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Abstract

This thesis focuses on the connectedness of the flip-graph of triangulations and
the related secondary polytope. A comprehensive overview of the most impor-
tant structures used for construction and analysis of the secondary polytope is
given, the relation to the flip-graph of regular triangulations is shown, and vari-
ous other properties of the secondary polytope are presented. The definition of a
constrained secondary polytope, which is able to relate non-regular triangulations
to the flip-graph of regular triangulations, is established. This gives new possibili-
ties to investigate non-regular triangulations in the flip-graph of all triangulations.
For various examples of point-configurations, secondary polytopes and subdivision
posets are shown and illustrated with figures. An algorithm for the computation
of flip-paths between regular triangulations, based on linear optimization on the
secondary polytope, is given. The length of the produced flip-paths and the run-
time of the algorithm are evaluated, and it turns out that the algorithm yields the
best results for 2-dimensional point-configurations in convex position.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Flipgraphen von Triangulierungen, speziell
mit der Frage, ob dieser zusammenhängend ist, sowie mit dem verwandten Sec-
ondary Polytope. Zuerst wird eine Übersicht der wichtigsten Strukturen zur Kon-
struktion und Untersuchung des Secondary Polytopes gegeben, und danach die
Beziehung zwischen dem Secondary Polytope und dem Flipgraphen von Trian-
gulierungen herausgearbeitet. Zusätzlich werden weitere Eigenschaften des Sec-
ondary Polytopes untersucht und eine Abwandlung des Secondary Polytopes, das
Constrained Secondary Polytope, definiert. Dieses setzt nicht-reguläre Trian-
gulierungen mit dem Flipgraphen von regulären Triangulierungen in Beziehung.
Damit können Flips zu oder von nicht-regulären Triangulierungen untersucht wer-
den. Unterstützend werden mehrere Beispiele von Punktkonfigurationen gegeben
und deren Secondary Polytopes und Subdivision Posets untersucht und illustriert.
Abschließend wird ein Algorithmus für die Berechnung von Flippfaden zwischen
regulären Triangulierungen präsentiert, welcher auf linearer Optimierung auf dem
Secondary Polytope basiert. Dabei werden die Längen der produzierten Flippfade
und die Laufzeit des Algorithmus analysiert. Es zeigt sich, dass der Algorithmus
die besten Resultate für 2-dimensionale Punktkonfigurationen in konvexer Lage
liefert.

ii



Acknowledgments

I want to thank my supervisor Prof. Dr. Oswin Aichholzer for giving me the
opportunity to work on the topic of this thesis. Although this thesis took longer
to write than expected, and time was getting short at the end, I am happy that
we could finish it in the presented constitution.

Parts of the issues treated here have come from a seminar in computational geom-
etry of Prof. Dr. Franz Aurenhammer and he also deserves my thanks.

Very grateful I am to Dr. Thomas Hackl for taking the time to read my drafts
and giving me advice during extended discussions.

Thanks goes also to my parents and my girlfriend for their support and patience
until the end of the work.

iii



Contents

1 Introduction 1
1.1 The connectedness of the flip-graph . . . . . . . . . . . . . . . . . . 2
1.2 Finding paths in the flip-graph . . . . . . . . . . . . . . . . . . . . 3
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of work . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 General Definitions 5
2.1 Geometric objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Combinatorial objects . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Point configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Triangulations and subdivisions . . . . . . . . . . . . . . . . . . . . 11
2.5 Height-functions for subdivisions . . . . . . . . . . . . . . . . . . . 13
2.6 Regular subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Delaunay triangulations and subdivisions . . . . . . . . . . . . . . . 20
2.8 Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Flips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Flip-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Secondary Polytopes 30
3.1 The space of height functions . . . . . . . . . . . . . . . . . . . . . 30
3.2 Secondary polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 GKZ secondary polytopes . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Future work on constrained secondary polytopes . . . . . . . . . . . 40

4 Interesting Point Configurations 43
4.1 2-dimensional point-configurations in convex position . . . . . . . . 44

4.1.1 5 points in convex position . . . . . . . . . . . . . . . . . . . 44
4.1.2 6 points in convex position . . . . . . . . . . . . . . . . . . . 46

4.2 2-dimensional point-configurations . . . . . . . . . . . . . . . . . . . 49
4.2.1 5 points in convex position with 1 central point . . . . . . . 49
4.2.2 Mother of all examples . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Twisted mother of all examples . . . . . . . . . . . . . . . . 57

5 Flip-path Algorithm 63
5.1 Structure of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Quality of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Runtime of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion 72

iv



1 Introduction

In computer graphics, three-dimensional modeling, numerical methods, and many
other mathematics-related fields triangulations play an important role. For a given
set of points in 2 dimensions, a triangulation is the decomposition of their con-
vex hull into triangles. Every corner of such a triangle must be one of the given
points, and two triangles are not allowed to overlap. But triangulations also exist
in higher dimensions. For instance, for a given set of points in 3 dimensions a
triangulation is the decomposition into tetrahedra. In general, a triangulation is
a decomposition into simplices for an arbitrary-dimensional set of points.

For a given set of points, one can now ask how to transform one triangulation
into another. The operations therefor are called flips. The most simple flip (edge
exchange flip) is performed by taking out one edge of a 2-dimensional triangula-
tion (so that the two triangles that were incident to the edge are now “joined”
to a convex quadrangle) and the second possible edge is inserted. But this is of
course only possible when the quadrangle is convex, and that already shows that
flips cannot always be performed. There are also two other kinds of flips in 2
dimensions (point inserting/point removing flip) and various other kinds in other
dimensions.

The question is now, does there exist a sequence of flips that transforms the start
triangulation into the target triangulation?

For dimension 2 this is true, which is shown in [9, chapter 1.2]. For higher dimen-
sions, however, there were counter-examples constructed. See [15] for an example
in dimension 5, [7, chapter 7.3, chapter 7.4] for examples in dimension 5 and 6, or
[14] for examples in dimension 6 and 234. There is no answer yet for the especially
interesting dimension 3.

The question for the existence of such a sequence can be transformed into another
question. If we see this problem as a graph, we relate each vertex of the graph to
one triangulation and each flip to one edge. So if one can travel from one vertex
to the other, this means that there exists a flip from one related triangulation to
the other. This graph is called the flip-graph of triangulations. The existence of a
sequence of flips from a start triangulation to a target triangulation now implies
the existence of a path from a start vertex to a target vertex. If we want to get
from an arbitrary triangulation to another arbitrary triangulation, this just means
that the flip-graph must be connected.
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1.1 The connectedness of the flip-graph

How can one find out whether the flip-graph is connected? One can try to start
with a triangulation and try to flip successively to other triangulations. But how
can we know if we have reached all triangulations? Moreover, solving the problem
only for the triangulations of one set of points is unsatisfying, we want it to be
solved for a whole class of point sets. As it turns out, the dimension of the set of
points is crucial. Because of that there are in general results for all point sets of a
particular dimension.

If we are in 2 dimensions, investigating triangulations and flips is comparatively
easy. Triangulations can be drawn without problems, flips can be performed by
switching an edge, and connections can be seen with relative ease. In 3 dimensions
it is already much more complicated, since the building blocks of triangulations
are now tetrahedra, which are 3-dimensional objects. Drawing a not completely
ordinary 3-dimensional triangulation means drawing various tetrahedra stacked
over each other. A clear and unambiguous visualization can be hard to achieve.
In higher dimensions the visualization gets virtually impossible. This leads to
the problem that trying out point constellations, triangulations, and flips is easy
for the 2-dimensional case, but hard in higher dimensions. But while dimension 2
is already well understood, many unanswered questions exist in higher dimensions.

When it is not possible to experiment with examples, one must find other ways
to analyze the situation. Therefore, in order to answer the question whether a
flip-graph is connected, a multitude of properties for triangulations and structures
related to the flip-graph have been defined.

Perhaps the most important property is the one of regularity of a triangulation.
A d-dimensional triangulation is called regular, when there exists a certain higher-
dimensional polytope, for which a certain projection back to d dimensions results
in that particular triangulation. Otherwise it is called non-regular. It turns out
that the regular flip-graph (the flip-graph containing only the regular triangula-
tions) is always connected (independent from the dimension of the set of points).
This is described in [7, chapter 5.3]. So the non-regular triangulations are obvi-
ously the ones which might be problematic.

An important structure related to the flip-graph is the secondary polytope. It is a
high-dimensional polytope whose vertices are in a one-to-one correspondence to the
regular triangulations. Additionally, the edges correspond to flips between these
triangulations. So the so-called “1-skeleton”, the graph of all vertices and edges
from the secondary-polytope, is the regular flip-graph of triangulations. From this,
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it can obviously also be deduced that the regular flip-graph is connected. More-
over, there is also a one-to-one correspondence between all faces of the secondary
polytope and the regular subdivisions. A subdivision is pretty similar to a trian-
gulation in that it decomposes the convex hull of the given set of points, unlike
triangulations not necessarily into triangles, but into convex polyhedra. As before,
it can be regular or non-regular.

One deficient of the secondary polytope is that one can give numerous statements
about regular triangulations (or subdivisions), but not about non-regular ones.
Therefore, this work introduces the notion of constrained secondary polytopes,
which are polytopes that lie in the secondary polytope, consist partially of their
faces, and can have non-regular triangulations as their vertices.

1.2 Finding paths in the flip-graph

After answering the question whether there exists a flip-path from one triangula-
tion to another, the next question is how to find such a path, and furthermore how
to find the shortest path.

The secondary polytope already includes the regular flip-graph. So, for regular
triangulations, the secondary polytope is a good starting point for the search of
such a path. Since it is a polytope, various optimization methods can be tried
to get from one vertex to the other. For non-regular triangulations, working with
constrained secondary polytopes might also help to find such paths.

An algorithm for finding paths between regular triangulations is presented in this
work. It uses linear optimization on the secondary polytope. The runtime of the
algorithm and the quality of the generated flip-paths are also evaluated.

1.3 Related work

Gelfand, Kapranov and Zelevinsky have introduced the secondary polytope and
have shown its relation to the flip-graph of triangulations. Some of their works are
in Russian, but the book [11] is in English and contains the secondary polytope
and results for it. The paper [4] gives a study of secondary polytopes and shows
additional options for its construction. An extensive overview of triangulations
and related topics is given in [7]. Included are regularity, secondary polytopes,
flip-paths, and many other topics.

Concerned with flip-paths between regular triangulations is paper [13]. For 2-
dimensional point-configurations in convex position the flip-graph has many con-
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nections with other mathematical fields. These are shown and investigated in [17].
A survey of flips in planar graphs (including a broader definition of flip, also ex-
isting in other structures than triangulations) is given in [6].

1.4 Organization of work

Because triangulations, secondary polytopes, and all the other structures are ge-
ometric objects, the attempt to visualize them is only natural. The concepts are
often much easier to understand with the addition of graphics, and so graphical
representations are used in many cases.

The work is divided into several sections which are:

Section 1 is the current section and gives an introduction to the topic. The moti-
vation for the thesis is explained and related work is referenced.

Section 2 introduces the basic definitions and structures. As it might already
be clear from the introduction above, there are many structures that can be
used to analyze triangulations and their relations. Exact definitions for point-
configurations (essentially sets of points), triangulations, subdivisions, and more
are given in order to avoid ambiguities later on.

Section 3 introduces the more advanced structures that ultimately lead to the
secondary polytope. The properties of the secondary polytope, its relation to tri-
angulations and subdivisions, and how non-regular triangulations can be related
to the secondary polytope, are shown.

Section 4 gives a list of examples of interesting point-configurations. For every ex-
ample visualizations of the mentioned structures are given. They should enhance
the intuition and understanding for these structures.

Section 5 presents an algorithm related to the problem of finding a flip-path be-
tween regular triangulations. It is based on linear optimization on the secondary
polytope.

Section 6 summarizes the presented work and its results.
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2 General Definitions

In order to analyze triangulations and flips thereon, we will need several structures.
Because of that, the first part of this work is dedicated to general definitions, which
will be used to build these structures. The definitions are widely inspired by the
book “Triangulations” from De Loera, Rambau, and Santos [7], which gives an
extensive overview of triangulations and all kinds of related structures. We will
restate the relevant definitions, try to make some of them more precise, and work
out new ones.

In this work (in contrast to [7]) we choose a rather constructive approach to intro-
duce the needed structures. Not the more common and more known structures are
defined first, but the more elementary ones. Most definitions will use the previous
definitions, in order to have an exact specification for the defined structure. This
results in the first part of this work being dedicated mainly to definitions.

In Sections 2.1 and 2.2 we will introduce the fundamental geometric and combina-
torial objects that serve as building-blocks for later. In Section 2.3 we take points
in an arbitrary-dimensional space and assign labels to them. Section 2.4 defines
triangulations (and their generalizations: subdivisions) on the labeled points. And
in the subsequent sections, structures and properties for triangulations and subdi-
visions will be shown.

