
Doctoral Thesis

Efficient Floating-Point Implementation of

Signal Processing Algorithms on

Reconfigurable Hardware

Thang Viet Huynh

————————————–

Signal Processing and Speech Communication Laboratory

Graz University of Technology, Austria

Supervisors:

Prof. DI Dr. Gernot Kubin, Graz University of Technology, Austria

DI Dr. Manfred Mücke, University of Vienna, Austria

Examiners:

Prof. DI Dr. Gernot Kubin, Graz University of Technology, Austria

Prof. Markus Püschel, ETH Zürich, Switzerland

Graz, July 9, 2012

Abstract

This doctoral thesis aims at optimising the floating-point implementations of signal processing

algorithms on reconfigurable hardware with respect to accuracy, hardware resource and execution

time. It is known that reduced precision in floating-point arithmetic operations on reconfigurable

hardware directly translates into increased parallelism and peak performance. As a result, efficient

implementations can be obtained by choosing the minimal acceptable precision for floating-point

operations. Furthermore, custom-precision floating-point operations allow for trading accuracy with

parallelism and performance. We use Affine Arithmetic (AA) for modeling the rounding errors of

floating-point computations. The derived rounding error bound by the AA-based error model is then

used to determine the smallest mantissa bit width of custom-precision floating-point number formats

needed for guaranteeing the desired accuracy of floating-point applications.

In this work, we implement the first Matlab-based framework for performing rounding error anal-

ysis and numerical range evaluation of arbitrary floating-point algorithms using the AA-based error

model. Our framework enables users to best reuse their own existing Matlab code to effectively con-

duct rounding error analysis tasks and run bit-true custom-precision computations of floating-point

algorithms in Matlab for verification.

We apply the AA-based error analysis technique and our Matlab-based framework to the floating-

point rounding error evaluation and optimal uniform bit width allocation of two signal and speech

processing applications: i) the floating-point dot-product and ii) the iterative Levinson-Durbin al-

gorithm for linear prediction and autoregressive modeling. For the floating-point dot-product, it is

shown that the AA-based error model can provide tighter rounding error bounds compared to existing

error analysis techniques. This corresponds to the overestimation of up to 2 mantissa bits compared

to those estimated by running extensive simulations. For the iterative Levinson-Durbin algorithm,

the AA-based error analysis technique can model accurately the rounding errors of the coefficients

when using a restricted range for the input parameters. When using a general range for the input

parameters, the AA-based error analysis technique can give a qualitative estimate for the error bound

of the coefficients.

I

Kurzfassung

Ziel dieser Dissertation ist die Optimierung von Gleitkomma-Implementierungen von Algorithmen

in der Signalverarbeitung auf rekonfigurierbarer Hardware in Bezug auf Genauigkeit, Hardware-

Ressourcen und Ausführungszeit. Es ist bekannt, dass eine reduzierte Genauigkeit in Gleitkomma-

Rechenoperationen auf rekonfigurierbarer Hardware direkt in eine höhere Parallelität und Spitzen-

leistung resultiert. Eine effiziente Implementierung kann durch Verwendung minimaler, akzeptabler

Genauigkeit von Gleitkomma-Operationen erreicht werden. Wir verwenden Affine Arithmetik (AA)

für die Modellierung der Rundungsfehler in Gleitkomma-Berechnungen. Die hergeleitete Schranke für

Rundungsfehler wird dann verwendet, um die kleinste Bit-breite für die Mantisse der angepassten

Gleitkomma-Zahlen-Formate zu bestimmen. Diese gewährleistet die gewünschte Genauigkeit der

Gleitkomma-Anwendung.

Außerdem implementieren wir das erste Matlab-basierte Framework für die Durchführung einer

Rundungsfehleranalyse sowie die Auswertung des numerischen Bereiches von beliebigen Gleitkomma-

Algorithmen mit Hilfe des AA-basierten Fehlermodells. Unser Framework ermöglicht es Rundungs-

fehler und Bit-genaue Berechnungen von Gleitkomma-Rechenoperationen mit speziell angepasster

Genauigkeit zu berechnen und mit vorhandenem Matlab-Code zu evaluieren.

Wir wenden die AA-basierte Fehleranalyse-Technik und das Matlab-basierte Framework auf zwei

Anwendungen in der Signal- und Sprachverarbeitung an: i) das Gleitkomma-Skalarprodukt und ii)

der iterative Levinson-Durbin-Algorithmus. Für das Gleitkomma-Skalarprodukt wird gezeigt, dass

der AA-basierte Rundungs-Operator engere Schranken für den Rundungsfehler liefert als bestehende

Techniken zur Fehleranalyse. Dies entspricht einer Überschätzung von bis zu 2 Bits für die Mantisse

im Gegensatz zur geschätzten Bit-breite aus umfangreichen Simulationen. Im iterativen Levinson-

Durbin-Algorithmus kann die AA-basierte Fehleranalyse-Technik Rundungsfehler der Koeffizienten

genau modellieren, indem ein eingeschränkter Bereich für die Eingangsparameter verwendet wird.

Verwendet man hingegen einen allgemeinen Bereich für die Eingangsparameter, gibt die AA-basierte

Fehleranalyse-Technik eine qualitative Abschätzung für die Fehlerschranken der Koeffizienten an.

III

Contents

1. Introduction 3

1.1. Motivation . 3

1.2. Related Work . 4

1.3. Contributions . 5

1.4. Publications . 6

1.5. Thesis Outline . 6

2. Floating-Point Arithmetic Performance 9

2.1. Introduction . 9

2.2. Floating-Point Performance on CPUs, GPUs and FPGAs 10

2.3. Floating-Point Performance on Hybrid Reconfigurable CPUs 11

2.3.1. The Stretch S6 CPU . 12

2.3.2. Area Performance on Stretch S6 CPU . 14

2.3.3. LINPACK Performance on Stretch S6 CPU . 19

2.3.4. S6 ISEF Interface Performance Characterisation 22

2.4. Conclusions . 24

3. Floating-Point Error Analysis Using Affine Arithmetic: Theory 27

3.1. Introduction . 27

3.2. Background . 28

3.2.1. Floating-Point Arithmetic . 28

3.2.2. Interval Arithmetic . 29

3.2.3. Affine Arithmetic . 29

3.3. Floating-Point Error Modeling with Affine Arithmetic 35

3.3.1. AA-Based Error Model for Floating-Point Numbers 36

3.3.2. AA-Based Error Models for Basic Floating-Point Operations 37

3.4. AA-Based Error Model for a Fused Multiply-Accumulate 42

3.4.1. Motivation . 42

3.4.2. AA-Based Error Model for FMA . 43

3.5. Estimation of Rounding Error Bound from AA Form 43

3.6. AA-Based Error Model versus Conventional Error Model 43

3.7. Conclusions . 44

4. Floating-Point Error Analysis Using Affine Arithmetic: A Matlab-based Framework 45

4.1. Introduction . 45

4.1.1. Motivation . 45

4.1.2. Related Software Tools . 45

4.1.3. Framework Overview . 46

4.2. Error Estimation using The AAFloat Class . 48

4.2.1. AAFloat Overview . 48

4.2.2. AAFloat Methods . 50

4.2.3. Special Affine Forms and Handling Special Cases 55

4.3. Error Verification via Simulations . 58

V

Contents

4.4. Examples . 60

4.4.1. AAFloat in Error Analysis of Sequential Dot-Products 60

4.4.2. AAFloat in Error Analysis of Levinson-Durbin Algorithm 63

4.5. Conclusions . 67

5. Applications 69

5.1. Introduction . 69

5.2. Rounding Error Analysis of Floating-Point Dot-Products 69

5.2.1. Motivation . 69

5.2.2. Dot-Product . 70

5.2.3. Experimental Setup . 71

5.2.4. Experimental Results . 72

5.2.5. Analytical Error Models of Floating-Point Dot-Products 75

5.2.6. AA-based Error Analysis versus Conventional Error Analysis 80

5.2.7. Summary . 81

5.3. Rounding Error Analysis of Floating-Point Levinson-Durbin Algorithm 82

5.3.1. Motivation . 82

5.3.2. Levinson-Durbin Algorithm . 84

5.3.3. Experimental Setup . 90

5.3.4. Experimental Results . 98

5.3.5. AA-based Error Analysis for Levinson-Durbin Algorithm 103

5.3.6. Summary . 118

5.4. Conclusions . 119

6. Conclusion 121

6.1. Scientific Contributions . 121

6.2. Future Work . 123

A. AA-Based Error Model for Floating-Point Reciprocal 125

B. AA-Based Error Model for Floating-Point Square Root 127

C. Norms and Condition Number 129

C.1. Vector Norms . 129

C.2. Matrix Norms . 130

C.3. Condition Number . 130

D. Matlab Code 133

D.1. Code for custom-precision floating-point Levinson-Durbin algorithm 133

D.2. Code for AA-based floating-point error analysis of the Levinson-Durbin algorithm using

the AAFloat class . 135

D.3. Code for floating-point error analysis of Levinson-Durbin algorithm using AA-based

Scaling Operator . 138

E. Reports for Error Analysis of Levinson-Durbin Algorithm using AAFloat Tool 143

E.1. Report for scenarios 1 and 2 . 143

VI

Contents

E.2. Report for scenario 3 . 150

E.3. Report for scenario 4 . 152

E.4. Report for scenario 5 . 161

E.5. Report for case using the AA-based scaling operator (AASO): Hard error bound . . . 162

E.6. Report for case using the AA-based scaling operator (AASO): Probabilistic error bound 169

Bibliography 177

VII

List of Figures

2.1. Peak performance of binary-tree based custom-precision floating-point dot-product on

FPGAs versus precision . 11

2.2. Stretch S6 Architecture . 13

2.3. S6 ISEF resource usage of IMUL versus precision . 15

2.4. Estimated maximum number of parallel IMULs implementable on S6 ISEF versus pre-

cision . 16

2.5. Block diagram of floating-point fused multiply-accumulate operation 17

2.6. a) The DFMA and b) multiple parallel SFMA extension instructions implemented on S6

ISEF . 18

3.1. The first example of range estimation using AA and IA 31

3.2. The second example of range estimation using AA and IA 33

3.3. AA-based evaluation of a sequence of floating-point operations for computing z = (2x+3)y 41

4.1. Matlab-based framework for AA-based floating-point rounding error evaluation and

verification . 47

5.1. Dot-product implementation variants . 71

5.2. Contours of maximum rounding error and AA probabilistic bound for the sequential

dot-product using basic operations (SeqDot) . 73

5.3. Contours of maximum rounding error and AA probabilistic bound for the sequential

dot-product using FMA (SeqDotFMA) . 74

5.4. Contours of maximum rounding error and AA probabilistic bound for the parallel dot-

product using basic operations (ParDot) . 75

5.5. Rounding error of sequential single-precision dot-product and associated overestimation

ratio OER . 80

5.6. A closed-form estimate (based on the reflection-coefficients) for the range and rounding

error of filter coefficients ai for the single-precision Levinson-Durbin algorithm 87

5.7. General setup for rounding error evaluation of custom-precision floating-point Levinson-

Durbin implementation . 90

5.8. Experimental setup with synthetic data for custom-precision Levinson-Durbin imple-

mentation in Matlab . 94

5.9. Histogram of reflection coefficients for synthetic data 95

5.10. Experimental setup with speech signals for custom-precision Levinson-Durbin imple-

mentation in Matlab . 97

5.11. Histogram of reflection coefficients for speech (TIMIT) 98

5.12. Experimental rounding errors of filter coefficients for single-precision Levinson-Durbin

implementation at order 10 versus the condition number κ 100

5.13. Experimental rounding errors of reflection coefficients for single-precision Levinson-

Durbin implementation at order 10 versus the condition number κ 101

5.14. Norm-wise error of filter coefficients ai versus precision and condition number (system

order n = 10) . 101

IX

List of Figures

5.15. Norm-wise error of reflection coefficients ki versus precision and condition number (sys-

tem order n = 10) . 102

5.16. Mean spectral distortion versus precision (order 10); the upper bound for transparent

speech quality is 1 dB . 103

5.17. The range bound for filter coefficients ai for the single-precision Levinson-Durbin algo-

rithm at n = 10 . 106

5.18. The range bound for reflection coefficients ki for the single-precision Levinson-Durbin

algorithm at n = 10 . 107

5.19. The error bound for filter coefficients ai for the single-precision Levinson-Durbin algo-

rithm at n = 10 . 107

5.20. The error bound for reflection coefficients ki for the single-precision Levinson-Durbin

algorithm at n = 10 . 108

5.21. Basic principle of the AA-based scaling operator (AASO) 113

5.22. AA error bound for filter coefficients when using an AA-based scaling operator 116

5.23. AA error bound for reflection coefficients when using an AA-based scaling operator . . 117

5.24. Experimental rounding errors (κ ≤ 106) of filter coefficients vs. scaled AA-based prob-

abilistic error bound (3σ, scaled by 1026) for single-precision Levinson-Durbin imple-

mentation at order 10 . 118

X

List of Tables

2.1. Summary of SP and DP floating-point performance on CPU, GPU and FPGA 10

2.2. Resources required to implement DFMA, SFMA and SFMAx extension instructions on S6

ISEF . 19

2.3. LINPACK Performance efficiency and Power efficiency at N=500 21

2.4. LINPACK execution times and CPEI . 22

2.5. S6 minimum cycles per extension instruction . 23

2.6. Average CPEI for on-chip memory access via byte-streaming channels. 24

3.1. Evaluation of z in two different ways using IA and AA 33

4.1. Existing work on AA-based finite-precision error analysis 46

4.2. List of methods for AA-based evaluation of floating-point operations via the AAFloat

class . 51

4.3. Comparison between the AAFloat class and the simulation (with 106 samples) for the

sequential dot-product . 62

4.4. Range of prediction error Ei of the Levinson-Durbin iterations reported by the AAFloat

tool for the use case 2 . 65

4.5. Range of prediction error Ei of the Levinson-Durbin iterations reported by the AAFloat

tool for the use case 3 . 66

4.6. Comparison of the range and error bounds for the reflection coefficient k13 between the

use case 2 and the use case 3 . 66

5.1. Names of dot-product implementations considered . 70

5.2. Execution time of rounding error estimation (p = 24, n = 100) 75

5.3. Expressions for analytical derivation of the AA bound for the sequential dot-product

using multiplication & addition (u = 2−p; xi ∈ [−a,+a], yi ∈ [−b,+b]) 77

5.4. Rounding error components of four dot-product implementations 78

5.5. Relative frequency of the condition number κ (at order n = 10) for speech (116395

frames) and synthetic data (105 frames) . 99

5.6. Different scenarios of the AAFloat tool for AA-based error analysis of the Levinson-

Durbin algorithm at p = 24 . 105

5.7. Overestimation ratio for the AA-based range bound of coefficients in the LD algorithm 108

5.8. Hard error bound for the reflection coefficient km over the Levinson-Durbin iterations

(p = 24) . 116

XI

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared

sources/resources, and that I have explicitly marked all material which has been quoted either literally

or by content from the used resources.

... ..

(date) (signature)

XIII

Acknowledgement

It is my great pleasure to acknowledge all the support I received during my PhD studies.

First of all, I would greatly appreciate my supervisor, Prof. Gernot Kubin, for his excellent guidance

during my doctoral studies. This thesis cannot be written without his support. When working with

him, I truly admire his ability of having very simple and logical explanation. Thank you for supporting

me over the past years!

I am greatly thankful to my co-supervisor, Dr. Manfred Mücke, for his great enthusiasm when

guiding me during my PhD studying time. I am very happy to work with him. Thank you for your

countless discussions, hints and supports making this thesis be written!

I am very grateful to Prof. Markus Püschel for the interesting discussions and valuable comments

he gave that helped to improve the overall quality of this thesis. It is my great honor to have my

thesis examined by him.

Many thanks to all my colleagues at Signal Processing and Speech Communication Laboratory

(SPSC) who shared “SPSC Kaffee” with me and helped me during my doctoral studies in Graz.

My special thanks to our administrative and IT staffs - Karin Karner, Markus Köberl and Andreas

Läβer - for their wonderful supports to make all the administrative work and Linux programs run

smoothly. Thanks to Wolfgang Jaeger for his indispensable and patient work in setting up the Stretch

S6 PCIe board. Thanks to Bernd Lesser and Anna Katharina Fuchs for sharing the office, having

very interesting discussions, and helping me in my daily life.

I would express my gratefulness to Dr. Wilfried N. Gansterer, Head of The Research Lab Com-

putational Technologies and Applications (RLCTA), University of Vienna, for his valuable supports

during my doctoral studies.

A very special thank to Ms. Astrid Brodtrager at the Dean’s office of the Faculty of Electrical and

Information Engineering, TU Graz for her great help in the submission of this thesis.

I would very much thank the Austrian Academic Exchange Service (ÖAD) for giving me the chance

to pursue my PhD studies in Austria. My special thanks to Mag. Christina Düss at the ÖAD Regional

Office Graz for helping me during the past years.

I am grateful to my colleagues at the Department of Electronic-Telecommunication Engineering at

Danang University of Technology, Vietnam, for their great help when I was studying abroad. I would

also like to take this chance to express my gratefulness to Dr. Pham Van Tuan who encouraged me

to pursue my doctoral studies in SPSC.

Many thanks to all of my Vietnamese friends in Austria and particularly in Graz, who have expe-

rienced the students’ lives with me.

I would like to thank my family for their understandings and supports during the time I was abroad.

Last but not least, I deeply thank my beloved wife, Nguyen Thi Thuy Phuong, who always stayed

by my side, motivated and supported me while writing this thesis.

Thang Viet Huynh

Graz, July 9, 2012.

1

1
Introduction

The use of floating-point arithmetic has increased dramatically in digital signal processing (DSP)

applications over the last two decades due to the rapid development of hardware technology [1].

Dating back to 1973, the first floating-point digital filter was built by Lacroix in TTL (Transitor-

Transitor Logic) circuits (see [2] and the references therein). Using floating-point arithmetic for DSP

applications has several benefits compared to using traditionally fixed-point arithmetic. One of those

benefits is the larger dynamic range of floating-point numbers, generally leading to a more accurate

computed result. The design and implementation of DSP algorithms using floating-point arithmetic

are, however, much more complex than using fixed-point arithmetic, making it hard to achieve efficient

floating-point implementations of signal processing algorithms.

This doctoral thesis aims at obtaining efficient implementations of floating-point signal processing

algorithms on reconfigurable hardware with respect to accuracy, hardware resources and execution

time.

For achieving this goal, this thesis studies the relation between the desired accuracy and the precision

of floating-point arithmetic operations in order to identify the smallest bit width of floating-point

operands necessary for guaranteeing the originally desired accuracy.

Going a step further, this work exploits custom-precision floating-point operations on reconfigurable

hardware and investigates the relation between the desired accuracy and the resulting hardware re-

sources and sustained performance of custom-precision floating-point signal processing algorithms

implemented on reconfigurable fabrics.

1.1 Motivation

The motivation for conducting this doctoral thesis first comes from the development of new reconfig-

urable hardware architectures that allow for more flexible customisation of the data-path while still

offering the same relative performance improvement as it was offered by traditional reconfigurable

platforms, yet at a lower power consumption and lower cost. In this thesis, we investigate a hybrid

reconfigurable CPU architecture.

Novel methods for modeling and evaluating finite-precision arithmetic operations have recently

emerged, like using interval arithmetic (IA) [3] or affine arithmetic (AA) [4] for floating-point error

analysis, allowing for more accurate (or tighter) estimates of the rounding error bound of floating-point

algorithms in comparison with the rounding error bound derived by using the conventional floating-

point error model [5]. This is extremely useful for bit width allocation for hardware implementation

3

on reconfigurable architectures as it can provide more realistic bit width estimates, and, as a result,

lead to more efficient hardware implementation. In this thesis, we explore AA for the floating-point

rounding error analysis and bit width allocation.

Autoregressive modeling and linear prediction [6–8] are two very important and popular applications

in signal and speech processing. These two applications involve solving a Toeplitz system of linear

equations, for which the iterative Levinson-Durbin algorithm is the most ubiquitous solver. Efficient

implementations of the Levinson-Durbin algorithm using floating-point arithmetic have not yet been

studied on reconfigurable hardware. One of the main reasons is that existing floating-point rounding

error bounds derived for the Levinson-Durbin algorithm by conventional error modeling methods are

too pessimistic compared to the real errors observed in practice, rendering those bounds unsuitable for

bit width allocation. We will investigate if AA for modeling and evaluating floating-point arithmetic

operations can help derive a tighter rounding error bound for the iterative Levinson-Durbin algorithm

and therefore give a better bit width estimate for floating-point hardware implementation. Next, given

acceptable bit width estimates for the floating-point Levinson-Durbin algorithm derived by the new

method, we would like to know the resulting performance and hardware resource requirements.

1.2 Related Work

This work relates to several research areas including reconfigurable computing, rounding error model-

ing and optimal bit width allocation, custom-precision floating-point arithmetic, and signal and speech

processing. There exist many related works in the literature, among which we selectively summarize

in this section the most relevant papers and doctoral theses in order to differentiate this work from

preceding works. Note that related work will also be presented in relevant parts of the thesis.

A survey on architectures and design methods in reconfigurable computing is presented in [9].

Hybrid reconfigurable CPUs can be seen as a combination of two technologies: CPU instruction set

architecture and reconfigurable logics which allow for the customisation of the data-path through

extension instructions. An overview of hybrid reconfigurable CPUs is presented in [10, 11]. It is

known that reduced precision in floating-point arithmetic operations typically brings performance

gain on fixed data-path architectures and both performance and parallelism gains on reconfigurable

architectures [12, 13]. Several hybrid reconfigurable CPU architectures exist [14–16]. This thesis aims

to verify this assumption on hybrid reconfigurable CPUs. The work of Huynh [17] is the first one

to study the customisation of the instruction set of hybrid reconfigurable CPUs for multi-tasking

embedded systems, in which, similar to our work, a Stretch reconfigurable CPU is used. However,

the work of Huynh focuses on dynamic instruction set customisation and runtime reconfiguration

for hybrid reconfigurable CPUs and considers only fixed-point or integer arithmetic implementations

of user-defined functional units. Custom-precision floating-point arithmetic on hybrid reconfigurable

CPUs is still unexplored.

One challenge of custom-precision floating-point applications on reconfigurable hardware is to iden-

tify the smallest precision of floating-point operands. This involves floating-point rounding error

modeling and bit width allocation. Different methods can be used: extensive simulations [18], conven-

tional error analysis [5], automatic differentiation [19, 20], perturbation analysis [21], IA [3, 22], and

AA [4, 23–26]. A summary of methods and accompanying software tools for rounding error modeling

and bit width allocation can be found in [9, 24].

In this thesis, we use AA to model the rounding error of floating-point algorithms. Therefore, we

4

are more interested in related work using AA in floating-point applications. The work of Fang [4, 23]

is the first to apply AA [27] for modeling the rounding error of floating-point arithmetic for linear

transforms. Going a step further, a probabilistic enhancement to AA for floating-point rounding error

estimation has been developed [28], potentially allowing for a more accurately estimated interval. The

core is to associate a probabilistic bounding operator with AA intervals. Fang suggests AA-based

rounding error models for floating-point number and operations and applies those models to rounding

error analysis of DSP linear kernels including Finite Impulse Response (FIR) filters and the Discrete

Cosine Transform (DCT). However, the AA-based rounding error analysis of complex algorithms

consisting of non-linear operations and iterative computational sequences are still unexplored.

Cybenko [29, 30] performs finite-precision rounding error analyses for some signal processing al-

gorithms using the conventional rounding error model. Floating-point and fixed-point error bounds

for the Levinson-Durbin algorithm are, for the first time, presented by Cybenko [30]. Those bounds

are however very conservative compared to the rounding errors observed in speech processing appli-

cations making them unsuitable for optimal bit width allocation for hardware implementation of the

Levinson-Durbin algorithm. Existing implementations of the Levinson-Durbin algorithm can be found

in [31–35]. Note that other Toeplitz solvers are summarized later in Section 5.3.

1.3 Contributions

The scientific contributions of this thesis are:

o C1. This thesis is the first to investigate the performance and resource usage of floating-

point arithmetic operations as a function of precisions (lower than double-precision) on a hybrid

reconfigurable CPU.

o C2. This thesis describes the implementation of the first Matlab-based tool, the AAFloat class,

allowing for efficient and reliable error modeling and estimation of floating-point algorithms

using AA, performance speed-up and flexible handling of exceptional cases. In addition, an

AA-based error model for a floating-point fused multiply-add operation is, for the first time,

suggested in this work.

o C3. This thesis shows more realistic AA-based error bounds for floating-point dot-products

compared to the bounds estimated by using conventional error analysis techniques. Going a

step further, this thesis derives an analytical error model for the floating-point dot-product as a

function of vector length, precision, numerical range and dot-product implementation variant,

allowing for efficient bit width allocation and design space exploration.

o C4. This thesis is the first to apply AA for the evaluation of the rounding error propagation in

the iterative Levinson-Durbin algorithm. It is also the first time that a custom-precision floating-

point Levinson-Durbin implementation in Matlab is presented and evaluated with respect to the

rounding error. Furthermore, this thesis suggests to incorporate the additional knowledge on

the Levinson-Durbin algorithm from analytical work with the AA-based model, via applying an

enforced bound on the range, in order to alleviate the overestimation effect, thereby obtaining

more sensible qualitative estimates for the error bounds.

5

1.4 Publications

The following publications have been written during this doctoral work (in chronological order):

o T. V. Huynh and M. Mücke, Exploiting Reconfigurable Hardware to Provide Native Support

of Double-Precision Arithmetic on Embedded CPUs, in Research Poster Session, International

Supercomputing Conference (ISC), Hamburg, Germany, 2010 [36]

o T. V. Huynh, M. Mücke, and W. N. Gansterer, Native Double-Precision LINPACK Implementa-

tion on a Hybrid Reconfigurable CPU, in 18th Reconfigurable Architectures Workshop (RAW),

IEEE, Anchorage, Alaska, USA, May 2011 [37]

o T. V. Huynh and M. Mücke, Error Analysis and Precision Estimation for Floating-Point Dot-

Products using Affine Arithmetic, in The 2011 International Conference on Advanced Technology

for Communications (ATC’2011). IEEE, Danang, Vietnam, Aug. 2011 [38]

o T. V. Huynh, M. Mücke, and W. N. Gansterer, Evaluation of the Stretch S6 Hybrid Reconfig-

urable Embedded CPU Architecture for Power-Efficient Scientific Computing, in International

Conference on Computational Science (ICCS 2012), Elsevier, Omaha, Nebraska, USA, Jun

2012 [39]

o T. V. Huynh and M. Mücke, A Tool for Floating-Point Rounding Error Modeling and Estimation

in Scientific Computing Applications Using Affine Arithmetic, in preparation for submission to

ACM Transactions on Mathematical Software (TOMS) [40]

for which publications [36, 37, 39] correspond to scientific contribution C1, publication [38] is part of

scientific contribution C3, and publication [40] will cover scientific contribution C2.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents the performance of floating-point operations as a function of precision on different

hardware architectures. Section 2.3 specifically focuses on the Stretch S6 hybrid reconfigurable CPU

and presents the area performance and throughput performance offered by reduced-precision floating-

point arithmetic operations. The precision-to-performance relation presented in Chapter 2 is the

motivation for custom-precision floating-point implementations of signal processing algorithms on

reconfigurable hardware and for rounding error analysis and optimal bit width allocation of floating-

point algorithms that will be studied later in Chapter 3, Chapter 4, and Chapter 5.

Chapter 3 presents the fundamentals of floating-point error analysis using affine arithmetic which

is the basis for the implementation of a Matlab-based framework for the automation of floating-

point rounding error analysis of arbitrary floating-point algorithms described later in Chapter 4.

In Chapter 3, we also propose an affine error model for a floating-point fused multiply-accumulate

operation.

Chapter 4 presents our implementation of a Matlab-based framework for rounding error and nu-

merical range evaluation of floating-point algorithms using affine arithmetic error modeling. We first

give an overview of the framework and then describe in more detail the usage of the AAFloat class

6

implemented in Matlab as well as our implementation of custom-precision floating-point arithmetic op-

erations for Matlab via the MPFR [41] library. The chapter presents demonstrative examples showing

how to use our Matlab tool for efficient error estimation.

Chapter 5 applies the AA-based error model and Matlab-based tool to two applications. In the first

application, we estimate the rounding errors of different floating-point dot-product implementation

variants. In the second application, we perform floating-point rounding error analysis for the iterative

Levinson-Durbin algorithm. The rounding error bounds of floating-point dot-products can be used

to identify the optimal mantissa bit width for hardware implementations of FIR filters in signal

processing applications. The rounding error bounds of the Levinson-Durbin algorithm in the second

application are necessary for floating-point implementations of linear prediction in speech processing

and autoregressive modeling in signal processing.

Finally, Chapter 6 summarizes the contributions of the thesis and discusses potential future research

directions.

7

2
Floating-Point Arithmetic Performance

2.1 Introduction

The significant benefit on area and performance offered by reduced-precision floating-point arithmetic

operations is the motivation for custom-precision and mixed-precision floating-point implementations

of signal processing and scientific computing applications.

This chapter presents the floating-point operation performance as a function of precision on different

hardware architectures. It is known that reduced precision in floating-point arithmetic operations

directly translates into increased parallelism and peak performance on reconfigurable fabrics, e.g.,

presented in [13]. In this chapter, we will specifically illustrate this relation on the Stretch S6 hybrid

reconfigurable CPU. Given a specific precision, the corresponding performance and area of floating-

point operations can be estimated.

The challenge of implementing custom-precision or mixed-precision floating-point applications on

reconfigurable hardware is to identify the minimum precision of floating-point operands for achieving

the highest application performance while guaranteeing the required accuracy of the respective appli-

cations. To solve the challenging problem of optimal precision estimation, a relation between the user’s

required accuracy of the floating-point algorithmic final result and the working precision needs to be

established. That task is called floating-point error analysis and will be presented later in Chapters 3,

4 and 5. We would like to emphasize that the performance of floating-point operations on different

hardware architectures as a function of the precision, presented in this chapter, is the motivation for

studies and discussions on floating-point error analysis and bit width allocation presented later in the

other chapters. Therefore, we believe this chapter will be interesting for a relatively wide range of

readers, i.e., not only for readers in the hardware design area but also for the ones coming from the

signal processing and scientific computing areas as well.

We will first give a short summary of floating-point performance on general purpose CPUs, graphics

processing units (GPUs) and field programmable gate arrays (FPGAs). Next, we focus on investigating

the area and performance achievable on the Stretch S6 hybrid reconfigurable CPU using custom-

precision floating-point arithmetic. Using the LINPACK benchmark, we specifically show the impact

of precisions lower than double-precision on the throughput of floating-point applications. The chapter

closes with some concluding remarks and highlights the motivation for the next chapters.

9

Table 2.1 Summary of SP and DP floating-point performance on CPU,

GPU and FPGA

CPU GPU FPGA

Intel i7-965 NVIDIA Tesla C1060 Virtex-6 SX475T

Frequency (GHz) 3.2 1.3 < 0.55

Peak SP performance (GFlop/s) 102.4 936 550

DP:SP performance ratio 1:2 1:12 ≈ 1:4

2.2 Floating-Point Performance on CPUs, GPUs and FPGAs

Heterogeneous computing, i.e., using different types of processing units for maximising performance,

has become attractive during the last decade since it offers high peak performance and power- and/or

cost-effective designs compared to using traditional CPUs. The current trend for increasing perfor-

mance is to make use of parallelism via the combinations of CPU-with-GPU or CPU-with-FPGA

instead of increasing clock frequency. An extensive discussion on state-of-the-art heterogeneous archi-

tectures is presented in [12].

A GPU is a symmetric multi-core processor that is exclusive accessed and controlled by the CPU

via the PCI express bus. Traditionally, the GPU was designed for use in image processing to render

geometric objects. Recent GPUs are more general and have been widely used for high performance

computing. The three major GPU vendors are NVIDIA, AMD and Intel.

An FPGA is a set of configurable logic blocks, digital signal processing blocks, and optional tradi-

tional CPU cores that are all connected via a reconfigurable interconnect. When configured, FPGAs

function like user-defined application-specific integrated circuits (ASICs). In a heterogeneous system,

a FPGA is often connected with the traditional CPU via the high-speed HyperTransport bus.

We focus on floating-point performance of each of the above processing units, i.e., CPU, GPU and

FPGA. Table 2.1, extracted from [12], summaries the single-precision (SP) and double-precision (DP)

floating-point performance of some recent CPU, GPU and FPGA architectures. The CPU is an Intel

Core i7-965 Quad Extreme, the NVIDIA GPU is the Tesla C1060, and the FPGA is the Virtex-6

SX475T. The numbers in Table 2.1 are reported per physical chip.

The GPU gives the best peak performance when it comes with single-precision floating-point arith-

metic, offering an order of magnitude better performance compared to others. Instead of using double

precision, exploiting single-precision halves the storage and bandwidth requirements and increases the

peak performance significantly from two up to twelve times (i.e., on GPUs) depending on the archi-

tecture used (see Table 2.1). More specifically, the CPU offers a linear performance improvement with

decreasing precision, while the FPGA provides quadratic performance improvement when decreasing

precision (Table 2.1).

Using high precision is not always necessary for some applications, as the desired accuracy of an

algorithm might be less than double precision and even less than single precision. Some real world

signal processing applications can actually tolerate some computational error in the intermediate or

even final results [22, 42]. On FPGAs, using the lowest possible precision (or custom-precision) can give

significant benefits in storage and bandwidth requirements, as well as in parallelism, thereby further

resulting in increased performance. Figure 2.1, adopted from [13], demonstrates the peak performance

of a binary-tree based custom-precision floating-point dot-product as a function of precision (i.e.,

the x-axis in Figure 2.1) on an Altera Cyclone II EP2C70 FPGA. The lower part of Figure 2.1

10

 0

 20

 40

 60

 80

 100

 120

 140

 160

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

m
ax

im
um

 n
um

be
r

of

 p
ar

al
le

l m
ul

tip
lie

rs

m
ax

im
um

 c
lo

ck
 fr

eq
ue

nc
y

[M
H

z]

EP2C70max. dot product size
EP2C70 fmax

 0

 2

 4

 6

 8

 10

 12

 14

pe
ak

 p
er

fo
rm

an
ce

[G
F

lo
p/

s]
Dot Product Peak Performance

EP2C70 Peak

Figure 2.1 Peak performance of binary-tree based custom-precision

floating-point dot-product on FPGAs versus precision

shows superlinear gains in the number of parallel multipliers (red curve, corresponding to left y-axis)

implementable on the FPGA and respective achievable clock frequency (blue curve, corresponding to

right y-axis) while reducing the precision. As a consequence of these increases, the peak performance

scales superlinearly with decreased mantissa bit width (red curve in upper part of Figure 2.1).

2.3 Floating-Point Performance on Hybrid Reconfigurable CPUs

Hybrid reconfigurable CPUs mix two technologies: CPU instruction set architecture and reconfig-

urable logics which, in their respective domain, have evolved together with respective tools (compilers

and synthesizers) and can typically deliver state-of-the-art performance. As a consequence of this

combination, hybrid reconfigurable CPUs allow for customisation of the data-path through extension

instructions to improve a given application’s performance with minimal development overhead by re-

lying for most parts on a proven static CPU architecture. The more complex the custom instruction,

i.e., the higher the equivalent number of instructions from the original instruction set, the higher is

typically the achievable performance gain.

Several hybrid reconfigurable CPU architectures exist, among them MOLEN [14], GARP [15] and

Stretch [16]. An overview can be found in [10, 11]. An additional issue faced by designers of hybrid

reconfigurable CPUs, however, is the question of how to combine best the respective strengths of fixed

instruction-set architectures and reconfigurable logic. Reconfigurable fabrics are added to enhance the

capabilities of static architectures. While the peak performance of hybrid reconfigurable CPUs (subject

to application requirements and suitable configuration) is mostly defined by the reconfigurable fabric,

11

the achievable sustained performance relies heavily on the (static) interface between reconfigurable

fabric and fixed CPU.

Over the last decade, short-vector single-instruction multiple-data (SIMD) units have been in-

tegrated into mainstream CPUs [43–45]. This trend has already extended to floating-point units

(FPUs). While static FPUs typically provide a linear improvement in parallelism with decreasing

precision, FPGAs provide quadratic improvement in parallelism with decreasing precision for selected

operations [46, 47]. However, implementation of complex numerical algorithms in FPGAs requiring

specification in a hardware description language (HDL) appears both laborious and error-prone. Hy-

brid reconfigurable CPUs provide a means for efficient coding using a reliable software stack while

potentially delivering a superlinear performance gain for lower-precision arithmetic operations. Most

publications presenting a reconfigurable CPU include some design space exploration for applications

originating from multimedia benchmarks (a favourite usage scenario for reconfigurable CPUs). We

believe floating-point applications are underrepresented in design space exploration for hybrid recon-

figurable CPUs, potentially leading to suboptimal interface design.

We aim at verifying the assumption of superlinear area- and performance gains for lower-precision

arithmetic operations on the Stretch S6 hybrid reconfigurable CPU [16]. This is achieved by running

the LINPACK benchmark on the S6 CPU using either double- or single-precision number formats and

investigating in detail the interface between reconfigurable fabric and fixed CPU considering typical

requirements of extension instructions using single- and double-precision operands.

2.3.1 The Stretch S6 CPU

The Stretch S6 [16] is a hybrid reconfigurable embedded CPU which combines a fixed Tensilica Xtensa

LX instruction set architecture with a reconfigurable Stretch extension unit. In the following we de-

scribe the S6’s architecture and summarize typical application development on the S6 hybrid recon-

figurable CPU.

Architecture

Figure 2.2 gives an overview of the Stretch S6 architecture. The 32-bit Xtensa LX core (blue) can run

at a clock frequency of up to 300 MHz and the programmable Instruction Set Extension Fabric (ISEF,

yellow) can run at clock frequencies identical, 1/2 or 1/3 of the Xtensa clock frequency. The Xtensa

core is equipped with an FPU providing native support of the IEEE-754 single precision floating-point

arithmetic. Double precision arithmetic, however, has to be emulated in software. The emulation is

based on the gcc soft float routines (contained in libgcc and normally used by gcc when generation

of floating-point instructions is disabled).

ISEF. The ISEF is an array of reconfigurable computational resources, memories, registers and re-

spective interconnect, which can be used to implement user-defined extension instructions. Between

the Xtensa core and the ISEF, data is transferred via 128-bit Wide Registers (WR), using a maxi-

mum of three registers for input and two registers for output. The ISEF supports full pipelining of

extension instructions with up to 27 pipeline stages. The ISEF’s computational resources comprise

4096 arithmetic units (AUs) for bitwise addition/subtraction and logic operations and 8192 multiply

units (MUs) for bitwise multiply and shift operations. The ISEF features 64KB of embedded RAM

(IRAM) which can be accessed from the Xtensa core via fast direct memory access (DMA).

12

32-Bit Register

ALU

32-Bit Register

FPU

Execution Unit

64KB
Dual Port RAM

32KB
I-Cache

32KB
D-Cache

Local Memory System

128-Bit Wide Register

IRAMIRAMIRAM

Xtensa LX Dual-Issue VLIW

ISEF

Stretch Extension Unit

Figure 2.2 Stretch S6 Architecture

There are four fundamental sources of potential performance gains when offloading computations

to the ISEF [48]:

o Instruction specialization: As extension instructions serve only a single application, they can be

much more specific than general-purpose instructions.

o Spatial parallelism: The ISEF allows for implementation of parallel data paths, limited only by

the number of available ISEF resources and the width of input- and output registers.

o Temporal parallelism: Up to 27 pipelining stages.

o Embedded memory: The ISEF features multiple embedded memories providing massive band-

width at very low latency to access look-up tables or to keep temporary data.

Application Development

Application development for the Stretch CPU typically starts with a new or existing C or C++

program running on a sequential CPU platform [16, 48]. The code is profiled and analysed to identify

the code segments, typically inner loops, which consume most of the execution time. These identified

code segments will then be replaced by user-defined extension instructions, implemented in the ISEF,

and invoked from the main program as C intrinsics.

Source code for an application using extension instructions on a Stretch hybrid CPU is composed of

two parts: (i) ordinary (ANSI) C/C++ code to implement the application executed on the Xtensa, and

(ii) Stretch C code to define the extension instructions. Stretch C is ANSI C with a few enhancements

and limitations [48]. The enhancements include data types of parameterisable bit width and operators

for packing and unpacking bits within longer words. The Stretch C Compiler (SCC), which is based

on gcc, maps ordinary C code into a series of instructions to run on the Xtensa processor, and Stretch

C code into a bitstream for ISEF configuration. Once the user-defined extension instructions have

been defined in Stretch C, the extension instructions are compiled by SCCS. A header file defining

13

the intrinsics associated with the extension instructions is created and included in all ordinary C files

in which the extension instructions are used.

The wide registers (WRs) build the interface between ISEF and Xtensa, holding the input to

extension instructions as well as the computed result. The Stretch S6 CPU provides a variety of

load/store instructions and byte-streaming channels for transferring data between memory, Xtensa

core and WRs. A typical flow for using a user-defined extension instruction consists of three steps: 1)

load data from memory to corresponding WRs, 2) execute the extension instruction as C intrinsic, 3)

store the result from WRs to memory or transfer to other Xtensa registers.

Byte-streaming channels. The Stretch provides byte-streaming load-store instructions, which allow

for transferring of 1 to 16 bytes between WRs and memory while implicitly updating the memory

address with an increment or decrement. The S6 CPU provides three independent load-streams (RAM

to WR) and one store-stream (WR to RAM). After initialization, streaming loads and stores take just

one cycle to execute, as long as the data resides in on-chip memories, i.e., D-Cache or Dual-Port

RAM. The following Stretch-C code example demonstrates byte-streaming to transfer data between

wide registers and memory on the Stretch S6 CPU.

WR A1, A2, B;

double x1[VECTOR_LENGTH], x2[VECTOR_LENGTH], y[VECTOR_LENGTH];

double *pxr1, *pxr2, *pyw;

pxr1 = x1; pxr2 = x2; pyw = y;

//initialize input- and output streams for get and put

WRGET0INIT (ST_INCR, pxr1); //--initialize input byte-stream0 for x1

WRGET1INIT (ST_INCR, pxr2); //--initialize input byte-stream1 for x2

WRPUTINIT (ST_INCR, pyw); //--initialize output byte-stream for y

for (int i=0; i<VECTOR_LENGTH; i++)

{

WRGET0I (&A1, NUMBYTE); //get NUMBYTE from input stream0 to WR A1

WRGET1I (&A2, NUMBYTE); //get NUMBYTE from input stream1 to WR A2

//Invoke extension instruction as C intrinsics using data in WRs: A1 & A2

isefFoo (A1, A2, &B);

WRPUTI (B, NUMBYTE); //put NUMBYTE from WR B to output stream

}

WRPUTFLUSH0 (); //complete transfer with 2 flush instructions

WRPUTFLUSH1 ();

2.3.2 Area Performance on Stretch S6 CPU

We investigate the capabilities of reconfigurable fabric on the Stretch S6 ISEF for implementing user-

defined custom-precision operations as extension instruction, specifically focusing on custom-precision

floating-point arithmetic operations. Our goal is to verify the assumption of superlinear area gain for

lower-precision arithmetic operations. Two extension instructions are implemented on the Stretch S6

ISEF: a custom-precision integer multiplication and a custom-precision floating-point fused multiply-

accumulate operation.

14

16 20 24 28 32 36 40 44 48 52 56 60 64
0

5

10

15

20

25

30

35

40

45

50

55

Bit width

R
es

ou
rc

e
us

ag
e

[%
]

Resources required to implement integer multiplication operation (IMUL) on S6 ISEF

Multiplication Units (MUs)
Arithmetic/Logic Units (AUs)

Figure 2.3 S6 ISEF resource usage of IMUL versus precision

Custom-Precision Integer Multiplication Extension Instruction

We start our investigation by implementing a custom-precision integer multiplication (IMUL) of two

integer input operands on the ISEF. The precision (bit width) of two input operands is varied in unit

step from 16 bits up to 64 bits. We target the ISEF to run at a clock frequency of 150 MHz, half of

the clock frequency of the Xtensa core (300 MHz). The Stretch-C code for implementation of a 16-bit

IMUL operation is shown below. The extension instruction IMUL receives two input operands (x1 and

x2) from two WRs and puts the computed result (y) back into another WR.

//**

// Custom Precision Integer Multiplication: IMUL16

// PRECISION (bit-width) = 16 (bits)

//**

#include <stretch.h>

#define BITWIDTH 16 // bitwidth = 16 (bits)

SE_FUNC void IMUL16 (WR x1, WR x2, WR *y)

{

se_uint<BITWIDTH> A, B;

se_uint<2*BITWIDTH> C;

A = (se_uint<BITWIDTH>) x1 (BITWIDTH-1,0);

B = (se_uint<BITWIDTH>) x2 (BITWIDTH-1,0);

C = A*B;

*y = C;

}

15

16 20 24 28 32 36 40 44 48 52 56 60 64
2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Bit width

N
um

be
r

of
 p

ar
al

le
l I

M
U

Ls

Maximum parallel integer multiplication operations (IMUL) implementable on S6 ISEF

Figure 2.4 Estimated maximum number of parallel IMULs imple-

mentable on S6 ISEF versus precision

Figure 2.3 presents the resource usage (in percentage), reported by SCCS, for the IMUL imple-

mentation on the Stretch S6 ISEF as a function of precision. The amount of arithmetic/logic units

(AUs) required for implementing IMUL increases roughly linearly with the operand precision, while

the amount of multiplier units (MUs) required follows a step function.

Using the number of MUs as the dominant resource measure, the maximum number of parallel

IMULs that can simultaneously be put into the Stretch S6 reconfigurable fabric is roughly estimated

by dividing the total multiplier units available for the amount of resources required by one IMUL,

assuming that ISEF is featured with sufficient routing resources. This is demonstrated by Figure 2.4,

in which up to 32 parallel 16-bit IMULs can theoretically be put in the ISEF.

Custom-Precision Floating-Point Fused Multiply-Accumulate Extension Instruction

The Xtensa core is equipped with one IEEE single-precision FPU. Our aim is – using the S6’s recon-

figurable fabric – to provide native floating-point arithmetic of any desired number-format, reusing

the remaining logic resources for additional parallel units.

The fused multiply-accumulate (FMA) operation performs Z = X1 ·X2 +X3 with a single round-

ing as an indivisible operation, thereby providing a more accurate result compared to multiplication,

rounding, addition and rounding. An FMA can therefore potentially increase the accuracy and per-

formance of many computations involving the accumulation of products (e.g. dot product, matrix

multiplication or Newton’s iteration for function approximation). Figure 2.5 depicts the textbook

implementation [49] of an FMA operation as used in this work.

16

e
1

e
2

m
1

m
2

bias

(-)

s
1

s
2

X
1

X
2

Sign bit
computation Exponent Adder

Exponent
Adjust

Mantissa
Multiplier

X
3

s
12 e

12 m
12

e
3 m

3

s
3

MULTIPLICATION

e
Z

m
Z

s
Z

Pre-normalize

Sign bit
logic

Unpack signs, exponents and mantissas

e
3
 > e

12

Right
shift

SwapExponent
difference

Add

d
Larger

exponent

Rounding

Normalization
(Leading One Detection & Shift)

ADDITION

Z =X
1
X

2
 + X

3

Pack sign, exponent and mantissa into IEEE floating-point format

Figure 2.5 Block diagram of floating-point fused multiply-accumulate op-

eration

17

WR: 128-bit Wide Register

WR

ISEF

FMA

Z = X
1
X

2
 + X

3

64

6464

Z

X
2

X
3

X
1

X
1

X
2

X
3

WR WR

128 128 128

128

WR

DFMA

64

128 128 128

128

WR

WR WR WR

z' = x
1
'x

2
' + x

3
' z'' = x

1
''x

2
'' + x

3
''

z'

x
1
' x

2
' x

3
'

32 32 32

32

SFMA

z''

x
1
'' x

2
'' x

3
''

32 32 32

32

SFMA

z' z''

x1' x1'' x2' x2'' x3' x3''

ISEF

Figure 2.6 a) The DFMA and b) multiple parallel SFMA extension instruc-

tions implemented on S6 ISEF

DFMA and SFMA extension instructions. Using Stretch-C, we specify a double-precision floating-

point FMA, namely DFMA, as an extension instruction on the ISEF. Figure 2.6a) depicts how the DFMA

extension instruction is implemented in the ISEF, as well as the way the inputs and output are aligned

in the wide registers. The DFMA extension instruction accepts three input operands from three 128-bit

wide registers, and places the corresponding computed result Z = X1 ·X2 + X3 in one 128-bit wide

register. Since the double precision number format is 64 bits wide, only half of each wide register is

used.

To demonstrate the effects of lower-precision operators, we implement a single-precision FMA op-

erator (SFMA). The lower resource usage allows for implementation of multiple parallel SFMA in the

ISEF. Figure 2.6b) depicts how the SFMAx extension instruction is implemented in the ISEF, as well

as the way the inputs and output are aligned in the wide registers.

Table 2.2 reports the DFMA ISEF resource usage as reported by SCCS. It gives the theoretical DFMA

peak performance of 600 and 80 MFlop/s if executed at 300 and 40 MHz, respectively (assuming a

throughput of one DFMA or two basic floating point operations per clock cycle). For single-precision

number format, Table 2.2 reports the ISEF resource usage when one, two, three or four SFMA operators

are implemented in parallel. The ISEF routing resources, which are not explicitly reported by the

SCC, are exhausted with the implementation of two SFMAs, making actual implementation of three

or four parallel units impossible.

Choice of clock frequency. The DFMA and SFMA extension instructions were specified using Stretch

C and compiled using SCCS. Obviously, the goal is to achieve an ISEF implementation at the S6’s

maximum clock frequency of 300 MHz. The compiler, however, could not meet a target frequency

of 300 MHz. Given the limited ISEF resources, the FMA’s most critical path can be implemented

at clock frequencies equal or less than 100 MHz for both the Xtensa core and the ISEF, only. At

100 MHz, SCC was able to synthesize the DFMA and SFMAx extension instructions (x is up to 3).

18

Table 2.2 Resources required to implement DFMA, SFMA and SFMAx exten-

sion instructions on S6 ISEF

Available DFMA SFMA SFMA2 SFMA3 SFMA4

Arithmetic/Logic Units (AUs) 4096 54% 21% 42% 62% 84%

Multiplication Units (MUs) 8192 39% 8% 16% 24% 32%

ISEF Stages 27 10 6 7 17 n/a

Routing routable routable routable not routable not routable

fmax[MHz] 300 100 100 100 100 n/a

Peak performance [MFlop/s]

@ fISEF =300 MHz 600 600 1200 1800 2400

Peak performance [MFlop/s]

@ fISEF =40 MHz 80 80 160 240 320

However, setting the clock frequency of the S6 PCIe (Peripheral Component Interconnect express)

board to 100 MHz is currently not possible. The next lower available clock frequency is 40 MHz.

Summary

It is shown that the reconfigurable fabric available on the Stretch S6 CPU can be extended to natively

support double-precision floating-point arithmetic operation. For single-precision, even multiple par-

allel units can be implemented, for which up to four SFMAs can theoretically be deployed on the ISEF.

For custom-precision integer multiplication implementation, reducing precision brings a superlinear

increase in the number of implementable integer arithmetic units on the ISEF. These two implemen-

tations verify well the assumption of superlinear gain in area for lower-precision arithmetic operations

on hybrid reconfigurable CPUs.

2.3.3 LINPACK Performance on Stretch S6 CPU

After having shown that double-precision floating-point operations can be implemented on the ISEF,

we are concerned with the question how well a complex extension instruction integrates into an

existing application. Since the achievable sustained performance of an application running on a hybrid

reconfigurable CPU relies heavily on the static interface between reconfigurable fabric and fixed CPU,

we would like to understand the effect of different interface limitations on the minimum issue rate of

extension instructions implemented on the reconfigurable fabric. In the following, we will characterise

the LINPACK benchmark, detail the benchmark’s mapping onto the S6 hybrid reconfigurable CPU

and report performance measurements for different implementation variants.

LINPACK. LINPACK is a well known benchmark to characterise floating-point performance of com-

puters and widely used both in academia and industry [50]. This benchmark measures how fast a

computer solves a dense N×N system of linear equations Ax = b. LINPACK does not require the use

of specific number formats but demands the solution to achieve a given accuracy. The implementation

used in this work is based on a C code available on netlib1 relying on BLAS (Basic Linear Algebra

1http://www.netlib.org/benchmark/linpackc.new

19

Subprograms) Level-1 routines. While there exist more efficient LINPACK implementations, our aim

in this work is not to maximise LINPACK performance, but to demonstrate relative LINPACK per-

formance among various CPUs and at different precision levels when exploiting short-vector SIMD

extension instructions implemented on the Stretch ISEF.

LINPACK uses the BLAS routine DGEFA to perform the LU decomposition of the squared matrix

A with partial pivoting and DGESL to solve the given system of linear equations by forward and back

substitution. Most of the execution time of LINPACK is spent in DGEFA, of which the largest part is

spent in the DAXPY routine. DAXPY performs y = α · x + y, i.e., it multiplies a vector x with a scalar

α and accumulates the result in vector y.

Experiment Setup. The following experiments were set up, reflecting implementation choices avail-

able on the Stretch S6 hybrid reconfigurable CPU. For each implementation, the floating-point oper-

ators in DAXPY were replaced by function calls to the respective extension instruction.

1. LDX {DP LINPACK, software-emulated via Xtensa ALU}: Software-emulated DP arithmetic

via Xtensa ALU.

2. LD1 {DP LINPACK, Xtensa+ISEF (DFMA)}: DAXPY uses extension instruction DFMA.

3. LSX {SP LINPACK, Xtensa FPU}: DAXPY uses the Xtensa SP FPU (no ISEF used).

4. LS1 {SP LINPACK, Xtensa+ISEF (1SFMA)}: DAXPY uses extension instruction SFMA.

5. LS2 {SP LINPACK, Xtensa+ISEF (2SFMA)}: DAXPY uses extension instruction 2SFMA.

Mainstream CPUs. In order to compare performance of the Stretch S6 hybrid reconfigurable CPU

to desktop CPUs, we repeat the measurements on two desktop CPUs from AMD (AMD Opteron 2439,

2.8 GHz, 105 W) and Intel (Intel Core i7 970, 3.2 GHz, 130 W). On desktop CPUs, the LINPACK

code was compiled using gcc version 4.3.2 under Debian 4.3.2-1.1 with optimization flag -O3.

LINPACK Code. For the double-precision experiment, we replace the original sequence of DP

floating-point multiplication and addition in DAXPY by a single DFMA extension instruction. For the

single-precision experiments, we use either the S6’s SP FPU or the SFMA and 2SFMA extension in-

struction, respectively. The data transfer is implemented using simple load store (external memory

read/write and byte-streaming channels (internal memory to ISEF).

The code was compiled using the Stretch C compiler (SCCS) version 2010.01 (built on 5 Feb 2010).

Used SCCS flags were -stretch-effort10 and -O3. Both, Xtensa and ISEF were forced to run at a

clock frequency of 40 MHz (i.e. fXtensa = fISEF = 40 MHz)

Measurements

For every experiment, we measure the total execution time in cycles. The estimated number of floating-

point operations at system size N is (2/3N3 + 2N2) [50]. The LINPACK performance in floating-

point operations per second (Flop/s) is calculated by dividing the number of estimated floating-point

operations by the respective LINPACK execution time.

