN K., 12.10.2012: "Pebble-heater technology in metallurgy", http://www.pebble-heater.com/Pebble-Heater_technology_in_metalurgy.pdf
- [4] Sargent–Welch Scientific Company. "Periodic Table Of The Elements", Sargent–Welch Scientific Company 1979
- [5] National Institute of Standards and Technology (NIST) Standard Reference Database Number 69 July 2001 Release (free online database http://webbook.nist.gov/chemistry/)
- [6] SCHABER K., 1999: "Skriptum Technische Thermodynamik f
 ür Chemieingenieure und Verfahrenstechniker", http://ttk-net.ciw.uni-karlsruhe.de/scripten/thermo/thermo.html
- [7] PISCHINGER R., 1989: "Thermodynamik", 11. Auflage, Skriptenreferat der Hochschülerschaft an der TU-Graz GmbH
- [8] Wikipedia, 25. Oktober 2006: http://de.wikipedia.org/wiki/Luft, Wikimedia Foundation Inc.
- [9] Wikipedia, 1. Oktober 2006: http://de.wikipedia.org/wiki/Luftdruck, Wikimedia Foundation Inc.
- [10] Wikipedia, 2. Oktober 2006: http://de.wikipedia.org/wiki/Baumgrenze, Wikimedia Foundation Inc.
- [11] Wikipedia, 18. Juli 2012: http://de.wikipedia.org/wiki/Asche, Wikimedia Foundation Inc.
- [12] Wikipedia, 8. Oktober 2012: http://de.wikipedia.org/wiki/Kondensationswärme, Wikimedia Foundation Inc.

Anhang

Parameter und Konstanten

Name	Symbol	Atommasse
		[g/mol]
Wasserstoff	Н	1,0079
Kohlenstoff	С	12,011
Stickstoff	Ν	14,0067
Sauerstoff	О	15,9994
Schwefel	\mathbf{S}	32,06
Chlor	Cl	35,453

Tabelle 24	: Tabelle	der	Atom	gewichte
------------	-----------	----------------------	------	----------

T_{min}	T_{max}	А	В	\mathbf{C}
[K]	[K]			
273,0	303,0	5,40221	1838,675	-31,737
304,0	333,0	5,20389	1733,926	-39,485

Tabelle 25: Antoine-Parameter des Wassers

	Mol	Temp	eratur				Parame	ter			
	name	min	max	А	В	С	D	Ε	F	G	$\Delta H_{f,T}^{\circ}$
		[K]	[K]	$\left[\frac{J}{mol\cdot K}\right]$	$\left[\frac{J}{mol\cdot K^2}\right]$	$\left[\frac{J}{mol\cdot K^3}\right]$	$\left[\frac{J}{mol\cdot K^4}\right]$	$\left[\frac{J \cdot K}{mol}\right]$	$\left[\frac{J}{mol}\right]$	$\left[\frac{J}{mol\cdot K}\right]$	$\left[\frac{J}{mol}\right]$
_	CO2	298	1200	24,99735	55,18696	-33,69137	7,948387	-0,136638	-403,6075	228,2431	-393,5224
	CO2	1200	6000	58,16639	2,720074	-0,492289	0,038844	-6,447293	-425,9186	263,6125	-393,5224
	СО	298	1300	$25,\!56759$	6,09613	4,054656	-2,671301	0,131021	-118,0089	227,3665	-110,5271
	СО	1300	6000	35,1507	1,300095	-0,205921	0,01355	-3,28278	-127,8375	231,712	-110,5271
	HCl	298	1200	32,12392	$-13,\!45805$	19,86852	-6,853936	-0,049672	-101,6206	228,6866	-92,31201
	HCl	1200	6000	31,91923	3,203184	-0,541539	0,035925	-3,438525	-108,015	218,2768	-92,31201
	NO	298	1200	23,83491	12,58878	-1,139011	-1,497459	0,214194	83,35783	237,1219	90,29114
	NO	1200	6000	35,99169	$0,\!95717$	-0,148032	0,009974	-3,004088	73,10787	246,1619	90,29114
	N2	298	6000	26,092	8,218801	-1,976141	0,159274	0,044434	-7,98923	221,02	0,0
	O2	298	6000	29,659	6,137261	-1,186521	0,09578	-0,219663	-9,861391	237,948	0,0
	SO2	298	1200	21,43049	74,35094	-57,75217	$16,\!35534$	0,086731	-305,7688	254,8872	-296,8422
	SO2	1200	6000	57,48188	1,009328	-0,07629	0,005174	-4,045401	-324,414	302,7798	-296,8422
	H2O	500	1700	30,092	6,832514	6,793435	-2,53448	0,082139	-250,881	223,3967	-241,8264
	H2O	1700	6000	41,96426	8,622053	$-1,\!49978$	0,098119	$-11,\!15764$	$-272,\!1797$	219,7809	-241,8264