At first we begin with a recapitulation of some fundamental geometric operations.
For the following definitions, let X be a subset of Rm.

Definition 2.0.1 (Linear span).

span(X) = {
∑

λixi|xi ∈ X,λi ∈ R}

This is the intersection of all subspaces containing X and therefore the lowest-
dimensional subspace of Rm containing X. Because it is a subspace, it also contains
the origin.

Definition 2.0.2 (Affine hull).

aff(X) = {
∑

λixi|xi ∈ X,λi ∈ R,
∑

λi = 1}

This is the intersection of all affine spaces containing X and therefore the lowest-
dimensional affine space of Rm containing X. It is a subset of the linear span.

Definition 2.0.3 (Conical hull).

coni(X) = {
∑

λixi|xi ∈ X,λi ∈ R, λi ≥ 0}
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This is the intersection of all convex cones containing X. It is also a subset of the
linear span.

Definition 2.0.4 (Convex hull).

conv(X) = {
∑

λixi|xi ∈ X,λi ∈ R,
∑

λi = 1, λi ≥ 0}

This is the intersection of all convex sets containing X. It is a subset of the linear
span, the affine hull, and the conical hull.

A fundamental combinatorial structure that will be used is the graph. It consists
of a set of objects (called the “vertices”) together with a set of links (called the
“edges”) between the objects. An introduction to graph theory can be found in [5].

Definition 2.0.5 (Graph)(adapted from [5, p. 1], [5, p. 5]). An undirected graph
is an ordered pair (V,E), where V is a set, and E is a set consisting of subsets of
V with two elements. A directed graph is an ordered pair (V,E), where V is a set,
and E is a set consisting of ordered pairs of V with two elements. The elements
of V are called vertices, and the elements of E are called edges.

The difference between undirected and directed graphs is that the edges of di-
rected graphs have a built-in direction. This also means that for two vertices in
an undirected graph there is only one edge possible, whereas for two vertices in a
directed graph there are two edges possible.

Another combinatorial structure that will be used repeatedly is the partially or-
dered set (also called “poset”). It consists of a set together with a binary relation.
The binary relation determines how the elements of the set are related to each
other (e.g. one element is “smaller” than another, or one element is subset of
another, ...). For an overview of partially ordered sets see [18, chapter 3]. Posets
can also be seen as directed graphs, since the binary relation can determine the
directed edges.

Definition 2.0.6 (Partial order)(in analogy to [18, p. 97]). A partial order is a
binary relation on a set that is reflexive, antisymmetric, and transitive.

Definition 2.0.7 (Poset)(in analogy to [18, p. 97]). A poset is a set together with
a partial order on that set. A maximal element in a poset is an element that can be
compared to every other element and is greater than every other element. Analog,
a minimal element in a poset is an element that can be compared to every other
element and is smaller than every other element.
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2.1 Geometric objects

Triangulations are essentially geometric objects. In 2-dimensional space, one can
think of triangulations as consisting of triangles. But the precise definition will
also include the so-called faces of triangles. In higher dimensions the triangles
are generalized to simplices. We will also define subdivisions, which can be seen
as generalizations of triangulations. Subdivisions consist of polyhedra and not
necessarily simplices. Overall, polyhedra are probably the most general and basic
building-blocks of the structures we will define. A comprehensive introduction to
polyhedra and related geometric objects can be found in [20].

Definition 2.1.1 (Polyhedron)([20, p. 4]). A polyhedron is the intersection of
finitely many closed half-spaces in Rm. The dimension d of the polyhedron is
the dimension of the lowest-dimensional affine subspace, where the polyhedron is
contained in (labeled by the notation: d-polyhedron).

By this definition a polyhedron is convex, because it is the intersection of half-
spaces.

Definition 2.1.2 (Face (polyhedron))([7, p. 43]). A face F of a polyhedron P is
every subset F ⊆ P where an arbitrary linear functional ψ is maximized. We write
F ≤ P . Every face of a polyhedron is a polyhedron itself. We write k-face for a
k-dimensional face. The empty set is also defined as a face of every polyhedron.
Naming conventions for faces are:

• 0-faces are called vertices

• 1-faces are called edges

• (d− 1)-faces are called facets

• the (−1)-face is the empty set and is called empty face

• the d-face is the polyhedron itself and is called trivial face

Definition 2.1.3 (Polytope)([20, p. 4]). A polytope is the convex hull of a finite
set of points in Rm.

Theorem 2.1.4 (see [20, p. 29]). A polytope is a bounded polyhedron.

The dimension d of a polytope is given by the dimension of the affine hull of its
vertices. Faces of polytopes are polytopes themselves.

Definition 2.1.5 (Simplex)(see [20, p. 7]). A simplex is a d-polytope that has
exactly d+ 1 vertices.
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Each k-face of a simplex is a k-simplex itself and always has k + 1 vertices. This
implies that a d-simplex has the property that the convex hull of its vertices always
spans a (d − 1)-dimensional space, if one vertex is omitted. Because each subset
of vertices spans a face, a d-simplex has

(
d+1
k+1

)
k-faces (see [9, p. 45]).

Definition 2.1.6 (Face poset)(adapted from [20, p. 57]). The face poset of a
polyhedron is the poset of it’s faces with respect to the subset relation.

Note that in literature the face poset is generally called face lattice. A lattice is
a special kind of poset that fulfills additional properties. But for this work the
definition of a poset is sufficient.

Definition 2.1.7 (Geometric polyhedral complex)(adapted from [7, p. 45]). A ge-
ometric polyhedral complex C is a set of polyhedra where each face of a polyhedron
is also element of the set, and the intersection of two polyhedra is a face of both.
Formally:

• F ≤ P ∈ C ⇒ F ∈ C (Closure Property)

• P1, P2 ∈ C ⇒ P1 ∩ P2 ≤ P1, P2 (Intersection Property)

Definition 2.1.8 (Geometric simplicial complex)([7, p. 45]). A geometric simpli-
cial complex is a polyhedral complex consisting of only simplices.

2.2 Combinatorial objects

The geometric objects defined in the last section might be sufficient for describing
triangulations, but not for describing subdivisions. Triangulations and subdivi-
sions are not only geometric objects, but also combinatorial objects. After having
introduced geometric complexes, we now define complexes which are of combina-
torial nature:

Definition 2.2.1 (Abstract complex). For a set of labels L, an abstract complex
A is a set consisting of subsets of L, with the property that the intersection of
elements of A is contained in A . Formally:

• S1, S2 ∈ A ⇒ S1 ∩ S2 ∈ A (Abstract Intersection Property)

Note that the empty set is per definition contained in the abstract complex.

Definition 2.2.2 (Abstract simplicial complex)([7, p. 83]). For a set of labels L,
an abstract simplicial complex A is a set of subsets of L where each subset of
elements of A is in A . Formally:

• Ssub ⊆ S ∈ A ⇒ Ssub ∈ A

It is straightforward to show that an abstract simplicial complex is an abstract
complex, the property of the former implies the property of the latter.
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2.3 Point configurations

Every triangulation is defined on a set of points. When working with point sets,
it is convenient to have labeled points, and maybe to allow having multiple points
on the same location. This also helps when we reference a point. Therefore, we
take a set of labels and define a point-configuration as follows:

Definition 2.3.1 (Point-configuration)([7, p. 47]). A point-configuration A is a
function L → Rm where L is a set of labels and Rm is the space of coordinates. A
point is the tuple (l ∈ L,A(l) ∈ Rm), the label of the point is l, and the coordinates
of the point are A(l). The dimension d of the point-configuration is the dimension
of the affine hull of the points (written as d-dimensional point-configuration).

For convenience we sometimes refer to a point, but mean its label or its coordi-
nates, according to the situation. Equally, we may refer to a point-configuration,
but mean the set of labels or the set of coordinates of its points.

Point-configurations will always be considered in “general position”. That means
that for a d-dimensional point-configuration no more than k + 1 points lie on a
k-dimensional hyperplane for 0 ≤ k ≤ d − 1. This simplifies some problems and
eliminates many special cases.

0

1 2

3

45

6 7

8

Figure 1: Point-configuration. 9 points in the plane (with their labels).

There is also a kind of generalization for the concept of a point-configuration,
namely the vector-configuration (see [7, p. 77]). There, one simply has vectors
instead of points and triangulations are still possible. The corresponding object
to a triangle defined by 3 points in a point-configuration is a cone, defined by 3
vectors in the vector-configuration. If one can lay a half-plane through the origin
and all vectors are on one side of it, one can offset the plane a bit into this di-
rection (where the vectors are) and stretch each vector so that its head lies in the
plane. This way, one gets a point-configuration (from the vector heads) and a set
of triangles (corresponding to the cones) that form a triangulation. This explains
why vector-configurations are a generalization of point-configurations. However,
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for the scope of this work, point-configurations are sufficient and we will only deal
with them.

After having defined geometric and combinatorial objects, we now bring them both
together in the definition of cells of a point-configuration. The geometric part of a
cell works with the points of the point-configuration, and the combinatorial part
works with the labels of the point-configuration.

Definition 2.3.2 (Cell). We define a cell on a point-configuration A as a tuple
(l ⊆ L, P ⊂ Rm) where P = conv(A(l)). We call l the combinatorial part and P
the geometric part of the cell. The dimension k of a cell is the dimension of its
convex hull, and the cell is called k-cell. The trivial cell consists of all labels and
their convex hull. Naming conventions for cells are:

• 0-cells are called vertices

• 1-cells are called edges

• d-cells are called maximal cells

• the cell defined by the empty set is the (−1)-cell and is called empty cell

• the cell defined by all labels of A is called trivial cell

A k-cell is a simplicial cell, if it has exactly k + 1 labels and its convex hull is a
simplex. We say that a cell Ca is a subcell of another cell Cb (written as Ca ⊆ Cb),
if the labels of Ca form a subset of the labels of Cb.

As with point-configurations, we may in future refer to a cell and mean its labels,
its convex hull, or the points corresponding to its labels. Note that a cell can
contain labels of points that are not vertices of the cell’s convex hull. The points
can even lie in the relative interior of the convex hull.

For a cell C of a point-configuration A we write AC for the point-configuration
consisting only of the points of C.

Definition 2.3.3 (Face (cell)). A cell F = (lF , PF ) is a face of another cell C =
(lC , PC) (written as F ≤ C), if:

• the geometric part of F is a face of the geometric part of C

• the combinatorial part of F consists of all labels of C whose points lie in the
geometric part of F

10



Formally:
F ≤ C ⇐⇒ PF ≤ PC ∧ lF = {l ∈ lC |A(l) ∈ PF} (1)

The combinatorial part of the definition is crucial: Given a face of a cell, a label
of that cell, which lies in the convex hull of the face, must be part of the face. The
label cannot be omitted, even if it is not a vertex of the face’s convex hull.

0

1 2

3

45

6 7

8

Figure 2: Cell. A cell of the point-configuration in Figure 1. The cell consists of the
labels {1,2,3,4,6,7}. The convex hull is shown in blue, and the points corresponding to
the labels of the cell are marked in black. Note that point 8 lies inside the convex hull
of the cell, but is not part of the cell.

2.4 Triangulations and subdivisions

We come to the formal definition of a triangulation. But first we will define the
more general concept of a subdivision. In contrast to a triangulation which consists
exclusively of simplices, a subdivision consists of convex polyhedra. Since every
simplex is a polyhedron, every triangulation is also a subdivision.

Because we have labels and coordinates in a point-configuration, we can bring
geometric and abstract complexes together in the formal definition of subdivisions
of point-configurations. The already defined cells are acting as building-blocks of
a subdivision. The labels of the cells are used to ensure that a subdivision fulfills
the properties of an abstract complex, and the convex hulls of the cells are used
to ensure that the properties of a geometric complex are fulfilled.

Definition 2.4.1 (Polyhedral subdivision)(adapted from [7, p. 62]). A polyhedral
subdivision S of a point-configuration A is a set of cells with the following prop-
erties: each face of a cell is contained in S ; two cells intersect in a common face;
the union of all cells equals the convex hull of A. Formally:

• F ≤ C ∈ S ⇒ F ∈ S (Closure Property)

• C1, C2 ∈ S ⇒ C1 ∩ C2 ≤ C1, C2 (Intersection Property)
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•
⋃

C∈S C = conv(A) (Union Property)

If all labels of A are used, the subdivision is called full. If the subdivision consists
only of the trivial cell and its faces, the subdivision is itself called trivial subdivi-
sion. The set of all polyhedral subdivisions of A is denoted Subdivisons(A).

