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Abstract

Modeling in biomechanics plays an important role in simulating biological functions and
has great potential to aid medical clinicians in determining the cause of a disease, the type
of treatment or by aiding in the training of a surgical procedure. Cardiovascular diseases
(CVDs) are the leading cause of mortality today. This thesis therefore aims at developing
a framework for the modeling CVDs, such as cerebral aneurysms or heart diseases with
increased myofiber dispersion as seen in, e.g., hypertrophic cardiomyopathy.

To this end, a three-dimensional growth model of a human saccular cerebral aneurysm is
presented that includes the anisotropy of the medial layer. It is shown that including fibers
in the media reduces the maximum principal stress, thickness increase and shear stress in
the aneurysm wall. It is also shown that the axial pre-stretch has a large impact on the
stress levels and thickness increase in the aneurysm wall.

In addition, the constituents needed for the numerical implementation of a structurally
based constitutive law describing the behavior of passive myocardium is shown. A com-
parison is made between this invariant based model and a commonly used Green-Lagrange
strain based model and it is shown that using material parameters retrieved when both
models is fitted against a simple shear mode experiment, the invariant based model is bet-
ter suited to predict the stress in the myocardium for other modes of deformation. The
passive cardiac model is coupled together with an evolution equation responsible for gen-
erating the active stress. A model of the left ventricle (LV) is presented where pressure is
calculated as a response to the change in the ventricular volume in order to ensure phys-
iologically realistic pressure-volume loops. The influence of myocardial fiber and sheet
distribution is investigated by using two different setups, a generic setup and one based on
experiments. The results implies that spacial heterogeneity may play a critical role in me-
chanical contraction of the LV and that geometrical descriptions of deformation are needed
when evaluating the accuracy of a ventricular model.

Further, a novel approach to model the disarray of both the fiber and sheet orientations
evident in, especially diseased, myocardium is presented. Analytical and numerical simu-
lations show that the dispersion parameter has great effect on myocardial deformation and
stress development. The results also show that the dispersion has a significant impact on
pressure-volume loops of an LV, and in future simulations the presented dispersion model
for myocardium may advantageously be used together with models of, e.g., growth and re-
modeling of various cardiac diseases. In cases where fiber-reinforced models are extended
to include the effect of distributed fiber orientations, neither the mathematical nor physi-
cal motivation for tension-compression fiber switching is clear, and in fact several choices
exist for the material modeler. Therefore, methods to study such switching mechanisms
is explored by analyzing six potential switching cases. Two different permeations of the
dispersed fiber-reinforced model is proposed, depending on whether one can assume that
the fibers are (nearly) uncoupled or strongly coupled to the isotropic ground matrix.
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Zusammenfassung

Die Modellierung in der Biomechanik spielt eine wichtige Rolle bei der Simulation von
biologischen Funktionen und unterstützt Ärzte bei der Diagnose sowie auch bei der weite-
ren Behandlung von Erkrankungen. Auch im Bereich des Trainings von operativen Eingrif-
fen bietet die Modellierung und Simualtion große Möglichkeiten. Kardiovaskuläre Erkran-
kungen sind die führenden Ursachen von Morbidität und Sterblichkeit in der westlichen
Welt. Aus diesem Grund ist das Ziel dieser Dissertation die Entwicklung von Computer-
modellen für kardiovaskuläre Erkrankungen wie etwa Aneurysmen oder Herzerkrankun-
gen mit erhöhter Muskelfaserdispersion welche zum Beispiel bei der hypertrophen Kar-
diomyopathie beobachtet werden kann.

Aus diesem Grund wurde ein dreidimensionales Wachstumsmodell eines sackförmigen
menschlichen Aneurysmas im Gehirn entwickelt welches die Anisotropie der mittleren
Arterienschichte berücksichtigt. Die Ergebnisse des Modells lassen erkennen, dass die Be-
rücksichtigung der Kollagenfasern in der mittleren Schicht die maximale Hauptnormal-
spannung, die Zunahme der Dicke und die Scherspannung in der Wand des Aneurysmas
verringern. Ferner ist ein erheblicher Einfluss der axialen Vordehnung auf die Spannungs-
größe und auf die Zunahme der Wanddicke des Aneurysmas zu beobachten.

Ein strukturbasiertes Materialmodell zur Beschreibung des passiven mechanischen Verhal-
tens des menschlichen Myokards und die für die numerische Implementierung benötigten
Komponenten wird beschrieben. Darauffolgend wird das passive Modell mit den für die
Generierung der aktiven Spannungsanteile zuständigen Gleichungen gekoppelt. Die Mo-
dellbeschreibung basiert auf den Green-Lagrangschen Verzerrungen. Materialparameter
wurden für beide Modelle durch eine Ausgleichungsrechnung (curve fitting) eines einfa-
chen Schubversuches gewonnen. Es konnte gezeigt werden, dass das vorgeschlagene Mo-
dell die Spannungen im Myokard sehr gut wiedergeben kann. Ein Computermodell des
linken Ventrikels (LV) wird präsentiert, bei welchem der Druck als Funktion der Ände-
rung des Ventrikelvolumens berechnet wird um physiologische Druck-Volumen-Kurven
zu erhalten. Dabei wird der Einfluss der Muskelfaser- und der Lamellenverteilung auf das
biomechanischen Verhalten des Myokards durch das Verwenden von zwei unterschied-
lichen Konfigurationen untersucht: einer generischen und einer experimentell ermittelten
Konfiguration. Das Ergebnis zeigt, dass die räumliche Heterogenität eine entscheidende
Rolle in der mechanischen Kontraktion des LV spielt und das diese räumliche Heterogeni-
tät auch gebraucht wird um die Genauigkeit der Analysen am LV zu verbessern.

Ein neuer Ansatz zur Modellierung der Verteilung der Muskelfaser- und der Lamellenori-
entierung im Myokard, speziell im erkrankten Myokard, wird erörtert. Analytische und
numerische Simulationen lassen darauf schließen, dass die Faserverteilung des Myokards
einen großen Einfluss auf die Deformation und die Spannungen im Myokard hat. Wei-
ters zeigen Ergebnisse, dass die Faserverteilung erhebliche Veränderungen in den Druck-
Volumen-Kurven des LV hervorruft. Für zukünftige Simulationen kann das entwickelte
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Modell vorteilhaft mit Modellen für Wachstum und Remodellierung von verschiedenen
kardialen Erkrankungen genützt werden. Bei einer Erweiterung von faserverstärkten Ma-
terialmodellen um die Verteilung tritt das Problem auf, dass weder eine mathematische,
noch eine physikalische Motivation für das Hinzufügen oder das Entfernen des Faseran-
teils beim Übergang von Zug- auf Druckbeanspruchung klar beschrieben werden kann, da
es verschiedenste Möglichkeiten für den Anwender gibt. Aus diesem Grund werden sechs
potentielle Möglichkeiten für dieses Problem analysiert und zwei verschiedene Permuta-
tionen des faserverstärkten Materialmodells mit Faserverteilung vorgeschlagen, abhängig
davon, ob angenommen werden kann, dass eine starke Kopplung zwischen den Fasern
und der isotropen Grundsubstanz der extrazellulären Matrix besteht oder diese Kopplung
nahezu nicht gegeben ist.
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1. INTRODUCTION AND MOTIVATION

1.1. Biomechanical Modeling

The world health organization (WHO) has stated that cardiovascular disease (CVD) is the
leading cause of death in world. In Europe, for example, CVD comprises nearly half of
all deaths (48 %) while in the United States nearly one of every third death (32.8 %) is
attributed to CVD. Also in China, over one third of every death (35.8 %) is caused by
some form of CVD [132,134,188]. The health care costs of CVD is estimated to be e 110
billion in the European Union alone, which is about 10 % of the total health care cost.
Adding to that is another e 83 billion in indirect costs that includes production losses and
informal care [132]. To put these staggering costs in perspective, NASA estimates that the
cost to launch a space shuttle is about e 340 million (US$ 450 million) [101]. Thus, the
total costs for CVD in the European Union alone is equivalent to nearly 570 space shuttle
launches per year. The need for improvements in identification, understanding and treat-
ment of CVD’s is, therefore, of utmost importance. To this goal, biological mechanisms
that underly CVD needs to be studied, e.g., chemical, electrical and mechanical mecha-
nisms. In this thesis, we have developed a framework that includes electrophysiology and
that can easily be extended to incorporate ionic cellular models. The focus, however, lies on
the mechanical mechanisms in biomaterials. It is known that the mechanics of biological
systems has been studied since the antiquity with Aristotle’s book ‘On the Motion of An-
imals’ approximately 350 B.C.E., but it is with Fung’s early works in the 1960’s and 70’s
that modern day biomechanical modeling and the phrase biomechanics is born [74]. To-
day, modeling in biomechanics plays an important role in simulating biological functions
and has great potential to aid medical clinicians in determining the cause of a disease, the
type of treatment or by aiding in the training of a surgical procedure. Furthermore, through
mechanobiology we know that mechanical stimulus on cells and tissue may affect biolog-
ical processes. Thus, by modeling the progression of biological and mechanical processes,
biomaterials can be better understood and phenomenon such as growth and remodeling as
well as the development of various diseased states may be studied.

The most widely used framework for modeling soft tissue biomechanics is continuum
mechanics, in which the discrete particles of a biological material is considered to be a
continuum and the material behavior of each particle is translated to the overall behavior
of the continuum. Continuum mechanical models can be used on a range of spatial scales,
from individual cells or entire organs. Therefore, Section 1.2 offers a brief overview of the
necessary continuum mechanical framework that is used throughout this thesis. To model
any type of biological tissue, it is also essential to understand the responses and underlying
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2 1. Introduction and Motivation

structure of the material. The following two Sections 1.3 and 1.4, therefore, describe the
constituents and material behavior of two fascinating materials that is studied in this thesis,
namely cerebral aneurysms and ventricular myocardium. However, as the focus of this
thesis is dedicated to myocardial mechanics, this will be mirrored in the introduction.

1.2. Continuum Mechanical Framework

The basic relations in kinematics, stress, constitutive equations, incompressibility, invari-
ant formulations and strong and weak forms of a boundary-value problem, needed for the
completeness of this thesis, are covered in this section. For a more complete background on
nonlinear continuum mechanics see the book by Holzapfel [53] and references therein.

1.2.1. Kinematics

A continuum body B = {Pk}, where the mass and volume of the body is at least piecewise
continuous, consists of a set of discrete particles Pk. At a given time t, the body occupies
a region Ω(t) set in a reference frame with origin O and orthonormal basis vectors ei,
i= {1,2,3}, in a three-dimensional Euclidean space, as seen in Fig. 1.1. At some reference
time t0, a particle P set in a reference region Ω0 can be described by the position vector
X(P, t0). Here, t0 = 0 is denoted as the initial time and the region Ω0(t0) as the initial
(undeformed) configuration. At any time t > t0 the bodyBmay have transformed to occupy
the current (deformed) configuration Ω(t). The position of the particle P in the current
configuration can be described by the position vector x(P, t) = χ(X, t), where χ is denoted
as the motion of body B. Thus, the deformation gradient

F(X, t) =
∂ χ(X, t)

∂X
(1.1)

is used to described the deformation of the body B. Using infinitesimal volume elements
dV and dv in the reference and current configurations, respectively, the volume change of
a body may be described by J = dv/dV . The volume change can also be retrieved using
the determinant of the deformation gradient, i.e. J = detF(X, t) > 0, where J is known as
the Jacobian determinant.

The deformation gradient is also used to transform a vector (e.g., a fiber) a0 with length
|a0| = 1 in the reference configuration to its deformed counterpart a in the current con-
figuration by a = Fa0. The length of the deformed fiber is now |a| = λ which is called
the stretch ratio or just the stretch. Through the deformation, the deformation gradient
has rotated and stretched the undeformed vector to its deformed counterpart which is the
motivation behind the polar decomposition of F into

F = RU = vR, (1.2)

where R is a rotation tensor and U and v are the right and left stretch tensors, respectively.
Thus, F is decomposed into a pure stretch and a pure rotation in which a line element
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Figure 1.1.: Deformation of a continuum body B from the reference configuration Ω0 to
the deformed configuration Ω.

at X may first be stretched by U and then rotated to x by R, or first rotated to x by R
followed by the stretch v. The unique and proper orthogonal R has the properties RTR = I
and detR = 1, where I is the second-order identity tensor. The unique and positive definite
stretch tensors are symmetric, i.e. U=UT and v= vT, and the square of these tensors are

C = FTF = U2 and b = FFT = v2, (1.3)

which are called the right and left Cauchy-Green stretch tensors, respectively. Using these
stretch tensors, the well known Green-Lagrange strain-tensor is now given by

E =
1
2
(C− I), (1.4)

which describes the strain in Ω0 while the Euler-Almansi strain-tensor is given by

e =
1
2
(I−b−1), (1.5)

which describes the strain in Ω. The push-forward and pull-back operations are defined,
respectively, for covariant tensors as

χ∗(•)[ = F−T(•)[F−1 and χ
−1
∗ (•)[ = FT(•)[F, (1.6)

and for contravariant tensors as

χ∗(•)] = F(•)]FT and χ
−1
∗ (•)] = F−1(•)]F−T. (1.7)

Examples of covariant tensors are E[, C[, e[ and (b−1)[ while examples of contravariant
tensors are (C−1)], b] and many of the common stress tensors.
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1.2.2. Stress measures

Considering an infinitesimal surface ds with a unit vector n normal to the surface on a
part of the deformed body Ω and an infinitesimal force df, the Cauchy traction vector t is
obtained through the relation df = tds. Cauchy’s stress principle states further that

t = σσσn, (1.8)

where σσσ is the second-order Cauchy stress tensor which is symmetric, i.e. σσσ = σσσT. That
σσσ is symmetric will be shown in Section 1.2.3. The often used engineering (first Piola-
Kirchhoff) stress tensor, P, may be retrieved using the Nanson’s formula

P = JσσσF−T (1.9)

and is, in general, not symmetric but instead fulfills the relation PFT = FTP. Other conve-
nient stress measures that are often used are the symmetric Kirchhoff stress tensor

τττ = Jσσσ (1.10)

or the symmetric second Piola-Kirchhoff stress tensor obtained using the Piola transfor-
mation

S = F−1P = JF−1
σσσF−T. (1.11)

The stress tensors S and τττ are both related using the pull-back and push-forward opera-
tors

S = χ
−1
∗ (τττ]) = F−1

τττF−T and τττ = χ∗(S]) = FSFT, (1.12)

respectively.

1.2.3. Balance laws

Based on experience, basic axions are formulated called the balance laws. These laws relate
the state variables of the continuum to influences of actions outside the continuum.

Reynolds’ transport theorem. To formulate the balance laws, we first need to state the
Reynolds’ transport theorem. Let Ω be a closed spatial boundary region with a smooth
boundary ∂Ω. Also, assume we have a spatial scalar field φ = φ(x, t) that is continuously
differentiable in both x and t. Taking the time derivative of a volume integral of φ , i.e.

D
Dt

∫
Ω

φ(x, t)dv, (1.13)

where V is the volume of Ω, is not straightforward as the region Ω depends on time. The
quantities are, therefore, transformed to the referential configuration Ω0 with volume V0,
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which is time independent, i.e. x = χ(X, t) and dv = J(X, t)dV . Now, using the chain-rule,
(1.13) can be reformulated as

D
Dt

∫
Ω

φ(x, t)dv =
D
Dt

∫
Ω0

φ(χ(X, t), t)J(X, t)dV

=
∫

Ω0

[
∂φ(χ(X, t), t)

∂ t
J(X, t)+φ(χ(X, t), t)

∂J(X, t)
∂ t

]
dV

=
∫

Ω0

[
φ̇(χ(X, t), t)J(X, t)+φ(χ(X, t), t)J(X, t)divv

]
dV

=
∫
Ω

[
φ̇(x, t)+φ(x, t)divv

]
dv, (1.14)

where ∂J/∂ t = Jdivv is used and v(x, t) is a vector function in Ω. Equation (1.14) is called
the Reynolds’ transport theorem, which we here rewrite in another useful form. Utilizing
that the material time derivative of φ(x, t) is

φ̇(x, t) =
∂φ(x, t)

∂ t
+gradφ ·v, (1.15)

we can further reformulate (1.14)4 as

D
Dt

∫
Ω

φ(x, t)dv =
∫
Ω

(
∂φ(x, t)

∂ t
+gradφ ·v+φ(x, t)divv

)
dv

=
∫
Ω

{
∂φ(x, t)

∂ t
+div [φ(x, t)v]

}
dv, (1.16)

and using the divergence theorem on (1.16)2, yields the well known Reynolds’ transport
theorem as

D
Dt

∫
Ω

φ(x, t)dv =
∫
Ω

∂φ(x, t)
∂ t

dv+
∫

∂Ω

φ(x, t)v ·nds, (1.17)

where the first term on the right hand side of (1.17) denotes the rate of change of φ(x, t)
within the region Ω, while the second term denotes the rate of the outward normal flux of
φ(x, t)v out of Ω across the surface ∂Ω and ds is an infinitesimal surface.

Conservation of mass. The mass m in a closed system can neither be created nor de-
stroyed and is thus an invariant during motion for all times. This may be shown as

ṁ =
Dm
Dt

=
D
Dt

∫
Ω

ρm(x, t)dv = 0, (1.18)
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where ρm(x, t) is the spatial mass density. Using the Reynolds’ transport theorem (1.14),
ṁ can be rewritten as

ṁ =
∫
Ω

[ρ̇m(x, t)+ρm(x, t)divv]dv, (1.19)

and using the localization theorem it follows that

ρ̇m(x, t)+ρm(x, t)divv = 0 or
∂ρm(x, t)

∂ t
+div[ρm(x, t)v]. (1.20)

The continuity of mass equation relates the mass density ρm0(X) in the reference configu-
ration to the mass density ρm(x, t) = ρm(χ(X, t), t) in the current configuration as

ρm0(X) = ρm(χ(X, t), t)J(X, t). (1.21)

Balance of linear and angular momentum. The balance of linear and angular momen-
tum states that the change in linear momentum for a region Ω equals the external forces
acting on that region and that the change in angular momentum equals the external mo-
ments acting on that region. In addition, the balance between external forces and moments
and the rate of change in linear and angular momentums are valid for all parts of the con-
tinuum body. Let bF = bF(x, t) be body forces, t = t(x, t,n) be contact forces acting on a
unit area with the surface normal n and v = v(x, t) be a velocity field. In the following,
the arguments of the tensors are dropped for notational simplicity. The balance of linear
momentum takes the form

D
Dt

∫
Ω

ρmvdv =
∫
Ω

ρmbF dv+
∫

∂Ω

tds, (1.22)

and the balance of angular momentum takes the form

D
Dt

∫
Ω

r×vdv =
∫
Ω

r×ρmbF dv+
∫

∂Ω

r× tds, (1.23)

where r is the position vector associated with the infinitesimal volume element. Through
the relations (1.22) and (1.23), and in comparison with Eq. (1.17), it is seen that if bF =
000 in the region Ω and t = 000 on the surface ∂Ω, the linear and angular momentum are
conservative quantities in Ω. If instead v = 000, the sum of internal and external forces and
moments vanish, which is the condition in the classical statics equilibrium equations.