 $\underline{ Diplomarbeit: \ SiPeb^{\circledast}Biomasse-Kraft-Wärmekopplung}$

Referenzanlagen

Eingaben und Ergebnisse der stromoptimierten Anlage

GLVT	Luschan
TU-Graz /	Alexander

SiPeb 16.11.2006

Bericht der Anlagenberechnung

Eingaben

Brennstoffmischung		Verdichter		8	rennkammei
Wassergehalt	35,0 [Gew-% FS]	Mirkunscher	0,94 [-]		Luft Eintritt
	6 160 [Gew-% TS]	mechanischer			Austrittster
: 0	43,343 [Gew-% TS]	Wirkungsgrad der 2. Sufe	0,94 [-]		02-Gehalt
z	0,120 [Gew-% TS]	isentroper Wirkungsgrad	1 1 000		austretend
S	0,007 [Gew-% TS]	der 1. Sufe	U,031 [-]		thorminot t
C	0,006 [Gew-% TS]	isentroper Wirkungsgrad			
Aschegehalt	0,204 [Gew-% TS]	der 2. Sufe	0,002 [-]		
Brennwert	20,28 [MJ/kg TS]	Austrittedruck 1 Stufe	2 3.4 [har]	ď	ebbleheater
Heizwert	11,44 [MJ/kg FS]		2,04 [Udi]		therm. Wirl
		Austritts-Druck	4,317 [bar]		Wärmeübe
Jmgebungsluft		Austritts-Temperatur	120,6 [°C]		Austrittster
Temperatur	10 [°C]	Druckverlust im Kühler	4400 [Pa]		Luftseite
Druck	1,000 [bar]				Austrittster
N2	78,25 [vol-%]	Turbine			Rauchgass
02	20,99 [vol-%]	mechanischer			Druckverlu
H2O abs	0,76 [vol-%]	Wirkungsgrad	U,30 [-]		
H2O ref	60 [%]	Austritts-Temperatur	533,7 [°C]	Ā	ustrittstemp
		Austritts-Druck	1,05 [bar]		Wt TL1
Führungsgröße					Wt TL2
Klammanlaistuna		Verschaltungsoptionen			Wt TL3
		Luft-Entnahme zu	Solittor SoTI 1		Wt RG1
		Pebbleheater	סטוונכו סט דו		Wt RG2
		Luft-Entnahme zu	Sulitter SnTL 2		Mx RG1
Velle / Geno		Brennkammer			
mech. WG Getriebe	0,98 [-]	Entnahme rezirkuliertes	Splitter SpRG1		
Verdichter- I urbine-		Kauchgas	-		
el WG Geno		Mixer MxRG2 ist	massenstromge	steuert	
0		Verhältnis L14 zu L13	100 [Vol-%]		

Referenzanlage stromoptimiert Rev.: 1

ennkammer		
Luft Eintrittstemperatur	400	[0°]
Rauchgas	1000	اەتا
Austrittstemperatur		2
O2-Gehalt des	0	L /0 ~/ J
austretenden (trockenen)	0	[vul-70]
thermische Verluste	٧	L 70]
	1	[0/]
bbleheater		

ebbleheater		
therm Wirkungsgrad der Wärmeübertragung	0,98	Ξ
Austrittstemperatur Luftseite	830	[°C]
Austrittstemperatur Rauchgasseite	127	[°C]
Druckverlust Luftseite	1200	[Pa]

Austrittstemperature	c	
Wt TL1	533,7	[ɔ。]
Wt TL2	400,0	[ɔ。]
Wt TL3	110,0	[၁。]
Wt RG1	1000,0	[ɔ。]
Wt RG2	110,0	[၁。]
Mx RG1	860,0	[ɔ。]

