
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.- Ing. Georg Macher, BSc

Framework for the Integrated Model-Based Development of

Dependable Automotive Systems and Software

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Advisor

Dipl.-Ing. Dr.techn. Christian Kreiner

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Institute of Technical Informatics

Graz, November 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

Abstract

Embedded systems are already integrated into our everyday life and play a central ro-
le in all domains including automotive, aerospace, healthcare, and industry. In recent
years, the complexity of embedded automotive systems has grown significantly due to the
replacement of traditional mechanical systems with electro-mechanical systems. These
systems enable the deployment of more advanced control strategies and assistant func-
tions but also triggered the need for more computing power and a paradigm change in
development. With the deployment of multi-core systems for the automotive domain
and the increasing impact of software on embedded systems’ functionality, the automo-
tive domain faces an enormous increase in complexity and a growing gap between the
technologies and the required level of expertise. Furthermore, extra-functional product
attributes are currently either unique selling point opportunities or show stoppers. Ne-
vertheless, these system features require a fine grasp of commonalities and cross-domain
knowledge and pose additional challenges for the development of embedded automotive
systems. These interdisciplinary fields, their mutual correlations, and high amount of
cross-domain expertise require adequate methodologies and tools support to be integra-
ted in the existing development process landscape. The classical ‘separation of concern’
approach of the automotive industry has to be reconsidered and an approach found which
provokes seamless cross-fertilization across tool, team, and domain skills. Model-based
development exemplifies a system under development in a more structured way, enab-
ling different levels of abstraction and incorporates the views of different stakeholders.
Thus, development models serve as a central source of information for all parties involved
and are geared towards collaboration across tool and domain boundaries. The current
model-based development approaches are frequently prevented from tapping into their
full potential due to problems arising from inadequate tool-chain support and missing
methodical support.

Therefore, this thesis aims to establish a model-based development approach to tackle
the issues of modern embedded automotive systems and accelerate the transfer of know-
how across the engineering domains involved. The presented approach focuses on the
process, method, and tool layer with a special focus on dependable multi-core system
development. With regards to the process layer, industrial processes are analyzed and
adaptations or extensions are suggested. The focus of the method layer is the exploitation
of commonalities and concurrent methods for dependability attributes and cross-domain-
enrichment of methods. The intention regarding the tool layer is to merge heterogeneous
tools required for multi-core system development.

i

Kurzfassung

Eingebettete Systeme sind in vielen Bereichen des täglichen Lebens integriert und spielen
auch eine zentrale Rolle in Industriezweigen, wie Luftfahrt, Medizintechnik, Energiever-
sorgung und im Automobilbereich. In der Automobilindustrie sind eingebettete Systeme
in den letzten Jahren verstärkt aufgetreten. Dies hängt vor allem mit dem Austausch
herkömmlicher mechanischer Systeme durch eingebettete elektro-mechanische Steuerung
zusammen. Vor allem solchen Steuerungen ist es zu verdanken, dass der Einsatz kom-
plexerer Regelsysteme und ausgefeilterer Fahrerassistenzsysteme ermöglicht wurde. Sol-
che komplexe Funktionalitäten benötigen jedoch auch mehr Rechenkapazität, was den
Einsatz von Mehrkernrechnern auch für sicherheitskritische Funktionen im Automo-
bil nach sich zieht. Dieser Technologiewandel, die enorm gestiegene Komplexität von
Software im Automobil und der gleichzeitig gestiegene Wunsch nach gesteigerten nicht-
funktionalen Eigenschaften (erhöhte Zuverlässigkeit, Verfügbarkeit und Sicherheit) for-
dern tiefgreifendere Kenntnisse in verschiedensten Wissensgebieten des Automobilbaus
und das Überblicken höherer Systemkomplexität. Interdisziplinäres Wissen, Kenntnis-
se von wechselseitigen Einwirkungen sowie das hohe Maß an technischem Verständnis
benötigen die Entwicklung und Bereitstellung adäquater Methoden, Prozessbeschrei-
bungen und Werkzeugunterstützung für die Produktentwicklung. Klassische Ansätze,
wie das bisher gängige Aufteilen der Entwicklung in einzelne Teilbereiche, müssen neu
überdacht und durch übergreifende Ansätze ersetzt werden. Modellbasierte Entwick-
lung scheint zur Zeit der geeignetste Ansatz zu sein, um das zu entwickelnde Produkt
strukturiert beschreiben zu können, verschiedene Denkmuster und Betrachtungswinkel
zu vereinigen und eine gemeinsame Basis für die Entwicklung zu ermöglichen.

Aus diesem Grund beschäftigt sich diese Doktorarbeit mit modellbasierter Entwick-
lung integrierter Systeme im Automobilbereich und dem Ausschöpfen des Potentials
dieses Ansatzes, um den Herausforderungen der Entwicklung auf diesem Sektor gerecht
zu werden und einen besseren Wissensaustausch zwischen den involvierten Entwicklern
zu ermöglichen. Um das zu gewährleisten, wird die Thematik auf drei Ebenen behan-
delt: Die Prozessebene betreffend werden industrietypische Prozesse analysiert und An-
passungen oder Erweiterungen vorgeschlagen. Die Methodikebene ist von der Analyse
domänenspezifische und domänenübergreifende Vorgehensweisen bestimmt, Gemeinsam-
keiten und passende Methodik Kombinationen werden herausgearbeitet. Für die Werk-
zeugebene, respektive den Machbarkeitsaspekt, wird ein automatisierter Datenaustausch
zwischen den, für den Entwicklungsprozess notwendigen, Werkzeugen eingeführt.

ii

Acknowledgments

First and foremost I would like to thank my family and girlfriend for their lifelong sup-
port and for their tolerance and encouragement during my studies. Their motivation
and cheering up during tough and stressful periods as well as their knocking me out of
the skies when I needed it made it possible to finish my PhD study. Thank you very
much!

This thesis has been conducted as part of the MEMCONS project in cooperation
with supporting project partners, AVL List GmbH, Virtual Vehicle Research Center,
and Graz University of Technology. I would like to thank Christian Kreiner, Eric Ar-
mengaud and Michael Stolz for managing the cooperation of these partners and keeping
me out of managing duties and focused on work. I also want to thank the cooperation
partners AVL List GmbH and Virtual Vehicle Research Center for making the project
possible and providing me with relevant feedback, real-world use-cases and knowledge of
industrial needs. Additionally, I would like to thank my MEMCONS student team for
their contributions and the convivial meetings with many fruitful outcomes.

Special thanks to my supervisor at Graz University of Technology, Prof. Eugen Bren-
ner. He made the official and organizational part of my PhD study very easy, gave me a
lot of freedom regarding research topics and helped me elaborate the scientific points of
my thesis. Also in this context special thanks to Christian Kreiner, who convinced me to
start this PhD, turned out to be ‘Master Yoda’ as my mentor and introduced me to very
specific domain topics and granted me access to a selected work group. This provided a
good working environment to conduct this doctoral thesis and left me a lot of open space
to be creative and innovative. Furthermore, I would like to thank my colleagues at the
different involved partner companies for the fruitful collaborations, qualified comments,
supporting contributions, numerous coffee meetings and an atmosphere of friendship.

Finally, I want to thank my aunt Sr. Anna and her colleagues for proofreading this
work and I want to dedicate the following pages to those who added a special contribution
to this thesis.

iii

to my family

iv

to my project facilitators

EUGEN B CHRISTIAN K ERIC A

MICHAEL S

DOCTOR MEMCONS

v

to my comrades

vi

Executive Summary

In the late 1970s self-contained embedded systems called Electronic Control Units (ECUs)
entered production vehicles. Since then, such computer systems have been integrated
into almost every aspect of a car: control throttle, transmission, brakes, passenger cli-
mate, and infotainment. Currently available premium cars implement more than 100
electronic control units (ECU) with close to 1 Gigabyte software code. Additionally, the
amount of software in such embedded systems has grown to approximately 100 million
lines of code(LoC) (in comparison the F-35 Joint Strike Fighter will require about 5.7
million LoC and the Boeing 787 Dreamliner about 6.5 million LoC).

Embedded automotive systems are estimated to be responsible for 80 % of product
innovation in the past decade and are responsible for 25% of current vehicle costs. To-
day’s information society strongly supports the inclusion of inter-system communication
(Car2X) in the automotive domain. Consequently the boundaries between application
domains are disappearing even faster than previously due to the replacement of tra-
ditional mechanical systems. These factors cause multiple cross-domain collaborations
and interactions in the face of the challenge to master the increased complexity.

Current innovation challenges in the domain are related to novel computing paradigms
(such as multi-core systems), system interaction and cooperation with the Web (such
as Car2Environment), and extra-functional system dependability constraints (such as
safety, IT security, and reliability). Hence, the automotive industry is facing a growing
gap between technology and the required level of expertise to make best use of it. In this
context this doctoral thesis is founded in cooperation with the industrial partner AVL
List GmbH and its Powertrain Engineering branch. The thesis is part of the ‘Model-
based EMbedded CONtrol Systems’ (MEMCONS) project which tackles a number of
research challenges in the environment of embedded control systems development, such
as:

� Optimal software calibration

� Framework for thermal management in hybrid vehicles

� Coordination of dynamic requests in hybridized powertrains

� Automotive Software Refactoring

� Realtime software on multi-core platforms

� Safety analysis

vii

The doctoral thesis is aimed at improving the model-based development of embedded
automotive multi-core systems from initial system design to software implementation in
order to support a comprehensive dependability development. For this aim three major
challenges are focused on:

1. multi-core system development

2. extra-functional system attributes development

3. life-cycle wide model-based development

The introduction of multi-core computing platforms provided more computing re-
sources and additional interfaces to answer the needs of new automotive control strate-
gies with respect to computing performance and connectivity. At the same time, the
parallel execution and resulting resources and timing conflicts require a paradigm change
to the embedded software. The automotive industry is confronted with the central ques-
tion of how to migrate, optimize, and validate a given application (or set of applications)
on a given computing platform with a given operating system. Due to the timing- and
safety-criticality of automotive application, lessons learned from other domains (such as
consumer electronics) cannot be adopted directly. Therefore, a knowledge transfer is
required to identify the application requirements (both functional and extra-functional),
perform a mapping to the SW and HW architecture, and grasp the possible impacts of
concurrency and HW specifics on the software applications.

Dependability is a superordinate concept regrouping different system attributes such
as reliability, safety, security, or availability and other extra-functional requirements for
modern embedded systems and requires coordinated development along the entire de-
velopment life-cycle. In the automotive industry, dependability engineering is currently
moving to be the main focus; extra-functional features are either ‘show stoppers’ or
‘unique selling points’ for embedded automotive system development. These different
attributes might lead to different targets and thus there is a strong need for unified
methods to manage these different attributes. Therefore, the focus is set on address-
ing all these system attributes in combination (not independent from each other) and
across different skill teams along the entire life-cycle with the same emphasis. Indeed, a
common analysis method delivering consistent dependability targets across the different
attributes is the basis for performing consistent dependability engineering during the
entire product development.

Model-based development alleviates the issue of inherent complexity and the most
promising approach of interdisciplinary development; but in the case of embedded sys-
tem development, seamless cooperation between the involved domains and development
experts is a core challenge. In model-based designs, a model of the application is used
to represent complex designs at higher levels of abstraction; showing only specific pieces
of information for the purpose of understanding and analyzing large designs. The model

viii

forms the basis for further activities, such as verification, code generation, or model
transformation. Tool support for automotive engineering development is still organized
as a patchwork of heterogeneous tools and formalisms.

To address these matters, this doctoral thesis focuses on improving the comprehensive
dependability argumentation of automotive multi-core system development. The strat-
egy of this doctoral thesis’ approach is to tackle the previously mentioned three major
challenges on tool, method, and process layer (see Figure 1); layers which have been
identified as crucial for industrialization of engineering approaches.

Figure 1: Layers for Industrialization of Engineering Approaches

Figure 2 shows a depiction of this thesis’ concept in GSN notation. The major con-
tributions for success are listed on the contribution layer of Figure 2 and supported via
the related publications. The main goals of this doctoral thesis are on the one hand,
to reveal challenges which appear when developing a dependable multi-core system, es-
pecially in the automotive domain and the development of strategies for the migration
to multicore systems. On the other hand, the development of such systems needs to be
supported by an adequate development framework.

ix

K
EY

 C
H

A
LL

EN
G

E
G

O
A

LS
TH

ES
IS

 C
O

N
TR

IB
U

T
IO

N
P

U
B

LI
C

A
TI

O
N

IM
P

R
O

V
IN

G
 S

E
A

M
L

E
S

S

D
E

V
E

L
O

P
M

E
N

T
 O

F

A
U

T
O

M
O

T
IV

E
 M

U
L
T
IC

O
R

E

S
Y

S
T
E

M
S

R
E

V
E

A
L
 D

O
M

A
IN

C
H

A
L
L

E
N

G
E

S

D
E

V
E

L
O

P
 M

U
L
T
IC

O
R

E

M
IG

R
A

T
IO

N

S
T
R

A
T
E

G
IE

S

S
E

A
M

L
E

S
S

A
U

T
O

M
O

T
IV

E
 S

Y
S

T
E

M

D
E

V
E

L
O

P
M

E
N

T

S
U

P
P

O
R

T

A
R

C
H

IT
E

C
T

U
R

E

A
N

A
L

Y
S

IS
 F

O
R

S
Y

S
T
E

M
-W

ID
E

F
U

N
C

T
IO

N

IM
P

L
E

M
E

N
T
A

T
IO

N

D
E

P
E

N
D

A
B

IL
IT

Y

A
N

A
L

Y
S

IS
 M

E
T
H

O
D

S

B
R

ID
G

IN
G

 T
O

O
L
 G

A
P

S

S
Y

S
T
E

M
 E

N
G

IN
E

E
R

IN
G

V
S

S
W

 E
N

G
IN

E
E

R
IN

G

A
U

T
O

M
O

T
IV

E
 S

A
F
E

T
Y
 C

A
S

E

P
A

T
T
E

R
N

A
N

A
L

Y
S

IS
 O

F
 D

E
V

E
L
O

P
M

E
N

T

P
R

O
C

E
S

S
E

S

M
U

L
T
IC

O
R

E
 M

IG
R

A
T
IO

N

C
H

A
L
L

E
N

G
E

S

M
U

L
T
IC

O
R

E
 M

IG
R

A
T
IO

N

P
A

T
T
E

R
N

S
D

A
 A

N
A

L
Y
S

IS

S
A

H
A

R
A

 A
N

A
L

Y
S

IS

D
E

P
E

N
D

A
B

L
E

D
E

V
E

L
O

P
M

E
N

T
 M

E
T
H

O
D

H
S

I
S

P
R

E
A

D
S

H
E

E
T
 B

R
ID

G
E

B
S

W
 C

O
N

F
IG

U
R

A
T
IO

N

G
E

N
E

R
A

T
O

R

O
S

 C
O

N
F

IG
U

R
A

T
IO

N

G
E

N
E

R
A

T
O

R

A
S

W
 M

O
D

E
L

L
IN

G

T
O

O
L
B

R
ID

G
E

A
R

C
H

IT
E

C
T

U
R

E

T
R

A
C

E
A

B
IL

IT
Y
 S

U
P

P
O

R
T

CAEDGFHJ MI BKL

█

P

R
O

C
E

S
S
 L

A
Y
E

R

█

M

E
T
H

O
D
 L

A
Y
E

R

█

T

O
O

L
 L

A
Y
E

R

Figure 2: Overview of the Doctoral Thesis Concept Strategy

x

Contents

1 Introduction 1
1.1 Embedded Automotive Systems . 1

1.2 Thesis Background . 2

1.3 Problem Statement . 2

1.3.1 Seamless Model-based Development 3

1.3.2 Safety-Critical Multi-Core Systems 3

1.3.3 Comprehensive Dependability . 4

1.4 Publication Statistics . 5

1.5 Thesis Organization . 6

2 Related Work 7
2.1 Research Project in the Automotive Domain 7

2.1.1 CESAR Project . 7

2.1.2 SPES XT . 8

2.1.3 AMALTHEA project . 8

2.1.4 parMERASA Project . 9

2.1.5 Safe Project . 9

2.1.6 Evita Project . 10

2.1.7 Maenad Project . 10

2.1.8 SeSaMo Project . 10

2.2 Model-based Development . 11

2.2.1 System Modeling Language (SysML) 13

2.2.2 MARTE System Profile . 14

2.2.3 EAST ADL . 14

2.2.4 AUTOSAR Meta-Model . 16

2.3 Safety-Critical Systems . 17

2.4 Dependability Attributes . 18

3 Proposed Solution 21
3.1 Process Layer related Contribution . 23

3.1.1 Analysis of Development Processes 23

3.1.2 Architecture Traceability Support 25

3.2 Method Layer related Contribution . 25

3.2.1 Automotive Safety Case Pattern 25

xi

Contents

3.2.2 Multi-Core Migration Challenges 26
3.2.3 Multi-Core Migration Pattern . 29
3.2.4 Service Deterioration Analysis . 32
3.2.5 Security-Aware Hazard and Risk Analysis Method 33
3.2.6 System Dependability Analysis Methods 38
3.2.7 Seamless Modeling Approach . 42

3.3 Tool Layer related Contribution . 44
3.3.1 Application Software Modeling Toolbridge 46
3.3.2 Basic Software Configuration Generator 49
3.3.3 OS Configuration Generator . 49
3.3.4 Hardware Software Interface Definition Toolbridge 50
3.3.5 Multi-Core Scheduling Tool Support 51
3.3.6 Test Tool Integration . 53
3.3.7 Constraint Checker . 53

4 Use-Case Application 55
4.1 Item Definition . 56

4.1.1 Provided Functions . 57
4.1.2 Elements of the Item . 58
4.1.3 Intended Use and Assumptions . 58

4.2 Combined Analysis for Dependable System Development 59
4.3 Functional Safety Concept . 61
4.4 MBD Representation of Use-Case at System Level 61

4.4.1 L2 - Powertrain Element Level . 61
4.4.2 L3 - Control System Level . 63

4.5 MDB Representation of Use-Case at Implementation Level 63
4.5.1 Application Software Layer . 67
4.5.2 Basic Software and HW Abstraction Layer 68
4.5.3 Operating System Configuration 68

5 Conclusion and Future Work 71
5.1 Summary and Conclusion . 71
5.2 Future Work . 71

6 Publications 73

Bibliography 201

xii

List of Figures

1 Layers for Industrialization of Engineering Approaches ix
2 Overview of the Doctoral Thesis Concept Strategy x

1.1 General Overview of Dependability Attributes and Analysis Methods . . . 4

2.1 Overview of SysML Diagram Types [32] 13
2.2 Overview of EAST-ADL2 Abstraction Layers and their Relation to AU-

TOSAR [22] . 15
2.3 Overview of the AUTOSAR ECU SW Architecture[8] 15

3.1 Overview of the Doctoral Thesis Concept Strategy 22
3.2 Iterative Model-Driven Development Process for Embedded Systems [45] . 24
3.3 Depiction of: (a) Forward Update Dependability Relation, (b) Backward

Update Dependability Relation, and (c) Bidirectional Update Depend-
ability Relation . 25

3.4 Conceptual Overview of the SAHARA Method 36
3.5 General Overview of Dependability Attributes and Analysis Methods . . . 39
3.6 Overview of the Described Approach with Distinctive Features Highlighting 41
3.7 Shows the Representation of Application SW Artifacts. 43
3.8 Shows the Representation of Basic SW Artifacts and HW Representations

for Optimization of Resource Utilization. 45
3.9 Overview of Tool Layer related Contributions 45
3.10 ISO 26262 SW Development Process [40] and Tool Mapping 47
3.11 Screenshot of the SW Architecture Representation within the System De-

velopment Tool and Extension of Bridging Approach 48
3.12 Overview of Interface Files Generated by the BSW Configuration and

Interface Generator . 50
3.13 Graphical Representation of Hardware Software Interface 51

4.1 AVL PTE Global System Structure (GSS) and Level Structure ©AVL . . 55
4.2 Schematic Diagram of a BMS . 57
4.3 Screenshot of BMS Item and System Boundaries within the System De-

velopment Tool (EA) . 59
4.4 Excerpt of the Application of the SAHARA Analysis of the BMS Use-Case 60
4.5 Excerpt of the SDA Application of the BMS Use-Case 60

xiii

List of Figures

4.6 L2 Architecture of Powertrain and BMS Use-Case 63
4.7 Excerpt of the HARA of the BMS Use-Case 64
4.8 HW and SW Elements of the CCU of the Use-Case 65
4.9 CCU Architecture (L3 Architecture) . 66
4.10 Top-Level Representation of SW Demonstration Use-Case in Enterprise

Architect . 66
4.11 Screenshot of the BSW and HW Pin Representation within the System

Development Tool . 68
4.12 Excerpt of Generated Files for the BMS Use-Case 69
4.13 Modeling Artifacts representing the OS Configurations of the Use-Case . . 70

6.1 Mapping of Publication and Layers of Contribution 74

xiv

List of Tables

3.1 Deterioration Impact (I) Classification - Classification of ‘I’ Value of Im-
pact of Outage of the Component . 34

3.2 Operation Profile (O) Classification - Classification of ‘O’ Value of In-
tended Harshness of the Environment of the Component 34

3.3 Repair Aggravation (A) Classification - Classification of ‘A’ Value of Ca-
pability and Ease of Repair of the Component 34

3.4 Required Resource ‘R’ Classification - Determination of ‘R’ Value for re-
quired Resources to Exert Threat . 37

3.5 Required Know-How ‘K’ Classification - Determination of ‘K’ Value for
Required Know-how to Exert Threat . 37

3.6 Threat Criticality ‘T’ Classification - Determination of ‘T’ Value of Threat
Criticality . 37

3.7 Mapping of Safety, Security, and Service Oriented Engineering Terms . . . 40
3.8 Highlights the Application SW Development Artifacts and their Attributes. 44
3.9 Summary of Evaluation Factors of Simulink Tool Bridge Variants 48
3.10 Summarization of Extensions required for Multi-core Support 52

4.1 Elements of the HV Battery . 58
4.2 Excerpt of BMS Functional Safety Concept 62
4.3 Overview of the Evaluation Use-Case SW Architecture 69

xv

List of Tables

xvi

Abbreviations

ADC Analog-Digital Converter

ADD Automotive Data Directory

API Application Programming Interface

ARTOP AUTOSAR Tool Platform

ARXML AUTOSAR XML Format

ASIC Application-Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

ASM Asymmetric Multiprocessing

ASW Application-Software

Automotive SPICE Automotive Variant of Software Process Improvement and Capa-
bility Determination

AUTOSAR Automotive Open Systems Architecture

AVB Audio Video Bridging

AVL-PTE AVL Powertrain Engineering Branch

BMS Battery Management System

BSW Basic-Software

CAN Controller Area Network

CAN-FD CAN with flexible data-rate

CCU Central Control Unit

CMMI Capability Maturity Model Integration

CPU Central Processing Unit

xvii

List of Tables

CTQ critical-to-quality

DRL Deterioration Resistance Level

EA Enterprise Architect

EAST-ADL Electronics Architecture and Software Technology Architecture
Description Language

ECU Electronic Control Unit

EMF Eclipse Modeling framework

EU European Union

EV Electric Vehicle

FHA Functional Hazard Assessment

FMEA Failure Mode and Effects Analysis

FSC Functional Safety Concept

FSR Functional Safety Requirement

FTA Fault Tree Analysis

GSN Goal Structure Notation

GSS Global System Structure

HARA Hazard Analysis and Risk Assessment

HSI Hardware-Software-Interface

HV High Voltage

HW Hardware

ICC Implementation Conformance Class

IOC Inter-OS-Application Communication

LIN Local Interconnect Network

LoC Lines of Code

MARTE Modeling and Analysis of Real Time and Embedded systems

xviii

List of Tables

MBD Model-Based Development

MDD Model-Driven Development

MEMCONS Modelbased EMbedded CONtrol Systems

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPU Memory Protection Unit

NUMA Non-Uniform Memory Architecture

OCL Object Constraint Language

OEM Original Equipment Manufacturer

OIL OSEK Interpretation Language

OS Operating System

OSEK Offene Systeme für die Elektronik im Kraftfahrzeug

PWM Puls Width Modulation

RAMS Reliability, Availability, Maintainability, and Safety

RTE Runtime Environment

RTOS Real Time Operating System

RTP Reference Technology-Platform

SAE Society of Automotive Engineers

SAHARA Security-Aware Hazard Analysis and Risk Assessment

SDA Service Deterioration Analysis

SecL Security Level

SEooC Safety Element out of Context

SeSaMo Security and Safety Modeling

SG Safety Goal

SIMD Single Instruction Multiple Data

xix

List of Tables

SISD Single Instruction Single Data

SME Small and Medium-sized Enterprise

SMP Symmetric Multiprocessing

SoC State-of-Charge

SoH State-of-Health

SoP Start of Production

SPI Serial Peripheral Interface

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, De-
nial of service, Elevation of privilege

SuD System under Development

SW Software

SysML System Modeling Language

UMA Uniform Memory Architecture

UML Unified Modeling Language

VFB Virtual Function Bus

WCET Worst Case Execution Time

xx

1 Introduction

In 2012 12.1 million people worked directly or indirectly in the automotive sector (7.6%
of EU employment) and produced 14.6 million vehicles in Europe [25]. With a 41.5
billion e investment per year the automotive sector is the EU’s number one industry.
Currently available premium cars implement more than 100 electronic control units
(ECU) with close to 1 Gigabyte software code [24]. These systems are responsible for
25% of vehicle costs and an added value of between 40% and 75% [69].

Embedded automotive systems are estimated to be responsible for 80% of product in-
novation in the past 10 years. Today’s information society strongly supports inter-system
communication (Car2X) and also expects it in the automotive domain. Consequently,
the boundaries between application domains are disappearing even faster than previously
due to the replacement of traditional mechanical systems. At the same time, multi-core
and many-core computing platforms are becoming available for safety-critical real-time
applications. These factors call for multiple cross-domain collaborations and interactions
in the face of the challenge to master the increased complexity.

Hence, the automotive industry is facing a growing gap between the technology and
the level of expertise required to make best use of them. The computing platforms are
becoming more and more sophisticated with concurrent computing capabilities, larger
embedded memories as well as an increasing number of integrated peripherals. Ad-
ditionally, the functional integration of the control strategies (e.g., transmission with
combustion engine and e-drive) further raises the complexity of the resulting applica-
tion.

1.1 Embedded Automotive Systems

In the late 1970s self-contained embedded systems called Engine Control Units (ECUs)
entered production vehicles. Since then, such computer systems have been integrated
into almost every aspect of car equipment: control throttle, transmission, brakes, pas-
senger climate, and infotainment. This caused the term ECU to be generalized to Elec-
tronic Control Units. Additionally, the amount of software in such embedded systems
has grown to close to 100 million lines of code(LoC)1. In comparison the F-35 Joint
Strike Fighter will require about 5.7 million LoC and the Boeing 787 Dreamliner about
6.5 million LoC.

1http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

1

1 Introduction

These ECUs are used for energy saving and emission lowering purposes, passengers
comfort and safety systems. Automotive embedded systems are connected with sev-
eral in-vehicle networks (such as CAN or FlexRay), have to conform to high reliability
and safety requirements, strict real-time constraints and need to withstand severe en-
vironmental conditions and production cost restrictions. Current innovation challenges
in the domain are related to novel computing paradigms (such as multi-core systems),
system interaction and cooperation with the Web (such as Car2Environment), and extra-
functional system dependability constraints (such as safety, IT security, and reliability).
These features require a fine grasp of cross-domain knowledge and pose additional chal-
lenges for the development. Additionally the classical ‘separation of concern’ approach
of the automotive industry has to be reconsidered and an approach found which provokes
seamless cross-fertilization across tool, team, and domain skills.

1.2 Thesis Background

This thesis is carried out in cooperation with the industrial partner AVL List GmbH and
its Powertrain Engineering branch. AVL List is the world’s largest independent com-
pany for the development of powertrain systems with internal combustion engines as well
as instrumentation and test systems. AVL Powertrain Engineering (PTE) is an expert
partner of the global automotive and mobility industry for the development of innova-
tive powertrain systems. In this function AVL PTE offers various engineering services,
training and coaching. The organizational independence of AVL allows the company to
adapt to customer needs more easily and to offer project-specific tailoring and scaling
of development processes and project-dependent variations of the tool landscape.

Due to these matters cross-domain expertise and an adaptable process-, method-,
and tool-landscape approach is required even more. To that aim this thesis is geared to-
wards the extension of existing model-based development approaches to enable a seamless
model-based development (MBD) of automotive multi-core systems from initial devel-
opment phase to final software implementation in context of ISO 26262 [40]

1.3 Problem Statement

This doctoral thesis aims at improving the model-based development of embedded auto-
motive multi-core systems from initial system design to software implementation in order
to support comprehensive dependability development. For this purpose a fundamental
factor is to gain a good understanding of the complications that appear in this context
and a comprehensive overview of related work done in the domain.

2

1.3 Problem Statement

1.3.1 Seamless Model-based Development

One of the most relevant trends in embedded software engineering is the move towards
more abstraction and thus the ability to better manage complexity throughout the de-
velopment [24]. In model-based designs, a model of the application is used to represent
complex designs at higher levels of abstraction; showing only specific pieces of informa-
tion for the purpose of understanding and analyzing large designs. The model forms the
basis for further activities, such as verification, code generation, or model transforma-
tion. Model-based development approaches support design space exploration and are less
error prone and more efficient, in spite of the constant growth in complexity of embedded
systems [64]. Model-based development alleviates the issue of inherent complexity and
is the most promising approach to interdisciplinary development [20]; but in the case
of embedded system development, seamless cooperation between the domains involved
and development experts is a core challenge. The challenge of enabling a seamless inte-
gration of models into model-chains is still an open issue [76, 56, 59]. Often, different
specialized models for specific aspects are used at different development stages at varying
abstraction levels. Traceability between these different models is commonly established
via manual linking due to process and tooling gaps. Various different specialized models
are used for specific aspects at different development stages with varying abstraction
levels and traceability between these different models is established via manual linking.
Tool support for automotive engineering development is still organized as a patchwork
of heterogeneous tools and formalisms [15]. The most important topic that needs to be
dealt with is probably the gap between system architecture and software architecture.
On the one hand, general-purpose modeling languages (such as UML or SysML) provide
modeling power suitable for capturing system wide constraints and behavior, but lack
in synthesizability. On the other hand, special-purpose modeling languages (such as C,
Assembler, Matlab, Simulink, ASCET) are optimized for fine granular design and are
less efficient in high-level design.

1.3.2 Safety-Critical Multi-Core Systems

The introduction of multi-core computing platforms aims at providing more comput-
ing resources and additional interfaces to answer the needs of new automotive control
strategies with respect to computing performances and connectivity (e.g. connected
vehicle, hybrid powertrains). At the same time, the parallel execution, resulting re-
sources and timing conflicts require a paradigm change to the embedded software. So
far concurrency and HW specifics (shared resources, interference between independent
tasks) could be omitted from function developers by low level software. With modern
multi-core systems the automotive industry is facing a growing gap between technol-
ogy and the required level of expertise to make best use of them. The complexity of
these computing platforms is very high, the related user guides are comprised of several

3

1 Introduction

A
tt

ri
b

u
te

 L
ay

e
r

Dependability

M
a

in
ta

in
ab

ili
ty

R
el

ia
b

ili
ty

Sa
fe

ty

A
va

ila
b

ili
ty

C
o

n
fi

d
e

n
ti

al
it

y

In
te

gr
it

y

Security

Common CriteriaRAMS

HARA

Dependable Development

A
n

al
ys

is

La
ye

r
En

gi
n

e
er

in
g

La
ye

r

Figure 1.1: General Overview of Dependability Attributes and Analysis Methods

thousands of pages. In the context of automotive operating systems, the AUTOSAR
[8] approach is following a similar trend by standardizing several tens of basic software
(BSW) modules in several tens of thousands of specification pages. The automotive in-
dustry is confronted with the central question of how to migrate, optimize, and validate
a given application (or set of applications) on a given computing platform with a given
operating system. A knowledge transfer is required to identify the application require-
ments (both functional and extra-functional), perform a mapping to the SW and HW
architecture, and grasp the possible impacts of concurrency and HW specifics on the
software applications. Moreover, due to the timing- and safety-criticality of automotive
application, lessons learned from other domains (such as consumer electronics) cannot
be adopted directly and straightforwardly.

1.3.3 Comprehensive Dependability

The aim of comprehensive dependability is to provide a seamless argumentation that the
developed system has achieved a certain level of maturity and can be justifiably trusted.
Dependability is a superordinate concept regrouping different system attributes such as
reliability, safety, security, or availability and other extra-functional requirements for
modern embedded systems. These different attributes, however, might lead to different
targets. Furthermore, the non-unified methods required to manage these different at-
tributes might lead to inconsistencies, which are identified in late phases of development.
Therefore, the focus is set on the need to address all these system attributes in combi-
nation (not independent from each other) and across different skill teams with the same

4

1.4 Publication Statistics

emphasis. In the automotive industry, dependability engineering is currently shifting its
main focus from mainly mechanical reliability towards functional safety (ISO 26262 [40])
and security of the control system. While the objective is still to provide a convincing
argumentation that the system can justifiably be trusted [12]; the hazards that need to
be considered as well as the development methods, must be adapted accordingly.

Hence, dependability is seen according to [13] and [12], as an integrating concept
that encompasses several different attributes. Figure 1.1 provides an overview of the at-
tributes (aspects) of dependability, the analysis layer for each attribute, and a common
dependable development block indicating the fact that each aspect needs to be addressed
within a consistent engineering framework. Indeed, a common analysis method deliver-
ing consistent dependability targets over the different attributes is the basis to perform
consistent dependability engineering during the entire product development. As can be
seen in the depiction of Figure 1.1 although an analysis method solely for safety fea-
tures exist, other attributes may only be analyzed by approaches not developed for the
needs of the automotive domain. The common engineering basis for all dependability
aspects raises the requirement for a combination of the different analysis methods and
targets, thus a mutual understanding of focuses and language concepts. Dependability
engineering in the automotive domain, while relying on a strong and long-term body
of experience, is still an emerging trend. Although, some approaches exist for address-
ing safety, security and reliability in early development stages, the methods are often
performed independently and cross-dependencies and mutual impacts are often not con-
sidered. Therefore, (a) a mapping of safety, security, and service oriented engineering
terms, (b) a combination of the different analysis methods and targets, and (c) regula-
tions of the mutual dependencies and the required information handover between the
different dependability aspect analysis has to be found.

1.4 Publication Statistics

In the course of this doctoral thesis scientific essays have been published in several highly
rated domain-specific conferences and journals. Most notably (in chronological order):

� 7th European Congress Embedded Real Time Software and Systems, Toulouse, France,
2014.

� Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble, France,
2015.

� SAE World Congress 2015, Detroit, Michigan (USA), 2015.

� SAE International Journal on Passenger Cars - Electronics and Electronical Systems, 2015.

� 45th Annual International Conference on Dependable Systems and Networks (DSN), Rio
de Janeiro, Brazil, 2015.

� 13th IEEE International Conference on Industrial Informatics (INDIN), Cambridge, United
Kingdom, 2015.

5

1 Introduction

� 34th International Conference Computer Safety, Reliability, and Security (SAFECOMP
2015), Delft, The Netherlands, 2015.

� 22nd European Conference Systems, Software and Services Process Improvement (EuroSPI
2015), Ankara, Turkey, 2015.

� 8th European Congress Embedded Real Time Software and Systems, Toulouse, France,
2016.

� under-review SAE World Congress 2016, Detroit, Michigan (USA), 2016.

� under-review 53rd Design Automation Conference 2016, Austin, Texas (USA), 2016.

The paper ‘Integration of Heterogeneous Tools to a Seamless Automotive Toolchain’
published at the 22nd European Conference Systems, Software and Services Process
Improvement (EuroSPI 2015) received the Best Paper Award. Additionally with 21
accepted and 2 pending principal author publications this doctoral thesis is the actual
record holder in terms of most accepted principal author publications of a PhD student
at Institute of Technical Informatics, Graz University of Technology.

1.5 Thesis Organization

The structure of this dissertation is organized as follows. Chapter 2 provides an overview
of related work done in the automotive domain and approaches dealing with open issues
stated in the problem statement (Section 1.3). The approach developed for this thesis
is described in more detail in chapter 3 and applied in chapter 4 for an automotive use-
case. This chapter provides an overview of a reduced SW prototype of an automotive
battery management system (BMS) for which the tools and methods defined during the
thesis have been applied for development. The aim of this chapter is to provide evidence
of the bidirectional traceability features (a.k.a. ‘Vertikaler Schnitt’) of the MBD tool-
chain with focus on functional safety and multi-core constraints. The use-case is only
illustrative material, does not represent either an exhaustive nor a commercially sensitive
project, and shall only provide evidence for the benefits of the established approach.

6

2 Related Work

This chapter reviews the works related to the thesis problem statement (1.3) in the given
context (1.2). The first section 2.1 reviews research projects in the automotive domain,
their focus and goals, and their shortcomings within the given work context. Further
sections concentrate on model-based development (2.2) and safety-critical system devel-
opment (2.3) in particular. The aim of this chapter is not to be exhaustive, but rather to
categorize existing solutions, and to analyze challenges that still exist within the domain.

2.1 Research Project in the Automotive Domain

The following projects have been performed with relation to the automotive domain or
have an automotive use-case. Additionally, these projects have, due to their timing and
similarity of research focus, an effect on the work of this doctoral thesis.

2.1.1 CESAR Project

The CESAR project1 tries to harmonize the data structures by defining a common meta-
model (CMM). CESAR aims at achieving a common understanding and an agreement
on concepts for interoperability and tool integration for safety-critical embedded systems
development between industrial and academic players in the automotive, aerospace, au-
tomation and rail domains. Moreover CESAR aims at a flexible approach where both,
solutions from vendors and SME as well as open-source solutions can compete in offer-
ing best-in-class solutions for particular stages of these processes. The main focus of the
proposed tool-chains in CESAR is related to systems and safety engineering. The intro-
duced multi-domain approach, European cross-sectoral standard reference technology
platform (RTP), provides meta-models and methods for this purpose.

Distinctive Feature of the Thesis For less abstract development phases the RTP needs
to be more specific and refined to tighter couple inter-operations between different tools.
The multi-domain and common meta-model basis is not concrete enough to support the
features specifically required for the aims of this work. Furthermore, the integration of
analysis of the extra-functional aspects into an integrated design for the entire system
focuses solely on safety aspects and disregards other extra-functional aspects.

1http://www.cesarproject.eu/

7

2 Related Work

2.1.2 SPES XT

The project SPES XT2 focuses, among other factors, on methodology and integration of
development tools within a seamless tool-chain and the deployment of software over dif-
ferent control units. The prototypical tool-chain implementation is based on the eclipse
modeling framework model (EMF) and the CESAR reference platform (RTP). The SPES
MF takes an artifact-oriented view on the development of embedded software and bridges
the gap between system and software engineering processes. This means the modeling
framework defines structures, content and concepts used in artifacts rather than pre-
scribing processes and methods. The related basic activities supported by the SPES MF
framework conform the system engineering process standard ISO/IEC 15288 and the
software engineering process standard ISO/IEC 12207. Consequently, the project does
not specifically focus on the automotive domain.

Distinctive Feature of the Thesis Other than the SPES XT project, this thesis is
solely focused on the automotive domain and therefore the evolved methodology and
tool implementation is more specialized to the needs of the automotive domain. The
topics of extra-functional system wide features (e.g. safety and security) and automotive
multi-core systems are evaluated in more detailed in this project.

2.1.3 AMALTHEA project

The AMALTHEA project3 began after the thesis related MEMCONS project and the
focus is on development of an open source development platform for engineering embed-
ded multi- and many-core software systems with common data models and interfaces.
Specifics of the project include support for multi-core systems combined with AUTOSAR
compatibility and product-line engineering. The resulting tool platform is distributed
under an Eclipse public license.

Distinctive Feature of the Thesis Although the project began after the related MEM-
CONS project, the analog project goals highlight the domain’s need for such a seamless
model-based development approach. In distinction to the AMALTHEA project this work
focuses on the application of the approach within a specific process- and tool-landscape
of the industrial partner, also the applicability of the approach for non-AUTOSAR tools,
and additionally considers the evaluation and support of other extra-functional features
(such as security).

2http://spes2020.informatik.tu-muenchen.de/spes xt-home.html
3http://amalthea-project.org/

8

2.1 Research Project in the Automotive Domain

2.1.4 parMERASA Project

The parMERASA4 project focuses on the parallelization of hard real-time programs in
avionics, automotive, and construction machinery. The goal of the project’s approach is
to facilitate the use of multi-core processors in hard real-time systems. To meet this goal,
the project has to overcome the problems of existing timing analysis approaches, which
only cover sequential program execution. Therefore, the innovations created specifically
for the project include, among others, parallelization techniques for safety-critical appli-
cations, timing analyzable parallel design patterns, and verification and profiling tools
extensions. Furthermore, a software engineering approach which is developed to ease
sequential to parallel program transformation and the development of verification and
profiling tools.

Distinctive Feature of the Thesis Other than the parMERASA project this doctoral
thesis will not focus mainly on parallelization techniques for safety-critical applications.
The engineering approach developed in this thesis focuses on the seamless integration of
tools, methods, and processes to support the development of safety-critical multi-core
systems in the automotive domain.

2.1.5 Safe Project

The SAFE project5 objective is to enhance methods for defining safety goals and de-
fine development processes that comply with the new ISO26262 standard for functional
safety in automotive electrical and electronic systems. Traceability of safety require-
ments through the whole lifecycle has been identified as an essential need of the project.
Therefore, the project defines a meta-model and tool platform to enhance the collabo-
ration of automotive companies involved in the development process. The focus of this
project it to extend AUTOSAR architectural models in order to support ISO 26262
product development at concept phase (part 3 of ISO 26262).

Distinctive Feature of the Thesis The difference with this project is that the focus
is not on collaboration between automotive companies or on the extension of the AU-
TOSAR architectural model. In contrast, this thesis focuses on the improvement of
the information interchange continuity of architectural designs from system develop-
ment level to software development level and an approach that seamlessly combines the
development tools involved. This merges the heterogeneous tools required for develop-
ment of automotive safety-critical multi-core systems to support seamless information
interchange across tool boundaries.

4http://www.parmerasa.eu/
5http://safe-project.eu/

9

2 Related Work

2.1.6 Evita Project

The objective of EVITA6 is to design, verify, and prototype an architecture for auto-
motive on-board networks where security-relevant components are protected against
tampering and sensitive data is protected from compromise. Vehicle-to-vehicle and
vehicle-to-infrastructure communication have been identified as a means for decreas-
ing the number of fatal traffic accidents. While these functions are promoted as a start
to a new era of traffic safety, additional security requirements need to be considered
to prevent attacks on these systems. Therefore, the objective of the EVITA project
is to design, verify, and prototype an architecture for automotive on-board networks
where security-relevant components are protected against tampering and sensitive data
is protected against compromise when transferred inside a vehicle.

Distinctive Feature of the Thesis While vehicle-to-X communication is not part of
this thesis, the described security function development and security related require-
ment modeling using UML affect the evaluation- and support-concepts of other extra-
functional features.

2.1.7 Maenad Project

The Model-based analysis and engineering of novel architectures for dependable electric
vehicles (MAENAD) project7 focuses on the extension of EAST-ADL with advanced
capabilities to facilitate development of dependable, efficient and affordable electric ve-
hicles (EV). To support the automotive safety standard ISO 26262 and model-based
prediction of dependability and performance attributes of EV, MAENAD aims to ex-
ploit and further develop the present state of the art in model-based design, assessment
and optimization technologies. In addition, the MAENAD project proposes an overall
design methodology for EV.

Distinctive Feature of the Thesis In difference to the MEANAD project, the work
presented here focuses on automated techniques for transferring information between
special purpose software development tools and the seamless integration of tools, meth-
ods, and processes to support the development of safety-critical multi-core systems in
the automotive domain.

2.1.8 SeSaMo Project

The SeSaMo project8 addresses the problems that arise with the convergence of safety
and security in embedded systems at architectural level. The project claims the ab-

6http://www.evita-project.org/
7http://www.maenad.eu/
8http://sesamo-project.eu/

10

2.2 Model-based Development

sence of a rigorous theoretical and practical understanding of safety and security feature
interaction as the root cause for problems and develops a component-oriented design
methodology based upon model-driven technology which jointly addresses safety and
security aspects and their mutual relations in multiple domains (e.g., avionics, trans-
portation, industry control). Key elements of the SeSaMo approach that are presented
are an overall design methodology and tool-chain utilizing the constructive elements and
integrated analysis procedures to ensure that safety and security are intrinsic character-
istics of the system. The SeSaMo methodology constructs structured assurance cases for
communicating and building confidence in the safety and security properties of a system.
The model-based development technology of SeSaMo is based on a SysML profile.

Distinctive Feature of the Thesis This doctoral thesis work goes beyond the objectives
of the SeSaMo project and does not focus on the ability to model safety and security
features and interaction but on the unification of supporting the development of safety-
critical multi-core system and comprehensive dependability.

2.2 Model-based Development

One of the most relevant trends in embedded software engineering is the move towards
more abstraction and thus the ability to better manage complexity throughout the
development[24]. Therefore, Model-based development is a very important trend in
the design of embedded system. In model-based designs, a model of the application is
used to represent complex designs at higher levels of abstraction; showing only dedicated
pieces of information for the purpose of understanding and analyzing large designs. In
Pretschner’s roadmap[55] the authors highlight the benefits of a seamless model-based
development tool-chain for automotive software engineering. The authors also claim
model-based development the best approach for managing the large amount of informa-
tion and complexity of modern embedded systems with safety constraints. The three
fundamental ingredients needed to achieve seamless model-based development are identi-
fied as: (a) a comprehensive modeling theory as a semantic domain for formal definition
of models, (b) an integrated architectural model that describes the detailed structure and
a process to develop such a model, and (c) an integrated model engineering environment
which guarantees seamless tool support.

Nevertheless, the challenge of enabling a seamless integration of models into model-
chains is still an open issue [76, 56, 59]. Often, different specialized models for specific
aspects are used at different development stages with varying abstraction levels. Trace-
ability between these different models is commonly established via manual linking due
to process and tooling gaps. The work of Holtmann et al. [34] highlights process and
tooling gaps between different modeling aspects of a model-based development process.
Often different specialized models for specific aspects are used at different development

11

2 Related Work

stages with varying abstraction levels and traceability between these different models is
established via manually linking. The Automotive SPICE[75] process reference model
demands properties such as traceability and defines development stages as well as re-
sulting artifacts, but does not specify how the realization of these properties or artifacts
can be achieved.

The most important topic to deal with is the gap between system architecture and
software architecture - especially whilst considering component-based approaches such
as UML and SysML for system architecture description and AUTOSAR for SW architec-
ture description[34]. The authors also highlight the crucial importance of powerful tool
support for model-driven software engineering. Boldt[17] proposed the use of a tailored
Unified Modeling Language (UML) or System Modeling Language (SysML) profile as
the most powerful and extensible way to integrate an AUTOSAR method into company
process flows.

The tool support for automotive engineering development is still organized as a patch-
work of heterogeneous tools and formalisms[17]. On the one hand, general-purpose
modeling languages (such as UML or SysML) provide modeling power suitable to cap-
ture system wide constraints and behavior, but lack in synthesizability. On the other
hand, special-purpose modeling languages (such as C, Assembler, Matlab, Simulink, AS-
CET) are optimized for fine granular design and are less efficient in high-level design.
Therefore, the EAST-ADL approach represents an architecture description language us-
ing AUTOSAR elements to represent the software implementation layer of embedded
systems[17].

To manage the complexity of the embedded software functions and ensure the fulfill-
ment of the rigorous extra-functional requirements, model-driven development (MDD)
is one of the most promising approaches that has emerged over the last decade. In this
context there are tow main strategies that can be followed [54].

Domain Specific Language MBD In the first variant designers create a new domain
specific language (DSL) for modeling the domain of interest. DSL approaches are op-
timally suited for the problem at hand, but the main drawback of this approach is the
additional efforts required to obtain an integrated and consistent tool-chain due to the
non-standardized modeling specification and missing interoperability infrastructure.

General Purpose Meta-Model MBD The other main variant relies on the extension of
existing general purpose meta-models (such as UML meta-model) for the specific domain
of interest. In the context of UML this mechanism is called a profile. Each extension
and adaptation of the domain specifics is formally captured by a stereotype which can be
associated with properties and constraints. With this approach various semi-automatic
tools can access the information captured by the profile and existing meta-models can
be reused and specialized. Therefore, this approach enables the possibility of selectively

12

2.2 Model-based Development

Figure 2.1: Overview of SysML Diagram Types [32]

choosing the most beneficial items from what is available (cherry-picking). Excerpts and
brief descriptions of the most well-known representatives of the group of UML variants
are given in the next few paragraphs.

2.2.1 System Modeling Language (SysML)

The SysML profile is not limited to software-centric systems development and addresses
a broader concept of system architectures and interactions with the environment (system
and system-of-system development). Figure 2.1 shows an overview of available diagram
types in SysML framework. SysML improvements compared to UML are:

� more flexible semantic and new diagram types

� the inclusion of requirements engineering

� easier to learn and apply due to smaller language base

� variants of allocations

� constructs to support models, views, and viewpoints

The work of Quadri and Sadovykh [56] presents a model-driven engineering approach
which aims to develop novel model-driven techniques and new tools supporting design,
validation, and simulation. These authors defined profiles using a subset of UML and
SysML for their approach and mentioned the usage of effective design tools and method-
ologies as crucial in order to be capable of managing complex real-time embedded sys-
tems.

13

2 Related Work

Giese et al. [30] address issues of correct bi-directional transfer between system design
models and software engineering models. The authors propose a model synchronization
approach consisting of tool adapters between SysML models and software engineering
models in AUTOSAR representation.

2.2.2 MARTE System Profile

The work of Quadri et al. [56] presents a model-driven engineering approach using a
subset of UML profiles MARTE and SysML used to present a case study of a collision
avoidance system. The MARTE system profile is designed to support real-time embed-
ded system development and unify various existing approaches of the real-time system
community. MARTE structures a set of sub-profiles for design and analysis support and
the expression of timing characteristics. It provides facilities to annotate models with
information required to perform specific performance and schedulability analysis. The
main benefits of this profile are:

� a common way of modeling both hardware and software aspects of real-time sys-
tems

� enabling interoperability between development tools

� models that may be used to make quantitative predictions on timing

2.2.3 EAST ADL

The EAST-ADL UML profile is a language implementation that provides an architec-
ture description for electronic architectures and software technologies for the automotive
domain. The EAST-ADL2 profile ensures:

� focus on the description of the function

� support of layered development processes

� usage of domain-related vocabulary

Figure 2.2 depicts the implementation layers of EAST-ADL2 and their relation to
the AUTOSAR concept. Chen et al. [21] describe how EAST-ADL supports safety
requirements, faults, failures, hazards, and safety constraints in the context of ISO26262.
Their approach, project SPEEDS, aims at providing support for modeling and analysis of
complex embedded systems through usage of formal analysis tools. Also, more recently
the MAENAD Project has focussed on design methodologies for electric vehicles based
on EAST-ADL2 language.

14

2.2 Model-based Development

Figure 2.2: Overview of EAST-ADL2 Abstraction Layers and their Relation to AU-
TOSAR [22]

Figure 2.3: Overview of the AUTOSAR ECU SW Architecture[8]

15

2 Related Work

2.2.4 AUTOSAR Meta-Model

AUTOSAR [8] is an acronym for AUTomotive Open System ARchitecture and stands
for a partnership of OEM, tiers, tool- , and microcontroller developers. This initiative
focuses on an open system architecture for the needs of automotive software engineering.
This system architecture aims to simplify embedded software development, exchange of
software components, and hardware independent software development. AUTOSAR
defines a software architecture, a common format for interfaces, and a methodology for
software development to ensure scalability, exchangeability of SW components, and reuse
of SW parts. The first release of AUTOSAR was published 2005 and since then further
improved to release 4.2. With release 4.0 in 2011 features of multi-core controllers and
safety related software issues have been taken into account. Nevertheless, the focus of the
AUTOSAR UML profile is set on software development, layered software development
approaches, and ensuring the independence of the application software from hardware
until the late stages of development. The description of hardware and more abstract
layers of system development as well as the separation of different views is not the
focus of this approach, as can be seen in Figure 2.2. Figure 2.3 shows the AUTOSAR
common software infrastructure for automotive systems based on standardized interfaces
for the different layers to ensure modularity, scalability, transferability and re-usability
of approach.

The AUTOSAR consortium [8] and their AUTOSAR methodology was founded to
provide standardized and clearly defined interfaces between different software compo-
nents. The AUTOSAR approach features three different classes of implementation (ICC
- implementation conformance class). AUTOSAR ICC1 approach clearly saves time in
terms of not requiring additional familiarization with usually very complex and time-
consuming AUTOSAR tools, compared to the full AUTOSAR approach (ICC3). The
ICC1 approach does not take advantage of the AUTOSAR benefits of the full AUTOSAR
tool-chain supporting tools for RTE configuration and communication interfaces, but
standardized component interfaces for exchange of data between ASW and BSW and
therefore features the separation of application specific and hardware specific software
parts (like native non-AUTOSAR development). The ICC1 approach mainly focuses on
SW engineering and more specifically on the integration of ASW into a given SW archi-
tecture. However, the aspects related to control systems engineering (including HW/SW
co-design) are not integrated and aspects such as HW/SW interface definition must be
performed manually.

The work of Scheickl et al. [65] presents model-based software engineering to ensure
the fulfillment of timing constraints for AUTOSAR systems. The work states that ap-
propriate tools for specification of AUTOSAR timing requirements are still missing and
proposes a set of tools to support seamless timing specification, analysis and verification.

In [44], the authors describe a framework for a seamless configuration process for
the development of automotive embedded software. The framework is also based on

16

2.3 Safety-Critical Systems

AUTOSAR, which defines architecture, methodology, and application interfaces. The
steps through this configuration process are established by a system configuration and
ECU configuration.

Boldt [17] proposed the use of a tailored Unified Modeling Language (UML) or System
Modeling Language (SysML) profile as the most powerful and extensible way to integrate
an AUTOSAR method into company process flows.

The work of Kum et al. [43] describes an approach for an AUTOSAR migration of
existing automotive software. Generally, automotive embedded application software is
closely coupled with the underlying hardware and basic software and the existing in-
terfaces between these layers are not clearly defined and standardized. The authors
highlight the benefits of separating the application software and the basic software and
exhibit a way towards configuration instead of coding embedded software manually. The
manual generation of software includes time consuming and error-prone tasks. Therefore
the automatic generation of automotive embedded software and the according configu-
ration of the embedded systems improve the quality as well as the re-usability.

A work depicting the influence of the AUTOSAR methodology on software develop-
ment tool-chains is presented in [77]. This tool framework, named ARTOP (AUTOSAR
Tool Platform), enables a seamless tool-chain from requirements to implementation. AR-
TOP is an infrastructure platform that provides features for the development of tools
used for the configuration of AUTOSAR systems. These features are base functionalities
that are required by different AUTOSAR tool implementations.

Nevertheless, non-AUTOSAR tools and system developments are still very common
and in terms of safety-critical development and multi-core system development only more
recent AUTOSAR releases (since R4.0) support solutions.

2.3 Safety-Critical Systems

Safety standards, such as the road vehicles – functional safety norm ISO 26262 [40]
and its basic norm IEC 61508 [37] present requirements and guidance for safety-critical
system development. A guide to the functional safety of automotive systems according
to ISO 26262 can be found in [29, 16] or in the SafEUr functional safety manager training
[63]. The AUTOSAR development cooperation also focuses on safety in the technical
safety concept report [9] produced by this group.

The work of Gashi et al. [28] focuses on redundancy and diversity and their effects
on the safety and security of embedded systems. This work is part of SeSaMo (Security
and Safety Modeling for Embedded Systems) project, which focuses on synergies and
trade-offs between security and safety through concrete use-cases.

Born et al. [18] give a general overview of ISO26262 and evaluate a document-centric
development approach versus the model-based development approach preferred by ISO26262.
The work claims document-centric approaches are fundamentally flawed, because this ap-

17

2 Related Work

proach usually distributes information over multiple documents and reuse is only done
via copy-and-paste techniques. The document-centric approach is difficult to manage
and understand and the required traceability may only be established through manual
cross-referencing of all documents. In contrast to this, model-based development stores
all information in a central model, non redundantly, and supports generation and im-
port of documents based upon defined templates. The authors claim that model-based
approaches take longer time to introduce and also some additional effort for settling
of the tool-chain, but this approach has some major benefits for ISO26262 compliant
development.

SysML and model-based development (MBD) as the backbone for development of
complex safety critical systems is also seen as a key success factor by Lovric et al. [46].
The integration of SysML models for the development of the ECU safety concept ensures
efficient design changes, and immediate awareness of functional safety needs. The paper
evaluates key success factors of MBD in comparison to legacy development processes in
the field of safety-critical automotive systems.

The work of Ebert [23] highlights three key components of sustainable safety engineer-
ing in automotive systems: (a) system-oriented development, (b) safety methods closely
coupled to engineering, and (c) process maturity. Ebert further mentions functional
safety needs and that these are to be seen as a critical product liability issue with all the
consequences this implies and also that engineers need to understand the safety needs
at all levels of the development process.

In the issue of improving processes or workflows, especially those which deal with
cross-domains affairs (such as the traceability of architectural designs from system devel-
opment level to software development level), a comprehensive understanding of related
processes, methods, and tools is required. The work of Sechser [70] describes experi-
ences gained when combining two different process worlds in the automotive domain.
The author mentions, among other points, the need for a common language and process
architecture.

Liggesmeyer and Trapp[45] analyzed trends in embedded software engineering and
concluded that the increasing complexity of functional and especially extra-functional
requirements (such as safety, security, or dependability demands) of embedded systems
call for new software development approaches. Embedded software is rarely a stand-
alone product without interaction with the physical world (such as the majority of IT
applications) and must therefore consider environmental conditions as well as related
mechanics, electrics, and electronics.

2.4 Dependability Attributes

In addition to DO-178C [71] for aerospace software safety, ARP4754 [62] gives guidance
for system level development and defines steps for adequate refinement and implemen-

18

2.4 Dependability Attributes

tation of requirements. Safety assessment techniques, such as failure mode and effects
analysis (FMEA), and functional hazard assessment (FHA) among others, are specified
by ARP4761 [61]. Security concerns in the avionic domain are tackled e.g. by common
criteria [74] approach and ED202 [26] specification.

Reliability and availability standards mainly originate from railways and the arma-
ments industry. DIN EN 50126 [6] focuses on specification and demonstration of relia-
bility, availability, maintainability, and safety (RAMS) of the railway system. In 1980
the US Department of Defense defined a standard reliability program for systems and
equipment development and production (MIL-STD-785B [2]). Additionally, the military
handbooks 338B [5] and 781A [4] assist with guidelines for electronic reliability design
and reliability test methods, plans and environment for engineering. Nevertheless, most
standards and guidelines, like the military handbook 217F [3] and the technical report
TR 62380 [35] rely on reliability prediction of electronic equipment based on mathemati-
cal reliability models of the system components. Only a few works focus on quantification
of dependability features (other than safety or security) in early stages of the develop-
ment process.

Most reliability measures and work focus on estimation of probabilities and stochas-
tic processes. All of this work requires detailed design information of the SuD and is
therefore not applicable for an early design phase evaluation. Nevertheless, the process
improvement techniques of Six Sigma [36], [73] aims at improving the quality of process
outputs by identifying and removing the causes of defects (errors). The Six Sigma ap-
proach uses a set of quality management methods, including statistical methods. One
of the Six Sigma methods, CTQ trees (critical-to-quality trees) are the key measurable
characteristics of a product or process and are used to decompose broad customer re-
quirements into more easily quantified elements. These elements are then converted to
measurable terms, this approach is also the basis for Service Deterioration Analysis [49]
described later in this section.

Some recent publications in the automotive domain also focus on security in auto-
motive systems. On the one hand, the work of Schmidt et al. [66] presents a security
analysis approach to identify and prioritize security issues, but only provides an anal-
ysis approach for networked connectivity. The work of Ward et al. [78], on the other
hand, also mentions a risk assessment method for security risk in the automotive domain
termed threat analysis and risk assessment, based on the HARA.

The works of Roth et al. [60] and Steiner et al. [72] also deal with safety and security
analysis, but focus on state/event fault trees for modeling of the system under develop-
ment. Schmittner et al. [67] presents a failure mode and failure effect model for safety
and security cause-effect analysis. This work categorizes threats by using the STRIDE
threat model, but focusing on IEC60812 conform FMEA.

Finally, the STRIDE threat model approach [50] developed by the Microsoft Corpora-
tion can be used to expose security design flaws. This approach uses a technique termed
threat modeling. With this approach the system design is reviewed in a methodical way,

19

2 Related Work

which makes it applicable for integration into the HARA approach. Threat models, like
the STRIDE approach, may often not prove that a given design is secure, but they help
to learn from mistakes and avoid repeating them, which is another commonality with
HARA in the safety domain.

There are approaches addressing safety, security, and reliability in early develop-
ment stages. However, these methods are often performed independently and cross-
dependencies and mutual impacts are often not considered. The most commonly used
analysis methods are hazard analysis and risk assessment (HARA), failure mode and
effects analysis (FMEA), and fault tree analysis (FTA) in different variations for safety,
security, or reliability/availability. FMEA [38] [1] and FTA [39] variation are common
for all system features. Nevertheless in the automotive domain a method is standardized
for initial design assessment exclusively for safety analysis (HARA [40]).

20

3 Proposed Solution

The survey of Albers and Zingel[7] mentions the advantages of using formal models to
specify a complex technical system as manifold (e.g. fewer inconsistencies, less redundan-
cies and concurrently, the basis for clear communication and sustainable documentation).
The authors claim that models can help to force systemic thinking, but also mention that
trans-disciplinary system architecture interaction is still an unsolved issue in industrial
practice. Moreover, existing organizational structures are frequently incompatible with
trans-disciplinary systems engineering and their literature review shows that the change
from traditional document-based towards a model-based development approach has still
not taken place. Insufficient usability of modeling tools, missing modeling methods or
guidelines, a high learning effort, and insufficient model2model-transformation further
hinder the model-based development approaches.

As mentioned in the related work section (2), the approach of extending the exist-
ing general purpose meta-models (such as UML meta-model) for the specific domain
of interest inherits the benefit of various semi-automatic tool being able to access the
information captured by the profile. It also means that existing meta-models can be
reused and specialized. Therefore, such an approach enables the possibility of selectively
choosing the most beneficial items from what is available and ensuring a lean meta-model
and explicit representation of the required modeling artifacts. To fully profit from MBD
benefits, a methodology has been specifically established for automotive powertrain de-
velopment at system level in the environment of AVL-PTE.

This doctoral thesis approach is based on this AVL-PTE MBD environment and ex-
tends its applicability to the needs of safety-related embedded software development
to achieve a holistic system description which is capable including structural and func-
tional aspects of one system. Moreover, the approach is geared towards improving the
comprehensive dependability argumentation of automotive multi-core systems based on
model-based development. For the purpose of improving the comprehensive depend-
ability argumentation of automotive multi-core system development the strategy of this
doctoral thesis is to tackle individual sub-problems. Figure 3.1 shows a depiction of this
concept in GSN notation.

The main goal of this doctoral thesis is thus partitioned into three sub-goals. First,
challenges which appear when developing a dependable multi-core system especially in
automotive domain to be have to be revealed and analyzed (see Figure 3.1 - goal ‘Reveal
Domain Challenges’). Second, the strategies for the migration to multi-core systems have

21

3 Proposed Solution

K
EY

 C
H

A
LL

EN
G

E
G

O
A

LS
TH

ES
IS

 C
O

N
TR

IB
U

T
IO

N
P

U
B

LI
C

A
TI

O
N

IM
P

R
O

V
IN

G
 S

E
A

M
L

E
S

S

D
E

V
E

L
O

P
M

E
N

T
 O

F

A
U

T
O

M
O

T
IV

E
 M

U
L
T
IC

O
R

E

S
Y

S
T
E

M
S

R
E

V
E

A
L
 D

O
M

A
IN

C
H

A
L
L

E
N

G
E

S

D
E

V
E

L
O

P
 M

U
L
T
IC

O
R

E

M
IG

R
A

T
IO

N

S
T
R

A
T
E

G
IE

S

S
E

A
M

L
E

S
S

A
U

T
O

M
O

T
IV

E
 S

Y
S

T
E

M

D
E

V
E

L
O

P
M

E
N

T

S
U

P
P

O
R

T

A
R

C
H

IT
E

C
T

U
R

E

A
N

A
L

Y
S

IS
 F

O
R

S
Y

S
T
E

M
-W

ID
E

F
U

N
C

T
IO

N

IM
P

L
E

M
E

N
T
A

T
IO

N

D
E

P
E

N
D

A
B

IL
IT

Y

A
N

A
L

Y
S

IS
 M

E
T
H

O
D

S

B
R

ID
G

IN
G

 T
O

O
L
 G

A
P

S

S
Y

S
T
E

M
 E

N
G

IN
E

E
R

IN
G

V
S

S
W

 E
N

G
IN

E
E

R
IN

G

A
U

T
O

M
O

T
IV

E
 S

A
F
E

T
Y
 C

A
S

E

P
A

T
T
E

R
N

A
N

A
L

Y
S

IS
 O

F
 D

E
V

E
L
O

P
M

E
N

T

P
R

O
C

E
S

S
E

S

M
U

L
T
IC

O
R

E
 M

IG
R

A
T
IO

N

C
H

A
L
L

E
N

G
E

S

M
U

L
T
IC

O
R

E
 M

IG
R

A
T
IO

N

P
A

T
T
E

R
N

S
D

A
 A

N
A

L
Y
S

IS

S
A

H
A

R
A

 A
N

A
L

Y
S

IS

D
E

P
E

N
D

A
B

L
E

D
E

V
E

L
O

P
M

E
N

T
 M

E
T
H

O
D

H
S

I
S

P
R

E
A

D
S

H
E

E
T
 B

R
ID

G
E

B
S

W
 C

O
N

F
IG

U
R

A
T
IO

N

G
E

N
E

R
A

T
O

R

O
S

 C
O

N
F

IG
U

R
A

T
IO

N

G
E

N
E

R
A

T
O

R

A
S

W
 M

O
D

E
L

L
IN

G

T
O

O
L
B

R
ID

G
E

A
R

C
H

IT
E

C
T

U
R

E

T
R

A
C

E
A

B
IL

IT
Y
 S

U
P

P
O

R
T

CAEDGFHJ MI BKL

█

P

R
O

C
E

S
S
 L

A
Y
E

R

█

M

E
T
H

O
D
 L

A
Y
E

R

█

T

O
O

L
 L

A
Y
E

R

Figure 3.1: Overview of the Doctoral Thesis Concept Strategy

22

3.1 Process Layer related Contribution

to be developed (see Figure 3.1 - goal ‘Develop MultiCore Migration Strategies’). Finally,
the development of such a system needs to be supported by an adequate development
framework (see Figure 3.1 - goal ‘Seamless Automotive System Development Support’).