Cauchy’s equations of motion. By using Cauchy’s stress principle t=σσσn, see Eq. (1.8),
and the divergence theorem, it is straightforward to show for the second term on the right
hand side of (1.22) that ∫

∂Ω

tds =
∫

∂Ω

σσσnds =
∫
Ω

divσσσ dv. (1.24)
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Substituting this into (1.22) and using the relation

D
Dt

∫
Ω

ρmvdv =
∫
Ω

ρmv̇dv (1.25)

yields Cauchy’s first equation of motion as∫
Ω

(divσσσ +bF−ρmv̇)dv = 000. (1.26)

As (1.26) holds for any volume V , it may also be rewritten in its local form as

divσσσ +bF = ρmv̇. (1.27)

If there is no acceleration of the body, i.e. v̇ = 000, Eq. (1.27) becomes

divσσσ +bF = 000, (1.28)

which is the classical Cauchy’s equation of static equilibrium. Using the Cauchy stress
principle on the second term on right hand side of Eq. (1.23) and using the divergence
theorem yields ∫

∂Ω

r× tds =
∫

∂Ω

r×σσσnds =
∫
Ω

(r×divσσσ +EEE : σσσ
T)dv, (1.29)

wereEEE is the third order permutation tensor. Using (1.29) together with (1.25), the equation
for angular momentum (1.23) can be rewritten as∫

Ω

r× (ρmv̇−divσσσ −bF)dv =
∫
Ω

EEE : σσσ
T dv, (1.30)

which using (1.27) and the fact that (1.30) holds for any volume V , becomes

EEE : σσσ
T = 000. (1.31)

Through Eq. (1.31) it is easy to show that the relations σ12−σ21 = 0, σ13−σ31 = 0 and
σ23−σ32 = 0 must hold, which is satisfied if and only if

σσσ = σσσ
T, (1.32)

i.e. the Cauchy stress tensor is symmetric. The symmetry of the Cauchy stress tensor is
thus retrieved using the angular momentum and is referred to as Cauchy’s second equation
of motion.
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1.2.4. Constitutive equations

The relation between the deformation of a material, say represented by F, and the stress in
the material, say represented by σσσ or P, is given by the constitutive relations. If we further
consider hyperelastic materials, there must exist a Helmholtz free-energy (strain-energy)
scalar-valued function Ψ(F). A stress constitutive equation for a hyperelastic material can
then be postulated as

P =
∂Ψ(F)

∂F
, (1.33)

or

σσσ = J−1 ∂Ψ(F)
∂F

FT. (1.34)

There are many restriction on the constitutive equations. For example, it must be invariant
against rigid body motion (material objectivity), it must fulfill the balance laws (consis-
tency) and it must be possible to write a function with a unique solution given initial
values and boundary conditions (determinism). For a strain-energy function there is also
the restriction that no energy is stored in the material if there is no deformation, i.e.

Ψ(F = I) = 0. (1.35)

Also, the strain energy must be positive (or zero) for all deformations, i.e.

Ψ(F)≥ 0. (1.36)

In addition, the volume of a body can not be infinitely expanded or reduced to zero volume,
i.e. the strain energy must go towards +∞ according to

Ψ(F)→+∞ as detF→+∞, (1.37)
Ψ(F)→+∞ as detF→+0. (1.38)

From the principle of frame indifference (material objectivity) it is also clear that the strain-
energy function must follow the relation

Ψ(F) = Ψ(U) = Ψ(C) = Ψ(E), (1.39)

where the symbol Ψ is used for all strain-energy functions for notational simplicity. The
material stress constitutive relations may thus be written in terms of C or E as

P = 2F
∂Ψ(C)

∂C
and P = F

∂Ψ(E)
∂E

, (1.40)

S = 2
∂Ψ(C)

∂C
and S =

∂Ψ(E)
∂E

, (1.41)

or

σσσ = 2J−1F
∂Ψ(C)

∂C
FT and σσσ = J−1F

∂Ψ(E)
∂E

FT. (1.42)
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1.2.5. Incompressibility and near incompressibility

Many soft biological tissues exhibit an incompressible, or nearly incompressible, behavior.
The strain-energy function for an incompressible material may be obtain by introducing
the hydrostatic pressure ph as

Ψ = Ψ(F)− ph(J−1), (1.43)

where ph is determined from the boundary conditions. The Cauchy stress and the second
Piola-Kirchhoff stress tensors for an incompressible material are thus, e.g., using Ψ(C),

σσσ = 2J−1F
∂Ψ(C)

∂C
FT− phI and S = 2

∂Ψ(C)

∂C
− phC−1, (1.44)

respectively. Although the formulations in (1.44) are convenient to use in an analytical
setting, in a computational setting it is often more advantageous to use a compressible
formulation, where the (near) incompressibility of biological tissues is achieved through
a penalization of the volumetric terms. To separate the strain-energy function into a vol-
umetric (volume changing) and an isochoric (volume preserving) term, a multiplicative
decomposition of the deformation gradient is performed according to

F = (J1/3I)F, (1.45)

where J1/3I is associated with the volumetric deformation and F is associated with the
isochoric deformation. The isochoric right and left Cauchy-Green tensors may also be
retrieved using F by

C = FTF = J−2/3C and b = FFT = J−2/3b, (1.46)

respectively. Thus the strain energy function may be decoupled, say into Ψ(C) =Ψvol(J)+
Ψiso(C), where the subscripts vol and iso stands for the volumetric and isochoric parts,
respectively.

This enables an additive split of the second Piola-Kirchhoff stress tensor into a purely
volumetric and a purely isochoric contribution according to

S = Svol +Siso, (1.47)

where

Svol = 2
∂Ψvol(J)

∂C
= JphC−1 and Siso = 2

∂Ψiso(C)

∂C
= J−2/3DevS, (1.48)

and where the hydrostatic pressure ph and the fictitious second Piola-Kirchhoff stress ten-
sor S are defined by

ph =
dΨvol(J)

dJ
and S = 2

∂Ψiso(C)

∂C
, (1.49)
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and where the Lagrangian deviatoric operator is defined by the relation Dev(•) = (•)−
(1/3)[(•) : C]C−1 so that DevS : C = 0 is fulfilled, (the symbol : denotes the double con-
traction operation).

In terms of the Cauchy stress tensor, the same procedure is only possible for isotropic mate-
rials, where the decoupled strain-energy function may be formulated as Ψ(b) = Ψvol(J)+
Ψiso(b) and where an additive split of the Cauchy stress tensor leads to σσσ = σσσvol +σσσ iso.
However, since none of the materials covered in this theses are isotropic, those terms will
not be explicitly given here.

The Cauchy stress tensor for an anisotropic nearly incompressible material is instead given
by a push-forward transformation, using (1.7), of the second Piola-Kirchhoff stress tensor,
S = Svol +Siso, according to

σσσ = J−1
χ∗(S]) = 2J−1F

(
∂Ψvol(J)

∂C
+

∂Ψiso(C)

∂C

)
FT (1.50)

which yields the components

σσσvol = pI and σσσ iso = J−1F(P : S)FT, (1.51)

where the projection tensor P = I− 1/3C−1⊗C is used and I is the fourth-order identity
tensor, (the symbol ⊗ denotes the dyadic (tensor) product operation).

The elasticity tensor, needed in computational solutions of nonlinear boundary-value prob-
lems, is in terms of E, C or Ψ(C) retrieved as

C=
∂S(E)

∂E
= 2

∂S(C)

∂C
= 4

∂ 2Ψ(C)

∂C∂C
. (1.52)

In a decoupled form, C= Cvol +Ciso may be obtained, e.g., using (1.52)2, by

Cvol = 2
∂Svol

∂C
and Ciso = 2

∂Siso

∂C
. (1.53)

The elasticity tensor in the deformed configuration, labeled C, may be obtained using the
Piola transformation of C on each large index according to

C = J−1
χ∗(C), or in index notation cabcd = J−1FaAFbBFcCFdDCABCD. (1.54)

1.2.6. Invariant formulation

For an isotropic hyperelastic material the strain-energy function may be written in terms
of the principal invariants as

Ψ(C) = Ψ(I1, I2, I3), (1.55)
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where these invariants are given by

I1(C) = trC = λ
2
1 +λ

2
2 +λ

2
3 , (1.56)

I2(C) =
1
2
[(trC)2− trC2] = λ

2
1 λ

2
2 +λ

2
1 λ

2
3 +λ

2
2 λ

2
3 , (1.57)

I3(C) = detC = λ
2
1 λ

2
2 λ

2
3 . (1.58)

For an anisotropic material with a directionally dependent orientation, say in a fiber family
direction a0, a pseudo-invariant I4 may be formulated as

I4 = Fa0 ·Fa0 = a0 ·Ca0 = C : A0 = λ
2
a , (1.59)

where A0 = a0⊗ a0 is a structure tensor and λa is the stretch in the fiber direction. The
invariant I4 is thus equal to the square of the stretch in the direction of the fiber family. An
additional invariant for the fiber family a0 is given by

I5 = a0 ·C2a0 = C2 : A0, (1.60)

although this invariant has no physical interpretation. If an additional fiber family is present,
say in the direction g0, the equivalent invariants to (1.59) and (1.60) are given by

I6 = C : G0 = λ
2
g and I7 = C2 : G0, (1.61)

where λg is the stretch in the direction of the second fiber family and G0 = g0⊗g0. Further,
a coupling invariant between these two fiber families may be defined as

I8 = a0 ·Cg0. (1.62)

A hyperelastic anisotropic material with two fiber families may thus be represented by the
strain-energy function Ψ = Ψ(C,A0,G0) = Ψ(I1, . . . , I8) and the stress response may thus
be retrieved as

S = 2
∂Ψ(I1, . . . , I8)

∂C
= 2

8

∑
a=1

∂Ψ(I1, . . . , I8)

∂ Ia

∂ Ia

∂C
, (1.63)

using the chain-rule. For some deformation modes, all eight invariants are not independent
why the number of invariants used may be reduced. Also, through (1.46)1, the isochoric
counterpart of the invariants are simply retrieved as, e.g., Ī4 = C : A0 = J−2/3I4.

1.2.7. Strong and weak form of a boundary-value problem

In finite element simulations of biological tissues the weak formulation of the boundary-
value problem needs to be formulated. This section, therefore, shows one example of how
to form the strong and weak equations needed for solving a finite deformation elasticity
equations in a left ventricular (LV) passive cardiac mechanical simulation. It is, however,
equally valid for arterial mechanical simulations.



12 1. Introduction and Motivation

In LV mechanical problems, the following static mechanical equilibrium mixed boundary-
value problem, in the material (reference) configuration, is often posed,

Div(FS) = 0 in Ω0 (1.64a)

FSN =−pJ(F−1)TN on ∂Ω0t1 (1.64b)
FSN = 0 on ∂Ω0t2 (1.64c)
u(X) = 0 on ∂Ω0u1 (1.64d)

where Div(•) denotes the divergence operator with respect to the reference configuration
and N is the surface normal of the body Ω0. Equation (1.64b) is the natural boundary con-
dition where a pressure p is applied (the surface ∂Ω0t1 is usually defined as the endocardial
surface of the LV). Equation (1.64c) is the natural boundary condition which is traction free
(the surface ∂Ω0t2 is usually defined as the epicardial surface of the LV) and (1.64d) is the
essential condition of a zero displacement surface (the surface ∂Ω0u1 is often defined as
the basal plane of a truncated LV). Also other more complex boundary conditions may be
used where, e.g., the entire surface ∂Ω0u1 is not displacement free or where displacements
are prescribed in certain directions.

The pressure loading (1.64b) is a follower load, i.e. it is deformation dependent, and is,
in general, not conservative and can not be derived from a potential [191]. The principal
of virtual work is, therefore, not used as the basis for the finite element solution method.
Instead, the weak formulation is derived directly from the strong formulation, i.e. the equa-
tions in (1.64), in the following manner; let φφφ = φφφ(X) be a suitable vector-valued test
function that is satisfying homogeneous prescribed displacement boundary conditions, i.e.
φφφ = 0, on ∂Ω0u1. By forming the inner product of Eq. (1.64a) with φφφ and integrating over
the domain Ω0, the weak equilibrium equations are obtained. By using the identity

φφφ ·Div(FS) = Div
[
(FS)T

φφφ
]
−Tr

[
(FS)TGradφφφ

]
, (1.65)

we get ∫
Ω0

Div(FS) ·φφφ dv =
∫

Ω0

Div
[
(FS)T

φφφ
]

dv−
∫

Ω0

Tr
[
(FS)TGradφφφ

]
= 0. (1.66)

Further, by using Gauss’ divergence theorem∫
Ω0

Div
[
(FS)T

φφφ)
]

dv =
∫

∂Ω0

[
(FS)T

φφφ
]
·NdA, (1.67)

we get ∫
Ω0

Tr(SFTGradφφφ)dv−
∫

∂Ω0

FSN ·φφφ dA = 0, (1.68)
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where the relations S = ST and [(FS)Tφφφ ] ·N = (FSN) ·φφφ are used. Given the load p (and
potential boundary displacements), as well as the necessary material data specifying the
material function in, e.g., (1.47) and (1.48), we obtain the weak equilibrium formulation
by finding the displacement u such that∫

Ω0

Tr
[
S(FTGradφφφ)S] dv+

∫
∂Ω0t1

pJ(F−1)TN ·φφφ dA = 0 in Ω0 (1.69a)

u(X) = 0 on ∂Ω0u1 (1.69b)

is satisfied. Note that only the symmetric part, denoted (•)S, will remain of FTGradφφφ using
a Cartesian decomposition. Furthermore, the discrete equations can instead be written in
terms of the displacements as F(u) = 0, which is nonlinear in u. By using an incremental
iterative Newton-Raphson procedure, the solution u, for a given p (and potential boundary
displacements), is found. The equations in (1.69) may be used as a foundation for the finite
element equations formed using, e.g., the multipurpose finite element software FEAP, but
is often pushed forward to the spatial (deformed) configuration, see [164, 191] for more
details.

Regardless of which material that is studied, or which numerical solution scheme that is
used to model it, the constitutive models should try to capture the material behavior to
‘some’ desired accuracy, and thus it is essential to understand the underlying mechanics of
the material that is studied. The following two sections, therefore, describe the constituents
and material behavior of a cerebral aneurysm and of the myocardium.

1.3. Cerebral Aneurysms

A cerebral aneurysm is an unhealthy dilation of the arterial vessels in the brain. In con-
trast to abdominal aneurysm, which are fusiform in shape, cerebral aneurysms are of-
ten saccular, or berry shaped. They are present in 2–5 % of the general population and if
ruptured have a high mortality and morbidity rate [173]. However, most often a cerebral
aneurysm grows in a stable manner and only ruptures in 1.3 % cases per year [70]. Cere-
bral aneurysms are generally found at arterial bifurcations, with the majority at the anterior
part of the Circle of Willis [6].

1.3.1. Arterial wall

The artery surrounding the aneurysm is often healthy and consists of three layers as seen in
Fig. 1.2, the intima which is the innermost layer, the media which is the middle and thickest
layer and the adventitia which is the outermost layer. In healthy or young arteries, the
intimal layer is a very thin sheet consisting of endothelial cells laying on a basal membrane
and is often considered not to bear any load. With age or disease, however, it becomes
significantly thicker and the no-load bearing assumption is no longer valid [59]. The media
is a relatively thicker layer and consists of smooth muscle cells, elastin and collagen fibrils.
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Figure 1.2.: Diagram showing the components of a healthy artery and the three layers in-
tima, media and adventitia (left panel). Mechanically separated medial and
adventitial layers (right panel) into a stiff medial tube, shown on the left side,
and the limp adventitia, shown to the right, adapted from [54].

The smooth muscles can contract and thus alter the diameter and flow through the artery.
The collagen fibrils are arranged in a helical pathway, but with a small pitch, making
them nearly circumferential in orientation [54]. The media is fairly stiff even at a load-
free configurations, as seen in Fig. 1.2. The adventitia is composed mainly of collagen
which are arranged in a helical structure to reinforce the arterial wall. The adventitia is
soft at low loads, or a load-free state, as seen in Fig. 1.2, but stiffens significantly at higher
loads and is thus thought to protect the artery from rupture at instances of increased blood
pressure [54].

In addition, the arterial wall is residually stressed. However, as shown by Holzapfel et
al. [58], each layer of the artery is stressed in different directions. Thus, a single material
parameter, such as the opening angle suggested by Liu and Fung [88], is not enough to
characterize the three-dimensional residual stress state of arteries.

1.3.2. Evolving aneurysm

Structural changes in arterial walls and, more specifically, structural evolution of devel-
oping aneurysms have been addressed in several studies. Different approaches are used,
but the continuous turnover of collagen fibers is widely accepted to be the driving mech-
anism in the development of aneurysms. Humphrey and Rajagopal [65] suggest a general
theoretical framework for growth and remodeling of soft tissues, incorporating collagen
turnover. This framework is utilized by Baek et al. [7], who model aneurysm growth and
assume that the collagen production rate is governed by the current in-plane wall stress of
the aneurysm. They also assume that the orientation of newly deposited collagen is gov-
erned by a specific criterion, based on the principal stresses or stretches in the aneurysm
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wall, and the outcome for different criteria is evaluated. Driessen et al. [34] also model
collagen remodeling in an artery wall. In that study, the collagen fibers are assumed to be
aligned in a few fiber directions, and these alignments are assumed to evolve depending on
the principal stretches in the material.

Watton et al. [178] model aneurysm growth by assuming that collagen fibers are continu-
ously attached in a pre-stretched state and configured such that the strain in these fibers at
systole is constant. Kroon and Holzapfel [82] presented a theoretical model for the growth
of a saccular cerebral aneurysm. The growth model was assessed for an axisymmetric
problem, where the aneurysm was described as a circular membrane hinged along the
boundary and exposed to an inflation pressure. The aneurysm wall was assumed to consist
of a number of distinct collagen fiber layers. The continuous turnover of collagen in the
layers was responsible for the growth of the aneurysm, and the collagen production in the
layers was driven by a deformation measure. A parameter study was performed to outline
the general behavior of the model, and a stability analysis was provided. In Chapter 2, this
model is used to investigate the influence of an anisotropic medial layer on an evolving
cerebral aneurysm and the effects of axial in situ stretch.

1.4. Cardiac Mechanics

The heart is a complex organ which essentially acts as an electro-mechanical pump of
blood. It is comprised of four chambers, the right and left atrium and the right and left ven-
tricles. Oxygen poor blood enters the right atrium from the superior and inferior vena cava,
as well as the coronary sinus. The right atrium pumps the blood through the tricuspid valve
into the right ventricle which in turn pumps the blood through the pulmonary valve and
pulmonary trunk into the pulmonary artery and lungs where the blood gets re-oxygenated.
Oxygen rich blood enters the left atrium from the pulmonary veins and pumps it through
the mitral valve to the left ventricle. Finally, the left ventricle pumps the blood through
the aortic valve into the aorta where it continues throughout the body via the aortic tree.
The heart itself is supplied by blood from the right coronary artery which is attached to the
aortic branch.

The heart wall is comprised of three layers, the endocardium which is the innermost layer,
the myocardium which is the middle layer and the epicardium which is the outermost
layer. The heart is enclosed in a fluid which is contained in a doubled-walled sac (the
pericardium), which keeps the motion of the heart frictionless against the surrounding
tissue, where the innermost layer of the pericardium is connected to the epicardium which
is a thin protective layer of connective tissue. Also the endocardium is a very thin layer
but is comprised of cells similar to the endothelial cells of arteries. The myocardium, on
the other hand, is by far the thickest of the three layers. It is comprised of striated muscle
cells (myocytes), which work together to generate the contraction of the heart and is thus
responsible for the large pumping force.
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Figure 1.3.: Simplified model showing the basic organization of a sarcomere (top) and a
representation of the major proteins of a sarcomere (bottom), adapted from
[51].

