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papers, Lars Büsing for his patience in uncountable mathematical discussi-

ons, Johannes Bill and Stefan Habenschuss for the great collaboration and

exchange of ideas and for the friendship and the personal sustain they both

gave me also in difficult times.

I would like to thank my wife Klaudia and my family for keeping at it

and loving me despite the countless evenings, nights and weekends that I

devoted into this work. And I would like to thank my wife explicitly for

taking care of our children in these times.



iv



Abstract

There is strong evidence for two crucial facts that seem to revolutionize the tra-

ditional school of computational neuroscience and their models of cortical processes.

Firstly, we see in experiments that the repeated application of the same sensory stimu-

lus produces varying responses in the measured spike patterns of the respective neurons

in the cortex. This stochastic trial-to-trial variability seems to be inherent to the neu-

ronal processes. Secondly, we see that humans and more general mammals exhibit

near statistically optimal behavior in their decisions and estimations about the world.

This optimality in the sense of Bayesian probabilistic inference means that our brain

correctly takes into account the omnipresence of uncertainty in our experience of the

world due to limitations of our sensing organs and correctly merges these uncertain

evidences with priorly learned knowledge of the world.

The classic school of connectionism models the brain as an artificial neural network

that consists in single deterministic neurons, resulting in a complex system of differential

equations. Yet this traditional model fails both in explaining the variability of the

neuronal processes and in the possibility to exhibit Bayes optimal learning and decision-

making.

In this thesis I present a collection of results that aims to bridge that gap. The

starting point is a supervised or reinforcement learning approach to learning Bayesian

optimal inference in feed-forward artificial networks. This approach is developed fur-

ther to a stochastically spiking Winner-Take-All network that learns to adapt its in-

ference process in a Bayesian optimal way using only fully local STDP. This approach

is then generalized to the neural sampling theory as a new paradigm for modeling the

cognition process. It is shown that it is the inherent processing variability of neu-

ronal networks that enables them to carry out Bayesian probabilistic inference using a

stochastic Markov-Chain Monte-Carlo sampling algorithm. Thus it turns out that the

two “problems” in fact mutually provide their solutions.



Zusammenfassung

Es gibt starke Hinweise für zwei wesentliche Tatsachen, die die traditionelle Schule der

Theoretischen Neurowissenschaften und deren kortikale Prozessmodelle zu revolutio-

nieren scheint. Erstens sehen wir in Experimenten, dass die wiederholte Anwendung

ein und desselben sensorischen Stimulus unterschiedliche Spike-Mustern in den jeweils

zuständigen Neuronen im Cortex hervorruft. Diese Trial-to-Trial Variabilität scheint

eine grundlegende Eigenschaft der neuronalen Prozesse zu sein. Zweitens beobachten

wir, dass Menschen und ganz allgemein Säugetiere ein statistisch nahezu optimales

Verhalten in ihren Entscheidungen und Erwartungen über ihre Umwelt zeigen. Das

heißt, dass unser Gehirn die inhärente Ungenauigkeit unserer beschränkten Sinnesor-

gane berücksichtigt und diese unsicheren Wahrnehmungen in Bayes’sch optimaler Weise

mit früher gelerntem Wissen über die Umwelt verbindet.

Die klassische Schule des Konnektionismus stellt das Gehirn als künstliches neuro-

nales Netz dar, das aus einzelnen deterministischen Neuronen besteht. Dies führt zu

einem komplexen System von Differentialgleichungen. Dieses traditionelle Modell ver-

sagt jedoch sowohl darin, die Variabilität der neuronalen Prozesse zu erklären, als auch

darin, Bayes’sch optimales Lernen und Entscheiden hervorzubringen.

Diese Doktorarbeit besteht aus einer Reihe von Ergebnissen, die darauf abzielen

diese Lücke zu schließen. Den Ausgangspunkt bildet ein Ansatz von überwachtem oder

verstärkendem Lernen in sequentiellen neuronalen Netzwerken. Dieser Ansatz wird so-

dann zu einem stochastischen, spikenden Winner-Take-All Netzwerk weiterentwickelt,

das mit rein lokalem STDP seinen Inferenzprozess optimal einzustellen lernt. Sodann

wird dieser Ansatz zur Theorie des neuronalen Samplings verallgemeinert, einem neu-

en Paradigma zur Modellierung des Denkprozesses. Gerade die inhärente Variability

erlaubt dem Netzwerk Bayes’sche Inferenz mithilfe eines MCMC Samplingalgorithmus

auszuführen. So stellt sich heraus, dass die beiden “Probleme” tatsächlich wechselseitig

ihre Lösungen darstellen.
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1

Introduction

The Brain

One of the most fascinating complex systems that we know is the human brain, and that

is true for two reasons. The first reason is simply its incredible degree of complexity,

a feature that it shares with a lot of other systems or fields like the quantum physics,

the astrophysics, the weather and climate dynamics or just other kinds of brains, like

the brain of a frog or a cat. The second reason is a very specific one. It is the fact that

our own thoughts on the way of analyzing our brain necessarily have to be build up

and emerge within that very brain. Even if we use tools like paper and pencil, or even

computers to help our thinking process, our goal is still to come to a real understanding,

which means to realize kind of an abstract model of our brain within itself. This is what

distinguishes investigating the functionality of our brain from analyzing or modeling all

other kind of complex systems. On the philosophical basis of a strong anthropocentric

approach one might argue that a similar reciprocity would in principle also apply to

the study of the human genome or the quantum physics, but it does so in much more

indirect way.

The brain acquires a model of the environment and of its own body within this

environment. The working brain is not only able to solve immediate problems – like

grasping and eating food or chasing the prey in sight – but also to develop plans like they

are necessary for collectively organized hunts or the cultivation of land and animals.

It is clear that these skills - especially the more demanding ones do not emerge from

a single brain by itself. It is only by observing their parents that animals learn such

complicated things like collectively hunting or using tools for cracking nuts. The most

1



1. INTRODUCTION

elaborated skill of our human brain in the sense of the highest level of abstraction is the

ability to use speech for communications. This enables us to transfer complex thoughts

and ideas from one individual to another. It is on the basis of this repertoire of verbal

abstractions that we were able to develop our high cognitive achievements.

Bottom Up

The most fundamental question in neuroscience and cognitive science is the quest for

the underlying principles that enable the brain to acquire such demanding capabilities.

In a bottom up analyzing paradigm experimental neuroscience has in the last decades

reported an overwhelming number of detailed experiments about single neurons and

synaptic connections. As a consequence there is a fairly good understanding of the

function of single neurons and synapses at the level of the course of the ionic currents

and the membrane potential in response to the presynaptic spikes and the resulting

generation of output spikes [38]. This understanding is formulated in a number of

models at different levels of abstraction, ranging from the Hodgkin-Huxley model, which

is able to reflect the detailed anatomic structure of the neuron and its dendritic and

axonal tree, to the LIF-models that abstract from the anatomic structure but still model

realistic membrane potentials and currents, to spike response models that functionally

emerge from a simple linearization of the former models by abstracting from the precise

electrical description, resulting in a very simple description of the behavior of the

neurons at the level of input and output spikes.

The dynamics of the chemical synapses between neurons seems to be much more

difficult to describe in meaningful levels of abstraction. This is true mainly because the

process of learning on large time scales is contributed to lasting changes in the synaptic

connections whereas the electrical dynamics of the individual neurons is thought to be

more or less fixed, according to the current view in neuroscience. There exist elab-

orated models about short term synaptic plasticity, facilitation and depression, from

an understanding at the chemical level up to an abstract dynamic description, but

these models assume that the strength of the synapses return to some individual fixed

values after some time. First theories about the long term plasticity of synapses date

back 1949, when Donald Hebb postulated that a synapse is strengthened ”if the firing

activity of the presynaptic neuron repeatedly or persistently takes part in firing the

postsynaptic neuron” [96]. The current formal version of this level of abstraction is the

2



model of spike-timing dependent plasticity (STDP), which postulates a potentiation if

the presynaptic spike is before and a depression if the presynaptic spike comes after

the postsynaptic spike, with the intensity of both mechanisms fading out exponentially

with the absolute timing difference between the two spikes [1]. More precise models

take into account the dependency of the timing of a third spike, as in the triplet rule

[175], or the dependency of further neurotransmitters that may modulate the effect of

plasticity. A closer look at the chemical level reveals that the changes in the synapse

do not happen instantaneously but merely are just prepared or flagged in response

to the instantaneous pre- and postsynaptic activity, such that these intended changes

may or may not be consolidated at a later time which has important consequences for

possible functional models [109]. The puzzle is further complicated by the fact that the

connection between two neurons most often does not consist in a single synapse but in

a number of parallel synapses, possibly at different branches of the dendritic and the

axonal tree, respectively. It is questionable if, as in the STDP model, all these details

can be abstracted from in the aim to understand the implementation of the function of

the whole system. However, most current higher level models do so or only take into

account some of the details.

On and above the level of local circuits the experimental results from classical neu-

roscience become extremely difficult to interpret. Great advances have been made

in order to localize functions and functional maps in the brain, i.e. the position of

neurons that respond most directly and most specifically to certain stimuli. Such ex-

periments revealed e.g. fixed maps of stimulus-selective receptive fields in V1 [105] and

re-mappable place cells in hippocampus that adapt very quickly to new environments.

There are also numerous studies about the anatomical connections between neurons,

converging in the aim to discover the full connectome of the human brain. Despite the

huge number of detail information that is gained by these experiments, they revealed

only very little about the functional principles of the brain in the sense of an algorith-

mic description of the information processing. One of the few functional abstractions

at the level of cortical microcircuits is the hypothesis of so called Winner-Take-All

(WTA) structures [52], which are proposed to be an ubiquitous functional principle in

the cerebral cortex. A very generalized form of these WTA structures in one pillar of

the theories that are developed in the present work.

3



1. INTRODUCTION

One reason for the lack of experimental evidences for functional abstractions at

this intermediate level of cortical microcircuits is the fact that classical experimental

investigation methods to measure electrical signals are very limited in the number

of neurons that can be recorded from simultaneously. This reaches from a few single

neurons - two or three - that can be patch-clamped in order to record precise membrane

potentials to some tens of neurons from which single spikes can be recorded using

multi-electrodes and spike-sorting. Newest techniques using two-photon microscopy

and calcium imaging can in principle be used to visualize the activity of hundreds of

neurons at the same time but doing so reduces the time resolution of the acquisition.

Of course there are also other experimental techniques, like e.g. measuring the local

field potential or applying voltage sensitive dyes or functional magnet-spin resonance

imaging. These techniques cannot resolve to the level of detail of individual neurons,

and though they are very helpful in describing what large scale activities are going on

but give little insight into the detailed neuronal mechanisms why this is going on.

The small numbers of neurons in current experimental settings have to be seen

in relation to the billions of neurons in the mammalian brain - around 85 billions in

humans of which 16 billions are located in the cerebral cortex [12]. This small scope

of our experimental view explains the difficulty in discovering functional principles of

this huge network.

Top Down

If we call the experimental neuroscience approach a bottom up way of analysis, then

the corresponding top-down approach can be found in cognitive science, which tries to

find the principles of cognition and information processing in the brain at it’s highest

level mainly through behavioral experiments. Traditionally cognitive science tried to

model cognitive processes in terms of associative memories, abstract symbolic processes,

dynamical systems or through connectionist artificial neural networks (ANNs). All

these essentially deterministic models fail to explain the variability that is observed in

neuronal processes. This variability can sometimes be observed at a behavioral level

and more essentially is observed on the level of the neuronal responses in repeated trials

with identical stimuli. It is well known that the generation of spikes in dependence of

the membrane potential is an almost deterministic process, i.e. the value of the spiking

threshold is a very precise one and thus the spike generation itself is probably not the

4



cause of the observed neuronal variability. Even though other causes are thinkable it

seems most plausible that it stems from the inherent stochastic nature of the remaining

elements of the neuronal processing system, more precisely from the stochasticity in

the synaptic vesicle release and in the dendritic ion channels.

Over these last two decades human cognition was increasingly modeled with respect

to this inherent stochasticity by means of Bayesian probabilistic models. The usage of

Bayesian probabilistic models for cognition provides a big advantage over deterministic

models like traditional connectionist ANNs or abstract symbolic models. The prob-

abilistic models are naturally able to capture and model noise in sensory inputs as

input uncertainty and explain the variability in the processing as the result of a prior

distribution that is shaped from hitherto experience. It was shown in a wide variety

of tasks that the human inference capabilities can be reasonably modeled such that

the observable behavior is near optimal in a Bayesian sense. The tasks for which this

is experimentally confirmed range from visual perception [122, 123] to decision mak-

ing [128, 212] to sensorimotor control [129], just to name a few of them. In [232] the

authors measured spiking activity in the area LIP during a complex decision process.

They showed that the measured spiking activity of one such decision neuron correspond

to the log-likelihood of the Bayesian model. [87] shows that the brain acquires internal

models of prior distributions about properties of specific things and is able to use these

priors in order to carry out formerly unknown inference tasks with close to Bayesian-

optimal performance. Further experiments were able to underpin the assumption that

also the learning itself in the brain exhibits the fundamental characteristics of Bayesian

optimality [169].

The most recent theory in the quest of neural mechanisms or algorithms that are

likely to explain this Bayesian optimality is the so-called sampling hypothesis [104].

Instead of postulating specific complex neuronal circuits that implement deterministic

inference algorithms (like [183]) the sampling hypothesis assumes that the sequence

of states of the cortex’ network form a sample-based representation of the posterior

distribution according to a Markov-Chain Monte-Carlo process. The theory predicts

that the variability in the neuronal activity is specifically used in order to enable the

neuronal network to represent probability distributions by sampling. The advantage

of this theory over concurrent hypotheses for the implementation of Bayesian inference

(like Probabilistic population codes [143]) is the fact that it is able to explain why it is
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not necessary to represent the entire probability distribution at a time in the neuronal

code.

My contribution

The present thesis, i.e. the published papers that jointly constitute this thesis aim to

contribute to this field and find models that bridge the gap between neuronal models

on one side and the high-level abstract model of cognition as Bayesian inference and

learning on the other side.

In the first work, in chapter 2, which is a joint work with Michael Pfeiffer and

Wolfgang Maass [158], we present a neuronal plausible model of how neurons could

learn Bayesian optimal decision making. The heart of the model is a synaptic learning

rule that – in accordance with the Hebbian postulate – increases its weight if both the

pre and the postsynaptic neuron are active together, and decreases its weight otherwise.

The key feature of the learning rule is the dependency of the amount of weight increase

on the current weight value in a negative exponential way, i.e. the increase is small if

the weight is already strong and more significant if the weight is weak. We show that a

simple feed-forward unit implements the Naive Bayes classifier if the inputs are encoded

by a population code. More than that we show that a simple fixed preprocessing circuit

enables the learning of Bayesian optimal decisions also in the general case of arbitrary

statistical dependencies and we extend this theory to include a reward modulation

signal in the learning rule. Finally we use that model in order to explain a seminal

experimental result of Yang and Shadlen [232] showing that the measured activity of

neurons in the LIP of monkeys are proportional to the log-likelihood of the respective

decision.

The derivation of the learning rule, the convergence proofs, the learning rate adap-

tation and preliminary simulation experiments were carried out by me alone, initially

based on a preliminary idea of Wolfgang Maass. The final experiments as well as the

adaptation of the learning rule for reward-modulated learning was made by Michael

Pfeiffer in close collaboration with me. The paper was written by all three author

together.

The second paper, in chapter 3 is a joint work with Michael Pfeiffer, Rodney Dou-

glas, and Wolfgang Maass [173]. It deepens the understanding of the reward-modulated

learning of Bayesian optimal decisions using the same local synaptic learning paradigm
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that was already introduced shortly in the first paper. We discuss different action se-

lection strategies and show how they are implemented by a Winner-Take-All (WTA)

circuit. We analyze the convergence properties of the learning rule and of a linear vari-

ant. We then explore the extended population codes and a generalization to continuous

variables. In simulation experiments we compare the learning speed of our rule with

the non-local learning Rescorla-Wagner rule and clearly see the advantage of our rule

both in convergence speed and in the final performance. Again we discuss the experi-

ment of Yang and Shadlen and provide extensive simulation results that show striking

similarities to the measurements taken from the LIP of the monkeys.

The derivation of the learning rule, the convergence proofs, the learning rate sched-

ules and the learning rate adaptation algorithm were developed by me alone, based on

a preliminary idea of Wolfgang Maass. The reward modulation of the learning rule

was developed by Michael Pfeiffer in close collaboration with me. The extensive exper-

imental work was carried out by Michael Pfeiffer alone. A first version of the text of

the paper was written by Michael Pfeiffer, Wolfgang Maass, and me. This was heavily

reworked by Rodney Douglas and Michael Pfeiffer during the revisions.

The third paper, in chapter 4 appeared in two steps. A first extended abstract was

presented at NIPS ’09 [159], the final complete work was published 2012 in PLoS Com-

putational Biology. This is joint work with Michael Pfeiffer, Lars Büsing, and Wolfgang

Maass. We achieved to draw an important connection in this work between realistic

spiking neuronal circuits and Bayesian inference and learning. Inspired by the previous

work on supervised or reward-modulated learning we derive an unsupervised model-

based learning mechanism that is readily implemented in a spiking WTA-structure. We

prove that a variant of the currently widely accepted model of learning in biological

neurons, spike-timing dependent plasticity (STDP) has the effect of carrying out Ex-

pectation Maximization (EM) learning in a simple Bayesian Network model. We coin

the important concept, that a single spike could be seen as one sample of the inferred

posterior distribution of the model. This is the first model that makes a concrete con-

nection between spiking neural networks and the important new paradigm of sampling

as an abstract description of the dynamics of the brain. The microcircuit that is de-

veloped could serve as a building block for larger models, which is already realized in

a number of offspring papers that followed the first publication.
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The idea for that unsupervised model-based approach, the connection to EM learn-

ing, the derivation of all formula work and proofs and the generalization to continuous

time were done by me alone, based on the experience of the previous work. The exten-

sive experimental work was done by Michael Pfeiffer, in collaboration with me. In the

quest for the final proof based on stochastic approximation theory Lars Büsing was the

resource of mathematical background and contributed the crucial final point in order

to close the proof. The text was written mainly by myself with great contributions and

overall reworking from Wolfgang Maass and Michael Pfeiffer.

The forth paper, in chapter 5, a joint work of Lars Büsing, Johannes Bill, Wolfgang

Maass and me [27], is a seminal contribution to the community that lifts the initial

idea of spikes as samples from the previous work to a new level and provides a concrete

understanding of the dynamics of a recurrent spiking neural network as a Markov-

Chain Monte Carlo (MCMC) sampling process. The paper gives a solid mathematical

foundation of the description of the activity of the single neurons and derives a necessary

condition on the functional relation between the membrane potential of a neuron and

the activity of its neighbors in order for the whole network to be seen as a sampler

of a well defined probability distribution. We show the astonishing capabilities of

the network in an experiment that mimics the cortical processes in response to an

ambiguous visual input stimulus. We are able to reproduce the well-known switching

behavior between the two possible percepts underpinning the plausibility and strength

of this concrete sampling-based modeling approach which was already hypothesized by

[104], albeit without giving a concrete connection to the level of spiking neurons.

These results evolved from the quest initiated by Wolfgang Maass to generalize the

previous results from SEM. The idea to replace the single shot one-spike-is-a-sample

process by a sequentially chained sampler as well as the solid mathematical foundation

of the final neural sampling theory was invented by Lars Büsing alone. The crucial

perspective that this sampling process was powerful enough to sample specifically from

Boltzmann distribution and in general from arbitrary probability distribution was de-

veloped by Lars Büsing and me together. The experiments were carried out by Johannes

Bill, in close collaboration with Lars and me.

The fifth paper, in chapter 6, a joint work with Johannes Bill and Stefan Haben-

schuss [94], describes the valuable insight that neuronal homeostatic mechanisms can

be understood as posterior constraints in the context of EM learning and it reveals
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several beneficial implications of that connection. First it simplifies greatly the learn-

ing of probabilistic models in feedforward WTA-like network models. In that sense it

completes the SEM architecture and delivers the proof that the learned probabilistic

model can be a mixture of any distribution from the exponential family, e.g. multi-

nomial, Bernoulli, Poisson, but also Gaussian or exponential distributions. More than

that this extension abolishes the need for special input encodings through population

codes as they were presented in the original SEM theory. The same theory of pos-

terior constraints can also be applied to the sampling paradigm in order to reshape

the posterior distribution in some favorable way. Apart from the advantages for the

feedforward part the idea of posterior constraints can also be applied to the learning of

recurrent weights between neurons, due to a second order homeostatic process. Even

though there is not yet a biological evidence for such a process, the theory explains

possible functional mechanisms that could explain the observed dependency between

the distance of pyramidal neurons and the correlation of their output signals.

The basic idea of replacing the learning of prior probabilities in SEM by a regulation

for uniform activities was initially tried out by Stefan Habenschuss. The elaboration

and the conclusion that posterior constraints are a proper way for describing this setting

was a joint result of all three authors. The analytic formulation and the generalization

to the second order was done by Johannes Bill and Stefan Habenschuss in close and

equal collaboration. The final paper was written by all three authors together.
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2

Hebbian Learning of Bayes

Optimal Decisions

Uncertainty is omnipresent when we perceive or interact with our envi-

ronment, and the Bayesian framework provides computational methods for

dealing with it. Mathematical models for Bayesian decision making typi-

cally require data-structures that are hard to implement in neural networks.

This article shows that even the simplest and experimentally best supported

type of synaptic plasticity, Hebbian learning, in combination with a sparse,

redundant neural code, can in principle learn to infer optimal Bayesian

decisions. We present a concrete Hebbian learning rule operating on log-

probability ratios. Modulated by reward-signals, this Hebbian plasticity

rule also provides a new perspective for understanding how Bayesian infer-

ence could support fast reinforcement learning in the brain. In particular

we show that recent experimental results by Yang and Shadlen [232] on re-

inforcement learning of probabilistic inference in primates can be modeled

in this way.

2.1 Introduction

Evolution is likely to favor those biological organisms which are able to maximize the

chance of achieving correct decisions in response to multiple unreliable sources of evi-

dence. Hence one may argue that probabilistic inference, rather than logical inference,
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2. HEBBIAN LEARNING OF BAYES OPTIMAL DECISIONS

is the ”mathematics of the mind”, and that this perspective may help us to understand

the principles of computation and learning in the brain [182]. Bayesian inference, or

equivalently inference in Bayesian networks [22] is the most commonly considered frame-

work for probabilistic inference, and a mathematical theory for learning in Bayesian

networks has been developed.

Various attempts to relate these theoretically optimal models to experimentally

supported models for computation and plasticity in networks of neurons in the brain

have been made. [182] models Bayesian inference through an approximate implemen-

tation of the Belief Propagation algorithm (see [22]) in a network of spiking neurons.

For reduced classes of probability distributions, [45, 46] proposed a method for spiking

network models to learn Bayesian inference with an online approximation to an EM

algorithm. The approach of [197] interprets the weight wji of a synaptic connection

between neurons representing the random variables xi and xj as log
p(xi,xj)
p(xi)·p(xj) , and

presents algorithms for learning these weights.

Neural correlates of variables that are important for decision making under uncer-

tainty had been presented e.g. in the recent experimental study by Yang and Shadlen

[232]. In their study they found that firing rates of neurons in area LIP of macaque

monkeys reflect the log-likelihood ratio (or log-odd) of the outcome of a binary decision,

given visual evidence. The learning of such log-odds for Bayesian decision making can

be reduced to learning weights for a linear classifier, given an appropriate but fixed

transformation from the input to possibly nonlinear features [190]. We show that the

optimal weights for the linear decision function are actually log-odds themselves, and

the definition of the features determines the assumptions of the learner about statistical

dependencies among inputs.

In this work we show that simple Hebbian learning [96] is sufficient to implement

learning of Bayes optimal decisions for arbitrarily complex probability distributions.

We present and analyze a concrete learning rule, which we call the Bayesian Hebb rule,

and show that it provably converges towards correct log-odds. In combination with

appropriate preprocessing networks this implements learning of different probabilistic

decision making processes like e.g. Naive Bayesian classification. Finally we show that a

reward-modulated version of this Hebbian learning rule can solve simple reinforcement

learning tasks, and also provides a model for the experimental results of [232].
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2.2 A Hebbian rule for learning log-odds

2.2 A Hebbian rule for learning log-odds

We consider the model of a linear threshold neuron with output y0, where y0 = 1 means

that the neuron is firing and y0 = 0 means non-firing. The neuron’s current decision ŷ0

whether to fire or not is given by a linear decision function ŷ0 = sign(w0 · constant +∑n
i=1wiyi), where the yi are the current firing states of all presynaptic neurons and wi

are the weights of the corresponding synapses.

We propose the following learning rule, which we call the Bayesian Hebb rule:

∆wi =


η (1 + e−wi), if y0 = 1 and yi = 1
−η (1 + ewi), if y0 = 0 and yi = 1

0, if yi = 0.
(2.1)

This learning rule is purely local, i.e. it depends only on the binary firing state of

the pre- and postsynaptic neuron yi and y0, the current weight wi and a learning rate

η. Under the assumption of a stationary joint probability distribution of the pre- and

postsynaptic firing states y0, y1, . . . , yn the Bayesian Hebb rule learns log-probability

ratios of the postsynaptic firing state y0, conditioned on a corresponding presynaptic

firing state yi. We consider in this article the use of the rule in a supervised, teacher

forced mode (see Section 2.3), and also in a reinforcement learning mode (see Section

2.4). We will prove that the rule converges globally to the target weight value w∗i , given

by

w∗i = log
p(y0 = 1|yi = 1)

p(y0 = 0|yi = 1)
. (2.2)

We first show that the expected update E[∆wi] under (2.1) vanishes at the target

value w∗i :

E[∆w∗i ] = 0 ⇔ p(y0=1, yi=1)η(1 + e−w
∗
i )− p(y0=0, yi=1)η(1 + ew

∗
i ) = 0

⇔ 1 + ew
∗
i

1 + e−w
∗
i

=
p(y0=1, yi=1)

p(y0=0, yi=1)

⇔ w∗i = log
p(y0=1|yi=1)

p(y0=0|yi=1)
. (2.3)

Since the above is a chain of equivalence transformations, this proves that w∗i is the only

equilibrium value of the rule. The weight vector w∗ is thus a global point-attractor with

regard to expected weight changes of the Bayesian Hebb rule (2.1) in the n-dimensional

weight-space Rn.
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Furthermore we show, using the result from (2.3), that the expected weight change

at any current value of wi points in the direction of w∗i . Consider some arbitrary

intermediate weight value wi = w∗i + 2ε:

E[∆wi]|w∗i +2ε = E[∆wi]|w∗i +2ε − E[∆wi]|w∗i
∝ p(y0=1, yi=1)e−w

∗
i (e−2ε − 1)− p(y0=0, yi=1)ew

∗
i (e2ε − 1)

= (p(y0=0, yi=1)e−ε + p(y0=1, yi=1)eε)(e−ε − eε) . (2.4)

The first factor in (2.4) is always non-negative, hence ε < 0 implies E[∆wi] > 0, and

ε > 0 implies E[∆wi] < 0. The Bayesian Hebb rule is therefore always expected to

perform updates in the right direction, and the initial weight values or perturbations

of the weights decay exponentially fast.

Already after having seen a finite set of examples 〈y0, . . . , yn〉 ∈ {0, 1}n+1, the

Bayesian Hebb rule closely approximates the optimal weight vector ŵ that can be

inferred from the data. A traditional frequentist’s approach would use counters ai =

#[y0=1 ∧ yi=1] and bi = #[y0=0 ∧ yi=1] to estimate every w∗i by

ŵi = log
ai
bi
. (2.5)

A Bayesian approach would model p(y0|yi) with an (initially flat) Beta-distribution,

and use the counters ai and bi to update this belief [22], leading to the same MAP

estimate ŵi. Consequently, in both approaches a new example with y0 = 1 and yi = 1

leads to the update

ŵnewi = log
ai + 1

bi
= log

ai
bi

(
1 +

1

ai

)
= ŵi + log(1 +

1

Ni
(1 + e−ŵi)) , (2.6)

where Ni := ai + bi is the number of previously processed examples with yi = 1, thus

1
ai

= 1
Ni

(1 + bi
ai

). Analogously, a new example with y0 = 0 and yi = 1 gives rise to the

update

ŵnewi = log
ai

bi + 1
= log

ai
bi

(
1

1 + 1
bi

)
= ŵi − log(1 +

1

Ni
(1 + eŵi)). (2.7)

Furthermore, ŵnewi = ŵi for a new example with yi = 0. Using the approximation

log(1 +α) ≈ α the update rules (2.6) and (2.7) yield the Bayesian Hebb rule (2.1) with

an adaptive learning rate ηi = 1
Ni

for each synapse.

14
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In fact, a result of Robbins-Monro (see [17] for a review) implies that the updating

of weight estimates ŵi according to (2.6) and (2.7) converges to the target values w∗i

not only for the particular choice η
(Ni)
i = 1

Ni
, but for any sequence η

(Ni)
i that satis-

fies
∑∞

Ni=1 η
(Ni)
i = ∞ and

∑∞
Ni=1(η

(Ni)
i )2 < ∞. More than that the Supermartingale

Convergence Theorem (see [17]) guarantees convergence in distribution even for a suf-

ficiently small constant learning rate.

Learning rate adaptation

One can see from the above considerations that the Bayesian Hebb rule with a constant

learning rate η converges globally to the desired log-odds. A too small constant learning

rate, however, tends to slow down the initial convergence of the weight vector, and a

too large constant learning rate produces larger fluctuations once the steady state is

reached.

(2.6) and (2.7) suggest a decaying learning rate η
(Ni)
i = 1

Ni
, where Ni is the number

of preceding examples with yi = 1. We will present a learning rate adaptation mecha-

nism that avoids biologically implausible counters, and is robust enough to deal even

with non-stationary distributions.

Since the Bayesian Hebb rule and the Bayesian approach of updatingBeta-distributions

for conditional probabilities are closely related, it is reasonable to expect that the dis-

tribution of weights wi over longer time periods with a non-vanishing learning rate will

resemble a Beta(ai, bi)-distribution transformed to the log-odd domain. The param-

eters ai and bi in this case are not exact counters anymore but correspond to virtual

sample sizes, depending on the current learning rate. We formalize this statistical

model of wi by

σ(wi) =
1

1 + e−wi
∼ Beta(ai, bi) ⇐⇒ wi ∼

Γ(ai + bi)

Γ(ai)Γ(bi)
σ(wi)

aiσ(−wi)bi ,

In practice this model turned out to capture quite well the actually observed quasi-

stationary distribution of wi. It can be shown analytically that E[wi] ≈ log ai
bi

and

Var[wi] ≈ 1
ai

+ 1
bi

. A learning rate adaptation mechanism at the synapse that keeps

track of the observed mean and variance of the synaptic weight can therefore recover

estimates of the virtual sample sizes ai and bi. The following mechanism, which we call
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2. HEBBIAN LEARNING OF BAYES OPTIMAL DECISIONS

variance tracking implements this by computing running averages of the weights and

the squares of weights in w̄i and q̄i:

ηnewi ← q̄i−w̄2
i

1+cosh w̄i
w̄newi ← (1− ηi) w̄i + ηiwi
q̄newi ← (1− ηi) q̄i + ηiw

2
i .

(2.8)

In practice this mechanism decays like 1
Ni

under stationary conditions, but is also able

to handle changing input distributions. It was used in all presented experiments for

the Bayesian Hebb rule.

2.3 Hebbian learning of Bayesian decisions

We now show how the Bayesian Hebb rule can be used to learn Bayes optimal decisions.

The first application is the Naive Bayesian classifier, where a binary target variable x0

should be inferred from a vector of multinomial variables x = 〈x1, . . . , xm〉, under

the assumption that the xi’s are conditionally independent given x0, thus p(x0,x) =

p(x0)
∏m

1 p(xk|x0). Using basic rules of probability theory the posterior probability

ratio for x0 = 1 and x0 = 0 can be derived:

p(x0=1|x)

p(x0=0|x)
=
p(x0=1)

p(x0=0)

m∏
k=1

p(xk|x0=1)

p(xk|x0=0)
=

(
p(x0=1)

p(x0=0)

)(1−m) m∏
k=1

p(x0=1|xk)
p(x0=0|xk)

= (2.9)

=

(
p(x0=1)

p(x0=0)

)(1−m) m∏
k=1

mk∏
j=1

(
p(x0=1|xk=j)
p(x0=0|xk=j)

)I(xk=j)

,

where mk is the number of different possible values of the input variable xk, and the

indicator function I is defined as I(true) = 1 and I(false) = 0.

Let the m input variables x1, . . . , xm be represented through the binary firing states

y1, . . . , yn ∈ {0, 1} of the n presynaptic neurons in a population coding manner. More

precisely, let each input variable xk ∈ {1, . . . ,mk} be represented by mk neurons, where

each neuron fires only for one of the mk possible values of xk. Formally we define the

simple preprocessing (SP)

y =
[
φ(x1)T, . . . ,φ(xm)T

]T
with φ(xk)

T = [I(xk = 1), . . . , I(xk = mk)] . (2.10)

The binary target variable x0 is represented directly by the binary state y0 of the

postsynaptic neuron. Substituting the state variables y0, y1, . . . , yn in (2.9) and taking
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the logarithm leads to

log
p(y0 = 1|y)

p(y0 = 0|y)
= (1−m) log

p(y0 = 1)

p(y0 = 0)
+

n∑
i=1

yi log
p(yi = 1|y0 = 1)

p(yi = 1|y0 = 0)
.

Hence the optimal decision under the Naive Bayes assumption is

ŷ0 = sign((1−m)w∗0 +
n∑
i=1

w∗i yi) .

The optimal weights w∗0 and w∗i

w∗0 = log
p(y0 = 1)

p(y0 = 0)
and w∗i = log

p(y0 = 1|yi = 1)

p(y0 = 0|yi = 1)
for i = 1, . . . , n.

are obviously log-odds which can be learned by the Bayesian Hebb rule (the bias weight

w0 is simply learned as an unconditional log-odd).

2.3.1 Learning Bayesian decisions for arbitrary distributions

We now address the more general case, where conditional independence of the input

variables x1, . . . , xm cannot be assumed. In this case the dependency structure of

the underlying distribution is given in terms of an arbitrary Bayesian network BN

for discrete variables (see e.g. Figure 2.1 A). Without loss of generality we choose a

numbering scheme of the nodes of the BN such that the node to be learned is x0 and

its direct children are x1, . . . , xm′ . This implies that the BN can be described by m+ 1

(possibly empty) parent sets defined by

Pk = {i | a directed edge xi → xk exists in BN and i ≥ 1} .

The joint probability distribution on the variables x0, . . . , xm in BN can then be factored

and evaluated for x0 = 1 and x0 = 0 in order to obtain the probability ratio

p(x0 = 1,x)

p(x0 = 0,x)
=
p(x0 = 1|x)

p(x0 = 0|x)
=
p(x0 = 1|xP0)

p(x0 = 0|xP0)

m′∏
k=1

p(xk|xPk , x0 = 1)

p(xk|xPk , x0 = 0)

m∏
k=m′+1

p(xk|xPk)

p(xk|xPk)
.

Obviously, the last term cancels out, and by applying Bayes’ rule and taking the loga-

rithm the target log-odd can be expressed as a sum of conditional log-odds only:

log
p(x0=1|x)

p(x0=0|x)
= log

p(x0=1|xP0)

p(x0=0|xP0)
+

m′∑
k=1

(
log

p(x0=1|xk,xPk)

p(x0=0|xk,xPk)
− log

p(x0=1|xPk)

p(x0=0|xPk)

)
.

(2.11)
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We now develop a suitable sparse encoding of of x1, . . . , xm into binary variables

y1, . . . , yn (with n � m) such that the decision function (2.11) can be written as a

weighted sum, and the weights correspond to conditional log-odds of yi’s. Figure 2.1 B

illustrates such a sparse code: One binary variable is created for every possible value as-

signment to a variable and all its parents, and one additional binary variable is created

for every possible value assignment to the parent nodes only. Formally, the previously

introduced population coding operator φ is generalized such that φ(xi1 , xi2 , . . . , xil)

creates a vector of length
∏l
j=1mij that equals zero in all entries except for one 1-entry

which identifies by its position in the vector the present assignment of the input vari-

ables xi1 , . . . , xil . The concatenation of all these population coded groups is collected

in the vector y of length n

y =
[
φ(xP0)T, φ(x1,xP1)T,−φ(xP1)T, . . . , φ(xm,xPm)T,−φ(xPm)T

]T
. (2.12)

The negated vector parts in (2.12) correspond to the negative coefficients in the

sum in (2.11). Inserting the sparse coding (2.12) into (2.11) allows writing the Bayes

optimal decision function (2.11) as a pure sum of log-odds of the target variable:

x̂0 = ŷ0 = sign(

n∑
i=1

w∗i yi), with w∗i = log
p(y0=1|yi 6=0)

p(y0=0|yi 6=0)
.

Every synaptic weight wi can be learned efficiently by the Bayesian Hebb rule (2.1) with

the formal modification that the update is not only triggered by yi=1 but in general

whenever yi 6=0 (which obviously does not change the behavior of the learning process).

A neuron that learns with the Bayesian Hebb rule on inputs that are generated by

the generalized preprocessing (GP) defined in (2.12) therefore approximates the Bayes

optimal decision function (2.11), and converges quite fast to the best performance that

any probabilistic inference could possibly achieve (see Figure 2.2B).

2.4 The Bayesian Hebb rule in reinforcement learning

We show in this section that a reward-modulated version of the Bayesian Hebb rule

enables a learning agent to solve simple reinforcement learning tasks. We consider the

standard operant conditioning scenario, where the learner receives at each trial an input

x = 〈x1, . . . , xm〉, chooses an action α out of a set of possible actions A, and receives a

binary reward signal r ∈ {0, 1} with probability p(r|x, a). The learner’s goal is to learn
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2.4 The Bayesian Hebb rule in reinforcement learning

A B

Figure 2.1: A) An example Bayesian network with general connectivity. B) Population

coding applied to the Bayesian network shown in panel A. For each combination of values

of the variables {xk,xPk} of a factor there is exactly one neuron (indicated by a black circle)

associated with the factor that outputs the value 1. In addition OR’s of these values are

computed (black squares). We refer to the resulting preprocessing circuit as generalized

preprocessing (GP).

(as fast as possible) a policy π(x, a) so that action selection according to this policy

maximizes the average reward. In contrast to the previous learning tasks, the learner

has to explore different actions for the same input to learn the reward-probabilities

for all possible actions. The agent might for example choose actions stochastically

with π(x, a = α) = p(r = 1|x, a = α), which corresponds to the matching behavior

phenomenon often observed in biology [213]. This policy was used during training in

our computer experiments.

The goal is to infer the probability of binary reward, so it suffices to learn the log-

odds log p(r=1|x,a)
p(r=0|x,a) for every action, and choose the action that is most likely to yield

reward (e.g. by a Winner-Take-All structure). If the reward probability for an action

a = α is defined by some Bayesian network BN, one can rewrite this log-odd as

log
p(r = 1|x, a = α)

p(r = 0|x, a = α)
= log

p(r = 1|a = α)

p(r = 0|a = α)
+

m∑
k=1

log
p(xk|xPk , r = 1, a = α)

p(xk|xPk , r = 0, a = α)
. (2.13)

In order to use the Bayesian Hebb rule, the input vector x is preprocessed to

obtain a binary vector y. Both a simple population code such as (2.10), or generalized

preprocessing as in (2.12) and Figure 2.1B can be used, depending on the assumed

dependency structure. The reward log-odd (2.13) for the preprocessed input vector y

can then be written as a linear sum

log
p(r = 1|y, a = α)

p(r = 0|y, a = α)
= w∗α,0 +

n∑
i=1

w∗α,i yi ,
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where the optimal weights are w∗α,0 = log p(r=1|a=α)
p(r=0|a=α) and w∗α,i = log p(r=1|yi 6=0,a=α)

p(r=0|yi 6=0,a=α) .

These log-odds can be learned for each possible action α with a reward-modulated

version of the Bayesian Hebb rule (2.1):

∆wα,i =


η · (1 + e−wα,i), if r = 1, yi 6= 0, a = α
−η · (1 + ewα,i), if r = 0, yi 6= 0, a = α

0, otherwise
(2.14)

The attractive theoretical properties of the Bayesian Hebb rule for the prediction

case apply also to the case of reinforcement learning. The weights corresponding to the

optimal policy are the only equilibria under the reward-modulated Bayesian Hebb rule,

and are also global attractors in weight space, independently of the exploration policy.

2.5 Experimental Results

2.5.1 Results for prediction tasks

We have tested the Bayesian Hebb rule on 400 different prediction tasks, each of them

defined by a general (non-Naive) Bayesian network of 7 binary variables. The networks

were randomly generated by the algorithm of [106]. From each network we sampled 2000

training and 5000 test examples, and measured the percentage of correct predictions

after every update step.

The performance of the predictor was compared to the Bayes optimal predictor, and

to online logistic regression, which fits a linear model by gradient descent on the cross-

entropy error function. This non-Hebbian learning approach is in general the best

performing online learning approach for linear discriminators [22]. Figure 2.2A shows

that the Bayesian Hebb rule with the simple preprocessing (2.10) generalizes better

from a few training examples, but is outperformed by logistic regression in the long

run, since the Naive Bayes assumption is not met. With the generalized preprocessing

(2.12), the Bayesian Hebb rule learns fast and converges to the Bayes optimum (see

Figure 2.2B). In Figure 2.2C we show that the Bayesian Hebb rule is robust to noisy

updates - a condition very likely to occur in biological systems. We modified the weight

update ∆wi such that it was uniformly distributed in the interval ∆wi ± γ%. Even

such imprecise implementations of the Bayesian Hebb rule perform very well. Similar

results can be obtained if the exp-function in (2.1) is replaced by a low-order Taylor

approximation.
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Figure 2.2: Performance comparison for prediction tasks. A) The Bayesian Hebb rule

with simple preprocessing (SP) learns as fast as Naive Bayes, and faster than logistic regres-

sion (with optimized constant learning rate). B) The Bayesian Hebb rule with generalized

preprocessing (GP) learns fast and converges to the Bayes optimal prediction performance.

C) Even a very imprecise implementation of the Bayesian Hebb rule (noisy updates, uni-

formly distributed in ∆wi ± γ%) yields almost the same learning performance.

2.5.2 Results for action selection tasks

The reward-modulated version (2.14), of the Bayesian Hebb rule was tested on 250

random action selection tasks with m = 6 binary input attributes, and 4 possible

actions. For every action a random Bayesian network [106] was drawn to model the

input and reward distributions. The agent received stochastic binary rewards for every

chosen action, updated the weights wα,i according to (2.14), and measured the average

reward on 500 independent test trials.

In Figure 2.3A we compare the reward-modulated Bayesian Hebb rule with sim-

ple population coding (2.10) (Bayesian Hebb SP), and generalized preprocessing (2.12)

(Bayesian Hebb GP), to the standard learning model for simple conditioning tasks, the

non-Hebbian Rescorla-Wagner rule [184]. The reward-modulated Bayesian Hebb rule

learns as fast as the Rescorla-Wagner rule, and achieves in combination with gener-

alized preprocessing a higher performance level. The widely used tabular Q-learning

algorithm, in comparison is slower than the other algorithms, since it does not gener-

alize, but it converges to the optimal policy in the long run.

2.5.3 A model for the experiment of Yang and Shadlen

In the experiment by Yang and Shadlen [232], a monkey had to choose between gazing

towards a red target R or a green target G. The probability that a reward was received

at either choice depended on four visual input stimuli that had been shown at the
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2. HEBBIAN LEARNING OF BAYES OPTIMAL DECISIONS

beginning of the trial. Every stimulus was one shape out of a set of ten possibilities

and had an associated weight, which had been defined by the experimenter. The sum

of the four weights yielded the log-odd of obtaining a reward at the red target, and a

reward for each trial was assigned accordingly to one of the targets. The monkey thus

had to combine the evidence from four visual stimuli to optimize its action selection

behavior.

In the model of the task it is sufficient to learn weights only for the action a = R,

and select this action whenever the log-odd using the current weights is positive, and G

otherwise. A simple population code as in (2.10) encoded the 4-dimensional visual stim-

ulus into a 40-dimensional binary vector y. In our experiments, the reward-modulated

Bayesian Hebb rule learns this task as fast and with similar quality as the non-Hebbian

Rescorla-Wagner rule. Furthermore Figures 2.3B, C show that it produces after learn-

ing similar behavior as that reported for two monkeys in [232].
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Figure 2.3: A) On 250 4-action conditioning tasks with stochastic rewards, the reward-

modulated Bayesian Hebb rule with simple preprocessing (SP) learns similarly as the

Rescorla-Wagner rule, and substantially faster than Q-learning. With generalized pre-

processing (GP), the rule converges to the optimal action-selection policy. B, C) Action

selection policies learned by the reward-modulated Bayesian Hebb rule in the task by Yang

and Shadlen [232] after 100 (B), and 1000 (C) trials are qualitatively similar to the policies

adopted by monkeys H and J in [232] after learning.

2.6 Discussion

We have shown that the simplest and experimentally best supported local learning

mechanism, Hebbian learning, is sufficient to learn Bayes optimal decisions. We have in-

troduced and analyzed the Bayesian Hebb rule, a training method for synaptic weights,

which converges fast and robustly to optimal log-probability ratios, without requiring
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any communication between plasticity mechanisms for different synapses. We have

shown how the same plasticity mechanism can learn Bayes optimal decisions under

different statistical independence assumptions, if it is provided with an appropriately

preprocessed input. We have demonstrated on a variety of prediction tasks that the

Bayesian Hebb rule learns very fast, and with an appropriate sparse preprocessing

mechanism for groups of statistically dependent features its performance converges to

the Bayes optimum. Our approach therefore suggests that sparse, redundant codes of

input features may simplify synaptic learning processes in spite of strong statistical

dependencies. Finally we have shown that Hebbian learning also suffices for simple

instances of reinforcement learning. The Bayesian Hebb rule, modulated by a signal

related to rewards, enables fast learning of optimal action selection. Experimental re-

sults of [232] on reinforcement learning of probabilistic inference in primates can be

partially modeled in this way with regard to resulting behaviors.

An attractive feature of the Bayesian Hebb rule is its ability to deal with the addition

or removal of input features through the creation or deletion of synaptic connections,

since no relearning of weights is required for the other synapses. In contrast to discrim-

inative neural learning rules, our approach is generative, which according to [160] leads

to faster generalization. Therefore the learning rule may be viewed as a potential build-

ing block for models of the brain as a self-organizing and fast adapting probabilistic

inference machine.
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3

Reward-modulated Hebbian

Learning of Decision Making

We introduce a framework for decision making in which the learning

of decision making is reduced to its simplest and biologically most plau-

sible form: Hebbian learning on a linear neuron. We cast our Bayesian-

Hebb learning rule as reinforcement learning in which certain decisions are

rewarded, and prove that each synaptic weight will on average converge

exponentially fast to the log-odd of receiving a reward when its pre- and

post-synaptic neurons are active. In our simple architecture, a particular

action is selected from the set of candidate actions by a winner-take-all

operation. The global reward assigned to this action then modulates the

update of each synapse. Apart from this global reward signal our reward-

modulated Bayesian Hebb rule is a pure Hebb update that depends only

on the co-activation of the pre- and postsynaptic neurons, and not on the

weighted sum of all presynaptic inputs to the post-synaptic neuron as in the

perceptron learning rule or the Rescorla-Wagner rule. This simple approach

to action-selection learning requires that information about sensory inputs

be presented to the Bayesian decision stage in a suitably pre-processed

form resulting from other adaptive processes (acting on a larger time scale)

that detect salient dependencies among input features. Hence our proposed

framework for fast learning of decisions also provides interesting new hy-

potheses regarding neural nodes and computational goals of cortical areas
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that provide input to the final decision stage.

3.1 Introduction

A typical decision making task of an organism requires the evaluation of multiple alter-

native actions, with the goal of maximizing the probability of obtaining positive reward.

If input signals provide only uncertain cues, and reward is obtained stochastically in

response to actions, then Bayesian statistics provides a mathematical framework for

the optimal integration of all available information. Bayes’ theorem can be used to cal-

culate the probability that an action yields a reward, given the current sensory input

and the current internal state of an organism. The goal of this article is to present

the simplest possible neural network model that can make such an evaluation, where

simplicity is assessed both in terms of computational operations, and the complexity

of the learning method.

A large number of experimental results suggest that animals do indeed make deci-

sions based on Bayesian integration of information about stimulus-action-reward con-

tingencies. For example, [213] (see [214] for a review) have shown that monkeys use

the matching behavior strategy, in which the frequency with which a particular action

is chosen matches the expected reward for that action. [232] have shown that the

previous experience of macaque monkeys in probabilistic decision tasks is represented

by the firing rates of neurons in area LIP in the form of the log-likelihood ratio (or

log-odd) of receiving a reward for a particular action a in response to a stimulus x (in

an experiment where the monkey received in each trial either no reward, or a reward

of unit size, depending on the choice of the monkey among two possible actions).

We show that an optimal action selection policy can be reduced to a Winner-Take-

All (WTA) operation applied to linear gates, which receive suitably preprocessed inputs

(see Figure 3.1). Furthermore, we show that the updating of the WTA circuit in the

face of new evidence can be reduced to the application of a local reward-modulated

Hebbian learning rule to each linear gate. We call this rule the Bayesian Hebb Rule.

Despite the simplicity of this model, one can prove that it enables fast learning of near

optimal decision making, which is remarkable because rigorous insight into convergence

properties of Hebbian learning rules is often lacking.
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Figure 3.1: Winner-Take-All (WTA) architecture for learning of decision making. First,

the multinomial input variables x1, . . . , xm are preprocessed by a fixed circuit (which im-

plements some type of population coding) to yield binary variables y1, . . . , yn. For every

possible action a there is an associated linear neuron La which computes a weighted sum∑n
i=0 wa,iyi of the variables y1, . . . , yn. The neuron La with the largest weighted sum

“wins”, i.e. za = 1, and action a is selected.

WTA (see [235] for a review) is a very simple computational operation that selects

the largest among l values L1, . . . , Ll. This selection is usually encoded through l binary

outputs z1, . . . , zl, where za = 1 if La is selected as the largest input (ties can be broken

arbitrarily), else za = 0 (see Figure 3.1). In an action selection framework this output

then triggers the selection of the ath among l possible actions. Each value La is just a

weighted sum

La =
n∑
i=0

wa,i yi

of variables y1, . . . , yn (and a dummy variable y0 ≡ 1 that allows to use wa,0 as a bias).

Despite its simplicity, the resulting WTA-circuit is computationally quite powerful

[144].

The main contribution of this article is a novel learning algorithm for the weights

wa,i of the linear gates La. We show that for a suitable fixed preprocessing (that

transfers the original input variables xk into binary variables yi) the optimal value w∗a,i

for the weight wa,i in Figure 3.1 is the log-likelihood ratio (or log-odd) of receiving a

reward for a particular action a, provided that the binary feature yi is activated by the

preprocessing function, i.e.

w∗a,i = log
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)
. (3.1)

In the asymptotic case, where all weights wa,i have converged to their respective

target values w∗ai , the policy of the WTA-circuit in Figure 3.1 is optimal in the sense that

for any input signal the action with the highest chance to deliver reward is chosen. We

also show that after finitely many training trials steps the weights closely approximate

the optimal weights that can be inferred from the previously observed data.
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Our algorithm for reward-modulated learning of optimal weights uses only Hebbian

learning, a form of learning for which there is strong experimental evidence [1, 29, 66].

