
Mag.rer.nat. Oliver EBNER

Stochastic aspects of re�nement

schemes on metric spaces

DISSERTATION

zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften

Doktoratsstudium der Naturwissenschaften im Rahmen der

Doktoratsschule "Mathematik und Wissenschaftliches

Rechnen"

Graz University of Technology

Technische Universität Graz

Betreuer:

Univ.-Prof. Dipl.-Ing. Mag.rer.nat. Dr.techn. Johannes

WALLNER

Institut für Geometrie

Graz, im Mai 2012



Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe.

Graz, am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift)

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitely marked all material

which has been quoted either literally or by content from the used sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(signature)



Danksagung

Ich bin vielen Menschen und der einen oder anderen Institution Dank schuldig, die

zur Entstehung dieser Dissertation beigetragen haben. Zunächst möchte ich meinem

Betreuer Johannes Wallner für die Bereitstellung eines fruchtbaren Themas und seine

O�enheit für die fachliche Diskussion danken. Karl-Theodor Sturm danke ich für

die Gastfreundschaft während meiner Aufenthalte in Regen und Bonn und manch

nützliche Anregung. Für ihre wertvollen Bemerkungen bedanke ich mich bei meinen

Zweitgutachtern Philipp Grohs und Kurt Jetter. Auch Wolfgang Woess, von dessen

Vorlesungen an der TU Graz ich stark pro�tiert habe, bin ich für sein reges Interesse

an meiner Arbeit Dank schuldig.

Diese Arbeit wurde im Rahmen des Doktoratskollegs "Diskrete Mathematik" (Pro-

jekt W1230 des österreichischen Fonds zur Förderung wissenschaftlicher Forschung

FWF) verfasst, welches zusätzlich zu �nanzieller Unterstützung ein extrem reich-

haltiges wissenschaftliches Umfeld zur Verfügung stellte. Weiters möchte ich dankend

die Unterstützung durch das FWF-Projekt P19870 erwähnen.

Für die angenehme menschliche und professionelle Atmosphäre am Arbeitsplatz

bedanke ich mich bei meinen Kollegen vom Institut für Geometrie. Insbesondere

Andreas Weinmann verdanke ich die eine oder andere sehr produktive Unterhaltung.

Abschlieÿend gilt mein ganz besonderer Dank meiner Familie, insbesondere meinen

Eltern und Aywana, für ihre fortwährende Unterstützung. Diese Arbeit ist ihnen

gewidmet.

I



Contents

1 Introduction 1

2 Probability and Stochastics on metric spaces 6

2.1 Hadamard spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Measuring length in metric spaces . . . . . . . . . . . . . . . . . 6

2.1.2 Arc length parametrizations . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Midpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 The Hadamard property . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Probability measures on Hadamard spaces . . . . . . . . . . . . . . . . 16

2.3 Nonlinear conditional expectations . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Jensen's inequality . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 The laws of large numbers . . . . . . . . . . . . . . . . . . . . . 27

3 Markov chains 30

3.1 The Kolmogorov Existence Theorem . . . . . . . . . . . . . . . . . . . 30

3.2 Markov chains and Markov semigroups . . . . . . . . . . . . . . . . . . 33

4 Re�nement schemes on metric spaces 35

4.1 Re�nement schemes as Markov semigroups . . . . . . . . . . . . . . . . 35

4.2 The convergence problem . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 A primer on linear subdivision schemes . . . . . . . . . . . . . . 37

4.2.2 The impact of nonlinearity . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Proximity and Contractivity . . . . . . . . . . . . . . . . . . . . 43

4.2.4 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.5 A characterization of convergence . . . . . . . . . . . . . . . . . 51

4.2.6 Approximation power of barycentric subdivision schemes . . . . 52

4.3 A note on di�usion tensor subdivision . . . . . . . . . . . . . . . . . . . 53

4.4 Lp-convergence of the characteristic Markov chain . . . . . . . . . . . . 56

II



Stochastic aspects of re�nement schemes on metric spaces 1

1 Introduction

The convergence and smoothness analysis of re�nement schemes processing data from

manifolds and more generally metric spaces has been a subject of intense research

over the last few years, see for example [22, 11, 27, 25]. As to convergence, complete

spaces of nonpositive curvature, also known as Hadamard or global NPC spaces, have

proven most accessible in terms of generalizing well-known facts from the linear theory

to the nonlinear setting. An example of such a structure prominent in applications

is the space of positive de�nite symmetric matrices, which represent measurements in

di�usion tensor imaging.

While the question whether the smoothness properties of the linear model scheme

prevail when passing to the nonlinear setting was successfully addressed in [12], the

corresponding convergence problem remained unsolved. One aim of the present thesis

is to �ll this gap in the theory by presenting the author's recent results from [9, 8],

augmented by yet unpublished material.

Relying on a martingale theory for discrete-time stochastic processes with values

in negatively curved spaces developed in [19], we observe that the re�nement processes

in question actually act on bounded input data as nonlinear Markov semigroups. This

fact substantially facilitates their convergence analysis.

Let us specify the general setup. Given a metric space (X, d), a re�nement scheme

is a map S : `∞(Zs, X) → `∞(Zs, X). We call S convergent if for all x ∈ `∞(Zs, X)

there exists a continuous function S∞x : Rs → X such that

d∞(S∞x(·/2n), Snx) = sup
j
d(S∞x(j/2n), Snxj)→ 0 as n→∞. (1)

Visualizing Snx as a function on the re�ned grid 2−nZs, convergence to S∞x is tanta-

mount to d∞(Snx, f |2−nZs)→ 0.

Throughout the present work we are mostly concerned with so-called barycentric

re�nement schemes associated to nonnegative real-valued s-variate sequences (ai)i∈Zs

of �nite support, henceforth referred to as masks, which we require to ful�ll the basic

sum rule ∑
j∈Zs

ai−2j = 1 for i ∈ Zs. (2)

Barycentric re�nement schemes act on data x ∈ `∞(Zs, X) from a complete metric
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space of nonpositive curvature in the sense of A. D. Alexandrov according to the

following rule:

Sxi = argmin

(∑
j∈Zs

ai−2jd
2(xj, · )

)
. (3)

Much is known about the convergence of these type of re�nement algorithms in the case

X = R. On complete, simply connected manifolds of nonpositive sectional curvature

convergence analysis was initiated in the article [23]. The author in [9] recently proved

general convergence statements for arbitrary Hadamard spaces using the principle of

contractivity : A scheme is called contractive with respect to some nonnegative function

D : `∞(Zs, X)→ R+ if and only if there is γ < 1 such that

D(Sx) < γD(x), for all x ∈ `∞(Zs, X).

The function D is referred to as a contractivity function for S. An important class

of contractivity functions is associated to balanced, convex and bounded subsets Ω of

Rs:

DΩ(x) = sup
ρ(i−j)<2

d(xi, xj), (4)

where ρ denotes the Minkowski functional of Ω. Contractivity functions of this type

are called admissible, cf. [9]. The following result is taken from loc. cit.:

Proposition 1.1. A barycentric re�nement scheme with nonnegative mask which is

contractive with respect to some admissible contractivity function also converges. This

implies convergence in case the support of the mask coincides with the set of lattice

points within a centered unimodular zonotope or a lattice quad with nonempty interior.

A major result of the present thesis, taken from the author's recent article [8], is

a substantial extension of this statement and describes a phenomenon which could be

referred to as linear equivalence:

Theorem 1.2. A barycentric re�nement scheme converges on arbitrary Hadamard

spaces if and only if it converges on the real line.

The proof of this fact, given in Section 4.2, relies on a stochastic interpretation

of the subdivision rule (3). More precisely, for each nonnegative mask a = (ai)i∈Zs

satisfying the basic sum rule (2) one �nds a so-called characteristic Markov chain Xa
n
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with state space Zs and transition matrix (ai−2j)i,j∈Zs in terms of which the iterates

of the re�nement algorithm acting on x ∈ `∞(Zs, X) may be written as

Snxi = E(x ◦Xa
n |||Xa

0 = i),

see Theorem 4.4. Here E( · |||X0) denotes the �ltered conditional expectation intro-

duced by K.-T. Sturm in [19]. Thus, as in the linear case,{
N0 → Lip1(`∞(Zs, X));

n 7→ Sn

may be considered a (nonlinear) Markov semigroup. Here Lip1(`∞(Zs, X)) refers to

the set of maps T : `∞(Zs, X)→ `∞(Zs, X) satisfying the Lipschitz condition

d∞(Tx, Ty) ≤ d∞(x, y) for x, y ∈ `∞(Zs, X). (5)

Combining Theorem 1.2 with other recent developments in the theory of linear subdivi-

sion schemes with nonnegative masks and their barycentric counterparts on nonlinear

objects, one comes up with a variety of remarkable results:

In the articles [28] and [29], X. Zhou establishes general theorems on the relation

of the mask's support with its convergence properties, which, utilizing Theorem 1.2

now generalize to the following:

Theorem 1.3. A barycentric subdivision scheme S : `∞(Zs, X) → `∞(Zs, X) with

nonnegative mask converges under each of the following circumstances:

(i) The support of (ai)i∈Zs coincides with the set of grid points inside a balanced

zonotope.

(ii) The grid dimension s = 1 and, if, after a possible index translation, (ai)i∈Z =

(. . . , 0, 0, a0, . . . , aN , 0, 0, . . . ), the integers within the support are relatively prime and

0 < a0, a1 < 1. This also constitutes a necessary condition for convergence.

Moreover, as far as �nite-dimensional Hadamard manifolds are concerned, the

smoothness question is settled by a combination of Theorem 1.2 and recent work

from [12]:

Theorem 1.4. On a smooth Hadamard manifold, a barycentric subdivision scheme

S : `∞(Zs, X) → `∞(Zs, X) with nonnegative mask converges and produces r-times

di�erentiable limit functions if and only if the same is true for the corresponding linear

scheme.
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The thesis is organized as follows: In Chapter 2 we give an account of founda-

tional facts on the geometry and probabilistic features of metric spaces, our main

references being [3, 19, 20]. Beginning with a discussion on geodesics and convexity,

we proceed by introducing the central geometrical object of interest: complete, simply

connected metric spaces of nonpositive curvature. These structures, introduced above

as Hadamard- or global NPC-spaces, are characterized by geodesic triangles being

`slim' when compared to Euclidean triangles of the same edge lengths. Intuitively,

this de�nition stems from the well-known fact that the defect in the angle sum of a

geodesic triangle on a surface can be represented in terms of the curvature. Actually,

in case the metric originates from a Riemannian structure on the underlying space,

`slimness' of triangles is tantamount to nonpositive sectional curvature. Hadamard

spaces are particularly convenient in their overall tendency to `contract' - for example,

the center of mass of any probability distribution lies in the convex hull of the support

of the distribution. The mere well-de�nedness of expectations and conditional expec-

tations for random variables with values in Hadamard spaces addressed in Section

2.3 is already a major bene�t. Above that, it turns out that nonpositive curvature

also allows for e�cient comparison of nonlinear and linear expectations in terms of a

Jensen inequality presented in Theorem 2.35. This estimate, well known in the linear

case, constitutes the pivotal feature allowing for convergence analysis of barycentric

subdivision schemes in Section 4.2.

Succeeding the discussion of the geometric and stochastic fundamentals, Chapter 3

develops the very basic facts on Markov chains in the linear setting, with [26] as a main

reference. As described above, the basic sum rule (2) allows for the interpretation of

(ai−2j)i,j∈Zs as a row stochastic matrix. Theorem 3.6 shows how, in general, such a

matrix gives rise to a time-discrete stochastic process inducing a Markov semigroup.

A nonlinear version of this fact is postponed to Section 4.2.

Finally, Chapter 4 discusses the author's recent progress in the convergence analy-

sis of barycentric re�nement rules on Hadamard spaces as described above, cf. [8, 9].

After a brief introduction into the portions of the linear theory essential to our studies,

it is made clear how the probabilistic and geometric concepts presented in Chapters 2

and 3 pave the way for the study of nonlinear subdivision. As mentioned above, the

central observation of this chapter consists in the interpretation of a barycentric scheme
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as the nonlinear Markov semigroup associated to the transition kernel induced by the

scheme's mask, see Theorem 4.4. Following the proof of Theorem 1.2, given in section

4.2, we generalize some well-known results concerning approximation order and char-

acterization of convergence from the linear theory to the Hadamard setting. Moreover,

it is shown how a strong law of large numbers leads to certain structure-preservation

properties of barycentric schemes on the space of di�usion tensors, see Corollary 4.27.

A concluding section addresses the relationship between the convergence properties of

a scheme and its so-called characteristic Markov chain.
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2 Probability and Stochastics on metric spaces

This chapter gives an outline of certain geometric and probabilistic properties of metric

spaces. The center of interest is occupied by spaces of nonnegative curvature in the

sense of Alexandrov. These structures have been intensely studied over the last and

present century, see [1, 2, 3], with some recent breakthroughs on their probabilistic

features, cf. [19, 20]. The material contained in this chapter is taken from the available

literature, in particular [3], [19] and [20].

2.1 Hadamard spaces

Curvature bounds for metric spaces not necessarily endowed with the structure of a

Riemannian manifold are formulated in terms of the comparison of geodesic triangles

within the metric space to triangles in a comparison space of constant curvature, that

is, spheres, Euclidean and hyperbolic spaces. Generally, geodesic curves are naturally

de�ned in an object admitting a distance measure. The following paragraphs focus on

the issue of existence and uniqueness of shortest paths.

2.1.1 Measuring length in metric spaces

Albeit the a priori absence of a sensible analogon of 'inscribed polygonal curve', the

following de�nition comes in the spirit of the Euclidean one:

De�nition 2.1. Suppose (X, d) is a metric space, and c : [a, b] → X is a continuous

curve. Then the arc length of c is de�ned as

`(c) := sup{
n−1∑
i=0

d(c(ti), c(ti+1)) | a ≤ t0 < · · · < tn ≤ b}.

A curve c is called recti�able if and only if it has �nite arc length.

Having a measure of arc length at hand paves the way for an obvious de�nition of

geodesic curves:

De�nition 2.2. Let (X, d) be a metric space. Then X is called a length space if and

only if distances in X are in�ma of arc lengths of recti�able curves in the sense that

whenever x0, x1 ∈ X,

d(x0, x1) = inf{`(c) | c ∈ C([0, 1], X), c(0) = x0, c(1) = x1}.
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Moreover, X is called geodesic if and only if for all x0, x1 ∈ X we have

d(x0, x1) = min{`(c) | c ∈ C([0, 1], X), c(0) = x0, c(1) = x1},

i.e., for any two points x0, x1 there exists a joining geodesic c satisfying `(c) = d(x0, x1).