With this definition, a polyhedral subdivision is a geometric polyhedral complex on
the coordinates of the point-configuration and an abstract complex on the labels.
Note that the polyhedra of the polyhedral subdivision are polytopes, since they
are bounded by the point-configuration. From now on we will call a polyhedral
subdivision just “subdivision”.
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1 2

3

45

6 7

8

Figure 3: Polyhedral subdivision. A polyhedral subdivision of the point-configuration
in Figure 1. The cells must cover the whole convex hull. Only point 8 is not part of the
subdivision.

Now we finally come to the definition of a triangulation, which is, as already
mentioned, a special kind of subdivision.

Definition 2.4.2 (Triangulation (simplicial subdivision))(in analogy to [7, p. 1]).
A triangulation (or simplicial subdivision) is a polyhedral subdivision where each
cell is a simplicial cell. The set of all triangulations of a point-configuration A is
denoted Triangulations(A).

Note that the word “triangulation” is usually used for the 2-dimensional case, be-
cause the highest-dimensional simplices are triangles. But “triangulation” is also
used for an arbitrary-dimensional simplicial subdivision (often called d-dimensional-
triangulation).
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Figure 4: Triangulation. A triangulation of the point-configuration in Figure 1. Each
cell is a triangle (in general a simplex). Point 8 is again not part of it.

2.5 Height-functions for subdivisions

A concept which has proven to be very helpful in analyzing subdivisions and
especially triangulations is that of a height-function for a point-configuration. Each
of the points gets assigned a height and will be lifted according to this height.
This will lead to the important classifications of regular triangulations and regular
subdivisions.

Definition 2.5.1 (Height-function)([7, p. 55]). A height-function for a point-
configuration A is a function: w : A → R.

Definition 2.5.2 (Lifted point-configuration)(partially from [7, p. 55]). The lifted
point-configuration for a point-configuration A, lifted by a height-function w, is

the function: Aw : L → Rm+1 with l 7→
(
A(l)
w(l)

)
.
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45
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8

(a) Original point-configura-
tion

(b) Point-configuration in
xy-plane of R3

(c) Lifted point-configura-
tion in R3

Figure 5: Lifted point configuration. A lifting of the point-configuration in Figure 1.
Each point is associated with a certain height. A lifted point has the coordinates of the
original point, plus the height as the last coordinate.
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Having the points lifted along an additional dimension via the height-function w
gives us an interesting possibility: We can compute the convex hull of the lifted
point-configuration. Now we are interested in the lower part of the boundary of the
convex hull. To be exact, we look at the trivial cell of the lifted point-configuration
(it corresponds to the convex hull). Now we take the lower faces of the trivial cell
(That are those which intersect a line parallel to the new dimension-axis lower
than any other face). When we project these lower faces back to Rm, we get a
subdivision of the point-configuration.

Definition 2.5.3 (Subdivision-function)(adapted from [7, p. 60]). We define the
subdivision-function subA(w) for a point-configuration A and a given height-func-
tion w as the set of cells, which is obtained by projecting down all lower faces of
the trivial cell of Aw from Rm+1 to Rm by the first m coordinates.
We also define the constrained subdivision-function subA(w,C), constrained for a
cell C. subA(w,C) := subAC

(w).
At last, we define the constrained subdivision-function subA(w,S0), constrained
for a subdivision S0. subA(w,S0) is the set consisting of all cells from subA(w,C0)
for every cell C0 ∈ S0.

(a) Lower convex hull. (b) Subdivision obtained by
projection of lower convex
hull.

Figure 6: Subdivision-function. The subdivision-function for the lifted point-
configuration in Figure 1. The lower convex hull of the lifted points is projected back
down from R3 to R2.

The constrained version of the subdivision-function is an invention of this work. It
will later on be needed to further relate subdivisions to each other. The constrained
version can be seen as the union of normal subdivision-functions for subsets of the
point-configuration. That the set obtained from the subdivision-function is indeed
a subdivision of the point-configuration is proven in [7, p.67]. That this is also true
for the constrained version is obvious, since the set obtained from the constrained
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subdivision-function consists of sets that are obtained from a normal subdivision-
function.
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(a) Constraining subdivi-
sion.

(b) Constraining subdivision
and lifting of points.

(c) Result of subdivision-
function for constraining cell
{1,2,3,8}.

(d) Result of subdivision-
function for constraining cell
{3,4,7,8}.

(e) Result of subdivision-
function for constraining cell
{0,1,4,5,8}.

(f) Result of subdivision-
function for the constraining
subdivision in Figure 7a.
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(g) Resulting subdivision.

Figure 7: Constrained subdivision-function. Constrained subdivision-function for the
point-configuration in Figure 1. It is constrained for the subdivision in Figure 7a. Ac-
cording to the 3 cells of the constraining subdivision, there are 3 lower convex hulls
as shown in Figure 7c, Figure 7d, and Figure 7e. The resulting subdivision for the
constrained subdivision-function is shown in Figure 7g.
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2.6 Regular subdivisions

Every subdivision that can be obtained from the subdivision-function is called
regular. Regularity is a fruitful concept, because a large amount of analysis can
be done with the height-functions that generate subdivisions. Whereas when a
subdivision is not regular, the possibilities for analyzing it are limited.

Definition 2.6.1 (Regular subdivision)([7, p. 59]). A subdivision S of a point-
configuration A is called regular, if there exists a height-function w, such that
S = subA(w).
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(a) Point configuration

0 1
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4

5

(b) Regular triangulation (c) Subdivision function

Figure 8: Regular subdivision. Regular subdivision in form of a triangulation (Fig-
ure 8b), for the point-configuration in Figure 8a. It can be obtained via the subdivision-
function used on a height-function (Figure 8c). In this case, the height-function lifts all
outer points to a common height and all inner points to a second, lower situated common
height.

The existence of regular subdivisions is clear, because for any arbitrary height-
function the subdivision-function already yields a regular subdivision. That there
exist non-regular subdivisions is not immediately obvious. For a subdivision to
be non-regular, one has to proof that there exists no height-function, such that
the subdivision-function yields this particular subdivision. Examples will be given
later on.
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Figure 9: Non-regular subdivision. Non-regular subdivision of the point-configuration
in Figure 8a. Here in form of a triangulation.

If a subdivision S is not regular there is no height-function such that the subdivision-
function yields S . But there can still be a height-function and a constraining
subdivision such that the constraining subdivision-function yields S . Therefore,
S can still be kind of pseudo-regular in relation to a constraining subdivision.

Definition 2.6.2 (Relative regular subdivision). We call a subdivision S of a
point-configuration A relative regular to another subdivision S0, if there exists a
height-function w such that S = subA(w,S0).
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(a) Constraining subdivi-
sion.

(b) Constraining subdivision
and lifting of points.

(c) Result of subdivision-
function for constraining cell
{0,2,3,5}.

(d) Result of subdivision-
function for constraining cell
{1,2,4,5}.

(e) Result of subdivision-
function for constraining cell
{0,1,3,4}.

(f) Result of subdivision-
function for constraining cell
{3,4,5}.

(g) Result of subdivision-
function for the constraining
subdivision in Figure 10a.
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(h) Resulting subdivision.

Figure 10: Relative regular subdivision. Relative regular subdivision (Figure 10h) for
the point-configuration in Figure 8a, relative regular to the subdivision in Figure 10a.
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A subcategory of non-regular subdivisions are subdivisions that are cyclic with re-
spect to the in-front-relation. Edelsbrunner has described the principle of acyclicity
with respect to the in-front-relation in [8] and [9, p. 4].

Definition 2.6.3 (In-front-relation)(adapted from [9, p. 4]). Fix maximal cells
Ca, Cb of a point-configuration A ⊂ Rm and x ∈ Rm. The in-front-relation states
that Ca is in-front-of Cb with respect to x, if a half-line starting at x intersects Ca

before Cb or simultaneously.

Note that this definition is well-defined. If Ca 6= Cb, there cannot be two half-lines
staring at x, where one half-line intersects Ca before Cb, and the other half-line
intersects Cb before Ca.

Theorem 2.6.4. The in-front-relation for a fixed x ∈ Rm is a reflexive, antisym-
metric, and transitive binary relation on the set of all cells of a subdivision. The
in-front-relation for x ∈ Rm is therefore a partial order.

Proof. trivial

As in every partial order, in a subdivision’s set of cells there can be cycles with
respect to the in-front-relation. If such a cycle appears for a subdivision, the
subdivision is not regular:

Definition 2.6.5 (In-front-relation cyclic subdivision). A subdivision is called
cyclic with respect to the in-front-relation, if there exists x ∈ Rm, such that the
in-front-relation regarding x contains a cycle.

Theorem 2.6.6. A subdivision that is cyclic with respect to the in-front-relation
is not regular.

Proof. Take a subdivision S which is cyclic with respect to the in-front-relation,
and fix x ∈ Rm for which S is cyclic. Now assume that S is regular. This means
there exists a height-function (for which S is regular) and a corresponding lifted
point-configuration. Each maximal cell C of S corresponds to a facet F of the
convex hull of the lifted point-configuration. Consider a hyperplane through F .
The hyperplane intersects a vertical line (parallel to the lifting-axis) through x
in a specific height. Now take two maximal cells Ca, Cb, where Ca is in-front-
of Cb. They have a common face Cab, and corresponding faces Fa, Fb, and Fab

on the convex hull of the lifted point-configuration. Because the region around
Fab on the convex hull must be convex, the hyperplane trough Fa must intersect
the vertical line through x in a higher position than the hyperplane trough Fb.
Now take a sequence of cells C0, C1, . . . , Ck that is cyclic with respect to the
in-front-relation. The intersection heights of the vertical line through x with the
hyperplanes corresponding to C0, C1, . . . , Ck must now also be cyclic. But the
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heights of these intersections are increasing values in R and can therefore not be
cyclic, so this is a contradiction.
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2
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5

Figure 11: In-front-relation cyclic subdivision. The triangulation in Figure 9 is cyclic
with respect to the in-front-relation. For x there is a cycle for the set consisting of all
triangles except the middle one. The intersections of half-lines starting from x with the
triangles determine the in-front-relation between the triangles. The 3 half-lines shown
in the picture are sufficient to achieve a cycle with respect to the in-front-relation for
the triangles.

2.7 Delaunay triangulations and subdivisions

We give a short overview of a very special triangulation. The Delaunay triangu-
lation is in some sense the most natural triangulation (see [10, 3]). It exists for
every point-configuration and has special properties. In the already mentioned
problem of finding flip-paths, a common method is to flip towards the Delaunay
triangulation (see [9, p. 13]). We specify it here for subdivisions, since they are
the generalizations of triangulations. The Delaunay subdivision can be defined as
the result of the subdivision-function when the points are lifted to the (m + 1)-
dimensional paraboloid:

Definition 2.7.1 (Delaunay subdivision (height-function definition))(see [3]). The
Delaunay subdivision is the subdivision subA(w) for the height-function w : A →
R, p 7→ ‖p‖2

Note that this subdivision does not change when the point-configuration is rotated
or translated. The height-function does change, but the convex hull in Rm+1 stays
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combinatorial the same. One can see by the height-function, that the points are
lifted onto the (m + 1)-dimensional paraboloid. The paraboloid has the property
that points in Rm lying on a common sphere (circle in 2 dimensions) lie on a
common hyperplane in Rm+1. If no other point is lying inside the sphere, the
hyperplane will contain a facet of the convex hull in Rm+1. This gives a second
equivalent definition:

Definition 2.7.2 (Delaunay subdivision (empty sphere property))(see [3]). A De-
launay subdivision is a subdivision where each maximal cell has the following
properties:

• there exists a sphere through all its vertices

• no point of the point-configuration lies in the interior of the sphere

Normally, one speaks of Delaunay triangulations (and not Delaunay subdivisions),
because in general position no more than m+ 1 points lie on a (m− 1)-sphere and
they define a simplex. So if the points are in general position, the subdivision-
function will yield a triangulation. The second definition is the usual one, but since
we will work extensively with height functions, the first definition is adequate for
us. It also shows implicitly that the Delaunay subdivision is regular. There is also
a modified version of the Delaunay subdivision that adds weights to the height-
function:

Definition 2.7.3 (Weighted Delaunay subdivision). The weighted Delaunay sub-
division is the subdivision subA(w) for the height-function w : A → R, p 7→
‖p‖2−w(p), where the weight-function w is any function A → R defining a weight
for each point.

If we start with all weights being 0, we get the normal Delaunay subdivision. Mod-
ifying the weights a little bit will change the simplices in some regions. This way
we can get from the Delaunay subdivision to other subdivisions. In fact we can
reach every other regular subdivision, since each height-function can be generated.
So the weighted Delaunay subdivisions are also the regular ones, but - so to say -
viewed from a different angle.

Delaunay subdivisions also have a tight relation to the widely used Voronoi dia-
grams (see [1, 2] for introductions to Voronoi diagrams). Delaunay subdivisions
and Voronoi diagrams are the dual graphs of each other.