[96] proposed (see [66] for a recent review) that a synapse from neuron A to neuron B is

strengthened if A and B often fire together. But several studies have shown that Heb-

bian synaptic plasticity requires a third signal (often in the form of neuromodulators)

in order to consolidate weight changes [14, 59, 137, 185]. It is often assumed that the

third signal provides information about reward or reward expectations. Hence learning

rules involving these signals are referred to as reward-modulated learning rules.

Hebbian learning, such as in the proposed Bayesian Hebb rule should be contrasted

with non-Hebbian learning rules such as the perceptron learning rule (also referred

to as Delta-rule), or the Rescorla-Wagner rule [184], which are harder to support on

the basis of experimental data for synaptic plasticity. In these latter learning rules

the change ∆wi of a synaptic weight wi at a single synapse depends not only on the

current activation values of the pre- and postsynaptic neuron and the current value of

wi (and possibly a reward-related third signal), but also on the current values of the

other weights and the activation values of all other neurons that provide synaptic input

to the same postsynaptic neuron (more precisely: on the value of the weighted sum of

all presynaptic inputs).

We present a mechanism for reward-modulated local learning of the weights wa,i

that permits them to converge (on average) to the ideal value (3.1). Learning from

rewards is conceptionally different from learning with a supervisor that informs the

learner about the correct choice. In reward-based learning, the learner must explore

different actions multiple times, even if he assumes that other actions would be better

in the given situation. This strategy is necessary to avoid premature convergence to

suboptimal policies.

We want to make clear that in this article we do not study the learning of sequences

of actions as in general reinforcement learning [217], but investigate scenarios like in

operant conditioning, where decisions have to be made based on learned immediate

reward probabilities for single actions. We follow however the terminology proposed

for example in [38], and subsume the latter also under the term reinforcement learning.

We will provide in this article a rigorous theoretical analysis of the convergence

properties of the Bayesian Hebb rule. Because our learning rule makes online updates

after every training trial, rather than performing a batch update after collecting a set
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of data, we are interested in the asymptotic behavior of the rule, as well as its online

performance. Non-Hebbian learning rules usually perform gradient descent optimiza-

tion along an error surface. If local minima exist on the error surface, this approach

always carries the risk of becoming trapped in suboptimal solutions, from which it can-

not escape. In contrast, the optimal values of the weights to be learned by the Bayesian

Hebb rule act as global fixed point attractors in weight-space with regard to expected

weight updates of the Bayesian Hebb rule. Our analysis shows that the weights learned

during training are very close to the optimal values that can be inferred from finitely

many training trials, and they converge exponentially fast to the optimal values. We

will also demonstrate that an extremely simple linear approximation to the Bayesian

Hebb rule performs almost equally well.

Bayesian decision making combines information from many variables, and therefore

must consider statistical dependencies amongst them. An influential paper by [190]

noted that decision making can be reduced to the computation of weighted sums, pro-

vided that the input signals are properly pre-processed (see also [51]). This observation

motivates our use of the neural network model shown in Figure 3.1. [190] proved his

results in the context of linear statistical queries for probabilistic classification. We

now extend this approach to the case of policy learning by incorporating a WTA gate

for action selection. [190] noted that the set of features produced by the preprocessing

function must be related to independence assumptions among input variables. We show

that these features correspond to the factors in a factor graph [130] of the input- and

reward distribution.

One particularly simple case is Naive Bayes, which assumes that all input variables

are conditionally independent given one particular target variable, e.g. the occurrence

of reward. In this case it is sufficient to know the reward-prediction probabilities for

every input variable and every action separately, since then the reward probability

given the complete input is the product of all individual predictors. We provide a

simple preprocessing function for this case, which does not use any information about

statistical dependencies of input variables, but leads to satisfactory policies.

The general case, in which there are statistical dependencies among input vari-

ables, requires more complex algorithms for Bayesian inference. Graphical models like

Bayesian networks [22] and factor graphs [130] are used to model conditional dependen-

cies among variables, and inference algorithms operate by passing messages along edges
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of the graphs. Factor graphs are particularly useful tools. They consider groups of de-

pendent variables as factor nodes, in which functions of all connected variable nodes

are computed. Inference in these models is performed using the sum-product algorithm

[22, 130], which is conceptually simpler than the belief propagation algorithms used for

inference in general Bayesian networks. Recent work [211] has shown that these factor

nodes can be implemented in networks of spiking neurons. In this article we define

an optimal generalized preprocessing function based on the factor graph representation

of the reward distribution. This provides a concrete processing goal for multimodal

integration in sensory areas, and links the theory of factor graphs to experimentally

observed neural population codes. These codes, as all other components of our frame-

work, are easily implemented in neural networks, and allow fast and robust learning

with the Hebbian learning algorithms presented in this article.

We assume here that the graph structure of the underlying Bayesian network is

known, but not the parameters of it (i.e., the probability distribution). We do not

address the problem of structure learning, which is a very different task, and thus

requires different algorithms. Whereas the parameters that define decision strategies

require very fast adaptation, statistical dependencies between inputs reflect invariances

in the environment, which could be learned by separate learning processes on much

longer time scales.

This article is organized as follows: We present the Bayesian Hebb rule for reinforce-

ment learning tasks in section 3.2, and analyze its convergence behavior for learning

reward log-odds. In section 3.3 we present a linear approximation to the Bayesian Hebb

rule that is much simpler to implement, but exhibits similar convergence behavior. In

section 3.4 we show that after a suitable preprocessing of sensory variables x one ar-

rives at a population code y for which optimal decisions can be represented by WTA

applied to weighted sums of the variables yi. The required weights can be learnt quite

fast with the Bayesian Hebb rule, even if there exist conditional dependencies among

the input variables x. Section 3.5 gives experimental results on the performance of the

Bayesian Hebb rule in various action selection tasks. Section 3.5.2 addresses the case

of non-stationary reward distributions. In section 3.6 the learning rule is generalized

to handle tasks in environments with continuous input signals x. We discuss in section

3.7 salient aspects of the presented results, an application of the Bayesian Hebb rule to

model the experimental data of [232], related work, and open problems.
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3.2 The Bayesian Hebb rule

In this section we introduce a simple local learning rule, the reward-modulated Bayesian

Hebb rule, which learns log-odds of reward probabilities conditioned on binary input

variables. Analyzing the convergence behavior of the rule one sees that the true re-

ward log-odds are fixed point attractors for expected weight changes under the reward-

modulated Bayesian Hebb rule. The Bayesian Hebb rule also learns fast, since the

online learned weights are close to what an optimal Bayesian learning approach, using

(biologically unrealistic) counters and auxiliary variables, would achieve. It is further

shown that an even simpler rule - which approximates the Bayesian Hebb rule - learns

weights which are close to the optimum, and is sufficient for reliable decision making.

3.2.1 Action selection strategies and goals for learning

We consider the standard operant conditioning scenario, where the learner receives at

each trial an input x = 〈x1, . . . , xm〉 (e.g. a sensory stimulus or internal state signals

of the organism) with multinomial variables xj , chooses an action a out of a set of l

possible actions A = {a1, . . . , al}, and receives a reward r ∈ {0, 1} with probability

p(r|x, a). The learner’s goal is to learn (as fast as possible) a policy π(x, a) = p(a|x)

(or π(x) in the case of a deterministic policy) so that action selection according to this

policy maximizes the average reward. A structural difference to supervised prediction

problems is that it does not suffice that the learner passively observes the outcomes

of trials, since the reward received for action a in response to stimulus x provides no

information about the probability of rewards for alternative actions a′ in response to

the same stimulus x. He therefore needs to try out different actions for the same input

through an exploration process, in order to learn the reward-probabilities for all actions.

In this article the goal of the learner is fast learning of a policy that approximates

the optimal policy. The learner does not necessarily maximize the online performance

during learning, and does not specifically try to reduce uncertainty about the outcome

of unexplored action. The strategies employed during learning are therefore not Bayes-

optimal in the sense of decision theory and sequential analysis [39]. Optimal solutions to

the exploration problem for a restricted subclass of tasks can be computed [10, 78, 132],

but neural network implementations of these mechanisms are beyond the scope of

this article. During learning we follow heuristic strategies that are commonly used
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in reinforcement learning [217]. The actions are chosen based on the currently learned

weights, which approximate the Bayes optimal estimates for the reward log-odds. In

order to maintain a rather high level of rewards during exploration, the agent might for

example choose actions stochastically with p(a|x) = p(r=1|x, a). This corresponds to

the matching behavior phenomenon observed in biology, where the fraction of choices

for one action exactly matches the fraction of total rewards from that action [213]. This

policy was used during training in all our computer experiments.

If the goal of the agent is to accumulate as many rewards as possible, and rewards

are binary, the agent will choose the action with the highest probability p(r = 1|x, a)

to yield reward. Since the function which maps a probability p onto log p
1−p is strictly

monotonically increasing, the agent can choose instead the action a which has the

highest log-odd

log
p(r = 1|x, a)

p(r = 0|x, a)
. (3.2)

Hence the optimal policy for maximizing the probability of reward can be written in

the form

π(x) = arg max
a∈A

log
p(r = 1|x, a)

p(r = 0|x, a)
. (3.3)

We assume for now that the input x = 〈x1, . . . , xm〉 consists of m input vari-

ables which are arbitrary multinomial discrete random variables with unknown joint

distribution (in section 3.6 we will consider the case of continuous inputs x). We as-

sume that these m variables are represented through binary states (firing / non-firing)

y = 〈y1, . . . , yn〉 of n neurons in a population coding manner. We will define the en-

coding scheme later in section 3.4 and show that different encodings allow different

representations of statistical dependencies. For every possible action a there exists in

our simple model (see Figure 3.1) a linear neuron which receives as inputs the compo-

nents y1, . . . , yn of y. The activation La of this linear neuron is defined by the weighted

sum

La = wa,0 +

n∑
i=1

wa,i yi. (3.4)

Our approach aims at learning weights wa,i for every action a such that La corresponds

to the reward log-odd (3.2), which indicates how desirable it is to execute action a in the

current situation defined by x and its neural encoding y. The action with the highest
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assumed probability of yielding reward is then selected by a Winner-Take-All (WTA)

operation that is formally defined through the binary outputs z1, . . . , zl as follows:

za =

{
1, if La ≥ Lb for b 6= a
0, else .

(3.5)

This action selection strategy is commonly referred to as the greedy strategy.

If the goal is not only to exploit preceding experience in order to choose an action

that maximizes the probability of reward for the current stimulus x, but to simulta-

neously keep on learning and exploring reward probabilities for other actions, the pre-

viously mentioned matching behavior strategy [214] offers an attractive compromise.

It can be implemented with the help of the learned parameters wa,i in the following

way: The linear gate La in Figure 3.1 is replaced by a sigmoidal gate (i.e., the weighted

sum La according to (3.4) is replaced by σ(La) = 1
1+exp(−La) , and the deterministic

WTA gate is replaced by a stochastic soft-WTA gate (which selects a as winner with

probability σ(La)∑
b σ(Lb)

).

3.2.2 A local rule for learning reward log-odds

We will now present a learning rule and an appropriate input encoding for learning

weights, which asymptotically approach target values such that the architecture in

Figure 3.1 selects actions optimally. Consider first the case where for a single binary

input yi and action a the reward log-odd log p(r=1|yi=1,a)
p(r=0|yi=1,a) should be learned in the weight

wa,i. A traditional frequentist’s approach would use counter variables

αa,i = #[r = 1 ∧ yi = 1 ∧ action a selected],

βa,i = #[r = 0 ∧ yi = 1 ∧ action a selected]

to estimate the reward log-odds w∗a,i after finitely many steps by

ŵa,i = log
αa,i
βa,i

for i = 1, . . . , n.

In a rewarded trial (i.e. r = 1) where yi = 1 and action a is selected this leads to the

update

ŵnewa,i = log
αa,i + 1

βa,i
= log

αa,i
βa,i

(
1 +

1

αa,i

)
= ŵa,i + log(1 +

1

Na,i
(1 + e−ŵa,i)) , (3.6)
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where Na,i := αa,i + βa,i is the total number of previous updates, thus 1
αa,i

= 1
Na,i

(1 +
βa,i
αa,i

).

Analogously, an update after a new unrewarded trial (r = 0) gives rise to the update

ŵnewa,i = ŵa,i − log(1 +
1

Na,i
(1 + eŵa,i)). (3.7)

Using the approximation log(1 + x) ≈ x, and using a constant learning rate η instead

of the factor 1
Na,i

, the update rules (3.6) and (3.7) can be combined to yield a new

local learning rule, which does not use any counters. 1 We call this rule the reward-

modulated Bayesian Hebb rule. The update for weight wa,i, whenever action a is selected

and yi = 1 is:

∆wa,i =

{
η · (1 + e−wa,i), if r = 1
−η · (1 + ewa,i), if r = 0.

(3.8)

This rule increases the weight whenever reward is encountered, and decreases the

strength of the synapse otherwise. This learning rule (3.8) is purely local, i.e. it

depends only on quantities that are available at the trained synapse, but not on the

activity of other presynaptic neurons.

The approximation of the reward-modulated Bayesian Hebb rule to the exact count-

ing model, which computes for every parameter the Bayes-optimal estimate that can

be inferred from a fixed finite set of data, is illustrated in Figure 3.2A. In order to esti-

mate a single parameter qa,i = p(r = 1|yi = 1, a), a uniform prior on [0, 1] was initially

imposed on qa,i. The counters αa,i and βa,i, as defined above, were incremented as

training samples became available, and the posterior distribution for qa,i was given by

the Beta(αa,i + 1, βa,i + 1) distribution [156]. The same samples were simultaneously

used to update the weight wa,i by rule (3.8). The weights wa,i, which represent log-odds

log p(r=1|yi=1,a)
p(r=0|yi=1,a) were transformed into probabilities via the transformation

q̂a,i =
1

1 + exp(−wa,i)
.

Figure 3.2A shows the optimal posterior for a single qa,i after every update, and the

approximation obtained by (3.8). The probability estimated by the Bayesian Hebb rule

is always close to the Bayes-optimal estimate.

1Using the approximation log(1 +x) ≈ x did not visibly affect the performance of the learning rule

in the computer simulations in Section 3.5.
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Figure 3.2: Convergence behavior of the Bayesian Hebb rule. A) The weights learned

by the Bayesian Hebb rule approximate Bayes-optimal learning. The posterior for the

reward probability qa,i = p(r = 1|yi = 1, a) at every training trial was modeled by a

Beta(αa,i+1, βa,i+1) distribution, with counters αa,i and βa,i for rewarded and unrewarded

trials. The color shows the estimated posterior density function for qa,i at every training

trial. The white curve shows the approximation learned by the Bayesian Hebb rule (3.8)

(with constant learning rate η = 0.02). The weight wa,i was transformed into an estimated

reward probability by q̂a,i = 1
1+exp(−wa,i)

. One can see that the approximation follows the

optimal estimate closely. B) Attractor property of the Bayesian Hebb rule (3.8) plotted

for two weights w1 and w2. The expected update (indicated by a blue arrow) is always in

the direction of the optimal weights (marked by a red star). Gray curves connect points

with the same amount of expected weight change.

3.2.3 Convergence properties of the Bayesian Hebb rule in reinforce-

ment learning

The Bayesian Hebb rule is an online learning rule which has no prior knowledge of its

target values. However, one can prove that the weights learned with (3.8) converge

(in expectation) to their optimal values w∗a,i = log p(r=1|yi=1,a)
p(r=0|yi=1,a) , just on the basis of the

statistics of pre- and postsynaptic values they encounter. This is in fact very easy to

prove, since the equilibrium of the rule is reached when the expected update E[∆wa,i]

under the rule (3.8) vanishes, and this can be written as

E[∆wa,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (1 + e−wa,i)−

−p(r = 0|yi = 1, a) · η · (1 + ewa,i) = 0 .
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As we show in Appendix 3.8.1, the latter explicitly holds iff wa,i is at the target value

w∗a,i = log p(r=1|yi=1,a)
p(r=0|yi=1,a) . If a vector of n + 1 weights 〈wa,0, . . . , wa,n〉 for an action a is

learned simultaneously, the point 〈w∗a,0, . . . , w∗a,n〉 is a global fixed point attractor in the

weight space Rn+1 with regard to expected weight changes under the Bayesian Hebb

rule (see Figure 3.2B).

Another unusual feature of the Bayesian Hebb rule is that one can prove (see Ap-

pendix 3.8.1) that it converges exponentially fast to w∗a,i (w.r.t. E[∆wa,i]). In partic-

ular, weight updates move the weight in larger steps towards the attractor w∗a,i if they

are farther off, without requiring any change of the learning rate, or knowledge of the

ideal values w∗a,i.

3.3 The Linear Bayesian Hebb rule

The reward-modulated Bayesian Hebb rule (3.8) includes exponential terms exp(−wa,i)
and exp(wa,i). One may argue that an exact calculation of the exponential function is

beyond the capabilities of a synaptic learning process. Therefore we have also analyzed

a linear approximation to the Bayesian Hebb rule. The exponential function is defined

by the Taylor series

exp(x) =
∞∑
i=0

xi

i!
. (3.9)

Thus, the first order approximations for exp(wa,i) and exp(−wa,i) are

exp(w) ≈ 1 + w (3.10)

exp(−w) ≈ 1− w. (3.11)

Inserting the approximations (3.10) and (3.11) into (3.8), a computationally simpler

learning rule is obtained, which we call the linear Bayesian Hebb rule. Whenever action

a is selected and yi = 1, it updates weight wa,i by:

∆wa,i =

{
η · (2− wa,i), if r = 1
−η · (2 + wa,i), if r = 0.

(3.12)

This new rule resembles strongly the typical Hebb rule with a regularization term. The

weights are increased by a constant if the pre- and postsynaptic neurons “fire together”

(i.e., yi = 1 and action a is selected), and decreased by a constant if they don’t. The
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Figure 3.3: Linear approximation of the Bayesian Hebb rule. A) Update ∆wi of the

Bayesian Hebb rule (3.8) (solid lines) and the linear Bayesian Hebb rule (3.12) (dashed

lines) plotted as a function of the current weight value wi for training trials with r = 1

(black curves) and r = 0 (gray curves). B) Example of the evolution of a single weight

under the Bayesian Hebb rule (3.8) and the linear Bayesian Hebb rule (3.12). The target

value is close to 0, where the approximation of the linear Bayesian Hebb rule is very good.

C) Another example of the weight evolution, in which the two rules converge to different

weights. The target weight is close to −2, which is the border of the weight-range that the

linear Bayesian Hebb rule can cover. The approximation error is therefore large compared

to B.

±wa,i term prevents the weights from growing too large or too small. Actually, for

η ≤ 1 it always keeps the weights within the range [−2, 2]. This shows immediately

that the linear Bayesian Hebb rule cannot learn the true reward log-odds for arbitrary

distributions, but only an approximation. Figure 3.3A shows the updates by the linear

Bayesian Hebb rule (dashed lines) in comparison to those of the exact rule (3.8) (solid

lines). One can see that the difference between the updates grows for larger values of the

target weight w∗a,i. However, our computer experiments in Section 3.5 will demonstrate

that the linear Bayesian Hebb rule performs remarkably well for many benchmark tasks.

3.3.1 Convergence of the Linear Bayesian Hebb Rule

We show in Appendix 3.8.2 that the equilibrium value for the linear Bayesian Hebb

rule (3.12), i.e. the weight value where E[∆wa,i] = 0, is at

w+
a,i = −2 + 4 · p(r = 1|yi = 1, a)

= 2 · (p(r = 1|yi = 1, a)− p(r = 0|yi = 1, a)) .
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This equilibrium value is monotonically increasing with w∗a,i, the equilibrium value of

the exact Bayesian Hebb rule (3.8). They are only equal when p(r = 1|yi = 1, a) =

p(r = 0|yi = 1, a), i.e. w∗a,i = w+
a,i = 0.

In Figures 3.3B and C the evolution of two weights during learning for a random

distribution is shown. In 3.3B, the target value is close to zero, where the target values

for the exact rule (3.8) and the linear Bayesian Hebb rule (3.12) are very similar. Thus,

no big difference in weight space is visible. In 3.3C, however, the target value is close

to the maximum value that the linear rule can represent, therefore the two rules do

not converge to the same value, indicating a larger approximation error for the linear

rule. Hence the linear Bayesian Hebb rule can be expected to perform well if the target

values of the weights have small absolute values.

3.4 Population codes for Hebbian learning of asymptoti-

cally optimal decisions

In this section two preprocessing mechanisms are presented, which are based on different

assumptions about statistical dependencies among input variables. Applied to these

population encodings of the input, the WTA circuit in Figure 3.1 selects actions that

maximize the probability of obtaining reward, according to the current statistical model

represented by the input encoding and the reward log-odds learned with the Bayesian

Hebb rule.

We have previously shown that the reward-modulated Bayesian Hebb rule (3.8) has

a unique equilibrium at the reward log-odd

w∗a,i = log
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)
. (3.13)

In order to approximate the true reward probabilities for every action as weighted

sums as in (3.4), every vector of input variables x = 〈x1, . . . , xm〉 needs to be suitably

preprocessed into a population code vector y = 〈y1, . . . , yn〉. If the weights wa,i for every

yi and every action a are learned with the Bayesian Hebb rule, our previous analysis

guarantees that the resulting policy will asymptotically approach the best policy that

can be inferred for the given preprocessing function.
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Let the input variables x1, . . . , xm be some arbitrary multinomial random variables

with unknown joint distribution, where each variable xk assumes mk different values

vk1 , . . . , v
k
mk

. For the sake of simplicity we assume that vkj = j for j = 1, . . . ,mk and

k = 1, . . . ,m.

We first present a very simple population coding, which is sufficient to represent

the optimal policy as a weighted sum if the Naive Bayes assumption holds for the input

variables, i.e. the input variables xk are conditionally independent of each other given

the selected action a and the reward r:

p(xk|r, a, x1, . . . , xk−1, xk+1, . . . , xm) = p(xk|r, a) for all k ∈ {1, . . . ,m}. (3.14)

In this case it holds that

p(r = 1|x, a)

p(r = 0|x, a)
=
p(r = 1|a)

p(r = 0|a)

m∏
k=1

p(xk|r = 1, a)

p(xk|r = 0, a)
. (3.15)

Every xk is discrete and can only take on finitely many different values. Applying

Bayes’ theorem and using an indicator function I, which is defined as I(true) = 1 and

I(false) = 0, one can rewrite (3.15) as (see Appendix 3.8.3 for the full derivation)

p(r = 1|x, a)

p(r = 0|x, a)
=
p(r = 1|a)

p(r = 0|a)

m∏
k=1

p(r = 0|a)

p(r = 1|a)

mk∏
j=1

(
p(r = 1|xk = j, a)

p(r = 0|xk = j, a)

)I(xk=j)
 .

(3.16)

This suggests to represent every xk by a population code, which has mk + 1 binary

variables, one for every possible value of xk, and one bias variable to account for the

term p(r=0|a)
p(r=1|a) . Formally we define the simple preprocessing (SP) φ(xk) for a single

variable xk as

φ(xk) = [−1, ϕ1, . . . , ϕmk ]T , where ϕj =

{
1, if xk = j
0, otherwise.

(3.17)

As an example we consider the simple reward distribution with 2 input variables

x = 〈x1, x2〉, modeled by the Bayesian network in Figure 3.4A. Under the Naive Bayes

assumption the dependency of x2 on the input variable x1 is neglected, i.e. the arrow

x1 → x2 in the Bayesian network is ignored. For binary xk, the population code

under this assumption is illustrated in Figure 3.4C. Each input variable xk is encoded

separately by 3 variables yi, where one is constantly −1, and only one other yi is active,

depending on the value of xk.
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A B

C D

Figure 3.4: Preprocessing for tasks with arbitrary statistical dependencies. A) An exam-

ple Bayesian network for the joint distribution of sensory inputs x = 〈x1, x2〉 and reward

r. B) Factor graph representation for the prediction of r, according to the Bayesian net-

work in panel A. Here, f0 represents the prior p(r), and the factors f1 and f2 represent

the conditional probabilities p(x1|r) and p(x2|x1, r), respectively. C) Population coding

under the Naive Bayes assumption, which we refer to as simple preprocessing (SP). For

every possible value of the variables xk (here x1, x2 are binary), there is one variable yi

(indicated by a black circle) that outputs the value 1. Additionally there is one variable yi

for every xk, which is constantly at −1 (black square). The constant bias term y0 is not

shown. D) Population coding applied to the factors in the factor graph shown in panel B.

For each combination of values of the variables {xk,xPk} of a factor there is exactly one

variable yi (indicated by a black circle) associated with the factor that outputs the value

1. Other variables yi represent OR’s of these values (black squares), and yield either 0

or −1. The constant bias term y0 is not shown. We refer to the resulting preprocessing

circuit that maps sensory inputs x onto internal variables y that support Hebbian learning

of optimal decisions as generalized preprocessing (GP).
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The vectors φ(xk) for k = 1, . . . ,m are concatenated into one population code vector

y for the whole input. y has n = 1 +m+
∑m

k=1mk entries, of which exactly 2 ·m+ 1

are non-zero, and the first entry y0 ≡ 1 corresponds to the bias term p(r=1|a)
p(r=0|a) in (3.16):

y = Φ(x) =


1

φ(x1)
φ(x2)

...
φ(xm)

 . (3.18)

Substituting the definition of y from (3.17) and (3.18) into (3.16) and taking the loga-

rithm then yields the log-odd function

log
p(r = 1|y, a)

p(r = 0|y, a)
= log

p(r = 1|a)

p(r = 0|a)
+

n∑
i=1

yi log
p(r = 1|yi 6= 0, a)

p(r = 0|yi 6= 0, a)
. (3.19)

If we use the population code (3.18) for y, we can apply the reward-modulated Bayesian

Hebb rule (3.8) for every yi to learn reward log-odds conditioned on feature yi being

active1. For a yi that is constantly active, such as y0, the weight wa,i will converge to

the prior reward probability log p(r=1|a)
p(r=0|a) for action a. Inserting the target values (3.13)

of the weights into (3.19), we can therefore write

log
p(r = 1|y, a)

p(r = 0|y, a)
=

n∑
i=0

w∗a,i yi . (3.20)

During learning the current values of the weights wa,0, . . . , wa,n are used to approximate

the true reward log-odd for every action a as the weighted sums in (3.4). Actions

are selected by a heuristic method according to their predicted probability of yielding

reward (e.g. greedy or matching behavior). If the Naive Bayes assumption holds, the

reward-modulated Bayesian Hebb rule in combination with a simple population coding

for every input variable xk is therefore sufficient to asymptotically learn the optimal

action selection policy.

3.4.1 Learning decisions for arbitrary discrete distributions

We now address the more general case, where conditional independence of the input

variables x1, . . . , xm cannot be assumed. We show that with a fixed preprocessing of

1We consider a feature yi active if it is non-zero, i.e. both yi = 1 and yi = −1 are active features.
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the input that takes their dependencies into account, the Bayesian Hebb rule enables

the resulting neural network to converge quite fast to the best performance that any

action selection mechanism could possibly achieve. The dependency structure of the

underlying input and reward distribution is given in terms of an arbitrary Bayesian

Network BN for discrete variables (like e.g. Figure 3.4A). BN can be represented, like

every Bayesian network, by a directed graph without directed cycles. We do not assume

any further restrictions on the structure of the Bayesian network, so BN does not have

to be a tree (as assumed in [45]), and it is not required to have no undirected cycles

(as necessary for guaranteed convergence of belief propagation algorithms [22]).

Without loss of generality we choose a numbering scheme such that the direct

children of the reward node r in BN are x1, . . . , xm′ . The dependencies in BN can be

described by m+ 1 parent sets Pk, which are possibly empty, and explicitly exclude the

reward node r. Pk is thus defined as

Pk = {i | a directed edge xi → xk exists in BN and xi 6= r} .

Additionally we define Pr as the set of all parents of the reward-node r. The joint

probability distribution on the variables r, x1, . . . , xm in the Bayesian network for action

a can then be factored, giving rise to a factor graph [130] as indicated in Figure 3.4B:

p(r,x|a) = p(r|xPr , a)
m′∏
k=1

p(xk|xPk , r, a)
m∏

k=m′+1

p(xk|xPk , a). (3.21)

When calculating the log-odd of obtaining reward or not, the last terms in (3.21) cancel

out, and a simple application of Bayes’ theorem leads to

log
p(r = 1|x, a)

p(r = 0|x, a)
= log

p(r = 1|xPr , a)

p(r = 0|xPr , a)
+

+
m′∑
k=1

(
log

p(r = 1|xk,xPk , a)

p(r = 0|xk,xPk , a)
− log

p(r = 1|xPk , a)

p(r = 0|xPk , a)

)
. (3.22)

This is a sum of conditional reward log-odds, which can all be learned with the

reward-modulated Bayesian Hebb rule. We now develop a suitable sparse encoding

of x1, . . . , xm into binary variables y1, . . . , yn (with n � m), such that the reward

log-odd can be written as a weighted sum

log
p(r = 1|y, a)

p(r = 0|y, a)
=

n∑
i=1

wa,i yi,
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and the weights wa,i correspond to conditional reward log-odds of yi’s. For the example

Bayesian network in Figure 3.4A, the corresponding sparse code is illustrated in Figure

3.4D: One binary variable is created for every possible value assignment to a variable

xk and all its parents xPk , and additional binary variables are created for every possible

value assignments to the parent nodes only. One should contrast this with the simple

population code in Figure 3.4C, which assumes that the Naive Bayes condition holds,

and therefore ignores that x2 is dependent on x1.

BN can also be viewed as a factor graph (see Figure 3.4B), in which there is for every

variable xk a factor fk, which is connected to r, xk and xPk , the parents of xk in BN.

The preprocessing is then computed separately for every factor fk. We define the fixed

generalized preprocessing (GP) operation for fk with k ≥ 1 as

Φ(xk,xPk) =

[
φ(xk,xPk)
−φ(xPk)

]
. (3.23)

The summands of the sum on the r.h.s. of (3.22) are split into two parts, and φ(xk,xPk)

defines the preprocessing for the first part, whereas −φ(xPk) defines the preprocessing

for the latter part. The variables 〈xk,xPk〉 are viewed as a single multinomial variable,

and φ(xk,xPk) is a representation of this multinomial variable through simple popu-

lation coding. Thus, φ(xk,xPk) has as many binary output variables yk,i as there are

different assignments of values to all variables in 〈xk,xPk〉, and exactly one variable

yk,i has value 1 for each such assignment. Let yk,i be the binary output variable that

corresponds to some assignment xk = j, xPk = u, then the corresponding weight wa,k,i

for action a can be learnt through the same reward-modulated Bayesian Hebb rule (3.8)

as in the Naive Bayes case. The target value, to which wa,k,i will converge is then

w∗a,k,i = log
p(r = 1|yk,i = 1, a)

p(r = 0|yk,i = 1, a)
= log

p(r = 1|xk = j,xPk = u, a)

p(r = 0|xk = j,xPk = u, a)
. (3.24)

Analogously, the application of the reward-modulated Bayesian Hebb rule (3.8) for

every component yPk,i of −φ(xPk) leads to the target weights

w∗a,Pk,i = log
p(r = 1|yPk,i = −1, a)

p(r = 0|yPk,i = −1, a)
= log

p(r = 1|xPk = u, a)

p(r = 0|xPk = u, a)
, (3.25)

with the only formal modification to the update rule (3.8) being that updates are not

only made when yi = 1, but also when yi = −1, which obviously does not change
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the behavior of the learning process. Formally, all preprocessed vectors Φ(xk,xPk) are

concatenated into one vector y with n =
∑m′

k=1Nk +NPk entries

y =


Φ(xPr)

Φ(x1,xP1)
...

Φ(xm′ ,xPm′ )

 .

This sparse, redundant input encoding provides a weighted sum representation of the

reward log-odd

log
p(r = 1|y, a)

p(r = 0|y, a)
=

n∑
i=1

wa,i yi,

where the weights wa,1, . . . , wa,n can all be learnt through the reward-modulated Bayesian

Hebb rule (3.8) as described above.

3.5 Results of Computer Simulations

We now evaluate the performance of the reward-modulated Bayesian Hebb rule and

its linear approximation and compare it to the standard learning model for simple

conditioning tasks, the non-Hebbian Rescorla-Wagner rule [184].

The reward-modulated Bayesian Hebb rule (3.8) was tested on a variety of action

selection tasks with 4 possible actions. A Bayesian network with dependency structure

as in Figure 3.4A was used to model the distribution p(r, x1, x2|a) for every action

a, where r is the binary reward signal, and x1, x2 are the two binary input signals.

We assigned a constant reward prior p(r|a) = 0.25 to every action a, and randomly

generated the conditional probability tables for p(x1|r, a) and p(x2|x1, r, a): for every

action a, every xk (k ∈ {1, 2}), and every possible value assignment to the parent

nodes 〈xPk , r〉, a random sample q ∈ [0, 1] was drawn from a Beta-distribution, and

p(xk = 1|xPk , r, a) was set to q.

The Bayesian networks which model the reward distribution were also used to create

the samples of input vectors x = 〈x1, x2〉 for every training trial. First, one of the four

Bayesian networks was chosen randomly with equal probability, so the distribution of

input or test samples does not depend on the action selection during learning. Inputs

x were drawn as random samples from the selected network. The agent then received

the input x and chose its action a. The binary reward signal r was sampled from
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the distribution p(r|x, a), and thus depends on the chosen action. The agent used the

tuple 〈x, a, r〉 to update its weights wa,i. Training consisted of 2000 trials, in which

the matching behavior strategy (see section 3.2.1) was used for action selection during

learning. The evaluation of the performance of the resulting policy after every trial

used the greedy strategy (3.3), choosing actions on 500 independent test trials and

measuring the average reward. The experiment was averaged over 250 different tasks

with different reward distributions.

The preprocessed binary vectors y = Φ(x) ∈ {0, 1}n were created either by simple

population coding (see (3.18) and Figure 3.4C), which is suitable for the Naive Bayes

case (3.14), or generalized preprocessing (see (3.23) and Figure 3.4D). The former

mechanism is referred to as Bayesian Hebb SP in Figure 3.5 and the remainder of this

article, whereas the generalized preprocessing mechanism is referred to as Bayesian

Hebb GP. The Bayesian Hebb rule with these two kinds of preprocessing mechanisms

was compared to the non-Hebbian Rescorla-Wagner rule [184]. This rule predicts the

value of a (multi-dimensional) stimulus as a linear sum,

V (y) = w0 +

n∑
i=1

wiyi ,

and minimizes the prediction error with a delta learning rule

∆wi = ηyi

(
r − w0 −

n∑
i=1

wiyi

)
. (3.26)

It can be seen from equation (3.26), that for the update of a single weight, the complete

prediction of value for the current state, which depends on all weights, is needed. In

the experiments the Rescorla-Wagner rule was used to learn weights for every action

separately. The classical Rescorla-Wagner rule (3.26) , which we use for comparison,

is directly applied to the inputs x. We show in Appendix 3.8.5 that the performance

and learning speed of Rescorla-Wagner can also be improved if it is applied to the

preprocessed vectors y = Φ(x), using the same SP and GP preprocessing mechanisms

as for the Bayesian Hebb rule.

In addition, the reward-modulated Bayesian Hebb rule was also compared to a

Bayes-optimal weight learning rule. In this case the conditional probabilities in the

Bayesian network in Figure 3.4A were estimated using counter variables (see section

3.2.2), and exact inference was used to compute reward probabilities for every action.
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Figure 3.5: Performance of the reward-modulated Bayesian Hebb rule for action selection

in a 4-action task with stochastic rewards. Each learner was trained on 2000 trials, and

after every trial the performance was measured as the average reward of the greedy policy of

each learner on 500 independent test trials (left: performance during the first 200 training

trials). The results were averaged over 250 different problems, all having the statistical

dependency structures as in Figure 3.4A, but random reward distributions (average learning

and preprocessing time per problem on a dual-core 2.66 GHz, 16GB RAM PC: 0.9 s for

SP, and 4.1 s for GP). The horizontal dashed line reflects the best possible performance

of an optimal policy. The Bayesian Hebb rule with simple population coding (Bayesian

Hebb SP) and generalized preprocessing (Bayesian Hebb GP) were compared to action-

learning with the non-Hebbian Rescorla-Wagner rule. The learning rate was set to 1/Na,i,

and stochastic action selection was used for exploration during training. The Bayesian

Hebb rule for both preprocessing methods learned faster than the non-Hebbian Rescorla-

Wagner rule and converged to better policies. With generalized preprocessing, the Bayesian

Hebb rule converged to the optimal action-selection policy, as predicted by the theoretical

analysis. Error bars are in the range of 10−3 and are omitted for clarity.

Figure 3.5 shows that the reward-modulated Bayesian Hebb rule for both types of

preprocessing learns faster than the non-Hebbian Rescorla-Wagner rule and converges

to better policies. If generalized preprocessing is used, the learned policy after approxi-

mately 200 trials is almost indistinguishable from the policy of an optimal learner, and

after approximately 1000 trials the performance is very close to the optimal performance

level.

3.5.1 Approximations to the Bayesian Hebb rule

We have shown in section 3.3 that the linear Bayesian Hebb rule (3.12) can be derived

as a first-order Taylor approximation of the reward-modulated Bayesian Hebb rule
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Figure 3.6: Performance of the linear approximations to the reward-modulated Bayesian

Hebb rule in the same 4-action tasks as in Figure 3.5 (left: performance during the first

200 training trials). Both for simple population coding (SP) and generalized preprocessing

(GP), the linear approximation to the learning rule learned as well as the exact rule. Error

bars are in the range of 10−3 and are omitted for clarity.

(3.8). There are no theoretical guarantees that the linear Bayesian Hebb rule will

asymptotically converge towards weight values that allow optimal decision making. We

compared the two rules on the same random Bayesian network tasks for action selection

empirically, using both the simple preprocessing (SP) for the Naive Bayes case, and the

generalized preprocessing (GP) for arbitrary reward distributions. Figure 3.6 shows

that this even simpler rule found good policies as quick as the exact rule. The quality

of the final policy was almost indistinguishable from the policies found by the exact

Bayesian Hebb rule.

3.5.2 Adaptation to changing reward distributions

In most realistic scenarios an organism experiences during its lifetime changes in the

environment in which it lives. It is therefore important that a learning rule can adapt

quickly to a changing reward or input distribution. It is clear that a learning rate that

decays with 1
Ni

(where Ni is the number of updates for a weight wi) is not suitable for

changing environments. We therefore used for this task the variance tracking mecha-

nism for learning rate adaptation, which was first introduced by [158]. This mechanism

keeps track of the variance of each weight, and adapts learning rates accordingly. Learn-

ing rates are reduced for weights with small fluctuations, whereas they are increased

for weights with high variance, which is an indication that those weights have not yet
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Figure 3.7: Behavior of the Bayesian Hebb rule when the reward distribution changes

during training. A) Performance of the agent if a new reward distribution is introduced

after 4000 training trials. There is an immediate drop when the distribution changes, but

good performance is recovered quickly by both rules. B) Evolution of a single weight wa,i

when the reward distribution changes. The weights are plotted at every trial where action

a is selected, and an update for the plotted weight occurs. The weight first settles at the

desired value for the first distribution, and then quickly adapts to the new target value

when the distribution changes (indicated by the black dashed line).

settled at their equilibrium values.

The learning rate adaptation mechanism uses two auxiliary variables, which can

be locally estimated for every weight wi: a running average of the weight is computed

in w̄i, and a running average of the squared weight in q̄i, using the following simple

update rules:

w̄newi ← (1− ηi) w̄i + ηiwi
q̄newi ← (1− ηi) q̄i + ηiw

2
i .

(3.27)

With these values the short-time variance of each weight can be estimated as q̄i −
w̄2
i . Assuming that samples are drawn from stationary input distributions, it was

shown in [158] that the variance of a weight wi can be related to the sample size

Ni in the Bayes-optimal learning case (see also section 3.2.2), where exact counters

for all combinations of inputs, actions and rewards are used, and conditional reward

probabilities are modeled with Beta-distributions. According to this analysis, the new

learning rate ηnewi can be set as

ηnewi ← q̄i−w̄2
i

1+cosh w̄i
. (3.28)
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In practice this mechanism decays like 1
Ni

under stationary conditions. It can also

handle changing input distributions, because a new target value for wi leads to larger

updates ∆wi, thus increasing the short-time variance of the weight, and by (3.28) the

learning rate ηi.

The variance tracking mechanism is an analytically justified rule for setting learning

rates. Biological implementations of qualitatively similar processes are plausible, since

all auxiliary quantities can be observed locally at the synapse. What is required is

essentially a process that locally modulates potentiation or depression of synapses, and

itself is dependent on the magnitude of recent local synaptic weight changes. This could

in principle be achieved by a large variety of metaplasticity mechanisms that are known

to modulate synaptic plasticity (see [2] for a recent review). Neuromodulators such as

acetylcholine and norepinephrine could play a special role in the control of learning

rates and the reduction of oscillations of weight updates [53, 233].

In the experiment shown in Figure 3.7, the weights were learned in 4000 training

trials, after which the environment was changed and the learner was trained for another

4000 trials on the new input and reward distributions. Figure 3.7A shows that the

performance of the learners initially improved, then dropped as soon as the distributions

were switched, but quickly adapted to the new distribution, reaching almost the same

performance. Figure 3.7B shows the evolution of a single weight in this scenario, for

all trials in which it was updated. It can be seen that the weight first settled around

the equilibrium value of the first distribution, and grew to reach the new target value

after the switch.

3.5.3 Simulations for large input and action spaces

The Bayesian Hebb rule also works well for significantly larger problems. The same

algorithms as in the previous sections were applied to problems with 100 binary input

attributes, and 10 possible actions. The structures of the Bayesian networks that define

the reward distributions for every action were generated randomly, using the algorithm

described in [106]. Every node in the network could have a maximum of 5 parent

nodes. The protocol for the generation of training samples and rewards was the same

as for the previous experiments (see beginning of section 3.5). During learning actions

were selected randomly, and the greedy policy was used for the evaluation on 1000

independent test trials (once every 1000 training trials).
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Figure 3.8: The Bayesian Hebb rule works well also for simulations with large input

and action spaces. Each learner was trained on 20,000 trials of action selection problems

with 10 actions, 100 binary input attributes, and stochastic rewards. Every 1000 trials

the performance was measured as the average reward of the greedy policy of each learner

on 1000 independent test trials (left: performance during the first 5000 training trials).

The results were averaged over 40 different problems with random statistical dependency

structures and random reward distributions (average learning and preprocessing time per

problem on a 2-core 2.66 GHz, 16GB RAM PC: 27.8 s for SP, and 301.6 s for GP). The

learning rates were set to 1/Na,i, and random action selection was used for exploration

during training. With generalized preprocessing, the Bayesian Hebb rule approached the

performance of an optimal learning mechanism. Error bars are in the range of 10−2 and

are omitted for clarity.

Figure 3.8 shows that the Bayesian Hebb rule learns fast, both for simple population

coding (SP), and generalized preprocessing (GP). The latter initially performs worse

than SP, because the number of weights to learn is very large (about 1000 weights

for every action), and approximation errors sum up. Given more training data, the

Bayesian Hebb rule with generalized preprocessing approaches the performance of an

optimal learner. The linear approximations to the reward-modulated Bayesian Hebb

rule perform equally well on this task for both types of preprocessing.

3.6 Decision making with continuous inputs

The Bayesian Hebb rule can be generalized to action-selection problems defined on

continuous input distributions. A rule very similar to (3.8) learns reward log-odds on

a continuous input encoding, comparable to population codes with bell-shaped tuning

curves that are observed in the brain.
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The Bayesian Hebb rule has previously been defined only for discrete inputs xk,

which were mapped to binary variables yi with various ways of preprocessing. We

now present a learning rule to approximate distributions of a binary reward variable

for continuous inputs. The preprocessing for this case is a population code, which

uses radial-basis functions (RBFs) 1 to map continuous input variables xk to new

continuous features yi, which may e.g. correspond to firing rates in a neural population

code. Population codes with RBF- or bell-shaped tuning curves have been observed,

for example, in area MT of the visual system for direction sensitive cells (see [179]

for a review), place cells in rat hippocampus [165], or for the encoding of movement

directions in primate motor cortex [71]. Networks of RBF units are also commonly

used for models of visual object recognition [187].

Consider the input variables x = 〈x1, . . . , xm〉 ∈ X ⊆ Rm, and a binary reward

variable r ∈ {0, 1}. The continuous input x is mapped to a new set of n continuous

non-negative features yi. The activation of feature yi is proportional to the activation

of a RBF-kernel φi(x):

φi(x) = exp

(
−

m∑
k=1

|xk − ci,k|2

s2
i,k

)
. (3.29)

The centers of the RBF kernels are located at ci = 〈ci,1, . . . , ci,m〉, and the widths of the

kernels are given by si,k (different widths may be used for different input dimensions).

The preprocessed vector y = 〈y1, . . . , yn〉 is obtained by calculating the activations of

all n different RBFs and normalizing the vector:

yi(x) =
φi(x)∑n
j=1 φj(x)

. (3.30)

Notice that this kind of preprocessing can take combinations of variables into account,

such as RBF kernels on Rm, not only single variables. Figure 3.9 illustrates a simple

continuous population code for 5 RBF kernels in one input dimension.

A rule for learning reward log-odds conditioned on a single feature yi = yi(x) can

be defined by generalizing the reward-modulated Bayesian Hebb rule (3.8). Whenever

action a is selected, every weight wa,i is updated by:

∆wa,i =

{
η · yi(x) · (1 + e−wa,i), if r = 1
−η · yi(x) · (1 + ewa,i), if r = 0 .

(3.31)

1Other mappings are also possible, but are not presented in this paper.
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Figure 3.9: Example of a continuous population code with 5 equally spaced RBF kernels

(width s = 0.2) for a 1-dimensional input x. The activations of the RBF-kernels φi(x)

depend on the distance between x and the center ci of the kernel. The normalized features

yi(x) are obtained by dividing every φi(x) by the total sum of activations. The RBF-kernel

activations φi(x) (black crosses mark the intersection of the vertical line at x = 0.35 with

the 5 RBF-kernels indicated by dotted lines), and the normalized feature activations yi(x)

(dark bars) are here shown for an example input at x = 0.35 (gray dashed line).

This rule is a generalization of rule (3.8), in which the updates are weighted by the

activation of feature yi. For the previously described discrete population codes, where

yi is either 0 or 1, the rule (3.31) is equivalent to (3.8).

For the analysis of the equilibrium of rule (3.31), we use an alternative popula-

tion code of virtual binary features ỹ1, . . . , ỹn. We interpret y1(x), . . . , yn(x) as (non-

normalized) probabilities for randomly selecting one i ∈ {1, . . . , n}, for which one sets

ỹi = 1 (while setting ỹj = 0 for j 6= i). This gives a new interpretation to the contin-

uous population code features yi(x), because they are proportional to the probability

that ỹi = 1 (we then say that “feature ỹi is active”).

To find the equilibrium of the rule (3.31) for the weight wa,i, we set the expected

update E[∆wa,i] to zero, and rewrite it as

E[∆wa,i] = 0 ⇔ (1 + e−wa,i)

∫
X
yi(x) p(r = 1,x|a) dx

−(1 + ewa,i)

∫
X
yi(x) p(r = 0,x|a) dx = 0 .

It is shown in Appendix 3.8.4 that this condition is fulfilled if and only if wa,i is at the
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target value

w∗a,i = log
p(r = 1|ỹi = 1, a)

p(r = 0|ỹi = 1, a)
.

If the active (virtual) feature ỹi was known, the corresponding weight wa,i would di-

rectly indicate the log-odd of obtaining reward with action a. In this scenario, however,

only the continuous features yi(x), i = 1, . . . , n are known. Due to the normalization,

the feature values sum up to 1, and one can therefore weight every wa,i by yi(x), yielding

La(x) =
n∑
i=1

wa,i yi(x) , (3.32)

which is an interpolation between the reward log-odds wa,i for different features ỹi.

The interpolation weights are in this case the factors yi(x), which means that those

features ỹi which are more likely to be active contribute more to the weighted sum,

since yi(x) is proportional to p(ỹi = 1|x). La(x) thus approximates the reward log-odd

log p(r=1|x,a)
p(r=0|x,a) , and the reward probability p(r = 1|x, a) can be approximated by

p(r = 1|x, a) ≈ σ(La(x)) =
1

1 + e−La(x)
, (3.33)

where σ(.) is the log-sigmoidal transfer function.

3.6.1 Computer Experiments with continuous input

For the following experiment reward distributions were defined on single continuous

input variables x ∈ [0, 1]. For every action a different reward distribution was mod-

eled, and the learner’s task was to approximate the true reward distributions with the

continuous Bayesian Hebb rule (3.31), and to choose the action with the highest re-

ward probability. 2000 training trials with inputs drawn from a uniform distribution

on [0, 1] were used, and the performance after every update was measured on 500 in-

dependent test trials. 20 RBFs with constant widths s = 0.05 were used for the input

preprocessing. The centers of the RBFs were equally distributed in the interval [0, 1].

Figure 3.10 shows the performance at every training trial, and the approximations

of the reward distributions that were obtained after 2000 training trials. The average

reward obtained after training is close to the best possible performance, and the reward

distributions are learned accurately.
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Figure 3.10: Performance of the Bayesian Hebb rule for continuous inputs. The input

preprocessing consists of 20 RBF kernels that yield a population code y for the continu-

ous inputs x. A) Average reward of the learner obtained on 500 independent test trials

during training on 2000 trials (left: performance during the first 200 training trials). The

performance level rises quickly and in the end is close to the best possible performance of

an optimal action selector (horizontal dashed line). Error bars are in the range of 10−3

and are omitted for clarity. Results are averaged over 32 runs. B) Approximation of the

reward probabilities learned by the continuous Bayesian Hebb rule after 2000 training tri-

als. The learned approximation (dashed line) is very close to the true reward distribution

(gray solid line).
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3.7 Discussion

3.7.1 Summary and open problems

We have proposed in this article a simple neural network architecture for learning and

decision making, which makes use of two learning processes that operate on two differ-

ent time scales. We assume that generic dependencies among sensory input variables

or features, or in other words, the factors of the underlying Bayesian network, are de-

tected on a larger time scale, and that combinations of conditionally dependent input

features are presented to the decision stage through sparse population coding. We have

shown that on the basis of such preprocessing, the optimal policy can be represented

as a WTA operation applied to weighted sums, and the corresponding weights can be

learnt very fast. In fact, we have shown that a very simple Hebbian learning rule (the

reward-modulated Bayesian Hebb rule) can integrate information from past experience

in a close to optimal way. The models that we presented and analyzed are biologically

plausible and arguably minimal with regard to their complexity, but nevertheless can be

shown to asymptotically approximate theoretically optimal performance. All informa-

tion from past experience is stored in synaptic weights of simple linear neuron models,

and can therefore immediately be used for online decision making. In contrast to other

learning rules that have previously been proposed for modeling animal learning — such

as the Rescorla-Wagner rule [184, 234], the perceptron learning rule, or learning rules

based on the Kalman-filter model [40, 216] — this new learning rule is a truly Hebbian

learning rule. Its weight updates depend on the current pre- and postsynaptic activity,

as well as on a third signal [14] that contains information about success or failure of

the currently selected decision, but not on the current values of the other weights (or

the resulting weighted sums of input variables). All information required for the weight

update is therefore available locally at the synapse.