This goal is further supported via two sub-goals, the adequate analysis of the archi-
tecture design for system-wide function implementation (with its sub-goal existence of
dependability analysis methods) and a merging of the heterogeneous development tools
(see Figure 3.1 - goals ‘Architecture Analysis for System-wide Function Implementation’,
‘Dependability Analysis Methods’, and ‘Bridging Tool Gaps System Engineering vs SW
Engineering’).

The major contributions for success are listed on the contribution layer of Figure 3.1
and supported via the related publications (more details regarding publications related
to this thesis can be found in Section 6). The contributions itemized in the contribu-
tion layer contribute to the issues encountered in the presented approach in the tool,
method, and process layer. In the following sections the contributions of this doctoral
thesis approach are described and differentiated by their layer of contribution (tool,
method, and process layer); these layers have been identified by [7, 23] as crucial for the
industrialization of engineering approaches.

3.1 Process Layer related Contribution

The automotive domain’s process landscape is already very mature and well defined.
Automotive processes have to comply to either Automotive SPICE[75] or CMMI as-
sessment models. Domain specific standards, such as ISO 26262[40] or AUTOSAR[8],
provide guidance and well-defined safety-lifecycles

Additionally, numerous best practices and company specific proceedings are estab-
lished and in place.

Hence, this doctoral thesis does not aim to redefine or introduce completely new
process structures, but analyze the given process landscape and suggest adaptations for
improvement in terms of multi-core system and system-wide feature development.

3.1.1 Analysis of Development Processes

In the publication Paper A (depicted as publication A in Figure 3.1 - publication
layer) patterns of concurrent workflows in embedded system development have been
identified. These patterns can be used to identify dependencies and consequences of
parallel workflows and thus foster seamless MDD paradigm along the development life
cycle.

During the model-driven development of embedded systems it is often found that nu-
merous model types from the same system under development exist spread over different
stages of the development process and different development tools in use. In these cases
special attention needs to be paid to keep the dependent models consistent. Each model

23

3 Proposed Solution

transformation generates potential sources for ambiguous mapping and often dependen-
cies between the models are hard to identify.

The intention of this work is to identify and update dependencies between concurrent
models and thereby set up the foundation for tool integration into a holistic tool-chain.
In the case of solely uni-directional dependability and independent workflows (e.g. gener-
ation of interim status model-based documentation), the Forward Update Dependability
Relation pattern shall be applied. If feedback of information from one model to another
is required after some refinement activity(e.g. the updating of the SW architecture
model with SW function models), the Backward Update Dependability Relation pattern
shall be applied. Finally, the Bidirectional Update Dependability Relation pattern shall
be used if a full concurrent development of mutually dependent models is required (e.g.
concurrent SW and HW development). The identification of these relationships serve as
the basis for a bridging of the ascetic MDD tools to a seamless tool-chain.

Figure 3.2: Iterative Model-Driven Development Process for Embedded Systems [45]

Figure 3.2 shows all phases of such an MDD development life cycle. As can be seen
in this figure, model-driven development iteratively updates the model over time. This
process lets developers produce partial implementations after each iteration. The figure
also indicates a potential pitfall of such an iterative model-driven development approach.
Frequently, manifold model types of the same system under development exist across
different stages of the development process and different development tools in use. In
the case of such a concurrent development of dependent development models special
attention needs to be paid to keep the dependent models consistent. Each transformation
step implies potential sources for ambiguous mapping and a common model as a single
source of information is rather unusual or too complex for application. For the course
of this document this process is stretched over time, which leads to a corkscrew like
representation of the three identified patterns in Figure 3.3.

24

3.2 Method Layer related Contribution

MERGE

Figure 3.3: Depiction of: (a) Forward Update Dependability Relation, (b) Backward
Update Dependability Relation, and (c) Bidirectional Update Dependability
Relation

3.1.2 Architecture Traceability Support

The aim of this contribution and the publication Paper B (depicted as publication B
in Figure 3.1 - publication layer) is to improve the information interchange continuity of
architectural designs from system development level to software development level. Con-
sequently, this work focuses on the analysis of information interchange of architectural
designs within the focus of Automotive SPICE [75] ENG.3/ ENG.5 respectively ISO
26262 [40] 4-7/6-7. Furthermore, special focus is given to safety-critical multi-core sys-
tem development, due to the higher complexity of such systems and limited availability
of supporting methods and tools. The aim of this work is to analyze the constraints of
merging the heterogeneous tools required for development of automotive safety-critical
multi-core systems especially during the transition phase from system to SW develop-
ment.

3.2 Method Layer related Contribution

The methodical support of system architectural design and refinement of this design
to software design has often fallen short of the mark[7]. To cope with new domain
challenges (such as holistic dependability argumentation), novel technologies (such as
automotive multi-core systems), and to gain benefits from tools and setting up tool-
chains the fundamental concepts and methods need to be scrutinized. This section
therefore involves contributions related to analysis concepts, development patterns, and
procedures.

3.2.1 Automotive Safety Case Pattern

The safety standard ISO 26262 [40] has been established to provide guidance during the
development of safety-critical systems. It provides a well-defined safety lifecycle based
on hazard identification and mitigation, and defines a long list of work-products to be

25

3 Proposed Solution

generated. One of these required work-products is the safety case. The challenge of the
safety case is to provide evidence of consistency of the different work-products during
product development. Thus, the establishment of such a safety case could be a tedious
task and could result in extra workload with only limited additional benefit.

Besides this, safety cases give information about implicit domain knowledge and con-
vincingly and concisely argue that a system meets its safety requirements in a coherent
and reproducible way. Therefore, the analysis of patterns for safety case generation
and the publication Paper C (depicted as publication C in Figure 3.1 - publication
layer) identifies the main claims which must be satisfied to ensure system safety and the
fundamental concepts which must be methodically supported. These concepts are:

Process & Product Pattern

First, establish a development process according to the domain best-practices and re-
quirements of e.g. Automotive SPICE. Second, provide evidence of application of these
certified processes in a correct manner. This separation of concerns enables easier reuse
of process claims and independent certification of production processes (e.g. audits of
the company process structure).

Traceability Pattern

Establish traces between each development artifact to explicitly indicate dependencies
and relations. These traces can be useful in practice, due to reducing the need of inter-
tool traces (e.g. reviews of consistency check protocols) and highlighting of the impact
of changes made to a specific artifact.

Functional Breakdown Pattern

Further, argumentation of overall system safety for a safety case can be done via the
argumentation of safety of each of the involved sub-functionalities. Thereby responsibil-
ity for safety argumentation is holistic and cannot be handed over to solely one specific
sub-function domain. This implies an introduction of an additional system viewpoint
(functional view illustrating vehicle-wide functions and their decomposition), which sim-
plifies conception and development of system-wide features (such as safety).

3.2.2 Multi-Core Migration Challenges

Moore’s law[51], states the doubling of computer capacity every 2 years. Nevertheless,
the current development trend for computing platforms has moved from increasing the
frequency of single cores to increasing the parallelism (increasing the number of cores
on the same die). Multi-core and many-core technologies have a strong potential to
further support the different technology domains, but simultaneously they present new

26

3.2 Method Layer related Contribution

challenges. The complexity of these computing platforms is very high, the related user
guides are comprised of several thousands of pages. Hence, the automotive industry is
facing a growing gap between the technologies and level of expertise required to make best
use of them. Therefore, the automotive industry is confronted with the central question
of how to migrate, optimize, and validate a given application (or set of applications) on
a given computing platform with a given operating system.

This contribution and the publication Paper D (depicted as publication D in Figure
3.1 - publication layer) are (1) to provide a state-of-practice survey on multi-core CPUs
and operating systems for the automotive domain, and (2) based on this survey to
provide guidelines for the migration of legacy SW. Finally the related challenges and
opportunities for the development of high-integrity control systems on multi-cores, as a
platform for dependable systems are discussed.

In particular, the following topics are addressed: architecture of the parallel computer,
memory architecture, concept of processing functions, synchronization protocols, and
scheduling policies. All these factors influence the achievable speedup, efficiency and
dependability features (e.g. safety, reliability) of the multi-core system.

Typical side-effects which need to be focused on when migrating to multi-core systems
are: (a) starvation - when a process is perpetually denied necessary resources, (b) dead-
locks - when two or more processes are each waiting for the other to finish, (c) livelocks
- similar to a deadlock, except that the state of the processes is in constant change in
relation to one another, not progressing, (d) race conditions - output is dependent on the
sequence or timing of other uncontrollable events, (e) priority inversion - high priority
task is indirectly preempted by a medium priority task, (f) freedom from interference
- failures of one process cannot influence other processes, (g) timing correctness - cor-
rectness of an operation depends not only upon its logical correctness, but also upon
its computation time, and (h) execution order correctness - correctness of the execution
sequence of cascaded tasks. This brief definition may make the effects of the following
multi-core aspects more evident.

Parallel Computer Architectures

According to Flynn’s taxonomy [27, 52] 3 types of multi-core computer architectures
exist (fourth variant ‘SISD - single instruction single data’ implies only one core): Single
Instruction Multiple Data (SIMD) - this architecture can access multiple data memory
locations at once and execute specific single operations in parallel. Beneficial for an
application that operates with a large volume of data (such as GPU). Multiple Instruc-
tion Single Data (MISD) - Multiple cores are capable of handling different instructions
simultaneously for a single data stream. Exists only in theory and is not commercially
available. Multiple Instruction Multiple Data (MIMD) - One of the most complex and
most frequently used modern hardware architectures. Multiple processing elements can
handle multiple independent and concurrent instructions on multiple independent data.

27

3 Proposed Solution

MIMD (and single-core SISD) architecture is only appropriate for the automotive do-
main. SIMD, as used for graphic processing (e.g. GPU), is not currently available for
powertrain controls.

Multi-Core Suitable Memory Architectures

Two memory architectural versions are commonly used for multi-core systems, uniform
memory architecture (UMA) and non-uniform memory architecture (NUMA). UMA
divides the memory into blocks of unique data and allows unified access of each core to
different blocks of the memory. NUMA is designed for concurrently running processors, it
provides separate memory space for each core and therefore unlimited access to this local
memory. Shared memory is realized by the moving of shared data between local processor
memories, this increases the efforts involved, but prevents all cores from starvation.
Automotive multi-core system hardware is currently based on UMA, but the NUMA
approach is an improvement in terms of safety and freedom from interference and can
be realized using dedicated additional hardware features (memory protection unit), if
available.

Multiprocessing Models

Basically two types of processing models are common. Asymmetric Multiprocessing
(ASM) which can also be used for non-multi-core operating systems (OS). For this ap-
proach one core becomes the master, responsible for OS and the other(s) slave core(s)
solely runs user level applications triggered by the master OS. The Symmetric Multipro-
cessing (SMP) approach features OS and user level approaches on each core. All CPUs
are interconnected via a bus or crossbar with access to global memory and peripherals,
which requires appropriate synchronization mechanisms.

The ASM approach is frequently used as a first step introduction into multi-core
systems. SMP is an intuitive approach when combining the functionalities of two sepa-
rated control units into one multi-core. Therefore, both approaches are common in the
automotive domain and appropriate mechanisms must be considered and applied.

Multi-Core Synchronization

Synchronization features help to synchronize tasks with shared resources and avoid dead-
locks, starvation, and priority inheritance of parallel computing platforms. Synchroniza-
tion primitives are features of real-time operating systems and are the building blocks
of synchronization in complex systems. For this reason, they are hard to use in complex
software systems, frequently make code less readable and often get lost during program-
ming (e.g. unreleased locks, or interferences via busy waiting).

The most popular and commonly used synchronization primitives in consumer elec-
tronics multi-core systems are:

28

3.2 Method Layer related Contribution

� Mutex - a special type of variable, which controls access to shared resources (can either
be locked or unlocked).

� Semaphore - a special variable, used to record the number of available units of a particular
resource and one of the most powerful means of synchronization.

� Event - used for synchronization of branch execution and whenever a task requires infor-
mation from another task.

� Monitor - is a higher level synchronization primitive, using Mutex and semaphores to
achieve synchronization. A monitor allows threads to have both mutual exclusion and the
ability to wait (block) for a specific condition to become true, but it is not supported by
every OS or programming language.

� Critical Section - mechanism to avoid race conditions by granting access to shared resources
one task at a time.

Scheduling Policies

Scheduling plays a central role by defining the ordering of the tasks to be executed.
There are two principal directions: global and partitioned schedulers. A global scheduler
stores all tasks in a single queue based on their priorities and can schedule a task on
any available core of the system; task migration is allowed. The partitioned scheduler
by contrast, assigns tasks to cores and features several queues, depending on various
task attributes (such as shared resource of task groups). Partitioned scheduling is more
common in the automotive domain, although the applied scheduling policy strongly
depends on the use-case. For safety-related systems hard real-time requirements are of
crucial importance, even in worst-case scenarios.

3.2.3 Multi-Core Migration Pattern

For the migration of legacy software to multi-core systems the aspects of (a) migration
preparation steps, (b) guidelines for migration, and (c) performance analysis after mi-
gration needs to be scrutinized. The publication Paper E (depicted as publication E in
Figure 3.1 - publication layer) provides such guidelines for the migration of legacy SW.

Migration Preparation: Selection of the CPU and of the BSW

The first step is the identification of the proper CPU and of the proper BSW / op-
erating system. For the automotive domain there are only a few, but very different,
multi-core hardware implementations available for automotive applications. Besides the
obvious criteria (e.g. availability of supporting/debugging tools, clock rates, and expe-
riences), possible disadvantages and architectural benefits (e.g. HW implementation of
MPU, peripheral bus guardians, lockstep mode cores, and HW safety features) are the
contributory factors in the selection of the multi-core hardware.

29

3 Proposed Solution

Knowledge of the application is important here for understanding the required inter-
faces to the real world (sensors / actuators) and possible supports by the CPU periph-
erals. Such integration might have an important impact on the performance, e.g., when
down-sampling and filtering is performed directly in HW and no longer by a low-level
SW driver (requiring high-frequency interrupts). Definition of the overall architecture
taking into account the peripherals embedded in HW is thus a key aspect for improving
performance. Another aspect is the level of dependability (safety, security, reliability...)
of the application and the respective integrity level of the computing platform (CPU and
peripherals). Again, the CPUs provide mechanisms implemented in HW (e.g. lock-step,
memory protection) to shift part of the integrity issues from low-level SW to HW, thus
saving computing resources for the application. Here again, refinement of the architec-
ture taking into account the mechanisms embedded within the CPU is a key aspect for
improving performance.

The next important step is the selection of an adequate automotive operating system.
Although only few operating system variants exist for the automotive domain, the se-
lection of the OS and its applicability for different multiprocessing models, scheduling
policies, and implemented synchronization primitives is crucial. Also memory separation
and protection (spatial freedom from interference) of individual tasks must be ensured
and peripheral resources must be accessed with care. Peripherals, like other shared re-
sources, are potential pitfalls and one of the biggest bottlenecks of multi-core systems.
Important aspects for the choice of the BSW and operating aspects are:

� Maturity target for the application: The targeted development might well have a different
maturity level (e.g., demonstrator, mature prototype, SoP) and therefore make different
requirements on the BSW layers in respect to cost, flexibility, openness, and maturity.
Open source solutions might be preferred to rapidly make the first steps in a flexible
prototyping context, while of-the-shelf components solutions might be the better choice to
rely on stable functionalities compliant to a given standard.

� Functionalities and CPU support : The correct migration of the BSW / OS for a specific
CPU and for a specific compiler shall be available. Sometimes new CPU generations are
not (fully) supported, or that a specific BSW layer has not been migrated or that specific
HW mechanisms from the CPU are not accessible for the BSW.

� Deployment and industrial acceptance of the BSW / OS : The automotive industry is split
into a complex ecosystem comprising of car manufacturers, Tier 1 / 2 suppliers, and
technology suppliers. It is unlikely that car manufacturers will develop the entire software
on their own. On the contrary, the car manufacturer or Tier 1 supplier is responsible for
system integration and must therefore make a decision about a computing platform and
BSW / OS. The technology supplier needs to follow this choice and typically also ensure
the compatibility of its application SW for different computing platforms.

Migration of Legacy Software to Multi-Core Systems

The process of customizing existing applications for multi-core systems is a key issue
in multi-core development and a tough and enormously important task within multi-

30

3.2 Method Layer related Contribution

core system migration. Although, parallelization of source code takes a back seat in
the automotive domain compared to the merging of multiple functions in one multi-
core system. Automatic supporting tools, such as parallelizing compilers or automatic
schedule generators, are in early development stages and still frequently inadequate in
parallelizing codes [14, 57]. The following generic steps thus turned out to be best
practice for parallelizing software [52, 19]:

1. Identification of parallelism: As a first step, the type of parallelism (data and/or task
parallelism) must be determined to select the adequate computing architecture.

2. Profiling of existing application: This step identifies the single-core/ best possible/ current
performance of particular functions or the whole application to get reference values.

3. System decomposition: The biggest problems of parallel programming, this step shall
break down the system into as independent as possible parts. There is no simple and
straightforward way available to do this, due to the creative and multi-constraint nature of
software architecture development. In the case of intersection of parallel tasks, appropriate
synchronization must be applied.

4. Identification of connections: In this step shared memories, task execution orders, and
task synchronization efforts shall be determined to evaluate these intersections in later
development phases and ensure that these facts do not get omitted.

5. Detailing synchronizations: If decomposition identified independent tasks and connection
between dependent tasks are also identified, this step should determine the ranking of
task dependencies (e.g. which task gets shared resource first, how to react on resource
limitation).

Merging of the functionalities into one multi-core system and making use of additional
hardware features are the most common drivers for multi-core migration in the automo-
tive context. Allocating tasks and cores efficiently and safely is the main challenge in
the context of real-time multi-core systems [31].

1. Shared variables need to be identified and only accessed at the start and end time of the
runnable.

2. A sequential structure diagram and data flow diagram of runnables to determine data
consistency must be generated.

3. HW resources access shall be identified and only be done via basic software modules (ASW
access to HW resources must be avoided).

4. Core mapping of the task must be done with a focus on minimizing inter-core communi-
cation and optimizing the distribution of workloads.

The last step of the above mentioned task to core allocation varies from case to case,
depending on the main optimization constraints (e.g. minimizing inter-core communica-
tion, workload balancing, separation of code) and will not be reasonably feasible without
an optimization tool for complex systems. Optimization tools are based on the graph-
cut problem solution and are likely to provide various solutions depending on the main
optimization parameters and on the software functionalities themselves. It is thus likely

31

3 Proposed Solution

that every SW function update will lead to different optimized task allocations, resulting
in different program flows and finally having negative side-effects for the certification of
safety-critical software.

Post-Migration: Performance Analysis

Even when all the previously mentioned restrictions have been taken into account, some
side-effects or design shortcomings might still exist. As a result of this situation a mi-
gration analysis and alignment of simulated and tested results is required. Also the true
performance increase and execution times of the overall system compared with the ex-
pected performance and timings should be correlated. Here too debug, instrumentation,
and calibration tool supports are of major importance. In contrast to single-core systems,
multi-core systems inherit new timing effects (such as delays through resource conflicts,
IOC overheads) which must be analyzed and harmonized with the timing models; an
evaluation of meeting the safety-critical timings at corner cases must also be done.

3.2.4 Service Deterioration Analysis

Dependable systems rely on mature quality management and development methods such
as requirements / systems engineering and system analyses. In the automotive domain
analysis methods for safety and security attributes at early development phases are well
known and partially mandatory by domain standards. Nevertheless, approaches for
analysis of serviceability attributes (the combination of reliability and maintainability)
at early development phases are not yet available. System dependability features have
mutual impacts, similarities, and interdisciplinary values in common and a considerable
overlap among existing methods.

Therefore, the automotive industry is confronted with the central question of how to
optimize and quantify dependability features (such as safety, security, and reliability) of
a system under development (SuD) already at an early development phase. This con-
tribution (published as Paper F; depicted as publication F in Figure 3.1 - publication
layer) presents a novel approach to quantify the impact of individual system parts to
the overall system serviceability at early development phases. For this approach, the
inductive analysis method HARA (hazard analysis and risk assessment) is also used
to enable the quantification of dependability features (such as reliability and maintain-
ability) of the SuD. The service deterioration analysis (SDA) approach gives further
information about the deterioration resistance level (DRL) required for a certain system
reliability/availability.

A key concept of the HARA approach is defining the automotive safety integrity
level (ASILs) [40]. The assigned ASIL determines the criticality of the SuD and defines
requirements and measures to be applied to the rest of the system’s lifecycle. For the
purpose of determining the SuDs ASIL, possible hazards have to be identified, which

32

3.2 Method Layer related Contribution

have the potential to put the system in a hazardous state. Afterwards, these hazards are
quantified according to their potential harm severity (S), probability of exposure (E),
and the controllability of the resulting hazardous event (C). The final step formulates
high level safety requirements known as safety goals.

In analogy to this, it is of high importance for systems serviceability to have a clue
of the contribution of each individual system component. Therefore, the serviceabil-
ity features are quantified according to the deterioration impact (I) on the system’s
dependability, the component’s repair aggravation (A), and the operation profile (O).

The deterioration impact (I) relates to the component’s impact on the dependability of
the system. Table 3.1 classifies the deterioration impact (I) and gives some examples
of impacts of outage of the component. Either an outage of the component does not
impair the system function at all (level 0), or it minimally reduces the functionality
(level 1). Level 2 indicates maximum impacts which could lead to reputation losses.

The component’s repair aggravation factor (A) is related to the component’s capa-
bility and ease of a repair. Table 3.3 mentions some examples for the different repair
aggravation levels. The repair aggravation factor is determined aligned with the defi-
nition of inspection frequency and reliability life cycle degradation control of military
handbook 338B [5]. Therefore, the determination of the A factor of a specific component
is simply done by adding of the components complexity (high → 1, low → 0), accessi-
bility for maintenance (hard → 1, easy → 0), and diagnostic capability (complex →
1,manageable→ 0) together.

The operation profile (O) values range from level 0, which means that the component is
operated in its intended/normal environment. Level 1 is intended for usage in unplanned
and harsh environments, while level 2 indicates misuse and operation out of operation
limits. Table 3.2 outlines some examples of operation profiles.

These three values categorize the components deterioration resistance level (DRL).
A higher repair aggravation or deterioration impact level result in a higher DRL level,
whilst DRL level is raised the less the component is misused. Therefore the DRL can
be calculated via the equation 3.1.

DRL =

0 if I + A−O < 2 or I = 0

1 if I + A−O = 2

2 if I + A−O = 3

3 if I + A−O = 4

4 if I + A−O = 5

(3.1)

3.2.5 Security-Aware Hazard and Risk Analysis Method

As mentioned in the previous section, dependable systems rely on the maturity of quality
management and development methods, furthermore, system dependability features have

33

3 Proposed Solution

Table 3.1: Deterioration Impact (I) Classification - Classification of ‘I’ Value of Impact
of Outage of the Component

Level Deterioration Im-
pact

Example

0 no impact no impairment of function

1 minor impact reduced functionality, self-healing tem-
poral impairment of functions, expend-
able part repair

2 major impact, reputa-
tion compromised

stop in service, callbacks required,
non- expendable part repair

Table 3.2: Operation Profile (O) Classification - Classification of ‘O’ Value of Intended
Harshness of the Environment of the Component

Level Operation Profile Example

0 normal / intended envi-
ronment

daily usage, typical application

1 unplanned / harsh envi-
ronment

usage at normal operation limits,
corner-cases

2 misuse / out of limits misappropriation, vandalism

Table 3.3: Repair Aggravation (A) Classification - Classification of ‘A’ Value of Capa-
bility and Ease of Repair of the Component

Level Repair Aggravation Example

0 easy repair can be performed by end-user

1 moderate repair can be performed at any workshop
(trained skills required)

2 difficult repair needs to be performed at the produc-
tion center (specialized skills required)

3 serious repair no repair possible (repair action not
foreseen, product no longer useable)

34

3.2 Method Layer related Contribution

mutual impacts, similarities, and interdisciplinary values in common. Because modern
automotive systems are increasingly interlaced, it is no longer acceptable to assume that
safety systems are immune to security risks and vice versa. Although safety and security
are two seemingly contradictory system features and have been treated separately in the
past; they have now become more important due to increasing knowledge of their mutual
impacts, similarities, and interdisciplinary values. Security is defined, according to [12],
as the concurrent existence of availability for authorized users only, confidentiality, and
integrity with improper meaning of unauthorized.

This contribution (published as Paper G; depicted as publication G in Figure 3.1
- publication layer) presents a combined approach of the automotive HARA (hazard
analysis and risk assessment) with the security domain STRIDE concept, and outlines
the impacts of security issues on safety concepts at system level. The fundamental
concept of the SDA is to classify the probability of security threats, which can be used
to determine the appropriate number of countermeasures that need to be considered.

The contribution presents a framework for the security-aware identification of safety
hazards. SAHARA (Security-Aware Hazard Analysis and Risk Assessment) is an ex-
pansion of the inductive analysis method called hazard analysis and risk assessment
(HARA), and encompasses threats from the STRIDE Threat Model [50].

Threat modeling using STRIDE can be seen as the security equivalent to HARA.
STRIDE is an acronym for spoofing, tampering, repudiation, information disclosure,
denial of service, and elevation of privileges. The key concept of this threat modeling
approach is the analysis of each system component for susceptibility of threats and
mitigation of all threats to each component in order to argue that a system is secure.

Figure 3.4 shows the conceptual overview of the novel SAHARA method. As can be
seen in the figure, an ISO 26262 conforming HARA analysis (right part of the overview
figure) can be performed in a conventional manner. Besides this, attack vectors of
the system can be modeled using the STRIDE approach independently (left part of
Figure 3.4) by specialists of the security domain. The two-stage SAHARA method
then combines the outcome of this security analysis with the outcomes of the safety
analysis. Therefore, a key concept of the HARA approach, the definition of automotive
safety integrity level (ASILs) is applied to the STRIDE analysis outcomes. Threats are
quantified aligned with ASIL analysis, according to the resources (R), know-how (K)
required to exert the threat, and the threats criticality (T). The second stage is the
hand-over of information of security threats that may lead to a violation of safety goals
for further safety analysis. This improves completeness of safety analysis in terms of
hazardous events initiated due to security attacks, related to the ISO 26262 requirement
of analysis of ‘foreseeable misuse’. The first step of the SAHARA approach to combining
security and safety analysis is to quantify the STRIDE security threats of the SuD in an
analog manner as done for safety hazards in the HARA approach.

Table 3.4 classifies the required resources - ‘R’ to threaten the SuDs security and
gives some examples of tools required to successfully exert the security threat. Level 0

35

3 Proposed Solution

SECURITY ANALYSIS

(STRIDE)

THREAT LEVEL >2

STANDARD HARA
(ISO 26262)

SAHARA
PART 2

LIST OF SECURITY
THREATS

SAHARA
PART 1

SAFETY HAZARDS
CLASSIFIED ACCORDING

THEIR ASIL

SECURITY THREATS
CLASSIFIED ACCORDING

THEIR SECL SAFETY HAZARDS
(INCL. SECURITY

ASPECTS) CLASSIFIED
ACCORDING THEIR ASIL

STRIDE APPROACHSTRIDE APPROACH HARA METHODHARA METHOD

SAHARA APPROACHSAHARA APPROACH

Figure 3.4: Conceptual Overview of the SAHARA Method

covers threats not requiring any tools at all or an everyday commodity, available even
in unprepared situations. Level 1 tools can be found in any average household, while
availability of level 2 tools is more limited (such as special workshops). Tools assigned
to level 3 are advanced tools whose accessibility is very limited and are not wide-spread.

Table 3.5 does the same classification for the required know-how - ‘K’. Here level
0 requires no prior knowledge at all (the equivalent of black-box approach). Level 1
covers persons with technical skills and basic understanding of internals, representing the
equivalent of gray-box approaches, while level 2 is tantamount to white-box approaches
and represents persons with focused interests and domain knowledge.

An overview of the criticality of a security threat - ‘T’ is given in Table 3.6.
Level 0 indicates in this case a security irrelevant impact, such as raw data which can
be visualized but whose meaning cannot be determined. The threat impact of level
1 threats is limited to annoying, maybe reduced, availability of services, but does not
imply any damage of goods or manipulation of data or services; such threats belong to
level 2. Level 3 threats imply privacy intrusion or impacts on human life (quality of life)
as well as possible impacts on safety features.

36

3.2 Method Layer related Contribution

Table 3.4: Required Resource ‘R’ Classification - Determination of ‘R’ Value for required
Resources to Exert Threat

Level Required Resource Example

0 no additional tool or
everyday commodity

randomly using the user interface, strip
fuse, key, coin, mobile phone

1 standard tool screwdriver, multi-meter, multi-tool

2 simple tool corrugated-head screwdriver, CAN sniffer,
oscilloscope

3 advanced tools debugger, flashing tools, bus communica-
tion simulators

Table 3.5: Required Know-How ‘K’ Classification - Determination of ‘K’ Value for Re-
quired Know-how to Exert Threat

Level Required Know-How Example

0 no prior knowledge (black-
box approach)

average driver, unknown internals

1 technical knowledge (gray-
box approach)

technician, basic understanding of internals

2 domain knowledge (white-
box approach)

person with technical training and focused
interests, internals disclosed

Table 3.6: Threat Criticality ‘T’ Classification - Determination of ‘T’ Value of Threat
Criticality

Level Threat Criticality Example

0 no security impact no security relevant impact

1 moderate security relevance annoying manipulation, partial reduced
availability of service

2 high security relevance damage of goods, invoice manipulation, non
availability of service, possible privacy in-
trusion

3 high security and possible
safety relevance

maximum security impact and life-
threatening abuse possible

37

3 Proposed Solution

SecL =

0 if T = 0

> 0 if T = 3

4 if 5−K −R + T ≥ 7

3 if 5−K −R + T = 6

2 if 5−K −R + T = 5

1 if 5−K −R + T = 4

(3.2)

These three factors determine the resulting security level (SecL). The SecL deter-
mination is based on the ASIL determination approach and is calculated according to
(3.2).

The quantification of the threats impact, on the one hand, determines whether the
threat is also safety-related (threat level 3) or not (all others). This information is handed
over to the safety analysis method in the second stage of the SAHARA approach. On the
other hand, this quantification enables the possibility of determining limits of resources
spent to prevent the SuD from a specific threat (risk management for security threats).
After this quantification these threats may then be adequately reduced or prevented by
appropriate design and countermeasures.

In the case of safety-related security threats, the threat can be analyzed and resulting
hazards evaluated according their controllability, exposure, and severity. This improves,
the completeness of the required situation analysis of the HARA approach by implying
factors of reasonably foreseeable misuse (security threats) in a more structured way.

3.2.6 System Dependability Analysis Methods

Dependability is a superordinate concept regrouping different system attributes such as
reliability, safety, security, or availability and non-functional requirements for modern
embedded systems. These different attributes, however, might lead to different targets.
Furthermore, the non-unified methods to manage these different attributes might lead
to inconsistencies, which are identified in late development phases. The aim of this
contribution is to present a combined approach for system dependability analysis to be
applied in early development phases. This approach regroups state-of-the-art methods
for safety, security, and reliability analysis, thus enabling consistent dependability target
identification across the three attributes. This, in turn, is a pre-requisite for consistent
dependability engineering along the development lifecycle.

In the publication Paper H (depicted as publication H in Figure 3.1 - publication
layer) the experiences of this combined dependability system analysis method are dis-
cussed based on an automotive application. This paper presents a combined approach
for analysis of dependability features in early design phases of an embedded automotive
system.

38

3.2 Method Layer related Contribution

A
tt

ri
b

u
te

 L
ay

e
r

Dependability

M
ai

n
ta

in
ab

ili
ty

R
e

lia
b

ili
ty

Sa
fe

ty

A
va

ila
b

ili
ty

C
o

n
fi

d
e

n
ti

al
it

y

In
te

gr
it

y

Security

SAHARASDA
HARA

Dependable Development

A
n

al
ys

is

La
ye

r
En

gi
n

e
e

ri
n

g
La

ye
r

Figure 3.5: General Overview of Dependability Attributes and Analysis Methods

In the automotive industry, dependability engineering is currently moving its center of
gravity from mainly mechanical reliability towards functional safety and security of the
control system. While the target is still to provide a convincing argument that the system
can justifiably be trusted [12], the hazards to consider as well as the development methods
must be adapted accordingly. Hence, dependability is seen according to [13] and [12],
as an integrating concept that encompasses numerous different attributes. Figure 3.5
provides an overview of the attributes (aspects) of dependability, the analysis methods
available for each attribute, and a common dependable development block indicating the
fact that each aspect needs to be addressed within a consistent engineering framework.
Indeed, a common analysis method delivering consistent dependability targets over the
different attributes is the basis to performing consistent dependability engineering during
the entire product development. It can also be seen that security is a composition of the
attributes of confidentiality, integrity, and availability. Security is the combination of
confidentiality, the prevention of unauthorized information disclosure and amendment
or deletion of information, plus availability and also the prevention of unauthorized
withholding of information [12].

The common engineering basis for all dependability aspects raises the requirement for
a combination of the different analysis methods and targets, thus a mutual understanding
of focuses and language concepts. Table 3.7 shows a mapping of safety, security, and
service oriented engineering terms.

Combining the different dependability feature analysis methods and dependability
targets is of high importance. The SAHARA approach already implies an identification
of security threats having a possible impact on safety and an information exchange

39

3 Proposed Solution

Table 3.7: Mapping of Safety, Security, and Service Oriented Engineering Terms

Safety Engineer-
ing

Security
Engineering

Service-Oriented En-
gineering

risk hazard threat warranty claim, un-
planned maintenance

system inherent de-
ficiency

malfunction vulnerability service loss or degrada-
tion

A
n

al
y
si

s
S

u
b

je
ct

s

external enabling
condition

hazardous situation attack (mis)usage profile

impact analysis severity threat criticality reputation loss, deterio-
ration impact

external risk con-
trol analysis

controllability attacker skills,
know-how

repair efforts, repair ag-
gravation

A
n

a
ly

si
s

C
at

eg
o
ri

es

occurrence analysis exposure point of attack,
attack resources

operation condition
spectrum

A
n

al
y
si

s
R

es
u

lt
s design goal safety goal security target dependability target

design goal critical-
ity

ASIL SecL DRL

between the security and safety domain. Nevertheless, the approach described in this
paper relies on the combination of the outcomes (targets and classifications) of HARA,
SAHARA, and SDA to raise the level of completeness of the analysis and consistency
between mutual dependencies. Figure 3.6 shows an overview of the described approach
and highlights the distinctive features of the presented approach (broad red arrows).

The mutual impact of serviceability analysis considerations and safety considerations
(see Figure 3.6 - arrow I) exists between safe states and reliability targets of the system.
A tradeoff between higher availability and higher safety of the system impacts the design
of safe states (e.g. a system shutdown in the case of uncertainty of the actual system
state can be a good option from a safety or cost point of view, but has negative effects on
system availability). The targets and target classifications found in SDA, therefore have
an impact on the design of safe states (e.g. fail-silent vs. fail operational). On the other
hand, higher safety levels (ASIL) require higher reliability of the related components.
This affects the design and quality requirements of components which might have not
been in focus of SDA. Formulating these mutual dependencies between serviceability
and safety leads to two regulations:

DRL ≥ 3→ component related safe states need to be reviewed, eventual adapta-
tion of degradation concept required

ASIL > QM → specific component reliability required, eventual adaptation of
DRL of neglected component required

40

3.2 Method Layer related Contribution

Cooperative Dependability Evaluation

Security analysis
(STRIDE)

STRIDE Approach

Security Targets
SecL classification

Serviceability
analysis

SDA Approach

Reliability Targets
DRL classification

Safety analysis
(ISO 26262)

HARA Method

Safety Goals (Safety Targets)
ASIL classification

I

II III

Figure 3.6: Overview of the Described Approach with Distinctive Features Highlighting

Preventing unauthorized access to control interfaces by security password affects the
system security positively, beside this, it reduces the availability and controllability of
the whole system (see Figure 3.6 - arrow II). Requiring authentication of each system
component positively affects the overall security, but simultaneously increases the main-
tenance effort and time requirement, which further impacts system availability. On the
other hand, easing the maintenance burden by reducing security authentication discloses
attack vectors that were probably not considered during security analysis (e.g. the sim-
ple replacement of the encryption chip). The regulation of the mutual dependencies
between serviceability and security leads to the following:

DRL ≥ 3→ component related security targets need to be reviewed

SecL ≥ 3→ serviceability might be affected, review required to determine impact
on operational readiness

The third mutual impact (see Figure 3.6 - arrow III) exists between safety and security.
Safety and security features frequently appear to be in total contradiction to the overall
system features. An example of this contradiction can be shown by the electrical steering
column lock system. In the security context the system locks the steering column when
in doubt, because this doubt area might be the result of an attack. From the safety
perspective, however, it might not be the best approach to lock the steering column as
a fallback, since the issue involved might well be an occurrence directly before a high
speed corner turn. Mutual dependencies between safety and security can be prescribed
as:

ASIL > QM → safe state need to be reviewed for possible deactivation of security

41

3 Proposed Solution

T = 3 → safety might be affected, a review is required to determine impact on
operational readiness

The regulation of these mutual dependencies, the required information handover, and
the mapping of the different engineering domain terms allow a cooperative dependability
evaluation by cross-domain expert teams and provide traceable measures for early design
decisions.

3.2.7 Seamless Modeling Approach

The modeling support of system architectural design and refinement of this design to
software is also a contributing part to this thesis and publication [48]. The AUTOSAR
methodology [8] provides standardized and clearly defined interfaces between different
software components and development tools and also provides such tools for easing
this process of architectural design refinement. Nevertheless, the enormously complex
AUTOSAR model requires a high amount of preliminary work and projects with limited
resources often struggle to achieve adequate quality in budget (such as time or man-
power) with this approach. The model presented in this thesis has thus emerged from
full AUTOSAR based approaches, SysML, or EAST-ADL approaches and focuses force-
fully on a lean MBD model to gather all required information in a central MBD database
as a single-source of information concept. This database inherits all information from the
involved engineering disciplines (system, software, and safety) in a structured way, and
allows different engineers to do their job in their specific manner. The presented model
has been developed using profiles which use a subset of the SysML language to define a
system model particularly tailored to automotive engineering and safety engineering in
context of ISO 26262. This contribution focus on the additional model enhancements to
also support software development of basis software functions (HW driver), operating
system configuration and task allocation, and modeling of complex software architectures
for function software development.

The main benefit of this proposed approach contributes to closing the gap between
system-level development at abstract UML-like representations and software-level de-
velopment. Furthermore, the model minimizes redundant manual information exchange
between tools and contributes to simplifying seamless safety argumentation according to
ISO 26262 for the developed system. The following sections describe the key contribution
parts of the model in more detail.

Application Software Model Part

The first part is a specific UML model enabling software architecture design in AUTOSAR
like representation within a state-of-the-art system development tool. A specific SysML
profile is used to limit the SysML possibilities, to the needs of software architecture devel-

42

3.2 Method Layer related Contribution

Figure 3.7: Shows the Representation of Application SW Artifacts.

opment of safety-critical systems and enable software architecture design in AUTOSAR
like representation within the system development tool.

This profile makes the SysML representation more manageable for the needs of the
design of an automotive software architecture by taking advantage of an AUTOSAR
aligned VFB abstraction layer. In addition to the AUTOSAR VFB abstraction layer
[11], the profile enables an explicit definition of components, component interfaces, and
connections between interfaces. This provides the possibility to define software archi-
tecture and ensures proper definition of the communication between the architecture
artifacts, including interface specifications (e.g. upper limits, initial values, formulas).
Hence, the SW architecture representation within EA can be linked to system develop-
ment artifacts and traces to requirements can be easily established.

Figure 3.7 shows the representation profile of application software architecture arti-
facts. As can be seen in the depiction, all artifacts required to model the SW architecture
are represented and inherit the required information as tagged values. Table 3.8 sums
up the artifacts and their inherited information.

Hardware and Basic Software Model Part

Special basic software (BSW) and hardware representations are assigned to establish
links to the underlying basic software and hardware layers. The AUTOSAR architectural
approach ensures hardware-independent development of application software modules
until very late in the development phase and therefore enables application software
developers and basic software developers to work in parallel. The hardware profile,

43

3 Proposed Solution

Table 3.8: Highlights the Application SW Development Artifacts and their Attributes.

Artifact Configurable Attribute

AUTOSAR composition modules 2

TASKS (AUTOSAR runnables) 9

Port definitions 9

Timing information 8

depicted in Figure 3.8, allows representation of hardware resources (such as ADC, CAN),
calculation engines (core), and connected peripherals which interact with the software.
This further enables the establishment of software and hardware dependencies and a
hardware-software interface (HSI), as required by ISO 26262. Software signals of BSW
modules can be linked to HW port pins via dedicated mappings. On the one hand this
enables the modeling and mapping of HW specifics and SW signals. On the other hand,
this mapping establishes traceable links to port pin configurations. Finally, these HW
dependencies can be used to interlink scheduling and task allocation analysis tools for
analysis and optimization of resource utilization.

Temporal Analysis Model Part

The ability to generate model links between software signals and HW resources besides
the possibility of specifying timing constraints (see Figure 3.7) of software modules en-
ables the ability to use the model to interlink scheduling and task allocation analysis
tools. This enables the analysis and optimization of resource utilization, which is espe-
cially important for multi-core system development.

3.3 Tool Layer related Contribution

This section describes the tool concept for establishment of a seamless model-based
development tool-chain for development of safety-critical automotive systems. The add-
ons for the system development tool presented here are the results of the experiences
gained during the project. The add-ons aim to extend the system engineering tools field
of application to a comprehensive tool-chain for the whole development cycle of safety-
critical and multi-core automotive systems. Figure 3.9 shows the conceptual overview
of the approach. The yellow highlighting marks the introduced extensions.

Extension needed for the existing approach are:

� an AUTOSAR aligned profile for software architecture development and extraction
to SW development tools

44

3.3 Tool Layer related Contribution

Figure 3.8: Shows the Representation of Basic SW Artifacts and HW Representations
for Optimization of Resource Utilization.

SIMULINK TOOL-BRIDGE

BASIC SOFTWARE

APPLICATION SOFTWARE

RUNTIME ENVIRONMENTRTE CONFIGURATION

AUTOSAR TOOL-BRIDGE

BSW CONFIGURATION

OS CONFIGURATION

System Requirements

Safety Requirements

HW ArchitectureSW Architecture

System Architecture

HSI EXCEL BRIDGE

MODEL ADDON

ASW.mdl

Software Development Tool

SYSTEM MODELING TOOL

SWC.c

RTE.c

BSW.c
BSWconfig.c

SYSTEM DEVELOPMENT SOFTWARE DEVELOPMENT

OS
Configurator

BSW
Configurator

OS.oil
SafetyDriver.c

AUTOSAR
Description

Files

OS.c

IMPLEMENTATION

MultiCore
System

TEST ENVIRONMENT BRIDGE

TEST ENVIRONMENT

HW / SW Interface Spec

SAHARA BRIDGE

Safety / Security Analysis
(SAHARA)

SDA BRIDGE

RELIABILITY ANALYSIS (SDA)

Figure 3.9: Overview of Tool Layer related Contributions

45

3 Proposed Solution

� a model representation of the hardware in use for safety analysis

� hardware-software interface capabilities for HSI definition according ISO 26262

� extractors to automatically generate ECU BSW and RTE configurations from ex-
isting artifacts / information at system development level

� interconnection support for multi-core scheduling configuration and validation tools

These extensions close the gap between system level development at abstract UML-like
representations and software level development modeling tools (such as Matlab Simulink
/ Targetlink). By closing this gap a seamless tool-chain from initial requirements coming
from an application life cycle management tool, through definition of safety concepts and
software architectures in a model-based development environment, to final decisions in
code implementation in compliance with ISO26262 is available (see Figure 3.10). Fig-
ure 3.10 illustrates the improvement due to this approach in terms of tools in use and
in relation to the ISO 26262 SW development process. The gray arrow in the upper
left corner and the reduced quantity of tools at the upper part of the ‘Design Phase’
originate from the related preliminary AVL-PTE safety system modeling approach. The
arrows depicted in red and the extension required for the lower part of the figure are
part of this thesis contribution to extend the tool to an information backbone for the
whole development cycle of an embedded automotive multi-core system. The following
sections focus in particular on one specific part of this approach and describe their prin-
ciples. Moving to a more formal (and automated) component-based approach enables
the definition of a framework (e.g. guidelines, automated checks) to identify and correct
(and thus minimize) the number of errors and lessen their impact. The main benefit of
this enhancement is an improved consistency and traceability from the initial require-
ments at the system level down to the single software components, as well as a reduction
of cumbersome and error-prone manual work-flows along the system development path.
Furthermore these improvements include the concept change from a document-centric
approach to a seamless model-based approach with a single information backbone for all
engineering disciplines involved.

3.3.1 Application Software Modeling Toolbridge

A specific profile (described in Section 3.2.7) enables the possibility of designing soft-
ware architectures in an AUTOSAR aligned way within a system development tool. The
profile takes advantage of the AUTOSAR virtual function bus (VFB) abstraction layer
and enables an explicit definition of AUTOSAR components, component interfaces, and
connections between interfaces. This enables the possibility of defining software archi-
tecture and ensures establishment of communication between architecture artifacts with
interface specifications (e.g. upper limits, initial values, formulas). Special basic software
and hardware abstraction modules are assigned to establish links to the underlying basic

46

3.3 Tool Layer related Contribution

Figure 3.10: ISO 26262 SW Development Process [40] and Tool Mapping

software and hardware abstraction layers. In addition to standard VFB AUTOSAR pro-
files the profile features assignment and graphical representation of ASIL to dedicated
signals and modules and provides a specification for runnables with timing constraints
(such as WCET), ASIL, priority, and required stack sizes. This additional information
enables mapping of tasks to a specific core and establishment of a valid scheduling in
a later development phase. Further benefits result in terms of constraints checking and
traceability of development decisions. Via a dedicated exporter the software architec-
ture and related information can be exported in ARXML AUTOSAR format (see Figure
3.11), which many software engineering tools are able to import, process, and re-export
by default.

The exporter generates an AUTOSAR conform software component description file
enriched with system and safety development artifact traces. Information that is not
importable by default AUTOSAR import functions of third-party tools are still available
for the user of this particular tool. In addition, a re-import of changes in the ARXML
file, after implementation of software function code, can be performed. This ensures
consistency between system development artifacts and changes done in the software
development tool (Paper I depicted as publication I in Figure 3.1 - publication layer).

A variation of this approach(Paper J depicted as publication J in Figure 3.1 - publi-
cation layer) is an exporter, which is able to export the software architecture, component
containers, and their interconnections designed in SysML directly to the software devel-
opment tool Matlab/Simulink and thus, enabling the information to be handed over
to a special purpose tool (model-driven software engineering tools) for detailing of the

47

3 Proposed Solution

Figure 3.11: Screenshot of the SW Architecture Representation within the System De-
velopment Tool and Extension of Bridging Approach

SW architecture and SW modules. The related import functionality, in combination
with the export function, enables the bidirectional update of software architecture rep-
resentations. On the one hand, this ensures consistency between system development
artifacts and changes done in the software development tool. On the other hand, the
import functionality enables reuse of available software modules, guarantees consistency
of information across tool boundaries, and shares information more precisely and less
ambiguously. The API based variant has been evaluated versus .m file based approach
and direct .mdl file manipulation. The main factors of this evaluation are briefly sum-
marized in Table 3.9. As can be seen in the table, most factors favor the API based
approach with its major drawback of requiring a Matlab/Simulink installation.

Table 3.9: Summary of Evaluation Factors of Simulink Tool Bridge Variants

Factor API based Script based Direct model access

Complexity + + −
Automation + +
Matlab installation required yes no no
Data amount + + −
Round-trip Engineering easier easier tough

48

3.3 Tool Layer related Contribution

3.3.2 Basic Software Configuration Generator

The ASW/BSW interface generator and BSW configuration generator (related publica-
tion Paper K depicted as publication K in Figure 3.1 - publication layer) generates .c
and .h files defining SW/SW interfaces between application software signals and basic
software signals based on modeled HSI artifacts. In addition, this generation elimi-
nates the need of manual SW/SW interface generation without adequate syntax and
semantic support and ensures reproducibility and traceability of these configurations.
Figure 3.12 shows the conceptual overview of generated files. The.c and .h files on ap-
plication software level are generated via a model-based software engineering tool, such
as Matlab/Simulink. The files at the basic software level are usually provided by the
hardware vendor. While the files mentioned in SW/SW interface layer are generated by
our approach. These generated files are designed as a two step approach. First step of
the interfacing approach (interface.c and interface.h) establishes the interface between
ASW and BSW based on AUTOSAR RTE calls. The second step (AVLIL BSWa.c and
AVLIL BSWa.h) maps this AUTOSAR RTE based calls to the HW specific implemen-
tation of basic SW drivers. The basic software configuration generator is also part of the
dll- based tool, which generates BSW driver specific * cfg.c files. These files configure
the vendor specific low level driver (basic software driver) of the HW device according
to the HSI specifications. The mapping of HSI specifications to low level driver config-
uration is hardware and low level driver implementation specific and needs to be done
once per HW device and supported low level driver package.

3.3.3 OS Configuration Generator

The OS Configuration bridge (Paper L depicted as publication L in Figure 3.1 - publica-
tion layer) overcomes the existing gap between the model-driven system engineering tool
and software engineering tools for automotive real-time operating systems (RTOS). The
approach makes use of existing high level control system information in SysML format to
generate the configuration of automotive real-time operating systems in a standardized
OSEK Implementation Language file format (OIL files)[53]. Information of the control
system (such as control strategies) can thus be mapped to a configuration at software
level (e.g., required interfaces to other SW components, allocation to a CPU respectively
to a task). The goal of this tool is to support a consistent and traceable refinement, from
the early concept phase to individual configurations of the RTOS. The approach mini-
mizes redundant manual information exchange between tools and also takes IS0 26262
requirements (especially traceability) and constraints into account.

The OS configuration tool comprises of the following aspects: An extractor which
automatically generates OIL files from existing information at system development level.
This ensures consistency of the specification and implementation for the RTOS. The
importer supports round-trip engineering by re-importation of information updates from

49

3 Proposed Solution

A
P

P
LI

C
A

T
IO

N
 S

W

LA
YE

R
SW

 /
 S

W
 IN

TE
R

FA
CE

 L
A

YE
R

B
A

SI
C
 S

O
FT

W
A

R
E

LA
YE

R

APPLICATION
A.C

APPLICATION
B.C

APPLICATION
C.C

INTERFACE.C

BSWDRIVER

A.C
BSWDRIVER

A.C
BSWDRIVER

A.C

AVLIL_BSW
A.C

AVLIL_BSW
B.C

AVLIL_BSW
C.C

Figure 3.12: Overview of Interface Files Generated by the BSW Configuration and In-
terface Generator

OIL files. Automotive OS do not have dynamic scheduling parts, in that all OS settings
are static and can be specified during the development phase. With the introduced
approach for HW representation integration of tools supporting the specification of task
priority, duration, the mapping of tasks to cores, task activation policies, and a support
for specification of resources, alarms, and interrupts is possible. Additional information
originating from system development level, e.g., required resources, deadlines, and ASILs
derived from safety concepts complete this description. Therefore, an export/import
functionality based on standardized exchange format (OSEK OIL files) is introduced to
establish and validate scheduling and configuration of the real-time operating system in a
way that supports round-trip engineering. The graphical representation of this approach
is already shown in Figure 3.8.

3.3.4 Hardware Software Interface Definition Toolbridge

The hardware-software interface (HSI) definition document is the last development arti-
fact of the system development phase and the starting point for parallel development of
hardware and software. HSI definition requires mutual domain knowledge of hardware
and software and is to be the product of a collective workshop of hardware, software,
and system experts. The document is used to agree on topics relevant to both, hardware
and software development, and acts as the link between different levels of development.

50

3.3 Tool Layer related Contribution

Figure 3.13: Graphical Representation of Hardware Software Interface

Insufficient definition of the HSI can cause several additional iteration cycles and com-
munication issues between development teams. Consistency and evidence of correct
implementation of HSI can be challenging in the case of concurrent HW and SW de-
velopment and cross-dependencies of asynchronous update intervals. Therefore, this
tool approach for ISO 26262 aligned hardware-software interface definition (Paper M
depicted as publication M in Figure 3.1 - publication layer) enables a practicable and
intuitive way of engineering HSI definitions in a spreadsheet tool (Excel) and transforms
them to a reusable and version able representation in the MDB tool. With this ap-
proach, the spreadsheet document and system model can be bidirectionally aligned via
program-specific APIs. This, on one hand, enables a practicable, tool-independent, and
intuitive way of engineering HSI definitions with spreadsheet tools and transforms the
generated information to a reusable and version-able representation in the MDB tool.
On the other hand, this approach unifies the project-dependent process for HSI defini-
tions across the variety of different projects and contributing partners without requiring
exactly the same development tools or processes in place. Thirdly, the machine- and
human-readable notation of spreadsheets ensures a cost- and time-saving alternative
to usually complex special-purpose tools. Figure 3.13 illustrates the graphical model
representation of the HSI.

3.3.5 Multi-Core Scheduling Tool Support

As mentioned by several related works [33, 10, 41] additional constraints occur dur-
ing development of multi-core systems. The initiation of software development in an
AUTOSAR-aligned way supports this development with the virtual functional bus (VFB)
abstraction level (see [11] for further details). But several issues of multi-core systems
cannot be addressed via AUTOSAR, e.g. correct timing and resource-efficient schedul-
ing. These issues can usually be solved using third-party tools, which inter operate via

51

3 Proposed Solution

either AUTOSAR ARXML files or proprietary interchange formats. These formats and
supporting information from the model need to be extracted via dedicated MBD tool
plugins and transferred via API calls. Again a solution for re-importation of the gen-
erated output to update the system model is supported. The introduced extension for
HW representation, AUTOSAR aligned SW architecture, and ECU BSW configurations
support multi-core systems with specific tags and values for these constraints. Further-
more, in accordance with Richter et al. [58], this approach supports an early resource
estimation and early timing estimation, which both can be kept up to date due to round-
trip engineering support of the specific MBD tool extensions. Richter et al. claim wrong
or non-estimation of resource consumption and missing SW architecture considerations
as the main risk for failure in launching multi-core systems. The approach therefore
scales for single-core as well as multi-core systems. Solely some of the extensions might
be optional for single-core systems, but mandatory for multi-core systems. Table 3.10
shows a brief summarization of these mandatory extensions for multi-core systems:

Table 3.10: Summarization of Extensions required for Multi-core Support

Extension Relation to multi-core system
development

Software architecture
enables HW independent (core independent)
development of ASW
ASW task can be mapped to cores for early
scheduling and resource estimation
task hold timing constraints

Hardware representation
enables linking of tasks and resources
supports automatic generation of multiple OS
configurations

HSI definition
enables configuration of BSW driver
enables automatic configuration of safety HW
features (such as MPU, access privileges)

This timing bridge integrates a mutual information exchange with the Symta Vision’s
SymTA/S tool. SymTA/S and TraceAnalyzer are well-known in the automotive and
other embedded real-time industries. The tools can be used for early system analysis,
the affect of increasing number of software functions analysis, for calculation of comput-
ing power and communication bandwidth needs, and improving the system performance
or cost optimization. SymTA/S is a model-based timing analysis, optimization and ver-
ification tool for analysis of (a) Worst-Case Scheduling, (b) optimization of distribution
of functions, and (c) analysis of different distribution scenarios. TraceAnalyzer analyses
the timing of actual traces obtained from other 3rd party probes such as Vector CAN-
analyzer, Lauterbach TRACE32 or Gliwa T1. These tools support OSEK, AUTOSAR,

52

3.3 Tool Layer related Contribution

and multi-core ECUs, as well as CAN (including CAN-FD), LIN, FlexRay, and Ether-
net (standard, AVB) bus analysis. SymTA/S and TraceAnalyzer are Eclipse-based tools
which also support scriptings, remote access, import / export, and report capabilities
which enable their integration into the proposed tool-chain.

3.3.6 Test Tool Integration

Enterprise Architect supports the generation of documentation according to various
standards and templates, once a generic document generator template is defined. This
feature can be used to automatically generate test specifications for the provided use-case
diagrams. Furthermore, as for integration of special-purpose tools, MDG technology ex-
tensions can be used here to export test signal vectors for stimulation of the software
models and thus ensure test coverage of all typical use-case scenarios. AVLab has been
recently introduced as a company-wide software test environment. It supports model-
based design in MATLAB/Simulink from model development to code generation over
model testing. Supported features of the AVLab environment are: (a) interfaces to
ADD, Integrity, TargetLink, EmbeddedCoder, AVL Concerto, SimDiff Tools, (b) the
support of the PTE control processes, and (c) traceability features of object under
test and ADD configurations. This means, the AVLab environment integrates inter-
faces to Integrity (life-cycle management tool), ADD (calibration parameter versioning
tool),TargetLink, and AVL Concerto (data analysis tool) which support the PTE pro-
cess landscape. Therefore, interconnecting AVLab with the model-based development
tool-chain features traceability to the AVL test environment. More specifically traceable
links to the object under test (SW code), its calibration parameters, test cases, and test
reports can be established and made available for convincing argumentation of maturity
of the developed system.

3.3.7 Constraint Checker

Another feature in high demand for ensuring consistency and correctness of complex
multi-core systems development is to have a consistent model as the central source of
information. To maintain consistency, correctness, and completeness of models, con-
straint checking features of the MDB tool-chain are substantial. This MBD tool add-on
implements constraint checking abilities based on the OCL framework of Krallinger[42]
and an interface for constraint definition within the EA tool.

53

3 Proposed Solution

54

4 Use-Case Application

In the context of the automotive domain it is very common to have some basic structure
that serves to organize/handle the technical complexity of the system under development.
Within AVL PTE a Global System Structure (GSS) has been defined and an aligned
“Level Structure” for Requirements, Specifications, Design, and Integration Steps &
Testing has been set up. This GSS level structure is depicted in Figure 4.1 and also used
for this doctoral thesis use-case.

Figure 4.1: AVL PTE Global System Structure (GSS) and Level Structure ©AVL

The purpose of the level approach is to have a classification framework to assign re-
quirements/designs according to the level they belong to. On the individual level, the

55

4 Use-Case Application

requirements/designs are used as the basis to derive further requirements/designs at the
next down-stream level (in general this would be following level, however, the project
scope may require to jump across certain levels). In other words: the requirements/de-
signs are developed following a top-down cascading approach where on every level the
requirements/designs become more detailed.

For the evaluation of the proposed approach an automotive battery management sys-
tem (BMS) has been chosen as a use-case. This use-case is based on the INCOBAT
project1 and represents solely illustrative material, reduced for publication and is not
intended to be exhaustive or representative of leading-edge technology. The technology-
specific details have thus been abstracted for commercial sensitivity and the analysis
results presented are not intended to be exhaustive. Although, all layers of the AVL
PTE global system structure are processed by the use-case, the focus is set on the three
most concrete layers (level 3, level 4, and level 5). Figure 4.2 shows the schematic
diagram of a BMS. The BMS main interfaces are:

� Voltage sensors for individual cell voltages

� Voltage sensors for the overall battery voltage

� Current sensors for the overall battery current

� Temperature sensors to estimate the cell temperatures

� Interlock circuit ensuring electric shock protection

� Contactor control connecting and disconnecting the battery from other systems

To follow the ISO 26262 SW development process, first the item definition is done
and system boundaries are defined. The second section focuses on the hazard analysis
and risk assessment (HARA), which enlists possible hazards, hazardous situations and
derives ASILs and safety goals. The usual HARA, required by ISO 26262, is in this case
extended by a combined approach for dependable system development. Therefore not
only a HARA, but also a SDA[49] and SAHARA[47] of the BMS use-case is done. In
the third section the functional safety concept is briefly described. The fourth section
focuses on the model representation of the use-case at system level and the final section
highlights the model representation of the implementation level (SW development level)
of the use-case.

4.1 Item Definition

ISO 26262 [40] defines an item as

system or array of systems to implement a function at the vehicle level, to
which ISO 26262 is applied.

1http://www.incobat-project.eu/

56

4.1 Item Definition

A

IN
TE

RL
O

CK
P

O
W

ER
C

AN

B
M

S
Co

n
to

ll
er

IN
TE

RL
O

CK
C

O
N

N
EC

T
O

R

R
EL

A
Y

CURRENT VOLTAGE TEMPERATURE
C

AN

B
at

te
ry

 S
ta

te

M
o

ni
to

ri
n

g

So
C

D
et

e
rm

in
at

io
n

So
F

D
et

e
rm

in
at

io
n

C
el

l B
al

an
ci

n
g

Ex
te

rn
al

C

ha
rg

in
g

Safety / Diagnosis

SW Modules

A

Figure 4.2: Schematic Diagram of a BMS

A System is further defined as

set of elements that relates at least a sensor, a controller and an actuator
with one another.

4.1.1 Provided Functions

For the use-case this means the item considered is a set of systems, called a HV battery.
The HV battery consists of (a) a main battery module and (b) a variable number of
battery packs satellite modules. The set of systems therefore implements the following
vehicle level functions:

� Store provided electric energy

� Provide electric energy

� Control energy provided by external charger

� Request energy from range extender

� Control thermal conditions of battery cells

57

4 Use-Case Application

4.1.2 Elements of the Item

The battery pack satellites are connected to the main module and provide temperature, voltage,
and current information for each individual cell. This information is gathered by the main battery
module and serves as a base for the overall battery state estimation, state of charge (SoC), state
of health (SoH), and power limitation calculation. Communication between BMS main module
and satellite modules is carried out via a quasi SPI communication bus, which can be equipped
with additional satellite modules during operation (hot-plugable). Control of the air cooling
is done via PWM control signals and digital feedback signals. All other communication with
connected systems is done via CAN.
The HV battery can be simplified using the elements mentioned in Table 4.1.

Table 4.1: Elements of the HV Battery

Sensor Controller Actuator

Cell voltage sensor
Satellite controller Cell balancing switchCell current sensor

Cell temperature sensor

Output voltage sensor

Main controller

HV+ Relay
Output current sensor HV- Relay
HV Interlock loop signal Pre-Charge Relay
Ambient temperature sen-
sor

Blower control

4.1.3 Intended Use and Assumptions

The BMS is intended for use within a serial-hybrid, on-road, electric passenger car, which goes
in line with the intended field of application of ISO 26262. The BMS is designed according to
the Safety Element out of Context (SEooC) approach of ISO 26262 [40, 68] with the following
assumptions:

A 01 BMS is intended for usage in a passenger car with serial hybrid powertrain

A 02 BMS is air cooled by blower, which is directly connected and controlled via the BMS

A 03 BMS is the only supplier of HV interlock loop signal within the car

A 04 recuperative braking is not the only brake system within the car

A 05 recuperative brakes only support 10 % of overall brake-force

A 06 external charger is controlled by BMS via CAN signals

A 07 range extender can be requested by BMS via CAN signals

58

4.2 Combined Analysis for Dependable System Development

A 08 external insulation monitoring is supported and communicates with BMS via CAN

A 09 external discharge electronic is supported

A 10 battery is located outside the passenger compartment, battery outgassing takes place out-
side the passenger compartment

A 11 fire isolation compartmentalize passenger compartment from battery for at least 10 s

Figure 4.3 depicts the BMS as specified in the item definition. The left graphic shows the
BMS and its connected electric systems, the right graphic shows the array of systems of which
the BMS consists.