1.4.1. Contractile unit

Each myocyte is built up of myofibrils which in turn contains several sarcomeres. The sar-
comeres, shown in Fig. 1.3, are the basic building blocks of the cardiac muscle and are what
causes the heart to contract by sliding actin and myosin filaments (thin and thick filaments,
respectively) along each other. In order for sliding to be achieved, calcium ions have to
bind to the tropomyosin (on troponin-C molecules) which covers the actin filaments, thus
altering the tropomyosin and exposing binding cites where cross-bridges can be formed
between myosin heads and the actin filament. The myosin heads are bound to an adeno-
sine diphosphate (ADP) and a phosphate ion in the resting position (a resting position is
when the myosin head is not attached to the actin filament, but where the myosin head is in
a high-energy configuration). The exposure of the binding cite on the actin filament causes
the myosin head to connect, forming a cross-bridge, and loose the attached phosphate. The
remaining ADP is released causing the myosin head, still attached to the actin filament,
to move in a power-stroke that also moves the actin filament. After the power-stroke, an
adenosine triphosphate (ATP) molecule is attached to the myosin head, causing a release of
the cross-bridge. The myosin head now hydrolyze the ATP into ADP and a phosphate ion,
causing a recovery stroke in which a release of energy moves the head back to its resting,
but high-energy, configuration. This sequence of power-strokes and recovery strokes are
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repeated until the calcium ions are removed and the binding cites on the actin filaments are
again covered by the tropomyosin.

The increase in calcium in a myocyte, responsible for the contraction, is triggered by a
phenomenon called calcium-induced calcium release. An action potential travels through
gap junctions to the contractile unit where it travels through the T-tubules in the Z-band
(seen in Fig. 1.3 top panel). There, the potential triggers a flux of calcium ions through
L-type calcium channels into the cell. Inside the cell, the sarcoplasmic reticulum contains
a large storage of calcium ions and it has the possibility to sense the flux increase of cal-
cium ions to the cytosol. When the sarcoplasmic reticulum senses this increase, it triggers
an additional release of its stored calcium ions which can then bind to the troponin-C
molecules. During muscle relaxation, the calcium ions in the cytosol are again retained in
the sarcoplasmic reticulum.

The action potential is generated by the pacemaker cells located at the sinoatrial node in
the right atrium. The pacemaker cells are modified myocytes which do not contract, but
instead spontaneously discharge. The action potential travels from the sinoatrial node to
the myocytes via a fast conduction network called the Purkinje system (PS). The Purkinje
fibers comprising this complex three-dimensional system are modified myocytes which
end at Purkinje-ventricular junctions. These sites may be viewed as point sources of elec-
trical wavefronts to the myocardium. The electrical wavefront in the myocardium travels
at different speeds determined by the structure of the myocardium (as described in Sec-
tion 1.4.2) and is fastest along the myocyte fiber direction and slowest in the sheet-normal
direction.

1.4.2. Structural organization of the myocardium

In general, myocyte orientation in the LV follows a right-handed helical pathway from the
endocardium towards the mid-wall, and a left-handed helical pathway from the mid-wall
towards the epicardium [93,135,169], as shown in Fig. 1.4 (a). As described by, e.g., Hort
[63], the myocytes are further bundled into layers that are four to six cells thick creating
sheets as shown in Fig. 1.4 (b). The orientation of the sheets vary both transmurally and
in the apico-basal direction [85,135,142,190]. Labeling the local myocyte direction as the
fiber direction, we may thus characterize the myocardium as an orthotropic material with
a fiber, sheet and sheet-normal direction labeled f, s and n, respectively.

In addition, the fiber alignment in the helical pathway is quite strong in a healthy heart
where the angular dispersion (AD) is only ∼ 12-15◦. In a diseased heart, e.g., with hyper-
trophic cardiomyopathy (HCM), the AD may locally increase to ∼ 25◦ [71, 72, 171]. An
increased disarray in both collagen and muscle fiber orientation is also found in other dis-
eases, such as myocardial infarction [157, 181, 192]. Experiments have further shown that
in healthy hearts, the sheet direction is also locally dispersed [28, 62, 143] and although it
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(a) DTMRI (b) Confocal microscopy

Figure 1.4.: Fiber and sheet orientation in the ventricular wall: (a) diffusion tensor mag-
netic resonance imaging (DTMRI) showing the helical structure of the my-
ocyte orientation, adapted from [135]; (b) confocal microscopy showing the
sheet structure (top) and the transmural change in the fiber structure (bottom),
adapted from [142].

has not been studied in as great detail as that of the fiber direction, it may still play a signif-
icant role in the function of myocardium [21]. However, further experiments quantifying
the sheet dispersion on diseased human hearts are needed as no data is available today.

1.4.3. Modeling cardiac mechanics

In its simplest form, the heart can be considered to act as a pump generating pressure and
blood flow. This inspired early work to model the tension in the heart wall using the law of
Laplace for thin walled spheres [186]. Although this method provides an easy way to cal-
culate wall stresses based on pressure and dimension, it does not capture any mechanical
properties of the myocardium. Linear strain theory was later used in an attempt to cap-
ture the distribution of stresses within the ventricular wall [185], but as the deformations
in many biological tissues can exceed 50–100 %, small strain theory has been shown to
yield unrealistic stress values [96]. Nonlinear finite deformation theory has now become
the standard tool, used together with the finite element method (FEM), to solve the com-
plex boundary-value problem associated with the heart. It has enabled the incorporation
of complex geometrical description, anisotropic fiber reinforcement and many different
constitutive models.

Constitutive models for myocardium. For myocardium, constitutive models often as-
sumed that the tissue is hyperelastic and thus can be characterized by a strain-energy func-
tion, as shown in Section 1.2.4. Models for myocardium that includes the muscle fiber
response are either i) transversely isotropic models or ii) orthotropic models. As pointed
out in an excellent review of cardiac models by Holzapfel and Ogden [56], the transversely
isotropic models does not capture the orthotropic behavior of myocardium, but they may
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nevertheless be useful as they often contain fewer material parameters which may be more
easily determined in vivo [106]. Common transversely isotropic models are the exponen-
tial Fung-type models (based on [43]), e.g., the model developed by Omens et al. [113],

Ψ(E) =
1
2

a[exp(Q)−1], (1.70)

where
Q = b1E2
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or the model by Costa et al. [24] where Q changes to
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and f, s and n pertain to the fiber, sheet and sheet-normal directions, respectively.

For models that can capture the orthotropic behavior of myocardium, a common exponen-
tial Fung-type models is, e.g., the model developed by Costa et al. [22], where Ψ(E) is
given by (1.70) and Q takes the form

Q = bffE2
ff +bssE2

ss +bnnE2
nn +bfsE2

fs +bfnE2
fn +bsnE2

sn. (1.73)

The advantage of this model is that it only has 7 material parameters, however, although
interpretations for the material parameters where attempted by Costa et al. [22], those pa-
rameters are all coupled through a in (1.70), which means that their individual parameter
interpretation is questionable. Other orthotropic models are motivated by equi-biaxial ten-
sion tests, e.g., the pole-zero model develped by Hunter et al. [68],
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Here the material parameters are more easily related to the principal directions of the ma-
terial, however, the obvious drawback is that the model needs 18 material parameters, see
Schmid et al. [146,147] for a discussion on the fit of these models to the experimental data
of Dokos et al. [32].

Both the orthotropic ‘Costa’ model and the pole-zero model uses the material strain to
define the strain-energy function, and through the relations 2Eii = I4 i, where i ∈ {f,s,n}
and 2Ei j = I8 i j, where i 6= j, they may be seen as a special case of the model developed by
Holzapfel and Ogden [56], which uses the strain (and pseudo) invariants according to
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This model is micro-structurally based with only eight material parameters and each term
in the strain-energy function has a clear physical interpretation, see [56] for details.
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Myocardial stress. Constitutive models are used to determine the passive stress in the
myocardium, i.e. the stress in the tissue due to the deformation. This deformation, in turn,
originates from the contraction of the myocytes and is often modeled using either the active
strain approach or the active stress approach, see [1,137] for a review of these approaches.
In the active strain approach, the deformation gradient F is multiplicatively decomposed
into an active part Fa, described by a constitutive relations that does not store energy,
and an elastic part Fe, described by a passive constitutive model [100, 161]. In the active
stress approach, the stress tensor σσσ (defined in Section 1.2.5) is additively decomposed
into an active stress tensor σσσ a and a passive stress tensor σσσp [119, 154]. The active stress
can be modeled in several ways. A popular approach is to use a cellular tension model
calculated either from the ionic concentrations [102, 107] or directly from the electrical
potential [103]. It has also been proposed to additively separate the strain-energy function
Ψ into an active part Ψa and a passive part Ψp [177]. However, as pointed out by Skallerud
et al. [152], such a function Ψa is not a true strain-energy function but merely a term that
generate the active stress tensor, see Trayanova and Rice [166] for an excellent review of
active cardiac electro-mechanical models and coupling.

Cardiac electro-physiology. The myocardium is often approximated as a continuous
media of electrical activation and repolarization. Two common models describing this be-
havior are the reaction-diffusion equations referred to as the bidomain or monodomain
models [160]. Through a conductivity tensor present in these models, with the eigenaxes
in the fiber, sheet and sheet-normal directions, the wavefront of electrical activation spreads
with a ratio 3:2:1 along the three axis, respectively [10,12,144]. To generate the action po-
tential, many generic models are based on the famous Hodgkin-Huxley model for currents
in an axon [52], which was reduced to a two-variable model in the FitzHugh-Nagumo
model [41]. Phenomenological models, such as the Fenton-Karma or the Mahajan mod-
els [39, 91], are also used because of the simplicity to fit these models directly to experi-
mental data, see Clayton et al. [20] for a review of models for cardiac tissue electrophysi-
ology.

Electro-mechanical coupling. To couple the multi-scale tissue models and the biophys-
ical models a variety of techniques are available. Perhaps the simplest and most often used
technique is the weakly coupled approach [77]. In this approach, it is assumed that the
mechanics has a limited influence on the electrophysiology so the electrical quantities are
first calculated separately and then relevant parameters are fed into a mechanical simula-
tion of deformation and stress. The main advantages of the weakly coupled approach is
its simplicity, stability and low computation time [128]. In the strongly coupled approach
it is instead assumed that the mechanical quantities influence the electrophysiology. The
mechanical quantities are, therefore, continuously passed back to the electrical simula-
tion which enables the modeling of subtle effects such as myocardial mechano-electrical
feedback [103,117]. The strongly coupled approach is more complex than the weakly cou-
pled approach and it is prone to numerical instabilities, although those issues are being
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addressed [107, 120], see Nordsletten et al. [111] for a review on issues of coupling the
multi-physics models to cardiac mechanics.

Pressure calculations. The pressure volume relation in cardiac ventricular simulations
are often modeled to follow the classical pressure volume loops as defined by experiments,
see, e.g., [140]. This entails that the follower type pressure load p is calculated in five
consecutive steps. The first step is an initialization load, where the pressure is increased
linearly to the end diastolic pressure. This represent the filling of blood into the ventricle,
which at this point is in a relaxed state. The second step involves an isochoric (volume
preserving) contraction as both the mitral and aortic valves are considered to be closed
while the ventricle is contracting. The third load step is the ejection phase. This represent
the release of blood from the ventricle as the aortic valve opens. The fourth load step is
again an isochoric deformation, this time as the ventricle is relaxing, while the aortic valve
is closed to hinder regurgitation (back-flow). In the fifth and final step, the pressure and
volume is increasing again as the mitral valve opens and blood enters the ventricle. In
simtulations of several heart beats, the cycle then starts over from the second load step.

The first and fifth load steps are usually simulated using a linear increase of pressure. The
two isochoric loads, steps 2 and 4, may be calculated iteratively for each time step to keep
the volume V constant using pn+1 = pn + (Vn+1−Vn)/Cp as described in [168], where
Cp is a penalty parameter. The value of Cp is then set to give a computationally efficient
convergence for the isochoric solution.

The ejection phase, load step 3, is often calculated using the 2, 3 or 4-element Windkessel
models. The two element Windkessel model [116], for example, is described as

C
dp
dt

+
p
R
=−dv

dt
, (1.76)

where C and R relate to arterial compliance and resistance, respectively. Most often C
and R are considered constants, and do not account for the nonlinear behavior of arter-
ies [130, 131]. Equation (1.76) may, e.g., be solved iteratively as described in Kerckhoffs
et al. [76], or alternatively, to achieve both the isochoric deformation and the Windkessel
deformations, the pressure and volume change can directly be prescribed in the finite de-
formation elasticity equations, i.e., make them part of Eq. (1.69).

1.5. Organization of the Thesis

The thesis is a compilation of five scientific papers, which focus on different computa-
tional aspects in biomechanics. The papers span from modeling the growth of a cerebral
aneurysm to simulating the behavior of the left ventricle with an emphasis on the material
behavior. The papers are presented in the following chapters:
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2. ‘Influence of Medial Collagen Organization and Axial In Situ Stretch on Saccular
Cerebral Aneurysm Growth’, T.S.E. Eriksson, M. Kroon and G.A. Holzapfel, ASME
Journal of Biomechanical Engineering, 131:101010 (7 pages), 2009

The study focuses on the influence of an anisotropic medial layer on an evolving
cerebral aneurysm. The middle cerebral artery is modelled as a two-layered cylin-
der, where the layers correspond to the media and the adventitia. Local and instant
loss of media is considered responsible for the aneurysm growth. The adventitia is
composed of several distinct layers with collagen fibers that are the only load bearing
constituent in the aneurysm wall. Their production and degradation are depending
on the stretch of the wall and are also responsible for the growth of the aneurysm.
The anisotropy of the medial layer is modeled using a strain-energy function valid
for an elastic material with two families of fibers. The results shows that including
fiber reinforcement in the medial layer reduces the maximum principal stress, thick-
ness increase and shear stress in the aneurysm wall. A variation of the initial fiber
angles is shown to have little effect whereas the axial in situ stretch has a much larger
effect in terms of shape and stresses in the aneurysm wall.

3. ‘Tensors Needed for Finite Element Implementation of an Invariant Based Constitu-
tive Model for Passive Myocardium’, T.S.E. Eriksson, G. Plank and G.A. Holzapfel

The study focuses on the constituents needed for implementation of an invariant
based orthotropic model for passive myocardium. The stress and elasticity tensors
are shown together with a fit of the model to experimental data. A comparison is
made between the proposed invariant based model and a commonly used Green-
Lagrange strain based model and it is shown that using material parameters retrieved
when both models are fitted against a simple shear mode experiment, the proposed
model is better suited to predict the stress in the myocardium for other modes of
deformation. In addition, the finite element implementation is used on a model of the
left ventricle and it is shown that passively increasing the pressure on the endocardial
wall results in steep stress gradients through the wall thickness. This suggests that
residual stresses may need to be included in future models.

4. ‘Influence of Spatial Heterogeneity in Tissue Orthotropy upon Mechanical Contrac-
tion in the Left Ventricle’, T.S.E. Eriksson, A.J. Prassl, G. Plank and G.A. Holzapfel

The study focuses on spatial heterogeneity in myocardial tissue. A coupled model
of the left ventricle was presented where pressure was calculated as a response to
change in internal volume. The passive behavior was modeled as a hyperelastic ma-
terial using an orthotropic strain-energy function and an evolution equation was used
to generate the active stresses. The influence of myocardial fiber and sheet distribu-
tions was investigated by using two different fiber and sheet distribution setups, a
generic setup and one based on experiments. It was found that spatial heterogeneity
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may play a critical role in mechanical contraction of the LV and that geometrical de-
scriptions of deformations are needed when evaluating the accuracy of a ventricular
model.

5. ‘Modeling the Disarray in Cardiac Fiber and Sheet Orientations’, T.S.E. Eriksson,
A.J. Prassl, G. Plank and G.A. Holzapfel

The study focuses on a novel approach to model the disarray of both fiber and sheet
orientations in cardiac tissue. A material structure parameter describing the relation
between an isotropic invariant and a directionally dependent invariant was fitted to
experimental data of angular disperison in both the fiber and sheet direction. The
parameter was used to model the dispersion in myocardial tissue by augmenting
an invariant based orthotropic strain-energy function and in a structure tensor used
to determine the direction of active stress. Simulations showed that dispersion has a
great effect on myocardial stress and deformation development as well as on pressure
volume loops of a left ventricle.

6. ‘On Tension-Compression Switching in Dispersed Fiber-Reinforced Constitutive Mod-
els’, T.S.E. Eriksson, D.M. Pierce and G.A. Holzapfel

The study focuses on tension-compression switching of a dispersed fiber-reinforced
constitutive model. Large-strain, fiber-reinforced constitutive models are commonly
used for solving complex boundary-value problems in the context of the finite el-
ement method. Although the mathematical and physical motivation for including a
tension-compression fiber ‘switch’ may be clear when using models which do not in-
clude fiber dispersion, neither the mathematical nor physical motivation for tension-
compression fiber switching is so clear for cases where fiber-reinforced models are
extended to include the effect of distributed fiber orientations. Here we explore meth-
ods to study such switching mechanisms by analyzing six potential switching cases,
and draw some conclusions about the mathematical robustness and physical inter-
pretation of the different possible approaches. We propose using two different per-
meations of the dispersed fiber-reinforced models, depending on whether one can
assume that the fibers are (nearly) uncoupled or strongly coupled to the isotropic
ground matrix.

The following conference proceedings and accepted (extended) abstracts where also part
of the thesis:

• W. Rachowicz, A. Zdunek and T.S.E. Eriksson: Application of the adaptive FEM to
computational biomechanics. 6th European Congress on Computational Methods in
Applied Sciences and Engineering (ECCOMAS), Vienna, Austria, September 10–
14, 2012.
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• G.A. Holzapfel, T.S.E. Eriksson, A.J. Prassl and G. Plank: An electro-mechanically
computational model for the myocardium including fiber and sheet disarray. 23rd

International Congress of Theoretical and Applied Mechanics, Beijing (ICTAM),
China, August 19–24, 2012.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A structurally motivated model for
myocardial fiber and sheet disarray. 8th European Solid Mechanics Conference
(ESMC), Graz, Austria, July 9–13, 2012.

• W. Rachowicz, A. Zdunek and T.S.E. Eriksson: Application of the adaptive FEM to
computational biomechanics. 8th European Solid Mechanics Conference (ESMC),
Graz, Austria, July 9–13, 2012.

• C. Augustin, E. Hoetzl, T.S.E. Eriksson, A.J. Prassl, G.A. Holzapfel, O. Steinbach
and G. Plank: Application of advanced bidomain solver techniques to cardiac elec-
tromechanics. 8th European Solid Mechanics Conference (ESMC), Graz, Austria,
July 9–13, 2012.

• G.A. Holzapfel, T.S.E. Eriksson and M. Unterberger: Structurally-based computa-
tion of the biomechanical response of cardiovascular tissues. 11th International Con-
ference on Computational Plasticity. Fundamentals and Applications (COMPLAS
XI), Barcelona, Spain, September 7–9, 2011.

• W. Rachowicz, A. Zdunek and T.S.E. Eriksson: Application of hp-adaptive FEM
to medical diagnostics. Higher Order Finite Element and Isogeometric Methods
(HOFEIM), Krakow, Poland, June 27-29, 2011.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A coupled model for the left ventri-
cle including regional differences in structure and function, Proceedings in Applied
Mathematics and Mechanics (PAMM), 11:85–86, 2011.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A coupled model of the left ventricle
including regional differences in structure and function. 82nd Annual Meeting of the
Internatonal Association of Applied Mathematics and Mechanics (GAMM), Graz
University of Technology, Austria, April 18-22, 2011.

• T.S.E. Eriksson, R. Höller, G. Plank and G.A. Holzapfel: New material model for the
passive response of the myocardium: numerical realization and new experimental
data. 6th World Congress on Biomechanics, Singapore, August 1-6, 2010.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A new invariant-based constitutive
model for the passive response of the myocardium and constituents needed for FE
implementation. 1st International Conference on Material Modelling (ICMM), Dort-
mund, Germany, September 15–17, 2009.