A major advantage of the local nature of purely Hebbian learning rules is that

synapses can be removed or added to a neuron, without changing the target weights

of the other synapses. One can therefore view the reward-modulated Bayesian Hebb

rule as a candidate for learning in self-organizing organisms with developing neural

structure. Assume, for example, that an input variable xnew is added, and the popula-

tion code is appropriately modified. Then all weights belonging to factors in the factor

graph that are not connected to xnew are unaffected, and can still be used for decision
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making. Removal or addition of single weights does however affect the decision making

process, if the resulting population code does not match either the SP or GP encoding.

The Bayesian Hebb rule is one of very few online learning rules that admit a rigorous

theoretical analysis of their convergence properties. We have shown that the theoreti-

cally optimal values of the weights are fixed point attractors for expected weight changes

(see Figure 3.2B). This implies in particular, that learning cannot get stuck in local

minima of some loss function. In fact, one can easily show that the expected weight up-

dates give rise to an exponentially fast contracting dynamical system in weight space.

Hence, this learning process falls into the theoretical framework of contracting sys-

tems, proposed by [142]. According to this theory, this learning process can therefore

be combined with other adaptive processes that also exhibit a contracting dynamics

of adaptive parameters. Their theory guarantees that the resulting hybrid learning

system will also converge.

We have also considered in section 3.3 a computationally simpler linear version of

the Bayesian Hebb rule. Although this rule is only an approximation to the Bayesian

Hebb rule, and theoretical convergence results are weaker (see the discussion in Section

3.3.1), we have shown that it performs almost equally well in a large number of complex

decision making tasks (see Figures 3.6, 3.7, 3.11). The linear Bayesian Hebb rule is

similar to well-known mathematical models for Hebbian learning, and may therefore

provide a new interpretation of these learning rules as approximations to more complex

plasticity mechanisms

In this article we have studied the scenario of online reward-based learning of deci-

sion making with multiple alternatives from stochastic rewards and input signals, which

is important for fields like operant conditioning or reinforcement learning. In section

3.2.2 we have shown analytically and empirically (Figure 3.2A) that the Bayesian Hebb

rule achieves near optimal learning in terms of learning speed, and asymptotically ap-

proaches the optimal policy for the given preprocessing mechanism. We have supported

this theoretical prediction through a variety of computer simulations of decision tasks

(see Figures 3.5, 3.8, 3.10). The resulting higher learning speed is particularly inter-

esting in our context of reward-based learning, where most learning algorithms are too

slow to be applicable to real-world problems. Hence the contribution of this article can

be seen as another step in the program to speed up reinforcement learning by mak-
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ing near optimal use of previous experience. We have shown in section 3.5.2 that this

approach can also be applied to non-stationary distributions of inputs and rewards.

The question, how the brain forms decisions that involve more than two alternatives,

is one of the most important open research problems [81]. For binary decisions, Wald’s

sequential probability ratio test [229] provides a theoretically optimal tool for learning

and decision making from limited evidence. In this case it is sufficient to update

a single decision variable, and compare it to a threshold value. For problems with

more than 2 alternatives it is unclear whether an optimal test exists, and tests that

guarantee asymptotic optimality, such as the method developed by [55] become much

more complex (see [92] for a possible neural implementation). In this article we have

studied a simpler network model, which does not select actions optimally in the sense of

sequential analysis. It converges asymptotically to an optimal policy, and uses heuristic

strategies for choosing actions during learning. We have analyzed a model that is based

on the Winner-Take-All (WTA) operation, and directly uses the learned weights for the

evaluation of actions. We have shown that if WTA is applied to several linear neurons,

each of which learns via the Bayesian Hebb rule to approximate the log-odd of receiving

a reward for an associated action (see Figure 3.1), our simple model can handle the

case of more than two decision alternatives without any extra effort (see sections 3.2

and 3.3 for the theoretical analysis and Figures 3.5, 3.6, 3.8, 3.10 for empirical tasks).

WTA-circuits are of interest in the context of neural network models for action

selection, since it has been suggested that generic cortical microcircuits implement a soft

version of WTA-circuits (where za > 0 also for the runner-ups in the competition among

the La), see [52]. This view is supported by the anatomical observation that the output

cells (pyramidal neurons) of cortical microcircuits are subject to lateral inhibition (each

pyramidal neuron excites inhibitory interneurons that target other pyramidal neurons).

It is also supported by the physiological observation that simultaneous activation of very

large numbers of sensory neurons (for example in the retina) is transformed through

cortical processing into sparse activity of neurons in higher sensory areas (e.g., area IT).

Consequently, WTA-circuits have become a primary target for the design of neurally

inspired electronic hardware [95, 157].

The components of our neural network model (Figure 3.1) have substantial exper-

imental and theoretical support. Hebbian learning, and the use of weighted sums for

decision making [190] is clearly feasible for biological neurons. The other essential
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ingredient of our model for reward-based learning of decision making is a suitable pre-

processing of variables x (typically representing sensory inputs) that form the evidence

on which a decision has to be based in a single trial. Our model requires a sparse pop-

ulation coding of the values of these variables (both for variables with discrete and for

variables with continuous values, see section 3.6). Sparse encodings [167], or population

codes are common models for coding strategies of the brain, and experimental evidence

for the existence of such codes has been found in various brain areas of different species

[see e.g. 71, 165, 179].

Furthermore, in the case of conditioned dependencies among variables our model

assumes that there exists a population coding for “complex features” (reminiscent of

neural codes reported for example for visual areas V2 and IT), i.e. for combinations of

variables (see Figure 3.4 for an example). Hence, our simple neural network model for

learning decision making entails concrete predictions for the computational strategies,

neural codes, and learning mechanisms in those cortical areas that provide information

about sensory inputs in a highly processed form to other cortical areas where decisions

are made. It proposes that those subgroups of sensory variables (from the same or dif-

ferent sensory modalities) that have statistical dependencies, such as those represented

by a factor graph [130], are brought together in some cortical microcircuits, and that

projection neurons from these cortical microcircuits each assume a high firing rate for

a particular combination of values of these variables (thereby mimicking the output

variables yi of our general preprocessing, see section 3.4.1).

This link of factor graph theory and experimentally observed population codes

provides a novel view on the potential role of sensory areas that provide input to higher

decision making stages in the brain. The proposed preprocessing has the advantage

of relieving the subsequent decision stage from complex computations (such as belief

propagation via message passing) and nonlinear learning devices. In fact, it enables the

decision stage to use only linear operations in conjunction with WTA. It also enables

the decision stage to accumulate evidence from history through the very simple and

robust Hebbian learning processes that were discussed in this article.

In this article we assume that the graph structure of the factor graph is known,

which is a very common assumption for parameter learning algorithms in graphical

models [see e.g. 111, 156]. The evolution of preprocessing circuits is obviously a com-

plex process, and the design of learning algorithms that generate such preprocessing of
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sensory inputs is an interesting open problem. Testing variables for (conditional) de-

pendence is perhaps a less formidable problem for a neural network than it may appear

on first sight, provided one assumes that numerous autonomous learning processes try

to predict each variable in terms of others. Dependencies among the variables exist,

and can in principle be found autonomously by this process, whenever such prediction

learning turns out to be successful. As mentioned above, such relationships between

input signals may be learned on much longer time scales than decision strategies, which

require very fast adaptation.

Other obvious open problems that arise from our model are whether it can be im-

plemented with spiking neurons, and whether there exist relationships between the

theoretically optimal reward-modulated Bayesian Hebb rule and concrete heterosynap-

tic learning mechanisms of biological synapses such as those discussed in [14]. Another

open problem concerns a possible extension of our model to rewards signals with more

than two values, to third signals that represent predictions of rewards, and to reward

based learning in continuous time.

Altogether our simple neural network model for learning decision making has shown

that this problem is in some aspects less difficult than it may appear on first sight. It

remains to be explored whether biological neural systems have adopted related imple-

mentation strategies, or have found even simpler solutions to this problem.

3.7.2 Related Work

3.7.2.1 Models for Decision Making

The study of decision making in biological systems dates back to the classical exper-

iments by Pavlov, in which dogs learned associations between cues and rewards. On

the other hand, operant or instrumental conditioning is concerned with associations

between actions and rewards, and how behavior is modified through reward and pun-

ishment. The goal is to learn a policy, i.e. a way to select actions near-optimally

in response to environmental stimuli. According to [214], biological organisms first

transform sensory input into decision related variables, e.g. value representations in

area LIP for visual discrimination tasks in monkeys [232]. An unknown computational

mechanism maps the values of these variables to the probability of reward for executing

various actions, which then leads to a motor response. An actor-critic model is assumed,
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in which the actor and the critic are two modules that operate with a common reward

currency. The critic adapts the value of every action to the perceived reward prob-

abilities, thereby altering the decision transformation, which the actor uses to choose

actions. An example for models of instrumental conditioning is the experiment of [152],

in which the behavior of a foraging bee is simulated with a neural network model and a

suitable learning rule (a variation of the Rescorla-Wagner rule). [230] has described a

recurrent cortical network model, which uses feedback and winner-take-all mechanisms

to integrate information in visual discrimination tasks with two possible outcomes. [92]

have presented a model for optimal decision making with multiple actions, which mod-

els the functionality of the basal ganglia. Further neural network models for decision

making have been reviewed in [195].

3.7.2.2 Learning Rules for Decision Making

The classical model for learning associations of stimuli, actions, and rewards is the

Rescorla-Wagner rule [184]. It was the first mathematical model for learning that could

explain most of the effects observed in animal behavior studies. In particular it was able

to explain reactions based on combinations of stimuli. Reward associations for many

conditioning paradigms, such as e.g. partial reinforcement, inhibitory conditioning, or

extinction can be learned by the Rescorla-Wagner rule (and also by the Bayesian Hebb

rule). The associative model of the Rescorla-Wagner rule represents the predicted

amount of reward as a weighted sum of stimuli, and weights are updated using the

difference between the predicted and the actually received reward (see (3.26)). The

Rescorla-Wagner rule is therefore not a strictly Hebbian learning rule, because this

error signal, rather than the activation of the post-synaptic neuron is required for the

update. Studies by Schultz et al. have however indicated that such an error signal may

be available in the form of the neuromodulator dopamine [204].

Learning rules that minimize prediction errors were also useful to explain block-

ing phenomena in conditioning [38]. However, some observed effects like backward

blocking — an established reward association is unlearned, because another stimulus

sufficiently explains the occurrence of rewards — can neither be sufficiently captured

by the Rescorla-Wagner rule, nor by the Bayesian Hebb rule. The reason for this is that

weights in these models can only be reduced, if unrewarded trials are observed (which is

not the case in the backward blocking paradigm). Algorithms that specifically address
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learning of reward associations in the backward blocking scenario are based on Kalman

filter models for conditioning [216]. [41] argue that in addition to error correction, it

is necessary to model the uncertainty in the parameter estimates during learning, and

neuromodulators like acetylcholine or norepinephrine could signal such uncertainty in

biological systems [233]. An artificial recurrent neural network model, which approx-

imates the Kalman filter estimates of reward associations for backward blocking was

presented by [40]. A different learning mechanism is suggested by [85], who argue that

phenomena like backward blocking could also be modeled by learning changes in the

causal structure of the problem, rather than by learning new reward associations.

The mathematical problem of learning optimal action selection is also well-studied

in the field of reinforcement learning (RL) [217]. Typical RL algorithms learn value- or

Q-functions, which estimate the expected reward resulting from the execution of action

a in state x. The goal of RL is to converge to optimal policies, which select for every

state those actions that maximize the expected reward (typically a discounted long-

term reward for sequential decision problems). Classical RL algorithms do not directly

aim at maximizing the online performance, i.e. the amount of reward obtained during

learning, but typically employ some heuristics to tackle the exploration-exploitation

dilemma. This dilemma concerns the trade-off of online performance (exploitation)

and exploration of unseen parts of the state- and action space in order to improve the

final policy. More recently the problem of optimizing online performance has attracted

more attention in the RL literature [e.g. 9, 11, 115]. Asymptotic convergence of RL

algorithms to the optimal policy can only be guaranteed for discrete environments,

if action values are stored in look-up tables with one entry for every combination of

state and action. Such tabular representations are biologically not realistic, and for

computers the memory requirements are too large for most real-world applications.

Value functions are therefore approximated, but convergence results exist only for a

limited number of approximation schemes [17].

Using Bayesian inference for action selection in uncertain environments was e.g.

studied by [8], and [227]. They consider the problem of planning action sequences of

fixed length for partially observable Markov decision processes with one or more fixed

goal states. The dynamics of the environment are initially unknown. The learning part

uses frequency counters to update conditional probabilities for transition and reward

models. Planning is reduced to Bayesian inference in graphical models based on the
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learned parameters, which is computed with standard algorithms, like e.g. belief prop-

agation or the junction tree algorithm [22]. The posterior over actions, given that start

and goal state are fixed, is computed and the maximally likely sequence of actions (and

intermediate states in [227]) is selected. This approach is conceptually quite different

from our approach, since our approach does not learn sequences of actions, and does

not require a defined goal-state. The learned parameters in our model (the weights

wa,i) are not auxiliary variables, but are directly used in the decision making process.

Furthermore, our approach only requires very basic and apparently biologically feasible

mechanisms like Hebbian learning, weighted summations, and winner-take-all. Imple-

menting full Bayesian inference is a much more difficult process, for which it is not clear

how the brain can achieve it efficiently, although some models have been proposed (e.g.

[45, 182]). [126, 133, 134] and [197] have studied various learning rules (although not

in a reinforcement learning context) that approximate optimal Bayesian inference. The

learning rules differ from the Bayesian Hebb rule that was introduced in this article

primarily by fact that they require auxiliary counters for storing evidence from past

experience.

3.7.2.3 Analogies to recent experimental studies of decision making in pri-

mates

Recent experimental results by [232] have shown that the previous experience of macaque

monkeys in probabilistic decision tasks is represented by the firing rates of neurons in

area LIP in the form of the log-likelihood ratio of receiving a reward for a particular

action a in response to a stimulus x, like in equation (3.1) of our framework. In their

experiment a monkey had to choose at each trial between two possible actions. It

could choose to move the eyes either towards a red target R (a = R) or a green target

G (a = G). The probability that a reward was received at either choice depended on

four visual input stimuli x = (x1, x2, x3, x4) that had been shown at the beginning of the

trial. Every stimulus xk, k = 1, . . . , 4, was one shape sj out of a set of ten possibilities

{s1, . . . , s10} and had an associated weight ωk = ω(sj), which had been defined by the

experimenter. The log-odd of obtaining a reward was equal to the sum of ω1, . . . , ω4:

log
p(r = 1|x, a = R)

p(r = 1|x, a = G)
=

4∑
k=1

ωk . (3.34)
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The monkey thus had to combine the evidence from four visual stimuli to optimize

its action selection behavior. It also had to find out that reward probabilities only

depended on the presented shapes, but not on the order or location in which they were

presented. A reward was assigned before the trial to one of the targets according to

the distribution (3.34).

One can easily model this task in our framework, using a simple population code

y = Φ(x) as in (3.18), where the stimulus x was encoded by a 40-dimensional binary

vector y with exactly m = 4 inputs being 1. The positions of the 1’s corresponded to

the four visual shapes that were shown during a trial. The log-odd of obtaining reward

with action a = R can then be written as a weighted sum

log
p(r = 1|y, a = R)

p(r = 0|y, a = R)
=

40∑
i=1

w∗i yi , (3.35)

with

w∗i = log
p(r = 1|yi = 1, a = R)

p(r = 0|yi = 1, a = R)
. (3.36)

Due to the symmetry of the task (reward is either at R or G), the log-odds in (3.34)

and (3.35) are equivalent. The weights wi can be learned with an efficient version of the

reward-modulated Bayesian Hebb rule (3.8), which takes this symmetry into account.

The equilibrium w∗i of weight wi under this slightly modified rule is then exactly at the

desired value (3.36). We simulated this task, using a learner with the reward-modulated

Bayesian Hebb rule and a 1/Ni learning rate for every weight. Figure 3.11A shows that

this task can be successfully learned both by the exact reward-modulated Bayesian

Hebb rule (3.8) and the linear approximation (3.12). The learning rules learn as fast

as the non-Hebbian Rescorla-Wagner rule (3.26), and their performance is close to the

theoretical optimum after 1000 training trials. Furthermore Figures 3.11B and C show

that the intermediate and final policies resemble the behavior that was reported for

two monkeys in [232].

The experimental data of [232] are consistent with the assumption that monkeys

apply a WTA-operation to the log-likelihood ratios

La = log
p(r = 1|x, a)

p(r = 0|x, a)
,

which are, according to their model, represented through firing rates of neurons in

area LIP. It is not known, which values are represented by the firing rates yi of the
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Figure 3.11: Performance of the reward-modulated Bayesian Hebb rule in the model

for the conditioning task by Yang and Shadlen (see [232] for details). A) The reward-

modulated Bayesian Hebb rule learns as fast as the non-Hebbian Rescorla-Wagner rule

(curves result from averaging over 32 repetitions of the experiment, where the average re-

ward was measured on 500 independent test trials). The horizontal dashed line reflects the

theoretically best possible performance. Error bars are in the range of 10−2 and are omit-

ted for clarity. B, C) Action selection policies (greedy policy according to (3.3)) resulting

from the model using the exact Bayesian Hebb rule (3.8) (B) or the linear Bayesian Hebb

rule (3.12) (C) after 100 (left), 500 (middle), and 1000 (right) trials, fitted by sigmoidal

curves (results are from 32 repetitions of the experiment, where the behavior was measured

on 1000 independent test trials). The policies represented by the left and right panels are

qualitatively similar to the policies adopted by monkeys H and J in the experiments by

[232] after learning (see Figure 1b in [232]).
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presynaptic neurons of these neurons. In our simple model we model the neurons within

the WTA circuit as linear neurons, and assume that their output La can be written

as a linear sum La =
∑n

i=0wa,i yi of variables yi that represent a population coding

of the sensory input x. As we have shown in section 3.4, if this population coding is

chosen in a suitable way, the true reward log-odd log p(r=1|x,a)
p(r=0|x,a) can in fact be written

as such weighted sum. Hence our theoretical framework makes concrete predictions

about the nature of the transformation of raw sensory inputs x to inputs y for higher

brain areas that select suitable responses. The required weights wa,i can be learnt by

the reward-modulated Bayesian Hebb rule, and a linear Poisson neuron whose weights

are updated according to this rule will adapt for each trial a firing rate proportional to

the log-likelihood ratio log p(a=R|x)
p(a=G|x) . This response matches that of the neurons in area

LIP shown in Figure 2c and 3b of [232].1

The Bayesian Hebb rule provides an arguably minimal model for the biological data

of [232]. One difference between their results and our model is that learning is much

faster in our model. This could be explained by the fact that many aspects of the

probabilistic decision task of [232] - e.g. the fact that the reward policy was stationary,

the fact that the reward probabilities did not depend on the order of appearance, or

the spatial location of the shown icons, and the fact that reward probabilities did not

depend on any other aspects that the monkeys had perceived before or during a session

- also had to be learned by the monkeys, whereas they were assumed as given in our

model. Learning of these invariances and symmetries was actually quite hard in the

set-up of [232] since rewards were given stochastically, rather than by deterministic laws

(note that even many humans believe to ”learn” various misleading reward-predictors

while gambling for a long time in the lottery or casinos). An interesting open question is

whether reward-based learning of decision making by humans or animals can approach

the learning speed of the Bayesian Hebb rule when such differences between the learning

tasks of the living organisms and the mathematical model have been removed.

3.7.3 Conclusion

We have demonstrated the functionality of a simple neural network model for learn-

ing of asymptotically optimal action selection, which uses only biologically plausible

1Note that the optimal weights w∗i are equal to the weights ωk = ω(sj) that were assigned to the

different visual shapes sj .

65



3. REWARD-MODULATED HEBBIAN LEARNING OF DECISION
MAKING

mechanisms such as reward-modulated Hebbian learning, sparse population coding,

and winner-take-all computations. Furthermore we have shown that on the basis of

a suitable preprocessing that takes dependencies among salient variables into account,

a very simple Hebbian learning rule can converge towards optimal policies extremely

fast. On the side, our approach offers concrete processing goals for brain areas that

integrate multi-modal sensory input, in order to facilitate learning and decision making

in higher brain areas. Empirical results have confirmed that the new reward-modulated

Bayesian Hebb rule, and an even simpler linear approximation to it, compare favor-

ably to well-known non-Hebbian learning rules for action-selection tasks. Our results

suggest that learning and decision making under uncertainty can be implemented very

efficiently in biological neural systems.

3.8 Proofs

3.8.1 Convergence proofs for the Bayesian Hebb rule

We assume that p(r|y, a), the reward probability conditioned on the current input and

action, is stationary, and p(yi = 1, a) > 0 for all a ∈ A and i ∈ {1, . . . , n}. Apart from

the latter assumption, the equilibrium is independent of the exploration policy π(x, a).

The constraint on p(yi = 1, a) means that all values of all input variables must have a

non-zero probability in the input-distribution, and every action must have a non-zero

probability of being tried out. If p(yi = 1, a) = 0 for some yi and a, then such trials

are never encountered, and no meaningful weight wa,i can be learned.

Since updates of wa,i in (3.8) are only made when a is executed and yi = 1, one can

write

E[∆wa,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (1 + e−wa,i)−

−p(r = 0|yi = 1, a) · η · (1 + ewa,i) = 0

⇔ 1 + ewa,i

1 + e−wa,i
=
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)

⇔ ewa,i =
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)

⇔ wa,i = log
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)
.
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The above is a chain of equivalence transformations, therefore w∗a,i = log p(r=1|yi=1,a)
p(r=0|yi=1,a) is

the only equilibrium value of rule (3.8).

One can also show that the expected update of weights wa,i is always in the right

direction:

E[∆wa,i]|w∗a,i+2ε = E[∆wa,i]|w∗a,i+2ε − E[∆wa,i]|w∗a,i
∝ p(r=1|yi = 1, a)e−w

∗
a,i(e−2ε − 1)− p(r=0|yi = 1, a)ew

∗
a,i(e2ε − 1)

= p(r=0|yi = 1, a)(e−2ε − 1)− p(r=1|yi = 1, a)(e2ε − 1)

=
[
(p(r=0|yi = 1, a)e−ε + p(r=1|yi = 1, a)eε

]
(e−ε − eε). (3.37)

The first term in (3.37) is always positive, and from the last term in (3.37) one can

see that whenever wa,i > w∗a,i, i.e. ε > 0, the expected change of wa,i is negative, and

positive if ε < 0. The expected change of weights is therefore always in the direction of

the optimal weight, and the initial weight values or pertubations of the weights decay

exponentially fast. Furthermore, trajectories of weights that start at different initial

values converge exponentially fast. Hence the resulting weight dynamics is contracting

in the sense of [142].

3.8.2 Convergence proof for the Linear Bayesian Hebb rule

The expected update of the linear Bayesian Hebb rule (3.12) vanishes when

E[∆wa,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (2− wa,i)− p(r = 0|yi = 1, a) · η · (2 + wa,i) = 0

⇔ 2(p(r = 1|yi = 1, a)− p(r = 0|yi = 1, a)) =

= wa,i · (p(r = 1|yi = 1, a) + p(r = 0|yi = 1, a)) = wa,i

⇔ wa,i = 2(p(r = 1|yi = 1, a)− 1 + p(r = 1|yi = 1, a))

⇔ wa,i = −2 + 4 · p(r = 1|yi = 1, a) .

We have used here that the reward is binary, and so

p(r = 0|yi = 1, a) + p(r = 1|yi = 1, a) = 1 .

The above is a chain of equivalence transformations, so w+
a,i = −2+4 ·p(r = 1|yi = 1, a)

is the only equilibrium value of (3.12).
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3.8.3 Derivation of the population code for the Naive Bayes case

From the Naive Bayes assumption we know that

p(r = 1|x, a)

p(r = 0|x, a)
=
p(r = 1|a)

p(r = 0|a)

m∏
k=1

p(xk|r = 1, a)

p(xk|r = 0, a)
. (3.38)

Each discrete conditional distribution p(xk|r, a) for a fixed action a and a fixed value

of r is fully described by mk probability values, one for each possible value of xk, and

can be written in the form

p(xk|r, a) = p(xk = 1|r, a)I(xk=1) · p(xk = 2|r, a)I(xk=2) · . . . · p(xk = mk|r, a)I(xk=mk),

where the indicator function I is defined as I(true) = 1 and I(false) = 0. With this

notation (3.38) can be rewritten as

p(r = 1|x, a)

p(r = 0|x, a)
=

p(r = 1|a)

p(r = 0|a)

m∏
k=1

mk∏
j=1

(
p(xk = j|r = 1, a)

p(xk = j|r = 0, a)

)I(xk=j)

=
p(r = 1|a)

p(r = 0|a)

m∏
k=1

mk∏
j=1

(
p(r = 1|xk = j, a)

p(r = 0|xk = j, a)
· p(r = 0|a)

p(r = 1|a)

)I(xk=j)

=

(
p(r = 1|a)

p(r = 0|a)

)1−m m∏
k=1

mk∏
j=1

(
p(r = 1|xk = j, a)

p(r = 0|xk = j, a)

)I(xk=j)

. (3.39)

3.8.4 Convergence proof for the Continuous Bayesian Hebb rule

The equilibrium of the continuous Bayesian Hebb rule (3.31) is reached when the ex-

pected update E[∆wa,i] vanishes:

E[∆wa,i] = 0 ⇔ (1 + e−wa,i)

∫
X
yi(x) p(r = 1,x|a) dx

−(1 + ewa,i)

∫
X
yi(x) p(r = 0,x|a) dx = 0

We now use the interpretation of yi(x) as p(ỹi = 1|x). Since the virtual population

code feature ỹi depends only on x, but not on r, one can assume that r and ỹi are

conditionally independent given x, i.e.

p(r, ỹi|x, a) = p(r|x, a) · p(ỹi|x) .
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This assumption, and simple transformations using basic laws of probability lead to

E[∆wa,i] = 0 ⇔ 1 + ewa,i

1 + e−wa,i
=

∫
X p(ỹi = 1|x) p(r = 1|x, a) p(x|a) dx∫
X p(ỹi = 1|x) p(r = 0|x, a) p(x|a) dx

⇔ ewa,i =

∫
X p(ỹi = 1, r = 1|x, a) p(x|a) dx∫
X p(ỹi = 1, r = 0|x, a) p(x|a) dx

⇔ ewa,i =

∫
X p(ỹi = 1, r = 1,x|a)dx∫
X p(ỹi = 1, r = 0,x|a)dx

⇔ ewa,i =
p(ỹi = 1, r = 1|a)

p(ỹi = 1, r = 0|a)

⇔ ewa,i =
p(r = 1|ỹi = 1, a)

p(r = 0|ỹi = 1, a)

⇔ wa,i = log
p(r = 1|ỹi = 1, a)

p(r = 0|ỹi = 1, a)
.

3.8.5 Performance of the Rescorla-Wagner rule with preprocessing

The performance of the Rescorla-Wagner rule (3.26) can be improved by preprocessing

input signals before the learning rule is applied. Figure 3.12 shows the average reward

for the two tasks studied in Figure 3.5 (with 2 binary inputs and 4 actions), and Figure

3.8 (with 100 binary inputs and 10 actions). When the Rescorla-Wagner rule (3.26)

was applied to simple population coding (SP) or to generalized preprocessing (GP),

it learned faster and converged to better policies, although the performance of the

Bayesian Hebb rule was mostly superior. These results suggest that the preprocessing

methods presented in section 3.4, could also be beneficial for other learning mechanisms.

The Augmented Rescorla-Wagner rule [234] uses a preprocessing mechanism similar to

GP, but it did not perform better for the experiments in this article.
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Figure 3.12: The performance of the Rescorla-Wagner rule can be improved by prepro-

cessing input signals. The Rescorla-Wagner rule was applied to preprocessed inputs using

simple population coding (Rescorla-Wagner SP), or generalized preprocessing (Rescorla-

Wagner GP). The Rescorla-Wagner rule with preprocessing generally learned faster, and

converged to better policies than the classical Rescorla-Wagner rule. A) Performance for

the same 4-action tasks with 2 binary input variables as in Figure 3.5. B) Performance in

the same 10-action tasks with 100 binary input variables as in Figure 3.8.
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Bayesian Computation Emerges

in Generic Cortical Microcircuits

through Spike-Timing-Dependent

Plasticity

Abstract

The principles by which networks of neurons compute, and how spike-timing dependent

plasticity (STDP) of synaptic weights generates and maintains their computational

function, are unknown. Preceding work has shown that soft winner-take-all (WTA)

circuits, where pyramidal neurons inhibit each other via interneurons, are a common

motif of cortical microcircuits. We show through theoretical analysis and computer

simulations that Bayesian computation is induced in these network motifs through

STDP in combination with activity-dependent changes in the excitability of neurons.

The fundamental components of this emergent Bayesian computation are priors that

result from adaptation of neuronal excitability and implicit generative models for hidden

causes that are created in the synaptic weights through STDP. In fact, a surprising

result is that STDP is able to approximate a powerful principle for fitting such implicit

generative models to high-dimensional spike inputs: Expectation Maximization. Our

results suggest that the experimentally observed spontaneous activity and trial-to-trial

variability of cortical neurons are essential features of their information processing
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capability, since their functional role is to represent probability distributions rather

than static neural codes. Furthermore it suggests networks of Bayesian computation

modules as a new model for distributed information processing in the cortex.

Author Summary

How do neurons learn to extract information from their inputs, and perform meaning-

ful computations? Neurons receive inputs as continuous streams of action potentials

or “spikes” that arrive at thousands of synapses. The strength of these synapses -

the synaptic weight - undergoes constant modification. It has been demonstrated in

numerous experiments that this modification depends on the temporal order of spikes

in the pre- and postsynaptic neuron, a rule known as STDP, but it has remained un-

clear, how this contributes to higher level functions in neural network architectures.

In this paper we show that STDP induces in a commonly found connectivity motif

in the cortex - a winner-take-all (WTA) network - autonomous, self-organized learn-

ing of probabilistic models of the input. The resulting function of the neural circuit

is Bayesian computation on the input spike trains. Such unsupervised learning has

previously been studied extensively on an abstract, algorithmical level. We show that

STDP approximates one of the most powerful learning methods in machine learning,

Expectation-Maximization (EM). In a series of computer simulations we demonstrate

that this enables STDP in WTA circuits to solve complex learning tasks, reaching a

performance level that surpasses previous uses of spiking neural networks.

4.1 Introduction

Numerous experimental data show that the brain applies principles of Bayesian infer-

ence for analyzing sensory stimuli, for reasoning and for producing adequate motor

outputs [54, 86, 87, 127, 183]. Bayesian inference has been suggested as a mechanism

for the important task of probabilistic perception [62], in which hidden causes (e.g.

the categories of objects) that explain noisy and potentially ambiguous sensory inputs

have to be inferred. This process requires the combination of prior beliefs about the

availability of causes in the environment, and probabilistic generative models of likely

sensory observations that result from any given cause. By Bayes Theorem, the result
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of the inference process yields a posterior probability distribution over hidden causes

that is computed by multiplying the prior probability with the likelihood of the sensory

evidence for all possible causes. In this article we refer to the computation of poste-

rior probabilities through a combination of probabilistic prior and likelihood models

as Bayesian computation. It has previously been shown that priors and models that

encode likelihoods of external stimuli for a given cause can be represented in the pa-

rameters of neural network models [62, 143]. However, in spite of the existing evidence

that Bayesian computation is a primary information processing step in the brain, it has

remained open how networks of neurons can acquire these priors and likelihood models,

and how they combine them to arrive at posterior distributions of hidden causes.

The fundamental computational units of the brain, neurons and synapses, are well

characterized. The synaptic connections are subject to various forms of plasticity, and

recent experimental results have emphasized the role of STDP, which constantly mod-

ifies synaptic strengths (weights) in dependence of the difference between the firing

times of the pre- and postsynaptic neurons (see [36, 60] for reviews). Functional con-

sequences of STDP can resemble those of rate-based Hebbian models [209], but may

also lead to the emergence of temporal coding [117] and rate-normalization [1, 118].

In addition, the excitability of neurons is modified through their firing activity [37].

Some hints about the organization of local computations in stereotypical columns or

so-called cortical microcircuits [88] arises from data about the anatomical structure of

these hypothesized basis computational modules of the brain. In particular, it has been

observed that local ensembles of pyramidal neurons on layers 2/3 and layers 5/6 typi-

cally inhibit each other, via indirect synaptic connections involving inhibitory neurons

[52]. These ubiquitous network motifs were called soft winner-take-all (WTA) circuits,

and have been suggested as neural network models for implementing functions like non-

linear selection [52, 95], normalization [30], selective attention [108], decision making

[158, 173], or as primitives for general purpose computation [144, 192].

A comprehensive theory that explains the emergence of computational function in

WTA networks of spiking neurons through STDP has so far been lacking. We show

in this article that STDP and adaptations of neural excitability are likely to provide

the fundamental components of Bayesian computation in soft WTA circuits, yielding

representations of posterior distributions for hidden causes of high-dimensional spike

inputs through the firing probabilities of pyramidal neurons. This is shown in detail
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for a simple, but very relevant feed-forward model of Bayesian inference, in which

the distribution for a single hidden cause is inferred from the afferent spike trains.

Our new theory thus describes how modules of soft WTA circuits can acquire and

perform Bayesian computations to solve one of the fundamental tasks in perception,

namely approximately inferring the category of an object from feed-forward input.

Neural network models that can handle Bayesian inference in general graphical models,

including bi-directional inference over arbitrary sets of random variables, explaining

away effects, different statistical dependency models, or inference over time require

more complex network architectures [27, 172], and are the topic of ongoing research.

Such networks can be composed out of interconnected soft WTA circuits, which has

been shown to be a powerful principle for designing neural networks that can solve

arbitrary deterministic or stochastic computations [144, 172, 192]. Our theory can thus

be seen as a first step towards learning the desired functionality of individual modules.

At the heart of this link between Bayesian computation and network motifs of

cortical microcircuits lies a new theoretical insight on the micro-scale: If the STDP-

induced changes in synaptic strength depend in a particular way on the current synaptic

strength, STDP approximates for each synapse exponentially fast the conditional prob-

ability that the presynaptic neuron has fired just before the postsynaptic neuron (given

that the postsynaptic neuron fires). This principle suggests that synaptic weights can

be understood as conditional probabilities, and the ensemble of all weights of a neu-

ron as a generative model for high-dimensional inputs that - after learning - causes

it to fire with a probability that depends on how well its current input agrees with

this generative model. The concept of a generative model is well known in theoretical

neuroscience [99, 100], but it has so far primarily been applied in the context of an

abstract non-spiking neural circuit architecture. In the Bayesian computations that we

consider in this article, internal generative models are represented implicitly through

the learned values of bottom-up weights in spiking soft-WTA circuits, and inference is

carried out by neurons that integrate such synaptic inputs and compete for firing in

a WTA circuit. In contrast to previous rate-based models for probabilistic inference

[116, 198, 199] every spike in our model has a clear semantic interpretation: one spike

indicates the instantaneous assignment of a certain value to an abstract variable repre-

sented by the firing neuron. In a Bayesian inference context, every input spike provides
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evidence for an observed variable, whereas every output spike represents one stochastic

sample from the posterior distribution over hidden causes encoded in the circuit.

We show that STDP is able to approximate the arguably most powerful known

learning principle for creating these implicit generative models in the synaptic weights:

Expectation Maximization (EM). The fact that STDP approximates EM is remarkable,

since it is known from machine learning that EM can solve a fundamental chicken-and-

egg problem of unsupervised learning systems [44]: To detect - without a teacher -

hidden causes for complex input data, and to induce separate learning agents to spe-

cialize each on one of the hidden causes. The problem is that as long as the hidden

causes are unknown to the learning system, it cannot tell the hidden units what to

specialize on. EM is an iterative process, where initial guesses of hidden causes are

applied to the current input (E-step) and successively improved (M-step), until a local

maximum in the log-likelihood of the input data is reached. In fact, the basic idea of

EM is so widely applicable and powerful that most state-of-the art machine learning

approaches for discovering salient patterns or structures in real-world data without a

human supervisor rely on some form of EM [22]. We show that in our spiking soft-WTA

circuit each output spike can be viewed as an application of the E-step of EM. The

subsequent modification of the synaptic weights between the presynaptic input neurons

and the very neuron that has fired the postsynaptic spike according to STDP can be

viewed as a move in the direction of the M-step of a stochastic online EM procedure.

This procedure strives to create optimal internal models for high-dimensional spike

inputs by maximizing their log-likelihood. We refer to this interpretation of the func-

tional role of STDP in the context of spiking WTA circuits as spike-based Expectation

Maximization (SEM).

This analysis gives rise to a new perspective of the computational role of local WTA

circuits as parts of cortical microcircuits, and the role of STDP in such circuits: The

fundamental computational operations of Bayesian computation (Bayes Theorem) for

the inference of hidden causes from bottom-up input emerge in these local circuits

through plasticity. The pyramidal neurons in the WTA circuit encode in their spikes

samples from a posterior distribution over hidden causes for high-dimensional spike in-

puts. Inhibition in the WTA accounts for normalization [30], and in addition controls

the rate at which samples are generated. The necessary multiplication of likelihoods

(given by implicit generative models that are learned and encoded in their synaptic
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weights) with simultaneously learned priors for hidden causes (in our model encoded

in the neuronal excitability), does not require any extra computational machinery. In-

stead, it is automatically carried out (on the log scale) through linear features of stan-

dard neuron models. We demonstrate the emergent computational capability of these

self-organizing modules for Bayesian computation through computer simulations. In

fact, it turns out that a resulting configuration of networks of spiking neurons can solve

demanding computational tasks, such as the discovery of prototypes for handwritten

digits without any supervision. We also show that these emergent Bayesian computa-

tion modules are able to discover, and communicate through a sparse output spike code,

repeating spatio-temporal patterns of input spikes. Since such self-adaptive computing

and discrimination capability on high-dimensional spatio-temporal spike patterns is not

only essential for early sensory processing, but could represent a generic information

processing step also in higher cortical areas, our analysis suggests to consider networks

of self-organizing modules for spike-based Bayesian computation as a new model for

distributed real-time information processing in the brain.

Preliminary ideas for a spike-based implementation of EM were already presented in

the extended abstract [159], where we analyzed the relationship of a simple STDP rule

to a Hebbian learning rule, and sketched a proof for stochastic online EM. In the present

work we provide a rigorous mathematical analysis of the learning procedure, a proof of

convergence, expand the framework towards learning spatio-temporal spike patterns,

and discuss in detail the relationship of our STDP rule to experimental results, as

well as the interpretation of spikes as samples from instantaneous posterior probability

distributions in the context of EM.

4.2 Results

In this section we define a simple model circuit and show that every spiking event of the

circuit can be described as one independent sample of a discrete probability distribution,

which itself evolves over time in response to the spiking input. Within this network

we analyze a variant of a STDP rule, in which the strength of potentiation depends on

the current weight value. This local learning rule, which is supported by experimental

data, and at intermediate spike frequencies closely resembles typical STDP rules from

the literature, drives every synaptic weight to converge stochastically to the log of the
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probability that the presynaptic input neuron fired a spike within a short time window

[tf − σ, tf ], before the postsynaptic neuron spikes at time tf :

w → log p(presynaptic neuron fired within [tf − σ, tf ] |postsynaptic neuron fires at tf ) .

(4.1)

We then show that the network model can be viewed as performing Bayesian com-

putation, meaning that every spike can be understood as a sample from a posterior

distribution over hidden causes in a generative probabilistic model, which combines

prior probabilities and evidence from current input spike trains.

This understanding of spikes as samples of hidden causes leads to the central result

of this paper. We show that STDP implements a stochastic version of Expectation

Maximization for the unsupervised learning of the generative model and present con-

vergence results for SEM. Importantly, this implementation of EM is based on spike

events, rather than spike rates.

Finally we discuss how our model can be implemented with biologically realistic

mechanisms. In particular this provides a link between mechanisms for lateral inhibition

in WTA circuits and learning of probabilistic models. We finally demonstrate in several

computer experiments that SEM can solve very demanding tasks, such as detecting

and learning repeatedly occurring spike patterns, and learning models for images of

handwritten digits without any supervision.

4.2.1 Definition of the network model

Our model consists of a network of spiking neurons, arranged in a WTA circuit, which

is one of the most frequently studied connectivity patterns (or network motifs) of corti-

cal microcircuits [52]. The input of the circuit is represented by the excitatory neurons

y1, . . . , yn. This input projects to a population of excitatory neurons z1, . . . , zK that

are arranged in a WTA circuit (see Fig. 4.1). We model the effect of lateral inhibition,

which is the competition mechanism of a WTA circuit [170], by a common inhibitory

signal I(t) that is fed to all z neurons and in turn depends on the activity of the z neu-

rons. Evidence for such common local inhibitory signals for nearby neurons arises from

numerous experimental results, see e.g. [52, 56, 61, 166]. We do not a priori impose

a specific functional relationship between the common inhibition signal and the exci-

tatory activity. Instead we will later derive necessary conditions for this relationship,

and propose a mechanism that we use for the experiments.
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The individual units zk are modeled by a simplified Spike Response Model [73] in

which the membrane potential is computed as the difference between the excitatory

input uk(t) and the common inhibition term I(t). uk(t) sums up the excitatory inputs

from neurons y1, . . . , yn as

uk(t) = wk0 +
n∑
i=1

wki · yi(t) . (4.2)

wki · yi(t) models the EPSPs evoked by spikes of the presynaptic neuron yi, and wk0

models the intrinsic excitability of the neuron zk. In order to simplify our analysis

we assume that the EPSP can be modeled as a step function with amplitude wki, i.e.,

yi(t) it takes on the value 1 in a finite time window of length σ after a spike and is

zero before and afterwards. Further spikes within this time window do not contribute

additively to the EPSP, but only extend the time window during which the EPSP is in

the high state. We will later show how to extend our results to the case of realistically

shaped and additive EPSPs.

We use a stochastic firing model for zk, in which the firing probability depends

exponentially on the membrane potential, i.e.,

p(zk fires at time t) ∝ exp(uk(t)− I(t)) , (4.3)

which is in good agreement with most experimental data [113]. We can thus model

the firing behavior of every neuron zk in the WTA as an independent inhomogeneous

Poisson process whose instantaneous firing rate is given by rk(t) = exp(uk(t)− I(t)).

In order to understand how this network model generates samples from a probability

distribution, we first observe that the combined firing activity of the neurons z1, . . . , zk

in the WTA circuit is simply the sum of the K independent Poisson processes, and

can thus again be modeled as an inhomogeneous Poisson process with rate R(t) =∑N
k=1 rk(t). Furthermore, in any infinitesimally small time interval [t, t+δt], the neuron

zk spikes with probability rk(t)δt. Thus, if we know that at some point in time t, i.e.

within [t, t+δt], one of the neurons z1, . . . , zK produces an output spike, the conditional

probability qk(t) that this spike originated from neuron zk can be expressed as

qk(t) =
rk(t)δt

R(t)δt
=

euk(t)∑K
k′=1 e

uk′ (t)
. (4.4)
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Every single spike from the WTA circuit can thus be seen as an independent sample

from the instantaneous distribution in Eq. (4.4) at the time of the spike. Although the

instantaneous firing rate of every neuron directly depends on the value of the inhibition

I(t), the relative proportion of the rate rk(t) to the total WTA firing rate R(t) is

independent of the inhibition, because all neurons receive the same inhibition signal

I(t). Note that qk(t) determines only the value of the sample at time t, but not the time

point at which a sample is created. The temporal structure of the sampling process

depends only on the overall firing rate R(t).
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Figure 4.1: The network model and its probabilistic interpretation. A Circuit

architecture. External input variables are encoded by populations of spiking neurons, which

feed into a Winner-take-all (WTA) circuit. Neurons within the WTA circuit compete via

lateral inhibition and have their input weights updated through STDP. Spikes from the

WTA circuit constitute the output of the system. B Generative probabilistic model for

a multinomial mixture: A vector of external input variables x1, . . . , xm is dependent on a

hidden cause, which is represented by the discrete random variable k. In this model it is

assumed that the xi’s are conditionally independent of each other, given k. The inference

task is to infer the value of k, given the observations for xi. Our neuronal network model

encodes the conditional probabilities of the graphical model into the weight vector w, such

that the activity of the network can be understood as execution of this inference task.

This implementation of a stochastic WTA circuit does not constrain in any way the

kind of spike patterns that can be produced. Every neuron fires independently according

to a Poisson process, so it is perfectly possible (and sometimes desirable) that there

are two or more neurons that fire (quasi) simultaneously. This is no contradiction to
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the above theoretical argument of single spikes as samples. There we assumed that

there was only one spike at a time inside a time window, but since we assumed these

windows to be infinitesimally small, the probability of two spikes occurring exactly at

the same point in continuous time is zero.

Synaptic and Intrinsic Plasticity
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Figure 4.2: Learning curves for STDP. Under the simple STDP model (red curve),

potentiation occurs only if the postsynaptic spike falls within a time window of length σ

(typically 10ms) after the presynaptic spike. The convergence properties of this simpler

version in conjunction with rectangular non-additive EPSPs are easier to analyze. In our

simulations we use the more complex version (blue dashed curve) in combination with

EPSPs that are modeled as biologically realistic α-kernels (with plausible time-constants

for rise and decay of 1 respectively 15 ms).

We can now establish a link between biologically plausible forms of spike-based

learning in the above network model and learning via EM in probabilistic graphical

models. The synaptic weights wki of excitatory connections between input neurons yi

and neurons zk in the WTA circuit change due to STDP. Many different versions of

STDP rules have emerged from experimental data [29, 36, 207]. For synaptic connec-

tions between excitatory neurons, most of them yield a long term potentiation (LTP)

when the presynaptic neuron yi fires before the postsynaptic neuron zk, otherwise a

long term depression (LTD). In our model we use a STDP rule in which the shape of the

positive update follows the shape of EPSPs at the synapses, and in which the amplitude

of the update ∆wki depends on the value of the synaptic weight wki before the update

as in Fig. 4.2. Specifically, we propose a rule in which the ratio of LTP and LTD ampli-

tudes is inversely exponentially dependent on the current synaptic weight. LTP curves
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that mirror the EPSP shape are in accordance with previous studies, which analyzed

optimal shapes of STDP curves under different mathematical criteria [174, 223]. The

depression part of the rule in Fig. 4.2 is a flat offset that contrasts the potentiation.

We will show later that this form of LTD occurs in our simulations only at very low

repetition frequencies, and instead at natural frequencies our model gives rise to a form

of STDP with spike-timing dependent LTD that is very similar to plasticity curves

observed in biology [18, 207]. We will also analyze the relationship between this rule

and a biologically more realistic STDP rule with an explicit time-decaying LTD part.

We can formulate this STDP-rule as a Hebbian learning rule wki ← wki + η∆wki

- with learning rate η - which is triggered by a spike of the postsynaptic neuron zk at

time tf . The dependence of ∆wki on the synaptic activity yi(t) and the current value

of the synaptic weight is given by

∆wki=

{
ce−wki − 1, if yi(t

f )=1, i.e. yi fired in [tf − σ, tf ]
−1, if yi(t

f )=0, i.e. yi did not fire in [tf − σ, tf ]
. (4.5)

Since yi(t) reflects the previously defined step function shape of the EPSP, this update

rule is exactly equivalent to the simple STDP rule (solid red curve) in Fig. 4.2 for the

case of the pairing of one pre- and one postsynaptic spike. The dependence on the

presynaptic activity yi is reflected directly by the time difference tpost − tpre between

the pre- and the postsynaptic spikes. According to this rule positive updates are only

performed if the presynaptic neuron fired in a time window of σ ms before the postsy-

naptic spike. This learning rule therefore respects the causality principle of LTP that

is implied in Hebb’s original formulation [96], rather than looking only at correlations

of firing rates.

We can interpret the learning behavior of this simple STDP rule from a probabilistic

perspective. Defining a stationary joint distribution p∗(y, z) over the binary input

activations y at the times of the postsynaptic spikes, and the binary vector z, which

indicates the source of the postsynaptic spike by setting one zk = 1, we show in Methods

that the equilibrium condition of the expected update E[∆wki] leads to the single

solution

E[∆wki] = 0 ⇐⇒ wki = log p∗(yi=1|zk=1) + log c . (4.6)

This stochastic convergence to the log-probability of the presynaptic neuron being

active right before the postsynaptic neuron fires is due to the exponential dependence
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of the potentiation term on the current weight value. Log-probabilities are necessarily

negative values, whereas for biological neural networks we typically expect excitatory,

i.e. positive weights from the excitatory input neurons. The parameter c shifts the

range of the values for the weights wki into the positive regime for c > 1. For the sake

of simplicity we assume that c = 1 for the following theoretical analysis and we show

in Methods that all results remain true for any positive value of c.

In analogy to the plasticity of the synaptic weights we also explore a form of intrinsic

plasticity of the neurons. We interpret wk0 as an indicator for the excitability of the

neuron zk and apply a circuit-spike triggered update rule wk0 ← wk0 + η∆wk0 with

∆wk0 = e−wk0zk − 1 . (4.7)

Whenever a neuron zk fires, the excitability is increased and the amount of increase is

inversely exponentially dependent on the current excitability. Otherwise the excitability

is decreased by a constant. Such positive feedback through use-dependent changes

in the excitability of neurons were found in numerous experimental studies (see e.g.

[35, 37]). This concrete model of intrinsic plasticity drives the excitability wk0 towards

the only equilibrium point of the update rule, which is log p∗(zk = 1). In Methods (see

’Weight offsets and positive weights’) we show that the depression of the excitability can

be modeled either as an effect of lateral inhibition from firing of neighboring neurons,

or as a constant decay, independent of the instantaneous circuit activity. Both methods

lead to different values wk0, it is true, but encode identical instantaneous distributions

qk(t).

Note, however, that also negative feedback effects on the excitability through home-

ostatic mechanisms were observed in experiments [1, 224]. In a forthcoming article [94]

we show that the use of such homeostatic mechanisms instead of Eq. (4.7) in an, oth-

erwise unchanged, network model may be interpreted as a posterior constraint in the

context of EM.

Generative probabilistic model

The instantaneous spike distribution qk(t) from Eq. (4.4) can be understood as the

result of Bayesian inference in an underlying generative probabilistic model for the

abstract multinomial observed variables x1, . . . , xm and a hidden cause k. We define

the probability distribution of the variables k and x, as shown by the graphical model in
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Fig. 4.1B, as p(k,x|θ) = p(k|θ) ·
∏m
j=1 p(xj |k, θ). The parametrization θ of the graphical

model consists of a prior p(k|θ)on k, and conditional probabilities p(x|k, θ) for every

xj .

The probabilistic model p(k,x|θ) is a generative model and therefore serves two

purposes: On the one hand, it can be used to generate samples of the hidden variable

k and the observable variables x1, . . . , xm. This is done by sampling k from the prior

distribution, and then sampling the xj ’s, which depend on k and can be generated

according to the conditional probability tables. The resulting marginal distribution

p(x|θ) is a special case of a multinomial mixture distribution.