Ref-Strom xls

Seite 1/3

SiPeb 16.11.2006

Referenzanlage stromoptimiert Rev.: 1

Ergebnisse

C	acomtan ago			Brannstoff
)			٢%١	Maccan_Strom
		[777]	[0/]	Heizwert
	über Brennstoff zuaeführt Leistuna	4530	100,00	Asche
ŏ	enutze Leistung			
	Wellenleistung T	1031	22,76	
	über WT abgeführte			
	ther-mische	1830	40,40	
	Leistung			
Ň	erluste			
Ξ	lechanisch	[kW]	[%]	
	Gesamtverluste	180,3	3,98	
	Verdichter	7,97	1,76	
	Turbine	48,6	1,07	
	Getriebe Welle V-T	21,0	0,46	
	Geno	30,9	0,68	
÷	nermisch			
	Gesamtverluste	1525,9	33,69	
	Brennkammer	181,2	4,00	
	Pebbleheater	114,7	2,53	
	Restwärmestrom	0'0	00'0	
	Dotticitation			
	Rauchdas	788,5	17,41	
	l aistund			
	Zwischenkühler V	441,4	9,75	

	emmenleistung 1000 22,08
--	--------------------------

Ref-Strom xls

nantan	IEIIEI	Ø	[kW]	0	62-	0	-735	-1016	-5734	5620	144-
on der Komno	ndillov lan lis	ď	[kW]	0	0	0	0	0	0	0	1329
orniohilanzo	iei gieuilaiizt			Wt RG1	Wt RG2	Wt TL1	Wt TL2	Wt TL3	PhRG	PhTL	>
ù											

[kg_FS, [MJ/kg [g/s]

0,396 11,44 0.526 0

111

	Massen- ströme	Volums	ströme	Molen- ströme	Dichte	Temp.	Druck	Enthalpi e Strom	d J	N2	02	H2O	C02	S02	HCI	Lambda . Werte
	[kg/s]	[m3/s]	[Nm3/s]	[mol/s]	[kg/m3]	[°C]	[bar]	[kJ/s]	[J/mol K]	[%-lom]	[%-lom]	[mol-%]	[mol-%]	[mol-%]	[mol-%]	Ξ
L01	7,20	5,89	6,02	250,1	1,222	10,0	1,000	-111	28,90	78,25	20,99	0,76	0,00	000'0	000'0	
L02	7,20	1,90	6,02	250,1	3,794	120,6	4,317	969	29,64	78,25	20,99	0,76	0,00	000'0	000'0	
L03	7,20	5,33	6,02	250,1	1,351	830,0	4,305	6316	33,48	78,25	20,99	0,76	0,00	000'0	000'0	
L04	7,20	15,98	6,02	250,1	0,450	2'883'1	1,050	3887	32,06	78,25	20,99	0,76	0,00	000'0	000'0	
L05	7,20	15,98	6,02	250,1	0,450	2'23'1	1,050	3887	32,06	78,25	20,99	0,76	0,00	000'0	0,000	
L06	4,99	11,08	4,17	173,5	0,450	533,7	1,050	2696	32,06	78,25	20,99	0,76	0,00	0,000	0,000	
L09a	2,20	4,89	1,84	76,6	0,450	533,7	1,050	1191	32,06	78,25	20,99	0,76	0,00	0,000	0,000	
L10a	00'0	00'0	00'0	0'0	n/a	2'883'1	1,050	0	32,06	78,25	20,99	0,76	0,00	000'0	000'0	