Table 2.3 reports the performance of DP and SP LINPACK benchmarks achieved on Stretch S6

and on desktop CPUs for systems of size N=500. The performance of DP LINPACK using software-

emulated floating-point arithmetic via Xtensa ALU is about 0.5 MFlop/s. By providing native DP

20

Table 2.3 LINPACK Performance efficiency and Power efficiency at

N=500

Sustained Peak Power

performance performance Performance efficiency

[MFlop/s] [MFlop/s] efficiency [MFlop/W]

DP emulated via S6 ALU 40 MHz 0.5 80 1% 0.1

DP DFMA ISEF 40 MHz 12.6 80 16% 2.0

SP on S6 FPU 40 MHz 7.0 80 9% 1.1

SP 1SFMA ISEF 40 MHz 10.1 80 13% 1.6

SP 2SFMAs ISEF 40 MHz 13.6 160 8% 2.2

DP AMD Opteron 2439 2800 MHz 1570 14.9

DP Intel Core i7 3200 MHz 1560 12.0

floating-point arithmetic through the DFMA extension instruction, the performance achieved by DP

LINPACK on S6 is 12.6 MFlop/s. This corresponds to a speed-up of about 25 times compared to

DP software-emulated LINPACK. The desktop CPUs operating at much higher clock frequencies

significantly outperform the Stretch S6 hybrid CPU in raw performance (MFlop/s). Accepting a

lower accuracy by using SP arithmetic, the SP LINPACK implementation using the native SP Xtensa

FPU achieves a sustained performance of 7.0 MFlop/s at 40MHz. Using an extension instruction

implementing one and two SP FMAs in parallel at 40 MHz, achievable LINPACK performance becomes

10.1 MFlop/s and 13.6 MFlop/s, respectively. This is about 1.5 and 2 times more efficient than SP

LINPACK using the native SP Xtensa FPU at the same clock frequency.

Columns three and four in Table 2.3 present the performance efficiency and the power efficiency

of all LINPACK implementations on S6 CPU. The best performance efficiency is 16% with DFMA for

DP Linpack, and 13% with SFMA for SP Linpack. The maximum power consumption of the PCIe

expansion card holding four Stretch S6 CPUs is 25W. We can currently not measure the actual power

consumption and therefore assume a worst-case scenario of 25W/4=6.25W per S6 CPU. Dividing sus-

tained performance by power consumption gives a worst-case estimate of power efficiency at N=500 of

2.0 MFlop/W and 2.2 MFlop/W for DP and SP LINPACK implementations on S6 CPU, respectively.

Performance Measure: Cycles per Extension Instruction (CPEI). In analogy to the cycles per

instruction (CPI) measure used in CPU design [51], we will characterise the performance of extension

instructions quoting the cycles per extension instruction (CPEI). It is equivalent to the extension

instruction issue rate. The CPEI for some program or code section is calculated as the ratio of the

executed Xtensa clock cycles nXtensa and the executed extension instructions nISEF

To compare the efficiency of Linpack against the best possible performance achievable on the Stretch

S6, we calculate the corresponding CPEI for each implementation. Our Linpack implementation

performs n500 = 83833333 Flops at a system size of N=500. Given the equivalent number of floating-

point operations per extension instruction (FPEI), we can calculate the CPEI as #cycles ·FPEI/n500.

Inspecting Table 2.4 shows that the CPEI using DFMA is 6.4. Using a single SFMA results in a CPEI

of 7.9 while using two SFMAs gives a CPEI of 11.8. For SP Linpack on Xtensa FPU (no ISEF), we

observe that the Xtensa FPU performs a single-precision fused multiply-add instruction within the

routine SAXPY, with respective assembly code madd.s, thereby resulting in a FPEI of 2 and leading to

a CPI of 11.5.

21

Table 2.4 LINPACK execution times and CPEI

Exec. cycles [×106] Flops per Ext.Instr. CPEI/CPI

DP emulated via S6 ALU 40 MHz 6312 2 150.6

DP DFMA ISEF 40 MHz 267 2 6.4

SP on S6 FPU 40 MHz 483 2 11.5

SP 1SFMA ISEF 40 MHz 332 2 7.9

SP 2SFMAs ISEF 40 MHz 247 4 11.8

Discussion. The S6’s reconfigurable fabric is able to provide support for complex floating point oper-

ators like fused multiply accumulate (FMA). For double-precision LINPACK, this leads to a speed-up

of 25 compared to software-emulated double-precision arithmetic. For single-precision LINPACK, the

fused operation outperforms the implementation relying on the Xtensa FPU. A SIMD unit providing

two SFMA operators in parallel improves performance by about 35%. The desktop CPUs running at

clock frequencies of 2.8 and 3.2 GHz outperform the S6 by about two orders of magnitude with respect

to throughput. Energy efficiency is about one order of magnitude better on desktop CPUs. The two

most evident reasons for the S6’s poor performance are the artificially low clock frequency (40 MHz

due to a setting issue) and the S6’s low extension instruction issue rate.

2.3.4 S6 ISEF Interface Performance Characterisation

We have outlined the FMA implementations and made naive assumptions about achievable peak

throughput. LINPACK performance figures reported in Tables 2.3 and 2.4 showed that sustained

performance achieved by the benchmark are significantly lower. This section details the interface

between ISEF and S6 on-chip memories. We derive theoretical peak throughput from architectural

features and present respective measurements. Detailed understanding of the ISEF’s interface allows

for a better explanation of the observed LINPACK performance as well as a detailed documentation

of inherent performance degradation due to S6 architectural limitations.

Bandwidth Requirements. A key feature of reconfigurable fabrics is the fact that some arithmetic

operations’ complexity increases superlinear with the precision [13, 46, 49]. When reusing freed re-

sources for additional parallel units, reducing precision can therefore lead to superlinear parallelism

with decreasing precision. Superlinear parallelism, however, leads to increased total required band-

width (i.e., if a double-precision unit can be replaced by four single-precision units, each accepting

two operands, the total required bandwidth increases from 1*64 bit to 4*32=128 bit). Exploitation

of the increased parallelism is subject to availability of this bandwidth. We are, therefore, interested

in understanding all effects (both architectural and compiler-induced) that influence the achievable

data transfer bandwidth to and from the ISEF using the byte-streaming mechanism.

ISEF Interface. The S6’s execution unit connects on-chip memory (D-Cache and DataRAM) and

ISEF via 128-bit wide buses. Wide registers (WRs) act as interface for data transfer to and from the

ISEF. We are interested in understanding the implications of (i) the number of input WRs used, (ii)

the size and number of operands used on achievable throughput of custom SIMD extension instructions

using the streaming interface on S6 CPU. In the following, we derive the minimum CPEI (CPEImin)

for different extension instruction configurations from architectural features and perform experiments

to obtain the respective average CPEI (CPEI).

22

Table 2.5 S6 minimum cycles per extension instruction

WRs In WRs out Instructions required CPEImin

1 0 1 ext. instruction + 1 WR load 1

0 1 1 ext. instruction + 1 WR store 1

1 1 1 ext. instruction + 1 WR load + 1 WR store 2

2 1 1 ext. instruction + 2 WR loads + 1 WR store 3

3 1 1 ext. instruction + 3 WR loads + 1 WR store 4

S6 Minimum CPEI (CPEImin). The on-chip memory system and the wide register (WR) file are

linked with a single 128-bit wide data bus, allowing for a load or a store of at most one 128-bit WR

every clock cycle. The Stretch S6 fixed CPU design is an Xtensa LX dual-issue core whose execution

unit is able to issue two instructions every clock cycle. As a consequence of the dual-issue architecture,

an extension instruction and a WR load or a WR store can be issued simultaneously. Therefore, if

an extension instruction consumes (or writes) only a single WR, the absolute minimum issue rate is

1. Every additional WR load or store operation increases the CPEI by one.

The CPEImin for all selected S6 extension instruction configurations is reported in Table 2.5. In

summary, an S6 extension instruction reading and writing into two different wide registers can be

issued every two Xtensa clock cycles, in case all data is accessible in local memory. Every additionally

used register increases the CPEImin by one clock cycle.

Experiments

We setup a small test program to measure the average CPEImin achievable as a function of the

number of input wide registers and operand size. Byte-streaming channels are used for efficient data

transfer to and from the ISEF. The Stretch S6 CPU supports up to three input byte-streams and one

output byte-stream (cf. Section 2.3.1). For ease of understanding and presentation, we implement two

simple extension instructions DNEGx and SNEGx, performing negation for double-precision and single-

precision floating-point operands, respectively. For each extension instruction, there exist variants

reading data from the lower part of one (DNEG1, SNEG1), two (DNEG2, SNEG2) or three (DNEG3,

SNEG3) wide registers. The result of the operation is always a single floating-point number. The

extension instruction is executed in a loop reading data from on-chip or off-chip memory. Note,

that in C/C++ programs we declare WRs as local variables within the main function for better

performance. For our design of negation operations on ISEF, the Xtensa core runs at 300 MHz,

and the Xtensa core and ISEF were forced to run at the same clock frequency by using SCCS flag

-stretch-issue-rate 1, i.e. fISEF = fXtensa = 300 MHz.

On-Chip Memory Access

For on-chip memory access, byte-streaming channels are used. For each extension instruction (i.e.

using 1, 2 or 3 input WRs), the input operand size is varied between 32, 64, 96 and 128 bit. The

resulting sustained CPEIs of the SIMD extension instructions using byte-streaming channels when

the data reside in on-chip memories are reported in Table 2.6. The measured CPEIs when data is in

D-Cache and in DataRAM are almost equal. Therefore only the smaller measured CPEI is chosen

and reported.

For data transfer between on-chip memory and wide registers via byte-streaming channels, the

23

Table 2.6 Average CPEI for on-chip memory access via byte-streaming

channels.

CPEImin 32 bits ops. 64 bits ops. 96 bits ops. 128 bits ops.

1 input WR, 1 output WR 2 3.04 3.09 3.13 3.18

2 input WRs, 1 output WR 3 3.07 3.17 3.22 3.29

3 input WRs, 1 output WR 4 4.05 4.09 4.14 4.18

CPEImin is expected to depend on the number of WRs used, but not on the size of the operands

within a WR. This is confirmed by our measurements reported in Table 2.6. For configurations using

two and three input WRs, the measured CPEI almost matches the CPEImin. For configuration using

one input WR, the measured CPEI is one cycle more than the expected CPEImin, which is due to a

compiler limitation on unrolling the loop of extension instructions.

Discussion

Hybrid reconfigurable CPUs are prime candidates for power-efficient acceleration of demanding sig-

nal/speech processing applications. Reconfigurable fabrics can provide superlinear parallelism when

implementing short-vector SIMD units for selected arithmetic operations in reduced precision. This

genuine advantage of reconfigurable logic can only be exploited in reconfigurable hybrid CPUs if the

interface between reconfigurable logic and fixed CPU can provide the necessary bandwidth for data

transfer. In this chapter, we have explored the data bandwidth of the interface between reconfigurable

fabric and fixed CPU of the Stretch S6 hybrid reconfigurable CPU. We derived minimum cycles per

extension instruction between 1 and 4, depending on the number of WRs used. The streaming chan-

nels work as expected, decoupling extension instruction issue rate from the amount of bits consumed

by each WR. Our CPEI measurements confirm the expected minimum cycle values.

The Stretch S6 features a large and versatile reconfigurable fabric with impressive I/O (3x128 bit in,

2x128 bit out). The surrounding infrastructure does not match these capabilities, however, limiting the

overall data transfer to 128 bit per clock cycle. Fast floating-point arithmetic relies on efficient transfer

of large operands. The multiple units implementable in the ISEF cannot be fed with the necessary

data, resulting in frequent stalls and inefficient program execution. Benchmarking LINPACK using a

floating point FMA extension instruction showed the functional viability of using the S6 for scientific

workloads, but achieved disappointing performance figures. These low figures were due to a low clock

frequency of 40 MHz (compared to achievable 100 MHz for the extension instruction and a maximum

clock rate of 300 MHz for the Xtensa core), the limited I/O bandwidth between ISEF and on-chip

memory and the off-chip memory latency.

2.4 Conclusions

This chapter has investigated the area performance and throughput performance of floating-point

arithmetic operations on different hardware platforms including conventional CPUs, GPUs, FPGAs

and hybrid reconfigurable CPUs. It is known that reduced precision in floating-point arithmetic

operations directly translates into gains in peak performance (by a factor of 2 to 12 depending on

specific hardware architecture). Besides, on reconfigurable hardware (i.e., FPGA-based platforms)

reduced precision allows for increased parallelism.

24

More specifically, we focused on a prototypical hybrid reconfigurable CPU - the Stretch S6 - as a

case study. We have shown that the reconfigurable fabric of a Stretch S6 CPU is able to provide native

support for custom-precision floating-point arithmetic up to an IEEE-754 (partly) compatible double-

precision number format. For single-precision, multiple operators can be implemented in parallel,

theoretically up to four SFMAs can be put in the S6 ISEF. This generally allows for trading accuracy

with parallelism and performance. The dominant issue identified in this chapter while investigating

the Stretch S6 CPU is the mismatch between reconfigurable fabrics and I/O bandwidth available

on hybrid reconfigurable CPUs, thereby resulting in low LINPACK performance figures and making

hybrid reconfigurable CPUs unsuitable for scientific workloads.

The precision-to-performance relation presented in this chapter is the motivation for custom-

precision floating-point implementations of signal processing algorithms on reconfigurable hardware

in general. Besides, one necessary link to bridge the route from required accuracy to achieved per-

formance, the accuracy-to-precision relation, is still missing. Having this link established is essential

to obtaining an efficient implementation of floating-point algorithms on reconfigurable hardware and

will be studied in the remaining chapters of the thesis.

25

3
Floating-Point Error Analysis Using Affine

Arithmetic: Theory

3.1 Introduction

Error analysis is concerned with understanding and estimating the effect of parameter variations and

rounding error on an algorithm’s final result. In this work, we focus on the effects of rounding error

in floating-point arithmetic computations. Numerical rounding error analysis deals with the question

how the operations of some given algorithm implemented in finite-precision floating-point arithmetic

affect the final numerical result.

There exist different ways to classify error analysis techniques. One way is dividing those techniques

into static approaches and dynamic approaches [24]. Static error analysis is based on analytical

derivations, often providing conservative estimates. Dynamic error analysis is based on simulations

and gives typically more realistic error estimates but requires typically long simulation times and the

validity depends on the chosen test data.

For floating-point arithmetic, methods for static floating-point error analysis comprise the conven-

tional error analysis and the range-based error analysis techniques. The conventional forward error

analysis often provides very pessimistic error estimates rendering this method impractical for bit width

allocation. A comprehensive discussion on the conventional error analysis for floating-point algorithms

is presented in [5]. The range-based error analysis techniques often make use of Interval Arithmetic

(IA) and Affine Arithmetic (AA). Examples for range-based error analysis techniques are given in

[3, 4, 24, 25, 28].

This chapter aims at presenting the fundamentals of using AA for floating-point error modeling

and estimation. They are the basis for the implementation of a Matlab-based tool for AA-based

automatic floating-point error analysis presented in Chapters 4 and AA-based error analysis of some

floating-point signal processing algorithms presented in Chapter 5.

The remainder of this chapter is structured as following. We briefly present some background on

floating-point arithmetic, specifically focused on the IEEE-754 standard, and give an introduction of

IA and AA. We then present the AA-based error models for floating-point number and unary/bi-

nary operations. Using AA we suggest an AA-based error model for a floating-point fused multiply-

accumulate (FMA), which is one of the thesis contributions. The chapter closes with some concluding

remarks.

27

3.2 Background

3.2.1 Floating-Point Arithmetic

Floating-point arithmetic is the standard approach for approximating real number arithmetic in mod-

ern computers. We denote R as the set of real numbers and F as the finite set of floating-point

numbers. Every real number x ∈ R can be approximated by a floating-point representation x̂ ∈ F,

x→ x̂ : x̂ = fl(x),

where the transformation fl(·) from R to F is called rounding. A floating-point number uses three

fields to represent a real number: a sign bit s, a biased exponent e and a mantissa f . Given s, e,

f , the bias1, and precision p, using IEEE-754 conventions, a normalised binary floating-point numer

evaluates to (−1)s · 2e−bias · 1.f ; where the mantissa 1.f is represented with p bits.

Due to the limited amount of bits used for storing a floating-point number in computers, there

exists a representation error

x− fl(x),

between the real number x and its approximation in the floating-point number format. When evaluat-

ing a single floating-point arithmetic operator, its respective floating-point operation is affected by an

evaluation error. For a sequence of floating-point operations, the representation and evaluation errors

are propagated over that sequence. In this work, we refer to these two types of errors - representation

error and evaluation error - as rounding errors.

Given the working precision p, an important question is to quantify the rounding error of floating-

point arithmetic in a convenient form. Higham [5] presents a simple model for estimating the rounding

error of floating-point arithmetic, which is refered as conventional error model in this thesis.

Conventional error model of floating-point numbers [5]. The conventional error model describes

the relation between a real number x and its approximated floating-point representation x̂ in which

the relative error δ of the approximation x̂ = fl(x) is no larger than the unit roundoff u = 2−p as

x̂ = x(1 + δ), |δ| ≤ u. (3.1)

The absolute rounding error of a floating-point number is defined by

x− fl(x) = x− x̂ = xδ, (3.2)

and obviously the absolute rounding error depends on both the working precision and the magnitude

of the number itself. Compared to fixed-point numbers, floating-point numbers have a fixed relative

error and cover a larger dynamic range using less bits. The advantages of floating-point arithmetic

come at the cost of non-uniform resolution and more complex hardware implementation [49].

In this work, we prefer using the following expression

x̂ = x+ x · δ, |δ| ≤ u, (3.3)

which is equivalent to (3.1), for representing the conventional error model of floating-point number.

The implication of this alternative representation for the conventional floating-point error model in

(3.3) will be explained later in Section 3.3.

1By using a bias, the exponent field in a floating-point number is an unsigned number making it easier for the

implementation of floating-point operations, e.g., performing the comparison of floating-point numbers [49].

28

Conventional error model of floating-point arithmetic operations [5]. The rounding error due to

finite-precision computation of a floating-point arithmetic operation is expressed by the conventional

error model as follows

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−,×, /. (3.4)

It is common to assume that (3.4) holds also for the square root operation.

Propagation of rounding errors. Rounding errors are propagated during a sequence of floating-

point arithmetic operations. Conventional error propagation (as used by [5]) tries to derive symbolic

expressions in δ using the models in (3.1) and (3.4) and typically concentrating on higher order terms,

often leading to a final error expression consisting of high order terms in δ. As a consequence, the

rounding error bound derived by the conventional error model is very conservative and often depends

on one or several orders of the problem size, making conventional error analysis unsuitable for bit

width allocation. thus making conventional error analysis unsuitable for bit width allocation.

3.2.2 Interval Arithmetic

Interval Arithmetic, also known as interval analysis, was invented in the 1960’s by Ramon E. Moore [52]

for solving range problems. IA is a range-based model for numerical computations where each real

quantity x is represented by an interval x̄ = [a, b]. Those intervals are added, subtracted, multiplied,

etc., in such a way that each computed interval x̄ is guaranteed to cover the unknown value of the

corresponding real quantity x. The addition, subtraction, multiplication and division operations for

two intervals x̄ = [a, b] and ȳ = [c, d] are performed by equations (3.5 - 3.8). Note that these expressions

ignore roundoff errors. Refer to [53] for extensive information on IA.

x̄+ ȳ = [a+ b, c+ d] (3.5)

x̄− ȳ = [a− d, b− c] (3.6)

x̄ȳ = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (3.7)

x̄/ȳ = [min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/d)] (3.8)

In error analysis, IA can be used to derive worst-case rounding error bounds. One example of

IA for error anlysis is the work of Krämer [3] deriving a-priori worst case error bounds for basic

floating-point operations. The major disadvantages of IA are twofold. First, IA cannot capture the

correlations between variables, thereby possibly leading to range overestimation. As a typical example,

one could use IA to estimate the range of the expression x−x, with original IA range x̄ = [−1, 1]. The

estimated result is then calculated as x̄− x̄ = [−2, 2], which is twice as wide as the original range x̄,

and quite far from the expected range of [0, 0], which is the true value. Second, the range evaluation

is done immediately at every computation step, thus sequential information of a long computational

chain cannot be kept. As a result, overestimation may be accumulated along the computational chain,

leading to range explosion.

3.2.3 Affine Arithmetic

Affine Arithmetic (AA), also known as affine analysis, was introduced in [27] by Comba and Stolfi in

1993. It was then presented in more detail in [53], including the pseudocode for the implementation of

29

AA. AA is an improvement of IA in the sense that it can keep track of correlations between quantities,

thereby potentially leading to more accurate estimated ranges compared to the ones computed by IA.

In AA, the uncertainty of any real quantity x is represented by an affine form x̂ = g(ε1, ..., εn), which

is a first-order polynomial expressed as

x̂ = x0 + x1ε1 + ...+ xnεn = x0 +

n∑
i=1

xiεi, (3.9)

where the coefficient x0 is the central value, while the other coefficients xi are partial deviations (i =

1, 2, ..n). The εi are noise symbols, whose values are unknown but assumed to lie in the interval U =

[−1, 1]. Each noise symbol εi stands for an independent uncertainty component of the total uncertainty

of the quantity x, and the corresponding coefficient xi gives the magnitude of that component.

There are two types of arithmetic operations in AA: affine operations and non-affine operations.

Affine operations include add, subtract and multiply with a constant; non-affine operations are the

remaining ones. Affine operations can accurately be modeled, while non-affine operations have to be

approximated. Given two AA forms

x̂ = x0 +

n∑
i=1

xiεi, ŷ = y0 +

n∑
i=1

yiεi,

some basic operations on x̂ and ŷ are performed as follows

x̂± ŷ = x0 ± y0 +

n∑
i=1

(xi ± yi)εi, (3.10)

Cx̂ = Cx0 +

N∑
i=1

Cxiεi, (3.11)

x̂ŷ = x0y0 +

n∑
i=1

(x0yi + y0xi)εi + B(

n∑
i=1

xiεi) ·B(

n∑
i=1

yiεi) · εn+1, (3.12)

where C in (3.11) is a constant. Refer to [53] for a complete reference of AA.

The key feature of AA is that the same noise symbol may contribute to the uncertainty of two or

more quantities, meaning that the AA model is able to keep track of correlations between quantities,

offering the possibility of component cancelation, and, therefore, the possibility of more accurately

estimated ranges. The drawback of AA, however, is that the linearity will not be guaranteed for non-

affine operations often requring non-linear approximates, like Chebyshev approximation [53], thereby

leading to overestimated ranges for non-affine operations. Another drawback of AA is that AA analysis

is more expensive than IA since the entire expressions (often proportional in length to the number of

operations) are maintained rather than just intervals.

Affine Arithmetic vs. Interval Arithmetic. We perform comparisons between AA and IA through

two simple examples. Figure 3.1 describes the first example for range estimation of z = 2x + 3y

using AA and IA. We assume that the two input quantities are given in the ranges x ∈ [6, 14] and

y ∈ [18, 22], and, in their AA representations, share the same noise symbol ε1 as

x̂ = 10 + 3ε1 + 1ε2,

ŷ = 20− 2ε1.

30

2

x̂=10+ 3ε1+ 1ε2

3

ŷ=20−2ε1

20+ 6ε1+ 2ε2

60−6ε1

x

x

+
ẑ=80+ 2 ε2

z∈[78,82]

2

x̄=[6,14]

3

ȳ=[18,22]

[12,28]

[54,66]

z̄=[66,94]

AA

IA

z=2x+ 3y

x

x

+

66 78 80 82 94

AA

IA

Range

Figure 3.1 The first example of range estimation using AA and IA

The AA evaluation of ẑ = 2x̂ + 3ŷ gives the final AA form ẑ = 80 + 2ε2, for which the noise symbol

ε1 is cancelled, resulting in the corresponding range [78, 82] for z. The range estimated by AA is,

therefore, seven times smaller in comparison with the range estimated by IA, i.e., z̄ = [66, 94], with

which the correlation between x and y is not considered (see Figure 3.1). In fact, this example consists

only affine operations, i.e., multiplication with constant and addition, therefore the modeling errors

due to non-linear approximation do not happen.

In the second example, we compute one output z in two different ways from the inputs x and y

using IA and AA, leading to a total of four different intervals for the output given the intervals of the

inputs. Given x ∈ [2, 5] and y ∈ [7, 9], we would like to compute

z1 = (x+ y)2 − (x− y)2

z2 = 4(xy).

For evaluating the intervals of z1 and z2, we use equations (3.5 - 3.7) for IA and equations (3.10 -

3.12) for AA. First, we decompose z1 and z2 in elementary operations

o for z1:

u1 = x+ y,

u2 = x− y,

u3 = u1 · u1,

u4 = u2 · u2,

z1 = u3 − u4,

31

o for z2:

v1 = x · y,

z2 = 4 · v1.

Using IA for computing z1 and z2 gives us

o for z1:

ū1 = [min (x̄) + min (ȳ), max (x̄) + max (ȳ)] = [9, 14],

ū2 = [min (x̄)−max (ȳ), max (x̄)−min (ȳ)] = [−7,−2],

ū3 = [min2(|ū1|), max2(|ū1|)] = [81, 196],

ū4 = [min2(|ū2|), max2(|ū2|)] = [4, 49],

z̄1 = [min(ū3)−max(ū4), max(ū3)−min(ū4)] = [32,192],

o for z2:

v̄1 = [min (x̄) ·min (ȳ), max (x̄) ·max (ȳ)] = [14, 45], (x, y > 0)

z̄2 = [4min(v̄1), 4max(v̄1)] = [56,180].

Using AA, we assume the AA forms for x ∈ [2, 5] and y ∈ [7, 9] as

x̂ = 3.5 + 1.5ε1 with ε1 ∈ [−1,+1],

ŷ = 8 + 1ε2 with ε2 ∈ [−1,+1],

and compute the ranges for z1 and z2 as follows:

o for z1:

û1 = x̂+ ŷ = 11.5 + 1.5ε1 + 1ε2 ∈ [9, 14]

û2 = x̂− ŷ = −4.5 + 1.5ε1 − 1ε2 ∈ [−7,−2]

û3 = û1û1 = 132.25 + 34.5ε1 + 23ε2 + 6.25ε3 ∈ [68.5, 196]

û4 = û2û2 = 20.25− 13.5ε1 + 9ε2 + 6.25ε4 ∈ [−8.5, 49]

ẑ1 = û3 − û4 = 112 + 48ε1 + 14ε2 + 6.25ε3 − 6.25ε4 ∈ [37.5,186.5]

o for z2:

v̂1 = x̂ŷ = 28 + 12ε1 + 3.5ε2 + 1.5ε5 ∈ [11, 45]

ẑ2 = 4v̂1 = 112 + 48ε1 + 14ε2 + 6ε5 ∈ [44,180]

A summary of the four different intervals computed for the same output z given in Table 3.1. Figure 3.2

presents a comparison among the four different ranges for the output z. We actually know that the

true range of z is [56, 180], i.e., the result of IA applied to the algebraically simplified expression

z2 = 4xy. Compared to this result, AA has advantages and disadvantages:

32

Table 3.1 Evaluation of z in two different ways using IA and AA

z1 z2

IA [32, 192] [56, 180]

AA [37.5, 186.5] [44, 180]

z = z1 = z2; z1 = (x+ y)2 − (x− y)2, z2 = 4(xy),

with x ∈ [2, 5], y ∈ [7, 9], the true range is [56,180].

32 44 56 112 180 192

IA: z
2

AA: z
2

AA: z
1

IA: z
1

Range

Figure 3.2 The second example of range estimation using AA and IA

33

o For non-affine (or non-linear) operations such as the multiplication v1 = xy, AA introduces

approximation errors due to the restriction of the affine model. These approximation errors are

due to the introduction of additional noise symbols which are, however, not independent of the

existing ones. For the case of v1, the approximation error corresponds to the evaluation of the

last term in expression (3.12) and it is associated with a new noise symbol ε5.

o For longer cascades of operations as in the computation of z1, AA memorizes parts of the

computational history, which may result in the cancellation of ”error” terms, as seen when

computing the difference u3 − u4, where the terms in ε1 and ε2 show up in both u3 and u4.

This may improve in overall accuracy as illustrated by the observation, i.e., in Table 3.1 and

Figure 3.2, that the AA result z1 ∈ [37.5, 186.5] is closer to the true range z2 ∈ [56, 180] than

the IA result z1 ∈ [32, 192].

General form of an AA expression. The simple form of an AA expression representing the uncer-

tainty of a quantity x is represented in (3.9). The AA expression Ẑ for representing a quantity z that

is an output of some numerical operations can generally be written as [4]

Ẑ = Z0 + Z1 · ε1 + · · ·+ ZN · εN = Z0 +

N∑
i=1

Zi · εi , εi ∈ [−1, 1] (3.13)

where Z0 is the central value and Zi (i = 1..N) are the constants evaluated by applying the bounding

operator. The bounding operators for AA expressions are described below.

Bounding operators. In range-based analyses (IA and AA) we often need to estimate the numerical

range of uncertain quantities. This estimation is performed by using bounding operators during the

computational chain of a numerical algorithm and/or at the final numerical operation for evaluating

the range of the final computed result. For non-affine operations in AA, the bounding operator is

needed to approximate AA expressions with higher-order noise terms by AA expressions with first-

order noise terms. If we denote B(Ẑ) is the bounding operator, then the lower and upper bounds

for Ẑ are (Z0 − B(Ẑ)) and (Z0 + B(Ẑ)), respectively. Two bounding operators can be used: the

hard bounding operator and the probabilistic bounding operator [28]. The hard bounding operator

is typically used for IA to estimate the worst-case interval. For AA, both hard and probabilistic

bounding operators can be applied.

AA-based hard bounding operator. The upper hard bounding operator is defined for the extreme

cases of the noise symbols εi = ±1 and given by

Bhard(Ẑ) = |Z1|+ ...+ |ZN | =
N∑
i=1

|Zi|. (3.14)

AA-based probabilistic bounding operator. The main drawback of using a hard bounding operator

for evaluating an AA expression is the significant decrease in accuracy of estimated bounds compared

to the real ranges in practical applications. Fang [4] showed that when the number of noise symbols

increases up to N = 10, the ratio of the maximum simulated range2 over the theoretical bound

2The maximum range is obtained by conducting Monte Carlo simulations for 106 runs.

34

estimated by using a hard bounding operator is about 75%. This ratio decreases significantly down

to 25% and 7.5% when N increases up to 100 and 1000 components, respectively. The reason for this,

when using an AA-based hard bounding operator, is that the probability for all noise symbols being

equal to the maximal ε = ±1 is often extremely low.

To overcome this drawback, distribution information of the noise symbols can be incorporated to

form a probabilistic bounding operator, as suggested in [28]. We assume that the noise symbols εi

are independently and uniformly distributed random variables (RVs) in [−1, 1], with zero mean and

variance σ2
i = 1/3. By setting

SN =

N∑
i=1

Zi · εi

the general AA form for a floating-point computed result in (3.13) can be rewritten as

Ẑ = Z0 +

N∑
i=1

Zi · εi = Z0 + SN ,

where SN can be seen as a linear combination of N independently and identically distributed (IID)

random variables εi.

According to the Central Limit Theorem (CLT), the distribution of SN will converge to a normal

distribution (Gaussian) when N goes to infinity [54]. Note that the CLT makes the statement for a

sum of IID random variables. Here the case is somewhat different in the sense that we have a linear

combination of IID random variables in SN . However, if the individual components in the sum are of

similar magnitude then the CLT will hold. In fact, experiments show that the distribution of SN still

becomes Gausiian. In practical cases, for a finite number of observations, a reasonable approximation

of the normal distribution can be obtained with a sufficiently large N . The standard deviation σN

(variance σ2
N) of the distribution of SN is computed by

σN =

√√√√ N∑
i=1

Z2
i σ

2
i =

√√√√1

3

N∑
i=1

Z2
i . (3.15)

We then define the probabilistic bound of Ẑ as

Bprob(Ẑ) = K · σN , (3.16)

which is a bound with a degree of confidence K > 0 (K ∈ R+) or a bound with confidence interval

KσN . As about 99.7% of the values drawn from a normal distribution are within three standard

deviations, a practical choice is K = 3 for estimating the AA-based probabilistic bound in (3.16)

corresponding to a confidence interval of 3σN .

Numerical experiments in [4] showed that the distribution of a simple AA form x̂ can be approx-

imated by a Gaussian for N ≥ 4, in that case an AA-based probabilistic bounding operator can be

applied. If the number of noise symbols is small, an AA-based hard bounding operator is used instead.

3.3 Floating-Point Error Modeling with Affine Arithmetic

AA can be used to model the rounding errors of floating-point arithmetic computations, as presented

in the work of Fang [4]. Our work also applies AA for performing error analysis of floating-point signal

35

processing algorithms. In contrast to Fang’s work that considered only linear transforms, this work

goes beyond to include nonlinear algorithms, in particular the Levinson-Durbin algorithm presented

later in Chapter 5. We aim to estimate the rounding error bound and use that bound for bit width

allocation. In this section, we briefly describe how AA is used to model floating-point numbers and

floating-point arithmetic operations.

3.3.1 AA-Based Error Model for Floating-Point Numbers

As the uncertainty term δ of the conventional error model for a scalar floating-point number in (3.3)

is assumed to lie in the range [−u, u], it can be represented as δ = u · ε where ε is the noise symbol,

ε ∈ [−1, 1]; u = 2−p is the unit roundoff, and p is the precision. The equivalent AA model for a

floating-point number is rewritten as follow

xf = x+ x · u · ε, ε ∈ [−1, 1], (3.17)

where ε is the noise symbol representing the uncertainty of the absolute rounding error of xf due to

the finite-precision number format.

AA-based model for floating-point variables. In practice, a physical quantity or signal is often given

in some range or it can be represented by a variable. Assuming that a real variable x ∈ R is in the

range [x0 − x1, x0 + x1] with the central value x0 and the deviation x1, the corresponding AA form

of the real variable x is

x̂ = x0 + x1ε1, ε1 ∈ [−1, 1],

where ε1 is a noise symbol representing the uncertainty in the range of the real variable x.

We are now ready to represent the real variable x in floating-point number format using AA.

Simlilar to (3.17), the corresponding floating-point variable xf ∈ F, xf = fl(x), is modeled by an AA

expression x̂f as

x̂f = x̂+ x̂ · u · ε2, ε2 ∈ [−1, 1],

with a new noise symbol ε2 for representing the uncertainty of the absolute rounding error of floating-

point variable xf . Note that x̂ = x0+x1ε1, the AA model for a floating-point variable is then rewritten

as follow

x̂f = (x0 + x1ε1) + (x0 + x1ε1) · u · ε2. (3.18)

Range component and Rounding error component. The AA form in (3.18) describes the uncer-

tainty in a floating-point variable xf as a sum of two components: i) the numerical range component

(x0 +x1ε1) depending on the noise symbol ε1, and ii) the rounding error component (x0 +x1ε1) ·u · ε2
depending on both noise symbols ε1 and ε2. Apparently, the rounding error component depends on

both the range component and the unit roundoff, as it is a property of any floating-point number.

The rounding error component is a second-order term with respect to the noise symbols, which

however violates the requirement of having only first-order noise symbols in an AA representation.

To make expression (3.18) comply with the AA representation, a bounding operator B(·) is applied

on the range component of the rounding error component, i.e., B(x0 + x1ε1), such that by using a

bounding operator the rounding error component can be approximated as a first order term of the

noise symbol ε2 only, i.e.,

(x0 + x1ε1) · u · ε2 ≈ B(x0 + x1ε1) · u · ε2,

36

or

x̂f ≈ (x0 + x1ε1) +B(x0 + x1ε1) · u · ε2. (3.19)

We denote x̂rf and x̂ef as the range- and rounding error components, respectively. Using (3.19), the

AA model for a floating-point variable xf is rewritten in a convenient representation as

x̂f = x̂rf + x̂ef , (3.20)

with

x̂rf = (x0 + x1ε1), (3.21)

x̂ef = B(x̂rf) · u · ε2. (3.22)

The bounding operator B(·) can be a hard bounding operator Bhard defined in (3.14) or a proba-

bilistic bounding operator Bprob defined in (3.16). The convenient model obtained with a bounding

operator in these expressions above, however, comes at the cost of distorting the dependency of the

last component onto the noise symbol ε1.

Multiple noise symbols. In general, the variable x can be perturbed by multiple noise symbols

ε1, ε2, . . . εN as

x̂ = x0 +

N∑
i=1

xiεi, εi ∈ [−1, 1],

where N is the number of noise symbols for x. The AA model for the floating-point variable xf is

generalized as follows

x̂f = x̂rf + x̂ef , (3.23)

x̂rf = x0 +

N∑
i=1

xiεi, (range component) (3.24)

x̂ef = B(x̂rf) · u · εx, (rounding error component) (3.25)

where εx is a new noise symbol representing the uncertainty of the rounding error of the floating-point

variable xf , εx ∈ [−1,+1].

3.3.2 AA-Based Error Models for Basic Floating-Point Operations

Given real variables x, y and z, an unary operator z = f1(x) and a binary operator z = f2(x, y),

we present here the AA-based models for basic unary and binary floating-point operations includ-

ing: addition, addition/multiplication with a constant, multiplication, reciprocal, division and square

root. Among these operations, the addition and addition/multiplication with a constant are affine

operations, while the rest are non-affine operations.

We assume that the range components of two floating-point variables xf and yf depend on N noise

symbols: ε1, ε2, . . . , εN . The AA-based models for floating-point variables xf and yf are

x̂f = x̂rf + x̂ef = x̂rf +B(x̂rf)uεx = (x0 +

N∑
i=1

xiεi) +B(x0 +

N∑
i=1

xiεi)uεx, (3.26)

ŷf = ŷrf + ŷef = ŷrf +B(ŷrf)uεy = (y0 +

N∑
i=1

yiεi) +B(y0 +

N∑
i=1

yiεi)uεy, (3.27)

37

where the rounding error components of the two floating-point numbers - x̂ef and ŷef - are modeled by

the two noise symbols εx and εy, respectively. The AA form for the floating-point computed variable

zf is

ẑf = ẑrf + ẑef . (3.28)

The task here is to determine ẑf in terms of x̂f and ŷf . For affine operations, ẑf can be represented

accurately by expanding and rearranging the AA forms of input operands x̂f and ŷf . For non-affine

operations (e.g., multiplication), ẑf cannot be exactly represented as an affine combination of input

operands but has to be approximated, thereby causing the approximation error [53].

The range component ẑrf and the rounding error component ẑef of the AA form ẑf for the computed

result of binary- and unary-, affine- and non-affine floating-point operations are evaluated by the

following expressions:

Addition: z = x± y

ẑrf = x̂rf ± ŷrf

= (x0 ± y0) +

N∑
i=1

(xi ± yi)εi

ẑef = x̂ef ± ŷef +B(ẑrf)uεz

= B(x̂rf)uεx ±B(ŷrf)uεy +B(ẑrf)uεz

Addition with a constant: z = x± C

ẑrf = x̂rf ± C

= (x0 + C) +

N∑
i=1

xiεi

ẑef = x̂ef +B(ẑrf)uεz

= B(x̂rf)uεx +B(ẑrf)uεz

Multiplication with a constant: z = Cx

ẑrf = Cx̂rf

= Cx0 +

N∑
i=1

Cxiεi

ẑef = Cx̂ef +B(ẑrf)uεz

= CB(x̂rf)uεx +B(ẑrf)uεz

Multiplication: z = xy

ẑrf = x̂rf · ŷrf

≈ x0y0 +

N∑
i=1

(x0yi + y0xi)εi + B(

N∑
i=1

xiεi) ·B(

N∑
i=1

yiεi) · εN+1

ẑef ≈ B(ŷrf) · x̂ef +B(x̂rf) · ŷef +B(ẑrf) · u · εz
≈ B(ŷrf) ·B(x̂rf) · u · εx +B(x̂rf) ·B(ŷrf) · u · εy +B(ẑrf) · u · εz

38

In the above expressions, C is a constant, B(·) is the hard- or probabilistic bounding operator. Every

single floating-point operation generates a rounding error whose size depends on the current working

precision (or the unit roundoff u) and the magnitude of the result itself, represented by the term

B(ẑrf) ·u ·εz and a distinct noise symbol εz in the error component ẑef in each operation. The rounding

error component ẑef includes the rounding error of the current operation, associated with the noise

symbol εz, and the rounding error propagated from the input operands.

For the multiplication z = xy, the last term in the range component is an approximation of the

product (
∑N
i=1 xiεi) · (

∑N
i=1 yiεi), as the multiplication is a non-affine operation. The approximation

term in the multiplication is associated with a new noise symbol εN+1, which must be distinct from

all other noise symbols used so far. It has been shown in [53] that the approximated range for the

multiplication, in the worst case, can be four times the true range. Note that for evaluating the

rounding error component ẑef of the floating-point multiplication, we skip the term

x̂ef · ŷef = B(x̂rf)uεx ·B(ŷrf)uεy = B(x̂rf)B(ŷrf)εxεy · u2,

as this term is of order u2, it is extremely small compared to the other rounding error terms scaled

by the unit roundoff u.

The division of two floating-point operands z = x/y is computed via the reciprocal and multiplica-

tion as z = x×(1/y). For the reciprocal z = 1/y, which is a non-affine operation, we use the min-range

approximation [53]. The AA models for the floating-point division and reciprocal are presented in the

following.

Division: z = x/y = x× (1/y)

Reciprocal: z = 1/y

ẑrf = fmin-range
(
1/ŷrf

)
(3.29)

= α · ŷrf + C0 + C1 · εN+1

= (α · y0 + C0) +
N∑
i=1

yiεi + C1 · εN+1

ẑef = B
(
fmin-range

(
1/(ŷrf)2

))
· ŷef +B(ẑrf) · u · εz (3.30)

= B
(
fmin-range

(
1/(ŷrf)2

))
·B(ŷrf) · u · εy +B(ẑrf) · u · εz,

where the real coefficients α, C0 and C1 are used to approximate a non-affine representation (due to

the reciprocal) by an affine form. The coefficient C1 is called the approximating error associated with

a new noise symbol εN+1. For IA and AA, the reciprocal of an interval is defined if that interval

does not contain zero. We assume the floating-point variable yf lies in a positive range [a, b], with

0 < a < b. Given an AA form for the range component ŷrf = y0 +
∑N
i=1 yiεi, the lower and upper

bounds - a and b - corresponding to the range component can be computed as

a = y0 −
N∑
i=1

|yi|, b = y0 +

N∑
i=1

|yi|,

39

and the coefficients α, C0 and C1 of the min-range approximation fmin-range
(

1/ŷrf

)
of a reciprocal

1/ŷrf are evaluated as follows [53]

α = −1/b2

d1 = (1/a)− α · a

d2 = (1/b)− α · b

C0 = (d1 + d2)/2

C1 = (d1 − d2)/2.

For the case of a negative range, i.e., a < b < 0, we need to take the absolute values of the bounds,

i.e., a = |a| and b = |b|, and then swap them before performing the same calculations as above (to

make sure b is always the larger coefficient in absolute value); additionally, after the calculation of C0,

its sign needs to be inverted.

Similarly, the AA form for the rounding error component ẑef of a floating-point reciprocal is ap-

proximated by using the min-range approximation. Be noted that the min-range approximation is

applied to the inverse of the square of range component, then the bounding operator is applied. The

detailed derivation is presented in Appendix A. Similar to the other floating-point operations, a new

noise symbol εz associated with the last error term of ẑef is introduced to represent the rounding error

of the current reciprocal operation.

Square root: z =
√
x = sqrt(x)

ẑrf = fChebyshev
(√

x̂rf

)
= α · x̂rf + C0 + C1 · εN+1

= (α · x0 + C0) +

N∑
i=1

xiεi + C1 · εN+1

ẑef =
1

2
B
(
fmin-range

(
1/ẑrf

))
· x̂ef +B(ẑrf) · u · εz.

=
1

2
B
(
fmin-range

(
1/ẑrf

))
·B(x̂rf) · u · εx +B(ẑrf) · u · εz.

We follow the Chebyshev approximation presented in [53] to approximate the range component ẑrf
of the AA model for a floating-point square root z =

√
x. The rounding error component ẑef is

approximated by using the min-range approximation, as used before by the AA model for floating-

point reciprocal. The detailed derivation for the rounding error component ẑef of the floating-point

square root is presented in Appendix B. We summarise here only the main expressions.

For the case of a square root, the real coefficients α, C0 and C1 have similar meanings as for the

case of a reciprocal. However, the evaluation of these coefficients is different for the square root. The

square root is defined for non-negative numbers only. As
√

0 = 0, we only consider the cases of positive

ranges. We assume the floating-point variable xf lies in a positive range [a, b], with 0 < a < b. Given

the range component x̂rf = x0 +
∑N
i=1 xiεi, the lower and upper bounds corresponding this range

component are

a = x0 −
N∑
i=1

|xi|, b = x0 +

N∑
i=1

|xi|,

40

x̂ f
r
=1+0.1ε1

x̂ f
e
=B (x̂ f

r
)u εx

ẑ 1
r
=2+0.2ε1

ẑ 1
e=2 B (x̂ f

r)uεx
+B (ẑ 1

r)uεz1

ẑ 2
r
=5+0.2 ε1

ẑ 2
e=2B (x̂ f

r)uεx
+B (ẑ 1

r)uεz1
+B (ẑ 2

r
)uεz2

X

ẑ 3
r
=10+0.4ε1+5ε2+0.2 ε3

ẑ 3
e=2B (ŷ f

r)B(x̂ f
r)uεx

+B (ŷ f
r)B(ẑ 1

r)uεz1
+B (ŷ f

r)B (ẑ 2
r)uεz2

+B (ŷ f
r)B (ẑ 2

r)uε y
+B (ẑ 3

r)uεz3

+

x̂ f
2 3

ŷ f
r
=2+1ε2

ŷ f
e
=B (ŷ f

r
)u εy

ŷ f

X

Figure 3.3 AA-based evaluation of a sequence of floating-point operations

for computing z = (2x+ 3)y

and the coefficients α, C0 and C1 of the Chebyshev approximation fChebyshev
(√

x̂rf

)
of the square

root are evaluated as follows [53]

α = 1/(
√
a+
√
b)

d1 = (
√
a+
√
b)/4

d2 =
√
ab/(
√
a+
√
b)

C0 = (d1 + d2)/2

C1 = (d1 − d2)/2.

Error propagation in a sequence of floating-point operations

For a sequence of floating-point operations, the rounding error is propagated through that sequence,

described by the example shown in Figure 3.3. This example demonstrates the AA-based evaluation

of a sequence of floating-point operations for computing z = (2x+ 3)y, which can be split into three

sequential operations:

z1 = 2x, z2 = z1 + 3, z = z3 = z2y.

We assume the input operands x and y have the AA forms as follows

x̂f = x̂rf + x̂ef = (1 + 0.1ε1) +B(x̂rf)uεx

ŷf = ŷrf + ŷef = (2 + 1ε2) +B(ŷrf)uεy.

We would like to demonstrate how the rounding errors in a sequence of operations are propagated.

We, therefore, express the rounding error components in a more generic representation during the

computational sequence, while the range components are explicitly evaluated. The evaluated result is

shown in Figure 3.3. We assume a hard bounding operator Bhard is used and the unit roundoff u can

41

be generic. The final result is explicitly described as

ẑrf = 10 + 0.4ε1 + 5ε2 + 0.2ε3,

ẑef = 6.6uεx + 6.6uεz1 + 15.6uεz2 + 15.6uεy + 15.6uεz3 .

For the range components, the evaluation of the multiplication, i.e., a non-affine operation, generates

a new noise symbol ε3 added to the final AA form, while the evaluations of the other affine operations

do not. For the rounding error components, at least one new noise symbol, associated with the range

component of the current computed result, is generated after the evaluation of each operation to

represent the rounding error of that operation, regardless of using non-affine or affine operations.

For non-affine operations, the rounding errors of the inputs are propagated and scaled over those

operations. All the rounding errors are captured and propagated along the entire computational

chain allowing for an accurate estimate of the final rounding error.

3.4 AA-Based Error Model for a Fused Multiply-Accumulate

3.4.1 Motivation

The fused multiply-accumulate (FMA) floating-point operation performs a multiplication followed by

an addition z = xy + w within one atomic operation and with one single rounding. According to

Higham [5], an FMA performs only one rounding and therefore has the conventional error model as

follows

ẑ = fl(xy + w) = (xy + w)(1 + δ), |δ| ≤ u, (3.31)

which implies that (xy + w) is computed exactly and then rounded to the current working precision.

In general, FMA makes it possible to achieve, thanks to its superior benefits, more accurate numer-

ical results and better performance3 for many applications including dot products, matrix multiplica-

tions and polynomial evaluations. Linear transforms can be efficiently mapped to FMAs as showed

in [55]. FMA is particularly very useful in the compensated floating-point summation [5] where the

rounding error is estimated along with the evaluation of the algorithm at hand and then used as a

correction term later to reduce the overall rounding error. Ogita et al. [56] suggested the error free

transformations (EFTs) based on the use of FMA for accurate evaluations of the rounding errors of

floating-point multiplication and addition at the same working precision. Similarly, the rounding error

of an FMA can be computed exactly by using EFTs, studied by Boldo and Muller [57, 58]. Those

findings allow for implementations of EFT-based compensated algorithms for accurate floating-point

dot-product and polynomial evaluation [59, 60]. FMA is therefore a desirable functional logic in

floating-point units [61, 62].

However, existing work simply uses the conventional error model of FMA as shown in (3.31). To

our knowledge, there exists no other suggestion for an error model of FMA using AA in the literature.

Due to the importance of FMA, we suggest the first AA-based error model for FMA. We present the

model in detail in the following.

3This is achievable only if the FMA is as fast as an addition or multiplication separately, and the application at hand

needs to have reasonable balanced addtions/multiplications.

42

3.4.2 AA-Based Error Model for FMA

Basically, an FMA is a combination of an exact multiplication (i.e., without rounding) followed by an

addition; the two operations are performed with only one final rounding. Therefore, our suggestion

for an AA error model for the FMA is as follows. We combine the AA model of a floating-point mul-

tiplication with the AA model of a floating-point addition in a sequential manner, without introducing

the rounding error term in the multiplying step, to obtain the AA model for a floating-point FMA.

Details for obtaining the AA model of an FMA are shown in two steps by the following equations:

z = f3(x, y, w) = xy + w = v + w, v = xy.

Step 1. Multiplication without rounding: v = xy

v̂rf = x0y0 +

N∑
i=1

(x0yi + y0xi)εi +B(

N∑
i=1

xiεi) ·B(

M∑
i=1

yiεi) · εt,

v̂ef = B(x̂rf) · ŷef +B(ŷrf) · x̂ef ,

Step 2. Addition: z = v + w

ẑrf = v̂rf + ŵrf ,

ẑef = v̂ef + ŵef +B(ẑrf) · u · εkz .

Finally, the AA form for z = xy + w is

ẑf = ẑrf + ẑef .

3.5 Estimation of Rounding Error Bound from AA Form

The range component ẑrf and error component ẑef of an affine form ẑf modeling the corresponding

range and rounding error of a floating-point computed result z = f1(x), z = f2(x, y) of the basic

operations, or z = f(x, y, w) of a fused operation can be used to derive the respective numerical range

and rounding error bound by applying the bounding operator. We are interested in the rounding error

and apply the bounding operator B(·) on the error component ẑef for estimating the rounding error

bound of variable z as follows

Emax,z = B(ẑef), (3.32)

where Emax,z is the estimated rounding error bound.

3.6 AA-Based Error Model versus Conventional Error Model

The previous sections have described how AA is used to model floating-point arithmetic. Here we wish

to know the differences between the conventional error model (subsection 3.2.1) and the AA-based

error model (subsection 3.3.1) in representation and evaluation of floating-point arithmetic.

For the representation of a floating-point number, the AA-based error model in (3.17) is equivalent

to the conventional error model in (3.1), in which the relative error δ is replaced by the unit roundoff

u and the noise symbol ε.

43

However, for the evaluation of floating-point arithmetic operations, the AA-based error model is

different from the conventional error model. The conventional error model in equation (3.4) uses a

symbol δ to evaluate the (relative) rounding error of a single floating-point operation. For a sequence of

floating-point operations, the conventional error model first starts with different symbols δ1, δ2, . . . , δn

for the rounding errors of different operations in that sequence. Then for simplicity, it is assumed

that all these symbols are identical and therefore one sole symbol δ is necessary for the representation

and evaluation of both a single floating-point number/operation and a sequence of floating-point

operations. This assumption often leads to a final error expression consisting of high order terms in

δ, i.e., some power of δ depending on the complexity of the algorithm and the problem size. As a

consequence, the rounding error bound derived by the conventional error model is very conservative

and often depends on one or several orders of the problem size, making conventional error analysis

unsuitable for bit width allocation.

In AA-based error modeling, each rounding error term in a sequence of floating-point operations is

represented by a distinct noise symbol εi, and all the rounding error terms are captured, potentially

offering error cancelation. The final AA-based rounding error expression is a first-order polynomial

of all noise symbols allowing for the use of the central limit theorem and the probabilistic bounding

operator (subsection 3.2.3). The error bound estimated by applying an AA-based probabilistic bound-

ing operator is, therefore, much closer to the real errors in practical applications (which is presented

in more detail in Chapter 5), making AA-based error analysis a practical approach for bit width

allocation. The downside of AA-based error analysis is that it is more expensive to do.

3.7 Conclusions

This chapter has presented the fundamentals of floating-point error analysis using affine arithmetic.

The core theory is based on AA error models for floating-point numbers and floating-point arithmetic,

allowing for the representation and evaluation of floating-point computations with a hard- or proba-

bilistic bounding operator. In this chapter, we also suggested an AA-based error model for a fused

multiply-accumulate operation z = xy + w, which, to our knowledge, is the first time AA is used to

model a floating-point FMA.

These fundamentals will be the basis for building a Matlab-based framework presented in Chapter 4,

and they are necessary for the automation of floating-point error analysis and bit width allocation of

floating-point signal and speech processing algorithms, presented later in Chapter 5.

44

4
Floating-Point Error Analysis Using Affine

Arithmetic: A Matlab-based Framework

4.1 Introduction

4.1.1 Motivation

One main goal of this work is to perform the floating-point rounding error analyses of signal processing

algorithms and iterative algorithms in real world applications. Therefore, usability and scalability are

two desirable characteristics of a software tool used to perform floating-point rounding error analysis.

Using the AA-based error model for floating-point arithmetic presented in Chapter 3, we implement

a Matlab-based framework to model and estimate the rounding error bound for arbitrary floating-

point algorithms. Matlab was chosen because of its widespread use in many areas including signal

processing and scientific computing.

The basic idea behind our Matlab-based tool is to define a new class in Matlab, the AAFloat class,

for representing affine forms of floating-point operands and executing floating-point operations. Our

motivation of implementing a Matlab class rather than a set of functions for AA-based error modeling

is to enable users to reuse their existing Matlab code with minimal modifications. Our implemented

framework supports commonly-used floating-point operations, including {+,−, ∗, /, }, square root

(sqrt), and fused multiply-add, and is able to fully operate with vector and matrix operations of

Matlab. These features allow for best reuse of existing Matlab codes (with some minor changes) to

effectively conduct rounding error estimation for floating-point algorithms.