2.8 Refinements

There are more interesting properties of subdivisions than just the one that sub-
divisions are generalizations of triangulations. A special relation between subdivi-
sions exists (which includes the triangulations). If we insert an edge (that crosses
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no other edge) into a 2-dimensional subdivision, we get another subdivision. This
subdivision is in a way finer than the original one, because it has more polyhedra.
Of course, it also works the other way. If we take out an edge of a 2-dimensional
subdivision, and the new resulting area is a convex polyhedron, we get another
subdivision. Now the new subdivision is coarser than the original one, because it
has less polyhedra. The exact definition is the following one:

Definition 2.8.1 (Refinement and coarsening)(adapted from [7, p. 65]). Given
two subdivisions Scoarse and Sfine of the same point-configuration, it is said that
Scoarse is a coarsening of Sfine and Sfine is a refinement of Scoarse , if each cell of
Sfine is a subcell of a cell of Scoarse . Formally:

• Cfine ∈ Sfine ⇒ ∃Ccoarse ∈ Scoarse : Cfine ⊆ Ccoarse

We write Sfine � Scoarse (or Sfine ≺ Scoarse if they are not allowed to be equal).
For a subdivision S0, the set of all refinements is written Refinements(S0), the
set of all coarsenings is written Coarsenings(S0), and the set of all triangulations
that are refinements is written Triangulations(S0).
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(a) Point configuration
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(b) Coarse subdivision
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3 4

(c) Fine subdivision

Figure 12: Refinement subdivision and coarsening subdivision. A point configuration
and two subdivisions of it. Figure 12b is a coarsening of Figure 12c, and Figure 12c is a
refinement of Figure 12b.
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(a) Triangulation
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(b) Coarsening of Figure 13a
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(c) Not a coarsening of Fig-
ure 13a

Figure 13: Refinement example. Three subdivisions of the point-configuration in Fig-
ure 12a. Figure 13b is a coarsening of Figure 13a, but Figure 13c is not, because vertex
4 is not part of a cell and can therefore not be part of any cell of a refining subdivision.

Since we can compare two subdivisions whether one is a refinement of the other,
we have a relation in the mathematical sense. This relation can be used to build
a partially ordered set:

Theorem 2.8.2 ([7, p. 66]). For a point-configuration A, the refinement relation
gives a poset on Subdivisons(A).

Definition 2.8.3 (Refinement poset)([7, p. 65]). The refinement poset of a point-
configuration A is the poset obtained from Subdivisons(A) via refinement relation.
For a subdivision S0, the constrained refinement poset is the poset obtained from
Refinements(S0). The height of a refinement poset is the maximum length k of a
chain of subdivisions S ′

0 ≺ S ′
1 ≺ . . . ≺ S ′

k in the poset.

Note that for a subdivision S0, it holds that S0 ∈ Refinements(S0) and S0 ∈
Coarsenings(S0). For a point-configuration A, the refinement poset equals the
constrained refinement poset for the trivial subdivision of A.

Theorem 2.8.4 (in analogy to [7, p. 66]). The refinement poset has a unique
maximal element (the trivial subdivision), and every minimal element is a trian-
gulation.

Definition 2.8.5 (Minimal refinement and coarsening). A minimal refinement of
a subdivision S is a subdivision Sfine so that there is no subdivision S ′ with
Sfine ≺ S ′ ≺ S . A minimal coarsening of a subdivision S is a subdivision
Scoarse so that there is no subdivision S ′ with S ≺ S ′ ≺ Scoarse .
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For a poset there is the nice possibility to visualize it as a directed graph. This
graph is shown in Figure 14 for the point-configuration in Figure 12a.

Figure 14: Refinement poset. Refinement poset for the point-configuration in Fig-
ure 12a. If Sfine is a minimal refinement of Scoarse, there is an arrow drawn from
Scoarse to Sfine. In the first row is the trivial subdivision, and the last row consists of
exclusively triangulations.
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Theorem 2.8.6 (Relative regularity of refinements). For subdivisions Sfine �
Smiddle � Scoarse follows:

1. If Sfine is relative regular to Scoarse , then Sfine is relative regular to Smiddle .

2. If Sfine is not relative regular to Smiddle , then Sfine is not relative regular to
Scoarse .

Proof.

1. There exists a height-function w such that Sfine = subA(w,Scoarse). We will
show that Sfine = subA(w,Smiddle).

Because of Sfine � Smiddle � Scoarse , we can take cells Cfine ⊆ Cmiddle ⊆
Ccoarse in the corresponding subdivisions.

From Sfine = subA(w,Scoarse) follows Cfine ∈ subA(w,Ccoarse).

Consider the convex hull of the lifted point-configuration Aw
Ccoarse

. Because
of Cfine ∈ subA(w,Ccoarse), Cfine has a corresponding face Ffine on the convex
hull. Because Cmiddle is convex and a subset of Ccoarse , Ffine must also be
part of the convex hull of the lifted point-configuration Aw

Cmiddle
. It follows

that Cfine ∈ subA(w,Cmiddle).

Because Cfine can be chosen as an arbitrary subcell of Cmiddle , it follows that
subA(w,Cmiddle) ⊆ subA(w,Ccoarse).

Because Cmiddle can be chosen as an arbitrary subcell of Ccoarse , and Ccoarse

can be chosen arbitrary, it follows that subA(w,Smiddle) = subA(w,Scoarse) =
Sfine .

2. This statement is equivalent to 1.

2.9 Flips

After the definition of triangulations, flips are the next central elements. A flip
exchanges a part of a subdivision. In its most simple occurrence this can be the
exchange of an edge with another edge in 2 dimensions. But it can also take out
or insert a vertex from or into a subdivision. In higher dimensions there are even
more possibilities. There is a survey of flips in planar graphs in [6].

If we think only about the simplices of a subdivision which are involved in the flip,
leaving the other simplices aside, we find a surprisingly simple definition for a flip:
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Definition 2.9.1 (Flip)(adapted from [7, p. 75]). For a point-configuration A
take a subset B ⊆ A. If there exist exactly two triangulations Ta, Tb for B, we
define a flip on B as the exchange of Ta with Tb. The reverse-flip to the flip is the
exchange of Tb with Ta.

This gives us a simple description for flips in all dimensions. But flips can also
be characterized. For instance, in 2 dimensions there is one edge exchanging flip,
one vertex removal flip, and one vertex insertion flip. However, it turns out that
looking at the highest-dimensional simplices gives a more general description of
flips. In an edge exchanging flip one switches 2 triangles into 2 other triangles. So
it is called a 2-2 flip. The vertex removal flip exchanges 3 triangles for 1 triangle.
So it is called 3-1 flip. And the reversal, the vertex insertion flip, exchanges 1
triangle for 3 triangles. So it is called 1-3 flip. The same is possible for all other
dimensions. For a more comprehensive and more detailed categorization of flips
see [7, p. 119].

If we take d+1 affinely independent points and add one point in the affine subspace
of the points, we get d+2 points for which exactly two d-dimensional triangulations
are possible. It turns out that the flip which exchanges the 2 triangulations is
always an a-b flip with a ≥ 1, b ≥ 1 and a + b = d + 2. The reverse-flip to an a-b
flip is therefore always a b-a flip.
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(b)

Figure 15: Flip (edge exchange). Edge flip in the point-configuration in Figure 12a.
The 2 cells of Figure 15a are flipped into the 2 cells of Figure 15b. It corresponds to
exchanging the edge (0,4) with the edge (1,3).
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Figure 16: Flip (vertex removal/vertex insertion). Vertex removal and vertex insertion
flip in the point-configuration in Figure 12a. The cell of Figure 16a is flipped into the 3
cells of Figure 16b. This corresponds to inserting the vertex 4. The reversal corresponds
to removing the vertex 4.

Having described the flip only for a subset of a subdivision, we now say that
we flip a subdivision S into another subdivision S ′, if we perform a flip on a
subset of the points of S and obtain S ′. However, this is only possible when
the triangulation in which the flip takes place (defined on the subset of points) is
part of the subdivision S . S and S ′ are then called flip-neighbors. After a flip
was performed, in the resulting subdivision it is always possible to perform the
reverse-flip.
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Figure 17: Flip in a triangulation. Flip in a triangulation of the point-configuration in
Figure 12a.
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2.10 Flip-graphs

As already mentioned, applying a flip on a subdivision yields a second subdivision.
Applying a second flip to the second subdivision yields a third subdivision. This
can be repeated as often as desired. So we can get from one subdivision to other
subdivisions by a sequence of flips. Although flips are possible in subdivisions, we
are mostly interested in performing flips in triangulations.

The relation between triangulations via flips can be analyzed with a graph (called
the flip-graph). Each triangulation corresponds to a vertex in the graph, and each
flip corresponds to an edge in the graph.

Definition 2.10.1 (Flip-graph)(see [13]). The flip-graph G of a point-configuration
is a graph where each triangulation corresponds to a vertex in G , and a flip from
one triangulation into another corresponds to an edge in G . The regular flip-graph
Greg is the subset of G consisting only of regular triangulations and regular flips
(meaning flips between two regular triangulations, where the common minimal
coarsening of both is also regular).

Note, there exist non-regular flips between regular triangulations (see [7, p. 234]).

The problem of determining whether the flip-graph of a point-configuration is
connected or not is of great interest. When the flip-graph is connected, one can
transform a triangulation into every other triangulation by a sequence of flips.
But solving the problem for one point-configuration is not nearly as interesting as
solving it for a whole class of point-configurations.

One important attribute of a point-configuration is its dimension d (the dimen-
sion of the affine hull of the points). It turns out that the flip-graph of every
2-dimensional point-configuration is connected. In [9, chapter 1.2] an algorithm
for flipping an arbitrary triangulation of a 2-dimensional point-configuration into
the Delaunay triangulation is given. When one flips from a triangulation Ta to
another triangulation Tb it is always possible to flip back from Tb to Ta (via the
reverse-flips). Flipping from any triangulation to any other triangulation is now
always possible, because one can flip from the first triangulation to the Delaunay
triangulation and then to the second triangulation. In [7, chapter 3.4.1] exists a
similar proof where every triangulation is flipped into the pulling triangulation (see
[7, chapter 3.2.1] for the definition of the pulling triangulation). Unfortunately,
in higher dimensions there is no algorithm known which could flip an arbitrary
triangulation into the Delaunay triangulation (or any other triangulation). See [7,
chapter 3.6.2] for further details.
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In fact, there are examples which show that some flip-graphs in higher dimen-
sions are not connected. In [14], there is a construction of a triangulation of a
6-dimensional point-configuration with 324 points where no flips are possible, and
also the construction of a 234-dimensional point-configuration with 552 points
where the flip-graph is not connected. Smaller examples in 5 and 6 dimensions
are given in [7, chapter 7.3, chapter 7.4]. For dimensions 3 and 4 there are cur-
rently no known examples that would show the disconnectedness of any flip-graph.
The question whether all flip-graphs in these dimensions are connected is still open.

Regularity is an important attribute of triangulations. An important result is, that
the regular flip-graph of a point-configuration in any dimension is connected. This
can be seen in the next section on the secondary polytope and is also described
in [13].
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3 Secondary Polytopes

After having defined the more general structures in the last chapter, we now come
to specific ones, which will ultimately lead to the secondary polytope. The sec-
ondary polytope will be very helpful in analyzing subdivisions and flips between
subdivisions. There exists a bijection between the faces of the secondary polytope
and the regular subdivisions of a point-configuration.

In Section 4 we will give a lot of examples of point-configurations, their secondary
polytopes, and their refinement posets. During the study of the current section
the reader should feel free to look ahead into Section 4 to get examples of the
structures described here.

In the following sections one can find definitions for structures related to the sub-
divisions of a point configuration A. The definitions for these structures equal
the usual definitions in literature. Additionally, we also define many of them con-
strained for a subdivision S0. The constrained versions consider only the refining
subdivisions of S0 (Refinements(S0)). It follows that a constrained structure, if
it is constrained for the trivial subdivision, equals the general structure.

The constrained versions of the structures are inventions of this work, serving the
purpose of relating the non-regular subdivisions to the other subdivisions. From
secondary polytopes only information about regular subdivisions can be received,
but constrained secondary polytopes can also give information about non-regular
subdivisions (and their relations to other subdivisions).

3.1 The space of height functions

A height function w yields a height for every point in a point-configuration. If we
interpret this as a tuple of heights (one for each point pi), we can write a height-
vector ~w = (w(p1), . . . , w(pn)) ∈ Rn. Each height-vector corresponds to a subdi-
vision according to the subdivision function. We write subA(~w) := subA(w). So
we can partition the space Rn into regions (called secondary cones) where sub(~w)
yields the same subdivision. These regions have some interesting properties.

Definition 3.1.1 (Pointed cone). A subspace of a vector space is called cone C
when for every x ∈ C and every λ ∈ R+, it follows that λx ∈ C. It is pointed if it
contains the origin.