On the other hand, for any given observation of the vector x, one can infer the value

of the hidden cause k that led to the generation of this value for x. By application of

Bayes’ rule one can infer the posterior distribution p(k|x, θ) over all possible values of

k, which is proportional to the product of the prior p(k|θ) and the likelihood p(x|k, θ).
We define population codes to represent the external observable variables x1, . . . , xm

by the input neurons y1, . . . , yn, and the hidden variable k by the circuit neurons

z1, . . . , zK : For every variable xj and every possible (discrete) value that xj can adopt,

there is exactly one neuron yi which represents this combination. We call Gj the set of

the indices of all yi’s that represent xj , and we call v(i) the possible value of xj that is

represented by neuron yi. Thus we can define an interpretation for the spikes from the

input neurons by

neuron yi fires at tf =⇒ xj(t
f ) = v(i) , for i ∈ Gj . (4.8)

A spike from the group Gj represents an instantaneous evidence about the observable

variable xj at the time of the spike. In the same way every neuron z1, . . . , zK represents

one of the K possible values for the hidden variable k, and every single spike conveys

an instantaneous value for k. We can safely assume that all neurons - including the

input neurons - fire according to their individual local stochastic processes or at least

exhibit some local stochastic jitter. For the theoretical analysis one can regard a spike

as an instantaneous event at a single point in time. Thus in a continuous time no two

events from such local stochastic processes can happen at exactly the same point in

time. Thus, there is never more than one spike at any single point in time within a

group Gj , and every spike can be treated as a proper sample from xj . However, the

neurons zk coding for hidden causes need to integrate evidence from multiple inputs,
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and thus need a mechanism to retain the instantaneous evidence from a single spike

over time, in order to learn from spatial and temporal correlations in the input.

In our framework this is modeled by postsynaptic potentials on the side of the

receiving neurons that are generated in response to input spikes, and, by their shape,

represent evidence over time. In the simple case of the non-additive step-function model

of the EPSP in Eq. (4.2), every spike indicates new evidence for the encoded variable

that remains valid during a time window of σ, after which the evidence is cleared. In

the case that there is no spike from one group Gj within a time window of length σ, this

is interpreted as missing evidence (or missing value) for xj in a subsequent inference.

In practice it may also occur that EPSPs within a group Gj of input neurons overlap,

which would indicate contradicting evidence for xj . For the theoretical analysis we will

first assume that spikes from different input neurons within the same group Gj are not

closer in time than σ, in order to avoid such conflicts. We will later drop this restriction

in the extension to more realistically shaped additive EPSPs by slightly enhancing the

probabilistic model.

In our experiments with static input patterns we typically use the following basis

scheme to encode the external input variables xj(t) by populations of stochastic spiking

neurons yi: at every point in time t there is exactly one neuron yi in every group Gj

that represents the instantaneous value of xj(t). We call this neuron the active neuron

of the group, whereas all other neurons of the group are inactive. During the time

where a neuron yi is active it fires stochastically according to a Poisson processes with

a certain constant or oscillating rate. The inactive neurons, however, remain silent, i.e.

they fire with a rate near 0. Although not explicitly modeled here, such an effect can

result from strong lateral inhibition in the input populations. This scheme certainly

fulfills the definition in Eq. (4.8).

Here and in the following we will write y(t) to denote the input activation through

the EPSPs of the network model, and y to denote a variable in the probabilistic model,

which models the distribution of y(t) over all time points t. We will also use notations

like p(z|y(t),w), which refers to the variable y in the probabilistic model taking on the

value y(t). We can then reformulate the abstract probabilistic model p(x, k|θ) using

the above population codes that define the binary variable vectors y and z, with k s.t.
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zk = 1 as:

p(z,y|w) =
1

Z

K∑
k=1

zk · ewk0+
∑n
i=1 wki·yi . (4.9)

Under the normalization conditions

K∑
k=1

ewk0 = 1 and ∀ k, j :
∑
i∈Gj

ewki = 1 , (4.10)

the normalization constant Z vanishes and the parametrization of the distribution

simplifies to wki = log p(yi = 1|zk = 1,w) and wk0 = log p(zk = 1|w). Even for

non-normalized weights, the definition in Eq. (4.9) still represents the same type of

distribution, although there is no more one-to-one mapping between the weights w and

the parameters of the graphical model (see Methods for details). Note also that such

log-probabilities are exactly (up to additive constants) the local equilibrium points in

Eq. (4.6) of the STDP rule in Fig. 4.2. In the section “STDP approximates Expectation

Maximization” we will discuss in detail how this leads to unsupervised learning of a

generative model of the input data in a WTA circuit.

Spike-based Bayesian computation

We can now formulate an exact link between the above generative probabilistic model

and our neural network model of a simplified spike-based WTA circuit. We show that

at any point in time tf at which the network generates an output spike, the relative

firing probabilities qk(t
f ) of the output neurons zk as in Eq. (4.4), are equal to the

posterior distribution of the hidden cause k, given the current evidences encoded in

the input activations y(tf ). For a given input y(tf ) we use Bayes’ rule to calculate the

posterior probability of cause k as p(k|y(tf ),w). We can identify the prior p(k|w) with

the excitabilities wk0 of the neurons. The log-likelihood log p(y(tf )|k,w) of the current

evidences given the cause k corresponds to the sum of excitatory EPSPs, which depend

on the synaptic weights wki. This leads to the calculation
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p(k|y(tf ),w) =

prior p(k|w)︷︸︸︷
ewk0 ·

likelihood p(y(tf )|k,w)︷ ︸︸ ︷
e
∑
wkiyi(t

f )

K∑
k′=1

ewk′0+
∑
wk′iyi(t

f )

︸ ︷︷ ︸
p(y(tf )|w)

=
euk(tf )∑K

k′=1 e
uk′ (t

f )
= qk(t

f ) . (4.11)

This shows that at all times tf every spike from the WTA circuit represents one sample

of the instantaneous posterior distribution p(k|y(tf ),w).

The crucial observation, however, is that this relation is valid at any point in time,

independently of the inhibitory signal I(t). It is only the ratio between the quantities

euk(t) that determines the relative firing probabilities qk(t) of the neurons zk.

Background oscillations and learning with missing values

We will now show that for the case of a low average input firing rate, a modulation of

the firing rate can be beneficial, as it can synchronize firing of pre- and post-synaptic

neurons. Each active neuron then fires according to an inhomogeneous Poisson pro-

cess, and we assume for simplicity that the time course of the spike rate for all neurons

follows the same oscillatory (sinusoidal) pattern around a common average firing rate.

Nevertheless the spikes for each yi are drawn as samples from independent processes.

In addition, let the common inhibition signal I(t) be modulated by an additional oscil-

latory current Iosc(t) = A · sin(ωt+φ) with amplitude A, oscillation frequency ω (same

as for the input oscillation), and phase shift φ. Due to the increased number of input

neurons firing simultaneously, and the additional background current, pre- and post-

synaptic firing of active neurons will synchronize. The frequency of the background

oscillation can be chosen in principle arbitrarily, as long as the number of periods per

input example is constant. Otherwise the network will weight different input examples

by the number of peaks during presentation, which might lead to learning of a different

generative model.

The effect of a synchronization of pre- and post-synaptic firing can be very beneficial,

since at low input firing rates it might happen that none of the input neurons in a

population of neurons encoding an external variable xj fires within the integration time

window of length σ of output neurons zk. This corresponds to learning with missing
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attribute values for xj , which is known to impair learning performance in graphical

models [74]. Our novel interpretation is therefore that background oscillations can

reduce the percentage of missing values by synchronizing presynaptic firing rates. This

agrees with previous studies, which have shown that it is easier for single detector

neurons learning with phenomenological STDP rules to detect spike patterns embedded

in a high-dimensional input stream, if the patterns are encoded relative to a background

oscillation [149], or the patterns consist of dense and narrow bursts of synchronous

activity [77]. These results still hold if only a small part of the afferents participates

in the pattern, or spikes from the pattern are missing, since the increased synchrony

facilitates the identification of the pattern. Although we show in experiments that

this increased synchronization can improve the learning performance of spike-based

probabilistic learners in practice, it is important to note that background oscillations

are not necessary for the theory of spike-based Expectation Maximization to hold. Also,

brain oscillations have previously been associated with various fundamental cognitive

functions like e.g. attention, memory, consciousness, or neural binding. In contrast,

our suggested role for oscillations as a mechanism for improving learning and inference

with missing values is very specific within our framework, and although some aspects

are compatible with higher-level theories, we do not attempt here to provide alternative

explanations for these phenomena.

Our particular model of oscillatory input firing rates leaves the average firing rates

unchanged, hence the effect of oscillations does not simply arise due to a larger number

of input or output spikes. It is the increased synchrony of input and output spikes by

which background oscillations can facilitate learning for tasks in which inputs have little

redundancy, and missing values during learning thus would have a strong impact. We

demonstrate this in the following experiment, where a common background oscillation

for the input neurons yi and the output neurons zk significantly speeds up and improves

the learning performance. In other naturally occurring input distributions with more

structured inputs, oscillations might not improve the performance.

4.2.2 Example 1: Learning of probabilistic models with STDP

Fig. 4.3 demonstrates the emergence of Bayesian computation in the generic network

motif of Fig. 4.1A in a simple example. Spike inputs y (top row of Fig. 4.3D) are

generated through four different hidden processes (associated with four different colors).
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Figure 4.3: Example for the emergence of Bayesian computation through STDP

and adaptation of neural excitability. A, B: Visualization of hidden structurin the

spike inputs y shown in D, E: Each row in panels A and B shows two results of drawing

pixels from the same Gauss distribution over a 28 x 28 pixel array. Four different Gauss

distributions were used in the four rows, and the location of their center represents the

latent variable behind the structure of the input spike train. C: Transformation of the

four 2D images in B into four linear arrays, resulting from random projections from 2D

locations to 1D indices. Black lines indicate active pixels, and pixels that were active in

less than 4 % of all images were removed before the transformation (these pixels are white

in panel H). By the random projection, both the 2D structure of the underlying pixel

array and the value of the latent variable are hidden when the binary 1D vector is encoded

through population coding into the spike trains y that the neural circuit receives. D: Top

row: Spike trains from 832 input neurons that result from the four linear patterns shown

in panel C (color of spikes indicates which of the four hidden processes had generated the

underlying 2D pattern, after 50 ms another 2D pattern is encoded). Continued on next

page...
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Continued: Caption for Figure 4.3. The middle and bottom row show the spike output of the

four output neurons at the beginning and after 500 s of unsupervised learning with continuous

spike inputs (every 50 ms another 2D pattern was randomly drawn from one of the 4 different

Gauss distributions, with different prior probabilities of 0.1, 0.2, 0.3, and 0.4.). Color of spikes

indicates the emergent specialization of the four output neurons on the four hidden processes

for input generation. Black spikes indicate incorrect guesses of hidden cause. E: Same as D,

but with a superimposed 20 Hz oscillation on the firing rates of input neurons and membrane

potentials of the output neurons. Fewer error spikes occur in the output, and output spikes

are more precisely timed. F: Internal models (weight vectors w) of output neurons z1, . . . , z4

after learning (pixel array). G: Autonomous learning of priors p(k) ≈ ewk0 , that takes place

simultaneously with the learning of internal models. H: Average “winner” among the four

output neurons for a test example (generated with equal probability by any of the 4 Gaussians)

when a particular pixel was drawn in this test example, indicating the impact of the learned

priors on the output response. I: Emergent discrimination capability of the output neurons

during learning (red curve). The dashed blue curve shows that a background oscillation as in

E speeds up discrimination learning. Curves in G and I represent averages over 20 repetitions

of the learning experiment.

Each of them is defined by a Gauss distribution over a 2D pixel array with a different

center, which defines the probability of every pixel to be on. Spike trains encode the

current value of a pixel by a firing rate of 25 Hz or 0 Hz for 40 ms. Each pixel was

encoded by two input neurons yi via population coding, exactly one of them had a

firing rate of 25 Hz for each input image. A 10 ms period without firing separates two

images in order to avoid overlap of EPSPs for input spikes belonging to different input

images.

After unsupervised learning with STDP for 500 s (applied to continuous streams

of spikes as in panel D of Fig. 4.3) the weight vectors shown in Fig. 4.3F (projected

back into the virtual 2D input space) emerged for the four output neurons z1, z2, z3, z4,

demonstrating that these neurons had acquired internal models for the four different

processes that were used to generate inputs. The four different processes for generat-

ing the underlying 2D input patterns had been used with different prior probabilities

(0.1, 0.2, 0.3, 0.4). Fig. 4.3G shows that this imbalance resulted in four different priors

p(k) encoded in the biases ewk0 of the neurons zk. When one compares the unequal

sizes of the colored areas in Fig. 4.3H with the completely symmetric internal models

(or likelihoods) of the four neurons shown in panel F, one sees that their firing proba-

bility approximates a posterior over hidden causes that results from multiplying their
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learned likelihoods with their learned priors. As a result, the spike output becomes

sparser, and almost all neurons only fire when the current input spikes are generated

by that one of the four hidden processes on which they have specialized (Fig. 4.3D,

bottom row). In Fig. 4.3I the performance of the network is quantified over time by

the normalized conditional entropy H(k|ζout)/H(k, ζout), where k is the correct hidden

cause of each input image y in the training set, and ζout denotes the discrete random

variable defined by the firing probabilities of output neurons zk for each image under

the currently learned model. Low conditional entropy indicates that each neuron learns

to fire predominantly for inputs from one class. Fig. 4.3E as well as the dashed blue

line in Fig. 4.3I show that the learning process is improved when a common background

oscillation at 20 Hz is superimposed on the firing rate of input neurons and the mem-

brane potential of the output neurons, while keeping the average input and output

firing rates constant. The reason is that in general it may occur that an output neuron

zk receives during its integration time window (40 ms in this example) no information

about the value of a pixel (because neither the neuron yi that has a high firing rate for

40 ms if this pixel is black, nor the associated neuron yi′ that has a high firing rate if

this pixel is white fire during this time window). A background oscillation reduces the

percentage of such missing values by driving presynaptic firing times together (see top

row of Fig. 4.3E). Note that through these oscillations the overall output firing rate

R(t) fluctuates strongly, but since the same oscillation is used consistently for all four

types of patterns, the circuit still learns the correct distribution of inputs.

This task had been chosen to become very fast unsolvable if many pixel values

are missing. Many naturally occurring input distributions, like the ones addressed in

the subsequent computer experiments, tend to have more redundancy, and background

oscillations did not improve the learning performance for those.

4.2.3 STDP approximates Expectation Maximization

In this section we will develop the link between the unsupervised learning of the gener-

ative probabilistic model in Fig. 4.1B and the learning effect of STDP as defined in our

spiking network model in Fig. 4.1A. Starting from a learning framework derived from

the concept of Expectation Maximization [44], we show that the biologically plausible

STDP rule from Fig. 4.2 can naturally approximate a stochastic, online version of this

optimization algorithm. We call this principle SEM (spike-based EM).
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SEM can be viewed as a bootstrapping procedure. The relation between the firing

probabilities of the neurons within the WTA circuit and the continuous updates of the

synaptic weights with our STDP rule in Eq. (4.5) drive the initially random firing of

the circuit in response to an input y towards learning the correct generative model

of the input distribution. Whenever a neuron zk fires in response to y, the STDP

rule increases the weights wki of synapses from those presynaptic neurons yi that had

fired shortly before zk. In absence of a recent presynaptic spike from yi the weight

wki is decreased. As a consequence, when next a pattern similar to y is presented, the

probability for the same zk to fire and further adapt its weights, is increased. Since zk

becomes more of an “expert” for one subclass of input patterns, it actually becomes less

likely to fire for non-matching patterns. The competition in the WTA circuit ensures

that other z-neurons learn to specialize for these different input categories.

In the framework of Expectation Maximization, the generation of a spike in a z-

neuron creates a sample from the currently encoded posterior distribution of hidden

variables, and can therefore be viewed as the stochastic Expectation, or E-step. The

subsequent application of STDP to the synapses of this neuron can be understood as

an approximation of the Maximization, or M-step. The online learning behavior of the

network can be understood as a stochastic online EM algorithm.

Learning the parameters of the probability model by EM

The goal of learning the parametrized generative probabilistic model p(y, k|w) is to find

parameter values w, such that the marginal distribution p(y|w) of the model distribu-

tion approximates the actual stationary distribution of spike inputs p∗(y) as closely as

possible. We define p∗(y) as the probability to observe the activation vector y(t) at

some point t in time (see Eq. (4.72) in Methods for a precise mathematical definition).

The learning task can thus be formalized as the minimization of the Kullback-Leibler

divergence between the two distributions, p(y|w) and p∗(y). A mathematically equiva-

lent formulation is the maximization of the expected likelihood L(w) = Ep∗ [log p(y|w)]

of the inputs y, drawn from p∗(y). The parametrization of the generative probabilistic

model p(y, k|w) is highly redundant, i.e. for every w there is a continuous manifold

of w′, that all define identical generative distributions p(y, k|w′) in Eq. (4.24). There

is, however, exactly one w′ in this sub-manifold of the weight space that fulfills the

normalization conditions in Eq. (4.10). By imposing the normalization conditions as

91



4. SPIKE-BASED EXPECTATION MAXIMIZATION

constraints to the maximization problem, we can thus find unique local maxima (see

“Details to Learning the parameters of the probability model by EM” in Methods).

The most common way to solve such unsupervised learning problems with hidden

variables is the mathematical framework of Expectation Maximization (EM). In its

standard form, the EM algorithm is a batch learning mechanism, in which a fixed,

finite set of T instances of input vectors y(1), . . . ,y(T ) is given, and the task is to find

the parameter vector w that maximizes the log-likelihood L(w) =
∑T

l=1 log p(y(l)|w)

of these T instances to be generated as independent samples by the model p(y|w).

Starting from a random initialization for w, the algorithm iterates between E-steps

and M-steps. In the E-steps, the current parameter vector w is used to find the posterior

distributions of the latent variables k(1), . . . , k(T ), each given by p(k(l)|y(l),w).

In the M-steps a new parameter vector wnew is computed, which maximizes the

expected value of the complete-data log-likelihood function, subject to the normaliza-

tion constraints in Eq. (4.10). The analytical solution for this M-step (compare [22]) is

given by

wnew
ki := log

∑T
l=1 y

(l)
i p(k|y(l),w)∑T

l=1 p(k|y(l),w)
and wnew

k0 := log

∑T
l=1 p(k|y(l),w)

T
. (4.12)

The iterated application of this update procedure is guaranteed to converge to a (lo-

cal) maximum of L(w) [44]. It is obvious that wnew fulfills the desired normalization

conditions in Eq. (4.10) after every update.

Although the above deterministic algorithm requires that the same set of T training

examples is re-used for every EM iteration, similar results also hold valid for online

learning scenarios. In an online setup new samples y(l) ∝ p∗(y) are drawn from the

input distribution at every iteration, which is closer to realistic neural network learning

settings. Instead of analytically computing the expected value of the complete-data log-

likelihood function, a Monte-Carlo estimate is computed using the samples k(l), drawn

according to their posterior distribution p(k|y(l),w). Even though additional stochastic

fluctuations are introduced due to the stochastic sampling process, this stochastic EM

algorithm will also converge to a stable result in the limit of infinite iterations, if the

number of samples T is increased with every iteration [110].
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In order to simplify the further notation we introduce the augmented input distri-

bution p∗w(y, z) from which we can sample pairs 〈y, z〉 and define

p∗w(y, z) = p(z|y,w)p∗(y) . (4.13)

Sampling pairs 〈y(l), z(l)〉 with l = 1, . . . , T from p∗w(y, z) corresponds to online

sampling of inputs, combined with a stochastic E-step. The subsequent M-step

wnew
ki := log

∑T
l=1 y

(l)
i z

(l)
k∑T

l=1 z
(l)
k

, wnew
k0 := log

∑T
l=1 z

(l)
k

T
(4.14)

essentially computes averages over all T samples: exp(wnew
k0 ) is the average of the

variable zk; exp(wnew
ki ) is a conditional average of yi taken over those instances in which

zk is 1.

The expected value of the new weight vector after one iteration, i.e., the sampling

E-step and the averaging M-step, can be expressed in a very compact form based on

the augmented input distribution as

Ep∗w [wnew
ki ] = log p∗w(yi = 1|zk = 1) Ep∗w [wnew

k0 ] = log p∗w(zk = 1) . (4.15)

A necessary condition for a point convergence of the iterative algorithm is a stable

equilibrium point, i.e. a value w at which the expectation of the next update wnew is

identical to w. Thus we arrive at the following necessary implicit condition for potential

convergence points of this stochastic algorithm.

wki = log p∗w(yi = 1|zk = 1) wk0 = log p∗w(zk = 1) . (4.16)

This very intuitive implicit “solution” is the motivation for relating the function of the

simple STDP learning rule (solid red line in Fig. 4.2) in the neural circuit shown in

Fig. 4.1A to the framework of EM.

Spike-based Expectation Maximization

In order to establish a mathematically rigorous link between the STDP rule in Fig. 4.2

in the spike-based WTA circuit and stochastic online EM we identify the functionality

of both the E- and the M-steps with the learning behavior of the spiking WTA-circuit

with STDP.
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In a biologically plausible neural network setup, one cannot assume that observa-

tions are stored and computations necessary for learning are deferred until a suitable

sample size has been reached. Instead, we relate STDP learning to online learning

algorithms in the spirit of Robbins-Monro stochastic approximations, in which updates

are performed after every observed input.

At an arbitrary point in time tf at which any one neuron zk of the WTA circuit fires,

the posterior p(k|y(t),w) according to Eq. (4.4) gives the probability that the spike

at this time tf has originated from the neuron with index k. The pair 〈y(t), k〉 can

therefore be seen as a sample from the augmented input distribution p∗w(y, k). Hence,

we can conclude that the generation of a spike by the WTA circuit corresponds to the

generation of samples 〈y, k〉 during the E-step. There are additional conditions on the

inhibition signal I(t) that have to be met in order to generate unbiased samples y(tf )

from the input distribution p∗(y). These are discussed in depth in the section “Role of

the Inhibition”, but for now let us assume that these conditions are fulfilled.

The generation of a spike in the postsynaptic neuron zk triggers an STDP update

according to Eq. (4.5) in all synapses from incoming presynaptic neurons yi, represented

by weights wki. We next show that the biologically plausible STDP rule in Eq. (4.5)

(see also Fig. 4.2) together with the rule in Eq. (4.7) can be derived as approximating

the M-step in stochastic online EM.

The update in Eq. (4.14) suggests that every synapse wki collects the activation

statistics of its input yi (the presynaptic neuron), given that its output zk (the post-

synaptic neuron) fires. These statistics can be gathered online from samples of the

augmented input distribution p∗w(y, z).

From this statistical perspective each weight can be interpreted as wki = log aki
Nki

,

where aki and Nki are two local virtual counters in each synapse. aki represents the

number of the events 〈yi = 1, zk = 1〉 and Nki represents the number of the events

〈zk = 1〉, i.e. the postsynaptic spikes. Even though all virtual counters Nki within one

neuron zk count the same postsynaptic spikes, it is easier to think of one individual

such counter for every synapse. If we interpret the factor 1
Nki

as a local learning rate

ηki, we can derive Eq. (4.5) (see Methods) as the spike-event triggered stochastic online

learning rule wnew
ki = wki + ηkizk(yie

−wki − 1) that approximates in the synapse wki

the log of the running average of yi(t
f ) at the spiking times of neuron zk. The update

formula shows that wki is only changed, if the postsynaptic neuron zk fires, whereas
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spike events of other neurons 〈zk′ = 1〉 with k′ 6= k are irrelevant for the statistics

of wki. Thus the learning rule is purely local for every synapse wki; it only has to

observe its own pre- and postsynaptic signals. Additionally we show in the Methods

section “Adaptive learning rates with Variance tracking” a very efficient heuristic how

the learning rate etaki can be estimated locally.

Analogously we can derive the working mechanism of the update rule in Eq. (4.7)

as updates of the log of a fraction at the respective points in time.

The simple STDP rules in Eq. (4.5) and Eq. (4.7) thus approximate the M-step in

a formal generative probabilistic model with local, biologically plausible computations.

It remains to be shown that these STDP rules actually drive the weights w to converge

to the target points in Eq. (4.16) of the stochastic EM algorithm.

We can conclude from the equilibrium conditions of the STDP rule in Eq. (4.6) that

convergence can only occur at the desired local maxima of the likelihood L(w) subject

to the normalization constraints. However, it remains to be shown that the update

algorithm converges at all and that there are no limit cycles.

Proof of convergence

Even though we successfully identified the learning behavior of the simple STDP rule

(Fig. 4.2) in the circuit model with the E- and the M-steps of the EM algorithm, this is

not yet sufficient for a complete proof of convergence for the whole learning system. Not

only are the single updates just approximations to the M-step, these approximations,

in addition, violate the normalization conditions in Eq. (4.10). Although the system -

as we will show - converges towards normalized solutions, there is always a stochastic

fluctuation around the normalization conditions. One can therefore not simply argue

that Eq. (4.5) implements a stochastic version of the generalized EM algorithm; instead,

we have to resort to the theory of stochastic approximation algorithms as presented in

[131]. Under some technical assumptions (see Methods) we can state

Theorem 1: The algorithm in Eq. (4.5,4.7) updates w in a way that it converges with

probability 1 to the set of local maxima of the likelihood function L(w) = Ep∗ [log p(y|w)],

subject to the normalization constraints in Eq. (4.10).

The detailed proof, which is presented in Methods, shows that the expected tra-

jectory of the weight vector w is determined by two driving forces. The first one is

a normalization force which drives w from every arbitrary point towards the regime
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where w is normalized. The second force is the real learning force that drives w to a

desired maximum of L(w). However, this interpretation of the learning force is valid

only if w is sufficiently close to normalized.

4.2.4 The Role of the Inhibition

We have previously shown that the output spikes of the WTA circuit represent samples

from the posterior distribution in Eq. (4.11), which only depends on the ratios between

the membrane potentials uk(t). The rate at which these samples are produced is the

overall firing rate R(t) of the WTA circuit and can be controlled by modifying the

common inhibition I(t) of the neurons zk.

Although any time-varying output firing rate R(t) produces correct samples from

the posterior distribution in Eq. (4.11) of z, for learning we also require that the input

patterns y(t) observed at the spike times are unbiased samples from the true input

distribution p∗(y). If this is violated, some patterns coincide with a higher R(t), and

thus have a stronger influence on the learned synaptic weights. In Methods we formally

show that R(t) acts as a multiplicative weighting of the current input ỹ(t), and so the

generative model will learn a slightly distorted input distribution.

An unbiased set of samples can be obtained if R(t) is independent of the current

input activation y(t), e.g. if R(t) = R is constant. This could in theory be achieved

if we let I(t) depend on the current values of the membrane potentials uk(t), and set

I(t) = − logR+log
∑K

k=1 e
uk(t). Such an immediate inhibition is commonly assumed in

rate-based soft-WTA models, but it seems implausible to compute this in a spiking neu-

ronal network, where only spikes can be observed, but not the presynaptic membrane

potentials.

However, our results show that a perfectly constant firing rate is not a prerequisite

for convergence to the right probabilistic model. Indeed we can show that it is sufficient

that R(t) and y(t) are stochastically independent, i.e. R(t) is not correlated to the

appearance of any specific value of y(t). Still this might be difficult to achieve since

the firing rate R(t) is functionally linked to the input y(t) by R(t) = e−I(t) Z p(y(t)|w),

but it clarifies the role of the inhibition I(t) as de-correlating R(t) from the input y,

at least in the long run.

One possible biologically plausible mechanism for such a decorrelation of R(t) and

y(t) is an inhibitory feedback from a population of neurons that is itself excited by
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the neurons zk. Such WTA competition through lateral inhibition has been studied

extensively in the literature [52, 170]. In the implementation used for the experiments

in this paper every spike from the z-neurons causes an immediate very strong inhibition

signal that lasts longer than the refractory period of the spiking neuron. This strong

inhibition decays exponentially and is overlaid by a noise signal with high variability

that follows an Ornstein-Uhlenbeck process (see “Inhibition Model in Computer Simu-

lations” in Methods). This will render the time of the next spike of the system almost

independent of the value of p(y(t)|w).

It should also be mentioned that a slight correlation between R(t) and p(y(t)|w)

may be desirable, and I(t) might also be externally modulated (for example through

attention, or neuromodulators such as Acetylcholin), as an instrument of selective input

learning. This might lead e.g. to slightly higher firing rates for well-known inputs

(high p(y(t)|w)), or salient inputs, as opposed to reduced rates for unknown arbitrary

inputs. In general, however, combining online learning with a sampling rate R(t)

that is correlated to p(y|w) may lead to strange artifacts and might even prohibit the

convergence of the system due to positive feedback effects. A thorough analysis of such

effects and of possible learning mechanisms that cope with positive feedback effects is

the topic of future research.

Our theoretical analysis sheds new light on the requirements for inhibition in spiking

WTA-like circuits to support learning and Bayesian computation. Inhibition does not

only cause competition between the excitatory neurons, but also regulates the overall

firing rate R(t) of the WTA circuit. Variability in R(t) does not influence the perfor-

mance of the circuit, as long as there is no systematic dependence between the input

and R(t).

4.2.5 Continuous-Time Interpretation with Realistically Shaped EP-

SPs

In our previous analysis we have assumed a simplified non-additive step-function model

for the EPSP. This allowed us to describe all input evidence within the last time window

of length σ by one binary vector y(t), but required us to assume that no two neurons

within the same group Gj fired within that period. We will now give an intuitive

explanation to show that this restriction can be dropped and present an interpretation

for additive biologically plausibly shaped EPSPs as inference in a generative model.
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The postsynaptic activation ỹi(t) under an additive EPSPs is given by the convo-

lution

ỹi(t) =
∑
f

K(t− tfi ) , (4.17)

where K describes an arbitrarily shaped kernel, e.g. an α-shaped EPSP function which

is the difference of two exponential functions (see [73]) with different time constants.

We use 1 ms for the rise and 15 ms for the decay in our simulations. ỹi(t) replaces

yi(t) in Eq. (4.2) in the computation of the membrane potential uk(t) of our model

neurons. We can still understand the firing of neurons in the WTA circuit according

to the relative firing probabilities qk(t) in Eq. (4.4) as Bayesian inference. To see this,

we imagine an extension of the generative probabilistic model p(x, k|θ) in Fig. 4.1B,

which contains multiple instances of x, exactly one for every input spike from all input

neurons yi. For a fixed common hidden cause k, all instances of x are conditionally

independent of each other, and have the same conditional distributions for each xj (see

Methods for the full derivation of the extended probabilistic model). According to the

definition in Eq. (4.8) of the population code every input spike represents evidence that

xj in an instance x should take on a certain value. Since every spike contributes only

to one instance, any finite input spike pattern can be interpreted as valid evidence for

multiple instances of inputs x.

The inference of a single hidden cause k in such extended graphical model from

multiple instances of evidence is relatively straightforward: due to the conditional

independence of different instances, we can compute the input likelihood for any hidden

cause simply as the product of likelihoods for every single evidence. Inference thus

reduces to counting how often every possible evidence occurred in all instances x, which

means counting the number of spikes of every yi. Since single likelihoods are implicitly

encoded in the synaptic weights wki by the relationship wki = log p(yi = 1|k,w), we

can thus compute the complete input likelihood by adding up step-function like EPSPs

with amplitudes corresponding to wki. This yields correct results, even if one input

neuron spikes multiple times.

In the above model, the timing of spikes does not play a role. If we want to assign

more weight to recent evidence, we can define a heuristic modification of the extended

graphical model, in which contributions from spikes to the complete input log-likelihood
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are linearly interpolated in time, and multiple pieces of evidence simply accumulate.

This is exactly what is computed in ỹi in Eq. (4.17), where the shape of the kernel

K(t − tf ) defines how the contribution of an input spike at time tf evolves over time.

Defining ỹi as the weight for the evidence of the assignment of xj to value v(i), it is easy

to see (and shown in detail in Methods) that the instantaneous output distribution qk(t)

represents the result of inference over causes k, given the time-weighted evidences of all

previous input spikes, where the weighting is done by the EPSP-function K(t). Note

that this evidence weighting mechanism is not equivalent to the much more complex

mechanism for inference in presence of uncertain evidence, which would require more

elaborate architectures than our feed-forward WTA-circuit. In our case, past evidence

does not become uncertain, but just less important for the inference of the instantaneous

hidden cause k.

We can analogously generalize the spike-triggered learning rule in Eq. (4.5) for

continuous-valued input activations ỹi(t) according to Eq. (4.17):

∆wki(t) = ỹi(t) · c · e−wki − 1 . (4.18)

The update of every weight wki is triggered when neuron zk, i.e. the postsynaptic

neuron, fires a spike. The shape of the LTP part of the STDP curve is determined

by the shape of the EPSP, defined by the kernel function K(t). The positive part of

the update in Eq. (4.18) is weighted by the value of ỹi(t) at the time of firing the

postsynaptic spike. Negative updates are performed if ỹi(t) is close to zero, which

indicates that no presynaptic spikes were observed recently. The complex version of

the STDP curve (blue dashed curve in Fig. 4.1B), which resembles more closely to

the experimentally found STDP curves, results from the use of biologically plausible

α-shaped EPSPs. In this case, the LTP window of the weight update decays with time,

following the shape of the α-function. This form of synaptic plasticity was used in all

our experiments. If EPSPs accumulate due to high input stimulation frequencies, the

resulting shape of the STDP curve becomes even more similar to previously observed

experimental data, which is investigated in detail in the following section.

The question remains, how this extension of the model and the heuristics for time-

dependent weighting of spike contributions affect the previously derived theoretical

properties. Although the convergence proof does not hold anymore under such general

conditions we can expect (and show in our Experiments) that the network will still show
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the principal behavior of EM under fairly general assumptions on the input: we have

to assume that the instantaneous spike rate of every input group Gj is not dependent

on the value of xj that it currently encodes, which means that the total input spike

rate must not depend on the hidden cause k. Note that this assumption on every input

group is identical to the desired output behavior of the WTA circuit according to the

conditions on the inhibition as derived earlier. This opens up the possibility of building

networks of recursively or hierarchically connected WTA circuits. Note also that the

grouping of inputs into different Gj is only a notational convenience. The neurons in

the WTA circuit do not have to know which inputs are from the same group, neither

for inference nor for learning, and can thus treat all input neurons equally.

4.2.6 Relationship to experimental data on synaptic plasticity

In biological STDP experiments that induce pairs of pre- and post-synaptic spikes at

different time delays, it has been observed that the shape of the plasticity curve changes

as a function of the repetition frequency for those spike pairs [207]. The observed ef-

fect is that at very low frequencies no change or only LTD occurs, a “classical” STDP

window with timing-dependent LTD and LTP is observed at intermediate frequencies

around 20 Hz, and at high frequencies of 40 Hz or above only LTP is observed, inde-

pendently of which spikes comes first.

Although our theoretical model does not explicitly include a stimulation-frequency

dependent term like other STDP models (e.g. [79]), we can study empirically the

effect of a modification of the frequency of spike-pairing. We simulate this for a single

synapse, at which we force pre- and post-synaptic spikes with varying time differences

∆t = tpost− tpre , and at fixed stimulation frequencies f of either 1 Hz, 20 Hz, or 40 Hz.

Modeling EPSPs as α-kernels with time constants of 1 ms for the rise and 15 ms for the

decay, we obtain the low-pass filtered signals ỹi as in Eq. (4.17), which grow as EPSPs

start to overlap at higher stimulation frequencies. At the time of a post-synaptic spike

we compute the synaptic update according to the rule in Eq. (4.18), but keep both

the weight and the learning rate fixed (at wki = 3.5, c = e−5, η = 0.5) to distinguish

timing-dependent from weight-dependent effects.

In Fig. 4.4A we observe that, as expected, at low stimulation frequencies (1 Hz) the

standard shape of the complex STDP rule in Eq. (4.18) from Fig. 4.2 is recovered, since

there is no influence from previous spikes. The shift towards pure LTD that is observed
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in biology [207] would require an additional term that depends on postsynaptic firing

rates like in [79], and is a topic of future research. However, note that in biology this

shift to LTD was observed only in paired recordings, neglecting the cooperative effect of

other synapses, and other studies have also reported LTP at low stimulation frequencies

[18]. At higher stimulation frequencies (20 Hz in Fig. 4.4B) the EPSPs from different

pre-synaptic spikes start to overlap, which results in larger ỹi compared with isolated

pre-synaptic spikes. We also see that the LTD part of the STDP window becomes

timing-dependent (due to overlapping EPSPs), and thus the shape of the STDP curve

becomes similar to standard models of STDP and observed biological data [18, 210]. For

even higher stimulation frequencies the STDP window shifts more and more towards

LTP (see Fig. 4.4B and C). This is in good accordance with observations in biology

[207]. Also in agreement with biological data, the minimum of the update occurs around

∆t = 0, because there the new α-kernel EPSP is not yet effective, and the activation

due to previous spikes has decayed maximally.

Another effect that is observed in hippocampal synapses when two neurons are

stimulated with bursts, is that the magnitude of LTP is determined mostly by the

amount of overlap between the pre- and post-synaptic bursts, rather than the exact

timing of spikes [124]. In Fig. 4.4D we simulated this protocol with our continuous-

time SEM rule for different onset time-differences of the bursts, and accumulated the

synaptic weight updates in response to 50 Hz bursts of 5 pre-synaptic and 4 post-

synaptic spikes. We performed this experiment for the same onset time differences

used in Fig.3 of [124], and found qualitatively similar results. For long time-differences,

when EPSPs have mostly decayed, we observed an LTD effect, which was not observed

in biology, but can be attributed to differences in synaptic time constants between

biology and simulation.

These results suggest that our STDP rule derived from theoretical principles exhibits

several of the key properties of synaptic plasticity observed in nature, depending on the

encoding of inputs. This is quite remarkable, since these properties are not explicitly

part of our learning rule, but rather emerge from a simpler rule with strong theoretical

guarantees. Other phenomenological [34, 154] or mechanistic models of STDP [84]

also show some of these characteristics, but come without such theoretical properties.

The functional consequence of reproducing such key biological characteristics of STDP

is that our new learning rule also exhibits most of the key functional properties of
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Figure 4.4: Relationship between the continuous-time SEM model and experi-

mental data on synaptic plasticity. A-C: The effect of the continuous-time plasticity

rule in Eq. (4.18) at a single synapse for different stimulation frequencies and different

time-differences between pre- and post-synaptic spike pairs. Only time-intervals without

overlapping pairs are shown. A: For very low stimulation frequencies (1 Hz) the standard

shape of the complex learning rule from Fig. 4.2 is recovered. B: At a stimulation frequency

of 20 Hz the plasticity curve shifts more towards LTP, and depression is no longer time

independent, due to overlapping EPSPs. C: At high stimulation frequencies of 40 Hz or

above, the STDP curve shifts towards only LTP, and thus becomes similar to a rate-based

Hebbian learning rule. D: Cumulative effect of pre- and post-synaptic burst stimulation

(50 Hz bursts of 5 pre-synaptic and 4 post-synaptic spikes) with different onset delays of

-120, -60, 10, 20, 30, 80 and 140 ms (time difference between the onsets of the post- and

pre-synaptic bursts). As in [124], the amount of overlap between bursts determines the

magnitude of LTP, rather than the exact temporal order of spikes.

STDP, like e.g. strengthening synapses of inputs that are causally involved in firing the

postsynaptic neuron, while pruning the connections that do not causally contribute to

postsynaptic firing [1, 209]. At low and intermediate firing rates our rule also shifts the

onset of postsynaptic firing towards the start of repeated spike patterns [77, 147, 149],

while depressing synapses that only become active for a pattern following the one

for which the post-synaptic neuron is responsive. If patterns change quickly, then

the stronger depression for presynaptic spikes with small ∆t in Fig. 4.4B enhances

the capability of the WTA to discriminate such patterns. With simultaneous high

frequency stimulation (Fig. 4.4C and D) we observe that only LTP occurs, which is

due to the decay of EPSPs not being fast enough to allow depression. In this scenario,

the learning rule is less sensitive to timing, and rather becomes a classical Hebbian

measure of correlations between pre- and post-synaptic firing rates. However, since

inputs are encoded in a population code we can assume that the same neuron is not
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continuously active throughout, and so even at high firing rates for active input neurons,

the synapses that are inactive during postsynaptic firing will still be depressed, which

means that convergence to an equilibrium value is still possible for all synapses.

It is a topic of future research which effects observed in biology can be reproduced

with more complex variations of the spike-based EM rule that are also dependent on

postsynaptic firing rates, or whether existing phenomenological models of STDP can be

interpreted in the probabilistic EM framework. In fact, initial experiments have shown

that several variations of the spike-based EM rule can lead to qualitatively similar

empirical results for the learned models in tasks where the input spike trains are Poisson

at average or high rates over an extended time window (such as in Fig. 4.3). These

variations include weight-dependent STDP rules that are inversed in time, symmetrical

in time, or have both spike timing-dependent LTD and LTP. Such rules can converge

towards the same equilibrium values as the typical causal STDP rule. However, they

will behave differently if inputs are encoded through spatio-temporal spike patterns (as

in Example 4: Detection of Spatio-Temporal Spike Patterns). Further variations can

include short-term plasticity effects for pre-synaptic spikes, as observed and modeled

in [68], which induce a stimulation-frequency dependent reduction of the learning rate,

and could thus serve as a stabilization mechanism.

4.2.7 Spike-timing dependent LTD

Current models of STDP typically assume a “double-exponential” decaying shape of the

STDP curve, which was first used in [210] to fit experimental data. This is functionally

different from the shape of the complex STDP curve in Fig. 4.2 and Eq. (4.5), where

the LTD part is realized by a constant timing-independent offset.

Although not explicitly covered by the previously presented theory of SEM, the same

analytical tools can be used to explain functional consequences of timing-dependent

LTD in our framework. Analogous to our approach for the standard SEM learning

rule, we develop (in Methods) an extension of the simple step-function STDP rule from

Fig. 4.2 with timing-dependent LTD, which is easier to analyze. We then generalize

these results towards arbitrarily shaped STDP curves. The crucial result is that as long

as the spike-timing dependent LTD rule retains the characteristic inversely-exponential

weight-dependent relationship between the strengths of LTP and LTD that was intro-

duced for standard SEM in Eq. (4.5), an equilibrium property similar to Eq. (4.6) still
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holds (see Methods for details). Precisely speaking, the new equilibrium will be at

the difference between the logarithms of the average presynaptic spiking probabilities

before and after the postsynaptic spike. This shows that spike-timing dependent LTD

also yields synaptic weights that can be interpreted in terms of log-probabilities, which

can thus be used for inference.

The new rule emphasizes contrasts between the current input pattern and the imme-

diately following activity. Still, the results of the new learning rule and the original rule

from Eq. (4.5) in our experiments are qualitatively similar. This can be explained from

a stochastic learning perspective: at any point in time the relative spiking probabilities

of excitatory neurons in the WTA circuit in Eq. (4.4) depend causally on the weighted

sums of preceding presynaptic activities ỹi(t). However, they clearly do not depend on

future presynaptic activity. Thus, the postsynaptic neuron will learn through SEM to

fire for increasingly similar stochastic realizations of presynaptic input ỹi(t), whereas

the presynaptic activity pattern following a postsynaptic spike will become more vari-

able. In the extreme case where patterns are short and separated by noise, there will

be no big difference between input patterns following firing of any of the WTA neurons,

and so their relevance for the competition will become negligible.

Experimental evidence shows that the time constants of the LTP learning window

are usually smaller than the time constants of the LTD window ([68, 207]), which will

further enhance the specificity of the LTP learning as opposed to the LTD part that

computes the average over a longer window.

Note that the exponential weight dependence of the learning rule implies a certain

robustness towards linearly scaling LTP or LTD strengths, which only leads to a con-

stant offset of the weights. Assuming that the offset is the same for all synapses, this

does not affect firing probabilities of neurons in a WTA circuit (see Methods “Weight

offsets and positive weights”).

4.2.8 Example 2: Learning of probabilistic models for orientation se-

lectivity

We demonstrated in this computer experiment the emergence of orientation selective

cells zk through STDP in the WTA circuit of Fig. 4.1A when the spike inputs encode

isolated bars in arbitrary orientations. Input images were generated by the following

process: Orientations were sampled from a uniform distribution, and lines of 7 pixels
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Figure 4.5: Emergence of orientation selective cells for visual input consisting

of oriented bars with random orientations. A Examples of 28×28-pixel input images

with oriented bars and additional background noise. B Internal models (weight vectors of

output neurons zk) that are learned through STDP after the presentation of 4000 input

images (each encoded by spike trains for 50 ms, as in Fig.4.3). C, D Plot of the most

active neuron for 360 images of bars with orientations from 0 to 360◦ in 1◦ steps. Colors

correspond to the colors of zk neurons in B. Before training (C), the K = 10 output

neurons fire without any apparent pattern. After training (D) they specialize on different

orientations and cover the range of possible angles approximately uniformly. E: Spike train

encoding of the 10 samples in A. F,G: Spike trains produced by the K = 10 output neurons

in response to these samples before and after learning with STDP for 200 s. Colors of the

spikes indicate the identity of the output neuron, according to the color code in B.

105



4. SPIKE-BASED EXPECTATION MAXIMIZATION

width were drawn in a 28 x 28 pixel array. We added noise to the stimuli by flipping

every pixel with a 10% chance, see Fig. 4.5A. Finally, a circular mask was applied to the

images to avoid artifacts from image corners. Spikes trains y were encoded according

to the same population coding principle described in the previous example Fig. 4.3, in

this case using a Poisson firing rate of 20 Hz for active units.

After training with STDP for 200 s, presenting 4000 different images, the projection

of the learned weight vectors back into the 2D input space (Fig. 4.5B) shows the

emergence of 10 models with different orientations, which cover the possible range of

orientations almost uniformly. When we plot the strongest responding neuron as a

function of orientation (Fig. 4.5C, D), measured by the activity in response to 360

noise-free images of oriented bars in 1◦ steps, we can see no structure in the response

before learning (Fig. 4.5C). However, after unsupervised learning, panel D clearly shows

the emergence of continuous, uniformly spaced regions in which one of the zk neurons

fires predominantly. This can also be seen in the firing behavior in response to the input

spike trains in Fig. 4.5E, which result from the example images in panel A. Fig. 4.5F

shows that the output neurons initially fire randomly in response to the input, and many

different zk neurons are active for one image. In contrast, the responses after learning

in panel G are much sparser, and only occasionally multiple neurons are active for one

input image, which is the case when the angle of the input image is in between the

preferred angles of two output neurons, and therefore multiple models have a non-zero

probability of firing.

In our experiment the visual input consisted of noisy images of isolated bars, which

illustrates learning of a probabilistic model in which a continuous hidden cause (the

orientation angle) is represented by a population of neurons, and also provides a simple

model for the development of orientation selectivity. It has previously been demon-

strated that similar Gabor-like receptive field structures can be learned with a sparse-

coding approach using patches of natural images as inputs [167]. The scenario consid-

ered here is thus substantially simplified, since we do not present natural but isolated

stimuli. However, it is worth noting that experimental studies have shown that (in

mice and ferret) orientation selectivity, but not e.g. direction selectivity, exists in V1

neurons even before eye opening [57, 139]. This initial orientation selectivity develops

from innate mechanisms and from internally generated inputs during this phase [57],

e.g. retinal waves, which have different, and very likely simpler statistics than natural
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stimuli. Our model shows that a WTA circuit could learn orientation selectivity from

such simple bar-like inputs, but does not provide an alternative explanation to the

results of studies like [167] using natural image stimuli. Although beyond the scope

of this paper, we expect that later shaping of selectivity through exposure to natural

visual experience would not alter the receptive fields by much, since the neurons have

been primed to spike (and thereby trigger plasticity) only in response to a restricted

class of local features.

4.2.9 Example 3: Emergent discrimination of handwritten digits through

STDP

Spike-based EM is a quite powerful learning principle, as we demonstrate in Fig. 4.6

through an application to a computational task that is substantially more difficult than

previously considered tasks for networks of spiking neurons: We show that a simple

network of spiking neurons can learn without any supervision to discriminate hand-

written digits from the MNIST benchmark dataset [135] consisting of 70,000 samples

(30 are shown in Fig. 4.6A). This is one of the most frequently used benchmark tasks

in machine learning. It has mostly been used to evaluate supervised or semi-supervised

machine learning algorithms [33, 100], or to evaluate unsupervised feature learning ap-

proaches [101, 180]. Although the MNIST dataset contains labels (the intended digit)

for each sample of a handwritten digit, we deleted these labels when presenting the

dataset to the neural circuit of Fig. 4.1A, thereby forcing the K = 100 neurons on

the output layer to self-organize in a completely unsupervised fashion. Each sample of

a handwritten digit was encoded by 708 spike trains over 40 ms (and 10 ms periods

without firing between digits to avoid overlap of EPSPs between images), similarly as

for the task of Fig. 4.3. Each pixel was represented by two input neurons yi, one of

which produced a Poisson spike train at 40 Hz during these 40 ms. This yielded usually

at most one or two spikes during this time window, demonstrating that the network

learns and computes with information that is encoded through spikes, rather than firing

rates. After 500 s of unsupervised learning by STDP almost all of the output neurons

fired more sparsely, and primarily for handwritten samples of just one of the digits (see

Fig. 4.6E).

The application to the MNIST dataset had been chosen to illustrate the power of

SEM in complex tasks. MNIST is one of the most popular benchmarks in machine

107



4. SPIKE-BASED EXPECTATION MAXIMIZATION

A

Train

Test

B

0 50 100 150 200 250

0

100

200

300

400

500

600

700

Time [ms]

In
p

u
t 

N
e

u
ro

n
s

Input Spike Trains C

0 50 100 150 200 250

0

20

40

60

80

100

Time [ms]

O
u

tp
u

t 
N

e
u

ro
n

s

Output before Learning D

0 50 100 150 200 250

0

20

40

60

80

100

Time [ms]
O

u
tp

u
t 

N
e

u
ro

n
s

Output after Learning

E

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time [s]

C
o

n
d

it
io

n
a

l 
E

n
tr

o
p

y

F

Figure 4.6: Emergent discrimination of handwritten digits through STDP. A:

Examples of digits from the MNIST dataset. The third and fourth row contain test exam-

ples that had not been shown during learning via STDP. B: Spike train encoding of the

first 5 samples in the third row of A. Colors illustrate the different classes of digits. C, D:

Spike trains produced by the K = 100 output neurons before Continued on next page ...
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Continued: Caption for Figure 4.6. and after learning with STDP for 500 s. Colored spikes

indicate that the class of the input and the class for which the neuron is mostly selective (based

on human classification of its generative model shown in F) agree, otherwise spikes are black. E:

Temporal evolution of the self-organization process of the 100 output neurons (for the complex

version of STDP-curve shown in Fig. 4.1B), measured by the conditional entropy of digit labels

under the learned models at different time points. F: Internal models generated by STDP for

the 100 output neurons after 500 s. The network had not received any information about the

number of different digits that exist and the colors for different ways of writing the first 5 digits

were assigned by the human supervisor. On the basis of this assignment the test samples in

row 3 of panel A had been recognized correctly.

learning, and state-of-the-art methods achieve classification error rates well below 1%.

The model learned by SEM can in principle also be used for classification, by assigning

each neuron to the class for which it fires most strongly. However, since this is an

unsupervised method, not optimized for classification but for learning a generative

model, the performance is necessarily worse. We achieve an error rate of 19.86% on the

10-digit task on a previously unseen test set. This compares favorably to the 21% error

that we obtained with a standard machine learning approach that directly learned the

mixture-of-multinomials graphical model in Fig. 4.1B with a batch EM algorithm. This

control experiment was not constrained by a neural network architecture or biologically

plausible learning, but instead mathematically optimized the parameters of the model

in up to 200 iterations over the whole training set. The batch method achieves a final

conditional entropy of 0.1068, which is slightly better than the 0.1375 final result of the

SEM approach, and shows that better performance on the classification task does not

necessarily mean better unsupervised model learning.