4.1.2 Related Software Tools

Table 4.1 presents a comparison between this thesis and other existing work performing finite-precision

error analysis using AA.

Fang et al. [4, 28, 42] employed affine arithmetic to model rounding error of fixed-point and floating-

point implementations of linear transform algorithms. The key idea applied in Fang’s work is to use

an AA-based probabilistic bounding operator to obtain a reliable estimate of the final rounding error,

thereby allowing for deriving an optimal uniform bit with configuration. The tool Fang built is

automatic and introduces probabilistic bounds, but it is not integrated with Matlab. Also, linear

transforms require only additions and multiplications by constants.

45

Table 4.1 Existing work on AA-based finite-precision error analysis

Fang [4, 28, 42] MiniBit [24] MiniBit+ [25] This thesis

Number format Fixed-point Fixed-point

Floating-point Floating-point Floating-point

Bit width configuration Uniform Multiple Multiple Uniform

Supported arithmetic +,−,×, / +,−,× +,−,× +,−,×, /, fma, sqrt
Bounding operator Hard, Hard Hard Hard,

Probabilistic Probabilistic

Language C++ C++ (& ASA) C++ (& ASA) Matlab

Custom-precision SystemC, - - MPFR

FP library CMUfloat

Example given FIR25, WHT64, Polynomial 4, RGB to YCbCr, General dot

DCT8, IDCT8, 2x2 Matrix Mul., B-Splines, products with

IIR (2nd-order), RGB to YCbCr, DCT8. vector length

Cholesky (range B-Splines, DCT8. up to 1000,

estimation only). Levinson-Durbin

(range + error

estimation).

Max. number of error

terms in examples < 500 < 100 < 100 ≈ 7000

Lee et al. [24] presented MiniBit, an automatic and static approach for optimizing bit width of fixed-

point feedforward designs, which was based on AA combined with adaptive simulated annealing for

obtaining a multiple fraction bit width configuration for fixed-point arithmetic. In contrast to Fang’s

work, MiniBit estimates the worst case error of fixed-point algorithms. MiniBit was later extended to

floating-point arithmetic in MiniBit+ [25].

The existing work of Fang, MiniBit and MiniBit+ were implemented using C/C++. The usage

of those software tools, however, was described quite briefly in the literature. These facts expose

limitations to common users who may want to have an ease-of-use software tool in order to quickly

perform error analyses for their own numerical algorithms with very little effort. It is also not easy

for Matlab users to transfer their existing .m scripts into C/C++ codes in order to run the desired

error analysis programs.

This motivates us to implement our software tool that allows for an accurate and convenient es-

timation of the rounding errors of floating-point algorithms in the Matlab environment, and to our

knowledge, it is the first Matlab tool to perform floating-point error analysis based on AA models.

4.1.3 Framework Overview

A visualization of the proposed Matlab-based framework is presented in Figure 4.1. The framework

consists of two main tasks: Error Bound Estimation and Error Verification, displayed on the left and

right paths of Figure 4.1, respectively. The Matlab framework supports both tasks.

The Error Bound Estimation task is performed by using the AAFloat class in Matlab. Given

a floating-point algorithm that consists of arithmetic expressions performed at a working precision

p, all floating-point variables of the algorithm are first converted into AAFloat objects, which are

AA forms representing respective floating-point operands. Then all floating-point expressions are

46

AA Representation

AA Evaluation

FP operands

AA forms as
row vectors

AA error bound

Matlab program
performing

custom-precision
FP algorithm

MEX files

(MPFR C functions
for custom-precision

FP operations)

Floating-point
Algorithm

Max. simulation error

MPFR
Library

Error Bound Estimation Error Verification
by simulation

OER =
AA error bound

Max. simulation error

via AAFloat Class

Figure 4.1 Matlab-based framework for AA-based floating-point round-

ing error evaluation and verification

47

evaluated following corresponding affine arithmetic expressions, and the AA error bounds of the

desired computational quantities are estimated. Generally, the user does not need to change his/her

Matlab code to use the tool.

For Error Verification task, we conduct extensive simulations on a sufficiently large set of testing

samples in order to determine the maximum rounding error of the algorithm at working precision p.

Over-Estimation Ratio: We define the Over-Estimation-Ratio (OER)

OER =
AA error bound

Maximum simulation error
. (4.1)

as the ratio of the estimated AA-based rounding error bound over the actual maximum simulation

error. We use this ratio to evaluate the tightness of the bound and the reliability of the AA-based

error analysis technique. Ideally, an OER of 1.0 is desirable, meaning that the bound is tight, but

this is in general not achievable. In practice, one hopes for an OER larger than 1.0 but very close to

1.0. In this case the AA-based rounding error bound can be seen as a reliable estimate.

In the remaining chapter, details on the implementations of the Error Estimation task and the Error

Verification task in Figure 4.1 are presented.

4.2 Error Estimation using The AAFloat Class

4.2.1 AAFloat Overview

We present in this section the AAFloat class in Matlab, corresponding to the left part in Fig. 4.1, to

implement AA error models for floating-point arithmetic.

With the AAFloat class, from an existing code (.m file) executing an algorithm in Matlab, users

can easily obtain another code that models the floating-point rounding error of some computational

quantities by replacing floating-point computational operations in the original code with respective

Matlab operators and methods supported by the class to evaluate those floating-point operations

following affine arithmetic. Due to the operator overloading feature by using the AAFloat class in

Matlab, the user in general only needs to make minimal modifications in the original Matlab code.

The rounding error analysis task, therefore, can be performed effectively from an existing .m file in

the same Matlab working environment, which typically allows for high productivity in comparison

with other C-based software.

%--------------------------- %---

% original code: dot-product % AA-based error analysis with AAFloat

%--------------------------- %---

% AAFloat_INIT;

% x = AAFloat(-a*ones(n,1), a*ones(n,1), p);

% y = AAFloat(-b*ones(n,1), b*ones(n,1), p);

s = x(1) * y(1); s = x(1) * y(1);

for i=2:n for i=2:n

s = s + x(i) * y(i); s = s + x(i) * y(i);

end; end;

E_BOUND_s = ebound(s);

48

The two segments of code above briefly show how the original Matlab code for computing a sequential

dot-product is reused for the AA-based rounding error evaluation with the AAFloat class. Details on

the implementation of methods and functions in the AAFloat class are presented later.

Terms and Notations

In the following, we will describe the implementation of the AAFloat class in Matlab for conducting

AA-based error estimation. We will use the terms ”class” or ”tool” or ”software tool” to refer to our

AAFloat class implemented in this work.

We follow Matlab notation when presenting AAFloat class methods and examples. The upper case

symbols like X, Y, A, B, etc. denote double matrices in Matlab, while lower case symbols like x, y,

etc. denote double vectors or scalars. The upper case symbols suffixed by AA like X AA, Y AA, etc.

denote AAFloat matrices, whose elements are AAFloat objects representing respective floating-point

operands. Similarly, the lower case symbols suffixed by AA like x AA, y AA, etc. denote AAFloat

vectors or scalars. The working precision of floating-point numbers is denoted with p, which is a

scalar integer value.

Representation of floating-point operand in AAFloat class

The first implementation issue is to effectively represent the input floating-point operands as input

AA forms that consist of the range components and error components (see Section 3.3). Affine forms

can become very complex expressions after multiple arithmetic operations have been applied to the

input form. In that context, the use of symbolic computation is one possible choice to represent the

affine forms, which however potentially makes the software tool for affine evaluation very costly with

respect to memory usage and execution time.

In contrast to a symbolic framework, we represent AA models of floating-point operands as numerical

row vectors in the AAFloat class. More specifically, each affine form corresponding to one floating-

point operand is represented in Matlab workspace by two row vectors: one for the range component

and the other one for the rounding error component. Additionally, we use one extra scalar to store

the working precision of the floating-point operand.

In short, each floating-point operand x (a scalar) is represented by one instance x AA (object) of

the AAFloat class, whose class properties are two row vectors x AA.r and x AA.e for representing

range- and error components, and one scalar x AA.p for storing precision. Each element of the two

row vectors is used to store either the central value or the partial deviation associated with respective

noise symbol εi. For the range component, x AA.r(1) stores the central value while entry x AA.r(i+1)

stores the coefficient for the ith noise term εi. Similarly, for the rounding error component, the entry

x AA.e(i) stores the coefficient for the ith noise term.

For example, a floating-point variable x represented at single-precision (p = 24) and having the

affine form x̂ = 1 + 2ε1 − 3ε2 + 0.5ε3 is generated and represented in Matlab with the AAFloat class

as follows:

>> AAFloat_INIT

>> x_AA = AAFloat([1 2 -3 0.5], 24)

x_AA =

AAFloat matrix of size [1 x 1]

(1,1)

49

r: [1 2 -3 0.5]

e: 3.8743e-07

p: 24

4.2.2 AAFloat Methods

Table 4.2 lists the implemented methods for the AAFloat class. One prominent feature of the AAFloat

class is that it allows for vectorization of floating-point computations following AA models. It auto-

matically works for vectors and matrices in Matlab. This means that vectors and matrices of AAFloat

objects can be generated in the Matlab workspace by one single call to the class constructor method,

and floating-point arithmetic operations accept input operands as Matlab vectors and matrices. With

this feature, the transfer from the existing .m code executing a floating-point application into the .m

code performing floating-point error estimation for the same application can be carried out with only

some minor changes in the original code, most of the code for algorithmic computations is reusable.

The following describes in detail the features of the AAFloat class.

Initialization of the AAFloat class

The initialization of the AAFloat class must be performed with the function AAFloat INIT before any

call to other methods of the class. This initialization function creates in Matlab workspace one global

variable AAFloat MAX INDEX used to capture the maximum number of noise terms occurring in all

existing affine forms.

AAFloat MAX INDEX has two fields AAFloat MAX INDEX.nR and AAFloat MAX INDEX.nE for storing

and updating the maximum number of error terms in the range component and (rounding) error

component of all affine forms, respectively. Because new noise terms can continuously be generated

during the creation of a new affine form or the evaluation of a floating-point operation based on AA,

the values of fields .nR and .nE are, therefore, continuously updated within those operations in order

to guarantee that the maximum numbers of noise terms in range- and error components are accurately

tracked. Once initialized, the fields .nR and .nE of AAFloat MAX INDEX are set to zero.

Class constructor method

The class constructor method AAFloat is used to generate an AAFloat matrix from specified numerical

ranges of floating-point input operands and respective working precision. Note, that AAFloat vector

and scalar are special cases of AAFloat matrix. The AAFloat matrix is a Matlab matrix of which

each element is one AAFloat object that models one floating-point scalar variable. We implemented

a variety of syntax variants for the AAFloat constructor method (see Table 4.2) as described below.

1. X AA = AAFloat(A,B,p) generates an AAFloat matrix to model a floating-point matrix X using

affine arithmetic. The numerical ranges of the floating-point matrix X being modeled are defined

by input matrices A and B. Matrix A defines the lower bounds and matrix B defines the upper

bounds for the intervals of the elements of X, for which the numerical range of element X(m,n)

is the interval specified by [A(m,n), B(m,n)], where m and n are matrix indices. Matrices A

and B must have the same size and, therefore, X AA has the same size as A and B. The scalar p

defines the working precision of X (see Equ. (3.3)) and must be an integer.1

1As this work performs uniform bit width allocation, all floating-point variables and operations are assume to have

the same precision p.

50

Table 4.2 List of methods for AA-based evaluation of floating-point op-

erations via the AAFloat class

Name Matlab syntax Description

AAFloat INIT AAFloat INIT Initialization of AAFloat

AAFloat X AA = AAFloat(A,B,p) Class constructor

X AA = AAFloat(A,B)

X AA = AAFloat(a,p)

X AA = AAFloat

add Z AA = add (X AA,Y AA,prob) addition

sub Z AA = sub (X AA,Y AA,prob) subtraction

mmul Z AA = mmul(X AA,Y AA,prob) matrix multiplication

mul Z AA = mul (X AA,Y AA,prob) element-wise multiplication

inv Z AA = inv (Y AA,prob,userrange) element-wise reciprocal

div Z AA = div (X AA,Y AA,prob,userrange) element-wise division

sqrt Z AA = sqrt(X AA,prob,userrange) element-wise square root

fma Z AA = fma (X AA,Y AA,W AA,prob) element-wise fused multiply-add

sum Z AA = sum (X AA,prob) summation

plus Z AA = X AA + Y AA add with default bound

minus Z AA = X AA - Y AA sub with default bound

mtimes Z AA = X AA * Y AA mmul with default bound

times Z AA = X AA .* Y AA mul with default bound

rdivide Z AA = X AA ./ Y AA div with default bound

ebound ERR BOUND = ebound(Z AA,prob) estimate error bound

rbound RANGE BOUND = rbound(Z AA,prob) estimate range bound

The parameter prob specifies the type and confidence interval of the bound estimated within the

evaluating function: a hard bound corresponds to prob = 1; a probabilistic bound corresponds to

0 < prob < 1; the default setting is prob = 0.9973 (99.73% or 3σ, see 3.2.3). The parameter

userrange specifies the desired range of the user for handling special cases, i.e., division by zero and

square root of a negative range; see subsection 4.2.2.

51

2. X AA = AAFloat(A,B) generates an AAFloat matrix to model a floating-point matrix X in single-

precision number format (p=24) using affine arithmetic. Matrices A and B have the same meaning

as described in the first syntax variant of the AAFloat constructor method.

3. X AA = AAFloat(a,p) generates an AAFloat object to model a floating-point variable x in pre-

cision p using affine arithmetic. The entries of input vector a specify elements of the range

component of the respective AA form, i.e., the central value x AA.r[1] corresponds to a[1] and

other terms x AA.r[i] correspond to a[i] (i = 2, 3, etc.)2.

4. X AA = AAFloat, with no input argument, generates one AAFloat object that models a floating-

point variable in the range [-1,+1] in single-precision format (p=24).

In all the syntax variants for the AAFloat constructor method above, users need to specify the

range component x AA.e and the precision p only. The rounding error component x AA.e is implicitly

estimated from the value of range component and the precision using the bounding operator B(·), as

shown by Equ. (3.25).

Example 4.1. The following is an example of using the AAFloat constructor method to generate

an AAFloat matrix X AA to represent a single-precision floating-point 2-by-2 matrix X having four

elements: X(1,1) ∈ [−1, 1], X(1,2) ∈ [−2, 2], X(2,1) ∈ [−3, 3] and X(2,2) ∈ [−4, 4].

>> format short

>> AAFloat_INIT

>> X_AA = AAFloat ([-1,-2; -3,-4], [1,2; 3,4], 24)

X_AA =

AAFloat matrix of size [2 x 2]

(1,1)

r: [0 1]

e: 5.9605e-08

p: 24

(1,2)

r: [0 0 2]

e: [0 1.1921e-07]

p: 24

(2,1)

r: [0 0 0 3]

e: [0 0 1.7881e-07]

p: 24

(2,2)

r: [0 0 0 0 4]

e: [0 0 0 2.3842e-07]

p: 24

Example 4.2. The second example generates an AAFloat column vector y AA of size 2-by-1 to

represent a single-precision floating-point vector y having two elements: y(1,1) ∈ [−5, 10] and

y(2,1) ∈ [3, 7].

>> y_AA = AAFloat ([-5; 3], [10; 7])

y_AA =

AAFloat matrix of size [2 x 1]

(1,1)

2Note that the index in Matlab starts from 1 while the index in the analytical AA model in (3.23 - 3.25) starts from

0, therefore the central value x0 of AA form corresponds to a[1] and x AA.r[1] in Matlab.

52

r: [2.5000 7.5000]

e: 5.9605e-07

p: 24

(2,1)

r: [5 0 2]

e: [0 4.1723e-07]

p: 24

Example 4.3. This example generates an AAFloat object x AA to represent a floating-point variable

x represented at precision p=30 and having the affine form x̂ = 1 + 2ε1 + 0ε2 − 3ε3 − 1ε4.

>> x_AA = AAFloat ([1, 2, 0, -3,-1], 30)

x_AA =

AAFloat matrix of size [1 x 1]

(1,1)

r: [1 2 0 -3 -1]

e: 6.5193e-09

p: 30

Vectorization of floating-point operations

The AAFloat class allows for an easy AA-based evaluation of vectorized floating-point operations. All

implemented operations within the AAFloat class can operate with inputs X AA, Y AA and W AA as

vectors or matrices of the AAFloat class or double class provided that at least one input operand

belongs to the AAFloat class.

The implemented operations can be divided into two groups: the basic operation group and spe-

cialised operation group. The basic floating-point operation group includes addition (add), subtraction

(sub), matrix multiplication (mmul), element-wise multiplication (mul), reciprocal (inv), division (div)

and square root (sqrt), and their respective Matlab operator overloading functions, i.e., plus, minus,

mtimes, times, and rdivide, respectively. Operator overloading functions allow for a convenient

usability of standard Matlab operators {+,−, ∗, .∗, ./}. The reciprocal, division and square root op-

erations perform in an element-wise manner only. The division is executed indirectly via reciprocal

and multiplication (cf. section 3.3.2).

The specialised operation group consists of element-wise fused multiply-add (fma) and sum-

mation (sum). The fma calculates the combination of one multiplication followed by one ad-

dition with only one final rounding, thereby potentially offering a more accurate computed re-

sult. Similar to the inv and div operations, the fma operates in an element-wise manner, i.e.,

Z AA(m,n) = X AA(m,n)*Y AA(m,n) + W AA(m,n) is executed with one rounding.

The sum overloads the standard sum function of Matlab. If X AA is a vector of AAFloat objects,

sum returns the sum of all elements. If X AA is a matrix of AAFloat objects, sum treats each column

as vector, returning a row vector of the sums of each column.

Matrix dimension agreement and constant input

In general, the operations supported by the AAFloat class require that input matrices, no matter

whether they belong to either the AAFloat class or double class, must agree on dimensions. For

addition, subtraction, element-wise multiplication, division and fused multiply-add, all input matrices

must have the same size. For matrix multiplication, the number of columns of the first matrix has to

be equal to the number of rows of the second matrix.

53

There is also an exception, when one input argument is a scalar (of AAFloat class or double

class), the respective operation will be executed in an element-wise manner, i.e., the scalar is added,

subtracted, multiplied, or divided with each element of the other input argument.

The AAFloat class allows for a mixture of AAFloat and double classes as inputs, i.e., input argu-

ments can be matrices, vectors or scalars in double. The only requirement is that for each call of

an AAFloat method at least one input argument must be an AAFloat object. If an input argument

belongs to double class, it will first be internally converted into an AAFloat object before being used

for evaluating the respective floating-point operation following affine arithmetic.

Bounding operator

The parameter prob (i.e., short for probability) is used to specify the type and confidence interval of

the bound which will be estimated within the evaluating function (cf. Section 3.3.2). The value of

prob must be in the range (0, 1]. A hard bound corresponds to prob = 1 or a probability of 100%.

Any other assigned probability less than 1 will implicitly specify a probabilistic bounding operator to

be used. The default setting is prob = 0.9973, which means to use a probabilistic bounding operator

with a confidence interval of exactly three times (K = 3) the standard deviation 3σ (or about 99.73%

of confidence, also cf. Section 3.2.3).

Matlab operator overloading

For those cases that apply the default setting of the bounding operator (i.e., a probabilistic bound),

basic floating-point operations can simply be executed by overloading with standard Matlab operators.

Operator overloading of Matlab functions is available within the AAFloat class via our definitions of

standard Matlab methods {plus, minus, mtimes, times, rdivide}, corresponding to Matlab operators

{+,−, ∗, .∗, ./}.
This is extremely useful because it allows an existing Matlab code executing an algorithmic applica-

tion to effectively be re-used in order to perform AA-based floating-point error analysis for the same

application.

Estimation of rounding error bound and range bound

To obtain the rounding error bound ERR BOUND of a computational expression (cf. Section 3.5), the

method ERR BOUND = ebound(Z AA,prob) is called, where Z AA is the input AAFloat matrix, whose

elements represents the affine forms of computed expressions. The optional parameter prob is used

to define the confidence interval of the hard or probabilistic bound used. The ebound is an element-

wise method that estimates the rounding errors for every element of affine forms, returning a double

matrix ERR BOUND (same size as Z AA) of the rounding error bounds for all computed expressions in

the floating-point matrix Z.

Similarly, the method RANGE BOUND = rbound(Z AA,prob) is used to estimate the upper bound for

the range of each element in the affine form Z AA, in which the optional parameter prob is used to

define the confidence interval of the hard or probabilistic bound used. The rbound is an element-wise

method which returns a double matrix RANGE BOUND (same size as Z AA) of the range bounds for all

computed expressions in the floating-point matrix Z.

54

4.2.3 Special Affine Forms and Handling Special Cases

In this section, we discuss special affine forms for representing special intervals and how to handle

special cases possibly occurring in the evaluation of AA expressions using the AAFloat class. There

are two issues being discussed here:

o Representations of special affine forms

o Handling exceptional cases: division by zero and square root of negative range

Special affine forms

In the IA model, there exist two special intervals representing the value of a quantity x: the empty

interval [], meaning “no value”, and the real set interval R, meaning “any real value” [53]. The

definition of these special intervals is based on set theory, making it convenient for the evaluation

of special mathematical operations. The interval R can be a result of a reciprocal or a division by

an interval containing very small values, e.g., an interval has values very close to or equal zero. The

empty interval [] can result from the evaluation of an interval having its lower bound larger than its

upper bound, or from the evaluation of the square root of a negative interval.

An affine form implies a range for the quantity it represents. We denote the range represented by x̂

with [x̂]. If x̂ is an affine form for the quantity x, then the value of x is guaranteed to be in the range

of x̂, i.e., x ∈ [x̂]. There exist conversions between an affine form and the interval/range [x̂] implied

by this affine form, for example, [x̂] = [x0−B(x̂), x0 +B(x̂)] is the range for the quantity x, in which

the central value x0 of the affine form x̂ and the (hard or probabilistic) bounding operator B(·) are

used to estimate the range of x.

Similar to IA, special affine forms for representing special intervals - the empty interval [] and the

real set interval R - need to be defined in AA. More specifically, these special intervals need to be

described explicitly in the AAFloat class.

In the AAFloat tool, floating-point arithmetic is used for representing affine expressions which imply

respective affine intervals characterized by their lower and upper bounds. The IEEE-754 standard

defines the special values: +∞, −∞ and Not-a-Number (NaN). Refer to [49] for the binary encoding

of +∞, −∞ and NaNs. In the real set, the operations that can give rise to an NaN value may include:

∞−∞, ∞/∞, 0 · ∞, and taking square root of a negative number. The infinity value can be the

result of a division by zero. In Matlab, the floating-point arithmetic complies with the IEEE-754

standard, thus the special values for floating-point arithmetic are handled properly. This implies that

the special values can possibly appear in the affine expression represented by the AAFloat object in

Matlab. As the AAFloat class is based on floating-point arithmetic in Matlab, the representations of

special affine forms (i.e., R and []) in the AAFloat class need to be established by convention.

In the AAFloat class, we use the NaN and ∞ values to represent the empty affine form [] and

the real set affine form R, respectively. Specifically, if the affine form x̂ is an empty affine form, i.e.,

the interval implied by x̂ is an empty range [x̂] = [], then the range and error components of x̂ are

assigned to NaNs. Similarly, if the interval implied by x̂ is the real set [x̂] = R, then the range and

error components of x̂ are assigned to ∞. Two examples for the representation of the empty interval

and the real set R in the AAFloat class are shown below.

>> x_empty_interval

x_empty_interval =

55

AAFloat matrix of size [1 x 1]

(1,1)

r: NaN

e: NaN

p: 0

>> x_R_interval

x_R_interval =

AAFloat matrix of size [1 x 1]

(1,1)

r: Inf

e: Inf

p: 0

In fact, in the implementation of the AAFloat class, if any of the terms in the range or error component

of an AAFloat object is a special value, then the corresponding affine expression will represent a special

affine form, i.e., [] or R.

Next, we present cases where special intervals arise in the affine expression in the AAFloat class.

These cases can be divided into two usage scenarios: (a) when the arithmetic operations are performed,

and (b) when the bounding operators are applied on the affine expressions containing the special

interval. For handling these cases, we follow the algorithm and convention suggested by Stolfi and

Figueiredo in [53, Chapter 3]. We describe how methods in the AAFloat class behave if any input

interval is a special affine form.

For unary operations z = f1(x), i.e., the negation, inverse/reciprocal and square root operations,

when the input x̂ is a special affine form, i.e., [x̂] = [] or [x̂] = R, then the output ẑ is assigned to

equal the input: ẑ = x̂.

For binary operations z = f2(x, y), the AAFloat class will check whether any of the input operands

is an empty interval first, then it will check whether any of the input operands is a real set interval.

If [x̂] = [] or [ŷ] = [], then the output is assigned to an empty affine form, i.e., [ẑ] = []. Otherwise,

if [x̂] = R or [ŷ] = R, then the output is assigned to a real set affine form, i.e., [ẑ] = R.

The behavior of the FMA operation when any of the three input operands happens to be a special

affine form can also be inferred in a similar way.

When the bounding operator - a hard bounding or a probabilistic bounding - is applied to the

affine expression containing the special interval, the resulting bound is an NaN or∞ if the affine form

contains NaN or ∞ values, respectively (i.e., corresponding to the empty interval [] or the real set

interval).

Note that the special affine form R does not record any dependency information, meaning that if

[x̂] = [ŷ] = R then we cannot infer any constraint or relationship between the quantities x and y.

Refer to [53] for a detailed discussion and algorithms for handling special affine forms.

Handling special cases

In interval arithmetic, there exist different design options for handling special cases, e.g., the division

by zero where the input interval contains zero and the square root of an interval containing a negative

range. In a simple interval model, an exception flag will be raised when these special cases happen.

The wraparound model and loose evaluation [63] can also be chosen to handle the division by zero

and the square root of a negative interval. Recently, the containment set theory has been suggested as

a mathematical foundation for dealing with division by zero and special values, like ±∞, in interval

56

arithmetic. See [63] and references therein for an extensive discussion. We do not use the containment

set theory in this thesis.

In affine arithmetic, the design choices for handling division by zero and special values are more

complex than the ones in interval arithmetic due to the fact that each affine form is an expression

of multiple noise terms. The simplest design option for the division by zero and the square root of

negative ranges is to raise an exception flag and then stop the current AA evaluation if these cases

happen. For most cases, the simple design choice of raising an exception flag does not, however,

provide any useful information to users. Our goal is to provide as much information as possible

and offer an exception-free execution (EFE) [63] of affine expressions to the users of the AAFloat

class. Therefore, we choose a more complicated yet more informative implementation for the inverse

(division) and square root operations as follows.

For dealing with the inverse of AA forms containing zero, i.e., an input interval [a, b] with a ≤ 0 ≤ b,
the AAFloat class allows users to specify a reasonably true range [c, d] for the input interval, with

a ≤ c ≤ d ≤ b, such that the range [c, d] does not contain zero and is the largest range possible. The

inverse of the original interval [a, b] is, therefore, estimated via its representative interval [c, d]. As

mentioned earlier in Chapter 3, the inverse operation for the input interval [c, d] is estimated using

the min-range approximation. As the interval [c, d] does not contain zero while the original interval

[a, b] does, the inverse operation is, in fact, performed in one side of the original interval, the other

side is neglected. This is just one design choice for handling division by zero situations in affine

arithmetic in the AAFloat class. For range estimation, this design choice takes the larger range and

sacrifices the smaller range for having a simple implementation for the resulting affine expression of

the inverse. For rounding error estimation, this design choice is reasonable because the rounding error

of a floating-point number depends on the magnitude of the number itself (see equs. 3.1-3.2).

We discuss how to determine the alternative interval [c, d]. The interval [c, d] can be specified

by users as the input argument userrange to the subroutine div, provided that users are able to

determine the realistic range in practical applications. If the user does not provide the interval [c, d],

the AAFloat class will use the default range. The default value for [c, d] is determined depending on

the original interval [a, b], which contains the zero value, and the working precision p. The larger range

in magnitude is chosen. If |a| > |b| then [c, d] = [a,−2u], otherwise [c, d] = [+2u, b], where u = 2−p is

the unit roundoff.

The same idea is applied to handle the square root of a negative interval. If the input interval [a, b]

contains zero, i.e., a ≤ 0 ≤ b, then only the positive part of the input interval is evaluated. Similarly,

the subroutine sqrt allows the user to specify a reasonably true range [c, d] via the input argument

userrange. If the user does not specify any range, the default values for [c, d] are chosen. In theory,

the lower bound of this range should be zero, as the square root of zero is defined, i.e.,
√

0 = 0.

However, as the evaluation of the error component for the square root involves taking an inverse of

the range component (see subsection 3.3.2), we choose to have [c, d] = [+2u, b] for the square root

operation in the AAFloat class.

The following simple examples, executed in the Matlab command window, compute the square root

of an affine form x̂ in the range [−2, 5] at the single-precision (p = 24) format. The hard bounding

operator is used. In the first operation computing z1, we do not specify the user’s range, thus the

default range corresponding to the working precision and the original interval is used. In the second

operation computing z2, we specify the desired range of [0.1, 5] for the square root operation. During

57

the AA evaluation, the AAFloat class prints warning messages whenever the input interval to the

square root operation contains a zero.

>> AAFloat_INIT

>> x = AAFloat(-2,5)

x =

AAFloat matrix of size [1 x 1]

(1,1)

r: [1.500000000000000 3.500000000000000]

e: 2.980232238769531e-07

p: 24

>>

>> z1 = sqrt(x,1)

Warning: The input range [-2.0, 5.0] of the square root function contains NEGATIVE range.

The user does not specify any range for the input interval of the square root operation.

AAFloat is using the default range [1.192093e-07, 5.000000e+00] to compute the square root.

z1 =

AAFloat matrix of size [1 x 1]

(1,1)

r: [1.397585670962136 1.117861355258394 0 0.279379048720740]

e: [4.315837287514820e-04 0 1.665846154058737e-07]

p: 24

>>

>> z2 = sqrt(x,1,[0.1, 5])

Warning: The input range [-2.0, 5.0] of the square root function contains NEGATIVE range.

z2 =

AAFloat matrix of size [1 x 1]

(1,1)

r: [1.456661162929095 0.959920105741476 0 0 0 0.180513291170782]

e: [4.712160915387251e-07 0 0 0 1.547988986874433e-07]

p: 24

Demonstrative examples showing the practical use of the AAFloat tool for handling the division by

zero (or inverse operation) in a real-world implementation of the Levinson-Durbin algorithm for linear

prediction will be presented later in Section 4.4.

4.3 Error Verification via Simulations

The second task conducted in our framework is the simulation-based error verification. This task

corresponds to the right path in Figure 4.1. The purpose of this task is to determine the maximum

rounding error observed in the finite-precision implementation of the algorithm at hand at working

precision p. Obviously, the error verification task is basically the custom-precision floating-point

computation in Matlab.

The standard floating-point number formats supported by Matlab are double-precision and single-

precision. So far, running bit-true floating-point computations using the standard Matlab library is

still not possible. The challenging issue is, therefore, to efficiently perform custom-precision floating-

point arithmetic and to integrate it in Matlab.

58

Implementation of MPFR-based custom-precision floating-point arithmetic in Matlab. For ex-

ecuting custom-precision floating-point operations in Matlab, we integrate arbitrary-precision arith-

metic via the GNU MPFR Library [41] version 3.0.0 into our framework. MPFR C functions perform-

ing custom-precision operations are compiled into MEX files (Matlab EXecutable), which are then

called within Matlab in the same way as Matlab files or built-in functions.

For current implementation of our framework, mpfr add, mpfr mul, mpfr div, and mpfr fma func-

tions in the MPFR library were compiled to corresponding MEX functions in Matlab, allowing for

custom-precision floating-point addition, multiplication, division and fused multiply-accumulate op-

erations, respectively. These implemented MEX functions are sufficient for performing most of signal

processing algorithms. Other custom-precision operations in the MPFR library, like floating-point

square root, can be integrated into our framework in future implementations.

Determination of maximum simulation rounding error. The basic idea for determining the maxi-

mum rounding error is to run Monte Carlo simulations with a sufficiently large number of trials and

determine the maximum error. Using more trials achieves more accurate rounding error estimates

but also requires more simulation time. In our framework, 105 to 106 test samples (i.e., vectors or

matrices) are randomly generated and executed for one test case of the algorithm.

We consider one test case of the algorithm corresponds to one chosen set of parameters and one

working precision p. For each test sample within a test case, the rounding error is computed as the

difference between the finite-precision floating-point result at precision p and its accurate (or infinite

precision) reference computed at a very high precision, for which a double precision format is used if

the precision p is smaller than double-precision and an 80-bit precision format is used if the precision

p is very close to double-precision. The maximum simulation error for one test case is then defined as

the maximum difference found among the total set of rounding errors fo all test samples.

Choice of different data distribution. In our framework, different data distributions for simulations

can be chosen quite easily by using/setting different random number generators in Matlab. For

example, users can use the rand function for generating uniformly distributed random numbers in one

test case, and easily switch to the randn function for creating a normal distribution in another test case

without having to change the computation part of the original Matlab program. Another example is

presented in Chapter 5, in which the synthetic data for the reflection coefficients following a U-shaped

distribution are generated for the error verification of the Levinson-Durbin algorithm (see 5.3.3). The

advantage of easily choosing data distributions enables users to freely investigate the rounding error

characteristics corresponding to different data distributions with very little programming effort.

In this work, the noise symbols εi of the AA forms are assumed to follow a uniform distribution

over [−1,+1], resulting in a normal distribution for AA forms once the probabilistic rounding operator

is applied (refer to Section 3.2.3). We wish to understand the relation between the distribution of

noise symbols and the distribution of the resulting AA form so that the desired distribution of an AA

form can be specified by choosing the proper distributions for the noise symbols. This will allow for

an AA-based rounding error estimation taking into account a given data distribution. However, that

topic goes beyond the scope of this thesis; interested readers should refer to the work of Fang [4].

59

4.4 Examples

We present here two examples for practical use cases of the AAFloat class. Our goals include: (i)

to show how to use the AAFloat class, given an original Matlab code, for performing rounding error

analysis of floating-point algorithms; (ii) to show how to use the MPFR-based .mex functions for

performing custom-precision floating-point computations based on the original Matlab code; and (iii)

to show how the AAFloat class handles division by zero in an algorithm as well as (iv) to make users

aware of cases where a division by zero may happen in an algorithm.

The two examples investigate the rounding error bounds for two floating-point algorithms: a sequen-

tial dot-product and the iterative Levinson-Durbin algorithm. As we will dedicate the entire Chapter 5

to floating-point error analysis and bit width allocation for the dot-product and the Levinson-Durbin

algorithm, the demonstrative examples presented in this chapter only aim at showing the capability

and usability of the AAFloat tool. An extensive discussion on reliability and accuracy of the AA-based

error model for floating-point algorithms will be presented in Chapter 5.

4.4.1 AAFloat in Error Analysis of Sequential Dot-Products

In this example, we choose to estimate the rounding error of a sequential floating-point dot-product.

The dot-product of two column vectors x and y of length n is a scalar s computed by multiplications

and additions. The code for performing a sequential implementation of a floating-point dot-product in

the single-precision or double-precision number formats (depending on the data type of input vectors)

in Matlab is shown in Listing 4.1.

1 % −−−
2 % CODE 1 : Sequent i a l dot−product : Or i g i na l code

3 % −−−
4 s = x (1) ∗ y (1) ;

5 f o r i =2:n

6 s = s + x (i) ∗ y (i) ;

7 end ;

Listing 4.1 Original Matlab Code

We perform error analysis with a chosen precision p = 20 (i.e., mantissa bit width). The length n

of the input vectors is varied from 10 to 50 with a step size of 10. We assume that all elements x(i)

and y(i) of the input vectors x and y, respectively, are in the range [-1, 1].

Based on the original code shown above, two Matlab codes for rounding error estimation with the

AAFloat class and for rounding error verification via extensive simulations with the MPFR-based

Matlab .mex functions can be generated as follows.

Matlab Code for Rounding Error Estimation with the AAFloat Class. In this example, we apply

the probabilistic bounding operator for the evaluation of AA forms, thus the optional parameter prob

has its default value allowing for the use of standard Matlab operators (i.e., operator overloading).

The Matlab code for the AA-based rounding error estimation with AAFloat is shown in Listing 4.2.

The vector length n is set to 10 but can easily be changed to calculate other dot-products. The pair

of functions tic and toc are for measuring the execution time of the code.

60

1 % −−−
2 % CODE 2 : Sequent i a l dot−product : Error bound es t imat ion with AAFloat

3 % −−−
4 n = 10 ; % vecto r l ength

5 p = 20 ; % p r e c i s i o n

6 a = 1 ; b = 1 ; % range

7 AAFloat INIT ;

8 x = AAFloat(−a∗ ones (n , 1) , a∗ ones (n , 1) , p) ;

9 y = AAFloat(−b∗ ones (n , 1) , b∗ ones (n , 1) , p) ;

10 t i c ;

11 s = x (1) ∗ y (1) ; % reuse the o r i g i n a l code

12 f o r i =2:n % reuse the o r i g i n a l code

13 s = s + x (i) ∗ y (i) ; % reuse the o r i g i n a l code

14 end ; % reuse the o r i g i n a l code

15 t = toc ;

16 E BOUND s = ebound (s) ;

17 f p r i n t f (’n = %3d , p=%2d , E BOUND s = %e , t = %f (seconds) \n ’ , n , p , E BOUND s , t) ;

Listing 4.2 Matlab Code for Rounding Error Estimation with the

AAFloat

Taking a closer look into the code from line 11 to line 14 shows that the Matlab code using the

AAFloat library reuses best the original code for the floating-point sequential dot-product algorithm

as shown before.

Matlab Code for Rounding Error Verification via Simulations. The code for error verification via

simulations is shown in Listing 4.3. In this code, the settings for the vector length, precision, numerical

range and execution time measurement are identical to the Matlab code for error bound estimation

with the AAFloat class.

For error verification, we run 106 test samples, specified by the variable num of sample. At each

iteration corresponding to one testing sample, two input vectors are randomly generated by rand, the

desired custom-precision value s at precision p and its reference value s ref at double-precision are

computed, and the rounding error is evaluated and stored. To perform custom-precision floating-point

operations, two MPFR-based .mex functions, mul mpfr and add mpfr, are used for multiplication and

addition, respectively, with the current working precision of each input operand specified when those

functions are called.

The Matlab code for error verification (Listing 4.3) is more complex than the Matlab code for error

bound estimation (Listing 4.2). The former can be executed with more memory, computations and

conditional branches, and obviously it could take more time to run. Apart from that, it seems that

the original Matlab code for sequential dot-product implementation is not well reused to generate the

Matlab code for error verification in this example.

61

Table 4.3 Comparison between the AAFloat class and the simulation

(with 106 samples) for the sequential dot-product

Vector length n 10 20 30 40 50

Execution time:

- simulations [second] 39.38 47.33 54.55 67.02 74.92

- AAFloat [second] 0.03 0.06 0.09 0.12 0.15

- Speed-up 1.3e+3 7.9e+2 6.1e+2 5.6e+2 5.0e+2

Maximum number of error terms

in the final AA form 70 140 210 280 350

OER of AA-based err. bound 2.11 1.85 1.93 1.79 1.57

1 % −−−
2 % CODE 3 : Sequent i a l dot−product : Error v e r i f i c a t i o n by s imu la t i on s

3 % −−−
4 n = 10 ; % vecto r l ength

5 p = 20 ; % p r e c i s i o n

6 a = 1 ; b = 1 ; % range

7 num of sample = 1e +6; % number o f t r i a l s

8 e = ze ro s (num of sample , 1) ;

9 t i c ;

10 f o r k=1: num of sample

11 x = −a + 2∗a .∗ rand (n , 1) ;

12 y = −b + 2∗b .∗ rand (n , 1) ;

13 s r e f = x ’ ∗ y ;

14 s = mul mpfr (x (1) , p , y (1) , p) ;

15 f o r i =2:n

16 s = add mpfr (s , p , mul mpfr (x (i) , p , y (i) , p) , p) ;

17 end ;

18 e (k) = s r e f − s ;

19 end

20 t = toc ;

21 e max = max(abs (e)) ;

22 f p r i n t f (’n = %3d , p=%2d , e max=%e , t = %f (seconds) \n ’ , n , p , e max , t) ;

Listing 4.3 Matlab Code for Rounding Error Verification via Simulations

Performance Comparison. We compare the AA-based error bound estimation via the AAFloat class

and the error verification via extensive simulations in terms of the execution times and accuracies of

the rounding errors estimated.

To evaluate the performance, the speed-up in execution time of the Matlab code for AA-based

error bound estimation with the AAFloat class compared to the Matlab code for extensive simulations

is reported. All the Matlab codes, the code using AAFloat class and the code running extensive

simulations, are run on an AMD Athlon 3800 Dual Core desktop CPU at a clock frequency of 2.0

GHz. The number of error terms in the final AA forms are also reported. To evaluate the accuracy

of the AA-based rounding error bound (i.e., a probabilistic bounding operator with the confidence

interval of 3σ is used in this example), the over estimation ratio OER is calculated (see Equation (4.1)).

Table 4.3 presents the accuracy and performance comparison versus the vector length n. With

62

respect to the execution time, the AA-based error bound estimation with the AAFloat tool can gain

a speed-up from two to three orders of magnitudes compared to simulations. With respect to the

accuracy, the rounding error bounds estimated by AAFloat are about 1.57 to 2.11 times larger than

the maximum errors evaluated by running simulations. In terms of bit width allocation, the reported

OERs correspond to an over estimate of about 1 mantissa bit for the hardware implementation of

a sequential floating-point dot-product. Note that there is a trade-off between the number of test

samples and the execution time for simulations. We have tried with different values of test samples.

Our experiments show that 106 samples are sufficient to find the maximum value of the rounding

errors of the floating-point dot-products.

The number of error terms in the final computed AA form accounts for both the range component

and the rounding error component and includes the central value in the range component. Given

the vector length n, the generation of vectors x and y needs (2n + 1) and 2n terms for the range

and error components, respectively. For the computation, the sequential dot-product implementation

requires n multiplications and (n− 1) additions. Each multiplication generates one new noise term in

the range component and one new noise term in the rounding error component, while each addition

only generates one new noise term in the error component. This results in a total number of n new

error terms for the range component and (2n − 1) new noise terms for the error component for the

whole computation of the sequential dot-product. Eventually, the final computed AA form of the

dot-product consists of (3n+1) and (4n−1) error terms in the range and rounding error components,

respectively. In other words, the final AA form has 7n error terms in total (including the central value

in the range component). Obviously, the number for terms scales linearly with the vector length. For

this demonstrative example, the maximum number of error terms is 350 at vector length n = 50.

there are 350 error terms in the final AA form.

Note that an in-depth study of the rounding errors of different floating-point dot-product imple-

mentation variants versus a wider range of precision and vector length is presented in Chapter 5. In

that study, the maximum number of error terms in the final AA form is about 7000.

4.4.2 AAFloat in Error Analysis of Levinson-Durbin Algorithm

The Levinson-Durbin algorithm [7, 8] is an efficient algorithm for solving Yule-Walker equations and

it is often used for linear prediction in speech processing applications. Given a system order n of the

Yule-Walker equations, the Levinson-Durbin algorithm receives an autocorrelation coefficient vector

r0 = [1, r1, r2, . . . rn]T as its input and computes the filter coefficients ai, reflection coefficients ki

and the short-term prediction error Ei (i = 1 . . . n) in an iterative manner. A detailed description of

the Levinson-Durbin iterations is presented later in subsection 5.3.2. The autocorrelation coefficients

satisfy r0 = 1 and −1 ≤ ri ≤ 1, i = 1 . . . n. The prediction error Ei is bounded as

0 ≤ Ei ≤ 1, 0 ≤ Ei ≤ Ei−1 ≤ E0 = r0 = 1

and the reflection coefficients of a minimum-phase predictor system are bounded as follows [7, 30]

− 1 ≤ ki ≤ 1, i = 1 . . . n.

At the i-th iteration, the evaluation of the reflection coefficient ki involves taking the inverse of

the prediction error Ei−1 computed at the previous iteration, possibly leading to a division-by-zero

exception if Ei−1 comes close to zero.

63

In AA-based error analysis, the range of Ei−1 continuously expands over iterations and/or with the

magnitude of the autocorrelation coefficient ri. Therefore, it is very likely that the AA-based range

for the prediction error may contain zero and the division by zero can happen. See subsection 5.3.5 for

more discussion on the implications of the prediction error as well as on the accuracy of the AA-based

error model for the Levinson-Durbin algorithm.

Our concern here is to know how the AAFloat class handles the division by zero case if the prediction

error Ei−1 does contain the zero value in its range when performing AA-based error analysis of the

Levinson-Durbin iterations. We would also like to learn how the coefficients will come out and what

the user should do if a division-by-zero happens.

In the following, we investigate three use cases of the AAFloat tool for AA-based error analysis of

the Levinson-Durbin algorithm:

o Case 1: No division by zero. The range of the prediction error does not contain zero. The

AA-based evaluation of the algorithm is executed without any warning or error message.

o Case 2: Default setting. The range of the prediction error contains zero. The division by zero

happens and the AAFloat tool uses the default setting for the smaller bound in magnitude.

o Case 3: User’s setting. The range of the prediction error contains zero. The division by zero

happens and the user specifies the smaller bound in magnitude to be used by the AAFloat tool.

For simplicity, we use the hard bounding operator for all the three use cases presented.

Case 1: No division by zero

We form a Yule-Walker equation of order n = 10 using a restricted range for the input autocorrelation

coefficients ri. The working precision is chosen as p = 24 (i.e., single-precision). In this example, each

autocorrelation coefficient ri is assumed to be uniformly distributed over the range [0.17, 0.23], such

that their AA forms are shown as

r̂0 = 1, r̂i = 0.2 + 0.03εi, εi ∈ [−1,+1], i = 1 . . . n.

We observed that the AAFloat class estimates reasonably the range and error bounds for all the

quantities, i.e., Ei, ki, and ai, in the Levinson-Durbin iterations in comparison with the experimental

results by simulations as well as the theoretical range bound derived in the literature. See Appendix E.1

(from iteration 1 to 10) for a full report of the AAFloat class for the use case 1.

Case 2: Default setting

Now we increase the system order up to n = 15 but keep the same range [0.17, 0.23] for the autocorre-

lation coefficients ri. The full report of the AAFloat class for the use case 2 is listed in Appendix E.1.

We observe that the AA-based range for the prediction error Ei increases with the iteration, reported

by the AAFloat tool and shown in Table 4.4.

At the end of iteration 12, the range for the prediction error E12 is [−0.55, 2.24], i.e., containing

zero, generating a division by zero in the inverse operation at iteration 13. The AAFloat tool reports

as follows:

---------- Iteration n = 13

Levinson-Durbin algorithm for special case [0.17, 0.23]

64

Table 4.4 Range of prediction error Ei of the Levinson-Durbin iterations

reported by the AAFloat tool for the use case 2

Iteration i Range of Ei Remark

9 [0.72, 1.00]

10 [0.63, 1.08]

11 [0.42, 1.29]

12 [−0.55, 2.24] Division by zero at iteration 13!

13 [−2.8× 107, 2.8× 107] Division by zero at iteration 14!

AA bound = Hard, precision = 24, r in [0.17, 0.23]

error bound of E_{m-1} = 1.149381e-05, range = [-0.546389, 2.243222]

Warning: The input range [-0.546389, 2.243222] contains ZERO.

> In AAFloat.AAFloat>AAFloat.inv at 918

In AAFloat.AAFloat>AAFloat.div at 1072

In AA_bound_levinson_wAAFloat_simple_example_increase_order at 88

The user does not specify any range for the input interval of the inverse operation.

AAFloat is using the default range [1.192093e-07, 2.243222e+00] to compute the inverse.

...

i=13, error bound of k(13) = 1.191544e+09, range = [-12358221.218054, 11952076.988843]

...

error bound of E_{m} = 3.072350e+09, range = [-27933964.201552, 27914301.953442]

As we do not specify any lower bound (in absolute value) for the range of E12, the AAFloat class

uses its default value of 2u = 1.192093 × 10−7, where u = 2−p is the unit roundoff corresponding to

the current working precision p = 24. This is one of the very useful features of the AAFloat tool in

handling division by zero, that the tool both warns the user whenever a division by zero happens and

it automatically continues the execution of the AA evaluation process.

When a division by zero happens in the algorithm and the default bound is then used by the AAFloat

tool, we would like to know how far the AA evaluation process can go and whether the resulting bound

is reasonable compared to its expected range and/or to experimental results by simulations. In the

report for the use case 2 above, the resulting range and error bounds for the reflection coefficient k13

at iteration 13 are in the orders of 107 and 109, respectively, which are extremely far away from the

possibly meaningful and reasonable ranges for a reflection coefficient of the Levinson-Durbin algorithm.

In this situation, continuing the error evaluation will give non-meaningful results.

Case 3: User’s setting

In the last use case of the AAFloat tool for the Levinson-Durbin algorithm, we specify the user’s

range for the prediction error Ei which is used by the AAFloat class when the division by zero occurs.

The system order, the working precision and the input range for the autocorrelation coefficients are

the same as in the second use case, i.e., n = 15, p = 24 and ri ∈ [0.17, 0.23]. By specifying the

user’s range, we hope that better range and error bounds for the quantities in the Levinson-Durbin

algorithm could be obtainable.

The important question is to identify the range for the prediction error to be used as the input to

65

Table 4.5 Range of prediction error Ei of the Levinson-Durbin iterations

reported by the AAFloat tool for the use case 3

Iteration i Range of Ei Remark

11 [0.42, 1.29]

12 [−0.55, 2.24] Division by zero at iteration 13!

13 [−3.3× 104, 3.3× 104] Division by zero at iteration 14!

14 [−1.3× 1013, 1.3× 1013] Division by zero at iteration 15!

Table 4.6 Comparison of the range and error bounds for the reflection

coefficient k13 between the use case 2 and the use case 3

Range bound of k13 Error bound of k13

Use case 2: Default setting [−1.2× 107, 1.2× 107] 1.2× 109

Use case 3: User’s setting [−1.5× 104, 1.4× 104] 1.7× 103

the inverse operation in the Levinson-Durbin algorithm. The smallest value of the prediction error,

reported by running simulations of 106 data frames of speech signal and synthetic data, is in the order

of 10−4. We therefore choose the lower bound for the prediction error Ei as 10−4. At each iteration,

we use the current upper bound for the range of the prediction error Ei as the user-specified upper

bound for Ei.

The full report of the AAFloat class for this use case is listed in Appendix E.3. Table 4.5 reports

the range of the prediction error Ei over some iterations. By using the user-specified range, the

AA-based error evaluation process using the AAFloat tool for the Levinson-Durbin iterations can

execute up to iteration 14. The evaluation process fails and stops at iteration 15. With respect to the

resulting bounds for the range and the rounding error, the use case using a user-specified range for

the prediction error (use case 3) can provide less overestimated bounds compared to the use case with

the default range of the tool (use case 2), reported in Table 4.6. At iteration 13, the range and error

bounds for the reflection coefficient k13 are approximately 104 and 103, respectively, compared to the

respective resulting ranges of 107 and 109 reported in the second use case (see Appendix E.3 and

Appendix E.1 for the detailed reports of the use cases 3 and 2). Note that a rounding error bound of

103 for the reflection coefficient at a single-precision number format is still very pessimistic compared

to the realistic error in practical applications. However, discussions on the accuracy of the AA-based

error model for complex algorithms like the Levinson-Durbin iteration are not the main focus of this

chapter and, therefore, will be reserved for Chapter 5.

The AA-based error analysis for the Levinson-Durbin algorithm presented in this section only shows

typical use cases of the AAFloat tool in handling special cases, like the division by zero, which could

possibly happen in any floating-point algorithm. In the AAFloat tool, we try to provide as much

information as possible to the users whenever an exceptional case occurs. A more important issue the

users of the AAFloat tool should be well aware of is understanding and interpreting the meanings of

the resulting range and error bounds, reported by the tool, in the floating-point algorithm at hand.

If a special case happens, e.g., division by zero, the AAFloat tool can help provide some guidelines for

66

users. It is, however, the users’ decision to use the default range of the tool, or to continue the AA-

based evaluation using a new specified (and more reasonable) range, or to stop the current evaluation

process and modify the algorithm at hand, based on the information provided by the tool.

4.5 Conclusions

This chapter presented our implementation of the first Matlab-based tool, the AAFloat class, for

partially automated rounding error and numerical range evaluation of floating-point algorithms using

affine arithmetic error modeling. Given an original Matlab code performing any floating-point algo-

rithm, a user needs to convert floating-point variables into AAFloat objects (by using the AAFloat

class constructor method) before performing the error evaluation of the same algorithm following the

AA-based error model. The computational expressions in the original Matlab code can be reused. By

supporting basic vector and matrix computations in Matlab’s notation, the framework enables users

to reuse their own existing Matlab codes to effectively perform the rounding error analysis task.

Besides, the framework incorporates custom-precision floating arithmetic via the GNU MPFR li-

brary, allowing for the bit-true custom-precision implementation of floating-point arithmetic in Matlab.

Moreover, in the AAFloat tool we implement a new technique for handling exceptional cases. With

this improvement, the AAFloat tool gives useful information and allows users to specify reasonable

ranges in handling the division by zero and square root of negative intervals.

With the benefits of performance speed-up, accurate error bound estimation and flexible handling

of exceptional cases, the AA-based error analysis technique in combination with the AAFloat tool can

be an alternative to simulation-based error analyses.

In the next chapter, we will present in detail how this Matlab-based framework is used to perform

rounding error analysis and bit width allocation of the two important floating-point signal and speech

processing applications: the dot-product and the Levinson-Durbin algorithm.

67

5
Applications

5.1 Introduction

As aforementioned in Chapter 3, existing rounding error analysis techniques exhibit some drawbacks

with respect to the tightness of estimated bounds and estimation time. Conventional rounding error

analysis techniques often provide very pessimistic rounding error bounds. The dynamic rounding error

analysis techniques based on simulations can provide much tighter error bounds compared to their

conventional counterpart, but require very long simulation times and are data dependent. Therefore,

these above rounding error analysis techniques are often suboptimal for bit width allocation.

We ask if AA-based error analysis techniques are able to overcome these drawbacks, i.e., whether

AA-based error analysis allows for deriving in less time error bounds comparable to those obtained

by simulations, such that the AA-based error bound derived can be used for bit width allocation

for hardware implementations. Second, we would like to show the efficiency of the AAFloat class

and Matlab-based framework presented in Chapter 4 for rounding error estimation of floating-point

algorithms. To answer the two questions above, this chapter will apply AA-based error analysis

techniques for the estimation of floating-point rounding errors of two signal and speech processing

applications.

In the first application, we try to estimate the rounding errors of different floating-point dot-product

implementation variants versus precision. Our Matlab-based framework is used to evaluate the AA

probabilistic error bounds via the AAFloat class, and to experimentally estimate the maximum round-

ing errors via simulations. The error bounds and calculation time of AA-based and simulation-based

error analysis techniques are compared.