Figure 4.3: Screenshot of BMS Item and System Boundaries within the System Devel-
opment Tool (EA)

4.2 Combined Analysis for Dependable System Development

This evaluation includes an ISO 26262 [40] aligned HARA safety analysis, a security analysis
based on the SAHARA approach, and a serviceability analysis based on the SDA approach.
An excerpt of the SAHARA analysis of the BMS use-case is shown in Figure 4.4. The excerpt
highlights (a) the threat level classification ‘T’ triggering further analysis of the threat for safety
impact and (b) a security hazard aiming at denial of service of the HV fuse. The HARA of
the BMS use-case covers 52 hazardous situations, quantifies the respective ASIL and assigns
safety goals fully in line with the ISO 26262 standard. Additionally, 37 security threats have
been identified using the SAHARA approach, 18 of these security threats have been classified as
having possible impacts on safety concepts. Furthermore, 63 service deterioration scenarios have
been analyzed using the SDA approach.

Figure 4.5 shows an excerpt of the SDA for normal operation modes of the BMS use- case
and also highlights the HV fuse data. The overlaid excerpt shows the impact of the security
countermeasure against the threat ‘replace fuse with non current limiting element’. As can be
seen in the overlay, using corrugated-head screws for the fuse cover decreases the security risk
of ‘replace fuse with non current limiting element’, but increases the repair aggravation value of
the HV fuse, which also results in a higher DRL.

59

4 Use-Case Application

Figure 4.4: Excerpt of the Application of the SAHARA Analysis of the BMS Use-Case

Figure 4.5: Excerpt of the SDA Application of the BMS Use-Case

60

4.3 Functional Safety Concept

As a result of this analysis the following safety goals have be determined:

SG1 Correct amount of power shall be provided ASIL C

SG2 Battery outgassing and fire shall be prevented ASIL D

SG2 can be split into three safety goals, if favored for further development steps:

SG2.1 Battery over-charging shall be prevented ASIL D

SG2.2 Battery over-current shall be prevented ASIL D

SG2.3 Battery over-temperature shall be prevented ASIL D

4.3 Functional Safety Concept

Based on these safety goals adequate functional safety requirements are determined and defined
in the functional safety concept (FSC). These requirements still apply at system level and are
not yet broken down into hardware or software requirements or imply any technical definition of
the solution. For each safety goal at least one functional safety requirement is required.

4.4 MBD Representation of Use-Case at System Level

As mentioned previously, for this use-case the vehicle structure element hierarchy and the vehicle
level architecture on higher levels of abstraction solely represents a possible use-case for the bat-
tery management system which helps to serve as a common knowledge base for the stakeholders
to determine the sources and sinks for information of the BMS and the electronic and mechanical
interaction partners. Furthermore, the AVL model-representation for product development at
concept phase (ISO 26262-3[40]) is already established and not the focus of this doctoral thesis.
Due to the fact that no assumptions, requirements, or design specifications are done at these
abstraction levels.

Product development at system level (ISO 26262-4[40]) serves as a starting point for this
use-case application and starts on level 2 of the AVL PTE GSS (depicted in Figure 4.1).

4.4.1 L2 - Powertrain Element Level

On this layer the ISO 26262 item definition for the BMS system is done. Therefore, the use-
case battery item and its interfaces to the environment are defined (see Figure 4.6) and the
dependability analyses have been performed; an excerpt of the model representation of the HARA
can be seen in Figure 4.7. Safety goals and their assigned ASIL are determined by a systematic
evaluation of hazardous events. This analysis is based on the item’s functional behavior and
determines ASIL for the system by considering the estimation of the impact factors severity,
probability of exposure, and controllability of the hazardous events.

61

4 Use-Case Application

Table 4.2: Excerpt of BMS Functional Safety Concept

SG
#

Safety Goal FSR
#

Functional Safety
Requirement

ASIL

1
Correct amount of
power shall be
provided

FSR1 Communication with HV system
must be ensured

ASIL C

FSR2 If no correct power request
received battery shall be
disconnected from HV system

2.1
Battery over-charging
shall be prevented

FSR3 Voltage of each cell shall be
monitored, required charging
conditions calculated and
communicated to chargers

ASIL D

FSR4 If overcharging condition detected,
current must be interrupted within
500 ms

2.2
Battery over-current
shall be prevented

FSR4 If overcharging condition detected,
current must be interrupted within
500 ms

ASIL D

FSR5 Battery currents shall be measured
and limits shall be communicated

2.3
Battery
over-temperature
shall be prevented

FSR6 If over-temperature condition
detected, battery must be
disconnected from HV system
within 200 ms

ASIL D

FSR7 Battery temperature gradient shall
be monitored and counteracted via
cooling

FSR8 Battery temperature shall be
measured

62

4.5 MDB Representation of Use-Case at Implementation Level

Figure 4.6: L2 Architecture of Powertrain and BMS Use-Case

4.4.2 L3 - Control System Level

This level constitutes the most concrete layer of system development. Therefore the structure
elements of the main and satellite modules are composed of hardware and software elements.
Figure 4.8 depicts the individual structures. As can be seen in Figure 4.8 the CCU structure
consists of several HW, basic software and application software elements, which is caused due to
the fact that actually the whole BMS strategy is implemented by the CCU. While the number
of structure elements of the battery satellite modules is quite limited and neglected for this use-
case application. This results due to the fact that the satellite modules consist solely of an ASIC
(BALI chip), its implemented SW functionality and the peripherals required to operate properly.
A depiction of the BMS architecture is given in Figure 4.9. This figure shows the connections
between the main module (CCU) and the various satellite modules.

4.5 MDB Representation of Use-Case at Implementation Level

In abstraction level four (L4 - HW / SW System Level depicted also in Figure 4.1) software
and hardware architecture design takes place. This layer is not included in classical system
development approaches but defines the start of parallel software and hardware development
(ISO 26262 part 5 and part 6). This abstraction level is therefore mostly only present in special
purpose SW development tools or HW design tools rather than SysML based system development
tools. With the presented modeling approach this tool breach and semantic gap can be bridged
and SW architecture definition can be represented by the MBD tool. To support this the elements
on this level are represented using the model approach and meta-models presented in Section
3.2.7. The demonstration of the contribution related to these layers is done by a more reduced
software architecture than the INCOBAT SW architecture. Therefore, for further comparison
and highlighting of the improvements of the thesis approach the 3 layer monitoring concept [79]
is used as an evaluation use-case (depicted in Figure 4.10). This elementary use-case is an

63

4 Use-Case Application

Figure 4.7: Excerpt of the HARA of the BMS Use-Case

64

4.5 MDB Representation of Use-Case at Implementation Level

Figure 4.8: HW and SW Elements of the CCU of the Use-Case 65

4 Use-Case Application

Figure 4.9: CCU Architecture (L3 Architecture)

Figure 4.10: Top-Level Representation of SW Demonstration Use-Case in Enterprise
Architect

66

4.5 MDB Representation of Use-Case at Implementation Level

illustrative material but nevertheless representative, due to the fact that several safety-related
functions are based on this concept and its disclosed nature and commercial non-sensitivity.

4.5.1 Application Software Layer

As mentioned earlier in this section, this definition of the software architecture is usually done by
a software system architect within the software development tool (Matlab/Simulink). With our
approach this work package is included in the system development tool (depicted in Figure 4.10).
This does not hamper the work of the software system architect but enables constraint check-
ing features and helps to improve system maturity in terms of consistency, completeness, and
correctness of the development artifacts. Besides this, the change offers a significant benefit
for development of safety-critical software in terms of traceability, replicability of design deci-
sions, and unambiguously visualizes dependencies and puts visual emphasis on view-dependent
constraints (such as graphical safety-critical highlighting of SW modules in Figure 4.10).

The presented 3 layer monitoring concept use-case consists of 7 ASW modules with 36 inter-
faces and 29 signal connections. Hereby the SW module representations contain 3 configurable
attributes per element and the SW interface representations contain 10 attributes per element.
Therefore, the use-case totals 41 ASW model artifacts with 381 configuration parameters and
30 relations between the elements. This elementary example already indicates that the number
of model elements and relations between the model elements has already become confusing. A
manual transformation of the information represented within the models would already be cum-
bersome, error-prone, and would inherit lots of additional work to ensure consistency between
the two models. A more complete overview of the use-case is given in Table 4.3.

The presented approach in this work checks the information and model artifacts for point-to-
point consistency of interface configurations before automatically transferring the model repre-
sentation via 212 lines of auto-generated Matlab API code (Listing 4.1 shows an excerpt of the
Matlab API commands), which provides evidence and ensures completeness of the model transfor-
mation. The mentioned importer functionalities enable round-trip engineering and bi-directional
updates of both models and therefore supports evidence for consistency of both models.

Listing 4.1: Excerpts of Matlab API Commands

1 addpath(genpath(’C:\ EGasSystem ’))

2 add_block(’Simulink/Ports & Subsystems/Model’,’EGasSystem/EGasCtrl ’)

3 set_param(’EGasSystem/EGasCtrl ’,’ModelNameDialog ’,’EGasCtrl ’,’Description ’,’

EA_ObjectID@1969;ASIL@QM ’)

4 set_param(’EGasSystem/EGasCtrl ’,’Position ’ ,[250 50 550 250])

5

.

.

.

6 add_block(’Simulink/Ports & Subsystems/In1’,’EGasSystem/APedl2 ’)

7 set_param(’EGasSystem/APedl2 ’,’Position ’ ,[50 200 80 215])

8 set_param(’EGasSystem/APedl2 ’,’Outmin ’,’0’,’Outmax ’,’5’,’OutDataTypeStr ’,’single ’,

’Description ’,’EA_ObjectID@1966;ASIL@B ’);

9

.

.

.

10 add_line(’EGasSystem ’,’APedl1 /1’,’EGasMonr /1’,’AUTOROUTING ’,’ON’)

11

.

.

.

12 save_system(’EGasSystem ’)

13 close_system(’EGasSystem ’)

67

4 Use-Case Application

Figure 4.11: Screenshot of the BSW and HW Pin Representation within the System
Development Tool

4.5.2 Basic Software and HW Abstraction Layer

Other key aspects for ISO 26262 aligned development are correct, consistent, and complete
interface descriptions. Furthermore, evidence of correct implementation of these interfaces is
required. This can be challenging in the case of concurrent HW and SW development and
cross-dependencies of asynchronous update intervals. Therefore, the presented approach pro-
vides a single source of HSI definitions, available as a graphical HSI model and spreadsheet and
automatically generates code configurations.

The definition of the 6 HW/SW interfaces with 10 parameters for each SW signal and 13
parameters for each HW pin totals 138 parameter configurations within the HSI spreadsheet
template or in the MDB tool, which can be used to generate ASW/BSW interfaces and BSW
configurations. Figure 4.11 depicts a HSI artifact mapping via BSW module and HW pin con-
figuration within the system development tool. This leads to a file architecture as depicted in
Figure 4.12. With the use of the approach 8 additional interfacing files with 481 lines of code
(LoC) source and 288 LoC configuration have been generated.

Regarding the SW/SW Interfaces on the ASW layer, consistency checks for the 36 interfaces
ensure point-to-point consistency of the signal routing. For 10 definable features per signal, this
adds up to 360 definitions, which are automatically checked for consistency with this approach.

These interfacing files generate an interface layer (similar to AUTOSAR RTE) without relying
on full AUTOSAR tooling support. In terms of safety-critical development this automatically
generated interface layer supports traceability links between BSW configurations and HSI infor-
mation and eliminates the need for manual interface source code rework.

4.5.3 Operating System Configuration

Lastly, the configuration of the operating system can also be generated and linked to the modeling
artifacts via OIL configuration file generation and import. Figure 4.13 shows the graphical

68

4.5 MDB Representation of Use-Case at Implementation Level

INTERFACE.C XCUIF.C

IO_THRVAL.CIO_ACCPED.C MOTORCONTROL.C

PORT_INIT()
RTE_IREAD_EGASSYS

TEM_1MS_PORT_APE

DL1_IN()
...

PORT.CADC.C PWM.C

AVLIL_PORT.CAVLIL_ADC.C AVLIL_PWM.C

ADC_INIT()
AVLIL_GETVALADC()
RTE_IREAD_EGASSYSTEM_1M

S_ADC_THRPOSN1_IN()
...

GETACCPEDFILTERED1()
GETACCPEDFILTERED2()

SWI_1MS()
SWI_10MS()
SWI_100MS()

B
A

SI
C
 S

W
 L

A
Y

ER
IN

TE
R

FA
C

E
LA

Y
ER

PORT_SETPINMODEINPUT()
PORT_SETPINMODEOUTPUT()
PORT_SETPINSTATE()
PORT_SETPINMODE()
PORT_SETPINPADDRIVER()
...

A
P

P
LI

C
A

T
IO

N

SW
 L

A
Y

ER

ADC_INITMODULE()
ADC_INITMODULECONFIG()
ADC_INITGROUP()
ADC_INITGROUPCONFIG()
ADC_INITCHANNEL()
ADC_INITCHANNELCONFIG()
...

PWM_INIT()
RTE_IREAD_EGASSYS

TEM_1MS_PWM_AP
EDL2_IN()
...

SETMCOUTPUT()
SETMCENABLE()
CLEARMCENABLE()
...

GETTHRVALFILTERED1()
GETTHRVALFILTERED2()

GTM_TOM_TIMER_INITCONFIG()
GTM_TOM_TIMER_INIT()
GTM_PINMAP_SETTOMTOUT()
GTM_TOM_TGC_ENABLECHANNELS()
GTM_TOM_CH_SETSIGNALLEVEL()
...

Figure 4.12: Excerpt of Generated Files for the BMS Use-Case

Table 4.3: Overview of the Evaluation Use-Case SW Architecture

Object type Element-count Configurable Attributes
per Element

ASW Modules 7 3
BSW Modules 6 3
ASW Module Interfaces 36 10
ASW/BSW Interfaces 6 -
HW/SW Interfaces 6 13

CPU 3 2
OS 1 15
APPMODE 2 1
TASKS 6 9
COUNTER 1 5
ALARMS 6 6

69

4 Use-Case Application

Figure 4.13: Modeling Artifacts representing the OS Configurations of the Use-Case

representation of the model artifacts required for configuration of the OS. This amounts to a
total of 20 OIL objects and 46 relations between the elements for this use-case. Again, the
number of relations between the elements increase quickly and become confusing with more
complex use-cases. Nevertheless, this issue can be reduced by the model-based development
approach by hiding specific relations, as also done in Figure 4.13. It can also be argued that this
approach does not reduce the workload or significantly speed up the generation of OIL files, due
to the high number of relations that need to be established. However, the approach provides
guidance to minimize configuration failures. Additionally, it supports round-trip engineering
features, which split workloads among different development phases and thus simplifies reuse. In
terms of safety-critical development and reuse, these are crucial additional features. Furthermore,
the approach reduces the need for manual generation of OIL files without adequate syntax and
semantic checking support, ensuring reproducibility, and traceability argumentation.

70

5 Conclusion and Future Work

This chapter concludes this doctoral thesis by briefly summarizing the contributions and sketch-
ing potential future work and research. The dominant character of modern embedded automotive
system development has been identified as the challenge of mastering the increased complexity
and ensuring consistency of the development of system-wide features along the entire product life
cycle. Automotive standards provide a process framework which requires efficient and consistent
product development and tool support. Nevertheless, using various heterogeneous development
tools hampers the efficiency and consistency of information flows. Additionally, a fine grasp of
commonalities and cross-domain knowledge required for development of system-wide features
promotes the growing gap between technology and required level of expertise.

5.1 Summary and Conclusion

This doctoral thesis approach is based on an MBD environment deployed at the industrial part-
ner AVL and extends its applicability to the needs of development of embedded software for
dependable (safety-critical, security-relevant, and/or high-reliable) multi-core systems to achieve
a holistic system description. Thus, the approach aims at improving the comprehensive depend-
ability argumentation of automotive multi-core systems based on model-based development.

For this aim the contributions of this doctoral thesis approach add values on tool, method,
and process layer which have been identified as crucial for the industrialization of engineering
approaches.

The main goals of this doctoral thesis are: (a) identification of challenges which appear when
developing a dependable multi-core system especially in the automotive domain, (b) revealing
strategies for the migration to multicore systems, and (c) supporting such development by an
adequate development framework. Additionally, adequate analysis of the architecture design
for system-wide function implementation has been mined and a merging of the heterogeneous
development tools for embedded system engineering and SW engineering has been demonstrated
by an automotive battery management system use-case.

5.2 Future Work

Experience is never limited, and it is never complete... (Henry James)

This doctoral thesis contributes to state-of-the-art dependable multi-core system development in
the automotive domain, it does not claim to be exhaustive or ‘the holistic solution’. Therefore,
there is space for future work and further improvements and the following paragraphs propose
ideas and directions for future work with respect to the major contributions.

71

5 Conclusion and Future Work

Dependability Analysis Methods

SDA and SAHARA approaches (related publications: Paper F and Paper G) provide a fun-
damental approach to quantify system-wide attributes other than safety (e.g. the combination
of reliability and maintainability or security) at early development phases. Nevertheless, system
dependability features have mutual impacts, similarities, and interdisciplinary values in com-
mon and there is a considerable overlap. Therefore, a further analysis of the presented methods
for improvements in terms of applicability and enhancement of additional approaches for other
development phases and more detailed design is recommended.

Cross-fertilization of Domain Knowledge

A combined approach for analysis of dependability features in early design phases of an embed-
ded automotive system is proposed in publication Paper H. The objective of this work was
to combine domain knowledge and provoke interdisciplinary development a cooperative depend-
ability evaluation and a language base enabling dependable system development. Further efforts
geared towards the cross-fertilization of domains and cooperative dependable development are
suggested.

Multi-Core Migration

There is a current trend of replacing traditional mechanical systems with embedded systems and
applying multi-core systems for safety-critical applications. This enables the deployment of more
advanced control strategies and raises new challenges. Evidence of correctness of the different
applications, both in the time domain and value domain has to be guaranteed.

These challenges received special attention within this work. However, additional research on
resolving these challenges in a holistic manner in order to enable legacy SW to run on a multi-
core platform and new control strategies to be deployed successfully can be considered. Hence,
the challenge of efficiently combining expertise between multi-core computing platforms, lessons
learned in other domains, and the automotive domain is focused by several EU founded projects.

Integration of Development Tools

This thesis focuses on development tools involved in the development of automotive systems
from the system development level down to the software development. For this purpose, an
approach which seamlessly combines the heterogeneous development tools involved has been
proposed and a prototypical tool-bridge implementation has been made. Further improvements
to the prototypical implementation as well as the usability and extensibility of the tool-bridge are
considered. Moreover, research regarding novel multi-core related tools and timing analyzers is
highly recommended. Additionally, tools involved in hardware development, as well as, validation
and verification tools have not been focused on by this thesis.

72

6 Publications

Figure 3.1 show a depiction of this concept in GSN notation.

This doctoral thesis base on 13 main publications by the thesis author, which describe indi-
vidual parts of the presented approach in more details. As mentioned the contributions of this
doctoral thesis approach add values on tool, method, and process layer. Publications Paper A
and Paper B are related to the process layer; Publications Paper C to Paper H contribute
on method layer, whereas Publications Paper I to Paper M are focusing tool implementations
on tool layer. Figure 6.1 illustrates the mapping of the publications to the different layers.

Paper A: G. Macher and C. Kreiner. Model Transformation and Synchronization Process
Patterns. 20th European Conference on Pattern Languages of Programs -EuroPLoP ’15, Irsee
(Germany), July 08 - 12, 2015. in press

Paper B: G. Macher, E. Armengaud, and C. Kreiner. Integration of Heterogeneous Tools to
a Seamless Automotive Toolchain. 22nd European Conference Systems, Software and Services
Process Improvement - EuroSPI 2015, Ankara (Turkey), September 30 - October 2, 2015. best
paper award

Paper C: G. Macher, H. Sporer, and C. Kreiner. Automotive Safety Case Pattern. 19th
European Conference on Pattern Languages of Programs - EuroPLoP ’14, Irsee (Germany), July
09 - 13, 2014.

Paper D: G. Macher, A. Hoeller, E. Armengaud, and C. Kreiner. Automotive Embedded
Software: Migration Challenges to Multi-Core Computing Platforms. 13th IEEE International
Conference on Industrial Informatics, Cambridge (United Kingdom), July 22 - 24, 2015.

Paper E: G. Macher, A. Hoeller, E. Armengaud, and C. Kreiner. Pattern Catalog for Multi-
Core Migration of Embedded Automotive Systems. 20th European Conference on Pattern Lan-
guages of Programs - EuroPLoP ’15, Irsee (Germany), July 08 - 12, 2015. in press

73

6 Publications

Figure 6.1: Mapping of Publication and Layers of Contribution

74

Paper F: G. Macher, A. Hoeller, H. Sporer, E. Armengaud, and C. Kreiner. Service Deterio-
ration Analysis (SDA): An Early Development Phase Reliability Analysis Method. 45th Annual
International Conference on Dependable Systems and Networks (DSN) - RADIANCE Workshop,
Rio de Janeiro (Brazil), June 22 - 24, 2015.

Paper G: G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner. SAHARA:
A security-aware hazard and risk analysis method. 18th Design, Automation Test in Europe
Conference - DATE ’15,Grenoble (France), March 09 - 13, 2015.

Paper H: G. Macher, A. Hoeller, H. Sporer, E. Armengaud, and C. Kreiner. A Comprehensive
Safety, Security, and Serviceability Assessment Method. 34th International Conference Computer
Safety, Reliability, and Security - SAFECOMP 2015, Delft (The Netherlands), September 23-25,
2015.

Paper I: G. Macher, E. Armengaud, and C. Kreiner. Automated Generation of AUTOSAR
Description File for Safety-Critical Software Architectures. 12. Workshop Automotive Software
Engineering (ASE), Stuttgart (Germany), September 22 -26, 2014.

Paper J: G. Macher, H. Sporer, E. Armengaud, E. Brenner, and C. Kreiner. A Seamless
Model-Transformation between System and Software Development Tools. 8th European Congress
Embedded Real Time Software and Systems - ERTS 2016, Toulouse (France), January 27 - 29,
2016. in press

Paper K: G. Macher, R. Obendrauf, E. Armengaud, E. Brenner, and C. Kreiner. RTE Gener-
ation and BSW Configuration Tool-Extension for Embedded Automotive Systems. 8th European
Congress Embedded Real Time Software and Systems - ERTS 2016, Toulouse (France), January
27 - 29, 2016. in press

Paper L: G. Macher, M. Atas, E. Armengaud, and C. Kreiner. A Model-Based Configuration
Approach for Automotive Real-Time Operating Systems. SAE International Journal on Passenger
Cars - Electronics and Electronical Systems, 2015.

Paper M: G. Macher, H. Sporer, E. Armengaud, and C. Kreiner. A Versatile Approach
for ISO26262 compliant Hardware-Software Interface Definition with Model-based Development.
SAE World Congress & Exhibition 2015, Detroit (Michigan, USA), April 21 -23, 2015.

75

6 Publications

Related publications not included in this Thesis (only principal
authorship papers)

1. G. Macher. Seamless Model-Based Safety Engineering from Requirement to Implementa-
tion. In Proceedings of Doctoral Symposium co-located with 17th International Conference
on Model Driven Engineering Languages and Systems (2014), Valencia, Spain, September
30, 2014.

2. G. Macher, E. Armengaud, E. Brenner, and C. Kreiner. An Automotive Engineering
Model to Improve the Architectural Design Interchange Continuity. In SAE Technical
Paper, pages 001 - 007, 2016. under review

3. G. Macher, E. Armengaud, and C. Kreiner. Bridging Automotive Systems, Safety and
Software Engineering by a Seamless Tool Chain. In 7th European Congress Embedded
Real Time Software and Systems Proceedings, pages 256 - 263, 2014.

4. G. Macher, E. Armengaud, and C. Kreiner. A Practical Approach to Classification of
Safety and Security Risks. In EuroSPI 2015 Industrial Proceedings, pages 10.1 - 10.10.
WHITEBOX, Denmark, 2015.

5. G. Macher, M. Atas, E. Armengaud, and C. Kreiner. Automotive Real-time Operating Sys-
tems: A Model-Based Configuration Approach. In ACM SIGBED Review Special Interest
Group on Embedded Systems, volume 1291 of CEUR Workshop Proceedings. Association
for Computing Machinery. Special Interest Group on Embedded, 2014.

6. G. Macher, A. Hoeller, H. Sporer, E. Armengaud, and C. Kreiner. A Combined Safety-
Hazards and Security-Threat Analysis Method for Automotive Systems. In Proceedings of
SAFECOMP 2015 Workshops ASSURE, DECSoS, ISSE, ReSA4CI, and SASSUR, volume
LNCS 9338 of Lecture Notes in Computer Science, pages 237 - 250. Springer International
Publishing AG, 2015.

7. G. Macher, R. Obendrauf, E. Armengaud, and C. Kreiner. Automated Generation of
Basic Software Configuration of Embedded Systems. In Proceedings of the 2015 Research
in Adaptive and Convergent Systems (RACS 2015), pages 461 - 465, 2015.

8. G. Macher, H. Sporer, E. Armengaud, E. Brenner, and C. Kreiner. Using Modelbased
Development for ISO26262 aligned HSI Definition. In EDCC Conference Proceedings,
2015.

9. G. Macher, M. Stolz, E. Armengaud, and C. Kreiner. An Automotive Model-Based System,
Safety, and Software Engineering Tool Approach. In 8th Grazer Symposium Virtuelles
Fahrzeug, 2015.

10. G. Macher, M. Stolz, E. Armengaud, and C. Kreiner. Filling the Gap between Automotive
Systems, Safety, and Software Engineering. e&i Journal, 132(3), pages 142 - 148, June
2015.

11. G. Macher, A. Hoeller, E. Armengaud, E. Brenner, and C. Kreiner. Combined Safety
and Security Development of Automotive Systems. In Design Autmoation Conference
(DAC’2016) Proceedings, pages 001 - 006, 2016. under review

76

Model Transformation and Synchronization Process Patterns
Georg MACHER, Graz University of Technology
Christian KREINER, Graz University of Technology

Embedded systems are already integrated into our everyday life and play a central role in all domains including automotive, aerospace,
healthcare or industry. The complexity of embedded systems and software has grown significantly in recent years. Software’s impact on
embedded system’s functionality, has led to an enormous increase of SW complexity, while reduction of innovation cycles and growing
demand for extra-functional requirements.
Supporting cooperation between the involved domain and SW development experts to combine their expertise is a core challenge in embed-
ded software development. Nevertheless, today, a lack of tool support and integration makes it impossible to cover the complete development
life cycle using model-driven development (MDD) paradigms.
This paper identifies patterns of concurrent workflows in embedded system development which can be used to identify dependencies and
consequences of concurrency of workflows and thus, highlight the basic problem and provide know-how how to overcome these issues and
foster MDD along the development life cycle.

Categories and Subject Descriptors: H.5.0 [Information Interfaces and Presentation]: General—; H.1.1 [Models and Principles]: System
and Information Theory—; K.2.2 [Computers and Society]: Social Issues—

General Terms: Model Transformation and Synchronization

Additional Key Words and Phrases: embedded systems, model-driven development, concurrent work�ow pattern.

ACM Reference Format:

Macher G. and Kreiner C., 2015. Model Transformation and Synchronization Process Patterns. jn 0, 0, Article 0 (0), 11 pages.

1. INTRODUCTION

Embedded systems are already integrated into our everyday life and play a central role in all domains including
automotive, aerospace, healthcare or industry. In 2010, the embedded systems market accounted for almost 852
billion dollar, and is expected to reach 1.5 trillion by 2015 (assuming an annual growth rate of 12%) [Petrissans
et al. 2012]. As an example, in the automotive industry, embedded systems components are responsible for 25%
of vehicle costs, while the added value from electronics components range between 40% for traditional vehicle up
to 75% for electrics and hybrid vehicles [Scuro 2012]. Current premium cars imply more than 70 electronic control
units (ECU) with close to 1 Gigabyte software code [Ebert and Jones 2009] implemented.

This trend is also strongly supported by the ongoing replacement of traditional mechanical systems with modern
embedded systems. This enables the deployment of more advanced control strategies, providing added values for
the customer and more environment friendly vehicles. At the same time, automotive multi-core computing platforms
enable the deployment of more advanced control strategies and a higher degree of integration, which leads to cost
savings by reducing the number of ECUs. On the contrary, the higher degree of integration and the safety-criticality
of the control application increases the system’s complexity and raises new challenges. Safety standards such as

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPloP ’15, July 08 - 12, 2015, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3847-9/15/07 ...$15.00.
http://dx.doi.org/10.1145/2855321.2855347

ISO 26262 [ISO - International Organization for Standardization 2011] for road vehicles have been established to
provide guidance during the development of safety-critical systems. They provide a well-defined safety lifecycle
based on hazard identification and mitigation, and they define a long list of work-products to be generated. The
key challenge in this context is to provide evidence of consistency during product development among the different
work-products.

Model-driven development (MDD) is alleviating the issue of inherent complexity and the most promising
approach of interdisciplinary development [Broy et al. 2008], but in case of embedded system development
seamless cooperation between the involved domains and development experts is a core challenge. Today, a lack
of tool support and integration makes it impossible to cover the complete development life cycle using MDD.

During model-driven development of embedded systems frequently manifold model types of the same system
under development exist spread over different stages of the development process and different development tools
in use. In these cases special attention need to be paid to keep the dependent models consistent. Each model
transformation implies potential sources for ambiguous mapping and often dependencies between the models are
hard to identify.

This paper identifies patterns of concurrent workflows in embedded system development which can be used
to identify dependencies and consequences of parallel workflows. Thus, a highlighting of the basic problem and
providing of know-how how to overcome these issues as well as encouragement of MDD along the development
life cycle is done.

In the course of this document, a description of the state of the art and related works is given in Section 2. The
paper presents, according to our knowledge, three previously undocumented but common dependability patterns
in concurrent embedded system development workflow FORWARD UPDATE DEPENDENCY RELATION (Section 4),
BACKWARD UPDATE DEPENDENCY RELATION (Section 5) and BIDIRECTIONAL UPDATE DEPENDENCY RELATION

(Section 6).
The intention of the three patterns presented in this work is to identify update dependencies between concurrent

models and thereby set up the base for tool integration into a holistic tool-chain. The patterns do not need to be
applied in a specific order, but are related to another. This is due to the fact that either one or the other shall be
applied in case of concurrent development of dependent development models. In case of solely uni-directional
dependability and independent workflows (e.g. generation of interim status model-based documentations), the
FORWARD UPDATE DEPENDENCY RELATION pattern shall be applied. If feedback of information from one model
to another is required after some refinement activity (e.g. updating of SW architecture model with SW function
models), the BACKWARD UPDATE DEPENDENCY RELATION pattern shall be applied. Finally, the BIDIRECTIONAL

UPDATE DEPENDENCY RELATION pattern shall be used if a full concurrency development of mutually dependent
models is required (e.g. concurrent SW and HW development).

The patterns have been mined during the analysis of the actual model-driven development work-flow at our
industrial partner. The aim of this analysis was the exploration of open issues and interface shortcomings of the
MDD tools in place to setup a seamless model-driven development tool-chain covering all development phases.
During this analysis the three types of relations between concurrent MDD models have been investigated. The
identification of these relations serve the basis for a bridging of the ascetic MDD tools to a seamless tool-chain.

2. RELATED WORK

Several existing approaches deal with model-driven development of embedded systems. Nevertheless, only a few
number of publications focus on holistic tool-chains and methodologies. Still many system-wide and cross-domain
constraints, such as dependability features (safety or security), need to be exchanged manually or without adequate
methodical support across tool- and domain borders. Throughout our research we discovered several challenges.

Model-driven systems and software development as well as tool integration are engineering domains and
research topics aim at moving the development steps closer together and thus improving the consistency of the
system over the expertise and domain boundaries. Although seamless solutions have not been achieved so far due

Model Transformation and Synchronization Process Patterns — Page 2

to problems by using an inadequate tool-chain (e.g. redundancy, inconsistency and lack of automation) [Broy et al.
2008] or the usage of different specialized models for specific aspects at different development stages with varying
abstraction levels [Holtmann et al. 2011]. Traceability between these different models is commonly established via
manual linking due to a lack of automation and missing guidance.

Two important gaps need to be bridged: First, missing links between system level tools and software development
tools. Second, several very specific and non-interacting tools which require manual synchronization and therefore
often rely on inconsistent, redundant information need to be aligned to one single source of information.

Therefore, system design models have to be correctly transferred to the software engineering model, and later
changes must be kept consistent [Giese et al. 2010]. A major drawback thereby stems from the bidirectional model
transformation, each transformation step implies potential sources for ambiguous mapping and model mismatching.
Recent projects which focus on model-driven development environments for automotive multi-core systems are
the AMALTHEA Project1, SAFE Project2, and MAENAD Project3.

The work of Asplund et. al [Asplund et al. 2012] focus on tool integration in context of the automotive safety
standard ISO 26262. The authors mention that tool integration is a complicated issue and guidance regarding tool
integration into tool chains are very limited. Nevertheless, their work focuses more on tool qualification issues in
ISO 26262 context and does not provide the mentioned guidance for tool integration.

Finally, the work of Raschke et. al [Raschke et al. 2014] bases on the concept that development of systems
is a sequence of evolutions, interrupted by revolutions. Therefore the authors build up a catalog of patterns for
software modeling. This pattern catalog focuses on the dependencies between software models and software
code and their possible relations.

3. SPECIFICATION OF THE PATTERN

The following sections will discuss the patterns in more detailed manner. Therefore we specify the structure
[Salingaros 2000; Alexander et al. 1977] in which we describe the three update-dependability patterns:

—Context - Describes the situation in which the pattern can be applied and in which the problem occurs.

—Problem - States the scenario which requires action to be taken and problems the pattern shall solve.

—Forces - Gives additional motivation for usage of the pattern and describes the constraints which shape the
specific solution for the problem.

—Solution - Describes the steps and actions to be taken to solve the existing problem in the focus of the given
context and specific forces.

—Consequences - The application of the pattern solves the problem, but also results in some consequences,
which themselves also include side effects.

—Known Uses - publications which used the pattern

—Example - Characterizes the context and problem scenario by a striking example.

1http://www.amalthea-project.org/
2http://safe-project.eu/
3http://maenad.eu/

Model Transformation and Synchronization Process Patterns — Page 3

3.1 Common Pattern Context

Common for all three patterns is an iterative model-driven development process of an embedded system. Figure
1 shows all phases of such a development life cycle with the involved tooling discontinuities. As can be seen in
this figure, model-driven development iteratively updates the model over the time. This process lets developers
produce partial implementations after each iteration. The figure highlights necessary tool transitions via the different
colored backgrounds of the iteration steps and also indicates a potential pitfall of such an iterative model-driven
development approach. Frequently manifold model types of the same system under development exist spread over
different stages of the development process and different development tools in use. In case of such a concurrent
development of dependent development models special attention need to be paid to keep the dependent models
consistent. Each transformation step implies potential sources for ambiguous mapping and a common model as
single source of information is rather unusual or too complex for application. For the course of this document this
process is stretched over time, which leads to a corkscrew like representation.

Fig. 1. Iterative Model-Driven Development Process for Embedded Systems [Liggesmeyer and Trapp 2009]

Model Transformation and Synchronization Process Patterns — Page 4

4. FORWARD UPDATE DEPENDENCY RELATION PATTERN

TIME

DEVELOPMENT PHASE M

TOOL B

DEVELOPMENT PHASE N

TOOL A

Fig. 2. Forward Update Dependency Relation

4.1 Context

The model-driven development follows an iterative model like depicted in Figure 1. After a certain time period
the current model status needs to be tested to verify the current development status and development progress.
Meanwhile the development of the model cannot continue until this verification is done.

4.2 Problem

The model-driven development lifecycle requires status and progress measures of current development status of
the model. The development of the model cannot be continued until this step has been finished and the ongoing
refinement of the model is delayed.

4.3 Forces

—work-product generation from current model status required
—some work-products of the iterative model-driven development can be carried out independently of the rest of

the development
—some work-products can be generated from the current information status in parallel without hampering the

other development process
—some work-products do not need feedback of generated artifacts
—concurrent development/generation of work-product is independent from main development workflow
—different MDD steps require different skills, which can be carried out concurrently by different teams

4.4 Solution

Enable concurrent model-driven development by generating related models from the original model. The generation
of a related model enables concurrent development without hampering the development of the original model.

In such a case, a model is generated and iteratively updated like depicted in Figure 1. At a certain point in time a
related model is generated from the current status of the original model (see Figure 2). This related model inherits
all information required for the new model, but does not necessarily need to inherit all available information. The

Model Transformation and Synchronization Process Patterns — Page 5

basis for the generation of the related model can be of any type computable by the development tool in use for the
new model (such as XMI export, AUTOSAR XML file, or information transfer direct via API). References between
the related model and the generation basis information shall be linked traceable for later model analysis.

Further changes and ongoing development of the two concurrent models must not be mutually affecting.
Moreover, triggering of additional independent model-driven development may be done at any phase of the
development. The pattern is also applicable for parallelization of independent MDD work-products.

4.5 Consequences

+ Enables parallelization of concurrent, independent MDD models.
+ Concurrent development without delaying main development cycle is possible, due availability of related models.
+ Productivity can be increased due to parallelization of models and concurrent working on related models.
+ Establish a basis for attendant trend analysis and validation without hampering development progress (in case

of generation of related model for analysis purpose).
- Derived models basis is outdated with next iteration step of the source model.
- Tedious rework is required if creation of derived model is not supported via a dedicated tool.
- Errors corrected in one model will not be corrected in the other model.

4.6 Known Uses

This pattern can be seen as standard way of generating source code from models or generating documentation of
project metrics. Further example is a typical top-down approach. A final requirement model may be transferred
from a requirement management tool to a system development tool to start the design of the system under
development.

4.7 Example

Consider the following example from software domain. Typically after a fixed time period or at a certain milestone
the status of the SW development model is handed over to testing department to verify the current status and
progress of development. Meanwhile the development of the SW model continues and does not represent the
tested status anymore.

Model Transformation and Synchronization Process Patterns — Page 6

5. BACKWARD UPDATE DEPENDENCY RELATION PATTERN

TIME

DEVELOPMENT PHASE M

TOOL B

DEVELOPMENT PHASE N

TOOL A

Fig. 3. Backward Update Dependability Relation

5.1 Context

Application of the FORWARD UPDATE DEPENDENCY RELATION pattern leads to the generation of more detailed
model artifacts also required in original model or additional enhancements of the original model. During this
time the equivalent artifacts of the original model do not change (independent artifacts of the original model may
undergo changes).

In other words, the original model is improved by the related model, but the base the related model remained
unchanged in the original model.

5.2 Problem

A set of properties related to both models can be refined easier or only in the derived model. Nevertheless, these
refinements need to be also updated in the original model.

5.3 Forces

—Rework and enhancement also of generated work-products required.
—Refinement has to be restored into the main development life-cycle.
—Loosely coupled dependencies between main work-product and generated work-product.
—Information refinement required for original model, although not adequately supported.

5.4 Solution

Refine parts of the derived model and keep the related model artifacts in the original model unchanged. After
finalization of changes (done in derived model), update the original model with artifact of the derived model.

For this purpose, a related model which is supporting further model refinement more adequately shall be
generated by using the FORWARD UPDATE DEPENDENCY RELATION pattern 4. After finalization of iterative
refinement of the derived model (depicted in Figure 1), information inherited by the derived model are more
accurate than the data of the original model. These updates of the related model have to be handed over back to

Model Transformation and Synchronization Process Patterns — Page 7

the source (original model). Old values of the original model are replaced by the new data and deleting or adding
of artifacts must be supported. Therefore, the data basis (data of original model used for generation of derived
model) must not change during development-time of the derived model (indicated in Figure 3).

5.5 Consequences

+ Allows feedback of refinements for concurrent work-product (due to update functionality of the original model).
+ Enables quasi- parallel development in case of loosely coupled work-product dependencies, due to the fact that

original model can be the origin of numerous independent derived models which feedback their work-products
after finalization of development.

+ Enables development of optimal solutions of smaller parts of the over-all work-product, also due to concurrent
development on special purpose models.

+ Enables transformation of information between special purpose tools.
- Solely for loosely coupled dependencies, system-wide constraints may not be adequately described by derived

special-purpose models.
- Source model data serving as basis for derived model must not change over lifetime of derived model, otherwise

inconsistency of data and loss of information may occur.
- Merging of multiple derived models can be complicated.

5.6 Known Uses

This pattern is applicable in case of transferring of information to special purpose tool and tracing back of previously
not available additional information (such as transferring of SW function to task scheduling tool and feedback of
valid schedule tables). Another example, also related to MDD of SW, is a SW architecture representation in a
system level development tool (described in more details in the example section).

5.7 Example

An example from MDD software development domain: A first design of the software architecture and its interface is
done in context of system engineering to establish a hardware software interface document and enable concurrent
development of HW and SW models. This SW architecture is transferred (e.g. application of FORWARD UPDATE

DEPENDENCY RELATION pattern) into a more concrete model for SW development (such as Matlab/Simulink
models). During SW development the SW interfaces and the SW architecture itself change in the concrete SW
model (Matlab/Simulink model), while in the original model (at system development) the SW architecture artifacts
remains unchanged. Nevertheless, these changes (done in Matlab/Simulink model) need to be updated in the
original model (system SW architecture representation).

Model Transformation and Synchronization Process Patterns — Page 8

6. BIDIRECTIONAL UPDATE DEPENDENCY RELATION PATTERN

MERGE

TIME

DEVELOPMENT PHASE M

TOOL B

DEVELOPMENT PHASE N

TOOL A

Fig. 4. Bidirectional Update Dependency Relation

6.1 Context

Application of the BACKWARD UPDATE DEPENDENCY RELATION pattern leads to problems if the original model has
been evoluted concurrently with the development of the derived model. Updating of model artifacts of the original
model with information from the derived model leads to information losses and is not possible.

To put it differently, both models change their common artifacts. Hence, a form of synchronization is required to
conjoin the enhancements of both models.

6.2 Problem

Concurrent development processes with mutual impacts on each other must lead to consistent result, regardless
of sequential order, and mutual dependencies.

6.3 Forces

—Limited time-to-market and different required domain-expertise require a structuring to ensure concurrent
working of departments.

—Constraints affecting the system as a whole are too complex to be managed as a whole.
—Cross-domain constraints cannot be separated and affect independent parts of the model.

6.4 Solution

Make data serving as basis for related models explicit. Change data in a concurrent model and trigger synchro-
nization of other models.

The BIDIRECTIONAL UPDATE DEPENDENCY RELATION pattern shall be used for full concurrency development
of mutually dependent models. Incorporate the FORWARD UPDATE DEPENDENCY RELATION pattern and the
BACKWARD UPDATE DEPENDENCY RELATION pattern, including the synchronization of both. Figure 4 shows
that both models are updated in parallel and change information on which they mutual dependent. As can be
seen in the figure, this pattern also requires additional merging strategies to prevent from data corruption or
race-conditions.

Therefore, data serving as basis for concurrent models must be highlighted and made explicit. Changes of
the data basis must be synchronized with the representation within the other model. Hence, synchronization

Model Transformation and Synchronization Process Patterns — Page 9

techniques, such as diff and merge, are required. If a merging is not supported at least diff must be available to
support the review of changes.

For starting of concurrent development models, the data serving as basis for the models are used to generate
the concurrent models and highlighted as shared data. The development of the two concurrent models can then
be independent from another, as long as the shared data do not change. In case of a change of the shared data, a
merging of the new information of both models is required. Supporting of such a synchronization is not easy and
requires an adequate synchronization mechanism. Nevertheless, synchronization of the models is crucial and has
to be managed with care.

6.5 Consequences

+ Splitting of work packages allows a separation of responsibilities and concurrent development of individual
work-packages.

+ Divided responsibilities support optimized solutions of individual work-packages, due to working in expert groups
with special-purpose models.

+ Split of responsibility of overall argumentation to domain experts for their sub-parts (possible due to splitting of
models into special-purpose model).

- Additional consolidation of the work-packages and overall system required (especially for system-wide features).

- Individual optimal solutions may not result in the overall optimal solution (aka Vasa syndrome).

- Requires additional merging activities of the work-packages (due to concurrent changing of models and to
prevent from information losses).

- Requires tracing of changes and change impact for merging activity (minor changes in one concurrent model
may lead to major changes in the related models).

6.6 Known Uses

Classical approach of concurrent hardware and software development of embedded systems. Related patterns
are: Cooperative Application Lifecycle Management pattern and Coordinative Application Lifecycle Management
pattern.

6.7 Example

For example: A first design of the software architecture and its interface is done in context of system engineering
to establish a hardware software interface document and enable concurrent development of HW and SW models.
This SW architecture is transferred (e.g. application of FORWARD UPDATE DEPENDENCY RELATION pattern) into a
more concrete model for SW development (such as Matlab/Simulink models). During SW development some SW
interfaces change (e.g. signal resolution) in the concrete SW model (Matlab/Simulink model), while also in the
original model (at system development) the SW architecture interfaces change due to some miss-alignment at HW
level (e.g. signal is remapped to another pin). If BACKWARD UPDATE DEPENDENCY RELATION pattern would be
used to update the original model the changes done in concurrency get lost or inconsistency occur.

7. CONCLUSION

To sum up, the three presented patterns present concurrent workflows of the embedded system development
domain. The pattern can be used to identify dependencies and consequences of concurrent workflows and
thus, enable to cover the whole development life cycle using model-driven development approaches. This paper
highlights these dependencies to enable the identification of such demands and overcome tool-breaks with
adequate tool-bridging approaches.

Model Transformation and Synchronization Process Patterns — Page 10

Acknowledgments

The authors would like to express their thanks to our shepherd Johannes Koskinen who had a determining
influence on the improvement of our paper and untiringly helped to improve the maturity of the paper in several
iterations.

REFERENCES

ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M., JACOBSON, M., FIKSDAHL-KING, I., AND ANGEL, S. 1977. A Pattern Language. Oxford
University Press, New York .

ASPLUND, F., BIEHL, M., EL-KHOURY, J., FREDE, D., AND THOERNGREN, M. 2012. Tool Integration, from Tool to Tool Chain with ISO 26262.
In SAE Technical Paper. SAE International.

BROY, M., FEILKAS, M., HERRMANNSDOERFER, M., MERENDA, S., AND RATIU, D. 2008. Seamless Model-based Development: from Isolated
Tool to Integrated Model Engineering Environments. IEEE Magazin.

EBERT, C. AND JONES, C. 2009. Embedded Software: Facts, Figures, and Future. IEEE Computer Society 0018-9162/09, 42–52.
GIESE, H., HILDEBRANDT, S., AND NEUMANN, S. 2010. Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent.

LNCS 5765, pp. 555 –579.
HOLTMANN, J., MEYER, J., AND MEYER, M. 2011. A Seamless Model-Based Development Process for Automotive Systems.
ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 2011. ISO 26262 Road vehicles Functional Safety Part 1-10.
LIGGESMEYER, P. AND TRAPP, M. 2009. Trends in embedded software engineering. IEEE Software 26, 3, 19–25.
PETRISSANS, A., KRAWCZYK, S., VERONESI, L., CATTANEO, G., FEENEY, N., AND MEUNIER, C. 2012. Design of Future Embedded Systems

Toward System of Systems - Trends and Challenges. European Commission.
RASCHKE, W., ZILLI, M., LOINIG, J., WEISS, R., STEGER, C., AND KREINER, C. 2014. Patterns of Software Modeling. In On the Move to

Meaningful Internet Systems: OTM 2014 Workshops, R. Meersman, H. Panetto, A. Mishra, R. Valencia-Garcia, L. de Silva, I. Ciuciu, F. Ferri,
G. Weichhart, T. Moser, M. Bezzi, and H. Chan, Eds. Lecture Notes in Computer Science Series, vol. 8842. Springer Berlin Heidelberg,
428–437.

SALINGAROS, N. 2000. The Structure of Pattern Languages. Architectural Research Quarterly 4, 149–161.
SCURO, G. 2012. Automotive industry: Innovation driven by electronics. http://embedded-computing.com/articles/automotive-industry-

innovation-driven-electronics/.

EuroPloP ’15, July 08 - 12, 2015, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3847-9/15/07 ...$15.00.
http://dx.doi.org/10.1145/2855321.2855347

Model Transformation and Synchronization Process Patterns — Page 11

Integration of Heterogeneous Tools to a
Seamless Automotive Toolchain

Georg Macher1,2, Eric Armengaud2, and Christian Kreiner1

1 Institute for Technical Informatics
Graz University of Technology

{georg.macher, christian.kreiner}@tugraz.at
2 AVL List GmbH

{georg.macher, eric.armengaud}@avl.com

Abstract. Modern embedded multi-core system platforms are key in-
novation drivers in the automotive domain.
The challenge, is to master the increased complexity of these systems
and ensure consistency of the development along the entire product life
cycle. Automotive standards, such as ISO 26262 and automotive SPICE
require efficient and consistent product development and tool support.
The existing solutions are still frequently insufficient when transform-
ing system models with a higher level of abstraction to more concrete
software engineering models.
The aim of this work is to improve the information interchange conti-
nuity of architectural designs from system development level to software
development level (Automotive SPICE ENG.3 and ENG.5 respectively
ISO 26262 4-7 System design and 6-7 SW architectural design). An ap-
proach for seamlessly combining the development tools involved is thus
proposed. This approach merges the heterogeneous tools required for
development of automotive safety-critical multi-core systems to support
seamless information interchange across tool boundaries.

Keywords: ISO 26262, automotive SPICE, automotive systems, multi-core, ar-
chitectural design, traceability.

1 Introduction

Embedded systems are already integrated into our everyday life and play a cen-
tral role in many vital sectors including automotive, aerospace, healthcare, in-
dustry, energy, or consumer electronics. Current premium cars implement more
than 90 electronic control units (ECU) with close to 1 Gigabyte software code [9],
are responsible for 25% of vehicle costs and an added value between 40% and
75% [27]. The trend of replacing traditional mechanical systems with modern
embedded systems enables the deployment of more advanced control strategies
providing additional benefits for the customer and the environment, but at the
same time the higher degree of integration and criticality of the control applica-
tion raise new challenges. Today’s information society strongly supports inter-
system communication (Car2X) also in the automotive domain. Consequently

2 G. Macher, E. Armengaud, and C. Kreiner

the boundaries of application domains are disappearing even faster than pre-
viously due to the replacement of traditional mechanical systems. At the same
time, multi-core and many-core computing platforms are becoming available for
safety-critical real-time applications. These factors cause multiple cross-domain
collaborations and interactions in the face of the challenge to master the in-
creased complexity and ensure consistency of the development along the entire
product life cycle.

Consequently, this work focuses on improving the continuity of information
interchange of architectural designs from system development level (Automotive
SPICE [29] ENG.3 respectively ISO 26262 [16] 4-7 System design) to software
development level (Automotive SPICE ENG.5 respectively ISO 26262 6-7 SW
architectural design). We further make a special focus on safety-critical multi-
core system development, due to the higher complexity of such systems and
limited availability of supporting methods and tools.

The aim of this work is to merge the heterogeneous tools required for de-
velopment of automotive safety-critical multi-core systems (especially during
transition phase from system to SW development) and establish a single source
of information concept to ease cross-domain consolidation.

The document is organized as follows: Section 2 presents an overview of
related works. In Section 3 a description of the proposed approach and a detailed
depiction of the contribution parts is provided. An implementation prototype
and a brief evaluation of the approach is presented in Section 4. Finally, this
work is concluded in Section 5 with an overview of the approach presented.

2 Related Works

Model-based development in general and the development of embedded auto-
motive systems in particular are engineering domains and research topics aimed
at moving the development process to a more automated work-flow, which im-
proves in terms of consistency and tackles the complexity of the development
process across expertise and domain boundaries. Recent publications are either
related to AUTOSAR [2] methodology based approaches, focus ISO 26262 [16]
related methods, model-based development, multi-core system development or
deal with Automotive SPICE [29] concept.

2.1 Publications related to Model-based Development

In [18], the authors describe a framework for a seamless configuration process
for the development of automotive embedded software. The framework is also
based on AUTOSAR, which defines architecture, methodology, and application
interfaces. The steps through this configuration process are established by a
system configuration and ECU configuration.

Integration of Heterogeneous Tools to a Seamless Automotive Toolchain 3

An approach for a design of a vehicular code generator for distributed auto-
motive systems is addressed by Jo et al. [17]. The authors mention the increasing
complexity of the development of automotive embedded software and systems
and the manual generation of software leading to more and more software de-
fects and problems. Thus the authors integrated a run-time environment (RTE)
module into the earlier development tool to design and evolve an automated
embedded code generator with a predefined generation process.

An important topic to deal with in general terms is the gap between sys-
tem architecture and software architecture. Broy et al. [6] claim model-based
development to be the best approach to manage large complexity of modern
embedded systems and provide an overview of basic concepts and theories. The
work illustrates why seamless solutions have not been achieved so far, it mentions
commonly used solutions and the problems arising from the use of an inadequate
tool-chain (e.g. redundancy, inconsistency and lack of automation).

The work of Quadri and Sadovykh [23] presents a model-driven engineering
approach aiming to develop novel model-driven techniques and new tools sup-
porting design, validation, and simulation. These authors defined profiles using
a subset of UML and SysML for their approach and mentioned the usage of
effective design tools and methodologies as crucial to be capable of managing
complex real-time embedded systems.

The work of Holtmann et al. [14] highlights process and tooling gaps between
different modeling aspects of a model-based development process. Often, differ-
ent specialized models for specific aspects are used at different development
stages with varying abstraction levels and traceability between these different
models is commonly established via manual linking.

Chen et. al. [7] present an approach that bridges the gap between model-based
systems engineering and the safety process of automotive embedded systems.
More recently also the MAENAD Project 3 is focusing on design methodologies
for electric vehicles based on EAST-ADL2 language.

Giese et al. [13] address issues of correct bi-directional transfer between
system design models and software engineering models. The authors propose
a model synchronization approach consisting of tool adapters between SysML
models and software engineering models in AUTOSAR representation.

Fabbrini et al. [10] provide an overview of software engineering in the Eu-
ropean automotive industry and present tools, techniques, and countermeasures
to prevent faults. The authors also highlight the importance of tool integration
and model-based development approaches.

Recent projects which focus on model-based development environments for
automotive multi-core systems are the AMALTHEA Project 4, SAFE Project 5,
and MAENAD Project 6.

3 http://maenad.eu/
4 http://www.amalthea-project.org/
5 http://safe-project.eu/
6 http://maenad.eu/

4 G. Macher, E. Armengaud, and C. Kreiner

The work of Asplund et. al [1] focuses on tool integration in context of ISO
26262. The authors mention that tool integration is a complicated issue and that
guidance regarding tool integration into tool chains is very limited.

2.2 Publications related to Safety-critical Development

Safety standards, such as the road vehicles functional safety norm ISO 26262 [16]
and its basic norm IEC 61508 [15] present requirements and guidance for safety-
critical system development. A guide to the functional safety of automotive sys-
tems according to ISO 26262 can be found in [4,12] or in the SafEUr functional
safety manager trainings [25]. The AUTOSAR development cooperation also fo-
cuses on safety in the technical safety concept report [3] produced by this group.

The work of Gashi et al. [11] focuses on redundancy and diversity and their
effects on the safety and security of embedded systems. This work is part of
SeSaMo (Security and Safety Modeling for Embedded Systems) project, which
focuses on synergies and trade-offs between security and safety through concrete
use-cases.

Born et al. [5] recommend a transition from a document-centric approach
to a model-based approach. Their work mentions the problem that organiza-
tions already have their own safety processes in place and want to keep their
existing document-centric processes and tool landscape, which mostly inherits
fundamental flaws in terms of traceability, a key requirement in ISO 26262.

SysML and model-based development (MBD) as the backbone for develop-
ment of complex safety critical systems is also seen as a key success factor by
Lovric et. al [19]. The integration of SysML models for the development of the
ECU safety concept ensures efficient design changes, and immediate awareness of
functional safety needs. The paper evaluates key success factors of MBD in com-
parison to legacy development processes in the field of safety-critical automotive
systems.

The work of Ebert [8] highlights three key components of sustainable safety
engineering in automotive systems: (a) system-oriented development, (b) safety
methods closely coupled to engineering, and (c) process maturity. Ebert further
mentions functional safety needs and that these are be seen as a critical product
liability issue with all the consequences this implies and also that engineers need
to understand the safety needs at all levels of the development process.

In the issue of improving processes or workflows especially those which deal
with cross-domains affairs (such as the traceability of architectural designs from
system development level to software development level), however, a comprehen-
sive understanding of related processes, methods, and tools is required.

The work of Sechser [28] describes experiences gained at combining two dif-
ferent process worlds in the automotive domain. The author mentions, among
other points, the need for a common language and process architecture.

The work of Raschke et. al [24] is based on the concept that development
of systems is a sequence of evolutions, interrupted by revolutions. The authors
build up a catalog of patterns for software modeling to these terms. This pattern

Integration of Heterogeneous Tools to a Seamless Automotive Toolchain 5

BASIC SOFTWARE

APPLICATION SOFTWARE

RUNTIME ENVIRONMENT
RTE CONFIGURATION

SW ARCHITECTURE TOOL-BRIDGE

BSW CONFIGURATION

OS CONFIGURATION

System Requirements

Safety Requirements

HW ArchitectureSW Architecture

System Architecture

MODEL ADDON

Software Development Tool

SYSTEM MODELING TOOL

SWC.c

RTE.c

BSW.c
BSWconfig.c

SYSTEM DEVELOPMENT SOFTWARE DEVELOPMENT

OS
Configurator

BSW
Configurator

OS.oil
OS.c

ASW.mdl

Fig. 1. presents an overview of the approach and highlights the key contribution parts.

catalog focuses on the dependencies between software models and software code
and their possible relations.

According to the work of Sechser, the works of Messnarz et. al [20, 21] also
showed that the combination of Automotive SPICE and ISO 26262 functional
safety processes is possible and worth the effort involved in developing generic
best practices and process models.

3 Architectural Design Refinement Approach

While methods and tools for elicitation and definition of requirements along
the different process steps (such as Automotive SPICE ENG.2 or ENG.4) are
already settled, tool supported and well-known best-practices exist. The me-
thodical support of system architectural design (ENG.3) and refinement of this
design to software design (ENG.5), however, often fell short of the mark. To
handle this situation the AUTOSAR methodology [2] provides standardized and
clearly defined interfaces between different software components and develop-
ment tools and also provides such tools for easing this process of architectural
design refinement. Nevertheless, projects with limited resources in particular (as
well as non-AUTOSAR projects) often struggle to achieve adequate quality in
budget (such as time or manpower) with this approach. The approach presented
in this work has thus emerged from full AUTOSAR based approaches and fo-

6 G. Macher, E. Armengaud, and C. Kreiner

cuses forcefully on a central MBD database as a single-source of information
concept.

The main benefit of this proposed approach contributes to closing the gap,
also mentioned by Giese et al. [13], Holtmann et al. [14], and Sandmann and
Seibt [26], between system-level development at abstract UML-like represen-
tations and software-level development. This bridging supports consistency of
information transfer between system engineering tools and software engineer-
ing tools. Furthermore, the approach minimizes redundant manual information
exchange between tools and contributes to simplifying seamless safety argumen-
tation according to ISO 26262 for the developed system. The benefits of this
development approach are clearly visible in terms of re-engineering cycles, tool
changes, and reworking of development artifacts with alternating dependencies,
as also mentioned by Broy et al. [6].

Figure 1 depicts the overview of the approach and highlights the key contri-
bution parts. The approach bridges the existing gap between system design and
software implementation tools (also for multi-core system development) to guar-
antee consistency of information and minimizes redundant manual information
exchange between tools. The following sections describe the key contribution
parts of the approach in more details.

3.1 SW Modeling Framework Addon

The first part of the approach is a modeling framework addon that enables
software architecture design in AUTOSAR like representation. This enables the
design of an automotive software architecture by taking advantage of an AU-
TOSAR aligned VFB abstraction layer and an explicit definition of compo-
nents, component interfaces, and connections between interfaces. This provides
the possibility to define software architecture (ENG5.BP1) and ensures proper
definition of the communication between the architecture artifacts, including
interface specifications (ENG5.BP3) and timing information (ENG5.BP4). In
addition this SW architecture representation can be linked to system develop-
ment artifacts and traces to requirements can be easily established (ENG5.BP2).
This brings further benefits in terms of constraints checking, traceability of de-
velopment decisions (e.g. for safety case generation), and reuse. Figure 2 shows
the representation profile of software architecture artifacts.

3.2 HW Modeling Framework Addon

Special basic software (BSW) and hardware module representations are assigned
to establish links to the underlying basic software and hardware layers. The AU-
TOSAR architectural approach ensures hardware-independent development of
application software modules until a very late development phase and there-
fore enables application software developers and basic software developers to
work in parallel. The hardware profile, depicted in Figure 3, allows represen-
tation of hardware resources (such as ADC, CAN), calculation engines (core),
and connected peripherals which interact with the software (ENG5.BP5). This

Integration of Heterogeneous Tools to a Seamless Automotive Toolchain 7

Fig. 2. shows the representation of SW architecture artifacts.

further enables the establishing of software and hardware dependencies and a
hardware-software interface (HSI), as required by ISO 26262. Software signals
of BSW modules can be linked to HW port pins via dedicated mappings. On
the one hand this enables the modeling and mapping of HW specifics and SW
signals. On the other hand, this mapping establishes traceable links to port pin
configurations (ENG5.BP8).

3.3 Software Architecture Toolbridge

The third part of the approach is an exporter, which is able to export the soft-
ware architecture, component containers, and their interconnections designed in
SysML to the software development tool Matlab/Simulink and thus, enabling the
information handover to a special purpose tool (model-driven software engineer-
ing tools) for detailing of the SW architecture and SW modules (ENG5.BP6).

The import functionality, in combination with the export function, enables
bidirectional update of software architecture representations. On the one hand,
this ensures consistency between system development artifacts and changes done
in the software development tool (related to ENG6.BP8 and ENG5.BP10). On
the other hand, the import functionality enables reuse of available software mod-
ules, guarantees consistency of information across tool boundaries, and shares
information more precisely and less ambiguously.

8 G. Macher, E. Armengaud, and C. Kreiner

Fig. 3. shows the representation of HW architecture artifacts.

3.4 Runtime Environment Generator

The fourth part of the approach presented is the SW/SW interface genera-
tor (RTE generator). This dll- based tool generates .c and .h files defining
SW/SW interfaces between application software signals and basic software sig-
nals from the modeled artifacts. The RTE generation eliminates the need of man-
ual SW/SW interface generation without adequate syntax and semantic support
and ensures reproducibility and traceability of these configurations (ENG5.BP3).

3.5 Basic Software Configuration Generator

The basic software configuration generator is also part of the dll- based tool,
which generates BSW driver specific configuration files. These files configure the
basic software driver of the HW device according to the HSI specifications and
eliminates the need of manual information rework.

3.6 OS Configuration Generator

The last part of the approach is an exporter capable of exporting the RTOS
configuration available from the model to an OIL file [22] and the corresponding

Integration of Heterogeneous Tools to a Seamless Automotive Toolchain 9

import functionality. The exporter generates OIL files enriched with the avail-
able system and safety development artifact traces (such as required ASIL of
task implementation). The import functionality enables bidirectional update of
the information representation within the database. Most state-of-the-art soft-
ware development frameworks are able to configure the RTOS according to the
specifications within such an OIL file.

4 Prototypical Implementation and Application of the
Proposed Approach

This section demonstrates the benefits of the presented approach for development
of automotive embedded systems. For this evaluation a prototypical implemen-
tation of the approach has been made for Enterprise Architect 7. An automotive
use-case of a central control unit (CCU) of a battery management system (BMS)
prototype for (hybrid) electric vehicle has been chosen for evaluation of the ap-
proach. This use-case is an illustrative material, reduced for internal training
purpose and is not intended to be exhaustive or representing leading-edge tech-
nology.

The definition of the software architecture is usually done by a software sys-
tem architect within the software development tool (Matlab/Simulink). With
our approach this work package is included in the system development tool
Enterprise Architect. This does not hamper the work of the software system ar-
chitect but enables the possibility to also link existing HSI mapping information
to the SW architecture and offers a significant benefit in terms of traceability
(ENG5.BP9 and ENG5.BP10), replicability of design decisions, and unambigu-
ously visualizes dependencies.

The use-case consists of 10 ASW modules and 7 BSW modules with 19 in-
terface definitions between ASW and BSW, which are transferred via the SW
architecture tool-bridge and makes use of the 3 fundamental low level HW func-
tions (digital input/output, analog input/outputs, and PWM outputs). A more
complete overview of use-case is given in Table 1.

As can be seen in Table 1, 7 ASW/BSW input interfaces and 12 ASW/BSW
output interfaces need to be defined. This definition sums up to more than 30
lines of code (LoC) which can be generated automatically with the runtime en-
vironment generator. The actual HW/SW interface, mapping of BSW signals
to HW pins, also consist of 19 interfaces and 3 low level driver for this spe-
cific SW architecture. This mapping includes 23 settings per mapping and can
be used to automatically generate basic software configurations with the help
of the basic SW configuration generator and OS configuration generator. This
ensures actuality of development artifacts and simplifies tracing of development
decisions.

7 http://www.sparxsystems.com/

10 G. Macher, E. Armengaud, and C. Kreiner

Table 1. comprises an overview of the evaluation use-case SW architecture, element
counts, and number of configurable attributes per element.

Object type Element-count Configurable
Attributes per
Element

ASW Modules 10 3
BSW Modules 7 3
ASW Module Inputs 54 10
ASW Module Outputs 32 10
ASW/ASW Module Interfaces 48
ASW/BSW Module Interfaces 19
HW/SW Interfaces 19 13

5 Conclusion

The challenge with modern embedded automotive systems is to master the in-
creased complexity of these systems and ensure consistency of the development
along the entire product life cycle. Automotive standards, such as ISO 26262
safety standard and automotive SPICE provide a process framework which re-
quires efficient and consistent product development and tool support. Neverthe-
less, various heterogeneous development tools in use hamper the efficiency and
consistency of information flows.