4.2.10 Example 4: Detection of Spatio-Temporal Spike Patterns

Our final application demonstrates that the modules for Bayesian computation that

emerge in WTA circuits through STDP can not only explain the emergence of feature

maps in primary sensory cortices like in Fig. 4.5, but could also be viewed as generic

computational units in generic microcircuits throughout the cortex. Such generic mi-

crocircuit receives spike inputs from many sources, and it would provide a very useful

computational operation on these if it could autonomously detect repeatedly occurring

spatio-temporal patterns within this high-dimensional input stream, and report their

occurrence through a self-organizing sparse coding scheme to other microcircuits. We
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Figure 4.7: Output neurons self-organize via STDP to detect and represent

spatio-temporal spike patterns. A: Sample of the Poisson input spike trains at 20 Hz

(only 100 of the 500 input channels are shown). Dashed vertical lines mark time segments

of 50 ms length where spatio-temporal spike patterns are embedded into noise. B: Same

spike input as in A, but spikes belonging to five repeating spatio-temporal patterns (frozen

Poisson spike patterns at 15 Hz) are marked in five different colors. These spike patterns

are superimposed by noise (Poisson spike trains at 5 Hz), and interrupted by segments of

pure noise of the same statistics (Poisson spike trains at 20 Hz) for intervals of randomly

varying time lengths. Continued on next page...

Continued caption for Fig. 4.7: C, D: Firing probabilities and spike outputs of 6 output

neurons (z-neurons in Fig. 4.1A) for the spike input shown in A, after applying STDP

for 200 s to continuous spike trains of the same structure (without any supervision or

reward). These 6 output neurons have self-organized so that 5 of them specialize on

one of the 5 spatio-temporal patterns. One of the 6 output neurons (firing probability

and spikes marked in black) only responds to the noise between these patterns. The

spike trains in A represent test inputs, that had never been shown during learning.
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have created such input streams with occasionally repeated embedded spike patterns

for the computer experiment reported in Fig. 4.7. Fig. 4.7D demonstrates that sparse

output codes for the 5 embedded spike patterns emerge after applying STDP in a WTA

circuit for 200 s to such input stream. Furthermore, we show in the Supplement that

these sparse output codes generalize (even without any further training) to time-warped

versions of these spike patterns.

Even though our underlying probabilistic generative model (Fig. 4.1B) does not

include time-dependent terms, the circuit in this example performs inference over time.

The reason for this is that synapses that were active when a neuron fired become rein-

forced by STDP, and therefore make the neuron more likely to fire again when a similar

spatial pattern is observed. Since we use EPSPs that smoothly decay over time, one

neuron still sees a trace of previous input spikes as it fires again, and thus different spa-

tial patterns within one reoccurring spatio-temporal pattern are recognized by the same

neuron. The maximum length for such patterns is determined by the time constants of

EPSPs. With our parameters (1 ms rise, 15 ms decay time constant) we were able to

recognize spike patterns up to 50-100 ms. For longer spatio-temporal patterns, different

neurons become responsive to different parts of the pattern. The neuron that responds

mostly to noise in Figs. 4.7D did not learn a specific spatial pattern, and therefore

wins by default when none of the specialized neurons responds. Similar effects have

previously been described [147, 148], but for different neuron models, classical STDP

curves, and not in the context of probabilistic inference.

For this kind of task, where also the exact timing of spikes in the patterns matters

(which is not necessarily the case in the examples in Figs. 4.3, 4.5, and 4.6, where input

neurons generate Poisson spike trains with different rates), we found that the shape of

the STDP kernel plays a larger role. For example, a time-inverted version of the SEM

rule, where pre-before-post firing causes LTD instead of LTP, cannot learn this kind of

task, because once a neuron has learned to fire for a sub-pattern of the input, its firing

onset is shifted back in time, rather than forward in time, which happens with standard

SEM, but also with classical STDP [77, 147]. Instead, with a time-inverted SEM rule,

different neurons would learn to fire stronger for the offsets of different patterns.

Such emergent compression of high-dimensional spike inputs into sparse low-dimensional

spike outputs could be used to merge information from multiple sensory modalities, as

well as from internal sources (memory, predictions, expectations, etc.), and to report
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the co-occurrence of salient events to multiple other brain areas. This operation would

be useful from the computational perspective no matter in which cortical area it is

carried out. Furthermore, the computational modules that we have analyzed can eas-

ily be connected to form networks of such modules, since their outputs are encoded

in the same way as their inputs: through probabilistic spiking populations that en-

code for abstract multinomial variables. Hence the principles for the emergence of

Bayesian computation in local microcircuits that we have exhibited could potentially

also explain the self-organization of distributed computations in large networks of such

microcircuits.

4.3 Discussion

We have shown that STDP induces a powerful unsupervised learning principle in net-

works of spiking neurons with lateral inhibition: spike-based Expectation Maximiza-

tion. Each application of STDP can be seen as a move in the direction of the M-step in

a stochastic online EM algorithm that strives to maximize the log-likelihood log p(y|w)

of the spike input y. This is equivalent to the minimization of the Kullback-Leibler di-

vergence between the true distribution p∗(y) of spike inputs, and the generative model

p(y|w) that is implicitly represented by the WTA circuit from the Bayesian perspective.

This theoretically founded principle guarantees that iterative applications of STDP to

different spike inputs do not induce a meaningless meandering of the synaptic weights

w through weight space, but rather convergence to at least a local optimum in the

fitting of the model to the distribution p∗(y) of high-dimensional spike inputs y. This

generation of an internal model through STDP provides the primary component for

the self-organization of Bayesian computation. We have shown that the other compo-

nent, the prior, results from a simple rule for use-dependent adaptation of neuronal

excitability. As a consequence, the firing of a neuron zk in a stochastic WTA circuit

(Fig. 4.1A) can be viewed as sampling from the posterior distribution of hidden causes

for high-dimensional spike inputs y (and simultaneously as the E-step in the context

of online EM): A prior (encoded by the thresholds wk0 of the neurons zk) is multiplied

with a likelihood (encoded through an implicit generative distribution defined by the

weights wk1, . . . , wkn of these neurons zk), to yield through the firing probabilities of

the neurons zk a representation of the posterior distribution of hidden causes for the
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current spike input y. The multiplications and the divisive normalization that are nec-

essary for this model are carried out by the linear neurons in the log-scale. This result

is then transformed into an instantaneous firing rate, assuming an exponential relation-

ship between rate and the membrane potential [113]. It is important that the neurons

zk fire stochastically, i.e., that there exists substantial trial-to trial variability, since

otherwise they could not represent a probability distribution. Altogether our models

supports the view that probability distributions, rather than deterministic neural codes,

are the primary units of information in the brain, and that computational operations

are carried out on probabilities, rather than on deterministic bits of information.

Following the “probabilistic turn” in cognitive science [86, 87, 164] and related

hypotheses in computational neuroscience [54, 127, 183], probabilistic inference has

become very successful in explaining behavioral data on human reasoning and other

brain functions. Yet, it has remained an important open problem how networks of

spiking neurons can learn to implement those probabilistic inference operations and

probabilistic data structures. The soft WTA model presented in this article provides

an answer for the case of Bayesian inference and learning in a simple graphical model,

where a single hidden cause has to be inferred from bottom-up input. Although this

is not yet a mechanism for learning to perform general Bayesian inference in arbitrary

graphical models, it clearly is a first step into that direction. Importantly, the encoding

of posterior distributions through spiking activity of the neurons zk in a WTA circuit

is perfectly compatible with the assumed input encoding from external variables xj

into spiking activity in y. Thus, the interpretation of spikes from output neurons zk

as samples of the posterior distributions over hidden variables in principle allows for

using these spikes as input for performing further probabilistic inference.

This compatibility of input and output codes means that SEM modules could po-

tentially be hierarchically and/or recurrently coupled in order to serve as inputs of

one another, although it remains to be shown how this coupling affects the dynam-

ics of learning and inference. Future research will therefore address the important

questions whether interconnected networks of modules for Bayesian computation that

emerge through STDP can provide the primitive building blocks for probabilistic mod-

els of cortical computation. Previous studies [172, 192] have shown that interconnected

networks of WTA modules are indeed computationally very powerful. In particular,

[27, 172] have recently shown how recurrently connected neurons can be designed to
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perform neural sampling, an approach in which time-independent probability distribu-

tions can be represented through spiking activity in recurrent neural networks. The

question how salient random variables come to be represented by the firing activity of

neurons has remained open. This paper shows that such representations may emerge

autonomously through STDP.

A prediction for networks of hierarchically coupled SEM modules would be that

more and more abstract hidden causes can be learned in higher layers such as it has

been demonstrated in machine learning approaches using Deep Belief Networks [101]

and more recently in Deep Boltzmann Machines (DBM) [196]. This effect would corre-

spond to the emergence of abstract feature selectivity in higher visual areas of primates

(e.g. face-selective cells in IT, [49]). The hierarchical structure, however, that would

result from such deeply organized SEM-modules is more reminiscent of a Deep Sum-

Product Network [177], a recently presented new architecture, which has a much simpler

learning dynamics but arguably a similar expressive power as DBM. In addition, with

a consistent input encoding, associations between different sensory modalities could be

formed by connecting inputs from different low-level or high-level sources to a single

SEM.

Importantly, while the discussion above focused only on the representation of com-

plex stimuli by neurons encoding abstract hidden causes, SEM can also be an important

mechanism for fast and reliable reinforcement learning or decision making under uncer-

tainty. Preprocessing via single or multiple SEM circuits provides an abstraction of the

state of the organism, which is much lower-dimensional than the complete stream of

individual sensory signals. Learning a behavioral strategy by reading out such behav-

iorally relevant high-level state signals and mapping them into actions could therefore

speed up learning by reducing the state space. In previous studies [158, 173] we have

shown how optimal strategies can be learned very fast by simple local learning rules

for reinforcement learning or categorization, if a preprocessing of input signals based

on probabilistic dependencies is performed. SEM would be a suitable unsupervised

mechanism for learning such preprocessing networks for decision making.

We also have shown that SEM is a very powerful principle that endows networks

of spiking neurons to solve complex tasks of practical relevance (see e.g. Fig. 4.6), and

as we have shown, their unsupervised learning performance is within the range of con-

ventional machine learning approaches. Furthermore, this could be demonstrated for
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computations on spike inputs with an input dimension of about 1000 presynaptic neu-

rons y1, . . . , yn, a number that approaches the typical dimension of the spike input that

a cortical neuron receives. A very satisfactory aspect is that this high computational

performance can be achieved by networks of spiking neurons that learn completely au-

tonomously by STDP, without any postulated teacher or other guidance. This could

benefit the field of neuromorphic engineering [107, 112, 202], which develops dedicated

massively parallel and very efficient hardware for emulating spiking neural networks

and suitable plasticity rules. The link between spiking neuron models and plasticity

rules and established machine learning concepts provides a novel way of installing well-

understood Bayesian inference and learning mechanisms on neuromorphic hardware.

First steps towards implementing SEM-like rules in different types of neuromorphic

hardware have been taken.

4.3.1 Prior related work

A first model for competitive Hebbian learning paradigm in non-spiking networks of

neurons had been introduced in [191]. They analyzed a Hebbian learning rule in a hard

WTA network and showed that there may exist equilibrium states, in which the average

change of all weight values vanishes for a given set of input patterns. They showed

that in these cases the weights adopt values that are proportional to the conditional

probability of the presynaptic neuron being active given that the postsynaptic unit

wins (rather than the log of this conditional probability, as in our framework). [162]

showed that the use of a soft competition instead of a hard winner assignment and

corresponding average weight updates lead to an exact gradient ascent on the log-

likelihood function of a generative model of a mixture of Gaussians. However, these

learning rules had not yet been analyzed in the context of EM.

Stochastic approximation algorithms for expectation maximization [44] were first

considered in [31], incremental and on-line EM algorithms with soft-max competition

in [114, 155, 163]. A proof of the stochastic approximation convergence for on-line EM

in exponential family models with hidden variables was shown in [198]. They developed

a sophisticated schedule for the learning rate in this much more general model, but did

not yet consider individual learning rates for different weights.

[210] initiated the investigation of STDP in the context of unsupervised competi-

tive Hebbian learning and demonstrated that correlations of input spike trains can be
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learned in this way. They also showed that this leads to a competition between the

synapses for the control of the timing of the postsynaptic action potential. A simi-

lar competition can also be observed during learning in our model, since our learning

rule automatically drives the weights towards satisfying the normalization conditions

in Eq. (4.10).

[200] present a network and learning model that is designed to perform Independent

Component Analysis (ICA) with spiking neurons through STDP and intrinsic plasticity.

The mixture model of independent components can also be formulated as a generative

model, and the goal of ICA is to find the optimal parameters of the mixing matrix.

It has been shown that also this problem can be solved by a variant of Expectation

Maximization [38], so there is some similarity to the identification of hidden causes in

our model.

Recently, computer experiments in [90, 91] have used STDP in the context of WTA

circuits to achieve a clustering of input patterns. Their STDP rules implements linear

updates, independent of the current weight values, mixed with a homeostasis rule to

keep the sum of all weights constant and every weight between 0 and 1. This leads

to weights that are roughly proportional to the probability of the presynaptic neuron’s

firing given that the post-synaptic neuron fires afterwards. The competition between

the output neurons is carried out as hard-max. In [91] the 4 output neurons learn

to differentiate the 4 presented patterns and smoothly interpolate new rotated input

patterns, whereas in [90] 48 neurons learn to differentiate characters in a small pixel

raster. [90] uses a STDP rule where both LTP and LTD are modeled as exponentially

dependent on the time difference. However, the very specific experimental setting with

synchronous regular firing of the input neurons makes it difficult to generalize their

result to more general input spike trains. No theoretical analysis is provided in [91] or

[90], but their experimental results can be explained by our SEM approach. Instead

of adding up logs of conditional probabilities and performing the competition on the

exponential of the sums, they sum up the conditional probabilities directly and use this

sum of probabilities for the competition. This can be seen as a linear approximation

of SEM, especially under the additional normalization conditions that they impose by

homeostasis rules.

It has previously been shown that spike patterns embedded in noise can be detected

by STDP [77, 147, 149]. Competitive pattern learning through STDP has recently
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been studied in [148]. They simulate a deterministic version of a winner-take-all circuit

consisting of a fixed number of neurons, all listening to the same spiking input lines and

connected to each other with a strong inhibition. The STDP learning rule that they

propose is additive and weight-independent. Just like our results, they also observe

that different neurons specialize on different fixed repeated input pattern, even though

the repeated patterns are embedded in spiking noise such that the mean activity of all

inputs remains the same throughout the learning phase. Additionally they show that

within each pattern the responsible neuron tries to detect the start of the pattern. In

contrast to our approach they do not give any analysis of convergence guarantees, nor

does their model try to build a generative probabilistic model of the input distribution.

[181, 182, 236] investigated the possibility to carry out Bayesian probabilistic com-

putations in recurrent networks of spiking neurons, both using probabilistic population

codes. They showed that the ongoing dynamics of belief propagation in temporal

Bayesian models can be represented and inferred by such networks, but they do not

exhibit any neuronal plausible learning mechanism. [143] presented another approach

to Bayesian inference using probabilistic population codes, also without any learning

result.

An interesting complementary approach is presented in [45, 46], where a single

neuron is modeled as hidden Markov model with two possible states. This approach has

the advantage, that the instantaneous synaptic input does not immediately decide the

output state, but only incrementally influences the probability for switching the state.

The weights and the temporal behavior can be learned online using local statistics. The

downside of this approach is that this hidden Markov model can have only two states.

In contrast, the SEM approach can be applied to networks with any number of output

neurons.

In [93] it was shown that a suitable rule for supervised spike-based learning (the

Tempotron learning rule) can be used to train a network to recognize spatio-temporal

spike patterns. This discriminative learning scheme enables the recognizing neuron to

focus on the most discriminative segment of the pattern. In contrast, our generative

unsupervised learning scheme drives the recognizing neuron to generalize and spike

many times during the whole pattern, and thus learns the spatial average activity

pattern. The conductance based approach of [93] differs drastically from our method

(and the results shown in the Supplement) insofar as here only STDP was used (focusing
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on average spatial patterns), no supervision was involved, and the time-warped input

pattern had never been shown during training.

An alternative approach to implement the learning of generative probabilistic mod-

els in spiking neuronal networks is given in [25, 186]. Both approaches are based on the

idea to model a sequence of spikes in a Hidden-Markov-Model-like probabilistic model

and learn the model parameters through different variants of EM, in which a sequence

of spikes represents one single sample of the model’s distribution. Due to the explicit

incorporation of inference over time, these models are more powerful than ours and

thus require non-trivial, non-local learning mechanisms.

4.3.2 Experimentally testable predictions of the proposed model

Our analysis has shown, that STDP supports the creation of internal models and im-

plements spike-based EM if changes of synaptic weights depend in a particular way on

the current value of the weight: Weight potentiation depends in an inversely exponen-

tial manner on the current weight (see Eq. (4.5)). This rule for weight potentiation

(see Fig. 4.8A) is consistent with all published data on this dependence: Fig. 5 in [18]

and Fig. 5C in [207] for STDP, as well as Fig. 10 in [140] and Fig. 1 in [153] for other

protocols for LTP induction. One needs to say, however, that these data exhibit a large

trial-to-trial variability, so that it is hard to infer precise quantitative laws from them.

On the other hand, the applications of STDP that we have examined in Fig. 4.3 -

4.7 work almost equally well if the actual weight increase varies by up to 100% from

the weight increase proposed by our STDP rule (see open circles in Fig. 4.8A). The

resulting distribution of weight increases matches qualitatively the above mentioned

experimental data quite well.

The prediction of our model for the dependence of the amount of weight depres-

sion on the current weight is drastically different: Even though we make the strong

simplification that the depression part of the STDP rule is independent of the time

difference between pre- and postsynaptic spike, the formulation in Eq. (4.5) makes the

assumption, that the amount of the depression should be independent of the current

weight value. It is this contrast between an exponential dependency for LTP and a

constant LTD which makes the weight converge to the logarithm of the conditional

presynaptic firing probability in Eq. (4.6). In experiments this dependency has been
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investigated in-vitro [207]. There it has been found that the percentage of weight de-

pression under STDP is independent of the current weight, which implies that the

amount of depression is linear in the current weight value. This seems to contradict

the presented learning rule. However, the key property that is needed for the desired

equilibrium condition is the ratio between LTP and LTD. So the equilibrium proof in

Eq. (4.28) remains unchanged if ∆wki is multiplied (for potentiation and depression)

by some arbitrary function f(wki) of the current weight value. Choosing for example

f(wki) = wki yields a depression whose percentage is independent of the initial value,

which would be consistent with the above mentioned in-vitro data [207]. The resulting

dependence for potentiation is plotted in Fig. 4.8B. Since this curve is very similar to

that of Fig. 4.8A, the above mentioned experimental data for potentiation are too noisy

to provide a clear vote for one of these two curves. Thus more experimental data are

needed for determining the dependence of weight potentiation on the initial weight.

Whereas the relevance of this dependency had previously not been noted, our analysis

suggests that such a contrast it is in fact essential for the capability of STDP to create

internal models for high-dimensional spike inputs.

A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

100

120

140

160

180

200

220

240

260

280

300

Initial weight

W
e
ig

h
t 
a
ft
e
r 

U
p
d
a
te

 [
%

 o
f 
o
ld

 w
e
ig

h
t]

B

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

100

120

140

160

180

200

220

240

260

280

300

Initial weight

W
e
ig

h
t 
a
ft
e
r 

U
p
d
a
te

 [
%

 o
f 
o
ld

 w
e
ig

h
t]

Figure 4.8: Ideal dependence of weight potentiation under STDP on the ini-

tial value of the weight (solid lines). Open circles represent results of samples from

this ideal curve with 100% noise, that can be used in the previously discussed computer

experiments with almost no loss in performance. A: Dependence of weight potentiation on

initial weight according to the STDP rule in Eq. (4.5). B: Same with an additional factor

w.

Our analysis has shown, that if the excitability of neurons is also adaptive, with

a rule as in Eq. (4.7) that is somewhat analogous to that for synaptic plasticity, then
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neurons can also learn appropriate priors for Bayesian computation. Several experi-

mental studies have already confirmed, that the intrinsic excitability of neurons does

in fact increase when they are more frequently activated [35], see [43], [37] and [29]

for reviews. But a quantitative study, which relates the resulting change in intrinsic

excitability to its initial value, is missing.

Our model proposes that pyramidal neurons in cortical microcircuits are organized

into stochastic WTA circuits, that together represent a probability distribution. This

organization is achieved by a suitably regulated common inhibitory signal, where the

inhibition follows the excitation very closely. Such instantaneous balance between ex-

citation and inhibition was described by [166]. A resulting prediction of the WTA

structure is that the firing activity of these neurons is highly de-correlated due to the

inhibitory competition. In contrast to previous experimental results, that reported

higher correlations, it has recently been confirmed in [56] for the visual cortex of awake

monkey that nearby neurons, even though they share common input show extremely

low correlations.

Another prediction is that neural firing activity especially for awake animals subject

to natural stimuli is quite sparse, since only those neurons fire whose internal model

matches their spike input. A number of experimental studies confirm this predictions

(see [168] for a review). Our model also predicts, that the neural firing response to

stimuli exhibits a fairly high trial-to-trial variability, as is typical for drawing repeated

samples from a posterior distribution (unless the posterior probability is close to 0 or 1).

A fairly high trial-to-trial variability is a common feature of most recordings of neuronal

responses (see e.g. [120], Fig. 1B in [161]; a review is provided in [58]). In addition,

our model predicts that this trial-to-trial variability decreases for repeatedly occurring

natural stimuli (especially if this occurs during attention) and discrimination capability

improves for these stimuli, since the internal models of neurons are becoming better

fitted to their spike input during these repetitions (“sharpening of tuning”), yielding

posterior probabilities closer to 1 or 0 for these stimuli. These predictions are consistent

with a number of experimental data related to perceptual learning [75, 76], and with

the evolution of neuronal responses to natural scenes that were shown repeatedly in

conjunction with nucleus basalis stimulation [80].

In addition our model predicts that if the distribution of sensory inputs changes, the

organization of codes for such sensory inputs also changes. More frequently occurring
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sensory stimuli will be encoded with a finer resolution (see [42] for a review of related

experimental data). Furthermore in the case of sensory deprivation (see [150]) our

model predicts that neurons that used to encode stimuli which no longer occur will

start to participate in the encoding of other stimuli.

We have shown in Fig. 4.3 that an underlying background oscillation on neurons

that provide input to a WTA circuit speeds up the learning process, and produces more

precise responses after learning. This result predicts that cortical areas that collaborate

on a common computational task, especially under attention, exhibit some coherence

in their LFP. This has already been shown for neurons in close proximity [145] but also

for neurons in different cortical areas [225, 226].

If one views the modules for Bayesian computation that we have analyzed in this

article as building blocks for larger cortical networks, these networks exhibit a funda-

mental difference to networks of neurons: Whereas a neuron needs a sufficiently strong

excitatory drive in order to reach its firing threshold, the output neurons z of a stochas-

tic WTA circuit according to our model in Eq. (4.3) are firing already on their own

- even without any excitatory drive from the input neuron y (due to assumed back-

ground synaptic inputs; modeled in our simulations by an Ornstein-Uhlenbeck process,

as suggested by in-vivo data [50]). Rather, the role of the input from the y-neurons

is to modulate which of the neurons in the WTA circuit fire. One consequence of this

characteristic feature is that even relatively few presynaptic neurons y can have a strong

impact on the firing of the z-neurons, provided the z-neurons have learned (via STDP)

that these y-neurons provide salient information about the hidden cause for the total

input y from all presynaptic neurons. This consequence is consistent with the surpris-

ingly weak input from the LGN to area V1 [20, 52, 146]. It is also consistent with the

recently found exponential distance rule for the connection strength between cortical

areas [146]. This rule implies that the connection strength between distal cortical areas,

say between primary visual cortex and PFC, is surprisingly weak. Our model suggests

that these weak connections can nevertheless support coherent brain computation and

memory traces that are spread out over many, also distal, cortical areas.

Apart from these predictions regarding aspects of brain computation on the mi-

croscale and macroscale, a primary prediction of our model is that complex computa-

tions in cortical networks of neurons - including very efficient and near optimal pro-

cessing of uncertain information - are established and maintained through STDP, on
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the basis of genetically encoded stereotypical connection patterns (WTA circuits) in

cortical microcircuits.

4.4 Methods

According to our input model, every external multinomial variable xj , with j = 1, . . . ,m

is encoded through a group Gj of neurons yi, with i ∈ Gj . The generative model p(x|θ)
from Fig. 4.1B is implicitly encoded in the WTA circuit of Fig. 4.1A with K excitatory

neurons zk by:

p(y|w) =
1

Z
·
K∑
k=1

ewk0 · m∏
j=1

∏
i∈Gj

ewki·[xj=v(i)]

 =
1

Z

K∑
k=1

ewk0+
∑n
i=1 wki·yi (4.19)

where [xj = v(i)] is the binary indicator function of xj taking on value v(i). In the

generative model p(y|w) we define the binary variables yi and set yi = 1 if yi represents

the value v(i) of the multinomial variable xj (with j s.t. i ∈ Gj) and xj = v(i),

otherwise yi = 0. The setsGj represent a partition of {1, . . . , n}, thus
∏m
j=1

∏
i∈Gj e

wkiyi

and the form
∏n
i=1 e

wkiyi used in Eq. (4.9) are equivalent expressions. The value of the

normalization constant Z can be calculated explicitly as

Z =
K∑
k=1

ewk0
m∏
j=1

Zkj , with Zkj =
∑
i∈Gj

ewki . (4.20)

This generative model can be rewritten as a mixture distribution with parameters πk

and µki:

p(y|w) =
K∑
k=1

p(y, k|w) =
K∑
k=1

[
πk ·

n∏
i=1

µyiki

]
, (4.21)

πk = p(k|w) = ewk0

∏m
j=1 Zkj

Z
(4.22)

µki = p(yi = 1|k,w) =
ewki

Zkj
with i ∈ Gj . (4.23)

In order to show how the constants Zkj cancel out we write the full joint distribution

of y and the “hidden cause” k as the product of the prior p(k|w) and the likelihood
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p(y|k,w):

p(y, k|w) = p(k|w) · p(y|k,w) (4.24)

= ewk0

∏m
j=1 Zkj

Z
·
n∏
i=1

(
ewki

Zkj

)yi
with j such that i ∈ Gj (4.25)

= ewk0

∏m
j=1 Zkj

Z
·
m∏
j=1

 1

Zkj

∏
i∈Gj

(ewki)yi

 (4.26)

=
1

Z
ewk0 ·

n∏
i=1

ewkiyi . (4.27)

Under the normalization conditions in Eq. (4.10) the parameters of the mixture

distribution simplify to µki = ewki and πk = ewk0 , since all Zkj = 1 and Z = 1.

The generative model in Eq. (4.24) is well defined only for vectors y, such that

there is exactly one “1” entry per group Gj . However, in the network model with

rectangular, renewable EPSPs, there are time intervals where y(t) may violate this

condition, if the interval between two input spikes is longer that σ. It is obvious from

Eq. (4.24) that this has the effect of dropping all factors representing xj , since this

results in an exponent of 0. Under proper normalization conditions (or at least if all

Zkj have identical values), this drop of an entire input group in the calculation of the

posterior in Eq. (4.11) is identical to performing inference with unknown xj (see ’Impact

of missing input values’). Eq. (4.11) holds aslong as there are no two input spikes from

different neurons within the same group closer than σ, which we have assumed for the

simple input model with rectangular, renewable EPSPs.

Equilibrium condition

We will now show that all equilibria of the stochastic update rule in Eq. (4.5) and

Eq. (4.7), i.e., all points where Ep∗w [∆w] = 0, exactly match the implicit solution

conditions in Eq. (4.46), and vice versa:

E[∆wki] = 0 ⇔ p∗w(yi=1|zk=1)(e−wki − 1)− p∗w(yi=0|zk=1) = 0

⇔ p∗w(yi=1|zk=1)(e−wki − 1) + p∗w(yi=1|zk=1)− 1 = 0

⇔ p∗w(yi=1|zk=1)e−wki = 1

⇔ wki = log p∗w(yi=1|zk=1) . (4.28)
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Analogously, one can show that Ep∗w [∆wk0] = 0⇔ wk0 = log p∗w(zk = 1). Note that this

result implies that the learning rule in Eq. (4.5) and Eq. (4.7) has no equilibrium points

outside the normalization conditions in Eq. (4.10), since all equilibrium points fulfill

the implicit solutions condition in Eq. (4.46) and these in turn fulfill the normalization

conditions.

4.4.1 Details to Learning the parameters of the probability model by

EM

In this section we will analyze the theoretical basis for learning the parameters w of

the generative probability model p(y, k|w) given in Eq. (4.9) from a machine learning

perspective. In contrast to the intuitive explanation of the Results section which was

based on Expectation Maximization we will now derive an implicit analytical solution

for a (locally) optimal weight vector w, and rewrite this solution in terms of log prob-

abilities. We will later use this derivation in order to show that the stochastic online

learning rule provably converges towards this solution.

For an exact definition of the learning problem, we assume that the input is given by

a stream of vectors y, in which every y is drawn independently from the input distribu-

tion p∗(y). In principle, this stream of y’s corresponds to the samples y(t1),y(t2), . . .

that are observed at the spike times t1, t2, . . . of the circuit. However, in order to sim-

plify the proofs in this and subsequent sections, we will neglect any possible temporal

correlation between successive samples.

The learning task is to find parameter values w, such that the marginal p(y|w) of

the model distribution p(y, k|w) approximates the actual input distribution p∗(y) as

accurately as possible. This is equivalent to minimizing the Kullback-Leibler divergence

between the two distributions:

KL(p∗(y)||p(y|w)) =
∑
y

p∗(y) log
p∗(y)

p(y|w)

= −Hp∗(y)− Ep∗ [log p(y|w)] , (4.29)

where Hp∗(y) is the (constant) entropy of the input distribution p∗(y), and Ep∗ [·] de-

notes the expectation over y, according to the distribution p∗(y). Since Hp∗(y) is

constant, minimizing the right hand side of Eq. (4.29) is equivalent to maximizing the

expected log likelihood L(w) = Ep∗ [log p(y|w)].

124



4.4 Methods

There are many different parametrizations w that define identical generative distri-

butions p(y, k|w) in Eq. (4.24). There is, however, exactly one w′ in this sub-manifold

of the weight space that fulfills the normalization conditions in Eq. (4.10).

We thus redefine the goal of learning more precisely as the constrained maximization

problem

max L(w) (4.30)

subject to
K∑
k=1

ewk0 = 1 and
∑
i∈Gj

ewki = 1 for all k, j . (4.31)

This maximization problem never has a unique solution w, because any permutation

of the values of k and their corresponding weights leads to different joint distributions

p(y, k|w), all of them having identical marginals p(y|w). The local maxima of Eq. (4.30)

can be found using the Lagrange multiplier method.

Note that we do at no time enforce normalization of w during the learning process,

nor do we require normalized initialization of w. Instead, we will show that the learning

rule in Eq. (4.5,4.7) automatically drives w towards a local maximum, in which the

normalization conditions are fulfilled.

Under the constraints in Eq. (4.31) the normalization constant Z in Eq. (4.21)

equals 1, thus L(w) simplifies to Ep∗ [log
∑K

k=1 e
uk ] - with uk = wk0 +

∑n
i=1wki · yi

- and we can define a Lagrangian function L̃(w,λ) for the maximization problem in

Eq. (4.30,4.31) by

L̃(w, λ) = Ep∗ [log
K∑
k=1

euk ]− λ0

(
1−

K∑
k=1

ewk0

)
−

K∑
k=1

m∑
j=1

λkj

1−
∑
i∈Gj

ewki

 .

(4.32)

Setting the derivatives to zero we arrive at the following set of equations in w and λ:

∀k :
∂L̃

∂wk0
= Ep∗ [

euk∑K
l=1 e

ul
]− λ0e

wk0 = 0 (4.33)

∀k, i :
∂L̃

∂wki
= Ep∗ [yi

euk∑K
l=1 e

ul
]− λkjewki = 0. (4.34)

Summing over those equations that have the same multiplier λkj or λ0, resp., leads to
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K∑
k=1

∂L̃

∂wk0
=

K∑
k=1

Ep∗ [p(k|y,w)]− λ0

K∑
k=1

ewk0 = 0 (4.35)

∀k, j :
∑
i∈Gj

∂L̃

∂wki
=

∑
i∈Gj

Ep∗ [yi p(k|y,w)]− λkj
∑
i∈Gj

ewki = 0 , (4.36)

where p(k|y,w) is the shorthand notation for the equivalent expression euk∑K
l=1 e

ul
. The

identity
∑K

k=1 Ep∗ [p(k|y,w)] = 1, the identity
∑

i∈Gj Ep∗ [yi p(k|y,w)] = Ep∗ [p(k|y,w)
∑

i∈Gj yi]

the fact that
∑

i∈Gj yi = 1, which follows from the definition of population encoding,

and the constraints in Eq. (4.31) are used in order to derive the explicit solution for

the Lagrange multipliers

λ0 = 1 and ∀k, j : λkj = Ep∗ [p(k|y,w)] , (4.37)

in dependence of w. We insert this solution for λ into the gradient Eq. (4.33,4.34) and

get

Ep∗ [p(k|y,w)]− ewk0 = 0 (4.38)

Ep∗ [yi p(k|y,w)]− Ep∗ [p(k|y,w)]ewki = 0 ,

from which we derive an implicit solution for w:

wk0 = log Ep∗ [p(k|y,w)] (4.39)

wki = log
Ep∗ [yi p(k|y,w)]

Ep∗ [p(k|y,w)]
.

It is easily verified that all fixed points of this implicit solution satisfy the normalization

constraints:

K∑
k=1

ewk0 =
K∑
k=1

Ep∗ [p(k|y,w)] = Ep∗ [

K∑
k=1

p(k|y,w)] = 1 (4.40)

∑
i∈Gj

ewki =
∑
i∈Gj

Ep∗ [yi p(k|y,w)]

Ep∗ [p(k|y,w)]
=

Ep∗ [p(k|y,w)
∑

i∈Gj yi]

Ep∗ [p(k|y,w)]
= 1 . (4.41)

Finally, in order to simplify the notation we use the augmented input distribution
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p∗w(y, z). The expectations in Eq. (4.39) nicely evaluate to

Ep∗ [p(zk=1|y,w)] =
∑
y

p∗(y)p(zk=1|y,w) =
∑
y

p∗w(y, zk=1) = (4.42)

= p∗w(zk=1) and (4.43)

Ep∗ [yi p(zk=1|y,w)] =
∑
y

p∗(y) yi p(zk=1|y,w) =
∑
y

yi p
∗
w(y, zk=1) = (4.44)

= p∗w(yi=1, zk=1) , (4.45)

which allows us to rewrite the implicit solution in a very intuitive form as:

wk0 = log p∗w(zk = 1) wki = log p∗w(yi = 1|zk = 1) . (4.46)

Any weight vector w that fulfills Eq. (4.46) is either a (local) maximum, a saddle

point or a (local) minimum of the log likelihood function L under the normalization

constraints.

An obvious numerical approach to solve this fixed point equation is the repeated

application of Eq. (4.39). According to the derivations in the Results section this

corresponds exactly to the Expectation Maximization algorithm. But every single

iteration asks for the evaluation of expectations with respect to the input distribution

p∗(y), which theoretically requires infinite time in an online learning setup.

4.4.2 Details to Spike-based Expectation Maximization

We derive the update rule in Eq. (4.5) from the statistical perspective that each weight

can be interpreted as wki = log aki
Nki

, where aki and Nki correspond to counters of the

events 〈yi = 1, zk = 1〉 and 〈zk = 1〉. Every new event 〈yi, zk〉 leads to a weight update

wnew
ki = log

aki + yizk
Nki + zk

= (4.47)

= log
aki
Nki

(1 +
1

Nki

Nki

ai
yizk)(1 +

1

Nki
zk)
−1 (4.48)

= wki + log(1 +
1

Nki
e−wkiyizk)− log(1 +

1

Nki
zk) (4.49)

≈ wki +
1

Nki
zk(e

−wkiyi − 1) , (4.50)

where the log-function is linearly approximated around 1 as log(1 +x) ≈ x. The factor

1
Nki

is understood as learning rate ηki in the additive update rule wnew
ki = wki+ηki∆wki.
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If zk = 0, i.e. if there is no postsynaptic spike, the update ∆wki = 0. In the case of

a postsynaptic spike, i.e., zk = 1, the update ∆wki = 0 decomposes in the two cases

yi = 1 and yi = 0 as it is stated explicit in Eq. (4.5).

As a side note, we observe that by viewing our STDP rule as an approximation to

counting statistics, the learning rate ηki = 1
Nki

can be understood as the inverse of the

equivalent sample size from which the statistics was gathered. If the above rule is used

with a small constant learning rate we will get a close approximation to an exponentially

decaying average. If the learning rate decays like 1
Nki

we will get an approximation to

an online updated average, where all samples are equally weighted. We will come back

to a regulation mechanism for the learning rate in the section ’Variance Tracking’.

4.4.3 Details to Proof of convergence

In this section we give the proof of Theorem 1. Formally, we define the sequences w(t),

∆w(t), y(t), z(t) and η(t) for t = 0, 1, . . . ,∞: For all t we assume that y(t) is drawn

independently from p∗(y). The value of z(t) is drawn from the posterior distribution of

the model p(z|y(t),w(t)) (see Eq. (4.11)), given the input y(t) and the current model

parameters w(t). The weight updates ∆w
(t)
ki , and ∆w

(t)
k0 , are calculated according to

Eq. (4.5) and (4.7) with c = 1. The sequence of weight vectors w(t) is determined by

the randomly initialized vector w(0), and by the iteration equation

w(t+1) = Π
(
w(t) + η(t)∆w(t)

)
. (4.51)

The projection function Π represents a coordinate-wise clipping of w(t+1) to a hyper-

rectangle B such that

−wmin ≤ w(t+1)
ki ≤ 0 and − wmin ≤ w(t+1)

k0 ≤ 0 . (4.52)

The bound wmin is assumed to be chosen so that all (finite) maxima of L are inside of

B. For the sequence of learning rates η(t) we assume that

∞∑
t=1

η(t) =∞ and
∞∑
t=1

(η(t))2 <∞ . (4.53)

Under these assumptions we can now restate the theorem formally:

Theorem 1: The sequence w(t) converges with probability 1 to the set SB of all points

within the hyper-rectangle B that fulfill the equilibrium conditions in Eq. (4.6). The
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stable convergence points among SB are the (local) maxima of L, subject to the nor-

malization constraints in Eq. (4.10).

The iterative application of the learning rule in Eq. (4.5) and (4.7) is indeed a

stochastic approximation algorithm for learning a (locally) optimal parameter vector

w. We resort to the theory of stochastic approximation algorithms as presented in

[131] and use the method of the “mean limit” ordinary differential equation (ODE).

The goal is to show that the sequence of the weight vector w(t) under the stochastic

learning rule in Eq. (4.5) and (4.7) converges to one of the local maxima of Eq. (4.30)

with probability one, i.e., the probability to observe a non-converging realization of

this sequence is zero. The location of the local maximum to which a single sequence of

w(t) converges depends on the starting point w(0) as well as on the concrete realization

of the stochastic noise sequence. We will not discuss the effect of this stochasticity in

more detail, except for stating that a stochastic approximation algorithm is usually less

prone to get stuck in small local maxima than its deterministic version. The stochastic

noise introduces perturbations that decrease slowly over time, which has an effect that

is comparable to simulated annealing.

We will use the basic convergence theorem of [131] to establish the convergence of

the sequence w(t) to the limit set of the mean limit ODE. Then it remains to show

that this limit set is identical to the desired set of all equilibrium points and thus,

particularly, does not contain limit cycles.

Proof: In the notation of [131], the mean update of the stochastic algorithm in

Eq. (4.51) is ḡ(w) = Ep∗w [∆w(t)]. The bounds B imply that Ep∗w [||∆w(t)||] <∞ for all

t and supt Ep∗w [(∆w(t))2] <∞.

For any set A we define F (A) as the positive limit set of the mean limit ODE

ẇ(s) = ḡ(w(s)) for all initial conditions w(0) ∈ A:

F (A) = lim
s→∞

⋃
w∈A

{
w(s′), s′ ≥ s : w(0) = w

}
. (4.54)

According to Theorem 3.1 in Chapter 5 of [131], the sequence w(t) under the algo-

rithm in Eq. (4.51) converges for all start conditions w(0) ∈ B to the limit set F (B)

with probability one in the sense that

lim
t→∞

min
w∈F (B)

∣∣∣w(t) −w
∣∣∣ = 0 . (4.55)
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We will now show that the limit set F (B) of ẇ = ḡ(w) is identical to the set of

stationary points SB = {w ∈ B : ḡ(w) = 0} and does not contain limit cycles. It is

obvious that SB is a subset of F (B) since for all initial conditions w(0) ∈ SB the

trajectory of ẇ(s) = ḡ(w(s)) fulfills w(s) ≡ w(0) for all s. Thus it remains to be

shown that there are no other points in FB (like e.g. limit cycles).

We split the argument into two parts. In the first part we will show that for

s → ∞ all trajectories of ẇ(s) = ḡ(w(s)) converge asymptotically to the manifold

H defined by the normalization constraints 4.31. This leads to the conclusion that

F (B \H) ⊂ F (B ∩H). In the second part we will show that all trajectories within H

converge to the stationary points SB, i.e., F (B ∩H) = SB. Both parts together yield

the desired result that SB are the only limit points of the ODE ẇ(s) = ḡ(w(s)).

The first part we start by defining the set of functions h0(w) and hkj(w) for all k, j

to represent the deviation of the current w from each of the normalization constraints

4.31, i.e.,

h0(w) =
K∑
k=1

ewk0 − 1 hkj(w) =
∑
i∈Gj

ewki − 1 . (4.56)

The manifold H is the set of all points w where h0(w) = 0 and hkj(w) = 0 for all k, j.

Furthermore, we calculate the gradient vectors ∂h0
∂w and

∂hkj
∂w for each of these functions

with respect to the argument w. Note that many entries of these gradient vectors are

0, since every single function hkj(w) and h0(w) only depends on a few entries of its

argument w. The nonzero entries of these gradients are

∂h0

∂wk0
= ewk0 ∀i ∈ Gj :

∂hkj
∂wki

= ewki . (4.57)

We can now show that the trajectory of ẇ(s) = ḡ(w(s)) in any point w(s) always

points in direction of decreasing absolute values for all deviations h0() and hkj():

ḡ(w) · ∂h0

∂w
=

K∑
k=1

(Ep∗ [zk]e
−wk0 − 1) ewk0 = 1−

K∑
k=1

ewk0 (4.58)

= −h0(w) (4.59)

ḡ(w) ·
∂hkj
∂w

=
∑
i∈Gj

(Ep∗ [yi zk]e
−wki − Ep∗ [zk]) e

wki = p(k|y,w)(1−
∑
i∈Gj

ewki)

(4.60)

= −p(k|y,w)hkj(w) (4.61)
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This shows that lims→∞ hkj(w(s)) = 0 for all k, j and lims→∞ h0(w(s)) = 0. This

implies that the limit set of all trajectories with initial conditions outside H is con-

tained in H, or more formally F (B \H) ⊆ B ∩H. Note that the continuity and the

boundedness of ḡ(w) on B implies F (F (A)) = F (A) and F (A1) ⊆ F (A2) if A1 ⊆ A2

for all A,A1, A2 ⊆ B. Therefore we can now conclude as the result of the first part

F (B \H) = F (F (B \H)) ⊆ F (B ∩H) , (4.62)

i.e. the limit set of all trajectories starting outside the manifold of normalized weights

is contained in the limit set of all trajectories starting within the normalization con-

straints. The equations (4.61) also prove that any trajectory with initial condition

w(0) ∈ H stays within H, since all components of ḡ(w(s)) with directions orthogonal

to the tangent space of H in w(s) are 0 for all s, thus ḡ(w(s)) is in the tangent space

H in w(s).

This immediately leads to the second part of the proof, which is based on the

gradient ∂L̃
∂w of the Lagrangian L̃ as given in Eq. (4.33, 4.34). For any w ∈ H let

P (w) be the linear projection matrix that orthogonally projects any vector a into the

tangent space of H in w. The projection P (w) · ∂L̃(w)
∂w of the gradient of L̃ at any

w ∈ H points towards the strongest increase of the value of the objective function L

under the constraints of the normalization conditions. Thus, the value of L increases

in the direction of any vector within the tangent space of H in w that has a positive

scalar product with P (w) · ∂L̃(w)
∂w . As ḡ(w) is a tangent vector of H in w for all w ∈ H,

the orthogonal component ∂L̃(w)
∂w − P (w) · ∂L̃(w)

∂w of the gradient is orthogonal to ḡ(w).

Thus, the value of the scalar product with the projected gradient ḡ(w) · (P (w) · ∂L̃(w)
∂w )

is identical to the value of the scalar product with the gradient itself ḡ(w) · ∂L̃(w)
∂w :

ḡ(w) · ∂L̃(w)

∂w
=

K∑
k=1

∂L

∂wk0
(Ep∗w [zk]e

−wk0 − 1) +
∑
i,k

∂L

∂wki
(Ep∗w [zkyi]e

−wki − Ep∗w [zk])

(4.63)

=
K∑
k=1

e−wk0(Ep∗ [p(z = k|y,w)− ewk0 ])2+

+
∑
i,k

e−wki(Ep∗ [(yi − ewki)p(z = k|y,w)])2 ≥ 0 ,
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with equality if and only if ḡ(w) = 0, which is equivalent to ∂L̃(w)
∂w = 0. This shows that

all trajectories with initial condition w(0) ∈ H stay within H forever and converge to

the set of stationary points SH , i.e. F (B ∩H) = SH . Combining the results of both

parts as

F (B) = F (B \H) ∪ F (B ∩H) = F (B ∩H) = SB (4.64)

establishes the stochastic convergences of any sequence w(t) to the set SB with proba-

bility one.�

Weight offsets and positive weights

All weights wki in the theoretical model are logs of probabilities and therefore always

have negative values. Through a simple transformation we can shift all weights into

the positive range in order to be able to use positive weights only, which is the common

assumption for excitatory connections in biologically inspired neural network models.

We will now show that setting the parameter c in Eq. (4.5) different from 1 leads to a

linear shift of the resulting weight values by log c, without changing the functionality

of the Spike-based EM algorithm.

Firstly, we observe that the application of the update rule in Eq. (4.5) with c > 1

on a shifted weight w′ki = wki + log c is identical to the application of the update rule

with c = 1 on the original weight wki, since

ce

−(wki + log c︸ ︷︷ ︸
w′
ki

)

− 1 = e−wki − 1 . (4.65)

Secondly, we see that the relative firing rate qk(t) of neuron zk remains unchanged if

all weights are subject to the same offset log c, since

qk(t) =
ewk0+

∑n
i=1(wki+log c)yi∑K

k′=1 e
wk′0+

∑n
i=1(wk′i+log c)yi

(4.66)

=

(
elog c

∑n
i=1 yi

)
ewk0+

∑n
i=1 wkiyi∑K

k′=1

(
elog c

∑n
i=1 yi

)
ewk′0+

∑n
i=1 wk′iyi

(4.67)

=
ewk0+

∑n
i=1 wkiyi∑K

k′=1 e
wk′0+

∑n
i=1 wk′iyi

(4.68)

In contrast, the overall firing rate R(t) increases by the factor elog c
∑n
i=1 yi . By our

definition of the population coding for y, this factor equals em log c, where m is the
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number of original input variables x. An increase of the inhibitory signal I(t) by

m log c can therefore compensate the increase of overall firing rate. Using this shifted

representation, a single excitatory synapse can take on values in the range [0, log c],

corresponding to probabilities in the range [1
c , 1].

Similarly the consideration holds valid that it is mathematically equivalent whether

the depression of the excitability wk0 in Eq. (4.7) is modeled either as an effect of lateral

spiking activity or as a constant decay, independent of the circuit activity. In the first

case, wk0 converges to the relative spiking probability of the k−th neuron such that the

sum of all wk0 is indeed 1 as described by our theory. In the second case, the wk0 really

describe absolute firing rates in some time scale defined by the decay constant. In the

logarithmic scale of wk0 this is nothing else than a constant offset and thus cancels

down in Eq. (4.68).

Impact of missing input values

The proof of theorem 1 assumes that every sample y(t) gathered online is a binary

vector which contains exactly one entry with value 1 in every group Gj . This value

indicates the value of the abstract variable xj that is encoded by this group. As long

as the spikes from the input neurons are closely enough in time, this condition will be

fulfilled for every activation vector y(t). For the cases in which the value of the abstract

variable xj changes, the first spike from group Gj has to appear exactly at that point

in time at which the rectangular EPSP for the previous value vanishes, i.e., σ ms after

the last preceding spike.

We will now break up this strong restriction of the provable theory and analyze the

results that are to be expected, if we allow for interspike intervals longer than σ. We

interpret the resulting “gaps” in the information about the value of an input group as

missing value in the sense of Bayesian inference.

We had already addressed the issue of such missing values, resulting from presynap-

tic neurons that do not spike within the integration time window of an output neuron

zk, in the discussion of Fig. 4.3.

A profound analysis of the correct handling of missing data in EM can be found in

[74]. Their analysis implies that the correct learning action would be to leave all weights

wki in the group Gj unchanged, if the value of the external variable xj is missing, i.e.,

if all corresponding yi’s are 0. However, in this case the STDP rule in Eq. (4.5) reduces
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these weights by η. This leads to a modification of the analysis of the equilibrium

condition (4.28):

E[∆wki] = 0 ⇔ (1− r)
(
p∗(yi=1|zk=1)η(e−wki − 1)− p∗(yi=0|zk=1)η

)
− rη = 0

⇔ wki = log p∗(yi=1|zk=1) + log(1− r) , (4.69)

where r is the probability that i belongs to a group Gj in which the value of xj is

unknown. We assume that the probability for such a missing value event is independent

of the (true) value of the abstract variable xj and we assume further that the probability

of such missing value events is the same for all groups Gj and thus conclude that this

offset of log(1− r) is expected to be the same for all weights. It can easily be verified,

that such an offset does not change the resulting probabilities of the competition in the

inference according to Eq. (4.68).

4.4.4 Adaptive learning rates with Variance Tracking

In our experiments we used an adaptation of the variance tracking heuristic from [158]

for an adaptive control of learning rates. If we assume that the consecutive values of

the weights represent independent samples of their true stochastic distribution at the

current learning rate, then this observed distribution is the log of a beta-distribution

defined by the parameters aki and Nki that were used in Eq. (4.50) to define the update

of wki from sufficient statistics. Analytically (see supplement) this distribution has the

first and second moments

E[wki] ≈ log
aki
Ni

and E[w2
ki] ≈ E[wki]

2 +
1

aki
+

1

Ni
. (4.70)

From the first equation we estimate 1
aki

= e−E[w]

Ni
. This leads to a heuristic estimate

for the (inverse of the) current sample size based on the empirically observed variance

E[w2
ki]− E[wki]

2:

ηnewki =
1

Ni
=

E[w2
ki]− E[wki]

2

e−E[wki] + 1
. (4.71)

The empirical estimates of these first two moments can be gathered online by exponen-

tially decaying averages using the same learning rate ηki. Even though the assumption

of independent samples for the estimates of the moments is not met, one can argue

about two cases: In case of a stationary evolution of the weight, the strong dependence
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of consecutive samples typically leads to an underestimation of the variance. This in

turn leads to a decrease of the learning rate which is the desired effect of a stationary

evolution. In case of a directed evolution of the weight the variance will at least indi-

cate the amount of the current gradient of the evolution despite the strong dependence

and thus keep the learning rate high enough to support fast convergence towards the

asymptote of the gradient.