In the second application, we use the AA-based error model and our software tool to perform

floating-point rounding error analysis for the iterative Levinson-Durbin algorithm.

5.2 Rounding Error Analysis of Floating-Point Dot-Products

5.2.1 Motivation

The dot-product is an important subroutine in signal processing applications, especially for the im-

plementation of Finite Impulse Response (FIR) filters. In scientific computing, the dot-product is

the basic functional block for matrix-vector and matrix-matrix multiplication. Rounding error analy-

sis for floating-point dot-products has been studied by [5, 64] using conventional floating-point error

69

Table 5.1 Names of dot-product implementations considered

Basic operations Fused operation (FMA)

Sequential architecture SeqDot SeqDotFMA

Parallel architecture ParDot not considered here

models. Using AA-based error analysis techniques, related work in [4] estimated the rounding error

bound for floating-point FIR filter implementations, which is however only a special case of the general

dot-product implementation because one of the input operands is a constant vector representing the

coefficients of the FIR filter.

Recently, Mücke et al. [13] investigated the performance model for custom-precision floating-point

dot-products on FPGAs, showing that superlinear gains in peak performance and parallelism can be

achieved by reduced mantissa bit width operands in a binary-tree dot-product architecture. However,

an open research question is the identification of the optimal mantissa bit width.

This work uses the AA-based probabilistic bounding operator to estimate the rounding error bounds

of different floating-point dot-product architectures. The validity of the estimated error bounds is

demonstrated using extensive simulations. We derive the analytical models for rounding errors of

floating-point dot-products over a wide range of parameters. We also compare the AA-based rounding

error bound with the conventional error bound, and perform comparisons among different dot-product

architectures.

5.2.2 Dot-Product

Given two column vectors x, y of length n: x = [x1, ..., xn]T , y = [y1, ..., yn]T , the dot-product of x

and y is defined as

xTy =

n∑
i=1

xi · yi = x1y1 + ...+ xnyn.

Different dot-product implementation variants result in different rounding errors [5]. In this work,

we perform error analysis for two different floating-point dot-product architectures: a sequential dot-

product and a parallel (having binary-tree adders) dot-product [13]. We investigate the rounding error

with respect to the types of floating-point operations used: basic operations (i.e., multiplication and

addition) and a fused operation FMA.

For the sequential dot-product architecture, two implementation variants are considered: a sequen-

tial dot-product using basic floating-point operations (SeqDot) and a sequential dot-product using

FMA (SeqDotFMA). For the parallel dot-product architecture, we consider only the implementation

variant using the basic floating-point operations (ParDot)1.

In total, three dot-product implementation variants are investigated in this work. Table 5.1 presents

the names of three dot-products and Figure 5.1 presents their block diagrams.

1We do not consider the parallel dot-product using FMA, in which the multiplications are performed by FMAs while

the additions are performed by adders, because this implementation variant does not explore the FMAs for adding,

therefore there is no chance to improve the final accuracy compared to using a ParDot implementation.

70

S

y
i

x
i

* +

D

(a) SeqDot

Sx
i

D

y
i

fma
z = fl(xy+w)

x

y

w

z

(b) SeqDotFMA

(c) ParDot

+
y
1

x
1

*

y
2

x
2

*

...

...

*

y
n

x
n

*

+

+
S

...

Figure 5.1 Dot-product implementation variants

5.2.3 Experimental Setup

Simulation setup

We choose symmetric numerical ranges for the inputs as xi ∈ [−a,+a] = [−128,+128], and yi ∈
[−b,+b] = [−128,+128]. The precision p (mantissa bit width) of the floating-point operands varies

in unit steps from 20 bits up to 53 bits (double-precision). The exponent bit width is fixed as 11

bits. The vector length n of the two input vectors ranges from 100 to 1000 with a step size of 100.

The chosen confidence interval [4] for the AA probabilistic bounding operator is 3σ, corresponding

to a probability of 99.73% that the rounding error will fall within the AA probabilistic bound. All

the simulations are run on an AMD Athlon 3800 Dual Core desktop CPU at a clock frequency of 2.0

GHz.

Matlab codes for AA-based error estimation of dot-product variants using AAFloat

Using the AAFloat class, we implement two Matlab functions, AASeqDot and AASeqDotFMA, for AA-

based rounding error estimation of sequential dot-products using basic operations and fused multiply-

add operation, respectively. The Matlab codes for sequential dot-product implementations are quite

simple and shown below, in which a and b define the symmetric numerical ranges of the input vectors,

n is the vector length, p is the precision and prob defines the bounding operator.

71

1 func t i on SBOUND = AASeqDot(a , b , n , p , prob)

2 AAFloat INIT ;

3 x = AAFloat(−a∗ ones (n , 1) , a∗ ones (n , 1) , p) ;

4 y = AAFloat(−b∗ ones (n , 1) , b∗ ones (n , 1) , p) ;

5 s = mmul(x ’ , y , prob) ;

6 SBOUND = ebound (s , prob) ;

7 end

1 func t i on SBOUND = AASeqDotFMA(a , b , n , p , prob)

2 AAFloat INIT ;

3 x = AAFloat(−a∗ ones (n , 1) , a∗ ones (n , 1) , p) ;

4 y = AAFloat(−b∗ ones (n , 1) , b∗ ones (n , 1) , p) ;

5 s = 0 ;

6 f o r k=1:n

7 s = fma (x (k) , y (k) , s , prob) ;

8 end

9 SBOUND = ebound (s , prob) ;

10 end

For the parallel dot-product implementation having M = dlog2ne stages of binary-tree adders, the

Matlab codes for rounding error estimation using the AAFloat class are a little more complicated

because n multiplications are computed (in parallel) first then the summations are conducted in a

pairwise manner within M adding stages. The Matlab function for the parallel dot-product using

basic operations AAParDot is shown below.

1 func t i on SBOUND = AAParDot(a , b , n , p , prob)

2 AAFloat INIT ;

3 x = AAFloat(−a∗ ones (n , 1) , a∗ ones (n , 1) , p) ;

4 y = AAFloat(−b∗ ones (n , 1) , b∗ ones (n , 1) , p) ;

5 s p r ev = mul (x , y , prob) ;

6 M = c e i l (l og2 (n)) ; % number o f adding s t a g e s

7 f o r m=1:M

8 N = f l o o r (l ength (s p r ev) /2) ;

9 s = add (s p rev (1 :N) , s p r ev (N+1:2∗N) , prob) ;

10 i f mod(l ength (s p r ev) , 2)

11 s = [s ; s p r ev (2∗N+1)] ;

12 end ;

13 s prev = s ;

14 end ;

15 SBOUND = ebound (s , prob) ;

16 end

We use the Over-Estimation-Ratio (OER), defined by Equ. (4.1) in 4.1.3, to evaluate the tightness

of the estimated AA error bounds for different dot-product variants.

5.2.4 Experimental Results

Rounding errors of sequential dot-products

Figure 5.2 presents the contour maps of the maximum rounding error (dashed lines) obtained by

simulations and the AA probabilistic rounding error bound (solid lines) for the sequential dot-product

72

1e
−

09

1e
−0

8

1e−
08

1e
−

08

1e
−0

7
1e

−
07

1e
−

07

1e
−0

6

1e
−0

6
1e

−
06

1e
−0

5

1e
−

05

1e−
05

0.
00

01

0.
00

01
0.

00
01

0.
00

1

0.
00

1
0.

00
1

0.
01

0.
01

0.
01

0.
1

0.
1

0.
1

1

1

1

10
10

1e
−0

9

1e
−0

8

1e
−

08
1e

−
08

1e
−0

7

1e
−

07
1e

−
07

1e
−0

6

1e
−

06
1e

−
06

1e
−0

5

1e
−

05
1e

−
05

0.
00

01

0.
00

01
0.

00
01

0.
00

1

0.
00

1
0.

00
1

0.
01

0.
01

0.
01

0.
1

0.
1

0.
1

1

1
1

10
10

Precision p

V
ec

to
r

le
ng

th
 n

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
100

200

300

400

500

600

700

800

900

1000

Max. error (dashed) via simulation (106 dotproducts) with MPFR
AA probabilistic bound (solid) with confidence interval K=3

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Contours of Max. error and AA bound, (sequential dot−product, basic operations, range [−128,128])

Figure 5.2 Contours of maximum rounding error and AA probabilistic

bound for the sequential dot-product using basic operations

(SeqDot)

using basic operations (SeqDot). Similarly, Figure 5.3 shows the contours of maximum rounding

errors and respective AA probabilistic bounds of the sequential dot-product using the fused operation

SeqDotFMA. For both sequential dot-products, without or with FMA, we observe that, regardless of

the vector length or precision, AA probabilistic bounds are very close to realistic errors via simulations

and the OERseq of the AA probabilistic bounds for the sequential dot-products is always within the

range: 1.2 ≤ OERseq ≤ 2.2.

A very interesting observation when comparing Figure 5.2 and Figure 5.3 is that the sequential dot-

product using basic operations (multiply & add) and the sequential dot-product using fused operation

(FMA) have the very same error patterns. For the same chosen vector length n and precision p, the

two dot-product implementations produce almost the same rounding errors. This can be explained

as follows. The error model of the fused operation (see Equ. 3.31) shows us that an FMA can only

eliminate the rounding error due to multiplication, but cannot reduce the rounding error due to

addition. During the adding process for computing dot-products, the accumulating sum grows up

significantly and therefore the rounding errors due to additions are the dominant errors, leading to a

final rounding error very similar to the final rounding error of the dot-product using basic operations.

Our conclusion is that, for the sequential dot-products, using an FMA cannot improve the overall

numerical accuracy (compared to using basic floating-point operations).

Rounding errors of the parallel dot-product

For the parallel dot-product using basic operations, the contours of the rounding errors by simulations

and the respective AA error bounds are presented in Figure 5.4 We observe that, regardless of the

73

1e
−0

9

1e
−0

8

1e−
08

1e
−

08

1e
−0

7

1e
−

07
1e

−
07

1e
−0

6

1e
−

06

1e−
06

1e
−0

5

1e
−

05
1e

−
05

0.
00

01

0.
00

01
0.

00
01

0.
00

1

0.
00

1
0.

00
1

0.
01

0.
01

0.
01

0.
1

0.
1

0.
1

1

1
1

10
10

1e
−0

9

1e
−0

8

1e
−

08
1e

−
08

1e
−0

7

1e
−

07
1e

−
07

1e
−0

6

1e
−

06
1e

−
06

1e
−0

5

1e
−

05
1e

−
05

0.
00

01

0.
00

01
0.

00
01

0.
00

1

0.
00

1
0.

00
1

0.
01

0.
01

0.
01

0.
1

0.
1

0.
1

1

1
1

10
10

Precision p

V
ec

to
r

le
ng

th
 n

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
100

200

300

400

500

600

700

800

900

1000

Max. error (dashed) via simulation (106 dotproducts) with MPFR
AA probabilistic bound (solid) with confidence interval K=3

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Contours of Max. error and AA bound, (sequential dot−product, FMA, range [−128,128])

Figure 5.3 Contours of maximum rounding error and AA probabilistic

bound for the sequential dot-product using FMA (SeqDotFMA)

vector length or precision, the OERpar of the AA probabilistic bound for the parallel dot-product is

slightly larger compared to the OERseq of the sequential dot-products, yet always within the range:

1.3 ≤ OERpar ≤ 4.1.

Comparison between sequential and parallel dot-products

We compare the rounding errors of two different dot-product architectures: the sequential dot-product

using basic operations (SeqDot, Figure 5.2) versus the parallel dot-product using basic operations

(ParDot, Figure 5.4). It is not hard to see that the parallel dot-product offers more accurate final

results as all error curves in Figure 5.4 move to the left, compared to the error curves of the sequential

dot-product in Figure 5.2. Moreover, due to the binary-tree structure, the errors of parallel dot-

product increase like log2n (where n is the vector length) and, therefore, are less dependent on the

vector length in comparison with sequential dot-products.

For bit width allocation, the AA probabilistic bounds for all the investigated dot-products are

reliable and efficient estimates, corresponding to the over-estimation of mantissa bit widths of at most

log2(2.2) ≈ 1 bit for sequential dot-product implementations, and log2(4.1) ≈ 2 bits for the parallel

dot-product implementation, respectively.

Calculation time

Table 5.2 reports the time (in seconds) required for analyzing maximum errors via simulation of 106

samples, and for estimating AA probabilistic bounds of all dot-products implementations with the

smallest vector length of n = 100 and at single-precision format (p = 24). Note that the calculation

time does not depend on a specified precision. In terms of calculation time, the AA-based approach

74

1e
−0

9
1e

−
09

1e
−

09

1e
−0

8
1e

−
08

1e−
08

1e
−

07

1e−
07

1e
−

07

1e
−0

6
1e

−
06

1e−
06

1e
−

05
1e

−
05

1e
−

05

0.
00

01
0.

00
01

0.0001

0.
00

1
0.

00
1

0.
00

1

0.
01

0.
01

0.01

0.
1

0.
1

0.
1

1
1

1e
−0

9
1e

−
09

1e
−

09

1e
−0

8
1e

−
08

1e
−

08

1e
−0

7
1e

−
07

1e
−

07

1e
−0

6
1e

−
06

1e
−

06

1e
−0

5
1e

−
05

1e
−

05

0.
00

01
0.

00
01

0.
00

01

0.
00

1
0.

00
1

0.
00

1

0.
01

0.
01

0.
01

0.
1

0.
1

0.
1

1
1

1

Precision p

V
ec

to
r

le
ng

th
 n

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
100

200

300

400

500

600

700

800

900

1000

Max. error (dashed) via simulation (106 dotproducts) with MPFR
AA probabilistic bound (solid) with confidence interval K=3

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Contours of Max. error and AA bound, (parallel dot−product, basic operations, range [−128,128])

Figure 5.4 Contours of maximum rounding error and AA probabilis-

tic bound for the parallel dot-product using basic operations

(ParDot)

Table 5.2 Execution time of rounding error estimation (p = 24, n = 100)

Simulation [s] AA [s] Speedup

(106 samples)

SeqDot 230 0.32 7.2× 102

SeqDotFMA 350 0.42 8.3× 102

ParDot 3041 0.46 6.6× 103

achieves a speedup from two to three orders of magnitude compared to the simulation-based approach.

This reveals that the AA-based approach can be used as a computationally efficient and yet reliable

alternative for the simulation-based approach.

5.2.5 Analytical Error Models of Floating-Point Dot-Products

In this section, going a step further in AA-based error analysis, we aim to derive some analytical ex-

pressions for the error bounds of floating-point dot-products as a function of numerical range, precision

p and vector length n by using an AA probabilistic bounding operator. Our derivation of analytical

error bound expressions for floating-point dot-products is based on the following assumptions:

o Each element of the two input vectors is uniformly randomly distributed in a symmetric range,

i.e., xi ∈ [−a,+a], yi ∈ [−b,+b], i = 1, .., n. As a consequence, the AA form representing each

input operand has a central value of zero.

75

o The relative rounding errors δi due to floating-point computations are independent random

variables that follow a uniform distribution in the range [−u,+u], from which an AA probabilistic

bounding operator can be applied.

Note that the analytical expressions for floating-point dot-products derived in this section are basically

the more compact and convenient forms of AA probabilistic error bounds that have been estimated

by using the AAFloat tool in previous sections. Analytical expressions, however, allow for convenient

comparison of the AA error analysis technique and the conventional error analysis technique, which

will be presented later on.

As presented in Section 3.3, we represent each floating-point quantity by a numerical range com-

ponent and a rounding error component. For example, the input operand xi can be represented by

an AA form x̂i = x̂ri + x̂ei . The magnitude of the rounding error component is closely related to the

magnitude of the range component and can be determined by applying the bounding operator B(·).
In the following analytical derivation, we use the AA probabilistic bounding operator.

AA form of input operands

The AA forms of input operands xi, yi are given by

x̂i = x̂ri + x̂ei = (0 + a · εxxi) + (a · u · εxi),

ŷi = ŷri + ŷei = (0 + b · εyyi) + (a · u · εyi),

in which u = 2−p is the unit roundoff, p is the current working precision; εxxi
, εyyi are the noise symbols

associated the range components and εxi , εyi are the noise symbols associated with quantization errors

of the floating-point numbers xi, yi. Note that the central values of the range components of xi, yi

equal zero because the input operands are assumed to be uniformly distributed in symmetric ranges,

i.e., xi ∈ [−a,+a], yi ∈ [−b,+b], i = 1, .., n.

AA form of product Pi = xiyi

The AA form of product Pi = xiyi evaluated by a basic floating-point multiplication, as is the case

for the SeqDot and ParDot implementations, is derived as

P̂i = P̂ ri + P̂ ei

= (0 + abεppi) + (abuεxi
+ abuεyi +B(P̂ ri)uεPi

)

= (0 + abεppi) + (abuεxi
+ abuεyi + abuεPi

),

where εppi is the noise symbol associated with the range component and εPi
is the noise symbol

associated with the rounding error component of the AA form P̂i. Note that for simplicity, we

skipped the second-order rounding error terms for deriving the AA form P̂i.

Looking into the error component P̂ ei of the product Pi we see that when multiplying two floating-

point operands Pi = xiyi, the quantization error of each operand is multiplied with the other operand,

making the rounding error of the product Pi grow larger. Hence, each product Pi = xiyi introduces

an error expression consisting of abuεxi
due to xi, abuεyi due to yi, and abuεPi

due to the rounding of

the floating-point multiplication itself, which can be determined by applying the bounding operator

B(P̂ ri).

76

Table 5.3 Expressions for analytical derivation of the AA bound for the

sequential dot-product using multiplication & addition (u =

2−p; xi ∈ [−a,+a], yi ∈ [−b,+b])

Quantity AA expression of rounding error component

xi auεxi

yi buεyi

Pi = xi · yi abuεxi + abuεyi + abuεPi

S1 = abuεx1 + abuεy1 + abuεP1

P1 + P2 +abuεx2 + abuεy2 + abuεP2 +B(Ŝr
1)uεS1

S2 = abuεx1 + abuεy1 + abuεP1

(P1 + P2) +abuεx2 + abuεy2 + abuεP2 +B(Ŝr
1)uεS1

+P3 +abuεx3 + abuεy3 + abuεP3 +B(Ŝr
2)uεS2

Sn−1 = abuεx1 + abuεy1 + abuεP1

x1y1 + x2y2 +abuεx2 + abuεy2 + abuεP2 +B(Ŝr
1)uεS1

· · · · · ·
+xnyn +abuεxn + abuεyn + abuεPn +B(Ŝr

n−1)uεSn−1

If the product Pi is computed by using a fused operation FMA, as is the case for SeqDotFMA, the

rounding errors due to multiplications are avoidable for most of the cases,2 which leads to the following

AA form for the product xiyi computed by a fused operation FMA

P̂i,fma = P̂ ri,fma + P̂ ei,fma

= (0 + abεppi) + (abuεxi
+ abuεyi).

General AA expression for rounding error component of dot-product

The AA expression for the final rounding error of dot-products equals the sum of all rounding error

components of products Pi, i = 1, 2, . . . n. In the following, we will first detail the AA expression for

the final rounding error of the sequential dot-product using basic operations SeqDot. We will then

derive a general AA expression for the rounding error component of any floating-point dot-product

implementations considered in this work.

Table 5.3 details AA expressions of the rounding error components of quantities used to compute

the sequential dot-product using basic operations. For sequential implementation, (n − 1) additions

are performed sequentially, i.e., one addition per time, and the rounding errors of products Pi are

accumulated. More importantly, each addition for updating the sum introduces one new rounding

error component B(Ŝri)uεSi
, i = 1, 2 · · · (n − 1), whose magnitude depends on the magnitude of

the current sum and is determined by taking the AA probabilistic bounding operator B(Ŝri) then

multiplying with the unit roundoff u.

From Table 5.3 we can easily rewrite the AA expression for the final rounding error component of

2If we assume that, in the SeqDotFMA implementation, the input operand w to an FMA z = fma(xy+w) is a non-zero

number, then the multiplication can be computed without error.

77

Table 5.4 Rounding error components of four dot-product implementa-

tions

Implementation Êx Êy Êmult Êadd

SeqDot Êx Êy Êmult Êadd,seq

SeqDotFMA Êx Êy 0 Êadd,seq

ParDot Êx Êy Êmult Êadd,par

the sequential dot-product SeqDot as a sum of partial rounding error components as

ÊSeqDot =

n∑
i=1

abuεxi
+

n∑
i=1

abuεyi +

n∑
i=1

abuεPi
+

n−1∑
i=1

B(Ŝri)uεSi
,

where

o
∑n
i=1 abuεxi represents the error component due to quantization error of xi which is multiplied

with yi,

o
∑n
i=1 abuεyi represents the error component due to quantization error of yi which is multiplied

with xi,

o
∑n
i=1 abuεPi

is the rounding error component due to finite-precision multiplications Pi = xiyi,

o and
∑n−1
i=1 B(Ŝri)uεSi

is the rounding error component due to finite-precision summations of Pi.

Therefore, it is straightforward to have a general AA expression ÊDot for the rounding error of any

floating-point dot-product implementation as follows

ÊDot = Êx + Êy + Êmult + Êadd, (5.1)

where Êx =
∑n
i=1 abuεxi

and Êy =
∑n
i=1 abuεyi are the quantization error components, which are

the same for all dot-product implementations. The error component due to multiplications Êmult

and the error component due to additions Êadd may, in general, be different depending on how the

multiplications and additions are performed within different dot-product implementations. Computing

dot-products using a fused multiply-accumulate, as for SeqDotFMA, can avoid the rounding error due

to multiplications.

Parallel dot-products produce a smaller rounding error due to adding than sequential dot-products,

which has been shown by Higham [5]. Sequential dot-products, i.e. SeqDot and SeqDotFMA, have the

same AA expression Êadd,seq for the error component of additions. Table 5.4 summaries the rounding

error components for different dot-product implementations considered in this work.

To complete our analyses of rounding errors occurring in finite-precision computations of floating-

point dot-products, we present the AA expressions for rounding error components of three different

floating-point dot-product implementations in equations (5.2)-(5.4).

The AA expressions for the rounding error components of the sequential dot-products using basic

operations and FMA are as follows:

ÊSeqDot = Êx + Êy + Êmult + Êadd,seq

=

n∑
i=1

abuεxi
+

n∑
i=1

abuεyi +

n∑
i=1

abuεPi
+

n−1∑
i=1

B(Ŝri)uεSi
, (5.2)

78

ÊSeqDotFMA = Êx + Êy + Êadd,seq

=

n∑
i=1

abuεxi
+

n∑
i=1

abuεyi +

n−1∑
i=1

B(Ŝri)uεSi
. (5.3)

The AA expression for the rounding error components of the parallel dot-products having dlog2ne
adding stages and bn/2kc additions performed at the k-th stage, while using basic operations, is

represented as follows:

ÊParDot = Êx + Êy + Êmult + Êadd,par

=

n∑
i=1

abuεxi +

n∑
i=1

abuεyi +

n∑
i=1

abuεPi +

dlog2ne∑
k=1

bn/2kc∑
j=1

B(Ŝrk,j)uεSk,j
, (5.4)

Analytical expressions for AA probabilistic bounds of dot-products

After having derived the AA expressions for final rounding error of different dot-product implemen-

tations, we apply the AA probabilistic bounding operator (see Section 3.2.3), with considering all

noise symbols as uniformly distributed random variables in [-1,+1], to compute the AA probabilistic

bounds for the three different dot-product implementations. Corresponding analytical expressions are

represented by equations (5.5), (5.6) and (5.7).

BSeqDot = 2−pK

√
2

6
ab ·

√
18n+K2(n2 + n− 2), (5.5)

BSeqDotFMA = 2−pK

√
2

6
ab ·

√
12n+K2(n2 + n− 2), (5.6)

BParDot = 2−pK

√
2

6
ab ·

√
18n+ 2K2dlog2nen, (5.7)

In these analytical equations, the constant K specifies the confidence interval for the AA probabilis-

tic bound, where K = 3 corresponds to a confidence interval of 3σ (see Section 3.2.3). According to

Figures 5.2 and 5.3, the error bounds for the two sequential dot-products using basic operations and

FMA, i.e., SeqDot and SeqDotFMA, should be identical. The respective analytical expressions (5.5)

and (5.6) for the error bounds are slightly different by small first-order terms of n, i.e., 18n and 12n.

Those differences are, however, negligible compared to the second-order terms n2, especially for the

large n, making the two analytical bounds in (5.5) and (5.6) almost identical.

Note that for large n, the expressions (5.5) and (5.6) grow approximately linearly with
√
n2 = n,

whereas the expression (5.7) grows linearly with
√
n (because log2n grows much slower than any power

of n). The term log2n actually comes from the binary-tree structure of the parallel dot-product.

Verification of error bound correctness

We perform comparisons to verify the correctness of these analytical expressions with respect to

the bounds evaluated by using our Matlab tool. Comparing the analytical AA probabilistic bounds

given by equations (5.5), (5.6) and (5.7) with the AA probabilistic bounds evaluated by the AAFloat

class results in maxmimum relative differences of 0.1% and 2.0% over the whole parameter space for

sequential dot-products and the parallel dot-product, respectively, which verifies well our analytical

expressions of the AA probabilistic bounds for different floating-point dot-product implementations.

79

10 20 30 40 50 60 70 80 90 100

10
−2

10
0

10
2

Rounding error of sequential single−precision dot product (K=3; x
i
, y

i
 ∈ [−128,+128]

R
ou

nd
in

g
er

ro
r

Conventional bound for sequential dot−product
AA prob. bound for sequential dot−product
Max. error of sequential dot−product by simulation

10 20 30 40 50 60 70 80 90 100
2

10

20

30

40

50

60

70

80

90

100

Vector length n

O
E

R

Conventional model for sequential dot−product
AA model for sequential dot−product

Figure 5.5 Rounding error of sequential single-precision dot-product and

associated overestimation ratio OER

5.2.6 AA-based Error Analysis versus Conventional Error Analysis

In this section, we consider the usefulness of two error analysis techniques for bit width allocation for

VLSI and reconfigurable systems design: Conventional error analysis versus AA based error analysis.

For this investigation, we compare the conventional error bound with the AA probabilistic bound with

respect to vector length n, while keeping the numerical range and working precision constant. Only

the sequential dot-product implementation using basic operations is considered.

Conventional error analysis for floating-point dot-products has been presented in the literature (see

[5] for a complete reference). The conventional (absolute) error bound of a sequential dot-product [5]

is presented as

|xTy− fl(xTy)| ≤ nu

1− nu

n∑
i=1

|xiyi|,

where u = 2−p is the unit roundoff. We assume that xi ∈ [−a,+a], yi ∈ [−b,+b] and use the

maximal values of xi, yi to estimate the conventional bound, thereby
∑n
i=1 |xiyi| ≈ n · ab. For further

simplification, we assume 1 − nu ≈ 1 (which is true when p is not too small and n ≤ 1000). The

conventional forward error bound for the sequential dot-product is, therefore, estimated as

|xTy− fl(xTy)| ≤ 2−p · ab · n2. (5.8)

The conventional forward error bound in (5.8) can be approximated as a function of n2, while the

AA probabilistic bound in (5.5) is estimated as a function of
√
n2 = n. Figure 5.5 shows the rounding

error bounds and corresponding OERs of single-precision (p = 24) sequential dot-products derived by

80

the conventional model in (5.8) and by the AA probabilistic bounding operator in (5.5). In theory,

the OERs resulted in by the conventional model should be a function linear in n. In Figure 5.5,

the conventional bound overestimates the realistic maximum error by a factor of 10 at vector length

n = 10. The OERs of the conventional model then linearly increases with the vector length up to

n = 40. There are small fluctuations in the OERs of the conventional model for the vector lengths

n = 50 to n = 80, which seems to be due to the fluctuations in the simulations. The OER then

continuously increases with increasing vector length and becomes even more pessimistic at vector

length n = 100 with an OER of 95. Obviously, the conventional bound becomes useless for mantissa

bit width allocation with the increase of vector length as the OER of this bound grows approximately

linearly with vector length n.

The AA probabilistic bound for sequential dot-products is very close to the maximum rounding

errors in practice (see Figure 5.5). More importantly, the OER obtained by AA modeling remains

almost constant (i.e., fluctuating between 1 and 2, see lower subplot in Figure 5.5) over the whole

range of vector lengths. This reveals that AA with a probabilistic bounding operator is able to provide

tighter bounds than the conventional error model for floating-point error analysis.

5.2.7 Summary

We have shown that affine arithmetic with a probabilistic bounding operator is able to provide a tighter

rounding error estimate compared to the bound provided by the conventional forward error analysis

technique for different floating-point dot-product implementations over a wide range of parameters.

Due to the tight bounds, the minimum mantissa bit width for hardware implementation can be

determined and comparison of different dot-product architectures is possible. We have shown that the

overall rounding error of a floating-point dot-product implementation can significantly be improved

by employing a parallel architecture, rather than by employing an FMA. More importantly, the

analytical rounding error models for all floating-point dot-product architectures are derived, allowing

for an efficient design space exploration and which are key to specialised code generators.

As of now, the AA-based error model has been used for performing error analysis of simple floating-

point arithmetic, i.e., addition, multiplication and FMA, via the example of the dot-product. In the

remainder of this chapter, we will study the application of the AA-based error model in a much more

complex algorithm for signal and speech processing: the Levinson-Durbin algorithm.

81

5.3 Rounding Error Analysis of Floating-Point Levinson-Durbin Al-

gorithm

5.3.1 Motivation

Linear Prediction (LP) [6–8] is an important technique in signal and speech processing. This technique

is based on autoregressive (AR) modeling and enables us to estimate the coefficients of AR filters and

is thus closely related to the model of speech production. Suppose we are given a real sequence

1 = r0, r1, r2, . . . , rn, namely the auto-correlation coefficients of a wide-sense stationary discrete-time

random process, that forms the special case of Yule-Walker equations of order n expressed in the

expanded matrix form:
r0 r1 ... rn−1

r1 r0 ... rn−2

. . .

. . .

rn−1 rn−2 ... r0

a1

a2

.

.

an

 = −

r1

r2

.

.

rn

 , (5.9)

or in the compact matrix form

R · a = −r, (5.10)

where R is the n× n square autocorrelation matrix, and the AR coefficients or predictor/filter coeffi-

cients a and the autocorrelation sequence r are n× 1 column vectors.

The Levinson-Durbin algorithm [7, 8], which was suggested by Levinson (1947) and then reformu-

lated by Durbin (1960), is an efficient algorithm for solving Yule-Walker equations like (5.10). The

Levinson-Durbin algorithm belongs to a class of fast algorithms for solving Toeplitz systems whose

computational complexity is O(n2) and storage requirement is O(n). The underlying idea of the

Levinson-Durbin algorithm can be described as follows. The algorithm starts from a known solution

of the Yule-Walker equations with order (n − 1) leading to the solution of order n. In other words,

the algorithm implicitly computes a factorization of the inverse of the Toeplitz matrix [65]. Natu-

rally, the algorithm operates in an iterative manner. Thanks to its computational efficiency and low

storage requirements, the Levinson-Durbin algorithm has played an important role not only in linear

prediction but also in other applications involving Yule-Walker equations.

Other Levinson-like algorithms have been proposed to further benefit from the superior properties

of the Toeplitz structure of the Yule-Walker equations. The split Levinson algorithm suggested by

Delsarte and Genin [66] requires only half the amount of multiplications compared to the original

algorithm. The Schur algorithm [67] (which was actually based on the Levinson-Durbin algorithm

and implemented in fixed-point by Le Roux and Guegen in 1977) and the lattice algorithms [68] are

other alternatives for determining the reflection coefficients of Yule-Walker equations. Similarly, split

versions of the Schur and lattice algorithms were also proposed [69].

Beside the Levinson-Durbin algorithm and its improvements, other fast algorithms and asymptot-

ically super-fast algorithms, i.e., with a computational complexity of O(n log n), for solving general

Toeplitz systems having arbitrary righthand side vectors can be found in [65, 70, 71]. The numerical

properties of those algorithms are generally poor (i.e., numerically unstable) and, therefore, those

algorithms will not be considered in this work. The numerical properties of the Levinson-Durbin

algorithm is presented later.

82

The common issue of Toeplitz solvers is that they suffer from the rounding effect of finite-precision

computations. In contrast to other Toeplitz solvers, the Levinson-Durbin algorithm shows benefits,

apart from its computational efficiency and low storage requirements, that make it an important

Toeplitz solver. Firstly, the Levinson-Durbin algorithm computes both predictor coefficients and

reflection coefficients in each iteration, thus the filter can be implemented alternatively in direct

form or in lattice structure [8]. Secondly, the Levinson-Durbin algorithm provides directly results of

all the subsystems (i.e., Yule-Walker equations with smaller orders than n) during the intermediate

computations, thus the users can stop the computation at any step they want. The most important

property of the Levinson-Durbin algorithm however is that it is numerically stable [30] for both fixed-

and floating-point implementations.

Since the Levinson-Durbin algorithm is one of the most important Toeplitz solvers, efficient imple-

mentation for this algorithm is desirable. Generally, the Levinson-Durbin algorithm can be applied to

any application that involves solving Yule-Walker equations. However, in practice, the most popular

use of the Levinson-Durbin algorithm is its implementation in linear prediction and autoregressive

modeling. Existing realizations can be classified into fixed-point implementations and floating-point

implementations. While fixed-point hardware implementations of the Levinson-Durbin algorithm have

been widely implemented in DSP [32, 33], reconfigurable hardware [34] and ASICs [31], floating-point

arithmetic implementations of the Levinson-Durbin algorithm have, however, still not been thoroughly

reported in existing literature. Another example of Levinson-Durbin implementation using rational

arithmetic is presented in [35].

The goal of this work is the efficient implementation of a custom-precision floating-point Levinson-

Durbin algorithm with respect to system order, hardware resources (area), performance and power

consumption while meeting the accuracy requirements of the user. The critical question is how

to determine the minimum bit width for the floating-point number format to guarantee the users’

accuracy requirements. We aim at the optimization of a uniform floating-point bit width. Chapter 2

has shown that reduced minimum bit width of the floating-point number format leads to increased

parallelism and performance for implementations on reconfigurable hardware. The benefit of reduced

precision would still hold in floating-point applications like the Levinson-Durbin implementation.

Therefore, minimum bit width allocation for the implementation of the Levinson-Durbin algorithm

will result in minimal resource consumption and allow for improved performance.

In order to reach the goal, we apply affine arithmetic to estimate the numerical range and rounding

error of floating-point operations in Levinson-Durbin iterations. We use the Matlab-based framework

proposed in Chapter 4 for representation and evaluation of floating-point Levinson-Durbin computa-

tions. Both the ranges and rounding errors of all relevant quantities in the Levinson-Durbin imple-

mentation will be estimated. Those quantities are the reflection coefficients km, filter coefficients ai

and the short-term energy of the prediction error Em. It has been shown in [30] that if the problem

to be solved is already ill-conditioned then even an extremely stable algorithm can certainly result

in totally wrong computed results. Therefore, we carefully take into account the condition number

of the problem at hand when investigating the rounding effect of finite-precision computations of the

Levinson-Durbin algorithm.

Since the Levinson-Durbin algorithm is used in the adaptation of the linear prediction coefficients,

the accuracy of the resulting coefficients has some impacts on the accuracy of the synthesis filters

in speech coding [7]. For subjective evaluation of the synthesis filter, the spectral distortion (SD)

measure [7] is often used. Our ultimate concern is how the precision of the floating-point number

83

format used in the Levinson-Durbin implementation affects the quality of the resulting synthesis

filters.

In the remainder of this chapter, we will first describe the Levinson-Durbin algorithm and list some

special properties of reflection coefficients (section 5.3.2) that are the basis for further studies of the

algorithm in terms of rounding error bound estimation and bit width allocation. A summary of the

numerical stability of the Levinson-Durbin algorithm is also presented and the normwise rounding error

bound for filter coefficients is derived based on related work in [30]. Next we discuss the experimental

setup for the custom-precision floating-point Levinson-Durbin implementation (section 5.3.3) and we

present the experimental results on the rounding errors of the Levinson-Durbin algorithm that we

observed when applying synthetic data and speech signals into the custom-precision floating-point

Levinson-Durbin implementation (section 5.3.4). A central result of this thesis is to use the AA-

based error analysis technique for deriving the AA-based rounding error bounds for filter coefficients

and reflection coefficients in the Levinson-Durbin floating-point implementation as a function of the

system order, precision and condition number of the Toeplitz matrix (section 5.3.5). Finally, we

give our discussion on AA-based rounding error analysis and bit width allocation for floating-point

Levinson-Durbin implementation.

5.3.2 Levinson-Durbin Algorithm

We give a description of the Levinson-Durbin (LD) algorithm and summarize the properties of the

reflection coefficients. The specially restricted range of the reflection coefficients is then used to obtain

a closed form estimate for the filter coefficients, providing a rough estimate for the range and rounding

error of filter coefficients and the knowledge about the trend of the rounding error over iterations.

The numerical stability of the LD algorithm is summarized based on related work.

Description of the Levinson-Durbin algorithm

The basic idea of the LD algorithm can be described as follows. The algorithm starts from a known

solution a(m−1) of the Yule-Walker equations with order (m−1) and leads to the solution a(m) of order

m. Naturally, the algorithm proceeds in an iterative manner. In fact, the LD algorithm implicitly

computes a factorization of the inverse of the Toeplitz matrix. This kind of inverse operation requires

that all the submatrices factorized from the Toeplitz matrix have to be non-singular, or all the Toeplitz

submatrices have to be positive definite.

More specifically, the LD algorithm computes the quantities km, Em and a
(m)
i , i = 1 . . .m, m =

1 . . . n, by the initialization

E0 = r0, a
(0)
0 = 1 (5.11)

and through the following iterations: For m = 1 to n,

βm =

m−1∑
i=0

a
(m−1)
i rm−i (5.12)

km = − βm
Em−1

(5.13)

a
(m)
i = a

(m−1)
i + kma

(m−1)
m−i (∀ i ∈ [1,m− 1]) , a

(m)
0 = 1, a(m)

m = km (5.14)

Em = Em−1

(
1− k2

m

)
(5.15)

84

where km is the reflection coefficient at the m-th iteration of the LD algorithm; a
(m−1)
i and a

(m)
i are

the i -th filter coefficients calculated at the (m − 1)-th and the m-th iteration, respectively. At the

m-th iteration, the LD algorithm generates a new reflection coefficient km and a short-term prediction

error Em, as well as the new set of filter coefficients a
(m)
i from the previous filter coefficients a

(m−1)
i .

An alternative way for computing the short-term prediction error Em is to use the autocorrelation

coefficients ri and the filter coefficients ai at the m-th iteration as [7]

Em = r0 +

m∑
i=1

a
(m)
i ri =

m∑
i=0

a
(m)
i ri (m = 1 . . . n), E0 = r0 = 1. (5.16)

The two equations (5.15) and (5.16) are mathematically equivalent. In this work, we use (5.15) for

computing the short-term prediction error in the LD algorithm, both in experiments and in the AA-

based error bound evaluation. The alternative equation (5.16) is more expensive than (5.15); it is

therefore not used in practical implementations of the Levinson-Durbin algorithm. In this work, the

equation (5.16) is only used later in subsection 5.3.5 to explain the possible range of the short-term

prediction error in the AA-based error analysis of the LD algorithm.

Properties of reflection coefficients

Reflection coefficients have a number of interesting properties [7, 8, 72]:

o They are limited by one in magnitude, i.e., |km| ≤ 1.3 Note, that this is a consequence of using

proper auto-correlation sequences as input to the LD algorithm and of assuming that an infinite

precision floating-point number format is used. The LP-analysis filter, therefore, will have all

its zeros inside or on the unit circle and the LP-synthesis filter will be stable (i.e., all poles

are inside or on the unit circle). Therefore it can be concluded that the short-term energy Em

does not increase from iteration to iteration, i.e., Em = Em−1(1 − k2
m) ≤ Em−1, while staying

non-negative, i.e., 0 ≤ Em ≤ E0 = r0 = 1.

o Given the reflection coefficients km (m = 1 . . . n), the filter coefficients ai (i = 1 . . . n, a0 = 1)

can be calculated by Equation (5.14).

o Given the filter coefficients ai (i = 1 . . . n, a0 = 1), the reflection coefficients km (m = 1 . . . n)

can be computed directly as well (see [7] or [8]).

o There is a one-to-one correspondence between the two sets of quantities {E0, k1, k2, · · · kn} and

{r0, r1, r2, · · · rn} in that if we are given the one, we may uniquely determine the other in an

iterative manner [8].

o For (voiced) speech signals, it has been observed [72] that the reflection coefficients have a U-

shaped probability density function, in which the reflection coefficients often concentrate near

±1.

A closed form estimate for the range bound and error bound of filter coefficients

Based on the specially restricted property of the reflection coefficients within the range [−1, 1], i.e.,

|km| ≤ 1 (m = 1 . . . n), and due to the fact that the filter coefficients ai can be calculated directly

3The property that |km| ≤ 1 can also be proven by using the two equations (5.12) and (5.16).

85

from reflection coefficients, the range bound and error bound for the filter coefficients ai of order n

can roughly be estimated by exploiting the relation in Equ. (5.14). In the following subsections, we

assume all the reflection coefficients have been computed exactly without any rounding error.

Reflection-coefficient based range estimate for filter coefficients. We present a simple example

calculating the filter coefficients ai given the full set of reflection coefficients km using Equation (5.14)

with a chosen order n = 3 as follows:

o Initialization (m = 0): a
(0)
0 = 1

o Iteration m = 1, given k1:

a
(1)
0 = 1

a
(1)
1 = k1

o Iteration m = 2, given k2:

a
(2)
0 = 1

a
(2)
1 = a

(1)
1 + k2a

(1)
1 = k1 + k2k1

a
(2)
2 = k2

o Iteration m = 3, given k3:

a
(3)
0 = 1

a
(3)
1 = a

(2)
1 + k3a

(2)
2 = k1 + k2k1 + k3k2

a
(3)
2 = a

(2)
2 + k3a

(2)
1 = k2 + k3(k1 + k2k1) = k2 + k3k1 + k3k2k1

a
(3)
3 = k3

This example shows that the i-th filter coefficient at the iteration m, i.e., a
(m)
i (i = 0, 1 . . .m; m =

0, 1 . . . n), is computed as a finite sum of the products of reflection coefficients. The most important

implication in this example is that the upper bound for the product of the reflection coefficients is

restricted by |
∏
km| ≤ 1 because each partial coefficient |km| ≤ 1. Therefore, the upper bound for

the filter coefficient a
(m)
i is exactly equal to the number of products of the reflection coefficients.

In fact, Cybenko [30] showed that the upper bound for the coefficient a
(m)
i computed at iteration

m of the LD algorithm is the binomial coefficient of the xi term in the polynomial expansion of a

binomial power (1 + x)m. If we define R
a
(m)
i

as the upper bound for the filter coefficient ai computed

at the m-th iteration of the LD algorithm, then this upper bound is estimated as follows:

R
a
(m)
i

=

(
m

i

)
=

m!

i!(m− i)!
, (5.17)

where m! denotes the factorial of m, i.e., m! = 1× 2× · · · ×m and 0! = 1.

86

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10

0

10
1

10
2

10
3

B
ou

nd
 o

f R
an

ge

Closed−form estimation for range of a
i

n = 7
n = 8
n = 9
n = 10

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10

−6

10
−5

10
−4

10
−3

B
ou

nd
 o

f R
ou

nd
in

g
E

rr
or

Closed−form estimation for rounding error of a
i
 (single−precision Levinson−Durbin)

n = 7
n = 8
n = 9
n = 10

Figure 5.6 A closed-form estimate (based on the reflection-coefficients)

for the range and rounding error of filter coefficients ai for the

single-precision Levinson-Durbin algorithm

Reflection-coefficient based error estimate for filter coefficients. As mentioned earlier in Chap-

ter 3, the rounding error of a floating-point operand is directly proportional to the size of the range

of that floating-point operand. Using the conventional rounding error model of floating-point number

suggested by Higham [5] along with the upper bound of the range of filter coefficient ai in (5.17), an

estimate of the floating-point rounding error bound for filter coefficient ai computed at iteration m of

the LD algorithm is given in (5.18)

E
a
(m)
i

= E
a
(m−1)
i

+ E
a
(m−1)
m−i

+R
a
(m)
i
· 2−p, (5.18)

where E
a
(m)
i

is the upper bound of the rounding error of a
(m)
i , and p is the precision. Note that by

convention, E
a
(m)
0

= 0 and E
a
(m)
m

= 0, ∀m ∈ {0, 1, . . . n} since a
(m)
0 = 1 and a

(m)
m = km (which is

assumed to be computed exactly).

Discussion. The upper bound for the range of filter coefficients estimated by (5.17) is a precise

estimate and therefore it can be used as the reference to evaluate the accuracy of the ranges estimated

by AA-based error analysis technique which will be presented later in Section 5.3.5.

Figure 5.6 illustrates the range bounds estimated by (5.17) and the error bounds estimated by (5.18)

for the filter coefficients ai corresponding to some system orders. The numerical range of each filter

coefficient ai increases with the system order n. Given a system order n, the ranges of coefficients

ai are even-symmetric via the center coefficient. As the size of the rounding error of a floating-point

number is directly proportional to the range of that number, the even-symmetry property of the range

87

of the filter coefficients suggests that the respective rounding error bound of ai should follow a similar

trend versus the coefficient ai, confirmed by the lower subplot of Figure 5.6.

For the rounding error estimation of the filter coefficients, we are aware that equation (5.18) is

based on the assumption that all the reflection coefficients km are strictly bounded and accurately

computed in the range [−1, 1] with no rounding error. In other words, the estimate in (5.18) does

not capture the accumulating effect of rounding errors in the reflection coefficients and, therefore, it

is a less precise estimate. However, this rough estimate is important because it provides knowledge

about the trend of the rounding error of filter coefficients over iterations that is very important for

understanding the behavior of the resulting rounding error in filter coefficients in the LD iterations

for practical applications, which will be presented in the experimental results in Section 5.3.4.

The numerical stability of the Levinson-Durbin algorithm

The numerical stability of the LD iteration has been a subject of several publications in the literature

[30, 73]. It has been shown in [30] that the LD algorithm is numerically stable for both fixed- and

floating-point implementations. The size of the rounding errors of computed quantities in the LD

algorithm, however, strongly depends on the condition number of the Toeplitz matrix being solved.

This section presents the rounding error bound for the filter coefficients taking into account the

accumulation of rounding errors over iterations of the LD algorithm and the condition number of the

Toeplitz system at hand. For doing so, we extend the calculation by Cybenko [30] for the bound of

the residual of the righthand side vector r in (5.10) to represent the error bound of the filter coefficient

vector a as a function of system order n, precision p and the condition number.

The condition number [5] of the Toeplitz matrix R is defined as

κ(R) = ||R|| · ||R−1|| (5.19)

where || · || is some matrix norm. An in-depth discussion about vector-norm and matrix-norm can be

found in textbook, like [5]. In accordance with the work of Cybenko [30], the 1-norm will be considered

in this thesis. The definition for other norms and condition numbers can be found in Appendix C.

The 1-norms for an n× n square matrix R and for an n× 1 vector a are defined as

||R||1 = max
1≤j≤n

n∑
i=1

|rij | (5.20)

||a||1 =

n∑
i=1

|ai| (5.21)

and, therefore, the 1-norm for a matrix in (5.20) is also called ”max column sum”.

Since r0 = 1 and R is positive definite and an autocorrelation matrix, i.e., |ri| ≤ 1, i = 1 . . . n, we

obtain

1 ≤ ||R||1 ≤ n. (5.22)

As a consequence, the size of ||R−1||1 will essentially define the size of the condition number κ(R)

of the Toeplitz system. Given all reflection coefficients km and r0, the lower and upper bounds for

||R−1||1 have been determined in [30], from which the lower and upper bounds of the condition number

of the Toeplitz system can be calculated.

88

In contrast to [30], in this work we are to estimate the bound for the range and rounding error of all

the reflection coefficients km and filter coefficients ai computed by the floating-point LD implemen-

tation, the reflection coefficients km are, therefore, not known in advance. However, we assume that

the condition number κ(R) of the problem at hand is given, such that the size of ||R−1||1 can then

be estimated and used to derive the upper bound of the absolute error for the filter coefficients ai.

Since ||R||1 is bounded by (5.22), the size of ||R−1||1 will essentially determine the condition number

of the autocorrelation matrix and can be estimated as

||R−1||1 ≈ κ(R). (5.23)

Now we present the upper bound of the absolute rounding error of filter coefficients ai by using

the bound for the residual given in Cybenko’s work [30]. Cybenko derived the bound for the residual

in a floating-point implementation of the LD algorithm as follows. Suppose that a and â are the

true solution and finite-precision computed solution of the Yule-Walker equations, respectively. The

computed solution is then

â = a + α,

where α is the perturbation vector or absolute error vector (of length n) due to the accumulation of

rounding errors, and n is the order of the Yule-Walker equation. Obviously, this computed solution

will satisfy a perturbed system of equations

Râ = −r̂

R(a + α) = −r̂

Ra + Rα = −r + δ

The vector δ (of length n) is called the residual vector and satisfies

Rα = δ. (5.24)

The upper bound of the residual vector for a floating-point implementation is given as [30]

||δ||1 ≤ u
(
n2

2
+ 11n

) n∏
j=1

(1 + |kj |)− 1

+O(u2) (5.25)

where u is the unit roundoff (i.e., u = 2−p) depending on the precision p. The term O(u2) briefly

expresses the fact that only first order errors are considered important in the analysis. For numerical

evaluation of the bound of the residual, the term O(u2) will not be considered and the reflection

coefficients take their maximum value |kj | = 1.

At this point, we are ready to determine the bound for the absolute error vector according to

Cybenko’s derivation. The absolute error vector α is defined from (5.24) as

α = R−1δ. (5.26)

Applying the 1-norm onto (5.26) gives

||α||1 = ||R−1δ||1,

thus the upper bound for the 1-norm of error vector α is determined as (see relation (C.8))

||α||1 ≤ ||R−1||1 · ||δ||1, (5.27)

89

r Levinson-
Durbin

n, p

 k, a^ ^

 k, a (true coefficients)

(computed coefficients)
Signal
Source

Figure 5.7 General setup for rounding error evaluation of custom-

precision floating-point Levinson-Durbin implementation

where ||δ||1 is computed by (5.25), and ||R−1||1 is approximated via the condition number by (5.23)

With these settings, the upper bound for the 1-norm of error vector α is explicitly computed as a

function of condition number κ(R), precision p (or u = 2−p) and system order n as

||α||1 = κ(R) · u ·
(
n2

2
+ 11n

)
· (2n − 1), (5.28)

showing that the upper bound for the 1-norm of the error vector linearly scales with the condition

number κ(R) of the Toeplitz system. In fact, the experimental data in Section 5.3.4 will confirm this

conclusion that the rounding error of the filter and reflection coefficients in the LD iterations increases

linearly with the condition number of the Toeplitz system at hand.

5.3.3 Experimental Setup

This section presents our setup to experimentally estimate the rounding errors of the coefficients ai

and km computed by the custom-precision floating-point LD implementation as a function of filter

order n, precision p (number format), condition number of the Toeplitz system and signal types. The

experimental results will be presented in the next section 5.3.4.

In the following, the general setup for a rounding error evaluation of the LD implementation is

first presented, focusing on the discussion of choosing the true coefficients extracted from the signal

source and computed coefficients given by the LD implementation. Then the measures used for error

evaluation of the LD implementation are defined. Finally, two particular setups for a synthetic data

scenario and a speech signal scenario are described in detail.

General setup

Figure 5.7 describes the general setup for rounding error evaluation of the custom-precision LD imple-

mentation. Given the precision p and system-order n, the auto-correlation vector r is applied as the

input to the custom-precision LD implementation in Matlab. The signal source can be a real-world

autoregressive signal from nature or it can be synthesized for simulation purposes. For speech process-

ing, which is the focus of this work, the rounding errors are studied with two types of signal sources:

speech signals and synthetic data. Synthetic data is randomly generated taking into consideration the

distribution of the reflection coefficients. For speech data, the well-known TIMIT [74] speech database

is used.

To evaluate the rounding errors, the computed reflection coefficient vector k̂ and filter coefficient

vector â in the p-precision number format are compared with the corresponding true coefficient vectors

k and a. The estimated coefficients k̂ and â are computed by the custom-precision LD implementation

that receives the autocorrelation input vector r estimated from the signal source.

90

How should the true values k and a be chosen and which number format should be used for those

true value representations?

In terms of numerical representation, we choose the double-precision number format (p = 53) in

Matlab to represent the true coefficient vectors k and a. The choice of true values for k and a

depends on particular experimental scenarios. The same setup is applied to the auto-correlation

vector r. The vector r is represented in double-precision and calculated depending on particular cases

of the experimental setup. Different experimental setup scenarios will be described in more detail in

the remainder of this section.

The experimental error evaluation is performed in a frame-based manner. Given the system or-

der n and precision p, a sufficiently large number of data frames, 105 frames for synthetic data and

116395 (≈ 105) frames for speech data, are processed with the LD implementation. For each frame,

the autocorrelation sequence r is computed in double-precision and used as input to the LD imple-

mentation. Statistical measures for the rounding errors are estimated taking into consideration the

condition number κ of all the data frames processed.

Custom-precision floating-point LD implementation. Custom-precision floating-point arithmetic

operations are implemented in Matlab using MPFR as described in section 4.3. The Matlab code of

the function levcus implementing the custom-precision floating-point LD algorithm is presented in

Appendix D.

Measure definition for rounding error evaluation of Levinson-Durbin implementation

In the following, we define the necessary measures for rounding error evaluation. These measures

include component-wise and norm-wise errors. Taking into account the condition number of the

system, we can evaluate the maximum error corresponding to a specified condition number.

In terms of speech processing, we present the average spectral distortion as an objective measure

for evaluating the quality of a linear predictor versus the number format used.

Component-wise errors. For floating-point computation the most useful measures of the accuracy

are the absolute error and the relative error. For the LD algorithm, the component-wise absolute and

relative errors are defined for the computed filter coefficient âi as

eabs,âi = |ai − âi|,

erel,âi =
|ai − âi|
|ai|

,

and for the computed reflection coefficient k̂i as

eabs,k̂i = |ki − k̂i|,

erel,k̂i =
|ki − k̂i|
|ki|

.

Note that the relative error is defined only for ai 6= 0 and ki 6= 0.

Since the filter coefficients and reflection coefficients are represented by two vectors â and k̂, the

corresponding error measures are preferably represented in vector notation. The absolute error vectors

91

for filter coefficients and reflection coefficients corresponding to one data frame are

eabs,â = |a− â| = [|a1 − â1|, |a2 − â2|, . . . , |an − ân|]T , (5.29)

eabs,k̂ = |k− k̂| = [|k1 − k̂1|, |k2 − k̂2|, . . . , |kn − k̂n|]T . (5.30)

By definition a0 = 1, thus the rounding error of a0 is zero and not included in the error vectors.

Norm-wise errors. For rounding error evaluation the norm applied onto these error vectors is used.