Whenever two points in X are joined by a unique geodesic, X is referred to as strongly

geodesic.

The next lemma states the easy fact that geodesic curves remain geodesic on any

subinterval of their domain.

Lemma 2.3. Suppose (X, d) is geodesic. Choose x0, x1 ∈ X, and let c : [0, b]→ X be

a joining geodesic. Then for each 0 ≤ t ≤ b,

`(c|[0,t]) = d(c(0), c(t)). (6)

Proof. Assume `(c|[0,t]) > d(c(0), c(t)). Choose a geodesic c̃ : [0, t]→ X joining x0 and

c(t). De�ne

c̄(s) =

{
c̃(s), for s ∈ [0, t]

c(s) else.

Then c̄ is continuous, and

`(c̄) = `(c̄|[0,t]) + `(c̄|[t,b])

= `(c̃) + `(c|[t,b])

= d(c(0), c(t)) + `(c|[t,b])

< `(c|[0,t]) + `(c|[t,b])

= `(c),

a contradiction.

2.1.2 Arc length parametrizations

A crucial technical tool in the geometry of curves in Riemannian manifolds is the exis-

tence of an arc length parametrization in case of regularity. The following paragraph

introduces an analogous construction for geodesics in metric spaces using the concept

of generalized inverses.
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De�nition 2.4. Suppose J,K ⊂ R are intervals and F : J → K is a monotonously

increasing, right-continuous, surjective function. Then its generalized inverse is de�ned

as the map

F← : K → J ; y 7→ inf{x ∈ J | F (x) ≥ y}.

The following fact is well-known and can be found in any treatise on probability,

see e.g. [4].

Lemma 2.5. Suppose J,K ⊂ R are intervals and F : J → K is monotonously

increasing, right-continuous, and onto. Then

F ◦ F← = idK .

Proposition 2.6. Suppose c̄ : [0, b]→ X is a geodesic joining x0, x1 ∈ X. Then there

is a reparametrization c : [0, d(x0, x1)]→ X of c̄ such that for all 0 ≤ t ≤ d(x0, x1),

`(c|[0,t]) = d(c(0), c(t)) = t.

Proof. Consider the continuous function

λ : [0, b]→ [0, d(x0, x1)]; t 7→ `(c̄|[0,t]).

and set γ = λ← : [0, d(x0, x1)]→ [0, b]. Then λ ◦ γ = id[0,d(x0,x1)] by Lemma 2.5. Thus,

setting c := c̄ ◦ γ, for 0 ≤ s ≤ t ≤ d(x0, x1) we have the equalities

d(c(s), c(t)) = d(c̄(γ(s)), c̄(γ(t)))

= `(c̄|[γ(s),γ(t)])

= `(c̄|[0,γ(t)])− `(c|[0,γ(s)])

= λ(γ(t))− λ(γ(s))

= t− s.

In particular, c is continuous and `(c|[0,t]) = d(c(0), c(t)) = t

De�nition 2.7. Let (X, d) be a metric space. A geodesic c : [0, b]→ X satisfying

d(c(0), c(t)) = t

is said to be parametrized by arc length. In case

d(c(0), c(t)) = const · t,

c is said to be parametrized proportional to arc length.
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Notation. Given two points x0, x1 ∈ X in a strongly geodesic space X, we will write

xt for the value of the geodesic joining x0 and x1 and parametrized proportional to arc

length, at parameter value t ∈ [0, 1].

2.1.3 Midpoints

In general, checking existence and uniqueness of geodesics in a general metric space

seems a formidable task. It appears a lot more accessible to check for every pair of

points to possess a possibly unique midpoint. In the following we prove that these

problems are equivalent.

De�nition 2.8. Suppose (X, d) is a metric space and x0, x1 ∈ X. Then z is a midpoint

of x0 and x1 if and only if

d(x0, x1/2) = d(x1/2, x1) =
1

2
d(x0, x1).

The set of midpoints of x0, x1 is written mpt(x0, x1). Moreover, an (ε-)approximative

midpoint of x0, x1 ∈ X is any z ∈ X satisfying

max(d(x0, z), d(z, x1)) ≤ 1

2
d(x0, x1) + ε.

The set of ε-approximative midpoints of x0 and x1 is denoted by mptε(x0, x1).

Theorem 2.9. Let (X, d) be a complete metric space. Then the following hold true:

(i) X is a length space if and only if for any two points x0, x1 ∈ X and for all ε > 0,

the set mptε(x0, x1) is nonempty.

(ii) The space X is (strongly) geodesic if and only if each two points in X possess a

(unique) midpoint.

Proof. We present a proof of the �rst statement. The second one is proven along the

same lines, with some obvious modi�cations.

We begin by proving ⇐=: For ε > 0. Set cε(0) = x0, cε(1) = x1, and for n ≥ 1

recursively de�ne

cε((2k + 1)/2n) ∈ mpt2−2nε(cε(k/2
n−1), cε((k + 1)/2n−1)) 6= ∅

for 0 ≤ k < 2n−1 − 1.
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Set ∆ = d(x0, x1). We claim that for all n ≥ 0 and 0 ≤ i ≤ 2n it holds that

d(cε(i/2
n), cε((i+ 1)/2n)) ≤ ∆ + (1− 2−n)ε

2n
.

Indeed, under the hypothesis that this holds, and since we may without loss of gener-

ality assume i = 2k, it follows that

d(cε(i/2
n+1), cε((i+ 1)/2n+1)) = d(cε(k/2

n), cε((2k + 1)/2n+1))

≤ 1

2
d(cε(k/2

n), cε((k + 1)/2n)) + 2−(2n+2)ε

≤ 1

2

(
∆ + (1− 2−n)ε

2n

)
+ 2−(2n+2)ε

=
∆ + (1− 2−n)ε+ 2−(n+1)ε

2n+1

=
∆ + (1− 2−(n+1))ε

2n+1
,

whence the claim follows using induction over n. Consequently, for 0 ≤ i, j ≤ 2n,

d(cε(i/2
n), cε(j/2

n)) ≤ (∆ + ε) · |i− j|
2n

.

This implies that a dyadic Lipschitz condition holds true: For s = i/2n and t = j/2m,

where 0 ≤ i ≤ 2n, 0 ≤ j ≤ 2m and m > n, we have

d(cε(s), cε(t)) = d(cε(i/2
n), cε(j/2

m))

= d(cε(2
m−ni/2m), cε(j/2

m))

≤ (∆ + ε) · |i− 2m−nj|
2n

= (∆ + ε) · |s− t|.

(7)

Since (X, d) is complete, this dyadic Lipschitz-continuity implies that cε may be con-

tinuously extended from the dyadic numbers to a continuous map [0, 1] → X, which

we again denote by cε. Certainly, equation (7) remains valid for s, t ∈ [0, 1], so for any

partition 0 = t0 < · · · < tn = 1 of the unit interval we have

n−1∑
i=0

d(cε(ti), cε(ti+1)) ≤
n−1∑
i=0

(∆ + ε) · (ti+1 − ti)

= ∆ + ε = d(x0, x1) + ε.

Consequently 0 ≤ `(cε)− d(x0, x1) ≤ ε→ 0 as ε ↓ 0.



Stochastic aspects of re�nement schemes on metric spaces 11

Now for =⇒: For x0, x1 ∈ X choose a continuous curve cε : [0, 1] → X joining x0

and x1 such that `(cε) ≤ d(x0, x1) + ε. Certainly, t 7→ `(t) = `(cε|[0,t]) is a continuous

map, so by the intermediate value theorem there is 0 ≤ t0 ≤ 1 such that `(t0) =

1
2
d(x0, x1). Thus, d(x0, c(t0)) ≤ `(t0) = 1

2
d(x0, x1). On the other hand,

d(c(t0), x1) ≤ `(c|[t0,1])

≤ d(x0, x1) + ε− `(t0)

=
1

2
d(x0, x1) + ε,

whence c(t0) ∈ mptε(x0, x1).

Corollary 2.10. Let (X, d) be a complete metric space. Then X is a length space if

and only if for any x0, x1 ∈ X and ε > 0 there exists z ∈ X such that

d2(x0, z) + d2(z, x1) ≤ 1

2
d2(x0, x1) + ε.

Proof. ⇐=:In view of Theorem 2.9, it su�ces to show that for any two x0, x1 ∈ X and

arbitrary ε > 0, the set mptε(x0, x1) 6= ∅. Note, however, that for d(x0, x1) = u > 0,

the Taylor expansion of f(δ) =
√

1
2
u2 + δ gives

f(δ) =
1√
2
u+

δ√
2u

+O(δ2).

Thus, there exists M > 0 such that for δ <
(

1−
√

2
2

)
u2 = C(u),

f(δ) ≤ 1

2
u+Mδ2.

In particular, given ε > 0, there is δ < C(u) such that Mδ2 < ε. Now choose z ∈ X
such that

d2(x0, z) + d2(z, x1) ≤ 1

2
d2(x0, x1) + δ.

Consequently,

max(d(x0, z), d(z, x1)) ≤
√
d2(x0, z) + d2(z, x1)

≤ f(u) ≤ 1

2
d(x0, x1) + ε.

=⇒: Given ε > 0, choose δ > 0 such that δ2 +δd(x0, x1) < ε. Then if z ∈ mptδ(x0, x1),

is it plain to see that

d2(x0, z) + d2(z, x1) ≤ 1

2
d2(x0, x1) + ε.
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2.1.4 The Hadamard property

De�nition 2.11. Suppose (X, d) is a metric space. Then X is called Hadamard space

or global NPC (Non-Positive Curvature)-space if X is complete and for all x0, x1 ∈ X
there is a y ∈ X such that for all z ∈ X the so-called Hadamard inequality holds true:

d2(z, y) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)− 1

4
d2(x0, x1). (8)

Remark 2.12. As Proposition 2.14 will reveal, the point y ∈ X in (8) is the unique

midpoint x 1
2
of x0 and x1. Hence we may rewrite (8) as

d2(z, x 1
2
) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)− 1

4
d2(x0, x1),

an inequality easily seen to be sharp in the Euclidean case. Thus the Hadamard

inequality represents a concise way to describe `slimness' of geodesic triangles, see

Figure 2.12.

z

x1

x 1
2

x0

Figure 1: A `slim' geodesic triangle.

Hadamard spaces for instance play an important role in the theory of cost- minimiz-

ing networks, see [7]. Topological examples are trees as well as Euclidean Bruhat-Tits

buildings. Notably, for a measure space M , and N Hadamard, the space of strongly

measurable square-integrable functions L2(M,N) inherits the Hadamard property. It

is remarkable that these spaces also occur as families of certain geometric and topo-

logical structures, such as spaces of Riemannian and Kähler metrics or spaces of con-

nections. The latter examples actually are generically in�nite-dimensional Hadamard

manifolds, see [15]. In the smooth case the Hadamard property is equivalent to nonpos-

itive sectional curvature and simple connectedness. An instance of a �nite-dimensional

Hadamard manifold signi�cant in applications is the space of symmetric positive def-

inite matrices, which occurs in Di�usion Tensor Imaging.
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Lemma 2.13. Suppose (X, d) is a complete metric space. Then X is Hadamard if

and only if for all x0, x1 ∈ X and ε > 0 there is y ∈ X such that for all z ∈ X the

approximate Hadamard inequality holds true:

d2(z, y) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)− 1

4
d2(x0, x1) + ε. (9)

Proof. Suppose εn is a zero sequence. Choose yn ∈ X such that inequality (9) holds

true for all z ∈ X, with ε = εn. Then by substituting x0 and x1 for z in the approximate

Hadamard inequality we obtain:

max(d2(yn, x0), d2(yn, x1)) ≤ 1

4
d2(x0, x1) + εn,

and

d2(yn, ym) ≤ 1

2
d2(yn, x0) +

1

2
d2(yn, x1)− 1

4
d2(x0, x1) + εm

≤ εn + εm.

Thus yn → y as n→∞, and obviously for all z ∈ X,

d2(z, y) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)− 1

4
d2(x0, x1).

Proposition 2.14. Let (X, d) be Hadamard. Then (X, d) is strongly geodesic.

Proof. We �rst show that X is geodesic. Since X is complete, by Theorem 2.9 it

su�ces to show that for each x0, x1 the set of midpoints mpt(x0, x1) is nonempty.

By the Hadamard inequality (8), there is y ∈ X such that

d2(x0, y) ≤ 1

4
d2(x0, x1)

d2(x1, y) ≤ 1

4
d2(x0, x1).

Hence d(x0, y) ≤ 1
2
d(x0, x1) and d(x1, y) ≤ 1

2
d(x0, x1). Thus, by the triangle inequality,

d(x0, x1) ≤ d(x0, y) + d(x1, y)

≤ 1

2
d(x0, x1) +

1

2
d(x0, x1) = d(x0, x1).

It follows that y ∈ mpt(x0, x1).
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To show that X is strongly geodesic, it su�ces to show # mpt(x0, x1) = 1 for all

x0, x1 ∈ X. Suppose x1/2, x̃1/2 ∈ mpt(x0, x1). By the Hadamard inequality, there is

y ∈ X such that

d2(y, x1/2) ≤ 1

2
d2(x1/2, x0) +

1

2
d2(x1/2, x1)− 1

4
d2(x0, x1)

=
1

8
d2(x0, x1) +

1

8
d2(x0, x1)− 1

4
d2(x0, x1) = 0,

and the same holds true for x̃1/2. Thus, x1/2 = y = x̃1/2.

De�nition 2.15. Suppose (X, d) is a strongly geodesic metric space. Then a function

Φ : X → R is called convex if and only if for each geodesic xt it holds that

Φ(xt) ≤ (1− t)Φ(x0) + tΦ(x1). (10)

Moreover, Φ is called strongly convex if and only if

Φ(xt) ≤ (1− t)Φ(x0) + tΦ(x1)− t(1− t)d2(x0, x1). (11)

Proposition 2.16. Let (X, d) be a strongly geodesic, complete metric space, and sup-

pose Φ : X → R is strongly convex and continuous. Then there is a unique x∗ such

that

Φ(x∗) = min Φ(X).