An adaptive learning rate such as in Eq. (4.71) facilitates a spontaneous reorgani-

zation of the internal models encoded by the weight vectors of the output neurons zk

in case that the input distribution p∗(y) changes (see Fig. S1 in Text S1).

4.4.5 Details to Role of the Inhibition

Biased sampling problem

In this section we analyze the influence of the instantaneous output firing rate R(t)

of the learning circuit and derive the analytical result that the output rate R(t) plays

the role of a multiplicative weighting of samples during learning. We show how a

theoretically optimal inhibition signal can compensate this effect and describe how this

compensation is approximated in our experiments.

We start with the assumption that the input signal y(t) can be described by some

stationary stochastic process. An empirical estimate of its stationary distribution can

be obtained by measuring the relative duration of presentation of every different discrete

value y in a time window of length T . The accuracy of this empirical estimate of the

input distribution can be increased by using a longer time window T , such that in the

limit of an infinitely large time window the estimate will converge to the true stationary

input distribution of y, denoted by p∗(y):

p∗(y) = lim
T→∞

1

T

∫ T

0
δ(y − y(t)) dt , (4.72)

where δ is a vectorized version of the Kronecker Delta with δ(0) = 1 and δ(x) = 0, if

x 6= 0.

However, even though the WTA-circuit receives this time-continuous input stream

y(t), the spike-triggered STDP rule in Eq. (4.5) and (4.7) updates the model parameters

- i.e. the synaptic weights - only at those time points where one of the output neurons

135



4. SPIKE-BASED EXPECTATION MAXIMIZATION

spikes. We denote by p∗S(y) the (empirical) distribution that is obtained from the

observations of y(t) at the first S spike events tf1 , t
f
2 , . . . , t

f
S :

p∗S(y) =
1

S

S∑
s=1

δ(y − y(tfs )) . (4.73)

The distribution p∗S(y) that is seen by the learning rule in Eq. (4.5) depends not only

on the time-continuous input stream y(t), but also on the concrete spike times tfs of the

circuit. The output spikes thus serve as trigger events at which the continuous input

signal is sampled.

The spike times tf1 , t
f
2 , . . . , t

f
S and the total number of spikes S of the whole circuit

within a time window of length T are distributed according to an inhomogeneous Pois-

son process with the instantaneous rate R(t). For any stochastic realization of S and

tfs in the time interval 0 to T , we can derive the expectation of the function p∗S(y) by

taking the limit for T → ∞ and call this the expected empirical distribution p∗R(t)(y).

Thus

p∗R(t)(y) = lim
T→∞

E
S,tf1 ,...,t

f
S

[
1

S

S∑
s=1

δ(y − y(tfs ))

]
(4.74)

= lim
T→∞

ES

[
E
tf1 ,...,t

f
S

[
1

S

S∑
s=1

δ(y − y(tfs ))

∣∣∣∣∣S
]]

, (4.75)

where we divided the expectation into two parts. Firstly we take the expectation over

the total number S of spikes, secondly we take the expectation over the spike times

t1, . . . , tS , given S. We now make use of the fact that for any inhomogeneous Pois-

son process R(t), conditioned on the total number of events S within a certain time

window T , the event times tf1 , . . . , t
f
S are distributed as order statistics of S unordered

independent samples t′f1 , . . . , t
′f
S from the probability density R(t′)∫ T

0 R(t)dt
. The expecta-

tion E
t′fs

[f(t′fs )|S] over an arbitrary function f() is the integral
∫ T

0
R(t′)∫ T

0 R(t)dt
f(t′)dt′,

independent of the event number s, thus

p∗R(t)(y) = lim
T→∞

ES

[
1

S

S∑
s=1

E
t′fs

[
δ(y − y(t′

f
s ))
∣∣∣S]] (4.76)

= lim
T→∞

ES

[
1

S
S

∫ T

0

R(t′)∫ T
0 R(t)dt

δ(y − y(t′))dt′

]
(4.77)

= lim
T→∞

ES

[∫ T

0

R(t′)∫ T
0 R(t)dt

δ(y − y(t′))dt′

]
. (4.78)
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Since the remaining term within the expectation operator ES is independent of S we

obtain the final result

p∗R(t)(y) = lim
T→∞

1∫ T
0 R(t)dt

∫ T

0
R(t)δ(y − y(t))dt . (4.79)

This shows that the output rate R(t) acts as a multiplicative weighting of the contri-

bution of the current input y(t) to the expected empirical distribution p∗R(t)(y), which

is learned in the limit of t→∞ by the simple STDP rule in Eq. (4.5) and (4.7).

It turns out that the condition of a constant rate R(t) is by far stronger than

necessary. In fact, it is easy to see from a comparison of Eq. (4.72) and Eq. (4.79), that

p∗R(t)(y) = p∗(y) for all values of y if and only if the relative weight for the input value

y, which is
∫ T
0 R(t)δ(y−y(t)) dt∫ T

0 δ(y−y(t)) dt
, is independent of y in the limit T →∞. This is certainly

true if R(t) and y(t) are stochastically independent, i.e. R(t) is not correlated to the

occurrence of any specific value of y.

Inhibition Model in Computer Simulations

In our computer simulation the inhibition is implemented by adding a strongly negative

impulse to the membrane potential of all z-neurons whenever one of them fires, which

decays with a time constant of 5 ms back to its resting value. In addition, a noise term

v(t) is added to the membrane potential uk(t) that models background synaptic inputs

through an Ornstein-Uhlenbeck (OU) process (as proposed in [50] for modeling in-vivo

conditions) and causes stochastic firing. For each experiment, all parameters for the

inhibition model are listed in “Simulation Parameters” in the Supplementary Material.

4.4.6 Details to Continuous-Time Interpretation with Realistically

Shaped EPSPs

Let the external input vector x consist of multiple discrete-valued functions in time

xj(t), and let us assume that for every input xj there exists an independent Poisson

sampling process with rate rj which generates spike times for the group of neurons yi

with i ∈ Gj . At every spike time tfj there is exactly one neuron in the group that fires a

spike, and this is the neuron that is associated with the value xj(t
f
j ). First, we analyze

additive step-function EPSPs, i.e. the postsynaptic activation ỹi(t) is given by the

convolution in Eq. (4.17) where K is a step-function kernel with K(t) = 1 for 0 < t < σ
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for a fixed EPSP-duration σ and K(t) = 0 otherwise. In order to understand the

resulting distribution qk(t) in Eq. (4.4) as Bayesian inference we extend our underlying

generative probabilistic model p(x, k|θ) such that it contains multiple instances of the

variable vector x, called x(1), . . . ,x(L), where L is the total number of spikes from all

input neurons yi within the time window [t − σ, t]. We can see every spike as a single

event in continuous time. The full probabilistic model is defined as

p(x(1), . . . ,x(L), k|w) = p(k|w)
L∏
l=1

p(x(l)|k,w) , (4.80)

which defines that the multiple instances are modeled as being conditionally indepen-

dent of each other, given k. Let the vectors ŷ(l) describe the corresponding spike

“patterns” in which every binary vector ŷ(l) has exactly one 1 entry ŷ
(l)

i(l)
= 1. All other

values are zero, thus it represents exactly one evidence for x(l), i.e. x
(l)
j = v(i(l)), with

j, s.t. i(l) ∈ Gj , according to the decoding in Eq. (4.8).

Due to the conditional independences in the probabilistic model every such evidence,

i.e. every spike, contributes one factor p(ŷ
(l)
i = 1|k,w) to the likelihood term in the

inference of the hidden node k. The inference is expressed as

p(k|ŷ(1), . . . , ŷ(L),w) =

prior p(k|w)︷︸︸︷
ewk0 ·

likelihood p(ŷ(1),...,ŷ(L)|k,w)︷ ︸︸ ︷
n∏
i=1

(ewki)
∑L
l=1 ŷ

(l)
i

K∑
k′=1

ewk′0
n∏
i=1

(ewk′i)
∑L
l=1 ŷ

(l)
i

︸ ︷︷ ︸
p(ŷ(1),...,ŷ(L)|w)

. (4.81)

The identity ỹi(t) =
∑L

l=1 ŷ
(l)
i reveals that the above posterior distribution is realized

by the relative spike probability qk(t) of the network model according to Eq. (4.4),

where ỹ(t) replaces y(t) in the computation of the membrane potential uk(t). Due

to the step function K(t) the result of the convolution in ỹi(t) equals the number of

spikes within the time window [t− σ, t] from neuron yi. The factor ewki , which has the

meaning p(yi = 1|k,w) in the network model, is multiplied ỹi(t) times to the likelihood.

The above discrete probabilistic model gives an interpretation only for integer values

of ỹi(t), i.e. for functions K such that K(t) is 0 or any positive integer at any time

t. For an interpretation of arbitrarily shaped EPSPs K(t) - especially for continuously
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decaying functions - in the context of our probabilistic model, we now extend this

weighting mechanism from integer valued weights to real valued weights by a linear

interpolation of the likelihood in the log-space.

The obvious restrictions on the EPSP function K(t) are that it is non-negative,

zero for t < 0, and
∫∞

0 K(t)dt <∞, in order to avoid acausal or nondecaying behavior,

and unboundedly growing postsynaptic potentials at constant input rates. We assume

the normalization maxK(t) = 1. Let again t(1), . . . , t(l), . . . be the times of the past

spiking events and i(1), . . . , i(l), . . . be the indices of the corresponding input neurons.

The output distribution qk(t)can be written as

qk(t) =
ewk0

∏∞
l=1(ewki(l) )K(t−t(l))∑K

k′=1 e
wk0
∏∞
l=1(ewki(l) )K(t−t(l))

, (4.82)

which nicely illustrates that every single past spike at time t(l) is seen as an evidence in

the inference, but that evidence is weighted with a value K(t− t(l)), which is between

0 and 1.

The analogous interpolation for continuous-valued input activations ỹi(t) yields the

learning rule in Eq. (4.18), which is illustrated in Fig. 4.2 as the “Complex STDP

rule” (blue dashed curve). The resulting shape of the LTP part of the STDP curve

is determined by the EPSP shape defined by K(t). The positive part of the update

in Eq. (4.18) is weighted by the value of ỹi(t) at the time of firing the postsynaptic

spike. Negative updates are performed if ỹi(t) is close to zero, which indicates that no

presynaptic spikes were observed recently.

The proof of stochastic convergence does not explicitly assume that y(t) is a binary

vector, but is valid for any (positive) random variable vector ỹ(t) with finite variance.

Further, the proof assumes the condition that in every group Gj the sum of the input

activities ỹ
(t)
i is 1 at all times or at least at those points in time at which one zk neuron of

the WTA-circuit fires. The condition can be relaxed such that the sum per group does

not have to be equal to 1 but to any arbitrary (positive) constant if the corresponding

normalization constraint is adapted accordingly. Due to the decaying character of the

EPSP shape, this sum will never stay constant, even for very regular input patterns. If

we only assumed a constant average activation within a group, allowing for stochastic

fluctuations around the target value, it turns out that this condition alone is not enough.

We need to further assume that these stochastic fluctuations in the sum of every input
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Figure 4.9: STDP learning curves with time-dependent LTD. Under the simple

STDP model (red curve), weight-dependent LTP occurs only if the postsynaptic spike falls

within a time window of length σ after the presynaptic spike, and LTD occurs in a time

window of the same length, but for the opposite order of spikes. This can be extended

to a more complex STDP rule (blue dashed curve), in which both LTP and LTD follow

α-kernels with different time constants, typically with longer time-constants for LTD.

group Gj are stochastically independent of the circuit’s response zk. This assumption is

intricate and may depend on the data and the learning progress itself, so it will usually

not be exactly fulfilled. We can, however, argue that we are close to independence if at

least the sum of activity in every group Gj is independent of the value of the underlying

abstract variable xj .

In our simulations we obtain the input activations ỹi(t) by simulating biologically

realistic EPSPs at every synapse, using α-kernels with plausible time constants to model

the contributions of single input spikes.

4.4.7 Details to Spike-timing dependent LTD

We formalize the presynaptic activity of neuron yi after a postsynaptic spike at time tf

by νi, s.t. νi = 1 if there is a spike from neuron yi within the time window [tf , tf + σ]

and νi = 0 otherwise. This trace is used purely for mathematical analysis, and cannot

be known to the postsynaptic neuron at time tf , since the future input activity is

unknown. Mechanistically, however, νi can be implemented as a trace updated by

postsynaptic firing, and utilized for plasticity at the time of presynaptic firing [203].

Let us now consider the STDP rule illustrated by the red curve in Fig. 4.9, where a

depression of the synapse happens only if there is a presynaptic spike within the short

time window of length σ after the postsynaptic spike, i.e. if νi = 1. The application
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of this STDP-rule in our neuronal circuit is equivalent to the circuit-spike triggered

update rule

∆wki = zk(c · e−wkiyi − d · νi) (4.83)

which replaces Eq. (4.5). In analogy to Eq. (4.6) the equilibrium of this new update

rule can be derived as

E[∆wki] = 0⇔ p(yi = 1, zk = 1)ce−wki − p(νi = 1, zk = 1)d = 0 (4.84)

⇔ wki = log p∗(yi = 1|zk = 1)− log p∗(νi = 1|zk = 1) + log
c

d
, (4.85)

under the assumption that yi, νi and zk are sampled from a stationary distribution

p∗(yi, νi, zk). This shows that the synaptic weights can be interpreted as the log-

likelihood ratio of the presynaptic neuron firing before instead of after the postsynaptic

neuron. In other words, the neuron’s synaptic weights learn the contrast between the

current input pattern yi that caused firing, and the following pattern of activity νi.

Note that any factor c (for LTP) or d (for LTD) only leads to a constant offset of the

weight which - under the assumption that the offset is the same for all synapses - can be

neglected due to the WTA circuit (see Methods “Weight offsets and positive weights”).

Similarly to our analysis for the standard SEM rule, we can derive a continuous-

time interpretation of the timing-dependent LTD rule. As we did in Eq. (4.17), we can

define

ỹi(t) =
∑
f

KP (t− tfi ) ν̃i(t) =
∑
f

KD(t− tfi ), (4.86)

where KP is the same convolution kernel as in Eq. (4.17), and KD is an arbitrary but

time-inversed kernel, such that KD(t) = 0 for positive t and KD(t) > 0 for negative t.

The value of νi thus reflects a time-discounted sum of presynaptic activity immediately

after the postsynaptic spike.

The complex STDP rule from Fig. 4.2, which models LTD as a constant time-

independent depression, can be seen as an extreme case of the spike-timing dependent

LTD rule. If KD is a step function with KD(t) = 1
σ in the interval [−σ, 0] and 0

everywhere else, then νi is just the average rate of presynaptic activity in the time

interval [tf , tf + σ] following a postsynaptic spike. In the limit of σ → ∞ this is

equivalent to the overall spiking rate of the neuron yi, which is proportional to the
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marginal p(yi) in the probabilistic model. Precisely, νi → rp(yi), where r is the base

firing rate of an active input in our input encoding model. The equilibrium point of

every weight wki becomes log p(yi = 1|zk = 1)− log p(yi), neglecting the offsets induced

by the constants c,d and r. It is easy to see that the probabilistic interpretation

of the neuronal model from Eq. (4.4) is invariant under the transformation w′ki =

wki − log p(yi), since

qk(t) =
ewk0+

∑n
i=1(wki−log p(yi))yi∑K

k′=1 e
wk′0+

∑n
i=1(wk′i−log p(yi))yi

(4.87)

=

(
e
∑n
i=1 yi log p(yi)

)
ewk0+

∑n
i=1 wkiyi∑K

k′=1

(
e
∑n
i=1 yi log p(yi)

)
ewk′0+

∑n
i=1 wk′iyi

(4.88)

=
ewk0+

∑n
i=1 wkiyi∑K

k′=1 e
wk′0+

∑n
i=1 wk′iyi

, (4.89)

which proves that in our network model the complex STDP rule from Fig. 4.2 is equiv-

alent to an offset-free STDP rule in the limit of an arbitrarily long window for LTD.

In practice, of course, we can assume that the times between pre- and post-synaptic

spikes are finite, and we have shown in Fig. 4.4 that as a result, very realistic shapes

of STDP curves emerge at intermediate stimulation frequencies.

4.5 Supplement

4.5.1 Derivation of Variance tracking

For the derivation of Eq. (4.70), let q be a random variable distributed according to a

Beta-Distribution with parameters a and b

p(q) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1 . (4.90)

Let w = log q, than w is distributed as follows:

p(w) =
Γ(a+ b)

Γ(a)Γ(b)
(ew)a(1− ew)b−1 (4.91)
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In order to calculate E[w] and E[w2] we use the moment-generating function of p(w)

Mw(s) =

∫ 0

−∞
eswp(w)dw = (4.92)

=
Γ(a+ b)

Γ(a)Γ(b)

∫ 0

−∞
(ew)a+s(1− ew)b−1dw = (4.93)

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ s)Γ(b)

Γ(a+ b+ s)
=

Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)
. (4.94)

The first and the second derivative of Mw read

M ′w(s) =
Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)
(ψ(a+ s)− ψ(a+ b)) (4.95)

M ′′w(s) =
Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)

(
(ψ(a+ s)− ψ(a+ b))2 + ψ1(a+ s)− ψ1(a+ b+ s)

)
.

(4.96)

Since E[w] = M ′w(0) and E[w2] = M ′′w(0) we get

E[w] = ψ(a)− ψ(a+ b)

E[w2] = E[w]2 + ψ1(a)− ψ1(a+ b)

which can be simplified using the approximations ψ(x) ≈ log(x) and ψ1(x) ≈ 1
x to

E[w] ≈ log
a

a+ b
E[w2] ≈ 1

a
+

1

a+ b
(4.97)

4.5.2 Adaptation to changing input distributions

In this computer experiment, 10 output neurons learned implicit generative models

for images of handwritten digits from the MNIST database. The same procedure for

encoding the images by spike trains as in Fig. 4.6 was used. Initially, only images

representing the digits 0 and 3 were presented, and the WTA circuit learned accu-

rate probabilistic models for these images. After 100 seconds of learning, the input

distribution was changed, and a third class of inputs, images of handwritten digits 4,

was introduced. Through the adaptive learning rate from Eq. (4.71), the zk neurons

spontaneously reorganized, and two output neurons changed their internal models to

represent the new digit 4. In the end, an accurate generative model for all three types

of input images was learned.
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Figure 4.10: Spontaneous reorganization of the ensemble of internal models

when the input distribution p∗(y) changes. A: Time course of conditional entropy

when after 100 s new, previously unseen samples of images of handwritten digits 4 were

added to samples of handwritten digits 0 and 3. B: Weight vectors of the 10 output neurons

after 100 s of learning (before the change of the input distribution). C: Spontaneous

reorganization of these weight vectors after further 100 s. The weight vectors of two

output neurons zk have developed internal models for two ways of writing the (new) digit

4. Encoding of handwritten digits from MNIST by spike trains y is as in Fig. 4.6. The

adaptive learning rate in Eq. (4.71) was used for this experiment.

4.5.3 Invariance to Time-Warping

4.5.4 Simulation Parameters

All simulations were carried out in MATLAB, with a simulation time step of 1 ms. The

time constant of the OU process that modeled background synaptic inputs was set to

5 ms, its variance to 2500.

Simulations for Fig. 4.3:

Input generation:

For each input image pixels were drawn over a 28 x 28 array from one of 4 sym-

metrical Gaussians with σ2 = 10 and centers at (14,8), (16,22), (9,15), (20,14), with

maximal probability 0.3 for any pixel to be drawn (causing high variability of samples

from the same Gaussian). In addition any pixel was drawn with probability 0.03 (added

noise).
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Figure 4.11: Generalization capability of the output neurons from Fig. 4.7 for

time-warped variation of the input patterns. A, B: Another test input presented

to the circuit from Fig. 4.7. The noise-embedded spike patterns are now compressed or

stretched from 50 ms to a random length between 25 and 100 ms. Such time-warped ver-

sions of these patterns had never been presented during learning via STDP. C, D: Firing

probabilities and spike outputs of the same 6 output neurons as in Fig. 4.7. They demon-

strate that the emergent discrimination ability of these 6 output neurons automatically

generalizes to time-warped input patterns (embedded into noise).
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When an output neuron zk fired, on average only 8.6% of the input neurons yi had

fired during the preceding 10 ms (the time window for potentiation according to the

STDP rule in Eq. (4.5). Hence for over 90% of the pixels no spike was received within

that time window from either one of the two neurons yi that encoded the value of

this pixel by population coding. The corresponding average activity level of all input

synapses was at 0.182.

In the variation with superimposed background oscillations at 20 Hz the firing rates

of input neurons yi did not rise, but the average synaptic activity level at the time of

an output spike rose to 0.215, an increase of around 18%. This leads to an increased

learning rate.

The mean (offset) µou of the OU-noise was set to 200, the initial value Ainh of

lateral inhibition (caused by a firing of a z-neuron) was set to 3000, its resting value

Oinh to 550. For the version with background oscillations (at 20 Hz) the amplitude of

the oscillation was set to 500 (mean = 0), and the phase was shifted by 5 ms for the

z-neurons, Ainh = 3000, Oinh = 650.

Simulation for Fig. 4.5:

µou = 1000, Ainh = 3000, Oinh = 550.

Simulation for Fig. 4.4:

In Figs. 4.4 A-C pre- and post-synaptic neurons were forced to fire at frequencies of

1, 20, and 40 Hz with different time delays. The weight was kept fixed at w = 3.5 for

c = e−5, and the learning rate was kept fixed at η = 0.5. For Fig. 4.4D we simulated a

pre-synaptic burst consisting of 5 spikes with 20 ms time difference, and a post-synaptic

burst of 4 spikes, also with 20 ms time difference. The starting points of these bursts

were shifted relative to each other. We kept the weight fixed at w = 3.5 for c = e−5,

and the learning rate fixed at η = 0.1, and added up the resulting weight changes for

all 4 postsynaptic spikes.

Simulation for Fig. 4.6:

µou = 250, Ainh = 2000, Oinh = 400.
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Simulation for Fig. 4.7 and Suppl. Fig. 4.11:

µou = 250, Ainh = 1500, Oinh = 1000.

Simulation for Suppl. Fig. 4.10:

µou = 250, Ainh = 2700, Oinh = 400.
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5

Neural Dynamics as Sampling

The organization of computations in networks of spiking neurons in the

brain is still largely unknown, in particular in view of the inherently stochas-

tic features of their firing activity and the experimentally observed trial-to-

trial variability of neural systems in the brain. In principle there exists a

powerful computational framework for stochastic computations, probabilis-

tic inference by sampling, which can explain a large number of macroscopic

experimental data in neuroscience and cognitive science. But it has turned

out to be surprisingly difficult to create a link between these abstract mod-

els for stochastic computations and more detailed models of the dynamics

of networks of spiking neurons. Here we create such a link, and show that

under some conditions the stochastic firing activity of networks of spik-

ing neurons can be interpreted as probabilistic inference via Markov chain

Monte Carlo (MCMC) sampling. Since common methods for MCMC sam-

pling in distributed systems, such as Gibbs sampling, are inconsistent with

the dynamics of spiking neurons, we introduce a different approach based

on non-reversible Markov chains, that is able to reflect inherent temporal

processes of spiking neuronal activity through a suitable choice of random

variables. We propose a neural network model and show by a rigorous the-

oretical analysis that its neural activity implements MCMC sampling of a

given distribution, both for the case of discrete and continuous time. This

provides a step towards closing the gap between abstract functional models

of cortical computation and more detailed models of networks of spiking
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neurons.

5.1 Author Summary

It is well-known that neurons communicate with short electric pulses, called action

potentials or spikes. But how can spiking networks implement complex computations?

Attempts to relate spiking network activity to results of deterministic computation

steps, like the output bits of a processor in a digital computer, are conflicting with

findings from cognitive science and neuroscience, the latter indicating the neural spike

output in identical experiments changes from trial to trial, i.e., neurons are “unreliable”.

Therefore, it has been recently proposed that neural activity should rather be regarded

as samples from an underlying probability distribution over many variables which, e.g.,

represent a model of the external world incorporating prior knowledge, memories as

well as sensory input. This hypothesis assumes that networks of stochastically spiking

neurons are able to emulate powerful algorithms for reasoning in the face of uncertainty,

i.e., to carry out probabilistic inference. In this work we propose a detailed neural

network model that indeed fulfills these computational requirements and we relate the

spiking dynamics of the network to concrete probabilistic computations. Our model

suggests that neural systems are suitable to carry out probabilistic inference by using

stochastic, rather than deterministic, computing elements.

5.2 Introduction

Attempts to understand the organization of computations in the brain from the perspec-

tive of traditional, mostly deterministic, models of computation, such as attractor neu-

ral networks or Turing machines, have run into problems: Experimental data suggests

that neurons, synapses, and neural systems are inherently stochastic [189], especially

in vivo, and therefore seem less suitable for implementing deterministic computations.

This holds for ion channels of neurons [28], synaptic release [64], neural response to

stimuli (trial-to-trial variability) [13, 73], and perception [24]. In fact, several experi-

mental studies arrive at the conclusion that external stimuli only modulate the highly

stochastic spontaneous firing activity of cortical networks of neurons [63, 188]. Further-

more, traditional models for neural computation have been challenged by the fact that
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typical sensory data from the environment is often noisy and ambiguous, hence requir-

ing neural systems to take uncertainty about external inputs into account. Therefore

many researchers have suggested that information processing in the brain carries out

probabilistic, rather than logical, inference for making decisions and choosing actions

[54, 70, 72, 81, 82, 86, 104, 121, 127, 136, 183, 193, 215, 232]. Probabilistic inference

has emerged in the 1960‘s [171], as a principled mathematical framework for reasoning

in the face of uncertainty with regard to observations, knowledge, and causal relation-

ships, which is characteristic for real-world inference tasks. This framework has become

tremendously successful in real-world applications of artificial intelligence and machine

learning. A typical computation that needs to be carried out for probabilistic inference

on a high-dimensional joint distribution p(z1, . . . , zl, zl+1, . . . , zK) is the evaluation of

the conditional distribution p(z1, . . . , zl|zl+1, . . . , zK) (or marginals thereof) over some

variables of interest, say z1, . . . , zl, given variables zl+1, . . . , zK . In the following, we

will call the set of variables zl+1, . . . , zK , which we condition on, the observed variables

and denote it by o.

Numerous studies in different areas of neuroscience and cognitive science have sug-

gested that probabilistic inference could explain a variety of computational processes

taking place in neural systems (see [54, 183]). In models of perception the observed

variables o are interpreted as the sensory input to the central nervous system (or its

early representation by the firing response of neurons, e.g., in the LGN in the case of

vision), and the variables z1, . . . , zl model the interpretation of the sensory input, e.g.,

the texture and position of objects in the case of vision, which might be encoded in

the response of neurons in various higher cortical areas [136]. Furthermore, in models

for motor control the observed variables o often consist not only of sensory and pro-

prioceptive inputs to the brain, but also of specific goals and constraints for a planned

movement [67, 221, 222], whereas inference is carried out over the variables z1, . . . , zl

representing a motor plan or motor commands to muscles. Recent publications show

that human reasoning and learning can also be cast into the form of probabilistic in-

ference problems [87, 164, 218]. In these models learning of concepts, ranging from

concrete to more abstract ones, is interpreted as inference in lower and successively

higher levels of hierarchical probabilistic models, giving a consistent description of in-

ductive learning within and across domains of knowledge.
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In spite of this active research on the functional level of neural processing, it turned

out to be surprisingly hard to relate the computational machinery required for proba-

bilistic inference to experimental data on neurons, synapses, and neural systems. There

are mainly two different approaches for implementing the computational machinery for

probabilistic inference in “neural hardware”. The first class of approaches builds on

deterministic methods for evaluating exactly or approximately the desired conditional

and/or marginal distributions, whereas the second class relies on sampling from the

probability distributions in question. Multiple models in the class of deterministic ap-

proaches implement algorithms from machine learning called message passing or belief

propagation [45, 141, 182, 211]. By clever reordering of sum and product operators oc-

curring in the evaluation of the desired probabilities, the total number of computation

steps are drastically reduced. The results of subcomputations are propagated as ”mes-

sages” or ”beliefs” that are sent to other parts of the computational network. Other

deterministic approaches for representing distributions and performing inference are

probabilistic population code (PPC) models [194]. Although deterministic approaches

provide a theoretically sound hypothesis about how complex computations can possi-

bly be embedded in neural networks and explain aspects of experimental data, it seems

difficult (though not impossible) to conciliate them with other aspects of experimen-

tal evidence, such as stochasticity of spiking neurons, spontaneous firing, trial-to-trial

variability, and perceptual multistability.

Therefore other researchers (e.g., [62, 72, 104, 215]) have proposed to model com-

putations in neural systems as probabilistic inference based on a different class of algo-

rithms, which requires stochastic, rather than deterministic, computational units. This

approach, commonly referred to as sampling, focuses on drawing samples, i.e., concrete

values for the random variables that are distributed according to the desired probabil-

ity distribution. Sampling can naturally capture the effect of apparent stochasticity in

neural responses and seems to be furthermore consistent with multiple experimental

effects reported in cognitive science literature [72, 215]. On the conceptual side, it has

proved to be difficult to implement learning in message passing and PPC network mod-

els. In contrast, following the lines of [3], the sampling approach might be well suited

to incorporate learning.

Previous network models that implement sampling in neural networks are mostly

based on a special sampling algorithm called Gibbs (or general Metropolis-Hastings)
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sampling [70, 72, 100, 215]. The dynamics that arise from this approach, the so-called

Glauber dynamics, however are only superficially similar to spiking neural dynamics

observed in experiments, rendering these models rather abstract. Building on and ex-

tending previous models, we propose here a family of network models, that can be

shown to exactly sample from any arbitrary member of a well-defined class of proba-

bility distributions via their inherent network dynamics. These dynamics incorporate

refractory effects and finite durations of postsynaptic potentials (PSPs), and are there-

fore more biologically realistic than existing approaches. Formally speaking, our model

implements Markov chain Monte Carlo (MCMC) sampling in a spiking neural network.

In contrast to prior approaches however, our model incorporates irreversible dynamics

(i.e., no detailed balance) allowing for finite time PSPs and refractory mechanisms.

Furthermore, we also present a continuous time version of our network model. The

resulting stochastic dynamical system can be shown to sample from the correct dis-

tribution. In general, continuous time models arguably provide a higher amount of

biological realism compared to discrete time models.

The paper is structured in the following way. First we provide a brief introduction

to MCMC sampling. We then define the neural network model whose neural activity

samples from a given class of probability distributions. The model will be first presented

in discrete time together with some illustrative simulations. An extension of the model

to networks of more detailed spiking neuron models which feature a relative refractory

mechanism is presented. Furthermore, it is shown how the neural network model can

also be formulated in continuous time. Finally, as a concrete simulation example we

present a simple network model for perceptual multistability.

5.3 Results

5.3.1 Recapitulation of MCMC sampling

In machine learning, sampling is often considered the “gold standard” of inference

methods, since, assuming that we can sample from the distribution in question, and

assuming enough computational resources, any inference task can be carried out with

arbitrary precision (in contrast to some deterministic approximate inference methods

such as variational inference). However sampling from an arbitrary distribution can be

a difficult problem in itself, as, e.g., many distributions can only be evaluated modulo

153



5. NEURAL DYNAMICS AS SAMPLING

a global constant (the partition function). In order to circumvent these problems,

elaborate MCMC sampling techniques have been developed in machine learning and

statistics [5]. MCMC algorithms are based on the following idea: instead of producing

an ad-hoc sample, a process that is heuristically comparable to a global search over

the whole state space of the random variables, MCMC methods produce a new sample

via a “local search” around a point in the state space that is already (approximately)

a sample from the distribution.

More formally, a Markov chain M (in discrete time) is defined by a set S of states

(we consider for discrete time only the case where S has a finite size, denoted by |S|)
together with a transition operator T . The operator T is a conditional probability

distribution T (s|s′) over the next state s given a preceding state s′. The Markov chain

M is started in some initial state s(0), and moves through a trajectory of states s(t) via

iterated application of the stochastic transition operator T . More precisely, if s(t−1) is

the state at time t−1, then the next state s(t) is drawn from the conditional probability

distribution T (s|s(t − 1)). An important theorem from probability theory (see, e.g.,

p. 232 in [89]) states that if M is irreducible (i.e., any state in S can be reached from

any other state in S in finitely many steps with probability > 0) and aperiodic (i.e.,

its state transitions cannot be trapped in deterministic cycles), then the probability

p(s(t) = s|s(0)) converges for t→∞ to a probability p(s) that does not depend on the

initial state s(0). This state distribution p is called the invariant distribution of M .

The irreducibility of M implies that it is the only distribution over the states S that is

invariant under its transition operator T , i.e.

p(s) =
∑
s′∈S

T (s|s′) · p(s′) . (5.1)

Thus, in order to carry out probabilistic inference for a given distribution p, it suffices

to construct an irreducible and aperiodic Markov chain M that leaves p invariant, i.e.,

satisfies equation (5.1). Then one can answer numerous probabilistic inference questions

regarding p without any numerical computations of probabilities. Rather, one plugs in

the observed values for some of the random variables (RVs) and simply collects samples

from the conditional distribution over the other RVs of interest when the Markov chain

approaches its invariant distribution.

A convenient and popular method for the construction of an operator T for a given

distribution p is looking for operators T that satisfy the following detailed balance
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condition,

T (s|s′) · p(s′) = T (s′|s) · p(s) (5.2)

for all s, s′ ∈ S. A Markov chain that satisfies (5.2) is said to be reversible. In

particular, the Gibbs and Metropolis-Hastings algorithms employ reversible Markov

chains. A very useful property of (5.2) is that it implies the invariance property (5.1),

and this is in fact the standard method for proving (5.1). However, as our approach

makes use of irreversible Markov chains as explained below, we will have to prove (5.1)

directly.

5.3.2 Neural sampling

Let p(z1, . . . , zK) be some arbitrary joint distribution over K binary variables z1, . . . , zK

that only takes on values > 0. We will show that under a certain computability assump-

tion on p a network N consisting of K spiking neurons ν1, . . . , νK can sample from p

using its inherent stochastic dynamics. More precisely, we show that the stochastic fir-

ing activity of N can be viewed as a non-reversible Markov chain that samples from the

given probability distribution p. If a subset o of the variables are observed, modelled

as the corresponding neurons being “clamped” to the observed values, the remaining

network samples from the conditional distribution of the remaining variables given the

observables. Hence, this approach offers a quite natural implementation of probabilistic

inference. It is similar to sampling approaches which have already been applied exten-

sively, e.g., in Boltzmann machines, however our model is more biologically realistic as

it incorporates aspects of the inherent temporal dynamics and spike-based communi-

cation of a network of spiking neurons. We call this approach neural sampling in the

remainder of the paper.

In order to enable a network N of spiking neurons to sample from a distribu-

tion p(z1, . . . , zK) of binary variables zk, one needs to specify how an assignment

(z1, . . . , zK) ∈ {0, 1}K of values to these binary variables can be represented by the

spiking activity of the network N and vice versa. A spike, or action potential, of a bio-

logical neuron νk has a short duration of roughly 1 ms. But the effect of such spike, both

on the neuron νk itself (in the form of refractory processes) and on the membrane poten-

tial of other neurons (in the form of postsynaptic potentials) lasts substantially longer,

on the order of 5 ms to 100 ms. In order to capture this temporally extended effect of
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each spike, we fix some parameter τ that models the average duration of these tempo-

rally extended processes caused by a spike. We say that a binary vector (z1, . . . , zK) is

represented by the firing activity of the network N at time t for k = 1, . . . ,K iff:

zk(t) = 1 ⇔ νk has fired within the time interval (t− τ, t]. (5.3)

In other words, any spike of neuron νk sets the value of the associated binary variable

zk to 1 for a duration of length τ .

An obvious consequence of this definition is that the binary vector (z1, . . . , zK) that

is defined by the activity of N at time t does not fully capture the internal state of

this stochastic system. Rather, one needs to take into account additional non-binary

variables (ζ1, . . . , ζK), where the value of ζk at time t specifies when within the time

interval (t−τ, t] the neuron νk has fired (if it has fired within this time interval, thereby

causing zk = 1 at time t). The neural sampling process has the Markov property only

with regard to these more informative auxiliary variables ζ1, . . . , ζK . Therefore our

analysis of neural sampling will focus on the temporal evolution of these auxiliary

variables. We adopt the convention that each spike of neuron νk sets the value of ζk

to its maximal value τ , from which it linearly decays back to 0 during the subsequent

time interval of length τ .

For the construction of the sampling network N, we assume that the membrane

potential uk(t) of neuron νk at time t equals the log-odds of the corresponding variable

zk to be active, and refer to this property as neural computability condition:

uk(t) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

, (5.4)

where we write zk for zk(t) and z\k for the current values zi(t) of all other variables

zi with i 6= k. Under the assumption we make in equation (5.4), i.e., that the neural

membrane potential reflects the log-odds of the corresponding variable zk, it is required

that each single neuron in the network can actually compute the right-hand side of

equation (5.4), i.e., that it fulfills the neural computability condition.

A concrete class of probability distributions, that we will use as an example in the

remainder, are Boltzmann distributions:

p(z) =
1

Z
exp

∑
i,j

1

2
Wijzizj +

∑
i

bizi

 (5.5)
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with arbitrary real valued parameters bi, Wij which satisfy Wij = Wji and Wii = 0

(the constant Z ensures the normalization of p(z)). For the Boltzmann distribution,

condition (5.4) is satisfied by neurons νk with the standard membrane potential

uk(t) = bk +

K∑
i=1

Wkizi(t) , (5.6)

where bk is the bias of neuron νk (which regulates its excitability), Wki is the strength

of the synaptic connection from neuron νi to νk, and Wkizi(t) approximates the time

course of the postsynaptic potential in neuron νk caused by a firing of neuron νi with

a constant signal of duration τ (i.e., a square pulse). As we will describe below, spikes

of neuron νk are evoked stochastically depending on the current membrane potential

uk and the auxiliary variable ζk.

The neural computability condition (5.4) links classes of probability distributions

to neuron and synapse models in a network of spiking neurons. As shown above, Boltz-

mann distributions satisfy the condition if one considers point neuron models which

compute a linear weighted sum of the presynaptic inputs. The class of distributions

can be extended to include more complex distributions using a method proposed in

[158] which is based on the following idea. Neuron νk representing the variable zk is

not directly influenced by the activities z\k of the presynaptic neurons, but via inter-

mediate nonlinear preprocessing elements. This preprocessing might be implemented

by dendrites or other (inter-) neurons and is assumed to compute nonlinear combina-

tions of the presynaptic activities z\k (similar to a kernel). This allows the membrane

potential uk, and therefore the log-odds ratio on the right-hand side of (5.4), to rep-

resent a more complex function of the activities z\k, giving rise to more complex joint

distributions p(z). The concrete implementation of non-trivial directed and undirected

graphical models with the help of preprocessing elements in the neural sampling frame-

work is subject of current research. For the examples given in this study, we focus on

the standard form of the membrane potential (5.6) of point neurons. As shown below,

these spiking network models can emulate any Boltzmann machine (BM) [3].

A substantial amount of preceding studies has demonstrated that BMs are very pow-

erful, and that the application of suitable learning algorithms for setting the weights

Wij makes it possible to learn and represent complex sensory processing tasks by such

distributions [98, 100]. In applications in statistics and machine learning using such
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Boltzmann distributions, sampling is typically implemented by Gibbs sampling or more

general reversible MCMC methods. However, it is difficult to model some neural pro-

cesses, such as an absolute refractory period or a postsynaptic potential (PSP) of fixed

duration, using a reversible Markov chain, but they are more conveniently modelled

using an irreversible one. As we wish to keep the computational power of BMs and

at the same time to augment the sampling procedure with aspects of neural dynamics

(such as PSPs with fixed durations, refractory mechanisms) to increase biological re-

alism, we focus in the following on irreversible MCMC methods (keeping in mind that

this might not be the only possible way to achieve these goals).

5.3.3 Neural sampling in discrete time

Here we describe neural dynamics in discrete time with an absolute refractory period

τ . We interpret one step of the Markov chain as a time step dt in biological real time.

The dynamics of the variable ζk, that describes the time course of the effect of a spike

of neuron νk, are defined in the following way. ζk is set to the value τ when neuron νk

fires, and decays by 1 at each subsequent discrete time step. The parameter τ is chosen

to be some integer, so that ζk decays back to 0 in exactly τ time steps. The neuron

can only spike (with a probability that is a function of its current membrane potential

uk) if its variable ζk ≤ 1. If however, ζk > 1, the neuron is considered refractory and

it cannot spike, but its ζk is reduced by 1 per time step. To show that these simple

dynamics do indeed sample from the given distribution p(z), we proceed in the following

way. We define a joint distribution p(ζ, z) which has the desired marginal distribution∑
ζ p(ζ, z) = p(z). Further we formalize the dynamics informally described above as

a transition operator T operating on the state vector (ζ, z). Finally, in the Methods

section, we show that p(ζ, z) is the unique invariant distribution of this operator T ,

i.e., that the dynamics described by T produce samples z from the desired distribution

p(z). We refer to sampling through networks with this stochastic spiking mechanism as

neural sampling with absolute refractory period due to the persistent refractory process.

Given the distribution p(z) that we want to sample from, we define the following
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5.3 Results

Figure 5.1: Neuron model with absolute refractory mechanism. The figure shows

a schematic of the transition operator T k for the internal state variable ζk of a spiking

neuron νk with an absolute refractory period. The neuron can fire in the resting state

ζk = 0 and in the last refractory state ζk = 1.

joint distribution p(ζ, z) over the neural variables:

p(ζ, z) := p(ζ|z) · p(z) with p(ζ|z) :=

K∏
k=1

p(ζk|zk)

where p(ζk|zk) :=


τ−1 for zk = 1 ∧ ζk > 0
1 for zk = 0 ∧ ζk = 0
0 otherwise .

(5.7)

This definition of p(ζk|zk) simply expresses that if zk = 1, then the auxiliary variable

ζk can assume any value in {1, 2, . . . , τ} with equal probability. On the other hand ζk

necessarily assumes the value 0 if zk = 0 (i.e., when the neuron is in its resting state).

The state transition operator T can be defined in a transparent manner as a compo-

sition of K transition operators, T = T 1 ◦ . . .◦TK , where T k only updates the variables

ζk and zk of neuron νk, i.e., the neurons are updated sequentially in the same order (this

severe restriction will become obsolete in the case of continuous time discussed below).

We define the composition as (T k ◦ T l)(·) = (T k(T l(·)), i.e., T l is applied prior to T k.

The new values of ζk and zk only depend on the previous value ζ ′k and on the current

membrane potential uk(z\k). The interesting dynamics take place in the variable ζk.

They are illustrated in Figure 5.1, where the arrows represent transition probabilities

greater than 0.

If the neuron νk is not refractory, i.e., ζ ′k ≤ 1, it can spike (i.e., a transition from

ζ ′k ≤ 1 to ζk = τ) with probability

T k(ζk = τ |ζ ′k, z\k) = σ(uk − log τ) , (5.8)
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5. NEURAL DYNAMICS AS SAMPLING

where σ(x) = (1 + e−x)−1 is the standard sigmoidal activation function and the log

denotes the natural logarithm. The term uk is the current membrane potential, which

depends on the current values of the variables zi for i 6= k. The term log τ in (5.8)

reflects the granularity of a chosen discrete time scale. If it is very fine (say one step

equals one microsecond), then τ is large, and the firing probability at each specific

discrete time step is therefore reduced. If the neuron in a state with ζ ′k ≤ 1 does not

spike, ζk relaxes into the resting state ζk = 0 corresponding to a non-refractory neuron.

If the neuron is in a refractory state, i.e., ζ ′k > 1, its new variable ζk assumes

deterministically the next lower value ζk = ζ ′k − 1, reflecting the inherent temporal

process:

T k(ζk = ζ ′k − 1|ζ ′k, z\k) = 1 . (5.9)

After the transition of the auxiliary variable ζk, the binary variable zk is deterministi-

cally set to a consistent state, i.e., zk = 1 if ζk ≥ 1 and zk = 0 if ζk = 0.

It can be shown that each of these stochastic state transition operators T k leaves

the given distribution p invariant, i.e., satisfies equation (5.1). This implies that any

composition or mixture of these operators T k also leaves p invariant, see, e.g., [5]. In

particular, the composition T = T 1 ◦ . . . ◦ TK of these operators T k leaves p invariant,

which has a quite natural interpretation as firing dynamics of the spiking neural network

N: At each discrete time step the variables ζk, zk are updated for all neurons νk,

where the update of ζk, zk takes preceding updates for ζi, zi with i > k into account.

Alternatively, one could also choose at each discrete time step a different order for

updates according to [5]. The assumption of a well-regulated updating policy will

be overcome in the continuous-time limit, i.e., in case where the neural dynamics are

described as a Markov jump process. In the methods section we prove the following

central theorem:

Theorem 1. p(ζ, z) is the unique invariant distribution of operator T , i.e., T is

aperiodic and irreducible and satisfies

p(ζ, z) =
∑
ζ′,z′

T (ζ, z|ζ ′, z′) · p(ζ ′, z′) . (5.10)

The proof of this Theorem is provided by Lemmata 1 – 3 in the Methods section.

The statement that T (which is composed of the operators T k) is irreducible and
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aperiodic ensures that p is the unique invariant distribution of the Markov chain defined

by T , i.e., that irrespective of the initial network state the successive application of T

explores the whole state space in a non-periodic manner.

This theorem guarantees that after a sufficient ”burn-in“ time (more precisely in

the limit of an infinite ”burn-in“ time), the dynamics of the network, which are given

by the transition operator T , produce samples from the distribution p(ζ, z). As by

construction
∑

ζ p(ζ, z) = p(z), the Markov chain provides samples from the given

distribution p(z). Furthermore, the network N can carry out probabilistic inference for

this distribution. For example, N can be used to sample from the posterior distribution

p(z1 . . . , zl|zl+1, . . . , zK) over z1 . . . , zl given zl+1, . . . , zK . One just needs to clamp those

neurons νl+1, . . . , νK to the corresponding observed values. This could be implemented

by injecting a strong positive (negative) current into the units with zj = 1 (zj =

0). Then, as soon as the stochastic dynamics of N has converged to its invariant

distribution, the averaged firing rate of neuron ν1 is proportional to the following desired

marginal probability

p(z1 = 1|zl+1, . . . , zK) =
∑
z2,...,zl

p(z1 = 1, z2, . . . , zl|zl+1, . . . , zK) .

In a biological neural system this result of probabilistic inference could for example

be read out by an integrator neuron that counts spikes from this neuron ν1 within

a behaviorally relevant time window of a few hundred milliseconds, similarly as the

experimentally reported integrator neurons in area LIP of monkey cortex [81, 232].

Another readout neuron that receives spike input from νk could at the same time

estimate p(zk = 1|zl+1, . . . , zK) for another RV zk. But valuable information for

probabilistic inference is not only provided by firing rates or spike counts, but also

by spike correlations of the neurons ν1, . . . , νl in N. For example, the probability

p(z1 = 1, z2 = 1|zl+1, . . . , zK) can be estimated by a readout neuron that responds to

superpositions of EPSPs caused by near-coincident firing of neurons ν1 and ν2 within a

time interval of length τ . Thus, a large number of different probabilistic inferences can

be carried out efficiently in parallel by readout neurons that receive spike input from

different subsets of neurons in the network N.
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5.3.3.1 Variation of the discrete time model with a relative refractory

mechanism

For the previously described simple neuron model, the refractory process was assumed

to last for τ time steps, exactly as long as the postsynaptic potentials caused by each

spike. In this section we relax this assumption by introducing a more complex and

biologically more realistic neuron model, where the duration of the refractory process

is decoupled from the duration τ of a postsynaptic potential. Thus, this model can for

example also fire bursts of spikes with an interspike interval < τ . The introduction of

this more complex neuron model comes at the price that one can no longer prove that

a network of such neurons samples from the desired distribution p. Nevertheless, if the

sigmoidal activation function σ is replaced by a different activation function f , one can

still prove that the sampling is “locally correct”, as specified in equation (5.12) below.

Furthermore, our computer simulations suggest that also globally the error introduced

by the more complex neuron model is not functionally significant, i.e that statistical

dependencies between the RVs z are still faithfully captured.

The neuron model with a relative refractory period is defined in the following way.

Consider some arbitrary refractory function g : [0, . . . , τ ]→ R with g(τ) = 0, g(0) = 1,

and g(l) ≥ 0 for l = 1, . . . , τ − 1. The idea is that g(ζk) models the readiness of the

neuron to fire in its state ζk. This readiness has value 0 when the neuron has fired at the

preceding time step (i.e., ζk = τ), and assumes the resting state 1 when ζk has dropped

to 0. In between, the readiness may take on any non-negative value according to the

function g(ζk). The function g does not need to be monotonic, allowing for example

that it increases to high values in between, yielding a preferred interspike interval of a

oscillatory neuron. The firing probability of neuron νk in state ζk is given by g(ζk)·f(uk),

where f(uk) is an appropriate function of the membrane potential as described below.

Thus this function g is closely related to the function η (called afterpotential) in the

spike response model [73] as well as to the self-excitation kernel in Generalized Linear

Models [176]. In general, different neurons in the network may have different refractory

profiles, which can be modeled by a different refractory function for each neuron νk.

However for the sake of notational simplicity we assume a single refractory function in

the following.

In the presence of this refractory function g one needs to replace the sigmoidal

activation function σ(uk−log τ) by a suitable function f(uk) that satisfies the condition
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exp(u) = f(u)

∑τ
η=1

∏τ
ζ=η+1(1− g(ζ) · f(u))∏τ

ζ=1(1− g(ζ) · f(u))
(5.11)

for all real numbers u. This equation can be derived (see Methods section Lemma

5) if one requires each neuron νk to represent the correct distribution p(zk|z\k) over

zk conditioned the variables z\k. One can show that, for any g as above, there always

exists a continuous, monotonic function f which satisfies this equation (see Lemma 4 in

Methods). Unfortunately (5.11) cannot be solved analytically for f in general. Hence,

for simulations we approximate the function f for a given g by numerically solving (5.11)

on a grid and interpolating between the grid points with a constant function. Examples

for several functions g and the associated f are shown in Figure 5.2B and Figure 5.2C

respectively. Furthermore, spike trains emitted by single neurons with these refractory

functions g and the corresponding functions f are shown in Figure 5.2D for the case of

piecewise constant membrane potentials. This figure indicates, that functions g that

define a shorter refractory effect lead to higher firing rates and more irregular firing.

It is worth noticing that the standard activation function σ(uk − log τ) is the solution

of equation (5.11) for the absolute refractory function, i.e., for g(0) = g(1) = 1 and

g(l) = 0 for 1 < l ≤ τ .

The transition operator T k is defined for this model in a very similar way as before.

However, for 1 < ζ ′k ≤ τ , when the variable ζ ′k was deterministically reduced by 1 in the

simpler model (yielding ζk = ζ ′k − 1), this reduction occurs now only with probability

1− g(ζ ′k) · f(uk). With probability g(ζ ′k) · f(uk) the operator T k sets ζk = τ , modeling

the firing of another spike of neuron νk at this time point. The neural computability

condition (5.4) remains unchanged, e.g., uk = bk +
∑K

i=1Wkizi for a Boltzmann dis-

tribution. A schema of the stochastic dynamics of this local state transition operator

T k(ζk|ζ ′k, z′\k) is shown in Figure 5.2A.

This transition operator T k has the following properties. In Lemma 5 in Methods

it is proven that the unique invariant distribution of T k, denoted as q∗k(ζk, zk|ζ\k, z\k),
gives rise to the correct marginal distribution over zk, i.e.