This work thus focuses on improving the continuity of information inter-
change of architectural designs from system development level (Automotive
SPICE ENG.3 respectively ISO 26262 4-7 System design) to software devel-
opment level (Automotive SPICE ENG.5 respectively ISO 26262 6-7 SW ar-
chitectural design). For this purpose, an approach to seamlessly combine the
development tools involved has been proposed and a prototypical tool-bridge
implementation has been made. The approach presented merges the heteroge-
neous tools required for development of automotive systems to support seamless
interchange of information across tool boundaries and helps to ease cross-domain
consolidation via establishing a single source of information concept. The appli-
cation of the approach presented has been demonstrated utilizing an automotive
BMS use-case, which is intended for training purposes for students and engineers
and does not represent either an exhaustive or a commercially sensitive project.
The main benefits of this approach are: improved consistency and traceability
from the initial design at the system level down to the software implementation,
as well as, a reduction of cumbersome and error-prone manual work along the
system development path. Further improvements of the approach include the
progress in terms of reproducibility and traceability of design decisions.

Integration of Heterogeneous Tools to a Seamless Automotive Toolchain 11

Acknowledgments

This work is partially supported by the INCOBAT and the MEMCONS projects.
The research leading to these results has received funding from the European

Unions Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment n 608988 and financial support of the ”COMET K2 - Competence Centers
for Excellent Technologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry
of Economy, Family and Youth (BMWFJ), the Austrian Research Promotion
Agency (FFG), the Province of Styria, and the Styrian Business Promotion
Agency (SFG).

Furthermore, we would like to express our thanks to our supporting project
partners, AVL List GmbH, Virtual Vehicle Research Center, and Graz University
of Technology.

References

1. F. Asplund, M. Biehl, J. El-khoury, D. Frede, and M. Trngren. Tool Integration,
from Tool to Tool Chain with ISO 26262. In SAE Technical Paper. SAE Interna-
tional, 04 2012.

2. AUTOSAR development cooperation. AUTOSAR AUTomotive Open System AR-
chitecture, 2009.

3. AUTOSAR Development Cooperation. Technical Safety Concept Status Report.
Technical Report Document Version: 1.1.0, Revision 2, AUTOSAR development
cooperation, October 2010.

4. K. Boehringer and M. Kroh. Funktionale Sicherheit in der Praxis, July 2013.

5. M. Born, J. Favaro, and O. Kath. Application of ISO DIS 26262 in Practice. CARS
2010, 2010.

6. M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless
Model-based Development: from Isolated Tool to Integrated Model Engineering
Environments. IEEE Magazin, 2008.

7. D. Chen, R. Johansson, H. Loenn, Y. Papadopoulos, A. Sandberg, F. Toerner,
and M. Toerngren. Modelling Support for Design of Safety-Critical Automotive
Embedded Systems. In SAFECOMP 2008, pages 72 – 85, 2008.

8. C. Ebert. Functional Safety Industry Best Practices for Introducing and Using
ISO 26262. In SAE Technical Paper. SAE International, 04 2013.

9. C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future. IEEE
Computer Society, 0018-9162/09:42–52, 2009.

10. F. Fabbrini, M. Fusani, G. Lami, and E. Sivera. Software Engineering in the
European Automotive Industry: Achievements and Challenges. In COMPSAC,
pages 1039–1044. IEEE Computer Society, 2008.

11. I. Gashi, A. Povyakalo, L. Strigini, M. Matschnig, T. Hinterstoisser, and B. Fis-
cher. Diversity for Safety and Security in Embedded Systems. In International
Conference on Dependable Systems and Networks, volume 26, 06 2014.

12. V. Gebhardt, G. Rieger, J. Mottok, and C. Giesselbach. Funktionale Sicher-
heit nach ISO 262626 - Ein Praxisleitfaden zur Umsetzung, volume 1. Auflage.
dpunkt.verlag, 2013.

12 G. Macher, E. Armengaud, and C. Kreiner

13. H. Giese, S. Hildebrandt, and S. Neumann. Model Synchronization at Work: Keep-
ing SysML and AUTOSAR Models Consistent. LNCS 5765, pages pp. 555 –579,
2010.

14. J. Holtmann, J. Meyer, and M. Meyer. A Seamless Model-Based Development
Process for Automotive Systems, 2011.

15. ISO - International Organization for Standardization. IEC 61508 Functional safety
of electrical/ electronic / programmable electronic safety-related systems.

16. ISO - International Organization for Standardization. ISO 26262 Road vehicles
Functional Safety Part 1-10, 2011.

17. H. C. Jo, S. Piao, and W. Y. Jung. Design of a Vehicular code generator for Dis-
tributed Automotive Systems. In Seventh International Conference on Information
Technology. DGIST, 2010.

18. J.-C. Lee and T.-M. Han. ECU Configuration Framework based on AUTOSAR
ECU Configuration Metamodel. 2009.

19. T. Lovric, M. Schneider-Scheyer, and S. Sarkic. SysML as Backbone for Engineer-
ing and Safety - Practical Experience with TRW Braking ECU. In SAE Technical
Paper. SAE International, 04 2014.

20. R. Messnarz, F. Knig, and V. O. Bachmann. Experiences with trial assessments
combining automotive spice and functional safety standards. In D. Winkler, R. V.
O’Connor, and R. Messnarz, editors, EuroSPI, volume 301 of Communications in
Computer and Information Science, pages 266–275. Springer, 2012.

21. R. Messnarz, I. Sokic, S. Habel, F. Knig, and O. Bachmann. Extending Automotive
SPICE to Cover Functional Safety Requirements and a Safety Architecture. In
R. O’Connor, J. Pries-Heje, and R. Messnarz, editors, EuroSPI, volume 172 of
Communications in Computer and Information Science, pages 298–307. Springer,
2011.

22. OSEK/VDX Steering Committee. OSEK/VDX System Generation OIL: OSEK
Implementation Language. http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf,
2004.

23. I. R. Quadri and A. Sadovykh. MADES: A SysML/MARTE high level methodol-
ogy for real-time and embedded systems, 2011.

24. W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner. Patterns of
Software Modeling. In R. Meersman, H. Panetto, A. Mishra, R. Valencia-Garca,
A. Soares, I. Ciuciu, F. Ferri, G. Weichhart, T. Moser, M. Bezzi, and H. Chan,
editors, On the Move to Meaningful Internet Systems: OTM 2014 Workshops, vol-
ume 8842 of Lecture Notes in Computer Science, pages 428–437. Springer Berlin
Heidelberg, 2014.

25. SafEUr Training Material Committee. ECQA Certified Functional Safety Manager
Training Material. training dossier, April 2013.

26. G. Sandmann and M. Seibt. AUTOSAR-Compliant Development Workflows: From
Architecture to Implementation - Tool Interoperability for Round-Trip Engineering
and Verification & Validation. SAE World Congress & Exhibition 2012, (SAE
2012-01-0962), 2012.

27. G. Scuro. Automotive industry: Innovation driven by electronics.
http://embedded-computing.com/articles/automotive-industry-innovation-
driven-electronics/, 2012.

28. B. Sechser. The marriage of two process worlds. Software Process: Improvement
and Practice, 14(6):349–354, 2009.

29. The SPICE User Group. Automotive SPICE Process Assessment Model. Technical
report, 2007.

Automotive Safety Case Pattern
Georg MACHER, Graz University of Technology
Harald SPORER, Graz University of Technology
Christian KREINER, Graz University of Technology

Automotive embedded systems have become very complex, are strongly integrated, and safety-criticality of these systems raises new chal-
lenges. Due to this safety-criticality the ISO 26262 road vehicle safety norm was introduced. Development conforming ISO 26262 requires
providing consistency of the safety concept during the entire product lifecycle, and supporting evidences, known as and combined via safety
case. A safety case is a collection of development artifacts (e.g. test protocols, interface descriptions, domain experts group meeting proto-
cols, certificates) aiming to convince customers or auditors by arguing that the product is capable safe. Establishment of such a safety case
is a tedious task, and practical examples and guidelines are yet rather uncommon due to intellectual property reasons.

This paper presents the application of patterns to generate a ISO 26262 safety case documentation for an industrial case study. The in-
troduced patterns and use case should serve for novices in the area of automotive safety as guidance for construction of safety cases.

Categories and Subject Descriptors: H.1.0 [Information Systems]: Models and Principles—General; K.6.m [Management of Computing
and Information Systems]: Miscellaneous—

General Terms: Documentation

Additional Key Words and Phrases: Automotive embedded systems, ISO 26262, pattern application, safety case.

ACM Reference Format:

Macher G., Sporer H., and Kreiner C.,2015. International Conference Proceedings Series (ICPS). jn 2, 3, Article 1 (May 2015), 17 pages.

1. INTRODUCTION

The number of embedded systems in the automotive domain has grown significantly in recent years. Current
premium cars imply more than 70 electronic control units (ECU) with close to 1 Gigabyte software code [?]
implemented.

In 2018 30% of the overall vehicle costs are predicted to stem from vehicle electronics [?]. This trend is also
strongly supported by the ongoing replacement of traditional mechanical systems with modern embedded systems.
This enables the deployment of more advanced control strategies, thus providing new benefits for the customer
and environment, such as reduced fuel consumption and better driveability.

At the same time, the higher degree of integration and the safety-criticality of the control application raise new
challenges. Hence, the correctness of the applications in both the time domain and the value domain has to be
guaranteed. Safety standards such as ISO 26262 [?] for road vehicles have been established to provide guidance
during the development of safety-critical systems. They provide a well-defined safety lifecycle based on hazard
identification and mitigation, and they define a long list of work-products to be generated. One of these required

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

EuroPloP ’14, July 09 - 13, 2014, Irsee, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3416-7 ...$15.00.
http://dx.doi.org/10.1145/2721956.2721962

work-products is the safety case. The challenge in this context is to provide evidence of consistency of the different
work-products during product development.

The ISO 26262 standard mentions three principal elements of which a safety case shall consist of: requirements,
arguments, and evidences.

However establishment of such a safety case is a tedious task, and practical examples and guidelines are yet
rather uncommon due to intellectual property reasons. Due to this lack of practical available examples many safety
cases result in extra workload with only limited additional benefit. This paper presents, according to our knowledge,
three previously undocumented but industrial best practices patterns and furthermore, the application of these
patterns and their benefits for the specific case study of an automotive battery management system (BMS).

—PROCESS & PRODUCT Pattern - organizes the safety case argumentation into a product and a process specific
branch.

—TRACEABILITY Pattern - supports argumentation via requirement and traceability to realization and artifacts.

—FUNCTIONAL BREAKDOWN Pattern - decomposes generic arguments into smaller sub-sets or specific argumen-
tation.

The document is structured as follows:
Section 2 briefly describes the safety case in context of ISO 26262 and gives a very brief overview of ISO 26262
aligned development. Section 4 covers related work on safety cases and patterns for safety case generation. In
Section 5 we provide a case study of a battery management system (BMS), which is afterwards used to evaluate
the application of pattern for safety cases (Section 5.2). The main point of this work is the description of the three
patterns, which is done in Section 3. Finally, Section 6 concludes this work with an overview of what has been
presented.

2. BACKGROUND INFORMATION

This section briefly characterizes the basics of an automotive safety case and product development of safety-critical
systems in the automotive domain.

2.1 Safety Case in Context of ISO 26262

The role of a safety case is to communicate and explicitly show implicit domain knowledge, to summarize safety
argument and the referencing reports capturing the supporting evidence. It convincingly argues in a compact way
that a system meets its safety requirements and describes why which decision has been made or not made in a
coherent and reproducible way. Thereby a safety case aims to convince customers or auditors by arguing that the
product is sufficiently safe.

In ISO 26262 Part 10 [?] section 5.3.1 states the purpose of a safety case as

‘... to provide a clear, comprehensive and defensible argument, supported by evidence, that an item is
free from unreasonable risk when operated in an intended context.’[?]

The relationship between the previously mentioned three elements are shown in Figure 1 and described
very general by the standard: (a) Requirements describe the objectives a safety-related system needs to fulfill.
(b) Arguments communicate the relationship between objectives and evidences. These (c) Evidences are the
convincing production artifacts within a safety case. Both arguments and evidences are crucial elements of
the safety case. Arguments without supporting evidences are unfounded and unconvincing. Evidences without
arguments are unexplained and unclear. Due to this formalization there is much room for individual interpretation
and implementation of a safety case. A standardized format for a safety case is still missing. Therefore, a frequently

Automotive Safety Case Pattern — Page 2

Requirement

Argument

Sub-
Requirement

Context

Evidence

Fig. 1. Key Elements of a Safety Case

observed phenomenon, due to a lack of guidance, is that safety case development results in a lot of additional
effort with only limited advantages for the audit. Also the way how a safety case should be documented is not
specified by the ISO 26262 standard. In many other industries safety arguments have often been communicated in
safety case reports through narrative text. Alternatively the use of a graphical notation is popular in automotive
industry. Two visualization styles are recommended for automotive safety cases: (a) Claim-Argument-Evidence
Notation and (b) Goal Structure Notation (GSN)[?].

The development of a safety case is an incremental activity that has to be integrated within the development
process. Therefore, a good approach might be (as also mentioned by the standard) to plan safety cases in
incremental steps and preliminary versions (also proposed by [?] see Section 4). Therefore, a preliminary version
of the safety case can be created after creation of technical safety requirements, an interim version after definition
of the system design, and a final version just prior finalization of product.

Nevertheless the safety case is an important development artifact, but it should not result in reproduction of
production artifacts. Quite the contrary, it should briefly and precisely guide uninvolved persons through the product
development and convince them.

2.2 Product Development of Safety-critical
Systems

Product development of a safety-critical system starts with management of functional safety at company level,
and is done in parallel to a typical development cycle from initial requirement to final product. Beyond that, ISO
26262 address safety engineering from initial requirement to final decommission of the product. For this paper
we focus on development phases only and consider development from concept phase to product release; not
considering supporting or management processes, which are also in the focus of ISO 26262. The following section
demonstrates a brief overview about the ISO 26262 aligned development of the BMS prototype, and explains
domain specific keywords. This section thus is subdivided according to the software safety requirement process
structure of ISO 26262 (see [?]).Main deliverables to be mentioned are:

Automotive Safety Case Pattern — Page 3

Fig. 2. Hazard Analysis and Risk Assessment of BMS (from [?])

—Item definition and safety goals - defines the system under development and its high level requirements related
to safety

—Functional safety concept (FSC), preliminary architecture, failure mode and effects analysis (FMEA), and fault
tree analysis (FTA) -
FSC defines the safety concepts on function point of view, while FMEA and FTA analyze the impact of faults and
failures

—Technical safety concept (TSC), system design, and HW/SW Interface (HSI) - final development artifacts of
system development and technical implementation specification of safety concepts

2.2.1 Item Definition and Safety Goals. As a first step of ISO 26262 related development, the boundaries of
the system and its interacting environment must be specified. This definition in the context of ISO 26262 is called
item definition. An item is defined by ISO 26262 as a

system or array of systems to implement a function at the vehicle level, to which ISO 26262 is
applied.[?]

A system consists at least of a sensor, a controller, and an actuator. Based on this item definition, possible
malfunctions of all described functions need to be identified. This process is followed by an identification of
possible hazards for the system and an identification of resulting risks; called hazard analysis and risk assessment
(HARA). Domain experts identify hazards and hazardous situations and quantify the involved risks. This results in
hazardous events, which are classified according to ISO 26262 in terms of severity, controllability, and exposure.
Finally, this results in a specific automotive safety integrity level (ASIL) and a related safety goal. Figure 2 shows
a HARA in tabular form, the quantification of risks and the resulting safety goals. Further details of the system
analyzed by the HARA in Figure 2 will be given in the case study section 5.

2.2.2 Functional Safety Concept, Preliminary Architecture, FMEA, and FTA. The previously posed safety goals
lead to functional safety requirements and the functional safety concept (FSC). For each element of the system
under development possible internal failures and failure propagation needs to be identified. This error model can
be analyzed and evaluated using Fault Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA). FMEA
and FTA can further be used to evaluate system design decisions against each other, e.g. for indicators for the
most probable cause of a failure and therefore for a robust design.

2.2.3 Technical Safety Concept, System Design, and HSI. The refinement of the FSC is called technical safety
concept (TSC) and specifies the system design. These requirements are generally divided into hardware-related
and software-related requirements and linked to specific parts of the system design. The system design is finalized
by the definition of the hardware-software interface (HSI). This mapping provides a basis for parallel development
of HW and SW.

Automotive Safety Case Pattern — Page 4

3. SPECIFICATION OF THE PATTERN

The following section discusses the patterns more detailed. Therefore we specify the three safety case pattern in
the typical structure [?; ?] of:

Context - situation in which the pattern is usable
Problem - scenario which requires action
Forces - motivation for usage of the pattern
Solution - description of problem solution
Consequences - description of results and drawbacks
Known Uses - publications which used the pattern

The application of the patterns will be presented in Section 5.2 for an automotive battery management system.

Automotive Safety Case Pattern — Page 5

3.1 PROCESS & PRODUCT Pattern

The cake is
good

Argue over
process and

product

The process is
good

haute cuisine kitchen
award-winning chef

The recipe is
good

Taste Healthy Look

Kids birthday
party

7 year old girlpeanut allergy

totally
devoured

no allergic
reactions

overjoyed
children

Fig. 3. Depiction of PROCESS & PRODUCT Pattern Approach Example

The intention of the pattern is to provide a top level decomposition for the safety argument of a system. In
particular, the pattern identifies two main claims which must be satisfied to show the system safety: product safety,
and process safety. This pattern shall be applied at the very beginning of the product development and safety case
generation. Therefore, the application of this pattern must be before the item definition and safety goal generation
2.2.1.

3.1.1 Context. Safety-critical system development for the automotive domain require a certification of the
development process and an argumentation that the certified development process has been correctly applied for
the specific product. A certification, such as Automotive SPICE (ISO/IEC 15504 [?]), is required to get enlisted as
supplier (called tier) of any hardware or software system in the automotive domain. Goal of Automotive SPICE is
to provide indicators to compare the maturity of business rival’s processes and company standards.

3.1.2 Problem. To ensure repeatability of equal product quality, independent of individuals, processes and
methods needs to be identified and established. These processes need to be certified, usually via external
certification authorities, to ensure comparability and competitiveness. Issues in this context are to distill a process
reusable for individual project, certify this processes, and provide evidence of compliance with this regulations for
each individual application.

Automotive Safety Case Pattern — Page 6

3.1.3 Forces

—Companies with no Automotive SPICE certificate will not be considered for supporting engineering activities.
—Certification of the development process is typically a complex, cost intensive, and time consuming process,

which should not be done for each project individually.
—The certification process requires external and internal resources (manpower) which leads to nonproductive

time periods.
—For development of safety-critical systems furthermore evidence of application of domain expertise at develop-

ment of the specific product has to be proven.

3.1.4 Solution. First, establish a development process according to the domain best-practices and require-
ments of Automotive SPICE. Second, provide evidence of application of these certified processes in correct
manner. Third, organize the argumentation of a safety case into a product branch, specific to the product, and a
process branch, product independent. The separation of concerns enables easier reuse of process claims and
independent certification of production processes (e.g. audits of the company process structure). Arguments are
grouped into topics which relate to best-practices and approaches which can be directly reused for other projects
(e.g. a guideline for generation of a domain-specific report) and on the other hand the specific application for the
specific product (e.g. the domain-specific report itself).
This separation of arguments is depicted in Figure 3 for an easy example of baking a cake. The goal of baking a
good cake is supported by the strategy of having a good process in place (skilled award-winning chef and haute
cuisine kitchen), the product-independend (process-specific) part and a tasty recipe (product-specific part).

3.1.5 Consequences

+ Helps during auditing to split into domain specific expert groups; thus enable parallel working ability and speedup
of the auditing process.

+ During development of the product and the safety case same split of domain expert groups and speedup in time
can be measured.

+ Supports the identification of product-independent best practices and methods.
+ Separation of product-dependent and product-independent parts enables reuse of generic parts for other

product developments.
- Separation of arguments according to this approach requires additional work and can be challenging in terms of

determination of product independence.
- Distillation of multi-purpose product-independent argumentation may result in arguments lacking in substance.

3.1.6 Known Uses. This pattern can be seen as best practice and de-facto standard way of preparing safety
cases in the automotive domain [?], [?], [?], [?]. Although this pattern is not mentioned in the GSN Pattern catalog
[?], it is presented for a preliminary safety case by Kelly [?] and Birch et. al. [?]. Also the case study of Ridderhof
et. al. [?] is structured in a product and process specific part.

Automotive Safety Case Pattern — Page 7

3.2 TRACEABILITY Pattern

Fig. 4. Depiction of TRACEABILITY Pattern Approach in Form of a Traceability Matrix

The pattern describes an approach to address the demands of ISO 26262 needs of establishing traceability from
origin to realization and proof of implementation of all decision made during development process. For generation
of safety cases it is essential to be able to trace decisions and their impacts at each stage of the safety case
generation process 2.2.

3.2.1 Context. Safety-related system development requires cross-domain knowledge and requirements origi-
nate from several expert groups and iteration cycles. Requirements frequently originate from non-experts and their
impact is often not easy to determine.

3.2.2 Problem. According ISO 26262, full traceability of development artifacts of a safety-critical system needs
to be proven. Decision-making procedure of development artifacts needs to be documented to ensure reproducibility.
Requirements influences and meaning are often unclear, their validity changes during the development period,
and minor requirement changes may have huge impacts on safety strategies and the safety case. Moreover, the
complexity of system requires links between different development artifacts to ensure consistent and complete
implementation of required features.

Automotive Safety Case Pattern — Page 8

3.2.3 Forces

—Various types of development artifacts need to be traced.
—Requirements are frequently ambiguous and originate from non-experts.
—Validity of requirements change during development phases.
—Each type of artifacts needs to be version controlled.
—Artifact dependencies need to be explicitly linked.
—Evidence of origin, validation, and realization of each artifact in a correct, complete, and consistent way needs

to be provided.

3.2.4 Solution. First, assign unique IDs and validity states for each development artifact and requirement.
Second, establish traces between each artifact to explicitly indicate dependencies and relations. Most intuitive
way of establishing traces and relation is to collect al IDs in a matrix and flag relations within the matrix. Life-cycle
management tools and version control systems shall be used to keep trace of development process, iteration
cycles, and artifact dependencies and ensure consistency and correctness of such a traceability matrix.

Figure 4 shows a traceability matrix of different development artifacts within a life-cycle management tool. Traces
are indicated via arrows in this figure and can have directions and different types of relation. These traces can be
useful in practice, due to reducing the need of inter-tool traces (e.g. reviews of consistency check protocols) and
highlighting of the impact of changes done at a specific artifact.

3.2.5 Consequences

+ Gives good evidence that all requirements have a defined origin, have been validated, satisfied, and realized.
+ Comprehensible impacts of requirement changes.
+ Traceability across all development documents in both directions can be shown in a structured and repeatable

way.
+ Constraints checker can be applied to check for missing links and auto generate reports.
+ Explicit illustration of dependencies.
+ Convincingly argumentation of a reliable development of the system.
- Plenty of dependencies hardly manageable without adequate tool support.
- Lot of additional effort needed to establish traces.

3.2.6 Known Uses. Armengaud [?] and Ridderhof et. al. [?] mainly base their work on this approach. Providing
traceability from requirements to artifacts tent to be the most intuitive and popular approach for safety case
development.

Automotive Safety Case Pattern — Page 9

3.3 FUNCTIONAL BREAKDOWN Pattern

Fig. 5. Depiction of FUNCTIONAL BREAKDOWN Pattern Approach

The intent of this pattern is to structure arguments to support a safety goal by decomposition into smaller sub-
goals. This structuring concerns the decomposition of overall system functionalities and involves the introduction
of an additional system viewpoint. The FUNCTIONAL BREAKDOWN pattern is applicable for item definition 2.2.1,
development of safety concepts and safety architectures 2.2.2. Other than the DIVIDE AND CONQUER pattern, the
FUNCTIONAL BREAKDOWN pattern does not solely focus on decomposition of systems to sub-systems, but rather
focuses on the decomposition of functions. This also considers cross-domain concerns and relations which can
not be tackled with DIVIDE AND CONQUER patterns on system level.

3.3.1 Context. The development of highly integrated multi-domain features of an automotive system requires
several departments of several domains to cooperatively work in parallel. A decomposition of the overall system
is indispensable to manage the huge system size and complexity. Without adequate breakdown the number of
required domain expertises within one team would yield to unmanageable effort. Nevertheless, system-wide
features (such as safety) require different approaches than naif fragmentation into smaller technical implementation
units.

3.3.2 Problem. Safety-critical systems are not manageable as a whole in terms of required domain-expertise,
diversity, workload, and time-to-market. But several constraints (e.g. safety-criticality) affect the whole system
and need to be considered by all involved parties. Therefore, fragmentation into technical implementation units
is insufficient. A breakup of functions on vehicle-level is required to get a clear conception of causal relations
regarding safety.

3.3.3 Forces

—Limited time-to-marked and different required domain-expertise require a structuring to ensure parallel working
of departments.

—Safety constraints affect the system as a whole but are too complex to be managed as a whole.
—Evidences need to be provided within several domains (e.g. evidence of correct HW selection, evidence of

correct SW behavior).

Automotive Safety Case Pattern — Page 10

3.3.4 Solution. Breaking a system into distinct sub-functions at vehicle view of abstraction that overlap in their
purpose as little as possible and assign specific teams for each sub-function. Solutions for sub-problems are easier
to determine due to reduced complexity and dependencies. Further, argumentation of overall system safety for a
safety case can be done via argumentation of safety of each involved sub-functionalities. Thereby responsibility for
safety argumentation is passed over to experts of the specific sub-function domain. This implies an introduction
of an additional system viewpoint (functional view illustrating vehicle-wide functions and their decomposition),
which simplifies conception and development of system-wide features (such as safety). Figure 5 shows a high
level application of the pattern for a vehicle. Safety argumentation for the powertrain can be separated according
the involved powertrain elements (eDrive, Transmission, Battery, and Engine) and cross-domain / cross-element
arguments (such as high-voltage safety of passenger) can be argued for each element individually.

3.3.5 Consequences

+ Resizing of work packages allows a separation of responsibilities and parallel development of individual
sub-features.

+ Divided responsibilities ensure optimized solutions of individual work packages.
+ Increasing number of measures for management.
+ Split of responsibility of overall argumentation to domain experts for their sub-parts.
- Additional consolidation of the sub-systems and overall system constraints required.
- Individual optimal sub-solutions may not result in the overall optimal solution.
- Requires additional merging activities of the sub-parts.
- Introduction of an additional view on the system.

3.3.6 Known Uses. The work of Kelly [?] focus on a modular approach to safety case construction for modular
constructed safety critical and safety related systems.

Automotive Safety Case Pattern — Page 11

4. RELATED WORK

This section briefly mentions some related work on safety cases, on their supported information, and on notations
of a safety case.

The essential work of Kelly [?] depicts the nature of a safety case as to refer to and pull together, potentially many
other pieces of information. Safety case report should present the key conclusions and findings that convince the
reader that the system is acceptably safe to operate in its intended design context. Kelly describes the relationship
between requirements, arguments, and evidences which has also been taken over into the ISO 26262 standard.
Kelly also claims that well-structured approaches to express safety arguments in text form can be effective, but
recommends the Goal-Structure-Notation (GSN). Furthermore, Kelly proposes the safety case development
lifecycle, as stated by defense standards and also recommended by ISO 26262, in three versions:

(a) Preliminary Safety Case - after definition and review of system requirements,
(b) Interim Safety Case - after initial system design, and
(c) Operational Safety Case - prior to in-service; including complete evidence of satisfaction of system require-

ments.

The work of Holloway [?] presents five possible text-based notations for representing safety cases. But as
mentioned by Kelly, drawbacks of text representation can be: (a) an unclear and poorly structured English, (b)
ambiguous structuring of text and sentences, and (c) multiple cross-references in the text which disrupt the flow of
the main argument. This work therefore also highlights the positive effects of pattern and GSN approaches for
development of safety cases.

Palin and Habli [?] proposed some patterns for automotive safety case in a very early draft phase of ISO 26262.
After final release, the standard has changed in a way that the proposed usage sounds slightly odd, although the
patterns might still be usable. Due to popularity of GSN in the automotive domain, the patterns available at the
GSN Working Group homepage [?] are more applicable.

The works of Ridderhof et. al. [?] and Armengaud [?] prove evidence of their safety case from tracing system
safety requirements to the development artifacts by which they are realized. Ridderhof achieves this with the help
of a commercial tool collecting all information artifacts of different involved tools and represents the safety case
in GSN. Armengaud uses a special solution for compilation of the safety case based on automated extraction
of information from existing work-products and also takes test campaign into account. Both solutions support
automated checks of different criteria (e.g. completeness and consistency of argumentation), which strongly
reduces the manual efforts for compilation of a safety case. Ridderhof’s and Armengaud’s works do also make
implicit use of the three in this paper introduced pattern.

The integration of a safety strategy to model driven development with SysML is main goal of Hause and Thom
[?]. Although the work dates from the period before the introduction of ISO 26262 and solely refers to a very
abstract safety case example it focuses on still valid procedures. Separation of concerns is the process of breaking
a system into distinct features that overlap as little as possible, which is the basis of modular system design.
However cross-cutting concerns, like safety, traceability, or timing need to be addressed in all subsystems. Their
approach makes use of an integrated database and ergonomic profiling to support all disciplines involved in
development. They make use of SysML model-driven development and discipline specific SysML profiles to gather
all information within a single database. Furthermore, they integrated a GSN representation possibility in the
model-driven development tool to have access to all development artifacts and compile the system’s safety case
with actual development artifacts.

Automotive Safety Case Pattern — Page 12

5. CASE STUDY

This section inherits a description of the use case and the application of the previously introduced patterns for
establishment of an automotive safety case of the use case.

5.1 Description of the Case Study

To demonstrate the use of patterns for creation of an automotive safety case we use an industrial case study of a
battery management system. Battery management systems (BMS) are control systems inside of high-voltage
battery systems used to power electric or hybrid vehicles. The BMS consists of several input sensors, sensing
e.g. cell voltages, cell temperatures, output current, output voltage, and actuators, the battery main contactors.
Furthermore, the BMS also includes an electronical control system and may impact the safety of driver and
pedestrians (e.g. unintended acceleration, overheating of battery). Therefore, these systems are safety-critical
electronical devices which need do be developed according legislative regimentation and industry standards to be
used for passenger cars. The specific case study is a prototype battery and BMS aiming to improve life-time and
better utilization of energy storage capabilities of battery cells via innovative control strategies.

Figure 6 depicts the general structure, main hardware components, and software modules of the high-voltage
battery with BMS. The illustration shows the main features of a BMS, also summarized in Table I

Table I. Main Features of the BMS
Power contactors - connect the HV battery with the rest of the vehicle
Interlock (yellow connection) - signal preventing the battery of harming the operator when tripped
CAN (yellow connection) - automotive communication interface between vehicle and battery
Relay (green connection) - main contactor and output unit of the BMS
Temperature sensors (purple connection) - feedback of actual cell temperatures
Voltage sensors (blue connection) - feedback of actual cell voltages
Current sensors (red connection) - feedback of actual electric power consumption
Fuse - protective circuit breaker in case of fault
Cells - energy storage which needs to be kept in defined operating conditions
BMS controller - monitoring unit to keep battery cells within defined operating conditions

Furthermore, the main software modules of the BMS control strategy are shown in Figure 6. These software
modules estimate the charging level of the battery (State of Charge, SoC), battery performance level (State of
Fitness, SoF), and the current battery state. Beside this basic features also cell balancing functionality, to ensure
uniformity of all cells, and supervising functionality of external chargers are mandatory. The ‘Safety / Diagnosis’
module ensures additional error detection and safety in case of failures.

From the safety case point of view the system as a whole (including SW and HW modules) needs to be analyzed
and additional safety features might be considered for critical parts. Some high level requirements for safety
relevant parts are in Table II.

Table II. High Level Requirements for Safety Relevant Parts of the BMS
Relay switching status shall be monitored by BMS
Interlock signal shall be generated by BMS and disconnection of battery needs to be progressed if trapped
CAN status of vehicle needs to be OK before closing of power connection

Sensors
sensor signals shall be validated and over-temperature has to be prevented
over/under voltage of cell needs to be prevented
power consumption measures (current or voltage) must not exceed defined maximum levels

Cells energy cells needs to be kept in defined operating conditions

BMS controller
SW module malfunctions need to be detected and prevented
controller failures need to be detected and battery disconnected
maximum power limits must be provided to ensure safe operation of battery cells

Automotive Safety Case Pattern — Page 13

A

INTERLOCKPOWER CAN

BMS Contoller

INTERLOCK
CONNECTOR

RELAY

C
U

R
R

EN
T

V
O

LT
A

G
E

TE
M

P
ER

A
TU

R
E

CAN

Battery State
Monitoring

SoC
Determination

SoF
Determination

Cell Balancing

External
Charging

Sa
fe

ty
 /

 D
ia

gn
o

si
s

SW
 M

o
d

u
le

s

A

Fig. 6. BMS Structure

5.2 Application of the Patterns for Development of an Automotive Safety Case

The following section discusses the application of patterns for the use case of the battery management system
safety case. We focus on the three pattern presented in Section 3.

To start with the development of an automotive safety-critical system and thus an safety case the
PROCESS & PRODUCT pattern shall be applied initially before starting the development of the SUD.

Figure 7 depicts the application of PROCESS & PRODUCT pattern for the highest level of the case study’s safety
case. This illustration is done in a typically development engineers point of view.

As can be seen in upper part of the figure, the intention is to argue the development of a BMS which is developed
dependable safe, in context of ISO 26262. This argumentation is based on two pillars. First, the development
processes are dependable safe (right pillar in Figure 7), which means, the processes are according automotive best
practices. The argumentation is based on the evidence of an Automotive SPICE certificate [?]. This means, that
processes used for the development of the BMS comply with the automotive standard for software development.

The second (left) pillar of the argumentation focuses on the product itself. In this case the argument for a
dependable safe BMS is stated upon the strategy that the environment is known and defined, and the fact that an
adequate risk management hast been performed.
Here the argumentation is not based on the implausible evidence that the system under development is safe in
any conditions and nothing will ever fail, but rather on the opposite. The argumentation for a dependable safe BMS
is based on systematic identification, assessment, and prioritization of risks (see 2.2.1).

Automotive Safety Case Pattern — Page 14

BMS System is
Dependable

Safe

Argue over
Process and

Product

Process
Confidence

Automotive SPICE
Product is

Dependable
Safe

Safety According
ISO 26262

Environment
Definition

Risk
Management

Best
Practices

Automotive
SPICE

Certificate

Fig. 7. PROCESS & PRODUCT Pattern Application in Goal Structure Notation

The depicted application is solely one specific use-case for this pattern, Figure 3 previously illustrates the usage
of the PROCESS & PRODUCT pattern for another level, by differencing work-product templates and work-products
itself (e.g. requirement templates for the process of requirement engineering and requirement documents itself).
With the utilization of the PROCESS & PRODUCT pattern a first important step towards a meaningful safety case is
done. As a sideline Figure 7 already mentions a safety argumentation based on an risk management (in automotive
cases HARA, see 2.2.1).

Figure 8 shows the graphical representation of an excerpt from a HARA. Furthermore, the application of
TRACEABILITY pattern can be seen within this picture.

The TRACEABILITY pattern can be applied for any development artifact to ensure correct, complete, and con-
sistent refinement. Figure 8 shows the graphical representation of traces within the model-based development
tool Enterprise Architect (EA). The traces depicted within this figure represent analysis done during initial risk
management process (called Hazard Analysis and Risk Assessment (HARA) in terms of ISO 26262). Here an anal-
ysis of a specific function of the BMS (such as store energy) is done. Possible malfunctions and caused hazards
are identified and prioritized according to specific hazardous events, their probability of occurring, criticality, and
controllability. This analysis leads to safety goals, which represent high level requirements which have to be meet
to be dependable safe. Such a tracing can further be established from requirements to specific implementation
artifacts, automatically verified and used to convincingly argue a safety case. In this case the depiction shows the
usage of a proprietary tool addon for Enterprise Architect for safety engineers.

The application of the previously mentioned two pattern led, on one hand, to the approach of separating
product- specific and product- independent artifacts (PROCESS & PRODUCT pattern) and therefore enable reuse of
these product-independent artifacts. On the other hand, the TRACEABILITY pattern afforded an opportunity to link
sundry artifacts dependencies according the decision-making process during development to generate an easily

Automotive Safety Case Pattern — Page 15

Fig. 8. Tree-View Representation of HARA Traces within Model-based Development Tool

understandable safety case for the specific product.

The intent of the third, FUNCTIONAL BREAKDOWN, pattern is to structure the arguments to support a safety goal
by decomposition into smaller sub-functionalities. For an automotive BMS and its complexity a decomposition of
the overall system is indispensable.

During design of system, software, or hardware architecture the overall function needs to be subdivided into
smaller sub-systems to enable parallel development and re-size work packages to manageable sizes, this technical
segmentation although is not sufficient to argue a safety-case. For our case study a functional breakdown of
one BMS safety goal into several independent BMS sub-functionalities has been carried out. Figure 9 shows the
application of the FUNCTIONAL BREAKDOWN pattern for a specific safety goal of the BMS. This segmentation can
be continued to a sufficient stage of sub-functions. In case of having a convincing argumentation for the safety of
each individual sub-function and freedom from mutual interference, safety of the overall system can be proven.
These sub-functions can further be mapped to multiple involved technical implementation (TRACEABILITY pattern)
and therefore ensure consideration of system-wide safety feature across domain boundaries.

Automotive Safety Case Pattern — Page 16

Prevent Battery
Fire

Determine
Battery

Conditions

identified safety goal
from HARA table

Maintain
Battery

Conditions

Disconnect
Battery in Case of

Critical Failure

Detect
External
Failures

Determine
Battery

Temperature

Determine
Battery
Voltage

Determine
Battery
Current

ASIL
Decomposition

Open HV+
Relay

Open HV-
Relay

Detect
Internal
Failures

Fig. 9. Application of FUNCTIONAL BREAKDOWN Pattern for a Specific Safety Goal of the BMS Case Study

This safety view ensures consistent argumentation across domain boundaries and prevents from cross-domain
design pitfalls, such as:

—Having a watchdog hardware, but not used by software.
—Providing alive counters, but receiver ignoring it.
—Having redundant HW sensors, but relying solely on ‘Sens_xxx_1’.

6. CONCLUSION

In summary, the three presented patterns are some of the most commonly applied approaches for construction of
an automotive safety case. Although these patterns are used implicit already before, an explicit representation
within the safety case, e.g. in Goal-Structure-Notation, of these patterns will facilitate the construction of a convinc-
ing report. Among these pattern, several other pattern might be applied to produce a convincingly safety case
argumentation. Nevertheless, the presented patterns shall serve as a basis for this domain and encourage other
domain experts to collect their knowledge in such a re-useable form.

This paper aims in motivating that novices in the area of automotive safety case construction to start their work
rather with the search for appropriated patterns than a classical "‘give-it-a-try"’ approach. A further objective of this
paper is to initiate a collection of pattern approaches for automotive safety case generation and encourage domain
experts to document their approaches in form of patterns-. Our future plans for continuing with the collection of
automotive safety case generation pattern are focusing not only on system development level but on software
safety cases and hardware- software interface approaches.

Acknowledgments

The authors would like to express our thanks to our shepherd Veli-Pekka Eloranta who had a determining influence
on the improvement of our paper and untiringly helped to improve the maturity of the paper in several iterations.
Furthermore me would thank Christopher Preschern and our co-author Christian Kreiner who called our attention
to pattern approaches and the EuroPLOP conference.

Automotive Safety Case Pattern — Page 17

REFERENCES

ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M., JACOBSON, M., FIKSDAHL-KING, I., AND ANGEL, S. 1977. A Pattern Language. Oxford
University Press, New York .

ARMENGAUD, E. 2014. Automated Safety Case Compilation for Product-based Argumentation. In ERTS2014 Conference Proceeding .
BIRCH, J., RIVETT, R., HABLI, I., BRADSHAW, B., BOTHAM, J., HIGHAM, D., JESTY, P., MONKHOUSE, H., AND PALIN, R. 2013. Safety Cases

and Their Role in ISO 26262 Functional Safety Assessment. In SAFECOMP. 154–165.
EBERT, C. AND JONES, C. 2009. Embedded Software: Facts, Figures, and Future. IEEE Computer Society 0018-9162/09, 42–52.
HAUSE, M. C. AND THOM, F. 2008. An Integrated MDA Approach with SysML and UML. In Hause2008. 249–254.
HILBRICH, R., REINIER VAN KAMPENHOUT, J., AND GOLTZ, H.-J. 2012. Modellbasierte Generierung statischer Schedules fuer sicherheitskritis-

che, eingebettete Systeme mit Multicore-Prozessoren und harten Echtzeitanforderungen. Informatik aktuell , 29 – 38.
HOLLOWAY, C. M. 2008. Safety Case Notations: Alternatives for the Non-Graphically Inclined? In Third IET Systems Safety Conference. The

Institution of Engineering and Technology, NEC, Birmingham, UK.
ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 2011. ISO 26262 Road vehicles Functional Safety Part 1-10.
KELLY, T. 2004. A Systematic Approach to Safety Case Management.
KELLY, T. P. 2001. Concepts and Principles of Compositional Safety Case Construction. Contract Research Report for QinetiQ

COMSA/2001/1/1.
ORIGIN CONSULTING YORK LIMITED. 2011a. GSN Community Standard Version 1. online.
ORIGIN CONSULTING YORK LIMITED. 2011b. GSN Pattern. online.
PALIN, R. AND HABLI, I. 2010. Assurance of Automotive Safety - A Safety Case Approach. In SAFECOMP. 82–96.
RIDDERHOF, W., GROSS, H.-G., AND DOERR, H. 2007. Establishing Evidence for Safety Cases in Automotive Systems - A Case Study. In

SAFECOMP. Number SAE 2013-01-1415. 507–513.
SAFEUR TRAINING MATERIAL COMMITTEE. 2013. ECQA Certified Functional Safety Manager Training Material. training dossier.
SALINGAROS, N. 2000. The Structure of Pattern Languages. Architectural Research Quarterly 4, 149–161.
THE SPICE USER GROUP. Automotive SPICE.

EuroPloP ’14, July 09 - 13, 2014, Irsee, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3416-7 ...$15.00.
http://dx.doi.org/10.1145/2721956.2721962

Automotive Safety Case Pattern — Page 18

Automotive Embedded Software: Migration
Challenges to Multi-Core Computing Platforms

Georg Macher∗†, Andrea Höller∗, Eric Armengaud† and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, andrea.hoeller, christian.kreiner}@tugraz.at

†AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud}@avl.com

Abstract—The introduction of multi-core computing platforms
aims at providing more computing resources and additional
interfaces to answer the needs of new automotive control strate-
gies with respect to computing performances and connectivity
(e.g. connected vehicle, hybrid powertrains). At the same time,
the parallel execution and resulting resources and timing con-
flicts require a paradigm change for the embedded software.
Consequently, efficient migration of legacy software on multi-
core platform, while guaranteeing at least the same level of
integrity and performance as for single cores, is a significant
challenge. The contributions of this paper are (1) to provide
a state-of-practice survey on multi-core CPUs and operating
systems for the automotive domain, and (2) based on this survey
to provide guidelines for the migration of legacy SW. Finally
the related challenges and opportunities for the development of
high-integrity control systems on multi-cores, as platform for
dependable systems are discussed.

Keywords—automotive, multi-core computing platform, func-
tional safety.

I. INTRODUCTION

Embedded systems are already integrated in our everyday
lives and play a central role in many vital sectors including
automotive, aerospace, healthcare or industry. The complexity
of embedded systems has grown significantly in the automotive
domain in recent years. In the automotive industry, embedded
systems components are responsible for 25% of vehicle costs,
while the added value from electronics components ranges
between 40% for traditional vehicle up to 75% for electrics
and hybrid vehicles [40].

Moore’s law [30], stating the doubling of the computer
capacity every 2 years, is still a strong enabler for this fast
function increase and at the same time cost-per function de-
crease. The current development trend for computing platforms
has moved from increasing the frequency of single cores to
increasing the parallelism (increasing the number of cores on
the same die). Multi-core and many-core technologies have
a strong potential to further support the different technology
domains, but simultaneously they present new challenges.

Hence, the automotive industry is facing a growing gap
between the technologies and required level of expertise to
make best use of them. The computing platforms are becoming
more and more high-performance with concurrent computing
capabilities, larger embedded memories as well as an increas-
ing number of integrated peripherals. Low level mechanisms
(e.g. memory protection, diagnostics) typically provided by the

basic software or operating system are now being moved into
the CPU. The complexity of these computing platforms is very
high, the related user guides are comprised of several thou-
sands of pages. In the context of automotive operating systems,
the AUTOSAR [1] approach is following a similar trend by
standardizing several tens of basic software (BSW) modules
in several tens of thousands of specification pages. Similarly
for the application software (ASW, e.g., control strategy for
hybrid powertrains), the complexity is already very high and
is still growing by the introduction of new applications such
as advanced driver assistance systems (ADAS) or predictive
energy management strategies. Additionally, the functional
integration of the control strategies (e.g., transmission with
combustion engine and e-drive) further raises the complexity
of the resulting application.

The automotive industry is confronted with the central
question of how to migrate, optimize, and validate a given
application (or set of applications) on a given computing
platform with a given operating system. A know-how transfer
is required to take over the role of control system integrator
and identify the application requirements (both functional and
non-functional) and perform a mapping to the SW and HW
architecture. The quality of this mapping has a direct impact
on the performance of the control system, and thus of the entire
mechatronic system.

The contributions of this paper are (a) the presentation of a
state-of-practice survey on multicore computing platforms and
operating systems for the automotive domain, and (b) the dis-
cussing of migration scenarios for legacy application software
from single to multi-core computing platforms. The proposed
scenarios shall support the reuse of ASW on new platforms
while minimizing the migration efforts and risks. The paper
is organized as follow: Section II discusses the fundamentals
of parallel computing and presents the solutions available for
the automotive domain. In Section III the migration scenarios
are discussed, while Section IV specifically focuses on the
dependability aspects. Finally, Section V concludes this work.

II. MULTI-CORE IN THE AUTOMOTIVE DOMAIN

The aim of this section is to discuss the fundamentals
of parallel computing and provide a state-of-practice on the
available solutions in the automotive domain. Figure 1 shows
the overview map of the addressed topics and is intended to
provide relations of this sections structure to the basic multi-
core blocks. More especially, the following topics are ad-
dressed: architecture of the parallel computer (II-A, related to

HARDWARE

I/O
PERIPHERAL

M
IC

R
O

C
O

N
TR

O
LL

ER

SOFTWARE

CORE

MEMORY

M
IC

R
O

P
R

O
C

ES
SO

R

A
P

P
LI

C
A

TI
O

N
 S

O
FT

W
A

R
E

O
S

SC
H

ED
U

LE
R

B
A

SI
C

SO
FT

W
A

R
E

SW
 IN

TE
R

FA
C

E
LA

Y
ER

 (
R

TE
)

CORE

CORE

Fig. 1. Overview Map of Multi-Core Fundamentals

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

SIMD ARCHITECTURE MISD ARCHITECTURE MIMD ARCHITECTURE

IN
ST

R
U

C
TI

O
N

 P
O

O
L

DATA
POOL

D
A

TA
 P

O
O

L

IN
ST

R
U

C
TI

O
N

 P
O

O
L

IN
ST

R
U

C
TI

O
N

 P
O

O
L

D
A

TA
 P

O
O

L

D
A

TA
 P

O
O

L

Fig. 2. Parallel Computer Architectures according Flynn’s Taxonomy

the microprocessor cores), memory architecture (II-B, related
to the microcontroller memory), concept of processing func-
tions (II-C, related to the operating system and scheduler), syn-
chronization protocols (II-D, related to OS and basic software),
and scheduling policies (II-E, related to the operating system
scheduler). All these factors influence the achievable speedup,
efficiency and dependability features (e.g. safety, reliability)
of the multi-core system. Note that most publications focus
on specific aspect of multi-core development. The following
publications are suggested [6], [15], [28], [36] in order to
obtain a global overview. In addition to these publications,
AUTOSAR’s recent releases also take multi-core systems into
account and present several approaches and operating system
primitives to enable parallel processing in the automotive
domain [2].

Typical side-effects which need to be focused when migrat-
ing to multi-core systems are: (a) starvation - when a process is
perpetually denied necessary resources, (b) deadlocks - when
two or more processes are each waiting for the other to finish,
(c) livelocks - similar to a deadlock, except that the state of the
processes is in constantly change in relation to one another, not
progressing, (d) race conditions - output is dependent on the
sequence or timing of other uncontrollable events, (e) priority
inversion - high priority task is indirectly preempted by a
medium priority task, (f) freedom from interference - failures
of one process can-not influence other processes, (g) timing
correctness - correctness of an operation depends not only upon
its logical correctness, but also upon its computation time, and
(h) execution order correctness - correctness of the execution
sequence of cascaded tasks. This brief definition may make
the effects of the following multi-core aspects more evident.

A. Parallel Computer Architectures

According to Flynn’s taxonomy [12], [31] 3 types of multi-
core computer architectures exits (fourth variant ’SISD - single
instruction single data’ implies only one core), see Figure 2:
Single Instruction Multiple Data (SIMD) - this architecture can

UNIFORM MEMORY ARCHITECTURE NON-UNIFORM MEMORY ARCHITECTURE

CORE CORE

MEMORY

CACHE

CORE

CACHE

MEMORY MEMORY

CACHE

MEMORY

CORE

CACHE

CORE CORE

CACHE CACHE

Fig. 3. Comparison of Multi-Core Memory Architectures

access multiple data memory locations at once and execute
specific single operations in parallel. Beneficial for an appli-
cation that operates with a large volume of data (such as GPU).
Multiple Instruction Single Data (MISD) - Multiple cores are
capable of handling different instructions at simultaneously
for a single data stream. Exists only in theory and is not
commercially available. Multiple Instruction Multiple Data
(MIMD) - One of the most complex and most frequently used
modern hardware architectures. Multiple processing elements
can handle multiple independent and concurrent instructions
on multiple independent data. MIMD (and single-core SISD)
architecture only is appropriate for the automotive domain.
SIMD, as used for graphic processing (e.g. GPU), is not
currently available for powertrain controls.

B. Multi-core Suitable Memory Architectures

Two memory architectural versions are commonly used
for multi-core systems, uniform memory architecture (UMA)
and non-uniform memory architecture (NUMA), see Figure 3.
UMA divides the memory into blocks of unique data and
allows unified access of each core to different blocks of
the memory. NUMA is designed for concurrently running
processors, it provides separate memory spaced for each core
and therefore unlimited access to this local memory. Shared
memory is realized by moving of shared data between local
processor memories, this increases the efforts involved, but
prevents all cores from starvation.

Automotive multi-core system hardware is currently based
on UMA, but the NUMA approach is an improvement in
terms of safety and freedom from interference and can be
realized using dedicated additional hardware features (memory
protection unit), if available.

C. Multiprocessing Models

Basically two types of processing models are common, see
Figure 4. Asymmetric Multiprocessing (ASM) which can also
be used for non-multi-core operating systems (OS). For this
approach one core becomes the master, responsible for OS
and the other(s) slave core(s) solely run user level applications
triggered by the master OS. The Symmetric Multiprocessing
(SMP) approach features OS and user level approaches on
each core. All CPUs are interconnected via a bus or crossbar
with access to global memory and peripherals, which requires
appropriate synchronization mechanisms (see II-D).

The ASM approach is frequently used as a first step
introduction into multi-core systems. Computationally inten-
sive functions can be outsourced to the additional core and
impact of multi-core constraints can be reduced. ASM is

MEMORY

CORE

ASYMMETRIC MULTIPROCESSING MODEL

OS
CODE

USER
CODE 1

USER
CODE 2

CORE CORE

MEMORY

CORE

SYMMETRIC MULTIPROCESSING MODEL

OS
CODE

USER
CODE 1

USER
CODE 2

CORE CORE

Fig. 4. Comparison of Asymmetric Multiprocessing and Symmetric Multi-
processing

also the preferred approach for AUTOSAR basic software
[2], this eliminates conflicts on accessing peripherals. SMP
is an intuitive approach when combining the functionalities
of two separated control units into one multi-core. Therefore,
both approaches are common in the automotive domain and
appropriate mechanisms must be considered and applied.

D. Multi-core Synchronization

Synchronization features help to synchronize tasks with
shared resources and avoid deadlocks, starvation, priority
inheritance of parallel computing platforms. Synchronization
primitives are features of real-time operating systems and are
the building blocks of synchronization in complex systems. For
this reason, they are hard to use in complex software systems,
frequently make code less readable and often get lost during
programming (e.g. not released locks, or interferences via busy
waiting).

The most popular and commonly used synchronization
primitives in consumer electronics multi-core systems are:

• Mutex - a special type of variable, which controls access to
shared resources (can either be locked or unlocked).

• Semaphore - a special variable, used to record the number of
available units of a particular resource and one of the most
powerful means of synchronization.

• Event - used for synchronization of branch execution and
whenever a task requires information from another task.

• Monitor - is a higher level synchronization primitive, using
Mutex and semaphores to achieve synchronization. A mon-
itor allows threads to have both mutual exclusion and the
ability to wait (block) for a specific condition to become
true, but it is not supported by every OS or programming
language.

• Critical Section - mechanism to avoid race conditions by
granting access to shared resources only one task at a time.

More details and further explanations on synchronization
and synchronization primitives can be found in [41]. A more
detailed overview of the challenges arising due parallel execu-
tion of tasks from consumer electronic point of view can be
found in [34].

E. Scheduling Policies

Scheduling plays a central role by defining the ordering of
the tasks to be executed. There are two principal directions
there: global and partitioned schedulers. A global scheduler
stores all tasks in a single queue based on their priorities and
can schedule task on any available core of the system; task

migration is allowed. The partitioned scheduler by contrast as-
signs tasks to cores and features several queues, depending on
various task attributes (such as shared resource of task groups).
Partitioned scheduling is more common in the automotive do-
main, although the applied scheduling policy strongly depends
on the use-case. Various scheduling algorithms are used for the
automotive domain and safety-critical applications (see [10],
[11], [17], [24], [27], [41] for more details on scheduling and
applications in the automotive domain).

For safety-related systems hard real-time requirements are
of crucial importance, even in worst-case scenarios. One
way to generate static schedules for safety-critical multi-core
systems for the avionics domain is mentioned by Hilbrich
et al. [16]. Timing correctness in safety-related automotive
SW is also the aim of the work of Zalman et al. [42]. The
paper presents principles of worst-case execution time (WCET)
analysis with a commercially available WCET toolkit. The
main topic of Scheidemann et al. [38] is also related to
multi-core processors and AUTOSAR. A balanced graph-cut
problem approach is used to resolve the allocation of software
components (SWCs) to the cores. The work of Nemati et al.
[32] represents a partitioning algorithm to efficiently distribute
tasks along different cores. With this approach safety-critical
functionality has a dedicated core, while non-safety tasks can
run concurrently to improve performance.

F. Industrial and Open Sources Solutions for the Automotive
Domain

The market for automotive computing platforms is rela-
tively small in comparison to consumer electronics. The harsh
environmental constraints as well as cost pressures makes a
technology hand-over from consumer electronics to automotive
electronics (e.g., multi-core CPU) challenging. Multi-core con-
troller for automotive safety-critical applications are frequently
delayed lockstep systems (computing the same instructions and
data on two cores), but only rarely real parallel computing
units.

Table I outlines currently available automotive multi-core
systems and their key features (related to safety-critical appli-
cation and core functionality).

The availability of automotive operating systems support-
ing multi-core systems is also very limited. Table II presents an
overview of currently available automotive operating systems
supporting automotive multi-core systems, but does not claim
to be a complete or exhaustive list. Nevertheless, not all of the
RTOS variants mentioned may be appropriate for the specific
application or multi-core HW in use.

III. MIGRATION STRATEGY CONCEPT FOR LEGACY
SOFTWARE TO MULTI-CORE SYSTEMS

The motivation for migrating legacy software to multi-core
computing platforms is to maximize the reuse (and therefore
reducing costs) of ASW and control strategies already vali-
dated on previous (single core) computing platforms. While the
AUTOSAR methodology targets independence between ASW
and underlying computing platforms, still different aspects
such as overall SW architecture and proper use of embedded
peripherals still need to be considered to improve the over-
all performances (HW/SW co-design). In the following, the
aspects of (a) migration preparation steps, (b) guidelines for
migration, and (c) performances analysis after migration are

TABLE I. OVERVIEW OF AUTOMOTIVE MULTI-CORE SYSTEMS AND THEIR KEY FEATURES

Vendor Controller
Family Multi-core Features Distinctive Features

Freescale MPC574xP
2x e200z4 in delayed lock step (up to 200

MHz),embedded floating point unit,
32-channel eDMA in delayed lockstep

cores and DMA controller in delayed lock step,
end-to-end error correction coding, duplicated periphery,

start-up self-test, voltage regulator redundancy and
supply monitoring, fault collection unit

Renesas RH850/F1H 2x RH850 (up to 120MHz), floating point
unit, 32-channel DMA

clock monitor for PLL, internal oscillator and main
oscillator, 4 channel data CRC, low voltage indicator,
core voltage monitors, error collection coding for code
flash, data flash, local RAM, and retention RAM, HW

security module, memory protection unit, peripheral and
processor guards

Texas
Instruments

Hercules
TMS570

2 x AMR Cortex R in delayed lock step
(up to 300 MHz), floating point unit

separate clock tree, CPU logic built-in self-test, memory
protection, memory self-test, physical CPU diversity

Infineon AURIX 3x TriCore (up to 300 MHz), 2 TriCore
with additional lockstep core

diverse lockstep architecture, emulation device chip for
multicore debugging, tracing and calibration, optional

extended temperature range, redundant and diverse timer
modules, access permission system, safety management

unit, DMA

STMicroelectronics SPC5 2x e200z4d (up to 120MHz)
multiple clock generation, memory protection unit with

ECC, AES-128 cryptographic service engine, 32 channel
eDMA, optimized peripheral set for safety applications

Spansion Traveo
MB9D560 2x ARM Cortex R5 (up to 200 MHz)

multiple timers, multiple ADC, IPCU core
communication, CRC generators, exclusive access

memory

TABLE II. OVERVIEW OF AUTOMOTIVE MULTI-CORE OPERATING SYSTEMS AND THEIR KEY FEATURES

Vendor RTOS Name License Model Key Features

ERIKA Enterprise ERIKA OS a open source for
non-commercial use

ASIL D certified, OSEK/VDX based, AUTOSAR
aligned, high gear community

COMASSO COMASSO b open source for community AUTOSAR, high gear automotive community

Elektrobit EB tresos AutoCore
OS c COTS AUTOSAR 4.0, ASIL D certified, market-leading

product, exhaustive tool and integration support

Vector MICROSAR OS d COTS AUTOSAR 3.x, ASIL D certified, market-leading
product, exhaustive tool and integration support

QNX QNX Neutrino e COTS ASIL D and EAL 4+certified
ETAS RTA-OS f COTS proof-of-concept prototype, AUTOSAR 3.0
ENEA Enea OSE g COTS POSIX compatible

EUROS EUROSmp h COTS currently no certification

Mentor Graphics Nucleus RTOS i free evaluation AMP only, Mentor Hypervisor approach, no
certification available

ahttp://erika.tuxfamily.org/drupal/
bhttps://www.comasso.org/
chttps://automotive.elektrobit.com/products/ecu/eb-tresos/
dhttp://vector.com/vi microsar os en.html
ehttp://www.qnx.com/products/certified os/automotive-safety.html
fhttp://www.etas.com/en/products/rta osek.php
ghttp://www.enea.com/solutions/rtos/ose/
hhttp://www.euros-embedded.com/v3/index.php/de/produkte/echtzeitbetriebssysteme/eurosmp
ihttp://www.mentor.com/embedded-software/nucleus/amp

discussed under the perspective of the application owner (SW
integrator).

A. Migration Preparation: Selection of the CPU and of the
BSW

The first step is the identification of the proper CPU
and of the proper BSW / operating system. As indicated in
Table I there are few, but very manifold, multi-core hardware
implementations available for automotive applications. Besides
the obvious criteria (e.g. availability of supporting/debugging
tools, clock rates, and experiences), possible disadvantages
and architectural benefits (e.g. HW implementation of MPU,
peripheral bus guardians, lockstep mode cores, and HW safety
features) are the contributory factors in the selection of the
multi-core hardware.

Knowledge of the application is important here for under-
standing the required interfaces to the real world (sensors /
actuators) and possible supports by the CPU peripherals. Such
integration might have an important impact on the perfor-
mances, e.g., when down-sampling and filtering is performed
directly in HW and no longer by a low-level SW driver
(requiring high-frequency interrupts). Definition of the overall
architecture taking into account the peripherals embedded in
HW is thus a key aspect for improving performances. Another
aspect is the level of dependability (safety, security, reliabil-
ity...) of the application and the respective integrity level of the
computing platform (CPU and peripherals). Again, the CPUs
are providing mechanisms implemented in HW (e.g. lock-step,
memory protection) to shift part of the integrity issues from
low-level SW to HW, thus saving computing resources for the
application. Here again, refinement of the architecture taking
into account the mechanisms embedded within the CPU is a
key aspect for improving performances.

The next important step is the selection of an adequate
automotive operating system. Although only few operating
system variants exist for the automotive domain (see Table II
for an overview), the selection of the OS and its applicability
for different multiprocessing models (II-C), scheduling policies
(II-E), and implemented synchronization primitives (II-D) is
crucial. Also memory separation and protection (spatial free-
dom from interference) of individual tasks must be ensured and
peripheral resources must be accessed with care. Peripherals,
like other shared resources, are potential pitfalls and one of the
biggest bottlenecks of multi-core systems. Important aspect for
the choice of the BSW and operating aspects are:

• Maturity target for the application: The targeted devel-
opment might well have a different maturity level (e.g.,
demonstrator, mature prototype, SOP) and therefore make
different requirements on the BSW layers in respect to cost,
flexibility, openness, and maturity. Open sources solutions
might be preferred for rapidly making the first steps in
a flexible prototyping context, while components-of-the-
shelf solutions might be the better choice to rely on stable
functionalities compliant to a given standard.

• Functionalities and CPU support: The correct migration of
the BSW / OS for a specific CPU and for a specific compiler
shall be available. It can occur that new CPU generations are
not (fully) supported, that specific BSW layer has not been
migrated or that specific HW mechanisms from the CPU are
not accessible for the BSW.

• Deployment and industrial acceptance of the BSW / OS:
The automotive industry is split into a complex ecosystem
comprising car manufacturers, Tier 1 / 2 suppliers, and tech-
nology suppliers. It is unlikely that car manufacturers will

develop the entire software on their own. On the contrary,
the car manufacturer or Tier 1 supplier is responsible for
system integration and must therefore take a decision about a
computing platform and BSW / OS. The technology supplier
needs to follow this choice and typically also ensure the
compatibility of its application SW for different computing
platforms.

In summary, selection of CPU and BSW as well as a
profound understanding of their functionalities and maturity
are crucial aspects for the proper integration of the application
SW and for optimizing the entire control system.

B. Migration of Legacy Software to Multi-Core Systems

The process of customizing existing applications for multi-
core systems is a key issue in multi-core development and
a tough and enormously important task of multi-core system
migration. Although, parallelization of source code takes a
back seat in automotive domain compared to the merging
of multiple functions in one multi-core system. Automatic
supporting tools, such as parallelizing compilers or automatic
schedule generators, are in early development stages and still
frequently inadequate in parallelizing codes [4], [35]. The
following generic steps thus turned out to be best practice for
parallelizing software [6], [31]:

1) Identification of parallelism: As first step, the type of par-
allelism (data and/or task parallelism) must be determined
to select the adequate computing architecture (see II-A).

2) Profiling of existing application: This step identify the
single-core/ best possible/ current performance of particular
functions or the whole application to get reference values.

3) System decomposition: The biggest problems of parallel
programming, this step shall brake down the system into
as independent as possible parts. For this no simple and
straightforward way is available, due to the creative and
multi-constraint nature of software architecture develop-
ment. In case of intersection of parallel tasks, appropriate
synchronization (see II-D) must be applied.

4) Identification of connections: In this step shared memories,
task execution orders, and task synchronization efforts
shall be determined to evaluate these intersections in later
development phases and ensure that these facts do not get
omitted.

5) Detailing synchronizations: If decomposition identified in-
dependent tasks and connection between dependent tasks
are also identified, this step should determine the ranking
of tasks dependencies (e.g. which task gets shared resource
first, how to react on resource limitation).

As previously mentioned, merging of the functionalities
into one multi-core system and making use of additional
hardware features are the most common drivers for multi-core
migration in the automotive context. Allocating tasks and cores
efficiently and safely is the main challenge in context of real-
time multi-core systems [15].

1) Shared variables need to be identified and only accessed at
starting and ending time of the runnable.

2) Sequential structure diagram and data flow diagram of
runnables to determine data consistency must be generated.

3) HW resources accesses shall be identified and only be done
via basic software modules (ASW access to HW resources
must be avoided).