2. INFLUENCE OF MEDIAL COLLAGEN ORGANIZATION AND
AXIAL IN SITU STRETCH ON SACCULAR CEREBRAL
ANEURYSM GROWTH

Abstract A model for saccular cerebral aneurysm growth, proposed by Kroon and
Holzapfel (J. Theor. Biol., 2007, 247:775–787; J. Biomech. Eng., 2008, 130:051012), is
further investigated. A human middle cerebral artery is modeled as a two-layer cylinder,
where the layers correspond to the media and the adventitia. The immediate loss of media
in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm
growth. The aneurysm is regarded as a development of the adventitia, which is composed
of several distinct layers of collagen fibers perfectly aligned in specified directions. The
collagen fibers are the only load bearing constituent in the aneurysm wall; their production
and degradation depend on the stretch of the wall and are responsible for the aneurysm
growth. The anisotropy of the surrounding media was modeled using the strain-energy
function proposed by Holzapfel et al. (J. Elasticity, 2000, 61:1–48) valid for an elastic
material with two families of fibers. It was shown that the inclusion of fibers in the me-
dia reduced the maximum principal Cauchy stress and the maximum shear stress in the
aneurysm wall. The thickness increase of the aneurysm wall due to material growth was
also decreased. Varying the fiber angle in the media from a circumferential direction to
a deviation of 10◦ from the circumferential direction did, however, only show a little ef-
fect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the
steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The
peak values of the maximum principal stress and thickness increase, both became signifi-
cantly higher for larger axial stretches.

2.1. Introduction

Saccular cerebral aneurysms are detected in less than 5% of the human population, and are
usually diagnosed in elder people between the fifth and the seventh decade. High blood
pressure, which is rather specific for man, appears to have some influence on the devel-
opment of cerebral aneurysms [81]. A subarachnoid hemorrhage due to the rupture of an
intracranial aneurysm is a devastating event associated with high rates of morbidity and
mortality. Approximately 12% of patients die before receiving medical attention, 40% of
hospitalized patients die within one month after the event, and more than one third of those
who survive have major neurological deficits [145].
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Cerebral aneurysms generally form and grow at arterial bifurcations in connection to the
Circle of Willis, where the internal elastic membrane is partially destroyed, and where
the media is diminished [6]. Approximately 80% of all these aneurysms occur at one of
three main sites, i.e. the carotid/posterior communicating respectively anterior choroidal
artery junction, the anterior communicating artery, and the middle cerebral artery main
bifurcation [156].

Determination of the structure of the aneurysm wall is a necessary precursor to establish
suitable constitutive relations for this type of tissue. For this purpose, experimental in-
vestigations of aneurysmal tissue, for example, in terms of tensile testing and histological
examinations, are necessary, but theoretical modeling may also provide important insights.
Structural changes of artery walls and, more specifically, structural evolution of develop-
ing aneurysms have been addressed in previous theoretical studies [7, 34, 65, 82, 83, 178].
Kroon and Holzapfel [82, 83] proposed a theoretical model for the growth of a saccular
cerebral aneurysm. In this model, the aneurysm wall was assumed to consist of a number
of distinct collagen fiber layers. The continuous turnover of collagen in the layers was re-
sponsible for the growth of the aneurysm, and the collagen production in the layers was
governed by the embedded fibroblasts.

In the present paper, this aneurysm model is further developed. A realistic 3D setting is
now employed in the form of a human middle cerebral artery. More specifically, the middle
cerebral artery is modeled as a two-layer cylinder, where the layers correspond to the media
and the adventitia. The constitutive behavior of the adventitia is governed by the aneurysm
growth model, and the media is modeled as a neo-Hookean material reinforced by two
families of collagen fibers [54]. The structural integrity of an artery or aneurysm is to
a large extent determined by the organization of the collagen fabric. The collagen of the
adventitia or an aneurysm wall is mainly Type I [6,182], whereas the collagen of the media
is mainly of Type III [14,139]. In a previous study, the influence of the organization of the
Type I collagen fabric of the adventitia was investigated [83]. Instead, the present study
focuses on the influence of the orientation of the medial collagen on aneurysm growth. In
addition, the consequences of different axial in situ stretches are studied. The influence is
quantified in terms of stress distributions, wall thickness distributions and aneurysm shape
at steady-state.

A short review of the aneurysm growth model is given in the next section. The current
problem is then formulated, followed by a presentation of the numerical model and the
numerical results. Finally, a discussion and some concluding remarks are provided.

2.2. Growth Model of a Saccular Cerebral Aneurysm

The saccular cerebral aneurysmal wall is considered to be the development of the adventitia
of the originally healthy parent artery. The aneurysm wall is modeled as a hyperelastic ma-
terial and is characterized by a strain-energy function Ψ. The only load-bearing constituent
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is the collagen that is produced by fibroblasts, spread throughout the collagen network. The
aneurysm wall is assumed to consist of n distinct and discrete layers of collagen fibers that
can be considered as plies forming a laminate. The collagen fibers within layer i are per-
fectly aligned in direction φi, and as the fibroblasts are aligned in the same direction as
the collagen fibers, newly produced collagen will be deposited at this angle as well during
the growth process. The collagen mass production rate per unit reference volume, say ṁi,
depends on both the stretching of individual fibroblasts and the proliferation of fibroblasts
which are taken to be governed by the global stretching of the aneurysm wall. The mass
production rate in layer i at time t is [82]

ṁi(t) = β0Cα
i , (2.1)

where β0 is the normal mass production rate in a reference configuration of a healthy artery
considered to be the density of fibroblasts multiplied by the collagen production rate per
fibroblast [7]. In (2.1) Ci is a scalar defined as Ci = C : A(φi), where C is the right Cauchy-
Green tensor, A(φi) = M⊗M is a structure tensor and the unit vector M has components
cosφi and sinφi, [54]. Thus, Ci is the projection of C in the direction φi of the fibers, and
the influence of Ci on the mass production rate ṁi(t) is modulated by the exponent α .

Fiber deposition occurs at time tdp and at any time between −∞ and current time t. The
related deformation gradient is then F(tdp) =R(tdp)U(tdp), where R(tdp) is the rotation ten-
sor, with detR(tdp) = 1, and U(tdp) is the right stretch tensor at time tdp, with U = UT, [53].
Decomposing the current deformation gradient at t yields F(t)=R′(t, tdp)Uloc(t, tdp)U(tdp),
where Uloc(t, tdp) is the current local material stretch to which collagen, deposited at time
tdp, is exposed, and R′(t, tdp) is another rotation tensor. Thus, the local right Cauchy-Green
tensor Cloc is

Cloc(t, tdp) = U2
loc(t, tdp) = U−1(tdp)C(t)U−1(tdp), (2.2)

where C(t) = FT(t)F(t) = U(t)2.

Collagen fibers are deposited by the fibroblasts with a pre-stretch λpre. An expression of
the resulting deformation of individual fibers is, therefore, made according to

Cfib = λ
2
preCloc : A(φi). (2.3)

A simple polynomial characterizes the strain-energy function ψfib per unit mass stored in
the collagen fibers, namely

ψfib = µc(Cfib−1)3, Cfib ≥ 1, (2.4)

where µc > 0 is a positive material parameter that is governed by the stiffness of collagen
fibers. The fibers are considered to have no stiffness in compression (Cfib < 1) so that ψfib
is only active when the fibers are in tension.
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Figure 2.1.: Middle cerebral artery modeled as a two-layer cylinder (media and adventitia).
The cylindrical structure (top right figure) constitutes the reference configura-
tion of the posed problem.

The initial thickness of each collagen layer Hadv/n is assumed to be the same for all n
layers, where Hadv is the total initial thickness of the adventitia. The total strain energy Ψ

for all plies is integrated according to

Ψ(t) =
1
n

n

∑
i=1

Ψi(t) =
1
n

n

∑
i=1

t∫
−∞

g(t, tdp)ṁi(tdp)ψfib(t, tdp)dtdp, (2.5)

where the turnover of collagen is accounted for by the use of a pulse function g(t, tdp),
which is equal to 1 for tdp ∈ [t− tlf, t] and 0 otherwise; tlf is the life-time of the collagen
fibers.

2.3. Problem Formulation

2.3.1. Model geometry, boundary and loading conditions

The intima is not considered to contribute significantly to the mechanics of the arterial
wall. Hence, the artery is modeled as a two-layered cylinder, i.e. media and adventitia,
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see Fig. 2.1. Due to symmetry only one quarter of a cylinder needs to be modeled. The
model geometry is first defined as a plane sheet with a total thickness of Hmed +Hadv and
side lengths πR0 and λLL. The thicknesses of the media and the adventitia are denoted by
Hmed and Hadv, respectively. Aneurysm growth is initiated by the removal of the media in
a circular region, characterized by the radius Ran, as shown in Fig. 2.1. The angle between
the exposed adventitia in this circular region, plane B3, and the cut in the remaining media,
plane B2, is 135◦. This plane sheet is then mapped onto a cylindrical surface with outer
radius R0. In that mapping, the geometry is also scaled in the X3-direction by a factor 1/λL,
giving the cylindrical structure the length L. Thus, the cylindrical structure, as shown at the
top right in Fig. 2.1, constitutes the reference configuration of the posed problem.

The external loading imposed on the model aneurysm consists of an internal pressure p
and an axial stretch λL. Boundary conditions in terms of tractions t and prescribed dis-
placements u are thus imposed at time t = 0+ according to (accounting for symmetry)

B1,B2,B3 : tn =−p, X1 =−R0 : u1 = 0, X2 = 0 : u2 = 0,

X3 = 0 : u3 = 0, X3 = L : u3 = (λL−1)L, (2.6)

where B1, B2, B3 are the surfaces defined in Fig. 2.1 on which the pressure acts and tn is
the normal component of the traction vector t.

2.3.2. Stress response

Aneurysm growth is initiated by a local loss of media. This damage process occurs in a
loaded state in which the artery is exposed to a blood pressure and an axial in situ stretch.
Subsequently we model the following process: (i) a healthy (undamaged) artery is exposed
to an (internal) pressure p and an axial stretch λL; (ii) a local loss of media occurs in a
region defined by the radius Ran; (iii) growth of the aneurysm starts. In order to model this
process, the reference geometry is initially defined as a plane sheet with length λLL and
with a circular damage zone; and this plane sheet is then scaled in the axial direction by
the factor 1/λL (and mapped onto a cylindrical shape) to obtain the mentioned reference
configuration.

The adventitia of a healthy artery (and the aneurysm wall) is not able to withstand any
(or very little) bending, whereas the media of healthy arteries has a significant bending
stiffness. Therefore, the adventitia is modeled as a membrane and the media as a three-
dimensional continuum (tetrahedral solid elements). The adventitia is built up of n layers
with distinct collagen fiber angle φi for each layer i, where i = 1, . . . ,n. The fiber angles are
defined by the 2D reference coordinate system ζ1-ζ2, as shown in Figs 2.1,2.2, in which
ζ1 follows the circumferential direction of the artery and ζ2 the axial direction; X3 and
ζ1-ζ2 is a local coordinate system defined in every point on the artery surface. As shown
in Fig. 2.2, the fiber distribution is uniform and the fiber direction φ1 is taken to coincide
with the ζ1-axis, see Fig. 2.1.
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Figure 2.2.: Uniform fiber distribution in the aneurysm wall shown for eight layers; the
coordinate system ζ1-ζ2 corresponds to the tangential and axial directions, as
shown in Fig. 2.1.

For the strain-energy function (2.5) that governs the constitutive response of the adventitia
the in-plane second Piola-Kirchhoff stress components Sαβ are given as

Sαβ =
2
n

n

∑
i=1

∂Ψi

∂Cαβ

=
2
n

n

∑
i=1

t∫
−∞

g(t, tdp)ṁi(tdp)
∂ψfib

∂Cαβ

dtdp, α,β = 1,2, (2.7)

where Cαβ are the components of the 2D right Cauchy-Green tensor, and indices α and
β pertain to the local 2D in-plane reference coordinate system ζ1-ζ2 in the plane of the
adventitial membrane.

When modeling the media, the components are smooth muscle cells, elastin and collagen
(Type III), [13,27]. Elastin and smooth muscle cells are expected to have a fairly linear re-
sponse. As both the smooth muscle cells and the collagen tend to be aligned approximately
in the circumferential direction, the total response of the media is, in general, anisotropic,
see [14,40,55,59,60]. In order to model the anisotropic mechanical behavior of the media,
the strain-energy function as proposed by Holzapfel et al. [54] was adopted. Thus,

Ψmed =
µM

2
(I1−3)+

k1,med

2k2,med
∑

i=4,6
{exp[k2,med(Ii−1)2]−1}, (2.8)

where the parameter µM denotes the shear modulus of the media describing the isotropic
non-collagenous matrix material (mainly elastin and passive response of smooth muscle).
The anisotropic part is related to the response of the collagen and described by k1,med and
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Figure 2.3.: Orientations a01 and a02 of two families of fibers in the media symmetrically
disposed with respect to the cylinder axis. The parameter β is the angle be-
tween the collagen fiber and the circumferential direction ζ1.

k2,med, where k1,med > 0 is a stress-like parameter and k2,med > 0 is dimensionless. They
do not depend on the geometry or fiber angle; those effects are instead introduced through
the invariants I4 and I6, and are defined as

I1 = C : I, I4 = C : A1, I6 = C : A2. (2.9)

The structure tensors A1 and A2 are

A1 = a01⊗a01, A2 = a02⊗a02, (2.10)

where the column matrices [a01] = [cosβ sinβ 0]T and [a02] = [cosβ − sinβ 0]T collect
the components of the unit vectors a01 and a02, respectively, with 2β being the angle
between the collagen fibers, as shown in Fig. 2.3. The principal values of the second Piola-
Kirchhoff stress that corresponds to the media are calculated as [53],

Sa =
1
λa

∂Ψmed

∂λa
, (2.11)

where the three principal directions are indexed a = 1,2,3.

A stress measure that is physically relevant for the aneurysm wall is the co-rotated Cauchy-
like stress measure σ?

αβ
, [53]. The in-plane membrane stress is defined as

σ
?
αβ

=
1
J?

U?
αγS?

γδ
U?

δβ
=

2
λ3J?

U?
αγ

1
n

n

∑
i=1

∂Ψi

∂C?
γδ

U?
δβ

, (2.12)
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where α and β again pertain to the local 2D in-plane reference coordinate system. The
deformation tensor C? with components C?

γδ
are given as C?(t) = Cloc(t, tdp = t − tlf),

where C?(t) = U?2(t) and J?(t) = detU?(t). This is the deformation experienced by the
‘oldest’ and most stretched fibers in the aneurysm wall. The components S?

γδ
are seen

as modified second Piola-Kirchhoff stress components that result from a differentiation
of the strain-energy function with respect to C?

γδ
. In addition, the thickness change of

the membrane (due to material growth) is introduced as λ3, which is defined as the ratio
between the current and initial aneurysm wall thickness. This ratio is estimated as

λ3 =
1

nλ1λ2

n

∑
i=1

mi

m0
, (2.13)

where λ1 and λ2 are the total principal in-plane stretches of the membrane, and mi and
m0 denote the current and reference collagen mass content, respectively. It is important
to emphasize that it is the production of new tissue that is described by the entity λ3 and
not an actual stretching. Thus, material parameters that need to be supplied are: β0µctlf, α ,
λpre, n, φ1, . . . ,φn (adventitia); µM, k1,med, k2,med (media).

In the half-closed interval t ∈ (−∞,0], the modeled reference configuration is unloaded
which for the adventitia corresponds to a uniform deformation C = I, where I is the
2D identity tensor. A uniform deformation in turn corresponds to a constant collagen pro-
duction rate ṁi(t ≤ 0) = β0, a constant fiber deformation of Cfib(t ≤ 0) = λ 2

pre, and a con-
stant strain energy per unit reference volume, i.e. Ψ(t ≤ 0) = µcβ0(λ

2
pre− 1)3tlf. At time

t = 0+, prescribed boundary conditions are imposed and the aneurysm starts to evolve.

2.3.3. Model specification, numerics

The considered model geometry is according to a healthy human middle cerebral artery [99,
153]: R0 = 1.2 mm, Hmed = 0.25 mm, Hadv = 0.30 µm. The size of the damage region,
where the media is absent, is characterized by the radius Ran set to be πR0/2. On the basis
of investigations conducted by Monson et al. [99], material stiffness parameters are set
to µM = 0.3 MPa and β0µctlf = 14 MPa (in [99] there is a substantial variation in results
and the parameters chosen are from test specimens with a relatively low stiffness). The
parameters k1,med and k2,med are based on material parameters for a carotid artery from
a rabbit [19], for which kr

1,med = 2.3632 kPa, kr
2,med = 0.8393, µ r

M = 3.0 kPa, where the
superscript ‘r’ stands for ‘rabbit’. The non-dimensional parameter is taken to be the same
for a human middle cerebral artery as for the rabbit (k2,med = kr

2,med), whereas k1,med for a
human cerebral artery is estimated by assuming that the relation

k1,med

µM
≈

kr
1,med

µ r
M

(2.14)

holds, leading to the estimation k1,med = 0.24 MPa. The length of the (quarter) model is
L = 8R0, which is considered to be sufficient in order for the ends of the artery not to have
any influence on the stress distribution in the aneurysm wall.
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The stability properties of the aneurysm model were investigated by Kroon and Holzapfel
[82]. It was found that the stabilization of the evolving aneurysmal wall was drastically
increased when the parameter α was in the range 1.5 < α < 2. Therefore, in the present
study α is set to 1.7, as most aneurysms do grow in a stabilizing manner. It was also found
that the pre-stretching of fibers in the aneurysm wall λpre should be set to a relatively low
value when compared to the in situ stretch of arteries. Hence, the pre-stretch is, therefore,
set to λpre = 1.02. The influence of the number of layers n in the media was also investi-
gated by Kroon and Holzapfel [82, 83], and it was found that as long as n≥ 4, the number
of layers does not influence the model behavior to a large degree. Hence, the number of
layers n is, therefore, set to n = 8.

The internal pressure p is set to 7 kPa which is in accordance to the internal pressure for
human carotid arteries [17]. The axial in situ stretch of human arteries depends on the
location and is in the range 1.0-1.5 [149,150]. An in situ mean stretch for cerebral arteries
of 1.31 was found by Monson et al. [98]. Three axial stretches are investigated, namely
λL = 1.0, λL = 1.2 and λL = 1.4.

The open source finite element analysis program FEAP [164] is used to analyze the prob-
lem, and the growth model of the aneurysm was implemented as a user membrane element.
Three different finite element meshes are used in the study pertaining to the different axial
stretches. The resulting mesh sizes are 13 492, 13 608, and 13 886 finite elements. Col-
lapsed, 4-node, bi-linear, membrane elements are used to model the adventitia which in-
cludes the developing aneurysm wall, and 4-node, tri-linear, tetrahedral solid elements are
used for the media. On the surfaces B1,B2, B3, surface pressure elements are used to impose
the pressure p which acts on the deformed configuration. In the region of the aneurysmal
expansion, the mesh is refined and the elements there have a characteristic size of πR0/80
which is sufficient to obtain converging results. In the solution scheme, a time-independent
procedure calculating the steady state solution directly, is used.

2.4. Numerical Results

In the present numerical study we investigate the influence of the medial collagen organi-
zation, i.e. the fiber angle β , and the axial in situ stretch λL of the artery on the growth of
the saccular cerebral aneurysm.