τ∑
ζk=0

q∗k(ζk, zk|ζ\k, z\k) = p(zk|z\k) .

This means that a neuron whose dynamics is described by T k samples from the correct

distribution p(zk|z\k) if it receives a static input from the other neurons in the network,
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Figure 5.2: Neuron model with relative refractory mechanism. The figure shows

the transition operator T k, refractory functions g and activation functions f for the neuron

model with relative refractory mechanism. (A) Transition probabilities of the internal

variable ζk given by T k. (B) Three examples of possible refractory functions g. They

assume value 0 when the neuron cannot spike, and return to value 1 (full readiness to fire

again) with different time courses. The value of g at intermediate time points regulates the

current probability of firing of neuron νk (see A). The x-axis is equivalent to the number of

time steps since last spike (running from 0 to τ from left to right). (C) Associated activation

functions f according to (5.11). (D) Spike trains produced by the resulting three different

neuron models with (hypothetical) membrane potentials that jump at time 0.25 s from a

constant low value to a constant high value. Black horizontal bars indicate spikes, and the

active states zk = 1 are indicated by gray shaded areas of duration τ ·dt = 20ms after each

spike. It can be seen from this example that different refractory mechanisms give rise to

different spiking dynamics.
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Figure 5.3: Sampling from a Boltzmann distribution by spiking neurons with

relative refractory mechanism. (A) Spike raster of the network. (B) Traces of internal

state variables of a neuron (# 26, indicated by orange spikes in A). The rich interaction of

the network gives rise to rapidly changing membrane potentials and instantaneous firing

rates. (C) Joint distribution of 5 neurons (gray shaded area in A) obtained by the spiking

neural network and Gibbs sampling from the same distribution. Active states zi = 1 are

indicated by a black dot, using one row for each neuron νi, the columns list all 25 = 32

possible states (z24, . . . , z28) of these 5 neurons. The tight match between both distributions

suggests that the spiking network represents the target probability distribution p with high

accuracy.

i.e., as long as its membrane potential uk is constant. Hence the “local” computation

performed by such neuron can be considered as correct. If however, several neurons

in the network change their states in a short interval of time, the joint distribution

over z is in general not the desired one, i.e.,
∑

ζ q
∗(ζ, z) 6= p(z), where q∗(ζ, z) denotes

the invariant distribution of T = T 1 ◦ . . . ◦ TK . In the Methods section, we present

simulation results that indicate that the error of the approximation to the desired Boltz-

mann distributions introduced by neural sampling with relative refractory mechanism

is rather minute. It is shown that the neural sampling approximation error is orders of

magnitudes below the one introduced by a fully factorized distribution (which amounts

to assuming correct marginal distributions p(zk) and independent neurons).

To illustrate the sampling process with the relative refractory mechanism, we ex-

amine a network of K = 40 neurons. We aim to sample from a Boltzmann distribution

(5.5) with parameters Wij , bi being randomly drawn from normal distributions. For

the neuron model, we use the relative refractory mechanism shown in the mid row of
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Figure 5.2B. A detailed description of the simulation and the parameters used is given

in the Methods section. A spike pattern of the resulting sampling network is shown

in Figure 5.3A. The network features a sparse, irregular spike response with average

firing rate of 13.9 Hz. For one neuron ν26, indicated with orange spikes, the internal

dynamics are shown in Figure 5.3B. After each action potential the neuron’s refractory

function g(ζ26) drops to zero and reduces the probability of spiking again in a short time

interval. The influence of the remaining network z\26 is transmitted to neuron ν26 via

PSPs of duration τ ·dt = 20 ms and sums up to the fluctuating membrane potential u26.

As reflected in the highly variable membrane potential even this small network exhibits

rich interactions. To represent the correct distribution p(z26|z\26) over z26 conditioned

on z\26, the neuron ν26 continuously adapts its instantaneous firing rate. To quantify

the precision with which the spiking network draws samples from the target distribu-

tion (5.5), Figure 5.3C shows the joint distribution of 5 neurons. For comparison we

accompany the distribution of sampled network states with the result obtained from the

standard Gibbs sampling algorithm (considered as the ground truth). Since the number

of possible states z grows exponentially in the number of neurons, we restrict ourselves

for visualization purposes to the distribution p(z24, . . . , z28) of the gray shaded units

and marginalize over the remaining network. The probabilities are estimated from 107

samples, i.e., from 107 successive states z of the Markov chain. Stochastic deviations of

the estimated probabilities due to the finite number of samples are quite small (typical

errors ∆p(z)/
√
p(z) ≈ 10−3) and are comparable to systematic deviations due to the

only locally correct computation of neurons with relative refractory mechanism. In the

Methods section, we present further simulation results showing that the proposed net-

works consisting of neurons with relative refractory mechanism approximate the desired

target distributions faithfully over a large range of distribution parameters.

In order to illustrate that the proposed sampling networks feature biologically quite

realistic spiking dynamics, we present in the Methods section several neural firing statis-

tics (e.g., the inter-spike interval histogram) of the network model. In general, the

statistics computed from the model match experimentally observed statistics well. The

proposed network models are based on the assumption of rectangular-shaped, renewal

PSPs. More precisely, we define renewal (or non-additive) PSPs in the following way.

Renewal PSPs evoked by a single synapse do not add up but are merely prolonged in

their duration (according to equation (5.6)); renewal PSPs elicited at different synapses
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nevertheless add up in the normal way. In Methods we investigate the impact of re-

placing the theoretically ideal rectangular-shaped, renewal PSPs with biologically more

realistic alpha-shaped, additive PSPs. Simulation results suggest that the network

model with alpha-shaped PSPs does not capture the target distribution as accurately

as with the theoretically ideal PSP shapes, statistical dependencies between the RVs z

are however still approximated reasonably well.

5.3.4 Neural sampling in continuous time

The neural sampling model proposed above was formulated in discrete time of step size

dt, inspired by the discrete time nature of MCMC techniques in statistics and machine

learning as well as to make simulations possible on digital computers. However, models

in continuous time (e.g., ordinary differential equations) are arguably more natural

and “realistic” descriptions of temporally varying biological processes. This gives rise

to the question whether one can find a sensible limit of the discrete time model in

the limit dt → 0, yielding a sampling network model in continuous time. Another

motivation for considering continuous time models for neural sampling is the fact that

many mathematical models for recurrent networks are formulated in continuous time

[73], and a comparison to these existing models would be facilitated. Here we propose

a stochastically spiking neural network model in continuous time, whose states still

represent correct samples from the desired probability distribution p(z) at any time

t. These types of models are usually referred to as Markov jump processes. It can

be shown that discretizing this continuous time model yields the discrete time model

defined earlier, which thus can be regarded as a version suitable for simulations on a

digital computer.

We define the continuous time model in the following way. Let tlk, for l = 0, 1, . . .,

denote the firing times of neuron νk. The refractory process of this neuron, in analogy

to Figure 5.1 and equation (5.8)-(5.9) for the case of discrete time, is described by the

following differential equation for the auxiliary variable ζk, which may now assume any

nonnegative real number 0 ≤ ζk ≤ 1:

d

dt
ζk(t) =

{
− 1
τ for ζk > 0∑
l δ(t− tlk) for ζk = 0 .

(5.12)

Here δ(t − tlk) denotes Dirac’s Delta centered at the spike time tlk. This differential

equation describes the following simple dynamics. The auxiliary variable ζk(t) decays
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linearly with time constant τ when the neuron is refractory, i.e., ζk(t) > 0. Once ζk(t)

arrives at its resting state 0 it remains there, corresponding to the neuron being ready to

spike again (more precisely, in order to avoid point measures we set it to a random value

in [−2ε,−ε], see Methods). In the resting state, the neuron has the probability density

1
τ exp(uk(t)) to fire at every time t. If it fires at tlk, this results in setting ζk(t

l
k) = 1,

which is formalized in equation (5.12) by the sum of Dirac Delta’s
∑

l δ(t − tlk). Here

the current membrane potential uk(t) at time t is defined as in the discrete time case,

e.g., by uk = bk +
∑K

i=1Wkizi(t) for the case of a Boltzmann distribution (5.5). The

binary variable zk(t) is defined to be 1 if ζk(t) > 0 and 0 if the neuron is in the resting

state ζk(t) = 0. Biologically, the term Wkizi(t) can again be interpreted as the value

at time t of a rectangular-shaped PSP (with a duration of τ) that neuron νi evokes in

neuron νk. As the spikes are discrete events in continuous time, the probability of two

or more neurons spiking at the same time is zero. This allows for updating all neurons

in parallel using a differential equation.

In analogy to the discrete time case, the neural network in continuous time can be

shown to sample from the desired distribution p(z), i.e., p(z) is an invariant distribution

of the network dynamics defined above. However, to establish this fact, one has to

rely on a different mathematical framework. The probability distribution pt(ζ) of the

auxiliary variables ζ1(t), . . . , ζK(t) as a function of time t, which describes the evolution

of the network, obeys a partial differential equation, the so-called Differential-Chapman-

Kolmogorov equation (see [69]):

∂tpt(ζ) = (Tpt)(ζ), (5.13)

where the operator T , which captures the dynamics of the network, is implicitly defined

by the differential equations (5.12) and the spiking probabilities. This operator T is the

continuous time equivalent to the transition operator T in the discrete time case. The

operator T consists here of two components. The drift term captures the deterministic

decay process of ζk(t), stemming from the term −1/τ in equation (5.12). The jump

term describes the non-continuous aspects of the path ζk(t) associated with “jumping”

from ζk(t
l
k − dt) = 0 to ζk(t

l
k) = 1 at the time tlk when the neuron fires.

In the Methods section we prove that the resulting time invariant distribution, i.e.,

the distribution that solves ∂tpt(ζ) = 0, now denoted p(ζ) as it is not a function of
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time, gives rise to the desired marginal distribution p(z) over z:∫
dζ δ(z, ζ>0) p(ζ) = p(z) , (5.14)

where δ(z, ζ>0) = (δ(z1, ζ
>0
1 ), . . . , δ(zK , ζ

>0
K )) and ζ>0

k = 1 if ζk > 0 and ζ>0
k = 0

otherwise. δ(zk, ζ
>0
k ) = 1 denotes Kronecker’s Delta with δ(zk, ζ

>0
k ) = 1 if zk = ζ>0

k

and δ(zk, ζ
>0
k ) = 0 otherwise. Thus, the function δ(z, ζ>0) simply reflects the definition

that zk(t) = 1 if ζk(t) > 0 and 0 otherwise. For an explicit definition of T , a proof of

the above statement, and some additional comments see the Methods section.

The neural samplers in discrete and continuous time are closely related. The model

in discrete time provides an increasingly more precise description of the inherent spike

dynamics when the duration dt of the discrete time step is reduced, causing an increase

of τ (such that τ · dt is constant) and therefore a reduced firing probability of each

neuron at any discrete time step (see the term log τ in equation (5.8)). In the limit of

dt approaching 0, the probability that two or more neurons will fire at the same time

approaches 0, and the discrete time sampler becomes equal to the continuous time

system defined above, which updates all units in parallel.

It is also possible to formulate a continuous time version of the neural sampler based

on neuron models with relative refractory mechanisms. In the Methods section the

resulting continuous time neuron model with a relative refractory mechanism is defined.

Theoretical results similar to the discrete time case can be derived for this sampler (see

Lemmata 9 and 10 in Methods): It is shown that each neuron “locally” performs the

correct computation under the assumption of static input from the remaining neurons.

However one can no longer prove in general that the global network samples from the

target distribution p.

5.3.5 Demonstration of probabilistic inference with recurrent net-

works of spiking neurons in an application to perceptual multi-

stability

In the following we present a network model for perceptual multistability based on the

neural sampling framework introduced above. This simulation study is aimed at show-

ing that the proposed network can indeed sample from a desired distribution and also

perform inference, i.e., sample from the correct corresponding posterior distribution.

It is not meant to be a highly realistic or exhaustive model of perceptual multistability
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nor of biologically plausible learning mechanisms. Such models would naturally require

considerably more modelling work.

Perceptual multistability evoked by ambiguous sensory input, such as a 2D drawing

(e.g., Necker cube) that allows for different consistent 3D interpretations, has become

a frequently studied perceptual phenomenon. The most important finding is that the

perceptual system of humans and nonhuman primates does not produce a superposition

of different possible percepts of an ambiguous stimulus, but rather switches between dif-

ferent self-consistent global percepts in a spontaneous manner. Binocular rivalry, where

different images are presented to the left and right eye, has become a standard experi-

mental paradigm for studying this effect [4, 15, 23, 138]. A typical pair of stimuli are the

two images shown in Figure 5.4A. Here the percepts of humans and nonhuman primates

switch (seemingly stochastically) between the two presented orientations. [72, 104, 215]

propose that several aspects of experimental data on perceptual multistability can be

explained if one assumes that percepts correspond to samples from the conditional dis-

tribution over interpretations (e.g., different 3D shapes) given the visual input (e.g.,

the 2D drawing). Furthermore, the experimentally observed fact that percepts tend to

be stable on the time scale of seconds suggests that perception can be interpreted as

probabilistic inference that is carried out by MCMC sampling which produces succes-

sively correlated samples. In [72] it is shown that this MCMC interpretation is also

able to qualitatively reproduce the experimentally observed distribution of dominance

durations, i.e., the distribution of time intervals between perceptual switches. However,

in lack of an adequate model for sampling by a recurrent network of spiking neurons,

theses studies could describe this approach only on a rather abstract level, and pointed

out the open problem to relate this algorithmic approach to neural processes. We have

demonstrated in a computer simulation that the previously described model for neural

sampling could in principle fill this gap, providing a modelling framework that is on

the one hand consistent with the dynamics of networks of spiking neurons, and which

can on the other hand also be clearly understood from the perspective of probabilistic

inference through MCMC sampling.

In the following we model some essential aspects of an experimental setup for binoc-

ular rivalry with grating stimuli (see Figure 5.4A) in a recurrent network of spiking

neurons with the previously described relative refractory mechanism. We assigned to

each of the 217 neurons in the network N a tuning curve Vk(ϕ), centered around its
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Figure 5.4: Modeling perceptual multistability as probabilistic inference with

neural sampling. (A) Typical visual stimuli for the left and right eye in binocular rivalry

experiments. (B) Tuning curve of a neuron with preferred orientation ϕ̄. (C) Distribution

of dominance durations in the trained network under ambiguous input. The red curve

shows the Gamma distribution with maximum likelihood on the data. (D) 2-dimensional

projection (via population vector) of the distribution p(z) encoded in the spiking network

showing that it strongly favors coherent global states of arbitrary orientation to incoherent

ones (corresponding to population vectors of small magnitude). (E) 2-dimensional pro-

jection of the bimodal posterior distribution under an ambiguous input consisting of two

different orientations reminiscent of the stimuli shown in A. The black trace shows the tem-

poral evolution of the network state z for 500 ms around a perceptual switch. (F) Network

states at 3 time points t1, t2, t3 marked in E. Neurons that fired in the preceding 20 ms

(see gray bar in G) are plotted in the color of their preferred orientation. Inactive neurons

are shown in white. While states z(t1) and z(t3) represent rather coherent orientations,

z(t2) shows an incoherent state corresponding to a perceptual switch. Clamped neurons

(which the posterior is condition on) are marked by a black dot. (G) Spike raster of the

unclamped neurons during a 500 ms epoch marked by the black trace in E. Gray bars in-

dicate the 20 ms time intervals that define the network states shown in F. Altogether this

figure shows that a theoretically rigorous probabilistic inference process can be carried out

by a network of spiking neurons with a spike raster that is similar to generic recorded data.171
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preferred orientation ϕ̄k as shown in Figure 5.4B. The preferred orientations ϕ̄k of

the neurons were chosen to cover the entire interval [0, π) of possible orientations and

were randomly assigned to the neurons. The neurons were arranged on a hexagonal

grid as depicted in Figure 5.4F. Any two neurons with distance ≤ 8 were synaptically

connected (neighboring units had distance 1). We assume that these neurons represent

neurons in the visual system that have roughly the same or neighboring receptive field,

and that each neuron receives visual input from either the left or the right eye. The

network connections were chosen such that neurons that have similar (very different)

preferred orientations are connected with positive (negative) weights (for details see

Methods section).

We examined the resulting distribution p(z) over the 217 dimensional network

states. To provide an intuitive visualization of these high dimensional network states z,

we resort to a 2-dimensional projection, the population vector of a state z (see Methods

for details of the applied population vector decoding scheme). Only the endpoints of

the population vectors are drawn (as colored points) in Figure 5.4D,E. The orientation

of the population vector is assumed to correspond to the dominant orientation of the

percept, and its distance from the origin encodes the strength of this percept. We

also, somewhat informally, call the strength of a percept its coherence and a network

state which represents a coherent percept a coherent network state. A coherent net-

work state hence results in a population vector of large magnitude. Each direction of

a population vector is color coded in Figure 5.4D,E, using the color code for directions

shown on the right hand side of Figure 5.4F. In Figure 5.4D the distribution p(z) of the

network is illustrated by sampling of the network for 20 s, with samples z taken every

millisecond. Each dot equals a sampled network state z. In a biological interpretation

the spike response of the freely evolving network reflects spontaneous activity, since

no observations, i.e., no external input, was added to the system. Figure 5.4D shows

that the spontaneous activity of this simple network of spiking neurons moves prefer-

ably through coherent network states for all possible orientations due to the chosen

recurrent network connections (being positive for neurons with similar preferred orien-

tation and negative otherwise). This can directly be seen from the rare occurrence of

population vectors with small magnitude (vectors close to the “center“) in Figure 5.4D.

To study percepts elicited by ambiguous stimuli, where inputs like in Figure 5.4A

are shown simultaneously to the left and right eye during a binocular rivalry experiment,
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we provided ambiguous input to the network. Two cells with preferred orientation ϕ̄k ≈
45◦ and two cells with ϕ̄k ≈ 135◦ were clamped to 1. Additionally four neurons with

ϕ̄k ≈ 0◦ resp. 90◦ were muted by clamping to 0. This ambiguous input is incompatible

with a coherent percept, as it corresponds to two orthogonal orientations presented at

the same time. The resulting distribution over the state of the 209 remaining neurons

is shown for a time span of 20 s of simulated biological time (with samples taken every

millisecond) in Figure 5.4E. One clearly sees that the network spends most of the

time in network states that correspond to one of the two simultaneously presented

input orientations (45o and 135o), and virtually no time on orientations in between.

This implements a sampling process from a bimodal conditional distribution. The

black line marks a 500 ms trace of network states z around a perceptual switch: The

network remained in one mode of high probability – corresponding to one percept –

for some period of time, and then quickly traversed the state space to another mode –

corresponding to a different percept.

Three of the states z around this perceptual switch (z(t1), z(t2) and z(t3) in

Figure 5.4E) are explicitly shown in Figure 5.4F. Neurons νk that fired during the

preceding interval of 20 ms (marked in gray in Figure 5.4G) are drawn in the respec-

tive color of their preferred orientation. Inactive neurons are drawn in white, and

clamped neurons are marked by a black dot (•).
Figure 5.4G shows the action potentials of the 209 non-clamped neurons during the

same 500 ms trace around the perceptual switch. One sees that the sampling process is

expressed in this neural network model by a sparse, asynchronous and irregular spike

response. It is worth mentioning that the average firing rate when sampling from the

posterior distribution is only slightly higher than the average firing rate of spontaneous

activity (16.1 Hz and 15.4 Hz respectively), which is reminiscent of related experimental

data [63]. Thus on the basis of the overall network activity it is indistinguishable

whether the network carries out an inference task or freely samples from its prior

distribution. It is furthermore notable, that a focus of the network activity on the

two orientations that are given by the external input can be achieved in this model,

in spite of the fact that only two of the 217 neurons were clamped for each of them.

This numerical relationship is reminiscent of standard data on the weak input from

LGN to V1 that is provided in the brain [19, 21], and raises the question whether

the proposed neural sampling model could provide a possible mechanism (under the
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modelling assumptions made above) for cortical processing of such numerically weak

external inputs.

The distribution of the resulting dominance durations, i.e., the time between per-

ceptual switches, for the previously described setup with ambiguous input is shown for

a continuous run of 104 s in Figure 5.4C (a similar method as in [72] was used to mea-

sure dominance durations, see Methods). This distribution can be approximated quite

well by a Gamma distribution, which also provides a good fit to experimental data

(see the discussion in [72]). We expect that also other features of the more abstract

MCMC model for biological vision of [72, 215], such as contextual biases and traveling

waves, will emerge in larger and more detailed implementations of the MCMC approach

through the proposed neural sampling method in networks of spiking neurons.

5.4 Discussion

We have presented a spiking neural network that samples from a given probability

distribution via its inherent network dynamics. In particular the network is able to

carry out probabilistic inference through sampling. The model, based on assumptions

about the underlying probability distribution (formalized by the neural computability

condition) as well as on certain assumptions regarding the underlying MCMC model,

provides one possible neural implementation of the “inference-by-sampling paradigm”

emerging in computational neuroscience.

During inference the observations (i.e., the variables which we wish to condition on)

are modeled in this study by clamping the corresponding neurons by strong external

input to the observed binary value. Units which receive no input or input with van-

ishing contrast (stimulus intensity) are treated as unobserved. Using this admittedly

quite simplistic model of the input, we observed in simulations that our network model

exhibits the following property: The onset of a sensory stimulus reduces the variability

of the firing activity, which represents (after stimulus onset) a conditional distribu-

tion, rather than the prior distribution (see the difference between panels D and E

of Figure 5.4). It is tempting to compare these results to the experimental finding of

reduced firing rate variability after stimulus onset observed in several cortical areas

[32]. We wish to point out however, that a consistent treatment of zero contrast stimuli
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requires more thorough modelling efforts (e.g., by explicitly adding a random variable

for the stimulus intensity [16, 62]), which is not the focus of the presented work.

Virtually all high-level computational tasks that a brain has to solve can be for-

malized as optimization problems, that take into account a (possibly large) number of

soft or hard constraints. In typical applications of probabilistic inference in science and

engineering (see e.g. [22, 125]) such constraints are encoded in e.g., conditional prob-

ability tables or factors. In a biological setup they could possibly be encoded through

the synaptic weights of a recurrent network of spiking neurons. The solution of such op-

timizations problems in a probabilistic framework via sampling, as implemented in our

model, provides an alternative to deterministic solutions, as traditionally implemented

in neural networks (see, e.g., [103] for the case of constraint satisfaction problems).

Whereas an attractor neural network converges to one (possibly approximate) solution

of the problem, a stochastic network may alternate between different approximate so-

lutions and stay the longest at those approximate solutions that provide the best fit.

This might be advantageous, as given more time a stochastic network can explore more

of the state space and avoid shallow local minima. Responses to ambiguous sensory

stimuli [4, 15, 23, 138] might be interpreted as an optimization with soft constraints.

The interpretation of human thinking as sampling process solving an inference task,

recently proposed in cognitive science [47, 87, 228], further emphasizes that considering

neural activity as an inferential process via sampling promises to be a fruitful approach.

Our approach builds on, and extends, previous work where recurrent networks of

non-spiking stochastic neurons (commonly considered in artificial neural networks) were

shown to be able to carry out probabilistic inference through Gibbs sampling [3]. In

[102] a first extension of this approach to a network of recurrently connected spiking

neurons had been presented. The dynamics of the recurrently connected spiking neu-

rons are described as stepwise sampling from the posterior of a temporal Restricted

Boltzmann Machine (tRBM) by introducing a clever interpretation of the temporal

spike code as time varying parameters of a multivariate Gaussian distribution. Draw-

ing one sample from the posterior of a RBM is, by construction, a trivial one-step task.

In contrast to our model, the model of [102] does not produce multiple samples from

a fixed posterior distribution, given the fixed input, but produces exactly one sample

consisting of the temporal sequence of the hidden nodes, given a temporal input se-

quence. Similar temporal models, sometimes called Bayesian filtering, also underlie the
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important contributions of [236] and [45]. In [45] every single neuron is described as

hidden Markov Model (HMM) with two states. Instead of drawing samples from the in-

stantaneous posterior distribution using stochastic spikes, [45] presents a deterministic

spike generation with the intention to convey the analog probability value rather then

discrete samples. The approach presented here can be interpreted as a biologically more

realistic version of Gibbs sampling for a specific class of probability distributions by

taking into account a spike-based communication, finite duration PSPs and refractory

mechanisms. Other implementations based on different distributions (e.g., directed

graphical models) and different sampling methods (e.g., reversible MCMC methods)

are of course conceivable and worth exploring.

In a computer experiment (see Figure 5.4), we used our proposed network to model

aspects of biological vision as probabilistic inference along the lines of argumentation

put forward in [72, 104, 215]. Our model was chosen to be quite simplistic, just to

demonstrate that a number of experimental data on the dynamics of spontaneous ac-

tivity [16, 65, 119] and binocular rivalry [4, 15, 23, 138] can in principle be captured

by this approach. The main point of the modelling study is to show that rather re-

alistic neural dynamics can support computational functions rigorously formalized as

inference via sampling.

We have also presented a model of spiking dynamics in continuous time that per-

forms sampling from a given probability distribution. Although computer simulations

of biological networks of neurons often actually use discrete time, it is desirable to also

have a sound approach for understanding and describing the network sampling dynam-

ics in continuous time, as the latter is arguable a natural framework for describing

temporal processes in biology. Furthermore comparison to many existing continuous

time neuron and network models of neurons is facilitated.

We have made various simplifying assumption regarding neural processes, e.g.,

simple symbolic postsynaptic potentials in the form of step-functions (reminiscent of

plateau potentials caused by dendritic NMDA spikes [7]). More accurate models for

neurons have to integrate a multitude of time constants that represent different tem-

poral processes on the physical, molecular, and genetic level. Hence the open problem

arises, to which extent this multitude of time constants and other complex dynam-

ics can be integrated into theoretical models of neural sampling. We have gone one

first step in this direction by showing that in computer simulations the two temporal
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processes that we have considered (refractory processes and postsynaptic potentials)

can approximately be decoupled. Furthermore, we have presented simulation results

suggesting that more realistic alpha-shaped, additive EPSPs are compatible with the

functionality of the proposed network model.

Finally, we want to point out that the prospect of using networks of spiking neurons

for probabilistic inference via sampling suggests new applications for energy-efficient

spike-based and massively parallel electronic hardware that is currently under develop-

ment [26, 151].

5.5 Methods

We first provide details and proofs for the neural sampling models, followed by details

for the computer simulations. Then we investigate typical firing statistics of individ-

ual neurons during neural sampling and examine the approximation quality of neural

sampling with different neuron and synapse models.

5.5.1 Mathematical details

5.5.1.1 Notation

To keep the derivations in a compact form, we introduce the following notations. We

define the function ζ>0
k of ζk to be 1 if ζk > 0 and 0 otherwise. Analogously we

define ζ>0
\k = (ζ>0

1 , . . . , ζ>0
k−1, ζ

>0
k+1, . . . , ζ

>0
K ). Let δ(·, ·) denote Kronecker’s Delta, i.e.,

δ(x, y) = 1 if x = y and 0 whereas δ(·) denotes Dirac’s Delta, i.e.,
∫
f(x)δ(x)dx = f(0).

Furthermore χI(x) is the indicator function of the set I, i.e., χI(x) = 1 if x ∈ I and

χI(x) = 0 if x /∈ I.

5.5.1.2 Details to neural sampling with absolute refractory period in dis-

crete time

The following Lemmata 1 – 3 provide a proof of Theorem 1. For completeness we

begin this paragraph with a recapitulation of the definitions stated in Results. We

then identify some central properties of the joint probability distribution p(ζ, z) and

proof that the proposed network samples from the desired invariant distribution.

For a given distribution p(z) over the binary variables z ∈ {0, 1}K with ∀z ∈
{0, 1}K p(z) 6= 0, the joint distribution over (ζ, z) with ζ ∈ {0, 1, . . . , τ}K is defined in
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the following way (see equation 5.7):

p(ζk|zk) :=


τ−1 for zk = 1 ∧ ζk > 0
1 for zk = 0 ∧ ζk = 0
0 otherwise

p(ζ|z) :=
K∏
k=1

p(ζk|zk)

p(ζ, z) := p(ζ|z)p(z).

The assumption p(z) 6= 0 for all z is required to show the irreducibility of the Markov

chain, a prerequisite to ensure the uniqueness of the invariant distribution of the MCMC

dynamics. Furthermore, for the given distribution p(z) we define the functions uk :

{0, 1}K−1 → R for k ∈ {1, . . . ,K} which map z\k 7→ uk(z\k):

uk(z\k) := logit(p(zk = 1|z\k)) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

.

Instead of uk(z\k) we simply write uk in the following.

Lemma 1. The distribution p(ζ, z) has conditional distributions of the following form:

p(ζk|ζ\k, z\k) = p(ζk|z\k) =

{
σ(uk)
τ for ζk > 0

1− σ(uk) otherwise

p(zk|ζ, z\k) = p(zk|ζk) =


1 for ζk > 0 ∧ zk = 1

1 for ζk = 0 ∧ zk = 0

0 otherwise .

These results can also be written more compactly in the following form: p(ζk|z\k) =

σ(uk)χ{1,...,τ}(ζk)
1
τ + (1− σ(uk))δ(ζk, 0) and p(zk|ζk) = δ(zk, ζ

>0
k ).

Proof. Here we use the fact that the logistic function σ is the inverse of the logit

function, i.e., p(zk = 1|z\k) = σ(uk).

p(ζk|ζ\k, z\k) =

1∑
zk=0

p(ζ, z)

p(ζ\k, z\k)
=

1∑
zk=0

p(ζ, z)

p(ζ\k|z\k)p(z\k)
=

1∑
zk=0

(∏
l 6=k p(ζl|zl)

)
p(ζk|zk)p(z)(∏

l 6=k p(ζl|zl)
)
p(z\k)

=

1∑
zk=0

p(ζk|zk)p(zk|z\k) = σ(uk)χ{1,...,τ}(ζk)
1

τ
+ (1− σ(uk))δ(ζk, 0).
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This also shows that ζk is independent from ζ\k given z\k, i.e, p(ζk|ζ\k, z\k) = p(ζk|z\k).
Now we show the second relation using Bayes’ rule:

p(zk|ζ, z\k) =
p(ζk|ζ\k, z)

p(ζk|ζ\k, z\k)
p(zk|ζ\k, z\k)

=
zkχ{1,...,τ}(ζk)

1
τ + (1− zk)δ(ζk, 0)

σ(uk)χ{1,...,τ}(ζk)
1
τ + (1− σ(uk))δ(ζk, 0)

p(zk|z\k)

=

{
zk for ζk > 0

1− zk for ζk = 0

= δ(zk, ζ
>0
k ).

In order to facilitate the verification of the next two Lemmata, we first restate the

definition of the operators T k in a more concise way:

T := T 1 ◦ . . . ◦ TK

T k(ζ, z|ζ ′, z′) := T k(ζk, zk|ζ ′, z′)δ(ζ\k, ζ ′\k)δ(z\k, z
′
\k)

T k(ζk, zk|ζ ′, z′) := δ(zk, ζ
>0
k ) · T k(ζk|ζ ′k, z′\k)

T k(ζk|ζ ′k, z′\k) :=


σ(u′k − log τ) for ζk = τ ∧ ζ ′k = 0, 1
1− σ(u′k − log τ) for ζk = 0 ∧ ζ ′k = 0, 1
1 for ζk = ζ ′k − 1 ∧ ζ ′k > 1
0 otherwise

,

where u′k := uk(z
′
\k) = logit(p(zk = 1|z′\k)).

Lemma 2. For all k = 1, . . . ,K the operator T k(ζk|ζ ′k, z′\k) leaves the conditional

distribution p(ζk|z′\k) invariant.

Proof. For sake of simplicity, denote T k(ζk = i|ζ ′k = j, z′\k) = T kij for i, j ∈ {0, 1, . . . , τ}

and p(ζk = i|z′\k) = pi. We have to show pi
!

=
∑τ

j=0 T
k
ijpj for i ∈ {0, 1, . . . , τ}.

First we show pτ =
∑τ

j=0 T
k
τjpj using p0 = 1 − σ(uk) and p1 = p2 = . . . = pτ =

σ(uk)τ
−1 (which results from Lemma 1):

τ∑
j=0

T kτjpj = T kτ0p0 + T kτ1p1 = σ(uk − log τ)(1− σ(uk)) + σ(uk − log τ)σ(uk)τ
−1

= σ(uk − log τ)σ(uk)τ
−1 (τ exp(−uk) + 1) = σ(uk − log τ)σ(uk)τ

−1(σ(uk − log τ))−1

= σ(uk)τ
−1 !

= pτ .
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Here we used the definition of the logistic function σ(x) = (1+exp(−x))−1 and σ(x)(1−
σ(x))−1 = exp(x).

Now we show p0 =
∑τ

j=0 T
k
0jpj :

τ∑
j=0

T k0jpj = T k00p0 + T k01p1

= (1− σ(uk − log τ))(1− σ(uk)) + (1− σ(uk − log τ))σ(uk)τ
−1

= (1− σ(uk − log τ))(1− σ(uk))
(
1 + exp(uk)τ

−1
)

= σ(−uk + log τ)(1− σ(uk))(σ(−uk + log τ))−1

= 1− σ(uk)
!

= p0.

Here we used 1− σ(x) = σ(−x).

It is trivial to show pi =
∑τ

j=0 T
k
ijpj for i = 1, . . . , τ−1 as

∑τ
j=0 T

k
ijpj = T ki,i+1pi+1 =

pi+1 = pi. Here we used the facts that T ki,i+1 = 1 and pi = pi+1 for i = 1, . . . , τ − 1 by

definition.

Lemma 3. For all k = 1, . . . ,K the operator T k(z, ζ|ζ ′, z′) leaves the distribution

p(ζ, z) invariant.

Proof. We start from Lemma 2, which states that T k(ζk|ζ ′k, z′\k) leaves the conditional
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distribution p(ζk|z′\k) invariant:∑
ζ′k

T k(ζk|ζ ′k, z′\k)p(ζ
′
k|z′\k) = p(ζk|z′\k)

⇔
∑
ζ′k,z

′
\k

δ(z\k, z
′
\k)T

k(ζk|ζ ′k, z′\k)p(ζ
′
k|z′\k) =

∑
z′\k

δ(z\k, z
′
\k)p(ζk|z

′
\k) = p(ζk|z\k)

⇔
∑
ζ′k,z

′
\k

δ(zk, ζ
>0
k )δ(z\k, z

′
\k)T

k(ζk|ζ ′k, z′\k)p(ζ
′
k|z′\k) = δ(zk, ζ

>0
k )p(ζk|z\k) = p(zk|ζk)p(ζk|z\k)

⇔
∑
ζ′k,z

′

δ(zk, ζ
>0
k )δ(z\k, z

′
\k)T

k(ζk|ζ ′k, z′\k)p(z
′
k, ζ
′
k|z′\k) = p(zk, ζk|z\k)

⇔
∑
ζ′k,z

′

δ(zk, ζ
>0
k )δ(z\k, z

′
\k)T

k(ζk|ζ ′k, z′\k)p(z
′
k, ζ
′
k|z′\k)p(ζ\k|z

′
\k)p(z

′
\k)

= p(zk, ζk|z\k)p(ζ\k|z\k)p(z\k)

⇔
∑
ζ′k,z

′

δ(zk, ζ
>0
k )δ(z\k, z

′
\k)T

k(ζk|ζ ′k, z′\k)p(ζ
′
k, ζ\k, z

′) = p(ζ, z)

⇔
∑
ζ′,z′

T k(zk, ζk|ζ ′, z′)δ(ζ\k, ζ ′\k)δ(z\k, z
′
\k)p(z

′, ζ ′) = p(ζ, z)

⇔
∑
ζ′,z′

T k(z, ζ|ζ ′, z′)p(z′, ζ ′) = p(ζ, z).

Here we used the relations δ(zk, ζ
>0
k ) = p(zk|ζk) and p(ζk, zk|z\k) = p(zk|ζk)p(ζk|z\k) as

well as p(ζk|z\k) = p(ζk|ζ\k, z\k) which directly follow from the definitions of T k(ζ, z, |ζ ′, z′)
and p(ζ, z).

Finally, we can verify that the composed operator T = T 1 ◦ . . . ◦ TK samples from

the given distribution p.

Theorem 1. p(ζ, z) is the unique invariant distribution of operator T .

Proof. As all T k leave p(ζ, z) invariant, so does the concatenation T = T 1 ◦ . . . ◦ TK .

To ensure that p(ζ, z) is the unique invariant distribution, we have to show that T is

irreducible and aperiodic. T is aperiodic as the transition probabilities T k00 = 1−σ(uk−
log τ) > 0 and T k00 < 1 (this follows from the assumption ∀z p(z) 6= 0 made above).

The operator T is also irreducible for the following reason. First we see that from

any state (ζ ′, z′) in at most τ steps we can get to the zero-state (ζ, z) = 02K (and

stay there) with non-zero probability, as T ki,i+1 = 1 for i = 1, . . . , τ − 1 and T k01 =

1− σ(uk − log τ) > 0. Furthermore, it can be seen that any state (ζ̂, ẑ) can be reached
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from the zero-state (ζ, z) = 02K in at most τ steps since T kN0 = σ(uk − log τ) > 0 for

any value of uk. Hence every final state (ζ̂, ẑ) can be reached from every starting state

(ζ ′, z′) in at most 2τ steps with non-vanishing probability.

5.5.1.3 Details to neural sampling with a relative refractory period in dis-

crete time

We augment the neuron model with a relative refractory period described by a function

g(ζk). We first ensure existence of the corresponding function f(uk). Based on these

functions we then introduce the transition operator T of the Markov chain. This

operator is shown to entail correct “local” computations.

Lemma 4. Let (g1, . . . , gτ ) ∈ (R+
0 )τ be a tuple of non-negative real numbers, with

gτ = 0 and at least one element gi ≥ 1. This defines the refractory function via

g(ζk) := gζk . There exists a unique C∞ function f : R → (0, 1) with the following

property ∀u ∈ R:

f(u)

∑τ
i=1

∏τ
j=i+1(1− gjf(u))∏τ

j=1(1− gjf(u))
= exp(u). (5.15)

Furthermore, the function f has the property:

∀i ∈ {1, . . . , τ} ∀u ∈ R : 0 ≤ gif(u) < 1

∃i ∈ {1, . . . , τ} ∀u ∈ R : 0 < gif(u) < 1.

Proof. Let gmax := maxj∈{1,...τ} gj ; we know that gmax ≥ 1. We define the function

F : (0, 1/gmax)→ R+:

F (x) := x
τ∑
i=1

(
1∏i

j=1(1− gjx)

)

We can see that F is a positive C∞ function on (0, 1/gmax). Furthermore, F (x)/x is

defined as a sum of functions of the form 1∏i
j=1(1−gjx)

. Each factor 1/(1−gjx) is positive

and strictly monotonous. Therefore, F is strictly monotonous on (0, 1/gmax) with the

limits:

lim
x→0

F (x) = 0

lim
x→1/gmax

F (x) = ∞.
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Hence the equation F (x) = exp(u) has a unique solution for x called f(u) ∈ (0, 1/gmax)

for all u ∈ R. From applying the implicit function theorem to F (x, u) := F (x)−exp(u)

it follows that f is C∞.

From here on, with the letter f we will denote the function characterized by the

above Lemma for the given tuple g (which denotes the chosen refractory function).

Definition 1. Define g0 = 1. The transition operator T k is defined in the following

way for all k = 1, . . . ,K:

T k(ζk, zk|ζ ′, z′) := δ(zk, ζ
>0
k )T k(ζk|ζ ′k, z′\k)

T k(ζk|ζ ′k, z′\k) :=


gζ′kf(uk) for ζk = τ

1− gζ′kf(uk) for ζk = ζ ′k − 1 ∧ ζ ′k > 0

1− f(uk) for ζk = 0 ∧ ζ ′k = 0

0 otherwise

,

with uk = uk(z
′
\k).

Lemma 5. For all k = 1, . . . ,K the unique invariant distribution q∗(zk, ζk|ζ ′\k, z
′
\k)

of the operator T k(zk, ζk|ζ ′, z′) fulfills
∑

ζk
q∗(zk, ζk|ζ ′\k, z

′
\k) = p(zk|z′\k). This means,

for a constant configuration z′\k, the operator T k produces samples z∗k from the correct

conditional distribution p(zk|z′\k).

Proof. We define:

q∗(zk, ζk|ζ ′\k, z
′
\k) := δ(zk, ζ

>0
k )q(ζk|z′\k)

:= δ(zk, ζ
>0
k )

(
σ(uk)h(ζk|z′\k) + (1− σ(uk))δ(ζk, 0)

)
,

where the function h(ζk|z′\k) is defined as:

h(ζk|z′\k) :=


∏τ
j=ζk+1(1−gjf(uk))∑τ

α=1

∏τ
j=α+1(1−gjf(uk))

for ζk > 0

0 otherwise
.

It is trivial to see that q∗ has the correct marginal distribution over zk:∑
ζk

q∗(zk, ζk|ζ ′\k, z
′
\k) =

∑
ζk

δ(zk, ζ
>0
k )

(
σ(uk)h(ζk|z′\k) + (1− σ(uk))δ(ζk, 0)

)
= σ(uk)

zk(1− σ(uk))
1−zk = p(zk|z′\k).
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We now show that q∗ is the unique invariant distribution of T k. Because of the

definition of T k, we only have to show that q∗(ζk|z′\k) is the unique invariant distribution

of T k(ζk|ζ ′k, z′\k). We denote q∗(ζk = i|z′\k) =: qi and T k(ζk = i|ζ ′k = j, z′\k) =: Tij , i.e.,

we have to show ∀i ∈ {0, 1, . . . , τ} : qi =
∑

j Tijqj .

It is trivial to show qi =
∑

j Tijqj for 1 ≤ i ≤ τ−1, as there is only one non-vanishing

element of transition operator, namely Ti,i+1:

τ∑
j=0

Tijqj = Ti,i+1qi+1 = (1− gi+1f(uk))qi+1

= (1− gi+1f(uk))h(ζk = i+ 1|z\k)σ(uk)

= h(ζk = i|z\k)p(zk = 1|z\k)
!

= qi.

Here we used qi = h(ζk = i|z\k)σ(uk) for i > 0 and the definition of h(ζk|z\k).

Now we show q0 =
∑

j T0jqj starting from equation (5.15) and additionally using

the relations exp(uk) = σ(uk)/(1− σ(uk)) and q0 = 1− σ(uk) as well as the definition

of q1. We define for the sake of simplicity ψ :=
∑τ

α=1

∏τ
j=α+1(1− gjf(uk)):

τ∑
j=0

T0jqj = (1− f(uk))q0 + (1− g1f(uk))q1

= (1− f(uk))(1− σ(uk)) +
σ(uk)

ψ

τ∏
j=1

(1− gjf(uk))

= (1− f(uk))(1− σ(uk)) + σ(uk)f(uk) exp(−uk)

= (1− f(uk))(1− σ(uk)) + f(uk)(1− σ(uk))
!

= q0.
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We finally show qτ =
∑

j Tτjqj , using the definition of qτ = σ(uk)h(ζk = τ |z\k) = σ(uk)
ψ :

τ∑
i=0

Tτiqi =
τ∑
i=1

gif(uk)qi + f(uk)q0

=
τ∑
i=1

gif(uk)
τ∏

j=i+1

(1− gjf(uk))
σ(uk)

ψ
+ f(uk)q0

=
σ(uk)

ψ

 τ∑
i=1

gif(uk)
τ∏

j=i+1

(1− gjf(uk)) + (1− g1f(uk))
τ∏
j=2

(1− gjf(uk))


=

σ(uk)

ψ

− τ∑
i=1

(1− gif(uk))
τ∏

j=i+1

(1− gjf(uk)) +
τ∑
i=1

τ∏
j=i+1

(1− gjf(uk))

+
τ∏
j=1

(1− gjf(uk))


=

σ(uk)

ψ

− τ∑
i=1

τ∏
j=i

(1− gjf(uk)) +

τ∑
i=0

τ∏
j=i+1

(1− gjf(uk))


=

σ(uk)

ψ

− τ−1∑
i=0

τ∏
j=i+1

(1− gjf(uk)) +

τ∑
i=0

τ∏
j=i+1

(1− gjf(uk))


=

σ(uk)

ψ

 τ∏
j=τ+1

(1− gjf(uk))

 =
σ(uk)

ψ

!
= qτ .

The argument that the transition operator T k is aperiodic and irreducible is similar to

the one presented in Lemma 1.

5.5.1.4 Details to neural sampling with an absolute refractory period in

continuous time

In contrast to the discrete time model we define the state space of ζk to be R+∪[−2ε,−ε]
for ε > 0, i.e., as the union of the positive real numbers and a small interval [−2ε,−ε].
We will define the sampling operator in such a way that after neuron k was refractory

for exactly its refractory period τ , its refractory variable ζk is uniformly placed in the

small interval [−2ε,−ε], which represents now the resting state and replaces ζk = 0.

This avoids point measures (Dirac’s Delta) on the value ζk = 0. This system is still

exactly equivalent to the system discussed in the main paper, as all spike-transition

probabilities of T for ζk < 0 are constant. Hence, it does not matter which values ζk
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assumes with respect to the spike mechanism during its non-refractory period as long

as ζk < 0.

Definition 2. For a given distribution p(z) over the binary variables z ∈ {0, 1}K with

∀z ∈ {0, 1}K p(z) 6= 0, we define a joint distribution over (ζ, z) with ζ ∈ RK in the

following way:

p(ζk|zk) :=


1 for 1 ≥ ζk > 0 ∧ zk = 1

ε−1 for ζk ∈ Iε ∧ zk = 0

0 otherwise

p(ζ|z) :=
K∏
k=1

p(ζk|zk)

p(ζ, z) := p(ζ|z)p(z),

where Iε := [−2ε,−ε] is the refractory resting state interval. In accordance with this

definition we can also write p(ζk|zk) = zkχ[0,1](ζk) + (1− zk)ε−1χIε(ζk).

Lemma 6. The distribution p(ζ, z) has the following marginal distribution:

p(ζk|ζ\k) = σ(uk)χ[0,1](ζk) + (1− σ(uk))ε
−1χIε(ζk)

=

{
σ(uk) for 1 ≥ ζk > 0

(1− σ(uk))ε
−1 for ζk ∈ Iε

,

where uk := uk(ζ
>0
\k ).

Definition 3. For k ∈ {1, . . . ,K} and x ∈ R the operator T kx is defined in the following

way for a function q : R→ R:

(T kx q)(ζk) := τ−1
(
∂ζk(q(ζk)χR+(ζk))− δ(ζk)F (q) + exp(x)δ(ζk − 1)

∫
Iε

q(ζ ′k)dζ
′
k

+ χIε(ζk)
(
ε−1F (q)− exp(x)q(ζk)

) )
.

where the functional F is defined as the one-sided limit from above at 0:

F (q) := lim
x→0+

q(x).

The operator T is defined in the following way for a probability distribution q(ζ) on

RK :

(Tq)(ζ) :=
K∑
k=1

(T kukq(ζ1, . . . , ζk−1, ·, ζk+1, ζK))(ζk),
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where q(ζ1, . . . , ζk−1, ·, ζk+1, ζK) : R → R denotes the function q(ζ) of ζk where ζ\k is

held constant and uk := uk(ζ
>0
\k ).

The transition operator T defines the following Fokker-Planck equation for a time-

dependent distribution qt(ζ):

∂tqt(ζ) = (Tqt)(ζ).

The jump and drift functions W k(ζ|ζ ′) and Ak(ζ) associated to the operator T are

given by:

W k(ζ|ζ ′) =
(

(ετ)−1χIε(ζk)δ(ζ
′
k) + δ(ζk − 1) exp(uk(ζ

′
\k)− log τ)χIε(ζ

′
k)
)
δ(ζ\k − ζ ′\k)

Ak(ζ) = −τ−1χR+(ζk)

=⇒ (Tqt)(ζ) = −
K∑
k=1

∂ζk(Ak(ζ)qt(ζ)) +
K∑
k=1

∫ (
W k(ζ|ζ ′)p(ζ ′)−W k(ζ ′|ζ)p(ζ)

)
dζ ′.

Lemma 7.The operator T kuk leaves the conditional distribution p(ζk|ζ\k) invariant with

uk = uk(ζ
>0
\k ), i.e.:

(T kukp(·|ζ\k))(ζk) = 0.

Proof. This is easy to proof using calculus and the relations ∂ζkχR+(ζk) = δ(ζk) and

F (p(·|ζ\k)) = σ(uk) = exp(uk)(1− σ(uk)).

Lemma 8. p(ζ) is an invariant distribution of T , i.e., it is a solution to the invariant

Fokker-Planck equation:

∂tp(ζ) = (Tp)(ζ) = 0.

Proof. We observe that T k(αp) = αT kp for a constant α ∈ R (which is not a function

of ζk). Hence:

T kukp(ζ1, . . . , ζk−1, ·, ζk+1, . . . , ζK) = T kuk(p(·|ζ\k)p(ζ\k))

= p(ζ\k)(T
k
uk
p(·|ζ\k))

= 0.

The Lemma follows then from the definition of T :=
∑

k T
k
uk

.

187



5. NEURAL DYNAMICS AS SAMPLING

5.5.1.5 Details to neural sampling with a relative refractory period in con-

tinuous time

As already assumed in the case of the absolute refractory sampler in continuous time,

we define the state space of ζk to be R+ ∪ [−2ε,−ε] for ε > 0.

Lemma 9. Let g be a continuous, non-negative function g : [0, 1]→ R+
0 with g(ζk) = 1

for ζk ≤ 0. There exists a unique C∞ function f : R→ R+ with the following property

∀u ∈ R:

f(u)

∫ 1

0
exp

(
f(u)

∫ ζk

0
g(ζ ′k)dζ

′
k

)
dζk = exp(u). (5.16)

Proof. We define the function F : R+
0 → R in the following way:

F (x) := x

∫ 1

0
exp (xα(ζk)) dζk,

where α(r) :=
∫ r

0 g(ζ ′k)dζ
′
k. From g(ζk) ≥ 0 we can follow that α : [0, 1] → R+

0 is

non-negative. F (x) is differentiable with the derivative:

F ′(x) =

∫ 1

0
exp (xα(ζk)) dζk + x

∫ 1

0
exp (xα(ζk))α(ζk)dζk

⇒ F ′(x) > 0.

Hence F is strictly monotonously increasing. Furthermore, the following relations hold:

F (0) = 0

F (x) ≥ x.

Therefore the equation:

F (x) = exp(u),

has exactly one solution f(u) with F (f(u)) = exp(u) in R+. From applying the implicit

function theorem to F (x, u) := F (x)− exp(u) it follows that f is C∞.

Definition 4. For all k ∈ {1, . . . ,K} and x ∈ R the operator T kx is defined in the

following way for a function q : R→ R:

(T kx q)(ζk) := τ−1
(
∂ζk(q(ζk)χR+(ζk))− δ(ζk)q(ζk) + f(x)δ(ζk − 1)

∫
R
g(ζ ′k)q(ζ

′
k)dζ

′
k

+ χIε(ζk)ε
−1F (q)− f(x)q(ζk)g(ζk)

)
.
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The transition operator T kx defines the following Fokker-Planck equation for a time-

dependent distribution qt(ζk):

∂tqt(ζk) = (T kx qt)(ζk).

The jump and drift functions W k(ζk|ζ ′k) and Ak(ζk) associated to the operator T kx are

given by:

W k(ζk|ζ ′k) = (ετ)−1χIε(ζk)δ(ζ
′
k) + τ−1δ(ζk − 1)f(x)g(ζ ′k)

Ak(ζk) = −τ−1χR+(ζk)

=⇒ (T kx qt)(ζk) = −∂ζk(Ak(ζk)qt(ζk)) +

∫ (
W k(ζk|ζ ′k)p(ζ ′k)−W k(ζ ′k|ζk)p(ζk)

)
dζ ′k.