4) Core mapping of task must be done with a focus on
minimizing inter-core communication and optimizing the
distribution of workloads.

The last step of the above mentioned task to core allocation
varies from case to case, depending on the main optimization

constraints (e.g. minimizing inter-core communication, work-
load balancing, separation of code) and will not be reasonably
feasible without an optimization tool for complex systems.
Optimization tools are based on the graph-cut problem solution
and are likely to provide various solutions depending on the
main optimization parameters and on the software functionali-
ties themselves. It is thus likely that every SW function update
will lead to different optimized task allocations, resulting in
different program flows and finally having negative side-effects
for the certification of safety-critical software.

There are many toolsets available for parallelizing serial
software codes in the consumer electronic domain [31]:

• CriticalBlues Prism tool1: Provides analysis and an explo-
ration and verification environment for embedded software
development using multicore architectures. The tool works
for many microprocessor chips including x86, PowerPC
(PPC), MIPS, ARM, and the Android operating system.

• Vector Fabrics Pareon tool2: For parallelizing serial software
for Intel x86 and the ARM Cortex-A multicore embedded
platforms.

• OpenMP3: Provides compiler directives, library functions,
and environment variables that can be used for parallelizing
serial applications. Big disadvantage, it does not assist with
race condition and synchronization bugs.

• Clean C4: Is an eclipse based plug-in automatically convert-
ing C code from a single core microprocessor to a multicore
microprocessor. The tool requires compliance with 29 Clean
C programming rules otherwise the result is most likely non-
operational.

In general, the applicability of these tool suites must be
carefully scrutinized. Other approaches focus on parallelization
of Matlab/Simulink models, as with Jahr et. al [20], [21] and
Cha et. al [7]. Lastly, also parallelization approaches on higher
level of abstraction, based on UML activity diagram with
extension [15], [22], [29] exist. However, these approaches
require a detailed model of the data flow and program flow
dependencies and therefore require quite excessive UML mod-
eling activities.

Absolutely independently running tasks on different cores
tend to be exceptions. Inter-core communication and syn-
chronization is not always avoidable, and should therefore be
carefully considered when linking execution chains running on
different cores. The use of semaphores and locks, together with
split program execution over several cores is not necessarily
deterministic and can create data race conditions [28]. The
safest way to implement inter-core communication is by using
shared memory regions with only one producer possible.
OSEK OS standard base task synchronization on WaitEvent()
service does not have an associated time-out and needs to be
monitored via alarms. Nevertheless, OSEK OS is intentionally
developed for single-core systems.

By contrast, OSEK’s successor AUTOSAR specifies a
multi-core SpinlockType mechanism (for inter-core task syn-
chronization) and Inter OSApplication Communication (IOC),
which allows communication between different applications on
different cores.

1http://www.criticalblue.com
2http://www.vectorfabrics.com
3http://www.opnemp.org
4http://www.imec.be/CleanC

C. Post-Migration: Performance Analysis

Even when all the previously mentioned restrictions have
been taken into account, some side-effects or design short-
comings might still exist. As a result of this situation a
migration analysis and alignment of simulated and tested
results is required. Also the true performance increase and
execution times of the overall system compared with the
expected performance and timings should be correlated. Here
too debug, instrumentation, and calibration tool supports are
of major importance. In contrast to single-core systems, multi-
core systems inherit new timing effects (such as delays through
resource conflicts, IOC overheads) which must be analyzed and
harmonized with the timing models; an evaluation of meeting
the safety-critical timings at corner cases must also be done.
Several techniques and a list of supporting tools to identify
concurrency issues can be found in [34]. The taxonomy of
Fernandez et. al [9] presents state-of-the-art techniques to
analyze timing impacts of resource contention. Several tools
are applicable for timing analysis:

• Precision Pro: Tool prototype for generation of hard real-
time schedule tables.

• SymTA/S5: Tool for scheduling analysis, architecture opti-
mization and timing verification of multi-core ECUs and
distributed embedded systems (E2E communication).

• RTaW6: Simulation and timing analysis tools aiming in au-
tomating design, verification, and configuration of embedded
networks and ECUs.

• Inchron7: Design and test tools for model-based real-time
simulation and analysis.

IV. APPROACHES FOR ENSURING THE INTEGRITY OF
MULTI-CORE COMPUTING PLATFORMS

According to [3], the original definition of dependability
is the ability to deliver service that can justifiably be trusted.
In the context of the automotive domain some dependability
aspects are predominant such as e.g., reliability (life time and
reputation) and safety (absence of catastrophic consequences).
The 3-layer monitoring concept [28], [43] is meanwhile state-
of-practice; it consists of software functionality (layer 1) im-
plementing the normal functions, function monitoring (layer 2)
preventing the physical system to move to an unsafe state, and
device monitoring (layer 3) ensuring integrity of the control
unit and typically integrating a handshake with an external
chip (alive message).

It is probable that the most important characteristic of
multi-core computing platforms is the parallel execution of
instructions, which can have a serious impact on the deter-
minism of the application. Hence parallel execution can lead to
race conditions and resource conflicts between the tasks, thus
creating deadlock or starvation. The performances and more
especially the timing requirements (in case of hard real-time
systems) can no longer be guaranteed, thus having an impact
on the dependability of the system. A core aspect is therefore
to guarantee freedom from interference, defined in [19] as the
absence of cascading failures between two or more elements
that could lead to the violation of a safety requirement. Proper
encapsulation of the tasks must be provided.

Traditional methodologies are often not applicable without
further ado [39] and too conservative SW migration could even

5https://www.symtavision.com/products/symtas-traceanalyzer/
6http://www.realtimeatwork.com/
7http://www.inchron.com/

lead to a performance decline of the multi-core system. The
challenges involved in this context are clearly manifold and
one common solution for all of these challenges is not yet
available. Some publications thus focus on the general appli-
cability of multi-core systems for safety-critical applications
[23], [35]. The work of Gashi et al. [13] focuses on redundancy
and diversity, and their effects on the safety and security of
embedded systems. This work is part of the SeSaMo (Security
and Safety Modeling for Embedded Systems) project, which
focuses on synergies and trade-offs between security and
safety through concrete use-cases. As indicated in this work
and mentioned in the earlier section, a proper selection of
the multi-core hardware based upon architecture constraints
is crucial. According to Pollack’s Rule [8] the increase of
available performance (roughly proportional to the square root
of increase of complexity) should on the other hand not be
overrated.

Safety standards, such as the road vehicles functional
safety norm ISO 26262 [19] and its basic norm IEC 61508 [18]
present requirements and guidance for safety-critical system
development. An important concept well suitable for multi-
core computing platforms is decomposition of the control
path as two independent channels. Due to the redundancy, the
integrity of each path can be lowered (e.g., decomposing an
ASIL D system into two independent ASIL B components).
To support this independence, evidence for the freedom from
interference of these channels is required. A guide to functional
safety of automotive systems according to ISO 26262 can be
found in [5], [14] or in the SafEUr functional safety manager
trainings [37].

Freedom from interference is the most crucial feature
needed to be ensured for safety-critical systems. This can be
argued via: (a) freedom from temporal interference (ensuring
meeting timing constraints), (b) freedom from data interference
(preventing from data corruption), and (c) freedom from com-
munication interference (ensuring end-to-end communication
within time limits). Temporal autonomy must be ensured by
the real-time operating system (RTOS). Asymmetric Multi-
Processing model is recommended for safety-critical context
to ensure task or thread locking to a specific core. The
main requirements for safety-critical applications operating
systems are: (a) guaranteeing mutual exclusion over critical
data sections, (b) ensuring freedom from deadlock, livelock,
and starvation, (c) prevention of uncontrolled priority inver-
sion, and (d) ensuring freedom from interference. Ensuring
data consistency and prevention from data corruption must
be provided either via dedicated HW features (such as MPU)
or via synchronization primitives supported by the RTOS. A
common approach is to store safety-related data in diverse
representation on a multiple basis to ensure consistency of
these data and make use of error-correcting codes (ECC).
Freedom from interference of communication and peripherals
also needs to be ensured via RTOS and basic software.
Peripherals, like other shared resources, are potential pitfalls
for freedom from interference argumentation and one of the
biggest bottlenecks of multi-core systems. Also exclusive
usage for peripherals needs to be ensured via synchronization
primitives, which could also lead to obscured dependencies.
A frequently applied approach in the safety-related context
is to assign all peripheral access to one core, which acts
as an IO master. The AUTOSAR multi-core approach [2]
also recommends allocation of BSW functionality solely on
one master core. This implicitly prevents the parallel cores

from accessing the same microcontroller hardware resource
simultaneously [15].

A promising approach for the development of dependable
systems is the time-triggered paradigm [25], [26], [33]. An
event-triggered architecture is characterized by the fact that
all system activities are initiated by an event and consequently
react to its environment (an operation is started as soon as the
event is received, regardless the current processing status). On
the contrary, in the time-triggered architecture, every action is
derived solely from the progression of real-time and thus fol-
lows the progression of its environment (an operation is started
at a pre-defined starting point and processes the information
that has collected since the last computation; conflicts about
processing resources are avoided per construction). The time-
triggered paradigm provides the following attributes, important
for the efficient development of dependable systems:

1) Stability of prior certification, means that validated services
do not refute by integration.

2) Constructive integration, in a way that additional services
do not affect already integrated timing behavior.

3) Robustness against malicious temporal control signal inter-
faces.

4) Timing and data dependencies resolvable at system design
time, thus simplifying the inter-task synchronization and
avoiding race conditions.

5) Deterministic task execution with guaranteed worst-case
timing.

The time-triggered paradigm, while not fully industrialized
for the automotive domain yet, still provides important con-
cepts for the design of high integrity multi-core platforms as
a basis for dependable applications.

V. CONCLUSION

Multi-core computing platforms as well as respective basis
software and operating systems are providing good opportuni-
ties to improve existing automotive control strategies or even
becoming the enabler for new functionalities (e.g., ADAS).
At the same time, the introduction of concurrent execution
by different cores is leading to a paradigm change in the
software. Topics such as resource conflicts, race conditions,
task synchronizations, guaranteed execution time, and freedom
from interference are becoming more and more relevant. These
challenges, however, need to be resolved in a holistic manner
in order to enable legacy SW to run on a multi-core plat-
form and new control strategies to be deployed successfully.
Hence, during SW integration on multi-core the computing
platform, BSW and operating systems must be configured
or even tailored according to the specific needs from the
control strategy. The final challenge is the ability to efficiently
combine expertise between multi-core computing platforms,
operating systems and control strategies. Hence, only with
this combination can the real performances of the resulting
automotive embedded system be achieved. Based on a state-of-
practice survey in the automotive domain, this paper provides
guidance for the migration of legacy SW from single core to
multi-core platforms.

ACKNOWLEDGMENTS

This work is partially supported by the EMC2 and the
MEMCONS projects.

The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement nb 621429
(project EMC2) and financial support of the ”COMET K2 -

Competence Centers for Excellent Technologies Programme” of the
Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT), the Austrian Federal Ministry of Economy, Family and
Youth (BMWFJ), the Austrian Research Promotion Agency (FFG),
the Province of Styria, and the Styrian Business Promotion Agency
(SFG).

Furthermore, we would like to express our thanks to our sup-
porting project partners, AVL List GmbH, Virtual Vehicle Research
Center, and Graz University of Technology.

REFERENCES

[1] AUTOSAR development cooperation. AUTOSAR AUTomotive Open
System ARchitecture, 2009.

[2] AUTOSAR Development Cooperation. Guide to Multi-Core Systems.
online, 2013.

[3] A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its Threats
- A Taxonomy. In R. Jacquart, editor, IFIP Congress Topical Sessions,
pages 91–120. Kluwer, 2004.

[4] V. Bendiuga. Multi-Core Pattern. Master’s thesis, School of Innovation,
Design and Engineering Malardalen University Sweden, December
2012.

[5] K. Boehringer and M. Kroh. Funktionale Sicherheit in der Praxis, July
2013.

[6] B. Brecht and S. Luys. 201121, March 2011.
[7] M. Cha, S. K. Kim, and K. H. Kim. An Automatic Parallelization

Scheme for Simulink-based Real-Time Multicore Systems Systems. In
Software Technology, volume 5 of ASTL, pages 215 – 217. Sience &
Engineering Research Support Society, 2012.

[8] J. Circello. Rationale for Multicore Architectures in Auto Apps.
Webinar, June 2011.

[9] G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and
F. J. Cazorla. Contention in Multicore Hardware Shared Resources:
Understanding of the State of the Art. In H. Falk, editor, 14th Inter-
national Workshop on Worst-Case Execution Time Analysis, volume 39
of OpenAccess Series in Informatics (OASIcs), pages 31–42, Dagstuhl,
Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[10] C. Ficek, N. Feiertag, and K. Richter. Applying the AUTOSAR
timing protection to build safe and efficient ISO 26262 mixed-criticality
systems, 2012.

[11] C. Ficek, K. Richter, and N. Feiertag. Schedule Design to Guarantee
Freedom of Interference in Mixed Criticality Systems. SAE Int. Journal
Passeng. Cars - Electron. Electr. Syst., 5:46–54, 04 2012.

[12] M. J. Flynn. Some Computer Organizations and Their Effectiveness.
IEEE Trans. Comput., 21(9):948–960, September 1972.

[13] I. Gashi, A. Povyakalo, L. Strigini, M. Matschnig, T. Hinterstoisser, and
B. Fischer. Diversity for Safety and Security in Embedded Systems.
In International Conference on Dependable Systems and Networks,
volume 26, 06 2014.

[14] V. Gebhardt, G. Rieger, J. Mottok, and C. Giesselbach. Funktionale
Sicherheit nach ISO 262626 - Ein Praxisleitfaden zur Umsetzung,
volume 1. Auflage. dpunkt.verlag, 2013.

[15] J. Han, J. S. Park, M. Deubzer, J. Harnisch, and P. Leteinturier. Efficient
Multi-Core Software Design Space Exploration for Hybrid Control Unit
Integration. In SAE Technical Paper. SAE International, 04 2014.

[16] R. Hilbrich and H.-J. Goltz. Model-based Generation of Static Sched-
ules for Safety Critical Multi-Core Systems in the Avionics Domain.
In WMSE11, 2011.

[17] R. Hilbrich, J. Reinier van Kampenhout, and H.-J. Goltz. Modellbasierte
Generierung statischer Schedules fuer sicherheitskritische, eingebettete
Systeme mit Multicore-Prozessoren und harten Echtzeitanforderungen.
Informatik aktuell, pages 29 – 38, 2012.

[18] ISO - International Organization for Standardization. IEC 61508
Functional safety of electrical/ electronic / programmable electronic
safety-related systems.

[19] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[20] R. Jahr, M. Frieb, M. Gerdes, and T. Ungerer. Model-based Paralleliza-
tion and Optimization of an Industrial Control Code. Tagungsband des
Dagstuhl-Workshops, page 63, 2014.

[21] R. Jahr, M. Frieb, M. Gerdes, T. Ungerer, A. Hugl, and H. Regler.
Paving the Way for Multi-cores in Industrial Hard Real-time Control
Applications. In 9th IEEE International Symposium on Industrial
Embedded Systems (SIES), WiP-Session, 2014.

[22] R. Jahr, M. Gerdes, and T. Ungerer. On Efficient and Effective
Model-based Parallelization of Hard Real-Time Applications. Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme
IX, pages 50–59, 2013.

[23] S. Jena and M. Srinivas. On the Suitability of Multi-Core Processing
for Embedded Automotive Systems. In Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2012 International
Conference on, pages 315–322, Oct 2012.

[24] F. Kluge, C. Yu, J. Mische, S. Uhrig, and T. Ungerer. Implementing
AUTOSAR Scheduling and Resource Management on an Embedded
SMT Processor. In 12th International Workshop on Software &
Compilers for Embedded Systems, pages 33 –42, 2009.

[25] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, Norwell, MA,
USA, 1st edition, 1997.

[26] H. Kopetz and G. Bauer. The Time-Triggered Architecture. In
PROCEEDINGS OF THE IEEE, pages 112–126, 2003.

[27] E. Lalo and M. Deubzer. Effects of Task Priority Assignment in Em-
bedded Multicore Real-Time Systems. Embedded Systems Engineering,
June 2014.

[28] P. Leteinturier, S. Brewerton, and K. Scheibert. MultiCore Benefits &
Challenges for Automotive Applications. In SAE Technical Paper. SAE
International, 04 2008.

[29] C.-S. Lin, C.-H. Lu, S.-W. Lin, Y.-R. Chen, and P.-A. Hsiung.
VERTAF/Multi-Core: A SysML-Based Application Framework for
Multi-Core Embedded Software Development. Journal on Computer
Science and Technology, 26(3):448–462, 2011.

[30] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114 – 117, April 1965.

[31] B. Moyer. Real World Multicore Embedded Systems. Expert guide.
Newnes, Newton, MA, USA, 1st edition, 2013.

[32] F. Nemati, M. Behnam, and T. Nolte. Efficiently Migrating Real-Time
Systems to Multi-Cores. In Proceedings of 12th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA
2009, September 22-25, 2008, Palma de Mallorca, Spain, pages 1–8,
2009.

[33] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz. The
time-triggered System-on-a-Chip architecture . In IEEE International
Symposium on Industrial Electronics, 2008. ISIE 2008, pages 1941–
1947, 2008.

[34] R. V. Patil and B. George. Tools And Techniques To Identify Concur-
rency Issues. online, June 2008.

[35] F. Reichenbach and A. Wold. Multi-core Technology – Next Evolution
Step in Safety Critical Systems for Industrial Applications? In Digital
System Design: Architectures, Methods and Tools (DSD), 2010 13th
Euromicro Conference on, pages 339–346, Sept 2010.

[36] K. Richter and S. Schliecker. Sicher auf Multi-Core umsteigen.
HANSER automotive, 10:38–42, 10 2013.

[37] SafEUr Training Material Committee. ECQA Certified Functional
Safety Manager Training Material. training dossier, April 2013.

[38] K. Scheidemann, M. Knapp, and C. Stellwag. Load Balancing in
AUTOSAR-Multicore-Systemen. WEKA Fachmedien GmbH, April
2010.

[39] D. Schneider, E. Armengaud, and E. Schoitsch. Towards Trust As-
surance and Certification in Cyber-Physical Systems. In SAFECOMP
Workshops, pages 180–191, 2011.

[40] G. Scuro. Automotive industry: Innovation driven by elec-
tronics. http://embedded-computing.com/articles/automotive-industry-
innovation-driven-electronics/, 2012.

[41] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2007.

[42] R. Zalman, A. Griessing, and P. Emberson. Timing Correctness in
Safety-Related Automotive Software. In SAE Technical Paper. SAE
International, 04 2011.

[43] T. Zurawka and J. Schaeuffele. Method for checking the safety and
reliability of a software-based electronic system, January 2007.

Pattern Catalog for MultiCore Migration of Embedded
Automotive Systems
Georg MACHER, Graz University of Technology
Andrea HÖLLER, Graz University of Technology
Eric ARMENGAUD, AVL List GmbH
Christian KREINER, Graz University of Technology

Embedded systems are already integrated into our everyday life and play a central role in all domains including automotive, aerospace,
healthcare or industry. The complexity of embedded systems and software has grown significantly in recent years. For the automotive industry,
as an example, embedded systems components are responsible for 25% of vehicle costs, while the added value from electronic components
range between 40% for traditional vehicle up to 75% for electrics and hybrid vehicles. Driven by the ongoing challenge of reducing cost and
simultaneously replacing safety-critical mechanical systems with more advanced embedded system, multi-core systems are also increasingly
relevant for safety-critical embedded systems. However, when migrating safety-critical applications to multi-core systems special attention
should be paid to preserve determinism, and assure certifiability of the system.
Aim of the paper is to present a pattern catalog to provide a migration strategy for legacy software developed for safety-critical embedded
single-core systems to parallel computing multi-core platforms. The pattern catalog shall help system integrators and software developers in
the automotive domain to migrate existing safety-critical software to more advanced multi-core platforms. Furthermore, this paper highlight
aspects and demands which influence the migration of safety-critical systems to multi-core computing platforms.

Categories and Subject Descriptors: H.5.0 [Information Interfaces and Presentation]: General—; H.1.1 [Models and Principles]: System
and Information Theory—; K.2.2 [Computers and Society]: Social Issues—

General Terms: Embedded Automotive Multi-Core

Additional Key Words and Phrases: embedded systems, multi-core, migration strategy.

ACM Reference Format:

Macher G., Höller A., Armengaud E., and Kreiner C., 2015. Pattern Catalog for MultiCore Migration of Embedded Automotive Systems. jn 0, 0,
Article 0 (0), 11 pages.

1. INTRODUCTION

Moore’s law [Moore 1965], stating the doubling of the computer capacity every 2 years, is still a strong enabler
for this fast function increase and at the same time cost-per function decrease. The current development trend
for computing platforms has moved from increasing the frequency of single cores to increasing the parallelism
(increasing the number of cores on the same die). Multi-core and many-core technologies have strong potential to
further support the different technology domains, but at the same time present new challenges.

Hence, the automotive industry is facing a growing gap between the technologies and required level of expertise
to make best use of them. The computing platforms are becoming more and more high-performance with concurrent

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPloP ’15, July 08 - 12, 2015, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3847-9/15/07 ...$15.00.
http://dx.doi.org/10.1145/2855321.2855346

computing capabilities, larger embedded memories as well as increasing number of integrated peripherals. The
complexity of these computing platforms is very high, the related user guides is made of several of thousands
of pages. Regarding automotive software, approaches are following a similar trend by standardizing software
modules in several tens of thousands pages of specification.

The automotive industry is confronted to the central question how to migrate, optimize and validate a given
application (or set of applications) on a given computing platform with a given operating system. A know-how
transfer is required to take over the role of control system integrator and identify the application requirements (both
functional and non-functional) and perform a mapping to the SW and HW architecture. The quality of this mapping
has a direct impact on the performance of the control system, and thus of the entire mechatronic system.

Contributions of this paper is a pattern catalog intended for migration scenarios for legacy application software
from single to multi-core computing platforms. The presented pattern catalog shall support the reuse of legacy
software on new multi-core platforms while minimizing the migration efforts and risks. The pattern catalog has been
mined in industrial projects done in the automotive domain. The paper is organized as follows: In Section 2 the
migration pattern catalog is briefly described and the two key patterns are discussed in Section 3 and 4. Section 5
additionally discusses the fundamentals of parallel computing and solutions available for the automotive domain.
Finally, Section 6 concludes this work.

2. EMBEDDED SYSTEM MULTI-CORE MIGRATION PATTERN LANGUAGE

The first section gives a brief overview of the pattern catalog itself. This overview is followed by a brief presentation
of the patterns included in the pattern catalog in pattlet form and the description of the pattern description structure
of the two main patterns. The two most essential patterns of the pattern catalog (also highlighted in Figure 1)
are then described in more details in Sections 3 and 4 of this document. The other patterns will be part of future
publications.

2.1 Overview of the Pattern Language

In addition to embedded systems also for safety-critical applications the demand for multi-core systems is
increasing. For multi-core hardware also the knowledge transfer from consumer electronic multi-core systems
to embedded real-time multi-core systems is applicable [Moyer 2013]. But for safety-critical systems it is of
utmost importance to analyze possible certification and design pitfalls that multi-core might inherit. Multi-core
systems are parallelizing execution of instructions, which can jeopardize safety-critical application’s most important
characteristic: determinism. Therefore rigorous mitigation strategy for using multi-core systems in safety-critical
context is required [Brecht and Luys 2011].

This pattern catalog is intended for migration of safety-critical systems to multi-core platforms. Parallelizing of
such functionalities is usually not easy, but requires proving of freedom from interference with other functions.
Additionally, the computing performances of single-core platforms reached their limits and special hardware
functionalities are frequently only available with modern multi-core systems, thus a sufficient migration and
parallelization of SW functionalities is not only desired but demanded.

Therefore, a 6 steps approach for migration of existing software from single-core to multi-core systems helps to
migrate in a more structured way and to avoid common migration errors and pitfalls. Figure 1 shows the necessary
migration steps and the related patterns of the Embedded System Multi-Core Migration pattern catalog. The
individual patterns are described briefly (in pattlet format) in the following sections. While the two most essential
patterns will be described in more details in the following sections of this work. With the application of this pattern
catalog the following assets and drawbacks are implied:

+ Potential multi-core migration pitfalls may be avoided.
+ Determinism and worst-case timing requirements can be proven.
+ Special multi-core HW features can be used more optimal.
+ May help to overcome inhibition level for migration of system.

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 2

SINGLE CORE SYSTEM

OPERATING SYSTEM
SELECTION

PERIPHERAL
USAGE

INTER CORE
COMMUNICATION

SW DESIGN
STRUCTURINGDEVICE SELECTION

MEMORY
ORGANISATION

MULTI CORE SYSTEM

STEP I STEP II STEP III STEP IV STEP V STEP VI

Fig. 1. Overview of the Migration Steps of the Pattern Catalog

- Requires additional efforts for migration of legacy code.

2.2 Presentation of the Patterns included in the Pattern Catalog

The presented pattern catalog consists of 6 patterns for migration from single-core to multi-core systems. The
two most essential patterns will be described in more details in the following sections of this work, while the other
patterns are described briefly in this section in pattlet format. These patterns will be part of future publications.

Pattern Problem Solution

DEVICE SELECTION Single-core embedded system controller
reach their computing power limitations, while
demands for more complex software functions
still increases

Therefore, the integration of multiple single-
core function controller into one multi-core
systems is required. Proper multi-core device
shall be selected, based upon architecture
and processing constraints.

PERIPHERAL USAGE Each function of an embedded system re-
quires peripherals to interact with the envi-
ronment, but multi-core systems have only
limited number of physical pins.

Peripheral interfaces must be shared between
cores in a proper way to support all function
interfaces mutually independent and within
correct timing limits.

OPERATING SYSTEM

SELECTION

Standard automotive real-time operating sys-
tems (RTOS) do not adequately support multi-
core features and lead to known parallel pro-
cessing problems

Proper multi-core RTOS must be chosen to
avoid parallel processing problems (such as
deadlocks, livelocks, starvation, race condi-
tions, non-freedom from interference).

MEMORY ORGANIZA-
TION

Multi-core systems imply different available
memory sections, which affect execution time
and hamper correct and optimized data ex-
change between parallel executions.

Proper memory organization and access man-
agement of memory has to be ensured. Also
memory separation and protection (spatial
freedom from interference) of safety-critical
tasks must be ensured.

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 3

2.3 Specification of the Pattern Structure

We specify the following two pattern in more details in the typical structure of [Salingaros 2000; Alexander et al.
1977]:

Context - Describes the situation in which the pattern can be applied and in which the problem occurs.

Problem - States the scenario which requires action to be taken and problems the pattern shall solve.

Forces - Gives additional motivation for usage of the pattern and describes the constraints which shape the
specific solution for the problem.

Solution - Describes the steps and actions to be taken to solve the existing problem in the focus of the given
context and specific forces.

Consequences - The application of the pattern solves the problem, but also results in some consequences, which
themselves also include side effects.

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 4

SW
Module A

SW
Module C

SW
Module B

SW
Module D

SW
Module E

SW
Module F

Input
Interface

Output
Interface

SW
Module A

SW
Module C

SW
Module B

SW
Module D

SW
Module E

SW
Module F

Input
Interface

Output
Interface

CORE I

CORE II

Fig. 2. Depiction of the SW Architectural Design Structuring Pattern

3. SW ARCHITECTURAL DESIGN STRUCTURING PATTERN

3.1 Context

Usually SW architectures are originally designed for single-core systems and not optimized for multi-core parallel
execution features. Therefore, such a SW architecture must be optimized for multi-core systems. Allocating tasks
on cores efficiently and safe is the main challenge in context of safety-critical multi-core systems. Multicore platform
enables concurrent execution of tasks, which implies also that the resource management may be corrupted due
parallel executed tasks and the execution order of tasks may vary. Such problems may be dormant issues on
single-core systems, but manifest when combined with multi-core system technology. The task allocation problem
is a NP-hard problem and manual definition of correct real-time scheduling for multi-core systems is not applicable.

3.2 Problem

Using multi-core systems for single-core SW architecture execution may not lead to expected speedup and can
introduce parallel task execution problems (e.g. deadlocks, starvation, and race conditions).

3.3 Forces

—Whole SW system cannot be allocated to single-core - when single core SW systems are migrated to new
(multi-core) systems this is usually triggered due to the fact that SW architecture does not fit within the system
limits.

—Mapping of tasks to cores does not result in expected speedup - frequently speedup is expected to be equivalent
to number of cores, which is a very rough estimation and cannot be met due to required communication and
synchronization efforts.

—Maximizing of speedup is required to enable execution of more tasks.
—Only correct execution order of tasks ensures correct computation of output - resulting due to data dependencies

and time-out requirements for data.
—Task execution order may vary due to parallel task execution - independently running cores may start up with

varying delays and time jitters can occur during execution.
—Speedup of multi-core systems only achievable due to parallelization - usually individual cores of the multi-core

systems operate at lower frequency than single-cores and only gain speedup due to parallel execution
—Shared resources hamper parallel execution - shared resources must only be accessed by a single core at time,

which prevents parallel access and implies delay times and synchronization.
—Miss fitting parallelization may lead to negative speedup due to reduced computation power of a single MC core

compared to single-core systems.

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 5

3.4 Solution

Analyze and optimize the SW architecture for parallel computing execution. The SW architecture must be partitioned
to support correct execution order of tasks on parallel cores.

Hence, collect all SW tasks and split up the tasks in groups which can be executed in parallel:

(1) Identify shared variables and access them only at starting and ending time of the task.
(2) Split tasks into task groups to enable parallel execution.
(3) Protect concurrent access to shared resources via dedicated synchronization primitives.
(4) Assign groups of tasks to different cores of the multi-core system.

For further readings, a description for the generation of static schedules for safety-critical multi-core systems
is mentioned by Hilbrich et al. [Hilbrich and Goltz 2011] and by the work of Zalman et al. [Zalman et al. 2011].
Furthermore, the work of Nemati et al. [Nemati et al. 2009] represents a partitioning algorithm to efficiently
distribute tasks along different cores.

3.5 Consequences

+ increases speedup due to parallel execution of tasks
+ optimization for application of multi-core features
+ work-load balance between cores
- tedious task, requires adequate tool support
- additional efforts (cost/time/skills) for redesign of SW architecture required
- more complicated timing analysis due to parallel execution
- parallelization activity is complex and requires special know-how and tool support
- errors are harder to find in parallelized code
- correct task execution harder to test due to parallelization
- timing errors harder to find

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 6

4. INTER-CORE COMMUNICATION AND SYNCHRONIZATION PATTERN

TASK
A

TASK
B

TASK
C

TASK
D

TASK
E

CORE I CORE II

TASK
A

TASK
B

TASK
C

TASK
D

TASK
E

CORE I CORE II

Fig. 3. Depiction of the Inter- Core Communication and Synchronization Pattern

4.1 Context

Absolutely independently running tasks on different cores are rarely. Excessive parallelization of SW may lead to
immoderate synchronization time overheads; inter-core communication and synchronization decreases the overall
system performance.

4.2 Problem

Parallel execution requires exorbitant amount of time for synchronization of cores and reduces parallelization
speedup.

4.3 Forces

—core cycle-time is not fully synchronized - time jitter and varying startup delays can occur between cores.

—need for synchronization of data and communication between cores

—non-interacting tasks rather uncommon in automotive applications

—independently running cores must be blocked to wait for longest execution to finish - if synchronization of
independent tasks is required the longest execution time of all parallel tasks is required and therefore other
tasks are required to wait.

—SW functions may be spread over different cores for execution - due to the fact that the SW functions complexity
may be off the resource limits of a single core.

4.4 Solution

Therefore, decrease inter-core communication efforts by clever allocation of related functions onto the same core.
Analyze data dependencies and information exchange between SW tasks. Afterwards split up the tasks in

groups which interchange information only between tasks of same group. Thus minimize communication between
groups of tasks. As second step, allocate these groups to dedicated cores for execution.

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 7

Inter-core communication and synchronization is not always avoidable, and should therefore be carefully
considered when linking execution chains running on different cores.

4.5 Consequences

+ minimizes the synchronization points - due to minimizing inter-core communication
+ enabling more independently parallel execution with less synchronization points - due to reduced synchronization

points and less inter-core communication
+ reduction of time consuming data exchange across core boundaries - this ensures further speedup and better

parallelism of SW execution
+ higher overall speedup due to less communication efforts
- application specific mapping - changes in application code also requires reanalysis of inter-core communication

and might lead to new task to core assignments
- different workloads on cores - due to minimization of inter-core communication workload balancing may not be

perfect.
- non-optimal parallelization of SW - inter-core communication and reduction efforts may hinder parallelization of

software

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 8

5. RELATED WORK

Several existing approaches deal with safety-critical systems and multi-core platforms. Obviously the challenges in
this context are manifold and a common solution for all challenges is not yet available. Therefore, some publications
focus on the general applicability of multi-core systems for safety-critical applications [Jena and Srinivas 2012;
Reichenbach and Wold 2010].

Numerous publications related to each of the following sections exist, even solely focusing the automotive
domain. Therefore, the following paragraphs solely present a brief overview and do not claim to be complete or
exhaustive.

5.1 Scheduling and Timing Analysis

For safety-related systems hard real-time requirements are of crucial importance (also for worst-case scenarios).
One way to generate static schedules for safety-critical multi-core systems for the avionics domain is mentioned by
Hilbrich et al. [Hilbrich and Goltz 2011]. The authors state that generating static schedules for simple single-core
systems is possible manually, but novel approaches are needed as generating schedulings for multi-core systems
increases in complexity. Furthermore, a scheduling tool called PRECISION PRO, capable of processing models
presented in a textual notation is presented.

Timing correctness in safety-related automotive SW is also the aim of the work of Zalman et al. [Zalman et al.
2011]. The paper presents principles of WCET analysis with a commercially available WCET toolkit.

Lakshamanan et. al [Lakshmanan et al. 2011] describe the timing uncertainties introduced by standard test-
and-set spinlock mechanisms of AUTOSAR OS. The authors present an associated analysis used to bind the
worst-case waiting times for accessing shared resources.

5.2 Resource Sharing

The AUTOSAR functional definition is based on the concept of single-threaded processors. Kluge et al. [Kluge et al.
2009] discuss the implementation of an AUTOSAR operating system interface on a simultaneous multi-threaded
processor and propose some extensions to the AUTOSAR specification. The approach specially considers
problems of synchronization and resource management and introduces a task filtering solution. This work mainly
supports predictable timing for the task with the highest priority and is therefore not applicable for automotive
mixed-critical systems.

5.3 SW to Core Allocation and SW Parallelization

The main topic of Scheidemann et al. [Scheidemann et al. 2010] is also related to multi-core processors and
AUTOSAR. A balanced graph-cut problem approach is used to resolve the allocation of software components
(SWCs) to the cores. Nevertheless, the problem of an un-defined execution order (no guarantied data flow between
runnables of one particular task), due to parallel execution on different cores remains with this approach.

The work of Nemati et al. [Nemati et al. 2009] represents a partitioning algorithm to efficiently distribute tasks
along different cores. With this approach safety-critical functionality have a dedicated core, while non-safety
tasks can run concurrently to improve performance. The algorithm identifies task constrains (e.g. dependencies,
timing attributes, resource sharing) and partitions the SW based on the bin-packing problem, which is known
to be NP-hard. It also considers the approaches rate-monotonic scheduling, scheduling by criticality, and the
combination of both (so-called hybrid approach) for multi-core systems. With the presented approach in this work
global resources potentially lead to high blocking times, and influence task execution on other cores (endangerment
of freedom from interference of tasks).

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 9

5.4 Communication

Niklas et al. [Niklas et al. 2012] deal with another issue of safety-related software development for multi-core
systems. Their work deals with safe end-to-end (E2E) communication, AUTOSAR 4.0, and a set of mechanisms
that are used to identify and detect communication errors.
However, there is no discussion with respect to the seamless description of timing requirements from system level
to software components presented.

The work of Devika and Syama [Devika and Syama 2013] present an overview of AUTOSAR multi-core operating
system implementations and communication primitives to enable parallel processing in context of the automotive
domain.

6. CONCLUSION

Multi-core computing platforms as well as respective basis software and operating systems provide good opportu-
nities to improve existing automotive control strategies or even be the enabler for new functionalities (e.g., ADAS).
The challenge, however, is the ability to combine expertise between computing platforms, operating systems
and specific application SW. Hence, only with this combination the real performances of the resulting automotive
embedded system can be used. Based on a state-of-practice survey in the automotive domain, this paper provides
guidance for the migration of legacy SW from single core to multi-core platforms. Future publications including the
pattern briefly mentioned in pattlet format and work related to multi-core migration problems and strategies are
also planned.

Acknowledgments

The authors would like to express our thanks to our shepherd Ville Reijonen who had a determining influence
on the improvement of our paper and untiringly helped to improve the maturity of the paper in several iterations.
The telephone conferences together with our shepherd helped to evolve the maturity of the pattern in a fast and
straightforward way. Furthermore we would like to thank Christopher Preschern and our co-author Christian Kreiner
who called our attention to pattern approaches and the EuroPLoP conference.

The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n# 608988 and financial support of the "COMET K2 -
Competence Centers for Excellent Technologies Programme" of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), the
Austrian Research Promotion Agency (FFG), the Province of Styria, and the Styrian Business Promotion Agency
(SFG).

Finally, we would like to express our thanks to our supporting project partners, AVL List GmbH, Virtual Vehicle
Research Center, and Graz University of Technology.

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 10

REFERENCES

ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M., JACOBSON, M., FIKSDAHL-KING, I., AND ANGEL, S. 1977. A Pattern Language. Oxford
University Press, New York .

BRECHT, B. AND LUYS, S. 2011. Application of multi-core CPUs in a safety-critical context. Tech. rep., Barco Defense and Aerospace. March.
DEVIKA, K. AND SYAMA, R. 2013. An Overview of AUTOSAR Multicore Operating System Implementation. In International Journal of Innovative

Research in Science, Engineering and Technology. Vol. Vol. 2. IJIRSET, 3163 –3169.
HILBRICH, R. AND GOLTZ, H.-J. 2011. Model-based Generation of Static Schedules for Safety Critical Multi-Core Systems in the Avionics

Domain. In WMSE11.
JENA, S. AND SRINIVAS, M. 2012. On the Suitability of Multi-Core Processing for Embedded Automotive Systems. In Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), 2012 International Conference on. 315–322.
KLUGE, F., YU, C., MISCHE, J., UHRIG, S., AND UNGERER, T. 2009. Implementing AUTOSAR Scheduling and Resource Management on an

Embedded SMT Processor. In 12th International Workshop on Software & Compilers for Embedded Systems. 33 –42.
LAKSHMANAN, K. S., BHATIA, G., AND RAJKUMAR, R. 2011. AUTOSAR Extensions for Predictable Task Synchronization in Multi-Core ECUs.

In SAE Technical Paper. SAE International.
MOORE, G. E. 1965. Cramming more components onto integrated circuits. Electronics 38, 8, 114 – 117.
MOYER, B. 2013. Real World Multicore Embedded Systems 1st Ed. Expert guide. Newnes, Newton, MA, USA.
NEMATI, F., BEHNAM, M., AND NOLTE, T. 2009. Efficiently Migrating Real-Time Systems to Multi-Cores. In Proceedings of 12th IEEE

International Conference on Emerging Technologies and Factory Automation, ETFA 2009, September 22-25, 2008, Palma de Mallorca,
Spain. 1–8.

NIKLAS, M., VOGET, S., AND MOTTOK, J. 2012. Safety-relevant development by adaptation of standardized safety concepts in AUTOSAR 4.0.
REICHENBACH, F. AND WOLD, A. 2010. Multi-core Technology – Next Evolution Step in Safety Critical Systems for Industrial Applications? In

Digital System Design: Architectures, Methods and Tools (DSD), 2010 13th Euromicro Conference on. 339–346.
SALINGAROS, N. 2000. The Structure of Pattern Languages. Architectural Research Quarterly 4, 149–161.
SCHEIDEMANN, K., KNAPP, M., AND STELLWAG, C. 2010. Load Balancing in AUTOSAR-Multicore-Systemen. WEKA Fachmedien GmbH.
ZALMAN, R., GRIESSING, A., AND EMBERSON, P. 2011. Timing Correctness in Safety-Related Automotive Software. In SAE Technical Paper.

SAE International.

EuroPloP ’15, July 08 - 12, 2015, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3847-9/15/07 ...$15.00.
http://dx.doi.org/10.1145/2855321.2855346

Pattern Catalog for MultiCore Migration of Embedded Automotive Systems — Page 11

Service Deterioration Analysis (SDA): An Early
Development Phase Dependability Analysis Method

Georg Macher∗†, Andrea Höller∗, Harald Sporer∗, Eric Armengaud† and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, andrea.hoeller, sporer, christian.kreiner}@tugraz.at

†AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud}@avl.com

Abstract—Dependability is a superordinate concept regroup-
ing different system attributes such as reliability, safety, security,
or availability and a key selling point of modern embedded
systems. Dependable systems rely on mature quality management
and development methods such as requirements / systems engi-
neering and system analyses. In the automotive domain analysis
methods for safety and security attributes at early development
phases are well known and partially mandatory by domain
standards. Nevertheless, approaches for analysis of serviceability
attributes (the combination of reliability and maintainability) at
early development phases are not yet available.

Aim of the paper is to present a novel analysis method to
quantify the impact of individual system parts on the overall
system serviceability at early development phases. This approach
bases on the concepts of state-of-the-art methods for safety
and security analysis and extends their scope of application
to serviceability feature quantification, thus enables consistent
identification of system dependability target attributes. This, in
turn, is a pre-requisite for ensuring a certain level of system
dependability from start of development. In the second part of the
document the application of the novel approach is demonstrated
on an automotive training example of a battery management
system.

Keywords—HARA, automotive, system analysis, reliability
quantification.

I. INTRODUCTION

Embedded systems are already integrated into our everyday
life and play a central role in all domains including auto-
motive, aerospace, healthcare, industry, energy, or consumer
electronics. Moore’s law [17], stating the doubling of the
computer capacity every 2 years, is still a strong enabler
for this fast function increase and at the same time cost-per
function decrease. In 2015, the embedded systems market is
expected to reach 1.5 trillion (assuming an annual growth
rate of 12%) [18]. For the automotive industry, embedded
systems components are responsible for 25% of vehicle costs,
while the added value from electronics components range up
to 75% for electrics and hybrid vehicles [22]. Hence, the
automotive industry is facing growing complexity of functions
and technologies, at the same time development cost and time
should be decreased and dependability of the novel systems
must be increased.

Therefore, the automotive industry is confronted to the
central question how to optimize and quantify dependability

features (such as safety, security, and reliability) of a system
under development (SuD) already at early development phase.
A know-how transfer is required to take over methods or
extend the scope of application of state-of-the-art methods to
evaluate system features early in the development life-cycle.
Future automotive systems will require appropriate system-
atic approaches to further support front-loading of depend-
able system engineering. System dependability features have
mutual impacts, similarities, and interdisciplinary values in
common and a considerable overlap among existing methods.
Besides this, standards, such as ISO 26262 [14] in safety
and Common Criteria [15] in security domain, have been
established to provide guidance during the development of
dependable systems. System dependability attributes have a
major impact on product development and product release as
well as for company brand reputation. Therefore, dependability
features of a system may either be ’show stoppers’ or ’unique
selling points’. For this document we define dependability
according to [7] as an integrating concept that encompassing
the attributes:

a safety: absence of catastrophic consequences on the
users and environment.

b security: the concurrent existence of availability for
authorized users only, confidentiality, and integrity
with improper meaning of unauthorized.

c serviceability: the combination of reliability (continu-
ity of correct service) and maintainability (ability to
undergo modifications and repairs)

This paper presents a novel approach to quantify the impact
of individual system parts to the overall system serviceability at
early development phases. We employed the inductive analysis
method HARA (hazard analysis and risk assessment) to also
enable the quantification of dependability features (such as
reliability and maintainability) of the SuD. The service de-
terioration analysis (SDA) approach gives further information
about the deterioration resistance level (DRL) required for a
certain system reliability/availability.

In the course of this document, a description of the state-
of-the-art analysis techniques and related works is given in
Section II. In Section III a description of the introduced
analysis methods is provided. Section IV assesses the SDA

approach based on an automotive training example of a battery
management system (BMS). Section V concludes this work.

II. RELATED WORK

Dependability and security are superordinate concepts re-
grouping different system attributes such as reliability, safety,
or availability. Therefore systems dependability and security
are challenging research domains inheriting continuous de-
velopment and growing importance. While innovative func-
tionalities of embedded systems are the basic argument for
development costs, dependability features can serve as unique
selling points or distinctive features of the system under de-
velopment (SuD). Dependable systems rely on mature quality
management and development methods such as requirements
/ systems engineering, system analyses (e.g., FMEA), design
and validation plans. For the automotive domain legacy (e.g.,
emission), liability (e.g., safety and security), and reputation
(e.g., reliability and availability) aspects have been identified
as key system attributes.

Safety standards, such as the road vehicles functional
safety norm ISO 26262 [14] and its basic norm IEC 61508
[11], exist in the automotive domain, additional several safety
and security norms and guidelines have been established in
the avionic domain. In addition to DO-178C [24] for aerospace
software safety, ARP4754 [20] gives guidance for system level
development and defines steps for adequate refinement and
implementation of requirements. Safety assessment techniques,
such as failure mode and effects analysis (FMEA) and func-
tional hazard assessment (FHA), among others, are specified
by ARP4761 [19].

Reliability and availability standards mainly originate from
railway and military industry. DIN EN 50126 [6] focuses
on specification and demonstration of reliability, availability,
maintainability, and safety (RAMS) of the railway system.
In 1980 the US Department of Defense defined a standard
reliability program for systems and equipment development
and production (MIL-STD-785B [2]). Additionally, the mili-
tary handbooks 338B [5] and 781A [4] assist with guidelines
for electronic reliability design and reliability test methods,
plans, and environment for engineering. Nevertheless, most
standards and guidelines, like the military handbook 217F
[3] and the technical report TR 62380 [9] rely on reliability
prediction of electronic equipment based on mathematical
reliability models of the system components. Only a few works
focus on quantification of dependability features (other than
safety or security) in early stages of the development process.

Most reliability measures and works focus on estimation
of probabilities and stochastic processes. These works require
detailed design information of the SuD and are therefore not
applicable for an early design phase evaluation. Nevertheless,
the process improvement techniques of Six Sigma [10], [25]
aim in improving the quality of process outputs by identifying
and removing the causes of defects (errors). Six Sigma ap-
proach uses a set of quality management methods, including
statistical methods. One of the Six Sigma methods CTQ trees
(critical-to-quality trees) are the key measurable characteristics
of a product or process and are used to decompose broad
customer requirements into more easily quantified elements.
These elements are then converted to measurable terms, this

approach is also the basis for Service Deterioration Analysis
described in this document.

We also proposed an approach of a security-informed haz-
ard analysis and describe an assessment process determining
the impact of security attacks on safety features [16]. This
work presented a combined approach of the automotive HARA
(hazard analysis and risk assessment) with the security domain
STRIDE. Therefore, the presented approach also employs the
concept of the inductive analysis method HARA and extends
their scope of application.

A threat analysis framework for critical infrastructures is
proposed by Simion et. al [23]. This framework bases on the
procedure of (1) identification and definition of threat attributes
and (2) usage of attributes to characterize the threat potential.

Some recent publications in automotive domain also focus
on security in automotive systems. On one hand, the work
of Schmidt et. al [21] presents a security analysis approach
to identify and prioritize security issues, but solely provides
analysis approach for networked connectivity. The work of
Ward et. al [26], on the other hand, also mentions a risk
assessment method for security risk in the automotive domain
called threat analysis and risk assessment, also based on the
HARA.

To recap, there are approaches addressing safety and se-
curity in early development stages, but only few considering
reliability. However, several of these methods base on the
concept of the inductive analysis method HARA.

III. PROPOSED APPROACH

Each phase of the development process has a number
of analysis methods for the different system features (e.g.
safety or security) in place. But focusing solely on early
system level development stages, a lack of analysis methods
for serviceability, the combination of reliability (continuity
of correct service) and maintainability (ability to undergo
modifications and repairs), exists. Common analysis methods
in the automotive domain are either inductive (bottom-up) or
deductive (top-down) approaches. Fault tree analysis (FTA)
[13] is a deductive failure analysis which analyses undesired
state of a system using Boolean logic to combine a series of
lower-level events. In contrary, the failure mode and effects
analysis (FMEA) [12], [1] is an inductive analytical method
which is performed at either the functional or piece-part level.
FMECA extends FMEA by including a criticality analysis,
which is used to chart the probability of failure modes against
the severity of their consequences.

Nevertheless, for initial design assessment solely for safety
analysis a method is standardized (HARA [14]). An adap-
tation of this early stage analysis method for security is
called security-aware hazard analysis and risk assessment
(SAHARA) presented by [16]. Hazard analysis and risk as-
sessment (HARA) [14] is used to determine the safety goals
for individual system components to avoid unreasonable risks.
HARA therefore highlights the criticality of individual system
components on system’s safety at early design phases, even if
detailed design of the system component itself is not known.
SAHARA is the equivalent analysis for security measures.

A
tt

ri
b

u
te

 L
ay

e
r

Dependability

M
ai

n
ta

in
ab

ili
ty

R
e

lia
b

ili
ty

Sa
fe

ty

A
va

ila
b

ili
ty

C
o

n
fi

d
e

n
ti

al
it

y

In
te

gr
it

y

Security

SAHARA
SDA

HARA

Dependable Development
A

n
al

ys
is

La

ye
r

En
gi

n
e

e
ri

n
g

La
ye

r

Serviceability

Fig. 1. General Overview of Dependability Attributes and Analysis Methods

Our novel service deterioration analysis (SDA) method
bases on the concepts of HARA and SAHARA and quantifies
the deterioration resistance level (DRL) of a system component
required for a certain system serviceability. Intended for early
design phases when detailed design of the system component
itself is not known.

A. Terminology

The definitions of dependability attributes vary in different
state-of-the-art standards and engineering domains. In this
document, dependability is seen according to [8] and [7], as
an integrating concept that encompasses different attributes.

Fig. 1 provides an overview of the attributes (aspects) of
dependability, the analysis methods for each attribute, and a
common dependable development block indicating the fact,
that each aspect needs to be addressed within a consistent
engineering framework. It can also be seen that security is
a composition of the attributes of confidentiality, integrity,
and availability. Security is the combination of confidentiality,
the prevention of unauthorized information disclosure and
amendment or deletion of information, and availability, the
prevention of unauthorized withholding of information [7].

Furthermore, we use the collective term serviceability to
describe the combination of reliability (continuity of correct
service) and maintainability (ability to undergo modifications
and repairs), two influencing factors of availability [8]. As
indicated in Fig. 1 dedicated analysis methods for each de-
pendability attributes at early development phase are in place,
except for serviceability, which will be quantified by the
proposed approach.

B. Problem Statement

Individual system components may have major or minor
impact on systems dependability (e.g. safety, security, or
reliability). In the concept phase it is of utmost importance
to already identify these impacts and start system components
development with appropriate focus. This helps to prevent from

TABLE I. DETERIORATION IMPACT (I) CLASSIFICATION -
CLASSIFICATION OF ’I’ VALUE OF IMPACT OF OUTAGE OF THE COMPONENT

Level Deterioration
Impact

Example

0 no impact no impairment of function
1 minor impact reduced functionality, self-healing

temporal impairment of functions,
expendable part repair

2 major impact, reputa-
tion compromised

stop of service, callbacks required,
non- expendable part repair

late detection of design errors and support front-loading of de-
pendability engineering. While safety and security engineering
have analysis methods in place, such an early development
phase analysis method for system serviceability is not yet avail-
able. Estimating components reliability (continuity of correct
service) and maintainability (ability to undergo modifications
and repairs) at early phases is hard without detailed component
design. This makes front-loading of dependability engineering
steps hardly possible.

C. Service Deterioration Analysis (SDA) Solution Approach

A key concept of the HARA approach is defining auto-
motive safety integrity level (ASILs) [14]. The assigned ASIL
determines the criticality of the SuD and defines requirements
and measures to be applied for the rest of the systems lifecycle.
For the purpose of determining the SuDs ASIL, possible
hazards have to be identified, which have the potential to put
the system in a hazardous state. Afterwards, these hazards
are quantified according their potential harm severity (S),
probability of exposure (E), and the controllability of the
resulting hazardous event (C). The final step formulates high
level safety requirements known as safety goals. For more
details on determining C, E, and S levels and the determination
matrix of the resulting ASIL we recommend ISO 26262 part
3 Annex B [14].

In analogy to this, it is of high importance for systems
serviceability to have a clue of the contribution of each
individual system component. Therefore, we quantify the ser-
viceability features according to the deterioration impact (I) on
the system’s dependability, the component’s repair aggravation
(A), and the operation profile (O).

The deterioration impact (I) relates to the components
impact on the dependability of the system. Table I classifies
the deterioration impact (I) and gives some examples of
impacts of outage of the component. Either an outage of the
component does not impair the system function at all (level 0),
or it reduces the functionality in the ballpark (level1). Level
2 indicates maximum impacts which could lead to reputation
losses.

The component’s repair aggravation factor (A) is related
to the components capability and easiness to undergo a repair.
Table II mentions some examples for the different repair
aggravation levels. The repair aggravation factor is determined
aligned with the definition of inspection frequency and re-
liability life cycle degradation control of military handbook
338B [5]. Therefore, the determination of the A factor of a

TABLE II. REPAIR AGGRAVATION (A) CLASSIFICATION -
CLASSIFICATION OF ’A’ VALUE OF CAPABILITY AND EASINESS OF A

REPAIR OF THE COMPONENT

Level Repair Aggravation Example

0 easy repair can be performed by end-user
1 moderate repair can be performed at any work-

shop (trained skills required)
2 difficult repair need to be performed at the

production center (specialized
skills required)

3 serious repair no repair possible (repair action
not foreseen, product not use-
able anymore)

TABLE III. OPERATION PROFILE (O) CLASSIFICATION -
CLASSIFICATION OF ’O’ VALUE OF INTENDED HARSHNESS OF THE

ENVIRONMENT OF THE COMPONENT

Level Operation Profile Example

0 normal / intended en-
vironment

daily usage, typical application

1 unplanned / harsh en-
vironment

usage at normal operation lim-
its, corner-cases

2 misuse / out of limits misappropriation, vandalism

specific component is simply done by adding of the com-
ponents complexity (high → 1, low → 0), accessibility for
maintenance (hard→ 1, easy → 0), and diagnostic capability
(complex→ 1,manageable→ 0) together.

The operation profile (O) values range from level 0, which
means that the component is operated in its intended/normal
environment. Level 1 is intended for usage in unplanned
and harsh environment, while level 2 indicates misuses and
operation out of operation limits. Table III outlines some
examples of operation profiles.

These three values categorized the components deterio-
ration resistance level (DRL). A higher repair aggravation
or deterioration impact level result in a higher DRL level,
while DRL level is raised the less the component is misused.
Therefore the DRL can be calculated via the equation 1.

DRL =

0 if I +A−O < 2 or I = 0

1 if I +A−O = 2

2 if I +A−O = 3

3 if I +A−O = 4

4 if I +A−O = 5

(1)

It can also be determined via a look-up table, depicted in
Table IV, which also base on (1). This quantification helps to
adequately assign limits of resources spent to ensure a certain
level of serviceability of a specific component of the SuD
and puts emphasis on critical system component in terms of
system-dependability. Furthermore, the quantification can be
used to choose adequate design patterns for the component
design (such as 2oo3 redundancy).

TABLE IV. DRL DETERMINATION MATRIX - DETERMINATION OF
DRL VIA I, O, AND A VALUES

Operation
Profile ’O’

Repair
Aggravation

’A’

Deterioration Impact ’I’

0 1 2

0 0 0 1
1 0 1 2
2 0 2 3

0

3 0 3 4

0 0 0 0
1 0 0 1
2 0 1 2

1

3 0 2 3

0 0 0 0
1 0 0 0
2 0 0 1

2

3 0 1 2

A

INTERLOCKPOWER CAN

BMS Controller

INTERLOCK
CONNECTOR

RELAY

C
U

R
R

EN
T

V
O

LT
A

G
E

TE
M

P
ER

A
TU

R
E

CAN

Battery State
Monitoring

SoC
Determination

SoF
Determination

Cell Balancing

External
Charging

Sa
fe

ty
 /

 D
ia

gn
o

si
s

SW
 M

o
d

u
le

s

A

Fig. 2. General BMS Structure with Main HW Components and SW Modules

IV. APPLICATION OF THE APPROACH

This section describes the application of the previously
mentioned approach for an automotive battery management
system (BMS). The BMS use-case is an illustrative material,
reduced for training purpose of both, students and engineers.
Therefore, technology-specific details have been abstracted for
commercial sensitivity and presented analysis results are not
intended to be exhaustive.

Battery management systems are control systems inside
of high-voltage battery systems used to power electric or
hybrid vehicles. The BMS consists of several input sensors,
sensing e.g., cell voltages, cell temperatures, output current,
output voltage, and actuators (the battery main contactors). Fig.
2 depicts the general structure, main hardware components,
and software modules of the high-voltage battery with BMS.
Furthermore, the three focused components (interlock, BMS
controller, and HV fuse) for this paper are highlighted in red
boxes. The illustration shows the main features of a BMS:

• Power contactors - connection with vehicle HV system

• Interlock - de-energizing HV system when tripped

• CAN - automotive communication interface

• Relay - main contactor and output unit of the BMS

• Temperature sensors - feedback of actual cell temp

• Voltage sensors - feedback of actual cell voltages

• Current sensors - feedback of actual current flow

• Fuse - protective circuit breaker in case of fault

• Cells - electro-chemical energy storage

• BMS controller - monitoring and control unit

For the scope of this work the focus is set on early design
decision evaluation of serviceability of SuD components based
on the SDA approach.

Fig. 3 shows an excerpt of the SDA for normal operation
modes of the BMS use- case, highlighting the HV fuse data
(red box). As can be seen in this figure (column two and
three), the components of the system (taken from initial system
design) and the system service (high level service provided by
the system, also from initial design phase), which might be
affected by the component, are listed. First step is the deter-
mination of the deterioration impact of the component on the
specific system service. Both depicted HV fuse lines (marked
with red boxes) indicate the crucial affect of this component on
the system service ’store electric energy’, due to its connective
characteristic within the electrical circuit. This step is followed
by the analysis of the repair aggravation of the component. The
components complexity, accessibility and diagnostic capability
determine the resulting repair aggravation value ’A’. As can be
seen in Fig. 3, using for example corrugated-head screws for
the fuse cover to prevent it from being opened by average
users increases the repair aggravation value of the HV fuse,
which also results in a higher DRL (center line marked with
red boxes). The prevention from opening the HV fuse cover
may be appropriate due to safety considerations, but the fact of
thereby increasing the repair aggravation of the HV fuse can

be easily overlooked. Finally the determination of operation
profile concludes the determination of the DRL.

Furthermore, Fig. 3 also highlights the (a priory antici-
pated) highest demands of dependability raised for the central
control unit ’BMS controller’ (highlighted with dashed violet
box). This anticipated outcome additionally highlights the
crucial affect the ’BMS controller’ has for the overall system
and therefore on the reputation of system’s vendor.

In addition to these depicted examples, the SDA also put
emphasis on less highlighted component’s constraints at early
design phases (such as component location, accessibility, or
diagnostic features) and therefore emphasis in early design
phases the importance of such considerations. As an example,
the main relay connection is crucial (DRL 4), but its DRL
value can be reduced if diagnostic features for the component
are supported.

V. CONCLUSION

In conclusion, safety or security analysis of a system
under development in early design phases are state-of-the-art
in modern automotive development. Dependability engineering
aims at providing a convincing and explicit argumentation that
the system under development has achieved an appropriate
level of maturity. Although, several approaches exist for ad-
dressing safety and security in early development stages, other
dependability attributes (such as reliability and maintainability)
are currently addressed by analysis methods at later stages.

This paper presents a concept for an early development
analysis method of system serviceability, called service de-
terioration analysis (SDA). Serviceability is defined as the
combination of reliability (continuity of correct service) and
maintainability (ability to undergo modifications and repairs).
The newly proposed analysis concept implies a quantification
scheme to quantify the impact of individual system parts to
the overall system dependability. This approach bases on the
concepts of state-of-the-art methods for safety and security
analysis and enables consistent identification of system de-
pendability target attributes (reliability and maintainability).
The presented approach is geared towards high demands of
future automotive systems for appropriate systematic front-
loading approaches of dependable system engineering.

Moreover, the feasibility and added value of the SDA
approach has been demonstrated for a battery management
system use-case. While the use-case application does not claim
completeness of the analysis (due to confidentiality issues), the
benefits of the approach are already evident.

ACKNOWLEDGMENTS

This work is partially supported by the INCOBAT and the
MEMCONS projects.

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
(FP7/2007-2013) under grant agreement n 608988 and finan-
cial support of the ”COMET K2 - Competence Centers for
Excellent Technologies Programme” of the Austrian Federal
Ministry for Transport, Innovation and Technology (BMVIT),
the Austrian Federal Ministry of Economy, Family and Youth
(BMWFJ), the Austrian Research Promotion Agency (FFG),

Fig. 3. Excerpt of the SDA Application of the BMS Use-Case

the Province of Styria, and the Styrian Business Promotion
Agency (SFG).

We are grateful for the contribution of the SOQRATES
Safety AK experts and the expertise gained in SafEUr profes-
sional trainings.

Furthermore, we would like to express our thanks to our
supporting project partners, AVL List GmbH, Virtual Vehicle
Research Center, and Graz University of Technology.

REFERENCES

[1] Military Standard Procedures for Performing a Failure Mode, Effects
and Criticality Analysis, November 1980.

[2] Military Standard Reliabilty Program for Systems and Equipment
Development and Production, September 1980.

[3] Military Handbook Reliability Prediction of Electronic Equipment,
December 1991.

[4] Department of Defense Handbook for Reliability Test Methods, Plans,
and Environments for Engineering, Development Qualification, and
Production, April 1996.

[5] Military Handbook Electronic Reliability Design Handbook, October
1998.

[6] Railway applications - The specification and demonstration of reliabil-
ity, availability, maintainability and safety (RAMS), March 2000.

[7] A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its Threats
- A Taxonomy. In R. Jacquart, editor, IFIP Congress Topical Sessions,
pages 91–120. Kluwer, 2004.

[8] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.

[9] International Electrotechnical Commission. Reliability data handbook
- Universal model for reliability prediction of electronics components,
PCBs and equipment. Technical Report IEC TR 62380, International
Electrotechnical Commission, 2004.

[10] International Organization for Standardization. ISO 13053 Quantitative
methods in process improvment – Six Sigma, 2011.

[11] ISO - International Organization for Standardization. IEC 61508
Functional safety of electrical/ electronic / programmable electronic
safety-related systems.

[12] ISO - International Organization for Standardization. IEC 60812
Analysis techniques for system reliability - Procedure for failure mode
and effects analysis (FMEA) , 2006.

[13] ISO - International Organization for Standardization. IEC 61025 Fault
tree analysis (FTA) , December 2006.

[14] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[15] ISO - International Organization for Standardization. ISO/IEC 15408.
In H. C. A. van Tilborg and S. Jajodia, editors, Encyclopedia of
Cryptography and Security (2nd Ed.). Springer, 2011.

[16] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner.
SAHARA: A Security-Aware Hazard and Risk Analysis Method. In
DATE’15: Proceedings of the Conference on Design, Automation &
Test in Europe, 2015.

[17] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114 – 117, April 1965.

[18] A. Petrissans, S. Krawczyk, L. Veronesi, G. Cattaneo, N. Feeney, and
C. Meunier. Design of Future Embedded Systems Toward System of
Systems - Trends and Challenges. European Commission, May 2012.

[19] SAE International. Guidelines and Mehtods for Conductiong the Safety
Assessment Process on Civil Airborne Systems and Equipment, 1996.

[20] SAE International. Guidelines for Development of Civil Aircraft and
Systems, 2010.

[21] K. Schmidt, P. Troeger, H. Kroll, and T. Buenger. Adapted Development
Process for Security in Networked Automotive Systems. SAE 2014
World Congress & Exhibition Proceedings, (SAE 2014-01-0334):516 –
526, 2014.

[22] G. Scuro. Automotive industry: Innovation driven by elec-
tronics. http://embedded-computing.com/articles/automotive-industry-
innovation-driven-electronics/, 2012.

[23] C. P. Simion, O. M. C. Bucovtchi, and C. A. Popescu. Critical
Infrastructures Protection Through Threat Analysis Framework. Annals
of the ORADEA UNIVERSITY, 1:351–354, May 2013.

[24] Special Committee 205 of RTCA. DO-178C Software Considerations
in Airborne Systems and Equipment Certification, 2011.

[25] G. Tennant. Six sigma: SPC and TQM in manufacturing and services.
Gower Publishing Ltd, 2001.

[26] D. Ward, I. Ibara, and A. Ruddle. Threat Analysis and Risk Assessment
in Automotive Cyber Security. SAE 2013 World Congress & Exhibition

Proceedings, pages 507–513, 2013.

