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Abstract

Computations in the brain differ fundamentally from those in traditional digital
computers. Most notably, the brain is organized in a massively parallel manner
and has the ability to learn. The Liquid State Machine has emerged as a powerful
model that provides a framework for explaining computation and learning in bi-
ological networks of neurons: Recurrent networks of spiking neurons can serve as
generic preprocessing units that allow simple, typically linear readout neurons of
these networks to be adapted for complex computational tasks. This thesis makes
important contributions to this framework in two ways. It investigates a number of
unsupervised learning algorithms, which are potential candidates for such readout
mechanisms, and provides novel experimental evidence for this computing model
using data from the primary auditory cortex of awake ferrets.

First, it is shown how two unsupervised learning mechanisms, information bot-
tleneck optimization and independent component analysis, can in principle be im-
plemented using biologically realistic neuron models by deriving suitable learning
rules from these abstract information theoretic principles. The resulting learning
rules are analyzed theoretically and tested in a number of computer simulations.

Second, slow feature analysis is investigated as another unsupervised learning
principle. A theoretical analysis shows that under some conditions on the statis-
tics of the input time series it is able to achieve the classification capability of a
well-known supervised learning method, Fisher’s linear discriminant. Furthermore,
readouts of a computer model of a cortical microcircuit trained with this method
are able to learn to detect repeating firing patterns within a stream of spike trains
with the same firing statistics and to discriminate between the network responses
to different stimuli in a completely unsupervised manner.

Finally, biological data from neurons in the primary auditory cortex of ferrets
are analyzed using state-of-the-art methods from machine learning and information
theory. It is shown that sequentially arriving stimulus information is integrated
over time and superimposed in a non-linear way into the neural responses at one
point in time. This provides thus experimental evidence for the liquid computing
model, for the first time using data from awake animals.
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Zusammenfassung

Berechnungen im Gehirn unterscheiden sich fundamental von denen in traditio-
nellen digitalen Computern. Vor allem ist das Gehirn auf massiv parallele Weise
organisiert und hat die Fähigkeit zu lernen. Die “Liquid State Machine” ist als ein
mächtiges Modell entwickelt worden, das einen Rahmen zur Verfügung stellt, um
Berechnungen und Lernen in biologischen Netzwerken von Neuronen zu beschrei-
ben: Rekurrente Netzwerke von spikenden Neuronen können als generische Vor-
verarbeitungseinheiten dienen, die es einfachen, typischerweise linearen “Readout”-
Neuronen dieser Netzwerke erlauben, sich für komplexe Berechnungsaufgaben zu
adaptieren. Diese Dissertation liefert in zweierlei Weise wichtige Beiträge zu diesem
Framework. Einerseits untersucht sie eine Anzahl von unüberwachten Lernalgorith-
men, die potentielle Kandidaten für solche Readout-Mechanismen sind, andererseits
liefert sie neue experimentelle Belege für dieses Berechnungsmodell basierend auf
Daten des primären auditorischen Kortex von wachen Frettchen.

Zunächst wird gezeigt, wie zwei unüberwachte Lernmechanismen, Informati-
on Bottleneck Optimierung und Independent Component Analysis, im Prinzip mit
biologisch realistischen Neuronenmodellen implementiert werden können, indem ge-
eignete Lernregeln von diesen abstrakten informationstheoretischen Prinzipien her-
geleitet werden. Die resultierenden Lernregeln werden theoretisch analysiert und in
einer Reihe von Computersimulationen getestet.

Darüber hinaus wird Slow Feature Analysis als ein weiteres unüberwachtes Lern-
prinzip untersucht. Eine theoretische Analyse zeigt, dass dieses unter einigen Be-
dingungen an die Statistik der Inputzeitserie die Klassifikationsfähigkeit einer be-
kannten überwachten Lernmethode erlangen kann, Fishers linearen Diskriminante.
Außerdem sind Readouts eines Computermodells eines kortikalen Mikroschaltkrei-
ses, die mit dieser Methode trainiert worden sind, in der Lage, sich wiederholende
Feuermuster innerhalb eines Inputstroms mit derselben Feuerstatistik zu detektie-
ren, sowie zwischen den Netzwerkantworten zu verschiedenen Stimuli in komplett
unüberwachter Weise zu unterscheiden.

Abschließend werden biologische Daten von Neuronen aus dem primären audito-
rischen Kortex von Frettchen mit modernsten Methoden des Maschinellen Lernens
und der Informationstheorie analysiert. Es wird gezeigt, dass sequentiell ankommen-
de Stimulusinformation in die neuronale Antwort zu einem bestimmten Zeitpunkt
über die Zeit integriert und auf nichtlineare Weise kombiniert wird. Dies liefert da-
her einen experimentellen Beleg für das “Liquid Computing” Modell, zum ersten
Mal aufgrund von Daten von wachen Tieren.
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Chapter 1

Introduction

One major challenge in the field of neuroscience is to understand how computa-
tions are carried out in the brain. One possible approach to this question is to
view the computational organization of the brain from the perspective of a digital
computer. On an abstract level there are indeed some analogies: Much like in a
computer the brain receives input (through sensory organs), processes and stores
information, and produces an output (e.g., by activating certain muscles). On a
closer look, however, there are major differences between both systems. Perhaps the
most apparent difference is the massively parallel organization of the brain: billions
of basic processing units (∼ 1011 neurons) are organized in recurrently connected
networks (through ∼ 1015 synapses) without an obvious uniform synchronization
mechanism. Furthermore, these neurons are not identical, but vary substantially
in their anatomical and physiological properties (Markram et al., 2004). Such het-
erogenity of components is typically not present in digital computers. The same
applies for the connections between these neurons, the synapses, whose strength
is not fixed but is plastic and varies depending on the activity of those neurons
participating in the connection (Hebb, 1949). Moreover, synapses are often not
sufficiently characterized by this strength as a single scalar value, rather they un-
dergo complex inherent temporal dynamics on its own (Markram et al., 1998). This
continuous adaptation and permanent retuning is widely considered the basis for
learning in biological organisms. Thus, computation and learning in neural systems
are apparently strongly interconnected.

The classical mathematical model that describes computation in common digital
computers is the Turing machine (Sipser, 1996). During a computation the Turing
machine undergoes a certain sequence of states while modifying the content of a
(potentially infinite) tape. At the beginning the input is presented on this tape,
and the content when a halting-state is reached is considered the output of the
computation. However, typical operations in the brain are largely different. First,
inputs are not presented at designated time steps, but continuously arrive all the
time from different pathways, e.g., from the visual system, from the muscles, also
from memory, etc. Usually many of these input components have to be integrated
into a computation, and new computations start before other ones are finished.
Furthermore, biological organisms often cannot wait for the results of computations,
but have to perform actions within a fixed time interval, e.g., to avoid stumbling
over an obstacle or to react to an immediate threat.

Having this in mind it becomes apparent that classical computational models,
such as the Turing machine, are not adequate for describing and understanding
brain-style computations. One computational model that has been developed to
describe exactly these type of computations is the Liquid State Machine (LSM)
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(Maass et al., 2002, 2004b; see Maass, 2007, 2010, for reviews). Rather than strings
(or numbers), the inputs and outputs of an LSM are functions of time: input
streams u(t) are mapped onto output streams y(t). Each LSM consists of two
parts: (i) a dynamical system (the “liquid”; which could be a sufficiently large
and diverse recurrent network of biological neurons) which integrates previously
arrived input u(s), s ≤ t, into a high-dimensional liquid state x(t), and (ii) a static,
memoryless readout that instantaneously transforms the liquid state into the output
y(t) = f(x(t)). It can be shown that under some mild conditions on the liquid the
readout function f can be chosen to approximate any Volterra series (Maass and
Markram, 2004), and if one additionally allows feedback from the readout into the
liquid, a large class of dynamical systems can be emulated (Maass et al., 2007).

From the perspective of biological networks of neurons this computing model
is attractive because it allows to view cortical circuits as generic preprocessing
components that integrate incoming information over time into a liquid state at
time t, thereby making this information available to downstream neurons that can
then simultaneously and instantaneously “read out” different pieces of information
about previously arrived input. A cortical circuit can support such readout neurons
by (i) providing analog fading memory to accumulate information over time in the
liquid state, and (ii) a nonlinear projection into high-dimensional space to ease the
extraction of information by readouts (i.e., to serve as a kernel in the terminology
of machine learning). With such a preprocessing, substantial computational power
can be gained even by simple linear readouts, which are a reasonable approximation
to biological neurons since they compute a weighted sum of their presynaptic spike
trains and produce an output once this sum exceeds a certain threshold. There
exists experimental evidence that circuits in the brain of living animals exhibit both
properties, e.g., neurons in the primary visual cortex of anesthetized cats have been
shown to nonlinearly combine information about previous stimuli and to maintain
this information for several 100ms (Nikolic et al., 2009).

Another major advantage of the LSM over traditional computational models is
that it is an adaptive computing system. Readout mechanisms can be optimized for
a given computational task, for example by adjusting the weights of input synapses
if the readout is a model of a biological neuron. There are several ways how such
readouts can be trained. The most promising approach from the perspective of
machine learning is to use supervised learning, where the readout function is in-
ferred from a training set consisting of a number of training samples paired with
corresponding target values. In case of an LSM the training set typically consists
of snapshots of the activity of a recurrent network of neurons (i.e., liquid states) at
particular points in time in response to some input patterns. The readout should
then predict these labels for unseen patterns as accurately as possible. This has
been successfully applied to a number of applications, including speech recognition
(Maass et al., 2002, 2004a; Legenstein et al., 2005). However, from the perspective
of biological neural systems this method is not very realistic, since the existence
of a supervisor that tells the brain how an external stimulus should be classified is
highly questionable. There exist biologically realistic learning rules that have been
shown to achieve a reasonable performance with substantially less amount of super-
vision (Legenstein et al., 2008). Of particular interest are completely unsupervised
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learning mechanisms, which usually perform an optimization with respect to some
statistics of the input (or liquid states, in the case of readouts). Such unsupervised
learning rules are thought to play an essential role in the processing of information
in the brain, but for many of these it has remained unclear how such mechanisms
could actually be implemented in networks of biologically realistic neurons.

This thesis makes important contributions to the field of computation and learn-
ing in biological networks of neurons in two ways. First, it is shown how a number
of unsupervised learning algorithms can be implemented using biologically realistic
neuron models, and for one algorithm its capability as a possible readout mecha-
nism of cortical microcircuits is analyzed. Second, new experimental evidence for
the liquid computing model is reported using data from the primary auditory cortex
of awake ferrets.

1.1 Organization of the Thesis

This thesis is comprised of three chapters which are based on publications to which
I significantly contributed as first author during my PhD studies.

In Chapter 2, two unsupervised learning mechanisms are investigated that are
based on information theoretic principles, information bottleneck optimization and
independent component analysis. The information bottleneck method tries to se-
lect a compact representation of some input data, while preserving as much relevant
information as possible. A neuron that performs information bottleneck optimiza-
tion extracts preferentially those components from high-dimensional input streams
that are related to (i.e., have high mutual information with) a specific relevance or
target signal. On the other hand, independent component analysis is a technique
for decomposing complex data into statistically independent parts, thereby provid-
ing a less redundant representation. Two neurons extract independent components
from its common input if the mutual information between its output spike trains
is low. By deriving learning rules from these related abstract information theoretic
principles, it is shown how spiking neurons can in principle perform both of these
tasks. A theoretical analysis revealed that the resulting learning rules are exten-
sions of the well-known BCM-rule, a variant of Hebbian learning that intrinsically
stabilizes the ouput firing rate through a sliding threshold. In addition, the learning
rules were tested in a number of computer simulations that demonstrated that the
learning neurons were sensitive to information encoded both in the firing rate and
in the spike timing of their inputs.

Another powerful unsupervised learning principle is temporal slowness, which is
the topic of Chapter 3. This principle is based on the assumption that the slowest
components of a high-dimensional signal typically encode invariances of this input.
For example, the identity of an object in the visual field generally varies on a much
slower time scale than the raw sensory input because temporally contiguous input
samples are likely to be caused by the same object. We present a theoretical basis
for this emergent discrimination capability by showing that one particular algorithm
from the family of temporal slowness learning methods, slow feature analysis (SFA),
is able to approximate the classification capability of Fisher’s linear discriminant,
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which is a commonly used method for supervised classification learning. It replaces
the supervisor with the simple heuristics that two temporally adjacent samples
are likely to be from the same class. Furthermore, the capability of SFA as a
possible readout mechanism is analyzed: computer simulations of a generic cortical
microcircuit model demonstrate that readouts trained with SFA are able to learn
to detect repeating firing patterns within a stream of spike trains with the same
firing statistics, as well as to discriminate between the network responses to different
spoken digits in an unsupervised manner.

Finally, in Chapter 4 novel experimental evidence for the liquid computing model
is presented. We analyzed the activity of individual neurons in primary auditory
cortex (A1) of awake ferrets to what extent their responses to the current sound
are influenced by the immediate history of auditory stimulation. We directly es-
timated the mutual information between the responses and both current and pre-
ceding sounds and compared this value to the amount of information that could
be extracted by linear classifiers. This revealed that many neurons conveyed a
significant amount of information simultaneously about currently and previously
played tones, and that most of this information could be extracted by linear classi-
fiers. Moreover, the neural response provided a nonlinear combination of previously
arrived stimuli and made this information available to a linear decoder. These ob-
servations, that sequentially arriving stimulus information is integrated over time
and superimposed in a non-linear way into the neural responses at one point in
time, are both predictions of the liquid computing model. For the first time such
evidence has been found in awake animals.
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In this Chapter it is shown how two unsupervised learning mechanisms that
are based on information theoretic principles, information bottleneck optimization
and independent component analysis, can be implemented using biologically realistic
neuron models. This Chapter is based on the paper Spiking neurons can learn to
solve information bottleneck problems and to extract independent components by
Stefan Klampfl, Robert Legenstein, and Wolfgang Maass (Neural Computation,
21(4):911-959, 2009). RL did the derivation of the simplified rate based rule and
helped with its analysis.

Independent component analysis (or blind source separation) is assumed to be
an essential component of sensory processing in the brain and could provide a less
redundant representation about the external world. Another powerful processing
strategy is the optimization of internal representations according to the informa-
tion bottleneck method. This method would allow to extract preferentially those
components from high-dimensional sensory input streams that are related to other
information sources, such as internal predictions or proprioceptive feedback. How-
ever there exists a lack of models that could explain how spiking neurons could
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learn to execute either of these two processing strategies. We show in this Chap-
ter how stochastically spiking neurons with refractoriness could in principle learn
in an unsupervised manner to carry out both information bottleneck optimization
and the extraction of independent components. We derive suitable learning rules,
which extend the well known BCM-rule, from abstract information optimization
principles. These rules will simultaneously keep the firing rate of the neuron within
a biologically realistic range.

2.1 Introduction

The Information bottleneck (IB) approach and independent component analysis
(ICA) have both attracted substantial interest as general principles for unsuper-
vised learning (Tishby et al., 1999; Hyvärinen et al., 2001). A hope has been, that
they might also help us to understand strategies for unsupervised learning in bio-
logical systems. However it has turned out to be quite difficult to establish links
between known learning algorithms that have been derived from these general prin-
ciples, and learning rules that could possibly be implemented by synaptic plasticity
of a spiking neuron. Fortunately, in a simpler context a direct link between an
abstract information-theoretic optimization goal and a rule for synaptic plasticity
has recently been established (Toyoizumi et al., 2005). The resulting rule for the
change of synaptic weights in (Toyoizumi et al., 2005) maximizes the mutual in-
formation between pre- and postsynaptic spike trains, under the constraint that
the postsynaptic firing rate stays close to some target firing rate. We show in this
thesis, that this approach can be extended to situations where simultaneously the
mutual information between the postsynaptic spike train of the neuron and other
signals (such as for example the spike trains of other neurons) has to be minimized
(see Figure 2.1). This opens the door to the exploration of learning rules for in-
formation bottleneck analysis and independent component extraction with spiking
neurons that would be optimal from a theoretical perspective.

The information bottleneck method (Tishby et al., 1999) is a recently devel-
oped information-theoretic approach that tries to compress information about a
data variable X, while at the same time preserving as much information as possible
about a relevant (target) variable Y , i.e., it aims at selecting a compact represen-
tation X̃ of the data X. That is, information that X provides about Y is squeezed
through a “bottleneck” of the compressed variable X̃. There is a trade-off between
compression (low mutual information between X̃ and X) and preserving relevant
information (high mutual information between X̃ and Y ). That is, one usually
maximizes −I(X̃;X) + βI(X̃;Y) with some trade-off parameter β, where I(U;V)
denotes the mutual information between random variables U and V . In this ap-
proach, we interpret the input spike trains XK to a neuron as the data X, the
output spike train Y K

1 as the compact representation X̃ of X, and the relevant
variable Y as a “target” spike train Y K

2 (or several target spike trains Y K
2 , Y K

3 , ...)
(see Figure 2.1A).

Independent component analysis (ICA) (Hyvärinen et al., 2001) is another well-
known statistical technique for decomposing complex data into statistically inde-
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pendent parts, thereby providing a less redundant representation. In our approach,
we minimize the mutual information between the output spike trains Y K

1 and Y K
2 of

two neurons receiving the same input XK . Simultaneously we want both neurons to
extract meaningful information by maximizing the mutual information between the
inputs XK and the output spike train Y K

i of both neurons i = 1, 2 (see Figure 2.1B).
We review in section 2.2 the neuron model and learning rule from (Toyoizumi

et al., 2005). We show in section 2.3 how this learning rule can be extended so that
it not only maximizes mutual information with some given spike trains and keeps
the output firing rate within a desired range, but simultaneously minimizes mutual
information with other spike trains, or other time-varying signals. In section 2.4
we analyze the learning strategies of the resulting learning rules, and relate them
to the classical (Bienenstock et al., 1982) and generalized (Toyoizumi et al., 2005)
Bienenstock-Cooper-Munro (BCM) rule. Applications to concrete information bot-
tleneck tasks are discussed in section 2.5. Because of the many different types of
target signals that might be relevant in a biological system, we do not model the
way how such target signals might affect the synapse or neuron under considera-
tion, but rather use it as an abstract signal in the learning rule. In section 2.6 we
show that a modification of this learning rule allows a spiking neuron to extract
information from its input spike trains that is independent from the information
extracted by another neuron. Moreover, we present an approximation of the learn-
ing rule which indicates how the learning rule might possibly be implemented in a
biologically realistic circuit.

2.2 Neuron model and a basic learning rule

We use the neuron model from (Toyoizumi et al., 2005), which is a stochastically
spiking neuron model with refractoriness, where the probability of firing in each
time step depends on the current membrane potential and the time since the last
output spike. It is convenient to formulate the model in discrete time with step size
∆t. The total membrane potential of a neuron i at time step tk = k∆t is given by

ui(t
k) = ur +

N
∑

j=1

k
∑

n=1

wijε(t
k − tn)xn

j , (2.1)

where ur = −70mV is the resting potential and wij is the weight of the synapse
from the presynaptic neuron j (j = 1, . . . , N). An input spike train at synapse
j is described up to the k-th time step by a sequence Xk

j = (x1
j , x

2
j , . . . , x

k
j ) of

zeros (no spike) and ones (spike). Each presynaptic spike at time tn (xn
j = 1)

evokes a postsynaptic potential (PSP) with exponential by decaying time course
ε(t − tn) = UPSP e−(t−tn)/τm for t ≥ tn with time constant τm = 10ms and PSP
amplitude UPSP = 1mV. The probability ρk

i of the firing of neuron i at time step
tk is then given by

ρk
i = 1 − exp[−g(ui(t

k))Ri(t
k)∆t] ≈ g(ui(t

k))Ri(t
k)∆t, (2.2)
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A B

Figure 2.1: Different learning situations analyzed in Chapter 2. (A) In an informa-
tion bottleneck task the learning neuron (neuron 1) wants to maximize the mutual informa-
tion between its output Y K

1 and the activity of one or several target neurons Y K
2 , Y K

3 , . . .
(which can be functions of the inputs XK and/or other external signals), while at the same
time keeping the mutual information between the inputs XK and the output Y K

1 as low as
possible (and its firing rate within a desired range). Thus the neuron should learn to extract
from its high-dimensional input those aspects that are related to these target signals. This
setup is discussed in sections 2.3-2.5. (B) Two neurons receiving the same inputs XK from
a common set of presynaptic neurons both learn to maximize information transmission, and
simultaneously to keep their outputs Y K

1 and Y K
2 statistically independent. Such extraction

of independent components from the input is described in section 2.6.

where the refractory variable

Ri(t) =
(t − t̂i − τabs)

2

τ2
refr + (t − t̂i − τabs)2

Θ(t − t̂i − τabs) (2.3)

assumes values in [0, 1] and depends on the last firing time t̂i of neuron i (see Figure
2.2B). The absolute refractory period τabs = 3ms is the time period after a firing
during which no spike can occur; in the relative refractory time τrefr = 10ms it is
hard, but not impossible, to emit an action potential. The Heaviside step function
Θ takes a value of 1 for non-negative arguments and 0 otherwise. The gain function

g(u) = r0 log

{

1 + exp

[

u − u0

∆u

]}

(2.4)

is a smooth increasing function of the membrane potential u (see Figure 2.2A;
u0 = −65mV, ∆u = 2mV, r0 = 11Hz). The approximation in (2.2) is valid for
sufficiently small ∆t (ρk

i ≪ 1). The function g(u) implements a stochastic threshold
around u0; below u0 it goes to 0, above u0 it increases linearly with the membrane
potential (with slope r0/∆u). Note that due to refractoriness the output firing
rate of the neuron cannot be made arbitrarily high. For a neuron model without
refractoriness (see section 2.3.2) one has to formalize an upper bound on the firing
rate of the neuron in a different way. For that we choose as in (Toyoizumi et al.,
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Figure 2.2: Characteristic functions of the neuron model (see equation (2.2)).
(A) Gain function g(u) (solid; see equ. (2.4)) and galt(u) (dashed; see equ. (2.5)) as a
function of the membrane potential u (plotted for u0 = −65mV, ∆u = 2mV, r0 = 11Hz,
gmax = 100Hz). (B) Refractory variable R(t) as a function of the time t − t̂ since the last
postsynaptic spike (plotted for t̂ = 0, and for an absolute refractory period τabs = 3ms,
relative refractory time τrefr = 10ms).

2005) an alternative gain function

galt(u) =

[

1

gmax
+

1

g(u)

]−1

, (2.5)

with a maximum rate of gmax = 100Hz (see Figure 2.2A).
This model from (Toyoizumi et al., 2005) is a special case of the spike-response

model, and with a refractory variable R(t) that depends only on the time since the
last postsynaptic event it has renewal properties (Gerstner and Kistler, 2002). The
output of neuron i at the k-th time step is denoted by a variable yk

i that assumes
the value 1 if a postsynaptic spike occurs and 0 otherwise. A specific spike train up
to the k-th time step is written as Y k

i = (y1
i , y

2
i , . . . , y

k
i ).

The information transmission between an ensemble of input spike trains XK

and the output spike train YK
i of total duration K∆t can be quantified by the

mutual information1 (Cover and Thomas, 1991)

I(XK ;YK
i ) =

∑

XK ,Y K
i

P (XK , Y K
i ) log

P (Y K
i |XK)

P (Y K
i )

. (2.6)

The idea in (Toyoizumi et al., 2005) was to maximize the quantity I(XK ;YK
i ) −

γDKL(P (Y K
i )||P̃ (Y K

i )), where

DKL(P (Y K
i )||P̃ (Y K

i )) =
∑

Y K
i

P (Y K
i ) log

P (Y K
i )

P̃ (Y K
i )

(2.7)

1We use boldface letters (Xk) to distinguish random variables from specific realizations (Xk).
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denotes the Kullback-Leibler divergence (Cover and Thomas, 1991) between the
actual distribution P (Y K

i ) and a given target distribution P̃ (Y K
i ). The inclusion of

this second term imposes the additional constraint that the firing statistics P (Yi)
of the neuron i should stay as close as possible to a target distribution P̃ (Yi). This
distribution was chosen in (Toyoizumi et al., 2005) to yield a constant target firing
rate g̃. An online learning-rule performing gradient ascent on this quantity was
derived in (Toyoizumi et al., 2005) for the weight wij of neuron i:

dwij(t)

dt
= αCij(t)B

post
i (t, γ), (2.8)

which consists of the “correlation term” Cij and the “postsynaptic term” Bpost
i

(Toyoizumi et al., 2005). The term Cij measures coincidences between postsynaptic
spikes at neuron i and PSPs generated by presynaptic action potentials arriving at
synapse j,

dCij(t)

dt
= −Cij(t)

τC
+

∑

l

ε(t − t
(l)
j )

g′(ui(t))

g(ui(t))
[δ(t − t̂i) − g(ui(t))Ri(t)], (2.9)

with time constant τC = 1s, δ(t) being the Dirac-δ function, and g′(ui(t)) denoting
the derivative of g with respect to u. The term

Bpost
i (t, γ) = δ(t − t̂i) log

[

g(ui(t))

ḡi(t)

(

g̃

ḡi(t)

)γ]

− Ri(t)[g(ui(t)) − (1 + γ)ḡi(t) + γg̃]

(2.10)

compares the current firing rate g(ui(t)) with its average firing rate2 ḡi(t), and
simultaneously the running average ḡi(t) with the constant target rate g̃. The second
argument indicates that this term also depends on the optimization parameter γ.

2.3 Information-theoretic principles provide learning

rules for more complex learning goals

We extend the learning rule presented in the previous section to a more complex
scenario, where the mutual information between the output spike train Y K

1 of the
learning neuron (neuron 1) and some target spike trains Y K

l (l > 1) has to be
maximized, while simultaneously minimizing the mutual information between the
inputs XK and Y K

1 . Obviously this is the generic IB scenario applied to spiking
neurons (see Figure 2.1A). A learning rule for extracting independent components
with spiking neurons (see section 2.6) can be derived in a similar manner, by just
switching the signs of the first two terms in the objective function (2.11). In this
section we derive two online learning rules, a spike-based and a simplified rate-based
learning rule, for this information bottleneck task.

2The rate ḡi(t) = 〈g(ui(t))〉X|Yi
denotes an expectation of the firing rate over the input distri-

bution given the postsynaptic history and is implemented as a running average with an exponential
time window (with a time constant of 10s).
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2.3.1 Spike-based learning rule

For simplicity, we consider the case of an IB optimization for only one target spike
train Y K

2 , and derive an update rule for the synaptic weights w1j of neuron 1. The
quantity to maximize is therefore

L = −I(XK ;YK
1 ) + βI(YK

1 ;YK
2 ) − γDKL(P (Y K

1 )||P̃ (Y K
1 )), (2.11)

where β and γ are optimization constants. To maximize this objective function,
we derive the weight change ∆wk

1j during the k-th time step by gradient ascent on
(2.11), assuming that the weights w1j can change between some bounds 0 ≤ w1j ≤
wmax (we assume wmax = 1 throughout this Chapter).

Now we have to calculate the gradient of L with respect to the weights of the
learning neuron, w1j . Note that all three terms of (2.11) implicitly depend on w1j

because the output distribution P (Y K
1 ) changes if we modify the weights w1j . Since

the first and the last term of (2.11) have already been considered (up to the sign)
in (Toyoizumi et al., 2005), we will concentrate here on the middle term

L12 := βI(YK
1 ;YK

2 ) = β
∑

Y K
1

,Y K
2

P (Y K
1 , Y K

2 ) log
P (Y K

1 , Y K
2 )

P (Y K
1 )P (Y K

2 )
(2.12)

and denote the contribution of the gradient of L12 to the total weight change ∆wk
1j

in the k-th time step by ∆w̃k
1j . One can proceed here also similarly as in (Toyoizumi

et al., 2005), but some additional aspects have to be taken into account.
Up to now we have considered only spike trains of length K∆t in (2.11) and

(2.12). In order to get an expression for the weight change in a specific time
step k, ∆w̃k

1j, we have to calculate the contribution of this time bin to the ob-
jective function L12. According to the chain rule of information theory (Cover
and Thomas, 1991), we can write the probabilities P (Y K

i ) and P (Y K
1 , Y K

2 ) occur-
ring in (2.12) as products over the probability distributions of individual time bins
given the corresponding postsynaptic histories, i.e., P (Y K

i ) =
∏K

k=1 P (yk
i |Y k−1

i )

and P (Y K
1 , Y K

2 ) =
∏K

k=1 P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 ). As a consequence, we can express
the middle term L12 in (2.11) as a sum over the contributions of individual time
bins, L12 =

∑K
k=1 ∆Lk

12, with

∆Lk
12 =

〈

β log
P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

P (yk
1 |Y k−1

1 )P (yk
2 |Y k−1

2 )

〉

Xk ,Yk
1
,Yk

2

. (2.13)

Hence, ∆Lk
12 reflects the statistical dependence between the binary variables yk

1

and yk
2 , given the postsynaptic histories Y k−1

1 and Y k−1
2 . An evaluation of the

probabilities used in (2.13) can be found in Appendix B.1.1.
The weight change ∆w̃k

1j in each time step k is then proportional to the gradient

of this expression ∆Lk
12 with respect to the weights w1j ,

∆w̃k
1j = α

∂∆Lk
12

∂w1j
, (2.14)



12 Chapter 2. Information bottleneck optimization

where α > 0 denotes the learning rate. Under the assumption of small ∆t (we
choose ∆t = 1ms throughout the simulations), evaluation of the gradient (2.14)
yields (for a detailed derivation see Appendix B.1.2)

∆w̃k
1j = α

〈

Ck
1jβF k

12

〉

Xk,Yk
1
,Yk

2

. (2.15)

The term in the parentheses of (2.15) consists of two factors. The first factor is
a correlation term Ck

1j as in (Toyoizumi et al., 2005),

Ck
1j = Ck−1

1j

(

1 − ∆t

τC

)

+

k
∑

n=1

ε(tk − tn)xn
j

g′(u1(t
k))

g(u1(tk))

[

yk
1 − ρk

1

]

. (2.16)

which counts the coincidences between postsynaptic spikes (yk
1 = 1) and the time

course of PSPs generated by presynaptic spikes (xn
j = 1) in an exponential time

window with time constant τC = 1s. The term g′(ui(t)) denotes the derivative of
g(u) with respect to u and measures the sensitivity of the neuron for changes in the
membrane potential.

The second factor measures the momentary statistical dependence between the
outputs yk

1 and yk
2 ,

F k
12 = yk

1yk
2 log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
− yk

1(1 − yk
2 )R2(t

k)∆t

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

−

− (1 − yk
1)yk

2R1(t
k)∆t

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

+

+ (1 − yk
1)(1 − yk

2)R1(t
k)R2(t

k)(∆t)2
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

.

(2.17)

Here, ḡi(t
k) = 〈g(ui(t

k))〉
Xk |Y k−1

i
denotes the average firing rate of neuron i and

ḡ12(t
k) = 〈g(u1(t

k))g(u2(t
k))〉

Xk |Y k−1

1
,Y k−1

2

denotes the average product of firing

rates of both neurons. Both quantities are implemented online as running exponen-
tial averages with a time constant of 10s. Note that F k

12 depends directly on the
relationship between the joint probability of firing, which is represented by ḡ12(t

k),
and the product of the individual firing probabilities given by ḡ1(t

k)ḡ2(t
k).

Yet, the weight change (2.15) is still given by an average over the distributions
of spike trains Xk, Y k

1 , Y k
2 up to time step k and cannot be implemented as an

online rule in this way. However, under the assumption of a small learning rate α
we can approximate the expectation 〈·〉Xk ,Yk

1
,Yk

2

in (2.13) by averaging over a single

long trial. Considering now all three terms in (2.11) we finally arrive at an online
rule for maximizing L,

∆wk
1j

∆t
= −αCk

1j

[

Bk
1 (−γ) − β∆tBk

12

]

. (2.18)

The term Ck
1j (2.16) is sensitive to correlations between the output of the neuron and

its presynaptic input at synapse j (“correlation term”) and the terms Bk
1 and Bk

12

characterize the postsynaptic state of the neuron (“postsynaptic terms”). Typical
time courses of these terms are shown in Figure 2.3.
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This learning rule is thus an extension to the generalized BCM rule for spiking
neurons (Toyoizumi et al., 2005): The term Bk

1 (−γ) is given by

Bk
1 (−γ) =

yk
1

∆t
log

[

g(u1(t
k))

ḡ1(tk)

(

ḡ1(t
k)

g̃

)γ]

− (1 − yk
1)R1(t

k)
[

g(u1(t
k)) − (1 − γ)ḡ1(t

k) − γg̃
]

,

(2.19)

and has been described together with Ck
1j in the previous section (these terms

are discrete-time versions of C1j(t) (2.9) and Bpost
1 (t, γ) (2.10), respectively3).

Our learning rule contains an extra term Bk
12 = F k

12/(∆t)2 that is sensitive to the
statistical dependence between the output spike train of the neuron and the target
signal. It is given by

Bk
12 =

yk
1yk

2

(∆t)2
log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
− yk

1

∆t
(1 − yk

2)R2(t
k)

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

− yk
2

∆t
(1 − yk

1)R1(t
k)

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

+ (1 − yk
1 )(1 − yk

2 )R1(t
k)R2(t

k)
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

.

(2.20)

This term basically compares the average product of firing rates ḡ12 (which corre-
sponds to the joint probability of spiking) with the product of average firing rates
ḡ1ḡ2 (representing the probability of independent spiking). In this way, it mea-
sures the momentary mutual information between the output of the neuron and the
target spike train. Bk

12 consists of four terms, one for each firing state of the two
neurons. The first term produces a peak when both neurons fire in the same time
step (cf. positive peak in bottom trace of Figure 2.3). The second and third term
result in peaks when only one neuron is active (negative peaks in Figure 2.3). Note
that these terms additionally depend on the refractory state of the other neuron:
in case of almost coincident spikes the second event has no influence due to the
refractoriness of the other neuron which has spiked just before. In other words, the
learning rule distinguishes between the two cases whether a neuron does not spike
because of refractoriness or because of a low firing rate; only in the latter case this
has an influence. Finally, the fourth term of (2.20) results in small fluctuations
of Bk

12 in between firing events, and depends on the refractoriness of both neurons
and the difference between ḡ12 and ḡ1ḡ2. Note, however, that the actual sign of Bk

12

depends on the recent firing histories of the two neurons, e.g., if the two spike trains
have recently been correlated, ḡ12 is larger than ḡ1ḡ2 (as is the case in Figure 2.3).
Furthermore, the actual weight change depends according to (2.18) on an interplay
between both the postsynaptic terms Bk

1 and Bk
12 and the correlation term Ck

1j .
Note that during the duration of an EPSP caused by an input spike there is an

increased probability of generating an output spike (Kempter et al., 1999). If two
neurons share the same input, they will then have a correlated spiking probability.

3The argument of Bk
1 , −γ, is different from the second argument in (2.8), γ, because the the

term I(XK;YK
1 ) enters the objective function (2.11) with a different sign, whereas the constraint

with the KL-divergence enters with the same sign.
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Figure 2.3: Visualization of the impact of the three terms in learning rule (2.18).
From top to bottom: instances of an output spike train Y K

1 and a target spike train Y K
2

of length 300ms, the time course of the PSP
∑

n ε(tk − tn)xn
j during that time at a single

synapse j, of the correlation term Ck
1j (2.16) for the input at this synapse j, and of the

postsynaptic terms Bk
1 (2.19) and Bk

12 (2.20). While the term Bk
1 has peaks only for spikes

in the output spike train Y K
1 , the term Bk

12 has additional peaks at times of action potentials
in the target spike train Y K

2 . Their amplitude and sign depend on the momentary statistical
dependence of the recent histories of both spike trains.

