
Master’s Thesis

Implementing X–Plane as a Visual
System for a Research Flight Simulator

submitted by

Thomas Krajacic

for achieving the academic title of Diplom–Ingenieur
in the field of Mechanical Engineering and Economics/Mechatronics.

————————————–

Institute of Mechanics
Graz University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing.Dr.techn. Reinhard Braunstingl
Graz, March 2012

Abstract

The Institute of Mechanics at the University of Technology in Graz employs a research
platform for flight simulation, which includes a flight simulator featuring a projection dome
for visualizing the environment. Presently, Microsoft Flightsimulator X is being utilized to
draw the outside world for the simulator. The product of this thesis is to be implemented
as part of an improved visual system in a second simulator currently being built (March
2012). This thesis is also intended to serve as a foundation for future academic projects
aimed at improving the visual quality of simulation.

This paper describes how the PC flight simulation software X–Plane was connected to
the FGED flight simulator (Flight, Gear and Engine Dynamics — the custom built simu-
lation software created at the Institute of Mechanics) by developing a plugin for X–Plane
and a shared library using the C++ programming language. Fundamental knowledge
of coordinate systems and transformation as well as advanced computer programming
concepts like shared memory and dynamic libraries were applied to integrate the FGED
flight simulator and X–Plane.

The first two chapters provide an overview over visual systems for flight simulation
and explain different methods to describe position and attitude of an aircraft as well as
how to apply transformations between coordinate systems — an essential requirement in
flight simulation.

Chapter 3 details the process of structuring the project and developing and implement-
ing a solution. After an introduction to programming topics such as using shared memory
and creating dynamically loaded shared libraries, the chapter shows how to develop an
X–Plane plugin which fetches and uses the information about the position and attitude of
the aircraft, and how X–Plane can report back information like frame rate and ground
elevation.

The final chapter reviews the implemented features, analyzes the performance of the
implemented solution, and discusses future improvements to be made.

The Appendix includes a User’s Guide and a Developer’s Guide as well as a listing of
the complete source code. The User’s Guide provides information about how to install
and configure the finished product, gives a specification of features and known limitations,
or references them as far as they have been mentioned in the main thesis. The Developer’s
Guide gives details on how to set up a development environment to continue development
and supplies helpful information on certain implementation specific aspects of the solution
developed in this paper.

Kurzfassung

Das Institut für Mechanik an der Technischen Universität in Graz betreibt eine
Forschungsplattform für Flugsimulation und verfügt über einen Flugsimulator, dessen Sicht-
system mit einer kugelschalenförmigen Projektionswand ausgestattet ist. Die Darstellung
der Aussenwelt wird zur Zeit durch die Software Microsoft Flightsimulator X gewährleistet.
Ein zweiter Simulator befindet sich gerade im Bau, und das Ergebnis dieser Arbeit soll im
Sichtsystem dieses Simulators implementiert werden. Dadurch soll ein höherer Grad an
Realismus in der Darstellung erreicht, sowie die Möglichkeit geschaffen werden, aufbauend
auf dieser Arbeit, weitere Projekte im universitären Rahmen an Studenten zu vergeben.

Die vorliegende Arbeit beschreibt, wie die PC–Software X–Plane in den FGED
Simulator (Flight, Gear and Engine Dynamics — der auf dem Mechanik Institut der
TU Graz selbst entwickelte Flugsimulator) integriert wurde, indem ein X–Plane Plugin
und eine C++ Bibliothek entwickelt wurden. Grundlegendes Wissen über Koordinaten-
systeme und -transformationen, sowie tiefgreifendes Verständnis im Bereich der Computer–
Programmierung über Themen wie Shared Memory und dynamische Bibliotheken wurden
angewandt um X–Plane in den bestehenden Simulator zu integrieren.

Die ersten beiden Kapitel bieten eine Übersicht über Sichtsysteme in der Flugsimulation
und die wichtigsten Technologien, die darin angewandt werden. Weiters werden die
gebräuchlichsten, in der Flugsimulation verwendeten, Koordinatensysteme vorgestellt,
Methoden, wie man die Lage eines Flugzeugs beschreiben kann und wie man Koordinaten
in unterschiedliche Bezugssysteme transformieren kann — eine wichtige Voraussetzung für
Berechnungen im Rahmen der Flugsimulation.

Kapitel 3 beschäftigt sich ausführlich mit der strukturierten Entwicklung der Lösung
und den Details der Implementierung. Nach einer kurzen Einführung in die Verwendung
von dynamischen Bibliotheken und Shared Memory wird gezeigt, wie man für X–Plane ein
Plugin entwickelt, welches Informationen über Ort und Lage eines Flugzeugs empfängt,
X–Plane entsprechend steuert, und Frame Rate und Höhe des Untergrunds zurückliefert.

Im letzten Kapitel werden die implementierten Funktionen untersucht sowie die Leis-
tungsfähigkeit der entwickelten Lösung analysiert. Weiters werden mögliche zukünftige
Verbesserungen und Erweiterungen des Systems diskutiert.

Im Anhang befinden sich ein Benutzerhandbuch und ein Entwicklerhandbuch. Das
Benutzerhandbuch gibt Information darüber, wie man alle Komponenten der Lösung
installiert und konfiguriert, welche Funktionen verfügbar sind, und welche Beschränkungen
bestehen. Bei Bedarf wird auf die entsprechenden Passagen im Hauptteil der Arbeit
verwiesen. Das Entwicklerhandbuch beschreibt, wie man eine Entwicklungsumgebung für
die Weiterentwicklung dieses Projekts vorbereitet und gibt hilfreiche Informationen zu
einigen Aspekten der Programmierung in dieser Arbeit.

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

Acknowledgements

First and foremost I would like to express my gratitude to Professor Braunstingl, who’s
lectures on flight simulation I have enjoyed and who inspired my interest in working with
the flight simulator at the university. He also supported me during the course of writing
this thesis.

Special thanks go to Sandy Barbour IEng MIET, co-author of the plugin SDK for
X–Plane, for providing exceptional support despite being very busy due to the upcoming
release of the next version of X–Plane. Even though Mr. Barbour is doing development
on the SDK in his spare time, he not only responded to my posts on one of the developer
forums, but also kindly provided personal assistance via email with regard to a number of
quirks uncovered while programming with the SDK — most of which where based on my
inexperience rather than flaws of the SDK or X–Plane.

Further, Mr. Barbour and Mr. Ben Supnik, the second developer on the SDK, deserve
special recognition for even providing the SDK for X–Plane (Mr. Barbour is not even
employed by Laminar Research, both develop the SDK in their spare time without being
paid for it, and yet they make it available for free to the public). The solution developed
in this thesis would not have been possible without their work.

A ‘Thank you!’ is also in order for the many people who answered my questions on
the http://forums.x-plane.org/ forum. Without the help of this community, it would have
been a lot harder to start developing a plugin for X–Plane.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of Visual System Technology 4
1.3 Visual System Software . 6
1.4 Goals . 8

2 Theory 9
2.1 Common Coordinate–Systems in Aviation 9

2.1.1 Earth–Centered–Earth–Fixed (ECEF) 10
2.1.2 North–East–Down (NED) 12
2.1.3 Body–fixed Coordinate System 12
2.1.4 X–Plane’s OpenGl Coordinate Space 13

2.2 Describing Aircraft Attitude . 14
2.3 Coordinate Transformations . 15

2.3.1 Rotation Matrix / Euler–angles 15
2.3.2 Quaternions / Euler–Rodrigues Parameters 19
2.3.3 Comparison of Rotation Formulations 23

3 Implementation 24
3.1 Existing Interface . 26
3.2 Designing a New Solution (FGED–link) 28
3.3 Shared Library (FGEDBridge) . 29

3.3.1 Shared Memory . 31
3.3.2 JNI Interface . 35
3.3.3 C/C++ Interface . 38

3.4 X–Plane Plugin (FGEDCommander) 39
3.4.1 Anatomy of an X–Plane Plugin 39

MASTER’S THESIS - THOMAS KRAJACIC vi

TABLE OF CONTENTS Table of Contents

3.4.2 Setting and Getting X–Plane Parameters 42
3.4.3 Aircraft Control . 45
3.4.4 Changing Aircraft Models 46
3.4.5 View Configuration . 49
3.4.6 Adjusting Weather . 53
3.4.7 Setting Date and Time . 55
3.4.8 Sending Return Values . 56

4 Conclusion 57
4.1 Feature Analysis . 58
4.2 Shortcomings of the Current Implementation 59
4.3 Performance Analysis . 60

4.3.1 XPInterface . 61
4.3.2 X–Plane . 61
4.3.3 FGED–link . 62

4.4 Possible Future Features . 65

Appendix 66

A User’s Guide 67
A.1 FGED–link Installation . 67
A.2 X–Plane Setup . 69

A.2.1 The Configuration File . 69
A.2.2 X–Plane Settings . 70
A.2.3 Performance Tuning . 73

A.3 JNI Interface Reference . 74
A.3.1 renderEngineXfr(...) 75
A.3.2 setUserAircraft(...) 75
A.3.3 calibrateView(...) . 75
A.3.4 setAircraft(...) . 76
A.3.5 setCamera(...) . 76
A.3.6 setWeather(...) . 77
A.3.7 setDateTime(...) . 77
A.3.8 setPilotsHead(...) . 78
A.3.9 getAircraftModels() . 78
A.3.10 getReturnValues(...) 78

MASTER’S THESIS - THOMAS KRAJACIC vii

TABLE OF CONTENTS Table of Contents

B Developer’s Guide 79
B.1 Development notes . 79
B.2 Setting Up the Environment . 80

B.2.1 The Qt Libraries . 81
B.2.2 Project Setup in Visual Studio 2010 82

B.3 Class Overview . 85
B.3.1 The Aircraft Class . 85
B.3.2 The Environment Class . 86
B.3.3 The FGEDHelper Namespace 86

List of Figures 87

List of Tables 89

List of Code–Listings 90

Bibliography 91

Where a masculine term may appear in this paper it refers to both sexes.

MASTER’S THESIS - THOMAS KRAJACIC viii

Chapter 1

Introduction

There are many aspects of simulating flight, and the most basic requirement is the
simulation of physical phenomena like gravity, lift or drag. This may be enough for
engineering applications like testing airframe behavior or manifestation of aircraft failures.
If, however, the intent is to induce the feeling of actually commanding a real aircraft,
then one of the most important components will be a visual representation of the pilot’s
environment. This not only includes the cockpit but also the world outside the aircraft.

The subject of this thesis is the integration of X–Plane into the FGED flight simulator
(Flight, Gear and Engine Dynamics — the custom built simulation software created
at the Institute of Mechanics), to provide an exceptional visual representation of the
environment. Chapter 1 presents the motivation for switching to X–Plane and gives a
short introduction to visual systems in general, their history and the core technologies
they utilize. It concludes on the goals that were set for the solution developed in this
paper. Chapter 2 introduces the reader to the concepts of different coordinate systems,
transformation between them and mathematical ways to describe them. The following
Chapter 3 gives a detailed look at how the desired features were carried out, and Chapter 4
analyzes to which extent they were implemented, takes a look at performance and discusses
ways to further enhance the product of this thesis. The Appendix includes a User’s Guide
explaining how to install and set up the finished product and a Developer’s Guide giving
information on how to continue development for it.

1.1 Motivation

Flight simulator I at the Institute of Mechanics at the University of Technology in Graz
(TU Graz) is equipped with a replica hull of a DC–10 cockpit and a spherical projection
wall with three projectors for visualizing the environment. It covers a horizontal field of
view of about 150◦ and a vertical field of view of about 33◦. The projection wall is roughly
5 meters in front of the pilot, which, even though not optimal, provides good conditions
concerning distant focus (see section 1.2 about collimation). The FGED flight simulator
currently uses Microsoft’s Flightsimulator X (FSX) in its visual system.

MASTER’S THESIS - THOMAS KRAJACIC 1

CHAPTER 1. INTRODUCTION Motivation

Figure 1.1: Flight simulator I at the TU Graz. Three projectors display
the virtual world on a spherical wall with an approximate horizontal field of
view of 150◦ and a vertical field of view of about 33◦. The projection wall is
approximately 5 meters in front of the pilot. Photo courtesy of Dipl. Ing. Boris-
André Prehofer. All rights reserved.

A second simulator with a cylindrical projection wall is in the final stage of construction
(March 2012). Its projection wall is about 3.5 meters in front of the pilot and provides
a horizontal and vertical field of view of approximately 180◦ and 44◦, respectively. The
product of this thesis is intended to be implemented there to create an improved visual
system that provides the foundation for future academic projects and further enhancing
visual quality in simulation (figure 1.2).

Using FSX as image generator worked well for many years, but it has its limitations.
The library used to connect FSX and FGED is a commercial product (FSUIPC by Peter
Dowson1) and its source code is not available, which makes it impossible to add or improve
features as needed. Furthermore, the visual quality of the virtual world is starting to show
its age. Computer graphics technology has advanced a lot in recent years and FSX has not
1http://www.schiratti.com/dowson.html

MASTER’S THESIS - THOMAS KRAJACIC 2

CHAPTER 1. INTRODUCTION Motivation

Figure 1.2: The unfinished Flight simulator II at the TU Graz. The cylindrical
projection wall has an approximate horizontal field of view of 180◦ and a vertical
field of view of around 44◦. The projection wall will be approximately 3.5 meters
in front of the pilot.

been improved in a long time2, its development has even been officially abandoned in 20093.
In August 2010 Microsoft announced it would release a completely new flight simulation
platform called Microsoft Flight4, but no release date was given, nor any information
whether a plugin–system or software developer kit (SDK) of the necessary level would
even be available.

On the other hand, Laminar Research, the maker of X–Plane have been busy working
on the next version (X–Plane 10). Its release was already delayed more than a year from
initial plans, but X–Plane 10 was finally released in December 2011. Furthermore, a
powerful SDK is available for X–Plane. The plugin SDK is an independent development
to allow programmers to create plugins that can be used with X–Plane. It is developed
by Sandy Barbour and Ben Supnik in their spare time, and made available free of charge.

While X–Plane 9 already provided very good graphics and a powerful SDK, the release
of version 10 further enhanced possibilities for some of the desired features.

Originally, the work in this thesis was done with X–Plane 9 but the SDK had a history
of providing consistent features throughout multiple releases of X–Plane and so when
X–Plane 10 was released only minor modifications to the source code were necessary
for the switch to the latest version. The version of X–Plane 10 used in this thesis was
10.0.4r1, which, although released already, was still considered beta software, and some
new features were not yet accessible through the SDK (e.g. the new cirrus cloud type).
Therefore, some of the work in this paper might need adjustments once X–Plane matures.
2Flightsimulator X was released in October 2006.
3See http://www.microsoft.com/Products/Games/FSInsider/news/Pages/AMessageFromAces.aspx
4http://www.microsoft.com/games/flight/

MASTER’S THESIS - THOMAS KRAJACIC 3

CHAPTER 1. INTRODUCTION Overview of Visual System Technology

1.2 Overview of Visual System Technology

This section aims to give a short overview of the history of visual systems and mentions
some important technologies used. The historic information presented here was taken
mostly from Page and Associates [22].

Figure 1.3: The analog visual system of the TL39 flight simulator used two
terrain mock–ups and two cameras. It was installed at the Moscow Aviation
Institute until 2001. Source: Wikipedia, Photo by Sergey Khantsis.

In the early days of flight simulation (at the beginning of the 20th century) different
methods of giving the pilot a better understanding of the environment were invented. A
very simple method in the 1950s was the projection of shadows of objects with a point–light
source onto a backlit screen, to give a hint of what the environment could look like. In
the same time period, systems were developed where pre–recorded movies were projected
or displayed on a monitor in front of the pilot. Later, even closed circuit images were
transferred from a camera that moved over a model scene of the environment according to
the flightpath chosen by the pilot (see figure 1.3). Of course, the obvious limitation of
these systems restricted the aircraft’s movement to the very limited area that was modeled.

MASTER’S THESIS - THOMAS KRAJACIC 4

CHAPTER 1. INTRODUCTION Overview of Visual System Technology

The biggest advances became possible through the evolution of digital computers and
computer graphics technology. CRT Monitors and projectors could be used to display
the environment using computer generated images capable of presenting scenery with a
higher degree of detail. Monitors (though mostly LCDs) and projectors are still used
today, although they are frequently combined with collimating mirrors (see below) for
enhanced realism.

One of the challenges in providing a realistic experience with a monitor or projection
screen close to the pilot is the presentation of objects supposed to be far away, while they in
fact are being projected at a very close distance. This does not provide the same impression
as viewing a distant object in real life. Since the human brain creates three–dimensional
images by combining what both eyes see, depth perception is very strong at close distances
but quite weak to non–existent at greater distances, as the images seen by both eyes show
more or less the same angle of an object. This effect is especially noticeable at distances
of less than approximately 9 meters.

Monitor Projector

Beam
 sp

litt
er

Spherical
projection screen

Spherical
mirror

Spherical
mirror

Figure 1.4: Through collimation it is possible to make the eyes focus at
‘optical infinity’, which in turn lets the brain believe that the image seen is at a
distance. The left schematic shows the use of a monitor and a semi–reflective
beam splitter. In the right image a projector and a spherical projection screen
are used.

To achieve the same effect for images that are displayed close to the pilot, the visual
lines need to be collimated (see figure 1.4). This means that the visual lines arrive
parallelized at the eye or, the other way around, the eye is impelled to focus at ‘optical
infinity’. That way the brain assumes the relevant object to be far away. Technically, this
can be achieved using parabolic reflective mirrors. Since parabolic mirrors would be very
difficult and expensive to produce with the required accuracy, spherical mirrors are used
instead, which match the parabolic shape in the vicinity of its vertex very closely.

A second very important effect achieved by collimated displays is that a pilot and a
co–pilot sitting in a simulator cockpit do not experience the parallax error that is present

MASTER’S THESIS - THOMAS KRAJACIC 5

CHAPTER 1. INTRODUCTION Visual System Software

with regular projection onto a wall or screen. Suppose the pilot is looking straight ahead
to view an object at the end of the runway. This object would need to be displayed on the
projection wall in front of the pilot. The co–pilot, however, would also expect this object
to be directly in front of him, but it is actually displayed to the left — where the pilot
would need to see it on the projection wall (see figure 1.5).

pilot co-pilot

ε

pr
oj

ec
tio

n wall

where distant objects are
displayed (calibrated for pilot)

where co-pilot would expect
to see distant objects

pilot co-pilot
co

lli
m

at
ing m

irro
r

where pilot sees
distant objects

where co-pilot sees
distant objects

Figure 1.5: Since the pilot expects distant objects straight ahead to be
projected directly in front of him, the projection display needs to be calibrated
to do so. This creates a parallax error for the co-pilot in the simulator as he
would also expect that same distant object to be projected directly in front of
him. The angular error ε is called parallax error. This effect is remedied by
using a collimating mirror.

Modern simulators achieve this with a collimating mirror which is frequently a thin
reflective film (for example aluminized Mylar) that is shaped through a partial vacuum
on the back side. This makes the construction extremely light and it is cheaper than
producing highly accurate mirrors out of rigid materials.

While the hardware can contribute to a reaslitic experience mostly with collimation
and an unrestrained field of view, the degree of realism depends heavily on the software
responsible for drawing the outside world.

1.3 Visual System Software

It is no trivial task to create a computerized representation of the environment, be it
just for the sheer amount of data to process. Modeling a realistic environment to fly in
requires information about ground elevation, the type of terrain (like grass, trees, water),
placement of roads and buildings, and so on. Since it should also be a representation
of the real world and not just a fictitious area, it is further not simply sufficient to
generate random scenery, but information about the real world would have to be gathered
from numerous sources. Furthermore, to provide a high degree of realism, it is required

MASTER’S THESIS - THOMAS KRAJACIC 6

CHAPTER 1. INTRODUCTION Visual System Software

that atmospheric phenomena like clouds, rain or lightning can be simulated convincingly.
Displaying additional aircraft traffic on airports and in the sky gives the benefit of further
improving the simulation of real world situations.

The visual system needs to be capable of displaying these details at a frame rate high
enough for the human eye to interpret motion between the images as fluid. Multiple factors
contribute to this and aside from the physiological differences among human individuals,
the speed of the content in the consecutive images, the size of the display, brightness of
the images, and other factors are important. While it is not possible to give a definite
frame rate (the human eye does not see in ‘frames’), the frame rate to trick the brain into
believing that consecutive images show continuous motion without any difference to the
real world is very high — probably in excess of 300 frames per second (fps) [1, 5]. For
visual systems (especially for non–combat aircraft simulators) however, a frame rate of
60–100fps is common, since relative motion of objects seen outside the cockpit is relatively
low. Even 30fps have given acceptable results with the flight simulator at the TU Graz.

Summing up all the software requirements for visual systems, it proves to be beyond
the capacities of small simulator–developers to provide a visualization of the entire world
or even a larger area like a whole country, so alternatively it is a viable option to purchase
and integrate a third–party visual system.

There are quite a few manufacturers of visual systems offering products for different
requirements concerning technology and realism. Table 1.1 lists a few companies and links
to their product websites.

FRASCA http://www.frasca.com/products/visualsystems.php

Lockheed Martin http://www.sim-industries.com/visual-system/

RSI visual systems http://www.rsi-visuals.com/

FlightSafety http://www.flightsafety.com/fs_service_simulation_systems_cat.php?p=vis

CAE http://www.cae.com/en/sim.products/sim.products.asp

Evans & Sutherland http://www.es.com/

Table 1.1: A list of selected visual system suppliers for flight simulators.

With most suppliers, it is possible to acquire just the image generator, or a complete
product including screen(s) or projection hardware. According to the information pre-
sented on these websites, the high–end products are suited for even the most demanding
applications.

A certainly less expensive alternative is provided through PC–flight simulators like
Microsoft Flightsimulator 5 or X–Plane6, which already include a modeled environment
that spans most of the globe and is detailed enough for a realistic experience. These
5http://www.microsoft.com/games/flightsimulatorx/
6http://www.x-plane.com/

MASTER’S THESIS - THOMAS KRAJACIC 7

CHAPTER 1. INTRODUCTION Goals

simulators allow for being used as visual system software through a programming interface
which in turn creates the additional benefit of providing many opportunities for students
to work on projects and study topics related to flight simulation.

1.4 Goals

When deciding on requirements for a future visual system, the following goals were set,
regardless of what could be done with the X–Plane SDK’s features:

1© Seamless integration into the current system while keeping the same interface.
This includes being able to set position and attitude as well as the weather, and
getting the frame rate and local ground elevation back in return. See table 3.1
on page 27 for a complete list of the original interface’s parameters.