Definition 3.1.2 (Fan). A fan is a geometric polyhedral complex which consists
of convex pointed cones and covers the whole vector space.
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Definition 3.1.3 (Open secondary cone)(parts from [7, p. 221]). Given a subdi-
vision S . The region CoA(S ) of Rn where for each ~w ∈ Rn: subA(~w) = S is
called open secondary cone of S . For a constraining subdivision S0, the region
CoA(S ,S0) with subA(~w,S0) = S is called constrained open secondary cone for
S0.

Definition 3.1.4 (Closed secondary cone)(parts from [7, p. 221]). Given a sub-
division S . The region CA(S ) of Rn where for each ~w ∈ Rn, subA(~w) = Scoarse,
where Scoarse is equal to S or a coarsening of S , is called closed secondary cone of
S . For a constraining subdivision S0, the region CA(S ,S0) with subA(~w,S0) =
Scoarse is called constrained closed secondary cone for S0.

Definition 3.1.5 (Secondary fan)([4]). The collection of all closed secondary cones
of a point-configuration is called secondary fan and denoted Σ−fan(A). For a
subdivision S0, the collection of all constrained closed secondary cones is called
constrained secondary fan for S0.

Figure 18: Secondary fan. Secondary fan of the point-configuration in Figure 12a p.22.
Every ray corresponds to a subdivision of the point-configuration. Every cone (spanned
by two rays) corresponds to a triangulation of the point-configuration. The origin cor-
responds to the trivial subdivision.

Definition 3.1.6 (Secondary cone poset). We define the secondary cone poset
as the poset of all closed secondary cones of a point-configuration for the subset
relation. For a subdivision S0, the poset of constrained closed secondary cones is
called constrained secondary cone poset for S0.

Theorem 3.1.7 (see [7, p. 229]). Given a point-configuration, the regular refine-
ment poset is isomorph to the secondary cone poset.
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3.2 Secondary polytopes

Now we have everything to define secondary polytopes. Secondary cones already
correspond to regular subdivisions of the point-configuration. The secondary fan
combines the cones to one structure and therefore relates the regular subdivisions
to each other. The secondary polytope is now defined by the secondary fan and
thus inherits the ability to relate the regular subdivisions to each other.

Definition 3.2.1 (Normal cone)(in analogy to [7, p. 47]). The inner normal cone
of a polyhedron P for a point x ∈ P is the set:

NP (x) := {v ∈ Rm| < v, x > ≤ < v, y > ∀y ∈ P} (2)

The outer normal cone of a polyhedron P for a point x ∈ P is the negative of the
corresponding inner normal cone.

The normal cones have the property that two points xa, xb ∈ P lie in the relative
interior of the same face of P , if and only if NP (xa) = NP (xb). This allows us
to write NP (F ) := NP (x) for an face F of P and an arbitrary point x from the
relative interior of F . Therefore, there exists a bijection between the normal cones
and the faces of a polyhedron.

Definition 3.2.2 (Normal fan)(see [7, p. 47]). The inner normal fan (outer normal
fan) of a polytope P is the fan consisting of all inner normal cones (outer normal
cones) of P .

Definition 3.2.3 (Secondary polytope)([4]). A secondary polytope of a point-
configuration is every polytope whose inner normal fan equals the secondary fan.
For a constraining subdivision S0, the constrained secondary polytope for S0 is
every polytope whose inner normal fan equals the constrained secondary fan for S0.
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(a) Secondary polytope. (b) Secondary polytope with corresponding
subdivisions.

Figure 19: Secondary polytope. Secondary polytope of the point-configuration in Fig-
ure 12a p.22. In Figure 12a every face of the secondary polytope has an icon with the
subdivision corresponding to the face.

(a) Secondary fan mirrored
at origin.

(b) Secondary polytope with
outer normal cones.

Figure 20: Correspondence between secondary fan and secondary polytope. The sec-
ondray fan (Figure 20a), mirrored at the origin, equals the outer normal fan of the
secondary polytope (Figure 20b). The outer secondary cones (not the inner ones) are
shown, because they can be seen more easily from the shape of the secondary polytope.

33



The secondary polytope of a 2-dimensional convex point-configuration is equal to
a polytope called associahedron. The name associahedron comes from the fact that
the vertices of the associahedron correspond to all different ways of bracketing a
string. See [12] or [20, p. 18] for more.

3.3 GKZ secondary polytopes

After having defined a secondary polytope as any polytope whose inner normal fan
equals the secondary fan, the question of how to explicitly construct a secondary
polytope arises. There exist various methods to construct the secondary polytope
(see [4]). We will use the probably most simple method, which is the one that works
with GKZ-vectors (Gelfand-Kapranov-Zelevinsky-vectors) (see [4, chapter 2], [7,
chapter 5], [11, chapter 7]). Using this method, we relate one GKZ-vector to each
triangulation of the point-configuration. The convex hull of all GKZ-vectors will
be a polytope that fulfills the requirements for being a secondary polytope.

Definition 3.3.1 (GKZ-Vector)([7, p. 215]). Take a d-dimensional point-confi-
guration A with n points on a set of labels L. Let us assume that L is the set
{1, . . . , n}. The GKZ-vector of a triangulation T is the vector:

φA(T ) :=
∑
l∈L

∑
C∈T ,l∈C

(vol(C) · el) ∈ Rn (3)

Where el is the l-th canonical basis vector and vol(C) is the d-dimensional volume
of C. If C is not d-dimensional, vol(C) = 0.

Definition 3.3.2 (GKZ secondary polytope)([4, chapter 2]). The GKZ secondary
polytope of a point-configuration is the polytope:

Σ−poly(A) := conv({φA(T )|T ∈ Triangulations(A)}) (4)

The constrained GKZ secondary polytope, constrained for a subdivision S0, is the
polytope:

Σ−poly(A,S0) := conv({φA(T )|T ∈ Triangulations(S0)}) (5)

That Σ−poly(A) is a secondary polytope will be shown in the following theorems.
We are often only interested in any secondary polytope, and the GKZ construction
is an easy way to obtain a secondary polytope. Therefore, we will refer to the
GKZ secondary polytope just with “the secondary polytope”. Note again that
Σ−poly(A) = Σ−poly(A,S0) when S0 is the trivial subdivision.
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Definition 3.3.3 (Characteristic section)([7, p. 230]). For a triangulation T and
a height-vector ~w, the characteristic section g~w,T : conv(A) → R is defined for
every point pi that is part of a cell of T as g~w,T (pi) 7→ ~wi, and as affine extension
on conv(C) for every cell C ∈ T . The lifted characteristic section is defined as

the function G~w,T : conv(A)→ Rm+1 with x 7→
(

x
g~w,T (x)

)
.

Lemma 3.3.4 (Lifting-lemma)(adapted and extended from [7, p. 230]). For a
triangulation T and a height-vector ~w follows:

T � subA(~w)⇒ g~w,T ≤ g~w,T ′ ∀T ′ ∈ Triangulations(A). (6)

For a constraining subdivision S0 this can be restated as:

T � subA(~w,S0)⇒ g~w,T ≤ g~w,T ′ ∀T ′ ∈ Triangulations(S0). (7)

Proof. From the definition of the convex hull follows that for every cell C, the lifted
cell G~w,T (C) lies in the convex hull of the lifted point-configuration conv(Aw).
Since subA(~w) is the projection of the lower convex hull of conv(Aw), G~w,T (C)
must also lie in the lower convex hull (otherwise not every cell of T could be
the subset of a cell of subA(~w)). This implies that g~w,T ≤ g~w,T ′ for all T ′ ∈
Triangulations(A).
For a constraining subdivision S0 the proof is analog, by successively taking one
cell C0 ∈ S0 and replacing A with AC0 .

The lifting lemma is stated and proven in [7, p. 230] also in the other direction,
but we will only need this direction here.

Theorem 3.3.5 (adapted from [7, p. 231]). The inner normal fan of the secondary
polytope Σ−poly(A) equals the secondary fan Σ−fan(A).

Proof. We show that for each triangulation T , the closed secondary cone CA(T )
from the secondary fan is subset of the inner normal cone NΣ−poly(A)(φA(T )) from
the inner normal fan of the secondary polytope. Showing that one cone is subset
of the other is sufficient to proof the equality of both fans, because every fan fills
out its underlying space completely. So we take T ∈ Triangulations(A) and have
to show:

CA(T )
!

⊆ NΣ−poly(A)(φA(T )) (8)

Take any height-vector ~w ∈ CA(T ). From the definition of a normal cone (Defini-
tion 3.2.1) follows that the following equation must be fulfilled:

< ~w, φA(T ) >
!

≤ < ~w, x > ∀x ∈ Σ−poly(A) (9)
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For this to be true it is sufficient to take x from the set of all vertices of Σ−poly(A)
(because they are the extremal points of Σ−poly(A)). Since the vertices of
Σ−poly(A) are among the GKZ-vectors, the above equation equals:

< ~w, φA(T ) >
!

≤ < ~w, φA(T ′) > ∀T ′ ∈ Triangulations(A) (10)

For a simplicial cell C from a triangulation, G~w,T ′(C) is a cell in the lifted point-
configuration that consists of the same labels as C. Now we can rewrite the
scalar-product as follows:

< ~w, φA(T ′) > (11)

=
∑
j∈J

~wjφA(T ′)j (12)

=
∑
j∈J

∑
C∈T ′:j∈C

~wjvol(C) (13)

=
∑
C∈T ′

∑
j∈C

~wjvol(C) (14)

=
∑
C∈T ′

vol(C)
∑
j∈C

~wj (15)

=(d+ 1)
∑
C∈T ′

vol(C)

(
1

d+ 1

)∑
j∈C

~wj (16)

=(d+ 1)

∫
conv(A)

g~w,T ′(x) dx. (17)

With the conversion:∑
C∈T ′

vol(C)

(
1

d+ 1

)∑
j∈C

~wj (18)

=
∑
C∈T ′

vol(C) ∗ height of barycenter of G~w,T ′(C) (19)

=
∑
C∈T ′

∫
C

g~w,T ′(x) dx (20)

=

∫
conv(A)

g~w,T ′(x) dx. (21)

From Lemma 3.3.4 now follows that the integral is minimized for any T ′ with
T ′ � subA(~w), especially for T ′ = T since T � subA(~w) because we have
chosen ~w ∈ CA(T ).

36



From Definition 3.2.3 follows that Σ−poly(A) is indeed a secondary polytope of
A. Now we show the same for the constrained version:

Theorem 3.3.6. For a constraining subdivision S0, the inner normal fan of the
constrained secondary polytope Σ−poly(A,S0) equals the constrained secondary
fan Σ−fan(A,S0).

Proof. The proof is equal to the proof of Theorem 3.3.5 after the replacement
of Triangulations(A) with Triangulations(S0), Σ−poly(A) with Σ−poly(A,S0),
and CA(T ) with CA(T ,S0).

Theorem 3.3.7 (see [7, p. 217]). The face poset of the secondary polytope is
isomorph to the secondary cone poset, and thus isomorph to the regular refinement
poset of the point-configuration.

Corollary 3.3.8 (corollary of [7, p. 217]). There exists a bijection between the
faces of the secondary polytope and the regular subdivisions.

So we can assign a regular subdivision to every face of the secondary polytope.
For a subdivision S0 all relative regular subdivisions can also be assigned to faces
of the constrained secondary polytope, constrained for S0.

Corollary 3.3.9 (corollary of [7, p. 217]). The dimension of the secondary poly-
tope equals the height of the regular refinement poset.

Theorem 3.3.10 ([7, p. 218]). The secondary polytope of a d-dimensional point-
configuration A with n points has dimension (n− d− 1). Formally:

dim(Σ−poly(A)) = n− d− 1. (22)

Theorem 3.3.11 (partly similar in [7, p. 233], described in [13]). The 1-skeleton
(the graph with only the vertices and edges of a polytope) of the secondary poly-
tope equals the regular flip-graph of the point-configuration.

Corollary 3.3.12 ([7, p. 233]). The regular flip-graph of a d-dimensional point-
configuration is connected and on each regular triangulation at least (n − d − 1)
flips can be performed.

Proof. The 1-skeleton of a polytope is connected. From Theorem 3.3.11 follows
that the flip-graph is connected. Since the secondary polytope has dimension
(n−d−1) (as stated in 3.3.10), every vertex has at least (n−d−1) incident edges.
This means that for a regular triangulation (n−d− 1) flips can be performed.

The constrained secondary polytopes are not only other types of secondary poly-
topes. It seems obvious (partly from the examples in Section 4) that a face of a
secondary polytope is a constrained secondary polytope itself. Unfortunately, the
proof for this could not be found, and so we can only state the following conjecture:
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Conjecture 3.3.13. Let S be the corresponding subdivision to a face F of the
secondary polytope. F is the convex hull of all vertices, whose corresponding
triangulations are refinements of S . Therefore F is Σ−poly(A,S ).