SAHARA: A Security-Aware Hazard and Risk
Analysis Method

Georg Macher∗‖, Harald Sporer∗, Reinhard Berlach∗, Eric Armengaud‖ and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, sporer, reinhard.berlach, christian.kreiner}@tugraz.at

‖AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud}@avl.com

Abstract—Safety and Security are two seemingly contradic-
tory system features, which have challenged researchers for
decades. Traditionally, these two features have been treated
separately, but due to the increasing knowledge about their
mutual impacts, similarities, and interdisciplinary values,they
have become more important. Because systems (such as Car2x
in the automotive industry) are increasingly interlaced, it is no
longer acceptable to assume that safety systems are immune to
security risks. Future automotive systems will require appropriate
systematic approaches that will support security-aware safety
development. Therefore, this paper presents a combined approach
of the automotive HARA (hazard analysis and risk assessment)
approach with the security domain STRIDE approach, and
outlines the impacts of security issues on safety concepts at
system level. We present an approach to classify the probability
of security threats, which can be used to determine the appro-
priate number of countermeasures that need to be considered.
Furthermore, we analyze the impact of these security threats on
the safety analysis of automotive systems. This paper additionally
describes how such a method has been developed based on the
HARA approach, and how the safety-critical contributions of
successful security attacks can be quantified and processed.

Keywords—ISO 26262, HARA, STRIDE, automotive, safety,
security.

I. INTRODUCTION

The complexity of embedded systems in the automotive
industry has grown significantly in recent years. Current luxury
cars implement more than 90 electronic control units (ECU),
which utilize nearly 1 Gigabyte of embedded software code
[1]. By 2018, expert predict that 30% of the overall vehicle
costs will be due to vehicle electronics [2]. This prediction
is also strongly supported by the ongoing trend of replacing
traditional mechanical systems with modern embedded sys-
tems. This enables the deployment of more advanced control
strategies, thus providing additional benefits for both the
customer and environment, such as reduced fuel consumption
and better drivability. At the same time, the higher degree of
integration and safety- and security-critical nature of the con-
trol application presents new challenges. Traditionally, safety
and security features have been managed separately, because
safety-critical systems have been assumed to be immune
from security risks. Nevertheless, because automotive systems
(such as Car2x) are increasingly interlaced this assumption
is no longer valid. Future automotive systems will require
appropriate systematic approaches to support security-aware

safety development. Safety standards such as ISO 26262 [3]
for road vehicles have been established to provide guidance
during the development of safety-critical systems. Although
safety might be interpreted as contradictory to security, a
considerable overlap among safety and security methods exists.
The contribution of this paper is to present a framework for
the security-aware identification of safety hazards. SAHARA
(Security-Aware Hazard Analysis and Risk Assessment) is an
expansion of the inductive analysis method hazard analysis
and risk assessment (HARA), and encompasses threats of
the STRIDE Threat Model [5]. This approach enables the
quantification of the probability of the occurrence and impacts
of security issues on safety concepts (safety goals).

The document is organized as follows: In Section II, a
description of the proposed SAHARA approach is provided.
Section III includes an assessment of the contribution of our
approach in relation to those of other related works dealing
with (automotive) safety and security related topics. An appli-
cation for the approach in an automotive battery management
system (BMS) use-case scenario is presented in Section IV.
Concluding remarks are found in Section V.

II. PROPOSED APPROACH

Safety and security were previously managed indepen-
dently from one another due to the different application areas
and technical solutions. However, due to increasing impact
of the Internet of Things (IoT) on aspects of the automotive
domain, it is no longer acceptable to assume that safety
systems are immune to security risks. In the foreseeable fu-
ture, automotive engineers will require appropriate, systematic
approaches and interdisciplinary knowledge of both safety and
security to support the development of security-aware safety
methods. Currently, the automotive domain mainly focuses
on the safety-critical nature of automotive embedded systems,
and therefore, has several advanced methods and processes
in place (e.g., hazard analysis and risk assessment (HARA),
fault tree analysis (FTA), and failure mode and effects analysis
(FMEA)). In addition, an industry-wide standard for assessing
the functional safety of road vehicles, covering the whole
product lifecycle (ISO26262 [3]) has been established. To
the contrary, several approaches to exposing security design
flaws exist in other industrial sectors, but have not yet been
applied within the automotive industry. STRIDE, an acronym

for six security threat categories, is a threat modeling ap-
proach [5] that uses a technique called threat modeling to
review system designs in a methodical way. This allows the
identification of the type of threat to which the system is
vulnerable. The first category includes spoofing threats attempt
to successfully masquerade as another person or program in
order to gain illegitimate advantages. The second includes
tampering attacks that maliciously modify data or data orders.
Repudiation threats, which fall into the third category, target
systems that are unable to trace prohibited operations and
counteract illegal operations. the fourth category comprises
information disclosure threats that involve the exposure of
sensitive information. Denial of service attacks (D.o.S), which
simply deny valid services, and threats such as babbling idiot
faults belong in the fifth category. Finally, elevation of privilege
threats aim to access, compromise or destroy data that should
be available only to privileged user or programs.

Each of these threat classes potentially has a safety impact
(leads to new hazards) when applied to safety-critical applica-
tions. The threat model does not make a given design 100%
secure, but enables the system designer to learn from mistakes
and avoid repeating them. Therefore, this approach can be seen
as a method by which the security of a system can be assessed
equivalent to HARA attempt for safety.

Fig. 1. SecL Determination Matrix - ascertains the security level from R, K,
and T values

A. Problem Statement

The focus of this approach is placed on the early de-
velopment phase - the so-called concept phase - of safety-
critical embedded automotive systems, which is also addressed
by ISO 26262 part 3 [3]. Safety-related or safety-critical
automotive systems can potentially contribute to, or cause
hazards for humans or the environment. During the concept
phase, it is of utmost importance to identify ways in which the
system might dangerously fail and to begin formulating safety
constraints. For this reason, the automotive safety standard
states that the system under development (SuD) must be

TABLE I. REQUIRED RESOURCE ’R’ CLASSIFICATION -
DETERMINATION OF THE ’R’ VALUE FOR REQUIRED RESOURCES TO EXERT

A THREAT

Level Required Resource Example

0 no additional tool or
everyday commodity

randomly using the user inter-
face, strip fuse, key, coin,

1 standard tool screwdriver, multi-meter, multi-
tool

2 simple tool corrugated-head screwdriver,
CAN sniffer, oscilloscope

3 advanced tools debugger, flashing tools, bus
communication simulators

analyzed using the HARA approach. The intention of such
a HARA is to identify and categorize hazards and formulate
high level safety requirements (safety goals) in order to avoid
unreasonable risks. This approach focuses on the sources of
problems that could occure due to malfunction or foreseeable
user misuse. However, problems caused by malicious attacks
(security issues) are not addressed by HARA within the ISO
26262 standard, although such attacks may also preempt safety
strategies. In parallel, the STRIDE threat model provides a way
to methodically review system designs and highlight security
design flaws, but does not support the categorization of security
hazards or methodically formulate security requirements in
such a way as to avoid identified risks.

B. Approach

A key outcome of the HARA approach is the definition
of the automotive safety integrity levels (ASILs). The as-
signed ASIL determines the criticality level of the SuD and
defines requirements and measures that must be applied for
the remainder of the development lifecycle. For the purpose
of determining the SuDs ASIL, potential hazards must be
identified that endanger the system. Afterwards, these hazards
are quantified according the severity of potential harm (S),
probability of exposure (E), and controllability of the resulting
hazardous event (C). The final step involves a formulation of
high level safety requirements known as safety goals (for more
detailed information see [3] part 3 Annex B).

Threat modeling using STRIDE [5] can be seen as a
security pendant to HARA. The key goal of this threat mod-
eling approach is to analyze each system component for its
susceptibility to threats and, subsequently, mitigate all threats
to these components in order to increase system security.

The first step of the SAHARA approach, combining secu-
rity and safety analyses, is to quantify the STRIDE security
threads of the SuD in an analog manner as is performed for
safety hazards as part of the HARA approach. Threats are
quantified with reference to the ASIL analysis, according to
the resources (R) and know-how (K) that are required to pose
the threat and the threats criticality (T).

Table I classifies the required resources - ’R’ to threaten
the SuDs security and gives some examples of tools that are
required to successfully pose the security threat. Level 0 covers
threats that do not require any tools or everyday commodities,
and wich are available even in situations of unpreparedness.

TABLE II. REQUIRED KNOW-HOW ’K’ CLASSIFICATION -
DETERMINATION OF THE ’K’ VALUE FOR REQUIRED KNOW-HOW TO POSE

A THREAT

Level Required Know-How Example

0 no prior knowledge
(black-box approach)

average driver, unknown in-
ternals

1 technical knowledge
(gray-box approach)

electrician, mechanic, basic
understanding of internals

2 domain knowledge
(white-box approach)

person with technical train-
ing and focused interests, in-
ternals disclosed

TABLE III. THREAT CRITICALITY ’T’ CLASSIFICATION -
DETERMINATION OF THE ’T’ VALUE OF THREAT CRITICALITY

Level Threat Criticality Example

0 no security impact no security relevant impact
1 moderate security

relevance
annoying manipulation, partial
reduced availability of service

2 high security rele-
vance

damage of goods, invoice ma-
nipulation, non-availability of
service, privacy intrusion

3 high security and
possible safety
relevance

maximum security impact and
life-threatening abuse possible

Level 1 tools can be found in any average household, while
the availability of level 2 tools is more limited (such as special
workshops). Tools assigned to level 3 are advanced tools to
which accessibility is highly limited and not wide-spread.

Table II classifies the required know-how - ’K’. Here,
level 0 requires no prior knowledge (the equivalent of the
black-box approach). Level 1 addresses people with technical
skills and a basic understanding of internals, and represents
gray-box approaches. Finally, level 2 represents white-box
approaches; it addresses people with focused interests and
comprehensive domain knowledge.

An overview of the criticality of a security threat -
’T’ is given in Table III. Level 0, in this case, indicates
security impact that is irrelevant, such as when raw data can be
visualized, but its meaning not determined. The threat impact
of level 1 threats is limited to annoyances, such as reduction
in availability of services, but does not imply any damage to
products or manipulation of data or services; such threats and
financial threats are found in level 2. Level 3 threats imply the
invasion of privacy or result in impacts on human life (quality
of life), as well as cover possible impacts on safety features.

These three factors determine the resulting security level
(SecL). The SecL determination matrix is based on the ASIL
determination approach and is illustrated in Figure 1. The
quantification of required know-how and tools, instead of any
estimation of likelihood (e.g., of success or failure rate of
attacks) was chosen due to the fact that such a classification of
these factors is more commonly performed in the automotive
industry and because it will remain the same over the whole
life-time of the SuD. In addition, the quantification of these
two factors is related to the estimation of the likelihood that

an attack will be carried out. The quantification of the impact
of the threats, on the one hand, determines whether the threat
is safety-related (threat level 3) or not (all other levels). This
information is the trigger to hand over the threat for further
analysis from the safety point of view. On the other hand,
this quantification allows the determination of the limits of
resources spent to protect the SuD from a specific threat
(risk management in the case of security threats). Following
this quantification, these threats may be then appropriately
mitigated or prevented by appropriate design changes and the
implementation of countermeasures.

In the case of safety-related security threats, such threats
will be analyzed and the resulting hazards evaluated according
to their criticality, exposure, and severity. This security analysis
helps to improve the completeness of the HARA situation
analysis by implying factors of reasonably foreseeable misuse
(security treats) in a more structured way.

III. RELATED WORK

Safety and security of control systems are challenging
research areas that are characterized by continuous develop-
ment and steadily increasing importance. For this reason, many
researchers and industrial experts have recently made efforts
to combine security and safety.

Although only safety standards, such as the road vehicles
functional safety norm ISO 26262 [3] and its basic norm
IEC 61508, exist in the automotive industry, several safety
and security norms and guidelines have been established in
aeronautics industry. In addition to DO-178C [10], which
addresses aeronautics software safety, ARP4754 [7] provides
guidance for system level development and defines steps for
the adequate refinement and implementation of requirements.
Safety assessment techniques, such as failure mode and effects
analysis (FMEA) and functional hazard assessment (FHA)
anmong others, are specified by ARP4761 [6]. Security con-
cerns in aeronautics industry are tackled e.g., by the Common
Criteria [12] [4] approach and ED202 specification.

Some recent publications in the automotive domain also
focus on security in automotive systems. The work of Schmidt
et. al [8] presents a security analysis approach to identify
and prioritize security issues, but only provides an analytical
approach for networked connectivity. Alternatively, the work
of Ward et. al [13] additionally mentions a method to assess
security risks in the automotive domain, which is called threat
analysis and risk assessment, and is based on the HARA. In
contrast to these approaches, our approach combines hazard
and threat analysis in order to identify threats that can con-
tribute to the safety-concept or lead to violations of safety
goals. The works of Schmittner et. al [9] and Steiner et. al
[11] also deal with safety and security analysis, but focus on
state/event fault trees or a failure mode and failure effect model
to perform safety and security cause-effect analysis.

IV. APPLICATION OF THE APPROACH

This section describes the application of the SAHARA
approach to an automotive battery management system (BMS).

Battery management systems are control systems inside of
high-voltage battery systems used to power electric or hybrid
vehicles.

Fig. 2. Analysis of the SAHARA Approach for the BMS Use-Case - rep-
resentation of safety hazards (identified using the common HARA approach)
and additional hazards resulting from security threats (newly identified using
the SAHARA approach)

The BMS is a safety-related system that is intended for
installation in series production passenger cars and therefore
within the scope of ISO 26262. Within the scope of this work,
the focus was set on hazard analysis and risk assessment
(HARA) in order to elaborate on a functional safety concept
that had been developed using the SAHARA approach.

The SAHARA of the BMS use-case covered 52 hazardous
situations, quantified the respective ASIL and assigned safety
goals that were fully in line with the ISO 26262 standard.
Additionally, 37 security threats were identified using the
STRIDE approach and were quantified with their respective
SecL. 18 of those security threats were classified as having
possible impacts on safety concepts and were, therefore, fur-
ther analyzed for their impacts on the safety of the SuD. Figure
2 presents the number of hazardous situations which were ana-
lyzed and quantified with ASILs, and highlights the additional
safety hazards that were derived from the security threats.
For this specific example, the SAHARA approach identified
34% more hazardous situations than the traditional HARA
approach. SAHARA thus represents a systematic approach
that can be taken to combine safety and security development,
and takes into consideration the harmonization of safety and
security methods.

V. CONCLUSION

Automotive embedded systems are safety-critical and,
therefore, require appropriate risk identification and man-
agement throughout the development cycle. Moreover, these
computing platforms are increasingly connected to their en-
vironment (e.g., on-board diagnosis, GPS, Car-2-Car or Car-
2-infrastructure). In this context, safety-related functionalities
rely on the trustworthiness of information gathered from the
environment. Because security threats might have an impact
on the safety of the system, automotive embedded systems
cannot be considered immune to security attacks. Therefore,
joint considerations of security and safety are necessary. This
paper presents a combined approach, merging of the auto-
motive HARA (hazard analysis and risk assessment) with
the security domain STRIDE, proposing the security-aware
hazard analysis and risk assessment (SAHARA) approach. The
SAHARA approach is fully in line with the requirements of a

HARA analysis according to the automotive safety standard,
ISO 26262 [3], for road vehicles. SAHARA represents a
systematic approach that addresses the need to synchronize
the development of safety and security methods.

ACKNOWLEDGMENTS

This work is partially supported by the INCOBAT and the
MEMCONS projects.

The research leading up to these results was funded by the Euro-
pean Unions Seventh Framework Programme (FP7/2007-2013) under
the grant agreement n 608988 and through financial support from the
Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT), the Austrian Federal Ministry of Economy, Family and
Youth (BMWFJ), the Austrian Research Promotion Agency (FFG),
the Province of Styria, and the Styrian Business Promotion Agency
(SFG) through the ”COMET K2 - Competence Centers for Excellent
Technologies Programme”.

The authors thank Sara Crockett for assistance with language
editing and proofreading.

Furthermore, we would like to express our thanks to our sup-
porting project partners, AVL List GmbH, Virtual Vehicle Research
Center, and Graz University of Technology.

REFERENCES

[1] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future.
IEEE Computer Society, 0018-9162/09:42–52, 2009.

[2] R. Hilbrich, J. Reinier van Kampenhout, and H.-J. Goltz. Modellbasierte
Generierung statischer Schedules fuer sicherheitskritische, eingebettete
Systeme mit Multicore-Prozessoren und harten Echtzeitanforderungen.
Informatik aktuell, pages 29 – 38, 2012.

[3] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[4] ISO - International Organization for Standardization. ISO/IEC 15408.
In H. C. A. van Tilborg and S. Jajodia, editors, Encyclopedia of
Cryptography and Security (2nd Ed.). Springer, 2011.

[5] Microsoft Corporation. The stride threat model, 2005.
[6] SAE International. Guidelines and Mehtods for Conductiong the Safety

Assessment Process on Civil Airborne Systems and Equipment, 1996.
[7] SAE International. Guidelines for Development of Civil Aircraft and

Systems, 2010.
[8] K. Schmidt, P. Troeger, H. Kroll, and T. Buenger. Adapted Development

Process for Security in Networked Automotive Systems. SAE 2014
World Congress & Exhibition Proceedings, (SAE 2014-01-0334):516 –
526, 2014.

[9] C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch. Security Appli-
cation of Failure Mode and Effect Analysis (FMEA). In A. Bondavalli
and F. Di Giandomenico, editors, Computer Safety, Reliability, and
Security, volume 8666 of Lecture Notes in Computer Science, pages
310–325. Springer International Publishing, 2014.

[10] Special Committee 205 of RTCA. DO-178C Software Considerations
in Airborne Systems and Equipment Certification, 2011.

[11] M. Steiner and P. Liggesmeyer. Combination of Safety and Security
Analysis - Finding Security Problems That Threaten The Safety of
a System. In SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS
Workshop on Dependable Embedded and Cyber-physical Systems) of
the 32nd International Conference on Computer Safety, Reliability and
Security, 2013.

[12] The Common Criteria Recognition Agreement Members. Com-
mon Criteria for Information Technology Security Evaluation.
http://www.commoncriteriaportal.org/, 2014.

[13] D. Ward, I. Ibara, and A. Ruddle. Threat Analysis and Risk Assessment
in Automotive Cyber Security. SAE 2013 World Congress & Exhibition
Proceedings, pages 507–513, 2013.

A Comprehensive Safety, Security, and
Serviceability Assessment Method

Georg Macher1,2, Andrea Höller1, Harald Sporer1, Eric Armengaud2, and
Christian Kreiner1

1 Institute for Technical Informatics
Graz University of Technology

{georg.macher, andrea.hoeller, sporer, christian.kreiner}@tugraz.at
2 AVL List GmbH

{georg.macher, eric.armengaud}@avl.com

Abstract. Dependability is a superordinate concept regrouping differ-
ent system attributes such as reliability, safety, security, or availability
and non-functional requirements for modern embedded systems. These
different attributes, however, might lead to different targets. Further-
more, the non-unified methods to manage these different attributes might
lead to inconsistencies, which are identified in late development phases.
The aim of the paper is to present a combined approach for system de-
pendability analysis to be applied in early development phases. This ap-
proach regroups state-of-the-art methods for safety, security, and reliabil-
ity analysis, thus enabling consistent dependability targets identification
across the three attributes. This, in turn, is a pre-requisite for consis-
tent dependability engineering along the development lifecycle. In the
second part of the document the experiences of this combined depend-
ability system analysis method are discussed based on an automotive
application.

1 Introduction

Embedded systems are already integrated into our everyday lives and play a
central role in all domains including automotive, aerospace, healthcare, indus-
try, energy, or consumer electronics. In 2010, the embedded systems market ac-
counted for a turnover of almost 852 billion dollars and is expected to reach 1.5
trillion by 2015 (assuming an annual growth rate of 12%) [21]. For the automo-
tive industry embedded systems components are responsible for 25% of vehicle
costs, while the added value from electronics components range between 40% for
traditional vehicle up to 75% for electric and hybrid vehicles [27].

The trend of replacing traditional mechanical systems with modern embed-
ded systems enables the deployment of more advanced control strategies, such
as reduced fuel consumption and better driveability, but at the same time the
higher degree of integration and criticality of the control application bring new
challenges. Future automotive systems will require appropriate systematic ap-
proaches to support dependable system engineering, rather than traditional en-
gineering approaches managing safety, security, or reliability features separated.

2

System dependability features have mutual impacts, similarities, and interdisci-
plinary values in common and a considerable overlap among existing methods.
Further to this, standards, such as ISO 26262 [16] in safety and Common Crite-
ria [17] in the security domain, have been established to provide guidance during
the development of dependable systems and are currently being reviewed for sim-
ilarities and alignment. System dependability attributes have a major impact on
product development and product release as well as for company brand reputa-
tion. Hence, incomplete dependability argumentation might be a show-stopper
for the development of the entire system. On the other hand, smart counter-
measures might represent unique selling points by reducing development costs
and improving the quality of the system developed. In this document we define
dependability according to [7] as an integrating concept that encompasses the
following attributes:

a safety: absence of catastrophic consequences on the users and environment.
b security: the concurrent existence of availability for authorized users only,

confidentiality, and integrity with improper meaning of unauthorized.
c serviceability: the combination of reliability (continuity of correct service)

and maintainability (ability to undergo modifications and repairs).

This paper presents a combined approach for analysis of dependability features
in early design phases of an embedded automotive system. We employed an
approach which classifies the probability and impact of security threats using
the STRIDE approach [20] and safety hazards using hazard analysis and risk
assessment (HARA). This approach, described as the SAHARA approach in [19],
quantifies the security impact on dependable safety-related system development
at system level. We further extended the inductive analysis methods HARA and
SAHARA to also enable the quantification of additional dependability features
(such as reliability and availability). This service deterioration analysis (SDA),
described in [18] gives further information about the deterioration resistance
level (DRL) required for a specific system reliability/availability.

In the course of this document, a description of the state of the art analysis
techniques and related works is given in Section 2. In Section 3 a description of
the combination of methods and information handover for system dependability
feature analysis is provided. Section 4 assesses an experience report of a system
dependability analysis method for safety, security, and reliability attributes dur-
ing the early development phases of an automotive battery management system
(BMS) use-case. Section 5 concludes this work.

2 Related Work and Background

Dependability and security are superordinate concepts regrouping different sys-
tem attributes such as reliability, safety, confidentiality, integrity, or availability.
Systems dependability and security are thus challenging research domains in-
heriting a continuous development process and currently of growing importance.
Dependable systems rely on mature quality management and development meth-
ods such as requirements / systems engineering, system analyses (e.g., FMEA),
design and validation plans. For the automotive domain legacy (e.g., emission),

3

liability (e.g., safety and security), and reputation (e.g., reliability and availabil-
ity) aspects have been identified as key aspects for sustainability in the market.

2.1 State-of-the-Art

Although safety standards only exist in the automotive domain (road vehicles
functional safety norm ISO 26262 [16] and its basic norm IEC 61508 [13]), several
safety and security norms and guidelines have been established in the avionic
domain. In addition to DO-178C [28] for aerospace software safety, ARP4754 [24]
gives guidance for system level development and defines steps for adequate refine-
ment and implementation of requirements. Safety assessment techniques, such
as failure mode and effects analysis (FMEA), and functional hazard assessment
(FHA) among others, are specified by ARP4761 [23]. Security concerns in avionic
domain are tackled e.g. by common criteria [31] approach and ED202 [9] speci-
fication.

Reliability and availability standards mainly originate from railways and the
armaments industry. DIN EN 50126 [6] focuses on specification and demonstra-
tion of reliability, availability, maintainability, and safety (RAMS) of the railway
system. In 1980 the US Department of Defense defined a standard reliability
program for systems and equipment development and production (MIL-STD-
785B [2]). Additionally, the military handbooks 338B [5] and 781A [4] assist with
guidelines for electronic reliability design and reliability test methods, plans and
environment for engineering. Nevertheless, most standards and guidelines, like
the military handbook 217F [3] and the technical report TR 62380 [11] rely on
reliability prediction of electronic equipment based on mathematical reliability
models of the system components. Only a few works focus on quantification
of dependability features (other than safety or security) in early stages of the
development process.

Most reliability measures and work focus on estimation of probabilities and
stochastic processes. All of this work requires detailed design information of
the SuD and is therefore not applicable for an early design phase evaluation.
Nevertheless, the process improvement techniques of Six Sigma [12], [30] aims at
improving the quality of process outputs by identifying and removing the causes
of defects (errors). The Six Sigma approach uses a set of quality management
methods, including statistical methods. One of the Six Sigma methods CTQ trees
(critical-to-quality trees) are the key measurable characteristics of a product or
process and are used to decompose broad customer requirements into more easily
quantified elements. These elements are then converted to measurable terms, this
approach is also the basis for Service Deterioration Analysis [18] described later
in this section.

The work of Gashi et al. [10] focuses on redundancy, diversity, and their
effects on safety and security of embedded systems. This work is part of SeSaMo
(Security and Safety Modeling for Embedded Systems) project, which focuses on
synergies and trade-offs between security and safety through concrete use-cases.

In contrast to this, the work of Macher et. al. [19] proposes an approach in-
volving a security-informed hazard analysis and describes an assessment process
determining the impact of security attacks on safety features.

4

Some recent publications in the automotive domain also focus on security in
automotive systems. On the one hand, the work of Schmidt et. al [25] presents a
security analysis approach to identify and prioritize security issues, but provides
only an analysis approach for networked connectivity. The work of Ward et.
al [32], on the other hand, also mentions a risk assessment method for security
risk in the automotive domain termed threat analysis and risk assessment, based
on the HARA.

The works of Roth et. al [22] and Steiner et. al [29] also deal with safety and
security analysis, but focus on state/event fault trees for modeling of the system
under development. Schmittner et. al [26] presents a failure mode and failure
effect model for safety and security cause-effect analysis. This work categorizes
threats by using the STRIDE threat model, but focusing on IEC60812 conform
FMEA.

Finally, the STRIDE threat model approach [20] developed by the Microsoft
Corporation can be used to expose security design flaws. This approach uses
a technique termed threat modeling. With this approach the system design is
reviewed in a methodical way, which makes it applicable for integration into the
HARA approach. Threat models, like STRIDE approach, may often not prove
that a given design is secure, but they help to learn from mistakes and avoid
repeating them, which is another commonality with HARA in safety domain.

To recap, there are approaches addressing safety, security, and reliability in
early development stages. However, these methods are often performed indepen-
dently and cross-dependencies and mutual impacts are often not considered. Our
contribution here is a step towards filling this gap by presenting an approach
for addressing safety, security, and reliability issues in early phases and on an
interdisciplinary basis.

2.2 Dependability Analysis Methods

Each phase of the development process has a number of analysis methods for
the different system features (e.g. safety, security or reliability) in place. In this
work we focus solely on the system level rather than software or hardware devel-
opment stages. The most commonly used analysis methods are hazard analysis
and risk assessment (HARA), failure mode and effects analysis (FMEA), and
fault tree analysis (FTA) in different variations for safety, security, or relia-
bility/availability. FMEA [14] [1] and FTA [15] variation are common for all
system features. Nevertheless a method is standardized for initial design assess-
ment exclusively for safety analysis (HARA [16]). The proposed contribution of
this work is to combine a security-aware hazard analysis and risk assessment
(SAHARA) [19] and service deterioration analysis (SDA) [18] in a common ap-
proach. In the rest of this section both approaches are summarized (for standard
hazard analysis and risk assessment as in use in the automotive domain please
refer to [16]).

Safety-Aware Hazard Analysis and Risk Assessment (SAHARA)
The objective of SAHARA [19] is, analog to HARA, the systematic identification
of possible attacks having a possible impact on the correctness of the system

5

Table 1: Classification Examples of Knowledge ’K’, Resources ’R’, and Threat ’T’ Value
of Security Threats

Level Knowledge
Example

Resources
Example

Threat Criticality
Example

0 average driver, un-
known internals

no tools required no impact

1 basic understanding
of internals

standard tools,
screwdriver

annoying, partial reduced
service

2 internals disclose, fo-
cused interests

non-standard tools,
sniffer, oscilloscope

damage of goods, invoice
manipulation, privacy

3 advanced tools, simu-
lator, flasher

life-threatening possible

(protecting the system against the human). Security attacks are identified and
categorized according to their threat criticality (T), know-how (K), and resources
(R) required to violate security barriers. The threat criticality (T) relates to the
possible effects on the system, the know-how (K) relates to the required know-
how to perform the attack, and the resources (R) relates to the required resources
to perform the attack. Table 1 contains examples of resources, know-how, and
threat levels for each quantification level of K, R, and T values. The three factors
define a security level (SecL), as shown in Table 2 which is used to determine the
appropriate number of countermeasures needed to be considered. Furthermore,
a threat criticality of the highest level implies an impact on safety, has a SecL
of minimum 1, and is added to the safety analysis.

Table 2: SecL Determination Matrix - Determination of the security level from R, K,
and T values [19]

Required
Resources ’R’

Required
Know-How ’K’

Threat Level ’T’

0 1 2 3

0 0 3 4 4

1 0 2 3 40

2 0 1 2 3

0 0 2 3 4

1 0 1 2 31

2 0 0 1 2

0 0 1 2 3

1 0 0 1 22

2 0 0 0 1

0 0 0 1 2

1 0 0 0 13

2 0 0 0 1

6

Service Deterioration Analysis (SDA)
In analogy to the two previously mentioned analysis methods, the service de-
terioration analysis (SDA) [18] systematically analyzes the impact of compo-
nent malfunction on the system availability. The deterioration resistance level
(DRL) is categorized by the deterioration impact (I) on the system’s depend-
ability, the component’s repair aggravation (A), and the operation profile (O).
The deterioration impact (I) relates to the availability impact on the system,
the component’s repair aggravation (A) to the capability and easiness to un-
dergo a repair, and the operation profile (O) to the intended harshness of the
environment (and therefore the probability for break-down). The repair aggra-
vation factor is determined aligned with the definition of inspection frequency
and reliability life cycle degradation control of military handbook 338B [5]. The
A factor is therefore the sum of the system’s complexity (high → 1, low → 0),
accessibility for maintenance (hard → 1, easy → 0), and diagnostic capability
(complex→ 1,manageable→ 0). Table 3 shows the DRL determination matrix
used to establish a quantitative indicator determining the impact on system’s de-
pendability. A description of the classification of deterioration impact (I), repair
aggravation (A), and operation profile (O) values can be seen in Table 4.

Table 3: DRL Determination Matrix - Determination of DRL via I, O, and A values [18]

Operation
Profile ’O’

Repair
Aggravation ’A’

Deterioration Impact ’I’

0 1 2

0 0 0 1

1 0 1 2

2 0 2 3
0

3 0 3 4

0 0 0 0

1 0 0 1

2 0 1 2
1

3 0 2 3

0 0 0 0

1 0 0 0

2 0 0 1
2

3 0 1 2

3 Combined Approach for Dependable System
Development

In the automotive industry, dependability engineering is currently moving its
center of gravity from mainly mechanical reliability towards functional safety

7

Table 4: Classification Examples of Deterioration Impact (’I’), Repair Aggravation
(’A’), and Operation Profile (’O’) Value

Level ’I’ Example ’A’ Example ’O’ Example

0 no impact can be performed by end-user normal / intended op-
eration environment

1 minor impacts can be performed at any work-
shop (trained skills required)

unplanned / harsh
environment

2 major impacts / rep-
utation compromised

need to be performed at the
production center (specialized
skills required)

misuse

3 no repair possible (repair ac-
tion not foreseen, product not
useable anymore)

and security of the control system. While the target is still to provide a convinc-
ing argumentation that the system can justifiably be trusted [7], the hazards
to consider as well as the development methods must be adapted accordingly.
Hence, dependability is seen according to [8] and [7], as an integrating concept
that encompasses more different attributes. Fig. 1 provides an overview of the
attributes (aspects) of dependability, the analysis methods available for each at-
tribute, and a common dependable development block indicating the fact that
each aspect needs to be addressed within a consistent engineering framework.
Indeed, a common analysis method delivering consistent dependability targets
over the different attributes is the basis to perform consistent dependability engi-
neering during the entire product development. It can also be seen that security
is a composition of the attributes of confidentiality, integrity, and availability.
Security is the combination of confidentiality, the prevention of unauthorized in-
formation disclosure and amendment or deletion of information, plus availability
and also the prevention of unauthorized withholding of information [7].

The common engineering basis for all dependability aspects raises the re-
quirement for a combination of the different analysis methods and targets, thus
a mutual understanding of focuses and language concepts. Table 5 shows a map-
ping of safety, security, and service oriented engineering terms.

Combining the different dependability feature analysis methods and depend-
ability targets is of high importance. The SAHARA approach [19] already im-
plies an identification of security threats having a possible impact on safety and
an information exchange between the security and safety domain. Nevertheless,
the approach described in this paper relies on the combination of the outcomes
(targets and classifications) of HARA, SAHARA, and SDA to raise the level
of completeness of the analysis and consistency between mutual dependencies.
Fig. 2 shows an overview of the described approach and highlights the distinctive
features of the presented approach (broad red arrows).

The mutual impact of serviceability analysis considerations and safety con-
siderations (see Fig. 2 - arrow I) exists between safe states and reliability targets
of the system. A tradeoff between higher availability and higher safety of the

8

A
tt

ri
b

u
te

 L
ay

e
r

Dependability

M
ai

n
ta

in
ab

ili
ty

R
e

lia
b

ili
ty

Sa
fe

ty

A
va

ila
b

ili
ty

C
o

n
fi

d
e

n
ti

al
it

y

In
te

gr
it

y

Security

SAHARASDA
HARA

Dependable Development

A
n

al
ys

is

La
ye

r
En

gi
n

e
e

ri
n

g
La

ye
r

Fig. 1: General Overview of Dependability Attributes and Analysis Methods

Table 5: Mapping of Safety, Security, and Service Oriented Engineering Terms

Safety Engineering Security
Engineering

Service-Oriented
Engineering

risk hazard threat warranty claim, un-
planned maintenance

system inherent
deficiency

malfunction vulnerability service loss or degra-
dation

A
n

a
ly

si
s

S
u

b
je

ct
s

external enabling
condition

hazardous situation attack (mis)usage profile

impact analysis severity threat criticality reputation loss, dete-
rioration impact

external risk con-
trol analysis

controllability attacker skills,
know-how

repair efforts, repair
aggravation

A
n

a
ly

si
s

C
a
te

g
o
ri

es

occurrence anal-
ysis

exposure point of attack,
attack resources

operation condition
spectrum

A
n

a
ly

si
s

R
es

u
lt

s design goal safety goal security target dependability target
design goal criti-
cality

ASIL SecL DRL

9

Cooperative Dependability Evaluation

Security analysis
(STRIDE)

STRIDE Approach

Security Targets
SecL classification

Serviceability
analysis

SDA Approach

Reliability Targets
DRL classification

Safety analysis
(ISO 26262)

HARA Method

Safety Goals (Safety Targets)
ASIL classification

I

II III

Fig. 2: Overview of the Described Approach with Highlighting of Distinctive Features

system impacts the design of safe states (e.g. a system shutdown in case of un-
certainty of the actual system state can be a good option from a safety or cost
point of view, but has negative effects on system availability). The targets and
target classifications found in SDA, therefore have an impact on the design of
safe states (e.g. fail-silent vs. fail operational). On the other hand, higher safety
levels (ASIL) require higher reliability of the related components. This affects
the design and quality requirements of components which might have not been
in focus of SDA. Formulating these mutual dependencies between serviceability
and safety leads to two regulations:

DRL ≥ 3 → component related safe states need to be reviewed, eventual
adaptation of degradation concept required
ASIL > QM → specific component reliability required, eventual adaptation
of DRL of neglected component required

Preventing unauthorized access to control interfaces by security password
affects the system security positively, beside this, it reduces the availability and
controllability of the whole system (see Fig. 2 - arrow II). Requiring authen-
tication of each system component positively affects the overall security, but
simultaneously increases the maintenance effort and time requirement, which
further impacts system availability. On the other hand easing the maintenance
burden by reducing security authentication discloses attack vectors probably not
considered during security analysis (e.g. the simple replacement of encryption
chip). The regulation of the mutual dependencies between serviceability and
security leads to the following:

DRL ≥ 3→ component related security targets need to be reviewed
SecL ≥ 3 → serviceability might be affected, review required to determine
impact on operational readiness

The third mutual impact (see Fig. 2 - arrow III) exists between safety and
security. Safety and security features frequently appear to be in total contra-
diction to the overall system features. An example of this contradiction can be

10

Fig. 3: Excerpt of the Application of the SAHARA Analysis of the BMS Use-Case

shown by the electrical steering column lock system. In the security context the
system locks the steering column when in doubt, because this doubt area might
result from an attack. From the safety perspective, however, it might not be the
best approach to lock the steering column as a fallback, since the issue involved
might well be an occurrence directly before a high speed corner turn. Mutual
dependencies between safety and security can be prescribed as:

ASIL > QM → safe state need to be reviewed for possible deactivation of
security
T = 3→ safety might be affected, a review is required to determine impact
on operational readiness

These regulations of the mutual dependencies, the required information han-
dover, and the mapping of the different engineering domain terms allow a co-
operative dependability evaluation by cross-domain expert teams and provide
traceable measures for early design decisions.

4 Application of the Approach

This section describes the application of the approach as described above for
an automotive battery management system (BMS). The BMS use-case is an
illustrative material, reduced for training purpose of both students and engi-
neers. The technology-specific details have thus been abstracted for commercial
sensitivity and the analysis results presented are not intended to be exhaustive.

Battery management systems are control systems inside of high-voltage bat-
tery systems used to power electric or hybrid vehicles. The BMS consists of
several input sensors, sensing e.g., cell voltages, cell temperatures, output cur-
rent, output voltage, and actuators (the battery main contactors).

For the scope of this work the focus is set on early design decision evaluation.
This evaluation includes an ISO 26262 [16] aligned HARA safety analysis, a se-
curity analysis based on the SAHARA approach, and a serviceability analysis
based on the SDA approach. An excerpt of the SAHARA analysis of the BMS

11

use-case is shown in Fig. 3. The excerpt highlights (a) the threat level classifi-
cation ’T’ triggering further analysis of the threat for safety impact and (b) a
security hazard aiming on denial of service of the HV fuse. The HARA of the
BMS use-case covers 52 hazardous situations, quantifies the respective ASIL and
assigns safety goals fully in line with the ISO 26262 standard. Additionally, 37
security threats have been identified using the SAHARA approach, 18 of these
security threats have been classified as having possible impacts on safety con-
cepts. Furthermore, 63 service deterioration scenarios have been analyzed using
the SDA approach.

Fig. 4 shows an excerpt of the SDA for normal operation modes of the BMS
use- case also highlighting the HV fuse data. The overlaid excerpt show the
impact of the security countermeasure against the threat ’replace fuse with non
current limiting element’. As can be seen in the overlay, using corrugated-head
screws for the fuse cover decreases the security risk of ’replace fuse with non
current limiting element’, but increases the repair aggravation value of the HV
fuse, which also results in a higher DRL.

Table 6 shows the analysis results related to the three focused elements for
this application example (HV fuse, BMS controller, and interlock circuit). The
HV fuse related part of Table 6 highlights how a security threat countermeasure
which has not affected the ASIL nevertheless affects the DRL of the system,
as already shown in Fig. 4. Part two of the table, related to the interlock cir-
cuit, indicates that a component of less importance from the safety or service
perspective can have huge impact on the system’s safety. The BMS controller
related part of the table, highlights on one hand the opposite. The data encryp-
tion chip does not affect the system’s safety, but is related to system’s security
and also the reputation of the system. On the other hand the table also indi-
cates, that components (such as the BMS controller) which have major impact
on the system’s safety commonly also demand higher security and serviceability
requirements.

Fig. 5 additionally presents the number of hazardous situations which have
been analyzed and quantified with ASILs and highlights the additional portion
of safety hazards derived from security threats.

5 Conclusion

Dependability engineering aims at providing a convincing and explicit argumen-
tation that the system under development has achieved an appropriate level of
maturity. Dependability engineering in the automotive domain, while relying
on a strong and long-term body of experience, is still an emerging trend. Al-
though, several approaches exist for addressing safety, security and reliability
in early development stages, many of these methods are often performed inde-
pendently and cross-dependencies and mutual impacts are often not considered.
This paper presents a concept for a cooperative dependability analysis in early
development phases and an application of this analysis for an automotive bat-
tery management use-case. The approach conjointly combines security, safety,
and serviceability analysis concepts (SAHARA, HARA, and SDA) to enable a
common analysis and language base enabling dependable system development.
In the course of this study document, (a) a mapping of safety, security, and

12

Fig. 4: Excerpt of the SDA Application of the BMS Use-Case

service oriented engineering terms, (b) a combination of the different analysis
methods and targets, and (c) regulations of the mutual dependencies and the re-
quired information handover between the different dependability aspect analysis
have been presented.

The application of the approach presented has been demonstrated utilizing a
simplified automotive BMS use-case. While the authors does not claim complete-
ness of the analysis (due to confidentiality issues), the benefits of the approach
are already evident. First, the dependencies between safety / security and re-
liability analysis are made explicit and can be handed over from one domain
to the other according to identified rules. Second, and this is possibly the most
important issue, the proposed cooperative dependability evaluation enables con-
solidation of the different dependability targets in a consistent and at an early
design phase, thus providing a single source of dependability targets for the rest
of the development.

Acknowledgments

This work is partially supported by the INCOBAT and the MEMCONS projects.

The research leading to these results has received funding from the European
Unions Seventh Framework Programme (FP7/2007-2013) under grant agreement n
608988 and financial support of the ”COMET K2 - Competence Centers for Excellent
Technologies Programme” of the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and
Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of
Styria, and the Styrian Business Promotion Agency (SFG).

We are grateful for the contribution of the SOQRATES Safety AK experts and the
expertise gained in SafEUr professional trainings.

Furthermore, we would like to express our thanks to our supporting project part-
ners, AVL List GmbH, Virtual Vehicle Research Center, and Graz University of Tech-
nology.

13

Table 6: Component Related Analysis
Results of BMS Examples

Component ASIL SecL DRL

HV Fuse B(D)
3 1
2 2

Interlock Cir-
cuit

D 2 2

BMS Con-
troller

D 3 4

Data Encryp-
tion Chip

QM 4 4

Fig. 5: Safety Analysis of the BMS Use-
Case (using SAHARA approach) [19]

References

1. Military Standard Procedures for Performing a Failure Mode, Effects and Critical-
ity Analysis, November 1980.

2. Military Standard Reliabilty Program for Systems and Equipment Development
and Production, September 1980.

3. Military Handbook Reliability Prediction of Electronic Equipment, December
1991.

4. Department of Defense Handbook for Reliability Test Methods, Plans, and Envi-
ronments for Engineering, Development Qualification, and Production, April 1996.

5. Military Handbook Electronic Reliability Design Handbook, October 1998.
6. Railway applications - The specification and demonstration of reliability, availabil-

ity, maintainability and safety (RAMS), March 2000.
7. A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its Threats - A

Taxonomy. In R. Jacquart, editor, IFIP Congress Topical Sessions, pages 91–120.
Kluwer, 2004.

8. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

9. European Organization for Civil Aviation Equipment (EUROCAE WG-72) and
Radio Technical Commission for Aeronautics (RTCA SC-216). Airworthiness se-
curity process specification, ED-202, 2010.

10. I. Gashi, A. Povyakalo, L. Strigini, M. Matschnig, T. Hinterstoisser, and B. Fis-
cher. Diversity for Safety and Security in Embedded Systems. In International
Conference on Dependable Systems and Networks, volume 26, 06 2014.

11. International Electrotechnical Commission. Reliability data handbook - Universal
model for reliability prediction of electronics components, PCBs and equipment.
Technical Report IEC TR 62380, International Electrotechnical Commission, 2004.

12. International Organization for Standardization. ISO 13053 Quantitative methods
in process improvment – Six Sigma, 2011.

13. ISO - International Organization for Standardization. IEC 61508 Functional safety
of electrical/ electronic / programmable electronic safety-related systems.

14. ISO - International Organization for Standardization. IEC 60812 Analysis tech-
niques for system reliability - Procedure for failure mode and effects analysis
(FMEA) , 2006.

14

15. ISO - International Organization for Standardization. IEC 61025 Fault tree analysis
(FTA) , December 2006.

16. ISO - International Organization for Standardization. ISO 26262 Road vehicles
Functional Safety Part 1-10, 2011.

17. ISO - International Organization for Standardization. ISO/IEC 15408. In H. C. A.
van Tilborg and S. Jajodia, editors, Encyclopedia of Cryptography and Security
(2nd Ed.). Springer, 2011.

18. G. Macher, A. Hoeller, H. Sporer, E. Armengaud, and C. Kreiner. Service Deterio-
ration Analysis (SDA): An Early Development Phase Reliability Analysis Method.
In In Review at 45th Annual International Conference on Dependable Systems and
Networks (DSN) - RADIANCE Workshop, 2015.

19. G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner. SAHARA: A
security-aware hazard and risk analysis method. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2015, pages 621–624, March 2015.

20. Microsoft Corporation. The stride threat model, 2005.
21. A. Petrissans, S. Krawczyk, L. Veronesi, G. Cattaneo, N. Feeney, and C. Meunier.

Design of Future Embedded Systems Toward System of Systems - Trends and
Challenges. European Commission, May 2012.

22. M. Roth and P. Liggesmeyer. Modeling and Analysis of Safety-Critical Cyber
Physical Systems using State/Event Fault Trees. In SAFECOMP 2013 - Workshop
DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical
Systems) of the 32nd International Conference on Computer Safety, Reliability and
Security, 2013.

23. SAE International. Guidelines and Mehtods for Conductiong the Safety Assess-
ment Process on Civil Airborne Systems and Equipment, 1996.

24. SAE International. Guidelines for Development of Civil Aircraft and Systems,
2010.

25. K. Schmidt, P. Troeger, H. Kroll, and T. Buenger. Adapted Development Process
for Security in Networked Automotive Systems. SAE 2014 World Congress &
Exhibition Proceedings, (SAE 2014-01-0334):516 – 526, 2014.

26. C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch. Security Application
of Failure Mode and Effect Analysis (FMEA). In A. Bondavalli and F. Di Gi-
andomenico, editors, Computer Safety, Reliability, and Security, volume 8666 of
Lecture Notes in Computer Science, pages 310–325. Springer International Pub-
lishing, 2014.

27. G. Scuro. Automotive industry: Innovation driven by electronics.
http://embedded-computing.com/articles/automotive-industry-innovation-
driven-electronics/, 2012.

28. Special Committee 205 of RTCA. DO-178C Software Considerations in Airborne
Systems and Equipment Certification, 2011.

29. M. Steiner and P. Liggesmeyer. Combination of Safety and Security Analysis -
Finding Security Problems That Threaten The Safety of a System. In SAFECOMP
2013 - Workshop DECS (ERCIM/EWICS Workshop on Dependable Embedded and
Cyber-physical Systems) of the 32nd International Conference on Computer Safety,
Reliability and Security, 2013.

30. G. Tennant. Six sigma: SPC and TQM in manufacturing and services. Gower
Publishing Ltd, 2001.

31. The Common Criteria Recognition Agreement Members. Com-
mon Criteria for Information Technology Security Evaluation.
http://www.commoncriteriaportal.org/, 2014.

32. D. Ward, I. Ibara, and A. Ruddle. Threat Analysis and Risk Assessment in Auto-
motive Cyber Security. SAE 2013 World Congress & Exhibition Proceedings, pages
507–513, 2013.

Automated Generation of AUTOSAR Description File for
Safety-Critical Software Architectures

Georg Macher
Institute for Technical Informatics

Graz University of Technology
georg.macher@tugraz.at

Eric Armengaud
AVL List GmbH

eric.armengaud@avl.com

Christian Kreiner
Institute for Technical Informatics

Graz University of Technology
christian.kreiner@tugraz.at

Abstract: Automotive embedded systems have become very complex, are strongly
integrated, and the safety-criticality of these systems pose new challenges. Distributed
system development, short time-to-market intervals, and automotive safety standards
(such as ISO 26262) require efficient and consistent product development along the
entire development lifecycle. The de-facto industry standard AUTOSAR aims to stan-
dardize an open automotive software architecture and framework to facilitate the ex-
change of information across company boundaries for the software development pro-
cess. However, providing consistency of the safety concept during the entire product
life cycle is a tedious task. The aim of this paper is to enhance a model-driven sys-
tem and safety-engineering framework with AUTOSAR aligned software-architecture
design. This approach is part of a tool-chain solution enabling the seamless descrip-
tion of safety-critical systems, from requirements at the system level down to software
component implementation. To that aim a tool bridge is proposed in order to seam-
lessly transfer artifacts from system development level to software development level
based on AUTOSAR exchange format files.

1 Introduction

Embedded electronic control systems are strong innovation drivers for the automotive do-
main. The introduction of these systems enables the deployment of more advanced control
strategies, such as better driveability and driver assistance systems. With the replacement
of well-established mechanical systems by electronic systems, beginning with throttle-by-
wire in early 1990s, electronic control systems became the main driver of innovation in
the automotive domain. At the same time, the higher degree of integration and the safety-
criticality of the control application poses new challenges. The independence of different
applications (with different criticality levels) running on the same platform must be made
evident. In parallel, new computing architectures with services integrated in hardware
enable the development of new software architectures and safety concepts.

Safety standards such as ISO 26262 [ISO11] for electrical and electronical systems for
road vehicles have been established to provide guidance during the development of safety-
critical systems. They provide a well-defined safety lifecycle based on hazard identifica-
tion and mitigation, and they define a long list of work-products to be generated.

One important challenge in this context is to provide evidence of consistency during prod-
uct development among the different work-products.

The contribution of this paper is to bridge the existing gap between model-driven system
development tools and software engineering tools. More specifically, the approach relies
on the automated generation of software architecture description files based on the exist-
ing high level control system description (e.g., based on SysML format). This description
includes specific system level information such as ASIL or trace to related (safety) require-
ment. The approach relies on the AUTOSAR [AUT09] aligned integration of software ar-
chitectures into the system development tools and the standardized information exchange
format of AUTOSAR. The goal is to support a consistent and traceable refinement from
the early concept phase to single safety-critical software component implementation.

The document is organized as follows: Section 2 presents an introduction to AUTOSAR.
Then, model-based development and integrated tool chains are presented in Section 3. In
Section 4 a description of the proposed approach for the generation of software architec-
ture description file according to AUTOSAR standard is provided. An application of the
approach is presented in Section 5. Finally, this work is concluded in Section 6 with an
overview of the presented approach.

2 AUTOSAR Overview

Several approaches deal with model-based system development and AUTOSAR software
development. Different tool vendors provide AUTOSAR tool chains, which support dif-
ferent development stages of AUTOSAR aligned development.

Nevertheless, in terms of safety-critical development, artifact traceability, and support of
ISO 26262 safety features there is still room for improvement and ongoing development,
e.g. [Eis11, SS12]. Several configurations of AUTOSAR basic software modules and ECU
description files still need to be done manually with several non-interacting tools.

The deployment of the AUTOSAR paradigm in projects is usually resource and cost inten-
sive due to (a) the paradigm change to component-based design and related new activities
such as interface description in XML format, (b) the complexity of the standard and of
the tools with the large number of components and configuration parameters, and (c) the
high costs for configuration tools and basic SW layers proposed by the suppliers. In order
to support the AUTOSAR deployment, three Implementation Conformance Classes (ICC)
have been proposed. These Implementation Conformance Classes have been introduced
to smooth the changing process from conventional software development to AUTOSAR
software development and are fully in line with the AUTOSAR standard [AUT09].

The first class, ICC1, introduces (a) software component development according to the
AUTOSAR standard, a feature supported by almost all common software development
tools, and (b) the AUTOSAR runtime environment (RTE). This feature already supports
two of the main benefits of AUTOSAR aligned development, which are hardware inde-
pendent software development, and allocation of dedicated processing cores at a very
late development state. Basic software drivers and operating systems features remain un-
changed and can be reused as they stand. Solely an interface wrapper for RTE standard
interface needs to be adopted. This approach is frequently used when getting started with
AUTOSAR, when porting applications to an AUTOSAR environment, or when the project

budget does not support full AUTOSAR tooling. Additionally, this approach is also per-
fectly suitable for introducing new technologies (e.g. new multi-core technologies) or if
special hardware features (e.g. specific safety and security hardware modules) are not yet
available in standard AUTOSAR implementation.

On the other hand, AUTOSAR Implementation Conformance Classes 3 (ICC3) implies
full AUTOSAR conformity, implementation of the AUTOSAR interfaces, and standards
for all structures of the software architecture. Furthermore ICC3 requires a higher level
of granularity of the software architecture. This approach requires complete AUTOSAR
tooling and vendor support. Nevertheless, ICC3 gives maximum flexibility and highest
accuracy of the interface specifications.

ICC2 is an intermediate step between ICC1 and ICC3. Vertical subdivisions are already
introduced and monolithic blocks of the basic software are already separated. The cluster-
ing on ICC2 level is not restricted by AUTOSAR and could lead to different optimizations.
This ensures optimization strategies in terms of reduced execution time and memory foot-
print. ICC2 clustering can be used anytime when ICC3 structuring leads to non-negligible
overhead and flexibility of ICC3 approach is not required.

The main benefit of the ICC1 approach clearly relies on the time-saving in terms of no ad-
ditional familiarization with usually very complex and time-consuming AUTOSAR tools.
Nevertheless, this approach does not take advantage of the AUTOSAR benefits of stan-
dardized component interfaces for exchange of components, supporting tools for RTE
configuration, and communication interfaces. But in terms of safety-critical software de-
velopment special attention has to be paid to the manual interface description (such as
Excel files), manually coded interfaces, and manual configurations (see the parts with
’manual rework’ marking in Figure 1). Manual document changes are difficult to trace
and therefore require additional alertness to be paid in terms of safety-critical system de-
velopment.

Software Development Tool

InputA.c

manual
rework

FunctionA.c

OutputA.c

manual
rework

Figure 1: ICC1 AUTOSAR Approach Methodology with Required Manual Intervention

ICC1 mainly focuses on SW engineering and more specifically on the integration of ASW
into a given SW architecture. However, the aspects related to control systems engineering
(including HW/SW co-design) are not integrated and aspects such as HW/SW interface
definition must be performed manually. The proposed approach in this work enhances this
aspect and provides a framework for the visualization of interface wrapper configuration

and automated generation of the interfacing C files. Furthermore, the approach enhances
the standard AUTOSAR software component description with links to involved develop-
ment artifacts of prior development processes (e.g. traces to requirements, ASIL level,
additional constraints).

3 Model-based Software Development and Integrated Toolchains

Model-based Systems and Software development as well as tool integration are engineer-
ing domains and research topics aimed at moving the development steps closer together
and thus improving the consistency of the system over the expertise and domain bound-
aries. Broy et al. [BFH+08] mention concepts and theories for model-based development
of embedded software systems. The authors also claim model-based development the best
approach to manage the large amount of information and complexity of modern embed-
ded systems with safety constraints. The paper illustrates why seamless solutions have
not been achieved so far, they mention commonly used solutions, and arising problems by
using an inadequate tool-chain (e.g. redundancy, inconsistency and lack of automation).

Chen et. al. [CJL+08] presents an approach that bridges the gap between model-based sys-
tems engineering and the safety process of automotive embedded systems. The systematic
approach uses the EAST-ADL2 architecture description language to develop safety cases
in close relation to the system model and analysis of malfunctions. Although the work
provides a system model for keeping various engineering information across multiple lev-
els of abstraction and concerns consistent, their approach ends just before the definition of
software architecture design. More recently the MAENAD Project 1 is focusing on design
methodologies for electric vehicles based on EAST-ADL2 language.

The work of Holtmann et al. [HMM11] highlights process and tooling gaps between dif-
ferent modeling aspects of a model-based development process. Often, different special-
ized models for specific aspects are used at different development stages with varying
abstraction levels. Traceability between these different models is commonly established
via manual linking. The authors claim that there is a lack of automation for those linking
tasks and missing guidance which model should to be used at which specific development
stage. The proposed tool-chain mentions two important gaps: First, missing links between
system level tools and software development tools. Second, several very specific and non-
interacting tools which require manual synchronization, are therefore often inconsistent,
rely on redundant information, and due to a lack of automation require redundant manual
work.

This issue is also addressed by Giese et al. [GHN10]. System design models have to
be correctly transferred to the software engineering model, and later changes must be
kept consistent. The authors propose a model synchronization approach consisting of tool
adapters between SysML models and software engineering models in AUTOSAR repre-
sentation. One drawback of this approach stems from the bidirectional model transforma-
tion, each transformation step implies potential sources for ambiguous mapping and model
mismatching.

An important topic to deal with is the gap between system architecture and software ar-
chitecture - especially while considering component-based approaches such as UML and

1http://maenad.eu/

SysML for system architecture description and AUTOSAR for SW architecture descrip-
tion.

Pagel et al. [PB06] mention the benefit of generating XML schema files directly from a
platform-independent model (PIM) for data exchange via different tools. Performing extra
transformation steps would only add potential sources for error and ambiguous mappings
could result in unwanted side-effects. We also spotted a potential drawback for the previ-
ously mentioned approach of Giese et. al. [GHN10].

Boldt [Bol09] proposed the use of a tailored Unified Modeling Language (UML) or Sys-
tem Modeling Language (SysML) profile as the most powerful and extensible way to in-
tegrate an AUTOSAR method in company process flows. The author highlights the option
of UML to link requirements to ECU, SWC or runnables.

An automotive tool-chain for AUTOSAR is also presented by Voget [Vog14]. The work
focuses on ARTOP, a common platform for innovations which provides common base
functionality for development of AUTOSAR compliant tools. Unfortunately the Eclipse
based ARTOP platform serving only as a common base for AUTOSAR tool development,
is not a tool solution, and also requires time-consuming initial training to even get started
to develop a desired tool.

Among these, we evaluated several commercial available tools. The following paragraph
provides a brief overview of tools supporting the AUTOSAR approach, this list is not
intended to be exhaustive. The tools Matlab/Simulink and Embedded Coder are widely
used for automotive software development. It is possible to import and export AUTOSAR
software component descriptions and generate AUTOSAR software code in an integrated
environment with both tools. However, this tool focuses solely on software develop-
ment. Dassault System AUTOSAR Builder is a software platform for system and ECU
(Electronic Control Unit) design, based on the ARTOP tool environment. The tool suite
imports model-based design (MBD) descriptions and generates AUTOSAR compliant C
code. The embedded software platform Arctic Core includes a real-time operating sys-
tem, communication services, memory services, and drivers for different microcontroller
devices. Continental’s CESSAR-CT Tool-Box integrates the AUTOSAR methodology
in an already existing process landscapes. The modular tool includes several editors, an
AUTOSAR conformance validation, and code generation framework. Elektobit offers a
complete product line, called EB tresos. One part of this product line, EB tresos Auto-
Core, is an AUTOSAR compliant basic software, supporting AUTOSAR compliant OS for
single and multicore ECUs. ETAS AUTOSAR Solutions are designed to cooperate with
ETAS’s development tools, such as ASCET, INCA, and others. Vector’s AUTOSAR tool
chain consists of PREEvision, DaVinci Developer, and DaVinci Configurator Pro. These
tools provide tool support for model-based development, AUTOSAR basic software, and
RTE configuration.

Nevertheless, these tools mainly target the AUTOSAR ICC3 approach and usually fo-
cus on the configuration and analysis of the AUTOSAR stack and SW architecture. The
proposed contribution in this paper is (a) the formalization of control system description
(including BSW and HW) especially interesting for ICC1 and (b) the import / export to
AUTOSAR XML files for the traceability of architecture artifacts such as ASIL or timing
constraints from system description down to SW implementation, which are interesting
for all ICCs.

AUTOSAR TOOL-BRIDGE

System Requirements

Safety Requirements

System Architecture

SW Architecture HW Architecture

SWC
Description

Software Development Tool

SYSTEM MODELING TOOL AUTOSAR
Description

Files

SWC.c

RTE.c

BSW.c

OS.c
SYSTEM DEVELOPMENT SOFTWARE DEVELOPMENT

MODELING FRAMEWORK ADDONS

Figure 2: Portrayal of the Bridging Approach Transferring System Development Artifacts to SW
Development Phase

4 AUTOSAR Tool-Bridge for Model-based Software Development Ap-
proach

The basis of our approach stems from the CESAR Project [RW12] and was further im-
proved by a feasibility study [Mad12] to support continuous safety related system devel-
opment according to ISO 26262 at concept phase and system development level. For a
more detailed overview of the tool-chain as a whole see [MAK14] and [Mad12].

The contribution proposed in this work is an extension of this framework towards software
development in the context of AUTOSAR. More specifically, our contribution consists of
the following parts:

• AUTOSAR UML modeling framework: Enhancement of an UML profile for the def-
inition of AUTOSAR specific artifacts, more precisely, for the definition of the com-
ponents interfaces (based on the virtual function bus). This is required for consistent
SW system description, see Figure 2 – modeling framework addon.

• BSW and HW module modeling framework: Enhancement of an UML profile to
describe BSW components and HW components. This is required to ensure con-
sistency of the specification and implementation for the entire control system, see
Figure 2 – modeling framework addon.

• SW architecture exporter: Exporter to generate the resulting SW architecture as
AUTOSAR XML files for import in third party tools for further detailed develop-
ment, see Figure 2 – AUTOSAR tool bridge.

• AUTOSAR file importer: Importer to integrate refined SW architecture as AUTOSAR
XML file (e.g., as a result of round-trip engineering), see Figure 2 – AUTOSAR tool
bridge.

This proposed approach closes the gap, also mentioned by Giese et al. [GHN10], Holtmann
et al. [HMM11], and Sandmann and Seibt [SS12], between system-level development at
abstract UML-like representations and software-level development modeling tools (e.g.

Matlab Simulink/Targetlink). This bridging supports consistency of information transfer
between system engineering tools and software engineering tools. Further, the approach
minimizes redundant manual information exchange between these tools and contributes to
simplify seamless safety argumentation according to ISO 26262 for the developed system.
Benefits of this development approach are highly noticeable in terms of re-engineering
cycles, tool changes, and reworking of development artifacts with alternating dependen-
cies, as also mentioned by Broy et al. [BFH+08]. Closing this gap creates a seamless
tool-chain from initial design, to software architectures in a model-based development en-
vironment and final decisions in code implementation in compliance with ISO 26262. Our
approach supports the ICC1 AUTOSAR approach and relies on the AUTOSAR specifica-
tion [AUT09](currently implementing AUTOSAR R3.2 due to compatibility with Matlab
2011 based SW development tools) for architectural approach, definition of application
software interfaces, and exchange formats.

4.1 AUTOSAR UML Modeling Framework

The first contribution is the development of a specific UML modeling framework enabling
software architecture design in AUTOSAR like representation within the system develop-
ment tool (Enterprise Architect). This EA profile takes advantage of the AUTOSAR vir-
tual function bus (VFB) abstraction layer and enables an explicit definition of AUTOSAR
components, component interfaces, and connections between interfaces. This provides the
possibility to define software architecture and ensures proper definition of the communica-
tion between the architecture artifacts, including interface specifications (e.g. upper limits,
initial values, formulas). In addition to standard VFB AUTOSAR artifacts our profile sup-
ports graphical representation of ASIL, assignment to dedicated signals and modules, and
supports specification of runnables with respect to timing constraints (such as WCET),
ASIL, priority, and required stack sizes. This meta information enables mapping of tasks
to a specific core and establishment of a valid scheduling in a later development phase.

The proposed approach thus supports the ISO 26262 requirements of traceability along the
development process, even for ICC1 AUTOSAR development. Hence, the AUTOSAR-
aligned representation can be linked to system development artifacts and traces to re-
quirements can be easily established. These explicit links can be further used for con-
straints checking, traceability of development decisions (e.g. for safety case generation),
and reuse. Figure 3 shows an example of a safety-relevant software module (AUTOSAR
Composition) and its ASIL decomposition in two components with lower ASIL levels,
represented in Enterprise Architect. This integrated definition of system artifacts and soft-
ware module in one tool furthermore supports the work of safety engineers by adding
values and visual labels for safety-relevant software modules.

4.2 BSW and HW Module Modeling Framework

Special basic software (BSW) and hardware module representations are assigned to estab-
lish links to the underlying basic software and hardware layers. The AUTOSAR architec-
tural approach ensures hardware-independent development of application software mod-
ules until a very late development phase and therefore enables application software devel-
opers and basic software developers to work in parallel. Nevertheless, safety-critical sys-

Figure 3: Screenshot of the SW Architecture Representation within the System Development Tool
and Extension of Bridging Approach

tem development concerns also hardware development and support for hardware-software
co-design is absolutely essential. The hardware profile allows a graphical representation
of hardware resources (such as ADC, CAN), calculation engines (core), and connected
peripherals which interact with the safety-critical software. This additional information
enables the mapping of tasks to a specific core and establishment of a valid scheduling
in a later development phase. Furthermore, the profile enables an intuitive graphical way
of establishing software and hardware dependencies and a hardware-software interface
(HSI), as required by ISO 26262. In combination with the ICC1 AUTOSAR development
approach this profile enables the possibility of a traceable automatic RTE configuration
generation instead of the typical manual software component interface definition.

4.3 SW Architecture Exporter

The third part of the approach is an exporter which is able to export the software architec-
ture, component containers, and their interconnections designed in SysML to a software
development tool (e.g. Matlab/Simulink) via AUTOSAR XML files (see Figure 3). Most
of the state of the art software development tools are able to generate AUTOSAR-conform
code and software component description files or support the import of AUTOSAR mod-
ules. This ensures flexibility of the approach in terms of the preferred software develop-
ment tool in use (e.g. Matlab/Simulink or ETAS ASCET) and ensures tool-independence
of the presented approach.