This effect of the EPSP is captured by the correlation term Ck
ij (2.16), which is

sensitive to correlations between input and output spikes. It is increased if an input
spike is accompanied by an output spike during the duration of the EPSP caused
by that input spike. Note that the term Bk

12 in (B.39) is multiplied with the term
Ck

ij in the actual learning rule (2.18). The term Bk
12 on its own is only sensitive to

the mutual information between the binary variables yk
1 and yk

2 given their histories
(estimated by the running averages of firing rates), regardless of how they have
been generated.

In (2.18), in order to compensate the effect of a small ∆t, the constant β has
to be large enough for the term Bk

12 to have an influence on the weight change.
In the limit ∆t → 0 the value of β approaches infinity. One can overcome this
problem by using instead of (2.11) an alternative objective function which includes
the information rate I(YK

1 ;YK
2 )/∆t instead of the mutual information I(YK

1 ;YK
2 ).
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In this case the ∆t on the right-hand side of (2.11) would cancel out, and the trade-
off parameter β would become a constant of dimension s (time). However, in the
following we use our original objective function (2.11) and analyze weight changes
in discrete time with a fixed ∆t.

2.3.2 Simplified rate-based learning rule

To gain more insight in the learning rule (2.18), we consider a simplified neuron
model without refractoriness. The dynamics of this model are governed by equations
(2.1) and (2.2) with Ri(t) = 1 (i.e., τabs = τrefr = 0ms). As in (Toyoizumi et al.,
2005) we use galt(u) (2.5) for the gain function in order to pose an upper limit on
the postsynaptic firing rate in the absence of refractoriness. In this rate model, the
probability of spiking is independent of the postsynaptic history. Since there is no
refractoriness, the postsynaptic rate νk

1 at time tk is given directly by the current
value of galt(u1(t

k)). It was shown in (Toyoizumi et al., 2005) that the update rule
(2.8) resembles the BCM-rule (Bienenstock et al., 1982). Since we want to maximize
here a different objective function (2.11), we expect an “anti-Hebbian BCM” rule
with an additional term accounting for statistical dependencies between Y K

1 and
Y K

2 .
With these simplifying assumptions above the learning rule (2.18) reduces to

the following learning rule for a rate model (see Appendix B.1.4 for a detailed
derivation):

∆wk
1j

∆t
= −ανpre,k

j f(νk
1 )

{

log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)γ]

−β∆t

(

νk
2 log

[

ν̄k
12

ν̄k
1 ν̄k

2

]

− ν̄k
2

[

ν̄k
12

ν̄k
1 ν̄k

2

− 1

])}

, (2.21)

where the presynaptic rate at synapse j at time tk is denoted by νpre,k
j =

a
∑k

n=1 ε(tk − tn)xn
j with a in units (Vs)−1. The values ν̄k

1 , ν̄k
2 , and ν̄k

12 are running

averages of the output rate νk
1 , the rate of the target signal νk

2 and of the product
of these values, νk

1νk
2 , respectively. The function f(νk

1 ) = g′alt(g
−1
alt (ν

k
1 ))/a is propor-

tional to the derivative of galt with respect to u, evaluated at the current membrane
potential. It measures the momentary sensitivity of the output rate for changes
of the membrane potential (see Figure 2.4A). This weight change approximates a
gradient ascent for the objective function (2.11). The approximation is valid for
small ∆t (we choose ∆t = 1ms in the simulations). Note that the factor β has to
compensate a small ∆t so that the second term has influence on the weight change.
A detailed discussion of this rule is given in section 2.4.

2.4 Analysis of the resulting learning rules

In the previous section we have derived learning rules that minimize the informa-
tion transmission of a neuron while simultaneously keeping the mutual information
between the output and target spike trains as high as possible. Additionally we
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Spike-based rule for the IB task:

Performing gradient ascent on L (2.11) yields an online learning rule for the weights of
neuron 1, w1j . The weight change ∆wk

1j at time tk = k∆t is given by

∆wk
1j

∆t
= −αCk

1j

[

Bk
1 (−γ) − β∆tBk

12

]

(2.18)

with a learning rate α > 0 and optimization parameters β and γ with values > 0.

The correlation term Ck
1j measures coincidences between postsynaptic spikes at neuron

1 and PSPs generated by presynaptic action potentials arriving at synapse j:

Ck
1j = Ck−1

1j

(

1 − ∆t

τC

)

+

k
∑

n=1

ε(tk − tn)xn
j

g′(u1(t
k))

g(u1(tk))

[

yk
1 − ρk

1

]

(2.16)

τC time constant of exponential correlation window
xn

j binary variable indicating a presynaptic spike at synapse j in the n-th time
step

yk
1 binary variable indicating an output spike of neuron 1 in the k-th time step

ρk
1 firing probability of neuron 1 in the k-th time step (2.2)

ε(s) time course of PSP in response to a presynaptic spike at time s = 0
g(u1(t)) gain function (2.4) evaluated at the value of the membrane potential u1(t) of

neuron 1
g′(u) derivative of g(u) with respect to u

The term Bk
1 is responsible for regulating the mutual information between input and

output and maintaining the constant target firing rate for neuron 1:

Bk
1 (γ) =

yk
1

∆t
log

[

g(u1(t
k))

ḡ1(tk)

(

g̃

ḡ1(tk)

)γ]

− (1 − yk
1 )R1(t

k)
[

g(u1(t
k)) − (1 + γ)ḡ1(t

k) + γg̃
]

(2.19)

R1(t
k) refractory variable (2.3) of neuron 1 at time tk

ḡ1(t
k) running average of the postsynaptic firing rate g(u1(t

k)) of neuron 1
g̃ constant target firing rate

Table 2.1: (continues on next page)

have imposed the constraint that the firing rate of the learning neuron should stay
close to a constant target firing rate. These rules are summarized in Tables 2.1
and 2.2. The spike-based rule has been derived for a stochastically spiking neuron
model with refractoriness; for the rate-based rule we considered a simplified neuron
model without refractoriness, as in (Toyoizumi et al., 2005). In this section we
interpret these rules and show how they relate to the classical BCM rule and to the
generalized rule presented in (Toyoizumi et al., 2005).

2.4.1 Comparison of the simplified rule with the spike-based rule

Comparing the spike-based (2.18) and rate-based learning rule (2.21), we find that
for both rules the weight change depends on the correlation of pre- and postsynaptic
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The term Bk
12 measures the mutual information between the output spike train Y k

1 of
neuron 1 and and the target spike train Y k

2 :

Bk
12 =

yk
1yk

2

(∆t)2
log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
− yk

1

∆t
(1 − yk

2 )R2(t
k)

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

− yk
2

∆t
(1 − yk

1 )R1(t
k)

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

+ (1 − yk
1 )(1 − yk

2 )R1(t
k)R2(t

k)
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

(2.20)

yk
2 binary variable indicating a spike in the target spike train in the k-th time

step
R2(t

k) refractory state of target spike train

ḡ2(t
k) running average of firing rate of target spike train

ḡ12(t
k) running average of the product between firing rates of the output and target

spike train

Table 2.1: (continued) Summary of the spike-based learning rule for the informa-
tion bottleneck task derived in section 2.3.1.

Simplified (rate-based) rule for the IB task:

For a simplified neuron model without refractoriness the spike-based rule (2.18) reduces
to the following rate-based rule:

∆wk
1j

∆t
= −ανpre,k

j f(νk
1 )

{

log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)γ]

−β∆t

(

νk
2 log

[

ν̄k
12

ν̄k
1 ν̄k

2

]

− ν̄k
2

[

ν̄k
12

ν̄k
1 ν̄k

2

− 1

])}

(2.21)

α learning rate
β, γ optimization parameters

νpre,k
j presynaptic firing rate at synapse j at time tk

f(νk
1 ) sensitivity of neuron 1 at its current firing state νk

1

νk
1 output firing rate of neuron 1 at time tk

νk
2 firing rate of the target signal at time tk

ν̄k
1 , ν̄k

2 running averages of νk
1 and νk

2

ν̄k
12 running average of the product νk

1 νk
2

Table 2.2: Summary of the simplified (rate-based) learning rule for the informa-
tion bottleneck task derived in section 2.3.2.

activity, either via the correlation term Ck
ij or via the Hebbian term νpre,k

j f(νk
1 ). In

both cases, the influence of the postsynaptic activity on the weight change depends
also on the current sensitivity of the neuron, which is expressed through the deriva-
tive of g with respect to u (see plot of f(νk

1 ) in Figure 2.4A). Furthermore, the first
term in the curly brackets of (2.21) corresponds to the first term of Bk

1 (−γ) (2.10).
This classical BCM-term is responsible for regulating the information transmission



18 Chapter 2. Information bottleneck optimization

of the neuron and for the homeostatic process that tries to maintain a constant
target firing rate, via a sliding threshold of the postsynaptic activity, ν̄k

1 (Toyoizumi
et al., 2005). However, this term is augmented by an expression sensitive to the
statistical dependence between the output of the neuron and the target signal (sec-
ond line in (2.21) and Bk

12 (2.20)). Here, the second line in (2.21) corresponds to
the first two terms in (2.20). All the other terms in Bk

1 and Bk
12 can be neglected in

the rate-based rule for small ∆t (see derivation in Appendix B.1.4 and analogous
derivation in (Toyoizumi et al., 2005)).

2.4.2 Interpretation of the simplified rule

To gain a better understanding of the derived learning rule, we analyze the rate-
based rule (2.21) in more detail. The prefactor of (2.21), νpre,k

j f(νk
1 ), is a nonlinear

Hebbian term because the weight change does not depend on the postsynaptic ac-
tivity νk

1 directly, but only via the nonlinear function f . It is proportional to the
impact of synapse j onto the membrane potential at time tk times the sensitivity
of the output rate on changes of the membrane potential at time tk. This prefac-
tor distributes the weight changes given by the terms in the curly brackets to the
individual synapse j. Changes of strongly active synapses are larger than those
of relatively silent ones. We can divide the term in the curly brackets into three
functionally different parts. Each of these parts corresponds to the optimization
of one of the terms in (2.11). The first part, log(νk

1 /ν̄k
1 ), together with the prefac-

tor νpre,k
j f(νk

1 ), drives the optimization of mutual information between inputs and
outputs (note that this part is combined with the second part in (2.21), which is
discussed below). The second part, log(ν̄k

1/g̃)γ , accounts for homeostatic processes
to stabilize the output rate. These two parts together with the prefactor intro-
duce competition between the synapses and, as already noted in (Toyoizumi et al.,
2005), they implement a BCM-like learning rule. The third part is given by the two
terms of the second line of (2.21). These terms drive the maximization of mutual
information between the output of the neuron Y K

1 and the target signal Y K
2 . We

investigate this part of the update rule in more detail. The correlation between νk
1

and νk
2 is measured by

φ :=
ν̄k
12

ν̄k
1 ν̄k

2

, (2.22)

which appears in both terms of the second line of (2.21). It has value 1 for uncor-
related firing rates, values > 1 for positive correlations and values < 1 for negative
correlations (anti-correlations). To see how the second line of (2.21) depends on the
ratio between νk

2 and ν̄k
2 , we assume that ν̄k

2 is constant and introduce ζ := νk
2 /ν̄k

2 .
Then, the second line of (2.21) is proportional to

ζ log(φ) − (φ − 1). (2.23)

For νk
2 = ν̄k

2 , this function is negative if φ 6= 1 and zero if φ = 1 (dashed line in
Figure 2.4B).

Suppose that the output of the neuron is positively correlated with the target
signal (φ > 1; see Figure 2.4B). Then, a firing rate νk

2 of this target signal sufficiently
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Figure 2.4: Influence of specific terms of the rate-based rule (2.21). (A) Sensitivity
function f(νk

1 ) = g′alt(g
−1
alt (ν

k
1 ))/a as a function of the postsynaptic firing rate νk

1 with
a = 103(Vs)−1. (B) The influence of correlations between νk

1 and νk
2 (measured by φ =

ν̄k
12/(ν̄k

1 ν̄k
2 ), see (2.22)) on the simplified rule for different ratios ζ = νk

2 /ν̄k
2 . The plotted

function captures the weight changes induced by the second line of (2.21). This function
is zero for uncorrelated signals (φ = 1). For correlated signals (φ > 1), firing rates νk

2

sufficiently above mean induce LTP. For anti-correlated signals (φ < 1), firing rates νk
2

sufficiently below mean induce LTP.

above mean (e.g., ζ = 2) induces long term potentiation (LTP) in active synapses

(i.e., synapses j with large νpre,k
j ). This will further increase the correlation between

νk
1 and νk

2 for the encountered input. A firing rate νk
2 of the target signal below

mean (ζ < 1) will induce long term depression (LTD) in active synapses. Again,
this increases the correlation between νk

1 and νk
2 .

For anti-correlated signals (φ < 1; see Figure 2.4B), firing rates νk
2 sufficiently

below mean (e.g., ζ = 0) induce LTP in active synapses. This will increase the anti-
correlation between νk

1 and νk
2 for the encountered input. Similarly, anti-correlation

is increased for νk
2 above mean, when LTD is induced in active synapses. Note that

correlation and anti-correlation both contribute to the increase of mutual informa-
tion.

2.4.3 Comparison with the BCM learning rue

To elucidate the relation to the classical Bienenstock-Cooper-Munro (BCM) learn-
ing rule (Bienenstock et al., 1982) we rewrite the simplified rule (2.21) as

∆wk
1j

∆t
= −ανpre,k

j Φ(νk
1 , νk

2 ), (2.24)

where Φ is a two-dimensional function of the firing rates νk
1 and νk

2 ,

Φ(νk
1 , νk

2 ) = f(νk
1 )

{

log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)γ]

− β∆t
[

νk
2 log φ − ν̄k

2 (φ − 1)
]

}

, (2.25)
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with φ = ν̄k
12/(ν̄

k
1 ν̄k

2 ). This function Φ(νk
1 , νk

2 ) can be seen as an extension of the
classical BCM synaptic modification function (Bienenstock et al., 1982; Toyoizumi
et al., 2005) and is plotted in Figures 2.5A-2.5D for the special case that both
average firing rates are equal to the constant target firing rate (i.e., ν̄k

1 = ν̄k
2 = g̃ =

20Hz), for four different values of the quotient φ.
Because of the anti-Hebbian nature of (2.24), values of Φ above 0 produce LTD.

An analogous Hebbian learning rule for the extraction of independent components
is derived in section 2.6. For such Hebbian learning rules, values of Φ above 0
produce LTP. One sees that for φ = 1 (see Figure 2.5B) the second term in (2.25)
vanishes, in which case Φ does not depend on νk

2 and reduces to the classical BCM
function in (Toyoizumi et al., 2005), where regimes of LTP and LTD are separated
by a sliding threshold that depends in a nonlinear way on the running average of
the postsynaptic rate ν̄k

1 . On the other hand, if φ 6= 1 the value of Φ additionally
depends on the current firing rate νk

2 , which results in shifted versions of the BCM
function where the balance between positive and negative domains varies as νk

2 is
changed from small to large values.

If φ < 1, the signals are anti-correlated (see Figure 2.5A). In this case Φ is more
negative for small values of νk

2 and more positive for large values of νk
2 . This means

that for the anti-Hebbian learning rule (2.24), weights (and therefore also the firing
rate νk

1 ) tend to increase for small νk
2 , and decrease for large νk

2 . Therefore the
output of the neuron and the target signal get even more anti-correlated. Similarly,
for correlated signals (φ > 1, see Figures 2.5C and 2.5D) their correlation increases
even further, since for small values of νk

2 the output firing rate νk
1 tends to decrease as

well (due to positive values of Φ), whereas it grows for large νk
2 (because of negative

values of Φ). In both cases (correlated or anti-correlated signals) the statistical
dependence between the output and the target signal increases, as should be the
case for an IB-task.

2.4.4 Comparison with a previously proposed method for informa-

tion bottleneck optimization

In the original formulation of the Information bottleneck method (Tishby et al.,
1999) the data variable X should be compressed as much as possible by a quanti-
zation or representation X̃ . At the same time, however, this compressed variable
should capture as much information as possible about a relevance variable Y . There
is a trade-off between compression and preserving meaningful information, leading
to the following objective function to minimize:

L = I(X̃;X) − βI(X̃;Y), (2.26)

where β > 0 is a trade-off parameter. If the joint distribution P (X,Y ) is given,
the value of L depends only on the stochastic mapping4 P (X̃ |X), because X̃ is
independent of Y given X. For a given β the optimal solution which minimizes

4This means that the objective function L (2.26) can be written as a functional L[P (X̃ |X)] =
I(X̃;X) − βI(X̃;Y) and minimizing (2.26) is equivalent to minimizing the functional L[P (X̃|X)]
with respect to the conditional distribution P (X̃|X) (Tishby et al., 1999).
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Figure 2.5: Extension of the classical BCM rule into two dimensions. Two-
dimensional synaptic modification function Φ(νk

1 , νk
2 ) (2.25) of the rate-based learning rule

(2.21) as an extension of the classical BCM rule for ν̄k
1 = ν̄k

2 = g̃ = 20Hz, β = 50, γ = 1,
and different values of the quotient φ = ν̄k

12/(ν̄k
1 ν̄k

2 ), which measures the correlation between
the output of the neuron and the target signal. The sliding threshold between LTP and
LTD depends not only on the postsynaptic firing rate rk

1 , but also on the target signal rk
2

if both signals are correlated (φ > 1) or anti-correlated (φ < 1). ((A) φ = 0.5, (B) φ = 1,
(C) φ = 1.5, (D) φ = 2). Note that Φ is reduced to a one-dimensional function (like in the
classical BCM-rule) for φ = 1 (see panel B). In each plot the solid black line indicates the
transition from depression to potentiation (Φ = 0).

(2.26) is given by (Tishby et al., 1999)

P (X̃ |X) =
P (X̃)

Z(X,β)
exp

[

−βDKL(P (Y |X)||P (Y |X̃))
]

, (2.27)

where Z(X,β) is a normalization function. Note that equation (2.27) is implicit
because both P (X̃) and P (Y |X̃) depend on P (X̃ |X), through

P (X̃) =
∑

X

P (X)P (X̃ |X) (2.28)



22 Chapter 2. Information bottleneck optimization

and

P (Y |X̃) =
1

P (X̃)

∑

X

P (X,Y )P (X̃ |X). (2.29)

The equations (2.27) to (2.29) can be solved iteratively with an extension of the
Blahut-Arimoto (BA) algorithm, which is well-known from applications to problems
from rate distortion theory and channel capacity calculations (Tishby et al., 1999;
Cover and Thomas, 1991). This generalized Blahut-Arimoto algorithm performs
alternating iterations over the distributions P (X̃ |X), P (X̃), and P (Y |X̃) and can
be shown to converge to the optimal solution of (2.27) to (2.29) (Tishby et al.,
1999). In the following we briefly discuss the relationship between this traditional
IB algorithm and our learning rule for spiking neurons.

The traditional Information bottleneck approach has so far mainly been applied
to discrete variables X, X̃ and Y , in a wide range of applications, see (Slonim, 2002)
for a review and references. However, in the general theory there is no restriction
on the type of these variables. In this thesis we apply the Information bottleneck
principle to spike trains (see Figure 2.1A): The input spike trains XK to the learning
neuron correspond to the data variable X, the output spike train Y K

1 of this neuron
represents the compressed variable X̃ , and the target spike train Y K

2 specifies the
relevant variable Y . This yields the following correspondence to the notation of
(Tishby et al., 1999):

P (X̃|X) , P (Y K
1 |XK),

P (X̃) , P (Y K
1 ),

P (Y |X̃) , P (Y K
2 |Y K

1 ).

In the traditional IB algorithms one usually specifies the trade-off parameter β
and the joint distribution P (X,Y ) in advance. This is also the case for our exper-
iments (see section 2.5) where we choose a particular statistics for the input and
target spike trains, XK and Y K

2 . Furthermore, both the BA algorithm and our
learning rule search for the optimal distributions P (X̃ |X) and P (Y K

1 |XK), respec-
tively. However, the compression achieved by the mapping P (Y K

1 |XK) is not mod-
eled explicitly, but implicitly through the weights w1j of the learning neuron. By
updating these weights we successively adapt the stochastic input-output relation-
ship given by P (Y K

1 |XK). Due to this modification of P (Y K
1 |XK) the distributions

P (Y K
1 ) =

〈

P (Y K
1 |XK)

〉

XK and P (Y K
2 |Y K

1 ) = P (Y K
1 , Y K

2 )/P (Y K
1 ) change implic-

itly, whereas in the traditional IB algorithm the corresponding distributions P (X̃)
and P (Y |X̃) are updated in a separate step. However, as in the Blahut-Arimoto
algorithm, where the new value of P (X̃ |X) depends on the values of P (X̃) and
P (Y |X̃), in our learning rule the adaptation of P (Y K

1 |XK), i.e., the change of the
weights w1j , depends on P (Y K

1 ) and P (Y K
2 |Y K

1 ) through the terms Ck
1j , Bk

1 , and

Bk
12 of the learning rule (2.18).

More precisely, by comparing the current firing rate with its running average,
the term Bk

1 (2.19) depends on both the output distribution P (Y k
1 ) and the prob-

ability of the output given the input spike trains, P (Y k
1 |Xk) (see also (Toyoizumi

et al., 2005)). The distribution P (Y k
2 |Y k

1 ) influences the term Bk
12 (2.20) since this
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term compares the joint probability P (Y k
1 , Y k

2 ) with the independent distribution
P (Y k

1 )P (Y k
2 ), or equivalently, P (Y k

2 |Y k
1 ) with P (Y k

2 ). Finally, both terms Bk
1 and

Bk
12 are multiplied in the learning rule (2.18) with the correlation term Ck

1j, which

can be written as the derivative of the logarithm of P (Y K
1 |XK) with respect to the

weights w1j , Ck
1j = ∂

∂w1j
log P (Y k

1 |Xk) (see (2.16) and Appendix B.1.2).

Summarizing, the main difference between the previous Information bottleneck
approach from (Tishby et al., 1999) and our special application to spiking neurons is
that in our case the distribution under consideration, P (Y K

1 |XK), is parametrized
by the weights w1j of a spiking neuron (whereas in most IB algorithms, no special
assumptions are made about the probability distributions to be optimized), and our
learning rule is an online learning rule performing gradient ascent on the objective
function. In the generalized Blahut-Arimoto algorithm the probability distributions
are changed directly (e.g., by maintaining probability tables) and always converge
to the optimal solution, whereas our learning rule can change them only implicitly
by adapting the weights w1j , and there is no guarantee that the global optimum
is found. Another difference is that the Information bottleneck algorithm from
(Tishby et al., 1999) is an offline algorithm that performs the optimization over the
whole range of the random variables, whereas our algorithm is an online algorithm
where the weights are adapted sequentially as the input and the target spike trains
are presented to the neuron. In this sense our update rule can be viewed as a
novel online learning approach to Information bottleneck optimization for a concrete
parametrized instance of the problem.

2.5 Application to information bottleneck optimization

We use a setup as in Figure 2.1A where we want to maximize the information
which the output Y K

1 of a learning neuron conveys about one or more target signals
Y K

2 , Y K
3 , . . .. In the following simulations we let the neuron receive inputs XK at

N = 100 synapses, with weights randomly initialized at small values (from 0.10 to
0.12). Unless stated otherwise, we choose g̃ = 30Hz for the target firing rate, and
we use discrete time with ∆t = 1ms.

2.5.1 Extracting a single rate modulation

In a first experiment we investigate how the spike-based learning rule (2.18) per-
forms in a simple rate coding paradigm, i.e., the information is encoded in the firing
rates of the spike trains. We divide the inputs into 4 groups of 25 synapses each.
In the following, let ri(t) and rT (t) denote the firing rate of group i (i = 1, . . . , 4)
and of the target signal, respectively, at time t. Each input spike train is gener-
ated by an inhomogeneous Poisson process with common rate modulation within
each group, however, the rate modulations for different groups are statistically in-
dependent (see Figure 2.6A). More precisely, for input group 1 (synapses 1 to 25)
we choose a periodic rate modulation r1(t) = r0 + A sin(2πt/T ) with r0 = 20Hz,
A = 10Hz, and T = 500ms. The rate of group 2 (synapses 26 to 50) is constant
during intervals of 1s, each second a firing rate is chosen randomly out of the values
2Hz, 13Hz, 25Hz, 40Hz, and 50Hz. Synapses 51 to 75 (input group 3) receive a



24 Chapter 2. Information bottleneck optimization

rate that has a constant value of 2Hz, except that a burst is initiated at each time
step with a probability of 0.0005. Thus there is a burst on average every 2s. The
duration of a burst is chosen from a Gaussian distribution with mean 0.5s and SD
0.2s, the minimum duration is chosen to be 0.1s. During a burst the rate is set to
50Hz. Finally the remaining synapses (76 to 100; group 4) receive constant rate
Poisson spike trains at 20Hz.

We generate the target spike train by an inhomogeneous Poisson process with
the same rate modulation as the inputs of group 1, r1(t). In this case we expect
that weights will grow only for the first group and remain depressed for the other
inputs, since these are the only inputs that are not statistically independent from the
target signal. However, Figure 2.6 shows that besides for group 1, strong weights
are also developed for group 4, which is the uncorrelated constant rate Poisson
input. This is because the neuron has to achieve a mean postsynaptic firing rate
close to the constant target firing rate of 30Hz and uncorrelated Poisson spike trains
with a constant rate are always statistically independent from any other spike train.
Therefore, developing strong weights for this group of inputs does not increase the
mutual information between input and output, which should be kept as low as
possible. All other synapses are depressed because their inputs are statistically
independent from the target signal. Moreover, Figure 2.6 shows that after learning
the time course of the output rate modulation is similar to that of the target signal,
therefore the neuron has learned to “represent” the target signal. Furthermore, the
mutual information between input and output decreases, whereas the information
as well as the correlation between the output and the target signal increases.

Further experiments show that one can also extract the rates of input groups
2 and 3, r2(t) and r3(t), if a correlated spike train is chosen as the target signal.
However, it is not reasonable to take an uncorrelated fixed-rate Poisson spike train
as the target spike train, since it does not contain mutual information with any of
the inputs. Using such target a has the same effect as removing the target signal
(see next experiment).

2.5.2 Extracting a time-varying combination of rate modulations

In the second experiment we consider a target signal that is only indirectly related
to some of the inputs, and in addition this relationship varies over time. Again, the
input is divided into 4 groups of 25 synapses each with different rate modulations.
This time we use rates that are constant during random intervals and can take 5
different values, 2Hz, 13Hz, 25Hz, 40Hz, and 50Hz. The time during which the rate
remains constant is drawn uniformly from the interval [0s, 1s], and the value of the
rate is also chosen uniformly among the 5 available values. The spike trains are
generated from an inhomogeneous Poisson process with a rate modulation created
with this method for each of the 4 input groups, independently from each other (see
Figure 2.7A).

The rate of the target signal rT (t) is chosen to be a linear combination of the
input rates. At the beginning, we set it to the mean between the rates of group 1 and
2, i.e., rT (t) = (r1(t) + r2(t))/2, in order to test whether this suffices for triggering
the increase of weights from input groups 1 and 2. To make the experiment more
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Figure 2.6: Extracting a single rate modulation with the spike-based rule (2.18).
(A) Modulation of input rates for each of the four groups. (B) Evolution of weights
during 60 minutes of learning (red: strong synapses, wij ≈ 1, blue: depressed synapses,
wij ≈ 0.) Weights were initialized randomly between 0.10 and 0.12, α = 5 · 10−4, β = 103,
γ = 10. Each group receives Poisson input with a different rate modulation ri(t); the rate
modulation of the target signal is the same as for input group 1, rT (t) = r1(t). (C) Output
rate and rate of the target signal during 5 seconds after learning. (D) Evolution of the
average mutual information per time bin (solid line, left scale) between input and output,
and the Kullback-Leibler divergence per time bin (dashed line, right scale) as a function
of time. Averages are calculated over segments of 1 minute. (E) Evolution of the average
mutual information per time bin between output and the target signal as a function of time.
(F) Trace of the time-varying correlation between output rate and rate of the target signal
during learning. Correlation coefficients are calculated every 10 seconds.

interesting, we change the rate of the target signal to the mean of rates of group
1 and 3, rT (t) = (r1(t) + r3(t))/2, after 15 minutes . Furthermore, to investigate
the effect of removing the target signal after some time, we switch it off after 45
minutes (rT (t) = 0).

Figure 2.7 shows the performance of the simplified learning rule (2.21) for this
task. In the panel 2.7B we see that weights grow initially for input groups 1 and
2 and remain depressed for the other inputs, as expected. After 15 minutes, as
the firing rate combination of the target signal changes, the weights of group 2 are
weakened whereas the efficacies of the third group now start to grow. This means
that the learning rule is able to adapt to new situations where the relevant target
signal changes. However, the final distribution of synaptic efficacies persists when
the target signal is removed after 45 minutes.
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Figure 2.7: Extracting input components that are indirectly and just during
certain time points related to the target signal with the rate-based rule (2.21).
(A) Modulation of input rates for each of the four groups. Each group i receives Poisson
input with a different rate modulation ri(t). (B) Evolution of weights during 60 minutes
of learning (red: strong synapses, wij ≈ 1, blue: depressed synapses, wij ≈ 0.) Weights
were initialized randomly between 0.10 and 0.12, α = 10−3, β = 5 · 103, γ = 10. Initially,
rT (t) = 1/2(r1(t) + r2(t)); after 15 minutes it changes to rT (t) = 1/2(r1(t) + r3(t)). After
45 minutes, rT (t) = 0. (C) Output rate and rate of the target signal during 5 seconds
just before the target signal is removed. (D) Evolution of the average mutual information
between input and output per time bin (solid line, left scale), and the Kullback-Leibler
divergence per time bin (dashed line, right scale) as a function of time. Averages are
calculated over segments of 1 minute. (E) Evolution of the average mutual information
per time bin between output and the target signal as a function of time. (F) Trace of the
correlation between output rate and rate of the target signal during learning. Note that
the target signal is changed after 15 minutes, and set to 0 after 45 minutes. Correlation
coefficients are calculated every 10 seconds.

2.5.3 Extracting spike-spike correlations

So far we have only considered rate coding, i.e., the information was encoded in the
firing rates of the spike trains. But can the proposed learning rule also take into
account information that is contained in the spike timings rather than in the firing
rates? In the next experiment we investigate the effect of spike-spike correlations
between the target spike train and parts of the input for the spike-based learning
rule (2.18). All input spike trains and the target spike train are now generated
by a Poisson process at a constant rate of 20Hz. However, different correlation
groups are established within the inputs in the following way: The first 25 inputs
are strongly correlated with the target spike train (with a coefficient of 0.5), the
second 25 synapses have weaker correlations with the target spike train (coefficient



2.5. Application to information bottleneck optimization 27

0.2). The remaining 50 inputs are uncorrelated with the target spike train, however,
inputs 51 to 75 are pairwise correlated with a coefficient of 0.5, and inputs 76 to
100 are uncorrelated. Inputs belonging to different groups are also uncorrelated.
Correlated spike trains are generated by the procedure described in (Gütig et al.,
2003; Legenstein et al., 2005).

Figure 2.8 shows that strong weights grow for those synapses where the input
has spike-spike correlations with the target spike train. Because the first group of
inputs is correlated more strongly than the second group, weights from the first
group reach their maximum value of 1 whereas those for the second group only
grow up to a value of about 0.5. That is, the learning rule is sensitive to different
levels of correlation. Note that the information conveyed by spike-spike correlations
is about one order of magnitude larger than in the previous experiments with rate
coding. In Figure 2.8D the correlation between the output and the target spike
train is bounded from above by the maximum correlation of inputs with the target
spike train (0.5).

2.5.4 Extracting information that is relevant for two different tar-

get signals

We use a setup as in Figure 2.1A where we want to maximize the information
which the output Y K

1 of a learning neuron conveys about two target signals, Y K
2

and Y K
3 . If the target signals are statistically independent from each other we can

optimize the mutual information to each target signal separately, i.e., we include
the term β(I(YK

1 ;YK
2 ) + I(YK

1 ;YK
3 )) in the objective function (2.11). This leads

to an update rule

∆wk
1j

∆t
= −αCk

1j

[

Bk
1 (−γ) − β∆t

(

Bk
12 + Bk

13

)]

, (2.30)

where Bk
12 and Bk

13 are the postsynaptic terms (2.20) sensitive to the statistical
dependence between the output and target signals 1 and 2, respectively.

In this experiment we demonstrate that it is possible to consider two very dif-
ferent kinds of target signals: one target spike train has a similar rate modulation
as one part of the input, while the other target spike train has a high spike-spike
correlation with another part of the input. The first two of the four input groups
consist of rate modulated Poisson spike trains, where the rate of the first 25 inputs
is modulated by a Gaussian white-noise signal with mean 20Hz that has been low-
pass filtered with a cut-off frequency of 5Hz. Synapses 26 to 50 receive the burst
signal described in section 2.5.1, which was used there for input group 3 (see Figure
2.9A). Spike trains from the remaining groups 3 and 4 are Poisson spike trains at
a constant rate of 20Hz, but have spike-spike correlations with a coefficient of 0.5
within each group. However, spike trains from different groups are uncorrelated.
The first target spike train is chosen to have a similar rate modulation as the inputs
from group 1; Gaussian random noise is superimposed on the rate with a standard
deviation of 2Hz. The second target spike train is correlated with inputs from group
3 (with a coefficient of 0.5), but uncorrelated to inputs from group 4. Furthermore,
both target signals are silent during random intervals: at each time step, the rate
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Figure 2.8: Extracting spike-spike correlations with the spike-based learning rule
(2.18). (A) Evolution of weights during 60 minutes of learning (red: strong synapses,
wij ≈ 1, blue: depressed synapses, wij ≈ 0.) Weights were initialized randomly between
0.10 and 0.12, α = 10−4, β = 102, γ = 50. All inputs and the target spike train are
Poisson spike trains at a constant rate of 20Hz. Input group 1 and the target spike train
are correlated with a coefficient of 0.5, between input group 2 and the target spike train
a correlation coefficient of 0.2 is established. Group 3 is also correlated with 0.5, but
uncorrelated to the target spike train, and group 4 is uncorrelated at all. Spike trains
from different groups are uncorrelated. (B) Evolution of the average mutual information
per time bin (solid line, left scale) between input and output, and the Kullback-Leibler
divergence per time bin (dashed line, right scale) as a function of time. Averages are
calculated over segments of 1 minute. (C) Evolution of the average mutual information
per time bin between output and the target signal as a function of time. (D) Trace of the
current spike-spike correlation between the output spike train and the target spike train
during learning. Correlation coefficients are calculated every 10 seconds. This experiment
shows that the neuron learns with the IB learning rule to extract information from high
dimensional input streams that is contained in the spike times.

of each target signal is independently set to 0 with a certain probability (10−5) and
remains silent for a duration chosen from a Gaussian distribution with mean 5s
and SD 1s (minimum duration is 1s). Hence this experiment tests whether learning
works even if the target signals are not available all of the time.

Figure 2.9 shows that strong weights evolve for the first and third group of
synapses, whereas the efficacies for the remaining inputs are depressed. Both groups
with growing weights are correlated with one of the target signals, therefore the
mutual information between output and target spike trains increases. Since spike-
spike correlations convey more information than rate modulations synaptic efficacies
develop more strongly to group 3 (the group with spike-spike correlations). This
results in an initial decrease in correlation with the rate-modulated target signal to
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Figure 2.9: Using two target signals at the same time with the spike-based rule
(2.18). (A) Modulation of input rates to input groups 1 and 2. (B) Evolution of weights
during 60 minutes of learning (red: strong synapses, wij ≈ 1, blue: depressed synapses,
wij ≈ 0.) Weights were initialized randomly between 0.10 and 0.12, α = 10−4, β = 2 · 103,
γ = 50. Input groups 1 and 2 receive Poisson spike trains with different rate modulations;
groups 3 and 4 receive constant rate Poisson at 20Hz, but each group is correlated with a
coefficient of 0.5, and spike trains from different groups are uncorrelated. The first target
spike train is a Poisson spike train with the same rate modulation as group 1, superimposed
with Gaussian noise (σ = 2Hz). The second target spike train has a constant rate of 20Hz
and is correlated with coefficient 0.5 to input group 3. (C) Output rate and rate of target
signal 1 during 5 seconds after learning. (D) Evolution of the average mutual information
per time bin (solid line, left scale) between input and output and the Kullback-Leibler
divergence per time bin (dashed line, right scale) as a function of time. Averages are
calculated over segments of 1 minute. (E) Evolution of the average mutual information per
time bin between output and both target spike trains as a function of time. (F) Trace of
the current correlation between output rate and rate of target signal 1 (solid line) and the
spike-spike correlation (dashed line) between the output and target spike train 2 during
learning. Correlation coefficients are calculated every 10 seconds.

the benefit of higher correlation with the second target spike train. However, after
about 30 minutes when the weights become stable, the correlations as well as the
mutual information quantities stay roughly constant.