2© Support for a setup of three or more projectors as seen in figure 3.1.

3© A possibility to control and display a number of additional aircraft in simulation.

4© More realistic rendering of lights. Especially the aircraft’s lighting in FSX was
below expectations. Realistic landing lights and strobes illuminating clouds
when flying through them are desired.

5© Possibility to change the pilot’s position to compensate for parallax error for
the purpose of simulating a precision approach.

6© Retrieve and set weather conditions so that a simulated RADAR image can be
constructed from them for cockpit instruments.

7© Provide support for controllable stop bars on taxiways at airports.

8© Airport lighting that can be dimmed and switched on during daylight.

Some of these features have been proven to be easily implemented, while others
would have required too extensive work to be implemented during the course of this
project. Achieving feature 4©, for example, depends mostly on what the graphics engine
of X–Plane 10 can provide, and can hardly be implemented otherwise.

Some problems might be more easily solved as X–Plane 10 matures, as usually
features are added even during the lifecycle of a particular major revision. The sections
‘Shortcomings of the Current Implementation’ and ‘Possible Future Features’ in Chapter 4
will go into more detail about which of the goals could not be met and how to possibly
reach them in a future implementation.

MASTER’S THESIS - THOMAS KRAJACIC 8

Chapter 2

Theory

When dealing with flight-simulation, one of the fundamental required skills are means to
describe position and attitude in 3-dimensional space. Furthermore, it is practical to be
able to transform coordinates between different systems of reference.

The following chapter is intended as an introduction and overview of these concepts
and describes some common methods but does not claim to be complete.

2.1 Common Coordinate–Systems in Aviation

There are different coordinate systems suitable to be used as references in aviation.
Depending on the task, the appropriate coordinate frame can greatly simplify calculations.

The Earth–Centered–Earth–Fixed coordinate frame is well–suited for calculations
in a large geographic or global context.

The local–level frame is a local geographic coordinate system useful for kinematic
calculations of aircraft. Commonly used frames are the North-East-Down (NED)
frame, the East-North-Up (ENU) frame or the wander frame.

The body–fixed coordinate frame of an aircraft acts as reference of rotation about its
axes.

In addition to these coordinate systems, the OpenGL coordinate space is discussed,
as X–Plane uses this coordinate system to draw objects on the screen.

Using these coordinate systems is not mutually exclusive, since coordinates can be
converted between frames of reference.

MASTER’S THESIS - THOMAS KRAJACIC 9

CHAPTER 2. THEORY Common Coordinate–Systems in Aviation

2.1.1 Earth–Centered–Earth–Fixed (ECEF)

Describing the location of any point on or near earth can be conveniently done using a
coordinate frame that is attached to earth and has it’s origin at the earth’s center of mass.
Earth’s shape can be assumed spherical, or an oblated sphere according to the World
Geodetic System standard of 1984 (WGS–84). This reference standard is also used for the
Global Positioning System (GPS) and defines earth’s shape to be an imperfect ellipsoid
whose defining geometric parameters are:

Semi-major axis a 6378137.0 m
Inverse flattening 1/f 298.257223563

Table 2.1: Parameters for Earth’s spheroid shape according to WGS–84 . The
flattening f = 1− b

a where b is the semi-minor axis (see figure 2.1).

Using the WGS–84 standard, the Z–axis is pointing north to the direction of the IERS
Reference Pole1 and the X–axis points to the intersection of the IERS Reference Meridian
and the plane passing through the origin and normal to the Z–axis. The Y –axis then
completes the right–handed coordinate frame. The axes rotate along with earth.

IE
RS

 R
ef

er
en

ce
 M

eri
dia

n

XWGS-84

ZWGS-84

YWGS-84

IERS Reference Pole

β

λ

a

b

Figure 2.1: The ECEF coordinate frame according to the WGS–84 ellipsoid
model of the earth. Longitude is denoted with λ and latitude with β. Flattening
is greatly exaggerated in this image for illustrative purposes.

1The International Earth Rotation and Reference Systems Service (IERS) provides data on Earth
orientation and on the International Celestial Reference System/Frame. See http://www.iers.org/

MASTER’S THESIS - THOMAS KRAJACIC 10

CHAPTER 2. THEORY Common Coordinate–Systems in Aviation

While using the ECEF frame it can be more intuitive to use polar coordinates in the
form of latitude, longitude and altitude (referred to as ‘geodetic coordinates’), but in
calculations it is often more practical to use the cartesian representation.

It is important to note that the latitude in WGS–84 is not derived from the angle
of the equatorial plane with the line between a point on the earth’s surface and earth’s
center, but rather the local normal of the reference spheroid and said plane (See figure 2.1).
Altitude, elevation or height are measured from the reference spheroid along this normal
as well. Since different use of these terms was encountered in literature, the following
definitions as suggested by the FAA2 [7] and ICAO3 are used throughout this paper (see
Figure 2.2):

Altitude
The height of a level, point, or object Above Ground Level (AGL) or measured from
Mean Sea Level (MSL).

Elevation
The vertical distance of a point or level on, or affixed to, the surface of the earth
measured from mean sea level.

Height
In aviation it usually denotes how much an object protrudes from the ground surface,
but is also more generally used for the vertical distance between any point (even an
aircraft) and the ground level.

height
elevation

altitude

Mean Sea Level

Figure 2.2: Definition of altitude, elevation and height in this paper.

2The Federal Aviation Administration, see http://www.faa.gov/
3The International Civil Aviation Organization, see http://www.icao.int/

MASTER’S THESIS - THOMAS KRAJACIC 11

CHAPTER 2. THEORY Common Coordinate–Systems in Aviation

2.1.2 North–East–Down (NED)

XNED

ZNED

YNED

Figure 2.3: The NED coordinate frame is one way of defining a local level.
The X–axis points north, the Y –axis to the east, and the Z–axis points down.

Since earth’s radius is large compared to any aircraft’s motion observed in a short period
of time, it can be convenient to introduce a local geographic coordinate space that can
be used to track aircraft motion and attitude [23, p. 601]. This is unsuitable for long
distance flights but simplifies calculations for local problems. The NED coordinate frame
has its X–axis pointing north, the Y –axis to the east, and the Z–axis pointing down
along a normal to earth’s hypothetical spheroid surface. This coordinate frame is also the
initial reference against which aircraft attitude is measured when using Euler–angles (see
section 2.2).

2.1.3 Body–fixed Coordinate System

The aircraft’s body–fixed coordinate frame has its origin at the center of mass of the
aircraft with the X–axis pointing forwards through the nose. The Y –axis points to the
right through the starboard wing and the Z–axis points down to form a right–handed
coordinate frame (see figure 2.4).

Obviously, the coordinate axes of an aircraft flying level due north coincide with the
NED frame’s axes.

MASTER’S THESIS - THOMAS KRAJACIC 12

CHAPTER 2. THEORY Common Coordinate–Systems in Aviation

Ψ

Ψ
Θ

−Φ

center of mass

Zb

Yb

Xb

XNED

YNED

ZNED

Figure 2.4: The aircraft’s fixed coordinate frame is shown in red (index b
denotes the body–fixed coordinate system). Also shown are the Euler–Angles
Ψ (‘Heading’ or ‘Yaw’), Θ (‘Elevation angle’ or ‘Pitch’) and Φ (‘Bank angle’ or
‘Roll’) which are measured against the NED frame. Please note that the image
displays a negative Roll angle, as a positive angle would require a clockwise
rotation around the X–axis.

While the axes designation used above is the one used most frequently, X–Plane uses
a different assignment. In X–Plane, the X–axis points along the right wing, the Y –axis
points straight up and the Z–axis points to the aircraft’s tail.

2.1.4 X–Plane’s OpenGl Coordinate Space

For on–screen drawing X–Plane uses OpenGl and sets up a coordinate space for 3D objects
similar to the NED frame. The origin is adjusted from time to time to be at a reference
point on the surface of the earth. The SDK allows for querying its current position by
latitude, longitude and elevation. The X–axis extends from the origin to the east, the
Y –axis points straight up, away from earth, and the Z–axis points south.

Because of earth’s curvature, the directions of X and Z corresponding to east and
south are true only at the origin. If the aircraft moves away from the origin far enough and
new scenery is loaded, the origin is repositioned. Whenever one needs to draw something
in 3D space, this OpenGl coordinate system needs to be used, but X–Plane provides
methods to transform geodetic coordinates to this Cartesian system and vice–versa.

MASTER’S THESIS - THOMAS KRAJACIC 13

CHAPTER 2. THEORY Describing Aircraft Attitude

2.2 Describing Aircraft Attitude

There are many different ways to describe the spatial orientation of an aircraft (called
attitude in aviation). Euler’s rotation theorem4 for example states that any displacement
of two Cartesian coordinate frames sharing the same origin can be achieved by one single
rotation around an appropriate axis (Euler–axis formulation). This means, that specifying
the axis of rotation and a corresponding angle alongside an adequate reference frame
would be enough to specify the attitude of an aircraft, more specificly, its body–fixed
coordinate frame. However, since the axis of rotation and the corresponding angle are not
immediately obvious, it is more practical to use different means to describe orientation.

Euler further discovered that it is possible to achieve an arbitrary orientation by
applying three sequential rotations. Using the local–level frame’s axes, rotation can
occur around them in their original position (fixed frame), or around the newly aligned
axes after a previous rotation (moving frame). It is not necessary to stick to a certain
order and even re–using a previous axis of rotation is allowed, as long as they are not
used consecutively. This leads to 12 possible combinations of rotation–axes sequences
(see Phillips [23, sec. 11.2]). The axes used most frequently in aviation are the axes fixed to
the aircraft frame and therefore the axes of rotation move with the rotation of the aircraft
(intrinsic rotation) — the corresponding angles are called Cardan–angles or sometimes
Euler–angles (see figure 2.4).

Since consecutive rotations are not commutative, the convention in aviation is to apply
them in a specific order: First around the Z–axis (Ψ), then around the Y ′–axis(Θ), and
then around the X ′′–axis (Φ) where Y ′ and X ′′ indicate the newly aligned axes after the
first and second rotation.

The initial orientation of the axes for measuring the angles coincides with the NED
frame which correlates to a level flight due north.

To avoid a certain position having more than one associated combination of Euler–
angles (see Phillips [23, p. 623]) — imagine an aircraft with a pitch of 180◦ where the
same attitude could also be achieved with a heading of 180◦ and rolling 180◦ to either side
— the angles are limited to

0 ≤ Ψ < 360◦

−90◦ ≤ Θ ≤ 90◦

−180◦ < Φ ≤ 180◦

Note that this still does not guarantee a unique set of angles for certain attitudes as
shown in section 2.3.1. While Cardan–angles are very intuitive to use, this is one of the
mathematical weaknesses when using them to describe vertical orientation of an aircraft (in
mechanics this is called gimbal lock). Since most of civil flight–maneuvers will take place
in near–horizontal orientation this might not be an issue, but when simulating military
4Named after Swiss mathematician and physicist Leonhard Euler (1707–1783).

MASTER’S THESIS - THOMAS KRAJACIC 14

CHAPTER 2. THEORY Coordinate Transformations

aircraft, rockets or non–standard situations like crashes, this singularity in calculating
attitude becomes a problem. See section 2.3.1 for further discussion on this topic.

2.3 Coordinate Transformations

When dealing with multiple coordinate systems, tools for expressing coordinates or vectors
of one frame in the coordinate space of another reference frame are needed and a concise
mathematical formulation is desired. This section focuses on rotation, since translation is
trivial to apply to a vector by componentwise addition of a displacement vector.

There are different approaches on how to apply 3D rotations. While using Euler
angles as discussed before are very intuitive to use and easily applied in a rotation matrix,
section 2.2 already introduced some concerns with their use in calculations. Quaternions
(see section 2.3.2), on the other hand, provide singularity–free rotations with the added
benefit of being more efficient to implement in computer programs.

This section gives an introduction to rotation matrices and Euler–Rodrigues parameters,
which are the rotation quaternions used frequently in flight simulation. Most of this section
is derived from Kuipers [15], Phillips [23], Koks [14] as well as Diebel [6], Shoemake [25],
Vicci [30], Hoffmann [11], Marco [16] and Horn [12].

2.3.1 Rotation Matrix / Euler–angles

-φ

Yʹ

Zʹ

Y

Z

P

Q

p

φ

r

Figure 2.5: For every rotation of a point P with its position vector ~p around
the X–axis through an angle ϕ (active rotation) there is an equivalent rotation
of the coordinate frame through −ϕ (passive rotation), that yields the same
coordinates for P in the new frame (Y ′, Z ′; indicated in red) as the rotated
point Q expressed in the original frame.

MASTER’S THESIS - THOMAS KRAJACIC 15

CHAPTER 2. THEORY Coordinate Transformations

When rotating a point P with its position vector ~p in the YZ–plane counterclockwise
around the X–axis (see figure 2.5), the resulting vector ~r can be calculated componentwise:

~rx = ~px

~ry = ~py · cos(ϕ)− ~pz · sin(ϕ)

~rz = ~py · sin(ϕ) + ~pz · cos(ϕ)

Using vector/matrix notation this can be written as

rxry
rz

 =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 ·
pxpy
pz

 (2.1)

which leads to the form

~r = R · ~p (2.2)

where R is called the rotation matrix that rotates ~p into ~r. Only matrices which are
orthogonal (A ·AT = I, where I is the identity matrix) and have a determinant of +1 are
rotation matrices and form the special orthogonal group in three dimensions or SO(3).

Doing this for the other axes as well results in the corresponding rotation matrices:

Rx =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (2.3)

Ry =

 cos(ϕ) 0 sin(ϕ)
0 1 0

− sin(ϕ) 0 cos(ϕ)

 (2.4)

Rz =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 (2.5)

Since rotation matrices are orthogonal, the inverse R−1 is equivalent with RT where RT

is the transpose of R. Inverse rotation can therefore be achieved with

~p = RT · ~r (2.6)

MASTER’S THESIS - THOMAS KRAJACIC 16

CHAPTER 2. THEORY Coordinate Transformations

The rotation can be interpreted to yield the new coordinates for point P if it is rotated
as stated above, or it can describe a rotation of the coordinate frame in the opposite
direction and give the coordinates of the unrotated point P according to this new frame
(this is called active and passive rotation respectively).

This means that it is possible to express the coordinates of a point
P in a different coordinate system if the rotational displacement of
the two frames is given.

Consecutive rotations can be achieved by multiplying the rotation matrices written in
left–to–right order if the axes move with the rotation and right–to–left for fixed axes. This
means that a point in the aircraft’s fixed frame which is oriented about the Euler–angles Ψ,
Θ, Φ can be expressed in the coordinates of the corresponding NED frame by multiplying
its position vector with the appropriate rotation matrices. Note the order of multiplication
since the axes are supposed to move with every rotation.xNEDyNED

zNED

 =

cos(Ψ) − sin(Ψ) 0

sin(Ψ) cos(Ψ) 0

0 0 1

 cos(Θ) 0 sin(Θ)

0 1 0

− sin(Θ) 0 cos(Θ)

1 0 0

0 cos(Φ) − sin(Φ)

0 sin(Φ) cos(Φ)

 ·
xbyb
zb

 (2.7)

With the rotation matrices premultiplied to form one single rotation matrix and the
shorthand notation SΘ = sin(Θ) and CΘ = cos(Θ) (for all 3 angles respectively) the
transformation equation results inxNEDyNED

zNED

 =

CΘCΨ SΦSΘCΨ − CΦSΨ CΦSΘCΨ + SΦSΨ

CΘSΨ SΦSΘSΨ + CΦCΨ CΦSΘSΨ − SΦCΨ

−SΘ SΦCΘ CΦCΘ

 ·
xbyb
zb

 (2.8)

Again, the inverse transformation can be calculated by transposing the rotation matrix.
In equation (2.8) it can be seen that with Θ=90◦ (and sin(90◦)=1, cos(90◦)=0) the

rotation matrix becomes

R =

 0 SΦCΨ − CΦSΨ CΦCΨ + SΦSΨ

0 SΦSΨ + CΦCΨ CΦSΨ − SΦCΨ

−1 0 0

 (2.9)

which can be further simplified using trigonometric identities5 to produce

R =

 0 sin(Φ−Ψ) cos(Φ−Ψ)
0 cos(Φ−Ψ) − sin(Φ−Ψ)
−1 0 0

 (2.10)

5 sin(α± β) = sin(α) cos(β)± cos(α) sin(β)
cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

MASTER’S THESIS - THOMAS KRAJACIC 17

CHAPTER 2. THEORY Coordinate Transformations

It is obvious that it is indifferent whether Ψ is increased or Φ is decreased (and vice–
versa) as the resulting rotation will be the same, and hence, one degree of freedom is lost.
If Ψ or Φ are both assumed to be 0, it is not possible any more to turn the aircraft around
its Zb–axis using any of the Euler–angles (see figure 2.6) in this position, since the axes
that Ψ and Φ turn about coincide and are both perpendicular to the XNEDYNED–plane.
This is called gimbal–lock. Only by changing any one of the angles can this motion be
expressed through Euler–angles.

Θ

Ψ

Φ

X b

Z b = X
NED

Yb = Y
NED

Z
NED

Figure 2.6: If Θ = 90◦, it is not possible to express a rotation around the
aircraft’s Zb–axis using Euler–angles because the axes that Ψ and Φ turn about
coincide and one degree of freedom is lost.

The problem is even more visible in a mathematical sense in the equations for angular
motion6. The relationship between angular motion in the body–fixed frame and Euler–
angles is given through equation (2.11). The column–vector ~ω contains the body–fixed
6For a derivation see Phillips [23, Chapter 7]

MASTER’S THESIS - THOMAS KRAJACIC 18

CHAPTER 2. THEORY Coordinate Transformations

angular rates around the axes Xb, Yb and Zb.

ωxωy
ωz

 =

1 0 0
0 CΦ SΦ

0 −SΦ CΦ

 ·
Φ̇

0
0

+

1 0 0
0 CΦ SΦ

0 −SΦ CΦ

CΘ 0 −SΘ

0 1 0
SΘ 0 CΘ

 ·
0

Θ̇
0

+

1 0 0
0 CΦ −SΦ

0 SΦ CΦ

 CΘ 0 SΘ

0 1 0
−SΘ 0 CΘ

CΨ −SΨ 0
SΨ CΨ 0
0 0 1

 ·
0

0

Ψ̇

 (2.11)

Combining terms and inverting the result yields the rotational velocities about the
Euler–angles for given angular velocities in the aircraft’s body–fixed coordinate system
(equation (2.12)). It is important to note that, after combining terms from equation (2.11)
to form ~ω = A · [Φ̇, Θ̇, Ψ̇]T , the resulting matrix A is no longer a rotation–matrix and
inverting the equation requires the inverse and not simply the transpose of the combined
matrix.

Ψ̇

Θ̇

Φ̇

 =

1 sin(Φ) sin(Θ)

cos(Θ)
cos(Φ) sin(Θ)

cos(Θ)

0 cos(Φ) − sin(Φ)

0 sin(Φ)
cos(Θ)

cos(Φ)
cos(Θ)

 ·
ωxωy
ωz

 (2.12)

If Θ = ±90◦ and thus cos(90◦) = 0, four elements of the rotation matrix become
undefined and integration is impossible. This singularity is the reason why other methods
of describing aircraft attitude are used almost exclusively in programming [23, p. 627].
Rotation Quaternions, described in the following section, do not exhibit this singularity
and provide other benefits as well.

2.3.2 Quaternions / Euler–Rodrigues Parameters

Quaternions are a mathematical construct introduced by William R. Hamilton in 1844.
They have many applications, have their own extensive set of algebraic rules, and they
are also well fit to be used to describe three dimensional rotation. They have been
used as Euler–Rodrigues parameters even before Hamilton developed his theory of a
noncommutative algebraic system [23, sec. 11.5].

Quaternions, in principle, are a 4-tuple of scalars, but they can also be interpreted as
group of a real scalar and a vector in imaginary ijk space

{q} =

q0

q1

q2

q3

 = q0 + iq1 + jq2 + kq3 (2.13)

MASTER’S THESIS - THOMAS KRAJACIC 19

CHAPTER 2. THEORY Coordinate Transformations

with the additional requirements:

i2 = j2 = k2 = ijk = − 1

ij = k = − ji

jk = i = − kj

ki = j = − ik

Note, that these are not vector multiplications but quaternion products. For an extensive
introduction to quaternion algebra refer to Kuipers [15, Chapter 5], or to Vicci [30] for a
shorter overview.

While many different variations of the quaternion’s components order and the naming
of indices can be found in literature (Farrell and Barth [8], for example, place the vector
first, and then the scalar, with indices from 1. . . 4), the remainder of this paper will use 0,
x, y, z as indices, where 0 denotes the scalar and x, y, z the components of the vector.

Further, for the purpose as rotation operator, quaternions of unit length are used,
which satisfy the equation

|{q}| =
√
q2

0 + q2
x + q2

y + q2
z = 1 (2.14)

The quaternions of interest in this paper are called Euler–Rodrigues parameters — rotation
quaternions of unit length — and these shall be discussed here. Their representation of
orientation is closely related to Euler–axis formulation (a single rotation through an angle
Θ around an axis E called Euler–axis) and they are expressed by the following quaternion:

{e}(Θ,E) =

e0

ex
ey
ez

 =

cos(Θ/2)

Ex sin(Θ/2)
Ey sin(Θ/2)
Ez sin(Θ/2)

 (2.15)

Since the Euler–axis vector E is a unit vector and using the trigonometric identity
cos2(Θ/2) + sin2(Θ/2) = 1 it can be seen that this quaternion has indeed unit length:

cos2(Θ/2) + (E2
x + E2

y + E2
z) sin2(Θ/2) = 1 (2.16)

A practical characteristic of such a quaternion is the fact that it can be used as rotation
operator on a vector. For that purpose, the vector is treated as quaternion with a real
component of 0.

MASTER’S THESIS - THOMAS KRAJACIC 20

CHAPTER 2. THEORY Coordinate Transformations

With the inverse of a unit quaternion, which is the complex conjugate

{q}∗ = q0 − iqx − jqy − kqz (2.17)

rotating a vector ~p into ~r with the quaternion {e} can be achieved with

{
0
~r

}
= {e} ·

{
0
~p

}
· {e}∗ (2.18)

Here, the vector ~p and ~r have been augmented by the scalar 0 to form a quaternion.
Since quaternion multiplication is associative the order in which the multiplications are
executed is not relevant here. The angle of the rotation (Θ) and the axis (E) are parameters
of {e} (see equation (2.15)).