2.4.1. Influence of medial collagen organization

In Fig. 2.4 the distributions of the maximum principal Cauchy stress σ∗1 are displayed.
Solutions are shown for the cases with β = 0◦, 5◦, 10◦ (Figs 2.4(a)–(c)), and, as a reference,
the solution with no medial collagen fibers is also included (Fig. 2.4(d)). The axial stretch
is λL = 1.2. For all cases the stress distribution varies smoothly over the aneurysm surface
with a peak value at the fundus. When fibers are included in the media, the peak value
is lower when compared to a model without fibers. For an axial stretch of λL = 1.2 and
β = 0◦, the maximum principal stress reaches a peak value of 0.622 MPa (Fig. 2.4 (a)).
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Figure 2.4.: Distributions of maximum principal Cauchy stress σ∗1 (axial in situ stretch
λL = 1.2). The fiber angle of the medial collagen varies according to: (a) β =
0◦; (b) 5◦; (c) 10◦; in (d) no collagen fibers are included in the media, and
the related aneurysm size is noticeably larger. Including collagen fibers in the
media decreases the peak stress of 7.2%. The peak values are at the fundus.

When the fiber angle in the media is increased to 5◦ and 10◦, the maximum principal
stress becomes 0.624 MPa for both cases (Figs 2.4 (b),(c)). This is a very small change
when compared to the model without medial fibers, where the maximum principal stress is
0.670 MPa (Fig. 2.4 (d)). Thus, including collagen fibers in the media decreases the peak
stress of 7.2% compared to the solution without medial fibers. The size of the aneurysm
does not differ much between the cases with fibers (Figs 2.4(a)–(c)), but the aneurysm
without medial fibers is noticeably larger.

The corresponding distributions of the steady-state thickness change λ3, i.e. according to
Eq. (2.13), are shown in Fig. 2.5. For the three cases β = 0◦; 5◦; 10◦ the largest thickness
increase is 4.34 and occurs at the fundus (Figs 2.5 (a)–(c)). This value is lower when
compared to the case with no fibers in the media (Fig. 2.5 (d)) which has a thickness
increase of 4.56 at the fundus.

The maximum in-plane Cauchy shear stress τ for the four investigated cases is plotted in
Fig. 2.6. The maximum values are 0.093 MPa, 0.094 MPa and 0.095 MPa for the cases
with fibers in the media, as shown in Figs 2.6 (a)–(c), respectively. These values are all
lower compared to the case with no fibers in the media, which experienced a maximum
shear stress of 0.102 MPa (Fig. 2.6 (d)). The peak values do not appear at the fundus but
are located close to the neck at the long side of the aneurysm, as can be seen in Fig. 2.6.
The largest shear stress are about 15% of the largest maximum principal stresses. The min-
imum values are located between the fundus and the neck in the plane X2 = 0. It may be
noted that the maximum shear stress quantifies the difference between the two in-plane
principal stresses. Thus, we may conclude that the maximum difference between the prin-
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Figure 2.5.: Distributions of the thickness increase λ3 (axial in situ stretch λL = 1.2), i.e.
according to Eq. (2.13). The fiber angle varies: (a) β = 0◦; (b) 5◦; (c) 10◦; in
(d) no fibers are included in the media. The largest thickness increases occur
at the fundus; 4.34 for (a)–(c) and 4.56 for (d).

cipal stresses is about 0.2 MPa and occurs close to the neck of the aneurysm. We emphasize
that the stress distributions in Fig. 2.6 are symmetric with respect to the X1-X3-plane, even
though this is not obvious from Fig. 2.6.

2.4.2. Influence of axial in situ stretch

In this part of the study a constant fiber angle β = 0◦ is used, and solutions for three dif-
ferent axial stretches λL = 1.0, 1.2 and 1.4 are compared. For the different axial stretches,
the maximum principal Cauchy stress σ∗1 (again occurring at the fundus) is found to be
0.580, 0.622, 0.626 MPa, as shown in the Figs 2.7 (a)–(c), respectively. The difference in
the resulting steady-state geometry of these three cases are clearly shown in Fig. 2.7. No
axial stretch (λL = 1.0) results in a more spherical shape (Fig. 2.7(a)), whereas an axial
stretch of λL = 1.4 results in a more elliptic shape (Fig. 2.7(c)).

The thickness increases λ3 for the cases with the three axial stretches reach values of 4.07,
4.34 and 4.55 at the fundus, see Figs 2.8 (a)–(c), respectively. However, the maximum
thickness increase is not always at the fundus. For λL = 1.4, for example, the maximum
value of λ3 is not located in the aneurysm but rather in the intact artery close to the neck
of the aneurysm. The value of the maximum thickness increase in that point is 5.64.

The resulting maximum in-plane Cauchy shear stress τ reaches the maximum values 0.115,
0.0933, 0.116 MPa, respectively (Figs 2.9 (a)–(c)). As can be seen, the maximum shear
stress is lowest for λL = 1.2, whereas the peak values are almost identical for λL = 1.0 and
λL = 1.4. The location of the maximum value also changes when altering the stretch. The
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Figure 2.6.: Distributions of maximum in-plane Cauchy shear stress τ (axial in situ stretch
λL = 1.2). The fiber angle varies: (a) β = 0◦; (b) 5◦; (c) 10◦; in (d) no fibers
are included in the media. The peak values are located close to the neck at the
long side of the aneurysm (0.093, 0.094, 0.095 MPa for (a)–(c) and 0.102 MPa
for (d)). The minimum values are located between the fundus and the neck in
the plane X2 = 0.

location of the maximum values for λL = 1.0 and 1.2 is at the long side of the aneurysm,
whereas it is on the short side for λL = 1.4, see Fig. 2.9.

2.5. Discussion

In the process of saccular cerebral aneurysm growth several stages can be identified. Dur-
ing the initial stage, wall shear stress, which are induced by the blood flow, act on the intima
and may cause degradation of the media and the internal elastic lamina of the artery. As
a result, an increased load has to be carried by the adventitia, which is triggered to dilate.
If this process is continued, this dilatation may develop into a saccular aneurysm. In the
present aneurysm model, processes that relate to fluid dynamics and mechanochemical
processes leading to aneurysm growth initiation are not considered explicitly. Instead, an
initial and instant loss of the media and the internal elastic lamina is assumed to occur initi-
ating aneurysm growth. In previous works, the proposed aneurysm growth model has been
assessed for axisymmetric growth [82] and also for a more realistic 3D setting in the form
of a human middle cerebral artery [83]. In the present paper the saccular aneurysm growth
model is extended to include collagen fibers in the media of the parent artery surrounding
the aneurysm. A parameter study is performed to investigate the influence of collagen fiber
organization in the media and axial in situ stretch of the artery on the on aneurysm growth.
The driving mechanism for the aneurysm growth is the continuous turnover of collagen
fibers in the aneurysm wall. The model response is quantified in terms of the principal
Cauchy stresses, the thickness increase of the aneurysm wall and the maximum in-plane
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Figure 2.7.: Distributions of maximum principal Cauchy stress σ∗1 (fiber angle β = 0◦).
The axial stretch varies: (a) λL = 1.0; (b) 1.2; (c) 1.4. The peak values are at
the fundus. No axial stretch results in a more spherical shape, whereas an axial
stretch of 1.4 results in a more elliptic shape.

Cauchy shear stresses. The model parameters are chosen on the basis of experiments and
previous numerical results.

By introducing fibers in the media, the size of the developed aneurysm decreased notice-
ably. However, in terms of aneurysm size, there was no significant difference between
the models with different medial fiber angles. It was also noted that the maximum stress,
appearing at the fundus of the aneurysm, decreased by introducing fibers in the media.
Fibers add stiffness to the vessel and, thereby, reduce the compliance at the boundary be-
tween the aneurysm and the artery. With a decreased boundary compliance, the resulting
aneurysm size becomes smaller and the aneurysm wall stresses decrease. By increasing
the fiber angle β the peak value of the maximum principal Cauchy stress σ?

1 increases
somewhat. When β increases, the compliance in the circumferential direction of the artery
increases, and this results in a slightly wider aneurysm neck. This may in turn explain why
the aneurysm wall stress increases with increasing β .

The most drastic change in the aneurysm geometry is, however, seen by altering the axial
stretch imposed on the model. The case with no axial stretch (λL = 1.0) produced a berry-
shaped aneurysm with a very sharp neck. For the largest stretch investigated (λL = 1.4), the
neck was much less pronounced, and the aneurysm clearly became less berry-shaped. Due
to the loss of media in the aneurysm region, there is a localization in the remaining media
below the aneurysm. The reference geometry and the modeling method correspond to an
instant loss of media in a circular damage region. The size of this damage region is defined
by the radius Ran which is independent of the axial stretch. However, it should be noted that
the level of applied axial stretch will still affect how strong the localization becomes in the
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Figure 2.8.: Distributions of the thickness increase λ3 (fiber angle β = 0◦). The axial
stretch varies: (a) λL = 1.0; (b) 1.2; (c) 1.4. The increase in λ3 is not always
at the fundus. For λL = 1.4 the maximum value of λ3 is located in the intact
artery close to the neck of the aneurysm, with value 5.64.

remaining media below the aneurysm. The character of this localization will strongly affect
the shape of the aneurysm, where a higher axial stretch tends to enhance the localization
and make the aneurysm more ellipsoidal.

The axial in situ stretch of arteries is known to vary, and the values used here are in accor-
dance with clinical observations [98]; λL = 1.31 has been observed for cerebral arteries.
The axial in situ stretch had a stronger influence on the maximum principal stress in the
aneurysm than the fiber angle; higher stretches resulted in higher stresses. The surface
area of the aneurysm on which the internal pressure acts is larger for larger axial stretches,
which explains the higher stresses. The stress, however, is also influenced by the thick-
ness increase of the aneurysmal wall, which is larger for higher axial stretches and thereby
reduces the stress to some extent. The strength of cerebral aneurysmal tissue has been
experimentally estimated to 0.5-2.0 MPa [64, 90]. The peak stresses in our model for the
various axial stretches and the medial collagen fiber angles are 0.58-0.63 MPa, and are of
the same order.

Adding fibers in the media reduced the maximum thickness at the fundus from 137 µm
(λ3 = 4.56) to 130 µm (λ3 = 4.34) for λL = 1.2. As the thickness increase is governed
by the total stretch of the material (with respect to the reference configuration) and as
the inclusion of medial fibers reduced the aneurysmal stretching by stiffening the borders
between aneurysm and artery, this is an expected outcome. Changing the fiber angle in
the media resulted in a minimal increase in stretch and, thereby, a minimal increase in
thickness of the adventitia, whereas increasing the axial stretch of the artery resulted in
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Figure 2.9.: Distributions of maximum in-plane Cauchy shear stress τ (fiber angle β = 0◦).
The axial stretch varies: (a) λL = 1.0; (b) 1.2; (c) 1.4. The maximum value is
lowest for λL = 1.2, whereas the peak values are almost identical for λL = 1.0
and 1.4. The location of the maximum values for λL = 1.0 and 1.2 is at the
long side of the aneurysm and on the short side for 1.4.

relatively large stretches in the aneurysm, leading to increasing thickness. For the lowest
axial stretch considered (λL = 1.0), the thickness was 122 µm, and for the largest (λL =
1.4) 137 µm. The thickness increases are in the range of experimentally determined values
[90], where the thickness of larger cerebral aneurysms is between 116 and 212 µm.

In summary, saccular cerebral aneurysm growth has been modeled. In particular, the influ-
ences of the medial collagen organization (fiber angles) and the axial in situ stretch on the
aneurysm growth have been investigated. The previously proposed aneurysm model was
extended to include fibers in the media of the parent artery surrounding the aneurysm, and
a parameter study was performed by changing the collagen fiber angle in the media and
the axial in situ stretch of the artery. When collagen fibers were included in the media, the
peak stress in the aneurysm was reduced by 7.2% (compared to a case without fibers). In-
creasing axial stretch led to increasing steady-state aneurysm wall stresses. The numerical
results predicted by the model are in good agreement with experimental data documented
in the literature. The present study indicates that improved estimations of the mechanical
properties of the medial collagen and, in particular, of the axial in situ stretches of arteries
are necessary for a refined prediction of aneurysm growth.
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3. TENSORS NEEDED FOR FINITE ELEMENT
IMPLEMENTATION OF AN INVARIANT BASED
CONSTITUTIVE MODEL FOR PASSIVE MYOCARDIUM

Abstract In this paper constituents needed for implementation of a new structurally
based constitutive law describing the behavior of passive myocardium is shown. The model
captures the orthotropic behavior of passive myocardium with respect to its three orthog-
onal fiber, sheet and sheet-normal directions. Both the structure of the material model, in
particular the separation of invariants into separate terms, and the coordinate frame in-
dependence caused by the invariants, leads to stress and elasticity tensors which may be
implemented in a finite element software with relative ease when compared, for exam-
ple, a material model based on Green-Lagrange strains. The analytical Cauchy and second
Piola-Kirchhoff stress expressions of the model are also showed for uniaxial, biaxial and
simple shear deformation modes. The model is fitted against experimental data of passive
myocardium and a near perfect fit is shown. The sensitivity of the material parameters re-
trieved from the fit is examined where parameter bs is found to be the most sensitive for the
fit against a simple shear test. In addition, a comparison is made between the newly pro-
posed invariant based model and a commonly used Green-Lagrange strain based model.
Using material parameters retrieved when both models was fitted against a simple shear
mode experiment, the newly proposed model was better suited to predict the stress in
myocardium for a biaxial deformation when compared to experimental data. The finite
element implementation was tested on a model with an ellipsoidal geometry which is a
commonly used geometrical model to represent the left ventricle of the heart. In the geo-
metrical model, the fiber, sheet and sheet-normal directions were included and for a simple
case with internal pressure, a gradient of the fiber stress component is evident through the
wall thickness which suggests that also residual stresses may need to be included in a fu-
ture model describing the heart. It is also shown that the gradient is steeper if the fiber
direction are all aligned in the circumferential direction of the ellipsoid which also results
in a much larger deformation at the apex.

3.1. Introduction

Heart failure is the major cause of morbidity and mortality in the industrialized world.
A large percentage of patients suffers from dilated cardiomyopathy and many of these
individuals develop left ventricular dyssynchrony where the electrical activation sequence
of the heart, which orchestrates mechanical contraction, is disturbed. This entails a less
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synchronized and thus less efficient mechanical contraction of the ventricles which impairs
the heart’s ability to drive blood through the circulatory system.

Inquieries into these regulatory mechanisms by experimental means are hampered by the
inability of currently available methodology to simultaneously record electrical and me-
chanical activity in 3D with sufficient spatio-temporal resolution. Further, the multi-scale
nature of the phenomenon exacerbates the reintegration of disparate experimental data into
comprehensive models of cardiac electromechanics. For instance, the regulation of active
tension generation occurs at cellular and subcellular spatial scales, however, important
regulatory input is provided via mechanical deformation of the myocardial walls, which is
governed by spatial scales at the tissue and organ level.

Computational modeling almost naturally suggests itself as a complementary approach to
tackle these multi-scale challenges by facilitating the explicit representation of interactions
across multiple temporal and spatial scales within a single comprehensive computational
model. Such biophysically detailed multiscale models of ventricular electromechanics may
play a pivotal role in the quest of conceiving better therapeutical strategies by enabling
basic research to fully elucidate underlying mechanisms with high spatio-temporal resolu-
tion. Although the cardiac modeling community was striving for developing such modeling
tools since more than three decades [66], the methodological complexities involved and the
lack of adequate computational resources prevented major progress for many years.

Over the past few years, multi-scale computational models of ventricular electrical activity
have been routinely used in numerous studies [2, 31, 165] where models have been dis-
cretized at a paracellular resolution [11, 124] using highly detailed representations of cel-
lular dynamics with integrated models of excitation-contraction coupling and mitochon-
drial energetics [125]. In comparison, a fairly small number of studies employed organ
level models of ventricular cardiac mechanics, and, even less frequent, models of ventric-
ular electromechanics. In most of the cardiac organ level mechanics studies researchers
resorted to simplifications by using electrical-only models to predict effects on mechan-
ical performance [136], by employing simplified models of cellular dynamics [104, 117]
and active tension [79], by simplified representation of organ geometry [78, 104] and by
neglecting orthotropic properties of tissue structure [104, 117] and, finally, by largely ne-
glecting the impact of pathological alterations onto ventricular electromechanics, although
execptions do exist [170]. Evidence of the progress made in the field of computational
modeling is the introduction of models into clinical application as an additional modality
which supports clinical decisions in treating ischemic heart disease [172], the assessment
of effects of heart surgery [29] and ventricular pacing [79, 108, 170]. Undoubtedly, de-
spite the comutational complexity of the current state of the art, current models are still in
their infancy and, clearly, many of the physiological mechanisms which are aimed at to be
modeled need to be further investigated. Nonetheless, these studies provide a first glimpse
into future applications and nicely highlight the high potential and the predictive power of
biophysically detailed multi-scale models of ventricular electromechanics.
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From an organ level modeling point of view, the constitutive laws which describe the me-
chanical properties of the myocardial wall are of pivotal importance for quantitatively re-
alistic predictions of deformation feedback which serves as input to cellular regulatory
loops. In this context the fibrous and laminar arrangement of intracellular and extracellular
matrices composing the myocardial wall is of particular importance. There is accumu-
lating evidence that rotationally isotropic material descriptions overly simplify biophysi-
cal reality. This notion is strongly supported by the observation that such models fail to
quantitatively reproduce myocardial wall thickening during systole [86]. Further, it is be-
coming increasingly more apparent that regional variations in material properties are an
imporant factor in itself to understand the fundamental mechanisms underlying ventricular
mechanics. For instance, a recent experimental study demonstrated that myocardial wall
thickening is highly heterogeneous despite the absence of any heterogeneity in systolic
fiber shortening [18]. These findings support the hypothesis put forward in earlier stud-
ies by numerous authors [26, 86, 155] that rearrangement of laminar sheets of fibers, and
thus, the presence of tissue orthotropy, is a key contributor which amplifies systolic fiber
shortening into adequate myocardial wall thickening. Finally, constitutive relations are not
only spatially varying throughout the heart, they are also affected by pathologies such as
myocardial infarction [187] or dilated cardiomyopathy [114] which clearly alter passive
mechanical tissue properties significantly as a disease progresses.

It is expected that current advances made in computational modeling and the advent of
the next generation petaflops supercomputers will help to leverage a new generation of
electromechanically coupled multi-scale models of the ventricles which, eventually, enable
novel investigations of cardiac function at an unprecedented level of physiological detail.
At the very core of coupling organ level mechanics to cellular signaling is a mechanistically
sound representation of the constitutive material parameters of the myocardium which
allow accurate prediction of stresses throughout the myocardial wall. The present study
describes a numerical realization of a recently published novel constitutive law for the
myocardial wall which is a further important step towards predictive computational models
of ventricular electromechanics.

Passive myocardium has been found to be a nearly incompressible, pseudo-elastic and
anisotropic material [30], with a hyperelastic stress response often modeled by a strain-
energy function [22]. The myocytes in the myocardium of the left ventricle of the heart
is in general organized in a right-handed helical pathway from the endocoardium towards
the midwall, and a left-handed helical pathway from the midwall towards the epicardium,
[93,135,169]. Furthermore, the myocytes are bundled and form layers with a direction that
vary through the thickness of the ventricle wall, [85, 135, 142, 190]. This organization of
the myocyte, in both a fiber and sheet direction, is responsible for the twisting motion of
the heart during systole [162]. Orthotropic models are available that have shown a good
fit against experimental data. However, as the material parameters are coupled in many of
those models, for instance the model proposed by Costa et al. [22], it is often difficult to
find a clear physical interpretation what those material parameters relate to. For models
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with uncoupled material parameters, as for instance the Pole-Zero model proposed by
Hunter et al. [67], the problem is the total number of parameters, in this case 18. Such
a high number of material parameters may lead to non-uniqueness when fitting the model
to experimental data.

For a recent review of both transversally isotropic and orthotropic constitutive models
describing the passive behavior of myocardium, see Holzapfel and Ogden [56], where a
structurally based constitutive model for myocardium was introduced that includes the
orthotropic structure of the myocardium and for which the material parameters have a
clear physical interpretation. In this paper the full expression of the constituents needed
for implementation of this model in a finite element framework is shown. Also, analytical
expressions needed for fitting the model to experimental data as well as the fit against two
available experiments is shown. Further, the model is compared to the often used consti-
tutive model showed by Costa et al. [22], and an example is made calculating the stress
response when applying internal pressure on an ellipsoidal geometry which represents the
left ventricle of the heart.