L07	4,99	9,25	4,17	173,5	0,540	400,0	1,050	1961	31,33	78,25	20,99	0,76	0,00	000'0	000'0	
L08	3,31	6,13	2,77	115,1	0,540	400'0	1,050	1301	31,33	78,25	20,99	0,76	00'00	000'0	000'0	
L09b	0,00	00'0	00'0	0'0	n/a	400'0	1,050	0	31,33	78,25	20,99	0,76	00'00	000'0	000'0	
L10b	1,68	3,11	1,40	58,4	0,540	400,0	1,050	660	31,33	78,25	20,99	0,76	0,00	000'0	000'0	
L09	2,20	4,89	1,84	76,6	0,450	533,7	1,050	1191	32,06	78,25	20,99	0,76	0,00	0,000	000'0	
L10	1,68	3,11	1,40	58,4	0,540	400,0	1,050	660	31,33	78,25	20,99	0,76	0,00	000'0	000'0	
L11	00'0	00'0	00'0	0'0	n/a	10'0	1,000	0	28,90	78,25	20,99	0,76	0,00	000'0	000'0	
L12	1,68	3,27	1,40	58,4	0,514	400'0	1,000	660	31,33	78,25	20,99	0,76	0'00	000'0	000'0	
L13	3,31	3,49	2,77	115,1	0,948	110,0	1,050	284	29,57	78,25	20,99	0,76	0,00	0,000	0,000	
L14	3,31	3,49	2,77	115,1	0,948	110,0	1,050	284	29,57	78,25	20,99	0,76	0,00	0,000	0,000	
L15	00'0	00'0	0,00	0,0	n/a	110,0	1,050	0	29,57	78,25	20,99	0,76	0,00	0,000	0,000	
R01	4,42	16,49	3,75	155,8	0,268	1000,0	1,000	5263	38,08	66,51	6,71	16,10	10,68	0,001	0,000	1,93
R02	4,42	16,49	3,75	155,8	0,268	1000,0	1,000	5263	38,08	66,51	6,71	16,10	10,68	0,001	0,000	1,93
R03	6,63	21,89	5,59	232,4	0,303	860,0	1,000	6454	36,05	70,38	11,42	11,04	7,16	0,000	0,000	3,03
R04	6,63	7,73	5,59	232,4	0,857	127,0	1,000	719	30,87	70,38	11,42	11,04	7,16	0,000	0,000	3,06
R05	4,28	4,99	3,61	150,1	0,857	127,0	1,000	465	30,87	70,38	11,42	11,04	7,16	0,000	0,000	3,03
R08a	2,35	2,74	1,98	82,3	0,857	127,0	1,000	255	30,87	70,38	11,42	11,04	7,16	000'0	000'0	3,03
R06	7,59	8,66	6,38	265,2	0,876	119,8	1,000	749	30,30	73,80	15,57	6,58	4,05	0,000	0,000	5,19
R07	7,59	8,45	6,38	265,2	0,899	110,0	1,000	670	30,22	73,80	15,57	6,58	4,05	0,000	0,000	5,19
R08b	0,00	0,00	0,00	0,0	n/a	110,0	1,000	0	30,22	70,38	11,42	11,04	7,16	0,000	0,000	5,19
R08	2,35	2,74	1,98	82,3	0,857	127,0	1,000	255	30,87	70,38	11,42	11,04	7,16	0,000	0,000	3,00
R09	7 56	8 45	6 38	76E 7	0 000	0 0 1 1	000 1	040			01 11		1	0000	0000	1