Inverse rotation can be achieved by switching the quaternion and its conjugate:

{
0
~p

}
= {e}∗ ·

{
0
~r

}
· {e} (2.19)

For successive rotations an arbitrary number of these unit quaternions can be pre–multiplied
obeying the algebraic rules for such multiplication (see Kuipers [15] or Vicci [30]).

The difficulty with this formulation of rotation is the fact that it is not immediately
obvious how to geometrically interpret quaternion multiplication. Therefore it can be
convenient to be able to convert quaternions into Euler–angle formulation and vice–versa.

Since Euler–Rodrigues parameters use an angle and an axis as parameters, it is also
possible to specify a rotation matrix.

xNEDyNED

zNED

 =

e
2
x + e2

0 − e2
y − e2

z 2(exey − eze0) 2(exez + eye0)

2(exey + eze0) e2
y + e2

0 − e2
x − e2

z 2(eyez − exe0)

2(exez − eye0) 2(eyez − exe0) e2
z + e2

0 − e2
x − e2

y

 ·
xbyb
zb

 (2.20)

Equations (2.8) and (2.20) can be used to derive equation (2.21) to calculate Euler–
parameters from a given set of Euler–angles (see Phillips [23, pp. 883]).

e0

ex
ey
ez

 = ±

CΦ/2CΘ/2CΨ/2 + SΦ/2 SΘ/2 SΨ/2

SΦ/2CΘ/2CΨ/2 − CΦ/2 SΘ/2 SΨ/2

CΦ/2 SΘ/2CΨ/2 + SΦ/2CΘ/2 SΨ/2

CΦ/2CΘ/2CΨ/2 − SΦ/2 SΘ/2 SΨ/2)

 (2.21)

MASTER’S THESIS - THOMAS KRAJACIC 21

CHAPTER 2. THEORY Coordinate Transformations

Both positive and negative signs result in valid solutions. A right–hand rotation about
the positive X–axis of 70 degrees can equally be achieved by a right–hand rotation of 290
degrees about the negative X–axis.

The inverse of equation (2.21) yields

Φ
Θ
Ψ

 = ±

atan2[2(e0ex + eyez), e

2
0 + e2

z − e2
x − e2

y]
asin[2(e0ey − exez)]

atan2[2(e0ez + exey), e
2
0 + e2

x − e2
y − e2

z]

 (2.22)

which can be used to compute Euler–angles from a given Euler–Rodrigues quaternion.
The function atan2[. . .] in equation (2.22) is a variation of the arctangent function and
takes two arguments to return a result in the correct quadrant.

When the aircraft is at gimbal–lock position, calculating the Euler–angles from Euler–
Rodrigues parameters is partially problematic, since Φ and Ψ cannot be determined
nonambiguously. The bank angle can only be expressed as a function of the arbitrary
heading. At gimbal–lock attitude, the Euler–angles can be calculated using

Φ
Θ
Ψ

 =

2 asin[ex/ cos(π/4)]±Ψ

±π/2
arbitrary

 (2.23)

The formula for calculating the angular accelerations of the aircraft’s frame expressed
through Euler–Rodrigues parameters can be derived by differentiating equation (2.15) and
using the relationship between noninertial angular rates and the rate of change of the
Euler–axis rotation parameters (see Phillips [23, p. 874]).

ė0

ėx
ėy
ėz

 =
1

2

−ex −ey −ez
e0 −ez ey
ez e0 −ex
−ey ex e0

ωxωy
ωz

 (2.24)

Since this equation is linear in the Euler–Rodrigues parameters and in the angular rates
of the body–fixed frame, in can be written as

ė0

ėx
ėy
ėz

 =
1

2

0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

e0

ex
ey
ez

 (2.25)

MASTER’S THESIS - THOMAS KRAJACIC 22

CHAPTER 2. THEORY Coordinate Transformations

2.3.3 Comparison of Rotation Formulations

Two different mathematical formulations of dealing with aircraft attitude were presented
in the previous sections. Both have their advantages and disadvantages.

One important advantage of using quaternions over rotation matrix formulation has
been mentioned already. When integrating over the differential angular velocities around
the aircraft’s fixed axes (those are measured by gyroscopes rigidly attached to the aircraft)
using equation (2.12), the integration can fail when the rotation matrix becomes singular
at Θ =±90◦. This is not the case when integrating using the quaternion formulation
presented in equation (2.25), as quaternions provide singularity–free integration for every
attitude.

By comparing equations (2.12) and (2.25) another advantage can be seen. Euler–angle
formulation, being non–linear, is far more complex than using Euler–Rodrigues parameters
and this directly effects computation time. Additionally, just as a rotation matrix will
gradually loose its orthogonality due to numeric errors during integration, a rotation
quaternion will loose its unit length. However, dividing the components by the length of
the quaternion is a lot simpler than re–orthogonalizing a matrix, which gives quaternions
an even greater advantage in computational efficiency. This makes computing using
quaternions around 11 times faster than using Euler–angle formulation [23, p. 916].

On the other hand, the biggest advantage of Euler–angle formulation compared to
using Euler–Rodrigues parameters, is that the use of Euler–angles allows for a clear
geometric interpretation, while quaternion rotations are far less intuitive. Therefore
it can be beneficial to use rotation quaternions for computation and Euler–angles for
presentation purposes, using equations (2.21), (2.22) and (2.23) to convert between the
two formulations.

MASTER’S THESIS - THOMAS KRAJACIC 23

Chapter 3

Implementation

To implement X–Plane as visual system a clear understanding of the existing infrastructure
was needed. The FGED flight simulator is written in JAVA and has a highly modular
structure (see figure 3.1 on page 25). The efficient and flexible implementation of the
networking layer makes it possible to run modules as separate processes, or even on separate
machines, while still maintaining real–time performance. The three visual–machines that
are driving one projector each are connected to the simulator network and can therefore
access all necessary data for displaying the aircraft’s environment. Theoretically, all
channels could be run from one single machine with all three projectors but, to begin with,
X–Plane does not support multiple monitors with different views on one machine and, on
the other hand, even the fastest hardware readily available today would barely deliver the
necessary power to make that a viable option1.

Section 3.1 gives an overview of how the visual system in Flight simulator I is currently
implemented, which acts as a guideline for the new implementation developed in this paper.
The following sections show in detail how the new solution was designed and implemented
to deliver the desired features listed earlier under section 1.4.

A seasoned programmer will probably find the presentation in this chapter overly
detailed, but the intent is to give readers less experienced in C++ programming the
possibility to follow the concepts and ideas used in the development process. After all, this
paper and the solution developed within are intended to serve as foundation for further
academic projects.
1see http://developer.x-plane.com/2011/10/x-plane-10-and-gpu-power/

MASTER’S THESIS - THOMAS KRAJACIC 24

CHAPTER 3. IMPLEMENTATION

En
gi

ne
-

dy
na

m
ic

s
Fl

ig
ht

-d
yn

am
ic

s

G
ea

r-
dy

na
m

ic
s

Fr
on

t-
pa

ne
l a

vi
on

ic
s

Ra
di

os

FM
S

Co
ck

pi
t

so
un

d

A
D

C
#1

A
D

C
#2

A
D

C
#3

A
ir-

D
at

a
Co

m
pu

te
rs

LE
FT

vi
su

al
ch

an
ne

l

CE
N

TE
R

vi
su

al
ch

an
ne

l

RI
G

H
T

vi
su

al
ch

an
ne

l

H
ar

dw
ar

e
bo

un
ds

U
D

P
ba

se
d

hi
gh

 p
er

fo
rm

an
ce

da

ta
 b

us

M
od

ul
es

 c
an

 re
ad

 a
nd

 w
rit

e
pa

ck
et

s

ex
ec

ut
ab

le
ap

pl
ic

at
io

n

Figure 3.1: Schematic of the decentralized modular design of the FGED flight
simulator. Modules can be implemented in different applications, which in turn
can run on different physical machines. A high performance data bus connects
all machines.

MASTER’S THESIS - THOMAS KRAJACIC 25

CHAPTER 3. IMPLEMENTATION Existing Interface

3.1 Existing Interface

When presented with the task to integrate X–Plane into the visual system of the FGED
flight simulator, it seemed beneficial to define the interface, so that it is compatible with
the previous solution that used FSX. This allows for rapid testing without modifying
the FGED simulator. From there on, the new system could be gradually enhanced with
features only available in X–Plane and structurally revised.

The relevant interface for the implementation is given by a JAVA application (see
FSInterface in figure 3.2) running on each visual–PC. It reads aircraft and environmental
parameters from the network which are then supplied as parameters to a function call
at an approximate frequency of 200Hz. The essential task is to display the environment
based on the data received by this function call and depending on which projector is
currently controlled by the corresponding machine.

Visual-PC RIGHT
Microsoft

Flightsimulator X
FSUIPC
fsuipc.dll

fsinterface.dll

FSInterface
bj.fsim.visual.FSInterface.jar

data bus

JNI call: renderEngineXfr(...)

Figure 3.2: The previous solution used in Flight simulator I utilizes FSUIPC,
a commercial product, to connect to Microsoft Flightsimulator X.

The component connecting FGED and FSX in the existing solution was a library called
FSUIPC (see figure 3.2) — a commercial module for Microsoft Flightsimulator written
by Peter Dowson2. As this library provides only a C Interface, an intermediate library
(fsinterface.dll) was written to recieve the JNI calls and set the appropriate parameters in
FSUIPC.DLL. The native method that FGED calls is renderEngineXfr(...) with the
parameters in table 3.1 on page 27.

Some of the input parameters were specific to FSX and could be ignored. On the
other hand, X–Plane provided some new features, which needed new parameters to be
2See http://www.schiratti.com/dowson.html

MASTER’S THESIS - THOMAS KRAJACIC 26

CHAPTER 3. IMPLEMENTATION Existing Interface

sent by the FGED simulator. These included aircraft–type, as well as new parameters
for additional aircraft that could be controlled. These aircraft will be called ‘multiplayer
aircraft’ from here on, since this is the feature used in X–Plane to implement the ability
to display planes other than the own.

Type Name Input Range Notes

double longitude [−π. . .+π]

double latitude [−π
2
. . .+π

2
]

double altitude MSL [m]

double heading [0. . . 2π]

double pitch [−π
2
. . .+π

2
]

double roll [−π. . .+π]

short day number [0. . . 364]

int second of day [0. . . 86399]

double top of visibility layer MSL [m]

double visibility in vis. layer [m]

double[] cloud base MSL [m] for cloud layer 0,1,2

double[] cloud tops MSL [m] for cloud layer 0,1,2

byte[] cloud coverage [0=clear. . . 0xff=overcast] for cloud layer 0,1,2

byte[] cloud type 1=Cirrus, 8=Stratus, 9=Cumulus for cloud layer 0,1,2

boolean pause simulation only needed for FSX

boolean slew mode only needed for FSX

boolean beacon light true/false

boolean landing light true/false

boolean taxi light true/false

boolean navigation light true/false

boolean strobe light true/false

double gear position [0=up. . . 1=down]

double flaps position [0=up. . . 1=full]

double speed brakes [0=retracted. . . 1=extended]

boolean showControls only needed for FSX

boolean freezeTime only needed for FSX

int wxDelay only needed for FSX

double[] return values retVal[0]. . . Frame rate [fps]
retVal[1]. . . Ground elevation MSL
[m]

Table 3.1: The list of parameters for the pre–existing native function
renderEngineXfr(). This JAVA method has been superseded by a newly
designed, more structured interface (see section 3.3.2 on page 35).

MASTER’S THESIS - THOMAS KRAJACIC 27

CHAPTER 3. IMPLEMENTATION Designing a New Solution (FGED–link)

3.2 Designing a New Solution (FGED–link)

There are many possible ways to implement most of the desired features (see section 1.4)
and doing so was reasonably painless (features 1©, 2©, 3©, 5©). Studying the X–Plane SDK
revealed, though, that a few of the goals would be more difficult to meet or at least would
require a lot of extra time which would probably exceed the expected extent of this thesis
(7©, 8©). Therefore these features were only implemented as proof-of-concept, or a guideline
on how they could be implemented in the future is given. One feature (6©) was deemed
probably too complex to implement for a novice programmer, since the SDK does not
provide the necessary support directly, and knowledge in OpenGl programming is required
to implement such a feature. Table 4.1 in section 4.1 on page 58 gives a more detailed look
at the features that were implemented and to which degree the goals could be achieved.

Visual-PC RIGHT

X-Plane 10

X-Plane Plugin
FGEDCommander

Shared Library
FGEDBridge

XPInterface
bj.fsim.visual.XPInterface.jar

data bus

SDK

C++ function calls

JNI calls C/C++ Interface

JNI Interface FG
ED

Br
id

ge
lo

ad
ed

 b
y

XP
In

te
rf

ac
e

C/C++ Interface

JNI Interface

FG
ED

Br
id

ge
lo

ad
ed

 b
y

FG
ED

Co
m

m
an

de
r

Shared Memory
“FGED-link”

Figure 3.3: The new solution called ‘FGED–link’ consists of an X–Plane
plugin (FGEDCommander) and a shared library (FGEDBridge). The library
provides the necessary shared memory enabling the plugin to receive data from
XPInterface.

The final solution is collectively called ‘FGED–link’ and consists of one shared library
and an X–Plane plugin. The library ‘FGEDBridge’, in addition to providing a C/C++
interface, also implements the JAVA Native Interface (JNI) (see Oracle [21]). This reduces
the number of components to interface each other and thus reduces complexity. A shared
memory is the integral part of this library, which can be accessed by every component
that loads the library through accessor methods. Finally, there is an X–Plane plugin

MASTER’S THESIS - THOMAS KRAJACIC 28

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

‘FGEDCommander’ which takes care of setting and getting X–Plane parameters utilizing
the X–Plane SDK. It reads input values from shared memory and writes return values
back to it. The components and their connections are shown in figure 3.3.

As new functionality was added with the new solution, it was decided to rename the
calling JAVA application to XPInterface, to clearly distinguish that the new interface is
being utilized. The FGEDBridge library can still use the old renderEngineXfr(...)

method though.

A considerable amount of thought went into separating the individual parts and keeping
interfaces as simple as possible. In accordance with best practice in programming, the use
of global variables was kept at a minimum and variables were only introduced when they
were needed. This makes the code easier to maintain and more comprehensible as well.
The source code is excessively documented using the doxygen syntax (see van Heesch [29]),
which allows for automated generation of documentation (see Appendix B, ‘Developer’s
Guide’).

While it is possible to write plugins for X–Plane in a variety of programming languages
(see X–Plane SDK [32, Section Overview]) C++ was chosen for its good performance,
code–maintainability through object–oriented programming and widespread support across
all operating systems. To interface with C++ code from JAVA and vice–versa the Java
Native Interface provides a solid solution.

Most development was conducted on Mac OS X while the system running on the
visual–machines is Windows 7. Since X–Plane is available for both platforms as well
as Linux, it was the author’s intent to develop a platform–independent solution. For
maximum reliability and performance, final testing and optimization was conducted on
the visual–PCs. The development environment on Mac OS X was Apple’s Xcode 4 3, while
Microsoft’s Visual Studio 2010 4 was chosen on Windows. Both integrated development
environments (IDEs) are well–fit for the task and provide convenient coding features.
However, even a text–editor in combination with a shell to execute a compiler and linker
would provide the necessary support.

3.3 Shared Library (FGEDBridge)

A shared library is a piece of code that can be loaded into other programs to augment their
functionality. On Windows they are called Dynamic–Link Library (.dll), on Linux Shared
Objects (.so), and on Mac OS X Dynamic Libraries (.dylib). X–Plane’s plugins are one
example of shared libraries. The remainder of this paper will use the terms DLL or shared
library to refer to such modules. Implementing a shared library is platform–dependent
and there are some differences on how to implement them on the major operating systems
(see MSDN [18] and Apple Developer Library [2]).
3See https://developer.apple.com/xcode/
4See http://www.microsoft.com/visualstudio/en-us

MASTER’S THESIS - THOMAS KRAJACIC 29

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

The main purpose of the shared library FGEDBridge is to provide a shared memory
(see section 3.3.1), so the FGED simulator and the X–Plane plugin can share common data
at very high speed. Figure 3.4 presents the main structure of the FGEDBridge library.

An important aspect of shared libraries is the fact that their code is loaded into memory
only once, but it is mapped to the address space of each calling process. However, multiple
programs loading the same shared library all receive their own instance of the libraries
global data (see Johnson [13, p. 168]). Therefore even though being global variables they
will be sometimes called ‘local data’ further in this chapter, as their scope is constrained
to the address space of the calling process.

C/C++ InterfaceJNI Interface

FGEDBridge

setReturnValues(double, double);
setAcModelPaths(char paths[128][512]);
getAircraftData();
getWeatherData();
getDateTimeData();
getControlData();
getStatus();

// Legacy method to control the simulator.
renderEngineXfr(...);
// Legacy method to switch user's aircraft model.
setUserAircraft(int idx);

// New interface
calibrateView(float h_angle, float v_angle);
setCamera(...);
setWeather(...);
setDateTime(...);
setAircraft(...);
getReturnValues(double[] retValues);
getAircraftModels();
setPilotsHead(double dx, double dy, double dz);

local copy of data

Shared Memory

Figure 3.4: Basic structure of the FGEDBridge library. Both interfaces can
read and write data that is located in shared memory. See section 3.3.1 for a
more detailed look at how data from shared memory is accessed.

Since the FGEDBridge library needs to set up a block of shared memory, a function is
needed to be called before the library can be used. On Windows, this can be achieved
by using an ‘Entry Point Function’ (DllMain()) that gets called whenever the library
is loaded (see MSDN [19]). This platform–dependent code was put in the separate file
FGEDBridgeWin.cpp. On Platforms that use gcc5 or compatible compilers6 the same effect
can be achieved by declaring a function to be called upon initialization using the compiler
macro __attribute__((constructor)). On Windows, this function is simply called
by the Entry Point Function fo the same effect.

In both cases, the function initializer() sets up a shared memory or attaches to
it, if it already exists (for more detail, see subsection 3.3.1). In case of failure, a status
5The GNU compiler collection, see http://gcc.gnu.org/
6For example LLVM/Clang, see http://clang.llvm.org/

MASTER’S THESIS - THOMAS KRAJACIC 30

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

flag is set (see FGEDBridge.cpp on line 90), so that any program loading the library can
check for errors during initialization using the getStatus() method.

#ifdef _WIN32
#define MY_EXPORT __declspec(dllexport)

#else
#define MY_EXPORT __attribute__((visibility("default")))

#endif

Listing 3.1: The functions a library wants to make accessible need to be
decorated using a compiler–specific macro. The conditional macro MY_EXPORT
is used to include the correct version based on the compiler.

Once loaded, the library makes functions available to the loading program using either
the C/C++ interface or JNI. These functions need to be decorated with a compiler macro
(C/C++ interface) or implemented using the conventions of the Java Native Interface (see
section 3.3.2 for more details). Since the macro for exporting functions of a shared library
is compiler–dependent, a conditional definition was used (see listing 3.1).

Using methods provided by the library, a program can then read and write data which
is shared by all processes that load the library. Another one of the library’s duties is to
make sure that the data that is exchanged does not exceed reasonable bounds. While
in principle the FGED simulator already sends out only checked and valid data, it is
at least good practice to cut off any input at clearly defined bounds. The FGEDBridge
library does this using the clamp() function, which is implemented as a C++ template
in FGEDBridge.cpp (see Listing 3.2).

50 template <typename T> inline T clamp(const T& value, const T& low, const T& high) {
51 return value < low ? low : (value > high ? high : value);
52 }

Listing 3.2: Input is cut off at bounds using the clamp() function which is
implemented as a C++ template. The compiler uses this template to generate
the appropriate functions for all needed data types.

Finally, the library includes a Timer class (Timer.cpp), which implements a way of
measuring the execution time of critical functions. It allows recording a start and end
time and calculating the elapsed time in microseconds7. The finalizer() function is
used to print average recorded execution times to std::out when the library is unloaded.

3.3.1 Shared Memory

As mentioned previously, every process loading a shared library retains its own set of
global variables. This contradicts what the name ‘shared library’ appears to imply, but
7The resolution of the timer depends on platform and processor, but its accuracy is sufficient for this
purpose. See MSDN [20] and Apple Developer Library [3] for more information.

MASTER’S THESIS - THOMAS KRAJACIC 31

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

is extremely important for system security and stability (imagine one program being
able to change the data of another process just by loading a common DLL). To provide
consistent data among multiple processes loading the library it is necessary to utilize means
of inter–process communication (IPC). Shared memory is the fastest IPC method [26,
Chapter 12] and since the exchange of data between the flight simulator and the visual
system is performance–critical, this solution was chosen.

Since implementing shared memory depends on the platform it is being used on,
the open source Qt–libraries8, which abstract these features regardless of platform, were
utilized. Qt provides the convenient QSharedMemory class for working with shared memory
(see [24], QSharedMemory).

Shared memory is basically just a block of memory identified by a unique ‘key’ and can
be accessed using pointers. Setting up the shared memory takes place in the initialize()
function of the FGEDBridge library. This function attempts to create a shared memory
region with the key ‘FGEDLinkMemory’. If a shared memory with this key already exists,
the library has probably been loaded already by another process, and this instance of the
DLL only needs to attach to the existing memory. In either case the library now has a
pointer to the shared memory and, for convenience, pointers to certain addresses within
this region are set up (see Listing 3.3).

100 sm_ac_data_ptr = (aircraft_data_t*)FGEDLinkMemory->constData();
101 sm_weather_data_ptr = (weather_data_t*)(sm_ac_data_ptr + (MP_COUNT+1));
102 sm_time_data_ptr = (datetime_data_t*)(sm_weather_data_ptr + 1);
103 sm_ret_data_ptr = (return_data_t*)(sm_time_data_ptr + 1);
104 sm_ctrl_data_ptr = (control_data_t*)(sm_ret_data_ptr + 1);
105 sm_acpaths[0] = (char*)(sm_ctrl_data_ptr + 1);
106 for (int i=1; i < 128; i++) {
107 sm_acpaths[i] = (char *)(sm_acpaths[i-1] + 512);
108 }

Listing 3.3: For convenience, the initialize() function of the
FGEDBridge library sets up pointers to certain addresses in shared mem-
ory. The method FGEDLinkMemory->constData() retrieves a pointer
to the first address of the shared memory, and pointer arithmetic is used to
construct further pointers.

Synchronization and Caching

Since multiple processes can have the right to read or write to shared memory concurrently,
precautions have to be taken. If, for example, one process is writing data, and another
process would read this data while it was not fully written yet9, the information read would
be invalid without the reading process knowing it. Therefore some way of synchronizing
the reader and writer is required (see Stevens [26, part 3]). This is handled in FGEDBridge
by locking the memory region during all read and write operations for other processes (see
8See http://qt-project.org/
9Writing to memory is usually not an atomic operation, meaning it can take more than one processor cycle,
which in turn opens the possibility that the read operation of the second process happens in between.