2.5.5 Extracting information that is uncorrelated with the target

signal, but has higher order statistical dependencies

So far we have analyzed the information bottleneck setup only for situations where
the target signal is correlated to parts of the input (either via rate correlations
or spike-spike correlations). To show that the learning rule is also able to extract



30 Chapter 2. Information bottleneck optimization

statistical dependencies of higher order, we try to extract uncorrelated, but still
statistically dependent information. In this experiment, we use again rate coding
and choose the firing rate of the target signal to be a function of one of the input
rate modulations as to induce strong statistical dependence between the target spike
train and this input group. In order to decorrelate the target signal from this input,
a whitening transformation is applied (see Appendix B.2).

We generate the rate modulations for the four input groups r1(t), . . . , r4(t) in
the same way as in the experiment described in section 2.5.3, i.e., piecewise constant
rates chosen randomly out of the set {2Hz, 13Hz, 25Hz, 40Hz, 50Hz}, and the dura-
tion during which the rate is constant is drawn uniformly from the interval [0s, 1s].
Inputs from the same group share the same rate modulation, inputs from different
groups are statistically independent, since the rates are drawn independently for
each group. The rate of the target signal is chosen to be a function of the first
input rate, i.e., rT (t) = f(r1(t)), where f(2) = 13Hz, f(13) = 25Hz, f(25) = 40Hz,
f(40) = 50Hz, and f(50) = 2Hz. In this way, statistical dependence has been
established between the first input group and the target spike train. Now, the
whitening transformation is applied to decorrelate the rate modulation of the first
input group, r1(t), and the target signal, rT (t), yielding r̃1(t) and r̃T (t). Finally,
the input spike trains are generated by inhomogeneous Poisson processes with the
rates r̃1(t), r2(t), r3(t), and r4(t), and the target spike train is drawn from r̃T (t).
For this experiment, we choose g̃ = 20Hz.

The performance of the rate-based rule on this task is shown in Figure 2.10.
It can be seen that weights reach values close to maximal efficacy for the statisti-
cally dependent group (group 1) and finally get depressed for the remaining inputs.
The output is now uncorrelated, but still statistically dependent to the target sig-
nal. Note that the mutual information between output and target signal increases
whereas the correlation stays around 0. This means that the learning rule is also
sensitive to higher order statistical dependencies.

2.6 Extracting independent components

With a slight modification in the objective function (2.11) the learning rule allows
us to extract statistically independent components from an ensemble of input spike
trains. We consider two neurons receiving the same input at their synapses (see
Figure 2.1B). For both neurons i = 1, 2 we maximize information transmission
under the constraint that their outputs stay as statistically independent from each
other as possible. That is, we maximize

L̃i = I(XK ;YK
i ) − βI(YK

1 ;YK
2 ) − γDKL(P (Y K

i )||P̃ (Y K
i )). (2.31)

Since the same terms (up to the sign) are optimized in (2.11) and (2.31) we can
derive a gradient ascent rule for the weights of neuron i, wij , analogously to section
2.3:

∆wk
ij

∆t
= αCk

ij

[

Bk
i (γ) − β∆tBk

12

]

(2.32)

(see Table 2.1 for a definition of the terms in this equation).
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Figure 2.10: Extracting uncorrelated but statistically dependent information with
the rate-based rule (2.21). (A) Modulation of input rates to input groups 1 to 4. (B)
Evolution of weights during 30 minutes of learning (red: strong synapses, wij ≈ 1, blue:
depressed synapses, wij ≈ 0.) Weights were initialized randomly between 0.10 and 0.12,
α = 10−6, β = 2 · 107, γ = 50. Each input group receives Poisson input with different
rate modulations, the rate modulation of the target is a function of the rate of input group
1. The rate of the target signal and the rate of input group 1 are decorrelated using the
whitening transform described in the text. Nevertheless the learning rule picks out these
inputs that have statistical dependencies with the target signal. (C) Output rate and rate
of the target signal during 5 seconds after learning. (D) Evolution of the average mutual
information per time bin (solid line, left scale) between input and output and the Kullback-
Leibler divergence per time bin (dashed line, right scale) as a function of time. Averages are
calculated over segments of 1 minute. (E) Evolution of the average mutual information per
time bin between output and target spike train as a function of time. One clearly sees that
this mutual information keeps increasing, whereas the mutual information between input
and output (see D) stays on the same level. (F) Trace of the correlation between output
rate and rate of the target signal during learning. Correlation coefficients are calculated
every 10 seconds.

In order to compare this rule with the BCM model as in section 2.4.3 we consider
the weight change of neuron 1 for the rate-based rule derived for the simplified
neuron model,

∆wk
1j

∆t
= ανpre,k

j Φ̃(νk
1 , νk

2 ), (2.33)

where Φ̃(νk
1 , νk

2 ) is given by

Φ̃(νk
1 , νk

2 ) = f(νk
1 )

{

log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)−γ
]

− β∆t
[

νk
2 log φ − ν̄k

2 (φ − 1)
]

}

, (2.34)
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with φ = ν̄k
12/(ν̄

k
1 ν̄k

2 ).
Compared to the IB rule (2.24), the sign of the weight update has changed in

(2.33), reflecting the different signs in the first two terms of the objective function
(2.31) as compared to (2.11). The synaptic modification function (2.34) is the same
as Φ(νk

1 , νk
2 ) in equation (2.25), except that γ in (2.25) is replaced by −γ. In the

following discussion, we consider the case where the output rate of neuron 1 is
already close to the target firing rate, so that ν̄k

1 ≈ g̃. In this case, Φ̃(νk
1 , νk

2 ) is
approximately equal to Φ(νk

1 , νk
2 ) and Figure 2.5 qualitatively also applies for Φ̃.

Analogous arguments as in section 2.4.3 can be applied when comparing this
rule with the BCM model. Because of the Hebbian nature of (2.33) values of Φ
above 0 produce LTP and values below 0 produce LTD (see Figure 2.5). Again,
for the special case φ = 1 (see Figure 2.5B) the outputs are uncorrelated and the
learning rule reduces to the classical BCM rule, i.e., the output of neuron 2, νk

2 ,
has no influence on the weight change ∆wk

1j of neuron 1. In case of anti-correlated
outputs of the two neurons (φ < 1, see Figure 2.5A) the learning rule will try to
make them more correlated by increasing νk

1 for large νk
2 and decreasing νk

1 for
small νk

2 . On the other hand, if the outputs are correlated (φ > 1, see Figures 2.5C
and 2.5D), anti-correlations will be increased: For large values of νk

2 the output
firing rate νk

1 tends to decrease; for small values of νk
2 it increases. In this way,

the learning rule tries to make these outputs statistically independent. Again, note
that correlation and anti-correlation both contribute in the same way to mutual
information.

2.6.1 An approximation of the learning rule

The term Bk
12 (2.20) in the learning rule (2.32) is nonlocal and difficult to implement

by a spiking neuron in reality. In the following we provide an approximation to the
learning rule (2.32) in which we implement the effect of the term Bk

12 by modifying
the value g(ui(t

k)) in the term Bk
i . This could provide an idea how this learning

rule might possibly be implemented in a biologically realistic circuit of neurons.
More precisely, we let the weights of neuron i evolve according to the learning rule

∆wk
ij

∆t
= αCk

ijB̂
k
i (γ), (2.35)

which is similar to the generalized BCM rule for spiking neurons presented in sec-
tion 2.2, where

B̂k
1 (γ) =

yk
1

∆t
log

[

ĝ1(t
k)

ḡ1(tk)

(

g̃

ḡ1(tk)

)γ]

− (1 − yk
1)R1(t

k)
[

ĝ1(t
k) − (1 + γ)ḡ1(t

k) + γg̃
]

,

(2.36)

is Bk
i (γ) with a modified gain function ĝi(t

k) (see Table 2.3). Note that we do not
change the actual gain function (i.e., firing behavior) of the neuron, the modified
gain function ĝi(t

k) is only effective in the learning rule.
To find the desired expression for ĝi(t

k), we compare the combined postsynaptic
term Bk

i (γ)− β∆tBk
12 in (2.32) with the simple postsynaptic term B̂k

i (γ) (2.36) for
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both neurons and for the two cases that the neuron itself or the other neuron has
emitted a spike (see Appendix B.3). This results in a modified gain function for
the learning rule of neuron i = 1, 2 of

ĝi(t
k) = g(ui(t

k)) · ai(t
k)y

k
i (1−yk

3−i) + bi(t
k)yk

3−i(1 − yk
i ). (2.37)

The term

ai(t
k) = exp

[

R3−i(t
k)β∆t

(

ḡ12(t
k)

ḡi(tk)
− ḡ3−i(t

k)

)]

(2.38)

corresponds to a multiplicative change of g(ui(t
k)) in case of spikes of neuron i itself.

If the outputs have been correlated (i.e., ḡ12(t
k) > ḡ1(t

k)ḡ2(t
k)) the modified gain in

(2.35) is increased, if the outputs have been anti-correlated (ḡ12(t
k) < ḡ1(t

k)ḡ2(t
k))

it is decreased. If on the other hand a spike is elicited by the other neuron (neuron
3 − i) the value g(ui(t

k)) is modified additively by the term

bi(t
k) = −β

[

ḡ12(t
k)

ḡ3−i(tk)
− ḡi(t

k)

]

. (2.39)

In case of correlated outputs it is decreased, in case of anti-correlated outputs it is
increased.

Note that equations (2.35) to (2.39) only provide an approximation to the learn-
ing rule (2.32) because we have considered only the cases where one of the two neu-
rons spikes. The approximation presented here is still not local because the modified
value ĝi(t

k) still depends on nonlocal variables, e.g., the average product of firing
rates ḡ12(t

k). However, it indicates what a real biological learning rule would have
to approximate. Each neuron needs information about the firing behavior of both
neurons. In particular, a circuit of interneurons would be necessary to implement
some of the terms in equations (2.37) to (2.39).

2.6.2 Extracting different correlation groups

Figure 2.12 shows the results of an experiment where two neurons receive the same
Poisson input with a rate of 20Hz at their 100 synapses. The input is divided into
two groups of 40 spike trains each, such that synapses 1 to 40 and 41 to 80 receive
correlated input with a correlation coefficient of 0.5 within each group, however, any
spike trains belonging to different input groups are uncorrelated. The remaining
20 synapses receive uncorrelated Poisson input (see Figure 2.11 for a sample of
such input spike trains). Weights close to the maximal efficacy wmax = 1 are
developed for one of the groups of synapses that receives correlated input (group
2 in this case) whereas those for the other correlated group (group 1) as well as
those for the uncorrelated group (group 3) stay low. Neuron 2 develops strong
weights to the other correlated group of synapses (group 1) whereas the efficacies of
the second correlated group (group 2) remain depressed, thereby trying to produce
a statistically independent output. For both neurons the mutual information is
maximized and the target output distribution of a constant firing rate of 30Hz is
approached well. After an initial increase in both the mutual information and in
the correlation between the outputs, where the weights of both neurons start to
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Approximation of the learning rule for extracting independent com-
ponents:

The weights wij of neuron i = 1, 2 evolve according to the generalized BCM rule for
spiking neurons. The weight change ∆wk

ij at time tk = k∆t is given by

∆wk
ij

∆t
= αCk

ijB
k
i (γ) (2.35)

with a learning rate α > 0 and optimization parameter γ > 0.

The correlation term Ck
ij and the postsynaptic term Bk

i (γ) are given by:

Ck
ij = Ck−1

ij

(

1 − ∆t

τC

)

+

k
∑

n=1

ε(tk − tn)xn
j

g′(ui(t
k))

g(ui(tk))

[

yk
i − ρk

i

]

(2.16)

Bk
i (γ) =

yk
i

∆t
log

[

ĝi(t
k)

ḡi(tk)

(

g̃

ḡi(tk)

)γ]

− (1 − yk
i )Ri(t

k)
[

ĝi(t
k) − (1 + γ)ḡi(t

k) + γg̃
]

(2.36)

(compare to (2.19) in Table 2.1).
The original gain value g(ui(t

k)) is modified both additively and multiplicatively:

ĝi(t
k) = g(ui(t

k)) · ai(t
k)yk

i
(1−yk

3−i
) + bi(t

k)yk
3−i(1 − yk

i ), (2.37)

where yk
i ∈ {0, 1} indicates an output spike of neuron i at time tk.

If neuron i itself has spiked the value g(ui(t
k)) is multiplied with the following factor:

ai(t
k) = exp

[

R3−i(t
k)β∆t

(

ḡ12(t
k)

ḡi(tk)
− ḡ3−i(t

k)

)]

(2.38)

If the other neuron (neuron 3 − i) has spiked the following term is added to the value
g(ui(t

k)):

bi(t
k) = −β

[

ḡ12(t
k)

ḡ3−i(tk)
− ḡi(t

k)

]

(2.39)

Table 2.3: Summary of the approximation of the learning rule for extracting
independent components.

grow simultaneously, these amounts drop as both neurons develop strong efficacies
to different parts of the input.

2.6.3 Comparison with other neural ICA learning rules

Neural learning algorithms based on information optimization principles, such as
independent component analysis (ICA) (Hyvärinen et al., 2001), have previously
been derived for rate-based models (Hyvärinen and Oja, 1996, 1998). However,
an application to spiking neurons has still been missing. In this section we have
presented an ICA rule for spiking neurons which is not only able to detect statistical
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time [s]
0 1

input sample

Figure 2.11: Demonstration of the difficulty of the ICA task for spike trains.
Shown are 10 spike trains for 1s which represent 10 out of 100 inputs in the experiment
described in Figure 2.12. The top 4 spike trains (group 1) are correlated with a correlation
coefficient of 0.5, as are spike trains 5-8 (group 2). However, spike trains from different
groups are uncorrelated. The remaining bottom two input spike trains (group 3) are un-
correlated. Obviously it is quite difficult to detect which spike trains are correlated, due to
their rather weak correlation.

dependencies between the input rates, but also between the timing of individual
spikes, as shown in the experiment in Figure 2.12. Furthermore, while in ICA one
usually assumes that the data is generated by a linear combination of statistically
independent sources, we do not assume any model on how the data is generated.
The experiment in Figure 2.12 also shows that our learning rule performs blind
source separation even if the sources are not linearly mixed (which is not possible
for a spiking input where the information is encoded in spike timings).

2.7 Discussion

Information bottleneck (IB) and Independent component analysis (ICA) have been
proposed as principles for unsupervised learning in lower cortical areas, however,
learning rules that can implement these principles with spiking neurons have been
missing. So far, synaptic update rules optimizing information-theoretic objectives
have been presented mainly for rate models and real-valued units, e.g., (Linsker,
1989; Bell and Sejnowski, 1995; Becker, 1996). In this Chapter we have derived
from information-theoretic principles learning rules which enable a stochastically
spiking neuron to solve these tasks. We have shown in section 2.4.3 that these rules
can be viewed as an extension to the classical Bienenstock-Cooper-Munro (BCM)
rule (Bienenstock et al., 1982) and to its generalized variant for spiking neurons
(Toyoizumi et al., 2005). Furthermore, we have demonstrated how they are related
to traditional Information bottleneck algorithms (see section 2.4.4) and neural ICA
learning rules (see section 2.6.3). Our learning rules, which are optimal from the
perspective of information theory, are not local in the sense that they use only
information that is available at a single synapse without an auxiliary network of
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Figure 2.12: Extracting independent components from 100 input spike trains. (A,
B) Evolution of weights during 30 minutes of learning for both postsynaptic neurons (red:
strong synapses, wij ≈ 1, blue: depressed synapses, wij ≈ 0.) Weights were initialized
randomly between 0.10 and 0.12, α = 5 · 10−4, β = 100, γ = 50. (C) Evolution of the
average mutual information per time bin between both output spike trains as a function
of time. (D, E) Evolution of the average mutual information per time bin (solid line,
left scale) between input and output and the Kullback-Leibler divergence per time bin for
both neurons (dashed line, right scale) as a function of time. Averages are calculated over
segments of 1 minute. (F) Trace of the current correlation between both output spike trains
during learning. Correlation coefficients are calculated every 10 seconds.

interneurons or other biological processes. But they tell us what type of information
would have to be ideally provided by such auxiliary network, and how the synapse
should change its efficacy in order to approximate a theoretically optimal learning
rule.

The learning rule for ICA that we have derived appears to be the first ICA
learning rule for spiking neurons. We have demonstrated in Figures 2.11 and 2.12
that in particular this learning rule enables spiking neurons to discover and remove
dependencies in their input spike trains that are not encoded through correlations or
other dependencies between their firing rates, but through correlations between the
timing of individual spikes. But this ICA rule is also able to remove dependencies
in firing rates.

Information bottleneck optimization is another and potentially more powerful
method for deriving rules for learning that might shape the output of projection
neurons which send selected information to higher cortical areas, or downwards to
the thalamus. In contrast to ICA, IB optimization need not be driven exclusively
by the statistics of sensory input signals. Rather, IB optimization allows to select
that information from sensory inputs that is related to inputs from another sensory
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modality, to proprioceptive feedback, to expectations, or to rewards. Hence, it may
contribute to the emergence of synergistic internal codes for relevant parts of the
external world, which combine information from different sensory modalities (see
(Calvert et al., 2004)), causing in particular effects such as improved understanding
of spoken language if the face of the speaker can be observed, and to goal-oriented
and task-dependent sensory processing (Sigala and Logothetis, 2002; Shuler and
Bear, 2006; Fritz et al., 2003). Hence, IB learning rules share aspects both of unsu-
pervised and supervised5 learning. We have demonstrated through five computer
experiments that the IB-learning rules for spiking neurons that we have derived are
capable to extract information simultaneously from rates and from spike trains (see
Figures 2.6, 2.8, and 2.9), to extract input signals that are only partially related to
the target signal (since the target is a sum of several input signals, see Figure 2.7),
and to extract information that is related to two simultaneously presented target
signals (which encode information in two different ways, see Figure 2.9). We have
also demonstrated in Figure 2.10 that the learning rule can learn to extract infor-
mation from the input that is not correlated with the target signal, but is related
through higher order statistical dependencies. Finally we have demonstrated that
the learning rules that we have derived work quite fast, in most cases within a few
minutes. We have also demonstrated that they are very stable (hence do not require
any regulation of learning rates), since their performance does not degrade during
experiments of long duration. Furthermore, the firing rate of the learning neurons
always stays within the desired range. In future work it would be interesting to
investigate also applications of these learning rules to signal processing problems
(e.g., noise filtering), since the IB approach promises to provide optimal solutions
to some of these tasks.

The results of this Chapter only show that biological neurons could in prin-
ciple carry out ICA and Information bottleneck analysis, and we have shown how
close-to-optimal learning rules for spiking neurons would look like. We also have ar-
gued that both learning principles are very useful for any multi-sensory distributed
cognitive system. This poses the challenge to neurophysiology to test through ex-
periments in vivo and in vitro to what extent (and where) these learning principles
are implemented in neural systems, and how they are implemented through synaptic
plasticity.
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In this Chapter it is shown that a particular unsupervised learning algorithm
based on the temporal slowness principle, slow feature analysis, is able to ap-
proximate the classification capability of a well-known supervised learning method,
Fisher’s linear discriminant. Furthermore, the capability of this learning method as
a possible readout mechanism of a generic cortical microcircuit model is analyzed.
This Chapter is based on the paper A theoretical basis for emergent pattern dis-
crimination in neural systems through slow feature extraction by Stefan Klampfl
and Wolfgang Maass (Neural Computation, 22(12):2979-3035, 2010).

Neurons in the brain are able to detect and discriminate salient spatio-temporal
patterns in the firing activity of presynaptic neurons. It is open how they can learn
to achieve this, especially without the help of a supervisor. We show that a well-
known unsupervised learning algorithm for linear neurons, slow feature analysis
(SFA), is able to acquire the discrimination capability of one of the best algorithms
for supervised linear discrimination learning, the Fisher linear discriminant (FLD),
given suitable input statistics. We demonstrate the power of this principle by
showing that it enables readout neurons from simulated cortical microcircuits to
learn without any supervision to discriminate between spoken digits, and to detect
repeated firing patterns that are embedded into a stream of noise spike trains with
the same firing statistics. Both these computer simulations and our theoretical
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analysis show that slow feature extraction enables neurons to extract and collect
information that is spread out over a trajectory of firing states that lasts several
hundred ms. In addition, it enables neurons to learn without supervision to keep
track of time (relative to a stimulus onset, or the initiation of a motor response).
Hence these results elucidate how the brain could compute with trajectories of firing
states, rather than only with fixed point attractors. It also provides a theoretical
basis for understanding recent experimental results on the emergence of view- and
position-invariant classification of visual objects in inferior temporal cortex.

3.1 Introduction

The brain is able to extract an astonishing amount of information from its environ-
ment without a supervisor or teacher that tells the brain how an external stimulus
should be classified. Experimental data show that one method which the brain
uses in order to learn the categorization of external objects without a supervisor
is the temporal slowness learning principle, which exploits the fact that temporally
adjacent sensory stimuli are likely to be caused by the same external object. More
precisely, experimental results from the lab of DiCarlo (Cox et al., 2005; Li and
DiCarlo, 2008) (see DiCarlo and Cox, 2007, for a review) show that this simple
heuristic is sufficient for the formation of position- and view-invariant representa-
tions of visual objects in higher cortical areas. This was tested in clever experiments
by altering the probability that different objects caused temporally adjacent firing
states in primary visual cortex (the external visual stimuli were swapped during
the transient blindness while a saccade was performed). Human subjects were re-
ported to merge different visual objects – presented at different retina locations –
into single visual percepts as a result of this manipulation of the temporal statis-
tics of visual inputs. Also the firing response of neurons in monkey area IT was
reported to change accordingly. As a result of these data it was hypothesized in
(Li and DiCarlo, 2008) that “unsupervised temporal slowness learning may reflect
the mechanism by which the visual stream builds and maintains tolerant object
representations”. But a rigorous theoretical basis for the emergent discrimination
capability of this unsupervised temporal slowness learning principle proposed by (Li
and DiCarlo, 2008) has been missing. Such theoretical foundation, which relates
the statistics of the sequence of external stimuli to the emergent discrimination
capability of this unsupervised learning method, is provided in this Chapter.

There have been a number of approaches to learn invariant representations in
an unsupervised manner from the contingency of temporally adjacent inputs, i.e.,
by extracting features that vary on a slow time scale (e.g., Földiak, 1991; Mitchison,
1991; Becker and Hinton, 1992; Stone and Bray, 1995). We focus on one partic-
ularly transparent computational mechanism for unsupervised temporal slowness
learning: slow feature analysis (SFA), introduced by (Wiskott, 1998; Wiskott and
Sejnowski, 2002). SFA transforms a (usually high-dimensional) time series x into
an output y, and minimizes the temporal variation of y under the additional con-
straints of zero mean and unit variance (to avoid the trivial constant solution). The
temporal variation of the output y is defined as the average of its squared temporal
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Figure 3.1: Blockdiagram of SFA. The algorithm is applied to a multi-dimensional time
series x. It consists of an optional expansion step which computes a number of fixed static
nonlinear combinations z of the components of x. Later in this Chapter we will show
that this step can be performed by a cortical microcircuit of neurons. If this step is left
out, z = x. In the next step, the expanded input z has to be whitened such that the
components of the signal v have zero mean, unit variance, and are decorrelated. The
final step selects from this whitened signal the direction of minimal temporal variation,
i.e., the least principal component of the temporal derivative v̇. The projection onto this
direction yields the slowest feature y1. Multiple slow features y = (y1, y2, . . .) are obtained
from orthogonal projection directions which form the eigenvectors of the covariance matrix
〈v̇v̇T 〉t, ordered by increasing eigenvalue.

derivative 〈ẏ2〉t, where 〈·〉t denotes averaging over time. In other words, SFA finds
that function1 g out of a certain predefined function space that produces the slowest
possible output y = g(x). This optimization problem is hard to solve in the general
case (see Wiskott, 2003), but if the available function space is constrained to linear
combinations of a whitened input, the problem has an elegant solution in the form
of an eigenvalue problem in the covariance matrix of input time derivatives. More
precisely, the slowest output is produced by the eigenvector of this matrix that
corresponds to the smallest eigenvalue. This results in the standard SFA algorithm
as presented in (Wiskott, 1998; Wiskott and Sejnowski, 2002) (see blockdiagram
in Figure 3.1), which contains an optional expansion step that computes a number
of fixed nonlinear combinations of the components of x. Such nonlinear expan-
sion boosts the power of any subsequent linear processing (like a kernel for support
vector machines (Schölkopf and Smola, 2002)). This nonlinear expansion enables
SFA to effectively choose from a much larger set of functions g (containing also
nonlinear projections from x), even if the last processing step in the blockdiagram
of Figure 3.1 is constrained to be linear.

The restriction to linear functions in the last step of SFA allows that this pro-
cessing step could in principle be carried out in a biological neural system by readout
or projection neurons that extract information from a cortical microcircuit. A lin-
ear function is a reasonable approximation to the expressive capability of a readout
neuron. The last step of SFA, the selection of the least principal component of
the input time derivatives, could in principle be solved by anti-Hebbian learning on
the differential input and output signals (Mitchison, 1991). Furthermore (Sprekeler
et al., 2007) have shown that this is equivalent to choosing the principal component
of a low-pass filtered input, which can in principle be solved by standard Hebbian

1Note that this function is a static input-output mapping y(t) = g(x(t)), which at any time t
transforms the input x(t) into an output value y(t) instantaneously.
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learning. In addition they have shown that an experimentally supported synaptic
plasticity rule, spike-timing-dependent plasticity (STDP), could in principle enable
spiking neurons to learn this processing step without supervision, provided that
the presynaptic inputs are preprocessed in a suitable manner. This result suggests,
that the gap between the abstract SFA learning principle for linear neurons that we
examine in this Chapter and neurophysiological data on synaptic plasticity could
eventually be closed. However, this analysis leaves open the question how the first
two processing stages could be carried out by a biological neural system. We will
show that a standard model for a generic cortical microcircuit could carry out the
first processing step in the diagram of Figure 3.1 for the case where the time series
x consists of multiple low-pass filtered spike trains. The question remains how the
second processing step of Figure 3.1, the whitening, could be implemented by a neu-
ral circuit. Several learning methods that achieve whitening through a network of
neurons have been proposed (Goodall, 1960; Atick and Redlich, 1993) (see chapter
8 of Dayan and Abbott, 2001). There also exist experimental data which suggest
that the response of cortical neurons to natural external stimuli tends to be quite
decorrelated (see e.g., Vinje and Gallant, 2000).

We establish in section 3.2 a relationship between the unsupervised SFA learn-
ing method and a commonly used learning method for supervised classification
learning: the Fisher linear discriminant (FLD). More precisely, we show that SFA
approximates the discrimination capability of the FLD in the sense that both meth-
ods yield the same projection direction, which can be interpreted as a separating
hyperplane in the input space. This approximation holds for a simple condition on
the temporal statistics of the input time series to SFA: The probability that two
successive samples are from different classes has to be low. Through its tendency to
produce a slowly varying output, SFA automatically clusters those inputs together
that often occur in immediate consecution, and classifies them as different samples
from the same category.

SFA is a learning method that does not require explicit supervision in the sense
that the input patterns are given together with the target classification (labels). We
show instead that it suffices to provide SFA with a very weak or implicit supervisor
in the sense that successive input patterns tend to belong to the same class. (Li and
DiCarlo, 2008) have referred to this as “unsupervised temporal slowness learning”
and for brevity we use the term unsupervised learning in this Chapter.

SFA may also elucidate a puzzle regarding internal codes and computational
mechanisms of the brain. A number of experimental data have challenged the
classical view of coding and computation in the brain, which was based on the
assumption that external stimuli and internal memory items are encoded by firing
states of neurons, which assign a certain firing rate to a number of neurons that
is maintained for some time interval. This classical view of neural coding has the
advantage that one can apply a variety of readily available computational models
from computer science and artificial neural networks in order to model computa-
tion in the brain. However, numerous recent experimental data suggest that many
types of natural sensory stimuli, as well as internally generated traces for episodic
memory, are encoded by characteristic trajectories (or sequences) of different firing
states of neurons that stretch over several hundred ms. This result has been found
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both for (seemingly) static external stimuli such as odors (Mazor and Laurent, 2005;
Broome et al., 2006) (see Rabinovich et al., 2008, for a review) and tastes (Jones
et al., 2007), and for intrinsically time-varying external stimuli such as natural audi-
tory and visual stimuli (see Buonomano and Maass, 2009, for a review). In addition,
numerous experimental data on replay of episodic memory from hippocampus to
cortex point to sequences of different firing states, rather than single firing states
of networks of neurons, as a common form of traces of episodic memory in hip-
pocampus and cortex (see e.g., Euston et al., 2007; Ji and Wilson, 2008). These
experimental data give rise to the question, how the brain can compute with such
temporally dispersed information in the form of trajectories of firing states. At the
latest at the top-level of information processing in the brain, where percepts are
formed and decisions are made, the ubiquitous distribution of salient information
over a sequence of different firing states (stretching over several hundred ms) has
to be inverted, and compressed into a much shorter time interval. The theoretical
analysis provided in this Chapter explains why, and under what conditions, this is
possible with SFA learning.

In section 3.3 we test the theoretically predicted emergent discrimination capa-
bility of SFA by applying it to the output of a simulated network of spiking neu-
rons, more precisely, a detailed model for a laminar cortical microcircuit (Häusler
and Maass, 2007) based on data from (Thomson et al., 2002) and from the lab of
Markram (Gupta et al., 2000). We injected spike trains that simulate the response
of the cochlea to different spoken digits as inputs to the simulated cortical microcir-
cuit, and examined whether linear readouts that receive as input a whitened version
of the continuously varying firing response (in the form of low-pass filtered spike
trains) from neurons in this circuit can learn without supervision to discriminate
between different spoken digits. This experiment turned out to be successful, and
it also revealed a possible functional advantage of this processing scheme: Linear
readout neurons learned not only without supervision to discriminate between dif-
ferent spoken digits, but they provided correct predictions of the currently spoken
digit already while the digit was still being spoken. This is what we refer to as
“anytime computing”: An “anytime computation” is a special form of an online
computation, which can be prompted at any time to provide its current best guess
of a proper output, by integrating as much information about previously arrived
input pieces as possible. In another experiment, SFA was able to both detect and
identify spike patterns within a continuous stream of Poisson input. Again this
information was available already during the presentation of a pattern. This fea-
ture, which is predicted by the theoretical analysis of SFA learning, could enable
subsequent processing stages in the brain to begin higher level computational pro-
cessing already before the trajectory of network states that is characteristic for a
particular sensory stimulus has ended. This feature might remove one obstacle for
establishing a computational model for hierarchical processing of sensory informa-
tion in the cortex: if each stage waits with its processing until the trajectory of
firing states in the lower area has ended, and then creates a subsequent trajectory
as a result of its own computational processing, the resulting total computation
time becomes too long. If however readout neurons can transmit “at any time”
their current guess regarding the identity of the circuit input, other areas to which
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these readout neurons project can start their computational processing right away.
During the subsequent few hundreds of ms they could in addition collect further
evidence which they will receive from the same readout neurons, for or against the
initial guess. In this computational paradigm the stream of sensory stimuli could
generally be processed in real time, with significant processing delays arising only
in the case of ambiguous sensory stimuli.

3.2 A theoretical basis for the emergent discrimination

capability of SFA

In this section, we first give a definition of SFA and FLD. We then present a criterion
on the temporal statistics of training examples which clarifies when SFA approxi-
mates FLD. Finally, we show how the SFA objective is influenced by applying it to
a sequence of whole trajectories of points instead of just to a sequence of individual
training examples.

Slow feature analysis (SFA) SFA extracts the slowest component y from a
multi-dimensional input time series x by minimizing the temporal variation ∆(y)
of the output signal y (Wiskott and Sejnowski, 2002),

min ∆(y) := 〈ẏ2〉t, (3.1)

under the additional constraints of zero mean (〈y〉t = 0) and unit variance (〈y2〉t =
1). The notation 〈·〉t is used in this Chapter to denote averaging over time. If
multiple slow features are extracted an additional constraint ensures that they are
decorrelated (〈yiyj〉t = 0) and ordered by decreasing slowness.

If we assume that the time series x has zero mean (〈x〉t = 0) and if we only
allow linear functions y = wTx the problem simplifies to the following objective

min JSFA(w) :=
wT 〈ẋẋT 〉tw
wT 〈xxT 〉tw

. (3.2)

The matrix 〈xxT 〉t is the covariance matrix of the input time series and 〈ẋẋT 〉t
denotes the covariance matrix of time derivatives of the input time series (or time
differences, for discrete time). The weight vector w which minimizes the quotient
in (3.2) is the solution to the generalized eigenvalue problem

〈ẋẋT 〉tw = λ〈xxT 〉tw (3.3)

corresponding to the smallest eigenvalue λ. That is, we consider only the linear part
of SFA here and ignore the nonlinear expansion step in Figure 3.1 for the moment
(i.e., z = x). Note that the whitening step is made implicit here in the formulation
of (3.2), like in (Berkes and Wiskott, 2003).

Fisher’s linear discriminant (FLD) The FLD is a different data analysis
method. It is applied to single data points x, rather than time series. Further-
more it requires labeled training examples 〈x, c〉, where c ∈ {1, · · · , C} is the class
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to which this example belongs (we will first focus on the case C = 2). Hence it is
a method for supervised learning. The goal is to find a weight vector w so that
the class of new (unlabeled) test examples can be predicted from the value of wTx
(predicting that x belongs to class 2 if wTx ≥ θ for some threshold θ, else that x
belongs to class 1).

FLD searches for that projection direction w which maximizes the separation
between classes while at the same time minimizing the variance within classes,
thereby minimizing the class overlap of the projected values:

max JFLD(w) :=
wTSBw

wTSWw
. (3.4)

For two point sets S1 and S2 with means µ1 and µ2, SB is the between-class
covariance matrix given by the separation of the class means

SB = (µ1 − µ2)(µ1 − µ2)
T , (3.5)

and SW is the within-class covariance matrix given by

SW =
∑

x∈S1

(x − µ1)(x − µ1)
T +

∑

x∈S2

(x− µ2)(x − µ2)
T . (3.6)

Again, the vector w optimizing (3.4) can be viewed as the solution to a generalized
eigenvalue problem,

SBw = λSWw, (3.7)

corresponding to the largest eigenvalue λ. Figure 3.3A illustrates the idea of FLD.
It finds that direction w that optimizes the separability between the projected
values of different classes S1 and S2 by additionally taking into account the within-
class variances. Choosing the direction w′ that only maximally separates the class
means results in an overlap of the projected values. The FLD had been introduced
in (Fisher, 1936). Good descriptions can be found in (Duda et al., 2000; Bishop,
2006).

3.2.1 Application to a classification problem with two classes

SFA and FLD receive different data types as inputs: unlabeled time series for
SFA, in contrast to labeled single data points 〈x, c〉 for the FLD during training,
and unlabeled single data points x during evaluation of its resulting generalization
capability after training.