Different vector norms exist. This work uses the 1-norm (see Appendix C) because it takes into

account all error components and it is also used in related work by Cybenko [30]. For one data frame,

the norms of the absolute error and relative error of the predictor and reflection coefficients are defined

by

||eabs,â||1 = ||a− â||1 =

n∑
i=1

|ai − âi|, (5.31)

||erel,â||1 =
||a− â||1
||a||1

=

∑n
i=1 |ai − âi|∑n
i=1 |ai|

, (5.32)

||eabs,k̂||1 = ||k− k̂||1 =

n∑
i=1

|ki − k̂i|, (5.33)

||erel,k̂||1 =
||k− k̂||1
||k||1

=

∑n
i=1 |ki − k̂i|∑n
i=1 |ki|

, (5.34)

where n is the system order, â and k̂ are the coefficient vectors computed at the p-precision number

format.

Maximum errors with respect to condition number. As the rounding errors of the coefficients in

the LD algorithm depend on the condition number of the Toeplitz matrix, as already shown in 5.3.2,

we need to take into account the condition number when evaluating the rounding errors. We denote D
the set of all data frames investigated and N the number of data frames (N = 105 for synthetic data,

N = 116395 for speech data extracted from TIMIT database). Obviously the set D has N elements.

We use the 1-norm to compute the condition number for each data frame. The maximum absolute

and relative errors over N frames can be calculated as

max
D
||eabs,â||1, max

D
||erel,â||1 for filter coefficients;

max
D
||eabs,k̂||1, max

D
||erel,k̂||1 for reflection coefficients.

Now taking into account the condition number κ(R) of the Toeplitz matrix corresponding to each data

frame, we can extract the maximum error for â and k̂ for all the frames having a condition number

less than a specified upper bound. We denote D101 the set of all the data frames having the condition

number less than or equal to 101. Obviously, D101 has less than or equal to N data frames. The

maximum absolute and relative errors for the data frames having the condition number κ(R) ≤ 101

are defined by

max
D101

||eabs,â||1, max
D101

||erel,â||1 for filter coefficients;

92

max
D101

||eabs,k̂||1, max
D101

||erel,k̂||1 for reflection coefficients,

i.e., the maximum errors are evaluated in the subset D101. Similarly we can define D102, D103, etc.

as the sets of all the data frames having κ(R) ≤ 102, κ(R) ≤ 103, etc. Similar estimates for the

maximum errors of these new sets can also be made. The higher condition number the data frames

have, the larger the resulting errors will be.

Spectral distortion measure. In parametric vocoders (voice coders), the number format used to

quantize the predictor and reflection coefficients directly affects the quality of the encoded speech

signal. In order to evaluate the quality of an LPC (linear predictive coding) vocoder, an objective

measure or a distance measure, which is preferably independent of the chosen filter structure, is

required [7]. A common measure is the mean spectral distortion.

The spectral distortion measure for a single speech frame is defined as follows [7]:

SD =

√
1

2π

∫ π

−π

[
10log10|H(ejΩ)|2 − 10log10|Ĥ(ejΩ)|2

]2
dΩ [dB], (5.35)

where H(ejΩ) and Ĥ(ejΩ) are the frequency responses of the synthesis filters corresponding to the

true or unquantized coefficients represented in an infinite precision number format and the computed

or quantized coefficients represented in a p-precision number format, respectively. The mean spectral

distortion SD is evaluated by averaging over all the speech frames in the test data.

For LPC vocoders, it is commonly accepted that a mean value SD ≤ 1 dB corresponds to transpar-

ent speech quality [7]. According to [75], ”transparent” quantization of LPC parameters means that

the LPC quantization does not introduce any additional audible distortion in the coded speech; i.e.,

the two versions of coded speech - the one obtained by using unquantized LPC parameters and the

other by using the quantized LPC parameters - are indistinguishable through listening.

Before computing the spectral distortion measure, we would like to show the relation between the

frequency responses, H(ejΩ) and Ĥ(ejΩ), of the synthesis filters and the predictor coefficients ai and

âi computed in infinite-precision and in p-precision, respectively. In speech processing, the vocal tract

is modeled by an all-pole filter. This all-pole filter is reconstructed by the synthesis filter at the

receiving side of a digital speech transmission system. The predictor coefficients ai characterize the

frequency response H(ejΩ) or H(z) (in the z domain) of the synthesis filter as follows

H(z) =
1

A(z)
=

1

1 +
∑n
i=1 aiz

−i , (5.36)

where A(z) = 1 +
∑n
i=1 aiz

−i = 1 + a1z
−1 + a2z

−2 + · · · + anz
−n is the frequency response of the

LP-analysis filter of order n at the transmitting side. Similarly, the predictor coefficients âi estimated

in finite-precision arithmetic characterize the frequency response Ĥ(z) as

Ĥ(z) =
1

Â(z)
=

1

1 +
∑n
i=1 âiz

−i . (5.37)

We are now to compute the spectral distortion measure. Computing the spectral distortion di-

rectly from its definition in (5.35) is expensive because it requires the computation of an integral.

Alternatively, the spectral distortion can be computed using the real cepstral coefficients as follows [7]

SD = 20log10(e)
√

2

√√√√ n∑
i=1

(cci − ĉci)2 [dB], (5.38)

93

k
k -> a

a

x
White
noise

(DP)
(DP)

(DP)
AR modeling
& windowing
(Hamming)

r Levinson-
Durbin

n, p

 k, a^ ^

r Levinson-
Durbin

n, DP

 k
DP

, a
DP

^ ^

auto-
correlation

(DP)

Random
Number

Generator

Distribution

a) Waveform-based Parameter Estimation

k
k -> a

a

(DP)

(DP)

r Levinson-
Durbin

n, p

 k, a^ ^
k -> r

(DP)

Random
Number

Generator

Distribution

b) Parameter Conversion

Figure 5.8 Experimental setup with synthetic data for custom-precision

Levinson-Durbin implementation in Matlab

in which e ≈ 2.71828 is the base of the natural logarithm, cci and ĉci are the real cepstral coefficients

that correspond to the two systems H(z) and Ĥ(z), respectively, and n is the filter order. Furthermore,

for an all-pole model, the real cepstral coefficients cci can be computed from the predictor coefficients

ai by the following recursion

cci = ai +

i−1∑
m=1

i−m
i

cci−mam, 1 ≤ i ≤ n. (5.39)

The transform from predictor coefficients âi to cepstral coefficients ĉci can be made similarly. The

detailed derivation for the relations in (5.38) and (5.39) is presented in [7, Section 3.7].

As mentioned earlier in the general experimental setup, the coefficients ai are computed in the

double-precision number format and the coefficients âi are computed in p-precision number format.

The cepstral coefficients cci and ĉci and the spectral distortion SD in (5.38) are evaluated using the

double-precision number format.

To summarize, we will evaluate the spectral distortion measure as a function of the precision of the

floating-point number format used for custom-precision LD implementation by using the real cepstral

coefficients, which, in turn, are calculated from the predictor coefficients, as shown in relations (5.38)

and (5.39), respectively.

Setup for synthetic data

For the generation of synthetic data, we start with the reflection coefficient vector k being generated

in the range [−1,+1] to guarantee the stability of the autoregressive models considered. Figure 5.8

describes the block diagrams of two setups that can be used for the generation of r from k:

o Waveform-based parameter estimation that estimates the autocorrelation coefficient vector r

94

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Reflection coefficient k
m

Histogram of reflection coefficient k
m

 with synthetic data (105 testing samples), order = 10

Figure 5.9 Histogram of reflection coefficients for synthetic data

from the waveform of autoregressive sequences x. The autoregressive sequence x is, in turn, a

windowed output of an autoregressive model characterized by coefficients a and k.

o Parameter conversion that computes the autocorrelation coefficient vector r directly from the

reflection coefficient vector k [8, Section 3.4].

For numerical experiments, the distribution of k can be chosen arbitrarily. For speech processing,

it has been shown [72] that the reflection coefficients are often concentrated around ±1 and that the

probability density distribution of km usually has a U-shaped distribution for (voiced) speech signals.

For generation of coefficients km satisfying the usually-observed distribution of speech signals and

restricted to (−1,+1), the cosine function can be used. A cosine function k = cos(w) of an angle

w uniformly distributed in [0, 2π] has the desired distribution as illustrated by Figure 5.9. Random

generation of the reflection coefficient vector k using the cosine function is used for both the waveform-

based parameter estimation and parameter conversion setups as shown in Figure 5.8. For both setups,

the filter coefficient vector a is computed from the reflection coefficient vector k using the LD algorithm

with the rc2poly function in Matlab. The difference between the two experimental setups is the later

use of the filter coefficient vector a.

Waveform-based parameter estimation. For the waveform-based parameter estimation setup (Fig-

ure 5.8a), a is used as the input coefficients of an AR model excited by white noise to generate the

time series x, which will then be used to compute the autocorrelation vector r by using the xcorr

function in Matlab. Given the filter order n and precision p of the floating-point number format, two

95

LD implementations are performed, resulting in two sets of computed reflection coefficients and filter

coefficients: k̂ and â in the p precision number format, and k̂DP and âDP in double-precision (p = 53).

The reason for running the LD algorithm both in double-precision and in p-precision can be ex-

plained as follows. For numerical simulations using the waveform-based parameter estimation setup,

the computed autocorrelation vector r cannot accurately characterize the original model represented

by k and a because the time series x is only a windowed version of the true infinite-length sequence due

to memory and simulation time restriction. Therefore, the quantities k̂DP and âDP , even computed at

very high precision, are not necessarily identical to the original k and a. We call this the finite-length

window effect. The more samples used for generation of x, the closer the computed coefficients are to

the original coefficients, but the larger memory required and the longer simulation times are needed,

i.e., k̂DP − k→ 0 for number of samples→∞.

If the LD implementation is performed in the p-precision number format, computed reflection

coefficients and filter coefficients are also suffering from rounding errors. Generally speaking, in

the waveform-based parameter estimation setup, the computed quantities k̂ and â suffer numerical

errors from both the finite-length window effect and the finite-precision computation effect, while the

computed quantities k̂DP and âDP suffer only from the finite-length window effect. From Figure 5.8a,

it is quite reasonable to state that both double-precision and p-precision LD implementations are

affected by the same amount of finite-length window effect errors. This is extremely useful as it allows

for the separate estimation of the errors due to the finite-length window effect and the finite-precision

computation effect. The error due to the finite-length window effect is the difference between k, a and

k̂DP , âDP . The error due to the finite-precision computation effect is the difference between k̂DP ,

âDP and k̂, â.

For the autocorrelation computation block in Figure 5.8a, signal x is multiplied with a Hamming

window before it is used to calculate the autocorrelation sequence r. The autocorrelation sequence

r is computed with the Matlab function xcorr using its own raw and unscaled implementation.

The autocorrelation sequence is then normalized by the zero-lag coefficient r0 (i.e., r0 = 1 after

normalization).

Note that for the waveform based parameter estimation setup for synthetic data, there may be

another setup scenario in which the autoregressive signal x is computed directly from randomly

generated filter coefficients a. This scenario does not start from the reflection coefficients k but starts

directly from a random generator for the filter coefficients a, corresponding to a path from a to x then

to r in Figure 5.8a. However, one should not use this scenario because when starting from randomly

generated filter coefficients a it cannot be guaranteed that all the zeros of the linear-predictive analysis

filter are inside the unit circle, and, therefore, this can result in unstable linear-predictive synthesis

filters. While this instability might even be tolerable over the duration of a short frame, the stability

guarantees of linear prediction analysis using the LD algorithm will result in prediction coefficient

estimates corresponding to a stable filter, thereby generating a systematic bias between the prediction

coefficients used for data synthesis and the coefficients formed in the subsequent analysis step.

Parameter conversion. We are only interested in the rounding error due to finite-precision compu-

tation and, therefore, the error due to the finite-length window effect should be removed. For doing

so, the parameter conversion setup can be used.

In the parameter conversion setup (Figure 5.8b), the autocorrelation vector r is directly computed

from the reflection coefficients and the zero-lag autocorrelation coefficient r0 = 1. This is due to

96

^ ^

r Levinson-
Durbin

n, p

 k, a^ ^

r Levinson-
Durbin

n, DP

 k
DP

, a
DP

x
auto-

correlation

Speech frame
extraction &
windowing
(Hamming)

TIMIT
database

(DP)

(DP)

 k = k
DP

, a = a
DP

^ ^. .
Our choice of true values:

Figure 5.10 Experimental setup with speech signals for custom-precision

Levinson-Durbin implementation in Matlab

one of the useful properties of the reflection coefficients computed with the LD algorithm. With

the parameter conversion setup, the effect of the finite-length window can be avoided. Besides, the

rounding errors due to the floating-point computation of the parameter conversion itself (i.e., from

k to a and from k to r), as performed in double-precision, are negligible compared to the rounding

errors due to the finite-precision LD iterations. Therefore, in this case, given the filter order n and

precision p, the original quantities k and a are used as references to estimate the absolute and relative

errors of the finite-precision LD implementation in p precision.

For floating-point error analysis with synthetic data, which is the focus of this thesis, the parameter

conversion setup will be used.

Setup for speech signals

For speech signals, we use the TIMIT speech corpus. The block diagram for custom-precision LD

implementation using speech signals is shown in Figure 5.10. The speech signals have been recorded

at a sampling rate of 16 kHz (when processing with the LD implementation, we keep the original

sampling rate) and the speech frame duration is chosen as 20 miliseconds, resulting in an amount of

320 samples per frame. The speech frame overlapping factor is 50%.

Similar to the waveform-based parameter estimation for synthetic data, two LD implementations

are performed with double-precision and p-precision number formats, respectively. Because each

speech frame consists of only 320 samples, the computed reflection coefficients and filter coefficients

will suffer from the finite-length window effect. Since the original reflection and filter coefficients

characterizing the human vocal tract are unknown, the finite-length window effect error cannot be

estimated. Again, it is quite reasonable to state, from Figure 5.10, that both double-precision and p-

precision LD implementations are affected by the same amount of error due to the finite-length window

effect, making their difference equal to the finite-precision rounding error. Therefore, for experiments

using speech data, double-precision quantities are used as references to evaluate the absolute and

relative errors of the LD implementation in p-precision format. In other words, our choice for the true

values of filter and reflection coefficients are: a = âDP and k = k̂DP .

Again, for the autocorrelation computation blocks in Figure 5.10, signal x is multiplied with a

Hamming window before it is used to calculate the autocorrelation sequence r. Similarly to the

waveform-based parameter estimation setup, the autocorrelation sequence r in speech signal setup is

computed with the Matlab function xcorr using its own raw and unscaled implementation and is then

normalized by the zero-lag coefficient, such that r0 = 1.

The histogram of the reflection coefficients obtained from all the voiced and unvoiced speech frames

97

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Reflection coefficient k
m

Histogram of the reflection coefficients obtained from 116395
(voiced & unvoiced) speech frames (with TIMIT database), order = 10

Figure 5.11 Histogram of reflection coefficients for speech (TIMIT)

with TIMIT database is shown in Figure 5.11. As a consequence of this mixture, the resulting

distribution of the reflection coefficients does not perfectly match a U-shaped distribution for voiced

speech signals. The central region with the small values of reflection coefficients (i.e., −0.2 ≤ km ≤ 0.2)

seems to be due to the unvoiced/silence speech frames, while the peak around −1 and the small peak

around +1 are probably due to the voiced speech frames.

5.3.4 Experimental Results

This section presents the experimental rounding error of filter coefficients ai and reflection coefficients

km of the custom-precision floating-point LD implementation (see preceding section 5.3.3 for the

experimental setup). In general, the rounding error of the LD algorithm is a function of multiple

input parameters including: signal sources (synthetic data or speech data), working precision, filter

order and the condition number of the Toeplitz matrix at hand. Obviously, evaluating the experimental

error is, therefore, a complex task. We, however, try to simplify this task while still guaranteeing the

completeness of presentation via the following settings:

o The experimental errors from synthetic data and speech signals (TIMIT database) are reported.

o Both errors of filter coefficients ai and reflection coefficients km are presented in component-

wise and norm-wise representations (see Section 5.3.3 for component-wise and norm-wise error

measure definitions).

o For the component-wise representation, we are interested in the partial rounding error of each

coefficient (ai or km) as well as the accumulating trend of the rounding error from the current

98

Table 5.5 Relative frequency of the condition number κ (at order n = 10)

for speech (116395 frames) and synthetic data (105 frames)

Condition number Speech Synthetic data

κ ≤ 101 4.14 % 0 %

κ ≤ 102 24.95 % 1.41 %

κ ≤ 103 40.73 % 21.20 %

κ ≤ 104 60.61 % 65.53 %

κ ≤ 105 90.52 % 92.91 %

κ ≤ 106 99.93 % 99.33 %

κ ≤ 107 100 % 99.97 %

iteration to the next iteration given a specific system order, and therefore we fix the system

order at n = 10. The experimental component-wise rounding errors for the filter coefficients and

reflection coefficients are shown in Figure 5.12 and Figure 5.13, respectively.

o For the norm-wise representation, we represent the total rounding error in the filter coefficient

vector or the reflection coefficient vector as a single representative norm value and we are inter-

ested in how this norm value will change when varying the working precision and the condition

number of the Toeplitz matrix. The respective experimental rounding errors for the filter coef-

ficients and reflection coefficients are shown in Figure 5.14 and Figure 5.15.

o All the errors displayed in Figures 5.12-5.15 are the maximum errors.

o Three values for the condition number4 κ = 104, 105, 106 are considered, as we observed that up

to 60% of speech frames and 65% of synthetic data frames among all the investigated frames

have a condition number κ ≤ 104, and up to 99% of frames have a condition number κ ≤ 106

(see Table 5.5).

In addition, the mean spectral distortion SD for the speech signals and synthetic data versus the

precision of the floating-point number format used in the LD implementation at order n = 10 is

presented in Figure 5.16.

Rounding error for filter coefficients

The component-wise absolute error of filter coefficients ai at order n = 10 is shown in Figure 5.12. The

maximum error for each filter coefficient ai, corresponding to the condition numbers κ = 104, 105, 106,

is reported. The experimental data in Figure 5.12 shows that the rounding errors of the filter coeffi-

cients are symmetric. The central filter coefficients a5 and a6 suffer from the largest effect of rounding

errors. With respect to the condition number, it is obvious from Figure 5.12 that the rounding error of

filter coefficients increases by an order of magnitude when the condition number increases by an order

of magnitude. In other words, the experimental rounding error in the LD iterations scales linearly

with the condition number, confirming the numerical property of the LD algorithm earlier mentioned

in section 5.3.2. The synthetic data frames result in higher rounding errors in comparison with the

speech frames, which is explainable as the synthetic data frames generate higher condition numbers.

4In accordance with Cybenko’s work [30], we compute the condition number κ of the Toeplitz matrix using the 1-norm.

99

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Filter coefficient

A
bs

ol
ut

e
er

ro
r

Experimental rounding errors of filter coefficients for single−precision LD implementation at order 10

κ≤ 106, synthetic data

κ≤ 106, speech signal

κ≤ 105, synthetic data

κ≤ 105, speech signal

κ≤ 104, synthetic data

κ≤ 104, speech signal

Figure 5.12 Experimental rounding errors of filter coefficients for single-

precision Levinson-Durbin implementation at order 10 versus

the condition number κ

The trend of the experimental errors for filter coefficient ai is similar to the trend of an earlier error

bound estimate reported in Figure 5.6 in subsection 5.3.2.

Rounding error for reflection coefficients

The component-wise rounding errors for the reflection coefficients are shown in Figure 5.13. For speech

data, the rounding error increases dramatically at the beginning of the LD iterations, then it remains

almost unchanged at later iterations. For synthetic data, a similar trend happens when starting the

iterations.

Rounding error versus number format

The ultimate goal of rounding error analysis presented in this work is to perform optimal bit width

allocation. It is therefore desirable to know how the rounding error changes when the working precision

(or number format) changes.

Keeping the system order at n = 10 and increasing the precision from p = 20 to p = 30 in 2-bit

steps, we can investigate the error of filter coefficients ai and reflection coefficients ki versus precision

and condition number. A norm-wise error representation is considered. Experimental results are

depicted in Figure 5.14 and Figure 5.15 for filter coefficients and reflection coefficients, respectively,

as a function of precision and condition number (i.e., κ = 104, 105, 106) of the Toeplitz matrix.

For floating-point arithmetic, the rounding error of a single operation is inversely proportional to

the precision. Therefore, increasing the precision by 1 mantissa bit would decrease the rounding error

100

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Reflection coefficient

A
bs

ol
ut

e
er

ro
r

Experimental rounding errors of reflection coefficients for single−precision LD implementation at order 10

κ≤ 106, synthetic data

κ≤ 106, speech signal

κ≤ 105, synthetic data

κ≤ 105, speech signal

κ≤ 104, synthetic data

κ≤ 104, speech signal

Figure 5.13 Experimental rounding errors of reflection coefficients for

single-precision Levinson-Durbin implementation at order 10

versus the condition number κ

20 22 24 26 28 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Precision

A
bs

ol
ut

e
E

rr
or

Norm−wise experimental errors of filter coefficients versus precision and condition number
for Levinson−Durbin implementation at order 10.

κ≤ 106, synthetic data

κ≤ 106, speech signal

κ≤ 105, synthetic data

κ≤ 105, speech signal

κ≤ 104, synthetic data

κ≤ 104, speech signal

Figure 5.14 Norm-wise error of filter coefficients ai versus precision and

condition number (system order n = 10)

101

20 22 24 26 28 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Precision

A
bs

ol
ut

e
E

rr
or

Norm−wise experimental errors of reflection coefficients versus precision and condition number
for Levinson−Durbin implementation at order 10.

κ≤ 106, synthetic data

κ≤ 106, speech signal

κ≤ 105, synthetic data

κ≤ 105, speech signal

κ≤ 104, synthetic data

κ≤ 104, speech signal

Figure 5.15 Norm-wise error of reflection coefficients ki versus precision

and condition number (system order n = 10)

by about 2 times, which is mostly verified for the experimental errors of both filter coefficients and

reflection coefficients in Figure 5.14 and Figure 5.15.

In terms of condition number, it is easy to observe that when increasing the condition number by an

order of magnitude, the rounding error also increases by an order of magnitude at the same precision.

Spectral distortion versus number format

We estimate the mean spectral distortion as a function of the precision used. Although the mean

spectral distortion is commonly used in speech processing, we present here the mean spectral distortion

for the synthetic data as well. The mean values are evaluated over 116395 speech frames for the speech

signal and over 105 data frames for the synthetic data. Before computing the spectral distortion, all

the frames corresponding to unstable synthesis filters (i.e., the frames corresponding to reflection

coefficients |km| > 1) are removed. The instability is caused by the finite-precision computation of

the LD algorithm in reduced precision. For the speech signals, up to 25% of the speech frames were

removed at the precision p = 10. For the synthetic data, the number of removed frames was much

more with a ratio of up to 50% at the precision p = 10. Note that at precision p = 10, we have

the unit roundoff u = 2−10 ≈ 10−3, which heuristically shows that the solution of the Yule-Walker

equation may not be defined if the condition number exceeds 10+3 [64].

Figure 5.16 presents the mean spectral distortion for speech and synthetic data versus the precision

of the floating-point number format used in the LD implementation of order n = 10. For speech, there

is almost no distortion for higher precisions, e.g., from 20 to 24 mantissa bits; at p = 24 bits, the mean

spectral distortion SD = 0.001 dB. Starting from the precision p = 17 bits, the spectral distortion for

speech increases constantly with decreasing precision at a rate of about 0.3 dB per mantissa bit.

For the synthetic data, the spectral distortion increases dramatically with reduced precision and is

102

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Precision

M
ea

n
S

pe
ct

ra
l D

is
to

rt
io

n
[d

B
]

Mean Spectral Distortion versus precision − order 10

Synthetic data
Speech signal

Figure 5.16 Mean spectral distortion versus precision (order 10); the up-

per bound for transparent speech quality is 1 dB

much worse compared to the respective mean value for speech at the same working precision (e.g.,

0.002 dB at p = 24 and 6.5 dB at p = 10), probably due to the higher condition numbers of the

Toeplitz systems generated from the synthetic data, reported in Table 5.5.

The upper bound 1 dB for transparent speech quality may suggest that the floating-point LP-

analysis filter and the LD implementation at the transmitting side may be implemented using 14 or

13 mantissa bits. In fact, after calculation in the LP-analysis filter, the LPC parameters need to be

quantized before they are transmitted. The quantization generates quantization noise, further degrad-

ing the quality of the synthesized speech at the receiving side. For guaranteeing the transparency of

the synthesized speech, a 16 mantissa-bit floating-point number format, corresponding to an SD = 0.3

dB, should be used. This choice seems to be reasonable as today many fixed-point implementations

work with 16 bits, which seems to be adequate for speech.

5.3.5 AA-based Error Analysis for Levinson-Durbin Algorithm

In the following, we will investigate the numerical range and rounding error bounds of the LD algorithm

based on AA model using the AAFloat tool in Matlab. Our goal is to understand the applicability of

the AA error model and the AAFloat class in real applications like the LD iterations.

Introduction

The Yule-Walker equations

R · a = −r,

103

where R is the autocorrelation matrix, which is an n × n positive definite and symmetric Toeplitz

matrix, and the right-hand side autocorrelation vector r is closely related to R, can be solved efficiently

by using the LD algorithm. The input to the LD iterations is the autocorrelation sequence r0 =

[r0, r1, r2 . . . , rn]T = [1; r], where r0 = 1 and r = [r1, r2 . . . , rn]T . Generally, the autocorrelation

coefficient ri could be in the range [−1,+1]. For speech processing at a sampling rate of 8 kHz, the

order of the linear predictor is often n = 8 to n = 13.

As earlier mentioned in subsection 4.4.2, the evaluation of the reflection coefficient km in the LD

algorithm (Equ. (5.11)-(5.15)) involves taking the inverse of the prediction error Em−1 computed at

the previous iteration, thereby possibly leading to a division by zero if the range of the prediction

error Em−1 contains zero. In other words, the division has a major impact on the possible range and

rounding error of the reflection coefficients and, as a consequence, on the range and rounding error

of the filter coefficients (and via propagation on the reflection coefficients and filter coefficients of the

subsequent iterations). To what extent this affects the estimated bound depends on the respective

input data. Recall that at the m-th iteration the prediction error Em can also be estimated via the

autocorrelation coefficients and the filter coefficients using equation (5.16) in subsection 5.3.2 as

Em = r0 +

m∑
i=1

a
(m)
i ri =

m∑
i=0

a
(m)
i ri,

which clearly shows that both the autocorrelation coefficients ri and the system order will affect the

prediction error Em in the sense that the range of the prediction error may contain zero (which leads

to a division by zero) by increasing the range of ri and/or increasing the system order.

The efficiency and ease of use of any given error model and its respective software tool depend on

how well it can model the algorithm at hand and how well it can handle the special cases (e.g., division

by zero when having very small values for the prediction error Em, ultimately approaching zero). In

case of executing a division by zero, the AAFloat tool provides the user two options to continue the

execution of the algorithm at hand: using a default setting or specifying a user’s lower bound (see

section 4.2.3). These options will be applied for the AA-based error estimation of the LD algorithm.

Cases and scenarios considered. In the remainder of this section, we will investigate in more detail

different scenarios for AA-based error evaluation of the LD algorithm. Table 5.6 describes five scenarios

of performing AA-based error analysis of the Levinson-Durbin algorithm by using the AAFloat tool.

These five (5) scenarios can be classified into three (3) main cases as follows:

o Case 1: Restricted range for input parameters. This case includes scenario 1, where the ranges

of the autocorrelation coefficient ri and the system order n are restricted. The range of the

prediction error, therefore, does not contain zero over the AA-based evaluation of the LD al-

gorithm. Hence, the AA-based evaluation is executed without any division by zero over all the

iterations.

o Case 2: General range for input parameters and using default setting of the AAFloat tool. The

range of the prediction error contains zero if the ranges of the autocorrelation coefficient ri

and/or the system order n are unrestricted. The division by zero happens and the AAFloat

tool uses the default setting for the smaller bound in magnitude. This case is demonstrated via

scenario 2 and scenario 3.

o Case 3: General range for input parameters and using user’s setting. The autocorrelation

coefficient ri and the system order n have general values, similar to case 2. The range of the

104

Table 5.6 Different scenarios of the AAFloat tool for AA-based error anal-

ysis of the Levinson-Durbin algorithm at p = 24

Name Range of ri Order n Handling division by zero by

Scenario 1 [0.17, 0.23] is fixed at n = 10 no division by zero

Scenario 2 [0.17, 0.23] is increased from n = 10 . . . 15 using default setting of the tool

Scenario 3 [−1, 1] is increased from n = 1 . . . 5 using default setting of the tool

Scenario 4 [0.17, 0.23] is increased from n = 10 . . . 15 specifying users’ range

Scenario 5 [−1, 1] is increased from n = 1 . . . 5 specifying users’ range

prediction error contains zero. The division by zero occurs and the user specifies the smaller

bound in magnitude for the prediction error to be used by the AAFloat tool. This case includes

scenario 4 and scenario 5.

Case 1: Restricted range for input parameters

In the first scenario, we start the investigation of the LD algorithm with a system order n = 10

and an intentionally chosen range [0.17, 0.23] for the autocorrelation coefficients ri. A parameter

set of restricted range and system order is chosen to make sure the range of the prediction error will

not contain zero during the AA-based error evaluation. In fact, we observe that Fang also used a

specific 10× 10 square matrix in [4] when applying AA for performing range analysis of the Cholesky

decomposition.

We use the AAFloat class to perform the AA-based error analysis of the LD algorithm in Matlab

by constructing a simple autocorrelation matrix R̂ having each autocorrelation coefficient as r̂0 = 1,

r̂i = 0.2 + 0.03εi, εi ∈ [−1,+1] and i = 1, 2, . . . , n. For example, the Yule-Walker equations of order 3

are represented in an AA representation as follows 1 (0.2 + 0.03ε1) (0.2 + 0.03ε2)

(0.2 + 0.03ε1) 1 (0.2 + 0.03ε1)

(0.2 + 0.03ε2) (0.2 + 0.03ε1) 1

 â1

â2

â3

 = −

 (0.2 + 0.03ε1)

(0.2 + 0.03ε2)

(0.2 + 0.03ε3)

 . (5.40)

In this example, each autocorrelation coefficient is in the range [0.17, 0.23], i.e., ri ∈ [0.17, 0.23].

The system order and the working precision are chosen as n = 10 and p = 24 (i.e., single-precision),

respectively.

For evaluating the accuracy of the AA-based model applied for the LD algorithm, we compare the

range and error bounds of the quantities in the LD algorithm, estimated by the AA-based model,

with the range and rounding error reported by running simulations of 105 data frames. For each data

frame, the autocorrelation coefficients ri are uniformly generated in the range [0.17, 0.23]. For each

data frame, the rounding error due to simulations is computed as the difference between the result

of the 24-bit LD implementation and the result of the double-precision (53-bit) LD implementation.

The maximum rounding error among 105 data frames is used for comparing with the AA-based error

bound. The Matlab code for the custom-precision Levinson-Durbin implementation using the MPFR

functions as .MEX files is reported in Appendix D.1. Refer to subsection 5.3.3 for an extensive

discussion of the experimental setup for the custom-precision implementation of the LD algorithm.

105

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Filter coefficient a
i

R
an

ge

Simple example: AA range bound vs. experimental range for filter coefficients (p=24, n=10, 105 frames)

AA hard upper bound
AA prob. upper bound (3σ)
Upper range for experimental data
Lower range for experimental data
AA prob. lower bound (3σ)
AA hard lower bound

Figure 5.17 The range bound for filter coefficients ai for the single-

precision Levinson-Durbin algorithm at n = 10

For the AA-based error analysis of the LD algorithm, both the hard and probability bounding

operators are used. The computational expressions for the LD algorithm have been presented in

subsection 5.3.2. The Matlab code for AA-based error analysis of the LD algorithm using the AAFloat

class is listed in Appendix D.2.

Figures 5.17 and 5.18 present the range estimation for the filter and reflection coefficients of the

LD algorithm in comparison with the experimental results, respectively. Both the lower and upper

bounds for the coefficients are reported. The two figures show that affine arithmetic is able to model

quite accurately the range of the coefficients in the LD algorithm. For a quantitative comparison, we

compute the overestimation ratio for the range. We use the width of the range, rather than the lower

or upper bound only, to evaluate the accuracy of the AA-based model. The overestimation ratio for

the range is the ratio of the width of the range bound over the width of the experimental results. The

maximum overestimation ratios for the range of the coefficients in figures 5.17 and 5.18 are reported in

Table 5.7, showing that, in this example, the affine arithmetic using a probabilistic bounding operator

can reliably model the range bound for the LD algorithm. Refer to Appendix E.1 (iterations 1 to 10)

for a full report of scenario 1.

The shapes of the AA-based hard range bounds for the filter coefficients and the reflection coefficients

(i.e., the green curves) in Figures 5.17 and 5.18 are surprising for us. For the filter coefficients

(Figure 5.17), the AA-based hard range (lower and upper) bounds in the special and restricted range

(of input parameters) seems to have the inverse trend of the closed-form estimates based on the

reflection coefficients in the general case presented earlier in subsection 5.3.2 (Figure 5.6). For this

special and restricted range of input parameters, we have no further explanation for the trend of the

filter coefficients. For the reflection coefficients, we observe a strong divergence for the AA-based hard

106

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Reflection coefficient k
i

R
an

ge

Simple example: AA range bound vs. experimental range for reflection coefficients (p=24, n=10, 105 frames)

AA hard upper bound
AA prob. upper bound (3σ)
Upper range for experimental data
Lower range for experimental data
AA prob. lower bound (3σ)
AA hard lower bound

Figure 5.18 The range bound for reflection coefficients ki for the single-

precision Levinson-Durbin algorithm at n = 10

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10

−8

10
−7

10
−6

10
−5

Filter coefficient a
i

A
bs

ol
ut

e
er

ro
r

Simple example: AA error bound vs. experimental error for filter coefficients (p=24, n=10, 105 frames)

AA−based hard error bound
AA−based prob. error bound (3σ)
Experimental data

Figure 5.19 The error bound for filter coefficients ai for the single-

precision Levinson-Durbin algorithm at n = 10

107

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
10

−9

10
−8

10
−7

10
−6

10
−5

Reflection coefficient k
i

A
bs

ol
ut

e
er

ro
r

Simple example: AA error bound vs. experimental error for reflection coefficients (p=24, n=10, 105 frames)

AA−based hard error bound
AA−based prob. error bound (3σ)
Experimental data

Figure 5.20 The error bound for reflection coefficients ki for the single-

precision Levinson-Durbin algorithm at n = 10

Table 5.7 Overestimation ratio for the AA-based range bound of coeffi-

cients in the LD algorithm

Hard bound Prob. bound (3σ)

Filter coefficient ai 4.5 2.2

Reflection coefficient ki 4.5 1.8

range bound for km = −βm/Em−1 in Figure 5.18, which seems to be due to the decrease in the

prediction error Em−1 and the increase of βm over iterations, especially for high indices.

The AA-based rounding error bounds for the filter and reflection coefficients in the LD algorithm

are reported in Figures 5.19 and 5.20, respectively. Using the hard bounding operator, the hard error

bounds for the filter and reflection coefficients overestimate by an order of magnitude compared to the

experimental rounding errors. Using the probabilistic bounding operator, the overestimation ratios

of the rounding error bounds for both the filter and reflection coefficients in the LD implementation

are about 1.95 times larger than the experimental rounding errors, again, showing that the AA-based

probabilistic rounding error bound for the filter and reflection coefficients of the LD algorithm is a

reliable estimate.

Case 2: General range for input parameters and using default setting of the AAFloat tool

In the second investigation, we first start with the same parameters as used in scenario 1, i.e., n = 10,

ri ∈ [0.17, 0.23]. We then either increase the order n (as in scenario 2) or specify a general range for

the autocorrelation coefficients ri (scenario 3).

108

In scenario 2, we keep the same range for the autocorrelation coefficients, i.e., ri ∈ [0.17, 0.23], and

the same working precision, i.e., p = 24, while gradually increasing the order n. We use the same

Matlab code for the AA-based error analysis of the LD algorithm as used in case 1. The Matlab code

is listed in Appendix D.2.

The Matlab program using the AAFloat tool for AA-based error analysis of the LD algorithm runs

smoothly without any warning or error message up to the iteration n = 12. At the iteration n = 13,

the AAFloat tool reported a warning message for “division by zero” when performing the inverse

operation for the computation of the range of the reflection coefficient k13. It is even worse at the

iteration n = 14, when the AAFloat tool, again, reported warning and error messages for “division

by zero” in the calculation of the range and error components of the reflection coefficient k14. These

observations were consistently reported for both cases: using a hard bounding operator and using a

probabilistic bounding operator and at the same iterations, i.e., n = 13 and n = 14. The full outputs

of scenario 2 are reported in Appendix E.1.

More importantly, at the iterations where the division by zero happens, we observe an explosion of

the range and error bounds for the filter and reflection coefficients. For example, at n = 13, the range

and error bound of coefficients in the LD algorithm is reported by the AAFloat tool as follows

---------- Iteration n = 13

Levinson-Durbin algorithm for special case [0.17, 0.23]

AA bound = Hard, precision = 24, r in [0.17, 0.23]

error bound of E_{m-1} = 1.149381e-05, range = [-0.546389, 2.243222]

error bound of beta = 1.086233e-05, range = [-1.376382, 1.473215]

Warning: The input range [-0.546389, 2.243222] contains ZERO.

> In AAFloat.AAFloat>AAFloat.inv at 918

In AAFloat.AAFloat>AAFloat.div at 1072

In AA_bound_levinson_wAAFloat_simple_example_increase_order at 88

The user does not specify any range for the input interval of the inverse operation.

AAFloat is using the default range [1.192093e-07, 2.243222e+00] to compute the inverse.

...

i=13, error bound of k(13) = 1.191544e+09, range = [-12358221.218054, 11952076.988843]

i= 0, error bound of a(0) = 0.000000e+00, range = [1.000000, 1.000000]

i= 1, error bound of a(1) = 1.437416e+09, range = [-14850247.879990, 14884126.670198]

i= 2, error bound of a(2) = 1.111514e+09, range = [-11444673.384395, 11471428.849417]

i= 3, error bound of a(3) = 1.006093e+09, range = [-10350033.222404, 10375509.506310]

i= 4, error bound of a(4) = 9.539665e+08, range = [-9809606.568093, 9834651.251699]

i= 5, error bound of a(5) = 9.261817e+08, range = [-9521868.928906, 9546722.165494]

i= 6, error bound of a(6) = 8.958615e+08, range = [-9209071.109641, 9233819.194089]

i= 7, error bound of a(7) = 8.588075e+08, range = [-8823044.851202, 8847725.912109]

i= 8, error bound of a(8) = 9.029951e+08, range = [-9279778.435664, 9304406.981187]

i= 9, error bound of a(9) = 9.330091e+08, range = [-9589077.095652, 9613655.846475]

i=10, error bound of a(10) = 9.610570e+08, range = [-9877425.943302, 9901943.523795]

i=11, error bound of a(11) = 1.025096e+09, range = [-10535360.982528, 10559785.600643]

i=12, error bound of a(12) = 1.154501e+09, range = [-11863667.952314, 11887903.841340]

i=13, error bound of a(13) = 1.191544e+09, range = [-12358221.218054, 11952076.988843]

error bound of E_{m} = 3.072350e+09, range = [-27933964.201552, 27914301.953442]

This is due to the fact that, in the inverse operation when the input interval contains zero and no input

range for handling division by zero is specified, the AAFloat class used the default setting 2u, where u

109

is the unit roundoff corresponding to the working precision p, for the lower bound of the range of the

prediction error Em. At p = 24, the default lower bound is in the order of 10−7, resulting in the huge

increases in ranges (of order 107) and rounding errors (of order 109) of the reflection coefficient k13

and all the filter coefficients ai (i = 1 . . . 13) at that iteration. Furthermore, at the iteration n = 14,

the AAFloat tool gives an error message and stops the program because the lower bound of an interval

occurring in the evaluation of the rounding error component of Em is very close to zero.

The division by zero problem, happening when evaluating the reflection coefficient km in the LD

algorithm, is more serious in the case of using a general range for the autocorrelation coefficients. In

scenario 3, we use the maximum range for the autocorrelation coefficients, i.e., ri ∈ [−1, 1], in which

each autocorrelation coefficient ri is represented by an AA form r̂i as

r̂i = 0 + 1εi, εi ∈ [−1,+1], i = 1, 2, . . . , n,

i.e., this AA form has a zero central value and a unit deviation. The full outputs for scenario 3 when

using the AAFloat class in Matlab are reported in Appendix E.2.

At iteration n = 2, the prediction error E1 has a range of [0, 2] (see Appendix E.2), resulting in a

division by zero in the evaluation of the reflection coefficient k2 = −β2/E1. In order to continue the

AA-based evaluation, the AAFloat tool has to use a default lower bound 2u ≈ 10−7, corresponding to

the precision p = 24, for the range of Em. This setting results in a significant increase in the range

and error of the filter and reflection coefficients at iteration 2 (i.e., in the order of 107). At iteration

n = 3, the AA-based evaluation for the LD algorithm has to stop because the prediction error E2,

computed at the end of the iteration 2, becomes extremely small.

Case 3: General range for input parameters and using user’s setting

In this case, we use a lower bound (in absolute value) for the prediction error Em which is then used

by the AAFloat class when the division by zero occurs. This investigation case includes two scenarios,

where either the order n is increased while the input range of the autocorrelation coefficients is

restricted in the range [0.17, 0.23] (scenario 4), or the order n is fixed while a general range of [−1, 1]

for the autocorrelation coefficients is employed (scenario 5). By specifying the user’s range, we hope

that better range and error bounds for the quantities in the LD algorithm may be obtainable.

An important issue is identifying the range for the prediction error to be used as the input to the

inverse operation in the LD algorithm. As the smallest value of the prediction error reported by

simulations with speech signals and synthetic data is on the order of 10−4, we choose the lower bound

for the prediction error Em as δE = 10−4. At each iteration, we use the current upper bound for the

range of the prediction error Em as the user-specified upper bound for Em. The full running reports

for scenarios 4 and 5 are listed in Appendices E.3 and E.4, respectively.

By using the user-specified range, the AA-based error evaluation process using the AAFloat tool for

the Levinson-Durbin iterations can execute up to iteration 14. The evaluation process fails and stops

at iteration 15. With respect to the resulting bounds for the range and the rounding error, the use of

a user-specified range for the prediction error can provide less overestimated bounds than the use of

the default range of the tool.

In scenario 4, by specifying the user’s range, the AA-based error evaluation for the LD iterations

can execute up to iteration 14. The evaluation process fails and stops at iteration 15. The resulting

bounds for the range and rounding error in scenario 4 are less overestimated than the respective

bounds in scenario 2. At iteration 13, the range and error bounds reported in scenario 4 for the

110

reflection coefficient k13 are approximately 104 and 103 (see Appendix E.3), respectively, compared to

the respective resulting ranges of 107 and 109 reported in scenario 2 (see Appendix E.1), corresponding

to an accuracy improvement of three and six orders of magnitude for the range and rounding error of

the reflection coefficient.

Similarly, comparing between scenarios 5 (cf. Appendix E.4) and 3 (cf. Appendix E.2), we observe

an accuracy improvement in the range and error bounds for the reflection coefficient k2 at the second

iteration of about three and six orders of magnitude, respectively.

Although the user-specified lower bound for the prediction error is employed, the two scenarios 4

and 5 using the general parameters for the autocorrelation coefficients and system order still fail to

execute in all cases and provide very pessimistic bounds compared to the realistic error in practical

applications.

Discussion

We have shown that the AA error model with a probabilistic bounding operator can model quite

accurately (in the first scenario) the range and rounding error of the LD algorithm with a restricted

input data range, i.e., when ri ∈ [0.17, 0.23], and at the system order n = 10. However, in general

cases, the division by zero happens when increasing either the system order (as in scenarios 2 and

4) or the range of the input data, i.e., ri ∈ [−1, 1] (as in scenarios 3 and 5). The division by zero

occurs because the input interval of the prediction error Em contains zero, reported by the AAFloat

class. Here we discuss the AA-based evaluation of the prediction error Em in the LD algorithm and

the meaning of the prediction error Em with respect to the numerical properties of the LD algorithm.

In linear prediction, the size of the prediction error Em is critical to the stability and the numerical

properties of the LD algorithm [30]. The Toeplitz system is stable if all the reflection coefficients are

smaller than 1 in absolute value. There exists a close relation among the prediction error Em, the

condition number of the Toeplitz system (i.e., the condition number of the autocorrelation matrix) and

the reflection coefficients, presented by Cybenko in [30], such that the condition number is guaranteed

large if Em is small. The prediction error is known to be in the range 0 ≤ Em ≤ 1. “Em is small”

means it is very close to zero. In turn, the prediction error Em is small if any of the reflection coefficient

is close to 1 in absolute value, in other words, the Toeplitz system comes close to an unstable system.

However, in AA-based error analysis, the range for the prediction error Em is not guaranteed to

be in [0, 1] but it increases with the system order. This can be explained as follows. At the m-th

iteration, the prediction error Em can alternatively be computed via the autocorrelation coefficients

and the filter coefficients as

Em =

m∑
i=0

a
(m)
i ri.

In AA-based error analysis, as each autocorrelation coefficient ri is distributed over the symmetric

range [−1, 1] and each filter coefficient ai follows a binomial function (see 5.3.2), the numerical range

for Em can increase up to [−2m, +2m] at the m-th iteration, i.e., Em contains zero. As a consequence,

the inverse operation of Em for computing the reflection coefficient km+1 at the next iteration may

result in a division by zero (as observed in scenarios 3 and 5). In the case of using a restricted range

[0.17, 0.23] for the coefficient ri, the range of the prediction error Em may still have the possibility

to reach zero due to the increase of the system order n and the overestimation effect of non-affine

operations in the LD iterations. This observation was reported in scenarios 2 and 4.

111

In fact, in the first scenario using ri ∈ [0.17, 0.23] and a system order 10, we observed that all

the condition numbers of all the Toeplitz systems, used in simulations and corresponding to the

chosen range, are smaller than or equal to 6.4 and the resulting prediction error is in the range

0.62 ≤ Em ≤ 1, m = 1 . . . 10, or all the chosen Toeplitz systems are very well-conditioned. With

respect to AA-based error analysis, the AA-based range bound for the prediction error at iteration

m = 10 is [0.63, 1.08], reported by the AAFloat tool. When increasing the system order (i.e., in the

second investigation), the AA-based range bound for Em increases to [0.42, 1.29] and [−0.54, 1.29]

at m = 11 and m = 12, respectively, and rapidly rises to approximately [−2.8 × 107, 2.8 × 107] at

m = 13.

With respect to the term βm in the LD algorithm, i.e., equation (5.12), it is easy to show for a well-

conditioned system in linear prediction that βm is bounded in the range [−1, 1] and smaller than the

prediction error Em−1 in absolute value such that the computed reflection coefficient km = −βm/Em−1

is always guaranteed to be in the range [−1, 1]. This is due to the fact that the true values of

autocorrelation coefficients ri and filter coefficients ai in real-world applications can be either positive

or negative, such that cancellation in the computation of βm will guarantee −1 ≤ βm ≤ 1. For AA-

based error analysis, this property is no longer guaranteed. The range bound for βm can therefore go

up to [−2m−1, +2m−1] at the m-th iteration (provided that there is no overestimation for βm), which

may however still result in the reflection coefficient bounded in the range [−1, 1].

Our analysis above shows the following limitations of the current AA-based error model for error

analysis of the LD algorithm in a general case of having maximum input data range [−1, 1] and an

arbitrarily large system order:

o First, the ranges estimated by the AA-based model for the terms βm and Em in the LD algorithm

cannot accurately capture the theoretical range given by analytical work in the literature [7, 30].

o Second, as the range of Em increases along with the system order and can contain zero value,

division by zero is unavoidable when computing the reflection coefficients with the AA model

in the LD algorithm, making the AA-based model only applicable for the special case of having

both a restricted input data range and a small system order.

o Even though the AAFloat tool allows users to specify a lower bound for the input interval of

the inverse operation to alleviate somewhat the effect of division by zero, the division operation

in the LD algorithm can certainly cause very large errors if the chosen prediction error Em is

very close to zero, which is equivalent to having a high condition number for the autocorrelation

matrix.

o Furthermore, the overestimation effects due to a long computational chain of non-affine opera-

tions may give rise to pessimistic range and error bounds for the quantities in the LD algorithm.

It is not easy to overcome all the limitations listed above. We are aware of related work in [4] using

an asymmetric probabilistic bounding operator to improve the accuracy of non-affine operations.

However, our goal is to use a new Matlab tool for efficiently performing error analysis of floating-point

algorithms using the ordinary AA model and to investigate how well the AA model and the AAFloat

tool is applicable for real-world applications. Therefore, we will stay with the ordinary AA-based error

model and accept the overestimation effect of non-affine operations as part of the model.

Recall that the autocorrelation sequences as the input to the LD algorithm must be generated in

a proper way, meaning that the arbitrary choice of a sequence {r0, r1, . . . , rn} with ri ∈ [−1, 1] will

112

x0x l xhz0z l zh

r z
r x

x̂= x0+x1ε1+...+x N εN ẑ= z0+ z1ε1+...+ zN εN
AASO

Figure 5.21 Basic principle of the AA-based scaling operator (AASO)

not result in a valid autocorrelation sequence and, therefore, cannot correspond to any (stable) linear

prediction filter (even at the infinite precision number format). Therefore, for AA-based error analysis,

it would be more realistic to set up a data generator for the autocorrelation coefficients ri from the

reflection coefficients ki, all of these things should be implemented in AA expressions using the AAFloat

class, and then use the estimated coefficients ri as the input to the AA-based error analysis of the

LD algorithm, again, using the AAFloat class. By doing like that, the stability of the LD algorithm

can still be guaranteed (i.e., |km| ≤ 1) and we hope that, by using a more realistic data distribution

for ri, the correlation among the autocorrelation coefficients ri may be captured accurately, therefore

it might hopefully result in more precise range and rounding error bounds for quantities in the LD

algorithm. However, that setting is quite complex and potentially contains sources of overestimation

in the generation of ri from ki due to non-affine operations, and therefore it goes far beyond the scope

of this thesis.

In fact, the LD algorithm has been well studied in the literature [7, 8, 30], allowing us to have

knowledge of the ranges of all the quantities in the LD algorithm without having to run any AA-based

range evaluation. Hence we only need to estimate the rounding error of the LD algorithm using the

AAFloat class. The remaining challenge is, however, to handle division by zero in the LD algorithm.

Note that the division by zero is not a limitation of the AA model or the AAFloat tool, it is a problem

of the LD algorithm itself. This task is of our interest.

In the next subsection, we suggest to use an AA scaling operation to enforce the range of the

quantities Em, βm and km on their known ranges provided by analytical studies in literature, then

estimate the rounding error based on the enforced range.

AA-based scaling operator

We introduce an AA-based scaling operator (AASO) for converting an AA form x̂ representing an

interval [xl, xh] to another AA form ẑ representing the interval [zl, zh] such that xl ≤ zl < zh ≤ xh,

i.e., the scaled AA form ẑ implies a smaller range than the one implied by the original AA form x̂.

The basic idea of the AASO is descibed by Figure 5.21. In this figure, we assume

x̂ = x0 + x1ε1 + · · ·+ xN εN

is the original AA form that represents the original interval [xl, xh] = [x0 − rx, x0 + rx] where rx is

the total deviation of x̂. We want to have a new AA form

ẑ = z0 + z1ε1 + · · ·+ zN εN

113

representing the restricted interval [zl, zh] specified/required by users. The two AA forms have the

same number of noise terms. Given the AA form x̂ and the interval [zl, zh] (i.e., assuming zl < zh)

as input parameters to the AASO, the new AA form ẑ is constructed by the following algorithm:

rx =

N∑
i=1

|xi|

xl = x0 − rx
xh = x0 + rx

zl = max{zl, xl}

zh = min{zh, xh}

z0 = (zh + zl)/2

rz = (zh − zl)/2

θ = rz/rx, (0 < θ ≤ 1)

ẑ = z0 +

N∑
i=1

ziεi, with zi = θxi (i = 1 . . . N),

where the max and min operations are employed to make sure that xl ≤ zl < zh ≤ xh. The scaling

constant θ is in the range (0, 1].

The AASO is similar to the affine scaling operation, i.e., multiplication with a constant (cf. subsec-

tion 3.2.3), but not identical. This is because the AASO performs two operations: shifting the central

value from x0 to z0, and scaling the partial deviation xi to zi by the factor θ. Shifting the central

value is necessary for preserving the symmetry property of the new affine form ẑ. The AASO applied

on the affine form x̂ is, therefore, equivalent to i) adding x̂ with a constant c, and ii) multiplying with

a scaling factor θ as follows

ẑ = AASO(x̂) = (x̂+ c)θ,

where

c =
z0

θ
− x0, 0 < θ ≤ 1.

If θ = 1 then c = 0 and zi = xi (i = 0, 1, . . . , N), i.e., there is neither central value shift nor partial

deviation scaling or ẑ = x̂. Since the AASO involves performing affine operations only, there is no

overestimation due to the AASO.

How can we use the AA-based scaling operator described by the algorithm above to enforce the

range of an AA expression x̂f = x̂rf + x̂ef , representing a floating-point variable xf , in order to have

a new AA expression ẑf = ẑrf + ẑef? In the AAFloat tool, the range component ẑrf is computed

by applying exactly the algorithm above. Since the rounding error of a floating-point number is

directly proportional to the range of the number, the error bound is expectedly scaled by a factor

of θ, approximately. The error component is evaluated by scaling with the scaling constant θ only:

ẑef = θ · ẑef , as a central value is not used for the error component. In the AAFloat tool, the AASO is

implemented by the method Z AA = AASO(X AA,userrange) where the input parameter userrange

specifies the new range [zl, zh].

AA-based error analysis for Levinson-Durbin algorithm with an AA-based scaling operator

We employ the AA-based range scaling operator to perform floating-point error analysis of the LD

algorithm in a general case. The basic idea is to incorporate the analytical knowledge on the ranges of

114

all quantities in the LD algorithm, given in literature, into the AA-based evaluation of the algorithm.

In other words, we only focus on rounding error estimation. At each iteration, the AA-based scaling

operator is used to enforce the known ranges of the terms βm, Em, km and ai. In fact, at iteration m,

we observe that only the range bounds for the term βm, the prediction error Em and the reflection

coefficient km need to be enforced. The range for the filter coefficient ai is automatically enforced

due to the computational dependencies within the LD algorithm. The enforced range bounds for the

terms βm, Em and km are

− 1 ≤ βm ≤ 1,

−1 ≤ km ≤ 1,

δE ≤ Em ≤ 1,

where we choose a value δE = 10−4 from experimental simulations as the lower bound of the prediction

error Em. This is done by adding three calls to the method AASO of the AAFloat class right after

evaluating the respective terms, as shown by the following segment of code:

delta_E = 0.0001;

...

LD_beta = mmul(r, (fliplr(a))’, prob); % Step 1: compute the numerator beta

LD_beta = AASO(LD_beta, [-1, 1]); % 1a: enforce LD_beta into the range [-1, 1]

...

kk = -div(LD_beta, LD_alpha, prob); % Step 2: compute reflection coefficient k

kk = AASO(kk, [-1, 1]); % 2a: enforce k into the range [-1, 1]

...

kk2 = sqr(kk, prob); % Step 4: compute prediction error E

kk2_1 = sub(1, kk2, prob); %

LD_alpha = mul(LD_alpha, kk2_1, prob); % E = E(1-k*k)

LD_alpha = AASO (LD_alpha, [delta_E, 1]); % 4a: enforce LD_alpha into the range [delta_E, 1]

...