MASTER’S THESIS - THOMAS KRAJACIC 32

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

figure 3.5 and 3.6). If any of the library’s functions try to access the shared memory while
it is locked, the calling function blocks the current thread until the lock is removed (the
performance implications of this will be further discussed in subsection 4.3). It can then
lock the memory itself and read or write to the shared memory. The QSharedMemory class
already includes lock() and unlock() methods, so implementing proper locking was
trivial. When considering how shared memory is used, it becomes clear that any process

lock
shared mem

unlock
shared mem

copy to
local data

copy to
shared mem

set valid
�ag

shared memory

local copy of data

Figure 3.5: When writing data to shared memory, the ‘valid’ flag is set. The
time the shared memory is locked is kept to a minimum.

actively using this data will need to keep the shared memory locked while accessing it.
Otherwise data could be changed by a different process while it is being used. To avoid the
shared memory from being locked longer than absolutely necessary, the obvious solution
is to create a copy of the data in it, and then release the lock immediately. This local
copy can then be used for further action. While it would have certainly been possible to
implement this type of caching in the X–Plane plugin, it seemed more natural to put this
feature into the shared library itself. Figures 3.5 and 3.6 show how setting and getting
data from the shared memory is implemented using a local copy of the shared memory’s
data.

lock
shared mem

unlock
shared mem

copy from
shared mem

return pointer
to local copy

set invalid �ag
in shared mem

shared memory

local copy of data

Figure 3.6: An additional step is executed, when reading data from shared
memory. After it has been copied to the local cache, it is flagged as ‘invalid’ in
shared memory, so a consecutive read without fresh data can be detected.

MASTER’S THESIS - THOMAS KRAJACIC 33

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

Data Integrity

When getting data from shared memory, another feature of the FGEDBridge library comes
into play. Since XPInterface provides data at a very high rate (∼ 200Hz) but the X–Plane
plugin reads data only once for every frame that is displayed in the simulator (∼ 30–40Hz),
it is very unlikely that the data being read has not been updated between two successive
read operations. On the other hand, it is unnecessary for XPInterface to actually write
data at such a high frequency, since it is next to impossible that X–Plane will ever run at
such high frame rates on the hardware that is being used. Therefore it could make sense
to reduce the write frequency of XPInterface. Then however, it is necessary to be able to
check if writing occurs still frequently enough, so the same data is not read twice. For this
purpose, FGEDBridge marks every data structure with an ‘invalid’ flag in shared memory,
once it has been copied (see figure 3.6). Whenever data is written to shared memory it is
flagged as ‘valid’, so when it is copied in the reading process and it is marked as ‘invalid’, it
is clear that the data in question has not been updated in shared memory in the meantime.
This information is utilized in various places in the plugin to act accordingly.

159 MY_EXPORT weather_data_t * getWeatherData() {
160 FGEDLinkMemory->lock();
161 memcpy(&weather_data, sm_weather_data_ptr, sizeof(weather_data));
162 bool fls = false;
163 memcpy(&sm_weather_data_ptr->valid, &fls, sizeof(fls));
164 FGEDLinkMemory->unlock();
165

166 return &weather_data;
167 }

Listing 3.4: Data that has been copied is flagged as ‘invalid’, so that when
reading it in the next cycle it can be determined whether it has been updated
in the meantime.

Memory Layout

To simplify accessing individual elements in shared memory, structs were used, since they
provide logical grouping and their members can be accessed easily. The data that has to be
exchanged between the FGED simulator and X–Plane was classified by logical association.
This means that one type of struct for aircraft data was set up, one for environmental
data, one for data X–Plane needs to return and one for control data. Figure 3.7 shows
how the shared memory is structured. Another advantage of organizing data in structs is
that a single call to memcpy() can be used to copy all of its data. This makes the code a
lot easier to read and maintain.

For FGED ’s ability to retrieve a list of aircraft models, an array of char arrays is
appended after the structs. Pointers to the individual elements are set up in the library’s
initializer (see listing 3.3).

The individual structs are declared in FGEDBridge.h as their own data types to simplify
later usage. The primary aircraft and multiplayer planes share the same data, so the

MASTER’S THESIS - THOMAS KRAJACIC 34

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

Shared Memory “FGEDLinkMemory”

struct weather_datasm_weather_data_ptr

struct time_datasm_time_data_ptr

sm_ret_data_ptr struct return_data

sm_ctrl_data_ptr struct control_data

struct aircraft_data[0]

struct aircraft_data[MP_COUNT]

&sm_ac_data_ptr[0]

&sm_ac_data_ptr[MP_COUNT]

sm_acpaths[0]

sm_acpaths[127]

char aircraftpaths[0][512]

char aircraftpaths[127][512]

Figure 3.7: Layout of the shared memory and the corresponding pointers or
addresses to access its elements. Note that while sm_acpaths is an array
of pointers, sm_ac_data_ptr is not, but using the array syntax and the
reference operator (&), the individual addresses of the structs can be obtained.

common data type aircraft_data_t is used (see Listing 3.5). Depending on how many
multiplayer aircraft the library is compiled to manage (the globally defined constant
MP_COUNT holds the number of supported multiplayer aircraft) a number of these structs
is placed at the beginning of the shared memory space.

It is worth mentioning that there is a difference in the size of structures compared
to the size of the sum of their individual members. Compilers tend to add padding to
the elements to align them to processor word boundaries [27, pp. 81-134]. This could
be prevented using a #pragma instruction for the compiler, but since in this case the
increase in size is negligible and does not degrade performance, keeping members aligned
can actually help speed up reading and writing them.

While it seems unnecessary to store, for example, the ‘day of the year’ in an int, when
a short int would suffice, it is generally faster for a modern x86–based processor to
write a 32–bit integer than writing a short int (see Fog [9, Chapter 7]). Therfore the
int data type was chosen.

3.3.2 JNI Interface

To provide a method for a JAVA program to call functions of the FGEDBridge C/C++
library, it implements the JAVA Native Interface (JNI). This is done by generating a
JNI header file from the JAVA class (see Appendix B on page 79) that declares native
methods, and then implementing the corresponding functions in C/C++. Additionally,

MASTER’S THESIS - THOMAS KRAJACIC 35

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

37 typedef struct {
38 bool valid;
39 int type;
40 double longitude;
41 double latitude;
42 double altitude;
43 double heading;
44 double pitch;
45 double roll;
46 bool beaconLight;
47 bool landingLight;
48 bool taxiLight;
49 bool navLight;
50 bool strobeLight;
51 double gear;
52 double flaps;
53 double speedBrakes;
54 double elevator;
55 double aileron;
56 double rudder;
57 } aircraft_data_t;

Listing 3.5: The aircraft_data_t data type is designed to hold all
aircraft–related information and can therefore also be used for multiplayer
planes.

the jni.h header provided by the JAVA Development Kit (JDK) must be included with the
library. Including the generated header file (in this case bj_fsim_visual_XPInterface.h) is
not necessary (implementing the functions accordingly is sufficient), but doing so provides
additional error–checking, as it gives the compiler the possibility to compare the methods’
signatures (it also includes jni.h implicitly). For details on how JNI works and how to use
it, see the section ‘Design Overview’ of the JNI specification [21].

/*
* Class: bj_fsim_visual_XPInterface
* Method: setWeather
* Signature: (D[D[D[B)I
*/

JNIEXPORT jint JNICALL Java_bj_fsim_visual_XPInterface_setWeather
(JNIEnv *, jobject, jdouble, jdoubleArray, jdoubleArray, jbyteArray);

Listing 3.6: JAVA generates a signature for the native function (in
this case public native int setWeather(...); from the file
bj_fsim_visual_XPInterface.h) which needs to be implemented exactly as
specified in the given declaration.

The original interface used by FSInterface to connect to FSX comprised only the
renderEngineXfr() method. To make additional functionality, gained by using X–Plane
as a visual system accessible, new methods were introduced. This, however, presented a
cluttered interface, where associated data would not necessarily be sent in one function
call, but rather needed multiple separate functions (for example, setting an aircraft’s
position and changing its 3D model are logically part of an ‘airplane’ interface, but since
the original interface did not allow for changing the aircraft’s type, the new function
setUserAircraft(int idx) had to be introduced). Further, some of the data in the

MASTER’S THESIS - THOMAS KRAJACIC 36

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

original interface is required at a higher frequency (e.g. ‘aircraft position’ and ‘attitude’),
but it seems useless to send data like ‘date’ or ‘weather’ 200 times per second, as these
parameters are slowly changing at best. For these reasons, a new interface was constructed
and the original one was considered a ‘legacy interface’, but could still be used. Table 3.2
lists the methods that the FGEDBridge library provides via JNI. The legacy interface is
colored in red, the newly introduced interface in green and yellow, the latter containing
the functions needed to augment the legacy interface in order to provide full functionality.
The calling JAVA application was renamed to XPInterface, to clearly indicate that the
new interface is being used.

Return Type Name Notes

byte renderEngineXfr(...) Legacy interface. This is the only method previously available.
For a list of parameters see table 3.1 on page 27.

int setUserAircraft(...) This function can be used in combination with the legacy
method renderEngineXfr(...). It is used to change the
primary aircraft type which is useful mostly if an external
view of the simulation is displayed (see section 3.4.3).

int calibrateView(...) Used to set up the initial alignment of the projectors (see
section 3.4.5). Not needed during simulation.

int setCamera(...) Function to control the camera for an external view of the
aircraft. See section 3.4.5 for more information.

int setWeather(...) This function sends all weather–related data to the simulator.
See section 3.4.6 on how this is implemented.

int setDateTime(...) Function for sending date and time, so X–Plane displays the
environment appropriately (see section 3.4.7).

int setAircraft(...) This newly introduced method provides a clean interface to set
all aircraft–related data for the main as well as all multiplayer
aircraft. See section 3.4.3 on details on its implementation.
Note that using this method would be required by the old
interface to control multiplayer aircraft.

int getReturnValues(...) This function allows XPInterface to retrieve framerate
and ground elevation provided by X–Plane. In the
original interface a double array was passed to the
renderEngineXfr(...) method, so for the new interface
to be compatible, it was implemented in the same manner.
See section 3.4.8 for more information on how variables are
passed back using JNI.

String[] getAircraftModels() This function returns an array of path names for all aircraft
models defined for the X–Plane plugin. It can be used, for
example, to display a popup–list in JAVA, where an aircraft
type can be chosen (instead of just using integer indices). See
section 3.4.4 for more information on custom 3D aircraft mod-
els.

int setPilotsHead(...) This method can be used to calibrate the display to the
position of the pilot’s head (see section 3.4.5).

Table 3.2: The JNI interface provided by the FGEDBridge library. The legacy
interface is marked red, the new interface green, and methods included in both
interfaces are colored yellow. The new interface provides a much cleaner way of
interacting with the simulator and its use is therefore recommended.

MASTER’S THESIS - THOMAS KRAJACIC 37

CHAPTER 3. IMPLEMENTATION Shared Library (FGEDBridge)

For a comprehensive look at the parameters of the individual functions see the User’s
Guide on page 67 or have a look at the source code of FGEDBridge.cpp.

3.3.3 C/C++ Interface

After the X–Plane plugin FGEDCommander has loaded the FGEDBridge library it uses
the C/C++ interface. The library needs to provide a complete set of functions for the
plugin so that all necessary data can be exchanged with the FGED simulator. Since the
data has been conveniently structured (see section 3.3.1) only few methods are needed
(see listing 3.7)

85 extern "C" {
86 MY_EXPORT int setReturnValues(double fr, double elev);
87 MY_EXPORT int setAcModelPaths(char paths[128][512]);
88 MY_EXPORT aircraft_data_t * getAircraftData();
89 MY_EXPORT weather_data_t * getWeatherData();
90 MY_EXPORT datetime_data_t * getDateTimeData();
91 MY_EXPORT control_data_t * getControlData();
92 MY_EXPORT int * getStatus();
93 }

Listing 3.7: The C/C++ interface provided by the FGEDBridge library.

The directive extern "C" is used to specify C linkage convention, so linking to the
library does not become compiler–dependent (see Stroustrup [27, Chapter 9]).

For the FGEDCommander plugin to send data to the FGED simulator, the FGEDBridge
library provides the functions setReturnValues(...) and setAcModelPaths(...).
Further, the function getStatus() is useful for checking whether initialization of the
library was successful (see section 3.3.1) and the three functions getAircraftData(),
getWeatherData() and getDateTimeData() are used to retrieve data about aircraft
and weather, as well as the date and time. Finally, getControlData() can be utilized to
retrieve data needed to control various aspects of the simulation. The latter four methods
return pointers to the local cache the library holds for the appropriate data in shared
memory (see Listing 3.4 on page 34). It is important to note that no other process can
access this local cache and therefore it can be read without the risk of it being altered at the
same time (this holds true, since no other threads are spawned by the FGEDCommander
plugin which could access this data, and the plugin’s code is executed sequentially without
exception).

The FGEDBridge library also defines the maximum aircraft count it can handle. By
including its header file FGEDBridge.h this number is available to every program linking
against the library at compile–time (see listing 3.8).

MASTER’S THESIS - THOMAS KRAJACIC 38

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

20 #define MP_COUNT 9

Listing 3.8: The maximum number of multiplayer aircraft the FGEDBridge
library can handle is defined in its header file. This header is also included by
the FGEDCommander plugin, so it knows not to try to control more aircraft
than the library supports.

3.4 X–Plane Plugin (FGEDCommander)

The second part of the FGED–link solution is implemented as a plugin for X–Plane. This
plugin loads the FGEDBridge library and has thereby access to the data sent by the FGED
simulator. In principle, an X–Plane plugin is, just like FGEDBridge, a shared library. It is
loaded by X–Plane and can thus add functionality to it. The features a plugin can provide
are limited only by the constraints the X–Plane SDK interface imposes. The tasks the
FGEDCommander plugin has to manage are:

• Read input values, convert them as necessary, and set the corresponding X–Plane
parameters so it can act accordingly.
• Get frame rate and ground elevation at the aircraft’s position and send it back to

the FGED simulator.
• Allow for a multi–screen setup where the viewing angles for the left and right

projector can be configured.
• Implement a possibility to present an external view of the aircraft on an additional

PC.
• Provide a simple way to add aircraft models to all X–Plane instances.
• Make it possible to calibrate the pilot’s position for simulating a precision approach.

The following sections will elaborate on how these features are implemented.

3.4.1 Anatomy of an X–Plane Plugin

An X–Plane plugin requires a basic structure that is defined by the SDK (see X–Plane SDK
[32, Section Overview]). This includes a number of callbacks that have to be implemented,
or at least defined. They need not necessarily provide any functionality in every plugin.
Listing 3.9 shows the minimalist implementation of an X–Plane plugin.

MASTER’S THESIS - THOMAS KRAJACIC 39

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

#include <string>

PLUGIN_API int XPluginStart(char *outName, char *outSig, char *outDesc) {
strcpy(outName, "name");
strcpy(outSig, "signature");
strcpy(outDesc, "description");
return 1;

}

PLUGIN_API int XPluginEnable(void) {
return 1;

}

PLUGIN_API void XPluginReceiveMessage(XPLMPluginID FrWho, long Msg, void *Prm) {}

PLUGIN_API void XPluginDisable(void) {}

PLUGIN_API void XPluginStop(void) {}

Listing 3.9: A minimalist X–Plane plugin consists of five callbacks that must
be implemented.

Additionally, processing– or drawing–callbacks can be registered to be used for calcula-
tions or drawing during simulation. The basic lifecycle of an X–Plane plugin is shown in
figure 3.8.

XPluginStart XPluginEnable XPluginDisable XPluginStop

XPluginReceiveMessage
Processing
Callbacks

Drawing
Callbacks

Mouse/Keyboard
Callbacks

X-Plane simulator cycles

Figure 3.8: The typical lifecycle of an X–Plane plugin.

It is important to know that a plugin will be called and run inside X–Plane’s main
process and therefore must not block execution at any time. The quicker the code inside a
plugin can be executed the faster the simulator can run, and the more frames per second
are possible. Based on experience with the FSX implementation the goal of achieving at
least 30 frames per second was set. See section 4.3 for information about the performance
of the developed solution.

Plugins would be permitted to spawn their own threads, which means that X–Plane
does not have to wait for every part of the plugin’s execution, but this approach introduces
several difficulties attached to concurrent programming. Therefore the simpler path of
keeping the execution time of the plugin to a minimum was chosen.

Figure 3.9 gives an overview of the structure of the final FGEDCommander plugin and
shows the different callbacks used.

MASTER’S THESIS - THOMAS KRAJACIC 40

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

reads and sets aircraft parameters
sends return values to FGEDBridge

FGEDDataExchangeCallback

stores original pilot coordinates
readjusts camera position

LoadingFinishedCallback

activates main processing callbacks
sets initial view (and angles)

FGEDInitializerCallback

reads environment parameters
adjusts pilot’s head position

FGEDEnvironmentUpdateCallback

checks for planes being loaded

XPluginReceiveMessage

positions external camera
reads from control data

RepositionCamera(...)

unregisters callbacks and cleans up

XPluginStop

XPluginDisable

reads con�guration �le
sends list of models to FGEDBridge
acquires control over multiplayer aircraft

XPluginEnable

registers all callbacks
loads FGEDBridge library

XPluginStart

con�guration �le

frequency the plugin updates
frequency:40

Viewing angles for this instance.
view-h:0
view-v:0

Downloaded additional aircraft
FGED/MD-10F FEDEX 1.0/MD10.acf
FGED/DC10-30 Transaero/DC10.acf
FGED/A321/A321.acf
FGED/A332 RR/LX332.acf

User interface callbacks

displays information about multiplayer planes

FGEDMultiplayerWindowCallback

MyHandleKeyCallback

displays debugging information

FGEDDebugWindowCallback

delegates menu clicks

FGEDMenuHandlerCallback

allows to calibrate the view for multiple
projectors using control data

FGEDAdjustViewWindowCallback

MyHandleMouseClickCallback

DisablePanelDrawingCallback

DisableGaugesDrawingCallback

Drawing phase overrides

FGEDBridge

ctrl_data

aircraft_data

env_data

return_data

Sh
ar

ed
 M

em
or

y

invocation

Callback initiated
by FGEDCommander

Callback

�le access

Helper function

Function()

FGEDBridge
access

Callback required
by X-Plane

Callback

FGEDCommander

Figure 3.9: Structural overview of the FGEDCommander plugin.

As some of the data controlling X–Plane’s behavior does not change during runtime, a
configuration file is used to provide support for per–computer settings that do not need

MASTER’S THESIS - THOMAS KRAJACIC 41

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

constant updating. This file also provides an easy way of telling the X–Plane instance
which visual–machine it is running on (left, center or right) — an important information
needed for displaying the correct view of the environment.

FGEDDataExchangeCallback and FGEDEnvironmentUpdateCallback perform most
of the core functionality of the plugin. The first one is called for every frame the simulator
draws, and causes the FGEDBridge library to update its cache from shared memory. Then
it provides pointers to control data to be used by all other callbacks while processing
aircraft–related data itself. The second callback is called at a lower frequency and is used
mainly to update the time and weather in X–Plane. It is also used to update the position
of the pilot’s head (see section 3.4.5) since this feature also does not require a high update
frequency.

While it is possible to specify the time between processing callbacks to be extremely
short, their maximum call frequency is limited by the current frame rate the simulator
achieves. It is therefore paramount that the execution time of any code in the plugin is
kept to the absolute minimum, otherwise this would directly slow down the simulator.

For more information on the individual callbacks, browse through the source code of
the FGEDCommander plugin (FGEDCommander.cpp), which is extensively documented.

3.4.2 Setting and Getting X–Plane Parameters

To set and get X–Plane data like position, time or aircraft lighting, the X–Plane SDK
provides an extensive collection of data references (datarefs) — each corresponding to
a specific function in X–Plane (see [31]). Using these datarefs, it is possible to read or
modify the data X–Plane is using. Depending on the data type, different functions need to
be called (see X–Plane SDK [32, section XPLMDataAccess]). To spare oneself the trouble
of using the incorrect function because the wrong data type is assumed, the FGEDHelper
namespace provides a C++ function template that unifies access to all different data types.
To take advantage of this method, data must be stored with the same type that X–Plane
uses. As a result, the compiler can automatically generate the appropriate functions for the
specified types and apply the correct variant to set and get data of the corresponding data
type (see Listing 3.10). This helps keeping the source code easier to read and maintain.

31 template <class T> void set(const T& param, const XPLMDataRef& ref);
32 template <> void set<int>(const int&, const XPLMDataRef&);
33 template <> void set<float>(const float&, const XPLMDataRef&);
34 template <> void set<double>(const double&, const XPLMDataRef&);
35 template <> void set<bool>(const bool&, const XPLMDataRef&);
36

37 template <class T>
38 void set_cached(const T& param, T& cache, const XPLMDataRef& ref);

Listing 3.10: A C++ template and appropriate specializations provide a
unified interface to access data of different types.

MASTER’S THESIS - THOMAS KRAJACIC 42

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

Being able to silently convert from the boolean data type to an integer is another
benefit of this solution (see Listing 3.11), as X–Plane sometimes uses the latter when a
boolean value would be more intuitive.

64 template <>
65 inline void FGEDHelper::set<bool>(const bool& p, const XPLMDataRef& r) {
66 XPLMSetDatai(r, p?1:0);
67 }

Listing 3.11: The implementation for the boolean data type silently converts
true and false into an integer, as required by X–Plane.

To further structure the source code, data and functions associated with an aircraft
were encapsulated in an Aircraft class, and thus any code about setting and getting related
data was hidden from the main plugin implementation. The same was done for data
pertaining to the environment, such as date, time or weather. These classes additionally
provide a good place to hide X–Plane–specific conversions into non–SI units as needed10.

In the case of input data remaining constant for a long period of time (like the status
of aircraft lights or the day of the year) and it therefore being unnecessary to constantly
tell X–Plane to set the same value over and over again, the use of classes proves to be
advantageous as well. As suggested by Bulka and Mayhew [4], the fields of these classes
can be used as cache, and only after comparison with this cache fails, the values need to
be reset in X–Plane. This was also implemented in the function template to set and get
X–Plane data (see Listing 3.12).

72 template <class T>
73 inline void FGEDHelper::set_cached(const T& param, T& cached_param,
74 const XPLMDataRef& ref) {
75 if ((param != cached_param) || FGEDHelper::dirty) {
76 FGEDHelper::set<T>(param, ref);
77 memcpy(&cached_param, ¶m, sizeof(param));
78 }
79 }

Listing 3.12: The implementation of the set_cached(...) function
template reveals the method of caching data that should be sent to X–Plane.
Only if the values of the new data and the cache differ the data is sent to X–Plane.
The global variable FGEDHelper::dirty can be used to manually override
the use of the caching mechanism.