3.2. Material Model

As described earlier, myocardium, the material in the left ventricle midwall, may be char-
acterized by a strain-energy function, Ψ, where the deformation has a hyperelastic stress
response. In this section the volumetric and isochoric expressions of the newly proposed
model for left ventricular myocardium [56] is shown together with the resulting stress and
elasticity tensors in both the Lagrangian and Eulerian description.

3.2.1. Volume-preserving continuum mechanical framework

We introduce the deformation gradient F and its multiplicative decomposition into a volume-
changing part J1/3I and a volume-preserving part F so that F = J1/3F, where J = detF > 0
is the volume ratio, and I is the second-order unit tensor (see, for example, [53]). The right
and left Cauchy-Green tensors follow as C = J2/3C and b = J2/3b, respectively, where
C = FTF and b = FFT denote the modified tensor quantities. Additionally we are intro-
ducing three modified invariants as

Ī1 = TrC, Ī4a = a0 · (Ca0), Ī8ab = a0 · (Cb0) = b0 · (Ca0), (3.1)

where a0 and b0 are unit vectors along the undeformed directions. The related derivatives
of Ī1, Ī4a and Ī8ab with respect to C are given by

∂ Ī1

∂C
= I,

∂ Ī4a

∂C
= a0⊗a0,

∂ Ī8ab

∂C
=

1
2
(a0⊗b0 +b0⊗a0), (3.2)

where the symbol ⊗ denotes the tensor product. The three invariants I1, I4a and I8ab are
defined in an analogous way to (3.1) and read I1 = TrC, I4a = a0 · (Ca0) and I8ab = a0 ·
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(Cb0) = b0 · (Ca0) so that the relations

Ī1 = J−2/3I1, Ī4a = J−2/3I4a, Ī8ab = J−2/3I8ab (3.3)

hold.

3.2.2. Strain-energy function for the passive mechanical responce of the
myocardium

Myocardial tissue is an orthotropic material with fiber, sheet and sheet-normal directions
denoted by the direction vectors f0, s0 and n0, respectively, as shown in Fig. 3.1.

Figure 3.1.: Orthotropic myocardial tissue showing the vectors in the fiber, sheet and sheet-
normal directions (f0, s0, n0).

We postulate here a unique decoupled representation of the strain-energy function Ψ (per
unit reference volume). It is based on the kinematic assumption as introduced above, and
is of the specific form

Ψ = Ψvol(J)+Ψiso(Ī1, Ī4f, Ī4s, Ī8fs), (3.4)

where Ψvol and Ψiso are given scalar-valued functions of J and the modified invariants
Ī1, Ī4f, Ī4s, Ī8fs, respectively. Note that these invariants are according to (3.1) where a0 and
b0 are replaced by f0 and s0, as shown in Fig. 3.1. The two scalar-valued functions then
describe the volumetric and isochoric elastic responses of the material.

The function Ψvol is treated as a penalty function enforcing the incompressibility constraint
J = 1. We use here

Ψvol =
µK

2
(J−1)2, (3.5)

where µK is the bulk modulus, which serves as a user-specified penalty parameter. With
increasing µK the violation of the constraint is reduced. If the restriction on the value
µK→ ∞ is taken, the constraint condition is exactly enforced, and then (3.4) represents a
functional for an incompressible material with J = 1. The specification of the strain-energy
function Ψiso is based on the formulation of Holzapfel and Ogden [56], and has the form

Ψiso =
a

2b
{exp[b(Ī1−3)]−1}

+ ∑
i=f,s

ai

2bi
{exp[bi(Ī4 i−1)2]−1}+ afs

2bfs
[exp(bfsĪ2

8fs)−1]. (3.6)
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As discussed in [56], the eight material parameters a, b, af, bf, as, bs, afs and bfs are all
positive and the terms containing the directionally dependent invariants are included in Eq.
(3.6) only if Ī4f > 1 and Ī4s > 1 is fulfilled.

3.2.3. Stress tensors

According to the form of the strain-energy function (3.4) the second Piola-Kirchhoff stress
tensor S = 2∂Ψ/∂C is also separated into a purely volumetric part (Svol) and a purely
isochoric (Siso) part, i.e. S = Svol +Siso. The volumetric part is

Svol = JphC−1 where ph =
dΨvol(J)

dJ
= µK(J−1) (3.7)

is the hydrostatic pressure, and the function (3.5) has been introduced. From (3.6), by using
the chain rule, the isochoric second Piola-Kirchhoff stress tensor takes on the form

Siso = 2
∂Ψiso

∂C
= 2

(
ψ1

∂ Ī1

∂C
+ψ4f

∂ Ī4f

∂C
+ψ4s

∂ Ī4s

∂C
+ψ8fs

∂ Ī8fs

∂C

)
, (3.8)

where we have introduced the definitions

ψ1 =
∂Ψiso

∂ Ī1
=

a
2

exp[b(Ī1−3)], (3.9)

ψ4 i =
∂Ψiso

∂ Ī4 i
= ai(Ī4 i−1)exp[bi(Ī4 i−1)2], i = f,s, (3.10)

ψ8fs =
∂Ψiso

∂ Ī8fs
= afsĪ8fs exp(bfsĪ2

8fs), (3.11)

which are the derivatives of (3.6) with respect to the four modified invariants Ī1, Ī4f, Ī4s and
Ī8fs. For (3.8) we have to specify the derivatives of the modified invariants with respect to
C. For the first modified invariant Ī1 = J−2/3TrC we may write by using the product rule

∂ Ī1

∂C
=−1

3
J−2/3C−1TrC+ J−2/3I = J−2/3[I− 1

3
(TrC)C−1] = J−2/3DevI, (3.12)

where Dev(•••) = (•••)− (1/3)[(•••) : C ]C−1 is the deviatoric operator in the Lagrangian de-
scription so that Dev(∂Ψiso/∂C) : C = 0. Next we need to specify the term ∂ Ī4f/∂C. By
using Ī4f = J−2/3I4f and by taking into consideration that ∂ I4f/∂C = f0⊗ f0 we get

∂ Ī4f

∂C
= J−2/3 ∂ I4f

∂C
+ I4f

∂J−2/3

∂C
= J−2/3f0⊗ f0 + I4f(−

1
3

J−2/3C−1)

= J−2/3(f0⊗ f0−
1
3

I4fC−1) = J−2/3(f0⊗ f0−
1
3

Ī4fC
−1
)

= J−2/3Dev(f0⊗ f0). (3.13)
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In an analogous manner we may write

∂ Ī4s

∂C
= J−2/3Dev(s0⊗ s0),

∂ Ī8fs

∂C
=

1
2

J−2/3Dev(f0⊗ s0 + s0⊗ f0). (3.14)

Hence, by substituting (3.12)–(3.14) into (3.8) and by adding (3.7)1 we get the explicit
expression for the second Piola-Kirchhoff stress tensor, i.e.

S = JphC−1 +2J−2/3[ψ1DevI+ψ4fDev(f0⊗ f0)+ψ4sDev(s0⊗ s0)

+
1
2

ψ8fs Dev(f0⊗ s0 + s0⊗ f0)]. (3.15)

In order to get the spatial version of this expression, we need to perform a push-forward
operation of the second Piola-Kirchhoff stress tensors to the current configuration which
is σσσ = J−1F(Svol +Siso)FT. By using (3.15) and b = J2/3b it is straightforward to get the
Cauchy stress tensor σσσ as

σσσ = phI+2J−1[ψ1 devb+ψ4f dev(f⊗ f)+ψ4s dev(s⊗ s)

+
1
2

ψ8fs dev(f⊗ s+ s⊗ f)], (3.16)

where we have introduced the spatial vectors

f = Ff0, s = Fs0, (3.17)

and dev(•••) = (•••)− (1/3)[(•••) : I ]I is the deviatoric operator in the Eulerian description.

3.2.4. Elasticity tensor in the Lagrangian description

The elasticity tensor in the Lagrangian description is also separated into its volumetric and
isochoric parts, i.e.

C= 2
∂S
∂C

= Cvol +Ciso, (3.18)

where the volumetric part may be expressed as

Cvol = 2
∂ (JphC−1)

∂C
= J p̃hC−1⊗C−1−2JphC−1�C−1, (3.19)

with p̃h = ph + Jdph/dJ and C−1�C−1 =−∂C−1/∂C (for details see [53]).

Due to the separation of the terms in (3.6), the isochoric part Ciso of the elasticity tensor
may further be separated as

Ciso = 2
∂Siso

∂C
= ∑
i=1,4f,4s,8fs

CĪi
iso, (3.20)
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where the superscript refers to the invariant that is included in the tensor expression (3.15).
Thus, by using the product rule we obtain the four expressions

CĪi
iso = 4

∂

∂C

(
ψ i

∂ Īi

∂C

)
= 4ψ ii

∂ Īi

∂C
⊗ ∂ Īi

∂C
+4ψ i

∂ 2Īi

∂C∂C
, i = 1,4f,4s,8fs, (3.21)

where the four terms ∂ Īi/∂C are provided in (3.12)–(3.14) and where the definition ψ ii =
∂ 2Ψiso/∂ Īi∂ Īi is introduced. With the strain-energy function (3.6) we get the specifications
for ψ ii, i.e.

ψ11 =
∂ 2Ψiso

∂ Ī1∂ Ī1
=

ab
2

exp[b(Ī1−3)], (3.22)

ψ4 j 4 j =
∂ 2Ψiso

∂ Ī4 j∂ Ī4 j
= a j[1+2b j(Ī4 j−1)2]exp[b j(Ī4 j−1)2], j = f,s, (3.23)

ψ8fs8fs =
∂ 2Ψiso

∂ Ī8fs∂ Ī8fs
= afs(1+2bfsĪ2

8fs)exp(bfsĪ2
8fs). (3.24)

In addition, in (3.21)2 we need to specify the second derivative of the modified invariants
with respect to C. For the modified invariant Ī1 we obtain with (3.12)3 that

∂ 2Ī1

∂C∂C
=

∂ (J−2/3DevI)
∂C

= − 1
3

J−2/3C−1⊗DevI− 1
3

J−2/3
(

I⊗C−1 +TrC
∂C−1

∂C

)
= − 1

3
J−2/3(C−1⊗DevI+DevI⊗C−1)+

1
3

J−2/3I1P̃, (3.25)

where
P̃= C−1�C−1− 1

3
C−1⊗C−1 (3.26)

is the modified projection tensor of fourth-order [53]. In an analogous manner we may
derive the second derivative of Ī4f with respect to C, i.e.

∂ 2Ī4f

∂C∂C
=−1

3
J−2/3[C−1⊗Dev(f0⊗ f0)+Dev(f0⊗ f0)⊗C−1]+

1
3

J−2/3I4fP̃, (3.27)

and ∂ 2Ī4s/∂C∂C we get by writing s instead of f in Eq.(̃3.27). Finally, we may derive
(3.14)2 with respect to C in an analogous way, which leads to

∂ 2Ī8fs

∂C∂C
= − 1

6
J−2/3[C−1⊗Dev(f0⊗ s0 + s0⊗ f0)

+Dev(f0⊗ s0 + s0⊗ f0)⊗C−1]+
1
3

J−2/3I8fsP̃. (3.28)
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Hence, substituting (3.12)3 and (3.25)3 into (3.21)2 we get the final expression for the
isochoric elasticity tensor with respect to the isotropic invariant, i.e.

CĪ1
iso = 4J−4/3

ψ11DevI⊗DevI− 4
3

J−2/3
ψ1(C

−1⊗DevI+DevI⊗C−1− I1P̃). (3.29)

Using (3.13)5 and (3.27) in (3.21)2 gives

CĪ4f
iso = 4J−4/3

ψ4f4fDev(f0⊗ f0)⊗Dev(f0⊗ f0)

− 4
3

J−2/3
ψ4f[C

−1⊗Dev(f0⊗ f0)+Dev(f0⊗ f0)⊗C−1− I4fP̃], (3.30)

while the isochoric elasticity tensor CĪ8fs
iso follows from (3.21)2 by means of (3.14)2 and

(3.28), i.e.

CĪ8fs
iso = J−4/3

ψ8fs8fsDev(f0⊗ s0 + s0⊗ f0)⊗Dev(f0⊗ s0 + s0⊗ f0)

− 2
3

J−2/3
ψ8fs[C

−1⊗Dev(f0⊗ s0 + s0⊗ f0)

+Dev(f0⊗ s0 + s0⊗ f0)⊗C−1−2I8fsP̃]. (3.31)

Note that the elasticity tensor CĪ4s
iso can simply be achieved by writing s instead of f in

eq. (3.30). Hence, with the relations (3.29)–(3.31) we have now an explicit expression for
the isochoric elasticity tensor (3.20)2 expressed in terms of material quantities.

3.2.5. Elasticity tensors in the Eulerian description

The elasticity tensor C in the Eulerian description may be calculated by using the push-
forward operation of C, i.e. [C]abcd = FaAFbBFcCFdD[C]ABCD, so that C = Cvol+Ciso, which is
the analogue of eq. (3.18)2. In the following we show each term of the Eulerian elasticity
tensor.

The volumetric elasticity tensor Cvol in the Eulerian description may be written as the push-
forward operation of (3.19)2 which is

Cvol = J(p̃hI⊗ I−2phI), (3.32)

where I is the fourth-order unit tensor. It is also straightforward to provide the spatial
version of (3.20)2, i.e. the isochoric elasticity tensor

Ciso = ∑
i=1,4f,4s,8fs

C
Īi
iso, (3.33)

with the four contributions which may be derived from (3.29)-(3.31). By using the modi-
fied left Cauchy-Green tensor b = FFT and the definitions (3.3) and (3.17) we obtain the
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isochoric elasticity tensors which are needed in (3.33), i.e.

C
Ī1
iso = 4ψ11devb⊗devb− 4

3
ψ1(I⊗devb+devb⊗ I− Ī1P), P = I− 1

3
I⊗ I, (3.34)

C
Ī4f
iso = 4ψ4f4fdev(f⊗ f)⊗dev(f⊗ f)

− 4
3

ψ4f[I⊗dev(f⊗ f)+dev(f⊗ f)⊗ I− Ī4fP], (3.35)

C
Ī8fs
iso = ψ8fs8fsdev(f⊗ s+ s⊗ f)⊗dev(f⊗ s+ s⊗ f)

− 2
3

ψ8fs[I⊗dev(f⊗ s+ s⊗ f)+dev(f⊗ s+ s⊗ f)⊗ I−2Ī8fsP]. (3.36)

Note that in this form the volume ratio J does not appear explicitly.

3.3. Analytical Expression of the Stress Tensor

When implementing a new material model in a finite element framework, the implementa-
tion itself needs to be verified. For that reason, analytical expressions of the material model
is presented in this section. Expressions are shown for uniaxial deformation, biaxial defor-
mation and simple shear. The same analytical expressions may also be used for retrieving
the material parameters of the model by fitting them to experimental data.

3.3.1. General analytical expression for incompressible material

For an incompressible material there is no change of volume which means the volume ratio
J = 1 and there is no deviatoric part. The analytical expression of the Cauchy stress shown
in (3.6) is thus

σσσ = phI+2(ψ1 b+ψ4f f⊗ f+ψ4s s⊗ s)+ψ8fs (f⊗ s+ s⊗ f). (3.37)

Here, ph is a penalty parameter enforcing incompressibility, determined by the boundary
conditions, and may be seen as the hydrostatic pressure. Using

[b] =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 and
[f] = [f1 f2, f3]

T

[s] = [s1,s2,s3]
T

[n] = [n1,n2,n3]
T

(3.38)

the components of the symmetric Cauchy stress tensor (3.37) are

σ11 = ph +2(ψ1b11 +ψ4ff2
1 +ψ4ss2

1 +ψ8fsf1s1), (3.39)

σ22 = ph +2(ψ1b22 +ψ4ff2
2 +ψ4ss2

2 +ψ8fsf2s2), (3.40)

σ33 = ph +2(ψ1b33 +ψ4ff2
3 +ψ4ss2

3 +ψ8fsf3s3), (3.41)
σ12 = 2(ψ1b12 +ψ4ff1f2 +ψ4ss1s2)+ψ8fs(f1s2 + f2s1), (3.42)
σ13 = 2(ψ1b13 +ψ4ff1f3 +ψ4ss1s3)+ψ8fs(f1s3 + f3s1), (3.43)
σ23 = 2(ψ1b23 +ψ4ff2f3 +ψ4ss2s3)+ψ8fs(f2s3 + f3s2). (3.44)
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If not stated otherwise in the following, the undeformed fiber, sheet and sheet-normal di-
rections are assumed to coincide with the global cartesian axis, [f0] = [1, 0, 0]T, [s0] =
[0, 1, 0]T and [n0] = [0, 0, 1]T. Further, we are assuming the material is incompressible and
we are looking at a plain stress state.

3.3.2. Analytical uniaxial expression

For a uniaxial stretch, λff in the f0 direction, the deformation gradient and left Cauchy
Green tensor are

[F] =

λff 0 0
0 1/

√
λff 0

0 0 1/
√

λff

 , [b] =

λ 2
ff 0 0

0 1/λff 0
0 0 1/λff

 , (3.45)

Remembering that the terms correlating to the fiber and sheet direction in the strain energy
function are only active if they are in tension, i.e., ψ4s = 0, and the components of the
Cauchy stress are

σ11 = 2ψ1(λ
2
ff−1/λff)+2ψ4fλ

2
ff, (3.46)

σ22 = ph +2ψ1(1/λff) = 0, (3.47)
σ33 = ph +2ψ1(1/λff) = 0, (3.48)
σ12 = σ13 = σ23 = 0, (3.49)

where ph have been calculated from (3.47) or (3.48) and inserted in (3.46). The derivatives
used in (3.46)–(3.48) are

ψ1 =
a
2

exp[b(λ 2
ff +

2
λff
−3)] and ψ4f = af(λ

2
ff−1)exp[bf(λ

2
ff−1)2]. (3.50)

3.3.3. Analytical biaxial expression

For an equibiaxial stretch, λff and λss in the f0 and s0 directions respectively, the deforma-
tion gradient and left Cauchy Green tensor are

[F] =

λff 0 0
0 λss 0
0 0 1/(λffλss)

 and [b] =

λ 2
ff 0 0

0 λ 2
ss 0

0 0 1/(λffλss)
2

 . (3.51)

The components of the Cauchy stress tensor are

σ11 = 2ψ1(λ
2
ff−

1
λ 2

ffλ
2
ss
)+2ψ4fλ

2
ff, (3.52)

σ22 = 2ψ1(λ
2
ss−

1
λ 2

ffλ
2
ss
)+2ψ4sλ

2
ss, (3.53)

σ33 = ph +2ψ1
1

λ 2
ffλ

2
ss
= 0, (3.54)

σ12 = σ13 = σ23 = 0, (3.55)
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Figure 3.2.: Shear of a square block in the 21-plane with γ . The fiber direction is at angle
α with respect to the global 1-axis, and the sheet axis is perpendicular to the
fiber axis.

where ph is calculated from (3.54) and inserted into (3.52) and (3.53). The derivatives used
in (3.52)–(3.54) are

ψ1 =
a
2

exp[b(λ 2
ff +λ

2
ss +

1
λ 2

ffλ
2
ss
−3)], (3.56)

ψ4f = af(λ
2
ff−1)exp[bf(λ

2
ff−1)2], (3.57)

ψ4s = as(λ
2
ss−1)exp[bs(λ

2
ss−1)2]. (3.58)

3.3.4. Analytical shear expression

For an analytical expression of simple shear, γ in the 21-plane, i.e. shearing the X2 plane
in the X1 direction (see Fig. 3.2), the deformation gradient and corresponding left Cauchy
Green tensor are

[F] =

1 γ 0
0 1 0
0 0 1

 , [b] =

1+ γ2 γ 0
γ 1 0
0 0 1

 . (3.59)

This deformation gradient is valid for both plain strain and plain stress, as for an incom-
pressible material the volume ratio J = det(F) = 1, always.