The exporter generates an AUTOSAR conform software component description files (cur-
rently AUTOSAR R3.2 to be compatible with Matlab 2011) enriched with system and

safety development artifact traces. Information that is not importable by default AUTOSAR
import functions of third-party tools is transferred via description and long-name values
of individual models and is therefore still available for the user of this particular tool. Us-
ing this exporter, the (safety) context can be efficiently exported and communicated to the
software experts in their native development tools, thus improving the consistency of the
product development.

4.4 Import of AUTOSAR Files

The fourth part of the approach is the import functionality add-on for the system devel-
opment tool. This functionality, in combination with the export function, enables bidirec-
tional update of software architecture representation in the system development tool and
the software modules under development. The importer also re-imports additional infor-
mation from the ARXML file stemming from software development level. On the one
hand, this provides input for the previously mentioned timing estimations of task, and on
the other hand it ensures consistency between system development artifacts and changes
done in the software development tool. Finally, the import functionality enables reuse of
available AUTOSAR software modules, guarantees consistency of information, and shares
information more precisely and less ambiguously.

5 Application of the Proposed Approach

This section demonstrates the benefits of the introduced approach in terms of ISO 26262
aligned development. As a first step of ISO 26262 related safety-critical system devel-
opment, the boundaries of the system and its interacting environment must be specified.
For each system on each level of abstraction, system targets (requirements and use cases)
and a system structure can be refined. The system design is completed by the definition
of the hardware-software interface (HSI). This mapping provides a basis for concurrent
development of software and hardware.

The definition of the software architecture is usually done by a software system archi-
tect within the software development tool (such as Matlab/Simulink). With our approach
this work package is included in the system development tool in an AUTOSAR-aligned
representation (already depicted in Figure 3). On one hand, this does not hamper the
work of the software system architect and the AUTOSAR format based exporter ensures
consistent transferring to the software development tool, in a way that the software unit
design remains unaffected. On the other hand this change offers a significant benefit for
development of safety-critical software in terms of traceability and replicability of design
decisions.

The presented approach bridges the existing lack of tool support for transferring SW ar-
chitectures between system design and software implementation tools. Due to the basis of
information transfer via standardized AUTOSAR exchange formats this tool-independent
approach can also be used to link additional tools to the development tool-chain. Further-
more, the approach guarantees traceable links of safety concept considerations throughout
the entire development cycle, due to the single source of information principle (all rele-
vant information and design decisions within the system development tool), as well as im-
proved re-useability of software modules by adding information and safety constraints to

the AUTOSAR software component description file. Figure 4 depicts the add-on of trace-
able artifact links of the approach for a specific subsystem. Required ASIL and related
requirements can be additionally stored within the ARXML file, as well as information
about other dependencies (e.g. required HW resources or required core allocation diver-
sity). The figure illustrates the transfer of artifacts between the separated development
phases of SW development and system development, and indicates how traceability can
be supported.

Figure 4: Traceability of Artifacts between System Engineering and SW Development

These AUTOSAR software module description files can be imported by software devel-
opment tools (such as Matlab/Simulink), thus minimizing the effort of error-prone manual
work without adequate tool support. The possibility of re-importation of information from
changed AUTOSAR software component description files into the system model ensures
round-trip engineering and consistency of the implementation and the system model. The
previously mentioned definition of hardware-software interface enables the automatic gen-
eration of interface wrapper files (.c and .h files), thus also reducing the amount of manual
changes of source code files without adequate tracing of changes.

To provide a comparison of the improvements of our approach we defined the three layer
E-Gas monitoring functionality accordingly [ZS07] as use-case. This elementary use-case
is well-known in the automotive domain, but is nevertheless representative in our opinion,
due to the fact that several safety-critical systems base on this approach. Table 1 gives an
overview of the improvements indicated compared to AUTOSAR ICC1 approach.

In terms of getting started with AUTOSAR aligned development our approach does not
rely on full AUTOSAR tooling support, but rather features the smooth first step approach
of the ICC1 AUTOSAR approach. In terms of safety-critical development the presented

approach supports round-trip engineering by tool-supported information transfer between
separated tools and links to supporting safety-relevant information. Furthermore, the ap-
proach eliminates the need of manual interface source code rework and ensures repro-
ducibility and traceability arguments for this task. These indicators infer that the presented
approach surmounts the main drawbacks of the ICC1 AUTOSAR approach.

Evaluation Criteria ICC1 AUTOSAR Approach
(reference)

AUTOSAR Tool-Bridge
Approach

11x Interface definitions
(consisting of limits,
data type, scaling, unit,
default value)

usually done with SW
engineering tool, no
representation within system
development tool

graphically with option list
support

Interface consistency
evaluation

needs to be done manually at
review without tool support

automated consistency checks
possible for point-to-point
connections

SW Architecture
definition (3 levels,
7 modules,
30 connections)

usually done with SW
engineering tool, no
representation within system
development tool

graphically establish-able
within system development
tool, automatic export to
ARXML

SW Architecture update usually no representation
within system development
tool

import and export
functionality within system
development tool

ASIL assignment not supported for each module and each
BSW mapping possible

RTE configuration manually mapping automatically
generated

Table 1: Approach Improvement Indicators

6 Conclusion

An important challenge for the development of safety-critical automotive systems is to
ensure consistency of the safety relevant artifacts (e.g., safety goals, concepts, require-
ments and mechanisms) over the development cycle. This is especially challenging due
to the large number of skills, tools, teams and institutions involved in the development.
This work presents an approach to bridge tool gaps between an existing model-driven sys-
tem and safety engineering framework and software engineering tools, based on domain
standard AUTOSAR. The implemented tool extension transfers artifacts from system de-
velopment tools to software development tools, thereby creating traceable links across
tool boundaries, and relying on standardized AUTOSAR exchange files. The main bene-
fits of this enhancement are: improved consistency and traceability from the initial design
at the system level down to the single software components, as well as a reduction of
cumbersome and error-prone manual rework along the system development path. Further
improvements of the approach include the introduction of AUTOSAR without relying on
full AUTOSAR tooling support, and progress in terms of reproducibility and traceability
of safety-critical arguments for the software development.

Acknowledgments
The authors would like to acknowledge the financial support of the ”COMET K2 - Competence
Centers for Excellent Technologies Programme” of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth
(BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of Styria, and the Styrian
Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our supporting project partners, AVL List
GmbH, Virtual Vehicle Research Center, and Graz University of Technology.

References

[AUT09] AUTOSAR development cooperation. AUTOSAR AUTomotive Open System ARchitec-
ture, 2009.

[BFH+08] Manfred Broy, Martin Feilkas, Markus Herrmannsdoerfer, Stefano Merenda, and Daniel
Ratiu. Seamless Model-based Development: from Isolated Tool to Integrated Model En-
gineering Environments. IEEE Magazin, 2008.

[Bol09] Richard Boldt. Modeling AUTOSAR systems with a UML/SysML profile. Technical
report, IBM Software Group, July 2009.

[CJL+08] DeJiu Chen, Rolf Johansson, Henrik Loenn, Yiannis Papadopoulos, Anders Sandberg,
Fredrik Toerner, and Martin Toerngren. Modelling Support for Design of Safety-Critical
Automotive Embedded Systems. In SAFECOMP 2008, pages 72 – 85, 2008.

[Eis11] Ulrich Eisemann. Modellbasierte Entwicklung in einer AUTOSAR-Werkzeugkette.
www.elektroniknet.de/automotive/sonstige/artikel/74849/, Jannuary 2011.

[GHN10] Holger Giese, Stephan Hildebrandt, and Stefan Neumann. Model Synchronization at
Work: Keeping SysML and AUTOSAR Models Consistent. LNCS 5765, pages pp. 555
–579, 2010.

[HMM11] Joerg Holtmann, Jan Meyer, and Matthias Meyer. A Seamless Model-Based Develop-
ment Process for Automotive Systems, 2011.

[ISO11] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 1-10, 2011.

[Mad12] Roland Mader. Computer-Aided Model-Based Safety Engineering of Automotive Systems.
PhD thesis, Graz University of Technology, 2012.

[MAK14] Georg Macher, Eric Armengaud, and Christian Kreiner. Bridging Automotive Systems,
Safety and Software Engineering by a Seamless Tool Chain. In 7th European Congress
Embedded Real Time Software and Systems Proceedings, pages 256 –271, 2014.

[PB06] Mike Pagel and Mark Broerkens. Definition and Generation of Data Exchange Formats
in AUTOSAR, process independent model. lNCS 4066, pages pp. 52–65, 2006.

[RW12] Ajitha Rajan and Thomas Wahl. CESAR Project Book. Springer Verlag, 2012.
[SS12] Guido Sandmann and Michael Seibt. AUTOSAR-Compliant Development Workflows:

From Architecture to Implementation - Tool Interoperability for Round-Trip Engineering
and Verification & Validation. SAE World Congress & Exhibition 2012, (SAE 2012-01-
0962), 2012.

[Vog14] Stefan Voget. SAFE RTP: An open source reference tool platform for the safety modeling
and analysis. In Embedded Real Time Software and Systems Conference Proceedings,
2014.

[ZS07] Thomas Zurawka and Joerg Schaeuffele. Method for checking the safety and reliability
of a software-based electronic system, January 2007.

A Seamless Model-Transformation between System
and Software Development Tools

Georg Macher∗†, Harald Sporer∗, Eric Armengaud†, Eugen Brenner∗ and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, sporer, brenner, christian.kreiner}@tugraz.at

†AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud}@avl.com

Abstract—The development of dependable embedded auto-
motive systems faces many challenges arising from increasing
complexity, coexistence of critical and non-critical applications,
and the emergence of new architectural paradigms on the one
hand, to short time-to-market intervals on the other hand. This
situation requires tools to improve efficiency and consistence
of development models along the entire development lifecycle.
The existing solutions to date are still all too frequently in-
sufficient when transforming system models with higher levels
of abstraction to more concrete engineering models (such as
software engineering models). Future automotive systems require
appropriate structuring and abstraction in terms of modulariza-
tion, separation of concerns, and supporting interactions between
system, and component development.

However, refinement of system designs into hardware and
software implementations is still a tedious task. The aim of this
work is to enhance an automotive model-driven system engi-
neering framework with software-architecture design capabilities
and a model-transformation framework to enable a seamless
description of safety-critical systems, from requirements at the
system level down to software component implementation in a
bidirectional manner.

Keywords—Automotive, model-based development, reuse, trace-
ability, model-based software engineering, ISO 26262.

I. INTRODUCTION

Embedded systems are already integrated in our every-
day lives and play a central role in all domains including
automotive, aerospace, healthcare, manufacturing industry, the
energy sector, or consumer electronics. In 2010, the embedded
systems market accounted for almost 852 billion dollars world-
wide, and is expected to reach 1.5 trillion by 2015 (assuming
an annual growth rate of 12%) [18]. Current premium cars
implement more than 90 electronic control units (ECU) per
car with close to 1 Gigabyte software code [6], these are
responsible for 25% of vehicle costs and bring an added value
of between 40% and 75% [23].

The trend of replacing traditional mechanical systems with
modern embedded systems enables the deployment of more
advanced control strategies providing additional benefits for
the customer and for the environment, but at the same time,
the higher degree of integration and criticality of the control
application is posing new challenges. These factors are result-
ing in multiple cross-domain collaborations and interactions in
the face of the challenge of mastering the increased complexity

involved and also to ensure consistency of the development
along the entire product life cycle.

Model-based development supports the description of the
system under development in a more structured manner, in
the context of handling upcoming issues with modern real-
time systems and also in relation to ISO 26262. Model-based
development approaches enable different views for different
stakeholders, different levels of abstraction and central storage
of information. This improves the consistency, correctness, and
completeness of the system specification. Nevertheless, such
seamless integrations of model-based development still tend
to be the exception rather than the rule and often fall short of
target due to the lack of integration of conceptual and tooling
levels [4]. Consequently, this work focuses on improving the
continuity of information interchange from system develop-
ment level to software development level models.

With this objective in mind the work focuses on improving
the continuity of information interchange for architectural
designs from system development level (Automotive SPICE
[26] ENG.3 respectively ISO 26262 [10] 4-7 System design)
to software development level (Automotive SPICE ENG.5
respectively ISO 26262 6-7 SW architectural design). More
specifically, the approach is based on the enhancement of a
model-driven system engineering framework with software-
architecture design capabilities. The model-transformation
framework automatically generates software architectures in
Matlab/Simulink described via high level control system mod-
els in SysML format. The goal is, on the one hand, to support
a consistent and traceable refinement from the early concept
phase to software implementation. On the other hand, the
bidirectional update function of the transformation framework
enables facilitation in gaining mutual benefits for the basic
software and the application software development from the
coexistence of information for them both within the central
database.

The document is organized as follows: Section II presents
an overview of related approaches as well as model-based
development and integrated tool chains. In Section III a de-
scription of the proposed bridging approach for the refinement
of the model-based system engineering model to software
development is provided. An application and evaluation of
the approach is presented in Section IV. Finally, this work
is concluded in Section V with an overview of the approach.

II. RELATED WORK

Model-based systems and software development as well as
tool integration aim at moving the development steps involved
closer together and thus improving the consistency of infor-
mation over the expertise and domain boundaries. Pretschner’s
roadmap [19] highlights the benefits of such a seamless model-
based development tool-chain for automotive software engi-
neering. Model-based development is also claimed to be the
best approach to managing the large amount of information and
the complexity of the modern embedded systems involved by
Broy et al. [4]. Their paper illustrates why seamless solutions
have not been achieved so far and mentions concepts and
theories for model-based development of embedded software
systems. Additionally they make reference to commonly used
solutions and problems arising with inadequate tool-chain sup-
port (e.g. redundancy, inconsistency and lack of automation).
Nevertheless, the challenge of enabling a seamless integration
of models into model-chains is still an open issue [20], [21],
[27] Often, different specialized models for specific aspects
are used at different development stages with varying ab-
straction levels. Traceability between these different models
is commonly established via manual linking due to process
and tooling gaps.

The work of Holtmann et al. [9] highlights process and
tooling gaps between different modeling aspects of a model-
based development process. Giese et al. [8] address issues of
correct bi-directional transfer between system design models
and software engineering models. The authors propose a
model synchronization approach consisting of tool adapters
between SysML models and software engineering models in
AUTOSAR representation.

Dealing with this gap between system architecture and
software architecture, especially while considering component-
based approaches such as UML and SysML for system ar-
chitecture description and AUTOSAR for SW architecture
description, is one of the most important topics in this entire
issue. Two common variants in the automotive domain are
the usage of SysML [3], [8], [11], [14], [17] or X-MAN
[12] approaches for architectural description and AUTOSAR
for software system description. Boldt [3] proposed the use
of a tailored Unified Modeling Language (UML) or System
Modeling Language (SysML) profile as the most powerful and
extensible way to integrate an AUTOSAR method in company
process flows.

The approach of bridging the gap between model-based
system engineering and software engineering models based on
EAST-ADL2 architecture description language and a comple-
mentary AUTOSAR representation is also very common in
the automotive software development domain [5], [16], [25].
EAST-ADL represents an architecture description language
using AUTOSAR elements to represent the software imple-
mentation layer of embedded systems [2]. More recently the
MAENAD Project1 is also focusing this approach.

Kawahara et al. [11] propose an extension of SysML
which enables description of continuous time behavior. Their
tool integration base on Eclipse and couples SysML and
Matlab/Simulink via API.

1http://maenad.eu/

Farkas et al. [7] describe in their paper an integrative
approach for Embedded Software Design with UML and
Simulink. Their presented approach aims in a stepwise mi-
gration towards model-based development and enables the co-
operative usage of MATLAB/Simulink & UML for functional
specification and code generation. The focus of this work is on
the combination of source codes generated by different model-
based tools, rather than the interchange of data between the
different model representations.

SysML and model-based development (MBD) as the back-
bone for development of complex safety critical systems is also
seen as a key success factor by Lovric et. al [13]. The paper
evaluates key success factors of MBD in comparison to legacy
development processes in the field of safety-critical automotive
systems.

Tool support for automotive engineering development is
still organized as a patchwork of heterogeneous tools and
formalisms [2]. On the one hand, general-purpose modeling
languages (such as UML or SysML) provide modeling power
suitable for capturing system wide constraints and behavior,
but are lacking in synthesizability. On the other hand, special-
purpose modeling languages (such as C, Assembler, Matlab,
Simulink, ASCET) are optimized for fine granular design, but
are less efficient in high-level design.

The issue of improving these interactions, especially those
which deal with cross-domains affairs (such as the architectural
design refinement from system development level to software
development level), thus requires a comprehensive understand-
ing of related processes, methods, and tools. The work of
Sechser [24] describes the experiences gained when combining
two different process worlds in the automotive domain.

III. MODEL-TRANSFORMATION BRIDGE APPROACH

This paragraph gives a brief overview of the underly-
ing framework and related preliminary work which supports
the proposed approach. The presented framework focuses on
improving the continuity of information interchange from
system development level to software development level. The
basic concept behind this framework is to have a consistent
information repository as central source of information, to
store all information of all the engineering disciplines involved
for embedded automotive system development in a structured
way [15].

The methodical support of system architectural design
and refinement of this design to software design often fell
short of the mark. To handle this situation the AUTOSAR
methodology [1] provides standardized and clearly defined
interfaces between different software components and develop-
ment tools and also provides such tools for easing this process
of architectural design refinement. Nevertheless, the enor-
mously complex AUTOSAR model requires a high amount
of preliminary work and projects with limited resources often
struggle to achieve adequate quality within budget (such as
time or manpower) using this approach. This approach thus
arises out of common AUTOSAR based approaches and forces
a direct model transformation from SysML representation to
Matlab/Simulink. The reason for making the decision of not
fostering an AUTOSAR approach is based on the one hand on

TOOL-BRIDGE

SYSTEM REQUIREMENTS

SAFETY REQUIREMENTS

SYSTEM ARCHITECTURE

HW ARCHITECTURESW ARCHITECTURE

SYSTEM MODELING TOOL

SYSTEM DEVELOPMENT SOFTWARE DEVELOPMENT

MODEL ADDON
C# CLASS LIBRARY (DLL)

MATLAB / SIMULINK

SOURCE CODE

Fig. 1. Portrayal of the Bridging Approach Transferring System Development
Artifacts to SW Development Phase

focusing not only AUTOSAR but also rather on generally Mat-
lab/Simulink based automotive software development. On the
other hand, experiences we made with our previous approach
[14] confirm the problem mentioned by Rodriguez et al. [21].
Not all tools fully support the whole AUTOSAR standard,
because of its complexity, which leads to several mutual
incompatibilities and interoperability problems. The presented
MDB model has been developed using profiles which use a
subset of the SysML language to define a SW architecture
model particularly tailored to automotive SW engineering in
context of ISO 26262. In the following paragraphs we describe
the additional model enhancements to support software devel-
opment and modeling of complex software architectures for
function software development. The contribution presented in
this work supports automatic generation of software architec-
tures, interface definition, timing setting, and auto-routing of
signals in Matlab/Simulink based on SysML representation.

Figure 1 shows an overview of this approach and the
imbedded bridging of abstract system development and con-
crete software development models. More specifically, our
contribution consists of the following parts:

• SW modeling framework: Enhancement of a SysML
profile for the definition of SW component interfaces
and SW architecture composition. Required for con-
sistent SW system description, see Figure 1 – model
addon.

• SW architecture exporter: Exporter to generate the de-
signed SW architecture in Matlab/Simulink for further
development of SW functions, see Figure 1 – tool
bridge.

• SW architecture importer: Importer to integrate refined
SW architecture and interfaces from the software
development tool (to support round-trip engineering),
see Figure 1 – tool bridge.

This proposed approach closes the gap, also mentioned
by Giese et al. [8], Holtmann et al. [9], and Sandmann
and Seibt [22], between system-level development at ab-
stract UML-like representations and software-level develop-
ment modeling tools (e.g. Matlab/Simulink or Targetlink). The
bridging supports consistency of information transfer between

Fig. 2. Screenshot of the SW Architecture Representation within the System
Development Tool and Representation of the Interface Information

system engineering tools and software engineering tools and
minimizes redundant manual information exchange between
these tools. This contributes to simplifing seamless safety
argumentation according to ISO 26262 [10] for the system de-
veloped. The benefits of this development approach are highly
noticeable in terms of re-engineering cycles, tool changes, and
reworking of development artifacts with alternating dependen-
cies. As can be seen in Figure 1, the lack of supporting tools
for information transfer between system development tools and
software development tools can be dispelled by our approach.
The implementation of the bridge based on versatile C# class
libraries (dll) and Matlab COM Automation Server ensures
tool in-dependence of the general-purpose UML modeling tool
(such as Enterprise Architect or Artisan Studio) and version
in-dependence of Matlab/Simulink through API command
implementation. This makes the method especially attractive
for projects and companies with limited resources (either in
manpower or finances). Small projects or start-up companies
in particular often struggle with the problem of setting up their
development processes so as to achieve adequate quality.

A. Software Modeling Framework

The first part of the approach is a specific SysML modeling
framework which enables the possibility of designing software
architectures in an AUTOSAR aligned manner within a system
development tool. The profile enables an explicit definition
of AUTOSAR components, component interfaces, connections
between interfaces and makes the SysML representation more
manageable for the needs of the design of an automotive
software architecture. Furthermore, it opens up the possibility
for defining software architecture and ensures establishment
of communication between architecture artifacts with inter-
face specifications (e.g. upper limits, initial values, formulas).
Special basic software and hardware abstraction modules are

TABLE I. SW ARCHITECTURE IMPORTER INDICATORS OF TYPE OF
CHANGE

Indicator Type of Change

A model artifact added
AC interface connection added
D model artifact deleted
DC interface connection deleted
U model artifact updated
UC interface connection updated

assigned to establish links to the underlying basic software
and hardware abstraction layers. Moreover, these SW modeling
artifacts can be linked to the system model artifacts and
requirements in such a manner that traceable links can be
established more easily. This has further benefits in terms of
constraints checking, reuse, and reporting generation (e.g. for
safety case generation). Figure 2 shows an example of software
architecture artifacts and interface information represented in
Enterprise Architect. Furthermore, this integrated definition of
system artifacts and software module in one tool supports the
work of safety engineers by adding values and visual labels
for safety-relevant software modules.

In addition to standard VFB AUTOSAR profiles the profile
features assignment and graphical representation of ASIL to
dedicated signals and modules and provides specification of
runnables with timing constraints (such as WCET), ASIL, and
priority. This additional information enables mapping of tasks
to a specific core and establishment of a valid scheduling in
a later development phase. Further benefits result in terms of
constraints checking and traceability of development decisions.

B. SW Architecture Exporter

The second part of the approach is the SW architec-
ture exporter. The implementation of the exporter is based
on Matlab COM Automation Server and generates models
through API command implementation, which ensures tool
version-independence. The export functionality enables the
export of software architecture, component containers, and
their interconnections designed in SysML to the software
development tool Matlab/Simulink. The SW architecture ar-
tifacts to be transferred can be selected by user input and
the corresponding Matlab/Simulink model is generated by a
background task. As can be seen in Figure 3 the user is able
to select the SW artifacts for exporting, the desired model rep-
resentation in Matlab/Simulink (either TargetLink or Simulink
representation), and the exporting mode (m-file based, API
based, or as ARXML file). The export mode variants also
enable exporting if Matlab/Simulink is not available (m-file
based) or an AUTOSAR based SW development toolchain is
used (ARXML file based). Listing 1 shows some excerpts of
the automatically generated Matlab API commands. As can
be seen in this listing, each model artifact, parameter, and
connection is transferred to Matlab/Simulink, where the blocks
are arranged and sized in a correct manner. Besides this, unique
links to the EA representation and assigned safety-criticality
marking of the artifact (Listing 1 line 3 and 8) are established.

Fig. 3. Screenshot of the SW Architecture Exporter GUI

Listing 1. Excerpts of Matlab API Commands
1 addpath(genpath(’C:\EGasSystem’))
2 add_block(’Simulink/Ports & Subsystems/Model’,’EGasSystem/

EGasCtrl’)
3 set_param(’EGasSystem/EGasCtrl’,’ModelNameDialog’,’EGasCtrl’

,’Description’,’EA_ObjectID@1969;ASIL@QM’)
4 set_param(’EGasSystem/EGasCtrl’,’Position’,[250 50 550 250])

5

.

.

.
6 add_block(’Simulink/Ports & Subsystems/In1’,’EGasSystem/

APedl2’)
7 set_param(’EGasSystem/APedl2’,’Position’,[50 200 80 215])
8 set_param(’EGasSystem/APedl2’,’Outmin’,’0’,’Outmax’,’5’,’

OutDataTypeStr’,’single’,’Description’,’
EA_ObjectID@1966;ASIL@B’);

9

.

.

.
10 add_line(’EGasSystem’,’APedl1/1’,’EGasMonr/1’,’AUTOROUTING’,

’ON’)

11

.

.

.
12 save_system(’EGasSystem’)
13 close_system(’EGasSystem’)
14 cd ..
15 cd C:\EGasSystem

C. SW Architecture Importer

The last part of the approach is the import functionality
add-on for the system development tool, which in combination
with the export function, enables bidirectional updates of
software architecture representations in the system develop-
ment tool and the software modules in Matlab/Simulink. The

Fig. 4. SW Architecture Importer User Interface

Fig. 5. Top-Level Representation of Demonstration Use-Case in Enterprise
Architect

importer analyzes the Matlab/Simulink model representation
and identifies the unique links to the EA representation (shown
in Listing 1 line 3 and 8). Thereby new and modified model
artifacts can be differentiated and changes made in the software
development tool can be kept consistent within the system
development model representation. This ensures consistency
between the models, enables importing of newly available soft-
ware modules from Matlab/Simulink, and therefore guarantees
consistency of information across tool boundaries. Figure 4
shows the user interface within the system development tool.
As can be seen in this figure, modifications between the two
models are identified and a selective update of the SysML
representation can be triggered by the user. Furthermore, a
highlighting of the type of change can also be depicted. Table
I shows the different change type indicators and types of
changes.

IV. APPLICATION OF THE PROPOSED APPROACH

This section demonstrates the introduced approach by an
automotive embedded system use-case. To provide a compar-
ison and highlighting of the improvements of our approach

we use the 3 layer monitoring concept [28] as an evaluation
use-case. This elementary use-case is well-known in the auto-
motive domain, but is nevertheless representative. Moreover,
this elementary use-case is illustrative material, which is also
used for internal training purposes with students and engineers.
The disclosed and commercially non-sensitivity use-case is not
intended to be exhaustive, nor to be representative of leading-
edge technology.

The definition of the software architecture is usually per-
formed by a software system architect within the software
development tool (Matlab/Simulink). With our approach this
work package is included in the system development tool
(depicted in Figure 5). This does not hamper the work of the
software system architect, but it enables constraint checking
features and helps to improve system maturity in terms of
consistency, completeness, and correctness of the development
artifacts. Besides this, the change offers a significant benefit
for the development of safety-critical software in terms of
traceability, replicability of design decisions and it unambigu-
ously visualizes dependencies while putting visual emphasis on
view-dependent constraints (such as graphical safety-criticality
highlighting of SW modules in Figure 5).

The 3 layer monitoring concept use-case presented consists
of 7 SW modules with 34 interfaces and 30 signal connections.
Hereby the SW module representations contain 3 configurable
attributes per element and the SW interfaces 34 attributes per
element. The use-case thus sums up to a total count of 41
model artifacts with 361 configuration parameters and 30 rela-
tions between the elements. This elementary example already
indicates that the number of model elements and relations
between the model elements already becomes confusing. A
manual transformation of the information represented within
the models would already be cumbersome, error-prone, and
would involve a great amount of additional work to ensure
consistency between the two models.

The presented approach in this work checks the information
and model artifacts for point-to-point consistency of interface
configurations before automatically transferring the model rep-
resentation via 212 lines of auto-generated Matlab API code,
which provides evidences and ensures the completeness of the
model transformation. The presented SW architecture importer
functionality enables round-trip engineering and bi-directional
updates of both models and therefore supports evidence for
the consistency of both models.

In terms of safety-critical development and reuse the fea-
tures of the approach presents are crucial to transfer infor-
mation between separated tools and link supporting safety-
relevant information. Moreover, the approach eliminates the
need for manual information reworking without adequate tool
support, ensuring reproducibility, and traceability argumenta-
tion.

V. CONCLUSION

The challenge with modern embedded automotive systems
is to master the increased complexity of these systems and
ensure consistency of the development along the entire product
life cycle. Automotive standards, such as ISO 26262 safety
standard provide a process framework which requires efficient

and consistent product development and tool support. Nev-
ertheless, various heterogeneous development tools in use are
hampering the efficiency and consistency of information flows.

This work thus focuses on improving the continuity of
information interchange of architectural designs from system
development level (Automotive SPICE ENG.3 respectively
ISO 26262 4-7 System design) to software development level
(Automotive SPICE ENG.5 respectively ISO 26262 6-7 SW
architectural design). For this purpose, an approach to seam-
lessly combine model-based development tools on system level
(such as Enterprise Architect) and on SW development level
(such as Matlab/Simulink) has been proposed.

The applicability of the approach has been demonstrated
utilizing an elementary automotive use-case, the 3 layer mon-
itoring concept, which is an illustrative material and does
not represent either an exhaustive or a commercially sensitive
project. The main benefits of the presented approach are:
improved consistency and traceability from the initial design
at the system level down to the software implementation, as
well as, a reduction of cumbersome and error-prone manual
work along the system development path.

ACKNOWLEDGMENTS

This work is partially supported by the EMC2 and the
MEMCONS projects.

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment nr 621429 (project EMC2) and financial support of
the ”COMET K2 - Competence Centers for Excellent Tech-
nologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWFJ),
the Austrian Research Promotion Agency (FFG), the Province
of Styria, and the Styrian Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our
supporting project partners, AVL List GmbH, Virtual Vehicle
Research Center, and Graz University of Technology.

REFERENCES

[1] AUTOSAR development cooperation. AUTOSAR AUTomotive Open
System ARchitecture, 2009.

[2] H. Blom, H. Loenn, F. Hagl, Y. Papadopoulos, M.-O. Reiser, C.-J.
Sjoestedt, D. Chen, and R. Kolagari. EAST-ADL - An Architecture De-
scription Language for Automotive Software-intensive Systems. White
Paper 2.1.12, 2013.

[3] R. Boldt. Modeling AUTOSAR systems with a UML/SysML profile.
Technical report, IBM Software Group, July 2009.

[4] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu.
Seamless Model-based Development: from Isolated Tool to Integrated
Model Engineering Environments. IEEE Magazin, 2008.

[5] D. Chen, R. Johansson, H. Loenn, Y. Papadopoulos, A. Sandberg,
F. Toerner, and M. Toerngren. Modelling Support for Design of Safety-
Critical Automotive Embedded Systems. In SAFECOMP 2008, pages
72 – 85, 2008.

[6] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future.
IEEE Computer Society, 0018-9162/09:42–52, 2009.

[7] T. Farkas, C. Neumann, and A. Hinnerichs. An Integrative Approach
for Embedded Software Design with UML and Simulink. In Computer
Software and Applications Conference, 2009. COMPSAC ’09. 33rd
Annual IEEE International, volume 2, pages 516–521, July 2009.

[8] H. Giese, S. Hildebrandt, and S. Neumann. Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent. LNCS
5765, pages pp. 555 –579, 2010.

[9] J. Holtmann, J. Meyer, and M. Meyer. A Seamless Model-Based
Development Process for Automotive Systems, 2011.

[10] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[11] R. Kawahara, D. Dotan, T. Sakairi, K. Ono, A. Kirshin, H. Nakamura,
S. Hirose, and H. Ishikawa. Verification of embedded system’s specifi-
cation using collaborative simulation of SysML and Simulink models.
In Proceedings of Second International Conference on Model Based
Systems Engineering, pages 21 – 28, March 2009.

[12] K.-K. Lau, P. Tepan, C. Tran, S. Saudrais, and B. Tchakaloff. A
Holistic (Component-based) Approach to AUTOSAR Designs. In
Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, pages 203–207, Sept 2013.

[13] T. Lovric, M. Schneider-Scheyer, and S. Sarkic. SysML as Backbone
for Engineering and Safety - Practical Experience with TRW Braking
ECU. In SAE Technical Paper. SAE International, 04 2014.

[14] G. Macher, E. Armengaud, and C. Kreiner. Automated Generation of
AUTOSAR Description File for Safety-Critical Software Architectures.
In 12. Workshop Automotive Software Engineering (ASE), Lecture Notes
in Informatics, pages 2145–2156, 2014.

[15] G. Macher, E. Armengaud, and C. Kreiner. Bridging Automotive
Systems, Safety and Software Engineering by a Seamless Tool Chain.
In 7th European Congress Embedded Real Time Software and Systems
Proceedings, pages 256 –263, 2014.

[16] R. Mader, G. Griessnig, A. Eric, L. Andrea, K. Christian, Q. Bour-
rouilh, C. Steger, and R. Weiss. A Bridge from System to Software
Development for Safety-Critical Automotive Embedded Systems. 38th
Euromicro Conference on Software Engineering and Advanced Appli-
cations, pages 75 –79, 2012.

[17] J. Meyer. Eine durchgaengige modellbasierte Entwicklungsmethodik
fuer die automobile Steuergeraeteentwicklung unter Einbeziehung des
AUTOSAR Standards. PhD thesis, Universitaet Paderborn, Fakultaet
fuer Elektrotechnik, Informatik und Mathematik, July 2014.

[18] A. Petrissans, S. Krawczyk, L. Veronesi, G. Cattaneo, N. Feeney, and
C. Meunier. Design of Future Embedded Systems Toward System of
Systems - Trends and Challenges. European Commission, May 2012.

[19] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner. Software
Engineering for Automotive Systems: A Roadmap. In 2007 Future
of Software Engineering, FOSE ’07, pages 55–71, Washington, DC,
USA, 2007. IEEE Computer Society.

[20] I. R. Quadri and A. Sadovykh. MADES: A SysML/MARTE high level
methodology for real-time and embedded systems, 2011.

[21] E. Rodriguez-Priego, F. Garcia-Izquierdo, and A. Rubio. Modeling
Issues: A Survival Guide for a Non-expert Modeler. Models2010,
2:361–375, 2010.

[22] G. Sandmann and M. Seibt. AUTOSAR-Compliant Development
Workflows: From Architecture to Implementation - Tool Interoperability
for Round-Trip Engineering and Verification & Validation. SAE World
Congress & Exhibition 2012, (SAE 2012-01-0962), 2012.

[23] G. Scuro. Automotive industry: Innovation driven by elec-
tronics. http://embedded-computing.com/articles/automotive-industry-
innovation-driven-electronics/, 2012.

[24] B. Sechser. The marriage of two process worlds. Software Process:
Improvement and Practice, 14(6):349–354, 2009.

[25] C.-J. Sjoestedt, J. Shi, M. Toerngren, D. Servat, D. Chen, V. Ahlsten,
and H. Loenn. Mapping Simulink to UML in the Design of Embedded
Systems: Investigating Scenarios and Structural and Behavioral Map-
ping. In OMER 4 Post Workshop Proceedings, April 2008.

[26] The SPICE User Group. Automotive SPICE Process Assessment Model.
Technical report, 2007.

[27] J. Thyssen, D. Ratiu, W. Schwitzer, E. Harhurin, M. Feilkas, T. U.
Muenchen, and E. Thaden. A system for seamless abstraction layers
for model-based development of embedded software. In Software
Engineering Workshops, pages 137–148, 2010.

[28] T. Zurawka and J. Schaeuffele. Method for checking the safety and
reliability of a software-based electronic system, January 2007.

RTE Generation and BSW Configuration
Tool-Extension for Embedded Automotive Systems

Georg Macher∗‖,Rene Obendrauf‖, Eric Armengaud‖, Eugen Brenner∗ and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, brenner, christian.kreiner}@tugraz.at

‖AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, rene.obendrauf, eric.armengaud}@avl.com

Abstract—Automotive embedded systems have become very
complex, are strongly integrated and the safety-criticality and
real-time constraints of these systems are raising new challenges.
Distributed system development, short time-to-market intervals,
and automotive safety standards (such as ISO 26262 [8]) re-
quire efficient and consistent product development along the
entire development lifecycle. The challenge, however, is to ensure
consistency of the concept constraints and configurations along
the entire product life cycle. So far, existing solutions are still
frequently insufficient when transforming system models with a
higher level of abstraction to more concrete engineering models
(such as software engineering models).

The aim of this work is to present a model-driven system-
engineering framework addon, which enables the configurations
of basic software components and the generation of a runtime
environment layer (RTE; interface between application and
basic software) for embedded automotive system, consistent with
preexisting constraints and system descriptions. With this aim in
mind a tool bridge to seamlessly transfer artifacts from system
development level to software development level is described. This
enables the seamless description of automotive software and soft-
ware module configurations, from system level requirements to
software implementation and therefore ensures both consistency
and correctness for the configuration.

Keywords—automotive, embedded systems, Model-based devel-
opment, basic software configuration, traceability, model-based
software engineering.

I. INTRODUCTION

Embedded systems are already integrated into our everyday
lives and play a central role in all domains including automo-
tive, aerospace, healthcare, manufacturing industry, energy, or
consumer electronics. Current premium cars implement more
than 90 electronic control units (ECU) per car with close to 1
Gigabyte software code [4], these are responsible for 25% of
vehicle costs and bring an added value between 40% to 75%
[18]. This trend of making use of modern embedded systems,
which implement increasingly complex software functions
instead of traditional mechanical systems is unbroken in the
automotive domain. Similarly, the need is growing for more
sophisticated software tools, which support these system and
software development processes in a holistic manner. As a con-
sequence, the handling of upcoming issues with modern real-
time systems, also in relation to ISO 26262 [8], model-based
development (MBD) would appear to be the best approach

for supporting the description of the system under develop-
ment in a more structured manner. Model-based development
approaches enable different views for different stakeholders,
different levels of abstraction, and provide a central storage of
information. This improves the consistency, correctness, and
completeness of the system specification. Nevertheless, such
seamless integrations of model-based development are still the
exception rather than the rule and frequently MBD approaches
fall short due to the lack of integration of conceptual and
tooling levels [3].

The aim of this paper is to present a tool approach which
enables a seamless description of safety-critical software, from
requirements at the system level down to software component
implementation in a bidirectional way. With the presented
tool available hardware- software interfacing (HSI) information
can be used to generate basic software (BSW) component
configurations, as well as, automatic generation of the run-
time environment layer (RTE; interface between application
software (ASW) and basic software).

The tool consists of a basic software configuration
generator and a software interface generator producing .c
and .h files for linking ASW and BSW. To ensure more
versatility of the tool the required HSI information can either
be imported from a HSI spreadsheet template or the system
model representation. The goal is, on one hand, to support
a consistent and traceable refinement from the early concept
phase to software implementation, and on the other hand,
to combine the versatility and intuitiveness of spreadsheet
tools (such as Excel) and the properties of MDB tools
(e.g., different views, levels of abstraction, central source of
information, and information reuse) bidirectionally to support
semi-automatic generation of BSW configuration and the
SW-SW interface layer (in AUTOSAR notation known as
runtime environment - RTE).

The document is organized as follows:
Section II presents an overview of related works as well as the
fundamental model-based development tool chain on which
the approach is based. In Section III a description of the
proposed tool and a detailed depiction of the contribution parts
is provided. An application and evaluation of the approach is
presented in Section IV. Finally, this work is concluded in
Section V with an overview of the presented approach.

SPREADSHEET INFORMATION IMPORTER

System Requirements

Safety Requirements

System Architecture

HW ArchitectureSW Architecture

SYSTEM MODELING TOOLS

HSI

Interface.
c

Interface
.h

AVLIL_
Adc.c

AVLIL_
Adc.h

AVLIL_
Port.c

AVLIL_
Adc_cfg.

c

BSW – Low
Level Driver

Adc.h

Can.h

Dio.h

AVLIL_
PWM.c

AVLIL_
Dio.h

AVLIL_
Dio_cfg.

h

ASW/BSW INTERFACE GENERATOR
&

BSW CONFIGURATOR

HW AND SW MODELING FRAMEWORK

AVLIL_
PWM.h

AVLIL_
PWMcfg

.h

Fig. 2. Portrayal of the Approach for Generation of BSW Configuration and SW Interfaceing Files for the SW Development Phase

Software Development Tool

InputA.c

manual
rework

FunctionA.c

OutputA.c

manual
rework

Fig. 1. ICC1 AUTOSAR Approach Methodology with Required Manual
Intervention

II. RELATED WORK

Development of automotive embedded software as well as
the configuration of the underlying basic software and em-
bedded systems are engineering domains and research topics
aimed at moving the development process to an automated
work-flow for improving the consistency and tackling the com-
plexity of the software development process across expertise
and domain boundaries. Recent publications are mainly based
on AUTOSAR [1] methodology.

Due to the ever increasing software complexity of the
last few years more and more efforts are becoming necessary
to manage the development process of automotive embedded
software. To handle this complexity the AUTOSAR consor-
tium was founded and the AUTOSAR methodology provides
standardized and clearly defined interfaces between different
software components. The AUTOSAR approach features three
different classes of implementation (ICC - implementation
conformance class). The main benefit of the AUTOSAR ICC1
approach clearly relies on the time-saving in terms of no

additional familiarization with usually very complex and time-
consuming AUTOSAR tools compared to the full AUTOSAR
approach (ICC3). The ICC1 approach does not take advantage
of the AUTOSAR benefits from the full AUTOSAR tool-chain
supporting tools for RTE configuration and communication
interfaces, but standardized component interfaces for exchange
of data between the ASW and BSW and therefore features the
separation of application specific and hardware specific soft-
ware parts (like native non-AUTOSAR development). ICC1
mainly focuses on SW engineering and more specifically on
the integration of ASW into a given SW architecture. However,
the aspects related to control systems engineering (including
HW/SW co-design) are not integrated and aspects such as
HW/SW interface definition must be performed manually, as
indicated in Figure 1. The tool approach introduced in this
work enhances this aspect by providing a framework for the
visualization of both ASW and BSW interface configuration
and automated generation of these interfacing .c and .h files
(see Figure 2). Furthermore, the available hardware- software
interfacing (HSI) information can be used to generate basic
software (BSW) components configurations and the HSI infor-
mation import functionality can also handle HSI spreadsheet
templates to ensure more versatility of the tool.

An approach for an AUTOSAR migration of existing
automotive software is described in the work of Kum et.
al [10]. The authors highlight the benefits of separating the
application software and the basic software and present an
approach to configuration of basic software modules instead of
time consuming and error-prone manual coding of embedded
software. The automatic generation of automotive embedded
software and the resultant configuration of the embedded
systems thus improves quality as well as re-usability.

In [11], the authors describe a framework for a seamless
configuration process for the development of automotive em-

bedded software. The framework is also based on AUTOSAR
which defines the architecture, methodology, and application
interfaces. The configuration process is established via system
configuration and ECU configuration. All the configurations
and descriptions used are stored in separate XML (Extensible
Markup Language) files, containing described and classified
parameters and the associated information. The authors addi-
tionally specify a meta-model for the AUTOSAR exchange
formats that describe the ECU configuration parameter defini-
tion and the ECU configuration description.

Jo et al. [9] describe an approach for the design of a ve-
hicular code generator for distributed automotive systems. The
increasing complexity during development of an automotive
embedded software and systems and the manual generation
of software have the effect of leading to more and more
software defects and problems. The authors thus integrated
a RTE module into their earlier development phase tool to
design and evolve an automated embedded code generator with
a predefined generation process. The presented approach saves
time through automated generation of software code, compared
to manual code generation, it reduces error-prone and time-
consuming tasks and is also based on an AUTOSAR aligned
approach. The output of the code generator tool is limited
to the RTE source code and the application programming
interface (API) of the input information. As in our approach,
the configuration of software modules, is not focused.

Piao et al. [15] illustrate a design and implementation
approach of a RTE generator for automotive embedded soft-
ware. The RTE layer is located in the middle-ware layer of
the AUTOSAR software architecture and combines the top
layer mentioned as application software with the underlying
hardware and basic software. Automated code generation aims
at moving the development steps closer together and thus im-
proving the consistency of the software development process.
The output of the automated RTE generator are communication
API functions for AUTOSAR SW components of the ASW.

Focusing on software complexity, Jo et al. [7] presents
a design for a RTE template structure to manage and de-
velop software modules in automotive industry. The authors
focus on the design of a RTE structure also based on the
AUTOSAR methodology. Within this design they describe the
Virtual Functional BUS (VFB) which establishes independence
between the Application Software (ASW) and the underlying
basic software (BSW) and hardware.

In [14], an approach for realizing location-transparent inter-
action between software components is shown. The proposed
work illustrates the relationship between the RTE and the VFB
and shows which artifacts of the VFB are necessary for the
generation of the RTE.

A work depicting the influence of the AUTOSAR method-
ology on software development tool-chains is presented by
Voget [19]. The tool framework presented, named ARTOP
(AUTOSAR Tool Platform), is an infrastructure platform that
provides features for the development of tools used for the
configuration of AUTOSAR systems. The implemented fea-
tures are base functionalities required for different AUTOSAR
tool implementations. The work does not, however, focus on
a specific tool integration.

To summarize, none of the approaches described above

supports (1) the generation of source code and (2) configura-
tion of the basic software from information available at system
level and from system models. The approach we present
by contrast, supports not only the automatic generation of
the RTE source code, but also the automated generation of
basic software configuration of embedded systems from system
models.

III. BASIC SOFTWARE INTERFACE AND CONFIGURATION
GENERATION APPROACH

The underlying concept of the approach is to have a consis-
tent information repository as a central source of information,
to store all information of all engineering disciplines involved
in embedded automotive system development in a structured
manner [13]. The concept focuses on allowing different engi-
neers to do their job in their own specific way, but providing
traces and dependency analysis of features concerning the
overall system, e.g. safety, security, or dependability. The
approach stirs out of common AUTOSAR based approaches
and additionally supports a non-AUTOSAR or AUTOSAR
ICC1 approach, which are frequently hampered due to a
lack of supporting tools. The decision of not fostering a full
AUTOSAR approach is based on the one hand on focusing not
only AUTOSAR based automotive software development and
on the other hand, experiences we have made with our previous
approach [12] confirm the problem mentioned by Rodriguez
et al. [16]. Not all development tools fully support the entire
AUTOSAR standard, because of its complexity, which leads to
several mutual incompatibilities and interoperability problems.

Figure 2 shows an overview of the approach and highlights
the main contributions. For a more detailed overview of the
orchestration for the overall development tool-chain see [13].

The tool approach introduced in this work provides a
framework for the visualization of ASW and BSW interface
configuration and automated generation of these interfacing
.c and .h files (see Figure 2). Furthermore, the available
hardware- software interfacing (HSI) information can be used
to generate basic software (BSW) component configurations
and the HSI information import functionality can also handle
HSI spreadsheet templates to ensure more versatility of the
tool. More specifically, the contribution proposed in this work
consists of the following parts:

• AUTOSAR aligned UML modeling framework:
Enhancement of an UML profile for the definition of
AUTOSAR specific artifacts, more precisely, for the
definition of the components interfaces (based on the
virtual function bus abstraction layer), see Figure 2 –
HW and SW Modeling Framework.

• BSW and HW module modeling framework:
Enhancement of an UML profile to describe BSW
components and HW components. To ensure consis-
tency of the specification and implementation for the
entire control system, see Figure 2 – HW and SW
Modeling Framework.

• RTE generator:
Enables the generation of interface files (.c and .h) be-
tween application-specific and hardware-specific soft-
ware functions, see Figure 2 – ASW/BSW Interface
Generator .

Fig. 3. Screenshot of the SW Architecture Representation within the System Development Tool and Representation of the Interface Information

• Basic software configuration generator:
Generates BSW configurations according to the spec-
ifications within the HSI definition, see Figure 2 –
BSW Configurator.

• Spreadsheet information importer:
Enables the import of HSI definition information done
in spreadsheet format, see Figure 2 – Spreadsheet
Information Importer.

This proposed approach closes the gap between system-
level development of abstract UML-like representations and
software-level development, also mentioned by Giese et al. [5],
Holtmann et al. [6], and Sandmann and Seibt [17] by support-
ing consistent information transfer between system engineering
tools and software engineering tools. Furthermore the approach
minimizes redundant manual information exchange between
tools and contributes to simplifying seamless safety argumen-
tation according to ISO 26262 for the developed system. The
benefits of this development approach are highly noticeable in
terms of re-engineering cycles, tool changes, and reworking
of development artifacts with alternating dependencies, as
mentioned by Broy et al. [3].

The contribution proposed in this work is part of the frame-
work presented in [13] aiming towards software development
in the automotive context. The implementation of the approach
is based on versatile C# class libraries (dll) and API command
implementations to ensure tool and tool version in-dependence
of the general-purpose UML modeling tool (such as Enterprise
Architect or Artisan Studio) and other involved tools (such as
spreadsheet tool and software development framework). The

following sections describe those parts of the approach that
make key contributions in more details.

A. AUTOSAR aligned UML modeling framework

The first part of the approach is a specific UML model-
ing framework enabling software architecture design in AU-
TOSAR like representation within a state-of-the-art system
development tool (in this case Enterprise Architect). A specific
UML profile to limit the UML possibilities to the needs of
software architecture development of safety-critical systems
and enable software architecture design in AUTOSAR like
representation within the system development tool (Enterprise
Architect). In addition to the AUTOSAR VFB abstraction layer
[2], the profile enables an explicit definition of components,
component interfaces, and connections between interfaces.
This provides the possibility to define software architecture
and ensures proper definition of the communication between
the architecture artifacts, including interface specifications
(e.g. upper limits, initial values, formulas). Hence the SW
architecture representation within EA can be linked to system
development artifacts and traces to requirements can be easily
established. This brings further benefits in terms of constraints
checking, traceability of development decisions (e.g. for safety
case generation), reuse and ensures the versatility to also
enable AUTOSAR aligned development as proposed in [12].
Figure 3 shows an example of software architecture artifacts
and interface information represented in Enterprise Architect.
As can be seen in the depiction, all artifacts required to model
the SW architecture are represented and inherit the required
information as tagged values.

Fig. 4. Screenshot of the BSW and HW Pin Representation within the System
Development Tool

B. BSW and HW Module Modeling Framework

The AUTOSAR architectural approach ensures hardware-
independent development of application software modules
until a very late development phase and therefore enables
application software developers and basic software developers
to work in parallel. The hardware profile of the approach
allows a graphical representation of hardware resources (such
as ADC, CAN), calculation engines (core), and connected
peripherals which interact with the software. Special basic
software (BSW) and hardware module representations are
assigned to establish links to the underlying basic software
and hardware layers. This enables an intuitive graphical means
of establishing software and hardware dependencies and a
hardware-software interface (HSI), as required by ISO 26262.
Software signals of BSW modules can be linked to HW port
pins via dedicated mappings. On the one hand this enables
the modeling and mapping of HW specifics and SW signals,
see Figure 4 and on the other hand this mapping establishes
traceable links to port pin configurations. A third point is that
this HW dependencies can be used to interlink scheduling and
task allocation analysis tools for analysis and optimization of
resource utilization.

C. Runtime Environment Generator

The third part of presented approach is the SW/SW in-
terface generator. This dll- based tool generates .c and .h
files defining SW/SW interfaces between application software
signals and basic software signals based on modeled HSI
artifacts. In addition, this generation eliminates the need for
manual SW/SW interface generation without adequate syntax
and semantic support and ensures the reproducibility and
traceability of these configurations.

Figure 5 shows the conceptual overview of generated
files. The .c and .h files on application software level are
generated via a model-based software engineering tool, such
as Matlab/Simulink. The files on the basic software level
are usually provided by the hardware vendor. While the files
referred to in the SW/SW interface layer are generated by our
approach.

The generated files are designed in a two-step approach.
The first step of the interfacing approach (interface.c and
interface.h) establishes the interface between ASW and
BSW based on AUTOSAR RTE calls. The second step
(AV LIL BSWa.c and AV LIL BSWa.h) maps these AU-
TOSAR RTE based calls to the HW specific implementation

A
P

P
LI

C
A

TI
O

N
 S

W

LA
YE

R
SW

 /
 S

W
 IN

TE
R

FA
CE

 L
A

YE
R

B
A

SI
C
 S

O
FT

W
A

R
E

LA
YE

R

APPLICATION
A.C

APPLICATION
B.C

APPLICATION
C.C

INTERFACE.C

BSWDRIVER

A.C
BSWDRIVER

A.C
BSWDRIVER

A.C

AVLIL_BSW
A.C

AVLIL_BSW
B.C

AVLIL_BSW
C.C

Fig. 5. Overview of Architecture Level Files Generated by the Interface
Generator

of basic SW drivers. This ensures independence from imple-
mentation of the BSW drivers and also features an AUTOSAR
ICC1 approach if needed.

D. Basic Software Configuration Generator

The basic software configuration generator is also part
of the dll- based tool, which generates BSW driver specific
∗ cfg.c files. These files configure the vendor specific low-
level driver (basic software driver) of the HW device according
to the HSI specifications. The mapping of HSI specifications to
low-level driver configuration is hardware and low-level driver
implementation specific and needs to be done once per HW
device and supported low-level driver package.

E. HSI Spreadsheet Information Importer

The HSI definition requires mutual domain knowledge of
hardware and software and is to be a work product of a
collective workshop of hardware, software, and system experts
and will act as the linkage between different levels of devel-
opment. Consistency and evidence of correct implementation
of HSI can be challenging in case of concurrent HW and SW
development and cross-dependencies of asynchronous update
intervals. Therefore, this approach enables a practicable and
intuitive way of engineering HSI definitions in a spreadsheet
tool (Excel) and transforms them to a reusable and version-
able representation in the MDB tool (Enterprise Architect).
The spreadsheet template defines the structure of the data
representation in a project-specific customizable way. On the
one hand this enables a practicable and intuitive means of
engineering HSI definitions with spreadsheet tools, while their
machine- and human-readable notation ensures a cost- and
time-saving alternative to the usually complex special-purpose
tools, while on the other hand it enables the generation of
SW/SW interface files and BSW configurations without the
need for a model-based development toolchain in place. Figure
6 depicts the project-independent template structure for HSI
definition data preparation.

IV. APPLICATION OF THE PROPOSED APPROACH

This section demonstrates the benefits of the introduced
approach for development of automotive embedded systems.

Fig. 6. Example of a project-independent spreadsheet template structure for
HSI definition

TABLE I. OVERVIEW OF THE EVALUATION USE-CASE SW
ARCHITECTURE

Object type Element-
count

Configurable
Attributes
per Element

ASW Modules 10 3
BSW Modules 7 3
ASW Module Inputs 54 10
ASW Module Outputs 32 10
ASW/ASW Interfaces 48 -
ASW/BSW Interfaces 19 -
HW/SW Interfaces 19 13

We used an automotive battery management system (BMS)
as the use-case for the evaluation of the approach. This use-
case is an illustrative material, reduced for internal training
purposes and is not intended to be either exhaustive in scope
or to represent leading-edge technology.

The definition of the software architecture is usually done
by a software system architect within the software development
tool (Matlab/Simulink). With our approach this work package
is included in the system development tool (as shown in
Figure 3). This does not hamper the work of the software
architect but enables the possibility to also link existing HSI
mapping information to the SW architecture (as shown in
Figure 4).

The use-case consists of 10 ASW modules and 7 BSW
modules with 19 interface definitions between ASW and BSW
and makes use of the 3 fundamental low-level HW functions
(digital input/output, analog input/outputs, and PWM outputs).
A more complete overview of use-case is given in Table I.

The definition of the 19 HW/SW interfaces with 10 pa-
rameters for each SW signal and 13 parameters for each HW
pin sums up to 437 parameter configurations within the HSI
spreadsheet template or in the MDB tool, which can be used
to generate ASW/BSW interfaces and BSW configurations.

This results in the file architecture depicted in Figure 7.
With the use of the approach 8 additional interfacing files with
481 lines of code (LoC) source and 288 LoC configuration
have been generated.

In terms of getting started with AUTOSAR aligned devel-
opment or supporting non-AUTOSAR SW development our
approach features a smooth first step approach of the ICC1 AU-
TOSAR and generates an interface layer (similar to AUTOSAR
RTE) without relying on full AUTOSAR tooling support. In
terms of safety-critical development the approach presented
supports traceability links between BSW configurations to HSI
information and eliminates the need of manual interface source
code rework, which further surmounts the main drawbacks of
the ICC1 AUTOSAR approach.

V. CONCLUSION

An important challenge for the development of embedded
automotive systems is to ensure consistency of the design
decisions, SW implementations, and driver configurations,
especially in the context of safety-related development. This
work presents an approach which seamlessly describes safety-
critical software, from requirements at the system level down
to software component implementation in a traceable manner.
The available hardware- software interfacing (HSI) information
can thus be used to generate basic software (BSW) component
configurations, as well as automatic software interface layer
generation (interface between application software and basic
software). With this aim in mind a framework consisting
of a basic software configuration generator and a software
interface generator producing .c and .h files for linking ASW
and BSW has been presented, which can also be used in
combination with a spreadsheet based HSI definition. The
main benefits of this enhancement are: improved consistency
and traceability from the initial design at the system level
down to the single CPU driver configuration, together with a
reduction of cumbersome and error-prone manual work along
the system development path. Further improvements of the
approach include the progress in terms of reproducibility and
traceability of configurations for software development (such
as driver configurations and SW-SW interfaces).

The application of the presented approach has been demon-
strated utilizing an automotive BMS use-case, which is in-
tended to be used for training purposes for students and
engineers and does not represent either an exhaustive or a
commercial sensitive project. While the authors do not claim
completeness of the analysis (due to confidentiality issues), the
benefits of the approach are already evident.

ACKNOWLEDGMENTS

This work is partially supported by the EMC2 and the
MEMCONS projects.

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment nr 621429 (project EMC2) and financial support of
the ”COMET K2 - Competence Centers for Excellent Tech-
nologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWFJ),

INTERFACE.C XCUIF.C

IO_THRVAL.CIO_ACCPED.C MOTORCONTROL.C

PORT_INIT()
RTE_IREAD_EGASSYS

TEM_1MS_PORT_APE

DL1_IN()
...

PORT.CADC.C PWM.C

AVLIL_PORT.CAVLIL_ADC.C AVLIL_PWM.C

ADC_INIT()
AVLIL_GETVALADC()
RTE_IREAD_EGASSYSTEM_1M

S_ADC_THRPOSN1_IN()
...

GETACCPEDFILTERED1()
GETACCPEDFILTERED2()

SWI_1MS()
SWI_10MS()
SWI_100MS()

B
A

SI
C
 S

W
 L

A
Y

ER
IN

TE
R

FA
C

E
LA

Y
ER

PORT_SETPINMODEINPUT()
PORT_SETPINMODEOUTPUT()
PORT_SETPINSTATE()
PORT_SETPINMODE()
PORT_SETPINPADDRIVER()
...

A
P

P
LI

C
A

T
IO

N

SW
 L

A
Y

ER

ADC_INITMODULE()
ADC_INITMODULECONFIG()
ADC_INITGROUP()
ADC_INITGROUPCONFIG()
ADC_INITCHANNEL()
ADC_INITCHANNELCONFIG()
...

PWM_INIT()
RTE_IREAD_EGASSYS

TEM_1MS_PWM_AP
EDL2_IN()
...

SETMCOUTPUT()
SETMCENABLE()
CLEARMCENABLE()
...

GETTHRVALFILTERED1()
GETTHRVALFILTERED2()

GTM_TOM_TIMER_INITCONFIG()
GTM_TOM_TIMER_INIT()
GTM_PINMAP_SETTOMTOUT()
GTM_TOM_TGC_ENABLECHANNELS()
GTM_TOM_CH_SETSIGNALLEVEL()
...

Fig. 7. Excerpt of Generated Files for the BMS Use-Case

the Austrian Research Promotion Agency (FFG), the Province
of Styria, and the Styrian Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our
supporting project partners, AVL List GmbH, Virtual Vehicle
Research Center, and Graz University of Technology.

REFERENCES

[1] AUTOSAR development cooperation. AUTOSAR AUTomotive Open
System ARchitecture, 2009.

[2] AUTOSAR Development Cooperation. Virtual Functional Bus. online,
2013.

[3] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu.
Seamless Model-based Development: from Isolated Tool to Integrated
Model Engineering Environments. IEEE Magazin, 2008.

[4] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future.
IEEE Computer Society, 0018-9162/09:42–52, 2009.

[5] H. Giese, S. Hildebrandt, and S. Neumann. Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent. LNCS
5765, pages pp. 555 –579, 2010.

[6] J. Holtmann, J. Meyer, and M. Meyer. A Seamless Model-Based
Development Process for Automotive Systems, 2011.

[7] J. Hyun Chul, P. Shiquan, C. Sung Rae, and J. Woo Young. RTE
Template Structure for AUTOSAR based Embedded Software Platform.
In Basic Research Program of the Ministry of Education, Science and
Technology, pages 233–237, 2008.

[8] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[9] H. C. Jo, S. Piao, and W. Y. Jung. Design of a Vehicular code
generator for Distributed Automotive Systems. In Seventh International
Conference on Information Technology. DGIST, 2010.

[10] D. Kum, G.-M. Park, S. Lee, and W. Jung. AUTOSAR Migration from
Existing Automotive Software. In International Conference on Control,
Automation and Systems, COEX, Seoul, Korea, 2008. DGIST.

[11] J.-C. Lee and T.-M. Han. ECU Configuration Framework based on
AUTOSAR ECU Configuration Metamodel. 2009.

[12] G. Macher, E. Armengaud, and C. Kreiner. Automated Generation of
AUTOSAR Description File for Safety-Critical Software Architectures.
In 12. Workshop Automotive Software Engineering (ASE), Lecture Notes
in Informatics, pages 2145–2156, 2014.

[13] G. Macher, E. Armengaud, and C. Kreiner. Bridging Automotive
Systems, Safety and Software Engineering by a Seamless Tool Chain.
In 7th European Congress Embedded Real Time Software and Systems
Proceedings, pages 256 –263, 2014.

[14] N. Naumann. Autosar runtime environment and virtual function bus.
Department for System Analysis and Modeling.

[15] S. Piao, H. Jo, S. Jin, and W. Jung. Design and Implementation
of RTE Generator for Automotive Embedded Software. In Seventh
ACIS International Conference on Software Engineering Research,
Management and Applications. DGIST, 2009.

[16] E. Rodriguez-Priego, F. Garcia-Izquierdo, and A. Rubio. Modeling
Issues: A Survival Guide for a Non-expert Modeler. Models2010,
2:361–375, 2010.

[17] G. Sandmann and M. Seibt. AUTOSAR-Compliant Development
Workflows: From Architecture to Implementation - Tool Interoperability
for Round-Trip Engineering and Verification & Validation. SAE World
Congress & Exhibition 2012, (SAE 2012-01-0962), 2012.

[18] G. Scuro. Automotive industry: Innovation driven by elec-
tronics. http://embedded-computing.com/articles/automotive-industry-
innovation-driven-electronics/, 2012.

[19] S. Voget. AUTOSAR and the Automotive Tool Chain. In DATE10,
2010.

INTRODUCTION
The number of embedded systems in the automotive domain has
grown significantly in recent years. Current premium cars implement
more than 90 electronic control units (ECU) with close to 1 Gigabyte
software code [1]. In 2018 30% of the overall vehicle costs are
predicted to stem from vehicle electronics [2]. This trend is also
strongly supported by the ongoing replacement of traditional
mechanical systems with modern embedded systems. This enables
the deployment of more advanced control strategies, thus providing
new benefits for the customer and environment, such as reduced fuel
consumption and better driveability. At the same time, the higher
degree of integration and the safety-criticality of the control
application raise new challenges. Hence, the correctness of the
different applications, both in the time domain and value domain,
possibly running on the same computing platform, has to be
guaranteed. In parallel, new computing architectures with services
integrated in hardware enable the development of new software
architectures and safety concepts.

Safety standards such as ISO 26262 [3] for road vehicles have been
established to provide guidance during the development of safety-
critical systems. These standards rely on risk identification and
mitigation strategies, further supported by appropriate quality
management. They target early hazard identification as well as solid
counter measure specification, implementation and validation along
the entire product life cycle.

The challenge in this context is to provide evidence of consistency
during product development among the different work-products. To
handle upcoming issues with modern real-time systems in relation to
ISO 26262, model-based development supports the description of the
system under development in a more structured way. Model-based
development approaches enable different views for different
stakeholders, different levels of abstraction, and central storage for
information. This improves the consistency, correctness, and
completeness of the system specification and thus supports the
demands of time-to-market (first time right).

A Model-Based Configuration Approach for Automotive
Real-Time Operating Systems

Georg Macher
Graz University of Technology

Muesluem Atas and Eric Armengaud
AVL List GmbH

Christian Kreiner
Graz University of Technology

ABSTRACT
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints
of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable
units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of
these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along
the entire product development.

The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for
automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL
exchange format files. The approach makes use of existing high-level control system information in SysML format to generate the
configuration of automotive real-time operating systems. The implemented tool extension transfers artifacts from system engineering
domain to software development frameworks for RTOS configuration, thereby creating traceable links across domain and tool
boundaries, and relying on standardized OSEK OIL exchange files.

CITATION: Macher, G., Atas, M., Armengaud, E., and Kreiner, C., "A Model-Based Configuration Approach for Automotive Real-Time
Operating Systems," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(2):2015, doi:10.4271/2015-01-0183.