The only problem introduced by caching, though, is that of initial state. If the initial
value of the cache by coincidence is the same as what was supposed to be sent to X–Plane
the value would never be set, even if X–Plane’s state was different. The problem mainly
10Mainly, X–Plane uses degrees to specify angles whereas the appropriate SI unit is radians (see
http://www.bipm.org/en/si/). The FGED simulator consequently handles all data in SI units, and
they are stored as such in the FGEDBridge library’s shared memory. As a minor exception, only the
deflection angle for the projectors is handled in degrees.

MASTER’S THESIS - THOMAS KRAJACIC 43

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

concerns values that do not change frequently, describing a state, so to speak. If, for
example, the altitude of the plane needs to be set to 0m and the cache already contains
that value (being initialized to 0 for example), then the plane will not move, no matter
where it actually is. This is not really a problem, as in usual simulation the altitude value
will change within a fraction of a second, and thus create a ‘cache miss’, resulting in the
correct setting of the value with X–Plane. If, however, the landing light is to be switched
off (X–Plane might start with it switched on), the value 0 is sent to the plugin. The
Aircraft class defaults to ‘false’, which is equivalent, and therefore the comparison will
reveal that no action has to be taken, regardless of what X–Plane actually shows.

There are various solutions to solve this problem. Looking at the example with the
aircraft’s altitude it becomes obvious that setting the default value for the altitude in the
Aircraft class to some impossible value (like −1000m) will always result in a ‘chache miss’
and therefore solve the problem of initial state. It gets tricky, though, with boolean types.
These only have two possible values, true and false. There is no way to set a different
value that does not occur during simulation. This could be solved by using an integer in
its place, where a value of 0 indicates false and 1 indicates true. Initially setting it to
any other value will then mismatch the cache (if only 0 or 1 are sent) and force an update
in X–Plane.

However, since the use of booleans seems more appropriate with regard to on/off
parameters, a different approach was chosen. The FGEDHelper namespace provides a
global ‘dirty’ flag, that, if set to true, will let a cache comparison fail in any case and
therefore every value will be sent to X–Plane. This method of circumventing the caching
mechanism only needed minor code changes which made it even more appealing.

The only thing left to consider is, when to activate and deactivate the ‘dirty’ flag. The
problem with the cache preventing an update can actually only occur when a parameter
has never been changed from its initial value. The example with the landing light could
have also been solved initially by just switching the light on and off once. The essential
requirement is that the value X–Plane has currently set and the value of the corresponding
field in the Aircraft class (or any other class that uses caching in this manner, like the
Environment class) must match. Circumventing the cache only once at the start of
X–Plane should consequently be sufficent, but it seems to make even more sense to just
start with the caching mechanism deactivated, and turning it on early in simulation.
This is done by setting the ‘dirty’ flag to false after FGEDDataExchangeCallback and
FGEDEnvironmentUpdateCallback have run at least once (see Listing 3.13).

666 // This ensures, that both major callbacks were run at least once.
667 if (FGEDHelper::dirty && high_freq_cb_done && low_freq_cb_done) {
668 FGEDHelper::dirty = false;
669 }

Listing 3.13: The caching mechanism is deactivated during startup and then
activated by setting the ‘dirty’ flag to false. high_freq_cb_done and
low_freq_cb_done are initially false but are set to true at the end
of their respective callbacks.

MASTER’S THESIS - THOMAS KRAJACIC 44

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

3.4.3 Aircraft Control

Having dealt with the details of getting and setting data in X–Plane, telling X–Plane
where and how to display an aircraft is now straightforward using the Aircraft class (see
Listing 3.14).

622 static int count = std::min(aircrcnt, MP_COUNT+1);
623 for (int i = 0; i < count; i++) {
624 Planes[i].enabled = ac_data[i].valid;
625

626 if (Planes[i].enabled) {
627 Planes[i].disable_counter = 0;
628

629 Planes[i].setPosition(ac_data[i].latitude,
630 ac_data[i].longitude,
631 ac_data[i].altitude);
632

633 Planes[i].setAttitude(ac_data[i].heading,
634 ac_data[i].pitch,
635 ac_data[i].roll);
636

637 Planes[i].setLights(ac_data[i].beaconLight,
638 ac_data[i].landingLight,
639 ac_data[i].taxiLight,
640 ac_data[i].navLight,
641 ac_data[i].strobeLight);
642

643 Planes[i].setFeatures(ac_data[i].gear,
644 ac_data[i].flaps,
645 ac_data[i].speedBrakes,
646 ac_data[i].type);
647 } else {
648 Planes[i].disable_counter++;
649 }
650

651 // This hides aircraft that have not been recieving coordinates for
652 // more than ’DISABLE_DECAY’ seconds.
653 if (Planes[i].disable_counter == decay_cycles) {
654 Planes[i].default_location();
655 }
656 }

Listing 3.14: Setting aircraft–related parameters is straightforward using the
Aircraft class. Since multiplayer planes can’t be hidden, they are placed far
away whenever considered ‘deactivated’ after a certain amount of time without
receiving parameters.

One more thing to consider is the fact that multiplayer aircraft cannot be hidden in
X–Plane. As the number of multiplayer planes has to be set via X–Plane’s user interface
and cannot be changed using the SDK it is necessary though, to set the number of planes
to the maximum number that might be needed at any time. The obvious solution for this
is to simply put unsused aircraft far away out of sight. The Aircraft class puts them to
−70◦ latitude, −30◦ longitude by default.

To avoid that the FGED simulator has to enable and disable multiplayer aircraft
manually (by using a separate method for activating and deactivating), the plugin checks
if data is being sent for a particular plane. This way the FGEDCommander plugin knows

MASTER’S THESIS - THOMAS KRAJACIC 45

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

the aircraft is being used and positions it according to the sent parameters. Disabling a
plane is achieved simply by not sending any new parameters, which results in the data
that is read from shared memory being flagged invalid (see section 3.3.1). This in turn
lets the plugin know that the aircraft is no longer used and can be put back to the default
location above the Antarctic sea.

A slight problem with this approach is that, in the unfavorable event of the X–Plane
plugin reading shared memory faster than FGED can write to it (which could happen if
XPInterface’s update rate was manually reduced to decrease processor load, or simply if
there is an intermittent network problem), the plugin would immediately move the plane
out of sight. Even if X–Plane would move it back to the correct position, this would not
happen within a single frame, as the loading of aircraft into the scene takes its time. To
overcome this problem, a counter is introduced, counting the simulator cycles a plane has
not received new data. If the counter reaches a predefined value, the plane can be safely
considered ‘disabled’.

3.4.4 Changing Aircraft Models

Figure 3.10: This model of a KC-10 is one of many aircraft, that come
pre–installed with the X–Plane distribution. Many more are available on
the internet, since X–Plane has a worldwide community of users who create
additional content commercially or for free.

Besides setting the aircraft’s position, attitude, lighting, flap-, gear-, and speedbrake
deployment, it is also possible to choose the aircraft’s type. For that purpose, the

MASTER’S THESIS - THOMAS KRAJACIC 46

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

appropriate 3D models have to be installed for X–Plane to use them. X–Plane has a
worldwide community of users creating many different kinds of additional content for the
simulator. This also includes aircraft models to use with the simulator. These models
have to be copied to every computer they are intended to be used on. It was necessary to
implement some mechanism to allow for choosing different models through the FGED–link
interface, which meant that a list of available models was required. Since all models could
easily be copied to every X–Plane installation on all three visual–PCs the only problem
was to make sure that the list of models used by the plugin is the same on every machine.
This was solved by defining a small set of default aircraft which are all included in the
X–Plane distribution (see Listing 3.15) and could hence be precompiled into the plugin,
and a second list of optional aircraft, which could be set up through a configuration file (see
listing 3.16). This clearly defines the list of available models and also allows for assigning
a specific order among them with persistent indices in the list.

386 add_aircraft_path("General Aviation/Cirrus TheJet/C4.acf");
387 add_aircraft_path("General Aviation/P180 Avanti Ferrari Team/avanti.acf");
388 add_aircraft_path("General Aviation/StinsonL5/L5.acf");
389 add_aircraft_path("General Aviation/Baron B58/Baron_58.acf");
390 add_aircraft_path("General Aviation/Cessna 172SP/Cessna_172SP.acf");
391 add_aircraft_path("General Aviation/KingAir C90B/KingAirC90B.acf");
392 add_aircraft_path("Heavy Metal/KC-10/KC-10.acf");
393 add_aircraft_path("Heavy Metal/B777-200 British Airways/Speed-Bird.acf");
394 add_aircraft_path("Heavy Metal/B747-400 United/747-400 United.acf");

Listing 3.15: The Aircraft class sets up a few default models shipping with
X–Plane. The add_aircraft_path(std::string) method can auto-
matically convert the directory separator for the current platform.

· · ·
Aircraft models to add to the list
FGED/Gulfstream G250 good/Gulfstream G250.acf
· · ·

Listing 3.16: Plane models can be added using the config.txt file located next
to the FGEDCommander plugin.

By setting the type of an aircraft to an integer representing the position in the
list of aircraft models, it is possible to change the type of aircraft. The JNI method
getAircraftModels() retrieves this list from shared memory so it can, for example, be
displayed at the instructor’s station.

One little nuisance of X–Plane is that, whenever changing the 3D model of an aircraft,
its altitude shifts slightly (there are some other oddities, like the view not being retained,
but those are discussed later in this section). Therefore it was necessary to reset the
altitude immediately after changing the model, as the jumping of the plane was visible,
even if it was just for one frame (as FGED is continuously setting the correct altitude). If
the aircraft was placed at a constant altitude, this is more of a problem though, since the
caching mechanism described in section 3.4.3 would not reset the aircraft to the received
position, as it assumed the model to be still at that constant altitude. The Aircaft class

MASTER’S THESIS - THOMAS KRAJACIC 47

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

takes care of this problem by immediately setting the local y coordinate (see 2.1.4) to the
value received previously using the FGEDHelper::set method, which does not implement
the cache (see Listing 3.17)

238 XPLMSetAircraftModel(this->aircraft_number, Aircraft::acpaths[idx]);
239 this->aircraft_type = idx;
240 // Due to X-Plane inadvertently modifying the elevation when changing
241 // the aircraft model, we are immediately resetting the height.
242 FGEDHelper::set(this->y, dr_plane_y);

Listing 3.17: The Aircraft class resets the y–coordinate after changing the 3D
model. This is necessary since X–Plane inadvertently changes this value when
switching plane models.

Unfortunately, this is not the only odd behavior when changing the 3D model of an
aircraft. Switching the model for the primary plane, for example, results in the position of
it being set to the runway of the nearest airport. Additionally, if an external view was
displayed, it is reset to a cockpit view and, if a cockpit view was already displayed, then
the Head–up Display (HUD) is redisplayed (if the aircraft has one) even if it was previously
deactivated.

To deal with these problems, the LoadingFinishedCallback in the FGEDCommander
plugin checks if the view was external before loading the plane, and in this case resets it
(see figure 3.11). It further disables the caching temporarily, so that all of FGED ’s values
for the plane are guaranteed to be in sync and the plane’s parameters, that it may initially
hold, are overwritten.

FGEDDataExchangeCallback

Planes[i].setFeatures(..., type);

Aircraft
updateAircraftModel(inType);

reset altitudereset position

primary plane multiplayer plane

XPLMSetUsersAircraft(...) XPLMSetAircraftModel(...)LoadingFinishedCallback

if view was external
reset to external view

FGEDHelper::dirty = true;

disable HUD again

This disables caching until the two main callbacks
have run at least once and then re-activates it.

Figure 3.11: The LoadingFinishedCallback function is used to reset
the view if the model of an aircraft is changed. The Aircraft class already takes
care of repositioning the aircraft. The FGEDDataExchangeCallback
keeps record whether the view was external when the aircraft type had been
changed.

MASTER’S THESIS - THOMAS KRAJACIC 48

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

3.4.5 View Configuration

Since the hardware of the visual system for the FGED simulator consists of three projectors
powered by three different machines (see figure 3.1 or 3.12) it is necessary to have three
instances of X–Plane running, one on every computer. The difference between those
instances should only be the direction the pilot in X–Plane is looking at. This way the
left and right projectors’ images can be positioned precisely to blend in with the central
view and provide one visualization of the environment stretching all the way across the
projection wall. For this purpose, the FGEDCommander plugin allows for changing the
horizontal and vertical deflection angle of any cockpit view it displays.

pro
jecti

on wall

C
R L

Δh Δv

Figure 3.12: For the left and right projector to show an appropriate view, the
horizontal and vertical deflection angle can be specified in the configuration file
of the corresponding X–Plane instance.

Since the deflection angles do not change during simulation — they are related to the
position of the projectors and the projection wall — it seems appropriate to put them
into a configuration file instead of continuously sending them through the FGED–link
interface. As the configuration file is presently only read once while the plugin loads (in
the XPluginEnable callback), a method to conveniently determine the correct angle is
needed.

The easiest way to line up the screens is certainly to simply adjust the angles while
viewing the entire scene. To do this, a view adjustment mode was introduced in the
FGEDCommander plugin. When the View–Adjustment Window is open (Plugins >
FGEDCommander > Toggle View–Adjustment Window), the plugin listens for
the h– and v–deflection angles that can be sent using the calibrateView JNI method.

MASTER’S THESIS - THOMAS KRAJACIC 49

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

The angles are displayed in the center of the screen and once the correct setup is found,
they should be written manually into the config.txt file (see listing 3.18).

· · ·
Viewing angles for this instance.
view-h:0
view-v:0
· · ·

Listing 3.18: The horizontal and vertical deflection angles for the view can
be set in the configuration file (config.txt). The values set for view-h and
view-v are used for horizontal and for vertical deflection respectively.

Another requested feature (see section 1.4, feature 5©) is the ability to horizontally
shift the image, so the pilot sitting in the cockpit can see objects that are in front of the
aircraft directly ahead, instead of in the center of the projection wall (see figure 3.13).
This can become necessary when wanting to simulate a precision approach, where the pilot
concentrates on the center line of the runway.

Naturally, when sitting in a sizable real aircraft, the pilot is positioned relatively close
to the lateral center of the aircraft, which lets him view straight ahead and look along
the runway’s centerline. In the FGED simulator, while having a life–sized cockpit and
aircraft hull, the distance to the projection wall is relatively short (about 3.5m). This
means, when displaying the runway’s centerline in the center of the screen, the pilot will
have to look to the center, which in turn will not be the direction the center line is going
and thus feels unnatural. The angle ε is called parallax error as depicted in figure 3.13.

pilot co-pilot

ε/2
ε/2

pr
oj

ec
tio

n sc
reen

Usually, distant objects that are directly in front of
the aircraft are displayed in the center of the screen

pilot co-pilot

ε

display calibrated for pilot

image shifted to the left

Figure 3.13: To calibrate the projected image for the pilot, the image needs to
be shifted to the left. This can be achieved using the setPilotsHead(...)
method.

To overcome this problem when using X–Plane, the FGEDCommander plugin can
adjust the position of the pilot’s head in X–Plane (see figure 3.14). This, of course, means

MASTER’S THESIS - THOMAS KRAJACIC 50

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

that the parallax error of the person sitting in the co–pilot’s chair will get even worse,
but that’s an acceptable trade–off for simulating such an approach. Only the use of a
collimated display system could solve this problem (see section 1.2 about collimation).

The JNI method setPilotsHead(...) is used to calibrate the view for the pilot (or
any other person’s position in the cockpit). It takes ∆x, ∆y, ∆z as arguments, which
should contain the desired shift from a default position for the pilot’s head along the
aircraft’s coordinate axes (see section 2.1.3) in meters. A positive ∆y will shift the
projected image along the negative Y –axis as seen in figure 3.14. The amount the image
moves (∆ỹ) for every meter the pilot’s head is shifted (∆y) depends on the scaling factor
of the projection but the two values are in any case proportional.

+ y

y

pilot co-pilot
pilot position

in X-Plane
y

+ y

X-Plane default X-Plane pilot centered calibrated for FGED

Figure 3.14: Calibrating the view is achieved by adjusting the position of the
pilot’s head in X–Plane. Setting a positive ∆y will result in a shift of the image
(∆ỹ) along the aircraft’s negative Y –axis.

By default, X–Plane positions the camera where the 3D model of the aircraft currently
used defines the pilot’s location. This is in any case unsuitable, since the pilot in the
simulator is not sitting on the center line of the display, as would be the case in front
of a common PC monitor, but already shifted to the left (the plane’s negative Y –axis)
in the pilot’s seat of the simulators life–sized cockpit (see figure 3.14). Therefore, the
FGEDCommander plugin sets the y–coordinate of the pilot’s position to 0, no matter
what the 3D model defines.

External View

Finally, it might also be desirable to have a view of the aircraft from the outside. For this
purpose, X–Plane can be installed on an arbitrary PC connected to the simulator network
using the FGED–link interface. Using the configuration file config.txt, the plugin can be
told to display an external view (see Listing 3.19). By specifying view:external the
plugin also starts listening for camera parameters that can be sent over the JNI interface.

MASTER’S THESIS - THOMAS KRAJACIC 51

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

· · ·
view:external
· · ·

Listing 3.19: The configuration file can be used to tell FGEDCommander
that an external view of the aircraft should be displayed. This also activates
camera control over the JNI interface.

The JNI method setCamera(...) allows for setting the camera’s coordinates. The
coordinate system for positioning the camera (Xb̃, Yb̃, Zb̃) is following the heading of the
aircraft but ignoring its elevation and bank angles (Θ, Φ). This is equivalent to the NED
frame being rotated only by the yaw angle of the aircraft and seems to be the most natural
way to specify the coordinates for the camera (see figure 3.15). This way, rolling and
pitching motion is better visible, which would not be the case if the camera stayed rigidly
attached to the aircraft’s coordinate system.

Ψ

Ψ

Θ

−Φ

center of mass

Yb

Xb
Zb

Zb

Yb

Xb

XNED

YNED

ZNED

C
XC

YC

ZC

Figure 3.15: The coordinate system for positioning the camera (C) is shown
in green (Xb̃, Yb̃, Zb̃). It is following the heading of the aircraft but ignoring its
elevation and bank angles (Θ, Φ).

The parameters for the JNI method setCamera(...) are therefore ∆x, ∆y, ∆z,
measured against said reference frame, and ∆Ψ, ΘC , ΦC measured about the camera’s
fixed axes (XC , YC , ZC). ∆Ψ is used instead of Ψ so that a value of 0 will not result in
the camera pointing north, but rather match the aircraft’s heading. The final parameter
of setCamera(...) allows for changig the zoom factor of the camera.

MASTER’S THESIS - THOMAS KRAJACIC 52

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

If no camera parameters are transmitted to an X–Plane instance using ‘external view’
mode because the setCamera() is never called, the camera is put at a default position
and points towards the aircraft’s center of mass. Once setCamera() has been called and,
subsequently, no more parameters are received (ctrl_data will be flagged as invalid, see
section 3.3.1), the FGEDCommander plugin continues to update the camera’s heading to
maintain the last relative heading (∆Ψ) in relation to the aircraft, as well as the relative
position to the aircraft. The other parameters are still being read from shared memory,
and thus left unaltered.

3.4.6 Adjusting Weather

To provide the possibility to simulate different weather conditions, the FGED simulator
sends information about cloud types, cloud coverage and the lower and upper bounds of
three cloud layers (see table 3.1 on page 27).

X–Plane’s cloud model consists of three cloud layers (layer 0, 1, and 2), numbered
from the lowest layer in the atmosphere in ascending order. There are certain con-
straints enforced by X–Plane, such as the minimum distance between layers being exactly
2000ft (609.6m). Depending on the cloud type the thickness of the layers can be imposed
with further restrictions. Table 3.3 lists the different cloud types X–Plane supports, and
their corresponding layer thickness. The ‘clear’ type is used to hide the cloud layer. Cirrus
clouds are implemented with a fixed layer thickness. The thickness of a ‘cumulus’ or
‘stratus’ layer can be controlled, but requires a value of at least 2000ft. X–Plane 10
actually supports two kinds of cirrus clouds (‘thick’ and ‘thin’), but they are not yet
accessible through the SDK. Once they are, the index for the new type will be published
and can be sent using setWeather(...) without any modifications to FGED–link.

Index Type/Name Layer thickness

0 clear 2000ft

? thin cirrus 2000ft

1 thick cirrus 2000ft

2 cumulus scattered ≥ 2000ft

3 cumulus broken ≥ 2000ft

4 cumulus overcast ≥ 2000ft

5 low stratus ≥ 2000ft

Table 3.3: Cloud layers contain restrictions concerning their thickness. The
‘thin cirrus’ type was not yet implemented at the time of this writing in the
SDK, so no index number can be given. Once it is accessible, the appropriate
index will be published in the SDK documentation.

MASTER’S THESIS - THOMAS KRAJACIC 53

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

There is a difference in the cloud models between FSX and X–Plane. X–Plane does
not have a parameter for cloud coverage, but implements this feature rather through
different cloud types. The FGEDCommander plugin defines an Environment class (see
section B.3.2) which encapsulates all cloud related data as well as the visibility and the
date and time. It takes the parameters FGED provides, from which it could create
an adequate conversion to X–Plane’s weather system. However, it was decided not to
convert the meaning of parameters of the previous interface to the specific implementation
X–Plane provides. Rather, appropriate values are sent already intended for X–Plane’s way
of describing clouds and table 3.4 lists the settings for X–Plane’s parameters to achieve a
desired result based on the original interface.

Description ICAO Code X–Plane cloud type

Clear sky SKC Sky clear (0)
Scattered SCT Cumulus scattered (2)
Broken BKN Cumulus broken (3)
Overcast OVC Cumulus overcast or low stratus (4 or 5)

Table 3.4: Conversion rules for X–Plane’s cloud system.

Presently, cloud coverage parameters sent by FGED are ignored, and only the alti-
tude of cloud tops and bases, as well as the type index are sent to X–Plane using the
setWeather(...) JNI method. X–Plane will enforce the restrictions given in table 3.4
in case they would be violated by input through FGED. This could result in layers being
shifted to higher altitudes in case they would not meet the minimum distance of 2000ft
to the layer below, or layers’ thickness being altered to meet the restrictions.