The full Matlab code used with the AAFloat tool is listed in Appendix D.3. The input range for

the autocorrelation coefficients ri is set to [−1, 1]. The system order is n = 10. Both the hard and

probabilistic error bounds are investigated.

The AA-based error bound evaluation of the LD algorithm using the AASO is performed successfully

without any warning or error messages until the last iteration (n = 10).5 The full reports in Matlab are

listed in Appendix E.5 and E.6 for the hard and probabilistic error bounds, respectively. We observed

that all the numerical range bounds for all the quantities at each iteration are in a reasonable range

compared to the analytical results from the literature. We make a simple comparison on the hard

error bound of the reflection coefficient k2 at iteration 2 in two cases: (a) not using an AA-based range

scaling operator in scenario 5 (cf. Appendix E.4) and (b) using an AA-based range scaling operator

(cf. Appendix E.5). The latter gives a much smaller error bound for the reflection coefficient k2 than

the former, i.e., 6.56×10−3 compared to 8.35×10+1 or approximately four orders of magnitude. This

is obviously due to the use of the AA-based range scaling operation.

Now we take a closer look at the error bounds for the LD algorithm at order n = 10. Figures 5.22

and 5.23 plot the resulting error bounds for the filter and reflection coefficients when the AA-based

5In fact, we also tried with a system order n = 100 and the AA-based error evaluation was executed properly with

the AAFloat tool up to the iteration 89. From iteration 90, the computed bounds exceed the representable range of

floating-point numbers in Matlab, and the AAFloat tool reports the real range R (∞). For the sake of simplicity,

the numerical results corresponding to the order 100 will not be presented here.

115

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10

25

10
26

10
27

10
28

10
29

10
30

10
31

10
32

10
33

Filter coefficient a
i

A
bs

ol
ut

e
er

ro
r

AA error bound for filter coefficients using the range scaling operator (p=24, n=10, r
i
 ∈ [−1,1])

AA−based hard error bound
AA−based prob. error bound (3σ)

Figure 5.22 AA error bound for filter coefficients when using an AA-

based scaling operator

scaling operator is applied to enforce the ranges of the terms in the LD iterations. For filter coefficients,

the hard error bound is about four orders of magnitude larger than the probabilistic error bound. For

reflection coefficients, the hard error bound is slightly larger than the probabilistic one. In comparison

with the experimental rounding errors for speech signal and synthetic data, which are reported by

Figures 5.12 and 5.13 in Section 5.3.4, the AA-based error bounds for the filter coefficients and the

reflection coefficients of the LD algorithm are extremely pessimistic.

We would like to understand why the error bounds for the filter and reflection coefficients are so

pessimistic. We study in detail the AA-based error evaluation for the reflection coefficients using the

AASO. At iteration m, the reflection coefficient km is computed as km = −βm/Em−1. Since the ranges

of the terms βm and Em−1 are enforced by the AASO before computing the reflection coefficients, the

Table 5.8 Hard error bound for the reflection coefficient km over the

Levinson-Durbin iterations (p = 24)

Scaled error bound of Error bound of km Error bound of km

Iteration Em−1 before performing AASO after performing AASO

m = 1 0 2.4× 10−7 2.4× 10−7

m = 2 6.6× 10−7 6.6× 10+1 6.6× 10−3

m = 3 8.7× 10−3 8.7× 10+5 8.7× 10+1

m = 4 1.2× 10+2 1.2× 10+10 1.2× 10+6

116

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

Reflection coefficient k
i

A
bs

ol
ut

e
er

ro
r

AA error bound for reflection coefficients using the range scaling operator (p=24, n=10, r
i
 ∈ [−1,1])

AA−based hard error bound
AA−based prob. error bound (3σ)

Figure 5.23 AA error bound for reflection coefficients when using an AA-

based scaling operator

range bound for km can be estimated as follows

[km] = − [βm]

[Em−1]
= − [−1, 1]

[δE , 1]
≈ [− 1

δE
,

1

δE
],

where [·] is for representing the range. It is clearly shown that the range bound for km depends on

the lower bound δE of the prediction error. With the chosen δE = 10−4, the unscaled range bound for

km can be up to [−104, 104], which is then reduced by the AASO to the range [−1, 1] with a scaling

factor of 1/δE .

According to the evaluation of the error bound for the inverse/reciprocal operation in equa-

tion (3.30), the error bound for km before performing the AASO can be approximated as the error

bound of Em−1 multiplied by (1/δE)2. After performing the AASO, the error bound of km is reduced

by a factor of 1/δE . With δE = 10−4, (1/δE)2 = 108 and 1/δE = 104. Table 5.8, extracted from Ap-

pendix E.5, reports the hard error bound for the reflection coefficient km, before and after performing

the AASO, over some iterations of the LD algorithm at single-precision format (p = 24). On average,

the AA-based hard error bound for the reflection coefficient increases about three or four orders of

magnitude after each iteration.

The analysis presented here gives a reasonable explanation for the pessimistic estimate for the error

bound of the LD algorithm using the AA-based error model. We observe that the size of the prediction

error is crucial to the overall rounding errors of the reflection and filter coefficients. It seems that the

division operation is the main source of error in the LD algorithm as it allows for the possibility of

significant rounding error magnification.

117

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
10

−3

10
−2

10
−1

10
0

10
1

10
2

Filter coefficient

A
bs

ol
ut

e
er

ro
r

Experimental errors of filter coefficients vs. scaled AA probabilistic bound (3σ, scaled by 1026)
for single−precision LD implementation at order 10

AA probabilistic bound / 1026

Error of synthetic data
Error of speech signal

Figure 5.24 Experimental rounding errors (κ ≤ 106) of filter coefficients

vs. scaled AA-based probabilistic error bound (3σ, scaled by

1026) for single-precision Levinson-Durbin implementation at

order 10

AA-based error bound versus experimental error for filter coefficients. To finalise the AA-based

error analysis using the AA-based scaling operator, we compare the error bounds estimated using the

scaling operator with the experimental rounding error for the filter coefficients. The comparison is

shown in Figure 5.24. The less pessimistic error bound, i.e., the AA-based probabilistic bound (with

a confidence interval 3σ), is chosen for comparison. Similarly, the maximum experimental rounding

errors, corresponding to the highest condition number of κ ≤ 106, for the synthetic data and speech

signals are chosen (i.e., the two error curves shown in Figure 5.24 are identical to the two highest error

curves presented earlier in Figure 5.12 for the synthetic data and speech signals, respectively).

Since the AA error bound is overestimated compared to the experimental error, the AA error bound

for the filter coefficient is scaled by a factor of 1026 for a better representation in the same figure (i.e.,

the true error bound equals the represented error bound in Figure 5.24 multiplied by 1026) and we

only focus on the trend of the error bound. The trend of the AA error bound almost matches the

trend of the experimental errors for filter coefficient ai, clearly showing that the AA-based model with

a scaling range operator is able to provide a fairly good qualitative estimate for the rounding error of

the filter coefficients ai in the iterative LD algorithm.

5.3.6 Summary

In the second application of AA-based floating-point error analysis, we studied the rounding error of

the iterative LD algorithm with respect to the system order, the precision and the condition number.

The size of the prediction error Em−1 and the division have a major impact on the accuracy of the

118

LD algorithm. To what extent these two factors affect the estimated bound depends on the respective

input data, for which different scenarios have been studied.

The AA error model with a probabilistic bounding operator can model accurately the range and

rounding error of the LD algorithm when using restricted input parameters, i.e., ri ∈ [0.17, 0.23] and

an order n = 10, in which the corresponding overestimation ratio for the error of the filter coefficients

and the reflection coefficients is approximately 1.95. For bit width allocation, this is equivalent to an

overestimation of 1 mantissa bit.

In case of using general parameters for the AA error evaluation of the LD algorithm, i.e., ri ∈ [−1, 1]

and arbitrarily large order n, the most challenging issue is handling the division by zero happening

due to the severe overestimation of the prediction error over iterations of the algorithm. In linear

prediction, division by zero in the LD iterations may happen if the prediction error Em decreases very

close to zero, which is equivalent to the fact that the Toeplitz system at hand has very high condition

number or it is ill-conditioned. The AAFloat tool allows us to specify a lower bound for the prediction

error, which, however, cannot help overcome the division by zero problem. We then suggest to use the

AA-based range scaling operator to reduce the range bounds of the quantities in the LD algorithm

to their known ranges given by theoretical studies in the literature. The AA-based probabilistic error

model and the range scaling operator can provide a good qualitative estimate for the error bound of

the LD algorithm. The resulting error bounds for the filter coefficients and reflection coefficients are,

however, very pessimistic compared to the real errors observed in practical applications, making these

bounds useless for bit width allocation for hardware implementation of the LD algorithm.

Another important topic is performing the custom-precision floating-point LD implementation. The

experimental setup presents different scenarios for rounding error evaluation of the custom-precision

LD implementation. Users should be aware of the numerical stability of the algorithm and, therefore,

they need to make sure that the reflection coefficients are always in the range [−1, 1] for guaranteeing

the stability of the algorithm when setting up the experiments as well as during the execution of the

LD implementation.

Experimental results show that the filter coefficients ai are more sensitive to the rounding error than

the reflection coefficients ki. The rounding error is directly proportional to the condition number of the

Toeplitz matrix. We observe that more than half of the speech frames correspond to ill-conditioned

Toeplitz systems having condition numbers of 104 or higher. The average spectral distortion for

speech suggests to use a 16 mantissa bits number format for the floating-point implementation of

LPC vocoders.

5.4 Conclusions

The chapter presented two examples of AA-based floating-point rounding error estimation for two

signal and speech processing applications: dot-product and linear prediction with the Levinson-Durbin

algorithm.

It has been shown in the first example - error analysis of the floating-point dot-product - that the

AA-based probabilistic rounding operator can provide tighter estimated rounding error bounds in

comparison with the conventional error modeling by Higham [5]. The AA-based probabilistic round-

ing error analysis is, therefore, a promising technique for error analysis of floating-point algorithms

119

consisting of affine operations like the dot-product, which is very useful for the estimation of opti-

mal uniform bit width for floating-point implementations of respective applications on reconfigurable

hardware.

For the case of a complex algorithm consisting of multiple non-affine operations, especially when an

algorithm needs to compute a division/inverse, as in the case of the Levinson-Durbin algorithm, the

AA model may result in very pessimistic error bound due to the overestimation effect of non-affine

operations and/or it may even fail to execute the evaluation due to division by zero. If there exists the-

oretical analysis of the algorithm at hand, one can try to incorporate the additional knowledge on the

algorithm from analytical work with the AA model in order to somehow alleviate the overestimation

effect and obtain a more sensible error estimate.

In general, the faster execution time offered by the AA-based model and the AAFloat tool (than

simulation approaches) will be a true asset to many practical applications in which the optimal bit

width configuration is a demanding input parameter. Potential applications are: i) in floating-point

code generators, e.g., the FloPoCo project [76, 77] or the SPIRAL project [78–80] specifically aiming at

the software/hardware generation for DSP algorithms on FPGAs, or ii) in real-time applications with

data-dependent bit width optimization, e.g., in a wireless sensor network where the states of nodes are

changing over time and the optimal resource usage (with respect to energy, memory, communication

bandwidth) is demanding and obtainable with custom-precision computations.

120

6
Conclusion

This chapter gives a summary of the scientific contributions of this doctoral thesis and discusses

potential future research directions.

6.1 Scientific Contributions

This doctoral work aims at efficient floating-point implementation of signal processing algorithms

on reconfigurable hardware by exploiting custom-precision floating-point operations and performing

floating-point rounding error analysis and optimal uniform bit width allocation. The scientific contri-

butions of this work include:

Performance of custom-precision floating-point arithmetic operations: A case

study on a hybrid reconfigurable CPU

We investigate the area performance and throughput performance of custom-precision floating-point

arithmetic operations via the implementation of a floating-point fused multiply-accumulate operation

on the Stretch S6 prototypical hybrid reconfigurable CPU.

It is known that reduced precision in floating-point arithmetic operations on reconfigurable fabrics

directly translates into increased parallelism and peak performance, thereby allowing for trading ac-

curacy with parallelism and performance. We show that the reconfigurable fabric of the S6 CPU is

able to provide native support of custom-precision floating-point arithmetic up to double-precision;

for single-precision multiple operators can be implemented in parallel. Our investigation on the S6

CPU can be seen as a case study that provides one more piece of evidence for the statement of the

tradeoffs in accuracy, parallelism and performance on reconfigurable platforms.

The dominant issue identified while investigating the S6 CPU is the mismatch between the recon-

figurable fabric and the I/O bandwidth making hybrid reconfigurable CPUs temporarily unsuitable

for scientific workloads.

A Matlab-based framework for floating-point rounding error analysis using affine

arithmetic and uniform bit width allocation

We implement the first Matlab-based framework for performing rounding error analysis and numerical

range evaluation of arbitrary floating-point algorithms using affine arithmetic error modeling. With

121

the support of basic vector and matrix computations in Matlab, our framework enables users to best

reuse their own existing Matlab codes to effectively perform the rounding error analysis task. The

AAFloat tool supports flexible handling of exceptional cases via providing users useful information

and allowing users to specify reasonable ranges in handling the division by zero and square root of

negative intervals.

We also incorporate arbitrary-precision floating arithmetic via the GNU MPFR library into the

framework, thereby allowing for an efficient bit-true custom-precision computation of basic floating-

point arithmetic operations in Matlab.

Besides, we suggest the first AA-based error model for a floating-point fused multiply-accumulate

operation z = xy+w that helps to conduct floating-point error analysis of applications involving this

fused operation.

The rounding error bound of the floating-point algorithm evaluated by our Matlab-based software

tool can be used for optimal uniform bit width allocation. The framework supports both an AA-

based hard-bounding operator and an AA-based probabilistic-bounding operator with the confidence

interval giving the users more freedom in bit width allocation for floating-point implementation (i.e.,

trading accuracy for performance and area by choosing between the hard bounding operator and the

probabilistic bounding operator in combination with a varying confidence interval).

Rounding error analysis and bit width allocation for floating-point dot-products

We use the Matlab-based framework and the AA-based probabilistic bounding operator to estimate the

rounding error bounds of different floating-point dot-product architectures (i.e., using basic operations

versus using fused operations, and using sequential versus parallel structures) over a wide range of

input parameters. We show that an AA-based probabilistic bounding operator is able to provide a

tighter rounding error bound compared to conventional forward error analysis, thereby allowing for

minimum mantissa bit width allocation and comparison of different dot-product architectures.

Different dot-product architectures result in different rounding errors. We show that the overall

numerical accuracy of floating-point dot-products can considerably be improved by changing from

a sequential structure to a parallel structure (at the cost of more hardware resources) but not by

changing from using basic operations to using a fused operation. In terms of bit width allocation, we

show that the AA-based technique overestimates the required bit width by at most 2 mantissa bits

for the floating-point dot-product implementation.

More importantly, we derive in this work the analytical rounding error models for all floating-

point dot-product architectures as a function of numerical range, precision, vector length and chosen

confidence interval, allowing for an efficient design space exploration and which are key to floating-

point code generators.

Rounding error analysis for the floating-point Levinson-Durbin algorithm

The last and very important contribution of this work is the AA-based rounding error analysis for the

floating-point Levinson-Durbin algorithm.

We are the first to apply affine arithmetic for the evaluation of the rounding error propagation in

the iterative Levinson-Durbin algorithm. This work studies the rounding error of the filter coefficients

and reflection coefficients taking into consideration the system order, the precision and the condition

122

number of the Toeplitz matrix. We show that the division for the prediction error in the Levinson-

Durbin algorithm significantly affect the resulting rounding errors. We show that for the case of a

complex algorithm consisting of multiple non-affine operations, as in the case of the Levinson-Durbin

algorithm, the AA model may result in very pessimistic error bound due to the overestimation effect

of non-affine operations and/or it may even fail to execute the evaluation due to division by zero. We

suggest to incorporate the additional knowledge on the algorithm from analytical work with the AA

model, via applying an enforced bound on the range with the AA-based scaling range operator, in

order to alleviate the overestimation effect, thereby obtaining more sensible qualitative estimates for

the error bounds.

6.2 Future Work

We hope that our work will encourage others to apply affine arithmetic and reconfigurable hardware

in the areas of signal/speech processing and scientific computing. Possible directions for future work

include:

o Applying the new method and tools for existing algorithms. The AA-based error

model and Matlab-based tool in this work can equally be applied to arbitrary floating-point

algorithms to understand better the usability of the affine arithmetic model and the implemented

Matlab-based tool. Potential classes of algorithms for investigation with the new method include

recursive algorithms and feedback systems.

o Improving the accuracy of AA-based (rounding) error models for non-affine op-

erations. The inherently symmetric property of affine intervals causes very pessimistic range

estimates for non-affine operations like multiplication and division. The effect of the symmetry

property of affine intervals becomes more serious in computation chains consisting of many non-

affine operations. The AA-based range scaling operator suggested in this work still results in

pessimistic estimates. Fang [4] suggested to use an asymmetric bounding operator for evaluating

non-affine operations, which requires significant computational effort. Therefore, it is desirable

to have alternative improved technique based on affine arithmetic that can provide an accurate

estimate for non-affine operations and only requires a little more computational effort compared

to the current AA-based error model used in this thesis.

o Performing multiple-precision error analysis and bit width allocation for floating-

point algorithms. The basic idea is that different computational parts of a floating-point

algorithm may use different floating-point number formats (different precisions) provided that

all computational parts can still guarantee the overall desired accuracy.

o Combined CPUs and FPGA-based architectures for speech processing. Exploiting

the combination between traditional CPUs and reconfigurable hardware like FPGAs can bring

advantages of the two platforms together. The challenge is how to combine best these two

technologies at different design levels and what speech processing applications would benefit

from using this combination.

123

A
AA-Based Error Model for Floating-Point

Reciprocal

Given the AA expression for a floating-point variable yf as

ŷf = ŷrf + ŷef

= (y0 +

N∑
i=1

yiεi) +B(ŷrf) · u · εy,

we would like to evaluate the reciprocal of this variable: ẑf = 1/ŷf such that the range component

and rounding error component of ẑf can be represented via the range component and rounding error

component of ŷf as

ẑf =
1

ŷrf + ŷef
= ẑrf + ẑef .

We rewrite the above expression as follows:

ẑf =
1

ŷrf + ŷef

=
1

ŷrf
·

(
1 +

ŷef
ŷrf

)−1

Generally, the error component is very much smaller than the range component, i.e., ŷef � ŷrf , we can

approximate the second term in the equation above as follows [4](
1 +

ŷef
ŷrf

)−1

≈ 1−
ŷef
ŷrf
,

and the reciprocal can therefore be approximated as

ẑf ≈
1

ŷrf
·

(
1−

ŷef
ŷrf

)
,

or

ẑf =
1

ŷrf
− 1

(ŷrf)2
· ŷef .

125

From this, the range component and the rounding error component of ẑf = 1/ŷf can be described as

follows:

ẑrf =
1

ŷrf
,

ẑef = − 1

(ŷrf)2
· ŷef +B(ẑrf) · u · εz,

where a new error term B(ẑrf) ·u · εz associated with a new noise term εz is introduced in the rounding

error component to represent the rounding error of the reciprocal itself. The remaining error term in

the rounding error component ẑef comes from the input operand y, i.e., ŷef .

The expressions for the range and error components of ẑf shown above are not affine forms. In order

to have the affine representations for the range and error components of ẑf , we use the min-range

approximation [53] for the reciprocal as well as apply the bounding operator B(·). The evaluation of

all the coefficients of the min-range approximation is presented in Section 3.3.2.

ẑrf = fmin-range
(
1/ŷrf

)
= α · ŷrf + C0 + C1 · εN+1

= (α · y0 + C0) +

N∑
i=1

yiεi + C1 · εN+1

ẑef = B
(
fmin-range

(
1/(ŷrf)2

))
· ŷef +B(ẑrf) · u · εz

= B
(
fmin-range

(
1/(ŷrf)2

))
·B(ŷrf) · u · εy +B(ẑrf) · u · εz,

126

B
AA-Based Error Model for Floating-Point

Square Root

Given the AA expression for a floating-point variable xf as

x̂f = x̂rf + x̂ef

= (x0 +

N∑
i=1

xiεi) +B(x̂rf) · u · εx,

we would like to evaluate the square root of this variable: ẑf =
√
x̂f such that the range component

and rounding error component of ẑf can be represented via the range component and rounding error

component of x̂f as

ẑf =
√
x̂rf + x̂ef = ẑrf + ẑef .

We rewrite the above expression as follows:

ẑf =
√
x̂rf + x̂ef

=

√√√√x̂rf

(
1 +

x̂ef
x̂rf

)

=
√
x̂rf ·

√
1 +

x̂ef
x̂rf
.

Using the Taylor series for approximating
√

1 + x, where x < 1, and taking only the first order terms

of the Taylor series give us

√
1 + x ≈ 1 +

1

2
x, x < 1.

Because of
x̂e
f

x̂r
f
< 1, the Taylor approximation above can be applied to the approximation of

√
1 +

x̂e
f

x̂r
f

as follows √
1 +

x̂ef
x̂rf
≈ 1 +

1

2
·
x̂ef
x̂rf
.

127

We are now ready to evaluate the range component and rounding error component of ẑf .

ẑf =
√
x̂rf ·

√
1 +

x̂ef
x̂rf
≈
√
x̂rf ·

(
1 +

1

2
·
x̂ef
x̂rf

)
=
√
x̂rf +

1

2
√
x̂rf

· x̂ef

From this, the range component and the rounding error component of ẑf =
√
x̂f can be described as

follows:

ẑrf =
√
x̂rf

ẑef =
1

2
√
x̂rf

· x̂ef +B(ẑrf) · u · εz,

where a new error term B(ẑrf) ·u · εz associated with a new noise term εz is introduced in the rounding

error component to represent the rounding error of the square root itself. The remaining error term

in the rounding error component ẑef comes from the input operand x, i.e., x̂ef .

The expressions for the range and error components of ẑf shown above are not affine forms. In order

to have the affine representations for the range and error components of ẑf , we use the Chebyshev

approximation and the min-range approximation [53], as well as apply the bounding operator B(·).
Note that we replace

√
x̂rf in the error component by ẑrf .

ẑrf = fChebyshev
(√

x̂rf

)
= α · x̂rf + C0 + C1 · εN+1

= (α · x0 + C0) +

N∑
i=1

xiεi + C1 · εN+1

ẑef =
1

2
B
(
fmin-range

(
1/ẑrf

))
· x̂ef +B(ẑrf) · u · εz.

=
1

2
B
(
fmin-range

(
1/ẑrf

))
·B(x̂rf) · u · εx +B(ẑrf) · u · εz.

The evaluation of all the coefficients of the Chebyshev and min-range approximations are presented

in Section 3.3.2. Extensive discussions on the Chebyshev and min-range approximations are given

in [53].

128

C
Norms and Condition Number

This appendix is based on Chapter 6 in [5] and Chapter 2 in [64].

Norms are an indispensable tool in numerical linear algebra. Their purpose is to compress the mn

numbers of an m × n matrix into a single scalar measure of size allowing for a concise and easily

interpretable form for perturbation and rounding error analysis.

C.1 Vector Norms

Given real column vectors x and y of length n: x,y ∈ Rn, and a real scalar α ∈ R, where R is the

set of real numbers and Rn is the n-dimensional space. A vector norm is a function || · || : Rn → R
satisfying the following conditions:

1. ||x|| ≥ 0 with equality iff x = 0.

2. ||αx|| = |α| ||x|| for all α ∈ R, x ∈ Rn.

3. ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ Rn.

A useful class of vector norms are the p-norms defined by

||x||p =

(
n∑
i=1

|xi|p
) 1

p

= (|x1|p + |x2|p + · · ·+ |xn|p)
1
p p ≥ 1, (C.1)

of these the three most important vector norms in error analysis and numerical computations are the

1-norm, 2-norm and ∞-norm defined as

||x||1 =

n∑
i=1

|xi|, (C.2)

||x||2 =

√√√√ n∑
i=1

|xi|2 =
√

xTx, (C.3)

||x||∞ = max
1≤i≤n

|xi|. (C.4)

129

C.2 Matrix Norms

A matrix norm is a function || · || : Rm×n → R satisfying properties analoguos to the three vector

norm properties. The simplest example is the Frobenius norm defined by

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2. (C.5)

The matrix p-norms are defined in terms of the vector p-norms. The matrix 1-norm and ∞-norm

are defined as

||A||1 = max
1≤j≤n

n∑
i=1

|aij |, (C.6)

||A||∞ = max
1≤i≤n

n∑
j=1

|aij |. (C.7)

Therefore, the matrix 1-norm is called ”max column sum” and the matrix∞-norm is called ”max row

sum”. To remember the formulae for the 1-norm and ∞-norm, note that 1 is a vertical symbol (for

columns) and ∞ is a horizontal symbol (for rows).

The p-norms have the important property that for every matrix A ∈ Rm×n and vector x ∈ Rn we

have [64]

||Ax||p ≤ ||A||p||x||p. (C.8)

C.3 Condition Number

We analyse the linear system

A · x = b

where A ∈ Rn×n is an n× n square matrix and x,b ∈ Rn are column vectors of length n. Assuming

that matrix A is invertible (or non-singular) means its inverse matrix A−1 exists. The condition

number κ(A) of matrix A is defined to be [64]

κ(A) = ||A|| · ||A−1||, (C.9)

where || · || is some matrix norm. In this thesis the 1-norm is used to compute the condition number.

The condition number satisfies κ(A) ≥ 1 and can be arbitrarily large. By convention, the condition

number κ(A) =∞ if A is not invertible.

Assuming matrix A is perturbed by ∆A and vector b is perturbed by ∆b.The perturbed linear

system of equations will be

(A + ∆A) · x̂ = (b + ∆b)

where

x̂ = x + ∆x

is the perturbed solution. The condition number κ(A) quantifies the sensitivity of the solution of

linear system to the perturbation in A and b by the following relation [64]

||∆x||
||x||

≤ κ(A)

(
||∆A||
||A||

+
||∆b||
||b||

)
, (C.10)

130

such that the relative error in x can be κ(A) times the relative error in A and b. The condition

number gives a bound on how inaccurate the solution x will be after approximating the solution.

Note that this is before the effects of rounding errors are taken into account. Therefore, conditioning

is a property of the matrix A, neither of the algorithm nor of the floating point number format used

to solve the corresponding linear system. If the condition number is ”small”, the linear system is

referred to as well-conditioned, otherwise it is called an ill-conditioned system. ”Small” condition

number basically means κ(A) is close to 1.

131

D
Matlab Code

D.1 Code for custom-precision floating-point Levinson-Durbin al-

gorithm

We implemented in Matlab the custom-precision implementation version of Levinson-Durbin algo-

rithm, namely levcus, by incorporating MPFR functions as .MEX files.

1 func t i on [a ,E, k , f i ndex] = l evcu s (r , n , prec)

2 % LEVCUS Levinson−Durbin i t e r a t i o n in Custom−P r e c i s i o n Float ing−Point Format

3 % [a ,E, k , f i ndex] = l evcu s (r , n , prec)

4 % This func t i on implement the Levinson−Durbin a logor i thm to f i n d the

5 % optimal c o e f f i c i e n t s A o f one wide−s ense s t a t i o n a r y proce s s by us ing

6 % auto−c o r r e l a t i o n method

7 % [R(1) R(2) . . . R(N)] [A(2)] = [−R(2)]

8 % [R(2) R(1) . . . R(N−1)] [A(3)] = [−R(3)]

9 % [. . .] [.] = [.]

10 % [R(N−1) R(N−2) . . . R(2)] [A(N)] = [−R(N)]

11 % [R(N) R(N−1) . . . R(1)] [A(N+1)] = [−R(N+1)]

12 %

13 % r : INPUT column vec to r : Auto−c o r r e l a t i o n input vec to r

14 % n : INPUT s c a l a r va lue : Order o f p r e d i c t o r with d e f a u l t va lue n= length (r)−1

15 % prec : INPUT s c a l a r va lue : working p r e c i s i o n (5 <= prec <= 53)

16 %

17 % a : OUTPUT column vec to r : Optimal output c o e f f i c i e n t s

18 % k : OUTPUT column vecto r : R e f l e c t i o n c o e f f i c i e n t s

19 % E: OUTPUT column vec to r : conta in s the energy o f p r e d i c t i o n e r r o r at each

i t e r a t i o n

20 % f index : OUTPUT s c a l a r va lue : i n d i c a t e s the f a i l i n g i t e r a t i o n at which | k | > 1 !

21 % when | k |>1 the Levinson−Durbin i t e r a t i o n s tops and f index i s repor ted :

22 % − f i ndex = 0 i f Levinson−Durbin was proce s sed s u c c e s s f u l l y ,

23 % − f i ndex = i t e r a t i o n at that the Levinson−Durbin was f a i l e d (i . e . , | k | > 1) .

24 %

25 % Reference : Peter Vary & Rainer Martin , 2006

26 % ” D i g i t a l Speech Transmiss ion ” page 182−184

27 % Update : Oct 05th , 2011

28 % By Thang Viet Huynh , SPSC, TU Graz <thang . huynhviet@tugraz . at>

29

30 %% Check number o f input arguments

31 switch narg in

133

32 case 1

33 n=length (r)−1; % order o f the p r e d i c t o r

34 prec = 53 ; %d e f a u l t i s double−p r e c i s i o n

35 case 2

36 prec = 53 ; %d e f a u l t i s double−p r e c i s i o n

37 case 3

38 % do nothing !

39 otherwi se

40 e r r o r (’The c o r r e c t c a l l to Levinson−Durbin a lgor i thm i s as [a ,E, k , f i ndex] =

l evcu s (r , n , prec) . ’) ;

41 end

42

43

44 %% Pre−a l l o c a t e v a r i a b l e s

45 a = ze ro s (n+1 ,1) ;

46 a (1) =1;

47

48 k = ze ro s (n+1 ,1) ;

49 k (1) =1;

50

51 E = ze ro s (n+1 ,1) ;

52 E(1)=r (1) ;

53

54 f index = 0 ;

55

56

57 % Declare a copy o f vec to r a

58 % to s t o r e the prev ious va lue o f a

59 % af i s a l s o a f l i p p e d copy o f a

60 a f = a ;

61

62

63 %% −−−−−−−−−−−−−−−−−−−−−
64 % Recurs ive−Loop

65 %−−−−−−−−−−−−−−−−−−−−−−−
66 % This custom−p r e c i s i o n f l o a t i n g−point computation i s based on the MPFR

67 % Library 3 . 0 , with the f o l l o w i n g f u n c t i o n s per forming custom−p r e c i s i o n

68 % f l o a t i n g−point ope ra t i on s in Matlab (v ia .MEX f i l e s) :

69 %

70 % − z = add mpfr (x , prec , y , prec) −−> z = x + y

71 %

72 % − z = mul mpfr (x , prec , y , prec) −−> z = x ∗ y

73 %

74 % − z = div mpfr (x , prec , y , prec) −−> z = x / y

75 %

76 % − z = fma mpfr (x , prec , y , prec , w, prec) −−> z = x ∗ y + w

77

78

79 f o r p = 1 : n

80

81 % Step 1

82 q = 0 ;

83 f o r i =1:p

84 %q = q + a (i) ∗ r (p−i +2) ; % o r i g i n a l exp r e s s i on in SP or DP

85 q = add mpfr (q , prec , mul mpfr (a (i) , prec , r (p−i +2) , prec) , prec) ;

86 end

134

87

88 % Step 2

89 %k (p+1) = −q/E(p) ; % o r i g i n a l exp r e s s i on in SP or DP

90 k (p+1) = −div mpfr (q , prec , E(p) , prec) ;

91

92 % check i f | k | <= 1

93 i f (abs (k (p+1))>1)

94 f index = p ;

95 break ; % return

96 end

97

98 % Step 3 % update a

99 f o r i =1:p+1

100 a f (i)=a (p−i +2) ; %update a f vec to r

101 end

102

103 f o r i =2:(p+1)

104 %a (i) = a (i) + k (p+1)∗ a f (i) ; % o r i g i n a l exp r e s s i on in SP or DP

105 a (i) = add mpfr (a (i) , prec , mul mpfr (k (p+1) , prec , a f (i) , prec) , prec) ;

106 end

107

108 % Step 4

109 %E(p+1)=E(p) ∗(1−(k (p+1)∗k (p+1))) ; % o r i g i n a l exp r e s s i on in SP or DP

110 one minus k2 = add mpfr (1 , prec , − mul mpfr (k (p+1) , prec , k (p+1) , prec) , prec) ;

111 E(p+1) = mul mpfr (E(p) , prec , one minus k2 , prec) ;

112

113 end

D.2 Code for AA-based floating-point error analysis of the

Levinson-Durbin algorithm using the AAFloat class

1 % AA−based e r r o r a n a l y s i s f o r the Levinson−Durbin a lgor i thm us ing the AAFloat c l a s s

2 % update 05 .04 .2012

3

4 c l e a r a l l ;

5 implementation name = ’ Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] ’ ;

6 system order = 10 ;

7 a1 = 0 . 1 7 ;

8 b1 = 0 . 2 3 ;

9 p = 24 ;

10

11

12 % d e c l a r e some cons tant s

13 u = 2ˆ(−p) ;

14 DEFAULT PROB = 0.997300203937 ;

15 AA HARD BOUND = 1 . 0 ; AAText HARD = ’ Hard ’ ;

16 AA SOFT BOUND = DEFAULT PROB; AAText SOFT = ’ So f t ’ ;

17

18 % s p e c i f y the bounding operator used

19 % prob = AA HARD BOUND; AAText = AAText HARD;

135

20 prob = AA SOFT BOUND; AAText = AAText SOFT ;

21

22 %% d e c l a r e AA forms f o r some cons tant s

23 t i c ;

24 AAFloat INIT ;

25 ONE = AAFloat (1 , 1 , p) ;

26 AA a0 = ONE; % a0 = 1

27 AA k0 = ONE; % k0 = 1

28

29 % d e c l a r e AA form f o r a u t o c o r r e l a t i o n c o e f f . r

30 AAFloat INIT ;

31 a u t o c o e f f = AAFloat (a1∗ ones (1 , system order) , b1∗ ones (1 , system order) , p) ;

32 a u t o c o e f f = [ONE, a u t o c o e f f] ;

33

34 a = AA a0 ;

35 k = AA k0 ;

36

37 AAFloat INIT ;

38 LD alpha = ONE; % alpha0 = r0

39

40 % Var iab l e s f o r t r a c e o f rounding e r r o r s

41 AAFloat INIT ;

42 A = AAFloat (z e r o s (system order +1, system order +1) , z e r o s (system order +1,

system order +1) , p) ;

43 f o r m=1: system order+1

44 A(m, 1) = ONE;

45 end

46 LD BETA = AAFloat (z e r o s (system order +1 ,1) , z e r o s (system order +1 ,1) , p) ;

47 LD ALPHA = AAFloat (z e r o s (system order +1 ,1) , z e r o s (system order +1 ,1) , p) ;

48

49 %%

50 AAFloat INIT ;

51 f p r i n t f (’ \n∗∗\n ’) ;

52 f p r i n t f (’ ∗∗\n ’) ;

53

54 AA bound a = ze ro s (system order , system order) ;

55 AA bound k = ze ro s (system order , 1) ;

56

57 f o r m=1 : system order

58

59 % Execute the Levinson−Durbin a lgor i thm

60 f p r i n t f (’ \n−−−−−−−−−− I t e r a t i o n m = %d\n ’ ,m) ;

61 f p r i n t f (’%s \n\n ’ , implementation name) ;

62 f p r i n t f (’AA bound = %s , p r e c i s i o n = %d , r in [%5.2 f ,%5.2 f]\n ’ , AAText , p , a1 , b1) ;

63

64 % LD alpha be f o r e updated

65 temp = ebound (LD alpha , prob) ;

66 f p r i n t f (’ e r r o r bound o f E {m−1} = %e ’ , temp) ;

67 temp = aa2ia (LD alpha , prob) ;

68 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

69 f p r i n t f (’ \n ’) ;

70

71 %%%

72 % Begin o f LEVINSON−DURBIN Algorithm

73 %%%

74 % Step 1 : compute the numerator beta

136

75 r = a u t o c o e f f (2 :m+1) ;

76 LD beta = mmul(r , (f l i p l r (a)) ’ , prob) ;

77

78 % Step 2 : compute r e f l e c t i o n c o e f f i c i e n t k

79 kk = −div (LD beta , LD alpha , prob) ; % k = −beta / alpha

80 k = [k , kk] ; % add new r e f l e c t i o n c o e f f .

81

82 % Step 3a : update f i l t e r c o e f f i c i e n t s a

83 a = [a , kk] ;

84 a f l i p = f l i p l r (a) ;

85 a temp = AA a0 ;

86 f o r i=2 : (l ength (a)−1)

87 ka = mul (kk , a f l i p (i) , prob) ; % k∗a (m−i)

88 a update = add (a (i) , ka , prob) ; % a (i) = a (i) + k∗a (m−i)

89 a temp = [a temp , a update] ;

90 end

91 a temp = [a temp , kk] ;

92 a = a temp ;

93

94 % Step 3b : Update alpha

95 kk2 = sqr (kk , prob) ; % k∗k
96 kk2 1 = sub (1 , kk2 , prob) ; % 1 − k∗k
97 LD alpha = mul (LD alpha , kk2 1 , prob) ; % E = E(1−k∗k)

98 %%%

99 % End o f LEVINSON−DURBIN Algorithm

100 %%%

101

102 %%%

103 % save a l l v a r i a b l e s at the cur rent i t e r a t i o n

104 % save A

105 A(m+1 ,1:m+1) = a ;

106

107 % save BETA

108 LD BETA(m+1) = LD beta ;

109

110 % save ALPHA

111 LD ALPHA(m+1) = LD alpha ;

112

113 %%%

114 %% Display e r r o r bound at each i t e r a t i o n

115

116 % beta

117 temp = ebound (LD beta , prob) ;

118 f p r i n t f (’ e r r o r bound o f beta = %e ’ , temp) ;

119 temp = aa2 ia (LD beta , prob) ;

120 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

121 f p r i n t f (’ \n ’) ;

122

123 % d i s p l a y e r r o r bound f o r r e f l e c t i o n c o e f f i c i e n t

124 f o r i =1: l ength (k) ,

125 temp = ebound (k (i) , prob) ;

126 AA bound k (i) = temp ;

127 f p r i n t f (’ i=%2d , e r r o r bound o f k(%2d) = %e ’ , i , i , temp) ;

128 temp = aa2 ia (k (i) , prob) ;

129 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

130 end ;

137

131 f p r i n t f (’ \n ’) ;

132

133 % d i s p l a y e r r o r bound f o r f i l t e r c o e f f i c i e n t

134 f o r i =1: l ength (a) ,

135 temp = ebound (a (i) , prob) ;

136 AA bound a (m, i) = temp ;

137 f p r i n t f (’ i=%2d , e r r o r bound o f a(%2d) = %e ’ , i , i , temp) ;

138 temp = aa2 ia (a (i) , prob) ;

139 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

140 end ;

141 f p r i n t f (’ \n ’) ;

142

143 % d i s p l a y e r r o r bound f o r short−term p r e d i c t i o n e r r o r

144 temp = ebound (LD alpha , prob) ;

145 f p r i n t f (’ e r r o r bound o f E {m} = %e ’ , temp) ;

146 temp = aa2 ia (LD alpha , prob) ;

147 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

148 f p r i n t f (’ \n ’) ;

149

150 end ;

151 t = toc ; t = t /60 ;

152

153 f p r i n t f (’ \n ’) ;

154 f p r i n t f (’Time = %f (minutes) \n ’ , t) ;

155

156 K = k ;

157 c l e a r a k LD beta LD alpha AA a0 AA k0

158

159 d a t a f i l e = [’ LevError ’ ,AAText , ’ Bound SimpleExample Order ’ , num2str (system order) , ’

p r e c ’ , num2str (p)] ;

160 save (d a t a f i l e) ;

161

162 re turn ;

D.3 Code for floating-point error analysis of Levinson-Durbin algo-

rithm using AA-based Scaling Operator

1 % AA−based e r r o r a n a l y s i s f o r the Levinson−Durbin a lgor i thm us ing the AAFloat c l a s s

2 % Apply the AA−based Sca l i ng Operator

3 % update 05 .04 .2012

4

5 c l e a r a l l ;

6

7 implementation name = ’ Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range

−s c a l i n g ’ ;

8 system order = 10 ;

9 a1 = −1;

10 b1 = +1;

11 p = 24 ;

12

13 de l ta E = 0 . 0 0 0 1 ;

14

138

15 % d e c l a r e some cons tant s

16 u = 2ˆ(−p) ;

17 DEFAULT PROB = 0.997300203937 ;

18 AA HARD BOUND = 1 . 0 ; AAText HARD = ’ Hard ’ ;

19 AA SOFT BOUND = DEFAULT PROB; AAText SOFT = ’ So f t ’ ;

20

21 %%% s p e c i f y the bounding operator used

22 prob = AA HARD BOUND; AAText = AAText HARD;

23 % prob = AA SOFT BOUND; AAText = AAText SOFT ;

24

25 %% d e c l a r e AA forms f o r some cons tant s

26 t i c ;

27 AAFloat INIT ;

28 ONE = AAFloat (1 , 1 , p) ;

29 AA a0 = ONE; % a0 = 1

30 AA k0 = ONE; % k0 = 1

31

32 % d e c l a r e AA form f o r a u t o c o r r e l a t i o n c o e f f . r

33 AAFloat INIT ;

34 a u t o c o e f f = AAFloat (a1∗ ones (1 , system order) , b1∗ ones (1 , system order) , p) ;

35 a u t o c o e f f = [ONE, a u t o c o e f f] ;

36

37 a = AA a0 ;

38 k = AA k0 ;

39

40 AAFloat INIT ;

41 LD alpha = ONE; % alpha0 = r0

42

43 % Var iab l e s f o r t r a c e o f rounding e r r o r s

44 AAFloat INIT ;

45 A = AAFloat (z e r o s (system order +1, system order +1) , z e r o s (system order +1,

system order +1) , p) ;

46 f o r m=1: system order+1

47 A(m, 1) = ONE;

48 end

49 LD BETA = AAFloat (z e r o s (system order +1 ,1) , z e r o s (system order +1 ,1) , p) ;

50 LD ALPHA = AAFloat (z e r o s (system order +1 ,1) , z e r o s (system order +1 ,1) , p) ;

51

52 %%

53 AAFloat INIT ;

54 f p r i n t f (’ \n∗∗\n ’) ;

55 f p r i n t f (’ ∗∗\n ’) ;

56

57 AA bound a = ze ro s (system order , system order) ;

58 AA bound k = ze ro s (system order , 1) ;

59

60 f o r m=1 : system order

61

62 % Execute the Levinson−Durbin a lgor i thm

63 f p r i n t f (’ \n−−−−−−−−−− I t e r a t i o n m = %d\n ’ ,m) ;

64 f p r i n t f (’%s \n\n ’ , implementation name) ;

65 f p r i n t f (’AA bound = %s , p r e c i s i o n = %d , r in [%5.2 f ,%5.2 f]\n ’ , AAText , p , a1 , b1) ;

66 f p r i n t f (’ d e l t a = %f \n ’ , d e l t a) ;

67

68 % LD alpha be f o r e updated

69 temp = ebound (LD alpha , prob) ;

139

70 f p r i n t f (’ e r r o r bound o f E {m−1} = %e ’ , temp) ;

71 temp = aa2ia (LD alpha , prob) ;

72 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

73

74 %%%

75 % Begin o f LEVINSON−DURBIN Algorithm

76 %%%

77 % Step 1 : compute the numerator beta

78 r = a u t o c o e f f (2 :m+1) ;

79 LD beta = mmul(r , (f l i p l r (a)) ’ , prob) ;

80

81 % 1a : convert LD beta in to the range [0 , 2ˆ{m−1}]
82 LD beta = AASO(LD beta , [−1 , 1]) ;

83

84 % d i s p l a y beta

85 temp = ebound (LD beta , prob) ;

86 f p r i n t f (’ e r r o r bound o f beta = %e ’ , temp) ;

87 temp = aa2ia (LD beta , prob) ;

88 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

89 f p r i n t f (’ \n ’) ;

90

91

92 % Step 2 : compute r e f l e c t i o n c o e f f i c i e n t k

93 kk = −div (LD beta , LD alpha , prob) ; % beta / alpha

94 kk = AASO(kk , [−1 , 1]) ;

95 k = [k , kk] ; % add new r e f l e c t i o n c o e f f .

96

97

98 % Step 3a : update f i l t e r c o e f f i c i e n t s a

99 a = [a , kk] ;

100 a f l i p = f l i p l r (a) ;

101 a temp = AA a0 ;

102 f o r i=2 : (l ength (a)−1)

103 ka = mul (kk , a f l i p (i) , prob) ; % k∗a (m−i)

104 a update = add (a (i) , ka , prob) ; % a (i) = a (i) + k∗a (m−i)

105 a temp = [a temp , a update] ;

106 end

107 a temp = [a temp , kk] ;

108 a = a temp ;

109

110 % Step 3b : Update alpha

111 kk2 = sqr (kk , prob) ; % k∗k
112 kk2 1 = sub (1 , kk2 , prob) ; % 1 − k∗k
113 LD alpha = mul (LD alpha , kk2 1 , prob) ; % E = E(1−k∗k)

114 % convert LD alpha in to the range [\ de l ta , 2ˆ{m−1}]
115 LD alpha = AASO (LD alpha , [de l ta , 1]) ;

116 %%%

117 % End o f LEVINSON−DURBIN Algorithm

118 %%%

119

120 %%%

121 % save a l l v a r i a b l e s at the cur rent i t e r a t i o n

122 % save A

123 A(m+1 ,1:m+1) = a ;

124

125 % save BETA

140

126 LD BETA(m+1) = LD beta ;

127

128 % save ALPHA

129 LD ALPHA(m+1) = LD alpha ;

130

131 %% Display e r r o r bound at each i t e r a t i o n

132 f p r i n t f (’ \n ’) ;

133

134 % d i s p l a y e r r o r bound f o r r e f l e c t i o n c o e f f i c i e n t

135 f o r i =2: l ength (k) ,

136 temp = ebound (k (i) , prob) ;

137 AA bound k (i) = temp ;

138 f p r i n t f (’ i=%2d , e r r o r bound o f k(%2d) = %e ’ , i −1, i −1, temp) ;

139 temp = aa2 ia (k (i) , prob) ;

140 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

141 end ;

142 f p r i n t f (’ \n ’) ;

143

144 % d i s p l a y e r r o r bound f o r f i l t e r c o e f f i c i e n t

145 f o r i =1: l ength (a) ,

146 temp = ebound (a (i) , prob) ;

147 AA bound a (m, i) = temp ;

148 f p r i n t f (’ i=%2d , e r r o r bound o f a(%2d) = %e ’ , i −1, i −1, temp) ;

149 temp = aa2 ia (a (i) , prob) ;

150 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

151 end ;

152 f p r i n t f (’ \n ’) ;

153

154 % d i s p l a y e r r o r bound f o r short−term p r e d i c t i o n e r r o r

155 temp = ebound (LD alpha , prob) ;

156 f p r i n t f (’ e r r o r bound o f E {m} = %e ’ , temp) ;

157 temp = aa2 ia (LD alpha , prob) ;

158 f p r i n t f (’ , range = [%f , %f]\n ’ , temp . r (1) , temp . r (2)) ;

159 f p r i n t f (’ \n ’) ;

160

161 end ;

162 t = toc ; t = t /60 ;

163

164 f p r i n t f (’ \n ’) ;

165 f p r i n t f (’Time = %f (minutes) \n ’ , t) ;

166

167 K = k ;

168 c l e a r a k LD beta LD alpha AA a0 AA k0

169

170 d a t a f i l e = [’ LevError ’ ,AAText , ’ Bound GeneralRangeCorrection Order ’ , num2str (

system order) , ’ p r e c ’ , num2str (p)] ;

171 save (d a t a f i l e) ;

172

173 re turn ;

141

E
Reports for Error Analysis of Levinson-Durbin

Algorithm using AAFloat Tool

E.1 Report for scenarios 1 and 2

The running report for the scenario 1 corresponds to iterations 1 to 10. The running report for the

scenario 2 includes all iterations.