Adding some complexity to the analytical case, the undeformed fiber and sheet directions
may vary with an angle α with respect to the global X1-axis, as shown in Fig. 3.2. The
direction vectors for the fiber, sheet and sheet-normal axes are then

[f0] =

 cosα

sinα

0

 , [s0] =

 −sinα

cosα

0

 , [n0] =

 0
0
1

 , (3.60)

and the deformed direction vectors are

[f] =

 cosα + γ sinα

sinα

0

 , [s] =

 −sinα + γ cosα

cosα

0

 , [n] =

 0
0
1

 . (3.61)
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Using s = sinα , c = cosα for a more simple notation, the Cauchy stress components, as
shown in (3.39)–(3.44), are now

σ11 = 2 [ψ1γ
2 +ψ4f(c+ γs)2 +ψ4s(−s+ γc)2 +ψ8fs(c+ γs)(−s+ γc)], (3.62)

σ22 = 2(ψ4fs2 +ψ4sc2 +ψ8fssc), (3.63)
σ33 = ph +2ψ1 = 0, (3.64)

σ12 = 2[ψ1γ +2ψ4fs(c+ γs)+2ψ4sc(−s+ γc)]+ψ8fs(2γsc+2c2−1), (3.65)
σ13 = σ23 = 0. (3.66)

Again, ph is calculated from (3.64) and is inserted in (3.62) and (3.63). For the special case
where α = 0 the stress components are

σ11 = 2(ψ1γ
2 +ψ4sγ

2 +ψ8fsγ), (3.67)
σ22 = 2ψ4s, (3.68)
σ33 = 0, (3.69)
σ12 = 2(ψ1 +ψ4s)γ +ψ8fs, (3.70)
σ13 = σ23 = 0, (3.71)

and for this case the derivatives used in (3.67), (3.68) and (3.70) are

ψ1 =
a
2

exp(bγ
2), (3.72)

ψ4f = 0, (3.73)

ψ4s = asγ
2 exp(bs γ

4), (3.74)

ψ8fs = afsγ exp(bfs γ
2). (3.75)

These equations may be used for both validating an implementation of the proposed model
in a finite element software as well as when fitting the model against experimental data to
retrieve material parameters as shown in the next section.

3.4. Model Fit to Experimental Data

To verify that our model captures the behavior of myocardial tissue, it is fitted against
experimental data using the MATLAB lsqnonlin function. Using the large-scale option in
this function, it is possible to set lower boundaries on the fitting procedure which may
be needed, as previously described in Section 3.2.2 and [56], to ensure that all material
parameters are larger than zero.

3.4.1. Fit to a simple shear experiment

Plain stress, shear tests was performed by Dokos et al. [32], where cubic pieces was excised
from porcine myocardium. In the experiments, the fiber, sheet and sheet-normal directions
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Figure 3.3.: Six possible shear directions of a cube with respect to fiber, sheet and sheet-
normal directions f0, s0, n0 aligned in the global X1, X2, X3 coordinate system.

Figure 3.4.: Fit to data presented by Dokos et al. [32] where cubes of myocardial tissue
was sheared in 6 different directions according to: fiber to sheet (fs); fiber to
sheet-normal (fn); sheet to fiber (sf); sheet to sheet-normal (sn); sheet-normal
to sheet (ns) and sheet-normal to fiber (nf).

of the myocardial cubes were identified and positioned in the global X1, X2 and X3 direc-
tions respectively. Thus, the undeformed direction vectors are f0 = [1, 0, 0]T, s0 = [0, 1, 0]T

and n0 = [0, 0, 1]T. The cubes were then sheared in all six possible shearing directions as
shown in Fig. 3.3. The shear stress corresponding to shear displacement were shown for
each direction, see for instance Fig. 6 in [32]. Note however, that the ordering of the la-
bels (fs) and (fn) in that figure is inconsistent with other figures in their paper. This is
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a b af bf as bs afs bfs
experimental type (kPa) (-) (kPa) (-) (kPa) (-) (kPa) (-)

shear 0.330 9.242 18.535 15.972 2.564 10.446 0.417 11.602
biaxial 2.280 9.726 1.685 15.779 0.000 0.000 - -

Table 3.1.: Material parameters retrieved when fitting the model against shear experimental
data by Dokos et al. [32] shown in Fig. 3.4 and biaxial experimental data by Yin
et al. [189] shown in Fig. 3.5.

corrected by switching the roles of these labels in the fitting procedure. We are assuming
the deformation mode is simple shear, and thus the analytical equations for the shear stress
are

σ
(fs)
12 = 2(ψ1 +ψ4f)γ +ψ8fs, (3.76)

σ
(fn)
13 = 2(ψ1 +ψ4f)γ, (3.77)

σ
(sf)
21 = 2(ψ1 +ψ4s)γ +ψ8fs, (3.78)

σ
(sn)
23 = 2(ψ1 +ψ4s)γ, (3.79)

σ
(ns)
32 = 2ψ1γ, (3.80)

σ
(nf)
31 = 2ψ1γ. (3.81)

It may be noted that the expressions (3.78) and (3.70) are the same as it is the same case.
The fit of the stress Eqs. (3.76)-(3.81) is shown in Fig. 3.4 and as may be seen the procedure
leads to a near perfect fit with the corresponding values in Table 3.1. Except for (3.80) and
(3.81), the expressions for shear stress all look different and thus individual stresses may
be calculated for all shear stresses. The small difference between the stresses of (3.80) and
(3.81), as seen in the test performed by Dokos et al. [32], motivates that they have a similar
expression. However, if a variation is needed, it could easily be achieved by adding the
following additional term to (3.6),

Ψ8sn =
asn

2bsn
[exp(bsnĪ2

8sn)−1]. (3.82)

This term would lead to the addition ψ8sn, to equations (3.79) and (3.80) which result in a
total separation of all values, see [56] for more details. The meaning of the indices for the
invariant and material parameters in (3.82) are consistent with those previously showned.

3.4.2. Fit to a biaxial experiment

A biaxial test was made by Yin et al. [189], and the result is shown in Fig. 4 in that
paper, where they expressed the the second Piola Kirchhoff stress tensor S as a function of
the Green-Lagrange strain E = (C− I)/2. Described briefly, they cut slices of myocardial
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Figure 3.5.: Solid curves represent the fit to data presented by Yin et al. [189], where
the circles, squares and triangles represent data points at varying ratios v =
Eff/Ess.

tissue, identified the fiber direction, and stretched the slices in the fiber and cross-fiber
direction. They also varied the stretch ratio between the two directions of stretch, here
labeled v = Eff/Ess. Since I8fs = 0, always in a biaxial test (when stretching in the fiber
and sheet direction, with [f0] = [1,0,0] , [s0] = [0,1,0]), the ψ8fs term may be excluded
from the stress formulation, and using the pull-back operation S = JF−1σσσF−T to retrieve
the second Piola-Kirchhoff stress tensor from the Cauchy stress tensor (3.52) and (3.53),
the following non-zero components are obtained

S11 = 2ψ1(1−
λ 2

nn

λ 2
ff
)+2ψ4f and S22 = 2ψ1(1−

λ 2
nn

λ 2
ss
)+2ψ4s, (3.83)

where λnn = (λffλss)
−1. Expressing the stretch λi, i ∈ {ff,ss,nn}, in the Green-Lagrange

strain Eff, results in

λ
2
ff = 2Eff +1, λ

2
ss = 2Eff/v+1 and λ

2
nn =

1
(2Eff +1)(2Eff/v+1)

. (3.84)

The non-zero second Piola-Kirchhoff stress components, in terms of Green-Lagrange strains,
are then

S11 = 2ψ1

[
1− 1

(2Eff +1)2(2Eff/v+1)

]
+2ψ4f, (3.85)

S22 = 2ψ1

[
1− 1

(2Eff +1)(2Eff/v+1)2

]
+2ψ4s, (3.86)
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where the derivatives used in Eqs. (3.85) and (3.86) are

ψ1 =
a
2

exp
{

b
[

2(Eff +Eff/v)+
2

(2Eff +1)(2Eff/v+1)
−1
]}

, (3.87)

ψ4f = 2afEff exp
(
bf 4E2

ff
)
, (3.88)

ψ4s = 2as
Eff

v
exp
(

bs 4
E2

ff
v2

)
. (3.89)

These equations were fitted against the biaxial test by Yin et al. [189], and the fit is shown
in Fig. 3.5. The corresponding values of the material parameters are shown in Table 3.1 and
as seen, the value for as = 0, which implies that the material parameters are expressed for a
transversally isotropic material. This shows that to retrieve accurate material parameters a
biaxial fit alone may not be sufficient to describe the orthotropic behavior which we know
is evident in myocardium. Furthermore, due to the size of the specimen in a biaxial fit it is,
to the authors knowledge, not possible to extract a test specimen that is aligned in both the
fiber and sheet direction. Therefore, without knowing the underlying variation of the sheet
structure in the specimen tested, it is not really possible to fit a model that has a specified
sheet direction incorporated.

3.4.3. Comparison to available model

A commonly used orthotropic model for the passive behavior of myocardial tissue that has
been shown to give a good fit against experimental data, [146–148], is a Fung-type model
based on Green-Lagrange strains, shown by Costa et al. [22],

Ψ(E) =
C
2
[exp(Q)−1], (3.90)

Q = c1E2
ff + c2E2

ss + c3E2
nn +2c4EfsEsf +2c5EsnEns +2c4EfnEnf. (3.91)

To compare this Costa-model with our new model, we use the same fitting procedure
against the experimental data presented by Dokos et al. [32] as was shown previously
in Section 3.4.1. The Cauchy stress is calculated (for J = 1) by

σσσ = F
∂Ψ(E)

∂E
FT, (3.92)

and the fit of this equation on all experimentally retrieved shear stresses is shown in Fig. 3.6
with the corresponding material parameters shown in Table 3.2. We omit here to write the
full expression of the equations used for the fit. As seen in Fig. 3.6 the Costa model is
also capable of capturing a near perfect fit against these experimental data. A very simple
measure of the goodness of fit is the R2 value, which is calculated as R2 = 1.0−SSreg/SStot,
where SSreg is the sum of squares of the distances of the data points to the best fitted curve
and SStot is the sum of squares of the distances from the data points to a horizontal line
through the mean of all data points. An R2 value of 1 means a perfect fit, and an R2 value
of 0 means that the curve have no fit at all.
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Figure 3.6.: Fit to data presented by Dokos et al. [32]. The fit of the Costa model is shown
with dashed curves, and the fit of our new proposed model is shown with solid
curves.

The overall fit of our model using this measure gives R2 = 0.981344 and for the Costa
model R2 = 0.955929. Our model shows a slightly higher R2 value then the Costa model,
but both models are well within the expected error in measurements of the experiment and
thus it is not possible to say which model fits the material behavior best with this measure.

C c1 c2 c3 c4 c5 c6
(kPa) (-) (-) (-) (-) (-) (-)

1.193 62.354 27.947 14.021 2.236 0.000 0.698

Table 3.2.: Material parameters retrieved when fitting the Costa model shown in [22], to
the data by Dokos et al. [32].

Ultimately, the perfect set of material parameters for a constitutive material model is able to
predict, for example, the stress in another state of deformation then in the experiment from
which the material parameters were retrieved. We therefore use the material parameters,
retrieved from the shear experiment and shown in Table 3.1 and 3.2, for our model and the
Costa model, and calculate the analytical stress for a biaxial deformation where a unit cube
is stretched equally in the fiber and sheet direction and is free to deform in the sheet-normal
direction.

The analytical stress for both models is shown in Fig. 3.7 and there is a clear difference
in the predicted stress response for the two models. To the authors knowledge, there have
been no experiments made quantifying the biaxial stress-strain relationship for porcine
myocardium in the fiber and cross-fiber direction. Instead in Fig. 3.7 the experimental
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Figure 3.7.: Analytical stress for a biaxial deformation using our model (solid curves) and
the Costa model (dashed curves). Various experimental values from biaxial
tests [48, 87, 113, 174] are plotted where triangles represent stresses in the
fiber direction and circles represent stresses in the sheet direction.

values of the stresses in the fiber and cross-fiber direction for different materials are plotted
as triangles and circles respectively. The materials tested and shown here are bovine, rabbit,
rat and canine [48,87,113,174]. Our model predicts much more conservatively the stresses
in the fiber and sheet direction and when compared to the data from Yin et al. [189],
the stress in the fiber direction is about three times that what Yin reported, σf ∼ 3σYin

f ,
and in the sheet direction it is almost exactly the same as their reported values for the
cross-fiber direction, σs ∼ σYin

s . Whereas for the Costa model, the predicted fiber stress is
about twelve times that of the reported values, σCosta

f ∼ 12σYin
f , and for the sheet direction

about fourteen times those reported, σCosta
s ∼ 14σYin

s . One needs to remember that the
material parameters were retrieved from shear tests on porcine myocardium [32] and the
comparison is again canine myocardium [189] which are two different materials. However,
for all experiments found in the literature our model is more accurate then the Costa model
by an order of magnitude, as shown in Fig. 3.7.

3.5. Model Sensitivity

In this section a brief investigation into how sensitive the model response is to individual
changes of the material parameters is presented as well as the sensitivity of the fit. As a
measure of the sensitivity when fitting the material parameters, the stress datapoints used
as input parameters for the fit of the model are changed randomly with ±0-2% of its
original value, and the model is fitted again. This may also be considered as the sensitivity
to a poorly performed experiment. A plot of the material parameters from one hundred
such fits are shown in Fig. 3.8(a), where the fit against the data by Dokos et al. [32] show
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Figure 3.8.: Dispersion of one hundred best fitted material parameters when individually
varying the experimental data points arbitrary by ±0-2% in: (a) simple shear
experiment by Dokos et al. [32]; (b) biaxial experiment by Yin et al. [189].

that the material parameter bs is the most sensitive. For the fit against the data by Yin et
al. [189], shown in Fig. 3.8(b), the material parameter bf shows the highest sensitivity.

Another example showing the model sensitivity is made by changing the material parame-
ters retrieved from the fit against both experiments individually by ±10% of their original
value, and look at the respective response in the change in peak stress. As seen in Table 3.3,
the peak stress for σns and σnf have the largest change for the shear experiment, about 25%,
when changing the material parameter b. For the biaxial experiment, the largest change in
stress is in the σ11 direction, by about 36%, when changing the material parameter bf.

3.6. Ellipsoidal Model

Any implementation of a constitutive model into a finite element software also needs to be
tested on a larger scale, meaning a more complex geometry with many nodes and elements,
to ensure its stability. A geometrical model that is often used in computational modelling
of the left ventricle is an ellipsoid truncated at the base [23, 110, 162, 169]. Here we use
such a model to test the implementation of the passive material model (3.6).

The ellipsoid is characterized by its major and minor radii, ai,o and bi,o respectively, where
the indexes ‘i,o’ stands for inner or outer surface of the ellipsoid. The geometry of the
ellipsoid is described using prolate spheroidal coordinates ξ1, ξ2 and ξ3, see Fig. 3.9. Those
may be be expressed in a cartesian coordinate system by

x1 = d coshξ1 cosξ2, (3.93)
x2 = d sinhξ1 sinξ2 cosξ3, (3.94)
x3 = d sinhξ1 sinξ2 sinξ3, (3.95)
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Peak stress change in % for a 10% change in the material parameter

Shear stress Biaxial stress
Material parameter σfs σfn σsf σsn σns σnf σ11 σ22

a ±0.9 ±1.2 ±2.5 ±5.7 ±10.0 ±10.0 ±0.2 ±2.2

b
+2.3 +3.0 +6.3 +14.5 +25.5 +25.5 +0.6 +8.5
−1.9 −2.4 −5.0 −11.5 −20.3 −20.3 −0.5 −6.1

af ±7.0 ±8.8 - - - - ±9.8 -

bf
+7.5 +9.4

- - - -
+36.3

-−6.8 −8.5 −26.5

as - - ±1.9 ±4.3 - - - ±7.8

bs - -
+1.5 +3.4

- - -
+20.8

−1.4 −3.2 −16.4

afs ±2.1 - ±5.6 - - - - -

bfs
+2.0

-
+5.5

- - - - -−1.8 −5.0

Table 3.3.: Material parameters retrieved from the fit to the shear data from Dokos et al.
[32] and biaxial data from Yin et al. [189] are changed individually by ±10%
and the corresponding change in the peak stress values are shown.

where d is the focal length, defined as d2
i,o = a2

i,o− b2
i,o. The inner radii chosen are ai =

42 mm and bi = 19 mm, and the outer radii are ao = 47 mm and bo = 28 mm, consistent
with the data for a canine heart shown in [94] and references therein. The longitudinal
coordinate ξ2 varies from 2o to 120o in 15 steps and the circumferential coordinate ξ3
varies from 0o to 180o, also in 15 steps. Using (3.95), ξ1 is simply calculated with the
relation a = d coshξ1 or b = d sinhξ1 and is determinded in 4 steps between the inner
and outer values, ξ1i and ξ1o. This leads to an ellipsoidal model with 14 elements in the
longitudinal direction, 15 elements in the circumferential direction and 5 elements through
the thickness in the radial direction. The geometrical model consists of 1350 nodes and
1050 hexahedral elements.

To have an easily interpretable geometrical model, the fiber and sheet directions are set to
vary linearly throughout the material. The fiber direction varies between +60o and −60o

in the ξ2-ξ3 plane and the sheet direction vary between +85o and −85o in the ξ1-ξ2 plane,
both going from the subepicardial side towards the subendocardial side. The fiber direc-
tions are shown in red in Fig. 3.9, and the sheet directions are projected on the cut surface
and shown in blue in the same figure. Bear in mind that the sheet direction is in fact orthog-
onal to the fiber direction. Internal pressure is applied as a follower load on 210 pressure
elements located on the inner surfaces of the subepicardial elements. All nodes located
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Figure 3.9.: Ellipsoidal geometrical model representing the left ventricle of the heart. A
section is removed in the figure as well as selected elements, enabling visu-
alization of sheet and fiber directions. The orientation of the fiber directions
are shown in red, projected at the surface of five elements with a norm in the
ξ1-direction. The sheet directions are shown in blue projected on the surface
of five elements with a norm in the ξ3-direction.

at the base of the ellipsoid is fixed against translation in all directions. Three pressure
levels are shown which are in accordance with the physiological pressure levels for the
canine left ventricle, [4,45,176,183]. The pressure levels are 7 mmHg which was reported
for end diastole, 116 mmHg as reported for end systole and an intermediate pressure of
70 mmHg.

The result of the simulation is shown in Fig. 3.10, where contour plots of the stress com-
ponent in the fiber direction is shown, and in Fig. 3.11, where the shear stress component
between the fiber and sheet direction is shown as contour plots. Contour plots for the stress
in the sheet direction is omitted as they show zero values for all pressure levels. For (d) in
Figs. 3.10 and 3.11 the initial geometry is changed with respect to the fiber direction. In-
stead of a varying fiber angle from the epicardium to the endocardium as described earlier,
we now set the fiber angle to zero degrees, i.e. the fibers are in the circumferential direction
for all elements, and a pressure of 116 mmHg is applied. Notable first of all, in Fig. 3.10
is the much higher displacement at the apex when comparing (d) with (c). Also the stress
gradient for (d) is much steeper than for (c). Evident in Fig. 3.11(a)–(c) is a difference
of positive and negative values of the shear stress. The difference is on either side of the
midwall element where the fiber angle is in the circumferential direction and where the
shear stress component is zero. This is also seen in Fig. 3.11(d) where the fiber direction is
circumferential for all element and thus the shear stress component is zero throughout the
geometry.
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Figure 3.10.: Contour plots of the fiber stress component ψ4f for different levels of internal
pressure. The pressure levels for (a) to (c) are 7, 70 and 116 mmHg, respec-
tively. In (d) the fiber angle with respect to the circumferential direction is
set to zero throughout the thickness of the ellipsoidal and the pressure level
is 116 mmHg.