The visibility parameter can be set in meters and has a maximum value of 100 statute
miles (160, 934.4m) and is at least 100m. X–Plane does not provide the existence of a
visibility layer but, instead, the effect of reduced visibility is diminishing at increasing
altitudes until it is completely disabled. Unfortunately, this effect is quite unrealistic, as,
looking down, the ground becomes more visible the further away one gets. According to
an email received by Austin Meyer, the author of X–Plane, this might be changed in the
future though.

An additional reason for the visibility setting being somewhat broken is the fact that
its effect is diminished when flying within a cloud layer, so that visibility suddenly becomes
better rather than worse.

Other than that, the visibility setting was displayed quite accurately and to ensure
that the viewing distance value that X–Plane provides is matching real world conditions,
the following test was conducted: A reference length was calculated from an airport map
and by positioning the plane in X–Plane and setting the maximum visibility to this exact
distance, it could be seen whether objects at the desired distance would still be visible.

MASTER’S THESIS - THOMAS KRAJACIC 54

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

The test indicates, that X–Plane’s visibility distance in viewing direction is matching
very closely what could be seen in real life. Setting a visibility of 100m indeed makes
objects that are further away invisible. Unfortunately, the effect seems to be applied on a
plane perpendicular to the viewing direction, so the effective visibility is slightly better in
the corners of the screen.

3.4.7 Setting Date and Time

Date and time can be set using the setDateTime(...) JNI method. Currently, the
FGED simulator sends the simulated time of the day in seconds as an integer value. This
can be used to display the correct position of the sun and appropriate daylight conditions.
The X–Plane SDK allows for setting the time of the day using a dataref, but requires a
float value.

It might seem acceptable to ignore time differences in the second–range and simply hold
the value constant until the next second, as the value is only used to display the correct time
of the day (and the lighting conditions do obviously not change that quickly). Unfortunately,
X–Plane uses this time for the exact timing of strobe lights as well. Therefore, a floating
point value that is increasing at a constant rate is required, or any strobe light (or other
object relying on the simulation time) might exhibit unintended behavior.

The solution implemented is rather simple and can be seen in listing 3.20. The time,
as received from FGED, is set only if it differs from the time that X–Plane is currently
reporting (X–Plane keeps increasing its internal time automatically). A difference of 5
seconds is implemented as threshold, which should hardly ever be accumulated during
normal operation, except during a change of the day (when the ‘second of day’ value jumps
back to 0), or when FGED would run in slow motion. Otherwise, setting the time to a
specific value will most likely result in a bigger time difference, and the plugin controls
X–Plane as intended.

51 void Environment::setDateTime(int day, float sec) {
52

53 FGEDHelper::set_cached(day, this->dayOfYear, dr_dayOfYear);
54

55 // We only update the time when we are off more than 5s. This means that
56 // we will let the sim run on its own time since it is only used to
57 // display the environment anyway. This is, because the beacon lights on
58 // the aircraft depend on the sim’s continuously updated time, and we
59 // only receive seconds as an integer.
60 sim_time = XPLMGetDataf(dr_secOfDay);
61 if (abs(sim_time - sec) >= 5.0) {
62 FGEDHelper::set_cached(sec, this->secOfDay, dr_secOfDay);
63 }
64 this->secOfDay = sec;
65 }

Listing 3.20: The Environment class provides a convenient method to set the
date and time in X–Plane. The time is only set if X–Plane’s value differs more
than 5 seconds.

MASTER’S THESIS - THOMAS KRAJACIC 55

CHAPTER 3. IMPLEMENTATION X–Plane Plugin (FGEDCommander)

3.4.8 Sending Return Values

While the primary task of the FGEDCommander plugin is to receive data from the FGED
simulator, it also needs to send back information only X–Plane can provide. The most
important piece of information is the ground elevation, as only X–Plane has information
about how the world outside the cockpit looks like. This is unknown to FGED, yet it is
essential for positioning the aircraft on the runway, or calculating ground collision.

The FGED–link interface provides the getReturnValues(...) method to retrieve
an array of return values. Besides ground elevation, the frame rate X–Plane currently
runs with is also returned. The implementation in FGEDBridge is seen in listing 3.21

382 JNIEXPORT jint JNICALL Java_bj_fsim_visual_XPInterface_getReturnValues
383 (JNIEnv * env, jobject obj, jdoubleArray retValues) {
384 // First get the pointer from JNI to where we need to write to.
385 double * retVals = (double *)env->GetDoubleArrayElements(retValues, NULL);
386

387 // We copy in the values from shared memory
388 FGEDLinkMemory->lock();
389 retVals[0] = sm_ret_data_ptr->framerate;
390 retVals[1] = sm_ret_data_ptr->elevation;
391 FGEDLinkMemory->unlock();
392

393 env->ReleaseDoubleArrayElements(retValues, retVals, 0);
394 return 0;
395 }

Listing 3.21: The getReturnValues(...) JNI method writes ground
elevation and frame rate back to XPInterface. No cache is required, since the
values are written directly to the addresses the JNI environment specifies.

To be able to return multiple values in an array to the FGED flight simulator using
JNI (just as the previous interface using renderEngineXfr(...) did), it is necessary
to retrieve the memory addresses where the information is supposed to be stored first,
and then write to them directly (see Oracle [21, ‘Get<PrimitiveType>ArrayElements
Routines’]). Since the actual data is delivered, and not just a pointer returned, it is not
necessary to use the ‘local buffering’ introduced for the FGEDCommander plugin (see
section 3.3.1, ‘Synchronization and Caching’ on page 32). The JAVA array where the
return values are supposed to be stored needs to be passed as parameter to the function.

For convenience, the FGEDCommander plugin also provides a list of available aircraft
models (information only X–Plane/FGEDCommander can provide), which can be queried
using the getAircraftModels() JNI method. This method returns an array of JAVA
Strings containing the path names of all aircraft that can be used (the precompiled list in
the plugin and those added through the configuration file). This can be useful for choosing
from a list of available aircraft in a user interface, as it also provides the information which
index (used with setAircraft(); see section 3.4.4) relates to which 3D model.

MASTER’S THESIS - THOMAS KRAJACIC 56

Chapter 4

Conclusion

Working with X–Plane revealed that it is well suited for being used as a visual system.
However, it became clear that flight simulation software intended for personal use and
running on PC hardware has a different approach to realism than what a research simulator
requires. While X–Plane provides incredible detail with regard to 3D aircraft models
and scenery, other elements of the environment may look great but are not simulated
realistically — most notably the behavior of the cloud system and the implementation of
visibility. On the other hand, X–Plane provides a very realistic flight model but using it
purely as a visual system, this is not needed.

Software in general has the habit of never being finished. There are always features
to add, code to refactor, or bugs to get rid of. FGED–link is no different. The following
chapter is intended to review the work done and give an outlook of how the solution can
be improved in the future. The section ‘Performance Analysis’ discusses performance
implications by various aspects of the developed solution, as well as X–Plane and the used
hardware in general.

Figure 4.1: A screenshot of X–Plane 10 showing a detailed aircraft model
and scenery.

MASTER’S THESIS - THOMAS KRAJACIC 57

CHAPTER 4. CONCLUSION Feature Analysis

4.1 Feature Analysis

Looking at the finished product of this thesis, it is interesting to evaluate the features that
could be integrated, or what functionality is left to be implemented in a future revision.
Table 4.1 gives a concise overview of the previously defined goals (see section 1.4), whether
they have been met, and what remains to be done.

Feature Description

1© Integration with
original interface

The old JNI method renderEngineXfr(...) is imple-
mented to work seamlessly with the FGED simulator. The only
exception where care needs to be taken, is the different imple-
mentation of clouds in X–Plane (see section 3.4.6 on page 53).
To provide additional functionality which became available with
X–Plane, new JNI methods were implemented to augment the
old interface. Additionally, a completely new, more structured
interface has been created, and its use is therefore strongly recom-
mended (see table 3.2 on page 37).

2© Three–projector–setup Horizontal and vertical alignment is adjustable for each X–Plane
instance by using a configuration file (see section 3.4.5 on page 49).

3© Multiplayer aircraft Fully functional control of additional aircraft is implemented for use
with the setAircraft(...) JNI method (see section 3.4.3
on page 45).

4© Improved lights
rendering

X–Plane’s graphics engine provides far better rendering of lights
than the previously used engine. However, lights do not light up
clouds, as these are not implemented as 3D objects.

5© Parallax compensation The view can be calibrated to eliminate parallax error for the pilot
using the setPilotsHead(...) JNI method.

6© Weather RADAR
support

Not implemented. The X–Plane SDK does not provide means
to control the weather in such a way to make this possible. See
section 4.2, ‘Shortcomings of the Current Implementation’ for
further information of how to solve this.

7© Controllable stop bars Proof–of–concept implemented in a separate plugin (see section 4.4,
‘Possible Future Features’ for more information).

8© Airport lighting Lighting of runways and taxiways is very limited in X–Plane as it is
implemented not as realistic OpenGl lights, but rather colored dots,
which are not completely accessible through the SDK. Activating
and deactivating, though, cannot be controlled but is automatically
set by X–Plane according to weather conditions and time of the
day. See section 4.2, ‘Shortcomings of the Current Implementation’
for further information on how to possibly solve this.

Table 4.1: Feature analysis of the FGED–link solution.

MASTER’S THESIS - THOMAS KRAJACIC 58

CHAPTER 4. CONCLUSION Shortcomings of the Current Implementation

4.2 Shortcomings of the Current Implementation

Some features were not (or not fully) implemented — most notably the ‘weather RADAR’
functionality. The problem is that the X–Plane SDK does not provide a way for fine–
grained weather manipulation. It is not possible to tell X–Plane to put a cloud at position
X with a diameter of Y . It would at least be necessary to be able to specify thunderstorm
cells by position and magnitude to be able to draw an appropriate weather RADAR image.

One way to overcome this limitation of the X–Plane SDK is to draw the clouds oneself.
This is possible since the SDK allows for hooking into X–Plane’s OpenGl drawing cycle
and a plugin can thus draw arbitrary objects on the screen (see [32, Section Graphics]).
The only downside of this method is that OpenGl programming knowledge is required.
Furthermore, as the weather system in X–Plane 10 has been completely redesigned, it
remains to be seen if the SDK will provide more convenient functions for this purpose in
the future.

A second feature not implemented is the ability to better control the lighting of
runways and taxiways at airports. While the X–Plane SDK does in fact provide a
dataref ‘sim/graphics/scenery/airport_light_level’, this does not work as would
be required. X–Plane decides for itself when lights are switched on or off. Only when they
are switched on the light level can be controlled with this dataref. Additionally, the ‘lights’
are not really lights, but rather just colored dots painted by the simulator and therefore
do not look very realistic (X–Plane 10 does provide realistic OpenGl lights interacting
with the surroundings and provide a high degree of realism, but those are not used for
this feature).

Concerning the desired feature that clouds are illuminated by an aircraft’s strobe or
landing lights, it is important to note that X–Plane’s clouds are not 3D objects, so they
are principally not affected by any light. It is not clear whether X–Plane will simulate
this behavior in the future, but for now it does not. It might be possible to draw a
semi–transparent region in front of the plane that changes its brightness whenever an
aircraft’s light would illuminate the cloud in front, but no method exists, to find out
whether a cloud is currently in front of the aircraft. Therefore it remains to be seen
whether Laminar Research will implement this feature or provide further interfaces to
facilitate a custom implementation. Additionally, the way visibility restriction is currently
implemented in X–Plane is severely lacking realism (see section 3.4.6). Austin Meyer, the
author of X–Plane, stated in a reply to an email that this might be improved in the future.

Aside from the features that could not be fully implemented, there are some other
limitations based on FGED–link ’s design:

There are hard–coded values for the number of multiplayer aircraft, the number of 3D
models that can be handled and other minor parameters, like the time delay after which
an aircraft is deemed disabled if no data is received from FGED (see section 3.4.3) or the
sync threshold for the simulator’s internal time (see section 3.4.7).

While the two latter ones could be included as an option to be set in the config file,
the others are fixed values by design. Allowing for an arbitrary amount of multiplayer

MASTER’S THESIS - THOMAS KRAJACIC 59

CHAPTER 4. CONCLUSION Performance Analysis

planes or 3D models would require some form of runtime memory allocation. This
complicates the design, makes it more error prone (due to memory management and
correct deallocating then being a responsibility of the programmer) and lastly could slow
down the plugin, as allocating heap memory takes more time than allocating memory on
the stack (see Stroustrup [27]).

Lastly, the interface for camera control is relatively limited. Ideally, it would be possible
to choose the reference coordinate frame for camera movement. This is something that
could be considered in a future implementation if needed.

It should be noted that, even though the code of the FGED–link project is well
structured, further refactoring could improve its design even more.

4.3 Performance Analysis

Whenever software runs in a time critical context, it is interesting to know how better
performance can be gained or where crucial time is lost. Ideally, the visual system
implemented would render enough frames per second, so that even the fastest motion on
the projection screen would appear to be fluid. However, aside from hardware limitations,
there are several other factors within the components of the entire solution preventing this
(see figure 4.2).

XPInterface FGEDBridge FGEDCommander X-Plane

N
et
w
or
k

Figure 4.2: The entire solution consists of multiple components, each of which
has an influence on how fast data is transmitted to the next one.

The Timer class (Timer.cpp) in FGEDBridge was specifically created for the purpose
of objectively measuring performance by means of execution times. To record framerates
in a uniform way, the Time Demo script1 was used.

To observe approximate processor load, the Performance Monitor utility provided
by Windows 7 was used . While reading those values is not highly accurate, it can be
considered sufficient for this purpose.

The current three visual–machines are identical and have the following specifications:

While the specifications given in Table 4.2 are even below the minimum system
requirements for X–Plane 10, they will suffice as intermediate solution until new hardware
can be purchased. Luckily, X–Plane’s graphics engine can be tuned in many ways, so that
even low–end hardware can run it.
1See http://wiki.x-plane.com/Timedemo_and_Framerate_Test

MASTER’S THESIS - THOMAS KRAJACIC 60

CHAPTER 4. CONCLUSION Performance Analysis

Processor Intel c© Core 2 Duo @ 2.53GHz

RAM 2GB

System Windows 7, 32–bit

Graphics card GeForce 8800GT (256MB)
PCIe 16x

Table 4.2: The technical specifications of the three identical visual–PCs.

4.3.1 XPInterface

The first relevant factor for performance is the JAVA application XPInterface itself. It
writes the data that FGED sends over the network to the shared memory provided by
FGEDBridge using various JNI methods. This, inherently, requires a certain amount
of the processor’s available power. Depending on how often the data is read from the
network and written to shared memory, the processor load imposed by XPInterface will
vary. Surprisingly, the tests indicate that there is hardly any burden on the processor.
Even at an update frequency of 200Hz processor load never rose significantly.

4.3.2 X–Plane

As a second step in testing the capacities of the entire solution it seemed useful to test
X–Plane’s performance on its own (all plugins disabled, including FGEDCommander). As
stated in various blog entries on the Developer Blog (see Supnik [28]), X–Plane’s framerate
is limited by different hardware factors and hardly any of today’s available PCs is capable
of running X–Plane at very high framerates (> 100fps) in every situation with all settings
set at their maximum. To initially avoid influence by X–Plane’s graphics parameters
the test was conducted with all settings at their minimum. Since the frame rate heavily
depends on the current scenery that needs to be drawn, an automated fly–over was used
during the tests, which allowed for observing average fps.

Figure 4.3 shows how different rendering settings influence the framerate on the visual–
PCs. The CPU will be the limiting factor, as it was at 98% processor load even at the
lowest settings possible in X–Plane.

Nevertheless, different graphics settings were tested. Fortunately, some of them are
mostly dependent on the graphics card, and hence they are not actually influenced by the
lack of processing power. For information on how to systematically enable more features
in the graphics engine of X–Plane, see section A.2.3 in the User’s Guide.

MASTER’S THESIS - THOMAS KRAJACIC 61

CHAPTER 4. CONCLUSION Performance Analysis

0

10

20

30

40

50

60

minimum settings medium settings maximum settings

av
er

ag
e

fr
am

es
 p

er
 s

ec
on

d

Figure 4.3: Performance in frames per second (fps) on a visual–PC. Different
tests have been conducted to see the influence of various graphics settings in
X–Plane. Processor load was at 98% even while flying at the minimum rendering
settings, which indicates that the CPU is the limiting factor for performance.

4.3.3 FGED–link

FGEDCommander and FGEDBridge are the components where performance can be
influenced primarily. A lot depends on the design choices made during development and
on the techniques used to implement certain features. The first concern is that the locking
of shared memory forces another process, while trying to access it, to wait until the lock is
removed and accesss granted. Looking at the frequencies at which locking happens from
both sides (XPInterface and FGEDCommander are both accessing the shared memory
and can be considered ‘opposite’), and including the times the memory is actually locked,
it becomes clear, that this does not pose any significant performance risk (see figure 4.4).

Suppose X–Plane runs at 50fps (a frame duration of 20 milliseconds), and XPInterface
sends data at 200Hz (this yields a time between those calls of 5ms). This means that,
within every frame drawn by X–Plane, memory–locking, and thereby possibly thread–
blocking, will occur:

• 4 times on average by XPInterface

• 3 times by FGEDDataExchangeCallback

(setReturnValues(), getAircraftData() and getCtrlData())

• Every 10th frame an additional 2 times by FGEDEnvironmentUpdateCallback

(getWeatherData(), getDateTimeData()) as this callback is preset to only run
every 0.2 seconds.

This means that, in the worst case, the memory is locked 9 times during a single frame.
While it may sound a lot, only by looking at the times how long it is locked can the
situation be evaluated. Table 4.3 lists the recorded average execution times for all locking
functions. It can be seen immediately, that locking memory and accessing it is extremely
fast.

MASTER’S THESIS - THOMAS KRAJACIC 62

CHAPTER 4. CONCLUSION Performance Analysis

Caller Function Exec. time

FSInterface renderEngineXfr() 13µs

FGEDCommander setReturnValues() 1µs

FGEDCommander getAircraftData() 5µs

FGEDCommander getCtrlData() 1µs

FGEDCommander getWeatherData() 4µs

FGEDCommander getDateTimeData() 1µs

Table 4.3: The approximate average execution times of some critical functions
locking the shared memory.

Furthermore, the execution time of the plugin in general is relevant, as it directly
influences the speed at which X–Plane can run (see X–Plane SDK [32, Section Processing]).
There are two main callbacks in the FGEDCommander plugin that are run regularly.
FGEDDataExchangeCallback is run for every frame, and, for data that does not need
updating every frame, FGEDEnvironmentUpdateCallback is run approximately every
0.2 seconds (it will be called at the next frame, after 0.2 seconds have passed from its
previous run).

Function Exec. time

FGEDDataExchangeCallback() 25µs

FGEDEnvironmentUpdateCallback() 12µs

Table 4.4: The approximate average execution times of the two main callbacks
in the FGEDCommander plugin.

To get a picture of the proportionality between locking times and execution times in
general see figure 4.4. As the locking and execution times are so incredibly short compared
to the duration of one frame, their width is magnified separately 100 times. The exact
position of the functions in the image is unknown, as it is not revealed, when exactly the
SDK calls the callbacks.

A last test was conducted to see how much influence the framerate, or rather the lack
of processing power, has on the execution time of the callbacks and important functions in
the plugin.

It clearly shows (see figure 4.5) that most of the functions are not taking any longer
to execute when X–Plane is running slower due to a lack of CPU power. Only the main
callback’s execution time increases slightly, which is probably based on it containing a lot

MASTER’S THESIS - THOMAS KRAJACIC 63

CHAPTER 4. CONCLUSION Performance Analysis

20ms = 150mm
1μsec = 0.0075mm

renderEngineXfr() renderEngineXfr() renderEngineXfr() renderEngineXfr()

FGEDDataExchangeCallback()

FGEDEnvironmentUpdateCallback()

100x magni�cation

12 μs

FGEDEnvironmentUpdateCallback()

getWeatherData()
getDateTimeData()

FGEDDataExchangeCallback()

setReturnValues()
getCtrlData()

getAircraftData()

25 μs

1 frame = 20ms

Figure 4.4: Execution times in one simulator cycle put into perspective. The
width of the marks for function calls in the timeline indicates the actual duration
of those calls. The position is not known as the SDK does not provide further
information as to when the callbacks are called during X–Plane’s cycles.

0

5

10

15

20

25

30

35

40

50fps 40fps 9fps

ex
ec

ut
io

n
tim

e
in

 m
ic

ro
se

co
nd

s FGEDDataExchangeCallback

FGEDEnvironmentUpdateCallback

getAircraftData

getControlData

getWeatherData

getDateTimeData

Figure 4.5: The average execution times of several functions under increasing
CPU stress. While this results in a considerable decrease in fps (as shown in
the chart), most of FGEDCommander ’s functions are resilient against it due to
their compact nature.

more instructions than the other functions. It will therefore be more often interrupted as
the processor divides up its time between multiple tasks.

While the introduction of the Aircraft class beautifully hides the extensive code needed
to set and get X–Plane data, it also takes its toll in the form of execution time, as a lot
more function calls are introduced. Furthermore, the use of a cache for rarely changed
input values supposedly reduces processor load by not calling X–Plane quite so often

MASTER’S THESIS - THOMAS KRAJACIC 64

CHAPTER 4. CONCLUSION Possible Future Features

but, unfortunately, also takes longer to execute than to just set the value every cycle.
Fortunately, the execution times within the FGEDCommander plugin are so short that
this can be neglected (see figure 4.4).

4.4 Possible Future Features

Considering the already implemented features, there are still possibilities to enhance the
solution. Aside from improving the existing features, the X–Plane SDK allows for adding
many aspects of simulation not yet included within FGED–link. The following list is a
short collection of ideas that could be translated into new projects around FGED–link.

• To further enhance the exterior view of the aircraft, aside from the already im-
plemented gear, flaps and speed–brakes, other moving parts could be correctly
animated. Aileron, elevator and rudder parameters have already been included in
the setAircraft(...) function, but their input values are not yet utilized.

• As the FGED simulator can already simulate various aircraft failures, it would be
a nice touch to draw appropriate effects for these (like smoke, for example) using
OpenGl.

• In an external view, it would be possible to visualize force, acceleration or other
parameters by drawing vectors next to the aircraft.

• While it has been shown that plugin–controlled stop bars on taxiways can be
implemented, integrating this solution and managing the stop bars is a challenge for
a future venture.

• X–Plane’s airport lighting is lacking realism by not being implemented as realistic
lights, but rather as colored dots. To possibly overcome this limitation it might be
feasible to place custom–built light beacons along the runway using the World Editor
application that is provided with the SDK for editing scenery. These objects could
then be controlled via custom datarefs.