Therefore, in order to apply the unsupervised SFA learning algorithm to the
same classification problem as the supervised FLD, we have to convert the labeled
training samples into a time series of unlabeled data points that can serve as an input
to the SFA algorithm. In the following we create such a training time series from the
classification problem by choosing at each time step a particular point from S1∪S2.
We investigate the relationship between the weight vector found by Fisher’s linear
discriminant on the original classification problem and the weight vector found by
slow feature analysis applied to the resulting training time series. The idea is that
if we create the time series in such a way that most of its transitions, i.e., pairs of



46 Chapter 3. Slow feature analysis for pattern discrimination

1 2

p
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1-p1-p

Figure 3.2: Markov model describing the generation of the input time series to
SFA from a two-class FLD problem. The state c corresponds to the class Sc from
which the current point in the time series is drawn. After the selection of each point the
class of the next point is determined according to the transition probabilities between the
states.

consecutive points, consist of point pairs from the same class, SFA should learn to
be invariant to points from the same class and to extract the hidden class label of
data points as a slowly varying feature of the time series.

First, we consider a classification problem with 2 classes, i.e., assume we are
given two point sets S1, S2 ⊂ R

n,

S1 :={x1
i |i = 1, . . . , N}, (3.8)

S2 :={x2
j |j = 1, . . . , N}, (3.9)

where x1
i and x2

j denote the data points of class 1 and 2, respectively (note that
these points are unlabeled, since the superscripts 1 and 2 are not “visible” for the
algorithms; it may also occur that x1

i = x2
j). For simplicity we assume that both

sets are of the same size N . We choose the following Markov model (see Figure 3.2)
to create a time series xt out of these two point sets S1 and S2: First, we choose one
of the two classes with equal probability. Then we select a random point from the
corresponding set (S1 or S2). This is then the first point in the input time series,
x1. Next, we switch the class with a certain probability p (or leave it unchanged
with probability 1−p) and choose a point from the resulting class as the next input
point, x2. This is repeated until the time series has a certain predefined length T .
The states in the underlying Markov model correspond to the class from which the
data point is currently drawn. After each drawing, the class is either switched with
probability p, or left unchanged with probability 1− p. The stationary distribution
of this Markov model is

π =

(

1

2
,
1

2

)

. (3.10)

Because we have chosen the initial distribution p0 = π we can say that at any time
the current point is drawn from class 1 or class 2 with probability 1/2.

In this case we can express the matrices 〈xxT 〉t and 〈ẋẋT 〉t of the SFA objective
(3.2) in terms of the within-class and between-class scatter matrices of the FLD
(3.4), SW and SB (for a derivation see Appendix C.1.1):

〈xxT 〉t =
1

2N
SW +

1

4
SB , (3.11)

〈ẋẋT 〉t =
1

N
SW + p · SB . (3.12)
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Note that only 〈ẋẋT 〉t depends on p, whereas 〈xxT 〉t does not.
For small p we can neglect the effect of SB on 〈ẋẋT 〉t in (3.12). In this case

the time series consists mainly of transitions within a class, whereas switching be-
tween the two classes is relatively rare. Therefore the covariance of time derivatives
is mostly determined by the within-class scatter of the two point sets, and both
matrices become approximately proportional: 〈ẋẋT 〉t ≈ 1/N · SW . Moreover, if
we assume that SW (and therefore 〈ẋẋT 〉t) has only nonzero eigenvalues, we can
rewrite the SFA objective as

min JSFA(w) ⇔ max
1

JSFA(w)

⇔ max
wT 〈xxT 〉tw
wT 〈ẋẋT 〉tw

(3.11),(3.12)⇔ max
1

2
+

N

4
· wTSBw

wTSW w

⇔ max JFLD(w).

(3.13)

In the third line we inserted the expressions for 〈xxT 〉t (3.11) and the approximation
for 〈ẋẋT 〉t (3.12) for small p. That is, in this case where switching between different
classes is rare compared to transitions within a class, the weight vector that yields
the slowest output function is approximately equal to the weight vector that is
optimal in separating the two classes in the sense of FLD.

Figure 3.3 demonstrates this relationship on a sample two-class problem in two
dimensions. We interpret the weight vectors found by both methods as normal
vectors of hyperplanes in the input space. Since an additional bias value is required
to determine a unique hyperplane for each weight vector, we place the hyperplanes
in Figure 3.3B simply onto the mean value2

µ of all training data points (i.e., the
hyperplanes are defined as wTx = θ with θ = wT

µ). One sees that the weight
vector found by the application of SFA to the training time series xt generated with
p = 0.2 is approximately equal to the weight vector resulting from FLD on the initial
sets of training points. The deviation comes from the fact that the covariance matrix
of time differences, 〈ẋẋT 〉t, is not solely determined by the within-class scatter (in
eq. (3.12)), because the time series switches several times between the classes.

We interpret the slowest feature found by the SFA algorithm as the hypothesis
of a linear classifier (h(x) = sign(wT

SFA(x−µ))). Figure 3.3C shows the prediction
of this hypothesis for unseen test points from each class, drawn from the same
distribution as the training point sets S1 and S2. It can be seen that the output of
the slowest feature of this test time series (which corresponds just to the projection
of its points onto the weight vector wSFA) takes on distinct values for different
classes. This demonstrates that SFA has extracted the class of the points as the
slowest varying feature by finding a direction that separates both classes, and that
this ability generalizes to test points not used for training.

2Note that for this particular choice of time series generation the expected mean of the training
time series is equal to the total mean of the training data points. Since SFA subtracts the mean
of the training time series beforehand, this value is mapped to 0 in the SFA output.
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Figure 3.3: (see next page for Figure caption)

Figure 3.3D quantifies the deviation of the weight vector resulting from the
application of SFA to the time series from the one found by FLD on the original
points. We use the angle between both weight vectors as an error measure. For each
value of p we generate 100 random classification problems such as the one shown in
Figure 3.3B and calculate the average angle between the vectors obtained by both
methods on these problems (see Appendix C.2.1 for details). Since the sign of the
vectors is arbitrary, we always took the smaller of the two possible angles. Thus,
an angle of 0◦ means perfect equivalence, and the maximal achievable angle (i.e.,
error) is 90◦. It can be seen that if p is low, i.e., transitions between classes are rare
compared to transitions within a class, the angle between the vectors is small and
SFA approximates FLD very well. The angle increases moderately with increasing
p; even with higher values of p (up to 0.45) the approximation is reasonable and
a good classification by the slowest feature can be achieved. As soon as p reaches
a value of about 0.5, the error grows almost immediately to the maximal value of
90◦. It can be seen from equations (3.11) and (3.12) that for p = 0.5 the covariance
of time derivatives, 〈ẋẋT 〉t, becomes proportional to the covariance of the input,
〈xxT 〉t, which means that every possible vector w is a solution to the generalized
eigenvalue problem (3.3), resulting in an average angle of about 45◦. With p = 0.5
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Figure 3.3: Relationship between unsupervised SFA and supervised FLD for a
two-class problem in 2D. (A) Illustration of the concept of FLD. Shown are two point
sets and histograms of values obtained by projecting points onto two different directions,
w, the direction resulting from FLD, and w′, the direction of maximal separation of the
class means. (B) Sample point sets with 250 points for each class, drawn from two different
Gaussian distributions. The green arrow and the green dashed line indicates the weight
vector (wFLD) and a corresponding hyperplane, respectively, resulting from the application
of FLD to the two-class problem. The black arrow and the black solid line shows the weight
vector (wSFA) and a hyperplane resulting from SFA applied to the time series generated
from these training points as described in the text (T = 5000, p = 0.2). The black dotted
line displays an additional SFA hyperplane resulting from a time series generated with
p = 0.45. All hyperplanes are placed onto the mean value of all training points. (C)
Output of the SFA algorithm (slowest feature) applied to a test time series consisting of
100 points from class 1 (blue) and 100 points from class 2 (red; colors as in B). These test
points were drawn from the same Gaussian distributions as in B, but were not used for
training. Each value of the trace corresponds to a projection of a point onto the weight
vector of the slowest feature (wSFA in B). The dashed line at 0 corresponds to points on
the solid SFA-hyperplane shown in B. (D) Dependence of the error between the weight
vectors found by FLD and SFA on the switching probability p. This error is defined as the
average angle between the weight vectors obtained on 100 randomly chosen classification
problems. Error bars denote the standard error of the mean. Good approximations can
still be achieved with rather high values of p (up to 0.5).

points are drawn randomly from the union of the two point sets, independently of
the class previously chosen, i.e., the class information is neglected altogether. For
values of p > 0.5 switching between classes becomes so frequent that SFA cannot
extract the class information anymore resulting in vectors orthogonal to the FLD
vector.

3.2.2 Application to classification problems with more than two

classes

The results in the previous section can also be extended to the case of C classes
(C > 2), showing the equivalence between the space spanned by the C − 1 slow
features extracted by SFA and the C − 1-dimensional subspace resulting from the
application of a generalized version of Fisher’s linear discriminant (Duda et al.,
2000).

Again, we start from a classification problem with C disjoint point sets Sc ⊂
R

n, c = 1, . . . , C,
Sc := {xc

i |i = 1, . . . , Nc}, (3.14)

where xc
i denote the data points of class c. In contrast to the previous section

we consider here the more general case that the number of points in each class is
different. Let Nc denotes the number of data points in class c, and let NT =

∑C
c=1 Nc

be the total number of points. From these point sets we generate a time series xt

analogously as in the previous section, using a generalization of the Markov model
in Figure 3.2 with C states S = {1, 2, . . . , C}. We define the transition probability
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from state i ∈ S to state j ∈ S as

Pij =

{

a · Nj

NT
if i 6= j,

1 − ∑

k 6=j Pik if i = j,
(3.15)

with some appropriate constant3 a > 0. It is easy to show (see Appendix C.1.2)
that

π =

(

N1

NT
,
N2

NT
, . . . ,

NC

NT

)

(3.16)

is a stationary distribution of this Markov model. This means that the probability
that any point in the time series is chosen from a particular class is proportional to
the size of the corresponding point set compared to the number of total points.

For this particular way of generating a time series from the input points we
can calculate the following expressions for the covariance matrices of the input
and time derivatives in terms of the within-class and between-class covariances (see
Appendix C.1.2):

〈xxT 〉t =
1

NT
SW +

1

NT
SB, (3.17)

〈ẋẋT 〉t =
2

NT
SW +

2a

NT
SB. (3.18)

Note that equations (3.17) and (3.18) are similar to (3.11) and (3.12). Again, 〈ẋẋT 〉t
depends on a, whereas 〈xxT 〉t does not. Note that the commonly used definition
for the between-class scatter matrix SB (see e.g., Duda et al., 2000) for the multi-
class case is slightly different from the two class case (3.5). For small a, i.e., when
transitions between classes are rare compared to transitions within a class, we can
approximate 〈ẋẋT 〉t ≈ 2/NT · SW .

We recall the definition of SFA as a generalized eigenvalue problem (3.3) and
insert (3.17) and (3.18) for negligible a:

〈ẋẋT 〉tW = 〈xxT 〉tWΛ

(3.17),(3.18)⇔ 2

NT
SWW =

1

NT
SW WΛ +

1

NT
SBWΛ

⇔ 2SW WΛ−1 = SW W + SBW

⇔ SBW = SW W
[

2Λ−1 − E
]

,

(3.19)

where W = (w1, . . . ,wn) is the matrix of generalized eigenvectors and Λ =
diag(λ1, . . . , λn) is the diagonal matrix of generalized eigenvalues. We used the
assumption that SW (and therefore 〈xxT 〉t and 〈ẋẋT 〉t) are positive definite, i.e.,
all eigenvalues λi are strictly positive (Λ−1 exists). The last line of (3.19) is just the
formulation of FLD as a generalized eigenvalue problem (see (3.7)). More precisely,
the eigenvectors of the SFA problem are also eigenvectors of the FLD problem, i.e.,
the C − 1 slowest features extracted by SFA applied to the time series xt span the

3For C = 2 and N1 = N2 = NT /2 the class is switched at each time with probability p = a/2
and left unchanged with probability 1 − p.
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Figure 3.4: Relationship between SFA and FLD for a three-class problem in
3D. (A) Sample point sets with 250 points for each class, drawn from three different
Gaussian distributions. (B) Point sets projected onto the 2-dimensional subspace found
by FLD (colors and markers as in A). The FLD maximizes the between-class scatter while
minimizing the within-class scatter. (C) Phase plot of the two slowest features found by SFA
applied to a test time series consisting of 100 points from each class, which were drawn from
the same Gaussian distributions as in A, but not used for training. The training sequence
for SFA was generated from the input points in A as described in the text (T = 5000,
a = 0.5). This corresponds to a projection of these test points onto the subspace spanned
by the two slowest features. The color encodes the class of the respective point in the test
sequence (colors as in A, B). Note the similarity between panels B and C.

subspace that optimizes separability in terms of Fisher’s linear discriminant. Note
that the eigenvalues correspond by

λFLD
i =

2

λSFA
i

− 1, (3.20)

which means the order of eigenvalues is reversed, since all eigenvalues λSFA
i are pos-

itive. The slowest feature (corresponding to the smallest eigenvalue in the first line
of (3.19)) is the weight vector which achieves maximal separation (largest eigenvalue
in the last line of (3.19)).

This similarity of the subspace found by FLD on the initial point sets and by
SFA on the time series is demonstrated in Figure 3.4. Panel B shows the projection
of the data points shown in panel A onto the 2-dimensional subspace resulting from
FLD, while Panel C plots the trajectory of the two slowest features found by SFA
applied to a test time series generated from points drawn from the same distribu-
tions as the original points in panel A. One sees that both projections are almost
identical, which means that the subspace that maximizes separability in terms of
Fisher is equal to the subspace spanned by the slowest features of our particular
time series. Note that there is more than one particular pair of directions which
span the same 2-dimensional subspace. Therefore, while both methods extract the
same subspace, the exact projections might look different (e.g., the signs of individ-
ual eigenvectors may be flipped, or the projections could be rotated against each
other, if the eigenvalues are close to degenerate).
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3.2.3 Application to trajectories of training examples

In sections 3.2.1 and 3.2.2 we have shown that SFA approximates the classification
capability of FLD if the probability is low that two successive points in the input
time series to SFA are from different classes. In order to generate a time series
from the classification problems we chose at each time step the class of the points
with a certain probability according to a Markov model, but apart from that class
information, however, each point was chosen independently from the preceding
point in the time series. The optimal response to such a time series is to produce a
constant response during periods where only points from a single class are presented
(see also Berkes, 2006). This approximately piecewise constant function will become
more smooth as the size of the function space increases, but it will remain a step
function. This classification capability of SFA relies on the fact that SFA sees each
possible transition between two points from the same class approximately equally
often, and therefore produces a similar output for each point from that class.

What happens if these time series consist of whole trajectories of single points,
e.g., repeated occurrences of characteristic sequences of firing states in neural cir-
cuits? In this section we investigate how the SFA objective changes when the input
time series consists of trajectories of points instead of individual points only.

3.2.3.1 Repetitions of a fixed trajectory

First, we consider a time series xt consisting of multiple repetitions of a fixed pre-
defined trajectory t̃ := (x̃1, x̃2, . . . , x̃T̃ ) of T̃ n-dimensional points x̃k, which are
embedded into noise input. Initially the trajectory points x̃k are drawn from a
certain distribution. Between any two repetitions of this trajectory noise input
is presented, which consists of a random number of points drawn from the same
distribution, but independently at each time step.

It is easy to show (see Appendix C.1.3) that for such a time series the SFA
objective (3.2) reduces to

min JSFA(w) ⇔ max
wT Σ̃tw

wT 〈xxT 〉tw
, (3.21)

where

Σ̃t :=
1

T̃ − 1

T̃
∑

k=2

(

x̃kx̃
T
k−1 + x̃k−1x̃

T
k

)

(3.22)

is the covariance matrix of the trajectory t̃ with t̃ delayed by one time step, i.e., it
measures the temporal covariances (hence the index t) of t̃ with time lag 1. Such
time-delayed correlation matrices have also been introduced in (Blaschke et al.,
2006, 2007) to show the relationship between SFA and second-order ICA. Note that
in the standard classification problems described previously the time series xt had
no temporal correlations apart from the class information at all, i.e., consecutive
points were uncorrelated given their class labels.

That is, choosing the weight vector w that produces the slowest output is equiv-
alent to choosing the vector that maximizes the temporal correlations of the output
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during instances of the trajectory t̃. In other words, w is the (generalized) eigen-
vector of Σ̃t which corresponds to the largest eigenvalue of this matrix. Since the
transitions between two successive points of the trajectory t̃ occur much more of-
ten in the time series xt than transitions between any other possible pair of points,
SFA has to respond as smoothly as possible during t̃ in order to produce the slowest
possible output, whereas the average response to noise samples should ideally be
zero. This means that SFA is able to detect these repetitions of t̃ by responding
during such instances with a distinctive shape.

Figure 3.5A shows the response of SFA, which was trained on a sequence of
100 repetitions of a fixed trajectory t̃, interleaved with random intervals of noise
input from the same distribution. It can be seen that during each instance of t̃ SFA
responds with the same smooth curve. Due to the intermittent noise input, this
curve has to be cyclic and have zero mean. Typically this response is similar to a
section of a sine wave, which is theoretically the slowest possible response for the
general SFA optimization problem (3.1) (Wiskott, 2003). The smoothness of this
sine wave critically depends on the number of trajectory repetitions (the proportion
of time trajectories are presented compared to noise), the dimensionality of the state
space, and the complexity of the function space (which is constrained to be linear
here). For display purposes we have chosen an overfitting regime in Figure 3.5A,
since the dimensionality of the state space is larger than the length of the trajectory.
In this example, SFA also responds with an increased amplitude during trajectory
presentations. This can be explained by the fact that the slowest signal with a
constrained variance is one which distributes this variance to times when it varies
more slowly (i.e., during trajectory repetitions).

3.2.3.2 Several classes of trajectories

Next, we consider a classification problem given by two sets of trajectories, T1,T2 ⊂
(Rn)T̃ , i.e., the elements of each set Tc are sequences of T̃ n-dimensional points4.
We assume that all those points are distinct and that T1 and T2 are of the same
size N . Moreover, we emphasize that we draw the trajectories from distributions
with different means, µ1 and µ2, as we did in the point discrimination examples.
We generate a time series according to the same Markov model as in Figure 3.2.
However, we do not choose individual points at each time step; rather we generate a
sequence of trajectories: Initially, we choose a class from which the first trajectory is
drawn, T1 or T2, and draw a random trajectory from this set. After each trajectory,
we select a new trajectory of points after the previous one has ended. The class
of this new trajectory is determined according to the transition probabilities in
Figure 3.2.

For this time series consisting of such a trajectory sequence we can now express

4The generalization to C classes is analogous to section 3.2.2.
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Figure 3.5: Relationship between SFA and FLD for time series consisting of
trajectories. (A) SFA response to a time series consisting of a single repeating trajectory
of training examples. A trajectory t̃ is generated by randomly selecting T̃ = 10 points from
the uniform distribution of binary vectors, {0, 1}n (n = 50). Repetitions of this trajectory
t̃ (shaded areas) are interleaved with a random number (drawn uniformly between 10 and
30) of individual single points drawn from the same distribution. The input time series that
was used for training SFA consisted of 100 such repetitions of t̃; a sample SFA response with
3 repetitions is shown. (B) Classification problem with two classes of artificial trajectories
in 2D (blue, T1, and red, T2), each consisting of 20 trajectories of 100 points. The class
means are denoted by µ1 and µ2. In both panels the trajectories were drawn from the
same distribution, but in the left panel the class labels were chosen in order to yield a
large separation between the class means, whereas in the right panel this separation is
small. The dashed line indicates a hyperplane corresponding to the weight vector obtained
by application of FLD to the individual points of the trajectories. The solid line is the
hyperplane found by SFA on a random sequence of 1000 trajectories. Both hyperplanes are
placed onto the mean value of the trajectories. Note that the result of SFA is independent
of p (here, p = 0.5).

the matrices 〈xxT 〉t and 〈ẋẋT 〉t of the SFA objective (3.2) as (see Appendix C.1.3)

〈xxT 〉t =
1

2NT̃
SW +

1

4
SB , (3.23)

〈ẋẋT 〉t =
1

NT̃
SW +

p

T̃
· SB − T̃ − 1

T̃
· Σ̃t. (3.24)

The matrices SW and SB describe here the within-class and between-class scatter
of the FLD objective (3.4) applied to point sets S1 and S2, which are composed of
the individual points of the trajectories in T1 and T2, respectively. Note that the
covariance matrix 〈xxT 〉t in (3.23) is equal to the case where the time series was
composed of individual points instead of trajectories (see equation (3.11)). However,
the temporal correlations induced by the use of trajectories has an effect on the
covariance of temporal differences 〈ẋẋT 〉t in (3.24) compared to (3.12). First, it
additionally depends again on the temporal covariance matrix Σ̃t, which is in this
case the average temporal covariance with time lag 1 of all available trajectories
in T1 and T2. Second, the switching probability p enters with a factor 1/T̃ , which
becomes apparent when noting that whenever a trajectory is selected, T̃ points from
the same class are presented in succession. Thus the effective switching probability
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is p/T̃ . Note that for T̃ = 1 and Σ̃t = 0 equations (3.11) and (3.12) follow as a
special case.

Equations (3.23) and (3.24) suggest that even for a small value of p the objective
of SFA cannot be solely reduced to the FLD objective, but rather that there is
a trade-off between the tendency to separate trajectories of different classes (as
explained by the relation between SB and SW ) and the tendency to produce smooth
responses during individual trajectories (determined by the temporal covariance
matrix Σ̃t):

min JSFA(w) =
wT 〈ẋẋT 〉tw
wT 〈xxT 〉tw

≈
wT

[

1
NT̃

SW

]

w

wT 〈xxT 〉tw
− T̃ − 1

T̃
· wT Σ̃tw

wT 〈xxT 〉tw
, (3.25)

where the approximation is valid if p/T̃ is small5. That is, the SFA objective can be
written as the difference between two terms. The weight vector w which minimizes
the first term is equal to the weight vector found by the application of FLD to the
classification problem of the individual trajectory points (note that SB enters (3.25)
through 〈xxT 〉t, cf. eq. (3.13)). The weight vector which maximizes the second term
is the one which produces the slowest possible response during individual trajecto-
ries. The factor (T̃ −1)/T̃ is the proportion of transitions between successive points
in the time series that belong to the same trajectory. If the separation between the
trajectory classes is large compared to the temporal correlations (i.e., the first term
in (3.25) dominates for the resulting w) the slowest feature will be similar to the
weight vector found by FLD on the corresponding classification problem. On the
other hand, as the temporal correlations of the trajectories increase, i.e., the trajec-
tories themselves become smoother, the slowest feature will tend to favor exploiting
this temporal structure of the trajectories over the separation of different classes
(in this case, eq. (3.25) is dominated by the second term for the resulting w).

In the point discrimination example SFA derives its classification capability
from seeing each possible transition between two points approximately equally of-
ten. This is not the case anymore when a sequence of trajectories is presented: now
there are pairs of points from the same class which have too few transitions between
them because most transitions are not between randomly chosen points, but within
pre-defined trajectories. Furthermore, since the effective switching probability of
the classes of two consecutive trajectories is reduced to p/T̃ , the SFA objective
(3.25) becomes essentially independent of the switching probability p, if the trajec-
tories are sufficiently long. This means, that the SFA output does not depend on
the temporal order of the trajectories any more, rather, the result is completely de-
termined by the set of trajectories used for training. That is, by using a time series
consisting of trajectories instead of individual points one loses the possibility to con-
trol the classification problem to be learned by changing the temporal statistics of
the input. All possible class labellings of a given set of trajectories lead to the same
direction learned by SFA. The class labelling which is in this case approximated by
SFA according to (3.25) is the one which has the maximal separability in terms of
the FLD, i.e., the one which corresponds to a scatter SW which minimizes the first

5Note that the values of both numerators are in the same range because Σ̃t is already a nor-
malized covariance matrix (3.22) whereas SW (3.6) needs to be normalized by a factor 1/NT̃ .
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term in (3.25). This is demonstrated in Figure 3.5B, which shows two classification
problems with artificial trajectories chosen from the same distribution of points,
but with different assignment of class labels: one with a large and one with a small
separation between the means of the trajectory classes. It can be seen that while
the FLD always finds a separating hyperplane, SFA always approximates that clas-
sification problem with the larger separation. However, even if the slowest feature
is not able to separate the classes, later SFA components, which find orthogonal
directions to the previous ones, might be useful. For example, in the right panel of
Figure 3.5B the second slowest feature would find a separating hyperplane.

In theory, the optimal response of SFA in this trajectory example would again
be a piecewise constant function. However, if we introduce zero or noise input
between two trajectories the optimal response would be half sine waves during
presentations of individual trajectories, which are the typical SFA responses shown
in (Wiskott and Sejnowski, 2002; Wiskott, 2003). If the means of the trajectory
classes (e.g., µ1 and µ2 in Figure 3.5B) are equal, there would be no effect to
discriminate classes in terms of Fisher’s linear discriminant, because the first term
in (3.25) vanishes. However, the theoretical analysis in (Wiskott, 2003) predicts that
even in that case of equal class means SFA still provides a certain discrimination
capability through the decorrelation constraint of multiple slow features: a feature
that responds with half sine waves of different amplitudes for different patterns
also varies slowly and can still be decorrelated to other responses. Thus, with an
infinite function space SFA always produces a feature that responds with a different
amplitude for each individual pattern. That is, in general SFA will try to distinguish
all trajectories, but if the available function space is limited it might respond with
the same amplitude to all trajectories which are similar, i.e., belong to the same
class.

3.2.4 When does linear separation of trajectories of network states

suffice?

Linear SFA can at best achieve a linear separation of trajectories of points. Although
linear separation of complex trajectories of points is difficult in low dimensions,
mathematical arguments imply that linear separation of such trajectories becomes
much easier in higher dimensions. Consider artificial trajectories which are simply
defined as a sequence of random points drawn uniformly from the d-dimension-
al hypercube [0, 1]d. Each point in this space corresponds to the vector of firing
activities of the d presynaptic neurons of a readout at a particular time t. Each
linear readout neuron defines a hyperplane in this state space by the particular
setting of its weights. It assigns values 1 for points on one side of this hyperplane
and values 0 to points on the other side of the hyperplane. Two trajectories are
called linearly separable if they lie on different sides of some hyperplane. Figure 3.6A
shows an example of such a pair of linearly separable trajectories in 3 dimensions.
However, such a perfect separation of randomly drawn trajectories is very unlikely
in this low-dimensional space.

Figure 3.6B shows that the situation changes drastically if one moves to higher-
dimensional spaces. The black curve indicates the probability that any two ran-
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Figure 3.6: Probability of linear separability increases with higher dimension-
ality of the state space. (A) Two sample trajectories (green and blue curve) defined
by connecting randomly drawn points from a 3-dimensional cube. These trajectories can
be separated by a hyperplane (gray surface) defined by the synaptic weights of a linear
discriminator. (B) Probability of linear separability of two randomly drawn trajectories of
length 100 (black curve, left scale), and average minimum Euclidean distance between any
two points of these two trajectories (green curve, right scale), as a function of the dimen-
sion d. Trajectories are defined as a sequence of random points drawn uniformly from the
d-dimensional unit cube.

domly drawn trajectories of length 100 (i.e., each trajectory is defined by connecting
100 random points drawn uniformly from the d-dimensional unit cube) are linearly
separable in d dimensions, for different values of d (see Appendix C.2.2). One sees
that as soon as the dimension grows beyond 100, any two such trajectories become
linearly separable with almost 100% probability. This holds for any length l of
trajectories: for d = l, the probability of separation is 0.5 (see also Cover, 1965),
if d > l the probability converges very fast to 1. In other words, a linear readout
neuron with d presynaptic inputs can separate almost any pair of trajectories that
are each defined by connecting less than d randomly drawn points.

The green curve in Figure 3.6B shows the average of the minimal distance be-
tween such a pair of trajectories, which is defined as the minimal Euclidean distance
between any point of trajectory 1 and any point of trajectory 2. This distance also
grows with increasing dimension6. Thus, at higher dimensions d, it is not only more
likely that any two trajectories of the length l < d can be separated by a linear
readout, but they can also be separated with an increasing “safety-margin” from
the hyperplane. This implies that noisy variations of the same trajectories can be
correctly classified by the same linear readout, which hints to a better generalization
capability of linear readout neurons for higher dimensions.

6Note that the length of the main diagonal of a d-dimensional hypercube, i.e., the largest
possible distance between any two points from the hypercube, is

√
d.
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3.3 Application to unsupervised training of linear read-

outs from a cortical microcircuit model

In the previous section we have shown that slow feature analysis can directly be
used for unsupervised linear discrimination of different point sets, if a time series is
generated from these point sets in a way that the class is a slowly varying feature.
Furthermore, we have shown how this property is affected if this time series consists
of a sequence of trajectories instead of individual points. Now we turn our attention
to SFA as a possible mechanism for training readouts of a biological microcircuit.
The sequence of states that such a recurrent network undergoes in response to a
specific stimulus forms a trajectory in state space. When presented with a sequence
of such trajectories SFA should again be able to extract information about the
stimulus in a similar way.

We have argued in the section 3.2.3 that the application of SFA to such a
sequence of trajectories of network states differs from the application to individual
points of a classification problem. In the latter case, a different input pattern
has been presented at every single time step, whereas in the former case a single
trajectory forms a sequence of input patterns from the same class. Due to the
temporal correlations of these trajectories we do not expect that the slowest feature
always perfectly extracts the class of the trajectories, as it did for the example with
individual points in Figure 3.3. Rather, we predict that the class information will be
distributed over multiple slow features. If multiple slow features are extracted, the
feature yi is the slowest feature under the additional constraint to be decorrelated to
all slower features y1, . . . , yi−1. This means that the slowest features are ordered by
decreasing slowness, i.e., y1 is the slowest feature, y2 is the second slowest feature,
and so on. In the following, features yi with a higher index i are also called “higher
order” features.

When computing with state trajectories in order to be able to extract reliable
information about the stimulus, we want readouts of the circuit to produce an infor-
mative output not only at the end of the trajectory, but already while the trajectory
is still being presented to the readout. Furthermore, this output should be as tem-
porally stable as possible throughout the duration of a trajectory, hence providing
an “anytime classification” of the stimulus. This requirement of temporal stability
renders SFA a promising candidate for training readouts in an unsupervised fashion
to discriminate “at any time” between trajectories in response to different stimulus
classes. In the following we will discuss several computer simulations of a cortical
microcircuit of spiking neurons where we trained a number of linear SFA readouts7

on a sequence of network state trajectories, each of which is defined by the low-pass
filtered spike trains of those neurons in the circuit that provide synaptic input to
the readout neuron. Such recurrent circuits typically provide a temporal integra-
tion of the input stream and project it nonlinearly into a high-dimensional space
(Maass et al., 2002), thereby boosting the expressive power of the subsequent linear
SFA readouts. In the setup of Figure 3.1 the circuit therefore provides the map-

7We interpret the linear combination defined by each slow feature as the weight vector of a
hypothetical linear readout.
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ping from the inputs x to the expanded signals z, i.e., the trajectories of network
states. The readouts then compute the slowest features y from these trajectories.
Note, however, that the whitening step is performed implicitly in the SFA opti-
mization (3.2). As a model for a cortical microcircuit model we use the laminar
circuit from (Häusler and Maass, 2007) consisting of 560 spiking neurons organized
into layers 2/3, 4, and 5, with layer-specific connection probabilities obtained from
experimental data (Gupta et al., 2000; Thomson et al., 2002).

3.3.1 Detecting embedded spike patterns

In the first experiment we investigated the ability of SFA to detect a repeating
firing pattern within noise input of the same firing statistics. We recorded circuit
trajectories in response to a sequence of 200 repetitions of a fixed spike pattern which
are embedded into a continuous Poisson input stream. The input to the circuit
consisted of 10 input spike trains. The pattern itself is defined as fixed Poisson
spike trains of length 250ms and of rate 20Hz, the same rate as the background
Poisson input (in the following also called noise input). We then trained linear
SFA readouts on the 560-dimensional circuit trajectories, defined as the low-pass
filtered spike trains of the spike response of all 560 neurons of the circuit (we used
an exponential filter with τ = 30ms and a sample time of 1ms). The period of
Poisson input in between two such patterns was also randomly chosen; it was drawn
uniformly between 100ms and 500ms.

Figure 3.7A shows a sample test stimulus consisting of a sequence of four pat-
tern instances interleaved by random intervals of noise input, as well as the circuit
response to this test stimulus and the 5 slowest features, y1 to y5, in response to the
trajectory obtained by low-pass filtering this circuit response. At first glance, no
clear difference can be seen between the raw SFA responses during periods of pat-
tern presentations and during phases of noise input. The slow features are of course
nonzero during noise input since the circuit response is quite similar to the response
during patterns. However, we found that if we take the mean over the responses
of multiple different noise phases, the average SFA output cancels away whereas
a characteristic response remains during pattern presentations (see Figure 3.7C).
This effect is predicted by the theoretical arguments in section 3.2.3 and can to
some extent be seen in phase plots of traces that are obtained by a leaky integra-
tion of the slowest features in response to a test sequence of 50 embedded patterns
(see Figure 3.7B). The slowest features span a subspace where the response during
pattern presentations can be nicely separated from the response during noise input.
Concerning this separability, SFA yields a significant improvement over randomly
chosen linear functions, as shown in Figure 3.7D. That is, by simple threshold op-
erations on the low-pass filtered versions of the slowest features one can in principle
detect the presence of patterns within the continuous input stream. Furthermore,
this extracted information is not only available after a pattern has been presented,
but already during the presentation of the pattern, which supports the idea of
“anytime computing”.

One interesting property of this setup is that if we apply SFA directly on the
stimulus trajectories, we basically achieve the same result. In fact, the application
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Figure 3.7: (see next page for Figure caption)

to the circuit trajectories is the harder task because of the variability of the response
to repeated presentations of the same pattern and because of temporal integration:
The circuit integrates input over time making the response during a pattern depen-
dent on the noise input immediately before the start of the pattern. Figure 3.7C
shows these two effects. The standard deviation during the noise input is due to
different stimulus spike trains which are drawn anew each time. On the other hand,
the variability during the pattern presentations results from the inherent noise of
the network, i.e., from different responses to the same stimulus. Figure 3.7C shows
that the standard deviation during patterns is smaller than during noise. However,
at the start of the pattern it does not decrease immediately, but gradually, due
to temporal integration. That means that even though the average SFA response
becomes different from zero just after the pattern onset, the output still depends
on the previous noise input. Figure 3.7C suggests that this forgetting time of the
circuit, the time after which the output of the laminar circuit does not depend on
the noise any more, is at least 50ms.
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Figure 3.7: Unsupervised learning of the detection of spike patterns. (A) From
top to bottom: sample stimulus sequence, response spike trains of the network, and slowest
features. The stimulus consists of 10 channels and is defined by repetitions of a fixed spike
pattern (blue shaded regions) which are embedded into random Poisson input of the same
rate. The pattern has a length of 250ms and is made up by Poisson spike trains of rate
20Hz. The period between two patterns is drawn uniformly between 100ms and 500ms.
The response spike trains of the laminar circuit of (Häusler and Maass, 2007) are shown
separated into layers 2/3, 4, and 5. The numbers of neurons in the layers are indicated on
the left, but only the response of every 12th neuron is plotted. Shown are the 5 slowest
features, y1 to y5, for the network response shown above. The dashed lines indicate values of
0. (B) Phase plots of low-pass filtered versions (leaky integration, τ = 100ms) of individual
slow features in response to a test sequence of 50 embedded patterns plotted against each
other (blue: traces during the pattern, gray: during random Poisson input). Note that
equal increments in x- and y-direction have the same length, i.e., a circle is circular. (C)
Average response of the two slowest features, y1 and y2, during the 250ms spike pattern
(blue) and a preceding 250ms noise period (white). Note that the spike pattern is fixed,
but the noise is drawn anew each time. The average was taken over 50 pattern repetitions
not used for training, as those in B. The dashed line denotes the value 0; the shaded area
indicates the standard deviation across these 50 repetitions. (D) Phase plots of two features
ỹ1 and ỹ2 obtained from three randomly chosen orthogonal projections (compare with the
top panel in B).