Proof. Choose a sequence xn ∈ X with limn Φ(xn) = min(Φ(X)) = α. Let xnm =

mpt(xn, xm). Then Φ(xnm) ≥ α together with strong convexity implies

ϕ(xnm) ≤ 1

2
(Φ(xn) + Φ(xm))− 1

4
d2(x0, x1)

=⇒ d2(x0, x1) = 2 (Φ(xn) + Φ(xm))− 4Φ(xnm)

≤ 2 (Φ(xn) + Φ(xm))− 4α,

meaning that xn is a Cauchy sequence. Therefore, xn → z0, and by continuity, Φ(z0) =

limn Φ(xn) = α.

Assume now Φ(z1) = α. Then by strong convexity again,

α ≤ Φ(z1/2) ≤ α− 1

4
d2(z0, z1),

hence d(z0, z1) ≤ 0.

In conclusion, x∗ = z0 is the unique minimizer of Φ.
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Proposition 2.17. Suppose (X, d) is a strongly geodesic, complete metric space, and

let Φ : X → R be a strongly convex function. Moreover let x∗ = argmin(Φ). Then for

all z ∈ X,

Φ(x∗) ≤ Φ(z)− d2(z, x∗).

Proof. Let zt denote the geodesic joining z and x∗. Then since Φ(x∗) ≤ Φ(zt) for

0 ≤ t ≤ 1, employing the strong convexity of Φ we obtain for all 0 ≤ t < 1:

Φ(x∗) ≤ Φ(zt) ≤ (1− t)Φ(z) + tΦ(x∗)− t(1− t)d2(z, x∗)

=⇒ (1− t)Φ(x∗) ≤ (1− t)Φ(z)− t(1− t)d2(z, x∗)

=⇒ Φ(x∗) ≤ Φ(z)− td2(z, x∗),

hence the statement follows from taking the limit as t ↑ 1.

Proposition 2.18 (Strong Hadamard inequality). Suppose (X, d) is a Hadamard

space, and let x0, x1, z ∈ X. Then

d2(z, xt) ≤ (1− t)d2(z, x0) + td2(z, x1)− (1− t)td2(x0, x1). (12)

In other words, the squared distance function d2(z, · ) is strongly convex.

Proof. Obviously, it su�ces to show the statement for dyadic t, which is done via

induction. The induction step essentially involves two computations: The �rst one is

elementary and gives the result(
1− 2k + 1

2n

)
2k + 1

2n
=

1

2

((
1− k

2n−1

)
k

2n−1
+

(
1− k + 1

2n−1

)
k + 1

2n−1

)
+

1

4
· 1

2n−1
,

while the second one invokes an iterated application of the Hadamard inequality. Let
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t = (2k + 1)/2n. Then

d2(xt, z) ≤
1

2
d2(z, xk/2n−1) +

1

2
d2(z, x(k+1)/2n−1)

− 1

4
d2(xk/2n−1 , x(k+1)/2n−1)

≤ 1

2

((
1− k

2n−1

)
+

(
1− k + 1

2n−1

))
d2(z, x0)

+
1

2

(
k

2n−1
+
k + 1

2n−1

)
d2(z, x1)

− 1

2

((
1− k

2n−1

)
k

2n−1
+

(
1− k + 1

2n−1

)
k + 1

2n−1

)
d2(x0, x1)

− 1

4
· 1

2n−1
d2(x0, x1)

= (1− t)d2(z, x0) + td2(z, x1)− (1− t)td2(x0, x1).

2.2 Probability measures on Hadamard spaces

We describe how nonpositive curvature leads to convenient probabilistic features of

Hadamard spaces. Most of the material appearing in this section, which could be

regarded a prologue to the discussion of conditional expectations in Section 2.3, is

taken from [20].

De�nition 2.19. Suppose (X, d) is a metric space, and let µ a probability measure

on X. Then the variance of µ is de�ned as

Var(µ) := inf
z∈X

∫
X

d2(z, x)µ(dx).

We call µ an L2-probability measure if and only if Var(µ) <∞.

More generally, µ is called Lp-probability measure if for one (and then all) x0 ∈ X
it holds that ∫

X

dp(x0, x)µ(dx) <∞.

The space of Lp-probability measures on X is denoted by Pp(X).

Theorem 2.20 (Barycenters). Let (X, d) be a Hadamard space, and suppose µ is an

L2-probability measure on X. Then there exists a unique b(µ) ∈ X such that

Var(µ) =

∫
X

d2(b(µ), x)µ(dx).

This point b(µ) is referred to as barycenter or center of mass of µ.
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Moreover, the so-called variance inequality holds true: For each z ∈ X,∫
X

d2(b(µ), x)µ(dx) ≤
∫
X

d2(z, x)µ(dx)− d2(z, b(µ)).

Proof. Applying the strong Hadamard inequality (12) one sees that the function

Φ(z) =

∫
X

d2(z, x)µ(dx)

is strongly convex. Hence the statement follows from Propositions 2.16 and 2.17.

Remark 2.21. Centers of mass de�ned as minimizers of convex functionals have been

considered since the seminal article [5], and due to the in�uential works [14, 10] are

sometimes referred to as Karcher means or Fréchet means.

Theorem 2.22. Let (X, d) be a complete metric space. Then the following are equiv-

alent:

(i) X is a Hadamard space.

(ii) For any L2-probability measure µ there exists zµ ∈ X such that for all y ∈ X,∫
X

d2(zµ, x)µ(dx) ≤
∫
X

d2(y, x)µ(dx)− d2(y, zµ). (13)

(iii) Every probability measure µ on X obeys the inequality

Var(µ) ≤ 1

2

∫
X

∫
X

d2(x, y)µ(dx)µ(dy).

(iv) (X, d) is a length space and for arbitrary x0, x1, x2, x3 ∈ X and 0 ≤ s, t ≤ 1

s(1− s)d2(x0, x2) + t(1− t)d2(x1, x3) ≤ std2(x0, x1) + (1− s)td2(x1, x2)

+ (1− s)(1− t)d2(x2, x3)

+ s(1− t)d2(x3, x0).

Proof. (i) =⇒ (ii) is Theorem 2.20.

(ii) =⇒ (iii): It su�ces to consider the case Var(µ) <∞. In this case, by hypoth-

esis there is zµ ∈ X such that (13) holds true, and thus, taking integrals with respect
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to µ on both sides of this inequality,

Var(µ) =

∫
X

d2(zµ, x)µ(dx)

≤
∫
X

∫
X

d2(y, x)µ(dx)µ(dy)−
∫
X

d2(y, zµ)µ(dy)

=

∫
X

∫
X

d2(y, x)µ(dx)µ(dy)− Var(µ).

(iii) =⇒ (iv): Note �rst that the elementary equality (αa−(1−α)b)2 ≥ 0 for a, b, α ∈ R
may be written as α(1−α)(a+ b)2 ≤ αa2 + (1−α)b2. This together with the triangle

inequality implies, for x, y, z ∈ X, α ∈ R,

α(1− α)d2(x, y) ≤ αd2(x, z) + (1− α)d2(z, y). (14)

Now consider µ = sδ{x0} + tδ{x1} + (1 − s)δ{x2} + (1 − t)δ{x3}. Let ε > 0, and choose

zε ∈ X such that

Var(µ) ≥ 1

2

(
sd2(zε, x0) + td2(zε, x1) + (1− s)d2(zε, x2) + (1− t)d2(zε, x3)

)
− ε

Using equation (14), one deduces

Var(µ) ≥ 1

2

(
s(1− s)d2(x0, x2) + t(1− t)d2(x1, x3)

)
− ε.

Since ε is arbitrary,

Var(µ) ≥ 1

2

(
s(1− s)d2(x0, x2) + t(1− t)d2(x1, x3)

)
. (15)

On the other hand, by (iii),

Var(µ) ≤ 1

2

∫
X

∫
X

d2(x, y)µ(dx)µ(dy)

=
1

4
[std2(x0, x1) + (1− s)td2(x1, x2) + s(1− t)d2(x0, x3)

+ (1− s)(1− t)d2(x2, x3) + s(1− s)d2(x0, x2) + t(1− t)d2(x1, x3)].

Let us now prove that (iii) implies that X is a length space. For given x0, x1 ∈ X

choose µ = 1
2

(
δ{x0} + δ{x1}

)
. Then as above, for arbitrary ε > 0 one �nds zε such that

1

2
d2(zε, x0) +

1

2
d2(zε, x1)− ε ≤ 1

4
d2(x0, x1).

In other words, X admits approximative midpoints and thus is a length space by

Corollary 2.10.



Stochastic aspects of re�nement schemes on metric spaces 19

(iv) =⇒ (i): Given 0 < t < 1 and x0, x1 ∈ X choose y ∈ X such that

max(d2(y, x0), d2(y, x1)) ≤ 1

4
d2(x0, x1) + (1− t)2.

Apply the inequality in (iv) to the quadruple (x0, y, x1, z) (with s = 1
2
) to obtain

t(1− t)d2(y, z) ≤ 1− t
2

(d2(x0, y) + d2(y, x1))− 1− t
4

d2(x0, x1) + (1− t)2,

and use Lemma 2.13.

The following proposition re�ects the fact that any quadruple in a Hadamard space

may be embedded in Euclidean space such that edge lengths are preserved while di-

agonals expand.

Proposition 2.23 (Reshetnyak quadruple comparison). Suppose (X, d) is a Hada-

mard space. Then for all x0, x1, x2, x3 ∈ X

d2(x0, x2) + d2(x1, x3) ≤ d2(x1, x2) + d2(x3, x0) + 2d(x0, x1)d(x2, x3). (16)

Proof. Use point (iv) of Theorem 2.22, with s = t, to obtain

d2(x0, x2) + d2(x1, x3) ≤ t

1− t
d2(x0, x1) + d2(x1, x2) +

1− t
t

d2(x2, x3) + d2(x3, x0),

and choose t ∈ (0, 1) such that t
1−t = d(x2,x3)

d(x0,x1)
.

For a proof of the following important consequence of quadruple comparison see

[20].

Corollary 2.24 (Geodesic Comparison). Suppose X is a Hadamard space. Then any

pair of geodesics xt, yt obeys

d(xt, yt) ≤ (1− t)d(x0, y0) + td(x1, y1).

In other words, the function d : X × X → R is convex, which in turn implies the

following:

(i) For each x0 ∈ X the function x 7→ d(x, x0) is convex. As a consequence, all

geodesic balls are convex.

(ii) Any pair of geodesics xt, yt obeys

sup
0≤t≤1

d(xt, yt) ≤ max(d(x0, y0), d(x1, y1)).

(iii) X is contractible.
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2.3 Nonlinear conditional expectations

In this section we introduce a natural concept of conditional expectation for random

variables with values in a global NPC-space �rst considered by K.-T. Sturm in his

seminal paper [19], and describe several of its crucial properties in detail.

De�nition 2.25. Suppose (Ω,F, µ) is a �nite measure space. Moreover let (X, d)

be a metric space. For p ≥ 1 de�ne Lp(Ω,F, µ;X) to be the space of measurable

functions Y : (Ω,F) → X satisfying
∫

Ω
dp(Y (ω), x)µ(dω) < ∞ for some (then all)

x ∈ X. The space Lp(Ω,F, µ;X) comes with the equivalence relation of being equal

almost everywhere:

Y ∼ Z ⇐⇒ µ(Y 6= Z) = 0.

The set of equivalence classes with respect to this relation is denoted by

Lp(Ω,F, µ;X) = Lp(Ω,F, µ;X)/ ∼ .

Whenever the other parameters are clear from the context, we write Lp(F, X), Lp(F)

or Lp(X).

Theorem 2.26. Suppose (Ω,F, µ) is a �nite measure space, and let (X, d) be a metric

space. Then

dp(Y, Z) =

(∫
Ω

dp(Y, Z)

) 1
p

,

de�nes a metric on Lp(X). Moreover, the following hold true:

(i) Completeness of (X, d) implies completeness of Lp(X).

(ii) If (X, d) is a Hadamard space, then so is L2(X).

Proof. We �rst show (i), assuming without loss of generality that µ(Ω) = 1: Suppose

the sequence Yn : Ω→ X satis�es

dp(Yn, Ym)→ 0 as n,m→∞.

Choose a subsequence nk satisfying

dp(Ynk , Ynk+1
) <

1

2(p+1)k
.
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Then the Markov inequality implies

µ
(
d(Ynk , Ynk+1

)
>

1

2k
) ≤ 1

2k
,

which, according to the Borel-Cantelli lemma, provides us with the fact that almost

everywhere d(Ynk , Ynk+1
) < 1

2k
holds true, for large enough k. In particular, by com-

pleteness of (X, d) there exists Y : Ω→ (X, d) such that Ynk → Y almost everywhere.

Given ε > 0, choose N0 ∈ N such that

n,m ≥ N0 =⇒ dp(Yn, Ym) < ε.

Then for n ≥ N0 by the lemma of Fatou we have∫
Ω

dp(Y, Yn)dµ =

∫
Ω

lim inf
nk≥N0

dp(Ynk , Yn)dµ

≤ lim inf
nk≥N0

∫
Ω

dp(Ynk , Yn)dµ < εp,

which proves (i).

Claim (ii) is easy to prove. Indeed, given Y0, Y1 ∈ L2(X), set

Y1/2(ω) := mpt(Y0(ω), Y1(ω)).

Then the Hadamard inequality for the metric d implies

d2
2(Z, Y1/2) =

∫
Ω

d2(Z(ω), Y1/2(ω))µ(dω)

≤ 1

2

∫
d2(Z(ω), Y0(ω))µ(dω) +

1

2

∫
d2(Z(ω), Y1(ω))µ(dω)

− 1

4

∫
d2(Y0(ω), Y1(ω))µ(dω)

=
1

2
d2

2(Z, Y0) +
1

2
d2

2(Z, Y1)− 1

4
d2

2(Y0, Y1).

Remark 2.27. The proof of Theorem 2.26 provides us with an explicit representation

of geodesics in L2(X). Indeed, since the geodesic midpoint of Y0, Y1 ∈ L2(X) is simply

the pointwise midpoint, meaning mpt(Y0, Y1)(ω) = mpt(Y0(ω), Y1(ω)) for all ω ∈ Ω, it

follows that

Yt(ω) = (Y (ω))t.
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Theorem 2.28 (Convex Projections). Suppose (X, d) is a Hadamard space, and K ⊆
X is closed and convex. Then there is a well-de�ned map

πK : X → K

determined by d(πK(x), x) = miny∈K d(y, x). This maps enjoys the following proper-

ties:

1. πK is orthogonal, i.e. for all x ∈ X and y ∈ K,

d2(πK(x), x) + d2(πK(x), y) ≤ d2(x, y). (17)

2. πK is Lipschitz-continuous in the sense that

d(πK(x), πK(y)) ≤ d(x, y).