• As mentioned before, it is not possible to set or retrieve weather data in a way to
construct a weather RADAR image. Creating METAR (see [10, Table A3-2]) files
and letting X–Plane use those would be a possibility, but the detail of this data is
very low in resolution.

As the SDK allows for drawing arbitrary objects, it would be possible to manually
construct thunderstorm clouds, which in turn would allow for creating a simulated
weather RADAR image.

MASTER’S THESIS - THOMAS KRAJACIC 65

Appendix

Appendix A

User’s Guide

This chapter guides the user through the complete setup of a visual–PC controlling either
one of the three main projectors or displaying an exterior view of the aircraft. Further, a
reference of the available JNI methods used to control X–Plane is given.

A.1 FGED–link Installation

The complete installation comprises the following components:

• The QtCore library

• The FGEDBridge library

• The X–Plane 10 installation

• The FGEDCommander plugin

• The Visual C++ Runtime

The QtCore library is part of the Qt libraries and can be obtained in various ways1.
Usually it comes as part of an extensive installation package (either the ‘Qt SDK’, or
the ‘Qt libraries only’ package) that includes a lot more than needed in this case. The
easiest way to provide a lightweight installation on the visual–PCs is to install the SDK
on the development–machine and just copy the QtCore4.dll library that will be part of that
installation to the visual–machines. This can be done by using either the SDK installer or
compiling it from the source code which can be downloaded (for more information, see
section B.2.1 in the Developer’s Guide). It is important that the version of the QtCore
library on all visual–machines matches the one used in development. The DLL needs to
be copied to C:\Windows\System32\ on the visual–PCs.
1See http://qt-project.org/downloads

MASTER’S THESIS - THOMAS KRAJACIC 67

APPENDIX A. USER’S GUIDE FGED–link Installation

FGED–link was initially developed with version 4.7.3 of the Qt SDK, but it should be
easily recompiled using a later version of the SDK.

The FGEDBridge.dll file should be copied to the C:\fged\bin\ directory, where the
XPInterface.jar file resides.

X–Plane can be installed under C:\X-Plane 10\ or any other convenient location.
It is important to know that the version shipping on DVD is most likely not the latest
release, and thus an updated installer shoud be downloaded immediately. The latest
unified installer and updater application can be found on the X–Plane website2. On future
DVD prints, this updater may already be included, but for now, this way of installing
X–Plane is recommended.

The FGEDCommander plugin directory needs to be put into the Resources/plugins/
subdirectory of the X–Plane installation. The plugin itself is called win.xpl and should be,
along with the configuration file config.txt, in a folder called FGEDCommander within the
plugin directory. When adding additional 3D aircraft models, it is suggested to put them
in the X–Plane installation directory under Aircraft/FGED/.

Finally, to be able to run programs that have been developed with Microsoft Visual
C++, it is necessary to install the appropriate runtime libraries on machines where they are
deployed. An installer can be downloaded from Microsoft ’s website3, but it is important to
use the appropriate version that matches the one of Visual Studio used for development.

The install location of all necessary files (except for the Visual C++ runtime, which
the installer automatically moves to the appropriate directory) is shown in figure A.1.

C:\
fged

bin

Windows
System32

FGEDBridge.dll

QtCore4.dll

X-Plane 10
Resources

plugins
FGEDCommander

win.xpl
config.txt

Aircraft
FGED

Figure A.1: The locations of all files to be moved into place for a complete
installation. The FGED directory is optional and can be used to contain
additional aircraft models intended to be used with X–Plane.

2See http://www.x-plane.com/downloads/x-plane_10_update/
3See http://www.microsoft.com/download/en/details.aspx?id=5555

MASTER’S THESIS - THOMAS KRAJACIC 68

APPENDIX A. USER’S GUIDE X–Plane Setup

While not being part of the ‘installation procedure’, it is very important to update
not just X–Plane regularly, but also the graphics card drivers. This has proven to boost
performance considerably in the past according to user reports on an X–Plane community
forum4.

A.2 X–Plane Setup

After having installed the required components of FGED–link, a few steps are necessary
to set up the visual–PCs for operation. These can be categorized into the following tasks:

• Adapting the configuration file for the respective visual–PC.

• Adjusting various settings in X–Plane that cannot be set automatically by the
FGEDCommander plugin.

• Adjusting graphics settings in X–Plane for optimal performance.

A.2.1 The Configuration File

The configuration file config.txt resides in the FGEDCommander directory next to the
X–Plane plugin (win.xpl). It can contain various directives to modify the behavior of
the FGEDCommander plugin.

In general, each directive in the plugin is a name:value pair separated by a colon (:),
except for lines ending in ‘.acf’. These are interpreted as aircraft model paths.

External View

Using the ‘view’ directive, the plugin can be told to display either a cockpit view or
an external view (view:external) of the aircraft. Specifying an external view also
activates listening for camera parameters in the plugin (see section A.3.5). Setting ‘view’
to anything other than ‘external’ or omitting it results in a cockpit view being displayed.

Projector Position

If the ‘view’ directive specifies a cockpit view, the two commands view-h:n and view-v:n
tell the plugin the exact viewing angle for the pilot. This is used to display the appropriate
image on the left and right projectors. n needs to be a floating point (or integer) number
with a dot (.) as decimal separator. The unit is degrees.
4http://forums.x-plane.org/

MASTER’S THESIS - THOMAS KRAJACIC 69

APPENDIX A. USER’S GUIDE X–Plane Setup

Update Frequency

With the ‘frequency’ directive it is possible to control at which frequency the plugin
tries to update data. It shall be noticed, though, that the update frequency will never
exceed the frame rate X–Plane is currently running at. This setting was therefore mainly
useful for testing purposes as the plugin did not have to be recompiled for changing the
update frequency. If this directive is not specified, the plugin will default to calling the
main callback every simulator cycle, which is equivalent to ‘every frame’ and delivers the
best result.

Adding Custom Aircraft Models

By default, the FGEDCommander plugin has a list of five plane models compiled in,
shipping with the default X–Plane installation. To use additional models, they need to be
specified in the config.txt file by their path. An aircraft model directive is identified by the
line ending in ‘.acf’. The path can be either relative from the Aircraft directory or absolute
starting with a ‘/’ (Mac/Linux) or ‘C:\’ (Windows). It does not matter whether slash–
or backslash–notation is used, as the directory separator will be replaced for the current
platform automatically. Only the ‘C:\’ needs to retain the backslash, but the drive letter
need not be ‘C’.

Platform Example

Windows, absolute C:\fged\bin\plane.acf

Mac or Linux, absolute /fged/bin/plane.acf

Crossplatform, relative FGED/DC10-30 Lufthansa vintage/DC10.acf

Table A.1: Different ways of adding aircraft models in the config.txt file.
These paths need to be written into the configuration file of every visual–PC.

A.2.2 X–Plane Settings

Finally, it is necessary to adjust some settings in the X–Plane user interface, as it is not
possible to set them automatically using the X–Plane SDK.

Number of Aircraft

To be able to use additional aircraft, they need to be activated in X–Plane under Aircraft
> Aircraft & Situations. Note that the number entered includes the user’s aircraft. A
setting of ‘10’ will result in 9 multiplayer aircraft being usable by the plugin. It is necessary

MASTER’S THESIS - THOMAS KRAJACIC 70

APPENDIX A. USER’S GUIDE X–Plane Setup

to restart X–Plane after changing the number of aircraft, because the FGEDCommander
plugin does not check if the aircraft count changes during runtime. This could be
implemented, but would make the plugin a lot more complex, and as the desired number of
multiplayer aircraft does not change very often, it was considered an acceptable trade–off.

Figure A.2: Setting the number of aircraft in X–Plane using Aircraft >
Aircraft & Situations. A restart of X–Plane is required after changing the
number, as the FGEDCommander plugin does not adjust to this number during
runtime.

It does not matter which aircraft models are chosen in this dialog box because
the FGEDCommander plugin will pre–fill the slots from its own list of models (hard–
coded paths plus those added through the configuration file). This happens when the
FGEDCommander plugin is loaded. Make sure the number of multiplayer aircraft is not
higher than what the library is compiled for (MP_COUNT), as excess planes will not be
controlled by the plugin and thus will fly around using X–Plane’s autopilot.

Viewing Options

Some of X–Plane’s default settings concerning the view are not suitable when using it
as visual system. It is necessary to turn off the view indicator and dimming under high
G–load under Settings > Rendering Options.

Figure A.3: Some options under Settings > Rendering Options are best
switched off.

MASTER’S THESIS - THOMAS KRAJACIC 71

APPENDIX A. USER’S GUIDE X–Plane Setup

Furthermore, it is convenient to have X–Plane start in full–screen view, which can also be
set in this dialog box.

Figure A.4: X–Plane can go into full–screen view immediately after starting.
This is ideal when using it as visual system.

Most of the other options in this dialog box concern the visual quality of the environment.
Ideally, all of them would be set to their highest value, but since the hardware will not
be fast enough for that, a balance needs to be found between visual quality and speed.
Section A.2.3 will give information on how to proceed to find the optimal settings.

Sound and Warnings Settings

As X–Plane is only used to display the environment, the sound output should be switched
off completely. This can be done under Settings > Sound.

Figure A.5: Disabling sound in X–Plane using Settings > Sound.

Additionally, in–cockpit text warnings that would appear on screen need to be turned
off under Settings > Operations & Warnings. The low frame–rate warning can also
be deactivated.

MASTER’S THESIS - THOMAS KRAJACIC 72

APPENDIX A. USER’S GUIDE X–Plane Setup

Figure A.6: The Settings > Operations & Warnings dialog provides
options like disabling warnings in X–Plane.

A.2.3 Performance Tuning

Finding the right graphics settings in X–Plane is no easy task, as there are an abundance
of settings for different aspects of the visual quality, and they all influence performance in
a different way. Ben Supnik, the co–author of the X–Plane SDK and also on the X–Plane
development team at Laminar Research, and Chris Serio, another developer at Laminar
Research, have written a few excellent articles on the Developer Blog (see Supnik [28]) on
how to tune X–Plane’s graphics settings for better performance. It is highly recommended
to read through these articles, as it seems not practical to just repeat that website’s
contents here.

MASTER’S THESIS - THOMAS KRAJACIC 73

APPENDIX A. USER’S GUIDE JNI Interface Reference

To Tune Framerate, You Have To Hit Rock Bottom
http://developer.x-plane.com/2010/01/to-tune-framerate-you-have-to-hit-rock-bottom/

X-Plane 10 and GPU Power
http://developer.x-plane.com/2011/10/x-plane-10-and-gpu-power/

X-Plane, SLI and CrossFire
http://developer.x-plane.com/2011/10/x-plane-sli-and-crossfire/

What’s This Whole PCIe Thing About, Anyway?
http://developer.x-plane.com/2011/10/whats-this-whole-pcie-thing-about-anyway/

A Few Settings Tricks to Try
http://developer.x-plane.com/2011/11/a-few-settings-tricks-to-try/

Rendering Settings and FPS: Don’t Panic
http://developer.x-plane.com/2011/11/rendering-settings-and-fps-dont-panic/

Tips for better frame rates Pt #1
http://developer.x-plane.com/2011/12/tips-for-better-frame-rates-pt-1/

Mobile GPUs and Fill Rate
http://developer.x-plane.com/2012/01/mobile-gpus-and-fill-rate/

Table A.2: A list of selected blog articles by Ben Supnik and Chris Serio about
tuning X–Plane’s rendering settings for better performance. Articles are listed
in chronological order from oldest on top to most recent at the bottom.

A few summarizing points on how to systematically adjust the rendering settings in
X–Plane shall be given here nevertheless.

• Set all rendering settings to the lowest possible value.

• Turn up one effect at a time and observe the hit on fps.

• Observe processor load, GPU load (if the graphics card drivers support this) and
memory usage while changing settings.

• See Table 1 in the article ‘Tips for better frame rates Pt #1’ about what the limiting
factor of the hardware could be for which setting.

A.3 JNI Interface Reference

The interface controlling X–Plane has been improved compared to the interface that
controlled FSX to provide a more streamlined and logical control of previous features as
well as incorporate the new features made possible by using X–Plane. See Table 3.2 on
page 37 for an overview.

MASTER’S THESIS - THOMAS KRAJACIC 74

APPENDIX A. USER’S GUIDE JNI Interface Reference

A.3.1 renderEngineXfr(...)

This JNI method was already discussed in section 3.1 and a description of its parameters
can be found in Table 3.1. The only difference to using this method with Flightsimulator X
is that the parameters for cloud coverage and cloud types do not match the old behavior.
Cloud coverage is completely ignored at the moment and the new indices for the cloud
types can be found in Table 3.3. Once the SDK implements the newly added cirrus cloud
type, its index can be sent without any modification to FGED–link. FGEDBridge accepts
any value between 0 annd 10.

A.3.2 setUserAircraft(int idx)

Using renderEngineXfr(...), it is not possible to change the aircraft model. To achieve
this, the setUserAircraft(int idx) method was introduced. The index passed as
sole parameter is the index of the zero–based model–list the plugin provides through the
getAircraftModels() method.

Type Name Range Description

int idx 0. . . 127 Index of 3D model. Get list with getAircraftModels()

Returns int 0,1 0 = no error.
1 = idx out of bounds.

A.3.3 calibrateView(float h_angle, float v_angle)

This function is used to calibrate the view depending on the mounting position of the
projectors. The angles sent affect X–Plane only when the View–Adjustment Window is
open (Plugins > FGEDCommander > Toggle View–Adjustment Window). The
angles are displayed in the center of the screen and once the correct setup is found they
should be written manually into the config.txt file. Use of this function is not required
during normal operation.

Type Name Range Description

float h_angle -90. . . 90 Horizontal deflection angle. [deg]

float v_angle -90. . . 90 Vertical deflection angle. [deg]

Returns int 0

MASTER’S THESIS - THOMAS KRAJACIC 75

APPENDIX A. USER’S GUIDE JNI Interface Reference

A.3.4 setAircraft(...)

This newly introduced method provides a clean interface to set all aircraft–related data for
the main as well as all multiplayer aircraft. This method is needed by the old interface to
control multiplayer aircraft. Using 0 as first parameter controls the primary aircraft. Every
other number will control the appropriate multiplayer plane. MP_COUNT is hardcoded into
the FGEDBridge library.

Type Name Range Description

int number 0. . .MP_COUNT Aircraft # to control.

int type 0..127 Aircraft Model.

double longitude −π . . . π [rad]

double latitude −π/2 . . . π/2 [rad]

double altitude 0 . . . 30000 [m] MSL

double heading 0 . . . 2π [rad]

double pitch −π/2 . . . π/2 [rad]

double roll −π . . . π [rad]

boolean beaconLight true, false

boolean landingLight true, false

boolean taxiLight true, false

boolean navLight true, false

boolean strobeLight true, false

double gear 0 . . . 1 Gear position. 0 = up, 1 = down

double flaps 0 . . . 1 Flaps position. 0 = up, 1 = full

double speedBrakes 0 . . . 1 Speed brakes position
0 = retracted, 1 = extended

double elevator −1 . . . 1 Elevator position

double aileron −1 . . . 1 aileron position

double rudder −1 . . . 1 rudder position

Returns int 0,1,2 0 = no error.
1 = number out of bounds.
2 = type out of bounds.

A.3.5 setCamera(double dx, double dy, double dz, double dpsi,

double theta, double phi, double zoom)

The function to control the camera when an external view of the aircraft is displayed.
See section 3.4.5 for a description of the coordinate system the camera operates in. If no
external view is shown, the data sent using this function is ignored by the plugin.

MASTER’S THESIS - THOMAS KRAJACIC 76

APPENDIX A. USER’S GUIDE JNI Interface Reference

Type Name Range Description

double dx — x relative to aircraft. [m]

double dy — y relative to aircraft. [m]

double dz — z relative to aircraft. [m]

double dpsi — Heading relative to aircraft. [rad]

double theta — Absolute camera pitch. [rad]

double phi — Absolute camera roll. [rad]

double zoom — Camera’s zoom factor.

Returns int 0

A.3.6 setWeather(double visibility, double[] cloudBase,

double[] cloudTops, byte[] cloudType)

This function allows for sending all weather–related data to X–Plane. This includes the
visibility range and clouds at the moment. Note that the cloud parameter’s behavior is
slightly different in X–Plane from what it was in Flightsimulator X, due to the difference
between those applications. See Table 3.3 on page 53 for the indices for the different cloud
types.

Type Name Range Description

double visibility 0. . . 160,934.4 Visibility. [m]

double[] cloudBase 0. . . 30000 Cloud base for layer [0,1,2]. [m]

double[] cloudTops 0. . . 30000 Cloud top for layer [0,1,2]. [m]

byte[] cloudType 0. . . 6 Cloud type for layer [0,1,2].

Returns int 0

A.3.7 setDateTime(int dayOfYear, int secondsOfDay)

This is the function for sending the desired simulation date and time, so X–Plane can
display the environment appropriately. The plugin will only update the time if it differs
more than 5 seconds from the internal time X–Plane keeps.

Type Name Range Description

int dayOfYear 0. . . 364 Day of the year.

int secondsOfDay 0. . . 86399 Second of the day.

Returns int 0

MASTER’S THESIS - THOMAS KRAJACIC 77

APPENDIX A. USER’S GUIDE JNI Interface Reference

A.3.8 setPilotsHead(double dx, double dy, double dz)

This method can be used to calibrate the view to the position of the pilot sitting in the
simulator. For more information see figure 3.14 on page 51.

Type Name Range Description

double dx — x relative from default position. [m]

double y — y absolute in aircraft’s coordinate system. [m]

double dz — z relative from default position. [m]

Returns int 0

A.3.9 getAircraftModels()

This function returns an array of path names for all aircraft models defined for the X–Plane
plugin. It can be used, for example, to display a popup–list in JAVA, where an aircraft
type can be chosen. The returned array contains only as many elements as there are
models, but no more than 128.

Returns String[] — An array of JAVA String objects containing the paths of all
3D models to choose from.

A.3.10 getReturnValues(double[] retValues)

This function allows XPInterface to get frame rate and ground elevation back from X–Plane.
The original interface used a double array passed to the renderEngineXfr(...), so for
the new interface to be compatible, it was implemented in the same manner.

Type Name Range Description

double[] retValues — retValues[0] is used for returning the frame rate
retValues[1] is used for returning the ground elevation

Returns int 0

MASTER’S THESIS - THOMAS KRAJACIC 78

Appendix B

Developer’s Guide

This chapter is intended to provide aid in continuing development of the FGED–link
project and provides a reference of the main C++ classes created for FGEDCommander
and FGEDBridge.

Shell commands presented here need to be executed in the Windows Command Prompt
or any suitable shell under Mac OS X, Unix or Linux (e.g. bash, zsh,. . .). The ‘>’ character
symbolizes the prompt and should not be entered with the command. Forward slashes (/)
are used as directory separators and can be switched for backslashes (\) on Windows.

With the provided directory layout, for example, LATEXand HTML documentation can be
generated by issuing the following command inside the src directory:

> doxygen ../doc/FGEDlink.cfg

The documentation will be found in the respective subdirectories inside the doc directory.

B.1 Development notes

This section presents a loose list of useful knowledge and tips for the unexperienced
programmer on various aspects of the development process.

To generate the JNI header file with the signatures for implementing the native functions
in C++, use the following command:

> javah -jni bj.fsim.visual.XPInterface

When developing an X–Plane plugin, it is necessary to specify some preprocessor
macros (see section B.2.2). Depending on the platform the plugin is compiled for, either
IBM, APL, or LIN needs to be set to 1 while the others need to be set to 0. If functions
from the X–Plane SDK version 2.0 are used, XPLM200 needs to be defined additionally.

MASTER’S THESIS - THOMAS KRAJACIC 79

APPENDIX B. DEVELOPER’S GUIDE Setting Up the Environment

To use the constant MATH_PI on Windows, _USE_MATH_DEFINES needs to be defined.
On the other hand, the min and max macros that windows.h defines should be undefined,
since using the respective functions from the C++ standard library is platform–independent
and therefore preferred. This can be done using a conditional preprocessor macro in the
source code:

#ifdef _WIN32
#undef max
#undef min

#endif

Listing B.22: Undefining min and max macros defined in windows.h.

When compiling the FGED–link solution, the compiler will give lots of warnings with
the code 4996. These report that functions that are used have been deprecated in favor of
new, more secure functions [17]. The problem with using those ‘new’ functions is the fact
that the code becomes platform–specific, as they are only provided by Microsoft’s VC++
compiler. In the FGED–link project, these warnings can safely be ignored. This can be
set in the project properties in Visual Studio (see section B.2.2).

It was announced that X–Plane will be a 64–bit application during the version 10
lifecycle. At the moment though, plugins need to be 32–bit libraries (as X–Plane is still a
32–bit application), but after X–Plane advances to 64–bit, plugins will have to as well.
For that, the FGED–link solution will need to be recompiled.

B.2 Setting Up the Environment

The following software needs to be installed, according to the platform used:

• An appropriate IDE with a compiler and linker.

• The Qt SDK.

• The X–Plane SDK.

An Integrated Development Environment (IDE) makes programming tasks a lot easier
by providing a unified interface for code editing, compiling and debugging. On Windows,
Microsoft’s Visual Studio 2010 was chosen, as it is a mature and powerful package and is
well integrated into the Microsoft environment. On Mac OS X, Apple supplies Xcode1
as an IDE for free. It is equally powerful and yet easy to use. Version 4.3, which
can be downloaded from the Mac App Store, was used for FGED–link development. No
development was done on Linux during this project, but there are many free IDEs available,
of which Qt Creator 2 can be recommended. Qt Creator is also available on the other
1See https://developer.apple.com/xcode/
2See http://qt-project.org/downloads#qt-creator

MASTER’S THESIS - THOMAS KRAJACIC 80

APPENDIX B. DEVELOPER’S GUIDE Setting Up the Environment

platforms, but the vendor specific solutions are better integrated there. If a consistent
development environment across all platforms is required, Qt Creator is probably the best
solution for all platforms.

Furthermore, it is necessary to acquire the X–Plane SDK. It can be downloaded from
the xsquawkbox website3 and the unpacked SDK directory should be put in a convenient
place. In any case, it is practical to set up a suitable directory structure for development.
Figure B.1 gives a recommendation on how to organize source code and project files.

srcSDK
FGEDBridge

FGEDBridge.cpp
FGEDBridgeWin.cpp
Timer.cpp
FGEDBridge.h
Timer.h

Aircraft.cpp
Environment.cpp
FGEDCommander.cpp
FGEDCommanderWin.cpp
FGEDHelper.cpp
Aircraft.h
Environment.h
FGEDHelper.h

FGEDCommander

Projects
MSVC2010

FGED-link.xcworkspace

FGED-link.sln
FGED-link.suo

Xcode

CHeaders
Widgets FGED-link

FGEDBridge
FGEDCommander
Debug
Release

FGEDBridge
FGEDCommander

Wrappers

XPLM

Libraries
win

Figure B.1: Suggested file structure for development.