3.3.2 Recognizing isolated spoken digits

In the second experiment we tested whether SFA is able to discriminate two classes
of trajectories as described in section 3.2.3. We performed a speech recognition
task using the dataset considered originally in (Hopfield and Brody, 2000, 2001)
and later in the context of biological circuits in (Maass et al., 2002, 2004a) as well
as in (Verstraeten et al., 2005) and in (Legenstein et al., 2008). This isolated spoken
digits dataset consists of the audio signals recorded from 5 speakers pronouncing
the digits “zero”, “one”, ..., “nine” in ten different utterances (trials) each. We
preprocessed the raw audio files with a model of the cochlea (Lyon, 1982) and
converted the resulting analog cochleagrams into spike trains that serve as input to
our microcircuit model (see Appendix C.2.3.2 for details). This biologically realistic
preprocessing is computationally more expensive than the original encoding used in
(Hopfield and Brody, 2000), but it has been shown that it can drastically improve
the performance of a circuit for a specific speech recognition task (Verstraeten et al.,
2005). Figure 3.8A shows sample cochleagrams, stimulus spike trains, and response
spike trains for two utterances of digits “one” and “two” by the same speaker.

First, we tried to discriminate between trajectories in response to inputs corre-
sponding to utterances of digits “one” and “two”, of a single speaker (speaker 2, as
shown in Figure 3.8). We split the 20 available samples (2 digits × 10 utterances)
into 14 training and 6 test samples (i.e., three utterances of each digit is kept for
testing). To produce an input to SFA, we generated from these 14 training samples
a random sequence of 100 input patterns, recorded for each pattern the response of
the circuit, and concatenated the resulting trajectories in time. Note that the same
pattern is presented many times. Here we did not switch the classes of two suc-
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cessive trajectories with a certain probability because, as explained in the previous
section, for long trajectories the SFA response is independent of this switching prob-
ability. Rather, we trained linear SFA readouts on a completely random trajectory
sequence.

We then trained linear SFA readouts on the 560-dimensional circuit trajectories,
defined as the low-pass filtered spike trains of the spike response of all 560 neurons
of the circuit. All responses were recorded for the same amount of time such that
all trajectories had the same length; after the circuit activity had stopped, the
trajectories descended back to zero. Once there is zero (or noise) input between
trajectories the result of SFA becomes independent of the temporal order of the
trajectories because only adjacent time steps play a role. However, according to
section 3.2.3 this is anyway the case for sufficiently long trajectories. Note that the
network responses for repeated presentations of the same stimulus were different
due to the inherent noise in the network that was used to model the background
synaptic activity in vivo (see Appendix C.2.3.2).

Figure 3.8B shows the 5 slowest features, y1 to y5, ordered by decreasing slowness
in response to the trajectories corresponding to the three remaining test utterances
for each class, digit “one” and digit “two”. As a measure of slowness we used the
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Figure 3.8: SFA applied to unsupervised digit recognition for a single speaker.
(A) From top to bottom: sample cochleagrams, input spike trains, response spike trains
of the network, and traces of different linear readouts. Each cochleagram has 86 channels
with analog values between 0 and 1 (red, near 1; blue, near 0). Stimulus spike trains are
shown for two different utterances of the given digit (black and green; the black spike times
correspond to the cochleagram shown above). The response spike trains of the laminar
circuit from (Häusler and Maass, 2007) are shown separated into layers 2/3, 4, and 5. The
numbers of neurons in the layers are 168, 112, and 280, respectively, but only subsets of
these neurons are plotted (14, 10, 24). The responses to the two stimulus spike trains in
the panel above are shown superimposed with the corresponding color. Each readout trace
corresponds to a weighted sum (Σ) of network states of the black responses in the panel
above. The trace of the slowest feature (“SF1”, blue line; see B) is compared to traces of
readouts trained by FLD (green line) and SVM with linear kernel (red line) to discriminate
at any time between the network states of the two classes. All weight vectors are normalized
to length 1. The dashed line denotes the threshold of the respective linear classifier. (B)
Response of the 5 slowest features y1 to y5 of the previously learned SFA in response to
trajectories of the three test utterances of each class not used for training (blue, class 1; red,
class 2). The slowness index η (3.26) is calculated from these output signals. The angle α
denotes the deviation of the projection direction of the respective feature from the direction
found by FLD. The thick curves in the shaded area display the mean SFA responses over
all three test trajectories for each class. (C) Phase plots of individual slow features plotted
against each other (thin lines: individual responses, thick lines: mean response over all test
trajectories). Note that equal increments in x- and y-direction have the same length, i.e.,
a circle is circular.

index η of a signal y(t) defined in (Wiskott and Sejnowski, 2002),

η(y) :=
T

2π

√

∆(y). (3.26)

This is a slightly different measure than (3.1), and denotes the number of oscillations
of a sine wave with the same ∆-value. We found that the two slowest features, y1

and y2, responded with shapes similar to half sine waves during the presence of a
trajectory (each 500ms a trajectory starts and lasts for several 100ms), which is
in fact the slowest possible response under the unit variance constraint. Higher
order features partly consisted of full sine wave responses, which are the slowest
possible responses under the additional constraint to be decorrelated to previous
slow features.

In this example already the slowest feature y1 extracts the class of the input
patterns almost perfectly: it responds with positive values for trajectories in re-
sponse to utterances of digit “two” and with negative values for utterances of digit
“one”, and generalizes this behavior to unseen test examples. As a measure for the
discriminative capability of a specific SFA response, i.e., its quality as a possible
classifier, we measured the angle between the projection direction corresponding to
this slow feature and the direction of the FLD. Since each slow feature as well as the
weight vector that specifies the projection direction of the FLD is only determined
up to the sign, we only report the smaller value. These angular values therefore
vary between 0◦ and 90◦. It can be seen in Figure 3.8B that the slowest feature y1

is closest to the FLD. Hence, according to (3.25), this constitutes an example where
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the separation between classes dominates, but is already significantly influenced by
the temporal correlations of the circuit trajectories.

We call this property of the extracted features, to respond differently for different
stimulus classes, the What-information (Wiskott and Sejnowski, 2002). The second
slowest feature y2, on the other hand, responds with half sine waves whose sign is
independent of the pattern identity. One can say that, in principle, y2 encodes sim-
ply the presence of a circuit response. This is a typical example of a representation
of Where-information (Wiskott and Sejnowski, 2002), i.e., the “pattern location”
regardless of the identity of the pattern. Full sine wave responses would further
encode the position within the trajectory. The other slow features y3 to y5 do not
extract either What- or Where-information explicitly, but rather a mixed version of
both. For repeated runs of the same experiment with different training utterances
the explicit What- and Where-information of y1 and y2 are reliably extracted, but
the exact shape of the higher order features might differ depending on the particular
training utterances.

Figure 3.8C shows phase plots of these slow features shown in Figure 3.8B
plotted against each other. In theory, in the phase plot of two features encod-
ing What-information the responses should form straight lines from the origin in a
pattern-specific angle. In the three plots involving feature y1 it can be seen that
these response directions are distinct for different pattern classes. On the other
hand, phase plots of two features encoding Where-information ideally form loops
in the phase space, independent of the identity of the pattern, where each point
on this loop corresponds to a position in the trajectory. This can only be seen
to some extent in the plot y2 vs y3, but not explicitly because in this example no
two features encode Where-information alone. Similar responses have been the-
oretically predicted in (Wiskott, 2003) and found in simulations of a hierarchical
(nonlinear) SFA network trained with a sequence of one-dimensional trajectories
(Wiskott and Sejnowski, 2002). Furthermore, we found that the response vector
r(t) := (y1(t), . . . , y5(t)), which is composed of the values of all 5 slowest features
at a particular point in time, clusters at different directions for different classes.
The average angle between two response vectors from different classes is around
90 degrees throughout the duration of a trajectory. This effect arises from the
decorrelation constraint and is also a theoretical result of (Wiskott, 2003).

Note that the information extracted by SFA about the identity of the stimulus
is provided not only at the end of a specific trajectory, but is made available right
from the start. After sufficient training, the slowest feature y1 in Figure 3.8B
responds with positive or negative values indicating the stimulus class during the
whole duration of the network trajectory8. This supports the aforementioned idea
of “anytime computing”. Moreover, as a measure for the performance of SFA we
can train a linear classifier on the extracted features, i.e., at each point in time
the response vector r(t), composed of the values of the 5 slowest features at that
time, and labelled with the class of the corresponding trajectory, serves as one data
point for the classification. The performance that a particular classifier is able to

8Since the optimal SFA response is not a piecewise constant curve, but a sequence of half
sine waves, an even better discriminator would be the direction of the response vector r(t) which
theoretically stays constant throughout a trajectory (Wiskott, 2003).
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achieve can be viewed as a lower bound for the information that the extracted slow
features convey about the trajectory class. Applied to the features of Figure 3.8B,
sampled every 1ms, an SVM with linear kernel achieves a classification performance
of 98% (evaluated by 10-fold cross validation). Note again that this is an “anytime”
classification, since samples during the whole duration of the trajectories are taken
into account.

The bottom panel of Figure 3.8A shows readout traces of three different linear
discriminators applied to specific test trajectories, one from each class. Each point
on a trace represents a weighted sum of the network states at a particular time, just
before the threshold operation of the corresponding linear classifier. That is, a value
above (below) zero means that the state at that time is classified to belong to class
2 (class 1) by this particular linear discriminator. Here, we interpret the slowest
feature extracted, y1 from Figure 3.8B, as a linear discriminator with this particular
weight vector and the average over the training time series as the discrimination
threshold. We compare the trace of this “SFA classifier” to traces of linear readouts
trained as Fisher’s discriminant and support vector machine (SVM) (Schölkopf and
Smola, 2002) to discriminate between the network states of trajectories of different
classes9. Both FLD and SVM are trained on the same input as SFA, which consists
of the network states sampled with ∆t = 1ms of 100 trajectories chosen randomly
as described above (but, of course without the information about the temporal
sequence of states). The discrimination threshold for both SFA and FLD was chosen
as the average over all training points. It can be seen that in this case the slowest
feature, which has been learned in an unsupervised manner, is able to achieve a
perfect separation, comparable to those of the supervised methods of FLD and
SVM. That is, if we interpret the weight vector of this slowest feature as the weight
vector of a linear discriminator, this classifier achieves a performance of almost
100% on deciding which class of input stimuli has caused these unseen network
state trajectories, even in an “anytime” manner, i.e., during the whole duration of
the trajectories.

Figure 3.9A shows the responses of SFA trained on a sequence of 500 trajectories
corresponding to utterances of digits “one” and “two” of all 5 speakers. From the
100 available samples (2 digits × 5 speakers × 10 utterances) we have used 70 for
training and kept the remaining 30 for testing. The response of the learned SFA
to trajectories in response to three of these testing utterances for each of the two
classes, as well as the mean SFA response over all 30 test utterances of each class, is
shown in Figure 3.9A. It can be seen that, qualitatively, the performance decreases
compared to the case where only a single speaker is used (see Figure 3.8B). No sin-
gle feature extracts the class information alone, but significant What-information
is still represented: First, the slowest feature y1 responds more strongly to tra-
jectories corresponding to samples with digit “one”. Second, feature y3 responds
with negative values only for trajectories in response to digit “two”, whereas for
those of digit “one” it consistently has an initial positive response. Again feature
y1 has the smallest angular distance to the FLD direction, even if it is larger than

9Note that the absolute scale of different readout traces relative to each other is arbitrary since
only the direction of the weight vectors are relevant. In this presentation all three weight vectors
are normalized to length 1, in order to be comparable to each other.
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Figure 3.9: SFA applied to unsupervised speaker-independent digit recognition
and digit-independent speaker recognition. Both panels show the response of the 5
slowest features y1 to y5 of the previously learned SFA in response to trajectories of three
test utterances of each class not used for training. Trajectories are padded with zeros such
that each trajectory has the same length. The slowness index η (3.26) is calculated from
these output signals. The angle α denotes the deviation of the projection direction of the
respective feature from the direction found by FLD. The thick curves in the shaded area
display the average SFA responses over all available test trajectories for each class. (A)
SFA applied to speaker-independent digit recognition. Shown are the responses for three
random test trajectories of digit “one” (blue) and digit “two” (red) from three different
speakers as well as the average SFA response over all 30 available test trajectories. (B)
SFA applied to digit-independent speaker recognition. Shown are the responses for three
random test trajectories of speaker 1 (blue) and speaker 2 (red) from three different digits
as well as the average SFA response over all 60 available test trajectories.

in Figure 3.8B.
Similarly, we can apply SFA to a sequence of trajectories in response to utter-

ances of speakers 1 and 2 (but now with all 10 digits) try to extract information
about the speaker feature, independent of the spoken digit. Now there are 200
available samples (10 digits × 2 speakers × 10 utterances), where we have used 140
for training and kept the remaining 60 for testing. Figure 3.9B shows the responses
of the learned SFA to 3 trajectories of these test utterances, as well as the average
SFA response over all 60 test trajectories. Due to the increased number of different
samples for each class (for each speaker there are now 10 different digits) this task
is more difficult than the speaker-independent digit recognition. No single slow
feature extracts What-information alone; the closest feature to the FLD is feature
y3. To some extent also y4 extracts discriminative information about the stimulus.

In these experiments, the separation between the classes (expressed by the first
term in (3.25)) obviously decreases compared to the single-speaker case. In such a
situation where the distance between the class means is very small, the tendency to
extract the trajectory class itself as a slow feature becomes negligible. In that case
the theory predicts that SFA tries to distinguish each individual trajectory due to
the decorrelation constraint, and clusters similar trajectories because of the finite
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nonlinear expansion # dimensions classifier performance

none (stimulus) 20 (10) 75%
quadratic 65 81%
cubic 285 83%
laminar circuit 560 (100) 88%

Table 3.1: Performance values of a linear classifier trained on the slow features in
response to different nonlinear expansions of the input, for the speaker recog-
nition experiment in Figure 3.9B. The nonlinearity implicitly provided the laminar
circuit is compared to a quadratic and cubic expansion of the stimulus, as well as to the
naked stimulus. The second column gives the dimensionality of the state space provided
by the respective nonlinear projection. The numbers in brackets denote the effective di-
mensions used to train SFA, after PCA is applied (see Appendix C.2.3.3). The quadratic
(cubic) kernel contains all monomials up to degree 2 (3) of the 10 effective stimulus dimen-
sions (Wiskott and Sejnowski, 2002). Performance values are evaluated by 10-fold cross
validation.

(linear) function space. It can be seen in Figure 3.8 that higher-order features start
to discriminate between different samples of the same class. This demonstrates
that multiple SFA responses are important and collectively convey discriminative
information about the class of the trajectory currently being presented, and that
in these examples one should view SFA as a powerful preprocessing stage for a
subsequent classification, rather than a classifier itself.

It is important to note that the different classification results in Figures 3.9A
and 3.9B are not obtained due to a different temporal order of the trajectories
within the training input (i.e., whether the speaker is varying more slowly than the
digit, or vice versa), but due to the use of a different training set of trajectories. The
result of SFA does not depend on the temporal order of the trajectories within the
training input because of the intermittent zero phases, and is therefore completely
determined by the training set of trajectories.

The performance of a linear classifier trained on the 5 slowest features in re-
sponse to all available test trajectories to predict the class label of the stimulus is
90% for the speaker-independent digit recognition (Figure 3.9A) and slightly lower
(88%) for the digit-independent speaker recognition (Figure 3.9B). If linear SFA
is applied directly to the 20-dimensional trajectories obtained by low-pass filter-
ing the stimulus spike trains directly, the same classifier achieves a performance of
about 75%. This indicates that the circuit provides a useful nonlinear combination
of input components. Table 3.1 compares these performance values to different
nonlinear expansions of the stimulus for this experiment. It can be seen that the
laminar circuit yields a better performance than a cubic kernel, even though the
number of dimensions already have the same order of magnitude. Other than the
quadratic and cubic expansion, which are static, the circuit additionally provides a
temporal integration of the stimulus which might provide a significant performance
improvement in this case.

Note again that these are performance values for an unsupervised “anytime”
speech recognition task. A comparable performance has been achieved in (Maass
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et al., 2004a) on a different task (digit “one” against all other digits) on the encoding
by (Hopfield and Brody, 2000) by training the readout weights with a linear SVM.
The performance values reported in (Verstraeten et al., 2005) are not for “anytime”
speech recognition in the sense that snapshots across different time points of network
trajectories are used for training the readout, but a majority vote across different
classifiers trained at different time points is used to predict the currently spoken
digit. If the decision about which stimulus class has been presented should not be
made “anytime”, but only at the end of each stimulus/trajectory, almost perfect
performance can be achieved by integrating the slow features during the duration of
a trajectory, i.e., by accumulating evidence for or against a given speaker or digit.

Finally, we note that the qualitative performance of SFA (i.e., how “good”
the features look, or in which order the features are extracted) depends on the
smoothness of the trajectories that are used for training. The circuit model of
(Häusler and Maass, 2007) typically shows a bursting behavior, which is mostly
due to the short-term dynamics of synapses. Thus the performance of SFA can
even be improved by using a circuit model that generates smoother trajectories
of network states. Also, we obtain similar results if we apply SFA directly on a
sequence of the high-dimensional analog cochleagrams shown in Figure 3.8A.

3.4 Discussion

3.4.1 SFA as a principle for neural computation

We have shown in this Chapter that slow feature analysis (SFA) can in principle
be used for learning unsupervised (or implicitly supervised) linear discrimination.
SFA (Wiskott and Sejnowski, 2002) belongs to a family of algorithms for learn-
ing invariant representations from temporal input sequences, which maximize the
“slowness” of their output signals (e.g., Földiak, 1991; Mitchison, 1991; Becker and
Hinton, 1992; Stone and Bray, 1995). This objective is based on the assumption
that signals that encode invariant representations, such as the location or identity
of an object in the visual field, vary on a much slower time scale than raw sensory
signals, such as the intensity of the visual input at a single fixed point on the retina,
for example. Therefore, the extraction of slow features of the quickly varying input
signal is likely to yield invariant properties of this input signal. The unique aspect
about SFA is its appealing formulation as an eigenvalue problem in the covariance
matrices of the (possibly nonlinearly expanded) multi-dimensional input signal.

This formulation has allowed us to establish a relationship between this unsu-
pervised learning rule and a powerful supervised method for classification, Fisher’s
linear discriminant (FLD), which can be expressed as a similar eigenvalue problem.
In particular, we have demonstrated that by converting the input to a classification
problem (two labeled point sets) into an unlabeled time series in a special way, SFA
is able to closely resemble the result of FLD on this classification problem. More
precisely, if two consecutive points in the time series are likely to be chosen from
the same class (i.e., the switching probability p between the classes is low), both
methods yield similar projection directions, which can be interpreted as hypotheses
of linear discriminators (i.e., separating hyperplanes). Due to this tendency that
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temporally contiguous points are from the same class SFA is able to learn to become
invariant to different points within a class, but to respond differently for points from
different classes, i.e., to extract the class as a slowly varying feature.

In this Chapter we have basically considered three cases of application of SFA
for pattern recognition: (i) point discrimination, (ii) trajectory discrimination with
different means, and (iii) trajectory discrimination with identical means. In case
(i), the point discrimination, the class membership is implicitly encoded in the
temporal sequence of samples that serves as input to SFA. The optimal response
is a piecewise constant function during periods where points from the same class
are presented, and for a linear function, converges to the result of FLD on the
original classification problem. Regarding case (ii), the trajectory discrimination
with different means, we have analyzed how the SFA objective changes if it is applied
to a time series that consists of a sequence of such trajectories of training examples
instead of individual points that are independently chosen at each time step. More
precisely, we have considered a trajectory classification problem, which consists
of sets of point sequences rather than sets of individual points. We generated
a time series from this classification problem by randomly choosing trajectories
from these two sets and by concatenating them into a single sequence. We found
that for such a sequence of sufficiently long trajectories the result of SFA becomes
independent of the class switching probability between two successive trajectories,
thus of the temporal order of the trajectories within the time series. Applied to
such a time series, the optimization problem of SFA can be viewed as a composition
of two effects: the tendency to extract the trajectory class as a slow feature and
the tendency to produce a smooth response during individual trajectories. The
first effect can be described by the scatter matrices of the FLD, whereas the second
effect depends on the temporal correlations (with time lag 1) of the trajectories.

Case (iii) occurs when the class means are so close together that they are almost
identical. In this case the effect of the FLD vanishes. If the trajectories are inter-
leaved with zero (or noise) input the optimal solution to SFA would be to respond
with a half sine wave to each trajectory. For that case, (Wiskott and Sejnowski,
2002; Wiskott, 2003) explain the emergence of discriminative information in the
SFA responses by the decorrelation constraint: a feature that responds with differ-
ent amplitudes for different patterns also varies slowly and can still be decorrelated
to other features that exhibit the same response for each pattern. Thus, with an
infinite function space SFA always produces a feature that responds with a differ-
ent amplitude for each individual pattern. If the available function space is limited
(e.g., linear, as in our case) SFA might cluster similar trajectories, e.g., those that
belong to the same class, by responding to them with similar amplitude.

In the context of biologically realistic neural circuits this ability of an unsuper-
vised learning mechanism is of particular interest, because it could enable readout
neurons, which typically receive inputs from a large number of presynaptic neurons
of the circuit, to extract from the trajectory of network states information about the
stimulus that has caused this particular sequence of states – without any “teacher”
or reward. In previous simulation studies of neural circuit models, so far training
of readouts of biological microcircuits has mostly been performed in a supervised
manner (Maass et al., 2002, 2004a; Legenstein et al., 2005) or in a reward-based
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trial-and-error setting (Legenstein et al., 2008).
We have tested the potential biological relevance of this learning principle in

computer simulations of a quite realistic model of a cortical microcircuits (Häusler
and Maass, 2007). More precisely, we have tested whether SFA would enable projec-
tion or “readout” neurons to learn without supervision to detect and discriminate
salient input streams to the microcircuit. These readouts were modelled as linear
neurons, i.e., we have neither used a particular nonlinear expansion (Wiskott and
Sejnowski, 2002), which would have likely suffered from the curse of dimensionality
when applied to these high-dimensional trajectories, nor an explicit kernel (Bray
and Martinez, 2003). Rather, we have taken advantage of the kernel property of
the circuit itself, which provides intrinsic nonlinear combinations of input compo-
nents by its recurrent connections, and thereby boosts the expressive power of a
subsequent linear readout.

In particular, we have shown that SFA is able to detect a repeating spike pat-
tern within a continuous stream of Poisson input with the same firing statistics
in an unsupervised manner. Furthermore, we demonstrated that the recognition
of isolated spoken digits is possible using a biologically realistic preprocessing for
audio samples. SFA was able to almost perfectly discriminate between two digits of
a single speaker, and to a lesser extent also to extract information about the spoken
digit independent of the speaker as well as the speaker independent of the spoken
digit.

The laminar circuit transforms the input spike trains in three different ways.
First, it provides a nonlinear expansion of the input by projecting it into a higher
dimensional space through its recurrent connections. We have shown in one of the
speech discrimination tasks that the circuit significantly improves the performance
of a subsequent linear SFA readout compared to the case where this readout is
directly applied to the stimulus spike trains. Moreover, the circuit performs better
than a static quadratic or cubic expansion of the stimulus (see Table 3.1). The
second effect of the circuit is to provide temporal integration. While this may be
benefitial in the spoken digits tasks, it certainly decreases the performance in the
pattern detection task because it makes the response of the circuit at the beginning
of a pattern depend on the noise input immediately before (see Figure 3.7C). The
third effect is the inherent noise of the network, i.e., its property to respond differ-
ently each time the same stimulus is presented. This noise models the background
synaptic input in vivo (Destexhe et al., 2001). SFA should perform better if this
intrinsic noise is low.

We find that the response of the learned SFA readouts to a sequence of test tra-
jectories contains both What- and Where-information, i.e., they encode the class of
the trajectory currently presented (pattern identity) as well as the current position
within a trajectory (location within a pattern). This is in agreement with the ob-
jective of SFA, because both the location and identity vary on a slower time scale
than the raw sequence of network states. The extracted features tend to be sec-
tions of sine waves, which are the slowest possible responses under the constraints
of unit variance and decorrelation. Features encoding Where-information usually
detect the presence of the trajectories (and encode the current position within the
trajectory) independent of their identity and respond with similar shapes to each
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trajectory. Such information is very useful for neural systems, since it allows them
to keep track of time relative to a stimulus onset or the initiation of a motor re-
sponse (Buonomano and Mauk, 1994; Buonomano and Maass, 2009). The fact that
such timing information becomes automatically available through unsupervised SFA
could in fact point to a general advantage of coding and computing with trajecto-
ries of firing states, rather than with single firing states (as many classical theories
of neural computation propose). Obviously the ability to keep track of time on
the time scale of a few hundred ms is essential for biological organisms, e.g., for
motor control. In contrast, features encoding What-information discriminate be-
tween different types of trajectories and respond differently for different classes of
trajectories. The response vector defined by the slowest features at a particular
point in time takes on specific directions for each trajectory class; we have found
that the average response vectors of different classes are around 90 degrees apart.
These properties of SFA have been theoretically predicted in a thorough analysis of
this algorithm (Wiskott, 2003). In (Wiskott and Sejnowski, 2002), they have been
also found in computer simulations, where a hierarchical SFA network has been
trained with a sequence of short one-dimensional trajectories. There, the particu-
lar organization of sequential quadratic SFA stages provides the nonlinear function
space, from which the function is chosen that generates the slowest possible output
from the input signal. In our case this function space is implicitly given by the
nonlinearity of the circuit.

In contrast to the results for classification problems on point sets, due to the
temporal structure of trajectories a single SFA readout of a cortical microcircuit
might not extract the class of network trajectories explicitly, but usually a mixture
of both What- and Where-information. This is what we had expected from our
theoretical analysis, which suggested that there is a trade-off between the tendency
to separate different classes and the tendency to respond as smoothly as possible
during individual trajectories. Moreover, as the distance between the class means
decreases, the separation tendency becomes negligible, and SFA tries to distinguish
all individual trajectories. However, the slowest features span a subspace where the
trajectories are nicely separated, thereby rendering SFA a powerful preprocessing
stage by improving the computational performance of a subsequent classification.
Furthermore, the results show that SFA readouts are able to distinguish between
different stimulus classes in an “anytime” manner, i.e., they provide the correct
classification already before the trajectory has ended. This makes the information
about the stimulus available to later processing or decision making stages not only
after a trajectory has settled into an attractor, but already while the stimulus is
still being presented.

In these circuit simulations, SFA responds with amplitudes of different sign
to patterns of different classes, and even generalizes this behavior to unseen test
examples. We argue that the function space that is implicitly provided by the
cortical microcircuit together with the linear SFA readouts might just have the
property that different trajectories yield the same responses if they are similar
enough. More precisely, it might correspond to an imperfect kernel that maps
similar input patterns (patterns that are likely to be from the same class) into
similar trajectories, and sufficiently distinct input patterns to trajectories that are



72 Chapter 3. Slow feature analysis for pattern discrimination

significantly separated. Previous studies (e.g., Legenstein and Maass, 2007) suggest
that if such circuits operate in a regime called edge of chaos, they might have this
desired property.

Furthermore, our theory predicts and our experiments show that the ability of
SFA to discriminate between different classes of trajectories is strongly influenced
by the temporal correlations of the trajectories, as explained by the temporal co-
variance matrix with time lag 1. It would be interesting to investigate the effect of
different magnitudes of these correlations, e.g., by comparing the effect of different
sampling frequencies (we use a quite short sampling time in our examples).

3.4.2 Relation to preceding work

Slow feature analysis has already been applied for unsupervised pattern recogni-
tion in (Berkes, 2005b, 2006), where SFA has been used to discriminate between
handwritten digits. There the SFA objective is reformulated to optimize slowness
for time series consisting of just two patterns, averaged over all possible pairs of
patterns. The idea is to search for functions that respond similarly to patterns
of the same class, and therefore ignore the transformation between the individual
patterns. The optimization (3.1) in (Berkes, 2006) is performed over the set of time
derivatives of all possible pairs of samples of a class,

min ∆(yj) = a ·
C
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c
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c
l ))
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under the constraints of zero mean, unit variance, and decorrelation, where C is
the number of classes, Nc is the number of samples of class c, xc

k is the k-th sample
of class c, and a is a normalization constant dividing by the number of all possible
pairs. Obviously, the functions gj that minimize (3.27) are ones which are constant
for all patterns belonging to the same class, in which case the objective function is
zero. As a consequence, patterns from the same class will cluster in the feature space
formed by the output signals of the (C−1) slowest functions gj , where classification
can be performed using simple techniques (Berkes, 2005b, 2006).

One problem with this approach is that it is often computationally intractable
to consider all pairs of patterns, since the number of pairs grows very fast with
the number of patterns. Furthermore, it might be implausible to have access to
such an artificial time series, e.g., from the perspective of a readout of a cortical
microcircuit which receives input on-the-fly. We take a different approach and apply
the standard SFA algorithm to a time series consisting of randomly selected patterns
of the classification problem, where we switch the class of the current pattern at
each time step with a certain probability. We have found that if this switching
probability p is low SFA extracts features which separate the classes and finds
approximately the same subspace as Fisher’s linear discriminant. In particular, we
have demonstrated the dependence of the deviation on p: as p goes to zero, the
weight vector of SFA converges to the weight vector of FLD. Note that with this
approach perfect equivalence between SFA and FLD cannot be reached because the
time series would have to consist only of transitions within a class, but at the same
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time contain patterns from all classes, which is not possible. In this hypothetical
case the SFA problem would become equivalent to the reformulated objective in
(Berkes, 2005b, 2006). In (Berkes, 2005a) the author applied a nonlinear version of
Fisher’s discriminant to the same handwritten digits dataset as in (Berkes, 2005b,
2006) (using a fixed polynomial expansion of the input as a kernel) and achieved a
similar result, but, however, no relationship between the two methods was shown.

In (Franzius et al., 2008) the authors show that a hierarchical network of
quadratic SFA modules can extract the identity of objects from an image sequence
presenting these objects at continuously changing positions, sizes, and viewing an-
gles. They create the input sequence in a similar way as we do: after each time
step, the object identity is switched with a low probability. The resulting features
extracted by SFA contain information about the identity of the object currently
shown, as well as the current position, size and rotation angles of the object. How-
ever, this information is usually not made explicit in the sense that a single slow
feature codes for exactly one “configuration variable” (such as object identity or
position), rather, each such variable is distributed over multiple slow features. The
original variables, however, can be recovered from the slowest features using linear
regression or simple classifiers with high accuracy. The tendency for this “linear
mixing” of information increases as the input sequence gets more and more complex
(i.e., contains more transformations of the same object). We also find this effect in
our experiments: in the experiment where we discriminated between spoken digits
of a single speaker (Figure 3.8) the slowest feature extracted the class information
explicitly, whereas in the experiment where more speakers were used (Figure 3.9A)
this information was distributed over multiple features. In principle, one can view
the nonlinear expansion of the image sequence that belongs to a single object pre-
sentation (i.e., between two object switching events) as a particular trajectory in
response to this object. Different trajectories for the same object vary in the spe-
cific sequence of poses of that object during a particular presentation phase. In this
sense, SFA is trained on a sequence of trajectories, each resulting from a specific
presentation of a particular object. According to (Franzius et al., 2008) the classifier
performance for extracting the object identity is maximized if all other variables are
made very fast. This is in agreement with our theory because faster configuration
variables produce weaker temporal correlations of these image trajectories. This
means that SFA more closely approximates the result of FLD on these images.

This work in (Franzius et al., 2008) offers one explanation how the visual system
learns invariant object recognition from the temporal statistics of the input stimuli:
images that occur in immediate succession tend to belong to the same object. In
fact, a considerable amount of work has been done that investigates temporal slow-
ness as a computational principle in the visual system. In (Berkes and Wiskott,
2003) quadratic SFA (i.e., linear SFA in the expanded input of all polynomials of de-
gree 2 of the original input dimensions) has been applied to natural image sequences
and the learned quadratic forms have been interpreted as receptive fields (Berkes
and Wiskott, 2006). These resulting receptive fields resemble many properties of
complex cells, such as their Gabor-like shape, shift invariance, or direction selec-
tivity. Furthermore, when presented with a visual input sequence that is generated
by the movement of a simulated rat in a virtual environment, SFA has been shown
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to reproduce the spatial firing patterns of place cells, head-direction cells, spatial-
view cells, and grid cells (Franzius et al., 2007a). Depending on the movement
statistics of this simulated rat different types of invariances are learned (e.g., the
head direction independent of the current position in the environment). To obtain
the final response characteristics of these cell types, however, an additional sparse
coding stage has been incorporated (Franzius et al., 2007b), which extracts the rep-
resentations of single cells from the more distributed representations resulting from
SFA. Using a slightly different slowness objective, similar invariance properties of
the visual system have been found in (Einhäuser et al., 2002; Wyss et al., 2006).

In this work we have trained the readouts of our cortical microcircuit with the
standard batch algorithm of SFA. This has the advantage that there are no pa-
rameters which have to be tuned for a specific problem. Since SFA is based on an
eigenvalue problem it finds the solution in a single iteration and has no convergence
problems (e.g., to be trapped in local minima). In biological systems, however, pro-
cessing has to be performed on-the-fly, and therefore learning rules that optimize
temporal stability in an online manner are of particular interest. Several compu-
tational models exist that are based on this slowness principle and that show how
invariances in the visual system can be learned through a variety of Hebbian-like
learning rules (Földiak, 1991; Wallis and Rolls, 1997; Wyss et al., 2006; Masquelier
and Thorpe, 2007). In this Chapter we do not propose a biologically realistic learn-
ing rule, rather, we investigate the properties of one well-known algorithm, slow
feature analysis, out of this family of optimization methods based on the slowness
principle and analyze its unsupervised discrimination capabilities. A recent paper
demonstrates that this learning rule can in principle be implemented by a spiking
neuron with a form of STDP (Sprekeler et al., 2007). Although this result is purely
analytical and has yet to be verified in computer simulations, it supports the hypoth-
esis that the objective of slowness is an important ingredient in the unsupervised
learning mechanisms of biological systems. In fact, STDP has been successfully
applied to robust online unsupervised detection of repeating spatiotemporal spike
patterns hidden within spike trains of the same firing statistics (Masquelier et al.,
2009). Moreover, it has been shown that spiking neurons equipped with a special
form of STDP which receives a global reward signal (Izhikevich, 2007) can learn
to discriminate between different trajectories of firing states using reinforcement
learning (Legenstein et al., 2008).

SFA is not only inspired by the slowness principle for learning invariances, but
might also be motivated by information-theoretic principles, such as the Information
Bottleneck (IB) method (Tishby et al., 1999), or Independent Component Analysis
(ICA) (Hyvärinen et al., 2001). In (Creutzig and Sprekeler, 2008) a relationship
is shown between SFA and the IB method for predictive coding, which optimizes
the objective to compress the information of the past into the current state of a
system, such that as much information as possible about the future is preserved.
In other words, it minimizes I(past; state) − βI(state; future) with some trade-off
parameter β. It turns out that for the case of one-time-step prediction and of a
linear system with Gaussian noise this problem becomes equivalent to linear SFA.
On the other hand, ICA tries to uncover statistically independent signals from an
observed linear mixture of these signals. (Blaschke et al., 2006, 2007) show that
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for a particular measure of independence, which involves the temporal correlations
with a time delay of one time step, ICA becomes formally equivalent to linear SFA.
Finally, (Turner and Sahani, 2007) provides a probabilistic interpretation for SFA,
where it is assumed that the observed time series x is generated by a linear mixture
of latent variables (the slow features yi). The mixing matrix W is recovered by max-
imizing the likelihood function. This attractive formulation has the advantages that
constraints and extensions can be included in the model in a very natural way, and
that noise and missing data in the input are handled elegantly by this probabilistic
setup. These results establish an interesting connection between the slowness ob-
jective and both probability and information theory and further demonstrate the
power of the elegant algorithm of linear SFA.