We will show that a constrained secondary polytope is characterized by other,
special secondary polytopes. More exactly, the constrained secondary polytope is
the Minkowski-sum of the other secondary polytopes. An overview of Minkowski-
sums can be found in [19]. We briefly give the definition and some statements of
Minkowski-sums.

Definition 3.3.14 (Minkowski-sum)([20, p. 28]). The Minkowski-sum of two sets
A,B ⊆ Rm is defined as:

A+B := {a+ b | a ∈ A, b ∈ B}. (23)

The following two technical lemmas are proven here since no reference was found:

Lemma 3.3.15. Let A, B be finite subsets of Rm. Then conv(A) + conv(B) =
conv(A+B).

Proof. Let PA = conv(A), PB = conv(B), PA+B = conv(A+B), and P ′ = PA+PB.

• P ′ is convex because: ∀p, q ∈ P ′ : ∃pa, qa ∈ PA ∧ pb, qb ∈ PB : p =
pa + pb ∧ q = qa + qb. Every point in conv({p, q}) can now be generated as
the sum of a point in conv({pa, pb}) and a point in conv({qa, qb}).

• P ′ is a polytope because: An extremal point of a convex set S is a point
x ∈ S such that @x1, x2 ∈ S : x1 6= x2 6= x ∧ x ∈ conv({x1, x2}). The
extremal points of a polytope are the vertices. For all p ∈ P ′ exist a ∈
PA, b ∈ PB such that p = a + b. Assume that a is not extremal. Then
∃a1, a2 ∈ PA : a1 6= a2 6= a ∧ a ∈ conv({a1, a2}). Since a1, a2 ∈ PA it
follows that a1 + b, a2 + b ∈ P ′. Because a ∈ conv({a1, a2}) it follows that
a + b ∈ conv({a1 + b, a2 + b}). This means that p = a + b cannot be an
extremal point. So every extremal point of P ′ is the sum of a vertex in PA

and a vertex in PB. Therefore the set of extremal points of P ′ is finite and
P ′ is the convex hull of a finite set of points and thus a polytope.

• P ′ = PA+B because: P ′ is the convex hull of its vertices and, as shown in the
last point, every vertex of P ′ is the sum of a vertex in PA and a vertex in PB.
The vertices of PA and PB are among A and B. Therefore P ′ = conv(A+B).
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Lemma 3.3.16. For two polyhedra P, P ′ holds that dim(P + P ′) ≤ dim(P ) +
dim(P ′).

Proof. P , P ′, and P +P ′ lie in their corresponding affine hulls aff(P ), aff(P ′), and
aff(P + P ′). The polyhedra also have the same dimension as their corresponding
affine hulls. Take a basis BP of aff(P ) and a basis BP ′ of aff(P ′). aff(P + P ′) is
spanned by BP ∪BP ′ . Therefore, dim(P+P ′) = dim(aff(P+P ′)) ≤ dim(aff(P ))+
dim(aff(P ′)) = dim(P ) + dim(P ′).

This leads us to the following theorem about constrained secondary polytopes:

Theorem 3.3.17. For a constraining subdivision S0, Σ−poly(A,S0) equals the
Minkowski-sum of Σ−poly(AC0) for all C0 ∈ S0.

Proof. As a polytope, the secondary polytope is defined as the convex hull of its
vertices. Every vertex is a GKZ-vector of a triangulation. We will show that every
GKZ-vector of Σ−poly(A,S0) is the sum of one GKZ-vector of Σ−poly(AC0) for
every C0 ∈ S0.
Let T be a triangulation which is a refinement of S0. For a cell C0 ∈ S0 we
define T |C0 = {C ∈ T | C ⊆ C0}. T |C0 is therefore a triangulation of AC0 . We
can now rewrite the GKZ-vector of T in the following way:

φA(T ) (24)

=
∑
l∈L

∑
C∈T ,l∈C

vol(C) el (25)

=
∑
l∈L

∑
C0∈S0

∑
C∈T |C0

,l∈C

vol(C) el (26)

=
∑

C0∈S0

∑
l∈L

∑
C∈T |C0

,l∈C

vol(C) el (27)

=
∑

C0∈S0

φA(T |C0). (28)

Fix a C0 ∈ S0. Since T can be any refinement of S0, any triangulation of AC0 can
equal T |C0 . So every sum of one GKZ-vector of Σ−poly(AC0) for every C0 ∈ S0

is also a GKZ-vector of Σ−poly(A,S0).
Let C1, . . . , Ck be all the cells of S0. The arguments above show that:

{φA(T ) | T ∈ Triangulations(S0)} (29)

={
k∑

i=1

φA(Ti) | Ti ∈ Triangulations(ACi
)}. (30)
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From Lemma 3.3.15 follows:

conv({φA(T ) | T ∈ Triangulations(S0)}) (31)

=conv({
k∑

i=1

φA(Ti) | Ti ∈ Triangulations(ACi
)}) (32)

=
k∑

i=1

conv({φA(Ti) | Ti ∈ Triangulations(ACi
)}). (33)

Theorem 3.3.18. Let C1, . . . , Ck be all the cells of a subdivision S0. It holds
that:

dim(Σ−poly(A,S0)) ≤
k∑

i=1

dim(Σ−poly(ACi
)). (34)

Proof. This follows immediately from Theorem 3.3.17 and Lemma 3.3.16.

3.4 Future work on constrained secondary polytopes

Unfortunately, we could not give any new answers to the question of the con-
nectedness of the flip-graph. But an overview of structures which are useful for
studying the flip-graph and definitions of additional structures that should also be
useful for studying the flip-graph have been given.

The last sections have shown the build-up and properties of the secondary poly-
tope. Additionally, the definition of the constrained secondary polytope was es-
tablished. Some results for constrained secondary polytopes were given, but there
remain many more to be discovered. Here are a few open issues:

Carry over results from secondary polytopes to constrained secondary
polytopes

It seems obvious that most of the properties of secondary polytopes also hold for
constrained secondary polytopes. Therefore, the theorems found for secondary
polytopes should also be examined for their validity for constrained secondary
polytopes.
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The flip-graph and constrained secondary polytopes

Constrained secondary polytopes help with the understanding of the relationships
between subdivisions and triangulations, since with their help one can relate the
non-regular subdivisions to the other subdivisions. This is important when one
studies the flip-graph of triangulations. For all regular triangulations of a point-
configuration the flip-graph is connected. But there can be non-regular triangula-
tions that can’t be reached via flips from some other triangulations (as described
in 2.10). For such non-regular triangulations, analyzing their coarsenings and the
constrained secondary polytopes and constrained refinement posets, constrained
for this coarsenings, might lead to results concerning the nature of these non-
regular triangulations.

Complexes of cells

Constrained secondary polytopes can replace secondary polytopes completely, be-
cause when the constraining subdivision is the trivial subdivision, the constrained
secondary polytope equals the secondary polytope. Therefore, one could simply
define “secondary polytopes” for a constraining subdivision, and work with one
instead of two definitions. The definition of the constrained secondary polytope
was chosen, because we wanted to use the common definition of secondary poly-
topes in literature.

Moreover, all the other structures defined for a constraining subdivision equal the
standard structures in literature, when the constraining subdivision is the trivial
subdivision. Giving only definitions of structures with constraining subdivisions
would reduce the amount of definitions.

But the theory may be generalized even more, if we don’t regard subdivisions but
complexes of cells. A complex of cells C would be a subdivision without the Union
Property. By this definition, a triangulation, a subdivision, and even a single cell
would be a complex of cells. On C we could define a “secondary cell polytope”
Σ−cpoly(C ) which is the convex hull of all GKZ-vectors of refining complexes of
C where every cell is a simplex. If C consists only of the trivial cell, Σ−cpoly(C )
would be the secondary polytope. If C is a subdivision S , Σ−cpoly(C ) would be
the constrained secondary polytope, constrained for S .

Since even a subset of a triangulation would be a complex of cells, any region
of a triangulation could be analyzed separately. The union of two complexes of
cells is, under the condition that all cells intersect properly, again a complex of

41



cells. The secondary cell polytope of the union of two cell complexes Ca, Cb

would be the Minkowski-sum of the secondary cell polytopes of both complexes
(Σ−cpoly(Ca ∪ Cb) = Σ−cpoly(Ca) + Σ−cpoly(Cb)) (in analogy to 3.3.17).

So secondary cell polytopes would replace the other secondary polytopes, and they
could also be used to build other secondary cell polytopes via Minkowski-sums.
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4 Interesting Point Configurations

In the last chapters we defined many structures for the analysis of triangulations
and flips. There are also many relations between this structures. In order to un-
derstand them better one should probably try to imagine their geometric shape
by examining their properties. But concluding the shapes from some properties
is sometimes cumbersome. Concrete examples are of great help when it comes to
get an intuition about the structure and for deriving properties. This is of course
only possible when there exists a good way to visualize the examples. Primarily
the dimension of the object should not be too high, or it will not be visualizable
in a satisfying way.

The following examples all show secondary polytopes and refinement posets on
simple, small, 2-dimensional point-configurations. Unfortunately, for more com-
plicated examples, the refinement posets are getting too big and too complicated.
Especially the dimension of the secondary polytopes is getting higher than 3. The
dimension of the secondary polytope is overall a critical point for the analysis. In
dimension 2 and lower, the secondary polytopes are rather simple, not that inter-
esting, and no non-regular subdivisions can occur for the point-configuration. In
dimension 3, the shape of the secondary polytopes gets more complex, they are still
visualizable, and non-regular subdivisions can occur for the point-configuration.
In dimension 4 or higher, the abilities to visualize secondary polytopes are limited.
Therefore, in all but one example, the secondary polytopes will be 3-dimensional.

The constraints mentioned above lead to examples for point-configurations with
a maximum of 6 points in the 2-dimensional plane (since the dimension of the
secondary polytope is n − d − 1 according to Theorem 3.3.10). Nevertheless, the
examples already show a lot of properties of the structures.

All graphics have been computed from the point-configurations coordinates (de-
picted in each case at the beginning). For a secondary polytope this means that
the illustration is exact and not only a sketch. At the vertices of each secondary
polytope there are icons, which show the triangulation corresponding to that ver-
tex. In the first example, there is also an icon near each face, which depicts the
corresponding subdivision. All regular subdivisions are shown in blue, and all non-
regular ones in red. The Delaunay subdivision is marked with a thick blue circle.
Additionally, sometimes subdivisions are marked with a dotted circle. The spe-
cial properties of these marked subdivisions are described in the respective figure
caption. The presentation of 3-dimensional secondary polytopes has an effect of
illumination in order to highlight their 3-dimensional structure. Some refinement
posets are split into parts because otherwise they would be too big.
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4.1 2-dimensional point-configurations in convex position

We begin with point-configurations in convex position. Convexity implies that
every point must be part of every subdivision, and that no non-regular subdivisions
can occur. The points are aligned equally on a circle in order to achieve the highest
possible symmetry for the secondary polytope. Note that this only increases the
aesthetics of the presentation. Even if the points were arranged in a different way,
as long as they are in convex position, the combinatorics of their subdivisions would
be the same. It follows that the refinement posets would stay the same, and the
secondary polytopes would be deformed, but they would combinatorially stay the
same. The Delaunay subdivisions, however, is for this positioning of points always
the trivial subdivision, but would be another subdivision for another positioning.

4.1.1 5 points in convex position

The first point-configuration consists of 5 points equally aligned on a circle (Fig-
ure 21). On this point-configuration exist 5 triangulations and altogether 11 sub-
divisions.

The secondary polytope (Figure 22) is 2-dimensional and has the shape of a pen-
tagon. Each triangulation has 2 edges in the inside of the convex hull of the
point-configuration (also visible in Figure 23, last row). This means that for each
triangulation there are 2 flips possible (since no vertex insertion or vertex removal
flip is possible). That can also be seen in the secondary polytope, where 2 edges
are incident to each vertex.

The refinement poset (Figure 23) is relatively simple and has height 2, which equals
the dimension of the secondary polytope.

0

1

2

3

4

Figure 21: 5 points in convex position. Point-configuration with 5 points on a circle.
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Figure 22: Secondary polytope of 5 points in convex position. Secondary polytope of
the point-configuration in Figure 21 (with subdivisions corresponding to faces).

Figure 23: Refinement poset of 5 points in convex position. Refinement poset of the
point-configuration in Figure 21.
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4.1.2 6 points in convex position

Now we increase the number of points by one. The point-configuration now con-
sists of 6 points equally aligned on a circle (Figure 24). This results in an increase
of triangulations to 14 and of all subdivisions to 45.