1 ∗∗
2 ∗∗
3

4 −−−−−−−−−− I t e r a t i o n m = 1

5 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

6

7 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

8 e r r o r bound o f E {m−1} = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

9 e r r o r bound o f beta = 2.741814 e−08, range = [0 . 1 70 00 0 , 0 . 230000]

10

11

12 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

13

14 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

15 i= 1 , e r r o r bound o f a (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

16

17 e r r o r bound o f E {m} = 1.302063 e−07, range = [0 . 9 47 10 0 , 0 . 972900]

18

19

20 −−−−−−−−−− I t e r a t i o n m = 2

21 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

22

23 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

24 e r r o r bound o f E {m−1} = 1.302063 e−07, range = [0 . 9 47 10 0 , 0 . 972900]

25 e r r o r bound o f beta = 4.581809 e−08, range = [0 . 1 17 10 0 , 0 . 202900]

26

27

28 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

29 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

30

31 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

143

32 i= 1 , e r r o r bound o f a (1) = 1.006850 e−07, range = [−0.201660 , −0.131661]

33 i= 2 , e r r o r bound o f a (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

34

35 e r r o r bound o f E {m} = 2.177255 e−07, range = [0 . 9 12 10 8 , 0 . 954549]

36

37

38 −−−−−−−−−− I t e r a t i o n m = 3

39 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

40

41 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

42 e r r o r bound o f E {m−1} = 2.177255 e−07, range = [0 . 9 12 10 8 , 0 . 954549]

43 e r r o r bound o f beta = 8.074333 e−08, range = [0 . 0 82 10 8 , 0 . 184549]

44

45

46 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

47 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

48 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

49

50 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

51 i= 1 , e r r o r bound o f a (1) = 1.456357 e−07, range = [−0.192202 , −0.093469]

52 i= 2 , e r r o r bound o f a (2) = 1.365928 e−07, range = [−0.199575 , −0.086178]

53 i= 3 , e r r o r bound o f a (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

54

55 e r r o r bound o f E {m} = 3.121425 e−07, range = [0 . 8 85 64 3 , 0 . 942902]

56

57

58 −−−−−−−−−− I t e r a t i o n m = 4

59 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

60

61 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

62 e r r o r bound o f E {m−1} = 3.121425 e−07, range = [0 . 8 85 64 3 , 0 . 942902]

63 e r r o r bound o f beta = 1.245731 e−07, range = [0 . 0 55 64 3 , 0 . 172902]

64

65

66 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

67 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

68 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

69 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

70

71 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

72 i= 1 , e r r o r bound o f a (1) = 1.819867 e−07, range = [−0.186580 , −0.063328]

73 i= 2 , e r r o r bound o f a (2) = 1.817985 e−07, range = [−0.183114 , −0.066889]

74 i= 3 , e r r o r bound o f a (3) = 1.897625 e−07, range = [−0.191003 , −0.059110]

75 i= 4 , e r r o r bound o f a (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

76

77 e r r o r bound o f E {m} = 4.099125 e−07, range = [0 . 8 63 81 3 , 0 . 936138]

78

79

80 −−−−−−−−−− I t e r a t i o n m = 5

81 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

82

83 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

84 e r r o r bound o f E {m−1} = 4.099125 e−07, range = [0 . 8 63 81 3 , 0 . 936138]

85 e r r o r bound o f beta = 1.711859 e−07, range = [0 . 0 33 98 2 , 0 . 165970]

86

87

144

88 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

89 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

90 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

91 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

92 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

93

94 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

95 i= 1 , e r r o r bound o f a (1) = 2.116300 e−07, range = [−0.184987 , −0.037079]

96 i= 2 , e r r o r bound o f a (2) = 2.218520 e−07, range = [−0.179995 , −0.042179]

97 i= 3 , e r r o r bound o f a (3) = 2.024525 e−07, range = [−0.188294 , −0.034002]

98 i= 4 , e r r o r bound o f a (4) = 2.579072 e−07, range = [−0.187487 , −0.034927]

99 i= 5 , e r r o r bound o f a (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

100

101 e r r o r bound o f E {m} = 5.085796 e−07, range = [0 . 8 43 47 7 , 0 . 934226]

102

103

104 −−−−−−−−−− I t e r a t i o n m = 6

105 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

106

107 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

108 e r r o r bound o f E {m−1} = 5.085796 e−07, range = [0 . 8 43 47 7 , 0 . 934226]

109 e r r o r bound o f beta = 2.237670 e−07, range = [0 . 0 13 48 6 , 0 . 164218]

110

111

112 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

113 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

114 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

115 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

116 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

117 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

118

119 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

120 i= 1 , e r r o r bound o f a (1) = 2.371997 e−07, range = [−0.187688 , −0.012076]

121 i= 2 , e r r o r bound o f a (2) = 2.545590 e−07, range = [−0.182601 , −0.017281]

122 i= 3 , e r r o r bound o f a (3) = 2.647884 e−07, range = [−0.180427 , −0.019590]

123 i= 4 , e r r o r bound o f a (4) = 2.776551 e−07, range = [−0.189028 , −0.011118]

124 i= 5 , e r r o r bound o f a (5) = 3.423762 e−07, range = [−0.188213 , −0.012064]

125 i= 6 , e r r o r bound o f a (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

126

127 e r r o r bound o f E {m} = 6.092186 e−07, range = [0 . 8 22 64 2 , 0 . 937252]

128

129

130 −−−−−−−−−− I t e r a t i o n m = 7

131 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

132

133 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

134 e r r o r bound o f E {m−1} = 6.092186 e−07, range = [0 . 8 22 64 2 , 0 . 937252]

135 e r r o r bound o f beta = 2.731665 e−07, range = [−0.007290 , 0 . 167183]

136

137

138 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

139 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

140 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

141 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

142 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

143 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

145

144 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

145

146 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

147 i= 1 , e r r o r bound o f a (1) = 2.616557 e−07, range = [−0.195717 , 0 . 014243]

148 i= 2 , e r r o r bound o f a (2) = 2.848413 e−07, range = [−0.188962 , 0 . 007353]

149 i= 3 , e r r o r bound o f a (3) = 3.080051 e−07, range = [−0.187698 , 0 . 005942]

150 i= 4 , e r r o r bound o f a (4) = 2.935171 e−07, range = [−0.194346 , 0 . 012449]

151 i= 5 , e r r o r bound o f a (5) = 3.650987 e−07, range = [−0.194408 , 0 . 012368]

152 i= 6 , e r r o r bound o f a (6) = 4.403941 e−07, range = [−0.194990 , 0 . 012770]

153 i= 7 , e r r o r bound o f a (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

154

155 e r r o r bound o f E {m} = 7.149309 e−07, range = [0 . 7 98 35 7 , 0 . 946947]

156

157

158 −−−−−−−−−− I t e r a t i o n m = 8

159 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

160

161 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

162 e r r o r bound o f E {m−1} = 7.149309 e−07, range = [0 . 7 98 35 7 , 0 . 946947]

163 e r r o r bound o f beta = 3.307788 e−07, range = [−0.031643 , 0 . 176947]

164

165

166 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

167 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

168 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

169 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

170 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

171 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

172 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

173 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

174

175 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

176 i= 1 , e r r o r bound o f a (1) = 3.012806 e−07, range = [−0.211312 , 0 . 045142]

177 i= 2 , e r r o r bound o f a (2) = 3.195183 e−07, range = [−0.203414 , 0 . 037086]

178 i= 3 , e r r o r bound o f a (3) = 3.483065 e−07, range = [−0.201084 , 0 . 034596]

179 i= 4 , e r r o r bound o f a (4) = 3.810710 e−07, range = [−0.196403 , 0 . 029761]

180 i= 5 , e r r o r bound o f a (5) = 3.803162 e−07, range = [−0.205995 , 0 . 039198]

181 i= 6 , e r r o r bound o f a (6) = 4.718850 e−07, range = [−0.207282 , 0 . 040292]

182 i= 7 , e r r o r bound o f a (7) = 5.589269 e−07, range = [−0.208989 , 0 . 041726]

183 i= 8 , e r r o r bound o f a (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

184

185 e r r o r bound o f E {m} = 8.339088 e−07, range = [0 . 7 66 72 5 , 0 . 966394]

186

187

188 −−−−−−−−−− I t e r a t i o n m = 9

189 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

190

191 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

192 e r r o r bound o f E {m−1} = 8.339088 e−07, range = [0 . 7 66 72 5 , 0 . 966394]

193 e r r o r bound o f beta = 4.001061 e−07, range = [−0.063275 , 0 . 196394]

194

195

196 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

197 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

198 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

199 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

146

200 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

201 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

202 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

203 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

204 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

205

206 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

207 i= 1 , e r r o r bound o f a (1) = 3.841044 e−07, range = [−0.239477 , 0 . 086362]

208 i= 2 , e r r o r bound o f a (2) = 3.764219 e−07, range = [−0.229079 , 0 . 075772]

209 i= 3 , e r r o r bound o f a (3) = 3.912121 e−07, range = [−0.225934 , 0 . 072444]

210 i= 4 , e r r o r bound o f a (4) = 4.489043 e−07, range = [−0.219977 , 0 . 066318]

211 i= 5 , e r r o r bound o f a (5) = 4.106854 e−07, range = [−0.226365 , 0 . 072539]

212 i= 6 , e r r o r bound o f a (6) = 4.862096 e−07, range = [−0.229658 , 0 . 075628]

213 i= 7 , e r r o r bound o f a (7) = 6.073359 e−07, range = [−0.232115 , 0 . 077800]

214 i= 8 , e r r o r bound o f a (8) = 7.188294 e−07, range = [−0.237448 , 0 . 082658]

215 i= 9 , e r r o r bound o f a (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

216

217 e r r o r bound o f E {m} = 9.818680 e−07, range = [0 . 7 18 42 5 , 1 . 004332]

218

219

220 −−−−−−−−−− I t e r a t i o n m = 10

221 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

222

223 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

224 e r r o r bound o f E {m−1} = 9.818680 e−07, range = [0 . 7 18 42 5 , 1 . 004332]

225 e r r o r bound o f beta = 4.990450 e−07, range = [−0.111575 , 0 . 234332]

226

227

228 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

229 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

230 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

231 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

232 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

233 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

234 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

235 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

236 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

237 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

238

239 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

240 i= 1 , e r r o r bound o f a (1) = 5.677371 e−07, range = [−0.293483 , 0 . 151776]

241 i= 2 , e r r o r bound o f a (2) = 5.017623 e−07, range = [−0.278191 , 0 . 136226]

242 i= 3 , e r r o r bound o f a (3) = 4.695504 e−07, range = [−0.272332 , 0 . 130149]

243 i= 4 , e r r o r bound o f a (4) = 5.318313 e−07, range = [−0.264763 , 0 . 122391]

244 i= 5 , e r r o r bound o f a (5) = 5.752593 e−07, range = [−0.256556 , 0 . 114001]

245 i= 6 , e r r o r bound o f a (6) = 5.191886 e−07, range = [−0.270415 , 0 . 127644]

246 i= 7 , e r r o r bound o f a (7) = 6.537136 e−07, range = [−0.275206 , 0 . 132137]

247 i= 8 , e r r o r bound o f a (8) = 7.919249 e−07, range = [−0.281671 , 0 . 138114]

248 i= 9 , e r r o r bound o f a (9) = 9.624451 e−07, range = [−0.291951 , 0 . 147487]

249 i =10, e r r o r bound o f a (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

250

251 e r r o r bound o f E {m} = 1.200439 e−06, range = [0 . 6 30 73 3 , 1 . 083029]

252

253

254 −−−−−−−−−− I t e r a t i o n m = 11

255 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

147

256

257 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

258 e r r o r bound o f E {m−1} = 1.200439 e−06, range = [0 . 6 30 73 3 , 1 . 083029]

259 e r r o r bound o f beta = 6.677230 e−07, range = [−0.199176 , 0 . 312938]

260

261

262 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

263 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

264 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

265 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

266 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

267 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

268 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

269 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

270 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

271 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

272 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

273

274 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

275 i= 1 , e r r o r bound o f a (1) = 1.003311 e−06, range = [−0.420612 , 0 . 289361]

276 i= 2 , e r r o r bound o f a (2) = 9.741858 e−07, range = [−0.391389 , 0 . 259732]

277 i= 3 , e r r o r bound o f a (3) = 8.470351 e−07, range = [−0.375696 , 0 . 243756]

278 i= 4 , e r r o r bound o f a (4) = 8.254623 e−07, range = [−0.367075 , 0 . 234911]

279 i= 5 , e r r o r bound o f a (5) = 9.307695 e−07, range = [−0.355374 , 0 . 223007]

280 i= 6 , e r r o r bound o f a (6) = 8.075530 e−07, range = [−0.360570 , 0 . 227970]

281 i= 7 , e r r o r bound o f a (7) = 8.740120 e−07, range = [−0.370919 , 0 . 238009]

282 i= 8 , e r r o r bound o f a (8) = 1.048553 e−06, range = [−0.381153 , 0 . 247742]

283 i= 9 , e r r o r bound o f a (9) = 1.245666 e−06, range = [−0.394048 , 0 . 259712]

284 i =10, e r r o r bound o f a (10) = 1.405748 e−06, range = [−0.420537 , 0 . 284100]

285 i =11, e r r o r bound o f a (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

286

287 e r r o r bound o f E {m} = 2.151582 e−06, range = [0 . 4 20 08 2 , 1 . 285563]

288

289

290 −−−−−−−−−− I t e r a t i o n m = 12

291 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

292

293 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

294 e r r o r bound o f E {m−1} = 2.151582 e−06, range = [0 . 4 20 08 2 , 1 . 285563]

295 e r r o r bound o f beta = 1.568348 e−06, range = [−0.409854 , 0 . 515499]

296

297

298 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

299 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

300 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

301 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

302 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

303 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

304 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

305 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

306 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

307 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

308 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

309 i =12, e r r o r bound o f k (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

310

311 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

148

312 i= 1 , e r r o r bound o f a (1) = 3.774775 e−06, range = [−0.968911 , 0 . 849564]

313 i= 2 , e r r o r bound o f a (2) = 4.973436 e−06, range = [−0.860309 , 0 . 740033]

314 i= 3 , e r r o r bound o f a (3) = 4.347825 e−06, range = [−0.806564 , 0 . 685830]

315 i= 4 , e r r o r bound o f a (4) = 3.956194 e−06, range = [−0.783025 , 0 . 661990]

316 i= 5 , e r r o r bound o f a (5) = 3.808731 e−06, range = [−0.757836 , 0 . 636556]

317 i= 6 , e r r o r bound o f a (6) = 4.006316 e−06, range = [−0.720752 , 0 . 599213]

318 i= 7 , e r r o r bound o f a (7) = 3.711993 e−06, range = [−0.751849 , 0 . 629980]

319 i= 8 , e r r o r bound o f a (8) = 3.734243 e−06, range = [−0.777295 , 0 . 654909]

320 i= 9 , e r r o r bound o f a (9) = 4.044038 e−06, range = [−0.800614 , 0 . 677284]

321 i =10, e r r o r bound o f a (10) = 4.512724 e−06, range = [−0.844361 , 0 . 718906]

322 i =11, e r r o r bound o f a (11) = 3.358012 e−06, range = [−0.932835 , 0 . 801081]

323 i =12, e r r o r bound o f a (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

324

325 e r r o r bound o f E {m} = 1.149381 e−05, range = [−0.546389 , 2 . 243222]

326

327

328 −−−−−−−−−− I t e r a t i o n m = 13

329 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

330

331 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

332 e r r o r bound o f E {m−1} = 1.149381 e−05, range = [−0.546389 , 2 . 243222]

333 e r r o r bound o f beta = 1.086233 e−05, range = [−1.376382 , 1 . 473215]

334

335 Warning : The input range [−0.546389 , 2 . 243222] conta in s ZERO.

336 > In AAFloat . AAFloat>AAFloat . inv at 918

337 In AAFloat . AAFloat>AAFloat . div at 1072

338 In AA bound lev inson wAAFloat s imple example increase order at 88

339 The user does not s p e c i f y any range f o r the input i n t e r v a l o f the i n v e r s e opera t i on .

340 AAFloat i s us ing the d e f a u l t range [1 . 192093 e−07, 2 .243222 e +00] to compute the i n v e r s e

.

341

342 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

343 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

344 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

345 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

346 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

347 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

348 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

349 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

350 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

351 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

352 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

353 i =12, e r r o r bound o f k (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

354 i =13, e r r o r bound o f k (13) = 1.191544 e+09, range = [−12358221.218054 , 11952076 .988843]

355

356 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

357 i= 1 , e r r o r bound o f a (1) = 1.437416 e+09, range = [−14850247.879990 , 14884126 .670198]

358 i= 2 , e r r o r bound o f a (2) = 1.111514 e+09, range = [−11444673.384395 , 11471428 .849417]

359 i= 3 , e r r o r bound o f a (3) = 1.006093 e+09, range = [−10350033.222404 , 10375509 .506310]

360 i= 4 , e r r o r bound o f a (4) = 9.539665 e+08, range = [−9809606.568093 , 9834651 .251699]

361 i= 5 , e r r o r bound o f a (5) = 9.261817 e+08, range = [−9521868.928906 , 9546722 .165494]

362 i= 6 , e r r o r bound o f a (6) = 8.958615 e+08, range = [−9209071.109641 , 9233819 .194089]

363 i= 7 , e r r o r bound o f a (7) = 8.588075 e+08, range = [−8823044.851202 , 8847725 .912109]

364 i= 8 , e r r o r bound o f a (8) = 9.029951 e+08, range = [−9279778.435664 , 9304406 .981187]

365 i= 9 , e r r o r bound o f a (9) = 9.330091 e+08, range = [−9589077.095652 , 9613655 .846475]

366 i =10, e r r o r bound o f a (10) = 9.610570 e+08, range = [−9877425.943302 , 9901943 .523795]

149

367 i =11, e r r o r bound o f a (11) = 1.025096 e+09, range = [−10535360.982528 , 10559785 .600643]

368 i =12, e r r o r bound o f a (12) = 1.154501 e+09, range = [−11863667.952314 , 11887903 .841340]

369 i =13, e r r o r bound o f a (13) = 1.191544 e+09, range = [−12358221.218054 , 11952076 .988843]

370

371 e r r o r bound o f E {m} = 3.072350 e+09, range = [−27933964.201552 , 27914301 .953442]

372

373

374 −−−−−−−−−− I t e r a t i o n m = 14

375 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3]

376

377 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

378 e r r o r bound o f E {m−1} = 3.072350 e+09, range = [−27933964.201552 , 27914301 .953442]

379 e r r o r bound o f beta = 3.072350 e+09, range = [−27932550.575950 , 27912886 .727841]

380

381 Warning : The input range [−27933964.201552 , 27914301 .953442] conta in s ZERO.

382 > In AAFloat . AAFloat>AAFloat . inv at 918

383 In AAFloat . AAFloat>AAFloat . div at 1072

384 In AA bound lev inson wAAFloat s imple example increase order at 88

385 The user does not s p e c i f y any range f o r the input i n t e r v a l o f the i n v e r s e opera t i on .

386 AAFloat i s us ing the d e f a u l t range [−2.793396 e+07, −1.192093e−07] to compute the

i n v e r s e .

387 Warning : P o s s i b i l i t y o f huge rounding e r r o r !

388 > In AAFloat . AAFloat>AAFloat . inv at 1016

389 In AAFloat . AAFloat>AAFloat . div at 1072

390 In AA bound lev inson wAAFloat s imple example increase order at 88

391 In i n v e r s e operat ion , e r r o r component e s t imat i on : range o f i n v e r s e conta in s ZERO

[0 . 000000 e+00, 7 .803064 e +14] .

392 AAFloat i s us ing the range [1 . 192093 e−07, 7 .803064 e +14] i n s t ead . However , huge

rounding e r r o r may r e s u l t !

393 range = [0 . 000000 e+00, 7 .803064 e +14]

394 ??? Error us ing ==> AAFloat . AAFloat>aa minrange inv at 1871

395 Error : in aa minrange inv approximation : LOWER BOUND of input a f f i n e i n t e r v a l equa l s

ZERO!

396

397 Error in ==> AAFloat . AAFloat>AAFloat . inv at 1031

398 xsquare inv = aa minrange inv (xsquare range) ;

399

400 Error in ==> AAFloat . AAFloat>AAFloat . div at 1072

401 yy = inv (y , prob) ;

402

403 Error in ==> AA bound lev inson wAAFloat s imple example increase order at 88

404 kk = −div (LD beta , LD alpha , prob) ; % beta / alpha

E.2 Report for scenario 3

1 ∗∗
2 ∗∗
3

4 −−−−−−−−−− I t e r a t i o n m = 1

5 Levinson−Durbin a lgor i thm f o r case [−1 , 1]

6

150

7 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

8 e r r o r bound o f E {m−1} = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

9 e r r o r bound o f beta = 1.192093 e−07, range = [−1.000000 , 1 . 000000]

10

11

12 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

13

14 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

15 i= 1 , e r r o r bound o f a (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

16

17 e r r o r bound o f E {m} = 4.172325 e−07, range = [0 . 0 00 00 0 , 2 . 000000]

18

19

20 −−−−−−−−−− I t e r a t i o n m = 2

21 Levinson−Durbin a lgor i thm f o r case [−1 , 1]

22

23 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

24 e r r o r bound o f E {m−1} = 4.172325 e−07, range = [0 . 0 00 00 0 , 2 . 000000]

25 e r r o r bound o f beta = 3.576279 e−07, range = [−2.000000 , 2 . 000000]

26

27 Warning : The input range [0 . 0 00 00 0 , 2 . 000000] conta in s ZERO.

28 > In AAFloat . AAFloat>AAFloat . inv at 918

29 In AAFloat . AAFloat>AAFloat . div at 1072

30 In AA bound levinson wAAFloat general range at 88

31 The user does not s p e c i f y any range f o r the input i n t e r v a l o f the i n v e r s e opera t i on .

32 AAFloat i s us ing the d e f a u l t range [1 . 192093 e−07, 2 .000000 e +00] to compute the i n v e r s e

.

33

34 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

35 i= 2 , e r r o r bound o f k (2) = 5.872026 e+07, range = [−16777216.000000 , 16777216 .000000]

36

37 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

38 i= 1 , e r r o r bound o f a (1) = 5.872026 e+07, range = [−16777217.000000 , 16777217 .000000]

39 i= 2 , e r r o r bound o f a (2) = 5.872026 e+07, range = [−16777216.000000 , 16777216 .000000]

40

41 e r r o r bound o f E {m} = 1.174405 e+08, range = [−33554432.000000 , 33554434 .000000]

42

43

44 −−−−−−−−−− I t e r a t i o n m = 3

45 Levinson−Durbin a lgor i thm f o r case [−1 , 1]

46

47 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

48 e r r o r bound o f E {m−1} = 1.174405 e+08, range = [−33554432.000000 , 33554434 .000000]

49 e r r o r bound o f beta = 1.174405 e+08, range = [−33554434.000000 , 33554434 .000000]

50

51 Warning : The input range [−33554432.000000 , 33554434 .000000] conta in s ZERO.

52 > In AAFloat . AAFloat>AAFloat . inv at 918

53 In AAFloat . AAFloat>AAFloat . div at 1072

54 In AA bound levinson wAAFloat general range at 88

55 The user does not s p e c i f y any range f o r the input i n t e r v a l o f the i n v e r s e opera t i on .

56 AAFloat i s us ing the d e f a u l t range [1 . 192093 e−07, 3 .355443 e +07] to compute the i n v e r s e

.

57 Warning : P o s s i b i l i t y o f huge rounding e r r o r !

58 > In AAFloat . AAFloat>AAFloat . inv at 1016

59 In AAFloat . AAFloat>AAFloat . div at 1072

60 In AA bound levinson wAAFloat general range at 88

151

61 In i n v e r s e operat ion , e r r o r component e s t imat i on : range o f i n v e r s e conta in s ZERO

[0 . 000000 e+00, 1 .125900 e +15] .

62 AAFloat i s us ing the range [1 . 192093 e−07, 1 .125900 e +15] i n s t ead . However , huge

rounding e r r o r may r e s u l t !

63 range = [0 . 000000 e+00, 1 .125900 e +15]

64 ??? Error us ing ==> AAFloat . AAFloat>aa minrange inv at 1871

65 Error : in aa minrange inv approximation : LOWER BOUND of input a f f i n e i n t e r v a l equa l s

ZERO!

66

67 Error in ==> AAFloat . AAFloat>AAFloat . inv at 1031

68 xsquare inv = aa minrange inv (xsquare range) ;

69

70 Error in ==> AAFloat . AAFloat>AAFloat . div at 1072

71 yy = inv (y , prob) ;

72

73 Error in ==> AA bound levinson wAAFloat general range at 88

74 kk = −div (LD beta , LD alpha , prob) ; % beta / alpha

E.3 Report for scenario 4

1 ∗∗
2 ∗∗
3

4 −−−−−−−−−− I t e r a t i o n m = 1

5 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

6

7 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

8 e r r o r bound o f E {m−1} = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

9 e r r o r bound o f beta = 2.741814 e−08, range = [0 . 1 70 00 0 , 0 . 230000]

10

11

12 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

13

14 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

15 i= 1 , e r r o r bound o f a (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

16

17 e r r o r bound o f E {m} = 1.302063 e−07, range = [0 . 9 47 10 0 , 0 . 972900]

18

19

20 −−−−−−−−−− I t e r a t i o n m = 2

21 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

22

23 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

24 e r r o r bound o f E {m−1} = 1.302063 e−07, range = [0 . 9 47 10 0 , 0 . 972900]

25 e r r o r bound o f beta = 4.581809 e−08, range = [0 . 1 17 10 0 , 0 . 202900]

26

27

28 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

29 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

30

31 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

32 i= 1 , e r r o r bound o f a (1) = 1.006850 e−07, range = [−0.201660 , −0.131661]

152

33 i= 2 , e r r o r bound o f a (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

34

35 e r r o r bound o f E {m} = 2.177255 e−07, range = [0 . 9 12 10 8 , 0 . 954549]

36

37

38 −−−−−−−−−− I t e r a t i o n m = 3

39 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

40

41 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

42 e r r o r bound o f E {m−1} = 2.177255 e−07, range = [0 . 9 12 10 8 , 0 . 954549]

43 e r r o r bound o f beta = 8.074333 e−08, range = [0 . 0 82 10 8 , 0 . 184549]

44

45

46 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

47 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

48 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

49

50 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

51 i= 1 , e r r o r bound o f a (1) = 1.456357 e−07, range = [−0.192202 , −0.093469]

52 i= 2 , e r r o r bound o f a (2) = 1.365928 e−07, range = [−0.199575 , −0.086178]

53 i= 3 , e r r o r bound o f a (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

54

55 e r r o r bound o f E {m} = 3.121425 e−07, range = [0 . 8 85 64 3 , 0 . 942902]

56

57

58 −−−−−−−−−− I t e r a t i o n m = 4

59 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

60

61 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

62 e r r o r bound o f E {m−1} = 3.121425 e−07, range = [0 . 8 85 64 3 , 0 . 942902]

63 e r r o r bound o f beta = 1.245731 e−07, range = [0 . 0 55 64 3 , 0 . 172902]

64

65

66 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

67 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

68 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

69 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

70

71 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

72 i= 1 , e r r o r bound o f a (1) = 1.819867 e−07, range = [−0.186580 , −0.063328]

73 i= 2 , e r r o r bound o f a (2) = 1.817985 e−07, range = [−0.183114 , −0.066889]

74 i= 3 , e r r o r bound o f a (3) = 1.897625 e−07, range = [−0.191003 , −0.059110]

75 i= 4 , e r r o r bound o f a (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

76

77 e r r o r bound o f E {m} = 4.099125 e−07, range = [0 . 8 63 81 3 , 0 . 936138]

78

79

80 −−−−−−−−−− I t e r a t i o n m = 5

81 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

82

83 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

84 e r r o r bound o f E {m−1} = 4.099125 e−07, range = [0 . 8 63 81 3 , 0 . 936138]

85 e r r o r bound o f beta = 1.711859 e−07, range = [0 . 0 33 98 2 , 0 . 165970]

86

87

88 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

153

89 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

90 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

91 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

92 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

93

94 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

95 i= 1 , e r r o r bound o f a (1) = 2.116300 e−07, range = [−0.184987 , −0.037079]

96 i= 2 , e r r o r bound o f a (2) = 2.218520 e−07, range = [−0.179995 , −0.042179]

97 i= 3 , e r r o r bound o f a (3) = 2.024525 e−07, range = [−0.188294 , −0.034002]

98 i= 4 , e r r o r bound o f a (4) = 2.579072 e−07, range = [−0.187487 , −0.034927]

99 i= 5 , e r r o r bound o f a (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

100

101 e r r o r bound o f E {m} = 5.085796 e−07, range = [0 . 8 43 47 7 , 0 . 934226]

102

103

104 −−−−−−−−−− I t e r a t i o n m = 6

105 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

106

107 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

108 e r r o r bound o f E {m−1} = 5.085796 e−07, range = [0 . 8 43 47 7 , 0 . 934226]

109 e r r o r bound o f beta = 2.237670 e−07, range = [0 . 0 13 48 6 , 0 . 164218]

110

111

112 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

113 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

114 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

115 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

116 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

117 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

118

119 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

120 i= 1 , e r r o r bound o f a (1) = 2.371997 e−07, range = [−0.187688 , −0.012076]

121 i= 2 , e r r o r bound o f a (2) = 2.545590 e−07, range = [−0.182601 , −0.017281]

122 i= 3 , e r r o r bound o f a (3) = 2.647884 e−07, range = [−0.180427 , −0.019590]

123 i= 4 , e r r o r bound o f a (4) = 2.776551 e−07, range = [−0.189028 , −0.011118]

124 i= 5 , e r r o r bound o f a (5) = 3.423762 e−07, range = [−0.188213 , −0.012064]

125 i= 6 , e r r o r bound o f a (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

126

127 e r r o r bound o f E {m} = 6.092186 e−07, range = [0 . 8 22 64 2 , 0 . 937252]

128

129

130 −−−−−−−−−− I t e r a t i o n m = 7

131 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

132

133 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

134 e r r o r bound o f E {m−1} = 6.092186 e−07, range = [0 . 8 22 64 2 , 0 . 937252]

135 e r r o r bound o f beta = 2.731665 e−07, range = [−0.007290 , 0 . 167183]

136

137

138 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

139 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

140 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

141 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

142 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

143 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

144 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

154

145

146 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

147 i= 1 , e r r o r bound o f a (1) = 2.616557 e−07, range = [−0.195717 , 0 . 014243]

148 i= 2 , e r r o r bound o f a (2) = 2.848413 e−07, range = [−0.188962 , 0 . 007353]

149 i= 3 , e r r o r bound o f a (3) = 3.080051 e−07, range = [−0.187698 , 0 . 005942]

150 i= 4 , e r r o r bound o f a (4) = 2.935171 e−07, range = [−0.194346 , 0 . 012449]

151 i= 5 , e r r o r bound o f a (5) = 3.650987 e−07, range = [−0.194408 , 0 . 012368]

152 i= 6 , e r r o r bound o f a (6) = 4.403941 e−07, range = [−0.194990 , 0 . 012770]

153 i= 7 , e r r o r bound o f a (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

154

155 e r r o r bound o f E {m} = 7.149309 e−07, range = [0 . 7 98 35 7 , 0 . 946947]

156

157

158 −−−−−−−−−− I t e r a t i o n m = 8

159 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

160

161 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

162 e r r o r bound o f E {m−1} = 7.149309 e−07, range = [0 . 7 98 35 7 , 0 . 946947]

163 e r r o r bound o f beta = 3.307788 e−07, range = [−0.031643 , 0 . 176947]

164

165

166 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

167 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

168 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

169 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

170 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

171 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

172 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

173 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

174

175 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

176 i= 1 , e r r o r bound o f a (1) = 3.012806 e−07, range = [−0.211312 , 0 . 045142]

177 i= 2 , e r r o r bound o f a (2) = 3.195183 e−07, range = [−0.203414 , 0 . 037086]

178 i= 3 , e r r o r bound o f a (3) = 3.483065 e−07, range = [−0.201084 , 0 . 034596]

179 i= 4 , e r r o r bound o f a (4) = 3.810710 e−07, range = [−0.196403 , 0 . 029761]

180 i= 5 , e r r o r bound o f a (5) = 3.803162 e−07, range = [−0.205995 , 0 . 039198]

181 i= 6 , e r r o r bound o f a (6) = 4.718850 e−07, range = [−0.207282 , 0 . 040292]

182 i= 7 , e r r o r bound o f a (7) = 5.589269 e−07, range = [−0.208989 , 0 . 041726]

183 i= 8 , e r r o r bound o f a (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

184

185 e r r o r bound o f E {m} = 8.339088 e−07, range = [0 . 7 66 72 5 , 0 . 966394]

186

187

188 −−−−−−−−−− I t e r a t i o n m = 9

189 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

190

191 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

192 e r r o r bound o f E {m−1} = 8.339088 e−07, range = [0 . 7 66 72 5 , 0 . 966394]

193 e r r o r bound o f beta = 4.001061 e−07, range = [−0.063275 , 0 . 196394]

194

195

196 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

197 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

198 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

199 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

200 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

155

201 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

202 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

203 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

204 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

205

206 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

207 i= 1 , e r r o r bound o f a (1) = 3.841044 e−07, range = [−0.239477 , 0 . 086362]

208 i= 2 , e r r o r bound o f a (2) = 3.764219 e−07, range = [−0.229079 , 0 . 075772]

209 i= 3 , e r r o r bound o f a (3) = 3.912121 e−07, range = [−0.225934 , 0 . 072444]

210 i= 4 , e r r o r bound o f a (4) = 4.489043 e−07, range = [−0.219977 , 0 . 066318]

211 i= 5 , e r r o r bound o f a (5) = 4.106854 e−07, range = [−0.226365 , 0 . 072539]

212 i= 6 , e r r o r bound o f a (6) = 4.862096 e−07, range = [−0.229658 , 0 . 075628]

213 i= 7 , e r r o r bound o f a (7) = 6.073359 e−07, range = [−0.232115 , 0 . 077800]

214 i= 8 , e r r o r bound o f a (8) = 7.188294 e−07, range = [−0.237448 , 0 . 082658]

215 i= 9 , e r r o r bound o f a (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

216

217 e r r o r bound o f E {m} = 9.818680 e−07, range = [0 . 7 18 42 5 , 1 . 004332]

218

219

220 −−−−−−−−−− I t e r a t i o n m = 10

221 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

222

223 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

224 e r r o r bound o f E {m−1} = 9.818680 e−07, range = [0 . 7 18 42 5 , 1 . 004332]

225 e r r o r bound o f beta = 4.990450 e−07, range = [−0.111575 , 0 . 234332]

226

227

228 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

229 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

230 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

231 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

232 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

233 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

234 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

235 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

236 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

237 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

238

239 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

240 i= 1 , e r r o r bound o f a (1) = 5.677371 e−07, range = [−0.293483 , 0 . 151776]

241 i= 2 , e r r o r bound o f a (2) = 5.017623 e−07, range = [−0.278191 , 0 . 136226]

242 i= 3 , e r r o r bound o f a (3) = 4.695504 e−07, range = [−0.272332 , 0 . 130149]

243 i= 4 , e r r o r bound o f a (4) = 5.318313 e−07, range = [−0.264763 , 0 . 122391]

244 i= 5 , e r r o r bound o f a (5) = 5.752593 e−07, range = [−0.256556 , 0 . 114001]

245 i= 6 , e r r o r bound o f a (6) = 5.191886 e−07, range = [−0.270415 , 0 . 127644]

246 i= 7 , e r r o r bound o f a (7) = 6.537136 e−07, range = [−0.275206 , 0 . 132137]

247 i= 8 , e r r o r bound o f a (8) = 7.919249 e−07, range = [−0.281671 , 0 . 138114]

248 i= 9 , e r r o r bound o f a (9) = 9.624451 e−07, range = [−0.291951 , 0 . 147487]

249 i =10, e r r o r bound o f a (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

250

251 e r r o r bound o f E {m} = 1.200439 e−06, range = [0 . 6 30 73 3 , 1 . 083029]

252

253

254 −−−−−−−−−− I t e r a t i o n m = 11

255 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

256

156

257 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

258 e r r o r bound o f E {m−1} = 1.200439 e−06, range = [0 . 6 30 73 3 , 1 . 083029]

259 e r r o r bound o f beta = 6.677230 e−07, range = [−0.199176 , 0 . 312938]

260

261

262 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

263 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

264 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

265 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

266 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

267 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

268 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

269 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

270 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

271 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

272 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

273

274 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

275 i= 1 , e r r o r bound o f a (1) = 1.003311 e−06, range = [−0.420612 , 0 . 289361]

276 i= 2 , e r r o r bound o f a (2) = 9.741858 e−07, range = [−0.391389 , 0 . 259732]

277 i= 3 , e r r o r bound o f a (3) = 8.470351 e−07, range = [−0.375696 , 0 . 243756]

278 i= 4 , e r r o r bound o f a (4) = 8.254623 e−07, range = [−0.367075 , 0 . 234911]

279 i= 5 , e r r o r bound o f a (5) = 9.307695 e−07, range = [−0.355374 , 0 . 223007]

280 i= 6 , e r r o r bound o f a (6) = 8.075530 e−07, range = [−0.360570 , 0 . 227970]

281 i= 7 , e r r o r bound o f a (7) = 8.740120 e−07, range = [−0.370919 , 0 . 238009]

282 i= 8 , e r r o r bound o f a (8) = 1.048553 e−06, range = [−0.381153 , 0 . 247742]

283 i= 9 , e r r o r bound o f a (9) = 1.245666 e−06, range = [−0.394048 , 0 . 259712]

284 i =10, e r r o r bound o f a (10) = 1.405748 e−06, range = [−0.420537 , 0 . 284100]

285 i =11, e r r o r bound o f a (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

286

287 e r r o r bound o f E {m} = 2.151582 e−06, range = [0 . 4 20 08 2 , 1 . 285563]

288

289

290 −−−−−−−−−− I t e r a t i o n m = 12

291 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

292

293 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

294 e r r o r bound o f E {m−1} = 2.151582 e−06, range = [0 . 4 20 08 2 , 1 . 285563]

295 e r r o r bound o f beta = 1.568348 e−06, range = [−0.409854 , 0 . 515499]

296

297

298 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

299 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

300 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

301 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

302 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

303 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

304 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

305 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

306 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

307 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

308 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

309 i =12, e r r o r bound o f k (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

310

311 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

312 i= 1 , e r r o r bound o f a (1) = 3.774775 e−06, range = [−0.968911 , 0 . 849564]

157

313 i= 2 , e r r o r bound o f a (2) = 4.973436 e−06, range = [−0.860309 , 0 . 740033]

314 i= 3 , e r r o r bound o f a (3) = 4.347825 e−06, range = [−0.806564 , 0 . 685830]

315 i= 4 , e r r o r bound o f a (4) = 3.956194 e−06, range = [−0.783025 , 0 . 661990]

316 i= 5 , e r r o r bound o f a (5) = 3.808731 e−06, range = [−0.757836 , 0 . 636556]

317 i= 6 , e r r o r bound o f a (6) = 4.006316 e−06, range = [−0.720752 , 0 . 599213]

318 i= 7 , e r r o r bound o f a (7) = 3.711993 e−06, range = [−0.751849 , 0 . 629980]

319 i= 8 , e r r o r bound o f a (8) = 3.734243 e−06, range = [−0.777295 , 0 . 654909]

320 i= 9 , e r r o r bound o f a (9) = 4.044038 e−06, range = [−0.800614 , 0 . 677284]

321 i =10, e r r o r bound o f a (10) = 4.512724 e−06, range = [−0.844361 , 0 . 718906]

322 i =11, e r r o r bound o f a (11) = 3.358012 e−06, range = [−0.932835 , 0 . 801081]

323 i =12, e r r o r bound o f a (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

324

325 e r r o r bound o f E {m} = 1.149381 e−05, range = [−0.546389 , 2 . 243222]

326

327

328 −−−−−−−−−− I t e r a t i o n m = 13

329 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

330

331 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

332 e r r o r bound o f E {m−1} = 1.149381 e−05, range = [−0.546389 , 2 . 243222]

333 e r r o r bound o f beta = 1.086233 e−05, range = [−1.376382 , 1 . 473215]

334

335 Warning : The input range [−0.546389 , 2 . 243222] conta in s ZERO.

336 > In AAFloat . AAFloat>AAFloat . inv at 918

337 In AAFloat . AAFloat>AAFloat . div at 1075

338 In AA bound lev inson wAAFloat s imple example increase order user at 91

339 AAFloat i s us ing the s p e c i f i e d range [1 . 000000 e−04, 2 .243222 e +00] to compute the

i n v e r s e .

340

341 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

342 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

343 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

344 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

345 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

346 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

347 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

348 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

349 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

350 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

351 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

352 i =12, e r r o r bound o f k (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

353 i =13, e r r o r bound o f k (13) = 1.693396 e+03, range = [−14732.130514 , 14247 .947307]

354

355 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

356 i= 1 , e r r o r bound o f a (1) = 2.042676 e+03, range = [−17703.636516 , 17743 .905775]

357 i= 2 , e r r o r bound o f a (2) = 1.579637 e+03, range = [−13643.732743 , 13675 .509030]

358 i= 3 , e r r o r bound o f a (3) = 1.429796 e+03, range = [−12338.766717 , 12369 .017576]

359 i= 4 , e r r o r bound o f a (4) = 1.355713 e+03, range = [−11694.501938 , 11724 .237966]

360 i= 5 , e r r o r bound o f a (5) = 1.316224 e+03, range = [−11351.470028 , 11380 .977579]

361 i= 6 , e r r o r bound o f a (6) = 1.273133 e+03, range = [−10978.563682 , 11007 .945617]

362 i= 7 , e r r o r bound o f a (7) = 1.220472 e+03, range = [−10518.377831 , 10547 .679534]

363 i= 8 , e r r o r bound o f a (8) = 1.283268 e+03, range = [−11062.862906 , 11092 .101486]

364 i= 9 , e r r o r bound o f a (9) = 1.325925 e+03, range = [−11431.582881 , 11460 .761158]

365 i =10, e r r o r bound o f a (10) = 1.365787 e+03, range = [−11775.329902 , 11804 .433132]

366 i =11, e r r o r bound o f a (11) = 1.456799 e+03, range = [−12559.615033 , 12588 .601146]

367 i =12, e r r o r bound o f a (12) = 1.640724 e+03, range = [−14142.905872 , 14171 .631957]

158

368 i =13, e r r o r bound o f a (13) = 1.693396 e+03, range = [−14732.130514 , 14247 .947307]

369

370 e r r o r bound o f E {m} = 4.366231 e+03, range = [−33298.047930 , 33276 .302469]

371

372

373 −−−−−−−−−− I t e r a t i o n m = 14

374 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

375

376 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

377 e r r o r bound o f E {m−1} = 4.366231 e+03, range = [−33298.047930 , 33276 .302469]

378 e r r o r bound o f beta = 4.366231 e+03, range = [−33297.193749 , 33273 .848288]

379

380 Warning : The input range [−33298.047930 , 33276 .302469] conta in s ZERO.

381 > In AAFloat . AAFloat>AAFloat . inv at 918

382 In AAFloat . AAFloat>AAFloat . div at 1075

383 In AA bound lev inson wAAFloat s imple example increase order user at 91

384 AAFloat i s us ing the s p e c i f i e d range [1 . 000000 e−04, 3 .327630 e +04] to compute the

i n v e r s e .

385 Warning : P o s s i b i l i t y o f huge rounding e r r o r !

386 > In AAFloat . AAFloat>AAFloat . inv at 1016

387 In AAFloat . AAFloat>AAFloat . div at 1075

388 In AA bound lev inson wAAFloat s imple example increase order user at 91

389 In i n v e r s e operat ion , e r r o r component e s t imat i on : range o f i n v e r s e conta in s ZERO

[0 . 000000 e+00, 1 .107312 e +09] .

390 AAFloat i s us ing the range [1 . 192093 e−07, 1 .107312 e +09] i n s t ead . However , huge

rounding e r r o r may r e s u l t !

391

392 i= 1 , e r r o r bound o f k (1) = 5.483627 e−08, range = [−0.230000 , −0.170000]

393 i= 2 , e r r o r bound o f k (2) = 1.017001 e−07, range = [−0.210176 , −0.123218]

394 i= 3 , e r r o r bound o f k (3) = 1.594273 e−07, range = [−0.196811 , −0.089042]

395 i= 4 , e r r o r bound o f k (4) = 2.314679 e−07, range = [−0.189101 , −0.061118]

396 i= 5 , e r r o r bound o f k (5) = 3.109584 e−07, range = [−0.185614 , −0.036920]

397 i= 6 , e r r o r bound o f k (6) = 4.054436 e−07, range = [−0.187718 , −0.012729]

398 i= 7 , e r r o r bound o f k (7) = 5.059894 e−07, range = [−0.195617 , 0 . 013135]

399 i= 8 , e r r o r bound o f k (8) = 6.386663 e−07, range = [−0.213076 , 0 . 045351]

400 i= 9 , e r r o r bound o f k (9) = 8.302704 e−07, range = [−0.246109 , 0 . 090425]

401 i =10, e r r o r bound o f k (10) = 1.178539 e−06, range = [−0.313863 , 0 . 167315]

402 i =11, e r r o r bound o f k (11) = 2.061141 e−06, range = [−0.480281 , 0 . 337578]

403 i =12, e r r o r bound o f k (12) = 1.016107 e−05, range = [−1.206347 , 1 . 039515]

404 i =13, e r r o r bound o f k (13) = 1.693396 e+03, range = [−14732.130514 , 14247 .947307]

405 i =14, e r r o r bound o f k (14) = 6.097816 e+14, range = [−332855218.593768 ,

332971945 .899217]

406

407 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

408 i= 1 , e r r o r bound o f a (1) = 8.983381 e+18, range = [−4905385163184.478516 ,

4905356904524.207031]

409 i= 2 , e r r o r bound o f a (2) = 8.641599 e+18, range = [−4718367274787.789062 ,

4718368951378.783203]

410 i= 3 , e r r o r bound o f a (3) = 7.676296 e+18, range = [−4191305525209.088379 ,

4191307216974.775879]

411 i= 4 , e r r o r bound o f a (4) = 7.198125 e+18, range = [−3930221399701.955078 ,

3930223098302.466797]

412 i= 5 , e r r o r bound o f a (5) = 6.988560 e+18, range = [−3815797726915.217285 ,

3815799429895.504395]

413 i= 6 , e r r o r bound o f a (6) = 6.763759 e+18, range = [−3693054691335.196777 ,

3693056397834.930176]

159

414 i= 7 , e r r o r bound o f a (7) = 6.431780 e+18, range = [−3511792854216.130859 ,

3511794564399.884766]

415 i= 8 , e r r o r bound o f a (8) = 6.712442 e+18, range = [−3665034600931.253906 ,

3665036315797.547852]

416 i= 9 , e r r o r bound o f a (9) = 6.939910 e+18, range = [−3789231520924.349609 ,

3789233243121.932617]

417 i =10, e r r o r bound o f a (10) = 7.149224 e+18, range = [−3903515231874.911621 ,

3903516967407.213379]

418 i =11, e r r o r bound o f a (11) = 7.542398 e+18, range = [−4118184308562.841309 ,

4118186074142.467285]

419 i =12, e r r o r bound o f a (12) = 8.339073 e+18, range = [−4553152579666.305664 ,

4553154434275.211914]

420 i =13, e r r o r bound o f a (13) = 1.081991 e+19, range = [−5907561712856.111328 ,

5907564062632.947266]

421 i =14, e r r o r bound o f a (14) = 6.097816 e+14, range = [−332855218.593768 ,

332971945 .899217]

422

423 e r r o r bound o f E {m} = 2.304302 e+19, range = [−12557814070480.841797 ,

12557812707932.751953]

424

425

426 −−−−−−−−−− I t e r a t i o n m = 15

427 Levinson−Durbin a lgor i thm f o r s p e c i a l case [0 . 1 7 , 0 . 2 3] , with user−range

428

429 AA bound = Hard , p r e c i s i o n = 24 , r in [0 . 17 , 0 . 2 3]

430 e r r o r bound o f E {m−1} = 2.304302 e+19, range = [−12557814070480.841797 ,

12557812707932.751953]

431 e r r o r bound o f beta = 2.304302 e+19, range = [−12557814080365.828125 ,

12557812717816.136719]

432

433 Warning : The input range [−12557814070480.841797 , 12557812707932.751953] conta in s ZERO

.

434 > In AAFloat . AAFloat>AAFloat . inv at 918

435 In AAFloat . AAFloat>AAFloat . div at 1075

436 In AA bound lev inson wAAFloat s imple example increase order user at 91

437 AAFloat i s us ing the s p e c i f i e d range [1 . 000000 e−04, 1 .255781 e +13] to compute the

i n v e r s e .

438 Warning : P o s s i b i l i t y o f huge rounding e r r o r !

439 > In AAFloat . AAFloat>AAFloat . inv at 1016

440 In AAFloat . AAFloat>AAFloat . div at 1075

441 In AA bound lev inson wAAFloat s imple example increase order user at 91

442 In i n v e r s e operat ion , e r r o r component e s t imat i on : range o f i n v e r s e conta in s ZERO

[0 . 000000 e+00, 1 .576987 e +26] .

443 AAFloat i s us ing the range [1 . 192093 e−07, 1 .576987 e +26] i n s t ead . However , huge

rounding e r r o r may r e s u l t !

444 range = [0 . 000000 e+00, 1 .576987 e +26]

445 ??? Error us ing ==> AAFloat . AAFloat>aa minrange inv at 1875

446 Error : in aa minrange inv approximation : LOWER BOUND of input a f f i n e i n t e r v a l equa l s

ZERO!

447

448 Error in ==> AAFloat . AAFloat>AAFloat . inv at 1031

449 xsquare inv = aa minrange inv (xsquare range) ;

450

451 Error in ==> AAFloat . AAFloat>AAFloat . div at 1075

452 yy = inv (y , prob , u s e r range) ;

453

160

454 Error in ==> AA bound lev inson wAAFloat s imple example increase order user at 91

455 kk = −div (LD beta , LD alpha , prob , [user lo bound , user h i bound]) ; %

beta / alpha

E.4 Report for scenario 5

1 ∗∗
2 ∗∗
3

4 −−−−−−−−−− I t e r a t i o n m = 1

5 Levinson−Durbin a lgor i thm f o r case [−1 , 1] , with user−range

6

7 AA bound = Hard , p r e c i s i o n = 24 , r in [1 .00 , −1 .00]

8 e r r o r bound o f E {m−1} = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

9 e r r o r bound o f beta = 1.192093 e−07, range = [−1.000000 , 1 . 000000]

10

11

12 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

13

14 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

15 i= 1 , e r r o r bound o f a (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

16

17 e r r o r bound o f E {m} = 4.172325 e−07, range = [0 . 0 00 00 0 , 2 . 000000]

18

19

20 −−−−−−−−−− I t e r a t i o n m = 2

21 Levinson−Durbin a lgor i thm f o r case [−1 , 1] , with user−range

22

23 AA bound = Hard , p r e c i s i o n = 24 , r in [1 .00 , −1 .00]

24 e r r o r bound o f E {m−1} = 4.172325 e−07, range = [0 . 0 00 00 0 , 2 . 000000]

25 e r r o r bound o f beta = 3.576279 e−07, range = [−2.000000 , 2 . 000000]

26

27 Warning : The input range [0 . 0 00 00 0 , 2 . 000000] conta in s ZERO.

28 > In AAFloat . AAFloat>AAFloat . inv at 918

29 In AAFloat . AAFloat>AAFloat . div at 1075

30 In AA bound lev inson wAAFloat genera l range user at 91

31 AAFloat i s us ing the s p e c i f i e d range [1 . 000000 e−04, 2 .000000 e +00] to compute the

i n v e r s e .

32

33 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

34 i= 2 , e r r o r bound o f k (2) = 8.345246 e+01, range = [−20000.000000 , 20000 .000000]

35

36 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

37 i= 1 , e r r o r bound o f a (1) = 8.345246 e+01, range = [−20001.000000 , 20001 .000000]

38 i= 2 , e r r o r bound o f a (2) = 8.345246 e+01, range = [−20000.000000 , 20000 .000000]

39

40 e r r o r bound o f E {m} = 1.669109 e+02, range = [−40000.000000 , 40002 .000000]

41

42

43 −−−−−−−−−− I t e r a t i o n m = 3

44 Levinson−Durbin a lgor i thm f o r case [−1 , 1] , with user−range

45

161

46 AA bound = Hard , p r e c i s i o n = 24 , r in [1 .00 , −1 .00]

47 e r r o r bound o f E {m−1} = 1.669109 e+02, range = [−40000.000000 , 40002 .000000]

48 e r r o r bound o f beta = 1.669121 e+02, range = [−40002.000000 , 40002 .000000]

49

50 Warning : The input range [−40000.000000 , 40002 .000000] conta in s ZERO.

51 > In AAFloat . AAFloat>AAFloat . inv at 918

52 In AAFloat . AAFloat>AAFloat . div at 1075

53 In AA bound lev inson wAAFloat genera l range user at 91

54 AAFloat i s us ing the s p e c i f i e d range [1 . 000000 e−04, 4 .000200 e +04] to compute the

i n v e r s e .

55 Warning : P o s s i b i l i t y o f huge rounding e r r o r !

56 > In AAFloat . AAFloat>AAFloat . inv at 1016

57 In AAFloat . AAFloat>AAFloat . div at 1075

58 In AA bound lev inson wAAFloat genera l range user at 91

59 In i n v e r s e operat ion , e r r o r component e s t imat i on : range o f i n v e r s e conta in s ZERO

[0 . 000000 e+00, 1 .600160 e +09] .

60 AAFloat i s us ing the range [1 . 192093 e−07, 1 .600160 e +09] i n s t ead . However , huge

rounding e r r o r may r e s u l t !

61 range = [0 . 000000 e+00, 1 .600160 e +09]

62 ??? Error us ing ==> AAFloat . AAFloat>aa minrange inv at 1875

63 Error : in aa minrange inv approximation : LOWER BOUND of input a f f i n e i n t e r v a l equa l s

ZERO!

64

65 Error in ==> AAFloat . AAFloat>AAFloat . inv at 1031

66 xsquare inv = aa minrange inv (xsquare range) ;

67

68 Error in ==> AAFloat . AAFloat>AAFloat . div at 1075

69 yy = inv (y , prob , u s e r range) ;

70

71 Error in ==> AA bound lev inson wAAFloat genera l range user at 91

72 kk = −div (LD beta , LD alpha , prob , [user lo bound , user h i bound]) ; %

beta / alpha

E.5 Report for case using the AA-based scaling operator (AASO):

Hard error bound

1 −−−−−−−−−− I t e r a t i o n m = 1

2 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

3

4 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

5 de l ta E = 0.000100

6 e r r o r bound o f E {m−1} = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

7

8 Before per forming AASO:

9 Var iab le ” beta ” : range = [−1.000000 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 1.192093 e−07

10 AASO: s p e c i f i e d range [−1 .000000 ,1 .000000] i s l a r g e r than or equal to o r i g i n a l range

[−1 .000000 ,1 . 000000] . No s c a l i n g performed !

11 e r r o r bound o f beta = 1.192093 e−07, range = [−1.000000 , 1 . 000000]

12

13

14 Before per forming AASO:

15 Var iab le ”k” : range = [−1.000000 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 2.384186 e−07

162

16 AASO: s p e c i f i e d range [−1 .000000 ,1 .000000] i s l a r g e r than or equal to o r i g i n a l range

[−1 .000000 ,1 . 000000] . No s c a l i n g performed !