Proof. Any closed and convex subset of (X, d) is a Hadamard space of its own (with the

induced metric). Moreover, for each x ∈ X, by the Hadamard inequality, Φ = d2( · , x)

is a strongly convex function on the Hadamard space K, and hence possesses a unique

minimizer πK(x). Orthogonality (17) is a simple consequence of applying Proposition

2.17 to d2( · , x). Lipschitz continuity is slightly more subtle. Note �rst that (17)

implies

d2(z, πK(w)) + d2(w, πK(z)) ≥ 2d2(πK(z), πK(w)) + d2(z, πK(z)) + d2(w, πK(w)).

On the other hand, quadruple comparison (16) gives

d2(z, πK(w))+d2(w, πK(z)) ≤ d2(πK(z), πK(w))+d2(πK(w), w)+d2(w, z)+d2(z, πK(z)),

proving the claim.

Theorem 2.29. Let (X, d) be a Hadamard space and suppose Y, Z ∈ L2(F) :=

L2(Ω,F,P;X) are square-integrable random variables with values in X. Choose a

subalgebra G ⊆ F. Then L2(G) is a convex and closed subset of L2(F). De�ne the

conditional expectation of Y given G as

E(Y |G) := πL2(G)(Y ), (18)
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that is, E(Y |G) is the class of functions minimizing L2-distance to Y among all G-

measurable classes. Then for W ∈ L2(G) we have

d(E(Y |G), E(Z|G)) ≤ E(d(Y, Z)|G) (19)

E(d2(E(Y |G), Y )|G) + d2(E(Y |G),W ) ≤ E(d2(Y,W )|G) (20)

P-almost surely. Moreover, for all p ∈ [1,∞],

dp(E(Y |G), E(Z|G)) ≤ dp(Y, Z). (21)

Proof. Choose Y ∈ L2(G), and consider the family of strongly convex functionals

ΦA : L2(A,GA,PA;X)→ R; Z 7→
∫
A

d2(Z, Y )dPA.

parametrized by A ∈ G such that P(A) > 0. Let ZA denote the unique minimizer

of ΦA. Then ZA admits the following interpretation: K(A) = L2(A,GA,PA;X) ⊆
L2(A,FA,PA;X) is a closed and convex subset, and hence the convex projection πK(A)

is well de�ned, cf. Theorem 2.28. Then obviously, ZA = πK(A)(Y |A). By de�nition,

ZΩ = πK(Ω)(Y ) = E(Y |G).

We claim that ZΩ|A = ZA for each A ∈ G. Indeed, if ΦA(ZΩ|A) > ΦA(ZA), let

Z ′Ω :=

{
ZA on A,

ZΩ on Ω \ A.

Obviously, Z ′Ω ∈ L2(G), and, setting Φ := ΦΩ,

Φ(Z ′Ω) = P(A)ΦA(ZA) + (1− P(A))ΦΩ\A(ZΩ|(Ω \ A))

< P(A)ΦA(ZΩ|A) + (1− P(A))ΦΩ\A(ZΩ|(Ω \ A))

= Φ(ZΩ),

a contradiction.

Since it holds that πK(A)(·) = E( · |G)|A, we deduce from Theorem 2.28 that for all

A ∈ G, Y, Z ∈ L2(F), and W ∈ L2(G),

E(d(E(Y |G), E(Z|G))1A) ≤ E(d(Y, Z)1A) (22)

E((d2(E(Y |G), Y ) + d2(E(Y |G),W ))1A) ≤ E(d2(Y,W )1A). (23)

Certainly, (22) respectively (23) being true for all A ∈ G is equivalent to (19) and

(20), respectively. Finally, (21) is a direct consequence of (19).
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Remark 2.30. The Lp-Lipschitz continuity (21) allows for a continuous extension of

E( · |G) to L1 in the classical fashion.

Remark 2.31. In case X = R, the above de�nition coincides with the notion of condi-

tional expectation due to Kolmogorov. More precisely, Z = E(Y |G) is characterized

by the following conditions:

(i) Z is G-measurable.

(ii) For all A ∈ G it holds that E(1AY ) = E(1AZ).

The existence and uniqueness of E(Y |G), using (i) and (ii) as axioms, relies on the

Radon-Nikodym theorem.

Remark 2.32. A well-known feature of the linear conditional expectation is the so-

called tower property - whenever H ⊆ G ⊆ F is a nested triple of subalgebras, it holds

that

E(E(Y |G)|H) = E(Y |H). (24)

The following example shows that the tower property is no longer valid in the nonlinear

setting. Consider the tripod T = R≥0×{0, 1, 2}/ ∼, where ∼ denotes the equivalence

relation generated by (0, 0) ∼ (0, 1) ∼ (0, 2). It is plain to show that T constitutes a

Hadamard space when endowed with the distance

d([s, i], [t, j]) =

{
|t− s|, if i = j

t+ s otherwise.

Choose random variables X0, X1, X2 possessing the following (conditional) distribu-

tions:

P(X0 = [1, i]) =
1

3
, where i = 0, 1, 2

P(Xn = [3n, i] | X1 = [3n−1, j]) =
4δij

6
, where i, j = 0, 1, 2 and n = 1, 2.

This triple of random variables can be considered a 3-step random walk, with the

probability of staying in the current branch of T being twice as large as the probability

of leaving it and the probabilities of ending up in each of the others being equal. De�ne

Fn = σ(X0, . . . , Xn), for n = 0, 1, 2. Note that

P(X2 = [9, i] | X0 = [1, j]) =
2δij

4
, where i, j = 0, 1, 2,

which in turn implies E(X2|F0) = 0. On the other hand, E(E(X2|F1)|F0) = X0 6= 0.
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It is for the reason of the lacking tower property that K.-T. Sturm in his article

[19] de�nes:

De�nition 2.33 (Filtered conditional expectation). Suppose F0 ⊆ F1 ⊆ · · ·FN = F

is a sequence of subalgebras. Furthermore assume Y ∈ L2(F, X). Then one de�nes

the �ltered conditional expectation of Y given (Fn)0≤n≤N as

E(Y |||F0) = E(· · ·E(E(Y |FN−1)|FN−2) · · · |F0). (25)

Proposition 2.34. Suppose Y is a square-integrable random variable with values in

a closed and convex subset K of a Hadamard space X. Then P(E(Y |G) ∈ K) = 1.

Proof. Suppose A = {E(Y |G) /∈ K} has positive probability, and let πK denote the

convex projection to K. Then obviously Z := πK(E(Y |G)) ∈ L2(G), and by the

conditional variance inequality (20),

E(d2(Z, Y )) ≤ E(d2(Y,E(Y |G)))− E(d2(E(Y |G), Z)) < E(d2(Y,E(Y |G))),

a contradiction to the minimality of E(d2(Y,E(Y |G))).

2.3.1 Jensen's inequality

The following theorem, addressing the comparison of nonlinear and linear conditional

expectations, is essential in the convergence theory of barycentric re�nement schemes

developed in 4.2.

Theorem 2.35 (Jensen's inequality, [19]). Suppose (Ω, (Fn)n∈N0 ,F,P) is a �ltered

probability space. Moreover let Y ∈ L2(Fn0) for some n0 ≥ 0. Then for each convex,

lower semicontinuous ψ : X → R, it holds that

ψ
(
E(Y |||F0)

)
≤ E(ψ(Y )|F0). (26)

Proof. Let Γ+(ψ) denote the epigraph of ψ consisting of all pairs (x, t) ∈ X × R such

that ψ(x) ≤ t. Due to lower semicontinuity of ψ, Γ+(ψ) is closed. Indeed, given a

convergent sequence (xn, tn) ∈ Γ+(ψ), it follows that ψ(limn xn) ≤ lim supn∈N ψ(xn) ≤
limn tn. Moreover, given a geodesic (xs, (1 − s)t0 + st1) in X × R joining points

(x0, t0), (x1, t1) ∈ Γ+(ψ), convexity of ψ implies ψ(xs) ≤ (1 − s)ψ(x0) + sψ(x1) ≤
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(1−s)t0+st1. Therefore Γ+(ψ) is convex. Obviously the function Ψ : X → X×R; x 7→
(x, ψ(x)) takes values in Γ+(ψ), and Proposition 2.34 implies

E(Ψ(Y )|Fn0−1) = (E(Y |Fn0−1), E(ψ(Y )|Fn0−1)) ∈ Γ+(ψ).

In other words, ψ(E(Y |Fn0−1)) ≤ E(ψ(Y )|Fn0−1). Iterating this procedure and apply-

ing the tower property of the linear conditional expectation on the RHS, one obtains

the desired inequality.

Finding contractivity constants to determine the speed of convergence of a bary-

centric scheme is an important issue, facilitated by a Lipschitz continuity property of

the barycenter map described in this paragraph.

De�nition 2.36 (Wasserstein spaces). Suppose X is a metric space. Let Pp(X)

denote the space of Lp-probability measures on X. De�ne a coupling between µ, ν ∈
Pp(X) to be a measure π ∈ Pp(X × X) whose marginals are µ and ν, respectively:

For all Borel sets A ⊆ X it holds that

π(A×X) = µ(A)

π(X × A) = ν(A).

Then for p ≥ 1 the Lp-Wasserstein distance of µ and ν is de�ned as

dWp (µ, ν) :=

(
inf{

∫
X×X

dp(x, y)π(dx, dy) | π coupling of µ and ν}
) 1

p

. (27)

Corollary 2.37 (Wasserstein contraction property). On a Hadamard space X the

following holds for any pair of probability measures µ, ν:

d(b(µ), b(ν)) ≤ dWp (µ, ν). (28)

Proof. Consider Y = id : (X,µ) → X and Z = id : (X, ν) → X. Then for any

coupling π of µ and ν obviously U = id : (X ×X, π) → X ×X satis�es U1 = Y and

U2 = Z. Further on, by convexity of d : X ×X → R, Jensen's inequality (26) implies

dp(b(µ), b(ν)) = dp(E(Y ), E(Z))

= dp(E(U))

≤ E(dp(U))

=

∫
X×X

dp(x, y)π(dx, dy),

which concludes the proof.
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2.3.2 The laws of large numbers

The topic of this paragraph is a strong law of large numbers relevant in the analysis

of subdivision schemes in many respects, see further Section 4.3.

Lemma 2.38. Suppose Y, Z : (Ω,F,P)→ (X, d) are independent. Then

E(d2(Y, Z)) =

∫
Ω

∫
Ω

d2(Y (ω), Z(η))P(dω)P(dη).

Moreover, it holds that

E(d2(Y, Z)) ≥ E(d2(Y,E(Y ))) + E(d2(Z,E(Y ))).

Proof. As in the linear case, one shows that

E(d2(Y, Z)|Z)(η) = E(d2(Y, Z(η))) =

∫
Ω

d2(Y (ω), Z(η))P(dω),

which in turn implies

E(d2(Y, Z)) = E(E(d2(Y, Z)|Z)) =

∫
Ω

∫
Ω

d2(Y (ω), Z(η))P(dω)P(dη).

The second statement follows by integrating both sides of the conditional variance

inequality (20). Indeed, substituting Z for W and σ(Z) for G in (20) yields

E(d2(E(Y ), Y )) + d2(E(Y ), Z) ≤ E(d2(Y, Z) | Z).

Theorem 2.39 (The Laws of Large Numbers,[20]). Suppose Yn : (Ω,F,P)→ (X, d) is

an independent and identically distributed (i.i.d.) sequence of random variables with

values in a Hadamard space. De�ne recursively

S1 := Y1

Sn+1 := b

(
1

n+ 1
δYn+1 +

n

n+ 1
δSn

)
=

1

n+ 1
Yn+1 +

n

n+ 1
Sn.

Then the following hold true:

Weak Law of Large Numbers: Suppose Var(Y1) <∞. Then

Sn → EY1 in L2.

Strong Law of Large Numbers: Suppose Y1 is bounded a.s. Then

Sn → EY1 a.s.
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Proof. Simplifying notation, we set µ = EY1. To show the weak law of large numbers,

we inductively prove

E(d2(Sn, µ)) ≤ 1

n
Var(Y1).

The case n = 1 is trivial since S1 = Y1 implies E(d2(S1, µ)) = Var(Y1). Performing

the induction step, we �rst observe that the Hadamard inequality gives

d2(Sn+1, µ) ≤ 1

n+ 1
d2(Yn+1, µ) +

n

n+ 1
d2(Sn, µ)− n

(n+ 1)2
d2(Yn+1, Sn).

Taking integrals on both sides of this inequality and using Lemma 2.38, one obtains

E(d2(Sn+1, µ)) ≤ 1

n+ 1
E(d2(Yn+1, µ)) +

n

n+ 1
E(d2(Sn, µ))

− n

(n+ 1)2
E(d2(Yn+1, Sn))

≤ 1

n+ 1
E(d2(Yn+1, µ)) +

n

n+ 1
E(d2(Sn, µ))

− n

(n+ 1)2
(E(d2(Yn+1, µ)) + E(d2(Sn, µ)))

=
1

(n+ 1)2
E(d2(Y1, µ)) +

n2

(n+ 1)2
E(d2(Sn, µ)

≤ 1

(n+ 1)2
Var(Y1) +

n

(n+ 1)2
Var(Y1)

=
1

n+ 1
Var(Y1).

This implies the weak law of large numbers.

Suppose now that there exists z ∈ X and R > 0 such that d(z, Y1) ≤ R almost

surely. Then from the above and the Markov inequality we conclude

P(d(Sn2 , µ) > ε) ≤ 1

ε2
E(d2(Sn2 , µ)) ≤ 1

n2ε2
Var(Y1).

Thus, ∑
n

P(d(Sn2 , µ) > ε) ≤
∑
n

1

n2ε2
Var(Y1) <∞,

which in view of the Borel-Cantelli lemma implies that Sn2 → µ almost surely. Observe

that the Wasserstein contraction property implies

d(Sn, Sn+1) ≤ 1

n+ 1
d(Sn, Yn+1) ≤ 2R

n+ 1
.
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Hence for n2 ≤ k < (n+ 1)2 one concludes

d(Sn2 , Sk) ≤
k−1∑
j=n2

2R

j + 1
≤ 2R

k − n2

n2
≤ 4R

n
,

from which the strong law of large numbers follows.