Lemma 10. For all k = 1, . . . ,K the invariant distribution q∗(ζk|z\k) of the operator

T kuk fulfills
∫
δ(zk, ζ

>0
k )q∗(ζk|z\k)dζk = p(zk|z\k).

Proof. We define the distribution q∗(ζk|z\k) as:

q∗(ζk|z\k) = (1− σ(uk))
(
f(uk)χ[0,1](ζk) exp(f(uk)α(ζk)) + ε−1χIε(ζk)

)
,

where α(ζk) :=
∫ 1

0 g(ζ ′k)dζ
′
k. By applying the operator T kuk to q∗ one can verify that

T kukq
∗ = 0 holds using the definition of f(uk) given in (5.16). Furthermore we can

compute the ratio:∫ 1
0 q
∗(ζk|z\k)dζk∫

Iε
q∗(ζk|z\k)dζk

=
p(zk = 1|z\k)
p(zk = 0|z\k)

= f(uk)

∫ 1

0
exp

(
f(uk)

∫ ζk

0
g(ζ ′k)dζ

′
k

)
dζk = exp(uk).

5.5.2 Details to the computer simulations

The simulation results shown in Figure 5.2, Figure 5.3 and Figure 5.4 used the bio-

logically more realistic neuron model with the relative refractory mechanism. During

all experiments the first second of simulated time was discarded as burn-in time. The

full list of parameters defining the experimental setup is given in Table 5.1. All oc-

curring joint probability distributions are Boltzmann distributions of the form given
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in equation (5.5). Example Python [220] scripts for neural sampling from Boltzmann

distributions are available on request and will be provided on our webpage. The exam-

ple code comprises networks with both absolute and relative refractory mechanism. It

requires standard Python packages only and is readily executable.

5.5.2.1 Details to Figure 2: Neuron model with relative refractory mech-

anism

The three refractory functions g(ζ) of panel (B) as well as all other simulation pa-

rameters are listed in Table 5.1. Panel (C) shows the corresponding functions f(u),

which result from numerically solving equation (5.11). The spike patterns in panel

(D) show the response of the neurons when the membrane potential is low (uk = −1

for 0 < t < 250 ms) or high (uk = +2 for 250 ms < t < 500 ms). These membrane

potentials encode p(zk = 1) = 0.269 and p(zk = 1) = 0.881, respectively according to

(5.3) and (5.4). The binary state zk = 1 is indicated by gray shaded areas of duration

τ · dt = 20 ms after each spike.

5.5.2.2 Details to Figure 3: Sampling from a Boltzmann distribution by

spiking neurons with relative refractory mechanism

We examined the spike response of a network of 40 randomly connected neurons which

sampled from a Boltzmann distribution. The excitabilities bk as well as the the synaptic

weights Wki(= Wik) were drawn from Gaussian distributions (with diagonal elements

Wii = 0). For the full list of parameters please refer to Table 5.1. One second of the

arising spike pattern is shown in panel (A). The average firing rate of the network was

13.9 Hz. To highlight the internal dynamics of the neuron model, the values of the

refractory function g(ζ26), the membrane potential u26 and the instantaneous firing

rate r26 of neuron ν26 (indicated with red spikes) are shown in panel (B). Here, the

instantaneous firing rate r26 is defined for the discrete time Markov chain as

r26 = p(spike)/dt = T 26(τ |ζ26, z\26)/dt = g(ζ26) · f(u26)/dt . (5.17)

As stated before, the neuron model with relative refractory mechanism gk(ζ) does

not entail the correct overall invariant distribution p(z). To estimate the impact

of this approximation on the joint network dynamics, we compared the distribution

p(z24, . . . , z28) over five neurons (indicated by gray background in A) in the spiking
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network with the correct distribution obtained from Gibbs sampling. The probabilities

were estimated from 107 samples. A more quantitative analysis of the approximation

quality of neural sampling with a relative refractory mechanism is provided below.

5.5.2.3 Details to Figure 4: Modeling perceptual multistability as proba-

bilistic inference with neural sampling

We demonstrate probabilistic inference and learning in a network of orientation selective

neurons. As a simple model we consider a network of 217 neurons on a hexagonal grid

as shown in panel (F). Any two neurons with distance ≤ 8 were synaptically connected

(neighboring units had distance 1). For the remaining parameters of the network and

neuron model please refer to Table 5.1. Each neuron featured a π-periodic tuning curve

as depicted in panel (B):

Vk(ϕ) = v0 + C · exp [κ · cos (2(ϕ− ϕ̄k))− κ] (5.18)

with base sensitivity v0, contrast C, peakedness κ and preferred orientation ϕ̄k. The

preferred orientations ϕ̄k of the neurons were chosen to cover the entire interval [0, π)

of possible orientations with equal spacing and were randomly assigned to the neurons.

For simplicity we did not incorporate the input dynamics in our probabilistic model,

but rather trained the network directly like a fully visible Boltzmann machine. We used

for this purpose a standard Boltzmann machine learning rule known as contrastive

divergence [97, 98]. This learning rule requires posterior samples z̃, i.e., network states

under the influence of the present input, and approximate prior samples z?, which reflect

the probability distribution of the network in the absence of stimuli. The update rules

for synaptic weights and neuronal excitabilities read:

∆Wki = ηki · (z̃kz̃i − z?kz?i ) (5.19)

∆bk = η · (z̃k − z?k)

ηki =

{
η if νk and νi are connected
0 otherwise .

While more elaborate policies can speed up convergence, we simply used a global learn-

ing rate η which was constant in time. The values of Wki and bk were initialized at 0.

We generated binary training patterns in the following way:

1. A global orientation ϕ was drawn uniformly from [0, π),
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2. each neuron was independently set to be active with probability p(zk = 1) =

Vk(ϕ),

3. the resulting network state z̃ was taken as posterior sample.

To obtain an approximate prior sample z? we let the network run for a short time freely

starting from (ζ̃, z̃). The variables ζ̃ were also assumed to be observed with ζ̃k ∼ iid.

uniformly in {1, . . . , τ} if z̃k = 1 and ζ̃k = 0 otherwise. After evolving freely for 20

time steps, the resulting network state z? was taken as approximate prior sample and

W and b were updated according to (5.19). This process was repeated Ntrain = 105

times. As a result, neurons with similar preferred orientations featured excitatory

synaptic connections (Wki = 6.4 · 10−3 ± 6.7 · 10−3 = mean ± standard deviation of

weight distribution), those with dissimilar orientations maintained inhibitory synapses

(Wki = −4.9 · 10−3 ± 5.2 · 10−3). Here, preferred orientations ϕ̄i and ϕ̄j are defined as

similar if Vi(ϕ̄j) − v0 = Vj(ϕ̄i) − v0 > 0.5C, otherwise they are dissimilar. Neuronal

biases converged to bk = −0.08± 0.03.

We illustrate the learned prior distribution p(z) of the network through sampled

states when the network evolved freely. As seen in panel (D), the population vector –

a 2-dimensional projection of the high dimensional network state – typically reflected

an arbitrary, yet coherent, orientation (for the definition of the population vector see

below). Each dot represents a sampled network state z.

To apply an ambiguous cue, we clamped 8 out of 217 neurons: Two units with

ϕ̄k ≈ π/4 and two with ϕ̄k ≈ 3π/4 were set active, two units with ϕ̄k ≈ 0 and two

with ϕ̄k ≈ π/2 were set inactive. This led to a bimodal posterior distribution as shown

in panel (E). The sampling network represented this distribution by encoding either

global perception separately: The trace of network states z(t) roamed in one mode for

multiple steps before quickly crossing the state space towards the opposite percept.

We define the population vector x of a network state z as a function of the preferred

orientations of all active units:

x = (x0, xπ/4) =
K∑
k=1

zk · (cos 2ϕ̃k, sin 2ϕ̃k) . (5.20)

This definition of x is not based on the preferred orientations ϕ̄k which are used for

generating external input to the network from a given stimulus with orientation ϕ. It
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is rather based on the preferred orientations ϕ̃k measured from the network response.

We used population vector decoding based on the measured values ϕ̃k, as they are con-

ceptually closer to experimentally measurable preferred orientations, and this decoding

hence does not require knowledge of the (unobservable) ϕ̄k. For every neuron νk the

preferred orientation ϕ̃k was measured in the following way. We estimated a tuning

curve Ṽk(ϕ) by a van-Mises fit (of the form (5.18)) to data from stimulation trials in

which neuron νk was not clamped, i.e., where νk was only stimulated by recurrent in-

put (feedforward input was modeled by clamping 8 out of 217 neurons as a function of

stimulus orientation ϕ as before). Due to the structured recurrent weights, the experi-

mentally measured tuning curves Ṽk(ϕ) were found to be reasonably close to the tuning

curves Vk(ϕ) used for external stimulation. ϕ̃k was set to the preferred orientation of

Ṽk(ϕ) (localization parameter of the van-Mises fit). The measured values ϕ̃k turned

out to be consistent with the preferred orientations ϕ̄k (ϕ̄k − ϕ̃k = 6 · 10−4 ± 8.3 · 10−3

averaged over all K neurons). The mean and standard deviation of the remaining pa-

rameter values v0, C and κ of the fitted tuning curves Ṽk(ϕ) are listed in Table 5.1 next

to the ones used for stimulation.

The population vector x was defined in (5.20) with the argument 2ϕ̃k (instead of

ϕ̃k) as orthogonal orientations should cancel each other and neighborhood relations

should be respected. For example neurons with ϕ̃k = ε and ϕ̃k = π − ε contribute

similarly to the population vector for small ε. But counter to intuition the population

vector of a state z with dominant orientation ϕz will point into direction ϕx = 2ϕz.

For visualization in panel (D) and (E) we therefore rescaled the population vector:

If (x0, xπ/4) 7→ (rx, ϕx) in polar coordinates, then the dot is located at (rx, ϕx/2) in

accord with intuition. The black semicircles equal |x| = rx = 45.

The population vector (x0, xπ/4) ∈ R2 was also used for measuring the dominance

durations shown in panel (C). To this R2 was divided into 3 areas: (a) xπ/4 < −35, (b)

−35 ≤ xπ/4 ≤ 35, (c) 35 < xπ/4. We detected a perceptual switch when the network

state entered area (a) or (c) while the previous perception was (c) or (a), respectively.

In panel (F) neurons νk with zk = 1 are plotted with their preferred orientation color

code, inactive neurons are displayed in white. Cells marked by a dot (•) were part of the

observed variables o. The three network states correspond to z(ti) with t1 = 100 ms,

t2 = 250 ms and t3 = 400 ms in the spike pattern in panel (G). The spike pattern shows

the response of the freely evolving units around a perceptual switch during sampling
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from the posterior distribution. The corresponding trace of the population vector is

drawn as black line in panel (E). The width of the light-gray shaded areas in the spike

pattern equals the PSP duration τ · dt, i.e., neurons that spiked in these intervals were

active in the corresponding state in (F).

5.5.3 Firing statistics of neural sampling networks

In previous sections it was shown that a spiking neural network can draw samples from

a given joint distribution which is in a well-defined class of probability distributions

(see the neural computability condition (5.4)). Here, we examine some statistics of

individual neurons in a sampling network which are commonly used to analyze experi-

mental data from recordings. The spike trains and membrane potential data are taken

from the simulation presented in Figure 5.3.

Figure 5.5: Firing statistics of neural sampling networks. (A) Shown is the mem-

brane potential histogram of a typical neuron during sampling. The data is that of neuron

ν26 from the simulation shown in Figure 5.3 (the membrane potential and spike trace of

ν26 are highlighted in Figure 5.3). (B) The plot shows the ISI distribution of a typical

neuron (again ν26 from Figure 5.3) during sampling. The distribution is roughly gamma-

shaped, reminiscent of experimentally observed ISI distributions. (C) A scatter plot of

the coefficient of variation (CV) versus the average interspike interval (ISI) of each neuron

taken from the simulation shown in Figure 5.3. The value of neuron ν26 from Figure 5.3

is marked by a cross. The simulated data is in accordance with experimentally observed

data.

Figure 5.5A,B exemplarily show the distribution of the membrane potential uk and

the interspike interval (ISI) histogram of a single neuron, namely neuron ν26 which was

already considered in Figure 5.3B. The responses of other neurons yield qualitatively

similar statistics. The bell-shaped distribution of the membrane potential is commonly
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observed in neurons embedded in an active network [178]. The ISI histogram reflects

the reduced spiking probability immediately after an action potential due the refractory

mechanism. Interspike intervals larger than the refractory time constant τ · dt = 20 ms

roughly follow an exponential distribution. Similar ISI distributions were observed

during in-vivo recordings in awake, behaving monkeys [205].

Figure 5.5C shows a scatterplot of the coefficient of variation (CV) of the ISIs

versus the average ISI for each neuron in the network. The neurons exhibited a variety

of average firing rates between 3.5 Hz and 31.5 Hz. Most of the neurons responded in a

highly irregular manner with a CV ≈ 1. Neurons with high firing rates had a slightly

lower CV due to the increased influence of the refractory mechanism The dashed line

marks the CV of a Poisson process, i.e., a memoryless spiking behavior. The CV of

neuron ν26 is marked by a cross. The structure of this plot resembles, e.g., data from

recordings in behaving macaque monkeys [208] (but note the lower average firing rate).

5.5.4 Approximation quality of neural sampling with different neuron

and synapse models

The theory of the neuron model with absolute refractory mechanism guarantees sam-

pling form the correct distribution. In contrast, the theory for the neuron model with a

relative refractory mechanism only shows that the sampling process is “locally correct”,

i.e., that it would yield correct conditional distributions p(zk|z\k) for each individual

neuron if the state of the remaining network z\k stayed constant. Therefore, the sta-

tionary distribution of the sampling process with relative refractory mechanism only

provides an approximation to the target distribution. In the following we examine the

approximation quality and robustness of sampling networks with different refractory

mechanisms for target Boltzmann distributions with parameters randomly drawn from

different distributions. Furthermore, we investigate the effect of additive PSP shapes

with more realistic time courses.

We generated target Boltzmann distributions with randomly drawn weights Wki

and biases (excitabilities) bk and computed the similarity between these reference dis-

tributions and the corresponding neural sampling approximations. The setup of these

simulations is the same as for the simulation presented in Figure 5.3. As we aimed

to compare the distribution q∗(z) sampled by the network with the exact Boltzmann

distribution p(z), we reduced the number of neurons per network to K = 10. This
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resulted in a state space of 210 possible network states z for which the normalization

constant for the target Boltzmann distribution could be computed exactly. The weight

matrix W was constraint to be symmetric with vanishing diagonal. Off-diagonal ele-

ments were drawn from zero-mean normal distributions with three different standard

deviations σ = 0.03, σ = 0.3 and σ = 3, whereas the bk were sampled from the same

distribution as in Figure 5.3. For every value of the hyperparameter σ we generated 100

random distributions. For Boltzmann distributions with small weights (σ = 0.03), the

RVs are nearly independent, whereas distributions with intermediate weights (σ = 0.3)

show substantial statistical dependencies between RVs. For very large weights (σ = 3),

the probability mass of the distributions is concentrated on very few states (usually

90% on less than 10 out of the 210 states). Hence, the range of the hyperparameter

0.03 ≤ σ ≤ 3 considered here covers a range a very different distributions.

The approximation quality of the sampled distribution was measured in terms of

the Kullback-Leibler divergence between the target distribution p and the neural ap-

proximation q∗

DKL(p||q∗) =
∑

z

p(z) log
p(z)

q∗(z)
. (5.21)

We estimated q∗ from 107 samples for each simulation trial using a Laplace estimator,

i.e., we added a priori 1 to the number of occurrences of each state z.

Table 5.2 shows the means and the standard deviations of the Kullback-Leibler

divergences between the target Boltzmann distributions and the estimated approx-

imations stemming from neural sampling networks with three different neuron and

synapse models: the exact model with absolute refractory mechanism and two mod-

els with different relative refractory mechanisms shown in the bottom and middle row

in Figure 5.2B. Additionally, as a reference, we provide the (analytically calculated)

Kullback-Leibler divergences for fully factorized distributions, i.e., q∗(z) =
∏
k q
∗(zk)

with correct marginals q∗(zk) = p(zk) but independent variables zi, zj for i 6= j.

The absolute refractory model provides the best results as we expected due to the

theoretical guarantee to sample from the correct distribution (the non-zero Kullback-

Leibler divergence is caused by the estimation from a finite number of samples). The

models with relative refractory mechanism provide faithful approximations for all values

of the hyperparameter σ considered here. These relative refractory models are charac-

terized by the theory to be “locally correct” and turn out to be much more accurate
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Figure 5.6: Comparison of neural sampling with different neuron and synapse

models. The figure shows a histogram of the Kullback-Leibler divergence between 100

different Boltzmann distributions over K = 10 variables (with parameters randomly drawn,

see setup of Figure 5.3) and approximations stemming from different neural sampling net-

works. Networks with absolute refractory mechanism provide the best approximation (as

expected from theoretical guarantees). Networks consisting of neurons with relative refrac-

tory mechanisms, with only “locally” correct sampling, also provide a close fit to the true

distribution (see inset) compared to a fully factorized approximation (assuming correct

marginals and independent variables). Furthermore, it can be seen that sampling networks

with more realistic, alpha-shaped, additive PSPs still fit the true distribution reasonably

well.

approximations than fully factorized distributions if substantial statistical dependen-

cies between the RVs are present (i.e., σ = 0.3, σ = 3). As expected, a late recovery

of the refractory function g(ζ) is beneficial for the approximation quality of the model

as it is closer to an absolute refractory mechanism. Figure 5.6 explicitly shows the

full histograms of the Kullback-Leibler divergences for the intermediate weights group

(σ = 0.3). Systematic deviations due to the relative refractory mechanism are on the

same order as the effect of estimating from finite samples (as can be seen, e.g., from

a comparison with the absolute refractory model which has 0 systematic error). For

completeness, we mention that the divergences of the fully factorized distributions of 2

out of the 100 networks with DKL > 0.1 are not shown in the plot.

The theorems presented in this article assumed renewed (i.e., non-additive), rectan-

gular PSPs. In the following we examine the effect of additive PSPs with more realistic

time courses. We define additive, alpha-shaped PSPs in the following way. The influ-

ence ∆uki of each presynaptic neuron νi on the postsynaptic membrane potential uk is
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Figure 5.7: Sampling from a Boltzmann distribution with more realistic PSP

shapes. (A) The upper panel shows the shape of a single PSP elicited at time t = 0. The

lower panel shows the time course of the refractory function g(ζk(t)) caused by a single

spike of neuron νk at t = 0. The grey-shaded area of length τ · dt = 20ms indicates

the interval of neuron νk being active (i.e., zk = 1) due to a single spike of neuron νk at

time t = 0. (B) Shown is the probability distribution of 5 out of 40 neurons. The plot

is similar to Figure 5.3C, however it is generated with a sampling network that features

alpha-shaped, additive PSPs. It can be seen that the network still produces a reasonable

approximation to the true Boltzmann distribution (determined by Gibbs sampling).

modeled by convolving the input spikes with a kernel κ:

∆uki(t) = Wki ·
∑
f

κ(t− tfi ) (5.22)

where κ(s) = λ · (e−s/τ+−e−s/τ−) for s ≥ 0 and κ(s) = 0 for s < 0, and tfi for f ∈ N are

the spike times of the presynaptic neuron νi. The time constant governing the rising

edge of the PSPs was set to τ− = 3 ms. The time constant controlling the falling edge

was chosen equal to the duration of rectangular PSPs, τ+ = τ · dt = 20 ms. The scaling

parameter λ was set such that the time integral over a single PSP matches the time

integral over the theoretically optimal rectangular PSP, i.e., λ = τ ·dt/(τ+−τ−) = 20/17.

These parameters display a simple and reasonable choice for the purpose of this study

(an optimization of λ, τ+ and τ− is likely to yield an improved approximation quality).

Figure 5.7A shows the resulting shape of the non-rectangular PSP. Furthermore the

time course of the function g(ζk(t)) caused by a single spike of neuron νk is shown in

order to illustrate that the time constants of g and of a PSP are closely related due to

the assumption τ+ = τ · dt made above. Preliminary and non-exhaustive simulations

seem to suggest that the choice τ+ = τ · dt yields better approximation quality than

setting τ+ � τ · dt or τ+ � τ · dt; however it is very well possible that a mismatch
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between τ+ and τ · dt can be compensated for by adapting other parameters, e.g., the

PSP magnitude or a specific choice of the refractory function g. Figure 5.7B shows the

results of an experiment, similar to the one presented in Figure 5.3C, with additive,

alpha-shaped PSPs and relative refractory mechanism. While differences to Gibbs

sampling results are visible, the spiking network still captures dependencies between

the binary random variables quite well.

For a quantitative analysis of the approximation quality, we repeated the experiment

of Figure 5.6 with additive, alpha-shaped PSPs (shown as green bars). The Kullback-

Leibler divergence DKL(p||q∗) to the true distribution is clearly higher compared to

the case of renewed, rectangular PSPs. Still networks with this more realistic synapse

model account for dependencies between the random variables z and yield a better

approximation of p(z) than fully factorized distributions.

5.6 Tables
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Table 5.1: List of parameters of the computer simulations

Description Variable Value Figure Comment

Simulation Time

Simulation step size dt 1 ms 2-7 interpretation of an MCMC step

Burn-in time tburn 1 s 2-7 before recording spikes

Simulation time tsim 0.5 s 2

104 s 3,5-7

20 s 4 104 s for Figure 5.4C

Network

Number of neurons K 3 2 unconnected

40 3,5,6 randomly connected

217 4

10 7 100 networks

Connection radius 0 2

∞ 3,5-7

8 4

Recurrent weights Wki N(0, 0.32) 3,5-7 from Gaussian distribution

Falling edge τ+ 20 ms 6,7 for realistic PSP shapes

Rising edge τ− 3 ms 6,7

Scaling factor λ 20/17 6,7

Neuron Model

Number recovery steps τ 20 2-7 PSP duration = τ · dt = 20 ms

Refractory function g(ζ)
[
4(1− ζ) + 1

2π sin(8πζ)
]

2↑ normalized to ζ ∈ [0, 1],[
1− ζ + 1

2π sin(2πζ)
]

2-7 [x] := min{1,max{0, x}}[
1− 2ζ + 1

2π sin(4πζ)
]

2↓,7
Excitability bk −1 or 2 2 defines membrane potential uk

N(−1.5, 0.52) 3,5-7 from Gaussian distribution

0 4 initial value

Tuning Function, Training and Inference (Figure 4)

Peakedness κ 3 4 measured: 1.78± 0.15

Base sensitivity v0 0.05 4 measured: 0.017± 0.009

Sensitivity contrast C 0.9 4 measured: 0.760± 0.020

Training samples Ntrain 105 4

Decorrelation steps 20 4 for contrastive divergence

Learning rate η 10−4 4

Number of neurons clamped on/off 4/4 4
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Table 5.2: Approximation quality of networks with different refractory mech-

anisms

σ Absolute refract. Rel. late recovery Rel. moderate rec. Prod. of marginals

0.03 (3.10± 0.18) · 10−4 (3.21± 0.15) · 10−4 (3.33± 0.17) · 10−4 (4.65± 1.28) · 10−4

0.3 (2.98± 0.19) · 10−4 (3.20± 0.15) · 10−4 (3.58± 0.3) · 10−4 (4.94± 1.91) · 10−2

3.0 (1.32± 0.45) · 10−4 (4.20± 8.70) · 10−3 (1.00± 1.82) · 10−2 (5.36± 6.71) · 10−1

Mean and standard deviation of the Kullback-Leibler divergence DKL(p||q∗) between reference

Boltzmann distributions p and neural sampling approximations q∗ for three different neuron

models (corresponding to columns) and three different values for the reference distribution

hyperparameter σ (corresponding to rows). The parameter σ controls the standard deviation

of the weights of the reference distributions p(z). In case of very strong synaptic interactions

(leading to sharply peaked distributions, σ = 3) the approximation quality of the spiking

network degrades, if the neurons feature a relative refractory mechanism. The data was

computed from 100 randomly generated Boltzmann distributions and their neural

approximations for each value of σ.
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6

Homeostatic plasticity in

Bayesian spiking networks as

Expectation Maximization with

posterior constraints

Recent spiking network models of Bayesian inference and unsupervised

learning frequently assume either inputs to arrive in a special format or

employ complex computations in neuronal activation functions and synap-

tic plasticity rules. Here we show in a rigorous mathematical treatment

how homeostatic processes, which have previously received little attention

in this context, can overcome common theoretical limitations and facili-

tate the neural implementation and performance of existing models. In

particular, we show that homeostatic plasticity can be understood as the

enforcement of a ’balancing’ posterior constraint during probabilistic infer-

ence and learning with Expectation Maximization. We link homeostatic

dynamics to the theory of variational inference, and show that nontrivial

terms, which typically appear during probabilistic inference in a large class

of models, drop out. We demonstrate the feasibility of our approach in a

spiking Winner-Take-All architecture of Bayesian inference and learning.

Finally, we sketch how the mathematical framework can be extended to

richer recurrent network architectures. Altogether, our theory provides a
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novel perspective on the interplay of homeostatic processes and synaptic

plasticity in cortical microcircuits, and points to an essential role of home-

ostasis during inference and learning in spiking networks.

6.1 Introduction

Experimental findings from neuro- and cognitive sciences have led to the hypothesis

that humans create and maintain an internal model of their environment in neuronal

circuitry of the brain during learning and development [16, 62, 127, 169], and em-

ploy this model for Bayesian inference in everyday cognition [6, 87]. Yet, how these

computations are carried out in the brain remains largely unknown. A number of inno-

vative models has been proposed recently which demonstrate that in principle, spiking

networks can carry out quite complex probabilistic inference tasks [27, 45, 172, 211],

and even learn to adapt to their inputs near optimally through various forms of plas-

ticity [25, 46, 116, 159, 186]. Still, in network models for concurrent online inference

and learning, most approaches introduce distinct assumptions: Both [159] in a spiking

Winner-take-all (WTA) network, and [116] in a rate based WTA network, identified

the limitation that inputs must be normalized before being presented to the network,

in order to circumvent an otherwise nontrivial (and arguably non-local) dependency

of the intrinsic excitability on all afferent synapses of a neuron. Nessler et al. [159]

relied on population coded input spike trains; Keck et al. [116] proposed feed-forward

inhibition as a possible neural mechanism to achieve this normalization. A theoretically

related issue has been encountered by Deneve [45, 46], in which inference and learning

is realized in a two-state Hidden Markov Model by a single spiking neuron. Although

synaptic learning rules are found to be locally computable, the learning update for

intrinsic excitabilities remains intricate. In a different approach, Brea et al. [25] have

recently proposed a promising model for Bayes optimal sequence learning in spiking

networks in which a global reward signal, which is computed from the network state

and synaptic weights, modulates otherwise purely local learning rules. Also the recent

innovative model for variational learning in recurrent spiking networks by Rezende

et al. [186] relies on sophisticated updates of variational parameters that complement

otherwise local learning rules.
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There exists great interest in developing Bayesian spiking models which require

minimal non-standard neural mechanisms or additional assumptions on the input dis-

tribution: such models are expected to foster the analysis of biological circuits from

a Bayesian perspective [219], and to provide a versatile computational framework for

novel neuromorphic hardware [201]. With these goals in mind, we introduce here a

novel theoretical perspective on homeostatic plasticity in Bayesian spiking networks

that complements previous approaches by constraining statistical properties of the net-

work response rather than the input distribution. In particular we introduce ’balancing’

posterior constraints which can be implemented in a purely local manner by the spik-

ing network through a simple rule that is strongly reminiscent of homeostatic intrinsic

plasticity in cortex [48, 231]. Importantly, it turns out that the emerging network dy-

namics eliminate a particular class of nontrivial computations that frequently arise in

Bayesian spiking networks.

First we develop the mathematical framework for Expectation Maximization (EM)

with homeostatic posterior constraints in an instructive Winner-Take-all network model

of probabilistic inference and unsupervised learning. Building upon the theoretical

results of [83], we establish a rigorous link between homeostatic intrinsic plasticity and

variational inference. In a second step, we sketch how the framework can be extended

to recurrent spiking networks; by introducing posterior constraints on the correlation

structure, we recover local plasticity rules for recurrent synaptic weights.

6.2 Homeostatic plasticity in WTA circuits as EM with

posterior constraints

We first introduce, as an illustrative and representative example, a generative mixture

model p(z,y|V ) with hidden causes z and binary observed variables y, and a spiking

WTA network N which receives inputs y(t) via synaptic weights V . As shown in

[159], such a network N can implement probabilistic inference p(z|y,V ) through its

spiking dynamics, and maximum likelihood learning through local synaptic learning

rules (see Figure 1A). The mixture model comprises K binary and mutually exclusive

components zk ∈ {0, 1},
∑K

k=1 zk = 1, each specialized on a different N -dimensional
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input pattern:

p(y, z|V ) =

K∏
k=1

eb̂kzk
N∏
i=1

[
(πki)

yi · (1− πki)1−yi
]zk (6.1)

⇔ log p(y, z|V ) =
∑
k

zk

(∑
i

Vkiyi −Ak + b̂k

)
, (6.2)

with
∑
k

eb̂k = 1 and πki = σ(Vki) and Ak =
∑
i

log(1 + eVki) , (6.3)

where σ(x) = (1 + exp(−x))−1 denotes the logistic function, and πki the expected

activation of input i under the mixture component k. For simplicity and notational

convenience, we will treat the prior parameters b̂k as constants throughout the paper.

Probabilistic inference of hidden causes zk based on an observed input y can be imple-

mented by a spiking WTA network N of K neurons which fire with the instantaneous

spiking probability (for δt→ 0),

p(zk spikes in [t, t+ δt]) = δt · rnet ·
euk(t)∑
j e

uj(t)
∝ p(zk = 1|y,V ) , (6.4)

with the input potential uk(t) =
∑

i Vkiyi(t) − Ak + b̂k. Each WTA neuron k receives

spiking inputs yi via synaptic weights Vki and responds with an instantaneous spiking

probability which depends exponentially on its input potential uk in accordance with

biological findings [113]. Stochastic winner-take-all (soft-max) competition between the

neurons is modeled via divisive normalization (6.4) [206]. The input is defined as yi(t) =

1 if input neuron i emitted a spike within the last τ milliseconds, and 0 otherwise,

corresponding to a rectangular post-synaptic potential (PSP) of length τ . We define

zk(t) = 1 at spike times t of neuron k and zk(t) = 0 otherwise.

In addition to the spiking input, each neuron’s potential uk features an intrinsic ex-

citability −Ak + b̂k. Note that, besides the prior constant b̂k, this excitability depends

on the normalizing term Ak, and hence on all afferent synaptic weights through (6.3):

WTA neurons which encode strong patterns with high probabilities πki require lower

intrinsic excitabilities, while neurons with weak patterns require larger excitabilities.

In the presence of synaptic plasticity, i.e., time-varying Vki, it is unclear how biolog-

ically realistic neurons could communicate ongoing changes in synaptic weights from

distal synaptic sites to the soma. This critical issue was apparently identified in [159]

and [116]; both papers circumvent the problem (in similar probabilistic models) by
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Figure 6.1: A. Spiking WTA network model. B. Input templates from MNIST database

(digits 0 -5 ) are presented in random order to the network as spike trains (the input tem-

plate switches after every 250ms, black/white pixels are translated to high/low firing rates

between 20 and 90 Hz). C. Sketch of intrinsic homeostatic plasticity maintaining a certain

target average activation. D. Homeostatic plasticity induces average firing rates (blue)

close to target values (red). E. After a learning period, each WTA neuron has specialized

on a particular input motif. F. WTA output spikes during a test phase before and after

learning. Learning leads to a sparse output code.

constraining the input y (and also the synaptic weights in [116]) in order to maintain

constant and uniform values Ak across all WTA neurons.

Here, we propose a different approach to cope with the nontrivial computations Ak

during inference and learning in the network. Instead of assuming that the inputs y

meet a normalization constraint, we constrain the network response during inference, by

applying homeostatic dynamics to the intrinsic excitabilities. This approach turns out

to be beneficial in the presence of time-varying synaptic weights, i.e., during ongoing

changes of Vki and Ak. The resulting interplay of intrinsic and synaptic plasticity can

be best understood from the standard EM lower bound [22],

F (V , q(z|y)) = L(V )− 〈KL (q(z|y) || p(z|y,V ) 〉p∗(y) → E-step , (6.5)

= 〈 log p(y, z|V ) 〉p∗(y)q(z|y) + 〈H(q(z|y)) 〉p∗(y) → M-step , (6.6)

where L(V ) = 〈log p(y|V )〉p∗(y) denotes the log-likelihood of the input under the model,
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KL (· || ·) the Kullback-Leibler divergence, and H(·) the entropy. The decomposition

holds for arbitrary distributions q. In hitherto proposed neural implementations of EM

[46, 116, 159, 198], the network implements the current posterior distribution in the

E-step, i.e., q = p and KL (q || p) = 0. In contrast, by applying homeostatic plasticity,

the network response will be constrained to implement a variational posterior from a

class of “homeostatic” distributions Q: the long-term average activation of each WTA

neuron zk is constrained to an a priori defined target value. Notably, we will see that the

resulting network response q∗ describes an optimal variational E-Step in the sense that

q∗(z|y) = arg minq∈Q KL (q(z|y) || p(z|y,V )). Importantly, homeostatic plasticity fully

regulates the intrinsic excitabilities, and as a side effect eliminates the non-local terms

Ak in the E-step, while synaptic plasticity of the weights Vki optimizes the underlying

probabilistic model p(y, z|V ) in the M-step.

In summary, the network response implements q∗ as the variational E-step, the

M-Step can be performed via gradient ascent on (6.6) with respect to Vki. As derived

in section 6.2.1, this gives rise to the following temporal dynamics and plasticity rules

in the spiking network, which instantiate a stochastic version of the variational EM

scheme:

uk(t) =
∑
i

Vkiyi(t) + bk , ḃk(t) = ηb · (rnet ·mk − δ(zk(t)− 1)) , (6.7)

V̇ki(t) = ηV · δ(zk(t)− 1) · (yj(t)− σ(Vki)) , (6.8)

where δ(·) denotes the Dirac delta function, and ηb, ηV are learning rates (which were

kept time-invariant in the simulations with ηb = 10 · ηV ). Note that (6.8) is a spike-

timing dependent plasticity rule (cf. [159]) and is non-zero only at post-synaptic spike

times t, for which zk(t) = 1. The effect of the homeostatic intrinsic plasticity rule (6.7)

is illustrated in Figure 6.1C: it aims to keep the long-term average activation of each

WTA neuron k close to a certain target value mk. More precisely, if rk is a neuron’s

long-term average firing rate, then homeostatic plasticity will ensure that rk/rnet ≈ mk.

The target activations mk ∈ (0, 1) can be chosen freely with the obvious constraint that∑
kmk = 1. Note that (6.7) is strongly reminiscent of homeostatic intrinsic plasticity

in cortex [48, 231].

We have implemented these dynamics in a computer simulation of a WTA spik-

ing network N. Inputs y(t) were defined by translating handwritten digits 0 -5 (Fig-

ure 6.1B) from the MNIST dataset [135] into input spike trains. Figure 6.1D shows
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that, at the end of a 104s learning period, homeostatic plasticity has indeed achieved

that rk ≈ rnet ·mk. Figure 6.1E illustrates the patterns learned by each WTA neuron

after this period (shown are the πki). Apparently, the WTA neurons have specialized on

patterns of different intensity which correspond to different values of Ak. Figure 6.1F

shows the output spiking behavior of the circuit before and after learning in response to

a set of test patterns. The specialization to different patterns has led to a distinct sparse

output code, in which any particular test pattern evokes output spikes from only one

or two WTA neurons. Note that homeostasis forces all WTA neurons to participate in

the competition, and thus prevents neurons from becoming underactive if their synap-

tic weights decrease, and from becoming overactive if their synaptic weights increase,

much like the original Ak terms (which are nontrivial to compute for the network).

Indeed, the learned synaptic parameters and the resulting output behavior corresponds

to what would be expected from an optimal learning algorithm for the mixture model

(6.1)-(6.3).1

6.2.1 Theory for the WTA model

In the following, we develop the three theoretical key results for the WTA model (6.1)-

(6.3):

• Homeostatic intrinsic plasticity finds the network response distribution q∗(z|y) ∈
Q closest to the posterior distribution p(z|y,V ), from a set of “homeostatic”

distributions Q.

• The interplay of homeostatic and synaptic plasticity can be understood from the

perspective of variational EM.

• The critical non-local terms Ak defined by (6.3) drop out of the network dynamics.

E-step: variational inference with homeostasis

The variational distribution q(z|y) we consider for the model (6.1)-(6.3) is a 2N · K
dimensional object. Since q describes a conditional probability distribution, it is non-

1 Without adaptation of intrinsic excitabilities, the network would start performing erroneous

inference, learning would reinforce this erroneous behavior, and performance would quickly break down.

We have verified this in simulations for the present WTA model: Consistently across trials, a small

subset of WTA neurons became dominantly active while most neurons remained silent.
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negative and normalized for all y. In addition, we constrain q to be a “homeostatic”

distribution q ∈ Q such that the average activation of each hidden variable (neuron) zk

equals an a-priori specified mean activation mk under the input statistics p∗(y). This

is sketched in Figure 6.2. Formally we define the constraint set,

Q = {q : 〈zk〉p∗(y)q(z|y) = mk, for all k = 1 . . .K} , with
∑
k

mk = 1 . (6.9)

The constrained maximization problem q∗(z|y) = arg maxq∈Q F (V , q(z|y)) can be

solved with the help of Lagrange multipliers (cf. [83]). We find that the q∗ which maxi-

mizes the objective function F during the E-step (and thus minimizes the KL-divergence

to the posterior p(z|y,V )) has the convenient form q∗(z|y) ∝ p(z|y,V ) ·exp(
∑

k β
∗
kzk)

with some β∗k. Hence, it suffices to consider distributions of the form,

qβ(z|y) ∝ exp(
∑
k

zk(
∑
i

Vkiyi + b̂k −Ak + βk︸ ︷︷ ︸
=:bk

)) , (6.10)

for the maximization problem. We identify βk as the variational parameters which

remain to be optimized. Note that any distribution of this form can be implemented

by the spiking network N if the intrinsic excitabilities are set to bk = −Ak + b̂k + βk.

The optimal variational distribution q∗(z|y) = qβ∗(z|y) then has β∗ = arg maxβ Ψ(β),

i.e. the variational parameter vector which maximizes the dual [83],

Ψ(β) =
∑
k

βkmk − 〈log
∑
z

p(z|y,V ) exp(
∑
k

βkzk)〉p∗(y) . (6.11)

Due to concavity of the dual, a unique global maximizer β∗ exists, and thus also the

corresponding optimal intrinsic excitabilities b∗k = −Ak + b̂k + β∗k are unique. Hence,

the posterior constraint q ∈ Q can be illustrated as in Figure 6.2B: For each synap-

tic weight configuration V there exists, under a particular input distribution p∗(y), a

unique configuration of intrinsic excitabilities b such that the resulting network out-

put fulfills the homeostatic constraints. The theoretical relation between the intrinsic

excitabilities bk, the original nontrivial term −Ak and the variational parameters βk

is sketched in Figure 6.2C. Importantly, while bk is implemented in the network, Ak,

βk and b̂k are not explicitly represented in the implementation anymore. Finding the

optimal b in the dual perspective, i.e. those intrinsic excitabilities which fulfill the
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6.2 Homeostatic plasticity in WTA circuits as EM with posterior
constraints

Figure 6.2: A. Homeostatic posterior constraints in the WTA model: Under the varia-

tional distribution q, the average activation of each variable zk must equal mk. B. For each

set of synaptic weights V there exists a unique assignment of intrinsic excitabilities b, such

that the constraints are fulfilled. C. Theoretical decomposition of the intrinsic excitability

bk into −Ak, b̂k and βk. D. During variational EM the bk predominantly “track” the dy-

namically changing non-local terms −Ak (relative comparison between two WTA neurons

from Figure 6.1).

homeostatic constraints, amounts to gradient ascent ∂βΨ(β) on the dual, which leads

to the following homeostatic learning rule for the intrinsic excitabilities,

∆bk ∝ ∂βkΨ(β) = mk − 〈zk〉p∗(y)q(z|y) . (6.12)

Note that the intrinsic homeostatic plasticity rule (6.7) in the network corresponds

to a sample-based stochastic version of this theoretically derived adaptation mechanism

(6.12). Hence, given enough time, homeostatic plasticity will automatically install near-

optimal intrinsic excitabilities b ≈ b∗ and implement the correct variational distribution

q∗ up to stochastic fluctuations in b due to the non-zero learning rate ηb. The non-

local terms Ak have entirely dropped out of the network dynamics, since the intrinsic

excitabilities bk can be arbitrarily initialized, and are then fully regulated by the local

homeostatic rule, which does not require knowledge of Ak.

As a side remark, note that although the variational parameters βk are not explicitly

present in the implementation, they can be theoretically recovered from the network at

any point, via βk = bk +Ak − b̂k. Notably, in all our simulations we have consistently

found small absolute values of βk, corresponding to a small KL-divergence between q∗

and p.1 Hence, a major effect of the local homeostatic plasticity rule during learning

1This is assuming for simplicity uniform prior parameters b̂k. Note that a small KL-divergence is

in fact often observed during variational EM since F , which contains the negative KL-divergence, is

being maximized.
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6. HOMEOSTASIS AS POSTERIOR CONTRAINTS

is to dynamically track and effectively implement the non-local terms −Ak. This is

shown in Figure 6.2D, in which the relative excitabilities of two WTA neurons bk − bj
are plotted against the corresponding non-local Ak −Aj over the course of learning in

the first simulation (Figure 6.1).

M-step: interplay of synaptic and homeostatic intrinsic plasticity

During the M-step, we aim to increase the EM lower bound F in (6.6) w.r.t. the synaptic

parameters V . Gradient ascent yields,

∂VkiF (V , q(z|y)) = 〈∂Vki log p(y, z|V )〉p∗(y)q(z|y) (6.13)

= 〈 zk · (yj − σ(Vki)) 〉p∗(y)q(z|y) , (6.14)

where q is the variational distribution determined during the E-step, i.e., we can set

q = q∗. Note the formal correspondence of (6.14) with the network synaptic learning

rule (6.8). Indeed, if the network activity implements q∗, it can be shown easily that the

expected update of synaptic weights due to the synaptic plasticity (6.8) is proportional

to (6.14), and hence implements a stochastic version of the theoretical M-step (cf. [159]).

6.2.2 Dynamical properties of the Bayesian spiking network with home-

ostasis

To highlight a number of salient dynamical properties emerging from homeostatic plas-

ticity in the considered WTA model, Figure 6.3 shows a simulation of the same network

N with homeostatic dynamics as in Figure 6.1, only with different input statistics pre-

sented to the network, and uniform mk = 1
K . During the first 5000s, different writings

of 0’ s and 3’ s from the MNIST dataset were presented, with 0’ s occurring twice as

often as 3’ s. Then the input distribution p∗(y) abruptly switched to include also 4’ s,

with each digit occurring equally often. The following observations can be made: Due

to the homeostatic constraint, each neuron responds on average to mk · T out of T

presented inputs. As a consequence, the number of neurons which specialize on a par-

ticular digit is directly proportional to the frequency of occurrence of that digit, i.e.

8:4 and 4:4:4 after the first and second learning period, respectively (Figure 6.3B).

In general, if uniform target activations mk are chosen, output resources are allocated

precisely in proportion to input frequency. Figure 6.3C depicts the time course of the
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6.3 Homeostatic plasticity in recurrent spiking networks

Figure 6.3: A. Input templates from MNIST dataset (digits 0,3 at a ratio 2:1, and digits

0,3,4 at a ratio 1:1:1) used during the first and second learning period, respectively. B.

Learned patterns at the end of each learning period. C. Network performance converges in

the course of learning. F is a tight lower bound to L. D. Illustration of pattern learning and

re-learning dynamics in a 2-D projection in the input space. Each black dot corresponds

to the pattern πki of one WTA neuron k. Colored dots are input samples from the training

set (blue/green/red ↔ digits 0 /3 /4 ).

EM lower bound F as well as the average likelihood L (assuming uniform b̂k) under the

model during a single simulation run, demonstrating both convergence and tightness of

the lower bound. As expected due to the stabilizing dynamics of homeostasis, we found

variability in performance among different trials to be small (not shown). Figure 6.3D

illustrates the dynamics of learning and re-learning of patterns πki in a 2D projection

of input patterns onto the first two principal components.

6.3 Homeostatic plasticity in recurrent spiking networks

The neural model so far was essentially a feed-forward network, in which every post-

synaptic spike can directly be interpreted as one sample of the instantaneous posterior

distribution [159]. The lateral inhibition served only to ensure the normalization of

the posterior. We will now extend the concept of homeostatic processes as posterior

constraints to the broader class of recurrent networks and sketch the utility of the

developed framework beyond the regulation of intrinsic excitabilities.
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6. HOMEOSTASIS AS POSTERIOR CONTRAINTS

Recently it was shown in [27, 172] that recurrent networks of stochastically spiking

neurons can in principle carry out probabilistic inference through a sampling process.

At every point in time, the joint network state z(t) represents one sample of a posterior.

However, [27] and [172] did not consider unsupervised learning on spiking input streams.

For the following considerations, we divide the definition of the probabilistic model

in two parts. First, we define a Boltzmann distribution,

p(z) = exp(
∑
k

b̂kzk +
1

2

∑
j 6=k

Ŵkjzkzj)/norm. , (6.15)

with Ŵkj = Ŵjk as “prior” for the hidden variables z which will be represented by a

recurrently connected network of K spiking neurons. For the purpose of this section,

we treat b̂k and Ŵkj as constants. Secondly, we define a conditional distribution in the

exponential-family form [22],

p(y|z,V ) = exp(f0(y) +
∑
k,i

Vkizkfi(y)−A(z,V )) , (6.16)

that specifies the likelihood of observable inputs y, given a certain network state z.

This defines the generative model p(y, z|V ) = p(z) p(y|z,V ).

We map this probabilistic model to the spiking network and define that for every k

and every point in time t the variable zk(t) has the value 1, if the corresponding neuron

has fired within the time window (t − τ, t]. In accordance with the neural sampling

theory, in order for a spiking network to sample from the correct posterior p(z|y,V ) ∝
p(z) p(y|z,V ) given the input y, each neuron must compute in its membrane potential

the log-odd [27],

uk = log
p(zk = 1|z\k,V )

p(zk = 0|z\k,V )
=
∑
i

Vkifi(y)︸ ︷︷ ︸
feedforward drive

−Ak(V ) + b̂k︸ ︷︷ ︸
intr. excitability

+
∑
j 6=k

(−Akj(V ) + Ŵkj︸ ︷︷ ︸
recurrent weight

)zj − . . .

(6.17)

where z\k = (z1, . . . , zk−1, zk+1, . . . zK)T. The Ak, Akj , . . . are given by the decomposi-

tion of A(z,V ) along the binary combinations of z as,

A(z,V ) = A0(V ) +
∑
k

zkAk(V ) +
1

2

∑
j 6=k

zkzjAkj(V ) + . . . (6.18)
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6.3 Homeostatic plasticity in recurrent spiking networks

Note, that we do not aim at this point to give learning rules for the prior parameters

b̂k and Ŵkj . Instead we proceed as in the last section and specify a-priori desired

properties of the average network response under the input distribution p∗(y),

ckj = 〈zkzj〉p∗(y)q(z|y) and mk = 〈zk〉p∗(y)q(z|y) . (6.19)

Let us explore some illustrative configurations for mk and ckj . One obvious choice is

closely related to the goal of maximizing the entropy of the output code by fixing 〈zk〉
to 1

K and 〈zkzj〉 to 〈zk〉〈zj〉 = 1
K2 , thus enforcing second order correlations to be zero.

Another intuitive choice would be to set all 〈zkzj〉 very close to zero, which excludes that

two neurons can be active simultaneously and thus recovers the function of a WTA. It is

further conceivable to assign positive correlation targets to groups of neurons, thereby

creating populations with redundant codes. Finally, with a topographical organization

of neurons in mind, all three basic ideas sketched above might be combined: one could

assign positive correlations to neighboring neurons in order to create local cooperative

populations, mutual exclusion at intermediate distance, and zero correlation targets

between distant neurons.

With this in mind, we can formulate the goal of learning for the network in the

context of EM with posterior constraints: we constrain the E-step such that the average

posterior fulfills the chosen targets, and adapt the forward weights V in the M-step

according to (6.6). Analogous to the first-order case, the variational solution of the

E-step under these constraints takes the form,

qβ,ω(z|y) ∝ p(z|y,V ) · exp

∑
k

βkzk +
1

2

∑
j 6=k

ωkjzkzj

 , (6.20)

with symmetric ωkl = ωlk as variational parameters. A neural sampling network N

with input weights Vki will sample from qβ,ω if the intrinsic excitabilities are set to

bk = −Ak + b̂k + βk, and the symmetric recurrent synaptic weights to Wkj = −Akj +

Ŵkj +ωkj . The variational parameters β,ω (and hence also b,W ) which optimize the

dual problem Ψ(b,ω) are uniquely defined and can be found iteratively via gradient

ascent. Analogous to the last section, this yields the intrinsic plasticity rule (6.12) for

bk. In addition, we obtain for the recurrent synapses Wkj ,

∆Wkj ∝ ckj − 〈zkzj〉p∗(y)q(z|y) , (6.21)

215



6. HOMEOSTASIS AS POSTERIOR CONTRAINTS

which translates to an anti-Hebbian spike-timing dependent plasticity rule in the net-

work implementation.

For any concrete instantiation of f0(y), fi(y) and A(z,V ) in (6.16) it is possible to

derive learning rules for Vki for the M-step via ∂VkiF (V , q). Of course not all models

entail local synaptic learning rules. In particular it might be necessary to assume

conditional independence of the inputs y given the network state z, i.e., p(y|z,V ) =∏
i p(yi|z,V ). Furthermore, in order to fulfill the neural computability condition (6.17)

for neural sampling [27] with a recurrent network of point neurons, it might be necessary

to choose A(z,V ) such that terms of order higher than 2 vanish in the decomposition.

This can be shown to hold, for example, in a model with conditionally independent

Gaussian distributed inputs yi. It is ongoing work to find further biologically realistic

network models in the sense of this theory and to assess their computational capabilities

through computer experiments.

6.4 Discussion

Complex and non-local computations, which appear during probabilistic inference and

learning, arguably constitute one of the cardinal challenges in the development of bio-

logically realistic Bayesian spiking network models. In this paper we have introduced

homeostatic plasticity, which to the best of our knowledge had not been considered

before in the context of EM in spiking networks, as a theoretically grounded approach

to stabilize and facilitate learning in a large class of network models. Our theory com-

plements previously proposed neural mechanisms and provides, in particular, a simple

and biologically realistic alternative to the assumptions on the input distribution made

in [159] and [116]. Indeed, our results challenge the hypothesis of [116] that feedforward

inhibition is critical for correctly learning the structure of the data with biologically

plausible plasticity rules. More generally, it turns out that the enforcement of a bal-

ancing posterior constraint often simplifies inference in recurrent spiking networks by

eliminating nontrivial computations. Our results suggest a crucial role of homeostatic

plasticity in the Bayesian brain: to constrain activity patterns in cortex to assist the

autonomous optimization of an internal model of the environment.
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