17

18 Before per forming AASO:

19 Var iab le ”E {m−1}” : range = [0 . 00 0 00 0 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 6.556511 e−07

20 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

21

22 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

23

24 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

25 i= 1 , e r r o r bound o f a (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

26

27 e r r o r bound o f E {m} = 6.555855 e−07, range = [0 . 0 00 10 0 , 1 . 000000]

28

29

30 −−−−−−−−−− I t e r a t i o n m = 2

31 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

32

33 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

34 de l ta E = 0.000100

35 e r r o r bound o f E {m−1} = 6.555855 e−07, range = [0 . 0 00 10 0 , 1 . 000000]

36

37 Before per forming AASO:

38 Var iab le ” beta ” : range = [−2.000000 , 2 . 0 0 0 0 0 0] ; e r r o r bound = 3.576279 e−07

39 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

40 e r r o r bound o f beta = 1.788139 e−07, range = [−1.000000 , 1 . 000000]

41

42

43 Before per forming AASO:

44 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 6.556034 e+01

45 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

46

47 Before per forming AASO:

48 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 1.311290 e−02

49 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

50

51 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

52 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

53

54 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

55 i= 1 , e r r o r bound o f a (1) = 6.556690 e−03, range = [−2.000000 , 2 . 000000]

56 i= 2 , e r r o r bound o f a (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

57

58 e r r o r bound o f E {m} = 8.741352 e−03, range = [0 . 0 00 10 0 , 1 . 000000]

59

60

61 −−−−−−−−−− I t e r a t i o n m = 3

62 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

63

64 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

65 de l ta E = 0.000100

66 e r r o r bound o f E {m−1} = 8.741352 e−03, range = [0 . 0 00 10 0 , 1 . 000000]

67

68 Before per forming AASO:

69 Var iab le ” beta ” : range = [−4.000000 , 4 . 0 0 0 0 0 0] ; e r r o r bound = 1.311314 e−02

70 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

163

71 e r r o r bound o f beta = 3.278285 e−03, range = [−1.000000 , 1 . 000000]

72

73

74 Before per forming AASO:

75 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 8.741025 e+05

76 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

77

78 Before per forming AASO:

79 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 1.748292 e+02

80 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

81

82 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

83 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

84 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

85

86 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

87 i= 1 , e r r o r bound o f a (1) = 8.742336 e+01, range = [−3.000000 , 3 . 000000]

88 i= 2 , e r r o r bound o f a (2) = 1.748336 e+02, range = [−3.000000 , 3 . 000000]

89 i= 3 , e r r o r bound o f a (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

90

91 e r r o r bound o f E {m} = 1.165451 e+02, range = [0 . 00 01 00 , 1 . 000000]

92

93

94 −−−−−−−−−− I t e r a t i o n m = 4

95 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

96

97 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

98 de l ta E = 0.000100

99 e r r o r bound o f E {m−1} = 1.165451 e+02, range = [0 . 00 01 00 , 1 . 000000]

100

101 Before per forming AASO:

102 Var iab le ” beta ” : range = [−8.000000 , 8 . 0 0 0 0 0 0] ; e r r o r bound = 3.496672 e+02

103 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

104 e r r o r bound o f beta = 4.370840 e+01, range = [−1.000000 , 1 . 000000]

105

106

107 Before per forming AASO:

108 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 1.165407 e+10

109 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

110

111 Before per forming AASO:

112 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 2.330930 e+06

113 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

114

115 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

116 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

117 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

118 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

119

120 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

121 i= 1 , e r r o r bound o f a (1) = 1.165582 e+06, range = [−4.000000 , 4 . 000000]

122 i= 2 , e r r o r bound o f a (2) = 3.496570 e+06, range = [−6.000000 , 6 . 000000]

123 i= 3 , e r r o r bound o f a (3) = 3.496395 e+06, range = [−4.000000 , 4 . 000000]

124 i= 4 , e r r o r bound o f a (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

125

126 e r r o r bound o f E {m} = 1.553850 e+06, range = [0 . 00 01 00 , 1 . 000000]

164

127

128

129 −−−−−−−−−− I t e r a t i o n m = 5

130 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

131

132 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

133 de l ta E = 0.000100

134 e r r o r bound o f E {m−1} = 1.553850 e+06, range = [0 . 00 01 00 , 1 . 000000]

135

136 Before per forming AASO:

137 Var iab le ” beta ” : range = [−16.000000 , 1 6 . 0 0 0 0 0 0] ; e r r o r bound = 9.323954 e+06

138 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

139 e r r o r bound o f beta = 5.827471 e+05, range = [−1.000000 , 1 . 000000]

140

141

142 Before per forming AASO:

143 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 1.553792 e+14

144 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

145

146 Before per forming AASO:

147 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 3.107739 e+10

148 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

149

150 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

151 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

152 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

153 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

154 i= 5 , e r r o r bound o f k (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

155

156 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

157 i= 1 , e r r o r bound o f a (1) = 1.554025 e+10, range = [−5.000000 , 5 . 000000]

158 i= 2 , e r r o r bound o f a (2) = 6.215866 e+10, range = [−10.000000 , 10 .000000]

159 i= 3 , e r r o r bound o f a (3) = 9.323449 e+10, range = [−10.000000 , 10 .000000]

160 i= 4 , e r r o r bound o f a (4) = 6.215399 e+10, range = [−5.000000 , 5 . 000000]

161 i= 5 , e r r o r bound o f a (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

162

163 e r r o r bound o f E {m} = 2.071688 e+10, range = [0 . 00 01 00 , 1 . 000000]

164

165

166 −−−−−−−−−− I t e r a t i o n m = 6

167 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

168

169 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

170 de l ta E = 0.000100

171 e r r o r bound o f E {m−1} = 2.071688 e+10, range = [0 . 00 01 00 , 1 . 000000]

172

173 Before per forming AASO:

174 Var iab le ” beta ” : range = [−32.000000 , 3 2 . 0 0 0 0 0 0] ; e r r o r bound = 2.486253 e+11

175 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

176 e r r o r bound o f beta = 7.769541 e+09, range = [−1.000000 , 1 . 000000]

177

178

179 Before per forming AASO:

180 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 2.071610 e+18

181 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

182

165

183 Before per forming AASO:

184 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 4.143427 e+14

185 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

186

187 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

188 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

189 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

190 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

191 i= 5 , e r r o r bound o f k (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

192 i= 6 , e r r o r bound o f k (6) = 2.071610 e+14, range = [−1.000000 , 1 . 000000]

193

194 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

195 i= 1 , e r r o r bound o f a (1) = 2.071921 e+14, range = [−6.000000 , 6 . 000000]

196 i= 2 , e r r o r bound o f a (2) = 1.035929 e+15, range = [−15.000000 , 15 .000000]

197 i= 3 , e r r o r bound o f a (3) = 2.071796 e+15, range = [−20.000000 , 20 .000000]

198 i= 4 , e r r o r bound o f a (4) = 2.071734 e+15, range = [−15.000000 , 15 .000000]

199 i= 5 , e r r o r bound o f a (5) = 1.035836 e+15, range = [−6.000000 , 6 . 000000]

200 i= 6 , e r r o r bound o f a (6) = 2.071610 e+14, range = [−1.000000 , 1 . 000000]

201

202 e r r o r bound o f E {m} = 2.762100 e+14, range = [0 . 00 01 00 , 1 . 000000]

203

204

205 −−−−−−−−−− I t e r a t i o n m = 7

206 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

207

208 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

209 de l ta E = 0.000100

210 e r r o r bound o f E {m−1} = 2.762100 e+14, range = [0 . 00 01 00 , 1 . 000000]

211

212 Before per forming AASO:

213 Var iab le ” beta ” : range = [−64.000000 , 6 4 . 0 0 0 0 0 0] ; e r r o r bound = 6.629649 e+15

214 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

215 e r r o r bound o f beta = 1.035883 e+14, range = [−1.000000 , 1 . 000000]

216

217

218 Before per forming AASO:

219 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 2.761997 e+22

220 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

221

222 Before per forming AASO:

223 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 5.524270 e+18

224 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

225

226 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

227 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

228 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

229 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

230 i= 5 , e r r o r bound o f k (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

231 i= 6 , e r r o r bound o f k (6) = 2.071610 e+14, range = [−1.000000 , 1 . 000000]

232 i= 7 , e r r o r bound o f k (7) = 2.761997 e+18, range = [−1.000000 , 1 . 000000]

233

234 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

235 i= 1 , e r r o r bound o f a (1) = 2.762411 e+18, range = [−7.000000 , 7 . 000000]

236 i= 2 , e r r o r bound o f a (2) = 1.657405 e+19, range = [−21.000000 , 21 .000000]

237 i= 3 , e r r o r bound o f a (3) = 4.143410 e+19, range = [−35.000000 , 35 .000000]

238 i= 4 , e r r o r bound o f a (4) = 5.524408 e+19, range = [−35.000000 , 35 .000000]

166

239 i= 5 , e r r o r bound o f a (5) = 4.143203 e+19, range = [−21.000000 , 21 .000000]

240 i= 6 , e r r o r bound o f a (6) = 1.657240 e+19, range = [−7.000000 , 7 . 000000]

241 i= 7 , e r r o r bound o f a (7) = 2.761997 e+18, range = [−1.000000 , 1 . 000000]

242

243 e r r o r bound o f E {m} = 3.682601 e+18, range = [0 . 00 01 00 , 1 . 000000]

244

245

246 −−−−−−−−−− I t e r a t i o n m = 8

247 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

248

249 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

250 de l ta E = 0.000100

251 e r r o r bound o f E {m−1} = 3.682601 e+18, range = [0 . 00 01 00 , 1 . 000000]

252

253 Before per forming AASO:

254 Var iab le ” beta ” : range = [−128.000000 , 1 2 8 . 0 0 0 0 0 0] ; e r r o r bound = 1.767811 e+20

255 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

256 e r r o r bound o f beta = 1.381102 e+18, range = [−1.000000 , 1 . 000000]

257

258

259 Before per forming AASO:

260 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 3.682463 e+26

261 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

262

263 Before per forming AASO:

264 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 7.365294 e+22

265 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

266

267 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

268 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

269 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

270 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

271 i= 5 , e r r o r bound o f k (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

272 i= 6 , e r r o r bound o f k (6) = 2.071610 e+14, range = [−1.000000 , 1 . 000000]

273 i= 7 , e r r o r bound o f k (7) = 2.761997 e+18, range = [−1.000000 , 1 . 000000]

274 i= 8 , e r r o r bound o f k (8) = 3.682463 e+22, range = [−1.000000 , 1 . 000000]

275

276 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

277 i= 1 , e r r o r bound o f a (1) = 3.683015 e+22, range = [−8.000000 , 8 . 000000]

278 i= 2 , e r r o r bound o f a (2) = 2.578056 e+23, range = [−28.000000 , 28 .000000]

279 i= 3 , e r r o r bound o f a (3) = 7.734001 e+23, range = [−56.000000 , 56 .000000]

280 i= 4 , e r r o r bound o f a (4) = 1.288973 e+24, range = [−70.000000 , 70 .000000]

281 i= 5 , e r r o r bound o f a (5) = 1.288945 e+24, range = [−56.000000 , 56 .000000]

282 i= 6 , e r r o r bound o f a (6) = 7.733504 e+23, range = [−28.000000 , 28 .000000]

283 i= 7 , e r r o r bound o f a (7) = 2.577779 e+23, range = [−8.000000 , 8 . 000000]

284 i= 8 , e r r o r bound o f a (8) = 3.682463 e+22, range = [−1.000000 , 1 . 000000]

285

286 e r r o r bound o f E {m} = 4.909869 e+22, range = [0 . 00 01 00 , 1 . 000000]

287

288

289 −−−−−−−−−− I t e r a t i o n m = 9

290 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

291

292 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

293 de l ta E = 0.000100

294 e r r o r bound o f E {m−1} = 4.909869 e+22, range = [0 . 00 01 00 , 1 . 000000]

167

295

296 Before per forming AASO:

297 Var iab le ” beta ” : range = [−256.000000 , 2 5 6 . 0 0 0 0 0 0] ; e r r o r bound = 4.713906 e+24

298 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

299 e r r o r bound o f beta = 1.841370 e+22, range = [−1.000000 , 1 . 000000]

300

301

302 Before per forming AASO:

303 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 4.909685 e+30

304 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

305

306 Before per forming AASO:

307 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 9.819861 e+26

308 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

309

310 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

311 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

312 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

313 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

314 i= 5 , e r r o r bound o f k (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

315 i= 6 , e r r o r bound o f k (6) = 2.071610 e+14, range = [−1.000000 , 1 . 000000]

316 i= 7 , e r r o r bound o f k (7) = 2.761997 e+18, range = [−1.000000 , 1 . 000000]

317 i= 8 , e r r o r bound o f k (8) = 3.682463 e+22, range = [−1.000000 , 1 . 000000]

318 i= 9 , e r r o r bound o f k (9) = 4.909685 e+26, range = [−1.000000 , 1 . 000000]

319

320 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

321 i= 1 , e r r o r bound o f a (1) = 4.910421 e+26, range = [−9.000000 , 9 . 000000]

322 i= 2 , e r r o r bound o f a (2) = 3.928263 e+27, range = [−36.000000 , 36 .000000]

323 i= 3 , e r r o r bound o f a (3) = 1.374866 e+28, range = [−84.000000 , 84 .000000]

324 i= 4 , e r r o r bound o f a (4) = 2.749681 e+28, range = [−126.000000 , 126 .000000]

325 i= 5 , e r r o r bound o f a (5) = 3.437037 e+28, range = [−126.000000 , 126 .000000]

326 i= 6 , e r r o r bound o f a (6) = 2.749578 e+28, range = [−84.000000 , 84 .000000]

327 i= 7 , e r r o r bound o f a (7) = 1.374763 e+28, range = [−36.000000 , 36 .000000]

328 i= 8 , e r r o r bound o f a (8) = 3.927821 e+27, range = [−9.000000 , 9 . 000000]

329 i= 9 , e r r o r bound o f a (9) = 4.909685 e+26, range = [−1.000000 , 1 . 000000]

330

331 e r r o r bound o f E {m} = 6.546137 e+26, range = [0 . 00 01 00 , 1 . 000000]

332

333

334 −−−−−−−−−− I t e r a t i o n m = 10

335 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

336

337 AA bound = Hard , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

338 de l ta E = 0.000100

339 e r r o r bound o f E {m−1} = 6.546137 e+26, range = [0 . 00 01 00 , 1 . 000000]

340

341 Before per forming AASO:

342 Var iab le ” beta ” : range = [−512.000000 , 5 1 2 . 0 0 0 0 0 0] ; e r r o r bound = 1.256974 e+29

343 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

344 e r r o r bound o f beta = 2.455027 e+26, range = [−1.000000 , 1 . 000000]

345

346

347 Before per forming AASO:

348 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 6.545892 e+34

349 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

350

168

351 Before per forming AASO:

352 Var iab le ”E {m−1}” : range = [−0.499950 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 1.309244 e+31

353 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

354

355 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

356 i= 2 , e r r o r bound o f k (2) = 6.556034 e−03, range = [−1.000000 , 1 . 000000]

357 i= 3 , e r r o r bound o f k (3) = 8.741025 e+01, range = [−1.000000 , 1 . 000000]

358 i= 4 , e r r o r bound o f k (4) = 1.165407 e+06, range = [−1.000000 , 1 . 000000]

359 i= 5 , e r r o r bound o f k (5) = 1.553792 e+10, range = [−1.000000 , 1 . 000000]

360 i= 6 , e r r o r bound o f k (6) = 2.071610 e+14, range = [−1.000000 , 1 . 000000]

361 i= 7 , e r r o r bound o f k (7) = 2.761997 e+18, range = [−1.000000 , 1 . 000000]

362 i= 8 , e r r o r bound o f k (8) = 3.682463 e+22, range = [−1.000000 , 1 . 000000]

363 i= 9 , e r r o r bound o f k (9) = 4.909685 e+26, range = [−1.000000 , 1 . 000000]

364 i =10, e r r o r bound o f k (10) = 6.545892 e+30, range = [−1.000000 , 1 . 000000]

365

366 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

367 i= 1 , e r r o r bound o f a (1) = 6.546874 e+30, range = [−10.000000 , 10 .000000]

368 i= 2 , e r r o r bound o f a (2) = 5.892088 e+31, range = [−45.000000 , 45 .000000]

369 i= 3 , e r r o r bound o f a (3) = 2.356796 e+32, range = [−120.000000 , 120 .000000]

370 i= 4 , e r r o r bound o f a (4) = 5.499099 e+32, range = [−210.000000 , 210 .000000]

371 i= 5 , e r r o r bound o f a (5) = 8.248511 e+32, range = [−252.000000 , 252 .000000]

372 i= 6 , e r r o r bound o f a (6) = 8.248374 e+32, range = [−210.000000 , 210 .000000]

373 i= 7 , e r r o r bound o f a (7) = 5.498824 e+32, range = [−120.000000 , 120 .000000]

374 i= 8 , e r r o r bound o f a (8) = 2.356600 e+32, range = [−45.000000 , 45 .000000]

375 i= 9 , e r r o r bound o f a (9) = 5.891401 e+31, range = [−10.000000 , 10 .000000]

376 i =10, e r r o r bound o f a (10) = 6.545892 e+30, range = [−1.000000 , 1 . 000000]

377

378 e r r o r bound o f E {m} = 8.727710 e+30, range = [0 . 00 01 00 , 1 . 000000]

379

380 Time = 0.349157 (minutes)

E.6 Report for case using the AA-based scaling operator (AASO):

Probabilistic error bound

1 −−−−−−−−−− I t e r a t i o n m = 1

2 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

3

4 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

5 de l ta E = 0.000100

6 e r r o r bound o f E {m−1} = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

7

8 Before per forming AASO:

9 Var iab le ” beta ” : range = [−1.000000 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 1.192093 e−07

10 AASO: s p e c i f i e d range [−1 .000000 ,1 .000000] i s l a r g e r than or equal to o r i g i n a l range

[−1 .000000 ,1 . 000000] . No s c a l i n g performed !

11 e r r o r bound o f beta = 1.192093 e−07, range = [−1.000000 , 1 . 000000]

12

13

14 Before per forming AASO:

15 Var iab le ”k” : range = [−1.000000 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 2.384186 e−07

16 AASO: s p e c i f i e d range [−1 .000000 ,1 .000000] i s l a r g e r than or equal to o r i g i n a l range

[−1 .000000 ,1 . 000000] . No s c a l i n g performed !

169

17

18 Before per forming AASO:

19 Var iab le ”E {m−1}” : range = [0 . 00 00 00 , 1 . 0 0 0 0 0 0] ; e r r o r bound = 2.467309 e−07

20 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

21

22 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

23

24 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

25 i= 1 , e r r o r bound o f a (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

26

27 e r r o r bound o f E {m} = 2.467062 e−07, range = [0 . 0 00 10 0 , 1 . 000000]

28

29

30 −−−−−−−−−− I t e r a t i o n m = 2

31 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

32

33 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

34 de l ta E = 0.000100

35 e r r o r bound o f E {m−1} = 2.467062 e−07, range = [0 . 0 00 10 0 , 1 . 000000]

36

37 Before per forming AASO:

38 Var iab le ” beta ” : range = [−2.000000 , 2 . 0 0 0 0 0 0] ; e r r o r bound = 1.601001 e−07

39 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

40 e r r o r bound o f beta = 8.005007 e−08, range = [−1.000000 , 1 . 000000]

41

42

43 Before per forming AASO:

44 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 2.467036 e+01

45 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

46

47 Before per forming AASO:

48 Var iab le ”E {m−1}” : range = [−0.115828 , 0 . 6 1 5 8 7 8] ; e r r o r bound = 4.934319 e−03

49 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

50

51 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

52 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

53

54 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

55 i= 1 , e r r o r bound o f a (1) = 2.467244 e−03, range = [−2.000000 , 2 . 000000]

56 i= 2 , e r r o r bound o f a (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

57

58 e r r o r bound o f E {m} = 3.289327 e−03, range = [0 . 2 56 16 4 , 0 . 743936]

59

60

61 −−−−−−−−−− I t e r a t i o n m = 3

62 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

63

64 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

65 de l ta E = 0.000100

66 e r r o r bound o f E {m−1} = 3.289327 e−03, range = [0 . 2 56 16 4 , 0 . 743936]

67

68 Before per forming AASO:

69 Var iab le ” beta ” : range = [−4.000000 , 4 . 0 0 0 0 0 0] ; e r r o r bound = 4.934176 e−03

70 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

71 e r r o r bound o f beta = 1.233544 e−03, range = [−1.000000 , 1 . 000000]

72

170

73

74 Before per forming AASO:

75 Var iab le ”k” : range = [−10000.000000 , 10000 . 000000] ; e r r o r bound = 3.206409 e+05

76 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

77

78 Before per forming AASO:

79 Var iab le ”E {m−1}” : range = [−0.050977 , 0 . 5 5 1 0 2 7] ; e r r o r bound = 4.770980 e+01

80 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

81

82 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

83 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

84 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

85

86 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

87 i= 1 , e r r o r bound o f a (1) = 3.206902 e+01, range = [−3.000000 , 3 . 000000]

88 i= 2 , e r r o r bound o f a (2) = 6.413311 e+01, range = [−3.000000 , 3 . 000000]

89 i= 3 , e r r o r bound o f a (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

90

91 e r r o r bound o f E {m} = 3.180441 e+01, range = [0 . 29 93 96 , 0 . 700704]

92

93

94 −−−−−−−−−− I t e r a t i o n m = 4

95 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

96

97 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

98 de l ta E = 0.000100

99 e r r o r bound o f E {m−1} = 3.180441 e+01, range = [0 . 29 93 96 , 0 . 700704]

100

101 Before per forming AASO:

102 Var iab le ” beta ” : range = [−8.000000 , 8 . 0 0 0 0 0 0] ; e r r o r bound = 1.282662 e+02

103 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

104 e r r o r bound o f beta = 1.603328 e+01, range = [−1.000000 , 1 . 000000]

105

106

107 Before per forming AASO:

108 Var iab le ”k” : range = [−5439.557126 , 5 4 3 9 . 5 5 7 1 2 6] ; e r r o r bound = 3.100228 e+09

109 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

110

111 Before per forming AASO:

112 Var iab le ”E {m−1}” : range = [−0.041379 , 0 . 5 4 1 4 2 9] ; e r r o r bound = 2.363563 e+05

113 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

114

115 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

116 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

117 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

118 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

119

120 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

121 i= 1 , e r r o r bound o f a (1) = 3.100723 e+05, range = [−4.000000 , 4 . 000000]

122 i= 2 , e r r o r bound o f a (2) = 9.301673 e+05, range = [−3.473067 , 3 . 473067]

123 i= 3 , e r r o r bound o f a (3) = 9.301178 e+05, range = [−2.902863 , 2 . 902863]

124 i= 4 , e r r o r bound o f a (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

125

126 e r r o r bound o f E {m} = 1.575603 e+05, range = [0 . 30 57 93 , 0 . 694307]

127

128

171

129 −−−−−−−−−− I t e r a t i o n m = 5

130 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

131

132 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

133 de l ta E = 0.000100

134 e r r o r bound o f E {m−1} = 1.575603 e+05, range = [0 . 30 57 93 , 0 . 694307]

135

136 Before per forming AASO:

137 Var iab le ” beta ” : range = [−7.945398 , 7 . 9 4 5 3 9 8] ; e r r o r bound = 2.480380 e+06

138 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

139 e r r o r bound o f beta = 1.550238 e+05, range = [−0.496587 , 0 . 496587]

140

141

142 Before per forming AASO:

143 Var iab le ”k” : range = [−5357.974880 , 5 3 5 7 . 9 7 4 8 8 0] ; e r r o r bound = 7.625787 e+12

144 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

145

146 Before per forming AASO:

147 Var iab le ”E {m−1}” : range = [−0.039400 , 0 . 5 3 9 4 5 0] ; e r r o r bound = 5.674913 e+08

148 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

149

150 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

151 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

152 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

153 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

154 i= 5 , e r r o r bound o f k (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

155

156 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

157 i= 1 , e r r o r bound o f a (1) = 4.152852 e+08, range = [−2.123497 , 2 . 123497]

158 i= 2 , e r r o r bound o f a (2) = 2.215090 e+09, range = [−5.147014 , 5 . 147014]

159 i= 3 , e r r o r bound o f a (3) = 2.649915 e+09, range = [−6.394774 , 6 . 394774]

160 i= 4 , e r r o r bound o f a (4) = 3.050791 e+09, range = [−3.837376 , 3 . 837376]

161 i= 5 , e r r o r bound o f a (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

162

163 e r r o r bound o f E {m} = 3.783023 e+08, range = [0 . 30 71 13 , 0 . 692987]

164

165

166 −−−−−−−−−− I t e r a t i o n m = 6

167 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

168

169 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

170 de l ta E = 0.000100

171 e r r o r bound o f E {m−1} = 3.783023 e+08, range = [0 . 30 71 13 , 0 . 692987]

172

173 Before per forming AASO:

174 Var iab le ” beta ” : range = [−15.075333 , 1 5 . 0 7 5 3 3 3] ; e r r o r bound = 9.093660 e+09

175 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

176 e r r o r bound o f beta = 2.841769 e+08, range = [−0.471104 , 0 . 471104]

177

178

179 Before per forming AASO:

180 Var iab le ”k” : range = [−5300.120185 , 5 3 0 0 . 1 2 0 1 8 5] ; e r r o r bound = 1.737060 e+16

181 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

182

183 Before per forming AASO:

184 Var iab le ”E {m−1}” : range = [−0.038455 , 0 . 5 3 8 5 0 5] ; e r r o r bound = 1.276304 e+12

172

185 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

186

187 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

188 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

189 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

190 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

191 i= 5 , e r r o r bound o f k (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

192 i= 6 , e r r o r bound o f k (6) = 1.737060 e+12, range = [−0.530012 , 0 . 530012]

193

194 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

195 i= 1 , e r r o r bound o f a (1) = 9.315318 e+11, range = [−2.326174 , 2 . 326174]

196 i= 2 , e r r o r bound o f a (2) = 6.669584 e+12, range = [−7.002710 , 7 . 002710]

197 i= 3 , e r r o r bound o f a (3) = 1.111216 e+13, range = [−11.448926 , 11 .448926]

198 i= 4 , e r r o r bound o f a (4) = 8.944897 e+12, range = [−10.242570 , 10 .242570]

199 i= 5 , e r r o r bound o f a (5) = 3.689624 e+12, range = [−4.778418 , 4 . 778418]

200 i= 6 , e r r o r bound o f a (6) = 1.737060 e+12, range = [−0.530012 , 0 . 530012]

201

202 e r r o r bound o f E {m} = 8.508126 e+11, range = [0 . 30 77 43 , 0 . 692357]

203

204

205 −−−−−−−−−− I t e r a t i o n m = 7

206 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

207

208 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

209 de l ta E = 0.000100

210 e r r o r bound o f E {m−1} = 8.508126 e+11, range = [0 . 30 77 43 , 0 . 692357]

211

212 Before per forming AASO:

213 Var iab le ” beta ” : range = [−28.867064 , 2 8 . 8 6 7 0 6 4] ; e r r o r bound = 3.308486 e+13

214 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

215 e r r o r bound o f beta = 5.169509 e+11, range = [−0.451048 , 0 . 451048]

216

217

218 Before per forming AASO:

219 Var iab le ”k” : range = [−5256.311287 , 5 2 5 6 . 3 1 1 2 8 7] ; e r r o r bound = 3.740470 e+19

220 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

221

222 Before per forming AASO:

223 Var iab le ”E {m−1}” : range = [−0.037849 , 0 . 5 3 7 8 9 9] ; e r r o r bound = 2.723148 e+15

224 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

225

226 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

227 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

228 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

229 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

230 i= 5 , e r r o r bound o f k (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

231 i= 6 , e r r o r bound o f k (6) = 1.737060 e+12, range = [−0.530012 , 0 . 530012]

232 i= 7 , e r r o r bound o f k (7) = 3.740470 e+15, range = [−0.525631 , 0 . 525631]

233

234 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

235 i= 1 , e r r o r bound o f a (1) = 1.984339 e+15, range = [−2.512555 , 2 . 512555]

236 i= 2 , e r r o r bound o f a (2) = 1.788214 e+16, range = [−9.027983 , 9 . 027983]

237 i= 3 , e r r o r bound o f a (3) = 3.832784 e+16, range = [−18.275494 , 18 .275494]

238 i= 4 , e r r o r bound o f a (4) = 4.283915 e+16, range = [−21.578910 , 21 .578910]

239 i= 5 , e r r o r bound o f a (5) = 2.620063 e+16, range = [−15.024947 , 15 .024947]

240 i= 6 , e r r o r bound o f a (6) = 8.703212 e+15, range = [−5.722537 , 5 . 722537]

173

241 i= 7 , e r r o r bound o f a (7) = 3.740470 e+15, range = [−0.525631 , 0 . 525631]

242

243 e r r o r bound o f E {m} = 1.815311 e+15, range = [0 . 30 81 47 , 0 . 691953]

244

245

246 −−−−−−−−−− I t e r a t i o n m = 8

247 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

248

249 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

250 de l ta E = 0.000100

251 e r r o r bound o f E {m−1} = 1.815311 e+15, range = [0 . 30 81 47 , 0 . 691953]

252

253 Before per forming AASO:

254 Var iab le ” beta ” : range = [−55.633998 , 5 5 . 6 3 3 9 9 8] ; e r r o r bound = 1.396778 e+17

255 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

256 e r r o r bound o f beta = 1.091233 e+15, range = [−0.434641 , 0 . 434641]

257

258

259 Before per forming AASO:

260 Var iab le ”k” : range = [−5221.632168 , 5 2 2 1 . 6 3 2 1 6 8] ; e r r o r bound = 7.690407 e+22

261 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

262

263 Before per forming AASO:

264 Var iab le ”E {m−1}” : range = [−0.037386 , 0 . 5 3 7 4 3 6] ; e r r o r bound = 5.558660 e+18

265 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

266

267 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

268 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

269 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

270 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

271 i= 5 , e r r o r bound o f k (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

272 i= 6 , e r r o r bound o f k (6) = 1.737060 e+12, range = [−0.530012 , 0 . 530012]

273 i= 7 , e r r o r bound o f k (7) = 3.740470 e+15, range = [−0.525631 , 0 . 525631]

274 i= 8 , e r r o r bound o f k (8) = 7.690407 e+18, range = [−0.522163 , 0 . 522163]

275

276 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

277 i= 1 , e r r o r bound o f a (1) = 4.046255 e+18, range = [−2.686035 , 2 . 686035]

278 i= 2 , e r r o r bound o f a (2) = 4.403107 e+19, range = [−11.211379 , 11 .211379]

279 i= 3 , e r r o r bound o f a (3) = 1.156000 e+20, range = [−27.050112 , 27 .050112]

280 i= 4 , e r r o r bound o f a (4) = 1.660158 e+20, range = [−39.628436 , 39 .628436]

281 i= 5 , e r r o r bound o f a (5) = 1.405922 e+20, range = [−36.476192 , 36 .476192]

282 i= 6 , e r r o r bound o f a (6) = 6.944690 e+19, range = [−20.747586 , 20 .747586]

283 i= 7 , e r r o r bound o f a (7) = 1.932735 e+19, range = [−6.668345 , 6 . 668345]

284 i= 8 , e r r o r bound o f a (8) = 7.690407 e+18, range = [−0.522163 , 0 . 522163]

285

286 e r r o r bound o f E {m} = 3.705526 e+18, range = [0 . 30 84 55 , 0 . 691645]

287

288

289 −−−−−−−−−− I t e r a t i o n m = 9

290 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

291

292 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

293 de l ta E = 0.000100

294 e r r o r bound o f E {m−1} = 3.705526 e+18, range = [0 . 30 84 55 , 0 . 691645]

295

296 Before per forming AASO:

174

297 Var iab le ” beta ” : range = [−107.734773 , 1 0 7 . 7 3 4 7 7 3] ; e r r o r bound = 5.667500 e+20

298 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

299 e r r o r bound o f beta = 2.213867 e+18, range = [−0.420839 , 0 . 420839]

300

301

302 Before per forming AASO:

303 Var iab le ”k” : range = [−5193.284870 , 5 1 9 3 . 2 8 4 8 7 0] ; e r r o r bound = 1.519961 e+26

304 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

305

306 Before per forming AASO:

307 Var iab le ”E {m−1}” : range = [−0.037014 , 0 . 5 3 7 0 6 4] ; e r r o r bound = 1.092193 e+22

308 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

309

310 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

311 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

312 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

313 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

314 i= 5 , e r r o r bound o f k (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

315 i= 6 , e r r o r bound o f k (6) = 1.737060 e+12, range = [−0.530012 , 0 . 530012]

316 i= 7 , e r r o r bound o f k (7) = 3.740470 e+15, range = [−0.525631 , 0 . 525631]

317 i= 8 , e r r o r bound o f k (8) = 7.690407 e+18, range = [−0.522163 , 0 . 522163]

318 i= 9 , e r r o r bound o f k (9) = 1.519961 e+22, range = [−0.519328 , 0 . 519328]

319

320 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

321 i= 1 , e r r o r bound o f a (1) = 7.944715 e+21, range = [−2.848970 , 2 . 848970]

322 i= 2 , e r r o r bound o f a (2) = 1.014103 e+23, range = [−13.543016 , 13 .543016]

323 i= 3 , e r r o r bound o f a (3) = 3.155068 e+23, range = [−37.930954 , 37 .930954]

324 i= 4 , e r r o r bound o f a (4) = 5.546628 e+23, range = [−66.322000 , 66 .322000]

325 i= 5 , e r r o r bound o f a (5) = 6.025634 e+23, range = [−75.825899 , 75 .825899]

326 i= 6 , e r r o r bound o f a (6) = 4.112805 e+23, range = [−57.084648 , 57 .084648]

327 i= 7 , e r r o r bound o f a (7) = 1.704507 e+23, range = [−27.413783 , 27 .413783]

328 i= 8 , e r r o r bound o f a (8) = 4.083646 e+22, range = [−7.615177 , 7 . 615177]

329 i= 9 , e r r o r bound o f a (9) = 1.519961 e+22, range = [−0.519328 , 0 . 519328]

330

331 e r r o r bound o f E {m} = 7.280803 e+21, range = [0 . 30 87 04 , 0 . 691396]

332

333

334 −−−−−−−−−− I t e r a t i o n m = 10

335 Levinson−Durbin a lgor i thm f o r gene ra l range [−1 ,+1] us ing range−s c a l i n g

336

337 AA bound = Soft , p r e c i s i o n = 24 , r in [−1.00 , 1 . 0 0]

338 de l ta E = 0.000100

339 e r r o r bound o f E {m−1} = 7.280803 e+21, range = [0 . 30 87 04 , 0 . 691396]

340

341 Before per forming AASO:

342 Var iab le ” beta ” : range = [−209.398761 , 2 0 9 . 3 9 8 7 6 1] ; e r r o r bound = 2.219855 e+24

343 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

344 e r r o r bound o f beta = 4.335655 e+21, range = [−0.408982 , 0 . 408982]

345

346

347 Before per forming AASO:

348 Var iab le ”k” : range = [−5169.543382 , 5 1 6 9 . 5 4 3 3 8 2] ; e r r o r bound = 2.902340 e+29

349 AASO: perform range s c a l i n g with s p e c i f i e d range [−1 .000000 ,1 .000000]

350

351 Before per forming AASO:

352 Var iab le ”E {m−1}” : range = [−0.036704 , 0 . 5 3 6 7 5 4] ; e r r o r bound = 2.075263 e+25

175

353 AASO: perform range s c a l i n g with s p e c i f i e d range [0 . 0 0 0 1 0 0 , 1 . 0 0 0 0 0 0]

354

355 i= 1 , e r r o r bound o f k (1) = 2.384186 e−07, range = [−1.000000 , 1 . 000000]

356 i= 2 , e r r o r bound o f k (2) = 2.467036 e−03, range = [−1.000000 , 1 . 000000]

357 i= 3 , e r r o r bound o f k (3) = 3.206409 e+01, range = [−1.000000 , 1 . 000000]

358 i= 4 , e r r o r bound o f k (4) = 3.100228 e+05, range = [−0.543956 , 0 . 543956]

359 i= 5 , e r r o r bound o f k (5) = 7.625787 e+08, range = [−0.535797 , 0 . 535797]

360 i= 6 , e r r o r bound o f k (6) = 1.737060 e+12, range = [−0.530012 , 0 . 530012]

361 i= 7 , e r r o r bound o f k (7) = 3.740470 e+15, range = [−0.525631 , 0 . 525631]

362 i= 8 , e r r o r bound o f k (8) = 7.690407 e+18, range = [−0.522163 , 0 . 522163]

363 i= 9 , e r r o r bound o f k (9) = 1.519961 e+22, range = [−0.519328 , 0 . 519328]

364 i =10, e r r o r bound o f k (10) = 2.902340 e+25, range = [−0.516954 , 0 . 516954]

365

366 i= 0 , e r r o r bound o f a (0) = 0.000000 e+00, range = [1 . 00 00 00 , 1 . 000000]

367 i= 1 , e r r o r bound o f a (1) = 1.508848 e+25, range = [−3.003078 , 3 . 003078]

368 i= 2 , e r r o r bound o f a (2) = 2.211409 e+26, range = [−16.014461 , 16 .014461]

369 i= 3 , e r r o r bound o f a (3) = 7.960449 e+26, range = [−51.064195 , 51 .064195]

370 i= 4 , e r r o r bound o f a (4) = 1.657558 e+27, range = [−103.740281 , 103 .740281]

371 i= 5 , e r r o r bound o f a (5) = 2.201640 e+27, range = [−141.659108 , 141 .659108]

372 i= 6 , e r r o r bound o f a (6) = 1.925588 e+27, range = [−132.575990 , 132 .575990]

373 i= 7 , e r r o r bound o f a (7) = 1.101219 e+27, range = [−84.350185 , 84 .350185]

374 i= 8 , e r r o r bound o f a (8) = 3.931577 e+26, range = [−35.025501 , 35 .025501]

375 i= 9 , e r r o r bound o f a (9) = 8.270611 e+25, range = [−8.562673 , 8 . 562673]

376 i =10, e r r o r bound o f a (10) = 2.902340 e+25, range = [−0.516954 , 0 . 516954]

377

378 e r r o r bound o f E {m} = 1.383416 e+25, range = [0 . 30 89 10 , 0 . 691190]

379

380 Time = 0.027380 (minutes)

176

Bibliography

[1] J. Kontro, K. Kalliojarvi, and Y. Neuvo, “Floating-point arithmetic in signal processing,” in 1992

IEEE International Symposium on Circuits and Systems, 1992 (ISCAS ’92), vol. 4. IEEE, May

1992, pp. 1784–1791 vol.4. [Online]. Available: http://dx.doi.org/10.1109/ISCAS.1992.230408

[2] A. Lacroix, “Floating-point signal processing-arithmetic, roundoff-noise, and limit cycles,”

in IEEE International Symposium on Circuits and Systems, 1988. IEEE, June 1988, pp.

2023–2030 vol.3. [Online]. Available: http://dx.doi.org/10.1109/ISCAS.1988.15339

[3] W. Krämer, “A priori worst case error bounds for floating-point computations,” IEEE Transac-

tions on Computers, vol. 47, no. 7, pp. 750–756, July 1998.

[4] C. F. Fang, “Probabilistic Interval-Valued Computation: Representing and Reasoning about Un-

certainty in DSP and VLSI Design,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh,

PA, USA, 2005.

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia, PA, USA:

SIAM, 2002.

[6] P. Strobach, Linear Prediction Theory: A Mathematical Basis for Adaptive Systems,

M. Schroeder, Ed. New York, USA: Springer Series in Information Sciences, Feb. 1990.

[7] P. Vary and R. Martin, Digital Speech Transmission: Enhancement, Coding, and Error Conceal-

ment. West Sussex PO19 8SQ, England: John Wiley & Sons, LTD, 2006.

[8] S. Haykin, Adaptive Filter Theory, 4th ed., T. Kailath, Ed. Upper Saddle River, New Jersey,

USA: Prentice Hall Information and System Sciences Series, 2002.

[9] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk, and P. Y. K.

Cheung, “Reconfigurable computing: architectures and design methods,” IEE Proceedings -

Computers and Digital Techniques, vol. 152, no. 2, pp. 193–207, 2005. [Online]. Available:

http://dx.doi.org/10.1049/ip-cdt:20045086

[10] H. P. Huynh and T. Mitra, “Runtime Adaptive Extensible Embedded Processors – A Survey,”

in Proceedings of the 9th International Workshop on Embedded Computer Systems: Architectures,

Modeling, and Simulation, ser. SAMOS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.

215–225. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-03138-0 23

[11] M. Sima, S. Vassiliadis, S. Cotofana, J. T. J. Eijndhoven, and K. Vissers, “Field-Programmable

Custom Computing Machines - A Taxonomy,” vol. 2438, pp. 79–88, Aug. 2002. [Online].

Available: http://dx.doi.org/10.1007/3-540-46117-5 10

[12] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, “State-of-the-art

in Heterogeneous Computing,” Sci. Program., vol. 18, pp. 1–33, Jan. 2010. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1804800

[13] M. Mücke, B. Lesser, and W. Gansterer, “Peak Performance Model for a Custom Precision

Floating-Point Dot Product on FPGAs,” in Euro-Par 2010 Parallel Processing Workshops, ser.

Lecture Notes in Computer Science vol. 6586. Italy: Springer, 2011, pp. 399–406.

177

http://dx.doi.org/10.1109/ISCAS.1992.230408
http://dx.doi.org/10.1109/ISCAS.1988.15339
http://dx.doi.org/10.1049/ip-cdt:20045086
http://dx.doi.org/10.1007/978-3-642-03138-0_23
http://dx.doi.org/10.1007/3-540-46117-5_10
http://portal.acm.org/citation.cfm?id=1804800

[14] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M. Panainte,

“The MOLEN polymorphic processor,” IEEE Transactions on Computers, vol. 53, no. 11, pp.

1363–1375, Nov. 2004. [Online]. Available: http://dx.doi.org/10.1109/TC.2004.104

[15] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The GARP architecture and

C compiler,” Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000. [Online]. Available:

http://dx.doi.org/10.1109/2.839323

[16] R. E. Gonzalez, “A software-configurable processor architecture,” IEEE Micro, vol. 26, no. 5,

pp. 42–51, September 2006. [Online]. Available: http://dx.doi.org/10.1109/MM.2006.85

[17] H. P. Huynh, “Instruction-Set Customization for Multi-Tasking Embedded Systems,” Ph.D. dis-

sertation, National University of Singapore, Singapore, 2009.

[18] K.-I. Kum and W. Sung, “Combined word-length optimization and high-level synthesis

of digital signal processing systems,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, no. 8, pp. 921–930, Aug. 2001. [Online]. Available:

http://dx.doi.org/10.1109/43.936374

[19] A. A. Gaffar, O. Mencer, W. Luk, P. Y. K. Cheung, and N. Shirazi, “Floating-point

bitwidth analysis via automatic differentiation,” in 2002 IEEE International Conference on

Field-Programmable Technology, 2002. (FPT). IEEE, 2002, pp. 158–165. [Online]. Available:

http://dx.doi.org/10.1109/FPT.2002.1188677

[20] A. A. Gaffar, O. Mencer, W. Luk, and P. Y. K. Cheung, “Unifying Bit-Width optimisation

for Fixed-Point and Floating-Point designs,” in 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines. IEEE, 2004, pp. 79–88. [Online]. Available:

http://dx.doi.org/10.1109/FCCM.2004.59

[21] G. A. Constantinides, “Perturbation analysis for word-length optimization,” in 11th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM 2003.

IEEE Comput. Soc, 2003, pp. 81–90. [Online]. Available: http://dx.doi.org/10.1109/FPGA.

2003.1227244

[22] B. Lesser, M. Mücke, and W. N. Gansterer, “Effects of reduced precision on floating-point SVM

classification accuracy,” in International Conference on Computational Science (ICCS 2011).

Elsevier, June 2011.

[23] C. F. Fang, T. Chen, and R. A. Rutenbar, “Floating-point error analysis based on affine

arithmetic,” in Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03).

2003 IEEE International Conference on, vol. 2, 2003, pp. II–561–4. [Online]. Available:

http://dx.doi.org/10.1109/ICASSP.2003.1202428

[24] D. U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,

“Accuracy-Guaranteed Bit-Width Optimization,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 25, no. 10, pp. 1990–2000, October 2006.

[25] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer, “Automatic Accuracy-Guaranteed

Bit-Width Optimization for Fixed and Floating-Point Systems,” in 2007 International Conference

on Field Programmable Logic and Applications (FPL), Aug. 2007, pp. 617–620.

178

http://dx.doi.org/10.1109/TC.2004.104
http://dx.doi.org/10.1109/2.839323
http://dx.doi.org/10.1109/MM.2006.85
http://dx.doi.org/10.1109/43.936374
http://dx.doi.org/10.1109/FPT.2002.1188677
http://dx.doi.org/10.1109/FCCM.2004.59
http://dx.doi.org/10.1109/FPGA.2003.1227244
http://dx.doi.org/10.1109/FPGA.2003.1227244
http://dx.doi.org/10.1109/ICASSP.2003.1202428

[26] G. F. Caffarena, “Combined Word-Length Allocation and High-Level Synthesis of Digital Signal

Processing Circuits,” Ph.D. dissertation, Universidad Politécnica De Madrid, 2008.

[27] J. L. D. Comba and J. Stolfi, “Affine arithmetic and its applications to computer graphics,”

in Anais do VI Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens (SIB-

GRAPI’93), Oct. 1993, pp. 9–18.

[28] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen, “Toward efficient static analysis of finite-

precision effects in DSP applications via affine arithmetic modeling,” in DAC ’03: Proceedings of

the 40th annual Design Automation Conference. New York, NY, USA: ACM, 2003, pp. 496–501.

[29] G. Cybenko, “Error Analyses of Some Signal Processing Algorithms,” Ph.D. dissertation, Prince-

ton University, Princeton, NJ, 1978.

[30] ——, “The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of

Equations,” SIAM Journal on Scientific and Statistical Computing, vol. 1, no. 3, pp. 303–319,

1980. [Online]. Available: http://dx.doi.org/http://dx.doi.org/10.1137/0901021

[31] K. Konstantinides, V. C. Tyree, and K. Yao, “Single chip implementation of the Levinson algo-

rithm,” IEEE Journal of Solid-State Circuits, vol. 20, no. 5, pp. 1072–1079, Oct. 1985.

[32] J. H. Chen, M. J. Melchner, R. V. Cox, and D. O. Bowker, “Real-time implementation and

performance of a 16 kb/s low-delay CELP speech coder,” in 1990 International Conference on

Acoustics, Speech, and Signal Processing, ICASSP-90. IEEE, Apr. 1990, pp. 181–184 vol.1.

[33] A. Sanyal, S. Das, P. Venkateswaran, S. K. Sanyal, and R. N. Nandi, “An efficient time do-

main speech compression technique and hardware implementation on TMS320C5416 digital signal

processor,” in International Conference on Signal Processing, Communications and Networking,

ICSCN ’07. IEEE, Feb. 2007, pp. 26–29.

[34] M. Kim, J. Lee, and Y. Kim, “Implementation of the Levinson algorithm for MMSE equalizer,”

in International SoC Design Conference, 2008. ISOCC ’08., vol. 03. IEEE, Nov. 2008, pp.

III–15–III–16.

[35] A. Sergiyenko, O. Maslennikow, P. Ratuszniak, N. Maslennikowa, and A. Tomas,

Application Specific Processors for the Autoregressive Signal Analysis, ser. Lecture Notes

in Computer Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski,

Eds. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2010, vol. 6067. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-14390-8 9

[36] T. V. Huynh and M. Mücke, “Exploiting Reconfigurable Hardware to Provide Native Support

of Double Precision Arithmetic on Embedded CPUs,” in Research Poster Session, International

Supercomputing Conference (ISC), Hamburg, Germany, 2010.

[37] T. V. Huynh, M. Mucke, and W. Gansterer, “Native double precision LINPACK implementation

on a hybrid reconfigurable CPU,” in 2011 IEEE International Symposium on Parallel and Dis-

tributed Processing Workshops and Phd Forum (IPDPSW), Anchorage, Alaska, USA, May 2011,

pp. 298 –301.

179

http://dx.doi.org/http://dx.doi.org/10.1137/0901021
http://dx.doi.org/10.1007/978-3-642-14390-8_9

[38] T. V. Huynh and M. Mücke, “Error analysis and precision estimation for floating-point dot-

products using affine arithmetic,” in 2011 IEEE International Conference on Advanced Technol-

ogy for Communications (ATC2011), Danang, Vietnam, Aug 2011, pp. 319 –322.

[39] T. V. Huynh, M. Mücke, and W. N. Gansterer, “Evaluation of the Stretch S6 Hybrid Recon-

figurable Embedded CPU Architecture for Power-Efficient Scientific Computing,” in 2012 Inter-

national Conference on Computational Science (ICCS), Omaha, Nebraska, USA, June 2012, in

press.

[40] T. V. Huynh and M. Mücke, “A Tool for Floating-Point Rounding Error Modeling and Estimation

in Scientific Computing Applications using Affine Arithmetic,” in under preparation, 2012.

[41] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A multiple-precision

binary floating-point library with correct rounding,” ACM Trans. Math. Softw., vol. 33, no. 2,

pp. 13+, June 2007. [Online]. Available: http://dx.doi.org/10.1145/1236463.1236468

[42] F. Fang, T. Chen, and R. A. Rutenbar, “Floating-point bit-width optimization for low-power

signal processing applications,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2002 (ICASSP ’02), Aug. 2002, pp. III–3208–III–3211. [Online]. Available:

http://dx.doi.org/10.1109/ICASSP.2002.1005370

[43] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! Technology: Architecture and

Implementations,” IEEE Micro, vol. 19, no. 2, pp. 37–48, March 1999. [Online]. Available:

http://dx.doi.org/10.1109/40.755466

[44] Intel SSE4 Programming Reference.

[45] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale, “AltiVec extension to PowerPC

accelerates media processing,” IEEE Micro, vol. 20, no. 2, pp. 85–95, March 2000. [Online].

Available: http://dx.doi.org/10.1109/40.848475

[46] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford, UK: Oxford

University Press, 2000. [Online]. Available: http://portal.acm.org/citation.cfm?id=318930

[47] W. N. Gansterer, M. Mücke, and K. Prikopa, “Arbitrary precision iterative refinement,” 2011.

[48] Stretch Inc., Stretch SCP Programmer’s Reference - Version 1.0. Stretch INC, 2007.

[49] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,

D. Stehlé, and S. Torres, Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[50] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark: Past, present and

future,” Concurrency and Computation: Practice and Experience, vol. 15, no. 9, pp. 803–820,

2003. [Online]. Available: http://dx.doi.org/10.1002/cpe.728

[51] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,

4th Edition, 4th ed. Morgan Kaufmann, Sept. 2006. [Online]. Available: http:

//www.worldcat.org/isbn/0123704901

[52] R. E. Moore, Interval Analysis. Prentice-Hall, Englewood Cliffs N. J., 1966.

180

http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1109/ICASSP.2002.1005370
http://dx.doi.org/10.1109/40.755466
http://dx.doi.org/10.1109/40.848475
http://portal.acm.org/citation.cfm?id=318930
http://dx.doi.org/10.1002/cpe.728
http://www.worldcat.org/isbn/0123704901
http://www.worldcat.org/isbn/0123704901

[53] J. Stolfi and L. H. Figueiredo, “Self-validated numerical methods and appications,” in Brazilian

Mathematics Colloquium Monograph, Rio de Janeiro, Brazil, 1997.

[54] D. P. Bertsekas and J. N. Tsitsiklis, Introduction To Probability. Athena Scientific, 2002.

[55] Y. Voronenko and M. Puschel, “Mechanical Derivation of Fused Multiply-Add Algorithms for

Linear Transforms,” IEEE Transactions on Signal Processing, vol. 55, no. 9, pp. 4458–4473,

Sept. 2007. [Online]. Available: http://dx.doi.org/10.1109/TSP.2007.896116

[56] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot product,” SIAM

J. Sci. Comput., vol. 26, no. 6, pp. 1955–1988, June 2005. [Online]. Available:

http://dx.doi.org/10.1137/030601818

[57] S. Boldo and J. M. Muller, “Some Functions Computable with a Fused-MAC,” in 17th IEEE

Symposium on Computer Arithmetic (ARITH’05). Washington, DC, USA: IEEE, 2005, pp.

52–58. [Online]. Available: http://dx.doi.org/10.1109/ARITH.2005.39

[58] S. Boldo and J.-M. Muller, “Exact and Approximated Error of the FMA,” IEEE

Transactions on Computers, vol. 60, no. 2, pp. 157–164, February 2011. [Online]. Available:

http://dx.doi.org/10.1109/TC.2010.139

[59] S. Graillat, P. Langlois, and N. Louvet, “Algorithms for accurate, validated and fast polynomial

evaluation,” Japan Journal of Industrial and Applied Mathematics, vol. 26, no. 2, pp. 191–214,

Oct. 2009. [Online]. Available: http://dx.doi.org/10.1007/BF03186531

[60] P. Langlois and N. Louvet, “Operator Dependant Compensated Algorithms,” in 12th

GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic

and Validated Numerics (SCAN). IEEE, 2006, pp. 2–2. [Online]. Available: http:

//dx.doi.org/10.1109/SCAN.2006.36

[61] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the IBM RISC system/6000

floating-point execution unit,” IBM J. Res. Dev., vol. 34, no. 1, pp. 59–70, 1990. [Online].

Available: http://dx.doi.org/10.1147/rd.341.0059

[62] E. Quinnell, E. E. Swartzlander, and C. Lemonds, “Bridge Floating-Point fused Multiply-Add

design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 12,

pp. 1727–1731, Dec. 2008. [Online]. Available: http://dx.doi.org/10.1109/TVLSI.2008.2001944

[63] J. D. Pryce and G. F. Corliss, “Interval arithmetic with containment sets,” Computing, vol. 78,

no. 3, pp. 251–276, Nov. 2006. [Online]. Available: http://dx.doi.org/10.1007/s00607-006-0180-4

[64] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.). Baltimore, MD, USA: Johns

Hopkins University Press, 1996.

[65] T. F. Chan and P. C. Hansen, “A look-ahead Levinson algorithm for general Toeplitz systems,”

IEEE Transactions on Signal Processing, vol. 40, no. 5, pp. 1079–1090, May 1992.

[66] P. Delsarte and Y. Genin, “The Split Levinson Algorithm,” IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. 34, no. 3, pp. 470–478, June 1986.

181

http://dx.doi.org/10.1109/TSP.2007.896116
http://dx.doi.org/10.1137/030601818
http://dx.doi.org/10.1109/ARITH.2005.39
http://dx.doi.org/10.1109/TC.2010.139
http://dx.doi.org/10.1007/BF03186531
http://dx.doi.org/10.1109/SCAN.2006.36
http://dx.doi.org/10.1109/SCAN.2006.36
http://dx.doi.org/10.1147/rd.341.0059
http://dx.doi.org/10.1109/TVLSI.2008.2001944
http://dx.doi.org/10.1007/s00607-006-0180-4

[67] J. Le Roux and C. Gueguen, “A fixed point computation of partial correlation coefficients in

linear prediction,” in IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), vol. 2. IEEE, May 1977, pp. 742–743.

[68] C. P. Rialan and L. L. Scharf, “Fixed-point error analysis of the lattice and the Schur algorithms

for the autocorrelation method of linear prediction,” IEEE Transactions on Acoustics, Speech

and Signal Processing, vol. 37, no. 12, pp. 1950–1957, Dec. 1989.

[69] P. Delsarte and Y. Genin, “On the splitting of classical algorithms in linear prediction theory,”

IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 35, no. 5, pp. 645–653, May

1987.

[70] J. R. Bunch, “Stability of Methods for Solving Toeplitz Systems of Equations,” SIAM Journal

on Scientific and Statistical Computing, vol. 6, no. 2, pp. 349–364, 1985.

[71] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, “A Superfast Algorithm for Toeplitz

Systems of Linear Equations,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 4,

pp. 1247–1266, 2008. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/040617200

[72] R. Viswanathan and J. Makhoul, “Quantization properties of transmission parameters in linear

predictive systems,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 23, no. 3,

pp. 309–321, June 1975. [Online]. Available: http://dx.doi.org/10.1109/TASSP.1975.1162675

[73] C. N. Papaodysseus, E. B. Koukoutsis, and C. N. Triantafyllou, “Error sources and error prop-

agation in the Levinson-Durbin algorithm,” IEEE Transactions on Signal Processing, vol. 41,

no. 4, pp. 1635–1651, 1993.

[74] http://www.ldc.upenn.edu/, (last accessed: July 06, 2012).

[75] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters at 24 bits/frame,”

IEEE Transactions on Speech and Audio Processing, vol. 1, no. 1, pp. 3–14, Jan. 1993.

[76] F. de Dinechin and B. Pasca, “Custom arithmetic datapath design for FPGAs using the

FloPoCo core generator,” Design & Test of Computers, IEEE, vol. 28, no. 4, pp. 18– 27,

Jul.-Aug. 2011. [Online]. Available: http://dx.doi.org/10.1109/MDT.2011.44

[77] FloPoCo, (last accessed: July 06, 2012). [Online]. Available: http://flopoco.gforge.inria.fr/

[78] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,

A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for

DSP transforms,” Proceedings of the IEEE, special issue on “Program Generation, Optimization,

and Adaptation”, vol. 93, no. 2, pp. 232– 275, 2005.

[79] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath representation and

manipulation for implementing DSP transforms,” in Design Automation Conference (DAC), 2008,

pp. 385–390.

[80] SPIRAL, (last accessed: July 06, 2012). [Online]. Available: http://www.spiral.net/

— End —

182

http://epubs.siam.org/doi/abs/10.1137/040617200
http://dx.doi.org/10.1109/TASSP.1975.1162675
http://dx.doi.org/10.1109/MDT.2011.44
http://flopoco.gforge.inria.fr/
http://www.spiral.net/

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions
	1.4 Publications
	1.5 Thesis Outline

	2 Floating-Point Arithmetic Performance
	2.1 Introduction
	2.2 Floating-Point Performance on CPUs, GPUs and FPGAs
	2.3 Floating-Point Performance on Hybrid Reconfigurable CPUs
	2.3.1 The Stretch S6 CPU
	2.3.2 Area Performance on Stretch S6 CPU
	2.3.3 LINPACK Performance on Stretch S6 CPU
	2.3.4 S6 ISEF Interface Performance Characterisation

	2.4 Conclusions

	3 Floating-Point Error Analysis Using Affine Arithmetic: Theory
	3.1 Introduction
	3.2 Background
	3.2.1 Floating-Point Arithmetic
	3.2.2 Interval Arithmetic
	3.2.3 Affine Arithmetic

	3.3 Floating-Point Error Modeling with Affine Arithmetic
	3.3.1 AA-Based Error Model for Floating-Point Numbers
	3.3.2 AA-Based Error Models for Basic Floating-Point Operations

	3.4 AA-Based Error Model for a Fused Multiply-Accumulate
	3.4.1 Motivation
	3.4.2 AA-Based Error Model for FMA

	3.5 Estimation of Rounding Error Bound from AA Form
	3.6 AA-Based Error Model versus Conventional Error Model
	3.7 Conclusions

	4 Floating-Point Error Analysis Using Affine Arithmetic: A Matlab-based Framework
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Related Software Tools
	4.1.3 Framework Overview

	4.2 Error Estimation using The AAFloat Class
	4.2.1 AAFloat Overview
	4.2.2 AAFloat Methods
	4.2.3 Special Affine Forms and Handling Special Cases

	4.3 Error Verification via Simulations
	4.4 Examples
	4.4.1 AAFloat in Error Analysis of Sequential Dot-Products
	4.4.2 AAFloat in Error Analysis of Levinson-Durbin Algorithm

	4.5 Conclusions

	5 Applications
	5.1 Introduction
	5.2 Rounding Error Analysis of Floating-Point Dot-Products
	5.2.1 Motivation
	5.2.2 Dot-Product
	5.2.3 Experimental Setup
	5.2.4 Experimental Results
	5.2.5 Analytical Error Models of Floating-Point Dot-Products
	5.2.6 AA-based Error Analysis versus Conventional Error Analysis
	5.2.7 Summary

	5.3 Rounding Error Analysis of Floating-Point Levinson-Durbin Algorithm
	5.3.1 Motivation
	5.3.2 Levinson-Durbin Algorithm
	5.3.3 Experimental Setup
	5.3.4 Experimental Results
	5.3.5 AA-based Error Analysis for Levinson-Durbin Algorithm
	5.3.6 Summary

	5.4 Conclusions

	6 Conclusion
	6.1 Scientific Contributions
	6.2 Future Work

	A AA-Based Error Model for Floating-Point Reciprocal
	B AA-Based Error Model for Floating-Point Square Root
	C Norms and Condition Number
	C.1 Vector Norms
	C.2 Matrix Norms
	C.3 Condition Number

	D Matlab Code
	D.1 Code for custom-precision floating-point Levinson-Durbin algorithm
	D.2 Code for AA-based floating-point error analysis of the Levinson-Durbin algorithm using the AAFloat class
	D.3 Code for floating-point error analysis of Levinson-Durbin algorithm using AA-based Scaling Operator

	E Reports for Error Analysis of Levinson-Durbin Algorithm using AAFloat Tool
	E.1 Report for scenarios 1 and 2
	E.2 Report for scenario 3
	E.3 Report for scenario 4
	E.4 Report for scenario 5
	E.5 Report for case using the AA-based scaling operator (AASO): Hard error bound
	E.6 Report for case using the AA-based scaling operator (AASO): Probabilistic error bound

	Bibliography