Stochastic aspects of re�nement schemes on metric spaces 30

3 Markov chains

Albeit not obvious at the �rst glance, Markov chains turn out to be a useful tool in

the convergence analysis of nonlinear re�nement schemes. Markov chains are time-

discrete stochastic processes with the property that, conditionally on the present, the

future and the past are independent. In other words, the path such a random walk has

taken up to some point in time does not provide any more information about future

values than the current location. Although there is an abundance of theory on Markov

chains, we, in the course of our considerations, merely make use of some foundational

facts. Due to this restriction in scope, a detailed exposition of these fundamentals

is given. For any of the results appearing in this section, and a wealth of additional

material see the recent monograph [26].

3.1 The Kolmogorov Existence Theorem

De�nition 3.1 (Kolmogorov consistency conditions). Let X be a countable set. Sup-

pose that for distinct i0, . . . , in ∈ N0

pi0...in : P(X )⊗ · · · ⊗P(X )→ [0, 1]

is a probability measure on X n. Then the family (pi0...in)n∈N0,ij∈N0 ful�lls the Kol-

mogorov consistency conditions if and only if

(K1) For all B0, . . . , Bn ⊆ X , i0, . . . , in ∈ N0 and any permutation π ∈ Sn+1 it holds

that

piπ(0)...iπ(n)
(Bπ(0) × · · · ×Bπ(n)) = pi0...in(B0 × · · · ×Bn).

(K2) For all B0, . . . , Bn−1 ⊆ X , i0, . . . , in ∈ N0,

pi0...in(B0 × · · · ×Bn−1 ×X ) = pi0...in−1(B0 × · · · ×Bn−1).

Remark 3.2. The marginal distributions of a stochastic process with values in a state

space X , given by

pi0...in(B0 × · · · ×Bn) = P(Xi0 ∈ B0, . . . , Xin ∈ Bn),

where n, i0, . . . , in ∈ N0, obviously ful�ll the Kolmogorov consistency conditions. The-

orem 3.3 below shows that any family of probability distributions satisfying (K1) and

(K2) is given as marginal distributions of a stochastic process.
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For a permutation π ∈ Sn+1 consider

ϕπ : X n+1 → X n+1; (x0, . . . , xn) 7→ (xπ−1(0), . . . , xπ−1(n)).

Then under the assumption of (K2),

(ϕπ)∗piπ(0)...iπ(n)
(B0 × · · · ×Bn) = piπ(0)...iπ(n)

(ϕ−1
π (B0 × · · · ×Bn))

= piπ(0)...iπ(n)
(Bπ(0) × · · · ×Bπ(n))

= pi0...in(B0 × · · · ×Bn),

and since product sets generate An = P(X ) ⊗ · · · ⊗ P(X ), we have the following

equivalent version of (K2):

(ϕπ)∗piπ(0)...iπ(n)
= pi0...in for all π ∈ Sn+1. (29)

Following the same lines one shows that axiom (K1) is equivalent to the following: For

all projections P : Rn+1 → Rn; (x0, . . . , xn) 7→ (x0, . . . ,��xj, . . . , xn) it holds that

P∗pi0,...,in = pi0..., 6ij ,...,in . (30)

Theorem 3.3. Suppose the family (pi0...in)n∈N0, ij∈N0 ful�lls the Kolmogorov consis-

tency conditions. Then there exists a stochastic process Xn : (Ω,F,P) → X such that

for i0, . . . , in ∈ N0 the joint distribution of (Xi0 , . . . , Xin) ful�lls

P(Xi0 ,...,Xin ) = pi0...in .

Proof. De�ne Ω = X N0 (the space of paths in X ) and F =
⊗

n∈N0
P(X ). Moreover,

for i0, . . . , in ∈ N0 and B ⊆ X n+1 de�ne the cylinder set

ZB
i0,...,in

= {ω ∈ Ω | (ωi0 , . . . , ωin) ∈ B},

and set

P(ZB
i0,...,in

) = pi0...in(B). (31)

We prove that

H = {ZB
i0,...,in

| n ∈ N0, i0, . . . , in ∈ N0, B ⊆ X n+1}

is a ring, that is, H is closed under forming of unions and complementation. Further-

more we show that P constitutes a premeasure on H. For this sake note that given
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two cylinders ZB
i0,...,in

and ZC
j0,...,jm

one �nds r ∈ N0, B′, C ′ ⊆ X r+1 and k0, . . . , kr such

that ZB′

k0,...,kr
= ZB

i0,...,in
and ZC′

k0,...,kr
= ZC

j0,...,jm
. Thus,

ZB
i0,...,in

∪ ZC
j0,...,jm

= ZB′

k0,...,kr
∪ ZC′

k0,...,kr

= ZB′∪C′
k0,...,kr

∈ H.

Accordingly, H is closed under forming of unions. Likewise, Ω \ ZB
i0,...,in

= Z
Xn+1\B
i0,...,in

implies closedness of H under complementation. Hence H constitutes a ring.

In order to show that (31) de�nes a premeasure on H, we �rst prove well-de�nedness.

Observe that, using the above notation, ZB
i0,...,in

= ZC
j0,...,jm

implies B′ = C ′. More-

over, the representation ZB′

k0,...,kr
is constructed by subjecting ZB

i0,...,in
to permutations

of indices and pullbacks with respect to projections. The Kolmogorov consistency

conditions in the shape of (29) and (30) thus imply well-de�nedness of (31). Since the

cylinders ZB′

k0,...,kr
and ZC′

k0,...,kr
are disjoint if and only if C ′ ∩B′ = ∅, it follows that in

this case,

P(ZB′

k0,...,kr
∪ ZC′

k0,...,kr
) = P(ZB′∪C′

k0,...,kr
)

= pk0,...,kr(B
′ ∪ C ′)

= pk0,...,kr(B
′) + pk0,...,kr(C

′)

= P(ZB′

k0,...,kr
) + P(ZC′

k0,...,kr
),

which provides �nite additivity of P. To prove countable additivity it su�ces to show

that for cylinder sets Un with Un ↓ ∅ it holds that P(Un)→ 0. Assume, on the contrary,

that there exists ε > such that P(Un) > ε for all n ∈ N0. Since Un+1 ⊆ Un we may

assume without loss of generality that

Un = ZBn
0,...,n.

By regularity there exists a compact (hence �nite) sets Kn ⊆ Bn such that p0,...,n(Bn \
Kn) < ε

2n+1 . De�ne Vn = ZKn
0,...,n, and set Wn = ∩nj=0Vj. Then

P(Un \Wn) ≤
n∑
j=0

P(Uj \ Vj)

=
n∑
j=0

p0,...,j(Bj \Kj) <
ε

2
.
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It follows that P(Wn) > ε
2
for all n ∈ N0, implying that Wn is nonempty, with Wn+1 ⊆

Wn. Choose a point x(n) ∈ Wn. Then obviously for all n ≥ k, (x
(n)
0 , . . . , x

(n)
k ) ∈ Kk.

Due to compactness of the Kn one may apply a standard diagonalization technique

to �nd a subsequence nj such that x(nj)
k converges for all k ∈ N0. It thus follows that

x = limj→∞ x
(nj) ∈

⋂
n∈N0

Wn ⊆
⋂
n∈N0

Un, a contradiction.

3.2 Markov chains and Markov semigroups

In this section we introduce the notion of a Markov transition kernel and show how

such an object gives rise to a time-discrete stochastic process with special properties

on the one hand and an operator semigroup on the other.

De�nition 3.4. Suppose X is a countable set of states. A Markov chain with state

space X is a discrete-time stochastic process Xn : (Ω,F,P)→ X adapted to a �ltration

(Fn)n∈N0 , such that the so-called Markov property holds true: for each bounded f :

X → R and n < m we have

E(f(Xm)|Fn) = E(f(Xm)|Xn). (32)

De�nition 3.5. A Markov transition kernel is a bivariate family of nonnegative real

numbers

P = (pxy)x,y∈X

such that
∑

y∈X pxy = 1 for all y ∈ X .

Theorem 3.6. For each Markov transition kernel and an initial distribution α ∈
P(X ) there exists a �ltered probability space (Ω,F, (Fn)n∈N0 ,Pα) and a Markov chain

Xn : (Ω,F,Pα)→ X satisfying Pα(X0 = x) = α(x) and

Pα(Xn+1 = x|Xn = y) = pxy

for x, y ∈ X and n ∈ N0.

Proof. De�ne a probability measure on X n+1 via

p0,...,n((x0, . . . , xn)) = α(x0)p(x0, x1) · · · p(xn−1, xn).
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It is easy to check that the induced family of probability distributions ful�lls the

Kolmogorov consistency criteria and thus gives rise to a stochastic process Xn with

marginals given by (Pα)(X0,...,Xn) = p0,...,n. In particular,

Pα(Xn+1 = xn+1, Xn = xn, . . . , X0 = x0) = α(x0)p(x0, x1) · · · p(xn−1, xn)p(xn, xn+1)

= Pα(Xn = xn, . . . , X0 = x0)p(xn, xn+1),

implying p(xn, xn+1) = Pα(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = Pα(Xn+1 = xn+1 |
Xn = xn). It follows for nonnegative f : X → R that

Eα(f(Xn+1)|Xn = xn, . . . , X0 = x0) =
∑
x∈X

f(x)Pα(Xn+1 = x|Xn = xn, . . . , X0 = x0)

=
∑
x∈X

Pα(Xn+1 = x|Xn = xn)f(x)

=
∑
x∈X

p(xn, x)f(x)

= Eα(f(Xn+1)|Xn = xn).

Thus, setting Fn = σ(X0, . . . , Xn), we obtain Eα(f(Xn+1)|Fn) = Eα(f(Xn+1)|Xn) as

desired.

Remark 3.7. Notice that although Pα strongly depends on the initial distribution α,

the conditional distribution of Xm given Xn, where n ≤ m, does not. Thus, in the

following we will specify the initial distribution only when speaking about absolute

probabilities.

De�nition 3.8. Let P be a Markov transition kernel on X and let Xn denote the

associated Markov chain. The n-step transition kernel is de�ned as

p(n)(x, y) := P(Xn = y|X0 = x) = P n(x, y),

where the last expression denotes the n-fold power of the possibly in�nite matrix P .

Moreover, theMarkov semigroup associated to P acts on positive functions f : X → R
as

Tnf(x) = E(f(Xn)|X0 = x) =
∑
y∈X

p(n)(x, y)f(y).

Remark 3.9. Suppose P is a Markov transition kernel. Then the obvious identities

p(n)(x, y) =
∑
z∈X

p(k)(x, z)p(n−k)(z, y), for x, y ∈ X (33)

are referred to as the Chapman-Kolmogorov equations.
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4 Re�nement schemes on metric spaces

This chapter describes recent progress in the convergence theory of re�nement algo-

rithms on metric spaces to be found in the author's articles [9, 8]. Using the probabilis-

tic preliminaries presented in the previous chapters, we develop a stochastic viewpoint

on multivariate barycentric subdivision schemes with nonnegative masks on Hadamard

spaces. In particular, we establish a link between these types of re�nement algorithms

and the theory of Markov chains by characterizing barycentric subdivision schemes as

nonlinear Markov semigroups. Exploiting this connection, we subsequently prove the

Linear Equivalence Theorem 1.2, whose statement we want to recall at this point:

Theorem ([8]). A barycentric re�nement scheme converges on arbitrary Hadamard

spaces if and only if it converges on the real line.

Moreover, we generalize a characterization of convergence from the linear the-

ory, and consider approximation qualities of barycentric subdivision schemes. Subse-

quently, it is shown how the strong law of large numbers leads to certain structure-

preserving properties of re�nement schemes on the space of di�usion tensors. A con-

cluding section addresses the relationship between the convergence properties of a

scheme and its so-called characteristic Markov chain.

4.1 Re�nement schemes as Markov semigroups

This section is devoted to a stochastic interpretation of the subdivision rule (3) that

�rst appeared in the author's recent work [8]. More precisely, we view barycentric

subdivision as the semigroup acting on `∞(Zs, X) associated to the so-called charac-

teristic Markov chain of (ai)i∈Zs . This result requires some more prerequisites about

conditional expectations of random variables with values in Hadamard spaces.

In view of the convergence analysis of barycentric subdivision schemes, it is of

particular interest to gain a deeper understanding of principle of conditioning in case

the �ltration stems from a Markov chain. A nonlinear Markov property analogous to

(32), see [19, Theorem 5.2], leads to a representation of the conditional expectation

explicit enough for our purposes. We provide a short proof adapted to our setting,

beginning with an auxiliary result which can be found e.g. in [19]:
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Lemma 4.1. Suppose (Xk)k∈N0 is a Markov chain in Zs associated to the transition

kernel P . Choose an initial distribution α. Furthermore assume Y : Ω → X is Fn-

measurable with separable range, and let x ∈ `∞(Zs, X). Then for nonnegative and

measurable f : X ×X → R and m ≥ n we have∫
Ω

f(x ◦Xm(ω), Y (ω))Pα(dω) =

∫
Ω

∑
j

pn,m(Xn(ω), j)f(xj, Y (ω))Pα(dω).

Proposition 4.2 (Nonlinear Markov property). Let (Xk)k∈N0 be a Markov chain as

in Lemma 4.1, and suppose x ∈ `∞(Zs, X), with (X, d) Hadamard. Choose n,m ∈ N0

with n < m. Then

Eα(x(Xm)|Fn)(ω) = argmin
∑
j∈Zs

p(m−n)(Xn(ω), j)d2(xj, · )

= EXn(ω)(x(Xm)).

(34)

Proof. By the linear Markov property (32),

Y (ω) := argmin
(
Eα(d2(x ◦Xm, · ) | Fn)(ω)

)
= argmin

∑
j∈Zs

p(m−n)(Xn(ω), j)d2(xj, · ).

Clearly Y , as a measurable function of Xn, is Fn-measurable. Thus, in order to

verify that Y is indeed the conditional expectation of x(Xm) given Fn, it remains

to show that for each Fn-measurable function Z with separable range the inequality

Eα(d2(Xm, Y )) ≤ Eα(d2(Xm, Z)) holds true, cf. De�nition (18). For this sake, de�ne{
ψ : Zs ×X → [0,∞];

(i, z) 7→
∑

j p
(m−n)(i, j)d(xj, z).

By construction of Y we have ψ(Xm, Y ) ≤ ψ(Xm, Z). Thus, Lemma 4.1 implies

Eα(d2(x ◦Xm, Y )) = Eα(ψ(Xm, Y ))

≤ Eα(ψ(Xm, Z))

= Eα(d2(x ◦Xm, Z)).