3.4.3 Conclusion

Summarizing, we have established a theoretical basis that explains when slow fea-
ture analysis can be expected to have emergent pattern discrimination capabilities.
Both our theoretical results and our computer simulations suggest that slow fea-
ture analysis – and more generally the concept of slowness or temporal stability –
could be a powerful mechanism for extracting temporally stable information from
trajectories of network states of biological circuits without supervision, and hence
an important ingredient for spatiotemporal processing in cortical networks (Buono-
mano and Maass, 2009). In particular, it provides a basis for explaining how brains
can arrive at stable percepts in spite of continuously changing network states in a
completely unsupervised way.
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This Chapter provides novel experimental evidence for the liquid computing
model. The activity of neurons in the primary auditory cortex of awake ferrets
is analyzed and it is shown that sequentially arriving stimulus information is inte-
grated over time and superimposed in a non-linear way into the neural responses at
one point in time. This Chapter is based on the paper Neurons in primary audi-
tory cortex integrate information about past and present stimuli by Stefan Klampfl,
Stephen V. David, Pingbo Yin, Shihab A. Shamma, and Wolfgang Maass (submitted
for publication, 2011). This was a collaboration with the University of Maryland,
where all the experimental work was conducted and who provided the data. SVD
was also involved in writing the paper and provided additional ideas for the data
analysis.

In order to process the rich temporal structure of their acoustic environment,
organisms have to integrate information over time into an appropriate neural re-
sponse. Previous studies have addressed the modulation of responses of auditory
neurons to a current sound depending on the immediate stimulation history, how-
ever, it has remained unknown how and where this important computation step is
carried out. In this study, we analyzed the temporal integration capabilities of 122
single neurons in primary auditory cortex (A1) of four awake ferrets in response to
random tone sequences. We quantified the information contained in the responses
about both current and preceding sounds in two ways: by estimating directly the
mutual information between stimulus and response, and by training linear classifiers
to decode information about the stimulus from the neural response. We found that
(i) many neurons conveyed a significant amount of information not only about the
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current tone, but also simultaneously about the previous tone, (ii) that the neural
response to tone sequences was a non-linear combination of responses to the tones
in isolation, and (iii) that, nevertheless, much of the information about current and
previous tones could be extracted by linear decoders. These results suggest that
A1 neurons perform a generic preprocessing of the temporal structure of auditory
stimuli for higher areas. Moreover, this study shows that standard machine learn-
ing methods such as classifiers provide a suitable estimate for the actual mutual
information, which could lay the ground for a new paradigm of experimental data
analysis.

4.1 Introduction

A number of studies in the auditory cortex have demonstrated that neurons respond
differently to a certain sound, depending on which sensory events preceded this
sound by several 100ms. For example, it has been shown in monkeys (Brosch et al.,
1999; Malone et al., 2002; Bartlett and Wang, 2005; Yin et al., 2008), cats (McKenna
et al., 1989; Brosch and Schreiner, 2000), and rats (Kilgard and Merzenich, 1999)
that the responses to a given tone can change if another tone has been played im-
mediately before. For different configurations of frequency, intensity, and temporal
separation the response to this second tone can be facilitated or suppressed. Fur-
thermore, it has been shown that neurons in songbirds respond preferentially to the
bird’s own song, but weakly to a different sequence of song syllables (Margoliash
and Fortune, 1992; Doupe, 1997; Lewicki and Arthur, 1996). Nevertheless, it has
remained unclear how the auditory system performs this integration of the incom-
ing, temporally highly structured acoustic information into an appropriate neural
response which enables further processing of this information by higher areas.

In recent years a new computational model has been proposed that could explain
how this important computation step is carried out. This liquid computing model
(Maass et al., 2002; Buonomano and Maass, 2009) views cortical circuits as generic
preprocessing components that combine sequentially arriving input components,
possibly in a non-linear manner, in order to facilitate further information process-
ing by simple readout neurons in higher cortical areas. This model has attracted
substantial interest in the computational as well as the experimental neuroscience
community, e.g., (Sussillo and Abbott, 2009; Nikolic et al., 2009; Bernacchia et al.,
2011). However, so far experimental evidence for this computing model in sensory
systems has only been reported for anesthetized cats (Nikolic et al., 2009), and it is
not exactly clear how anesthesia affects sensory information processing. One goal of
this work is to test the predictions of this model for neural responses in the primary
auditory cortex of awake animals. To quantify the temporal integration capability
of this auditory system, we analyzed the spike responses of individual A1 neurons
of four awake ferrets to random tone sequences and measured the information con-
tained in the neural responses about both current and preceding sounds.

The most principled and rigorous way to analyze the information contained in
neural responses is to directly use methods from information theory (Cover and
Thomas, 1991). However, it is well-known that the direct estimation of the mutual
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information between stimulus and response suffers from a severe bias problem due to
the limited number of available trials (Miller, 1955; Panzeri and Treves, 1996). The
method proposed in (Panzeri et al., 2007) produces reliable information estimates
also for quite limited sample sizes and has been successfully validated in a variety
of analysis studies, e.g., in the rat barrel cortex (Arabzadeh et al., 2004, 2006) and
in the monkey visual cortex (Montemurro et al., 2008). We used this method to
quantify the temporal integration capability of single A1 neurons, by estimating
the amount of information they convey at a particular point in time simultaneously
about currently and previously played tones.

An alternative method to investigate this temporal integration of information is
to take the perspective of a hypothetical neuron that receives input from all simul-
taneously recorded neurons and to measure how much information about previous
stimuli it can read out just from the current response (Buonomano and Maass,
2009). As a first approximation, one can view such readout neurons as linear dis-
criminators because they compute a weighted sum of these inputs and become
active once this sum exceeds a certain threshold. The optimal performance that
can be obtained by optimizing the weights of this linear discriminator is a measure
of the information contained in the neural responses. This method of information
analysis has been used in the aforementioned study (Nikolic et al., 2009) to provide
evidence for similar temporal integration capabilities in the primary visual cortex.
In addition to the direct estimation of mutual information, we applied this method
by training state-of-the-art classifiers, Support Vector Machines (SVMs) with linear
kernel (Schölkopf and Smola, 2002), on the responses of simultaneously recorded
neurons to discriminate between different stimulus conditions.

With this method we also tested whether the neural response provides a non-
linear combination of input components, which would be revealed if these linear
classifiers achieved a significant performance on a non-linear target function. More-
over, we measured the amount of information both methods were able to extract
from the same data and tested whether linear classifiers provided a suitable lower
bound on the information measured directly. These findings indicate that neurons
already at this early stage of the auditory system provide a generic preprocessing of
the complex temporal structure of acoustic stimuli in order to ease the extraction
of information by simple readout mechanisms in higher cortical areas, and thus
provide substantial experimental evidence for the liquid computing model in the
primary auditory cortex of awake animals.

4.2 Materials and Methods

4.2.1 Experimental procedures

Auditory responses were recorded extracellularly from single neurons in primary
auditory cortex (A1) of four awake, passively listening ferrets. All experimental
procedures conformed to standards of the National Institutes of Health and the
University of Maryland Animal Care and Use Committee. Details of the surgical
and neurophysiology procedures are described elsewhere (David et al., 2009) and
briefly summarized here. Animals were implanted with a stainless steel head post to
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permit stable recordings. Single unit activity was recorded from four independently
movable high-impedance (2-4 M-Ohm) electrodes in a sound-attenuating chamber.
Spiking events were extracted from the continuous signal using principal compo-
nents analysis and k-means clustering. In total, 122 single A1 neurons were isolated
from 23 multi-channel recordings.

Stimuli were presented from digital recordings using custom Matlab software
(Mathworks, Natick, MA). Digitally synthesized sounds were transformed to analog
(National Instruments, Austin, TX), equalized to achieve flat gain (Rane, Mukil-
teo, WA), amplified to a calibrated level (Rane, Mukilteo, WA) and attenuated
(Hewlett Packard, Palo Alto, CA) to the desired sound level. These signals were
presented through an earphone (Etymotics, Elk Grove Village, IL) contralateral to
the recording site. Before each experiment, the equalizer was calibrated according
to the acoustical properties of the earphone insertion. In each experiment, stimuli
were presented at a fixed sound level (65 dB SPL).

4.2.2 Tone sequence stimuli

During each recording random tone sequences were presented as stimuli to the pas-
sively listening animal. Individual trials consisted of 100 tones, each of which had
a duration of 150ms; thus, the duration of each sequence was 15s. Table 4.1 gives
detailed information about each recording: the number of recorded neurons, the
number of tone sequences presented to the animal, and the different tone frequen-
cies used. The frequency step between two consecutive tones in the sequences was
either half an octave up or down. The direction of tone change after each tone was
randomly chosen, except for the maximum (minimum) frequency within a record-
ing, where the next lower (higher) tone followed with 100% probability. The first
tone on each trial was selected from a uniform distribution, which ensured that
each frequency appeared approximately the same number of times within the tone
sequences of one recording (except for the two extreme frequencies, which appeared
about half as many times). Furthermore, each frequency appeared about equally
often before the next higher and the next lower possible frequency. Tone sequences
have been used previously in several studies of A1, although most focused either on
two frequencies (Ulanovsky et al., 2003, 2004) or one varying frequency paired with
a fixed base frequency (Brosch et al., 1999; Brosch and Schreiner, 2000). These
studies reported response characteristics that were similar to those we found (see
Figure 4.1).

4.2.3 Estimation of mutual information

Information contained in the neural response can be analyzed by estimating di-
rectly the mutual information between stimulus and response as a general measure
from information theory (Shannon, 1948; Cover and Thomas, 1991). The mutual
information between stimuli S (in our case, tone frequencies or direction of tone
changes) and evoked responses R is given by

I(S;R) = H(R) − H(R|S) =
∑

r,s

P (s)P (r|s) log
P (r|s)
P (r)

. (4.1)
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animal recording # neurons # seq. start freq. # freq.

Ferret 1 ele093b05 4 54 1000 9
Ferret 2 per001c06 3 35 2125 7

per002d03 6 35 1775 7
per003b08 3 35 1775 7
per006a08 8 35 2510 7
per007b10 4 35 1202 7
per011b05 2 55 2943 11
per011c05 1 55 2943 11
per018c10 7 35 2050 7
per019a05 9 35 2298 7
per026a09 6 42 1727 7
per027a07 10 42 354 7
per027b06 10 42 354 7
per028a09 6 42 1945 7
per031a08 6 42 1768 7
per031a09 6 54 1250 9
per034a09 7 54 1250 9

Ferret 3 sas009b13 5 54 800 9
sas028b07 4 54 700 9
sas029a07 2 54 250 9
sas031a07 6 54 625 9

Ferret 4 sag002e19 4 54 350 9
sag005a03 3 54 725 9

Table 4.1: Information about the 23 recordings made from the 4 ferrets. The third
column (“# neurons”) contains the number of simultaneously recorded neurons. The fourth
column (“# seq.”) denotes the number of tone sequences (each with 100 tones) used as
stimuli. For each recording the sequences consist of a series of “# freq.” increasing frequency
values starting with “start freq.” The quotient between two neighboring frequency values
was

√
2 ≈ 1.41.

S and R are random variables characterized by probability distributions P (s) and
P (r), respectively. The conditional entropy (or noise entropy) H(R|S) describes
the variability of the responses for a fixed stimulus s (expressed by the conditional
distribution P (r|s)). If this variability is small compared to the overall variability
of responses H(R), the response conveys a large amount of information about the
stimulus. Mutual information thus quantifies the reduction of uncertainty about
the stimulus that can be gained from observation of a single response trial (Rieke
et al., 1997).

Calculation of mutual information requires accurate estimation of the response
probabilities P (r) and P (r|s) from the finite experimental data, which suffers from
a sampling problem: estimating the probability distribution from a finite number
of observations leads to a systematic underestimation of the entropy of this distri-
bution (Miller, 1955) and consequently to an upward bias of mutual information
(Panzeri and Treves, 1996). To overcome this bias problem, we used a shuffling-
based estimator (Panzeri et al., 2007), which eliminates the bias by subtracting
the noise entropy of a randomly shuffled dataset. Furthermore, an additional bias
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correction technique was applied that uses quadratic extrapolation of the individual
entropy measures to infinite sample sizes (Panzeri et al., 2007).

To evaluate the information contained in the responses about a particular feature
of the stimulus sequences (e.g., the current tone, or the direction of previous tone
change) we viewed all available instances of this feature as our set of stimuli, and
the spike trains in response to all occurrences of one particular instance within
the tone sequences of one recording as our set of responses for this stimulus. For
example, to calculate the mutual information I(T ;Y ) between the response Y and
the current tone T , the set of stimuli consisted of all available tone frequencies used
in one recording, and each of these stimuli was associated with a set of responses
that is composed of the neural responses during all occurrences of the respective
frequency.

In order to measure the information contained in the responses about the pre-
viously played tone, we took into account the special temporal structure of the
stimulus sequences. Since each tone is followed by either the tone with the next
higher or the next lower frequency, there is already substantial mutual information
between two consecutive tones. So a high value of the mutual information between
the response and the previously played tone might actually reflect information about
the current tone because it is not independently chosen from the previous tone. We
therefore calculated the mutual information about the direction of the tone step
given by the previous and current tone.

The total information that is contained in the response Y about the tone pair
(T1, T2) can be written as, according to the chain rule of information theory (Cover
and Thomas, 1991),

I(∆, T2;Y ) = I(T2;Y ) + I(∆;Y |T2), (4.2)

where ∆ is a binary variable indicating whether the tone pair (T1, T2) is an up- or
down-step in frequency. Note that the tone pair (T1, T2) is completely determined
by the tuple (∆, T2). The first term, I(T2;Y ), is then simply the information about
the current tone (during T2), and the second term, I(∆;Y |T2), measures for a given
value of the current tone T2 the additional information that is conveyed about the
direction of the tone change from T1 to T2.

This approach can be extended to investigate whether the neural response con-
tains also information about tone changes farther back in the sequence. Note that a
sequence of n successive tones (T1, . . . , Tn) is completely determined by the value of
the last tone, Tn, and a sequence of n−1 binary variables (∆1, . . . ,∆n−1) indicating
the directions (up or down) of the n−1 tone steps of the sequence (T1, . . . , Tn). We
can write analogously to (4.2)

I(∆1, . . . ,∆n−1, Tn;Y ) = I(Tn;Y ) + I(∆n−1;Y |Tn) + I(∆n−2;Y |Tn,∆n−1)

+ . . . + I(∆1;Y |Tn,∆n−1,∆n−2, . . . ,∆2)

= I(Tn;Y ) +
n−1
∑

i=1

I(∆i;Y |Tn,∆n−1, . . . ,∆i+1).

(4.3)

That is, the information can be written as a sum of contributions of individual tone
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changes, conditioned on later tones. Note that for n = 2 equation (4.2) follows as
a special case.

Reliable information estimates require a suitable discretization of the response
space. We discretized each spike train of a neuron as a binary word with bin size
5ms, i.e., a value of 1 in one bin indicates the presence of at least one spike in
the corresponding 5ms period. At time t following stimulus onset we calculated
the mutual information between the stimulus and the response of a single neuron
during a time window of 20ms (4 time bins) preceding t.

We also used a different discretization scheme when we compare mutual infor-
mation with classification performance. There, we used the spike count, limited to
values from 0 to 4, in a time window of 20ms preceding a particular time point t
to represent the response of a neuron at time t. In contrast to the binary code de-
scribed before, where we calculated the information conveyed by individual neurons,
we used the vector composed of the spike counts of all simultaneously recorded neu-
rons as our response. The same vector can be used as a classifier input, which makes
the comparison between mutual information and classifier performance possible.

With this discretization of the response into vectors of spike counts the size of
the response space becomes potentially 5n, where n is the number of simultaneously
recorded neurons. This increases the risk of bad information estimates due to
undersampling of the response space. To determine the reliability of the measured
information values we evaluated the mutual information on a random subset of
one half of all available trials. If the mutual information value estimated on this
truncated dataset changed by less than 10% of its original value, a reliable estimate
was reported.

As software we used the Python implementation described in (Ince et al., 2009).

4.2.4 Analysis of information using linear classifiers

Information in the neural response about the stimulus can also be extracted by
classifiers, with spike trains of simultaneously recorded neurons as input patterns
and the stimulus identity as the target label (see e.g., (Nikolic et al., 2009) for an
application of this method). Here, we used (binary) linear classifiers, more precisely,
Support Vector Machines (SVMs) with a linear kernel (see e.g., (Schölkopf and
Smola, 2002; Bishop, 2006; Ben-Hur et al., 2008)), to predict one particular bit of
information. The performance of a linear classifier can be viewed as a lower bound
on the information contained in the responses about this particular bit.

All response spike trains were low-pass filtered by an exponential filter with
time constant τ = 20ms. At particular points in time, the values of these analog
traces of multiple simultaneously recorded neurons of one particular recording form
multi-dimensional input vectors that served as input patterns to the classifier. Per-
formance of the classifiers was always evaluated with 10-fold cross validation. The
parameter C of the linear SVM, which determines the trade-off between minimiz-
ing training errors and generalization, was chosen to be 100, however, we found the
achieved performance not to be very sensitive to this parameter. Furthermore, we
tried SVMs with different kernels (polynomial kernels of different degrees, and RBF
kernels with different widths), but no significant performance increase was detected.
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This means that in this case linear classifiers performed as well as most non-linear
classifiers, and no significant additional information can be extracted using these
non-linear classifiers.

In the XOR experiment (Figure 4.6) we measured the performance as the point-
biserial correlation coefficient between the binary target variable and the continuous
linear combination of the low-pass filtered input spike trains learned by the classifier
(i.e., the output of the classifier before the threshold operation). This is necessary
in order to ensure that any significant classification performance on this non-linear
XOR-combination can really be attributed to a nonlinearity implicitly provided
by the neural responses. It can be shown that any such correlation coefficient
significantly greater than zero indicates non-linear transformations in the neural
processes itself (see (Nikolic et al., 2009) for a formal proof).

When we compared mutual information with classification performance, we did
not use the low-pass filtered spike trains of all simultaneously recorded neurons as
input to the classifier, rather we used the vector composed of the spike counts of
these neurons during the last 20ms (the same value as the time constant τ). This
discretization allowed the application of both a mutual information estimator and
a classifier on the same data. To convert the classification performance (% correct)
into an information value (bit) we calculated directly the mutual information (4.1)
between the stimulus and the classifier prediction.

As a software for solving the SVM optimization problem we used the LIB-
SVM package (Chang and Lin, 2001) included in the PyML toolbox for Python
(http://pyml.sourceforge.net/).

4.2.5 Data pre-processing and statistical analysis

To calculate the peri-stimulus time histograms (PSTH) for a neuron in response to a
given frequency, we collected the spike times during all occurrences of this frequency
during 150ms tone periods. The bin size of the PSTHs was chosen to be 1ms; for
display purposes only, the PSTHs were smoothed with a 10ms-Hamming window.
In order to measure correlations between two variables, we used the standard Pear-
son correlation coefficient, which yields an r and a p value. The r-values denote
the correlation coefficient itself and p-values are the probability that these correla-
tions are produced by random chance. Thus, a low p-value indicates a significant
correlation. If r-values are reported without a p-value, p < 0.0005.

To assess the significance of the obtained mutual information and classification
performance values we performed a label-shuffling test: We evaluated the mutual
information on 100 different shuffled datasets that are generated by randomizing
the stimulus identity (label) for each response. A significant information value
(p < 0.05) was reported if it was larger than the mean plus two times the standard
deviation of this distribution of shuffled information values. For the information
about previously played tones we compared the average information value across
different tones (or tone sequences, see equations (4.2) and (4.3)) with the distribu-
tion of the corresponding averages of the shuffled information values.
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4.3 Results

4.3.1 Neural responses to tone sequences in primary auditory cor-

tex

In order to measure the temporal integration of sensory information by A1 neurons
we recorded the activity of 122 neurons isolated from 23 multi-channel recordings in
four passively listening awake ferrets. The stimuli were sequences of tones of 150ms
duration. The frequency step between two consecutive tones was always randomly
half an octave up or down and the sequences were designed to present tones at each
frequency approximately the same number of times.

Figure 4.1A shows a snapshot of such a stimulus sequence used in one recording,
overlaid with the associated responses of four simultaneously recorded neurons. The
peri-stimulus time histogram (PSTH) response for a given frequency was computed
by averaging the spike trains following the onset of all tones at that frequency
(see examples in Figure 4.1B). It can be seen that individual neurons responded
to different tone frequencies in various ways. For instance, neuron #4 had a very
sparse response compared to the other units. Other neurons, such as neuron #3,
typically responded with a strong transient burst to a tone onset or change, whereas
the responses of still other neurons, such as that of neuron #2, were sustained across
the tone duration. Furthermore, especially neurons with a strong transient response
tended to be more sharply tuned to specific frequencies or frequency ranges (see
also Figure 4.2B).

As had been shown previously (Brosch and Schreiner, 2000; Ulanovsky et al.,
2004), the responses of individual neurons to individual frequencies differed, depend-
ing on the tone frequency that had been played immediately before. Figure 4.2A
shows PSTHs of four sample neurons plotted as in Figure 4.1B, but conditioned on
the direction of the preceding tone step. For some neurons and frequencies, there
was a substantial difference in the firing rate in response to the same stimulus fre-
quency. This difference was particularly large for neurons responding with a strong
transient burst. These context-dependent responses give rise to conditional tun-
ing curves, which plot mean firing rate as a function of tone frequency separately
for both up and down steps in frequency from the preceding to the current tone
(Figure 4.2B).

This investigation of the neural responses already provides qualitative insight
into the temporal integration capabilities of A1 neurons. It suggests that not only
information about the currently played tone, but also about whether the previous
tone was higher or lower, might be encoded in differences in both the mean firing
rates across the whole tone duration and the timing of the spikes relative to the
tone onset.
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Figure 4.1: (see next page for Figure caption)

4.3.2 Direct estimation of mutual information

4.3.2.1 Most neurons convey a significant amount of information about
the currently played tone

We first investigated how much information is contained in the neural responses
about the tone frequency which is currently played. To address this question we
measured the information I(T ;Y ) conveyed by the responses of individual neurons
Y about the frequency of the current tone T . For all available frequencies used
in one recording we viewed the response spike trains of one neuron during all oc-
currences of that frequency as individual trials in response to the same stimulus
(see Figure 4.1B). From these stimulus-response associations we then calculated
the mutual information every 5ms throughout the tone duration of 150ms.
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Figure 4.1: Most neurons convey a significant amount of information about the
current tone. (A) Sample stimulus sequences and neural responses for the first 12 tones
of the first 8 sequences played during one particular recording (Ferret 1). In total, the
stimuli for this recording consisted of 54 sequences of 100 tones each. The background
color indicates the frequency of the current tone, as denoted by the legend on the right. In
this experiment 4 neurons were simultaneously recorded. Black lines show the spike times
of the 4 different neurons (from bottom to top within one row, neurons #1 to #4). (B)
Frequency tuning of neurons #1 to #4 in A. The top of each row shows 10 individual spike
trains of one neuron in response to each frequency during tone presentation periods (150ms)
of 10 randomly chosen occurrences of that frequency within the stimulus sequences. The
bottom of each row shows the PSTHs for that neuron. Note the different scalings on the
y-axis. (C) Time courses of mutual information between the responses of these four neurons
and the currently played tone for the recording shown in A and B. MI values are estimated
every 5ms from the spike train in the 20ms time window preceding the time indicated on
the x-axis. Error bars denote the standard error of the mean of the MI estimator. (D)
Histogram of peak mutual information values across the tone duration (150ms) of all 122
neurons. (E) Mutual information traces (as in C) for 16 sample neurons across all four
animals, including the neurons with maximal information for each animal. The other 12
neurons were randomly selected. Thick lines: average information trace for each animal,
black line: average across all neurons from all animals, error bars: standard error of the
mean.

Figure 4.1C shows the time courses of information conveyed by the individual
neurons shown in Figures 4.1A and 4.1B. In this recording, neuron #3 conveyed
the largest amount of information about the current tone frequency. As seen in the
responses to individual frequencies in Figure 4.1B this neuron was the most selective,
as it responded strongly and reliably to higher frequencies. The transient response
after tone onset is reflected in the time course of the mutual information, in that
it reaches a relatively high peak at about 40ms after onset, decreases afterwards,
but remains significant during the second half of the tone (significance assessed by
a label shuffling test (p < 0.05), see Materials and Methods). Neurons #1 and #4
of this particular recording conveyed much less information, but the amount was
still significant between 20ms and 40ms, which can be explained by their transient
responses to some frequencies. Neuron #2 on the other hand, which had a rather
unselective response for all frequencies, did not convey a significant amount of
information, even though it responds with a higher firing rate than neuron #4. The
information transmitted by other neurons from different recordings across different
animals varied in time course and magnitude (see Figure 4.1E). These examples
show that different neurons conveyed information in various ways.

Figure 4.1D summarizes the peak information value across the entire set of
A1 neurons in our study. From the 122 neurons recorded, the responses of 94
neurons conveyed significant information about the current tone (at least at one
time point during the tone interval of 150ms, a significant mutual information value
was measured). The most informative neuron conveyed a peak information value
of 0.53bit (measured in Ferret 3), but this value lay below 0.1bit for most of the
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neurons. The average peak information across all neurons was 0.067bit and was
not significantly different between animals (Ferret 1: 0.143bit, Ferret 2: 0.060bit,
Ferret 3: 0.124bit, Ferret 4: 0.066bit). Although the average information conveyed
by single neurons was substantially less than the theoretical maximum (2.75bit,
3.12bit, or 3.42bit, depending on whether 7, 9, or 11 frequency values were used in
the recording), this information can accumulate over large numbers of neurons in
A1 to accurately encode the stimulus.

Neurons that conveyed large amounts of information also tended to have high
firing rate responses. The information conveyed by individual neurons and their
average firing rate were correlated. The value of Pearson’s correlation coefficient
between mutual information and mean firing rate was significantly positive (r =
0.69) for the recording shown in Figures 4.1A-C. The overall correlation coefficient
for all responses was r = 0.50.

4.3.2.2 Neurons simultaneously convey information about the current
and previous tone

In order to look for evidence of stimulus integration over time, we next measured
the information contained in the responses of individual neurons about the previ-
ously played tone. A high mutual information between the current response and the
previous tone indicates a strong temporal integration capability of this neuron. We
measured the information value I(∆;Y |T2) between the response Y and the direc-
tion of the tone change (up or down, indicated by the binary variable ∆) preceding
the current tone T2 (equation (4.2) in Materials and Methods). Because each tone
was followed by either the next higher or the next lower tone, all information about
the previous tone, given the current tone, was captured by this single-bit value.

Figure 4.2 illustrates the calculation of information between the response and the
direction of the previous tone change ∆ in detail for four neurons. The responses of
these neurons differed substantially in their response to some frequencies, depending
on whether the higher or lower tone was played immediately before (Figure 4.2A).
This difference was particularly large in the transient responses. The conditional
tuning curves in Figure 4.2B show that these differences in the mean firing rates
for a certain neuron were most prominent for the range of preferred frequencies of
that neuron. Figure 4.2C shows the time course of information about the frequency
change, I(∆;Y |T2), for each of these 4 sample neurons for different values of T2.
It can be seen that neurons encoded this information in various ways. The most
information was contained during the transient response, but it could sometimes
persist for the duration of the tone. The amount of information conveyed also varied
with the current tone T2.

Figure 4.3A compares the average peak information about current and previous
tones across the entire set of A1 neurons. From all the 122 neurons recorded, the
responses of 41 neurons conveyed significant information about the direction of the
previous tone change ∆ (at least at one time point during the tone interval of
150ms, the average information across tones T2 was significant). On average, the
ratio between the information values was 74:26, i.e., the information value I(T2;Y )
was about three times larger than I(∆;Y |T2). The maximal peak information value
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Figure 4.2: (continues on next page)

measured about ∆ was 0.158bit in Ferret 1, 0.391bit in Ferret 2, 0.378bit in Ferret
3, and 0.306bit in Ferret 4. The average peak information was 0.045bit (Ferret 1:
0.045bit, Ferret 2: 0.040bit, Ferret 3: 0.062bit, Ferret 4: 0.058bit). These values
were not significantly different between animals. Note that the maximum possible
value for the information about ∆ is 1bit, whereas the maximum information about
the current tone, as measured in Figure 4.1, is the entropy of the distribution of
tone frequencies in the respective recording (2.75bit, 3.12bit, or 3.42bit, depending
on whether 7, 9, or 11 frequency values were used in the recording).

Most of the information about the change from the previous tone can be ex-
plained by the firing rate differences in response to the two possible predecessors of
a given tone (see examples in Figure 4.2A and 4.2B). There was a significant corre-



90 Chapter 4. Temporal integration of A1 neurons

C

0.15

0.30
4000Hz

sample neuron #1

0.15

0.30
5657Hz

0.15

0.30
8000Hz

0 50 100 150
time [ms]

0.15

0.30
11314Hz

4250Hz
sample neuron #2

6010Hz

8500Hz

50 100 150
time [ms]

12021Hz

1025Hz
sample neuron #3

1450Hz

2051Hz

50 100 150
time [ms]

4101Hz

884Hz
sample neuron #4

1250Hz

3536Hz

50 100 150
time [ms]

5000Hz

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
MI about the direction of the tone step preceding a given tone

I(

�;Y|T 2) [bit]

Figure 4.2: Many neurons convey significant information about the direction of
the preceding tone step. (A) The PSTHs of 4 sample neurons (one for each Ferret) to
each tone frequency are substantially different, depending on whether the frequency of the
previously played tone was higher (down step, blue) or lower (up-step, red). (B) Condi-
tional tuning curves for the sample neurons in A show this difference in the mean firing
rate of these neurons during 150ms periods in response to all available frequencies, depend-
ing on whether the next lower or the next higher frequency has been played immediately
before. The black dotted line shows the overall tuning curve calculated from all responses
independent of the previous tone. Error bars denote SEM. (C) Time course of mutual
information I(∆; Y |T2) about the direction of the tone change (∆) preceding a given fre-
quency during the current tone, T2. Columns of panels correspond to different recordings,
rows correspond to different values of the current tone. MI values are estimated every 5ms
from the spike train in the 20ms time window preceding the time indicated on the x-axis.
Error bars denote the standard error of the mean of the MI estimator.

lation between the peak value of the mutual information I(∆;Y |T2), and differences
in the mean firing rate across the whole tone duration (Figure 4.2B). The overall
correlation coefficient was r = 0.729, and this correlation was also significant for
individual animals (Ferret 1: r = 0.483, p = 0.009; Ferret 2: r = 0.798; Ferret 3:
r = 0.491; Ferret 4: r = 0.768; all p < 0.0005).

Information values were often high for frequencies where the difference in re-
sponse to the previous tone was large (e.g., sample neuron #2, 8500Hz), but also
in cases where this difference was not particularly large (e.g., sample neuron #3,
2051Hz). Vice versa, a large response difference does not necessarily imply a larger
amount of information (e.g., sample neuron #4, 1250Hz, or sample neuron #3,
4101Hz). This indicates that some, but not all, of the available information about
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Figure 4.3: Neurons simultaneously convey information about the current and
previous tone. (A) Comparison of peak mutual information values measured about the
current tone (as in Fig. 4.1C, blue) and about the direction of the previous tone change (as
in Fig. 4.2C, red). For each of the 23 recordings, the average across neurons (and tones) are
shown. On average, the ratio of these information values is about 3:1. Error bars denote
SEM; recordings are grouped by animals (F1 to F4: Ferret 1 to 4). The recordings marked
with an asterisk contain the sample neurons shown in Fig. 4.1. (B) Neurons simultaneously
transmit information about current and previous tone. The scatter plot compares the peak
mutual information values about current and previous tones for each of the 122 neurons.
The sample neurons in in Fig. 4.1 are marked with labels “#1” to “#4”.

the previous tone is encoded in the mean firing rates of neurons. Also the timing of
the spikes relative to the tone onset is important. For example, sample neuron #3
conveyed a large amount of information about the tone preceding 2051Hz because
it responded with a stronger transient to a down-step (Figure 4.2A), even though
the mean firing rate across the whole tone duration was similar in both cases.

Figure 4.3B shows that the peak value of the information conveyed about the
current tone, I(T2;Y ), and the peak value of the information about ∆ given the cur-
rent tone, I(∆;Y |T2), are significantly correlated. This means that neurons, which
transmitted a large amount of information about the current tone, simultaneously
also tended to convey a considerable amount of information about the direction of
the tone change that had led to this current tone. This indicates that there are no
neurons which “specialize” on either current or previous tones, but rather that in-
dividual neurons really integrate information about previously arrived stimuli into
their current responses.

4.3.2.3 Temporal integration of information about earlier tones

To investigate whether neurons integrate information also about tone changes far-
ther back in the sequence, we extended the approach in the previous section. We
used the chain rule of information theory to evaluate the information about tones
an increasing number of time steps in the past. More precisely, we calculated infor-
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Figure 4.4: No additional information can be gained about the direction of the
tone step more than two tones back. Mutual information values are calculated between
the response and the direction of the tone change the specified number of time steps in the
past. The average across neurons and sequences (see text) of the peak information during
a 150ms tone duration is shown. The labels on the abscissa denote the number of time
steps back (0: information about the current tone, 1: information about the previous tone,
2: two steps back, etc). Error bars denote SEM; n.s., non-significant deviation from chance
level, estimated by a label-shuffling test (p > 0.05).

mation values I(∆i;Y |Tn,∆n−1, . . . ,∆i+1) between the response Y and the binary
variable ∆i specifying whether the direction of the tone step i steps before the cur-
rent tone Tn was up or down, conditioned on all the subsequent tones up to the
current tone Tn (see equation (4.3) in Materials and Methods). Note that for n = 2
and i = 1 this term is equal to the information about the direction of the preceding
tone change, I(∆;Y |T2), considered in the previous section.

In Figure 4.4 we compared the average of these information values for 1-4 tone
steps back across neurons and across sequences Tn,∆n−1, . . . ,∆i+1. We included
only those neurons which conveyed a significant amount of information about the
direction of the previous tone change (n=41/122). For these 41 neurons, the aver-
age information values were higher than the average across all 122 neurons: The
average information about the current tone was 0.115bit and the average informa-
tion about the direction of the tone change preceding the current tone was 0.049bit.
The responses of 25, 12, and 6 neurons conveyed significant information about the
tone change ∆2, ∆3, and ∆4, respectively (at least at one time point during the
tone interval of 150ms, the average information across sequences Tn,∆n−1, . . . ,∆i+1

was significant). It can be seen that the information decreases for increasing num-
ber of tone steps considered. After two tone steps the information saturates at a
non-significant low residual value. This would indicate that the response does not
contain any information about the tone step direction more than two tones in the
past. However, we are exploring a large stimulus space because we have to average
over all possible sequences of length i. Thus, the number of available samples for
mutual information estimation decreases by one half for each additional tone step
considered. Therefore the information values for many backward time steps are less
reliable and we cannot exactly measure the influence of earlier tones.
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4.3.3 Information analysis using linear classifiers

4.3.3.1 Temporal integration of information about the previous tone

An alternative way to investigate the temporal integration of information is to
measure the amount of information about past stimuli that can be extracted by
a neuron that reads the current activity of all simultaneously recorded neurons.
To analyze this information, we trained (binary) linear classifiers, Support Vector
Machines (SVMs) with a linear kernel (see Materials and Methods), on the spike
trains of simultaneously recorded neurons to decode information about current and
previous tones.