The secondary polytope (Figure 25) is now 3-dimensional and has 6 facets in the
shape of a pentagon and 3 facets in the shape of a parallelogram. Each of the
pentagonal facets is similar to the secondary polytope of 5 points in convex po-
sition. If we add one point and an incident triangle to each subdivision of the 5
points, we get every subdivision corresponding to a face of one pentagonal facet.
A facet F in the form of a parallelogram also has an interesting analogy. It has a
corresponding subdivision S . The faces of F contain two pairs of parallel edges.
Parallel edges correspond to the same flip in different triangulations. So, in all
triangulations that are refinements of S only 2 different flips are possible (if you
count the reverse-flips additionally, 4 different flips are possible). This can also be
seen in S , since it is a subdivision where the only edge that is not on the convex
hull of the point-configuration is a diagonal from one point to the opposite point.
Each of the 2 cells in S can be refined in 2 different ways, which means that
there is 1 flip possible (2 flips if you count the reverse-flips additionally). Since
there are 2 cells in S , the constrained secondary polytope, constrained for S , is
the Minkowski-sum of the secondary polytopes of the two cells (as stated in 3.3.17).

The refinement poset (Figure 26) already increases radically. Its height is 3, equal-
ing the dimension of the secondary polytope.

0

12

3

4 5

Figure 24: 6 points in convex position. Point-configuration with 6 points on a circle.
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Figure 25: Secondary polytope of 6 points in convex position. Secondary polytope of
the point-configuration in Figure 24. The 5 triangulations marked with a dotted circle
correspond to the 5 triangulations of the 5 points in convex position in Figure 21, if you
glue the upper right point and its incident triangle to every triangulation of the 5 points.
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4.2 2-dimensional point-configurations

Now we omit the requirement that all points must lie in convex position. This
means that not every subdivision must use all points of the point-configuration and
that non-regular subdivisions may occur. If we translate the points, the positioning
of the points in respect to each other changes. Therefore, also the set of all
subdivisions, the refinement poset, and the secondary polytope change. These
properties are in contrast to the properties of a 2-dimensional point-configuration
in convex position (see Section 4.1). However, we still give examples of point-
configurations with a high amount of symmetry in order to achieve symmetry in
the secondary polytopes.

4.2.1 5 points in convex position with 1 central point

This point-configuration can also be seen as an extension to the 5 points in convex
position from Section 4.1.1. The additional point is now inserted in the center of
the point-configuration (Figure 27). Now the number of triangulations rises to 16
and that of all subdivisions to 53.

The secondary polytope (Figure 28) has one pentagonal facet (on the backside of
the shown secondary polytope) which is the same as the secondary polytope of 5
points in convex position in Figure 22. All the subdivisions in this facet omit the
central point. Among the other faces there are faces in form of a parallelogram
which are Minkowski-sums of constrained secondary polytopes (analog to the faces
in form of a parallelogram from the example in Section 4.1.2).

The refinement poset (Figure 29) has again height 3.

0

1

2

3

4

5

Figure 27: 5 points in convex position with 1 central point. Point-configuration with 5
points on a circle and 1 point in the center.
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Figure 28: Secondary polytope of 5 points in convex position with 1 central point.
Secondary polytope of the point-configuration in Figure 27. The 5 triangulations marked
with a dotted circle are equal to the 5 triangulations of the 5 points in convex position in
Figure 21. The facet on the backside (which contains the vertices corresponding to the
marked triangulations) equals the secondary polytope of the 5 points (see Figure 22).
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4.2.2 Mother of all examples

The so-called “mother of all examples” is an important and famous example. It is
described extensively in [7, chapter 7.1]. The mother of all examples only consists
of 6 points in the plane (Figure 30), but it has already non-regular subdivisions.
Therefore, it is especially interesting for the study of non-regular subdivisions and
their relationship to the secondary polytope, because the secondary polytope is still
3-dimensional and thus easy to visualize and analyze. The point-configuration con-
sists of 3 points on a circle and another 3 points on a smaller circle. The number
of triangulations is 18 (16 regular and 2 non-regular) and the number of overall
subdivisions is 65 (51 regular and 14 non-regular).

The secondary polytope (Figure 31) is 3-dimensional and has one hexagonal facet
F . F corresponds to the subdivision S containing 3 quadrangular cells and 1
triangular cell (as can also be seen in Figure 32a). S is a full subdivision and
therefore all refinements of S are also full. Moreover all full triangulations are
refinements of S . There are several non-regular subdivisions whose constrained
secondary polytopes lie in S (as shown in Figure 32).

The refinement poset is split up into two parts in order to improve clarity. One
part contains only the regular subdivisions (Figure 33), and one part only the
refinements of S (Figure 34) which include all non-regular subdivisions. The
refinement poset of regular subdivisions has again height 3, but the refinement
poset (including the non-regular subdivisions) has now height 4.

0 1

2

3 4

5

Figure 30: Mother of all examples. Point-configuration with 3 points on a big circle
and 3 points on a smaller, concentric circle.
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Figure 31: Secondary polytope of the mother of all examples. Secondary polytope of
the point-configuration in Figure 30. The 5 triangulations marked with a dotted circle
are equal to the 5 triangulations of the point-configuration in Figure 12a. The facet,
containing all vertices corresponding to the 5 triangulations marked with a dotted circle,
equals the secondary polytope in Figure 19 p.33.
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5

(a) Constraining subdivision (b) Constrained secondary
polytope

(c) Constrained secondary
polytope 1

(d) Constrained secondary
polytope 2

(e) Constrained secondary
polytope 3

(f) Constrained secondary
polytope 4

(g) Constrained secondary
polytope 5

(h) Constrained secondary
polytope 6

Figure 32: Constrained secondary polytopes of the mother of all examples. Figure 32b
shows the constrained secondary polytope, constrained for the constraining subdivision
in Figure 32a. There are several constrained secondary polytopes of non-regular sub-
divisions (painted red in Figure 32c - Figure 32h) that have the same dimension as
Figure 32b, but also lie inside of it. There are 2 different non-regular triangulations that
have GKZ-vectors lying in the relative interior of Figure 32b. Together with the 6 other
triangulations whose GKZ-vectors are contained in Figure 32b they make up all 8 full
triangulations.
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Figure 34: Constrained refinement poset for the mother of all examples. The con-
strained refinement poset for the point-configuration in Figure 30, constrained for the
subdivision in Figure 32a. It contains all non-regular subdivisions (shown in red) of the
point-configuration in Figure 30.
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4.2.3 Twisted mother of all examples

This is a variation of the mother of all examples from Section 4.2.2. The 3 points
lying on the smaller circle are now slightly rotated counter-clockwise (Figure 35).
This has interesting effects on the secondary polytope and also on the property
of regularity of a subdivision. One of the two non-regular triangulations of the
mother of all examples now becomes regular. The other one stays non-regular and
becomes cyclic with respect to the in-front-relation (as shown in Figure 11 p.20).
The number of triangulations and subdivisions stays the same, but the distribution
of regular and non-regular ones changes. The number of triangulations is again
18 (now 17 regular and 1 non-regular) and the number of overall subdivisions is
again 65 (now 57 regular and 8 non-regular).

The secondary polytope (Figure 36) is almost equal to the secondary polytope
of the mother of all examples (see Figure 31). But all GKZ-vectors of triangula-
tions have moved slightly, and so the hexagonal facet is no longer present. One
of the two GKZ-vectors of the former non-regular triangulations is now a vertex
of the secondary polytope and therefore the corresponding triangulation is regu-
lar. The other one has moved into the relative interior of the secondary polytope
(before it was in the relative interior of the hexagonal facet). There are also other
subdivisions that have become regular and one subdivision S that has become
non-regular. S is specially interesting and can be seen in Figure 37a. The con-
strained secondary polytope, constrained for S in Figure 37b is a cube. When we
transform the point-configuration back to the point-configuration of the mother of
all examples in Figure 30, the cube gets compressed until it becomes the already
described hexagonal facet. With this procedure the change of the regularity prop-
erty of some subdivisions can easily be seen.

The refinement poset is again split up into two parts. Both parts, the one contain-
ing only the regular subdivisions (Figure 38) and the one containing the refinements
of S (Figure 39), are combinatorially equivalent to the parts of the mother of all
examples. Overall, the refinement posets of the mother of all examples and of the
twisted mother of all examples are combinatorially equal.
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Figure 35: Twisted mother of all examples. Point-configuration with 3 points on a big
circle and 3 points on a smaller, concentric circle. The inner 3 points are slightly rotated
counter-clockwise.
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Figure 36: Secondary polytope of the twisted mother of all examples. Secondary poly-
tope of the point-configuration in Figure 35. All facets, except the hexagonal facet, are
still present. The hexagonal facet has split up into 3 facets in form of a parallelogram.
The Delaunay triangulation (marked with a blue circle) has become regular and has now
a corresponding vertex on the secondary polytope. The 5 triangulations marked with a
dotted circle are combinatorially equal to the 5 triangulations of the point-configuration
in Figure 12a p.22 (only the points have moved slightly). The facet, containing all ver-
tices corresponding to the 5 triangulations marked with a dotted circle, is similar with
the secondary polytope in Figure 19 p.33.
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(a) Constraining subdivision (b) Constrained secondary polytope

Figure 37: Constrained secondary polytope of the twisted mother of all examples. Fig-
ure 37b shows the constrained secondary polytope for the constraining subdivision in
Figure 37a. The subdivision in Figure 37a is non-regular. In Figure 37b every face visi-
ble from the front is also a face of the secondary polytope in Figure 36, and is therefore
regular. All other faces (including the trivial one that corresponds to the subdivision in
Figure 37a) are non-regular.
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Figure 39: Constrained refinement poset of the twisted mother of all examples. The
constrained refinement poset for the point-configuration in Figure 35, constrained for
the subdivision in Figure 37a. It contains all non-regular subdivisions (shown in red) of
the point-configuration in Figure 35.

62



5 Flip-path Algorithm

So far we were mostly concerned with the structure of the secondary polytope and
its properties. The secondary polytope already proofs the connectedness of all
regular triangulations of a point-configuration. Maybe more connected subclasses
can be found with the help of the (constrained) secondary polytope. But once
we know that there exists a flip-path from a start to a target triangulation, the
question is how to find such a path.

If one triangulation is reachable via flips from another triangulation, in most cases
there will be a multitude of different flip-paths that connect the two triangulations.
Most of the time one would probably want to find the shortest path. But there
are currently no known fast algorithms that find the shortest path. Of course one
can always enumerate all triangulations, construct the complete flip-graph, and
perform a graph search algorithm (e.g. breadth-first search). But for longer paths
this won’t have a good performance.

For many situations one might also be satisfied with a short flip-path, even if it is
not the shortest one. We present an algorithm that is based on linear optimization
on the secondary polytope, which finds a flip-path between two regular triangula-
tions. We also analyze the algorithm’s runtime and the length of the path it finds.
For an overview of linear optimization see [16].

5.1 Structure of the algorithm

The algorithm uses the fact that the secondary polytope is a polytope and thus
linear optimization can be performed on it. The algorithm finds a flip-path from
a regular start triangulation to a regular target triangulation.

Let’s assume we have already computed the secondary polytope. Every regular
triangulation corresponds to a vertex on the secondary polytope. So we can take
the vertex vertex start corresponding to the start triangulation, and the vertex
vertex target corresponding to the target triangulation. We now search for a path
from vertex start to vertex target on the 1-skeleton of the secondary polytope.
To find this we take an optimization vector (opt vector) for which a linear program
is maximized in vertex target. This means that opt vector must lie in the outer
normal cone of vertex target. The algorithm then performs a linear optimization
on the secondary polytope for opt vector. It starts at vertex start, and because
of the choice of opt vector, it will halt in vertex target. The sequence of vertices
it encounters on the way represents the sought-after flip-path. The algorithm is
sketched in Figure 40.
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1: function find path(vertex start, vertex target)
2: opt vector ← vector from normal cone(vertex target)
3: vertex current← vertex start
4: vertex list← list()
5: while vertex current 6= vertex target do
6: max scalar product← −∞
7: for vertex adjacent in vertex adjacencies(vertex current) do
8: scalar product← opt vector · vector(vertex adjacent)
9: if scalar product > max scalar product then

10: max scalar product← scalar product
11: vertex max← vertex adjacent
12: end if
13: end for
14: vertex current← vertex max
15: vertex list.append(vertex max)
16: end while
17: return vertex list
18: end function

Figure 40: Optimization algorithm. Pseudo-code for the linear optimization algorithm.

Description of the Algorithm in Figure 40:

Line 1: The algorithm receives the vertices vertex start and vertex target as input
parameters.