Referenzanlage stromoptimiert Rev.: 1

SiPeb 16.11.2006

TU-Graz / GLVT Alexander Luschan Druckansicht

Ref-Strom xls

Seite 3 / 3

8 [vol-%] []

400 [°C]

1000

[%]

4

Eingaben und Ergebnisse der wärmeoptimierten Anlage

[0] [] [] [Pa]

830

1200 127

Ξ

0,98

ΰ

400,0 110,0 110,0 1000,0

ö

ö

110,0 860,0

5 ŝ

Referenzanlage wärmeoptimiert Rev.: 1

bunu
erechi
genb
r Anla
ht dei
Beric

Eingaben

TU-Graz / GLVT Alexander Luschan

I						
Brennstoffmischung			Verdichter			Brennkammer
Wassergehalt	35,0	[Gew-% FS]	mechanischer			Luft Eintrittstemperatur
S	50,160	[Gew-% TS]	Wirkungsgrad der 1. Sufe	-, -+		Rauchgas
н	6,160	[Gew-% TS]	mechanischer			Austrittstemperatur
0	43,343	[Gew-% TS]	Wirkungsgrad der 2. Sufe	0,34 [-]		O2-Gehalt des
Z	0,120	[Gew-% TS]	isentroper Wirkungsgrad	0 834 1		austretenden (trockenen)
S	0,007	[Gew-% TS]	der 1. Sufe	[-] 100'0		thormiccho Vorlucto
O	0,006	[Gew-% TS]	isentroper Wirkungsgrad			
Aschegehalt	0,204	[Gew-% TS]	der 2. Sufe	n,ouz [-]		
Brennwert	20,28	[MJ/kg TS]	Attrittedertols 1 Stufe	4] 70 C		Pebbleheater
Heizwert	11,44	[MJ/kg FS]		z,04 [U	al	therm. Wirkungsgrad der
			Austritts-Druck	4,317 [b	ar]	Wärmeübertragung
Umgebungsluft			Austritts-Temperatur	120,6 [°(5	Austrittstemperatur
Temperatur	10	[°C]	Druckverlust im Kühler	4400 [P	a]	Luftseite
Druck	1,000	[bar]				Austrittstemperatur
N2	78,25	[vol-%]	Turbine			Rauchgasseite
02	20,99	[%-lov]	mechanischer	1 90 0		Druckverlust Luftseite
H2O abs	0,76	[vol-%]	Wirkungsgrad	0,30		_
H2O ref	60	[%]	Austritts-Temperatur	533,7 [°(C	Austrittstemperaturen
			Austritts-Druck	1,05 [b	ar]	Wt TL1 40
Führungsgröße						Wt TL2
Klammonlaistuna	1000		Verschaltungsoptionen			Wt TL3 11
Neimeineinein	0001		Luft-Entnahme zu	Colittor Co-	с I 1	Wt RG1 100
			Pebbleheater	de ianiide	ורב	Wt RG2 11
			Luft-Entnahme zu	Colittor Co-	1 1	Mx RG1 86
Welle / Geno			Brennkammer	סטווונכו סט		
mech. WG Getriebe Verdichter-Turbine-	0,98	[-]	Entnahme rezirkuliertes Rauchgas	Splitter Spl	RG2	
	20.0	1	Mixer MxRG2 ist	massenstro	omgesteuert	
	0,01	Ē	Verhältnis L14 zu L13	100 IV	0-%]	

Ref-Waerme xls

Druckansicht

Seite 1/3

IZ / GLVT	der Luschan
U-Graz	exande
F	\triangleleft

SiPeb 16.11.2006

Ergebnisse

G	esamtanlage		
		[kW]	[%]
	über Brennstoff zugeführt Leistung	5771	100,00
b B	enutze Leistung		
	Wellenleistung T	1031	17,86
	über WT abgeführte		
	ther-mische	3008	52,11
	Leistung		
'	erluste		
Ε	iechanisch	[kw]	[%]
	Gesamtverluste	180,3	3,12
	Verdichter	2'62	1,38
	Turbine	48,6	6,84
	Getriebe Welle V-T	21,0	96,0
	Geno	30,9	0,54
÷	nermisch		
	Gesamtverluste	1591,7	27,58
	Brennkammer	230,8	4,00
	Pebbleheater	114,7	1,99
	Restwärmestrom	0.0	0'0
	Turbinenabluft	2	2.2.5
	Restwärmestrom	804.7	13.94
	Rauchgas		
	Leistung	441,4	7,65
	Zwischenkuhler V		

	Klemmenleistung Geno	1000	17,33
--	-------------------------	------	-------

Ref-Waerme xls

nenten	Ø	[kW]	0	-121	-1060	-1827	0	-5734	5620	-441	0
an der Kompor	Ч	[kW]	0	0	0	0	0	0	0	1329	-2381
Energiebilanze			Wt RG1	Wt RG2	Wt TL1	Wt TL2	Wt TL3	PhRG	PhTL	>	Т

[kg_FS/s] [MJ/kg FS] [g/s]