First, we investigated the performance of these classifiers on the current tone.
We selected two specific frequency values and collected the responses to all occur-
rences of these two frequencies. We low-pass filtered the spike responses (τ = 20ms),
and at every 10ms, we trained a different classifier to discriminate between the two
possible current tones. For most tone pairs performance was significantly above
baseline level of 50% during the whole duration of 150ms, across different record-
ings and animals. 17 of 23 recording sites performed significantly above chance
(on average across all tone pairs). Peak classification performance (up to 90%) was
often achieved within the first 50ms, most probably due to the discriminative initial
bursting behavior of some neurons. Performance typically decreased for later time
points. The average peak performance across all tone pairs and experiments was
59.75% (Ferret 1: 65.23%, Ferret 2: 58.38%, Ferret 3: 62.46%, Ferret 4: 61.21%). In
principle, one could also investigate the performance of multi-class classifiers on all
available tone frequencies, but since they are essentially a combination of different
linear classifiers, they do not report additional information.

We then used linear classifiers to investigate the temporal integration of infor-
mation, i.e., the information contained in the responses about the previously played
tone. Figure 4.5A shows examples of performance of linear classifiers trained on all
simultaneously recorded neurons to discriminate between the two possible prede-
cessors of the current tone, i.e., to extract information about ∆ in equation (4.2).
Performance is also shown during the preceding tones. Every 10ms a different clas-
sifier was trained to discriminate between the two different frequencies of the first
tone T1 in the pair (T1, T2) for a given tone T2. In this way we could analyze the
information extracted by classifiers about which of two different frequencies was
currently played, and how this information is maintained during the next tone.
One sees that in most cases performance stays above chance level for some time
after the switch of the tone frequency before it drops, indicating that the informa-
tion is maintained about the stimulus after the tone has switched. In other cases,
performance reached a second (albeit smaller) peak after the tone switch. This is
most probably to differences in the transient responses of some neurons.

Figure 4.5B summarizes the average peak classifier performance for each dataset
(averaged over tones T2 of the maximum performance in extracting information
about T1 during the period of T2). Classifiers were able to extract a considerable
amount of information about the previous tone across different frequencies for most
recordings. 18 of 23 recording sites performed significantly above chance (on aver-
age across all tones T2). The maximal measured performance achieved was 88.17%
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Figure 4.5: (continues on next page)

(in Ferret 2, shown in the first column of Figure 4.5A). The average peak perfor-
mance was 64.92% (Ferret 1: 59.18%, Ferret 2: 64.40%, Ferret 3: 63.86%, Ferret 4:
68.92%). Note, however, that direct comparisons of the classification performance
between different recordings should be viewed with caution, since the performance
values depend on several factors such as the number of neurons simultaneously
recorded or the total number of spikes in the recording. Similar to the mutual in-
formation values about the previous tone, peak classification performance was also
strongly correlated with the absolute firing rate differences of individual neurons
(Figure 4.2B). The overall correlation coefficient was r = 0.394 (Ferret 1: r = 0.483,
p = 0.192; Ferret 2: r = 0.411, p < 0.0005; Ferret 3: r = 0.459, p = 0.001; Ferret 4:
r = 0.272, p = 0.003).

These performance values of linear classifiers on the previous tone are on average
similar or even slightly higher than the performance values on the current tone. This
demonstrates the prominent temporal integration capability of A1 neurons. Note
that this finding does not contradict the previously reported 3:1 ratio of mutual
information about current versus previous tone, because the mutual information
about the current tone is evaluated using all available frequencies at the same time,
while for the classifier only pairs of frequencies are considered.

4.3.3.2 Non-linear superposition of information

Furthermore we analyzed whether the neural response provides a non-linear su-
perposition of information about sequentially arriving stimuli. This property is
beneficial for information processing because it boosts the computational power



4.3. Results 95

B

F1 F2 F3 F450

60

70

80

90

100

pe
rfo

rm
an

ce
 [%

 c
or

re
ct

]

4

3

6 3

8

4

2

1

7
9

6
10

10

6

6
6

7
4

3

5

4

2

6

*
*

avg. peak performance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.5: Linear classifiers are able to discriminate between the two possible
predecessors of a given tone. (A) Performance of linear classifiers trained at time
points every 10ms during the 300ms interval of two consecutive tones T1, T2 to discriminate
between the two possible predecessors T1 of a given tone T2 (i.e., to predict ∆) for two
example recordings from two different animals. Columns correspond to different record-
ings, rows correspond to different values of T2. Performance is evaluated by 10-fold cross
validation. The dashed black line indicates baseline performance of 50%. The gray shaded
stripe around the baseline performance denotes the region of non-significant deviations from
chance level, estimated by a label-shuffling test (p > 0.05). (B) Average peak performance
values: For each of the 23 recordings, the peak classification performance during the du-
ration of the second tone T2 is shown (average across frequencies). Numbers denote the
dimensionality of the classifier input (i.e., the number of simultaneously recorded neurons).
Error bars denote SEM; recordings are grouped by animals (F1 to F4: Ferret 1 to 4). The
recordings marked with an asterisk are shown in A.

of a neuron that reads this neural response (like a kernel in the terminology of
machine learning). In this way a linear neuron is effectively able to compute a
non-linear function of the input. Such non-linear superposition can be proved if a
linear classifier is able to reproduce the exclusive-or (XOR) computation of two bits
in the input sequence. This simple binary computation yields result “1” if these
two bits are different and “0” if they are the same, but it cannot be solved by any
linear model. If a linear decoder is able to predict the resulting bit of information
from the responses, the neural system itself has to provide the necessary non-linear
combination. In (Nikolic et al., 2009) such an analysis was performed for neural
responses of the primary visual cortex of anesthetized cat, and it was shown that
these responses exhibited a significant non-linear combination of sequentially pre-
sented stimuli in the visual field. In our case we evaluated the XOR-performance of
a classifier for our particular stimulus sequences in the following way: We collected
responses to subsequences ABA, ABC, CBA, and CBC of 3 tones A, B, C (note
that a tone B is both preceded and followed by either tone A (lower) or C (higher))
and check whether a linear classifier is able to predict the bit that results from the
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Figure 4.6: Linear classifiers reveal a non-linear superposition of information. Per-
formance of linear classifiers trained every 10ms to predict a non-linear XOR-computation
on the input sequence: whether the first and the third tone of a three-tone sequence was
equal or not, for a fixed frequency of the intervening tone. Shown is the performance from
one frequency of three different recordings from two different ferrets. Here, the performance
is assessed by the point-biserial correlation coefficient between the binary target variable
and the continuous readout “depolarization”. The dashed black line indicates baseline cor-
relation of 0. The gray shaded stripe around the baseline performance denotes the region of
non-significant deviations from chance level, estimated by a label-shuffling test (p > 0.05).

XOR-combination of whether the first and the third tone in these subsequences was
equal or not, for a fixed frequency of the intervening tone.

In order to ensure that any significant classification performance on this non-
linear XOR-combination can really be attributed to a nonlinearity implicitly pro-
vided by the neural responses and not to the non-linear classification threshold, we
measured the performance as the point-biserial correlation coefficient between the
binary target variable and the continuous linear combination of the low-pass filtered
input spike trains learned by the classifier (Nikolic et al., 2009) (i.e., the output of
the classifier before the threshold operation). It can be shown that any such correla-
tion coefficient significantly greater than zero indicates non-linear transformations
in the neural processes itself (see (Nikolic et al., 2009) for a formal proof). Fig-
ure 4.6 shows that there is a significant performance increase above chance level for
a considerable period during the the third tone in the sequence for at least three
different recordings of two different animals, and for some values of tone B. The
performance of most recordings, however, was only slightly above the significance
level for only a limited number of time points, and often only for a single tone. Note
that this finding provides evidence for both non-linear superposition and tempo-
ral integration of information because a past stimulus is involved in the non-linear
computation.

4.3.3.3 Linear decoders are able to extract most of the total information

Finally, we addressed the question how much of the total information about the
stimulus is accessible to linear decoders, and thus to hypothetical readout neurons
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Figure 4.7: (continues on next page)

of A1 responses. For that we compared the direct estimation of mutual information
with the achieved performance of a linear classifier. For a direct comparison we
used the vector composed of these spike counts (20ms sliding window) for all si-
multaneously recorded neurons as input to both the linear classifier and for mutual
information estimation. Note that, in contrast to the previous mutual information
measurements, we calculated here the combined information conveyed by all simul-
taneously recorded neurons, instead of individual neurons. The mutual information
between the classifier prediction and the actual stimulus could then compared to
the mutual information directly estimated from the vector of spike counts.

Figures 4.7A shows such a comparison for the information between the response
and the direction of the preceding tone change (as in Figures 4.2 and 4.5). Linear
classifiers are trained to predict from the spike count information in response to two
successive tones T1, T2 which of the two possible predecessors T1 of a given tone
T2 has been played as the first tone. This information is compared to the direct
mutual information estimation. It can be seen that this amount of total information
is higher than the information of the classifiers throughout the whole duration of
the tone pair, which is obvious since a linear classifier can extract only a subset of
the total amount of information. What is interesting is that most of this available
information is accessible to a linear classifier. This also holds for the information
about the tone currently played, where the information is evaluated between the
response and which of two selected frequencies are currently played.

Figure 4.7B shows that in almost all recordings across different animals the
mutual information analysis and the training of linear classifiers extract roughly the
same amount of information, although the direct estimation of mutual information
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Figure 4.7: Most of the total information can be extracted by a linear classifier.
(A) Time courses of information estimated directly (“MI”, solid) and through the perfor-
mance of a linear classifier (“Cl.”, dashed) conveyed by all simultaneously recorded neurons
about the direction of the tone step preceding a given tone T2. Most of the time the classi-
fier trace stays close below the mutual information trace. Information values are estimated
every 10ms during the 300ms interval of two consecutive tones T1, T2 for recordings from
two different animals using the sequence of spikes in the 20ms time window preceding the
time indicated on the x-axis. Error bars denote the standard error of the mean of the
MI estimator. Columns of panels correspond to different recordings, rows correspond to
different values of T2. (B) Each point in the scatter plot compares mutual information
calculated directly from the neural response and from the output of the linear classifier
for experiments, where mutual information could be reliably estimated. Information val-
ues are taken at the time point of maximum information throughout the 300ms duration
shown in A. Most points lie slightly under the diagonal (dashed) indicating that much of
the information is accessible to linear classifiers (median ratio 0.689, Pearson correlation
r = 0.935).

also captures information that cannot be extracted by a classifier. The median
ratio between both information values was 0.689, i.e., about 69% of the information
is accessible to linear classifiers. The correlation between both information values
was r = 0.935, i.e., for neural responses that contained much information linear
classifiers also tended to decode a lot of information, and this effect was consistent
across recordings. However, several recordings did not allow a direct comparison
because no reliable estimate for the combined information of all neurons could be
generated. This is because the response space is undersampled, either because
there were too few occurrences of a given frequency (pair) or the response space
was too large (too many simultaneously recorded neurons). Figure 4.7B shows
only mutual information values for such recordings and frequencies where a reliable
mutual information estimation was possible. The reliability of an estimate was
determined by evaluating the mutual information on a random subset of one half
of all available trials. If the mutual information value changed by less than 10% of
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its value, a reliable estimate was reported.
This suggests that A1 provides an effective generic preprocessing of the temporal

structure of acoustic stimuli and provides a suitable neural response that makes this
information available to higher areas that can easily read out this information, e.g.,
via a simple linear neuron.

4.4 Discussion

In this work we investigated the ability of the auditory system to integrate the
rich temporal structure of the acoustic environment into a neural response which
facilitates further processing of the stimulus information by higher areas. We quan-
tified the temporal integration capability of neurons in the primary auditory cortex
of awake ferrets by measuring the information contained in the neural responses
about both past and present stimuli.

4.4.1 A1 neurons integrate information about current and preced-

ing tones

We compared two methods for quantifying the impact of the immediate history
of auditory stimulation onto the neural responses in primary auditory cortex: the
direct estimation of mutual information between the response and stimulus pa-
rameters (Panzeri et al., 2007) and the training of linear discriminators to decode
stimulus parameters (Nikolic et al., 2009). To the best of our knowledge, this is
the first study that directly compares the analysis of multichannel spike data via
mutual information with an analysis using linear classifiers. Our stimuli, which
consisted of tone sequences changing by a fixed step up or down, captured dynamic
features typical of many naturally occurring sounds for which both the current and
preceding frequency are important for accurate perception (Singh and Theunissen,
2003). The fact that we observe information about tone history encoded in the
neural responses implies that neurons in A1 would also be able to integrate infor-
mation about the more complex spectro-temporal dynamics that occur in natural
sounds, thus producing a representation that would enable discrimination of dif-
ferent sounds. Our use of a wide range of stimulus frequencies allowed us to use
information metrics effectively and to build on previous studies of auditory con-
text (McKenna et al., 1989; Margoliash and Fortune, 1992; Lewicki and Arthur,
1996; Doupe, 1997; Kilgard and Merzenich, 1999; Brosch et al., 1999; Brosch and
Schreiner, 2000; Malone et al., 2002; Ulanovsky et al., 2004; Bartlett and Wang,
2005; Yin et al., 2008; Asari and Zador, 2009). In spite of the large variability in
the average responses of different neurons, both methods revealed that many neu-
rons simultaneously conveyed information about both the current sound (77%) and
the immediately preceding sound (34%).

While most neurons transmitted a significant amount of information, the abso-
lute value of the maximal information varied substantially and tended to be lower
in neurons with very sparse responses (DeWeese et al., 2003, 2005; Hromádka et al.,
2008). Moreover, we found that the same neurons that conveyed a large amount of
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information about the current tone also conveyed a considerable amount of informa-
tion about the previous tone. This supports the hypothesis that auditory neurons
integrate information about preceding sounds into their current responses, rather
than encoding these pieces of information separately between different populations.

A large amount of the measured information about both the current and the pre-
vious tone was encoded in the mean firing rates of neurons rather than in their fine
spike timing. Neurons that showed a clear tuning to frequency typically conveyed a
larger amount of information. However, coarse timing of neural responses was also
crucial. As in many previous studies, we observed both transient and sustained
responses (Lu et al., 2001; Wang et al., 2005; Hromadka and Zador, 2009). Some
neurons showed a strong transient response to a tone change that is beneficial for
information transmission. Moreover, responses that differed in the strength of their
transients for different stimuli often contained a large amount of information, even
if the mean firing rate across the whole tone duration was similar for these stimuli.
Recent evidence suggests that the role of precise spike timing is more prominent
for stimuli varying on a faster time scale and therefore depends on the particular
stimulus dynamics (Kayser et al., 2010).

4.4.2 The primary auditory cortex provides a generic preprocess-

ing for higher areas

Our comparison of information and classifier methods revealed that the information
contained in the responses about current and preceding tones is largely accessible
to linear classifiers. This suggests that the primary auditory cortex provides a
neural response that facilitates the task of later processing stages to instantaneously
read out information about the complex temporal structure of the acoustic stimuli.
Linear decoders showed a significant performance above chance level when trained
to discriminate between the two possible predecessors of a given tone. The amount
of information that could be decoded in a linear manner was close to the value
obtained by direct estimation of mutual information, indicating that classification
performance provided a rather good estimate of the total information contained in
the responses. Such efficiency of linear decoding mechanisms has been previously
reported, e.g., in the fly visual system (Rieke et al., 1997).

Moreover, information about current and previous tones did not occur by a
simple linear superposition of information. Instead, the neural response appears
to be a non-linear combination of sequentially arriving inputs, as revealed by the
successful XOR classification. The XOR computation is a very simple function that
tells whether the current tone and the tone two steps back are the same, for a fixed
frequency of the intervening tone. However, this problem cannot be solved by a
linear model. The fact that linear decoders are able to predict the resulting bit
of information from the responses suggests that the neural system itself provides
the necessary non-linear combination. Evidence for such non-linear interactions
has recently been reported (Sadagopan and Wang, 2009), where A1 neurons were
found to be sensitive to non-linear combinations of spectral and temporal stimulus
properties.

However, neither method revealed that A1 neurons encode significant informa-
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tion about the direction of the previous tone step, independent of the frequency
of the current tone. Detection of frequency changes independent of base frequency
may be important for some behaviors (Yin et al., 2010), but the information must
be extracted from stimuli in other cortical areas.

4.4.3 Novel experimental evidence for the liquid computing model

Liquid computing (Maass et al., 2002; Buonomano and Maass, 2009) has emerged
as a framework for understanding computations in biological networks of neurons,
which could explain the observed response characteristics. This model proposes two
fundamental operations of neural circuits: to provide (i) analog fading memory to
accumulate incoming information over time in the current neural activity, and (ii) a
non-linear projection into a space of typically higher dimension than the input space.
With this generic preprocessing, even simple static linear neurons that “read” only
the neural response at one point in time are able to extract information about the
stimulus that is non-trivially spread out in time. Our analysis revealed significant
evidence for both of these operations: sequentially arriving stimulus information
is integrated over time and superimposed in a non-linear manner into the neural
responses at one point in time. Already at this early stage of sensory processing
the neural system transforms the auditory information in a way that eases the
extraction of information by later processing stages. This is further supported
by our finding that information extracted by linear classifiers is close to the total
mutual information between stimulus and response. Besides, we did not achieve a
significant performance improvement by using various types of non-linear classifiers,
a further indication that most of the information contained can actually be extracted
by linear classifiers.

It is essential to note that we report here results from awake animals, where the
sensory machinery is operating under natural conditions. In (Nikolic et al., 2009)
similar observations were made in the primary visual cortex of anesthetized cats,
but the effects of anesthesia on the effects reported there are unclear. Moreover, the
data from that study did not permit the direct application of standard information
measures because the relevant information was spread over too many neurons. Our
findings could lay the ground for a new paradigm of data analysis: For neural
systems that show such generic preprocessing behavior, the computationally very
efficient analysis of information using linear classifiers provides an almost as good
estimate for the actual information than the tedious and biased direct estimation
of information between stimulus and response.

4.4.4 Mechanisms for integration of stimulus history into neuronal

responses

A number of possible mechanisms could allow information about previously played
tones to persist in the responses to the current tone. First, this persistence could
be implemented in an earlier auditory area responsible for some kind of echoic
memory. Contextual effects have been reported in subcortical areas (Anderson
et al., 2009), but in this case some mechanism must then explain the emergent
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effect in those areas. Second, the A1 neurons themselves could “remember” the
influence of previous inputs in their biophysical state, e.g., by mechanisms of short-
term plasticity of their synapses (Zucker and Regehr, 2002; Elhilali et al., 2004;
Wehr and Zador, 2005; David et al., 2009). For example, it has been shown in
(Wehr and Zador, 2005) that the influence of synaptic depression on responses can
last for several 100 ms. Third, the integration of stimulus history into the neuronal
responses could be implemented by lateral (possibly inhibitory) inputs from other
cortical neurons. Information about a preceding tone could be contained in the
activity of inhibitory inputs, which then shape the subsequent responses to the
current tone. There are many different possible intracortical pathways, and it could
also be possible that these processes involve inputs from higher cortical areas.

Neuronal adaptation is a related mechanism that has been extensively studied in
the auditory context (see e.g., (Condon and Weinberger, 1991; Malone and Semple,
2001; Malone et al., 2002; Ulanovsky et al., 2003, 2004)). One effect of neuronal
adaptation is to maximize information transmission by matching the neural code
to the stimulus statistics (Fairhall et al., 2001). In (Ulanovsky et al., 2004) such
stimulus-specific adaptation (SSA) has been studied for stimulus sequences of pure
tones. This study found evidence that A1 responses are influenced by tones up to
four or five steps in the past. While we found a similar effect in our data, we had
limited statistical power to measure information about stimuli more than two steps
back in time because we sampled frequencies over a large range of the tuning curve
of the neurons in order to estimate mutual information. Given the previous reports
of SSA in A1 and other contextual effects in V1 (Nikolic et al., 2009), such long
lasting dependence of information on preceding stimuli is likely.

On the other hand, the influence of earlier stimuli on the current neural responses
is probably affected by anesthesia, e.g., it might change the impact of inhibitory
neurons so that they are not able to reset cortical circuits after a stimulus as they
might do in awake animals. In contrast to the related studies (Ulanovsky et al.,
2004) and (Nikolic et al., 2009), we report here results from awake animals, and it
is possible that the long lasting persistence of information reported there is at least
partly an effect of anesthesia.
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B.1 Details of the derivations of the learning rules

B.1.1 Evaluation of firing and joint firing probabilities

To quantify the information between output spike trains YK
1 and YK

2 of length
K∆t we need an expression for the joint probability P (Y K

1 , Y K
2 ). For given input

spike trains Xk = (Xk
1 , . . . ,Xk

N ) up to time step k and postsynaptic spike history
Y k−1

i we can write the probability of emitting a postsynaptic spike in the k-th time
step using the firing probability ρk

i (2.2) as the binary distribution

P (yk
i |Y k−1

i ,Xk) = (ρk
i )

yk
i (1 − ρk

i )
(1−yk

i ). (B.1)

The marginal probability, given only the postsynaptic history, can be written as

P (yk
i |Y k−1

i ) = (ρ̄k
i )
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i (1 − ρ̄k

i )
(1−yk

i ), (B.2)

where ρ̄k
i = 〈ρk

i 〉Xk |Y k−1

i
=

∑

Xk ρk
i P (Xk|Y k−1

i ) is the average firing probability in

the k-th time step (where ρk
i depends of course on Xk and Y k

i ). The probability of
an entire output spike train Y K

i given the input XK is then obtained by

P (Y K
i |XK) =

K
∏

k=1

P (yk
i |Y k−1

i ,Xk) (B.3)
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and analogously, the probability of an output spike train by

P (Y K
i ) =

K
∏

k=1

P (yk
i |Y k−1

i ). (B.4)

If two neurons receive the same input at their synapses and produce outputs
Y K

1 and Y K
2 , we can write the joint probability of spiking in the k-th time step

given the postsynaptic histories and the input as

P (yk
1 , yk

2 |Y k−1
1 , Y k−1
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The marginal probability given only the postsynaptic histories can be written using
(B.1) as
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is the average product of firing probabilities of both neurons.

The joint probability of two entire output spike trains is then finally given as

P (Y K
1 , Y K
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K
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B.1.2 Evaluation of the gradient of ∆Lk
12

We have to calculate the gradient ∂∆Lk
12/∂w1j , with

∆Lk
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The strategy for the derivation is similar as for the terms considered in (Toyoizumi
et al., 2005), but a number of details are different.

We treat the nominator and the two product terms of the denominator in (B.8)
separately. The average of an arbitrary function fw with arguments x, y1 and y2 is
by definition

〈fw(x, y1, y2)〉x,y1,y2
=

∑

x,y1,y2

pw(x, y1, y2)fw(x, y1, y2)

=

〈

∑

y1

pw(y1|x)fw(x, y1, y2)

〉

x,y2

,
(B.9)



B.1. Details of the derivations of the learning rules 107

where pw(x, y1, y2) = p(x)p(y2|x)pw(y1|x) denotes the joint probability of the triple
(x, y1, y2) to occur, assuming that y1 is independent of y2 given x. The subscript
w indicates that both the probability distribution pw and the function fw depend
on an additional parameter w.

Taking the derivative with respect to w, the product rule yields two terms,

∂

∂w
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,

(B.10)

where the first term contains the derivative of the function fw and the second term
contains the derivative of the conditional probability pw. Since

∂

∂w
pw(y1|x) = pw(y1|x)

∂

∂w
log pw(y1|x), (B.11)

the right-hand side of (B.10) evaluates to

〈

∂

∂w
fw(x, y1, y2)

〉

x,y1,y2

+

〈[

∂

∂w
log pw(y1|x)

]

fw(x, y1, y2)

〉

x,y1,y2

, (B.12)

i.e., it can be written as an average over the joint distribution of x, y1 and y2.
Now we can evaluate each of the terms of (B.8) using (B.12). Considering the

term ∂
∂w1j

〈

log P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )
〉

Xk ,Yk
1
,Yk

2

first, we get

〈

∂

∂w1j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉

Xk,Yk
1
,Yk

2

+

〈[

∂

∂w1j
log P (Y k

2 |Xk)

]

log P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )

〉

Xk ,Yk
1
,Yk

2

. (B.13)

We find that the first term of (B.13) vanishes because

〈

∂

∂w1j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉

Xk,Yk
1
,Yk

2

=

=

〈

〈

∂

∂w1j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉

yk
1
,yk

2
|Y k−1

1
,Y k−1

2

〉

Y
k−1

1
,Yk−1

2

=

〈

∑

yk
1
,yk

2

[

∂

∂w1j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

]

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )

〉

Y
k−1

1
,Yk−1

2

=

〈

∂

∂w1j





∑

yk
1
,yk

2

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )





〉

Y
k−1

1
,Yk−1

2

= 0. (B.14)



108 Appendix B. Information bottleneck optimization

In the second line of (B.14) we drop the expectation over Xk since the argument
of the expectation operator is independent of the input spike train Xk and use the

identity 〈·〉Yk
1
,Yk

2

=
〈

〉·〉
yk

1
,yk

2
|Y k−1

1
,Y k−1

2

〉

Y
k−1

1
,Yk−1

2

. With the same argument it can

be shown that
〈

∂

∂w1j
log P (yk

i |Y k−1
i )

〉

Xk,Yk
1
,Yk

2

=

〈

∂

∂w1j
log P (yk

i |Y k−1
i ,Xk)

〉

Xk ,Yk
1
,Yk

2

= 0

(B.15)
for i = 1, 2. Hence, the only term that gives a nontrivial contribution in (B.13)
is the second one. With an analogous evaluation for the other terms in (B.8) we
finally have

∂

∂w1j
∆Lk

12 =

〈

[

∂

∂w1j
log P (Y k

1 |Xk)

]

log
P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

P (yk
1 |Y k−1

1 )P (yk
2 |Y k−1

2 )

〉

Xk ,Yk
1
,Yk

2

.

(B.16)
Now we can identify the factors

Ck
1j :=

∂

∂w1j
log P (Y k

1 |Xk) =
k

∑

l=1

[

yl
1

ρl
1

− 1 − yl
1

1 − ρl
1

]

∂ρl
1

∂u1

l
∑

n=1

ε(tl − tn)xn
j (B.17)

and

F k
12 := log

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )

P (yk
1 |Y k−1

1 )P (yk
2 |Y k−1

2 )

= yk
1yk

2 log
¯̄ρk
12

ρ̄k
1 ρ̄

k
2

+ yk
1(1 − yk

2 ) log
¯̄ρk
1 − ¯̄ρk

12

ρ̄k
1 − ρ̄k

1 ρ̄
k
2

+

+ (1 − yk
1 )yk

2 log
¯̄ρk
2 − ¯̄ρk

12

ρ̄k
2 − ρ̄k

1 ρ̄
k
2

+ (1 − yk
1 )(1 − yk

2 ) log
1 − ¯̄ρk

1 − ¯̄ρk
2 + ¯̄ρk

12

1 − ρ̄k
1 − ρ̄k

1 + ρ̄k
1 ρ̄

k
2

.

(B.18)

For computational reasons we approximate the sum
∑k

l=1 in the correlation
term Ck

1j (B.17) by an exponential window with time constant τC = 1s (Toyoizumi
et al., 2005):

Ck
1j = Ck−1

1j

(

1 − ∆t

τC

)

+

k
∑

n=1

ε(tk − tn)xn
j

g′(u1(t
k))

g(u1(tk))

[

yk
1 − ρk

1

]

. (B.19)

Furthermore, if we make the assumption ¯̄ρk
i = ρ̄k

i (see appendix B.1.3) we
can simplify the term F k

12 (B.18) and write ρ̄k
i = ḡi(t

k)Ri(t
k)∆t and ¯̄ρk

12 =
ḡ12(t

k)R1(t
k) R2(t

k)(∆t)2 with ḡi(t
k) = 〈g(ui(t

k))〉
Xk |Y k−1

i
and ḡ12(t

k) = 〈g(u1(t
k))

g(u2(t
k))〉

Xk |Y k−1

1
,Y k−1

2

. Using the approximation log(1 − x) ≈ −x for small x we
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get

F k
12 = yk

1yk
2 log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
− yk

1 (1 − yk
2)R2(t

k)∆t

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

−

− (1 − yk
1 )yk

2R1(t
k)∆t

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

+

+ (1 − yk
1 )(1 − yk

2 )R1(t
k)R2(t

k)(∆t)2
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

.

(B.20)

This approximation is valid for small ∆t.
The weight change is then finally given by

∆w̃k
1j = α

〈

Ck
1jβF k

12

〉

Xk,Yk
1
,Yk

2

. (B.21)

B.1.3 A closer look at the firing probabilities ¯̄ρk
i and ρ̄k

i

For simplicity we assume i = 1. Using equations (B.1) and (B.2) we can write for
ρk
1 and ρ̄k

1:

ρk
1 = P (yk

1 = 1|Xk, Y k−1
1 ), and (B.22)

ρ̄k
1 = P (yk

1 = 1|Y k−1
1 ). (B.23)

From ¯̄ρk
1 = 〈ρk

1〉Xk |Y k−1

1
,Y k−1

2

we find that

¯̄ρk
1 = P (yk

1 = 1|Y k−1
1 , Y k−1

2 ). (B.24)

Qualitatively, any difference between ρ̄k
1 and ¯̄ρk

1 arises from the additional infor-
mation that, given the postsynaptic history Y k−1

1 , the output of the other neuron,
Y k−1

2 , conveys about a postsynaptic event at time step k. For a learning rule that
uses the term F k

12 (2.17) we have to calculate ¯̄ρk
i online. The average firing probabil-

ities ρ̄k
i = 〈ρk

i 〉Xk |Y k−1

i
are implemented as running averages of ρk

i , as in (Toyoizumi

et al., 2005).
We can express ¯̄ρk

1 (B.24) using ρ̄k
1 (B.23), i.e.,

¯̄ρk
1 = ρ̄k

1 · P (Y k−1
2 |yk

1 = 1, Y k−1
1 )

P (Y k−1
2 |Y k−1

1 )
. (B.25)

The second factor in (B.25) is hard to evaluate online. However, if we assume that
yk
1 = 1 is independent from Y k−1

2 given Y k−1
1 , i.e., that P (yk

1 = 1, Y k−1
2 |Y k−1

1 ) =
P (yk

1 = 1|Y k−1
1 )P (Y k−1

2 |Y k−1
1 ), we can set ¯̄ρk

1 = ρ̄k
1 . In this case, since

ρ̄k
1 =

〈

¯̄ρk
1

〉

Y
k−1

2
|Y k−1

1

, (B.26)

we replace ¯̄ρk
1 by its mean value with respect to the distribution P (Y k−1

2 |Y k−1
1 ).
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B.1.4 Derivation of the simplified learning rule

The starting point for the derivation for this simplified model is the weight update
rule (2.18)

∆wk
1j

∆t
= −α

〈

Ck
1jB

k
1 (−γ) + αβ∆tCk

1jB
k
12

〉

Yk
1
,Yk

2
,Xk

= −α

〈

〈

Ck
1jB1(−γ)

〉

Yk
1
|Xk

+ αβ∆t
〈

Ck
1jB

k
12

〉

Yk
1
,Yk

2
|Xk

〉

Xk

.

(B.27)

where in contrast to (2.18) we consider the batch version of the learning rule in
which the weight update is averaged over the input and output distribution.

For notational convenience, we write the correlation term (B.17) as1:

Ck
1j =

k
∑

l=1

[

yl
1

ρl
1

− 1 − yl
1

1 − ρl
1

]

∂ρl
1

∂u1

l
∑

n=1

ε(tl − tn)xn
j

=

k
∑

l=1

[

yl
1 − ρl

1

] (ρl
1)

′

ρl
1(1 − ρl

1)

l
∑

n=1

ε(tl − tn)xn
j

=
k

∑

l=1

K1(l)
[

yl
1 − ρl

1

]

,

with

K1(l) =
(ρl

1)
′

ρl
1(1 − ρl

1)

l
∑

n=1

ε(tl − tn)xn
j ≈ g′(u1(t

l))

g(u1(tl))

l
∑

n=1

ε(tl − tn)xn
j .

Here, we used the approximation ρl
1 ≈ g(u1(t

l))∆t, which holds for small ∆t.
Furthermore, we write the postsynaptic term as

Bk
1 (−γ) =

yk
1

∆t
Bk

1A + (1 − yk
1 )Bk

1B , (B.28)

with

Bk
1A = log

[

g(u1(t
k))

ḡ1(tk)

(

ḡ1(t
k)

g̃

)γ]

,

Bk
1B = −R1(t

k)[g(u1(t
k)) − (1 − γ)ḡ1(t

k) − γg̃].

Since 〈yk
i 〉Yk

i |X
k = ρk

i and 〈yl
iy

k
i 〉Yk

i |X
k = δlkρ

k
i + ρl

iρ
k
i (1 − δlk), where δlk is the

Kronecker delta function, we get

〈Ck
1jB

k
1 (−γ)〉Yk

1
|Xk =

〈

k
∑

l=1

K1(l)[y
l
1 − ρl

1]

(

yk
1

∆t
Bk

1A + (1 − yk
1 )Bk

1B

)

〉

Yk
1
|Xk

=

k
∑

l=1

K1(l)δlk

[

ρk
1

∆t
Bk

1A − (ρk
1)

2

∆t
Bk

1A − ρk
1B

k
1B + (ρk

1)
2Bk

1B

]

.

(B.29)

1For simplicity, we write g(u) instead of galt(u) throughout this section.
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Since ρk
i ≈ g(ui(t

k))∆t, we get

〈Ck
1jB

k
1 (−γ)〉Yk

1
|Xk = K1(k)

[

g(u1(t
k))Bk

1A − g(u1(t
k))2∆tBk

1A

− g(u1(t
k))∆tBk

1B + g(u1(t
k))2(∆t)2Bk

1B

]

= K1(k)
[

g(u1(t
k))Bk

1A + O(∆t)
]

≈ K1(k)g(u1(t
k))Bk

1A,

(B.30)

where we assume small ∆t. Substitution of K1(k) and Bk
1A yields

〈Ck
1jB

k
1 (−γ)〉Yk

1
|Xk ≈ νpre,k

j f(νk
1 ) log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)γ]

, (B.31)

where the presynaptic rate at synapse j is denoted by νpre,k
j = a

∑k
n=1 ε(tk − tn)xn

j

with a in units (Vs)−1, and ν̄k
1 , ν̄k

2 , ν̄k
12 are running averages of the output rate

νk
1 , the target rate νk

2 , and the product of these values, νk
1 νk

2 . The rate νk
1 is given

directly by galt(u1(t
k)). The function f(νk

1 ) = g′(g−1(νk
1 ))/a is proportional to the

derivative of g with respect to u, evaluated at the current membrane potential.
For the evaluation of the second term in (B.27), we write Bk

12 as

Bk
12 =

yk
1yk

2

(∆t)2
Dk

12 −
yk
1 (1 − yk

2)

∆t
Dk

1 − (1 − yk
1 )yk

2

∆t
Dk

2 + (1 − yk
1)(1 − yk

2)D0, (B.32)

with

Dk
12 = log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
,

Dk
1 =

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k),

Dk
2 =

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k),

Dk
0 = ḡ12(t

k) − ḡ1(t
k)ḡ2(t

k).

We get

〈

Ck
1jB

k
12

〉

Yk
1
,Yk

2
|Xk

=

k
∑

l=1

K1(l)

〈

[

yl
1 − ρl

1

]

[

yk
1yk

2

(∆t)2
Dk

12−

− yk
1

∆t
Dk

1 +
yk
1yk

2

∆t
Dk

1 − yk
2

∆t
Dk

2 +
yk
1yk

2

∆t
Dk

2−

−Dk
0 + yk

1Dk
0 + yk

2Dk
0 − yk

1yk
2Dk

0

]

〉

Yk
1
,Yk

2
|Xk

.