Line 2: A vector from the normal cone of vertex target is assigned to opt vector.
Line 3: The currently considered vertex vertex current is at the beginning vertex start.
Line 4: A list vertex list for the vertices of the path is created.
Line 5: The process of the step-wise optimization gets repeated until vertex target is

reached.
Line 6: For the optimization, the maximum of all scalar products (computed in Line 8)

max scalar product is saved. At the start it is set to minus infinity.
Line 7: Every vertex vertex adjacent adjacent to the current vertex vertex current is

considered separately in this loop.
Line 8: The scalar product of opt vector and the vector representation of the adjacent

vertex vertex adjacent is calculated.
Line 9-11: When the scalar product of the present adjacent vertex is greater than the

former maximum of the scalar products, max scalar product is updated and the
adjacent vertex is saved as vertex max.

Line 14-15: The vertex with the highest scalar product is the new current vertex
vertex current and is appended to the path-list vertex list.

Line 17: The path-list is returned.
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Most of the time, the algorithm won’t be very attractive if one has to calculate
the secondary polytope in advance. But the algorithm can also work without the
secondary polytope. Each vertex that corresponds to a regular triangulation has
the coordinates of the GKZ-vector of this triangulation. So we can work with the
actual triangulations and their GKZ-vectors instead of working with the vertices.

For a triangulation T and a corresponding vertex v, the adjacent vertices vi
correspond to triangulations Ti that can be reached from T via a regular flip.
Whether a flip is possible or not can be tested with a simple determinant test
in the point-configuration. When the point-configuration is 2-dimensional and in
convex position, every possible flip is regular. Otherwise, one has to make sure
that only regular flips are considered. This assures that the algorithm only uses
regular triangulations, since a regular flip always flips to a regular triangulation.
If non-regular triangulations would be used, the algorithm could get stuck.

5.2 Quality of the algorithm

When we analyze the flip-path that is generated from the algorithm, the biggest
quality criterion is most likely the length of the flip-path. A path as short as
possible is probably desired. There always exists a shortest flip-path between two
triangulations. So it is a good criterion to compare the length of the flip-path
generated by the algorithm to the length of the shortest possible flip-path.

Since the secondary polytope deforms when we move the points of the point-confi-
guration, the scalar products in the algorithm change, and therefore the flip-path
can change too. That means, that if we move the points of a point-configuration,
the generated flip-path can be different from the generated flip-path of the orig-
inal point-configuration, even if the set of triangulations doesn’t change. This is
somehow undesirable because the shortest flip-paths of point-configurations that
have the same set of triangulations are the same. But the flip-path generated by
the algorithm could get longer and longer when we move the points.

For a point-configuration A, we can always use the algorithm on another point-
configuration A′ that has the same set of triangulations as A. The algorithm will
generate a valid flip-path for A that might be shorter as if we had used the algo-
rithm on A. Especially for 2-dimensional point-configurations in convex position
this is helpful. As long as n points are in convex position, they have the same
set of triangulations, independent of the position of the points. Therefore, we can
use the algorithm on n points on a circle, and so the secondary polytope will have
a high amount of symmetry and its edges will have relative evenly distributed
lengths.
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For different point-configurations and all pairs of triangulations on them, the fol-
lowing statistics compare the length of the algorithm’s flip-path and that of the
shortest possible flip-path between a pair of triangulations. The shortest flip-
path between two triangulations is computed with a breadth-first search on the
1-skeleton of the secondary polytope (which equals the flip-graph). For the target
vertex vertex target, the optimization vector is taken as the arithmetic mean of
all normalized normal vectors of faces that are adjacent to vertex target.

The table in Figure 41 and the diagrams in Figure 42 show the evaluation for
6 different point-configurations. Exact descriptions of the provided numbers and
graphics can be found in the figure captions.

The first 4 examples are all 2-dimensional point-configurations with points evenly
distributed on a circle. For 6 points on a circle the flip-paths from the algorithm
all have the same lengths as the shortest flip-paths. At 7 points on a circle the
first deviations occur. 9 percent of the triangulation-pairs have a shortest flip-path
with length 5, but the algorithm yields a flip-path with length 6. Also on 8 points
on a circle and 9 points on a circle deviations occur and one can assume that on
n points on a circle for n ≥ 7 the percentage of deviations will increase. But the
higher the deviation of the lengths is, the lower is the percentage of flip-paths that
have this deviation. So for some applications the algorithm might be a valuable
compromise between the amount of deviations and its time-complexity (which will
be shown later).

In this evaluation, 9 points on a circle is the example with the most points. There
is no example with more points, because for a convex point-configuration with n
points in 2 dimensions the number of triangulations (all of them are regular) is the
(n − 2)th catalan-number Cn−2 = 1

n−1

(
2(n−2)
n−2

)
, and the number of triangulation-

pairs is
(
Cn−2

2

)
. For n = 9 this means that already 91.806, and for n = 10, 1.021.735

triangulation pairs exist. So the size of the evaluated examples is limited by com-
puting power, time, and time-complexity.

There are also two examples of point-configurations where the points do not lie
on a circle. The first is 6 points in convex position. The comparison between its
flip-path evaluation and those of 6 points on a circle is interesting. When the
points are not evenly distributed on a circle, the flip-path lengths have deviations,
and one can see that the algorithm produces much better results for points on a
circle. The second example is the mother of all examples which also has deviations
in the flip-path lengths.
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Figure 42: Optimization algorithm - path length diagrams. Diagrams of the path length
evaluation for the algorithm in Figure 40. The different examples of point-configurations
are shown in their own diagrams. Each diagram shows one stack of bars for each class
of triangulation-pairs where the shortest flip-path has length l. The bars represent the
number of triangulation-pairs where the algorithm yields a flip-path with length l + i,
and they are stacked on each other for increasing i.
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5.3 Runtime of the algorithm

After the length of the algorithm’s flip-paths, the runtime is the second important
criterion. Since the algorithm is especially useful for 2-dimensional point-confi-
gurations in convex position, we only analyze this case. This case has also some
properties that make the runtime analysis easier, and we will describe some ways
to optimize the algorithm in order to achieve the runtimes that are presented.

We consider a 2-dimensional point-configuration with n points in convex position.
The secondary polytope has dimension (n− 3) but is embedded in Rn, every tri-
angulation is regular, and (n − 3) flips can be performed on every triangulation.
The neighborhood of every vertex of the secondary polytope looks like a (n− 3)-
dimensional cone with (n − 3) edges. This means that there are

(
n−3
n−2

)
= n − 3

facets in the cone.

As already mentioned, the algorithm doesn’t need to compute the actual secondary
polytope. It only needs the vertices of the secondary polytope, so it is sufficient to
work with the GKZ-vectors of the triangulations. Every GKZ-vector has n com-
ponents. For GKZ-vectors v and v′ of triangulations that are flip-neighbors we call
the vector v − v′ the GKZ-vector of the directed edge from v to v′. When a flip
is performed in a triangulation, exactly 4 components of the GKZ-vector of the
triangulation change (because the triangulation is 2-dimensional and for 4 points
of the point-configuration the incidence relations to triangles change). This means,
that the GKZ-vector of the corresponding directed edge has only 4 components
which are not zero.

We will now evaluate the runtime for different stages:

Optimization vector:

The algorithm must first compute the optimization vector opt vector. Let v be
the GKZ-vector of the target triangulation and vi the GKZ-vectors of the (n− 3)
flip-neighbors of the target triangulation. We compute v′i = v − vi which are the
GKZ-vectors of each directed edge from v to one vi. Only 4 components of a v′i
are not zero and so it can be calculated in O(1) time. All v′i can be calculated in
O(n) time. Since the secondary polytope has dimension (n− 3), we can compute
3 linear independent normal vectors wj for the affine hull of the secondary poly-
tope. This can be done by solving the linear equation A · ~x = ~0 where A consists
of the v′i as row-vectors. Solving the linear equation takes O(n3) time. For the
optimization vector, we want to compute the normal vectors of the facets of the
normal-cone of v. For a facet, we can calculate the linear equation B ·~y = ~0 where
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B consists of the row-vectors wj and the (n−3) vectors v′i where the corresponding
vi lie in the facet. A vector in the resulting space is a normal vector to the facet.
The equation-solving takes again O(n3) time. For all facets, this takes O(n4)
time. At last, the normal vectors are normalized, summed up, and divided by
(n−3). This takes O(n2) time and gives a vector in the normal cone of v that will
be taken as opt vector. In summary, the computation of the optimization vector
takes O(n) + O(n3) + O(n4) + O(n2) = O(n4) time. Solving the linear-equations
is the most time-consuming operation, but most row-vectors of the linear-equation
matrices consist of only zeros, except for 4 components. So we can expect that the
runtime is better in practice.

Note that, when flip-paths from different start triangulations to the same tar-
get triangulation have to be computed, the optimization vector only needs to be
computed once.

Preparations for the start triangulation:

After the optimization vector has been calculated, the algorithm starts in the
GKZ-vector of the start triangulation. Let now v be the GKZ-vector of the start
triangulation and vi the GKZ-vectors of the (n − 3) flip-neighbors of the start
triangulation. The calculation of all v′i = v − vi takes again O(n) time. Instead
of calculating the scalar products opt vector · vi for the optimization, better per-
formance can be achieved by calculating the scalar products si = opt vector · v′i.
Since every vi has only 4 components that are not zero, computation of one scalar
product takes O(1) time, and computation of all scalar products takes O(n) time.
In summary, the preparations for the start triangulation take O(n)+O(n) = O(n)
time.

Optimization step:

The last part of the evaluation is concerned with the optimization step. Assume
that the algorithm is currently in a triangulation T and has a list of scalar prod-
ucts. Taking the maximum of the list takes O(n) time. The algorithm can now
move on to the next triangulation T ′ that corresponds to the maximum of the
scalar products. The list of scalar products now needs to be updated. The step
from T to T ′ corresponds to an edge exchanging flip (because the points are
in convex position) located inside a quadrangle. All flips, except for 5, that are
possible in T , are also possible in T ′. These 5 flips are the already performed flip
from T to T ′ and the 4 flips that exchange edges that are part of the quadrangle.
Instead of them, the reverse-flip of the already performed flip and 4 other flips on
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the quadrangle are possible in T ′. The scalar products corresponding to these 5
flips must be updated, but all other flips stay the same and so their scalar products
also stay the same. Calculation of one scalar product takes O(1) time, but finding
the value in the list takes O(n) time. So the update time is O(5n) = O(n). Now
the optimization step can be repeated until the target triangulation is reached.
In summary, the optimization step takes O(n) + O(n) = O(n) time. For k op-
timization steps that are needed to reach the target triangulation (which means
that the generated flip-path has length k), the optimization steps take O(kn) time.

This means that the preparation time O(n) from the last stage is irrelevant. The
whole process could probably be accelerated, when the list of scalar products
is sorted (or stored in a heap). But the theoretical upper bound of the time-
complexity is hard to decrease because of the update task.

Summary:

In summary, for a 2-dimensional point-configuration with n points in convex posi-
tion and a given target triangulation the algorithm needs a preprocessing time of
O(n4) (that is, as described, expected to be faster in practice) and a computation
time of O(kn) for a flip-path with length k from any start triangulation to the
target triangulation.
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6 Conclusion

The problem, whether the flip-graph of triangulations of a point-configuration is
connected or not, exists for a long time. A lot of research was put into solving
this problem, and results for various classes of flip-graphs have been achieved. To
gain further insight into this topic, advanced structures might be needed. One
important structure for researching the flip-graph is the secondary polytope. We
have presented an overview of most of the important definitions and concepts nec-
essary to build and analyze the secondary polytope. The definitions start bottom
up and hardly any previous knowledge is required. Additionally, many figures are
provided in order to facilitate understanding and intuition. The precision and the
completeness of the definitions reduce ambiguities.

We have also established the definition of the constrained secondary polytope.
This polytope is related to a subset of the flip-graph. In contrast to the secondary
polytope, from where only information about regular triangulations can be gained,
in the constrained secondary polytope non-regular triangulations can also be an-
alyzed. The concept of a constraint is already applied to former definitions (e.g.
constrained subdivision function, constrained secondary fan) that were necessary
for the secondary polytope.

Various examples of point-configurations are given, and their (constrained) sec-
ondary polytopes along with their subdivision posets are analyzed. The examples
show again numerous figures for the structures.

Unfortunately, no direct results about the connectedness of flip-graphs were dis-
covered. But various properties of constrained secondary polytopes were figured
out. It remains to be seen if this properties lead to new results for flip-graphs of
triangulations. Still many more properties remain to be discovered. Especially
results about secondary polytopes can probably be carried over to constrained
secondary polytopes. See Section 3.4 for possible future work on constrained sec-
ondary polytopes.

At last, an algorithm for finding flip-paths between regular triangulations is given.
The algorithm works with linear optimization on the secondary polytope. The
quality of the generated flip-paths is evaluated by comparing them to the shortest
possible flip-paths. It turns out that the algorithm performs best for 2-dimensional
point-configurations in convex position. Additionally, a runtime analysis for the
case of 2-dimensional point-configurations in convex position is given.
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