Remark 4.3. Proposition 4.2 implies that the expression Eα(x(Xm)|Fn) actually is

independent of the initial distribution α. Therefore we omit α in the following and

simply write E(x(Xm)|Fn).
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We are now in a position to establish a link between nonlinear Markov semigroups

and barycentric re�nement processes. Suppose a = (ai)i∈Zs is a nonnegative compactly

supported s-variate sequence such that
∑

j ai−2j = 1 for all i ∈ Zs. Then clearly

pa(i, j) = ai−2j (35)

de�nes a Markov transition kernel. De�ne recursively a0
i = δ(i), where δ denotes the

Dirac delta on the origin, and

a
(n+1)
i =

∑
j∈Zs

ai−2ja
(n)
j . (36)

Then obviously
(
pa
)(n)

(i, j) = a
(n)
i−2nj. We write P a = (pa(i, j))i,j∈Zs , denote the as-

sociated Markov chain by Xa
n , and refer to Xa

n as the characteristic Markov chain of

(ai)i∈Zs . The central observation of this chapter is the following consequence of the

nonlinear Markov property (34):

Theorem 4.4. Suppose x : Zs → X is bounded, where (X, d) is a Hadamard space.

Let S be a barycentric re�nement scheme acting on data from X according to the

subdivision rule (3). Let Xa
n denote the characteristic Markov chain of (ai)i∈Zs. Then

Snx ◦Xa
0 = E(x ◦Xa

n |||F0).

Proof. This statement is proven by induction over n using the following computation

based on Proposition 4.2:

E(x ◦Xa
n | Fn−1) = argmin

(∑
j∈Zs

pa(Xa
n−1, j)d

2(xj, ·)
)

= argmin
(∑
j∈Zs

aXa
n−1−2jd

2(xj, ·)
)

= Sx ◦Xa
n−1.

The rest of this chapter is devoted to analyzing the e�ects of this representation of

the iterates of S on the convergence properties of barycentric schemes with nonnegative

masks.

4.2 The convergence problem

4.2.1 A primer on linear subdivision schemes

We begin this section by summarizing some well-known facts about the convergence

of barycentric schemes acting on real-valued input data. As a standard reference we
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mention [6]. Other classical resources on this topic are [16] and, in the irregular grid

case, [17].

Theorem 4.5. Suppose a = (ai)i∈Zs is an s-variate compactly supported sequence of

nonnegative reals. De�ne a re�nement scheme S̃ : `∞(Zs,R)→ `∞(Zs,R) via

S̃xi =
∑
j∈Zs

ai−2jxj, where x ∈ `∞(Zs).

We call S̃ convergent if, in addition to (1), there is at least one nonvanishing limit

function, that is, S̃∞ 6= 0. Then a necessary condition for the convergence of S̃ on R
is the basic sum rule (2). In case the mask (ai)i∈Zs obeys this rule, we conclude

S̃xi = argmin

(∑
j∈Zs

ai−2j|xj − · |2
)

= argmin

(∑
j∈Zs

ai−2jd|·|(xj, · )2

)
.

Moreover, S̃ converges if and only if there exists a continuous ϕ : R → R subject to

the functional equations

ϕ(t) =
∑
j

ajϕ(2t− j) (37)∑
j

ϕ(t− j) = 1. (38)

Due to Equation (37), ϕ is referred to as an a-re�nable function. Given bounded,

real-valued input data (xi)i∈Zs, the limit function may be written as

S̃∞x(t) =
∑
j∈Zs

ϕ(t− j)xj.

In particular, ϕ = S̃∞δ, where δ denotes the Dirac distribution on the origin.

We decompose the proof of Theorem 4.5 into a series of lemmas, the �rst of which

relates the convergence of S̃ to the convergence of the so-called cascade algorithm. The

idea behind this algorithm designed to construct an a-re�nable function ϕ is elegant

and simple - de�ne the operator T : C(Rs,R)→ C(Rs,R) via

Tf(t) :=
∑
i∈Zs

aif(2t− i),
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for any continuous f : Rs → R. Then obviously if the iterates of T applied to some

f ∈ C(Rs,R) would converge to some continuous function

ϕ = lim
n→∞

T nf

in the supremum norm, ϕ, as a �xed point of T , would satisfy the re�nement equation

(37).

Lemma 4.6. Let a(n) = S̃nδ as in (36). Then it holds that

T nf(t) =
∑
i∈Zs

a
(n)
i f(2nt− i). (39)

Proof. To simplify notation set p = pa, where pa is given by (35). Recall that

p(n)(i, j) = a
(n)
i−2nj. The Chapman-Kolmogorov equations (33) imply∑

j

a
(n)
i−2njaj =

∑
j

p(n)(i, j)p(j, 0)

= p(n+1)(i, 0) = a
(n+1)
i .

Obviously (39) is true in case n = 0, so the general case follows from induction:

T n+1f(t) =
∑
j∈Zs

ajT
nf(2t− j)

=
∑
j∈Zs

aj
(∑
i∈Zs

a
(n)
i f(2n+1t− 2nj − i)

)
=
∑
i∈Zs

(∑
j∈Zs

a
(n)
i−2njaj

)
f(2n+1t− i)

=
∑
i∈Zs

a
(n+1)
i f(2n+1t− i).

Lemma 4.7. Suppose S̃ converges, and assume supp(a) is bounded. Then S̃∞δ has

compact support.

Proof. De�ne Ω := supp(a). Observe that a(2)
i =

∑
j∈Zs ai−2jaj 6= 0 implies that there

is j ∈ Ω such that i− 2j ∈ Ω. In particular, supp(a(2)) ⊆ Ω + 2Ω. Following the same

lines and using induction, one shows that

supp(a(n)) ⊆ Ω + 2Ω + · · ·+ 2n−1Ω.
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Now if t = i/2n is a dyadic real number such that S̃∞δ(t) 6= 0, we may assume n large

enough for a(n)
i 6= 0 to hold true. In particular, this implies i ∈ Ω + 2Ω + · · ·+ 2n−1Ω

and hence

t ∈ 1

2
Ω + · · ·+ 1

2n
Ω.

Moreover, in case Ω is bounded, say ‖x‖ ≤ R for x ∈ Ω, it follows that

‖t‖ ≤ R,

proving the claim.

Lemma 4.8. Suppose S̃ converges. Then the cascade algorithm converges in the sense

that for any continuous, compactly supported f : Rs → R satisfying∑
i∈Zs

f(i) = 1, (40)

the limit limn→∞ T
nf in the supremum norm exists and is compactly supported. More-

over, for any f as speci�ed above, the limit of the cascade algorithm applied to f

satis�es

lim
n→∞

T nf = S̃∞δ.

Proof. For n ∈ N and any i ∈ Zs we observe

|S̃∞δ(i/2n)− T nf(i/2n)| ≤ |S̃∞δ(i/2n)− S̃nδi|+ |S̃nδi − T nf(i/2n)|

The �rst term on the right hand side of this inequality converges to 0 uniformly in i

as n → ∞, so all we have to take care of is the second summand: By (39), it holds

that

T nf(t) =
∑
j∈Zs

a
(n)
j f(2nt− j)

=
∑
j∈Zs

S̃nδjf(2nt− j).

Using this basic fact as well as
∑

j∈Zs f(j) = 1, one concludes

|S̃nδi − T nf(i/2n)| = |
∑
j∈Zs

(
S̃nδi − S̃nδj

)
f(i− j)|

≤M sup
j : (i−j)∈supp(f)

|S̃nδi − S̃nδj|,
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where M =
∑

j∈Zs |f(j)|. The last essential estimate is

|S̃nδi − S̃nδj| ≤ |S̃nδi − S̃∞δ(i/2n)|+ |S̃∞δ(i/2n)− S̃∞δ(j/2n)|+ |S̃nδj − S̃∞δ(j/2n)|,

which, together with the uniform continuity of S̃∞δ proves the claim.

Lemma 4.9. Suppose S̃ converges. Then the basic sum rule (2) holds true, meaning

that for all i ∈ Zs one has ∑
j∈Zs

ai−2j = 1.

Proof. Choose initial data x ∈ `∞(Zs,R) mapped to a nonvanishing function by the

limit operator, and, given i0 ∈ Zs, select a dyadic vector i/2n+1 such that S̃∞x(i/2n+1)

6= 0 and i− i0 ≡ 0 mod 2. The equation

S̃n+1xi =
∑
j∈Zs

ai−2jS̃
nxj (41)

points at the further proof strategy�given ε > 0, choose n ∈ N large enough for

|S̃kxj − S̃∞x(j/2k)| < ε to hold, for arbitrary j ∈ Zs and k ≥ n. Since the input data

sequence x without loss of generality has compact support, xj 6= 0 =⇒ ‖j‖ ≤ R, we

may modify the choice of n ∈ N in a way that guarantees

‖t− s‖ ≤ R

2n+1
=⇒ |S̃∞x(t)− S̃∞x(s)| < ε.

Omitting the details, it is clear from the above considerations, in addition to ai−2j 6= 0

=⇒ ‖ i
2n+1 − j

2n
‖ ≤ R

2n+1 , that, heuristically, (41) implies

S̃∞x(i/2n+1) ·
∑
j

ai−2j =
∑
j

ai−2jS̃
∞x(i/2n+1) ≈

∑
j

ai−2jS̃
∞x(j/2n)

≈
∑
j

ai−2jS̃
nxj = S̃n+1xi

≈ S̃∞x(i/2n+1),

and thus
∑

j∈Zs ai−2j =
∑

j∈Zs ai0−2j = 1 as desired.

Lemma 4.10. Suppose S̃ converges, and set ϕ := S̃∞δ. Then∑
i∈Zs

ϕ(t− j) = 1 for t ∈ Rs.
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Moreover, for each bounded input data sequence x ∈ `∞(Zs, X) the limit function S̃∞x

takes the following form:

S̃∞x(t) =
∑
i∈Zs

xiϕ(t− i).

Proof. The property of (ϕ(· − i))i∈Zs as a partition of unity follows readily from the

basic sum rule. Following the same reasoning that led to equation (39) and using the

re�nement equation
∑

i∈Zs aiϕ(2t− i) = ϕ(t), one shows that∑
i∈Zs

xiϕ(t− i) =
∑
i∈Zs

S̃nxiϕ(2nt− i).

This, together with
∑

i∈Zs ϕ(t− i) = 1 easily leads to the desired form of S̃∞x.

4.2.2 The impact of nonlinearity

Assuming that conditional expectations of bounded random variables mapping to the

metric space X are well-de�ned in the sense of equation (18), and in addition satisfy

the tower property (24), we could deduce from Theorem 4.4

Snx ◦X0 = E(x ◦Xa
n |||F0)

= E(x ◦Xa
n |F0)

= argmin
(∑

j

(
pa
)(n)

(X0, j)d
2(xj, · )

)
.

Recall that
(
pa
)(n)

(i, j), the n-step transition probabilities of (Xa
k )k∈N0 , can be

viewed as (S̃nδ)i−2nj, where S̃ denotes the linear counterpart to S, and δ the Dirac

delta on the origin, cf. Theorem 4.5. Thus, the assumption of the tower property

would immediately imply that every scheme converging for linear input data would

converge on X as well. Indeed, the limit functions for given input data x ∈ `∞(Zs, X)

would satisfy

S∞x(t) = argmin(
∑
j

ϕ(t− j)d2(xj, · )),

where, as above, ϕ = S̃∞δ, leading to a complete analogy to the linear case. However,

nonlinear conditioning does not obey the tower rule. The above observations demon-

strate that this lack of property (24) constitutes the need for a further discussion of

convergence.
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4.2.3 Proximity and Contractivity

We describe how classical convergence arguments involving contractivity and proximity

properties, which constitute the backbone of the analysis of subdivision schemes, carry

over to the NPC setting. The �rst result of this section is Theorem 1 of [9].

Theorem 4.11. Let S, T be re�nement schemes acting on data from a Hadamard

space X. Then S converges under the following assumptions:

(i) There is a function D : `∞(Zs, X) → R≥0, a nonnegative real number γ < 1

and a positive integer n0 such that

D(Snx) ≤ γ[n/n0]D(x) (42)

for x ∈ `∞(Zs, X) and n ∈ N. Here [ · ] denotes the �oor function.
(ii) T is convergent and satis�es

d∞(Tx, Ty) ≤ d∞(x, y)

for x, y ∈ `∞(Zs, X).

(iii) There is C ≥ 0 such that

d∞(Sx, Tx) ≤ C ·D(x)

for x ∈ `∞(Zs, X).

Proof. We set fn(y) := T∞(Snx)(2ny) and claim that this de�nes a Cauchy sequence

in (C(Rs, X), d∞). Note �rst that given n ∈ N and y ∈ Rs, by continuity of fn

respectively fn+1, we �nd j ∈ Zs and m ∈ N such that

d(fr(y), fr(2
−mj)) < C ·D(x)γ[n/n0] for r = n, n+ 1. (43)

Moreover, due to convergence of T , by multiplying both the numerator and the de-

nominator of the number j/2m with a power of two if necessary we may assume m to

be su�ciently large for

d(fr(2
−mj), Tm−r(Srx)j) = d(T∞Srx(2r−mj), Tm−r(Srx)j) < C ·D(x)γ[n/n0]
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to hold for r = n, n+ 1, in addition to (43). This together with (i) and (ii) implies

d(fn(y), fn+1(y)) ≤ d(fn(y), fn(2−mj))

+ d(fn(2−mj), Tm−nSnxj)

+ d(Tm−nSnxj, T
m−n−1Sn+1xj)

+ d(Tm−n−1Sn+1xj, fn+1(2−mj))

+ d(fn+1(2−mj), fn+1(y))

< 5C ·D(x)γ[n/n0],

showing that fn is a Cauchy sequence. Since X is complete, we �nd a continuous

f : Rs → X with fn → f uniformly. We claim that Snx converges to f in the sense of

(1). For m ≥ n and j ∈ Zs, we obtain the inequality

d(Tm−nSnxj, S
mxj) ≤

m−1∑
k=n

d(Tm−kSkxj, T
m−k−1Sk+1xj)

≤
m−1∑
k=n

γ[k/n0] ·D(x)C ≤ γ[n/n0]

(
n0D(x)C

1− γ

)
,

which together with

d(fn(2−mj), Smxj) ≤ d(fn(2−mj), Tm−nSnxj) + d(Tm−nSnxj, S
mxj)

establishes the claim.

De�nition 4.12. In accordance with [9], we call a scheme S satisfying (42) weakly

contractive. Thus, a weakly contractive scheme is contractive if and only if n0 = 1.