For given input Xk, the two spike trains Y k
1 and Y k

2 are independent and
〈yl

1y
k
2 〉Yk

1
,Yk

2
|Xk = ρl

1ρ
k
2. Furthermore, we use 〈yl

1y
k
1yk

2 〉Yk
1
,Yk

2
|Xk = 〈yl

1y
k
1 〉Yk

1
|Xkρk

2,
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to get
〈

Ck
1jB

k
12

〉

Yk
1
,Yk

2
|Xk

= K1(k)g(u1(t
k))[g(u1(t

k))Dk
12 − Dk

1 + O(∆t)]

≈ K1(k)g(u1(t
k))[g(u2(t

k))Dk
12 − Dk

1 ]

= νpre
j (tk)f(ν1(t

k))

[

νk
2 log

ν̄k
12

ν̄k
1 ν̄k

2

−
(

ν̄k
12

ν̄k
1

− ν̄k
2

)]

.

(B.33)

Again, the approximation is valid for small ∆t.
Substitution of (B.31) and (B.33) into (B.27) yields

∆wk
1j

∆t
= −ανpre,k

j f(νk
1 )

{

log

[

νk
1

ν̄k
1

(

ν̄k
1

g̃

)γ]

−β∆t

(

νk
2 log

[

ν̄k
12

ν̄k
1 ν̄k

2

]

− ν̄k
2

[

ν̄k
12

ν̄k
1 ν̄k

2

− 1

])}

, (B.34)

where the expectation 〈·〉X in (B.27) is approximated by averaging over a single
long trial under the assumption of a small learning rate α.

B.2 Whitening transform

For the whitening transform used in the experiment described in section 2.5.5 we
define a vector x(t) = [r1(t)−〈r1〉, r2(t)−〈r2〉]T , where r1(t) and r2(t) are the signals
which should be whitened (the rate modulations of one input and the target signal
in this case). Note that the averages of both signals are subtracted as to make x
have zero mean. Furthermore, let C = E{xxT } denote the 2-by-2 covariance matrix
of x, which is calculated in the simulations as the empirical covariance matrix of
10s-samples of r1(t) and r2(t). The whitening transform is then given by

T = ED− 1

2 ET , (B.35)

where E is the orthogonal matrix of eigenvectors of C and D is the diagonal matrix
of its eigenvalues, D = diag(λ1, λ2) (i.e., C = EDET .). With this transformation
the vectors Tx have unit variance; in order to scale them back to the variance of
the original signals we define an additional scaling matrix S = diag(σ1, σ2), where
σ1 and σ2 are the standard deviations of r1 and r2, respectively. With the means
added back, which have been subtracted before, the total transformation is then
given by

x̃ = STx +

[

〈r1〉
〈r2〉

]

, (B.36)

where the elements of x̃(t) = [r̃1(t), r̃2(t)]
T are uncorrelated.

B.3 Derivation of the approximation in section 2.6.1

Remember that the combined postsynaptic term of the learning rule of neuron i
(2.32) can be written as

Ak
i := Bk

i (γ) − β∆tBk
12, (B.37)



B.3. Derivation of the approximation in section 2.6.1 113

where

Bk
i (γ) =

yk
i

∆t
log

[

g(ui(t
k))

ḡi(tk)

(

g̃

ḡi(tk)

)γ]

− (1 − yk
i )Ri(t

k)
[

g(ui(t
k)) − (1 + γ)ḡi(t

k) + γg̃
]

,

(B.38)

and

Bk
12 =

yk
1yk

2

(∆t)2
log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
− yk

1

∆t
(1 − yk

2 )R2(t
k)

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

− yk
2

∆t
(1 − yk

1 )R1(t
k)

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

+ (1 − yk
1)(1 − yk

2)R1(t
k)R2(t

k)
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

.

(B.39)

For simplicity we consider only neuron 1 in the following; symmetric arguments
apply for the case of neuron 2. We can distinguish between 4 postsynaptic states
for both neurons in each time step k: one where both are spiking (yk

1 = yk
2 = 1),

one where neither of them emits a spike (yk
1 = yk

2 = 0) and two cases where only
one of them fires (yk

1 = 1, yk
2 = 0, and yk

1 = 0, yk
2 = 1, respectively). For these four

cases the postsynaptic term (B.37) evaluates to

• yk
1 = yk

2 = 1:

Ak
1 =

1

∆t
log

[

g(u1(t
k))

ḡ1(tk)

(

g̃

ḡ1(tk)

)γ]

− 1

∆t
β log

ḡ12(t
k)

ḡ1(tk)ḡ2(tk)
, (B.40)

• yk
1 = 1, yk

2 = 0:

Ak
1 =

1

∆t
log

[

g(u1(t
k))

ḡ1(tk)

(

g̃

ḡ1(tk)

)γ]

+ βR2(t
k)

[

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

]

, (B.41)

• yk
1 = 0, yk

2 = 1:

Ak
1 = −R1(t

k)
[

g(u1(t
k)) − (1 + γ)ḡ1(t

k) + γg̃
]

+

βR1(t
k)

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

,
(B.42)

• yk
1 = yk

2 = 0:

Ak
1 = −R1(t

k)
[

g(u1(t
k)) − (1 + γ)ḡ1(t

k) + γg̃
]

−

β∆tR1(t
k)R2(t

k)
[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

.
(B.43)
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We want to model the contribution of the term Bk
12 (B.39) by changing the value

g(u1(t
k)). That is, we again apply the simple postsynaptic BCM-term,

B̂k
1 (γ) =

yk
1

∆t
log

[

ĝ1(t
k)

ḡ1(tk)

(

g̃

ḡ1(tk)

)γ]

− (1 − yk
1)R1(t

k)
[

ĝ1(t
k) − (1 + γ)ḡ1(t

k) + γg̃
]

,

(B.44)

instead of the combined postsynaptic term Ak
1 (B.37) in the learning rule of neuron

1, but encapsulate the effect of the term Bk
12 in changing the gain g(u1(t

k)) into
ĝ1(t

k) in this simple postsynaptic term B̂k
1 .

We look for arithmetic expressions for ĝ1(t
k) by comparing formula (B.44) with

equations (B.40) to (B.43). We get

• yk
1 = yk

2 = 1:

ĝ1(t
k) = g(u1(t

k))

(

ḡ1(t
k)ḡ2(t

k)

ḡ12(tk)

)β

, (B.45)

• yk
1 = 1, yk

2 = 0:

ĝ1(t
k) = g(u1(t

k)) exp

[

R2(t
k)β∆t

(

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

)]

, (B.46)

• yk
1 = 0, yk

2 = 1:

ĝ1(t
k) = g(u1(t

k)) − β

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

, (B.47)

• yk
1 = yk

2 = 0:

ĝ1(t
k) = g(u1(t

k)) + R2(t
k)β∆t

[

ḡ12(t
k) − ḡ1(t

k)ḡ2(t
k)

]

. (B.48)

However, Figure 2.3 suggests that significant effects of Bk
12 are encountered only

when one of the two neurons is firing; we also neglect the influence of simultaneous
action potentials within the same time step as ∆t gets small. Therefore we focus
only on cases (B.46) and (B.47) where exactly one of the two neurons is firing. The
value g(u1(t

k)) is then modified according to

ĝ1(t
k) = g(u1(t

k)) exp

[

R2(t
k)β∆t

(

ḡ12(t
k)

ḡ1(tk)
− ḡ2(t

k)

)]

if yk
1 = 1, yk

2 = 0,

(B.49)
which corresponds to a multiplicative change, and

ĝ1(t
k) = g(u1(t

k)) − β̃

[

ḡ12(t
k)

ḡ2(tk)
− ḡ1(t

k)

]

if yk
2 = 1, yk

1 = 0, (B.50)

which corresponds to an additive change.
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Summarizing, the modified value ĝi(t
k) for neuron i = 1, 2 can be written as

follows:
ĝi(t

k) = g(ui(t
k)) · ai(t

k)y
k
i (1−yk

3−i) + bi(t
k)yk

3−i(1 − yk
i ). (B.51)

The modulation terms ai(t
k) and bi(t

k) are given by

ai(t
k) = exp

[

R3−i(t
k)β∆t

(

ḡ12(t
k)

ḡi(tk)
− ḡ3−i(t

k)

)]

, (B.52)

bi(t
k) = −β

[

ḡ12(t
k)

ḡ3−i(tk)
− ḡi(t

k)

]

. (B.53)
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C.1 Derivation of the relationship between the SFA and

FLD objective

C.1.1 Derivation for the case of two classes

In this section we derive the expressions for the temporal covariance matrices 〈xxT 〉t
and 〈ẋẋT 〉t of the SFA objective (3.2) for the two-class case in terms of the within-
class and between-class scatter matrices of the FLD objective (3.4), SW and SB,
for the particular method of time series generation described in the main text.

Assume we are given two disjoint point sets S1, S2 ⊂ R
n,

S1 :={x1
i |i = 1, . . . , N}, (C.1)

S2 :={x2
j |j = 1, . . . , N}, (C.2)

where x1
i and x2

j denote the data points of class 1 and 2, respectively, and N
denotes the number of data points for each of the two classes. Both point sets can
be characterized by their mean vectors (µ1, µ2) and covariance matrices (Σ1, Σ2),
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given by

µ1 = 〈x1
i 〉 =

1

N

N
∑

i=1

x1
i , (C.3)

µ2 = 〈x2
j 〉 =

1

N

N
∑

j=1

x2
j , (C.4)

and

Σ1 =
1

N

〈

(

x1
i − µ1

) (

x1
i − µ1

)T
〉

=

N
∑

i=1

x1
i x

1
i
T − µ1µ

T
1 , (C.5)

Σ2 =
1

N

〈

(

x2
j − µ2

) (

x2
j − µ2

)T
〉

=
N

∑

i=1

x2
jx

2
j
T − µ2µ

T
2 . (C.6)

The within-class and between-class scatter matrices of Fisher’s linear discrimi-
nant are then given by (see (3.6) and (3.5))

SW =
N

∑

i=1

(x1
i − µ1)(x

1
i − µ1)

T +
N

∑

j=1

(x2
j − µ2)(x

2
j − µ2)

T

= N (Σ1 + Σ2)

(C.7)

and
SB = (µ1 − µ2)(µ1 − µ2)

T . (C.8)

We now generate a time series xt from these two input point sets S1 and S2 as
described in the main text, using the Markov model in Figure 3.2. We can now
express the mean and covariance of this time series xt in terms of µ1, µ2, Σ1, and
Σ2. For the mean we get

µ := 〈〈xt〉t〉 = 〈〈xt〉〉t =
1

T

T
∑

t=1

〈xt〉 = 〈xt〉 =
1

2
µ1 +

1

2
µ2, (C.9)

because the stationary distribution of the Markov model in Figure 3.2 is π =
(

1
2 , 1

2

)

(3.10). More generally, the mean of the time series is given by the weighted mean
between the two class means, weighted by the probability that a point is drawn
from the corresponding class. Note the different expectation operators: 〈·〉t denotes
the temporal average over the time series xt, whereas the average over all possible
time series xt generated from S1 and S2 is given by 〈·〉. That is, 〈〈xt〉t〉 refers to the
temporal average of a specific time series xt, averaged over all possible realizations
of xt, whereas 〈〈xt〉〉t refers to the temporal average of the expected value of xt at a
specific time step t. Since this Markov model yields a stationary random process, we
can exchange the expectation operators. Similarly, the expected covariance matrix
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is given by

Σ :=
〈

〈(xt − µ)(xt − µ)T 〉t
〉

=
1

T

T
∑

t=1

〈xtx
T
t 〉 − µµ

T = 〈xtx
T
t 〉 − µµ

T

=
1

2
(Σ1 + µ1µ

T
1 ) +

1

2
(Σ2 + µ2µ

T
2 ) − µµ

T

=
1

2
Σ1 +

1

2
Σ2 +

1

4
(µ1 − µ2)(µ1 − µ2)

T ,

(C.10)

where in the last step we used (C.9). Note that the covariance matrix of the time
series is not only determined by the covariance matrices of the two classes, but
also by their spatial separation as expressed by (C.10). We assume without loss of
generality that µ = 0, i.e., Σ = 〈xtx

T
t 〉.

Next we consider the covariance matrix of time derivatives. For the expected
covariance matrix we write

〈

〈ẋẋT 〉t
〉

=
1

T − 1

T
∑

t=2

〈

(xt − xt−1)(xt − xt−1)
T
〉

=
(

〈xtx
T
t 〉 + 〈xt−1x

T
t−1〉

)

−
(

〈xt−1x
T
t 〉 + 〈xtx

T
t−1〉

)

.

(C.11)

The two terms in the first part of (C.11) consist of covariances between input
samples of the same time index and can be rewritten as (using (C.10))

〈xtx
T
t 〉 ≈

1

2

(

Σ1 + µ1µ
T
1

)

+
1

2

(

Σ2 + µ2µ
T
2

)

(C.12)

〈xt−1x
T
t−1〉 = 〈xtx

T
t 〉. (C.13)

Because of the stationarity of xt the covariance matrix is independent of a time
shift. The approximation in (C.12) holds for large T , since the summation in (C.10)
contains T terms and the summation in (C.11) contains T − 1 terms. Similarly, the
two terms in the second part of (C.11) consist of the cross-covariances between
adjacent time steps. If the classes of xt and xt−1 are fixed, then xt is chosen
independently of xt−1 and we can split up the expectation operator 〈xt−1x

T
t 〉 =

〈xt−1〉〈xT
t 〉 into the product of the two class means. Considering the 4 possible

class transitions we write

〈xt−1x
T
t 〉 =

1

2
(1 − p)µ1µ

T
1 +

1

2
(1 − p)µ2µ

T
2 +

1

2
pµ1µ

T
2 +

1

2
pµ2µ

T
1 (C.14)

〈xtx
T
t−1〉 = 〈xt−1x

T
t 〉T = 〈xt−1x

T
t 〉. (C.15)

Plugging (C.12) to (C.15) back into (C.11) yields

〈

〈ẋẋT 〉t
〉

= Σ1 + Σ2 + p(µ1 − µ2)(µ1 − µ2)
T . (C.16)

In equations (C.10) and (C.16) we have expressed the covariance matrix of the
time series xt, 〈xxT 〉t, and the covariance matrix of its time derivatives, 〈ẋẋT 〉t, in
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terms of the means and covariances of the two point sets of the FLD problem. We
repeat these here for clarity (we drop the expectation 〈·〉 for convenience):

〈xxT 〉t =
1

2
Σ1 +

1

2
Σ2 +

1

4
(µ1 − µ2)(µ1 − µ2)

T , (C.17)

〈ẋẋT 〉t = Σ1 + Σ2 + p(µ1 − µ2)(µ1 − µ2)
T . (C.18)

Remember that p is the transition probability between the classes, according to
Figure 3.2. Recalling the definition of SW (C.7) and SB (C.8), we finally obtain
the result

〈xxT 〉t =
1

2N
SW +

1

4
SB , (C.19)

〈ẋẋT 〉t =
1

N
SW + p · SB . (C.20)

C.1.2 Derivation for the case of more than two classes

In this section we derive the expressions for the temporal covariance matrices 〈xxT 〉t
and 〈ẋẋT 〉t of the SFA objective (3.2) for the general case of more than two classes
in terms of the within-class and between-class scatter matrices of the FLD objective
(3.4), SW and SB , for the particular method of time series generation described in
the main text. We proceed analogously to the previous section for the two-class
case.

Assume we are given C disjoint point sets Sc ⊂ R
n, c = 1, . . . , C,

Sc := {xc
i |i = 1, . . . , Nc}, (C.21)

where xc
i denote the data points of class c, and Nc denotes the number of data

points in each class. Let NT =
∑C

c=1 Nc be the total number of points. Each of
these point sets can be characterized by its mean vector and covariance matrix,
given by

µc =
1

Nc

Nc
∑

i=1

xc
i , (C.22)

Σc =
1

Nc

Nc
∑

i=1

xc
ix

c
i
T − µcµ

T
c . (C.23)

The within-class and between-class covariance matrices of the Fisher linear discrim-
inant in the multi-class case are defined by

SW =

C
∑

c=1

Nc
∑

i=1

(xc
i − µc)(x

c
i − µc)

T

=

C
∑

c=1

NcΣc,

(C.24)
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and

SB =

C
∑

c=1

Nc(µc − µ)(µc − µ)T

=

C
∑

c=1

Ncµcµ
T
c − NT µµ

T ,

(C.25)

where µ = 1/NT
∑C

c=1 Ncµc is the total mean of the input points.
We generate a time series xt from these point sets as described in the main text,

using the Markov model with states S = {1, 2, . . . , C} and transition probabilities

Pij =

{

a · Nj

NT
if i 6= j,

1 − ∑

k 6=j Pik if i = j,
(C.26)

for i, j ∈ S. First, we show that

π =

(

N1

NT
,
N2

NT
, . . . ,

NC

NT

)

(C.27)

is a stationary distribution of (C.26). This can be easily seen by verifying that for
all j ∈ S,

πj =
∑

i∈S

πiPij

=
∑

i6=j

Ni

NT
· a · Nj

NT
+

Nj

NT



1 −
∑

k 6=j

a · Nk

NT





= a · Nj

NT

∑

i6=j

Ni

NT
+

Nj

NT
− a · Nj

NT

∑

k 6=j

Nk

NT

=
Nj

NT
. �

(C.28)

For the mean of the time series xt we get, analogously to (C.9),

〈x〉t =

C
∑

c=1

πcµc =
1

NT

C
∑

c=1

Ncµc. (C.29)

Note that for the particular choice of (C.26) the mean of the time series becomes
equal to the total mean of the input points. Similarly, we obtain for the covariance
matrix

〈xxT 〉t =
C

∑

c=1

πc

(

Σc + µcµ
T
c

)

− µµ
T

=
1

NT

C
∑

c=1

NcΣc +
1

NT

C
∑

c=1

Ncµcµ
T
c − µµ

T

=
1

NT
SW +

1

NT
SB .

(C.30)
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For the covariance of time derivatives we proceed analogously to the previous section
and write

〈ẋẋT 〉t =
(

〈xtx
T
t 〉 + 〈xt−1x

T
t−1〉

)

−
(

〈xt−1x
T
t 〉 + 〈xtx

T
t−1〉

)

, (C.31)

with

〈xtx
T
t 〉 =

C
∑

c=1

πc

(

Σc + µcµ
T
c

)

(C.32)

〈xt−1x
T
t−1〉 = 〈xtx

T
t 〉 (C.33)

〈xt−1x
T
t 〉 =

∑

i,j∈S

πiPijµiµ
T
j (C.34)

〈xtx
T
t−1〉 = 〈xt−1x

T
t 〉T = 〈xt−1x

T
t 〉. (C.35)

The last equation holds because πiPij = πjPji. Plugging (C.32) to (C.35) back into
(C.31) yields

〈ẋẋT 〉t = 2
C

∑

c=1

πcΣc + 2
C

∑

c=1

πcµcµ
T
c − 2

C
∑

i=1

C
∑

j=1

πiPijµiµ
T
j

=
2

NT

C
∑

c=1

NcΣc +
2

NT

C
∑

c=1

Ncµcµ
T
c − 2

NT

C
∑

c=1

NcPccµcµ
T
c

− 2

NT

C
∑

c=1

Ncµc





∑

k 6=c

Pckµ
T
k





=
2

NT

C
∑

c=1

NcΣc +
2

NT

C
∑

c=1

Nc





∑

k 6=c

a · Nk

NT



 µcµ
T
c

− 2

NT

C
∑

c=1

Ncµc





∑

k 6=c

a · Nk

NT
µ

T
k





=
2

NT

C
∑

c=1

NcΣc +
2a

N2
T

C
∑

c=1

Nc(NT − Nc)µcµ
T
c

− 2a

N2
T

C
∑

c=1

Ncµc(NT µ − Ncµc)
T

=
2

NT

C
∑

c=1

NcΣc +
2a

NT

[

C
∑

c=1

Ncµcµ
T
c − NT µµ

T

]

=
2

NT
SW +

2a

NT
SB.

(C.36)
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Finally, we repeat the results (C.30) and (C.36),

〈xxT 〉t =
1

NT
SW +

1

NT
SB, (C.37)

〈ẋẋT 〉t =
2

NT
SW +

2a

NT
SB, (C.38)

and note the similarity to the results for the case of two classes in the previous
section, (C.19) and (C.20).

C.1.3 Derivation for time series consisting of trajectories

In this section we derive the expressions given in equations (3.21) to (3.24), which
reformulate the SFA objective for the case of time series consisting of trajectories of
training examples rather than a sequence of individual points that are independently
chosen.

First we consider the case where the time series xt consists of multiple repeti-
tions of a fixed trajectory t̃ := (x̃1, x̃2, . . . , x̃T̃ ) of length T̃ , and random intervals of
independently drawn “noise” samples drawn from the same distribution (character-
ized by mean µ and covariance Σ) as the x̃k. We assume without loss of generality
that µ = 〈xt〉t = 0. Furthermore, let T be the total length of xt, and let p̃ be the
fraction of these T time steps of xt that are occupied by the trajectory t̃.

For the expected covariance matrix of xt we get

〈

〈xxT 〉t
〉

=
1

T

T
∑

t=1

〈xxT 〉

=
1

T

∑

t∈t̃

〈xxT 〉 +
1

T

∑

t6∈t̃

〈xxT 〉

=
p̃

T̃

T̃
∑

k=1

xkx
T
k + (1 − p̃)Σ

= p̃Σ̃ + (1 − p̃)Σ.

(C.39)

We use the notation t ∈ t̃ to denote that a time step t within the time series xt

belongs to an instance of t̃. The matrix

Σ̃ :=
1

T̃

T̃
∑

k=1

x̃kx̃
T
k (C.40)

is the covariance matrix of t̃ with itself. Note that the average 〈·〉 in (C.39) is over
all realizations of xt with a fixed trajectory t̃. If we also average over different
realizations of t̃, the covariance becomes Σ.

The covariance matrix of time derivatives can be written as

〈

〈ẋẋT 〉t
〉

= 2
〈

〈xxT 〉t
〉

− 1

T − 1

T
∑

t=2

(

〈xtx
T
t−1〉 + 〈xt−1x

T
t 〉

)

≈ 2 · p̃Σ̃ + 2 · (1 − p̃)Σ − p̃ · T̃ − 1

T̃
· Σ̃t,

(C.41)
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where

Σ̃t :=
1

T̃ − 1

T̃
∑

k=2

(

x̃kx̃
T
k−1 + x̃k−1x̃

T
k

)

(C.42)

is the covariance of t̃ with t̃ delayed by one time step, i.e., it captures the temporal
correlations of time lag 1. This matrix enters equation (C.41) with a coefficient
p̃(T̃ − 1)/T̃ , because each of the p̃T/T̃ trajectories of the time series contributes
T̃ − 1 times the expected value (C.42) to the sum in the first line of (C.41). Note
that all other temporal correlations of xt apart from those caused by t̃ are zero.
The approximation in (C.41) is valid for large T (i.e., when T/(T − 1) ≈ 1).

Inserting (C.39) and (C.41) into the SFA objective (3.2) yields

JSFA(w) =
wT 〈ẋẋT 〉tw
wT 〈xxT 〉tw

= 2 − p̃ · T̃ − 1

T̃
· wT Σ̃tw

wT 〈xxT 〉tw
, (C.43)

and therefore

min JSFA(w) ⇔ max
wT Σ̃tw

wT 〈xxT 〉tw
. (C.44)

Next, we consider the two-class problem, where the time series xt consists of a
sequence of trajectories chosen from two classes T1 and T2. After each trajectory,
the class of the next trajectory is switched with probability p, or left unchanged with
probability 1−p, according to the Markov model in Figure 3.2. These two trajectory
sets can be characterized by their means, µ1 and µ2, and their covariances, Σ1 and
Σ2. Each of these quantities equals equations (C.3) to (C.6) evaluated for point
sets S1 and S2 composed of the individual points of the trajectories in T1 and T2,

respectively. Furthermore, let Σ̃
(1)
t and Σ̃

(2)
t be the average temporal covariance

matrices with time lag 1 for trajectories in T1 and T2, i.e.,

Σ̃
(c)
t :=

1

N(T̃ − 1)

N
∑

i=1

T̃
∑

k=2

[

(x̃c
i,k − µc)(x̃

c
i,k−1 − µc)

T + (x̃c
i,k−1 − µc)(x̃

c
i,k − µc)

T
]

(C.45)
where N is the number of trajectories in each of the sets T1 and T2 and T̃ is the
length of a trajectory (we assume for simplicity that all trajectories have the same
length). x̃c

i,k is the k-th point in the i-th trajectory of class c. Note that in contrast
to (C.42) the mean µc is class-specific and different from zero.

The expected covariance matrix of the time series xt is not affected by temporal
correlations and is therefore equal to the case where individual points are chosen
instead of trajectories (see equation (C.10)):

〈

〈xxT 〉t
〉

=

C
∑

c=1

πc

(

Σc + µcµ
T
c

)

, (C.46)

where C = 2 is the number of classes and πc = 1/2 is the probability of being
in state c for the stationary distribution of the Markov model. For the expected
covariance matrix of time derivatives we write

〈

〈ẋẋT 〉t
〉

= 2
〈

〈xxT 〉t
〉

− 1

T − 1

T
∑

t=2

(

〈xtx
T
t−1〉 + 〈xt−1x

T
t 〉

)

. (C.47)
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The time series has length T and consists of T/T̃ trajectories. Therefore we can
split up the sum in the second term on the right hand side of the last equation
into T − T/T̃ contributions from transitions (xt−1,xt) within a trajectory and
T/T̃ − 1 contributions of switches between two temporally adjacent trajectories
(i.e., at time points t when a new trajectory starts). Concerning the first part of
the sum, each of the T/T̃ trajectories contributes T̃ − 1 times the expected value
∑

c πc

(

Σ̃
(c)
t + 2µcµ

T
c

)

. The second part is determined according to the transition

probabilities between the classes, similar to (C.14) and (C.34).

〈

〈ẋẋT 〉t
〉

≈ 2
C

∑

c=1

πcΣc + 2
C

∑

c=1

πcµcµ
T
c − T̃ − 1

T̃

C
∑

c=1

πcΣ̃
(c)
t

− 2

(

1 − 1

T̃

) C
∑

c=1

πcµcµ
T
c − 2

T̃

∑

c1,c2

πc1Pc1c2µc1µ
T
c2. (C.48)

Again we approximated T/(T − 1) ≈ 1. For the Markov model in Figure 3.2 and

Σ̃t =
∑C

c=1 πcΣ̃
(c)
t we can write

〈

〈ẋẋT 〉t
〉

= Σ1 + Σ2 −
T̃ − 1

T̃
Σ̃t +

p

T̃
(µ1 − µ2)(µ1 − µ2)

T . (C.49)

Using the definitions of the within-class and between-class scatter matrices of the
FLD (equations (C.7) and (C.8)) we can rewrite equations (C.46) and (C.49):

〈xxT 〉t =
1

2NT̃
SW +

1

4
SB , (C.50)

〈ẋẋT 〉t =
1

NT̃
SW +

p

T̃
· SB − T̃ − 1

T̃
· Σ̃t. (C.51)

C.2 Simulation Details

C.2.1 Estimating the error between SFA and FLD

We estimated the deviation between the result of FLD applied to a two-dimensional
two-class classification problem and the result of SFA applied to a time series gen-
erated from this classification problem using the Markov model in Figure 3.2 as the
angle α between the weight vectors yielded by both methods,

α = arccos
wSFA ·wFLD

||wSFA|| · ||wFLD|| . (C.52)

We evaluated this angular error as a function of p, the switching probability in
Figure 3.2, i.e., the probability that two consecutive points in the time series are
from different classes.

For each probability p (we varied p from 0.01 to 1.0 linearly in intervals of 0.01)
we generated 100 different random classification problems in the following way.
For each of the two classes a two-dimensional mean vector and 2-by-2 covariance
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matrix was chosen. The coordinates of the mean were drawn independently and
uniformly from the interval [−4, 4]. The covariance matrix was determined by its
two eigenvalues (drawn uniformly from [0, 1]) and a rotation angle (drawn uniformly
from [0, 2π]). For each class, 250 points were drawn from a Gaussian distribution
with the selected mean and covariance. The time series for SFA is generated using
the Markov model in Figure 3.2 with the given switching probability p. The length
T of this time series is chosen to be 10000 samples.

We computed the average angle between the weight vectors found by SFA and
FLD on those 100 classification problems, yielding values between 0◦ and 180◦. We
replaced angles α > 135◦ with angles 180◦ − α, since projection directions with
different signs are equivalent. Angles between 45◦ and 135◦ were only obtained for
p > 0.5 where they averaged to about 90◦.

C.2.2 Calculating the probability of linear separability

To calculate the probability of linear separability in Figure 3.6B we proceeded in
the following way: We generated pairs of point sets (i.e., trajectories) each consist-
ing of 100 points drawn uniformly from the d-dimensional hypercube [0, 1]d. We
tested whether these two random point sets are linearly separable using an efficient
method proposed in (Yogananda et al., 2007). We evaluated the probability of
linear separability for each dimension d as the percentage of 1000 such randomly
generated classification problems that resulted in linearly separable point sets. For
each classification problem we also searched for the minimal distance between any
two points from different sets. We calculated the average minimum distance over
all 1000 classification problems for each dimension d.

We found that the curve for the probability of linear separability closely re-
sembles the analytical result of (Cover, 1965), which considered the fraction of all
possible dichotomies of N given data points in general position in d dimensions
which are linearly separable.

C.2.3 Detailed description of the network simulations

C.2.3.1 Generation of input spike trains

In our circuit simulations we use two different types of input: spike trains generated
from isolated spoken digits preprocessed with a model of the cochlea and spike
patterns embedded in a continuous stream of Poisson input.

In the speech recognition tasks we use the isolated spoken digits dataset in
(Hopfield and Brody, 2000, 2001). This dataset consists of of the audio signals
recorded from 5 speakers pronouncing the digits “zero”, “one”, ..., “nine” in ten
different utterances (trials) each, i.e., overall there are 500 speech samples. The
duration of an utterance is several 100ms.

To generate a biologically realistic network input, the raw audio signals are
converted into the output of a cochlea (“cochleagram”) using Lyon’s Passive Ear
model (Lyon, 1982). This computational model consists of a linear filterbank and a
nonlinear gain control network and captures the filtering properties of the cochlea
and hair cells of the inner ear. The resulting analog cochleagram is a 86-dimensional
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time series with values between 0 and 1. An implementation of this cochlea model
can be found in the Auditory Toolbox for Matlab (Slaney, 1998).

This analog waveform is then transformed into spike trains using the BSA al-
gorithm (Schrauwen and Campenhout, 2003). This method is able to reconstruct
a spike train from an analog trace with a given reconstruction filter. Filtering the
spike train with this reconstruction filter should yield a trace with a minimal devi-
ation from the original waveform. We used the implementation from the Reservoir
Computing Toolbox (Verstraeten et al., 2007). We chose a reconstruction filter
with an exponential form (τ = 30ms) and selected the threshold parameter of the
algorithm to be 0.97 (standard value). In order to obtain lower firing rates of the
spiking stimuli, we scaled the amplitude of the reconstruction filter such that it has
an integral of 40. Furthermore we selected 20 from these 86 spike trains in equidis-
tant steps. The same spike patterns have also been used for the speech recognition
task in (Legenstein et al., 2008).

The embedded spike patterns, on the other hand, consist of 10 Poisson spike
train segments of length Tseg = 250ms and with rate r = 20Hz. Poisson spike
trains are generated by positioning spikes in time according to inter-spike intervals
drawn from an exponential distribution with rate r until the segment length Tseg is
reached. Additionally a refractory period of 3ms after a spike is considered, during
which no further spike can occur. Similar spike patterns have been considered for
example in (Häusler and Maass, 2007). For each pattern class one such pattern
is generated. To model the continuous Poisson input, we preceded each pattern
instance with a random Poisson input with a duration uniformly drawn between
100ms and 500ms.

C.2.3.2 Our model of a cortical microcircuit

As a cortical microcircuit we use the laminar circuit model from (Häusler and Maass,
2007) consisting of 560 spiking neurons (Izhikevich neuron model) with dynamic
conductance-based synapses. The short-term dynamics of these synapses has been
modelled according to the phenomenological model proposed in (Markram et al.,
1998). To reproduce the background synaptic input that cortical neurons typically
receive in vivo, additional synaptic noise is incorporated as an Ornstein-Uhlenbeck
(OU) process as conductance input (Destexhe et al., 2001). All parameters of this
model, including short-term synaptic dynamics and background synaptic activity,
are chosen as in (Häusler and Maass, 2007).

The neurons are organized in six pools; an excitatory and inhibitory pool for
each of the layers 2/3, 4, and 5. The numbers of neurons in each layer are 168, 112,
and 280, respectively. The connection strengths and probabilities within a pool
and between the pools are obtained from data found in (Thomson et al., 2002) and
(Gupta et al., 2000). All of the stimulus spike trains (5 for the spike pattern task;
20 for the speech recognition task) are fed into the circuit via the input stream that
connects mainly to Layer 4 (“input stream 1” in Figure 1 of (Häusler and Maass,
2007)). The second input stream into Layer 2/3 is switched off.
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C.2.3.3 Training the readouts of the circuit

We instantiated a single circuit and simulated the same network for each stimulus
in all the experiments described in this article. In the speech recognition tasks
the network is simulated for the same amount of time for all stimuli (500ms for
Figure 3.8 and 750ms for Figure 3.9). We low-pass filtered the response spike
trains with an exponential filter in order to model the contribution of these spikes
to the membrane potential of a hypothetical readout neuron. The time constant
of this exponential filter is chosen to be 30ms. We refer to this low-pass filtered
high-dimensional analog trace as the trajectory of network states in response to a
particular stimulus.

To generate a training input for SFA we sampled these trajectories with a sam-
pling time of 1ms and concatenated a random sequence of such trajectories in time
(100 trajectories for Figure 3.8; 1000 trajectories for Figure 3.9; 200 trajectories for
Figure 3.7). For the embedded spike pattern task one trajectory is defined by the
response during one noise/pattern pair. Note that the same stimulus yields differ-
ent trajectories due to the intrinsic OU-noise of the network that is used to model
the background synaptic activity. We proceeded in a similar way as we generated
the time series from a classification problem: After each drawing of a trajectory we
switched the class from which the next trajectory is drawn according to a Markov
model such as that in Figure 3.2. The probability p for switching the class is cho-
sen to be 0.2 for all experiments, except for the experiment in Figure 3.7 we had to
choose a lower value of p = 0.01. We ensured that in the resulting training sequence
the number of trajectories was balanced across different classes by requiring that
the standard deviation of the numbers of trajectories for each class was at most
T/20. Before applying SFA or FLD, we projected the trajectories onto the first
100 principal components in order to prevent the covariance matrices from becom-
ing singular, which would lead to numerical issues in the corresponding eigenvalue
problems. For the SVM classification of the network states in Figure 3.8A we used
a linear kernel with C = 10. The training set for both FLD and SVM consisted of
the network states sampled every 1ms of all trajectories considered, but only states
during stimulus presentation are taken into account. The same applies to the SVM
classification of the slow features for the evaluation of the SFA performance. This
performance is evaluated using 10-fold stratified cross validation, where the folds
are sampled according to the class size.

C.2.4 Software

We performed all simulations using Python and NumPy. We used the implemen-
tations of SFA and FLD contained in the MDP toolkit (Zito et al., 2008). The
Modular toolkit for Data Processing (MDP) is a data processing framework writ-
ten in Python. The circuit simulations were carried out with the PCSIM software
package (http://www.lsm.tugraz.at/pcsim). PCSIM is a parallel simulator for bio-
logically realistic neural networks with a fast C++ simulation core and a Python
interface. For Support Vector Machines (SVM) we used the libSVM toolbox con-
tained in the PyML package (http://pyml.sourceforge.net/). Figures were created
using Python/Matplotlib and Matlab.
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