2015-01-0183
Published 04/14/2015

Copyright © 2015 SAE International
doi:10.4271/2015-01-0183

saepcelec.saejournals.org

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

The contribution of this paper is to bridge the existing gap between
model-driven system engineering tools and software engineering
tools for automotive real-time operating systems (RTOS). More
especially, the approach relies on the generation of standardized
OSEK implementation language files (OIL files) [4] for automotive
RTOS based on existing high-level control system information in
SysML format. The goal is to support a consistent and traceable
refinement from the early concept phase to individual configurations
of the RTOS.

The document is organized as follows:

The following section presents an introduction to OSEK/VDX and
OSEK OIL as well as model-based development and integrated tool
chains. In the third section, a description of the proposed approach
for the generation of RTOS configuration files according to the OIL
standard is provided. An application and evaluation of the approach is
presented in the fourth section. Finally, this work is concluded with
an overview of the presented approach.

OSEK/VDX AND MODEL-BASED
DEVELOPMENT OVERVIEW
OSEK is the German abbreviation for open systems and their interfaces
for electronics in motor vehicles, a consortium founded in 1993 by
several German automotive companies. VDX (Vehicle Distributed
eXecutive) was the French pendant from the French car manufacturers'
side, which, in 1994, regrouped the OSEK/VDX consortium.

OSEK/VDX is an open standard for specifications for embedded
real-time operating systems (RTOS) designed to provide standard
software architecture for the various electronic control units (ECUs)
and partially standardized in ISO 17356. The work of the OSEK/
VDX consortium is now continued by the AUTOSAR consortium
[5], which is based on OSEK/VDX specifications. Therefore, several
publications deal with OSEK/VDX approaches and different tool
vendors provide OSEK/VDX tools, which are supporting at different
development stages.

The OSEK implementation language files (OIL) are intended to be
used to describe OSEK RTOS. These files may be generated
manually or via configuration tools. In both cases, the OIL files
include all object containers and information required to configure
the RTOS of one specific ECU. This is possible due to the fact that
automotive real-time systems are typically statically configured. In
accordance with this, features of an OSEK implementation are
configured at compile-time and changes at run-time are prohibited.
Only static priorities are allowed for tasks and FIFO scheduling is
used for tasks with equal priority. Deadlocks and priority inversion
are prevented by a priority ceiling approach.

The following paragraph provides a brief overview of OIL files and
included objects to configure automotive RTOS. The next paragraph
briefly describes both OSEK/VDX supporting tools and publications
related to OSEK OIL. Nevertheless, this is not intended to be a full
description or complete overview; the main focus is set on RTOS
configuration with OIL files. The third paragraph of this section

provides an overview of publications dealing with model-based
development approaches and integrated tool chains for real-time
systems. The final paragraph highlights the basic framework for the
proposed approach.

OSEK Implementation Language Files
As mentioned previously, the OIL files inherit a normalized description
language for OS configuration and related objects. OIL files are
commonly used in the automotive domain to configure the real-time
operating systems of individual ECUs. This is frequently done
manually, due to the simple human readable structure of OIL files and
the lack of tools supporting an automated information exchange.

OIL files typically consist of implementation specific definitions,
which are closely related to the hardware (ECU) in use and specify
the OIL object and all possible attribute properties. Secondly, OIL
files consist of application specific definitions that are, as the name
implies, specific to one application and specify the attribute of the
OIL object.

OIL objects and their descriptions:

• CPU - specification of the core which runs the application
• OS - specification of the RTOS of the specific core
• APPMODE - definition of different application modes to

control task features or support reduced functionalities
• ISR - specification of interrupt service routines
• RESOURCE - specification of different resources of the ECU
• TASK - software functionality handled by the RTOS
• COUNTER - a SW/HW resource for alarms
• EVENT - synchronization mechanism for tasks
• ALARM - notification mechanism
• COM - definition of the OSEK communication subsystem
• MESSAGE - definition of data exchange between tasks
• NETWORK MESSAGE - definition of data exchange between

different CPUs
• NM - network management subsystem configurations

As mentioned previously, the creation of OIL files is done for each
CPU individually and very often manually, due to the project-specific
nature of OIL files. Nevertheless, due to the introduction of multi-
core real-time systems and current awareness of safety-criticality of
such system configurations, tool support and automation of OIL
generation becomes increasingly relevant.

OSEK/VDX Related Publications and Tools
To our knowledge, most development frameworks do not include a
tool for automatic OIL file generation of previous development stages
at higher abstraction level, e.g. systems engineering. Most
frameworks either require manual generation of OIL files by the
developer, or they provide a dedicated graphical user interface for
support and guidance while generating the OIL file. Such
representations do not support the automatic generation of OIL files
from available information of previous development steps, nor do

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

they significantly speedup the configuration process of RTOS. Many
available OIL file configurators provide such a representation of the
OIL information. They thereby provide guidance to minimize
configuration failures, but do not significantly reduce workload or
speed up the generation of OIL files. Also the import of prior
available information is very limited. Vector's OIL Configurator and
GOB - GUI based OIL Builder are mentioned as representatives of
such commercial and non-commercial tool implementations. This
group of tools will be referenced as SW Development Level
Configurators in the course of this document.

A DSL (domain specific language) approach was applied with
SmartOSEK's visual designer [6], a part of the SmartOSEK platform.
The visual design tool enables modeling of applications in a graphical
way and automatically generates the designed OIL file. The graphic
design helps developers devote their minds to the modeling of the
application rather than applying correct OIL syntax and semantics.
Drawbacks of this approach are the limited usability, solely for
SmartOSEK platform, and the missing availability of feedback
information into the model.

Most OIL configurators, like the previously mentioned Vector OIL
Configurator, GOB, and Freescale's OSEK Builder Tool focus on
generation of OIL files at a software development level. The work of
Koester et al. [7] is another example of achieving OSEK-compliant
code after software development.

This implies the drawback that information of prior development
phases cannot be used for timing analysis or has to be transferred
manually to the corresponding OIL files.

The publication of Kim et al. [8] suggests a lightweight AUTOSAR
software platform and additional extensions of OSEK OIL files.
This approach offers the possibility of adding system protection
functions, real-time scheduling functionalities, and additional
timing attributes to the standard OIL files. The platform is improved
for development of time-critical application software. Nevertheless,
the presented approach focuses on adding extensions to OIL files,
rather than supporting automated generation of OIL files or the
origin of such information.

Yang et al. [9] base their work on the SmartOSEK platform
mentioned earlier in this section and present the conversion of UML
models into OSEK/VDX models for simulation and optimization of
the system design. The authors claim that by converting UML into
OSEK/VDX models productivity can be improved, correctness of
development artifacts can be, more easily ensured and documentation
can be provided with less effort and better quality.

Gu et al. [10] focus on the mapping of RT-UML (UML real-time
profile) to OSEK APIs. The authors focus on the description of
automated mechanisms for generation of application code and
seamless integration of models for software development, but do not
provide methods of the transformation of UML and OSEK artifacts.

In contrast to the last two publications, our approach focuses on the
safety-critical development of multi-core systems. The two
approaches have solely the ability to provide a graphical
representation of an OSEK OIL file and thereby improve
productivity. Our approach, in contrast, enables an automated
information exchange and generation also for safety and multi-core
constraints (non-functional requirements which are hard to trace and
verify). This supports several factors required for safety-critical
system development (e.g. tracing of automotive safety integrity levels
(ASIL) and ASIL decompositions, proof of freedom from
interference, proof of separation, support of safety-case generation).

Model-Based Development and Integrated Tool Chains
Broy et al. [11] mention concepts and theories for the model-based
development of embedded software systems. The authors also claim
model-based development to be the best approach to manage the
large amount of information and complexity of modern embedded
systems with safety constraints. The paper illustrates why seamless
solutions have not been achieved so far, they mention commonly
used solutions, and problems that arise through the use of an
inadequate tool chain (e.g. redundancy, inconsistency and lack of
automation). The focus of their work is to present basic ideas and
concepts, although no detailed solutions for the automotive domain
are presented.

The work of Quadri and Sadovykh [12] presents a real-time
embedded system for avionics and a model-driven engineering
approach aiming to develop novel model-driven techniques and new
tools supporting design, validation, and simulation. They defined
profiles using a subset of UML and SysML for their approach and
mentioned the usage of effective design tools and methodologies as
crucial to be capable of managing complex real-time embedded
systems. Furthermore, they highlighted the possibility of high-level
model analysis for schedulability.

The work of Holtmann et al. [13] highlights process and tooling gaps
between different modeling aspects of a model-based development
process. Often, different specialized models for specific aspects are
used at different development stages with varying abstraction levels.
Traceability between these different models is commonly established
via manual linking. The authors claim that there is a lack of
automation for those linking tasks and no guidance which model is to
be used at which specific development stage. A model-based
development process is presented that conforms to the process
reference model of Automotive SPICE. The proposed tool chain
mentions two important gaps: First, missing links between system
level tools and software development tools. Second, several very
specific and non-interacting tools that require manual synchronization
and which are therefore often inconsistent, rely on redundant
information and, due to a lack of automation, require redundant
manual work.

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Figure 1. Overview of the bridging approach ensuring boundless information exchange.

This issue is also addressed by Giese et al. [14]. They address the
problems of different models along the development process, with
each designed for a specific issue. They highlight the step from
system design to software design as critical. System design models
have to be correctly transferred to the software engineering model,
and later changes must be kept consistent.

Fabbrini et al. [15] provide an overview of software engineering
in the European automotive industry and present tools,
techniques and countermeasures to prevent faults. The authors
also highlight the importance of tool integration and model-
based development approaches.

Basic Framework
This paragraph gives a short overview of the model-based
development tool chain in use and the related preliminary work that
provides the base for the proposed approach. The prototype of our
tool chain, proposed by Mader [16], is a specific implementation of a
tool-independent and language-independent methodology to support
continuous safety analyses of system architecture development
according to ISO 26262. This approach stems from the CESAR
Project [17] and was further improved by a feasibility study [16] to
support development at concept phase and system development level.
A UML profile, tailored to the needs of automotive safety
engineering, is used to define the model of the system under
development. This model can be refined from the initial development
phase down to system development level according system
development and safety engineering needs.

The basic concept behind this framework is to have a consistent
information repository as a central source of information. This
concept allows different engineers to do their job in their specific
manner, provides traces between different artifact types, and ensures
timeliness of data. Proprietary extensions for the modeling tool
ensure seamless and consistent transition of information between the
repository and various adequate special-purpose tools (such as

software development tools). This enables reorganization from a
document-centric development approach to a seamless model-based
development approach. For a more detailed overview of the concept
as a whole, see [18].

OVERVIEW OF THE OSEK OIL GENERATOR
The contribution proposed in this work is an extension of the
previously mentioned framework towards RTOS configuration. More
specifically, our contribution consists of the following parts:

• UML modeling framework extension: Enhancement of
the software UML profile with the capability of visualizing
and processing OSEK OIL objects. The profile extends the
AUTOSAR aligned model [19] we proposed for software
development to enable configuration of the OSEK OS by prior
available constraints. This is required for consistent SW system
description, see figure 1 - model add-on.

• OIL configuration generation: An extractor that automatically
generates OIL files from existing information at a system
development level. This is required to ensure consistency of the
specification and implementation for the RTOS, see figure 1 -
OS configuration.

• OIL configuration importer: Importers support round-trip
engineering through re-importation of information updates
from the software development tool via the OIL file, see
figure 1 - OS configuration.

This proposed extension is a constituent of the proposed tool chain in
[18] to close the gap between system-level development with abstract
UML-like representations and software-level development modeling
tools (such as OS configuration tools). This bridging guarantees
consistency of information, due to the single source of information
principle and shares information more precisely and accurately. The
approach minimizes redundant manual information exchange
between tools and also takes ISO 26262 requirements (especially
traceability) and ISO 26262 constraints into account.

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Figure 1 shows the conceptual overview of the tool-chain and
highlights the OS configuration parts. As can be seen in the figure, a
lack of tool support for information transfer between system
development tools and basic software development tools exist, which
has been bridged by the proposed approach. Therefore, the proposed
approach simplifies the information handover and reduces
competence conflict potentials between system development and
hardware and software development phases of the automotive
product development cycle. OIL files are generated for each CPU
individually, but due to the introduction of multi-core real-time
systems in the automotive domain and the recent awareness of
safety-criticality of such systems, tool support and automation of OIL
generation is increasingly relevant. The tight linking of the
independent system development and OS configuration tools to a
seamless model-based development tool chain interacting via OIL
files further allows the inclusion of additional tools, such as
scheduling analysis tools, seamlessly into the tool chain.

UML Modeling Framework Extension
A UML profile has been regenerated for this approach to allow a
graphical visualization and processing of OSEK OIL objects. This
profile extension ensures the accumulation of additional information
which enable the mapping of tasks to a specific core and clear
arrangement of dependencies and shared resources in terms of
multi-core development. Figure 2 shows a small selection of the
additional profile elements and their accumulated element
information. The regenerated profile offers an intuitive, graphical way
of generating OSEK OS configurations and a highlighting
functionality of safety-related software tasks and resources. This also
enables the possibility of a traceable automatic OIL file configuration
generation instead of the typical manual definition, which inherits
increasing significance in terms of safety-critical system development
according ISO 26262. Note that this profile has been integrated in the
existing framework described previously in this paper.

This prior profile allowed development of software architectures fully
in line with the AUTOSAR approach [5] and is now enhanced with
the ability to add additional information regarding safety
considerations and basic OS configurations. Consequently, the system
description can be refined down to the operating system, thus
improving architecture consistency over the skills boundaries
(systems engineering and software engineering). Figure 2. Selection
of UML Elements of the UML Framework Extension.

OIL Configuration Generator
The second part of the approach is an exporter that is able to export
the RTOS configuration previously available (from the SysML
model) to an OIL file. The exporter generates OIL files enriched with
the available system and safety development artifact traces (such as
required ASIL of task implementation). Most of the state-of-the-art
basic software development frameworks are capable of configuring
the RTOS according to the specifications within such an OIL file.
Consequently, the use of this exporter additionally improves
communication of the (safety) context to the software experts into
their native development tools, thus improving the consistency of the
product development. Furthermore, the tool chain is capable of
multi-core or multi-system development; therefore the generation of
OIL file is selectable for individual CPUs.

OIL File Importer
The third part of the approach is the import functionality add-on for
the system development tool. This functionality, in combination with
the export function, enables bidirectional updates of the
representation in the system development tool and the software
development tool. This ensures consistency between system
development artifacts and changes done in the software development
tool that may occur due to the typical iterative automotive
development cycles phases. The importer also implies an overview of
changes between database and re-imported OIL files; this offers the
possibility of selective database updates. Finally, the importer enables

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

the reuse of available RTOS configurations, guarantees consistency of
information in combination with the export functionality, and shares
information more precisely and less ambiguously.

Figure 3 shows a screenshot of the import, selective update, and
difference highlighting functionality.

Figure 3. Screenshot of the importer functionalities and the selective artifact
update feature.

APPLICATION OF THE PROPOSED
APPROACH
This section demonstrates the benefits of the introduced approach. By
using our approach for the definition of the software architecture, this
work-package is included in the system development tool in an
AUTOSAR-aligned representation. Usually this work would have
been done by a software system architect within the software
development tool (such as Matlab/Simulink). This tool change does
not affect the work of the software system architect, due to the
AUTOSAR-aligned representation [18], but offers a significant
benefit for development of safety-critical software in terms of
traceability and replicability of design decisions.

With the additional improvements presented in this paper, the extra
facility of mapping SW tasks to dedicated ECU cores and their
required resources enables the possibility to unambiguously visualize
dependencies and analyze scheduling variants in early development
phases. Furthermore, safety-related software artifacts can be
explicitly highlighted and dependencies linked in a graphical way.

To provide a comparison of the improvements of our approach, we
selected a simplified multi-core use-case solely consisting of tasks,
alarms, counter, OS, CPU and application modes. Other OIL objects
have been omitted for reasons of the variable multiplicity of these
objects (such as resources of a task). The use-case consists of the OIL
objects expressed in Table 1.

Table 1. Figures of modeling artifacts representing the evaluation use-case.

This results in a total count of 20 OIL objects and 46 relations
between the elements. This small example already indicates that the
relations between the elements quickly sum up to a large amount
difficult to manage. To overcome this issue, the model-based
development approach offers the possibility to hide specific relations.
It might be argued that this approach also does not reduce the
workload or speed up the generation of OIL files significantly, due to
high number of relations that need to be established. However the
approach, similar to other examined tools, provides guidance to
minimize configuration failures. Additionally, it supports round-trip
engineering features, which split workloads among different
development phases and thus simplifies reuse. Table 2 compares the
proposed approach with other tools presented in the introduction
section of this paper and discusses several improvement indicators.

The labels for categorizations are:

• + supported or positive effects
• - not supported or negative effects
• o possible or no effects

To specify the advantages mentioned in table 2 in more detail, the
following paragraphs take a closer look at the individual approach
improvement indicators.

OIL syntax and semantic checks are not supported with the manual
approach. The other approaches are capable of supporting these
checks and thus improve correctness and completeness of the
specific configuration.

Reuse is one key feature solely supported by our approach due to the
fact that the OS configuration profile has been integrated in the
existing framework and the SW architecture profile described in
previous section of this document. This allows development of
software architectures fully in line with the AUTOSAR approach and
also inherits the ability of adding information regarding safety
considerations and basic OS configurations, which simplifies
proven-in-use argumentation.

As already mentioned, significant time savings could not be achieved
by any of the investigated approaches. This is mainly based on the
simple human readable structure of OIL files and the fact, that
developers make use of text templates for the manual approach.

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Table 2. Comparison of the approach with other common OIL file generation approaches based on feature support.

However, the automated configuration ability, which is able to
generate OS configurations from previously available information
and is supported by our approach and the visual DSL approach, also
indicates a positive speed-up effect in the case of safety case evidence
creation in terms of safety-critical system development.

Nevertheless, in the case of distributed configuration activities (e.g.
rough task allocation due to safety constraints done by the system/
safety engineers and detailed OS configuration done by the software
integrator), our approach enables easier cooperation and reduces
cooperation ramp up times.

Another key feature of our approach, adding additional constraints
to the configuration (e.g. ASIL, separated core allocation constraints
for independence features, combination constraints for prevention
of shared resources), is also possible with the manual approach, but
requires in this case additional effort to ensure correct syntax and
consistency of information. Nevertheless, these features, among the
OS configurations, can be automatically kept consistent solely by
our approach.

In terms of safety-critical development and reuse, the presented
approach supports crucial additional features such as round-trip
engineering by tool-supported information transfer between separated
tools and links to support safety-relevant information. Furthermore,
the approach eliminates the need for manual generation of OIL files
without adequate syntax and semantic support and ensures
reproducibility and traceability arguments.

In addition, our approach also enables automated support for
multi-core systems and multiple OS instance configurations, which
has not been supported by any of the other approaches so far. Visual
DSL and SW development level configurator approaches may also
support multi-core system and multiple OS instance configuration,
but our approach and its ability to take additional constraints into
account (mentioned earlier in this section) additionally improves
safety-related multi-core development and supports the certification
of such multi-core systems (such as traceability of task allocation and
safety constraint consistency).

Nevertheless, future (safety-) critical multi-core systems will require
the utilization of benefits of the various approaches and usage of the
manual based approach will become more and more infeasible due to
the number of constraints to comply with.

CONCLUSIONS
An important challenge for the development of safety-critical
real-time automotive systems is to ensure the consistency of the
safety relevant artifacts (e.g., safety concepts, requirements and
configurations) over the development cycle. This is especially
challenging due to the large number of skills, tools, teams and
institutions involved in the development.

This work presents an approach to bridge tool gaps between an
existing model-driven system and a safety engineering framework
and software engineering tools, based on domain standard OSEK.
The implemented tool extension transfers artifacts from system
development tools to software development frameworks for RTOS
configuration, thereby creating traceable links across tool boundaries,
and relying on standardized OSEK OIL exchange files.

The main benefits of this enhancement are: improved consistency and
traceability from the initial design at the system level down to the
single CPU configuration, as well as a reduction of cumbersome and
error-prone manual work along the system development path. Further
improvements of the approach include progress in terms of
reproducibility and traceability of safety-critical arguments,
configurations for software development and support of multi-core
system development.

REFERENCES
1. Ebert, C. and Jones, C., “Embedded Software: Facts, Figures, and

Future”, Computer, vol.42, no. 4, pp. 42-52, April 2009, doi:10.1109/
MC.2009.118.

2. Hilbrich, R., Reinier van Kampenhout, J. and Goltz, H., “Modellbasierte
Generierung statischer Schedules fuersicherheitskritische, eingebettete
Systeme mit Multicore-Prozessoren und harten Echtzeitanforderungen,”
Herausforderungen durch Echtzeitbetrieb Informatik aktuell, 2012,
doi:10.1007/978-3-642-24658-6_4.

3. The International Organization for Standardization (ISO), “Road
Vehicles Functional Safety Part 1-10,” ISO 26262, 2011.

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

4. Zahir, A., “OIL-OSEK Implementation Language,” OSEK/VDX Open
Systems in Automotive Networks (Ref. No. 1998/523), IEE Seminar,
1998, doi:10.1049/ic:19981079.

5. AUTOSAR Development Cooperation. “AUTOSAR AUTomotive Open
System Architecture,” http://www.autosar.org, 2014.

6. Zhao, M., Wu, Z., Yang, G., Wang, L. and Chen, W., “SmartOSEK: a
real-time operating system for automotive electronics,” Proceedings of
the First international conference on Embedded Software and Systems
(ICESS'04), 2004, doi:10.1007/11535409_63.

7. Köster, L., Thomsen, T., and Stracke, R., “Connecting Simulink
to OSEK: Automatic Code Generation for Real-Time Operating
Systems with TargetLink,” SAE Technical Paper 2001-01-0024, 2001,
doi:10.4271/2001-01-0024.

8. Kim, J., Lee, J., Son, J., Kwon, K. and Kim, G., “Lightweight
AUTOSAR Software Platform for Automotive,” IEEE International
Conference on Consumer Electronics, 2012, doi:10.1109/
ICCE.2012.6161881.

9. Yang, G., Zhao, M., Wang, L. and Wu, Z., “Model-based Design and
Verification of Automotive Electronics Compliant with OSEK/VDX,”
Proceedings of the Second International Conference on Embedded
Software and Systems (ICESS '05),2005.

10. Gu, Z., Wang, S. and Shin, K., “Issues in Mapping from UML Real-
Time Profile to OSEK,” Proc SVERTS: Workshop on Specification
and Validation of UML models for Real Time and Embedded Systems,
Oct. 2003.

11. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S. and Ratiu, D.,
“Seamless Model-based Development: From Isolated Tool to Integrated
Model Engineering Environments,” Proceedings of the IEEE Volume 98
Issue 4, 2010, doi:10.1109/JPROC.2009.2037771.

12. Quadri, I. and Sadovykh, A., “MADES: A SysML/MARTE high level
methodology for real-time and embedded systems,” Reconfigurable
Communication-centric Systems-on Chip, 2012, doi:10.1109/
ReCoSoC.2012.6322882.

13. Holtmann, J., Meyer, J. and Meyer, M., “A Seamless Model-Based
Development Process for Automotive Systems,” Lecture Notes in
Informatics, 2011, ISBN 978-3-88579-278-9.

14. Giese, H., Hildebrandt, S. and Neumann, S., “Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent,” Lecture
Notes in Computer Science 5765, 2010, ISBN 978-3-642-17321-9,
doi:10.1007/978-3-642-17322-6_24.

15. Fabbrini, F., Fusani, M., Lami, G. and Sivera, E., “Software Engineering
in the European Automotive Industry: Achievements and Challenges,”
COMPSAC, 2008, 2013 IEEE37th Annual Computer Software and
Applications Conference, doi:10.1109/COMPSAC.2008.140.

16. Mader, R.,, “Computer-Aided Model-Based Safety Engineering of
Automotive Systems,” PhD thesis, Graz University of Technology, 2012.

17. Rajan, A. and Wahl, T., “CESAR - Cost-efficient Methods and Processes
for Safety-relevant Embedded Systems,” Springer Wien, Rev, ISBN
978-3-7091-1386-8, doi:10.1007/978-3-7091-1387-5.

18. Macher, G., Armengaud, E., and Kreiner, C., “Bridging Automotive
Systems, Safety and Software Engineering by a Seamless Tool Chain,”
Proceedings European Congress Embedded Real Time Software and
Systems, 2014.

19. Macher, G., Armengaud, E. and Kreiner, C., “Automated Generation of
AUTOSAR Description File for Safety-Critical Software Architectures,”
Lecture Notes in Informatics, 2014.

CONTACT INFORMATION
Georg Macher
AVL List GmbH
Powertrain Engineering - Research & Development
Graz University of Technology
Institute for Technical Informatics
Tel.: +43 316 787 2974
georg.macher@avl.com
http://www.avl.com
http://iti.tugraz.at/

Muesluem Atas
AVL List GmbH
Powertrain Engineering - System Development Engineer
Tel.: +43 316 873 7434
muesluem.atas@avl.com
http://www.avl.com

Eric Armengaud
AVL List GmbH
Powertrain Engineering - Research & Development
Tel.: +43 316 787 6945
eric.armengaud@avl.com
http://www.avl.com

Christian Kreiner
Graz University of Technology
Institute for Technical Informatics
Tel.: +43 316 873 6408
christan.kreiner@tugraz.at
http://iti.tugraz.at/

ACKNOWLEDGMENTS
This work is partially supported by the INCOBAT and the
MEMCONS projects.

The research leading to these results has received funding from the
European Union's Seventh Framework Programme (FP7/2007-2013)
under grant agreement n° 608988 and financial support of the
“COMET K2 - Competence Centers for Excellent Technologies
Programme” of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal Ministry
of Economy, Family and Youth (BMWFJ), the Austrian Research
Promotion Agency (FFG), the Province of Styria, and the Styrian
Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our supporting
project partners, AVL List GmbH, Virtual Vehicle Research Center,
and Graz University of Technology.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.

Macher et al / SAE Int. J. Passeng. Cars – Electron. Electr. Syst. / Volume 8, Issue 2 (August 2015)

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Abstract
Increasing demands for safety, security, and certifiability of
embedded automotive systems require additional development effort
to generate the required evidences that the developed system can be
trusted for the application and environment it is intended for.

Safety standards such as ISO 26262 for road vehicles have been
established to provide guidance during the development of safety-
critical systems. The challenge in this context is to provide evidence
of consistency, correctness, and completeness of system
specifications over different work-products. One of these required
work-products is the hardware-software interface (HSI) definition.
This work-product is especially important since it defines the
interfaces between different technologies. Model-based development
(MBD) is a promising approach to support the description of the
system under development in a more structured way, thus improving
resulting consistency.

Therefore, this paper presents a tool approach for an ISO 26262
aligned hardware-software interface definition. More specifically, the
approach combines the versatility and intuitiveness of spreadsheet
tools (such as Excel) and the properties of MDB tools (e.g. different
views, levels of abstraction, central source of information, and
information reuse) bidirectionally. The approach is capable of
defining an ISO 26262 compliant HSI definition and enables
automatic derivation of basic software configurations according to the
HSI definition. This simplifies concurrent development of software
and hardware across domain and company borders.

Introduction
Automotive OEMs are investing large sums in the development of
(hybrid) electrified vehicles and networked automotive systems (such
as Car2x systems). Future aims concerning autonomous driving and

the currently ongoing replacement of traditional mechanical systems
with modern embedded systems lead to the significantly increasing
complexity of the embedded control systems.

Premium cars in 2009 utilized more than 90 electronic control units
(ECU) implementing close to 1 Gigabyte software code. For 2018,
30% of the overall vehicle costs are predicted to stem from vehicle
electronics [1].

At the same time, the higher degree of integration and the safety-
criticality of the control application raise new challenges. Evidence of
correctness of the different applications, possibly running on the
same computing platform, has to be guaranteed. In parallel, new
computing architectures with services integrated in hardware require
new software architectures and safety concepts. On one hand, the
development of such systems has to face many cost challenges and is
required to support the demands of time-to-market (first time right).
On the other hand, increasing demands for safety, security, and
certifiability require additional development efforts.

Safety standards such as ISO 26262 [2] for electrical and electronic
systems for road vehicles have been established to provide guidance
during the development of safety-critical systems. They provide a
well-defined safety lifecycle based on hazard identification and
mitigation, and define a long list of work-products to be generated
[3]. An important challenge in this context is to provide evidence of
consistency throughout the entire product development cycle among
the different work-products.

One of these required work-products is the hardware-software
interface (HSI) definition. The HSI specifies the hardware and
software interactions in consistency with the technical safety concept
and must include the hardware components that are controlled by
software and support the software execution. The HSI is specified

A Versatile Approach for an ISO26262 Compliant Hardware-
Software Interface Definition with Model-Based Development

2015-01-0148

Published 04/14/2015

Georg Macher and Harald Sporer
Graz University of Technology

Eric Armengaud
AVL LIST GmbH

Christian Kreiner
Graz University of Technology

CITATION: Macher, G., Sporer, H., Armengaud, E., and Kreiner, C., "A Versatile Approach for an ISO26262 Compliant Hardware-
Software Interface Definition with Model-Based Development," SAE Technical Paper 2015-01-0148, 2015, doi:10.4271/2015-01-0148.

Copyright © 2015 SAE International

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

during the system design phase and further refined during hardware
and software development phases [2]. This ISO 26262 statement
highlights the importance and essentiality of this work product.

The HSI document is the last development artifact of the system
development and the starting point for parallel development of
hardware and software. HSI definition requires mutual domain
knowledge of hardware and software and is to be a work product of a
collective workshop of hardware, software, and system experts.
Furthermore, HSI is used to agree on topics relevant to both,
hardware and software development, and acts as the linkage between
different levels of development.

Insufficient definition of the HSI can cause several additional iteration
cycles and communication issues between development teams.

To handle these issues, model-based development supports the
description of the system under development in a more structured
way, enables different views for different stakeholders, different
levels of abstraction, and a central source of information.
Nevertheless, seamless model-based solutions have not been
achieved so far, due to problems arising from inadequate tool-chains
(e.g. redundancy, inconsistency and lack of automation). This
hampers MBD approaches in tapping their full potential.

Therefore, this paper presents a tool approach for ISO 26262 aligned
hardware-software interface definition. More specifically, the
approach combines the versatility and intuitiveness of spreadsheet
tools (such as Excel) and the properties of MDB tools (e.g. different
views, levels of abstraction, central source of information, and
information reuse) bidirectionally.

The document is organized as follows:

The next section describes related works and the state of the art of
hardware-software interface definition. The existing model-based
systems and safety tool chain on which this work is based is
presented in the third section. The fourth section provides a
description of the proposed enhancement for HSI definition. Section
five evaluates the presented approach with an automotive use case.
Finally, the last section concludes this work with an overview of what
has been achieved.

State-of-the-Art HSI Definition
This section briefly describes the current state-of-the-art approaches
for defining hardware-software interfaces. Although the topic is of
high importance for the automotive domain, only few recent
publications exist.

In contrast to this, Hardware-Software Interface co-design has a long
history in development of System-on-Chip (SoC) systems. Already in
2005 Jerraya et. al [4] postulated that co-design of HW and SW
interfaces will fundamentally improve the SoC design process and
increase both hardware and software quality of SoC development.

Kecheng and Fei [5] realized a component-based approach to HW/
SW interface design of embedded systems with a platform-specific
bridge specification language (BSL). Nevertheless, their work
addresses modeling system models as SystemC and introduces
another abstraction layer for hardware abstraction.

King et. al [6] postulated the problem of defining HW/SW interfaces
in early development steps. First, a detailed interface is difficult to
specify without detailed knowledge of software and hardware.
Second, this specification prevents later migration of interface
functionalities and the addition of features.

The reason why HSI development was not the main focus in the
automotive industry originates from the fact that automotive
hardware and software development significantly differ in cycle
times. Furthermore, automotive software is typically separated into
several abstraction layers (such as application software,
microcontroller abstraction layers, basic functionality drivers). This
approach usually hides hardware details and establishes software
development teams with specific software focus (e.g., basic software
developer, application software engineers, and software integrators).

The AUTOSAR architectural approach [7] explicitly forces such an
approach to support hardware independent development of
application software modules till a very late development phase and
therefore enables parallel working of application software
developers, basic software developers, and hardware developers.
The intention of the AUTOSAR specifications is to support the
exchange and reuse of software, by defining software architectures,
interfaces, and exchange formats.

An emerging domain-independent paradigm for interface definition is
the contract-based design paradigm. Here the contracts specify the
input assumptions of a component and provide a guaranteed output
behavior [8]. Such an approach can be used for safety contracts of
software components [9], as well as contract-based embedded system
development [10].

Another emerging paradigm is system of systems (SoS) engineering
[11]. SoS are integrations of heterogeneous systems delivering
capabilities and services without exact knowledge of the internal
workings of an involved subsystem. Basically all current SW
architecture in the automotive domain can be seen as such SoS, due
to their distributed development of SW layers. A promising method
for definition of SoS architectures lies in interface specification and a
quasi-contract-based development. Bryans et. al [11] establish a semi-
formal notation to model SoS architectures with SysML. Such a
notation of software architectures is also part of our approach, for
more details see [12].

Although, these contract-based approaches foster model-based
development and traceability of development decisions, they are not
simple and easy enough to be used for HSI definition workshops.
Because of this reason and the project specific nature of HSI
definitions many hardware-software interface definitions are still
done within spreadsheet tools or in textual form within a requirement
management tool. Although Chen et. al [13] claim that social and
text-based communication does not scale for handling future
advanced embedded automotive systems.

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Figure 1. Conceptual overview of the HSI definition approach

Model-Based Development Fundament
This paragraph gives a short overview of the model-based
development tool chain in use and the related preliminary work that
provides the base for the proposed approach.

The basic concept behind the MBD framework is to have a consistent
information repository as a central source of information [14]. This
concept allows different engineers to do their job in their specific
manner, provides traces between different artifact types, and ensures
timeliness of data. Proprietary extensions for the modeling tool
ensure seamless and consistent transition of information between the
repository and various adequate special-purpose tools (such as
software development tools). A UML profile, tailored to the needs of
automotive safety engineering, is used to define the model of the
system under development.

This enables reorganization from a document-centric development
approach to a seamless model-based development approach. An
approach, Broy et al. [15] claim to be best to manage large
complexity of modern embedded automotive systems. Fabbrini et al.
[16] also highlight the importance of model-based development
approaches in their overview of software engineering in the European
automotive industry.

For a more detailed overview of the model-based development
concept in use, see [17].

Hardware-Software Interface Definition
Approach
The contribution proposed in this work is a tool approach for ISO
26262 aligned hardware-software interface definition. The approach
enables a practicable and intuitive way of engineering HSI definitions
in a spreadsheet tool (such as Excel) and transforms them to a
reusable and version able representation in the MDB tool (such as

Enterprise Architect). With this approach, the spreadsheet document
and system model can be bidirectionally aligned via program-specific
APIs, which support tool-independence of the approach.

More specifically, our contribution consists of the following parts:

• Application SW modeling framework: Enhancement of a UML
profile for the definition of AUTOSAR specific artifacts, more
precisely, for the definition of the components interfaces (based
on the virtual function bus). This is required for consistent SW
system description and modeling of software signals, see figure 1 -
modeling framework add-on.

• Basic SW and HW module modeling framework: Enhancement
of a UML profile to describe basic software (BSW) components
and HW component interfaces. This is required to ensure
consistency of the specification and configuration of BSW
components and modeling of the hardware component
interfaces, see figure 1 - modeling framework add-on.

• HSI definition exporter: MBD-tool extension to export the
resulting HW/SW interface definitions to spreadsheet tools for
further reworking without the need of special tools, see figure 1 -
spreadsheet tool bridge.

• Spreadsheet importer: Importer to integrate HW/SW interfaces
defined with a spreadsheet template, see figure 1 - spreadsheet
tool bridge.

• Spreadsheet template: The spreadsheet template defines the
representation structure for the input data and is customizable
for each project.

• SW/SW interface generator: Generator to automatically define
SW/SW interfaces between application software signals and
basic software signals, see figure 1 - RTE configuration bridge.

Application SW Modeling Framework
The first contribution is the development of a specific UML modeling
framework enabling software architecture design in AUTOSAR such
as representation within the system development tool (Enterprise
Architect). This EA profile takes advantage of the AUTOSAR virtual

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

function bus (VFB) abstraction layer and enables an explicit
definition of AUTOSAR components, component interfaces, and
connections between interfaces. This provides the possibility to
define the software architecture and ensures proper definition of the
communication between the architecture artifacts, including interface
specifications (e.g. upper limits, initial values, formulas). Hence, the
AUTOSAR-aligned representation can be linked to system
development artifacts and traces to requirements can be easily
established. These explicit links can be further used for constraints
checking, traceability of development decisions (e.g. for safety case
generation), and reuse.

Figure 2 shows an example of a software module (AUTOSAR
Composition) and its signal interface definitions. This integrated
definition of system artifacts and software module in one tool
furthermore supports the work of safety engineers by adding values,
visual labels for safety-relevant software modules, and enables the
automatic generation of interfaces to BSW modules. Furthermore the
model representation enables constraint-checking features and
supports signal traces to HSI definition and requirements.

Figure 2. Example of an application software (ASW) component and
configurations of a software signal interface.

Basic SW and HW Module Modeling Framework
Special basic software (BSW) and hardware module representations
are assigned to establish links to the underlying basic software and
hardware layers. The AUTOSAR architectural approach ensures
hardware-independent development of application software modules
until a very late development phase and therefore enables application
software developers and basic software developers to work in
parallel. The hardware profile allows a graphical representation of
hardware resources (such as ADC, CAN), calculation engines (core),
and connected peripherals that interact with the software. This
enables the mapping of tasks to a specific core and establishment of a
valid scheduling in a later development phase. Furthermore, the

profile enables an intuitive graphical way of establishing software
and hardware dependencies and a hardware-software interface (HSI),
as required by ISO 26262. Software signals in BSW modules can be
linked to HW port pins via dedicated mappings. This on one hand
enables the modeling and mapping of HW specifics and SW signals,
see figure 3. On the other hand, this mapping enables traceable links
to port pin configurations.

HSI Definition Exporter
The HSI exporter (a MBD-tool extension) establishes an API link to
spreadsheet tools and enables the export of modeled HW/SW
interfaces to spreadsheet documents. This API link ensures freedom
from version dependence of the specific spreadsheet tool.
Furthermore, the MBD-tool extension is developed in the form of a
dll class library, which provides means for reuse by multiple
programs and ensures MDB-tool independence of the exporter.

Figure 3. Example of a port pin connector artifact, basic software (BSW)
signal, and the corresponding connector pin settings.

Spreadsheet Importer
The MBD-tool import-extension is the corresponding counterpart to
the HSI exporter. It is also a dll class library using the spreadsheet
tools API and enables the import of information and the selective
update of HW/SW interface model artifacts. This enables round-trip
engineering of HSI definition within the spreadsheet and MDB tool.

Spreadsheet Template
The spreadsheet template defines the structure of the data
representation in a project specific customizable way. This, on one
hand, enables a practicable and intuitive way of engineering HSI
definitions with spreadsheet tools and transformation to a reusable and
version able representation in the MDB tool. On the other hand, this
approach unifies the project-dependent process for HSI definitions
across the variety of different projects and contributing partners
without requiring exactly the same development tools or processes in
place. Thirdly, the machine- and human-readable notation of a
spreadsheet ensures a cost- and time-saving alternative to usually
complex special-purpose tools. Figure 4 depicts the project-
independent template structure for HSI definition data preparation.

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

SW/SW Interface Generator
The last part of the presented approach is the SW/SW interface
generator. This dll- based MDB-tool extension generates .c and .h
files defining SW/SW interfaces between application software signals
and basic software signals from the modeled HSI artifacts. In addition
this generation eliminates the need for manual SW/SW interface
generation without adequate syntax and semantic support and ensures
reproducibility and traceability of these configurations.

Figure 4. Example of a project-independent spreadsheet template structure for
HSI definition.

Application of the HSI Definition Approach
In order to evaluate the approach, an automotive use-case of a central
control unit (CCU) for a battery management system (BMS) prototype
for (hybrid) electric vehicle has been chosen. Project-specific details
have been abstracted for reasons of commercial sensitivity.

Figure 5 shows a generalized representation of the CCU SW
architecture. As can be seen from the picture, 10 SW modules on the
ASW layer and 7 SW modules on the BSW layer have been defined.
Table 1 summarizes the number of interfaces module and artifacts
representing the CCU SW architecture.

Table 1. Summary of model artifacts representing the CCU SW architecture,
required to model the BMS HSI definition.

As can be seen in table 1, 19 ASW/BSW interfaces (7 input and 12
output interfaces) need to be defined. This definition adds up to more
than 30 lines of code (LoC) that can be generated automatically with
the presented approach into interface.c and interface.h files.

Key aspects for ISO 26262 aligned HSI definition are correct,
consistent, and complete interface descriptions. Furthermore,
evidences of correct implementation of these interfaces are required.
This can be challenging in case of concurrent HW and SW
development and cross-dependencies of asynchronous update
intervals. Therefore, the presented approach provides a single source
of HSI definitions, available as graphical HSI model and spreadsheet
and automatically generates code configurations. Regarding the SW/
SW Interfaces on the ASW layer, consistency checks for the 32
output interfaces and 54 input interfaces ensure point-to-point
consistency of the signal routing. For 9 definable features per signal,
this adds up to 774 definitions, which are automatically checked for
consistency with this approach.

The actual HW/SW interface, mapping of BSW signals to HW pins,
also consists of 19 interfaces for this specific SW architecture. This
mapping includes 23 settings per mapping and can be automatically
exported to the spreadsheet tool.

In case of changes of the HSI mapping within the spreadsheet, e.g.
due to necessary pin reconfiguration, this information can be kept
consistent with the model-representation via the importer
functionality. This ensures actuality of development artifacts and
simplifies tracing of development decisions. Table 2 sums up the
additional features for the BMS use-case supported by the presented
approach and provides an overview of the amount of data affected by
each iteration step.

Table 2. Additional features provided by the approach and number of presence
for the BMS use-case

Summary
This paper presented a tool approach for ISO 26262 aligned
hardware-software interface definition and a brief evaluation of the
approach for a BMS use-case.

The approach combines the versatility and intuitiveness of spreadsheet
tools and the properties of MDB tools (e.g. different views, levels of
abstraction, central source of information, and information reuse) in a
bidirectional way. This, on one hand, enables a practicable, tool-
independent, and intuitive way of engineering HSI definitions with
spreadsheet tools and transforms the generated information to a
reusable and version-able representation in the MDB tool.

On the other hand, this approach unifies the project-dependent
process for HSI definitions across the variety of different projects and
contributing partners without requiring exactly the same development
tools or processes in place.

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Thirdly, the machine- and human-readable notation of spreadsheets
ensures a cost- and time-saving alternative to usually complex
special-purpose tools. This facilitates collaboration especially for small
budget projects, projects with small and medium-sized companies or
research projects, and collaboration with academic partners.

Finally, the approach is capable of defining an ISO 26262 compliant
HSI definition and enables automatic derivation of basic software
configurations according to the HSI definition.

Figure 5. Generalized representation of the BMS software architecture;
subdivided into basic software modules and application software modules.

Key aspects for ISO 26262 aligned HSI definition are correct,
consistent, and complete interface descriptions. This is in particular
crucial in case of concurrent HW and SW development and
synchronization of HSI changes and updates. By automatic
bidirectional updating of the information resources (model and
spreadsheet) and automatic generation of code, the presented
approach minimizes manual work efforts and improves traceability of
HSI specification to code implementation. This helps to simplify
concurrent development of software and hardware across domain,
company, and tool borders.

References
1. Riel, A., Bachmann, O., Dussa-Zieger, K., Kreiner, C.,

Messnarz, R., Nevalainen, R., Sechser, B., smf Tichkiewitch, S.
EU Project SafEUr - Competence Requirements for Functional
Safety Managers. In EuroSPI Proceedings, volume 301 of
Communications in Computer and Information Science, pages
253-265. Springer, 2012.

2. The International Organization for Standardization (ISO), “Road
Vehicles Functional Safety Part 1-10,” ISO 26262, 2011.

3. Messnarz, R., Kreiner, C., Bachmann, O., Riel, A., Dussa-
Zieger, K., Nevalainen, R., and Tichkiewitch, S. Implementing
Functional Safety Standards Experiences from the Trials about
Required Knowledge and Competencies (SafEUr). In Systems,

Software and Services Process Improvement, volume 364 of
Communications in Computer and Information Science, pages
323-332. Springer Berlin Heidelberg, 2013.

4. Jerraya, A. and Wolf, W., “Hardware/Software Interface
Codesign for Embedded Systems,” Computer, vol.38, no. 2, pp.
63-69, February 2005, doi:10.1109/MC.2005.61.

5. Kecheng, H. and Xie, F., “Componentizing Hardware/Software
Interface Design,” DATE 2009, ISBN 978-3-9810801-5-5

6. King, M., Nirav, D. and Arvind, “Automatic Generation of
Hardware/Software Interfaces,” ASPLOS 2012: Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
doi:10.1145/2150976.2151011.

7. AUTOSAR Development Cooperation. “AUTOSAR
AUTomotive Open System Architecture,” http://www.autosar.
org, 2014.

8. Cimatti, A. and Tonetta, S., “A Property-Based Proof System for
Contract-Based Design,” Proc. 36th EUROMICRO Conference
on Software Engineering and Advanced Applications, 2012.

9. Johansson, R., “Safety Contract Based Design of Software
Components”, ISSREW, 2013, 2013 IEEE International
Symposium on Software Reliability Engineering Workshops
(ISSREW), 2013, doi:10.1109/ISSREW.2013.6688922.

10. Damm, W., Hungar, H., Josko, B., Peikenkamp, T. and Stierand,
I., “Using Contract-Based Component Specifications for Virtual
Integration Testing and Architecture Design,” DATE, 2011,
Design, Automation & Test in Europe Conference & Exhibition,
doi:10.1109/DATE.2011.5763167.

11. Bryans, J., Payne, R., Holt, J. and Perry, S., “Semi-Formal
and Formal Interface Specification for System of Systems
Architecture,” Systems Conferecne (SysCon), 2013, ISBN 978-
1-4673-3107-4, doi:10.1109/SysCon.2013.6549946.

12. Macher, G., Armengaud, E. and Kreiner, C., “Automated
Generation of AUTOSAR Description File for Safety-Critical
Software Architectures,” Lecture Notes in Informatics, 2014.

13. Chen, D., Johansson, R., Loenn, H., Papadopoulos, Y.,
Sandberg, A., Toerner, F. and Toerngren, M., “Modelling
Support for Design of Safety-Critical Automotive Embedded
Systems,” SAFECOMP 2008, 2008.

14. Rajan, A. and Wahl, T., “CESAR - Cost-efficient Methods and
Processes for Safety-relevant Embedded Systems,” Springer
Wien, Rev, ISBN 978-3-7091-1386-8, doi:10.1007/978-3-7091-
1387-5.

15. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S.
and Ratiu, D., “Seamless Model-based Development: From
Isolated Tool to Integrated Model Engineering Environments,”
Proceedings of the IEEE Volume 98 Issue 4, 2010, doi:10.1109/
JPROC.2009.2037771.

16. Fabbrini, F., Fusani, M., Lami, G. and Sivera, E., “Software
Engineering in the European Automotive Industry:
Achievements and Challenges,” COMPSAC, 2008, 2013 IEEE
37th Annual Computer Software and Applications Conference,
doi:10.1109/COMPSAC.2008.140.

17. Macher, G., Armengaud, E., and Kreiner, C., “Bridging
Automotive Systems, Safety and Software Engineering by
a Seamless Tool Chain,” Proceedings European Congress
Embedded Real Time Software and Systems, 2014.

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Contact Information
Georg Macher
AVL List GmbH
Powertrain Engineering - Research & Development
Graz University of Technology
Institute for Technical Informatics
Tel.: +43 316 787 2974
georg.macher@avl.com
http://www.avl.com
http://iti.tugraz.at/

Harald Sporer
Graz University of Technology
Institute for Technical Informatics
Tel.: +43 316 873 6409
sporer@tugraz.at
http://iti.tugraz.at/

Eric Armengaud
AVL List GmbH
Powertrain Engineering - Research & Development
Tel.: +43 316 787 6945
eric.armengaud@avl.com
http://www.avl.com

Christian Kreiner
Graz University of Technology
Institute for Technical Informatics
Tel.: +43 316 873 6408
christan.kreiner@tugraz.at
http://iti.tugraz.at/

Acknowledgments
The authors would like to acknowledge the financial support of the
“COMET K2 - Competence Centers for Excellent Technologies
Programme” of the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal Ministry
of Economy, Family and Youth (BMWFJ), the Austrian Research
Promotion Agency (FFG), the Province of Styria, and the Styrian
Business Promotion Agency (SFG).

We are grateful for the contribution of the SOQRATES Safety AK
experts and the expertise gained in SafEUr professional trainings.

Furthermore, we would like to express our thanks to our supporting
project partners, AVL List GmbH, Virtual Vehicle Research Center,
and Graz University of Technology.

Definitions/Abbreviations
ECU - Engine control unit

HSI - Hardware-software interface

MDB - Model-based development

AUTOSAR - Automotive open system architecture

SoC - System on chip

SW - Software

ASW - Application software

BSW - Basic software

HW - Hardware

VFB - Virtual function bus

BMS - Battery management system

CCU - Central Control Unit

LoC - Lines of Code

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the session organizer. The process
requires a minimum of three (3) reviews by industry experts.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.

ISSN 0148-7191

http://papers.sae.org/2015-01-0148

Downloaded from SAE International by Georg Macher, Sunday, April 05, 2015

Bibliography

[1] Military Standard Procedures for Performing a Failure Mode, Effects and Criticality Anal-
ysis, November 1980.

[2] Military Standard Reliabilty Program for Systems and Equipment Development and Pro-
duction, September 1980.

[3] Military Handbook Reliability Prediction of Electronic Equipment, December 1991.

[4] Department of Defense Handbook for Reliability Test Methods, Plans, and Environments
for Engineering, Development Qualification, and Production, April 1996.

[5] Military Handbook Electronic Reliability Design Handbook, October 1998.

[6] Railway applications - The specification and demonstration of reliability, availability, main-
tainability and safety (RAMS), March 2000.

[7] Albert Albers and Christian Zingel. Challenges of Model-Based Systems Engineering: A
Study towards Unified Term Understanding and the State of Usage of SysML. In Michael
Abramovici and Rainer Stark, editors, Smart Product Engineering, Lecture Notes in Pro-
duction Engineering, pages 83–92. Springer Berlin Heidelberg, 2013.

[8] AUTOSAR development cooperation. AUTOSAR AUTomotive Open System ARchitecture,
2009.

[9] AUTOSAR Development Cooperation. Technical Safety Concept Status Report. Technical
Report Document Version: 1.1.0, Revision 2, AUTOSAR development cooperation, October
2010.

[10] AUTOSAR Development Cooperation. Guide to Multi-Core Systems. online, 2013.

[11] AUTOSAR Development Cooperation. Virtual Functional Bus. online, 2013.

[12] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Dependability and its Threats
- A Taxonomy. In Rene Jacquart, editor, IFIP Congress Topical Sessions, pages 91–120.
Kluwer, 2004.

[13] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

[14] Volodymyr Bendiuga. Multi-Core Pattern. Master’s thesis, School of Innovation, Design
and Engineering Malardalen University Sweden, December 2012.

[15] H. Blom, H. Loenn, F. Hagl, Y. Papadopoulos, M.-O. Reiser, C.-J. Sjoestedt, D. Chen, and
R. Kolagari. EAST-ADL - An Architecture Description Language for Automotive Software-
intensive Systems. White Paper 2.1.12, 2013.

201

Bibliography

[16] Kurt Boehringer and Markus Kroh. Funktionale Sicherheit in der Praxis, July 2013.

[17] Richard Boldt. Modeling AUTOSAR systems with a UML/SysML profile. Technical report,
IBM Software Group, July 2009.

[18] Marc Born, John Favaro, and Olaf Kath. Application of ISO DIS 26262 in Practice. CARS
2010, 2010.

[19] Baert Brecht and Steven Luys. Application of multi-core CPUs in a safety-critical context.
Technical report, Barco Defense and Aerospace, March 2011.

[20] Manfred Broy, Martin Feilkas, Markus Herrmannsdoerfer, Stefano Merenda, and Daniel
Ratiu. Seamless Model-based Development: from Isolated Tool to Integrated Model Engi-
neering Environments. IEEE Magazin, 2008.

[21] D. Chen, R. Johansson, H. Loenn, H. Blom, M. Walker, Y. Papadopoulos, S. Torchiaro,
F. Tagliabo, and A. Sandberg. Integrated safety and architecture modeling for automotive
embedded systems. In Elektrotechnik & Informationstechnik, volume 128/6, pages 196 –
202, February 2011.

[22] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Mark-Oliver Reiser, David
Servat, Ramin Tavakoli Kolagari, and DeJiu Chen. Developing Automotive Products Using
the EAST-ADL2 : an AUTOSAR Compliant Architecture Description Language. Ingenieurs
de l’Automobile (Automobile Engineers), (793), 2008. QC 20120510.

[23] Christof Ebert. Functional Safety Industry Best Practices for Introducing and Using ISO
26262. In SAE Technical Paper. SAE International, 04 2013.

[24] Christof Ebert and Capers Jones. Embedded Software: Facts, Figures, and Future. IEEE
Computer Society, 0018-9162/09:42–52, 2009.

[25] European Automobile Manufacturers Association. The Automobile Industry Pocket Guide.
Technical report, European Automobile Manufacturers Association, 2015.

[26] European Organization for Civil Aviation Equipment (EUROCAE WG-72) and Radio Tech-
nical Commission for Aeronautics (RTCA SC-216). Airworthiness security process specifi-
cation, ED-202, 2010.

[27] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans.
Comput., 21(9):948–960, September 1972.

[28] Ilir Gashi, Andrey Povyakalo, Lorenzo Strigini, Martin Matschnig, Thomas Hinterstoisser,
and Bernhard Fischer. Diversity for Safety and Security in Embedded Systems. In Interna-
tional Conference on Dependable Systems and Networks, volume 26, 06 2014.

[29] Vera Gebhardt, Gerhard Rieger, Juergen Mottok, and Christian Giesselbach. Funktionale
Sicherheit nach ISO 262626 - Ein Praxisleitfaden zur Umsetzung, volume 1. Auflage.
dpunkt.verlag, 2013.

[30] Holger Giese, Stephan Hildebrandt, and Stefan Neumann. Model Synchronization at Work:
Keeping SysML and AUTOSAR Models Consistent. LNCS 5765, pages pp. 555 –579, 2010.

[31] Jongtaek Han, Jin Seo Park, Michael Deubzer, Jens Harnisch, and Patrick Leteinturier.
Efficient Multi-Core Software Design Space Exploration for Hybrid Control Unit Integration.
In SAE Technical Paper. SAE International, 04 2014.

202

Bibliography

[32] Hansen, Finn Overgaard and i Århus, Ingeniørhøjskolen. SysML–a modeling language for
systems engineering. 2010.

[33] Robert Hilbrich, J. Reinier van Kampenhout, and Hans-Joachim Goltz. Modell-
basierte Generierung statischer Schedules fuer sicherheitskritische, eingebettete Systeme
mit Multicore-Prozessoren und harten Echtzeitanforderungen. Informatik aktuell, pages 29
– 38, 2012.

[34] Joerg Holtmann, Jan Meyer, and Matthias Meyer. A Seamless Model-Based Development
Process for Automotive Systems, 2011.

[35] International Electrotechnical Commission. Reliability data handbook - Universal model
for reliability prediction of electronics components, PCBs and equipment. Technical Report
IEC TR 62380, International Electrotechnical Commission, 2004.

[36] International Organization for Standardization. ISO 13053 Quantitative methods in process
improvment – Six Sigma, 2011.

[37] ISO - International Organization for Standardization. IEC 61508 Functional safety of elec-
trical/ electronic / programmable electronic safety-related systems.

[38] ISO - International Organization for Standardization. IEC 60812 Analysis techniques for
system reliability - Procedure for failure mode and effects analysis (FMEA) , 2006.

[39] ISO - International Organization for Standardization. IEC 61025 Fault tree analysis (FTA)
, December 2006.

[40] ISO - International Organization for Standardization. ISO 26262 Road vehicles Functional
Safety Part 1-10, 2011.

[41] Daniel Kaestner, Marc Schlickling, Markus Pister, Christoph Cullmann, Gernot Gebhard,
Reinhold Heckmann, and Christian Ferdinand. Meeting Real-Time Requirements with
Multi-Core Processors. In SAFECOMP 2012 Workshops, LNCS 7613, pages 117 – 131,
2012.

[42] Markus Krallinger. CDL - An Extensible Framework to Create Constraints in Model-
Based Development. Master’s thesis, Graz University of Technology - Institute for Technical
Informatics, 2012.

[43] Daehyun Kum, Gwang-Min Park, Seonghun Lee, and Wooyoung Jung. AUTOSAR Migra-
tion from Existing Automotive Software. In International Conference on Control, Automa-
tion and Systems, COEX, Seoul, Korea, 2008. DGIST.

[44] Joo-Chul Lee and Tae-Man Han. ECU Configuration Framework based on AUTOSAR ECU
Configuration Metamodel. 2009.

[45] Peter Liggesmeyer and Mario Trapp. Trends in embedded software engineering. IEEE
Software, 26(3):19–25, May 2009.

[46] Tomislav Lovric, Manuel Schneider-Scheyer, and Samir Sarkic. SysML as Backbone for
Engineering and Safety - Practical Experience with TRW Braking ECU. In SAE Technical
Paper. SAE International, 04 2014.

203

Bibliography

[47] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner. SAHARA: A security-
aware hazard and risk analysis method. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2015, pages 621–624, March 2015.

[48] Georg Macher, Eric Armengaud, Eugen Brenner, and Christian Kreiner. An Automotive
Engineering Model to Improve the Architectural Design Interchange Continuity. In under
review at SAE Technical Paper, pages 001 –007, 2016.

[49] Georg Macher, Andrea Hoeller, Harald Sporer, Eric Armengaud, and Christian Kreiner.
Service Deterioration Analysis (SDA): An Early Development Phase Reliability Analysis
Method. In In Review at 45th Annual International Conference on Dependable Systems and
Networks (DSN) - RADIANCE Workshop, 2015.

[50] Microsoft Corporation. The stride threat model, 2005.

[51] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114 – 117, April 1965.

[52] Bryon Moyer. Real World Multicore Embedded Systems. Expert guide. Newnes, Newton,
MA, USA, 1st edition, 2013.

[53] OSEK/VDX Steering Committee. OSEK/VDX System Generation OIL: OSEK Implemen-
tation Language. http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf, 2004.

[54] Roberto Passerone, Imene Ben Hafaiedh, Susanne Graf, Albert Benveniste, Daniela Can-
cila, Arnaud Cuccuru, Sebastien Gerard, Francois Terrier, Werner Damm, Alberto Ferrari,
Leonardo Mangeruca, Bernhard Josko, Thomas Peikenkamp, and Alberto Sangiovanni-
Vincentelli. Metamodels in Europe: Languages, Tools, and Applications. IEEE Design
and Test of Computers, 26(3):38–53, 2009.

[55] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Software
Engineering for Automotive Systems: A Roadmap. In 2007 Future of Software Engineering,
FOSE ’07, pages 55–71, Washington, DC, USA, 2007. IEEE Computer Society.

[56] Imran Rafiq Quadri and Andrey Sadovykh. MADES: A SysML/MARTE high level method-
ology for real-time and embedded systems, 2011.

[57] F. Reichenbach and A. Wold. Multi-core Technology – Next Evolution Step in Safety Critical
Systems for Industrial Applications? In Digital System Design: Architectures, Methods and
Tools (DSD), 2010 13th Euromicro Conference on, pages 339–346, Sept 2010.

[58] Kai Richter and Simon Schliecker. Sicher auf Multi-Core umsteigen. HANSER automotive,
10:38–42, 10 2013.

[59] Emilio Rodriguez-Priego, Franciscos Garcia-Izquierdo, and Angel Rubio. Modeling Issues:
A Survival Guide for a Non-expert Modeler. Models2010, 2:361–375, 2010.

[60] Michael Roth and Peter Liggesmeyer. Modeling and Analysis of Safety-Critical Cyber
Physical Systems using State/Event Fault Trees. In SAFECOMP 2013 - Workshop DECS
(ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems) of the
32nd International Conference on Computer Safety, Reliability and Security, 2013.

[61] SAE International. Guidelines and Mehtods for Conductiong the Safety Assessment Process
on Civil Airborne Systems and Equipment, 1996.

204

Bibliography

[62] SAE International. Guidelines for Development of Civil Aircraft and Systems, 2010.

[63] SafEUr Training Material Committee. ECQA Certified Functional Safety Manager Training
Material. training dossier, April 2013.

[64] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded System Design for Auto-
motive Applications. Computer, 40(10):42–51, 2007.

[65] Oliver Scheickl, Christoph Ainhauser, and Peter Gliwa. Tool Support for Seamless System
Development based on AUTOSAR Timing Extensions, 2011.

[66] K. Schmidt, P. Troeger, H. Kroll, and T. Buenger. Adapted Development Process for
Security in Networked Automotive Systems. SAE 2014 World Congress & Exhibition Pro-
ceedings, (SAE 2014-01-0334):516 – 526, 2014.

[67] Christoph Schmittner, Thomas Gruber, Peter Puschner, and Erwin Schoitsch. Security
Application of Failure Mode and Effect Analysis (FMEA). In Andrea Bondavalli and Fe-
licita Di Giandomenico, editors, Computer Safety, Reliability, and Security, volume 8666
of Lecture Notes in Computer Science, pages 310–325. Springer International Publishing,
2014.

[68] Rolf Schneider, Wolfgang Brandstaetter, Marc Born, Olaf Kath, Tobias Wenzel, Rafael
Zalman, and Mayer Johann. Safety Element out of Context - A Practical Approach. In
SAE International Technical Papers, number 2012-01-0033, April 2012.

[69] Giorgio Scuro. Automotive industry: Innovation driven by electronics. http://embedded-
computing.com/articles/automotive-industry-innovation-driven-electronics/, 2012.

[70] Bernhard Sechser. The marriage of two process worlds. Software Process: Improvement and
Practice, 14(6):349–354, 2009.

[71] Special Committee 205 of RTCA. DO-178C Software Considerations in Airborne Systems
and Equipment Certification, 2011.

[72] Max Steiner and Peter Liggesmeyer. Combination of Safety and Security Analysis - Finding
Security Problems That Threaten The Safety of a System. In SAFECOMP 2013 - Workshop
DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems)
of the 32nd International Conference on Computer Safety, Reliability and Security, 2013.

[73] Geoffrey Tennant. Six sigma: SPC and TQM in manufacturing and services. Gower Pub-
lishing Ltd, 2001.

[74] The Common Criteria Recognition Agreement Members. Common Criteria for Information
Technology Security Evaluation. http://www.commoncriteriaportal.org/, 2014.

[75] The SPICE User Group. Automotive SPICE Process Assessment Model. Technical report,
2007.

[76] Judith Thyssen, Daniel Ratiu, Wolfgang Schwitzer, Er Harhurin, Martin Feilkas, Technis-
che Universitaet Muenchen, and Eike Thaden. A system for seamless abstraction layers for
model-based development of embedded software. In Software Engineering Workshops, pages
137–148, 2010.

[77] Stefan Voget. AUTOSAR and the Automotive Tool Chain. In DATE10, 2010.

205

Bibliography

[78] D. Ward, I. Ibara, and A. Ruddle. Threat Analysis and Risk Assessment in Automotive
Cyber Security. SAE 2013 World Congress & Exhibition Proceedings, pages 507–513, 2013.

[79] Thomas Zurawka and Joerg Schaeuffele. Method for checking the safety and reliability of a
software-based electronic system, January 2007.

206

	Introduction
	Embedded Automotive Systems
	Thesis Background
	Problem Statement
	Seamless Model-based Development
	Safety-Critical Multi-Core Systems
	Comprehensive Dependability

	Publication Statistics
	Thesis Organization

	Related Work
	Research Project in the Automotive Domain
	CESAR Project
	SPES_XT
	AMALTHEA project
	parMERASA Project
	Safe Project
	Evita Project
	Maenad Project
	SeSaMo Project

	Model-based Development
	System Modeling Language (SysML)
	MARTE System Profile
	EAST ADL
	AUTOSAR Meta-Model

	Safety-Critical Systems
	Dependability Attributes

	Proposed Solution
	Process Layer related Contribution
	Analysis of Development Processes
	Architecture Traceability Support

	Method Layer related Contribution
	Automotive Safety Case Pattern
	Multi-Core Migration Challenges
	Multi-Core Migration Pattern
	Service Deterioration Analysis
	Security-Aware Hazard and Risk Analysis Method
	System Dependability Analysis Methods
	Seamless Modeling Approach

	Tool Layer related Contribution
	Application Software Modeling Toolbridge
	Basic Software Configuration Generator
	OS Configuration Generator
	Hardware Software Interface Definition Toolbridge
	Multi-Core Scheduling Tool Support
	Test Tool Integration
	Constraint Checker

	Use-Case Application
	Item Definition
	Provided Functions
	Elements of the Item
	Intended Use and Assumptions

	Combined Analysis for Dependable System Development
	Functional Safety Concept
	MBD Representation of Use-Case at System Level
	L2 - Powertrain Element Level
	L3 - Control System Level

	MDB Representation of Use-Case at Implementation Level
	Application Software Layer
	Basic Software and HW Abstraction Layer
	Operating System Configuration

	Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Publications
	Bibliography