The src directory contains all source code, while the Projects directory groups all files
related to the respective IDE. The file structure inside the respective IDE’s directory will
be created by the IDE itself, so only the surrounding directory with the IDE’s name should
be created.

B.2.1 The Qt Libraries

From the Qt Project ’s website:

“Qt is a cross–platform application and UI framework for developers using C++ or
QML, a CSS & JavaScript like language. Qt Creator is the supporting Qt IDE.”

The FGED–link project uses theQLibray class to load FGEDBridge from FGEDCommander
and the QSharedMemory class to provide a platform–independent way of dealing with
shared memory (see [24]). The QString class is also used because it provides a few conve-
nient methods and is available anyway, when linking to the QtCore library (the only part
of the Qt libraries that is needed in this project).
3See http://www.xsquawkbox.net/xpsdk/mediawiki/Download

MASTER’S THESIS - THOMAS KRAJACIC 81

APPENDIX B. DEVELOPER’S GUIDE Setting Up the Environment

To use the libraries in development, the Qt SDK needs to be installed. This can be
done via an installer4, or by manually compiling the source code. The latter has been
done for this project using the following configuration command:

> configure.exe -debug-and-release -no-webkit -no-phonon -no-phonon-backend -no-script \
-no-scripttools -no-qt3support -no-multimedia -noltcg -nomake demos -nomake examples

This skips building a lot of libraries, examples and demos not needed in this project
to speed up the compile–process (it can take several hours on a slower computer). For
further information see the Qt Developer Network website5.

B.2.2 Project Setup in Visual Studio 2010

This section will give detailed instructions on how to recreate the FGED–link solution in
Microsoft Visual Studio 2010 to continue development (‘solution’ in this case being the
term used by Visual Studio for the grouping entity of multiple projects). Setting up a
Project in Xcode or Qt Creator can be derived from the steps described here.

After openening Visual Studio 2010, proceed with the following steps:

• Go to File > New > Project

• Choose Empty Project under Visual C++: General among the templates.

• Enter ‘FGED–link’ as solution name and ‘FGEDCommander’ as Project name.

• In the Solution Explorer (the panel on the left) click on ‘FGEDCommander’.

• Go to Project > Properties or right–click the ‘FGEDCommander’ Project in the
Solution Explorer and choose Properties.

4http://qt-project.org/
5http://qt-project.org/

MASTER’S THESIS - THOMAS KRAJACIC 82

APPENDIX B. DEVELOPER’S GUIDE Setting Up the Environment

Figure B.2: The properties dialog box in Visual Studio 2010.

• Choose ‘All Configurations’ in the Configuration popup–menu and set the properties
as listed in Table B.1.

Configuration Properties: General
Configuration Type Dynamic Library (.dll)
Target Extension .xpl

Configuration Properties: VC++ Directories
Include Directories src\SDK\CHeaders\XPLM

Qt-4.7.3-shared\include\QtCore
Qt-4.7.3-shared\include

Library Directories src\SDK\Libraries\Win
Qt-4.7.3-shared\lib

Configuration Properties: C/C++: General
Additional Include Directories src\FGEDBridge\

Configuration Properties: C/C++: Preprocessor
Preprocessor Definitions APL=0;LIN=0;IBM=1;XPLM200; _USE_MATH_DEFINES;

Configuration Properties: C/C++: Advanced
Disable specific Warnings 4996

Configuration Properties: Linker: Input
Additional Dependencies XPLM.lib;qtmain.lib;QtCore4.lib;

or use
XPLM.lib;qtmaind.lib;QtCored4.lib;
for Debug configuration if Qt debug libraries have been installed.

Table B.1: Project Properties for the ‘FGEDCommander’ project in Visual
Studio 2010. The underlined parts of directory paths need to be changed
according to the current installation.

MASTER’S THESIS - THOMAS KRAJACIC 83

APPENDIX B. DEVELOPER’S GUIDE Setting Up the Environment

• Click OK.

• Right–click the ‘Source Files’ and ‘Header Files’ directories of the ‘FGEDCommander’
project in the Solution Explorer and use Add > Existing. . . to add the ‘.cpp’ and
‘.h’ files from the src\FGEDCommander directory.

• Right–click the ‘FGED–link Solution’ in the Solution Explorer and choose Add >
New Project.

• Name the project ‘FGEDBridge’ and click OK.

• Right–click the ‘FGEDBridge’ project in the Solution Explorer and choose Properties.

• Choose ‘All Configurations’ in the Configuration popup–menu and adjust the settings
according to Table B.2.

Configuration Properties: General
Configuration Type Dynamic Library (.dll)

Configuration Properties: VC++ Directories
Include Directories Qt-4.7.3-shared\include\QtCore

Qt-4.7.3-shared\lib
C:\Program Files\Java\jdk1.7.0\include
C:\Program Files\Java\jdk1.7.0\include\win32
Qt-4.7.3-shared\include

Library Directories C:\Qt-4.7.3-shared\lib

Configuration Properties: C/C++: General
Additional Include Directories wherever bj_fsim_visual_XPInterface.h is

Configuration Properties: C/C++: Preprocessor
Preprocessor Definitions _USE_MATH_DEFINES;

Configuration Properties: C/C++: Advanced
Disable specific Warnings 4996

Configuration Properties: Linker: Input
Additional Dependencies qtmain.lib;QtCore4.lib;

or use
qtmaind.lib;QtCored4.lib;
for Debug configuration if Qt debug libraries have been installed.

Table B.2: Project Properties for the ‘FGEDBridge’ project in Visual Studio
2010. The underlined parts of directory paths need to be changed according to
the current installation.

• Click OK.

• Right–click the ‘Source Files’ and ‘Header Files’ directories of the ‘FGEDBridge’
project in the Solution Explorer and use Add > Existing. . . to add the ‘.cpp’ and
‘.h’ files from the src\FGEDBridge directory.

MASTER’S THESIS - THOMAS KRAJACIC 84

APPENDIX B. DEVELOPER’S GUIDE Class Overview

Figure B.3: The Solution Explorer panel in Visual Studio 2010.

• Choose Build > Build Solution and the plugin and library should be built
using the selected configuration. The built products can then be moved to the
appropriate directories and the plugin renamed to ‘win.xpl’ (as it will be called
‘FGEDCommander.xpl’ originally).

B.3 Class Overview

The X–Plane SDK’s functions are quite low–level to provide the greatest flexibility, but for
someone less experienced in C++ development, using them can be daunting. Therefore,
an abstraction layer in the form of classes and template functions is introduced. The
classes further hide implementation details specific to X–Plane’s behavior.

This is a short overview intended for developers seeking to add functionality or improve
structuring of FGED–link. This section’s main purpose is to describe the intentions for
creating all of the classes and the FGEDHelper namespace. This should provide a new
developer with the required insight to more easily change or enhance them.

B.3.1 The Aircraft Class

The Aircraft class is introduced mainly to hide a lot of the SDK–specific code that is
necessary to deal with planes in X–Plane. It also transparently calls the appropriate
functions required to achieve the equivalent results for the primary aircraft as well as for
multiplayer planes.

Every Aircraft object has a unique index number, where 0 is intended for the primary
plane and the rest for multiplayer aircraft.

MASTER’S THESIS - THOMAS KRAJACIC 85

APPENDIX B. DEVELOPER’S GUIDE Class Overview

In the current C++ specification initializing an array of multiple objects can only
invoke the default constructor for each of those objects. To make it possible for the
FGEDCommander plugin to initialize multiple aircraft in an array with one statement,
the Aircraft class provides an initializer function that is called by the default constructor,
which automatically assigns the next available index number (see Listing B.23).

44 Aircraft::Aircraft() {
45 Aircraft::init(Aircraft::next_number);
46 Aircraft::next_number++;
47 }

Listing B.23: The default constructor of the Aircraft class calls an initializer
function.

The initializer function init(int AircraftNo) mainly sets up all the datarefs
for the current plane object. The methods setup_default_aircraft_paths() and
add_aircraft_path(...) provide easy handling for the 3D models. These functions
are put into the aircraft class because they can be associated with X–Plane’s aircraft.
If the plugin becomes more complex, they should be factored out into their own class
(e.g. AircraftHelper), as they are not inherently an aircraft’s property (not even an
X–Plane–Aircraft’s).

B.3.2 The Environment Class

The Environment class simply provides an object oriented interface for setting environment–
related data in X–Plane. It takes care of setting the time, and hides the fact, that it is
necessary (if sending the second of the day as integer through XPInterface) to let X–Plane
run on its own time, so strobe lights behave correctly.

If the original interface, where Flightsimulator X was used, needs to be imitated, an
appropriate translation of cloud parameters needs to be implemented in this class.

B.3.3 The FGEDHelper Namespace

Utility functions were put into the FGEDHelper namespace. These include methods to read
the config.txt file and provide a global std::map of key/value pairs for the configuration
parameters. The FGEDHelper namespace also provides a convenient method to output
multiple lines in an X–Plane window, as this is a bit cumbersome when using the X–Plane
SDK.

The set and set_cached function templates are also included in this namespace and
provide the foundation for setting values in X–Plane in a unified way.

MASTER’S THESIS - THOMAS KRAJACIC 86

List of Figures

1.1 Flight simulator I at the TU Graz. 2

1.2 Construction of Flight simulator II at the TU Graz. 3

1.3 The analog visual system of the TL39 flight simulator. 4

1.4 Collimation technology . 5

1.5 Parallax error without collimation. 6

2.1 The WGS–84 ellipsoid model of the earth and ECEF coordinate frame. . . 10

2.2 Definition of altitude, elevation and height. 11

2.3 The NED coordinate frame. 12

2.4 The aircraft’s fixed coordinate frame and Euler–angles. 13

2.5 Vector rotation (active and passive). 15

2.6 Gimbal lock. 18

3.1 Schematic of the FGED flight simulator. 25

3.2 Use of FSUIPC to connect to FSX. 26

3.3 Overview of the FGED–link solution. 28

3.4 Basic structure of the FGEDBridge library. 30

3.5 Writing data to shared memory. 33

3.6 Retrieving data from shared memory. 33

3.7 Layout of FGEDLinkMemory . 35

3.8 X–Plane plugin lifecycle. 40

3.9 Structural overview of the FGEDCommander plugin. 41

3.10 Model of a KC-10 in X–Plane. 46

3.11 Resetting the view when switching 3D models. 48

3.12 View configuration of horizontal and vertical deflection angle. 49

3.13 View calibration with a projection wall. 50

MASTER’S THESIS - THOMAS KRAJACIC 87

LIST OF FIGURES List of Figures

3.14 Adjusting the position of the pilot’s head in X–Plane. 51

3.15 The camera coordinate system. 52

4.1 Screenshot of X–Plane 10. 57

4.2 Components influencing performance. 60

4.3 X–Plane performance on a visual–PC. 62

4.4 Execution times put into perspective. 64

4.5 Execution times under increasing CPU stress. 64

A.1 File locations on a visual–machine. 68

A.2 Setting the number of aircraft in X–Plane. 71

A.3 Setting view parameters in X–Plane. 71

A.4 Setting full–screen view in X–Plane. 72

A.5 Disabling sound in X–Plane. 72

A.6 Disabling warnings in X–Plane. 73

B.1 Suggested file structure for development. 81

B.2 The properties dialog box in Visual Studio 2010. 83

B.3 The Solution Explorer in Visual Studio 2010. 85

MASTER’S THESIS - THOMAS KRAJACIC 88

List of Tables

1.1 Visual system suppliers. 7

2.1 Parameters for Earth’s spheroid shape according to WGS–84 10

3.1 Parameters for renderEngineXfr(). 27

3.2 The JNI interface provided by the FGEDBridge library. 37

3.3 Restrictions when using X–Plane’s cloud layers. 53

3.4 Conversion rules for X–Plane’s cloud system. 54

4.1 Feature analysis of FGED–link. 58

4.2 Visual–PC technical specifications. 61

4.3 Approximate shared memory locking durations in FGED–link. 63

4.4 Execution times of FGEDCommander ’s two main callbacks. 63

A.1 Adding aircraft models in the config.txt file. 70

A.2 Blog articles about X–Plane performance settins. 74

B.1 Project Properties for the ‘FGEDCommander’ project. 83

B.2 Project Properties for the ‘FGEDBridge’ project. 84

MASTER’S THESIS - THOMAS KRAJACIC 89

List of Code–Listings

3.1 The conditional macro to export functions. 31

3.2 Input range restriction using a function template. 31

3.3 Convenience pointers within the shared memory. 32

3.4 Validity flag for data in shared memory. 34

3.5 The aircraft_data_t data type. 36

3.6 Example JNI signature. 36

3.7 The C/C++ interface provided by the FGEDBridge library. 38

3.8 Definition of the maximum number of multiplayer aircraft. 39

3.9 A minimalist plugin implementation. 40

3.10 A C++ template to hide data–type–specific functions. 42

3.11 Template definition for boolean data type. 43

3.12 Caching implemented in the set_cached(...) function template. 43

3.13 Activating the cache with the global ‘dirty’ flag. 44

3.14 Setting aircraft–related parameters using the Aircraft class. 45

3.15 Default plane models in the Aircraft class. 47

3.16 Adding plane models using the configuration file. 47

3.17 Resetting of the y–coordinate when switching 3D models. 48

3.18 View deflection angles set in the configuration file. 50

3.19 Switching to external view in config.txt. 52

3.20 Setting date and time with setDateTime(...). 55

3.21 Retrieving ground elevation and frame rate. 56

B.22 Undefining min and max macros defined in windows.h. 80

B.23 The default constructor of the Aircraft class. 86

MASTER’S THESIS - THOMAS KRAJACIC 90

Bibliography

[1] How many frames per second can the human eye see? http://www.100fps.com/how_many_
frames_can_humans_see.htm.

[2] Apple Developer Library. Dynamic Library Programming Topics. https://developer.
apple.com/library/mac/#documentation/DeveloperTools/Conceptual/DynamicLibraries, .

[3] Apple Developer Library. gettimeofday(2) Mac OS X Developer Tools Manual
Page. https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/
man2/gettimeofday.2.html, .

[4] Dov Bulka and David Mayhew. Efficient C++: Performance Programming Techniques.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0-201-
37950-3.

[5] Michael F. Deering. The Limits of Human Vision. http://www.swift.ac.uk/about/files/
vision.pdf.

[6] James Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134, 2006.

[7] FAA. Pilot/Controller Glossary. http://www.faa.gov/air_traffic/publications/atpubs/PCG/
pcg.pdf, 2012.

[8] J. Farrell and M. Barth. The global positioning system and inertial navigation.
McGraw-Hill, 1999. ISBN 9780070220454.

[9] Agner Fog. Optimizing software in C++ — An optimization guide for Windows,
Linux and Mac platforms. http://www.agner.org/optimize/optimizing_cpp.pdf, 2011.

[10] Meteorological Service for International Air Navigation. Amendment 74 to the
International Standards and Recommended Practices, 2007.

[11] Gernot Hoffmann. Application of Quaternions. http://www.fho-emden.de/~hoffmann/
quater12012002.pdf.

[12] Berthold K.P. Horn. Some Notes on Unit Quaternions and Rotation, 2008.

[13] M Johnson. Windows System Programming. Addison-Wesley Professional„ fourth
edition edition, 2010. ISBN 9780321658319.

MASTER’S THESIS - THOMAS KRAJACIC 91

http://www.100fps.com/how_many_frames_can_humans_see.htm
http://www.100fps.com/how_many_frames_can_humans_see.htm
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/DynamicLibraries
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/DynamicLibraries
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/gettimeofday.2.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/gettimeofday.2.html
http://www.swift.ac.uk/about/files/vision.pdf
http://www.swift.ac.uk/about/files/vision.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134
http://www.faa.gov/air_traffic/publications/atpubs/PCG/pcg.pdf
http://www.faa.gov/air_traffic/publications/atpubs/PCG/pcg.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.fho-emden.de/~hoffmann/quater12012002.pdf
http://www.fho-emden.de/~hoffmann/quater12012002.pdf

BIBLIOGRAPHY Bibliography

[14] Don Koks. Using Rotations to Build Aerospace Coordinate Systems. http://www.dsto.
defence.gov.au/publications/scientific_record.php?record=3499, 2008.

[15] J.B. Kuipers. Quaternions and rotation sequences: a primer with applications to
orbits, aerospace, and virtual reality. Princeton paperbacks. Princeton University
Press, 2002. ISBN 9780691102986.

[16] Agostino De Marco. A note on the calculation of Aircraft Euler angles from quaternions,
including situations of gimbal lock.

[17] Microsoft MSDN. Compiler Warning (level 3) C4996. http://msdn.microsoft.com/en-us/
library/ttcz0bys.aspx, .

[18] Microsoft MSDN. Dynamic-Link Libraries. http://msdn.microsoft.com/en-us/library/
ms682589.aspx, .

[19] Microsoft MSDN. Initializing a DLL. http://msdn.microsoft.com/en-us/library/7h0a8139.
aspx, .

[20] Microsoft MSDN. About Timers. http://msdn.microsoft.com/en-us/library/windows/
desktop/ms644900.aspx, .

[21] Oracle. Java Native Interface Specification. http://docs.oracle.com/javase/7/docs/
technotes/guides/jni/spec/jniTOC.html. Accessed: 23.02.2012.

[22] Ray L. Page and Associates. Brief History of Flight Simulation. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.132.5428, 2006.

[23] W.F. Phillips. Mechanics of flight. Wiley, 2004. ISBN 9780471334583.

[24] Qt Project. Qt API Reference. http://qt-project.org/doc/qt-4.8/classes.html.

[25] Ken Shoemake. Quaternions. http://www.cs.ucr.edu/~vbz/resources/quatut.pdf.

[26] W.R. Stevens. UNIX Network Programming: Interprocess communications. The Unix
Networking Reference Series , Vol 2. Prentice Hall PTR, 1999. ISBN 9780130810816.

[27] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986. ISBN
9780201120783.

[28] Ben Supnik. X–Plane Developer. http://developer.x-plane.com/.

[29] Dimitri van Heesch. Doxygen Documentation. http://www.stack.nl/~dimitri/doxygen/,
2011. Accessed: 23.02.2012.

[30] Leandra Vicci. Quaternions and Rotations in 3-Space: The Algebra and its Geometric
Interpretation. ftp://ftp.cs.unc.edu/pub/techreports/01-014.pdf.

[31] X–Plane SDK. Data Refs. http://www.xsquawkbox.net/xpsdk/mediawiki/DataRefs, .

[32] X–Plane SDK. Documentation Wiki. http://www.xsquawkbox.net/xpsdk/mediawiki/Category:
Documentation, .

MASTER’S THESIS - THOMAS KRAJACIC 92

http://www.dsto.defence.gov.au/publications/scientific_record.php?record=3499
http://www.dsto.defence.gov.au/publications/scientific_record.php?record=3499
http://msdn.microsoft.com/en-us/library/ttcz0bys.aspx
http://msdn.microsoft.com/en-us/library/ttcz0bys.aspx
http://msdn.microsoft.com/en-us/library/ms682589.aspx
http://msdn.microsoft.com/en-us/library/ms682589.aspx
http://msdn.microsoft.com/en-us/library/7h0a8139.aspx
http://msdn.microsoft.com/en-us/library/7h0a8139.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644900.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644900.aspx
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.5428
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.5428
http://qt-project.org/doc/qt-4.8/classes.html
http://www.cs.ucr.edu/~vbz/resources/quatut.pdf
http://developer.x-plane.com/
http://www.stack.nl/~dimitri/doxygen/
ftp://ftp.cs.unc.edu/pub/techreports/01-014.pdf
http://www.xsquawkbox.net/xpsdk/mediawiki/DataRefs
http://www.xsquawkbox.net/xpsdk/mediawiki/Category:Documentation
http://www.xsquawkbox.net/xpsdk/mediawiki/Category:Documentation

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Overview of Visual System Technology
	1.3 Visual System Software
	1.4 Goals

	2 Theory
	2.1 Common Coordinate–Systems in Aviation
	2.1.1 Earth–Centered–Earth–Fixed (ECEF)
	2.1.2 North–East–Down (NED)
	2.1.3 Body–fixed Coordinate System
	2.1.4 X–Plane's OpenGl Coordinate Space

	2.2 Describing Aircraft Attitude
	2.3 Coordinate Transformations
	2.3.1 Rotation Matrix / Euler–angles
	2.3.2 Quaternions / Euler–Rodrigues Parameters
	2.3.3 Comparison of Rotation Formulations

	3 Implementation
	3.1 Existing Interface
	3.2 Designing a New Solution (FGED–link)
	3.3 Shared Library (FGEDBridge)
	3.3.1 Shared Memory
	3.3.2 JNI Interface
	3.3.3 C/C++ Interface

	3.4 X–Plane Plugin (FGEDCommander)
	3.4.1 Anatomy of an X–Plane Plugin
	3.4.2 Setting and Getting X–Plane Parameters
	3.4.3 Aircraft Control
	3.4.4 Changing Aircraft Models
	3.4.5 View Configuration
	3.4.6 Adjusting Weather
	3.4.7 Setting Date and Time
	3.4.8 Sending Return Values

	4 Conclusion
	4.1 Feature Analysis
	4.2 Shortcomings of the Current Implementation
	4.3 Performance Analysis
	4.3.1 XPInterface
	4.3.2 X–Plane
	4.3.3 FGED–link

	4.4 Possible Future Features

	Appendix
	A User's Guide
	A.1 FGED–link Installation
	A.2 X–Plane Setup
	A.2.1 The Configuration File
	A.2.2 X–Plane Settings
	A.2.3 Performance Tuning

	A.3 JNI Interface Reference
	A.3.1 renderEngineXfr(…)
	A.3.2 setUserAircraft(…)
	A.3.3 calibrateView(…)
	A.3.4 setAircraft(…)
	A.3.5 setCamera(…)
	A.3.6 setWeather(…)
	A.3.7 setDateTime(…)
	A.3.8 setPilotsHead(…)
	A.3.9 getAircraftModels()
	A.3.10 getReturnValues(…)

	B Developer's Guide
	B.1 Development notes
	B.2 Setting Up the Environment
	B.2.1 The Qt Libraries
	B.2.2 Project Setup in Visual Studio 2010

	B.3 Class Overview
	B.3.1 The Aircraft Class
	B.3.2 The Environment Class
	B.3.3 The FGEDHelper Namespace

	List of Figures
	List of Tables
	List of Code–Listings
	Bibliography