In the following we rely on the nonlinear version of Jensen's inequality introduced

in Chapter 2:

Theorem (Conditional Jensen's inequality, [19]). Suppose ψ : X → R is a convex,

lower semicontinuous function on a Hadamard space (X, d), and (Ω,F,P) is a prob-

ability space. Moreover suppose (Fk)k∈N0 is a �ltration in F. Then for each bounded,

FN -measurable random variable Y : Ω→ X the following holds true:

ψ(E(Y |||(Fk)k≥n)) ≤ E(ψ(Y )|Fn). (44)
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The following lemma shows that barycentric schemes with convergent linear coun-

terpart are always weakly contractive.

Lemma 4.13 ([8]). Suppose the linear scheme associated to (ai)i∈Zs converges, and

supp(a) ⊆ Ω, with Ω bounded, convex and balanced. Denote by ρ : Rs → R≥0 the

Minkowski functional of Ω. Furthermore de�ne D : `∞(Zs, X)→ R≥0 via

D(x) = sup
ρ(i−j)<2

d(xi, xj).

Then the barycentric scheme S associated to (ai)i∈Zs is weakly contractive with respect

to D.

Proof. The Hadamard property implies that for each z0 ∈ X the function

X → R≥0; z 7→ d(z, z0),

which clearly is continuous, is convex as well. Thus, by Jensen's inequality (44) and

Theorem 4.4,

d(Snx ◦X0, z0) = d(E(x ◦Xa
n |||F0), z0) ≤ E(d(x ◦Xa

n , z0)|F0). (45)

Recall that the transition kernel of Xa
n takes the form

(P a)k =
(
a

(k)

i−2kj

)
i,j∈Zs

.

Thus Proposition 4.2 implies E(d(Xa
n , z0)|F0) =

∑
k∈Zs a

(n)
Xa

0−2nkd(xk, z0). Together

with (45) this gives

d(Snxi, z0) ≤
∑
k∈Zs

a
(n)
i−2nkd(xk, z0) for all i ∈ Zs.

Substituting Snxj for z0, we deduce

d(Snxi, S
nxj) ≤

∑
k∈Zs

a
(n)
i−2nkd(xk, S

nxj)

≤
∑

k∈Zs,`∈Zs
a

(n)
i−2nka

(n)
j−2n`d(xk, x`).

The fact that the support of (ai)i∈Zs is contained in the balanced, convex and bounded

set Ω together with the recursion a(n)
i =

∑
j ai−2ja

(n−1)
j implies supp(a(n)) ⊆ (2n−1)Ω,

see [6] and Lemma 4.7.
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Since the linear subdivision scheme with mask (ai)i∈Zs converges, we �nd a re�nable

function ϕ : Rs → R satisfying (37) and (38), cf. Theorem 4.5. Recall that one

obtains this re�nable function as the limit of the linear scheme acting on the input

data yj = δj0, cf. Theorem 4.5 :

sup
i
|a(n)
i − ϕ(i/2n)| = εn −→

n→∞
0. (46)

Accordingly, setting A = {(k, `) ∈ Zs ×Zs | max(ρ(i− 2nk), ρ(j − 2n`)) ≤ 2n − 1}, we
obtain

d(Snxi, S
nxj) ≤

∑
(k,`)∈A

a
(n)
i−2nka

(n)
j−2n`d(xk, x`)

≤
∑

(k,`)∈A

ϕ(i/2n − k)ϕ(j/2n − `)d(xk, x`)

+ εn

 ∑
(k,`)∈A

(a
(n)
i−2nk + a

(n)
j−2n`)d(xk, x`)


+ ε2

n

 ∑
(k,`)∈A

d(xk, x`)

 .

(47)

Now, if i, j, k, ` ∈ Zs are such that ρ(i− j) < 2, ρ(i− 2nk) ≤ 2n − 1 and ρ(j − 2n`) ≤
2n − 1, one concludes

ρ(k − `) ≤ 1

2n
(ρ(i− 2nk) + ρ(i− j) + ρ(j − 2n`)

<
1

2n
(2(2n − 1) + 2) = 2.

(48)

De�ne

ψ(s, t) =
∑
i∈Zs

ϕ(t− i)ϕ(s− i).

Then, since the re�nable function is uniformly continuous, the property (38) implies

that for n large enough,

αn = inf
ρ(t−s)<2−n+1

ψ(s, t) > ε > 0. (49)

By boundedness of Ω we also obtain

M = sup
t∈Rs
|Zs ∩ (t+ Ω)| <∞. (50)
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Combining (38) with (47) through (50) further gives

D(Snx) = sup
ρ(i−j)<2

d(Snxi, S
nxj) ≤ γnD(x), (51)

where γn = (1−αn+2εn+M2ε2
n). Clearly, for n0 large enough, γ = γn0 < 1. Moreover,

the estimate (51) is uniform in x (and even d). The same argument leading to the �rst

inequality in (47) together with (48) provides

D(Smx) ≤ D(Skx) for m ≥ k.

Thus, for n ∈ N one concludes:

D(Snx) ≤ γD(Sn−n0x)

≤ γ[n/n0]D(Sn−n0[n/n0])

≤ γ[n/n0]D(x),

which completes the proof.

In Lemma 4.13 it was proven that every convergent linear scheme gives rise to

a weakly contractive barycentric scheme. We now show how strong contractivity in

some instances follows from special properties of the mask's support and how the mask

in�uences the shape of the contractivity constant.

Lemma 4.14. Let α1, . . . αn ≥ 0 and β1, . . . , βn ≥ 0 be probability distribution func-

tions on Ω = {0, . . . , n}. Then there exists a coupling π : Ω × Ω → [0, 1] of α and β

such that πii = min(αi, βi).

Proof. Without restriction of generality suppose αi = min(αi, βi) for i = 1, . . . , k and

βj = min(αj, βj) for j = k + 1 . . . , n. Then obviously

c =
k∑
i=1

(βi − αi) =
n∑

i=k+1

(αi − βi).

Excluding the trivial case k = n, we may assume c > 0. De�ne

πij =


(βi−αi)(αj−βj)

c
for i = 1, . . . , k and j = k + 1, . . . , n

min(αi, βi) for 1 ≤ i = j ≤ n

0 otherwise.

One readily veri�es that π constitutes a coupling of α and β, and by de�nition satis�es

πii = min(αi, βi).
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The next proposition establishes a class of strongly contractive schemes on Hada-

mard spaces, including the ones generating splines of arbitrary degree. This result and

its linear counterpart, see Proposition 3.1 in [6], are equally powerful in identifying

contractivity.

Proposition 4.15 ([9]). Suppose S and the corresponding D are as in Lemma 4.13.

Then we have

D(Sx) ≤ γD(x),

where

γ = 1− min
ρ(i−j)<2

(∑
k∈Zs

min(ai−2k, aj−2k)

)
.

In particular, if for each i, j ∈ Zs with ρ(i − j) < 2 one �nds k ∈ Zs such that

i − 2k ∈ supp(a) and j − 2k ∈ supp(a), then γ < 1 and hence S is contractive w.r.t.

D.

Proof. Introducing probability distributions αi by letting αik = ai−2k, we have Sxi =

b(x∗α
i) for i ∈ Zs. Thus, with the notation

ηij =
∑
k∈Zs

min(ai−2k, aj−2k),

Theorem (28) implies

D(Sx) = sup
ρ(i−j)<2

d(b(x∗α
i), b(x∗α

j))

≤ sup
ρ(i−j)<2

[(1− ηij) max
ρ(i−2k),ρ(i−2`)≤1

d(xk, x`)].
(52)

Certainly ρ(i− j) < 2 together with ρ(i− 2`) ≤ 1 and ρ(j − 2k) ≤ 1 implies

ρ(k − `) ≤ ρ(k − j

2
) + ρ(

`

2
− i) + ρ(

1

2
(i− j)) < 2.

Combining this with (52), we obtain D(Sx) ≤ γD(x) as required.

Proposition 4.15 provides us with a contractivity criterion that solely depends on

the structure of the mask's support. Thus every linear scheme seen to be contractive

using the linear version of the above proposition possesses a contractive barycentric

analogue. In particular, this applies to the class of schemes identi�ed in chapter 3 of

[6], see Corollary 4.16 below. Recall that a centered zonotope is de�ned as Z(X) =

{Xu | u ∈ Rn, ‖u‖∞ ≤ 1} with X ∈ Zs×n, n > s. Z(X) is called unimodular if and

only if each s× s � minor of X has determinant −1, 0, or 1, and rank(X) = s.
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Corollary 4.16 ([9]). Suppose the barycentric scheme S possesses a mask whose sup-

port is an integer quad with edges of length at least 2, or supp(a) = Z(X) ∩ Zs with
Z(X) unimodular. Then S is contractive w.r.t. some contractivity function D admis-

sible in the sense of (4).

Proof. This is a direct consequence of the proofs of Theorems 3.3 and 3.4 of [6], and

Proposition 4.15.

Recall that the tensor product (a ⊗ b)i∈Zs+tof two masks (ai)i∈Zs and (bj)j∈Zt is

de�ned by

(a⊗ b)(i,j) = ai · bj.

The next lemma identi�es linear B-spline subdivision as a model scheme suitable for

our convergence analysis.

Lemma 4.17 ([9]). Suppose S and the corresponding D are as in Lemma 4.13. De�ne

(bi)i∈Z via b0 = 1, b−1 = b1 = 1
2
, and bi = 0 for |i| > 1. Let T denote the barycentric

scheme associated to the s-fold tensor product b⊗ · · · ⊗ b. Then T is Lipschitz in the

sense of (5) and converges on any Hadamard space. Moreover, there is C > 0 such

that d∞(Sx, Tx) ≤ C ·D(x) for all x ∈ `∞(Zs, X).

Proof. We begin by proving convergence. De�ne D∞(x) = sup‖i−j‖≤1 d(xi, xj). By

Corollary 4.16, D∞(Tx) ≤ γD∞(x), with γ < 1. For n ∈ N0, de�ne fn : Rs → X as

follows:

1. For t ∈ R, set ϕ0(t) = max{1− |t|, 0} and de�ne ϕ(t1, . . . , ts) =
∏

i ϕ0(ti).

2. Set fn(ζ) = argmin(
∑

k ϕ(2n−1ζ − k)d( · , T n−1xk)
2).

This function is continuous since the center of mass depends continuously on the

weights. Moreover, fr(j/2r) = T rxj for each j ∈ Zs by construction of ϕ. Suppose

ζ ∈ Rs is contained in some dyadic cube Q =
∏

[ki2
−r+1, (ki + 1)2−r+1], where ki ∈ Z.

Clearly ϕ ≡ 0 outside {ξ ∈ Rs | ‖ξ‖∞ < 1}, from which we conclude that

fr(ζ) = argmin
∑

v∈V (Q)

ϕ(2r−1(ζ − v))d(·, T r−1x(v))2,
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where V (Q) denotes the vertex set of Q. Applying the inequality (28), we obtain

max
v∈V (Q)

d(T r−1x(v), fr(ζ)) ≤ max
v,w∈V (Q)

d(T r−1x(v), T r−1x(w))

≤ D∞(T r−1x) ≤ γr−1D∞(x).
(53)

Certainly, every dyadic cube of edge length 2−n shares a vertex with a dyadic cube

of edge length 2−n+1. Together with (53) applied to r = n, n + 1, this implies

d(fn(ζ), fn+1(ζ)) < 2γn−1D∞(x). It is straightforward to show that f := limn fn

is a uniform limit of T nx.

Lipschitz continuity is an easy consequence of inequality (28). Indeed, denoting

the mask of T by b, for i ∈ Zs we have

d(Txi, T yi) ≤
∑
j∈Zs

bi−2jd(xj, yj) ≤ d∞(x, y),

since T is a�ne invariant, i.e.
∑

j bi−2j = 1.

The proximity inequality d∞(Sx, Tx) ≤ C · D(x) is proven along the same lines,

for details see [9].ity d∞(Sx, Tx) ≤ C ·D(x) is proven along the same lines, for details

see [9].

4.2.4 Proof of Theorem 1.2

Suppose S denotes the barycentric scheme associated to the nonnegative mask (ai)i∈Zs .

Under the assumption that the linear counterpart of S converges, combining Lemmas

4.13 and 4.17, we �nd a function D : `∞(Zs, X) → R≥0, a convergent scheme T :

`∞(Zs, X)→ `∞(Zs, X), and constants γ < 1 and C ≥ 0 such that

(i) There is a positive integer n0 such that D(Snx) ≤ γ[n/n0]D(x) for x ∈ `∞(Zs, X)

and n ∈ N.

(ii) T ∈ Lip1(`∞(Zs, X)) is convergent.

(iii) d∞(Sx, Tx) ≤ C ·D(x) for x ∈ `∞(Zs, X).

Thus, by Theorem 4.11, the scheme S converges.

Remark 4.18. Statements relating the convergence of a nonlinear subdivision scheme

to the convergence of its linear counterpart have been obtained in the smooth setting in

[11, 25], although with severe restrictions on the density of the input data. As for con-

vergence theorems applying to arbitrary bounded input data, initial univariate results
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from [23] have been substantially extended in the articles [9, 8] presented within this

thesis. To the best of our knowledge the latter articles also �rst consider subdivision

algorithms in metric spaces without di�erentiable structure. Another recent result on

the convergence of a small class of interpolatory schemes on smooth manifolds without

restriction on the input data can be found in [21]. Independent of the author, Jetter

and Li in their article [13] recently reproved and extended results on linear subdivision

schemes using notions from the theory of Markov chains.

4.2.5 A characterization of convergence

A well-known result from the linear theory is the following:

Proposition 4.19. The univariate and linear scheme S̃ associated to the mask (ai)i∈Z

converges if and only if there is γ < 1 and C ≥ 0 such that

sup
i∈Z
|S̃nxi − S̃nxi+1| ≤ C · γn sup

i∈Z
|xi − xi+1| for all n ∈ N0.

Theorems 1.2 and 4.11 along with Lemma 4.13 put us in a position to generalize

this statement to the setting of Hadamard spaces. Still we need an easy auxiliary

result.

Lemma 4.20. Suppose (X, d) is a metric space, and let

D∞(x) = sup
‖i−j‖∞≤1

d(xi, xj).

Then a re�nement scheme S is weakly contractive with respect to an admissible con-

tractivity function if and only if there is γ < 1 and C ≥ 0 such that

D∞(Snx) ≤ CγnD∞(x).

Proof. Suppose S is weakly contractive with respect to DΩ, meaning there is n0 ∈ N
and γ̃ < 1 such that D ◦ Sn ≤ γ̃(n/n0)D. It is not di�cult to see (cf. [9]) that there

are r, R > 0 such that

rDΩ ≤ D∞ ≤ RDΩ.