0,504

Brennstoff Massen-Strom Heizwert Asche

11,44

0,67

Referenzanlage wärmeoptimiert Rev.: 1 Seite 2 / 3

	Massen-	1/0	000000	Molen-				Enthalpi								Lan
	ströme		SUUTIE	ströme	Dichte	Temp.	Druck	e Strom	c_p	N2	02	H2O	C02	S02	HCI	We
	[kg/s]	[m3/s]	[Nm3/s]	[s/lom]	[kg/m3]	[°C]	[bar]	[kJ/s]	J lom/L]	[mol-%]	[mol-%]	[%-lom]	[mol-%]	[%-lom]	[%-lom]	Ξ
01	7,20	5,89	6,02	250,1	1,222	10,0	1,000	111-	28,90	78,25	20,99	0,76	0,00	000'0	00'00	
02	7,20	1,90	6,02	250,1	3,794	120,6	4,317	969	29,64	78,25	20,99	0,76	0,00	000'0	0,000	
.03	7,20	5,33	6,02	250,1	1,351	830,0	4,305	6316	33,48	78,25	20,99	0,76	0,00	000'0	0,000	
04	7,20	15,98	6,02	250,1	0,450	533,7	1,050	3887	32,06	78,25	20,99	0,76	0,00	000'0	0,000	
.05	7,20	13,33	6,02	250,1	0,540	400,0	1,050	2827	31,33	78,25	20,99	0,76	0,00	000'0	0,000	
<u>.06</u>	5,95	11,02	4,98	206,8	0,540	400,0	1,050	2338	31,33	78,25	20,99	0,76	0,00	000'0	0,000	
.09a	00'0	00'0	00'0	0'0	n/a	400,0	1,050	0	31,33	78,25	20,99	0,76	0,00	000'0	0,000	
.10a	1,25	2,31	1,04	43,3	0,540	400,0	1,050	489	31,33	78,25	20,99	0,76	0'00	000'0	0000	
.07	5,95	6,27	4,98	206,8	0,948	110,0	1,050	511	29,57	78,25	20,99	0,76	0'00	000'0	0,000	
.08	4,75	5,01	3,97	165,2	0,948	110,0	1,050	408	29,57	78,25	20,99	0,76	0,00	000'0	00'00	
d00.	1,20	1,26	1,00	41,6	0,948	110,0	1,050	103	29,57	78,25	20,99	0,76	0,00	000'0	0,000	
10b	00'0	00'0	00'0	0'0	n/a	110,0	1,050	0	29,57	78,25	20,99	0,76	0,00	000'0	0,000	
60	1,20	1,26	1,00	41,6	0,948	110,0	1,050	103	29,57	78,25	20,99	0,76	0,00	000'0	0,000	
10	1,25	2,31	1,04	43,3	0,540	400,0	1,050	489	31,33	78,25	20,99	0,76	0,00	000'0	0,000	
.11	00'0	00'0	00'0	0'0	n/a	10,0	1,000	0	28,90	78,25	20,99	0,76	0'00	000'0	0,000	
.12	1,25	2,42	1,04	43,3	0,514	400,0	1,000	489	31,33	78,25	20,99	0,76	0,00	0,000	0,000	
.13	4,75	5,01	3,97	165,2	0,948	110,0	1,050	408	29,57	78,25	20,99	0,76	0,00	0,000	0,000	
.14	4,75	5,01	3,97	165,2	0,948	110,0	1,050	408	29,57	78,25	20,99	0,76	0,00	000'0	0,000	
.15	00'0	0,00	00'0	0'0	n/a	110,0	1,050	0	29,57	78,25	20,99	0,76	0,00	0,000	0,000	
R01	5,33	19,89	4,52	187,9	0,268	1000,0	1,000	6348	38,08	66,51	6,71	16,10	10,68	0,001	0,000	1,
č 02	5,33	19,89	4,52	187,9	0,268	1000,0	1,000	6348	38,08	66,51	6,71	16,10	10,68	0,001	0,000	1,
203	6,53	21,62	5,52	229,5	0,302	860,0	1,000	6451	36,55	68,64	9,30	13,32	8,74	0,000	0,000	2,
204	6,53	7,64	5,52	229,5	0,855	127,0	1,000	717	31,13	68,64	9,30	13,32	8,74	0,000	0,000	2,
205	6,53	7,64	5,52	229,5	0,855	127,0	1,000	717	31,13	68,64	9,30	13,32	8,74	00000	0,000	2,
808a	0,00	00'0	00'0	0'0	n/a	127,0	1,000	0	31,13	68,64	9,30	13,32	8,74	0,000	0,000	2,
206	11,28	12,90	9,50	394,7	0,874	120,1	1,000	1125	30,47	72,66	14,19	8,06	5,05	0,000	0,000	4,
207	11,28	12,57	9,50	394,7	0,897	110,0	1,000	1003	30,35	72,66	14,19	8,06	5,05	0,000	0,000	4,
808b	3,58	3,99	3,02	125,3	0,897	110,0	1,000	319	30,35	72,66	14,19	8,06	5,05	0,000	0,000	4,
208	3,58	3,99	3,02	125,3	0,897	110,0	1,000	319	30,35	72,66	14,19	8,06	5,08	0,000	0,000	4,
000		010		0000		0.011										

Referenzanlage wärmeoptimiert Rev.: 1

SiPeb 16.11.2006

TU-Graz / GLVT Alexander Luschan Druckansicht

Ref-Waerme.xls

Seite 3 / 3