Observe that, since [n/n0] ≥ n/n0−1 one has γ̃[n/n0] ≤ γ̃n/n0−1 = C̃γn, where C̃ = γ̃−1

and γ = γ̃1/n0 < 1. Moreover de�ne C = RC̃
r
. Then

D∞ ◦ Sn ≤ RDΩ ◦ Sn ≤ Rγ̃[n/n0]DΩ

≤ R

r
C̃γnD∞ = CγnD∞.
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Now assume there is γ < 1 and C ≥ 0 such that

D∞ ◦ Sn ≤ CγnD∞.

Choose n0 ∈ N such that CR
r
γn0 ≤ 1. From (44) it follows that DΩ ◦Sn ≤ DΩ. On the

other hand, for n ≥ n0 we have [n/n0] ≤ n− n0 and thus

DΩ ◦ Sn ≤
1

r
D∞ ◦ Sn ≤

C

r
γnD∞

≤
(
RC

r
γn0

)
γn−n0DΩ ≤ γ[n/n0]DΩ.

We are now able to generalize Proposition 4.19:

Theorem 4.21 ([8]). The re�nement scheme associated to (ai)i∈Zs converges on arbi-

trary Hadamard spaces if and only if there is C ≥ 0 and γ < 1 such that for all (X, d)

Hadamard

D∞(Snx) ≤ C · γnD∞(x) for all x ∈ `∞(Zs, X),

where, as above, D∞(x) = sup‖i−j‖∞≤1 d(xi, xj).

Proof. This follows from combining Lemma 4.20 with Lemma 4.13 and Theorem 4.11.

4.2.6 Approximation power of barycentric subdivision schemes

We present an approximation result for Lipschitz functions and a statement highlight-

ing the e�ect of the contractivity constant on the quality of convergence.

Theorem 4.22 ([9]). Suppose f : (Rs, ‖ · ‖) → (X, d) is Lipschitz-continuous with

constant C > 0, and S is a convergent barycentric scheme whose mask is supported

on {x ∈ Rs | ‖x‖ ≤ r}. Sample f on the grid hZs, h > 0, via xi = f(hi). Then

d∞(S∞x(h−1·), f(·)) ≤ rC · h.

Proof. Suppose n ∈ N0 and i ∈ Zs. Then by Theorems 2.35 and 4.4 we obtain

d(Snx2n−ki, f(hi/2k)) ≤
∑

‖2n−ki−2nj‖≤(2n−1)r

a
(n)

2n−ki−2nj
d(xj, f(hi/2k))

≤ sup
‖i/2k−j‖≤(1−2−n)r

d(f(hj), f(hi/2k))

≤ rC · h,
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from which the claim follows.

Theorem 4.23 ([9]). Suppose the barycentric subdivision scheme S converges. Then

there is C > 0 and γ < 1 such that

d(S∞x(j/2n), Snxj) ≤ C · γnD∞(x).

Proof. Suppose Ω is a balanced convex set with nonempty interior such that supp(a) ⊆
4Ω◦. Let DΩ denote the admissible contractivity function associated to Ω, cf. (4).

Then by (28),

d(Sx2j, xj) ≤
∑

ρΩ(2(j−k))<4

a2(j−k)d(xk, xj) ≤ DΩ(x).

By Theorem 4.21, there is C1 > 0 and γ < 1 such that

D∞(Snx) ≤ C1γ
nD∞(x).

Choose C2 such that DΩ ≤ C2D∞. Then

d((Smx)2m−nj, S
nxj) ≤ C1C2γ

n

(
D∞(x)

1− γ

)
. (54)

Thus the statement follows by taking the limit in m on the left hand side of equation

(54), and setting C := C1C2

1−γ .

4.3 A note on di�usion tensor subdivision

In this section we address the impact of the strong law of large numbers, cf. Theorem

2.39, on the properties of barycentric subdivision algorithms acting on di�usion tensor

valued data. For a survey of mathematical and algorithmic methods in tensor �eld

processing see e.g [24]. Recall that a possible realization of the space of di�usion

tensors is the set of positive de�nite symmetric matrices P(n). Introducing the metric

d(x, y) =
∥∥log(x−1/2yx−1/2)

∥∥
F
,

where ‖ · ‖F denotes the Frobenius norm, renders the space of di�usion tensors a

symmetric space of noncompact type and thus a Hadamard space. Consequently, it

is possible to perform barycentric subdivision, with the linear equivalence theorem

(Theorem 1.2) at hand. Even more, the limits of convergent schemes enjoy structure
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preserving features such as invariance under inversion. The central result of the present

section is Corollary 4.27, which extends work from [18].

Recall the laws of large numbers 2.39 from Chapter 2:

Theorem (The Laws of Large Numbers, [20]). Suppose Yn : (Ω,F,P) → (X, d) is an

i.i.d. sequence of random variables with values in a Hadamard space. De�ne recursively

S1 := Y1

Sn+1 := b

(
1

n+ 1
δYn+1 +

n

n+ 1
δSn

)
=

1

n+ 1
Yn+1 +

n

n+ 1
Sn.

Then the following hold true:

Weak Law of Large Numbers: Suppose Var(Y1) <∞. Then

Sn → EY1 in L2.

Strong Law of Large Numbers: Suppose Y1 is bounded a.s. Then

Sn → EY1 a.s.

Remark 4.24. The laws of large numbers as stated above are of great signi�cance in

the sense that they provide a way to compute the expected value of a random variable

using repeated binary averaging. The impact of this observation is two-fold: First, it

is of great value in generalizing facts on binary averages to expected values. Second, it

provides a Monte Carlo method to compute expected values of random variables with

values in Hadamard spaces whose geodesics are well-understood.

We will also make use of the following straightforward Lemma:

Proposition 4.25 (Isometries). Let ψ : (X, d)→ (X ′, d′) be an isometry of Hadamard

spaces. Then for each random variable Y with values in X one has

E(ψ(Y )) = ψ(E(Y )).

Theorem 4.26 ([8]). Suppose Y : (Ω,F,P)→ (P(n), d) is a bounded random variable

with values in the space of positive de�nite symmetric matrices. Moreover, let α :

(Ω,F,P)→ P(1) = R>0 be bounded, and Q ∈ SO(n). Then

E(Y −1) = E(Y )−1 (55)

E(αY ) = E(α)E(Y ) (56)

E(QTY Q) = QTE(Y )Q. (57)
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Moreover, if det(Y ) = 1, then det(E(Y )) = 1.

Proof. Equations (55) and (57) follow from the fact that both the inverse function

and conjugation with an orthogonal matrix constitute isometries on (P(n), d). Since

{x ∈ P(n) | det(x) = 1} is a convex and closed subset of P(n), the last statement

follows from the fact that the expected value of a random variable lies within the convex

hull of its range. The conformity property (56) is trivial to show in case #Y (Ω) = 2,

for the geodesic joining x0 and x1 is given explicitly as

xt = x
1/2
0 (x

−1/2
0 x1x

−1/2
0 )tx

1/2
0 .

Passing to the general case, we invoke the strong law of large numbers (Theorem 2.39).

Suppose Yn is an i.i.d. sequence of random variables with the same law as Y , and αn

are i.i.d. versions of α. De�ne Sn = 1
n

∑n
i=1 Yi and σn = 1

n

∑n
i=1 αi as in Theorem

2.39. Inductively one shows
1

n

n∑
i=1

αiYi = σn · Sn. (58)

Indeed, the case n = 1 being trivial, the induction step reduces to the case of a binary

average as above:

1

n+ 1

n+1∑
i=1

αiYi =
1

n+ 1
αn+1Yn+1 +

n

n+ 1

(
1

n

n∑
i=1

αiYi

)
=

1

n+ 1
αn+1Yn+1 +

n

n+ 1
σn · Sn

=

(
1

n+ 1
αn+1 +

n

n+ 1
σn

)(
1

n+ 1
Yn+1 +

n

n+ 1
Sn

)
= σn+1Sn+1

Choosing ω ∈ Ω such that σn(ω)→ E(α) and Sn(ω)→ E(Y ), evaluating both sides of

equation (58) at ω, and letting n→∞ in the same equation concludes the proof.

Corollary 4.27 ([8]). Suppose S : `∞(Zs,P(n)) → `∞(Zs,P(n)) is a convergent

barycentric subdivision scheme, and let

S∞ : `∞(Zs,P(n))→ C(Rs,P(n))

denote the limit operator. Moreover suppose α : Zs → P(1) = R>0 is bounded, and
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Q ∈ SO(n). Then for all x ∈ `∞(Zs,P(n))

S∞(x−1) = (S∞x)−1

S∞(αx) = S∞α · S∞x

S∞(QTxQ) = QT (S∞x)Q.

In addition, if det(xi) = 1 for all i ∈ Zs, then det(S∞x) ≡ 1.

Remark 4.28. In case of subdivision algorithms acting on input data from P(n) via a

�nite number of repeated binary averages in each re�nement step, an analogous version

of Corollary 4.27 was shown in [18]. In this particular situation the aforementioned

properties of S∞ already follow from a restriction of 4.26 to random variables with

#Y (Ω) = 2.

4.4 Lp-convergence of the characteristic Markov chain

This short section clari�es the relationship between the stochastic convergence of the

Markov chain associated to (ai)i∈Zs and its counterpart in the theory of barycentric

subdivision schemes.

Lemma 4.29. Suppose supp(a) ⊆ C∩Zs, where C is a convex, balanced, and compact

set. Let ρ : Rs → R≥0 denote the Minkowski functional of C. Recall the notation Pi for
the probability measure on (Zs)N0 induced by the transition kernel P a and the initial

distribution δ{i}. Then

ρ(i) ≤ 2n =⇒ Pi(Xa
n ∈ 2C) = 1.

In other words, the Markov chain with deterministic initial condition Xa
0 = i reaches

2C within [log2(ρ(i))] + 1 steps and remains in this set thereafter.

Proof. Recall that since supp(a) ⊆ C, for any j ∈ Zs we obtain

a
(n)
i−2nj 6= 0 =⇒ ρ(i− 2nj) ≤ 2n.

Thus the fact that ρ(i)/2n ≤ 1 renders the right hand side of

Pi(Xa
n ∈ Zs \ 2C) =

∑
ρ(j)>2

a
(n)
i−2nj

an empty sum, since ρ(i− 2nj) ≤ 2n implies

ρ(j) ≤ ρ(i− 2nj)/2n + ρ(i)/2n ≤ 2.



Stochastic aspects of re�nement schemes on metric spaces 57

Theorem 4.30 ([8]). Let p ∈ [1,∞). Suppose the characteristic Markov chain Xa
n of

(ai)i∈Zs with deterministic initial condition ` ∈ Zs possesses a stationary distribution

π in the sense that for all j ∈ Zs, |a(n)
`−2nj − πj| → 0 as n→∞. Then Xa

n converges in

Lp(Ω,P`;Rs) if and only if there is k ∈ Zs such that π = δk. In this case,

E`(‖Xa
n − k‖p)→ 0 as n→∞.

Proof. Let ρ denote the Minkowski functional of a balanced, closed and convex set

containing supp(a). Moreover, for n ∈ N de�ne

An = {(i, j) ∈ Zs × Zs | max(ρ(`− 2nj), ρ(j − 2ni)) ≤ 2n − 1}.

Note that (i, j) ∈ An implies that ρ(j) ≤ 1 + ρ(`)−1
2n

as well as ρ(i) ≤ 1 + ρ(`)−1
22n . Thus

there is a bounded set B such that ⋃
n∈N

An ⊆ B.

Moreover we have∫
Ω

‖Xa
2n(ω)−Xa

n(ω)‖pP`(dω) =
∑
i,j∈Zs

‖i− j‖pP`(Xa
2n = i ∧Xa

n = j)

=
∑
i,j∈Zs

‖i− j‖pP`(Xa
2n = i|Xa

n = j)P`(Xa
n = j)

=
∑

(i,j)∈An

‖i− j‖pa(n)
j−2nia

(n)
`−2nj.

(59)

Certainly, since B is bounded, the sequence

εn := sup
(i,j)∈B

(|πi − a(n)
j−2ni|+ |πj − a

(n)
`−2nj|)

converges to zero as n→∞. Consequently, we obtain E`(‖Xa
2n −Xa

n‖p) ≥ cn, where

cn =
∑

(i,j)∈An

‖i− j‖pπiπj

− εn
∑

(i,j)∈An

‖i− j‖p(a(n)
j−2ni + a

(n)
`−2nj)

− ε2
n

∑
(i,j)∈An

‖i− j‖p.

(60)

Thus, whenever there are integers i 6= j such that πi > 0 and πj > 0, Equation (60)

implies that E`(‖Xa
2n − Xa

n‖) is bounded away from zero asymptotically. Hence for

Lp-convergence of Xa
n we need the existence of some k ∈ Zs with πi = δki.
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Conversely, assume that π = δ{k}. Then since Xa
n → k in distribution, Xa

n → k in

probability. From Lemma 4.29 we conclude that there is M > 0 such that ‖Xa
n‖ ≤M

holds P`-almost surely for n ∈ N. Hence for δ > 0,

E`(‖Xa
n − k‖p) ≤

∫
{‖Xa

n−k‖≥δ}
‖Xa

n − k‖pdP` +

∫
{‖Xa

n−k‖<δ}
‖Xa

n − k‖pdP`

≤ (M + k)pP`(‖Xa
n − k‖ ≥ δ) + δp,

showing that E`(‖Xa
n − k‖) converges to zero.

Suppose now that the subdivision scheme associated to (ai)i∈Zs converges. Then a

re�nable function ϕ satisfying (37) and (38) exists. Substituting i ∈ Zs for t in

ϕ(t) =
∑
j

ajϕ(2t− j)

and exploiting the fact that
∑

i ϕ(i) = 1, we observe that πi = ϕ(−i) is a stationary

distribution for Xa
n . Moreover recall that a convergent scheme is called interpolatory

if and only if there is k ∈ Zs such that for j ∈ Zs, ϕ(j) = δkj. Now Theorem 4.30

translates to the language of re�nement schemes as follows:

Corollary 4.31. Suppose the linear scheme associated to (ai)i∈Zs converges, and p ∈
[1,∞). Then the characteristic Markov chain of Xa

n with deterministic initial condition

` ∈ Zs converges in Lp(Ω,P`;Rs) if and only if the scheme is interpolatory. In this

case the Lp-limit is a constant lattice point.
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