3.7. Concluding Remarks

In this paper we have shown the full expressions of the stress and elasticity tensors needed
for implementing the recently proposed constitutive model for passive myocardium. We
have shown that relatively simple expression of the stress and elasticity tensor may be
derived as the invariants in the strain energy function comprising the material model are
all separated in different terms. Those simple expression makes it easy to implement in any
finite element software. Basing the model on invariants, not only contributes to the simple
implementation, but also ensures coordinate frame independence and thus only locally
preferred directions of the material is needed when calculating the stress and elasticity
tensor.

Analytical expressions for three modes of deformation was presented which may be used,
not only to verify the implementation of the model, but also when fitting the model to ex-
perimental data which was shown for a simple shear and a biaxial experiment. The model
has a near perfect fit against the shear experiments and a reasonable fit against the biaxial
experiment. As already discussed by Holzapfel and Ogden [56], the quality of the biax-
ial experiment is limited and there is a need for more complete experimental data. The
sensitivity of the material parameters of the constitutive model was investigated and the
parameters in the exponents were the most sensitive. For the simple shear deformation
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Figure 3.11.: Contour plots of the shear stress component ψ8fs for different levels of in-
ternal pressure. The pressure levels for (a) to (c) are 7, 70 and 116 mmHg,
respectively. In (d) the fiber angle with respect to the circumferential direc-
tion is set to zero throughout the thickness of the ellipsoidal and the pressure
level is 116 mmHg.

the model was most sensitive in the sheet-normal to sheet and sheet-normal to fiber direc-
tion, which is reasonable as those directions of shear have the lowest stress and are only
governed by the isotropic part of the strain-energy function and thus only by two mate-
rial parameters. In the comparison made between our newly proposed model and that of
Costa et al. [22], both models displays a near perfect fit against experimental shear data of
porcine myocardium. But, when using the material parameters retrieved from that fit, our
model seems to be better at predicting the stress for a biaxial mode of deformation. This
is a statement made with caution as the species, and thus the materials, are not the same
in the comparison. The reason for this is that, to the authors knowledge, there exists no bi-
axial experiments of porcine myocardium in the literature today. However, looking at the
range of stress values retrieved from biaxial experiments found in the literature for differ-
ent species, our model is closer on all by an order of magnitude than that of the model by
Costa et al. [25] and it is unlikely that stress values from a biaxial experiment on porcine
myocardium will be that much higher.

In a numerical example the results of internal pressure on an ellipsoidal geometry was
investigated. A stress gradient through the thickness of the ellipsoid was found which is
natural when applying internal pressure. It may be noted, however, that in vivo the situa-
tion is different as it is not pressurized from within and extended outwards, but rather it
is the active compression of the wall that leads to an increase in pressure on the endocar-
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dial surface. Furthermore, a strong stress gradient in a living tissue might be physically
unrealistic and would be compensated by the residual stresses that are evident in the ven-
tricular wall [25]. Interestingly, the stress gradient is less steep when the fiber direction in
the wall varies through the thickness as is seen when comparing (c) and (d) in Fig. 3.10.
An explanation for this may be that the fiber angles generate a twisting motion in different
direction at the subepicardial and subendocardial site and therefore the shear stress evident
in Fig. 3.11(c) as opposed to (d), leads to the reduction of the stress gradient through the
thickness. The large difference in the displacement at the apex may be explained by the
lack of a fiber component in the longitudinal direction anywhere in the geometry for (d),
together with the much lower stiffness in the sheet direction than the fiber direction due
to a lower value of the material parameter as compared to af. The kink seen at the base of
the ellipsoid in Figs. 3.10(d) and 3.11(d) arises from the boundary condition on the nodes
at the base. This is not evident in Figs. 3.10(c) and 3.11(c) as the displacements are not as
large due to the fiber orientation, as discussed earlier.

With internal pressure on the ellipsoid and a sheet angle that varies through the thickness,
the sheet component of stress was found to be near zero. This is not surprising when
only applying internal pressure, since the wall thickness will decrease with an increasing
pressure. This results in a compression in the sheet direction and thus the sheet component
of the stress is set to zero in accordance to the requirement for material stability previously
explained in Section 3.2.2.
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4. INFLUENCE OF SPATIAL HETEROGENEITY IN TISSUE
ORTHOTROPY UPON MECHANICAL CONTRACTION IN
THE LEFT VENTRICLE

Abstract Modeling cardiac function is an important tool to increase the understanding of
the physiological responses of the heart and to determine how complex structural compo-
nents of the heart influence its behavior. Organization of cardiomyocytes in sheets with a
preferred fiber direction enables to model the myocardium as an orthotropic material char-
acterized by a strain-energy function. Thus, a coupled model for myocardium is presented
where an orthotropic strain-energy function based on an invariant formulation is used for
the passive stress formulation together with an evolution equation responsible for gener-
ating the active stress. A model of the left ventricle is presented where pressure is calcu-
lated as a response to change in internal volume in order to ensure physiologically realistic
pressure-volume loops and the influence of myocardial fiber and sheet distribution is inves-
tigated by using two different setups, a generic setup and one based on experiments. The
resulting deformation differs significantly between the two model setups and especially in
torsion where using a fiber-sheet setup based on experiments yield a more realistic ven-
tricular response. Classical measures like PV-loops, cardiac output and ejection fraction
match experimental data very well for both models and thus they did not capture the sig-
nificant differences in deformation that was found. This implies spacial heterogeneity may
play a critical role in mechanical contraction of the LV and that geometrical descriptions
of deformation are needed when evaluating the accuracy of a ventricular model.

4.1. Introduction

Under healthy conditions the heart pumps blood around the circulatory system with a re-
markable efficiency. The underlying electro-mechanical function is governed by an ordered
cascade of events which interact across a broad range of spatial and temporal scales in a
complex fashion. A heartbeat is initiated with an electrical activation that triggers the re-
lease of Ca2+ from intracellular stores, which, in turn, activates sarcomeres and generates
the active stresses which make the heart contract. The regulation of these processes de-
pends crucially on both the active and passive electrical and mechanical material properties
of the myocardial muscle.

The structural organization of the left ventricle (LV), i.e. the main pumping chamber of
the heart, is a key factor in this process. In general, myocyte orientation in the LV follows

67
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a right-handed helical pathway from the endocardium towards the mid-wall, and a left-
handed helical pathway from the mid-wall towards the epicardium [93, 135, 169]. This
transmural change in prevailing myocyte orientation is usually referred to as ‘fiber rotation’
where ‘fiber’ refers to the dominating orientation averaged over an ensemble of cells. In
addition, myocytes are bundled and form layers of a width of four to six cells, referred
to as laminae or sheets. The orientation of these sheets also varies, not only transmurally,
but also in the apico-basal direction [85, 135, 142, 190]. Therefore, at any point in space,
the myocardium may be viewed as an orthotropic material with three preferred mutually
orthogonal directions, namely along fibers, transverse to the fibers, but within a sheet, and
perpendicular to the sheets.

These orthotropic material properties of the LV influence both the spread of electrical
activation and repolarization as well as the mechanical response to pressure loads and
active myocyte contraction and relaxation. Electrical activation of the LV under healthy
conditions is mediated by the Purkinje system (PS), a topologically complex and dense
network which distributes the electrical impulse quickly over the endocardium. Purkinje-
ventricular junctions (PVJs) couple the virtually one-dimensional endings of the PS to the
three-dimensional mass of the LV. Sites, at which PVJs successfully transmitted the elec-
trical impulse to the LV, can be seen as electrical point sources which emanate wavefronts
in the LV where the conduction velocity is a function of direction. Wavefronts travel fastest
along the fibers and slowest in the sheet normal direction, with velocity ratios of roughly
3:2:1 along the three axes [10, 12, 144]. Owing to the numerous PVJs along the LV en-
docardium, individual wavefronts merge quickly in the subendocardium and travel then
preferentially in a transmural direction.

The spatio-temporal pattern of electrical activation is translated into active stress transients
via mechanisms referred to as electro-mechanical coupling [9,80]. The onset of these tran-
sients, which are often modeled as stresses acting in the fiber direction in an Eulerian
description [102, 107], follows the instant of activation with a certain electro-mechanical
delay, which is not constant throughout the LV due to the pre-stretching of late activated
regions [50]. The mechanical response, that is, the spatio-temporal pattern of deformations
such as contraction and torsion, is then largely determined by both the passive hyperelastic
orthotropic properties of the tissue and the generated active stresses [162].

Based on experimental data in a recent report [135] this study focuses on investigating
the impact of spatial heterogeneity in orthotropic material properties upon the electrical
and mechanical response of the LV. For this sake, a weakly coupled electro-mechanical
model of a rabbit LV is employed where the LV anatomy is approximated as a truncated
ellipsoid [24, 77, 104]. The model is equipped with two sets of fiber and sheet arrange-
ment, a generic rule-based dataset with constant sheet angles as used in previous stud-
ies [49,69,104,115], and an experimentally measured dataset where both fiber orientation
and sheet angle are spatially varying throughout the LV. Simulation results reveal that the
generic homogeneous fiber-sheet setup yields a torsion that is five times larger than what
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is observed in experiments using MRI tagging [16, 112, 163], as opposed to the spatially
varying orthotropic setup where torsion was found to be in the expected range.

4.2. Modeling Framework

4.2.1. Electrophysiological modeling

The spread of electrical activation and repolarization is described by a reaction-diffusion
equation referred to as the monodomain equation, given by

βCm
∂Vm

∂ t
+β Iion(Vm,ηηη) = ∇ · (σσσm∇Vm)+ Itr, (4.1)

where β is the ratio between surface and volume of the membrane, Cm is the capacitance
of the membrane, Vm is the transmembrane voltage, Iion, which is the density of the total
ionic current, is a function of the state variables ηηη and Vm, Itr is a transmembrane stimulus
current, and σσσm is the monodomain conductivity tensor with the eigenaxes ζ = f along the
fibers, ζ = s perpendicular to the fibers, but within a laminar sheet, and ζ = n perpendicu-
lar to the sheets. The eigenvalues of σσσm, are chosen as the harmonic mean of intracellular
conductivity, σiζ , and interstitial conductivity, σeζ

, which renders the monodomain equa-
tions axially equivalent to the more general bidomain equations [92, 109].

Numerical solution. The reaction and diffusion part of the monodomain equations were
split [129] which leads to a time stepping scheme given by
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V k+1
m =V k∗

m −
∆t
Cm

Iion(V k∗
m ,ηηηk+1). (4.5)

The parabolic portion (4.2) is solved by choosing θ = 0.5, which results in a Crank-
Nicholson scheme. The overall system is then solved with an implicit-explicit (IMEX)
scheme where the diffusion term is treated implicitly and the reaction term explicitly, using
a time step dt of 20 µs. Hybrid finite element meshes consisting of tetrahedra, hexahedra,
pyramids and prisms were used for spatial discretization at an average spatial resolution of
198 µm using linear weighting functions [133].

The linear system was solved in parallel by employing a block Jacobi preconditioner with
an iterative Conjugate Gradient (CG) solver, using an Incomplete Cholesky (ICC(0)) fac-
torization as a subblock preconditioner [8]. The Rush-Larsen method [141] was used to
solve the Mahajan-Shiferaw model where an analytical solution was used to update the
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fast gating variables, ηηη f, where the time constant τ and the steady-state ηηη∞ are functions
of the rate coefficients which govern channel gating, and an explicit Euler step to update
all other slower state variables, ηηηs [89, 125]. The Cardiac Arrhythmia Research Package
(CARP) [175], which is built on top of the MPI-based library PETSc [8], was employed to
solve Eqs. (4.2)–(4.5).

4.2.2. Active and passive mechanical modeling

The Cauchy stress tensor is separated into a passive and an active stress component. In the
Eulerian description, this yields

σσσ = σσσp +σσσ a, (4.6)

where σσσp is the passive stress component, describing the deformation of the myocardium
when subjected to applied forces or stresses. σσσ a is the active stress component, which is
generated by the electrical activation of myocardial tissue.

Passive stress component. As described in the electrical setup, the myocardium is de-
scribed by three orthogonal direction vectors f0, s0 and n0, which correspond to the fiber
direction, sheet direction and sheet-normal direction, respectively, in the Lagrangian de-
scription. Using the multiplicative decomposition of the deformation gradient, F, into a
volumetric, J1/3I, and an isochoric, F, part, so that F = (J1/3I)F, where J = detF > 0 is
the Jacobian given by the determinant of F, the Lagrangian direction vectors are trans-
formed into their isochoric Eulerian counterparts by

f = Ff0, s = Fs0, n = Fn0. (4.7)

A strain-energy function is used, suitable for describing the orthotropic nonlinear passive
behavior of myocardium [35,56] which is based on invariants which result in a coordinate
frame independent stress tensor. The strain-energy function is separated into one volumet-
ric and two volume preserving functions according to

Ψ =U(J)+Ψiso(Ī1)+Ψaniso(Ī4f, Ī4s, Ī8fs), (4.8)

where U(J) is the volumetric function and the volume preserving functions are Ψi, i ∈
{iso,aniso}, which relate to the isotropic and anisotropic behavior respectively. For the
volumetric function

U(J) =
µK

2
ln(J)2, (4.9)

is used, where µK is the bulk modulus which serves as a user specified penalty parameter
enforcing incompressibility. The volume preserving isotropic and anisotropic functions are
described by

Ψiso =
a

2b
{exp[b(Ī1−3)]−1}, (4.10)

and
Ψaniso = ∑

i=f,s

ai

2bi
{exp[bi(Ī4 i−1)2]−1}+ afs

2bfs
[exp(bfsĪ2

8fs)−1], (4.11)
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respectively, where in total eight material parameters, a(·, f,s, fs) and b(·, f,s, fs), are needed
to fully describe the isochoric orthotropic material behavior. The isochoric invariants in
(4.10) and (4.11) are defined, using the modified volume-preserving right Cauchy-Green
tensor, C = FTF, as

Ī1 = tr(C), Ī4f = f0 · (Cf0), Ī4s = s0 · (Cs0), Ī8fs = f0 · (Cs0). (4.12)

As shown in [56], the necessary conditions on (4.11) for material stability are as follows;
all material parameters must be larger than (or equal to) zero and the invariants Ī4f and Ī4s
must be larger than one. If any of those invariants is less than one, the function containing
it is dropped from the anisotropic strain-energy function, Ψaniso, shown in (4.11). The
Cauchy stress tensor for the passive part is given by

σσσp = J−1/3F(2
∂Ψ

∂C
)FT

, (4.13)

which, using (4.8), result in

σσσp = phI+2J−1[ψ1 dev(b)+ψ4f dev(f⊗ f)+ψ4s dev(s⊗ s)

+
1
2

ψ8fs dev(f⊗ s+ s⊗ f)], (4.14)

where ph =
dU(J)

dJ
is a Lagrange multiplier, sometimes seen as the hydrostatic pressure

enforcing incompressibility, b = FFT is the isochoric modified left Cauchy-Green tensor
and dev(•)= (•)−(1/3)[(•) : I]I is the deviatoric operator in the Eulerian description [53].
Also in (4.14), the following definitions are used

ψ i =
∂Ψ

∂ Īi
, i = 1, 4f, 4s, 8fs. (4.15)

Active stress component. The active stress tensor, σσσ a, is defined as

σσσ a = σa(f⊗ f), (4.16)

where σa is a scalar value of the active stress and f is the deformed isochoric fiber direction
vector, given by (4.7). In this paper we choose to calculated σa using a single ODE which
originates from [103], where the active stress value develops according to

σ̇a = ε(Vm)(kσ ∆Vm−σa), (4.17)

where ε(Vm) is a delay function controlling the rate of activation and relaxation of σa.
kσ regulates the amplitude of σa given the difference in transmembrane potential ∆Vm =
Vm−Vr, where Vm is the current action potential and Vr is the myocyte resting potential.
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Instead of the Heaviside function proposed in [103], we use the smoother delay function,
ε = ε(Vm) as proposed in [49], which is given by

ε(Vm) = ε0 +(ε∞− ε0)exp{−exp[−ξ (Vm−Vs)]}, (4.18)

where ε0 and ε∞ are the limiting values of the delay function when the action potential, Vm,
is respectively larger or lower than a given phase shift Vs. Further, the transition rate of the
delay function is controlled by the parameter ξ .

Note, however, that there is an erratum in the delay function shown in Eq. (23) in [103],
namely that the limiting value ε∞ = 10ε0. With this condition, a delay of the peak active
stress with respect to the peak action potential, as shown in Fig. 2 in [103], is unobtainable.
In order to reproduce this time course the material parameters for the delay function must
follow ε∞ < ε0. Also in [49] the wrong parameter relation was used, leading to a delay
function that goes from lower to higher values, as shown in Fig. 3 in [49]. The differences
in active stress behavior as well as in shape of the delay function is illustrated in Fig. 4.1(a)-
(b).

Figure 4.1.: (a) Potential Vm, dotted line, and corresponding delay in active stress values
using ε∞ > ε0, dash-dotted line, and ε∞ < ε0, solid line, the values are scaled
in the image for clarity; (b) shape of the delay function using ε∞ > ε0, dash-
dotted line, and ε∞ < ε0, solid line, when shifted around Vs =−30 mV.

Using a backward Euler scheme to compute the current value of σa for a time step ∆ t =
tn− tn−1, we obtain

σ
n
a = σ

n−1
a +∆ t ε(kσ ∆Vm−σ

n
a ), (4.19)

which results in the closed-form expression of the current value of the active stress com-
ponent

σ
n
a =

1
1+∆ t ε

(σn−1
a +∆ t ε kσ ∆Vm). (4.20)

Equation (4.6) together with (4.14), (4.16) and (4.20) are implemented in the finite element
software FEAP [164], where σa is calculated at each gauss point.
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Figure 4.2.: Ellipsoidal model representing a rabbit LV with both the global X1, X2 and X3
coordinates and prolate spheroidal coordinates ξ1, ξ2 and ξ3. The plane sep-
arating the basal and apical regions is at half of the LV height h. The septal
region lies in the X1,X2 quadrant, the anterior region lies in the X1,−X2 quad-
rant, the lateral region lies in the −X1,−X2 quadrant and the posterior region
lies in the −X1,X2 quadrant.

4.3. Electro-mechanically Coupled Model of a Rabbit Left Ventricle

4.3.1. Definition of geometry

The geometry of a rabbit LV is modeled as an ellipsoid truncated at the base using prolate

spheroidal coordinates ξ1, ξ2 and ξ3, see Fig. 4.2. Using the focal length d =
√

a2
0−b2

0,
where a0 and b0 are the polar and equatorial axis respectively, the prolate spheroidal coor-
dinates may be expressed in a Cartesian coordinate system by

x1 = d sinhξ1 sinξ2 cosξ3, x2 = d sinhξ1 sinξ2 sinξ3, x3 = d coshξ1 cosξ2. (4.21)

This geometry correlates to a rabbit LV [174] where the dimensions of the epicardium
are aepi = 19.3 mm, bepi = 12.7 mm and the dimensions of the endocardium are aendo =
18.0 mm, bendo = 6.9 mm. The ξ2-angle has a maximum value of 120◦ at the endocardial
surface. When going in the ξ1-direction towards the epicardial surface the maximum ξ2-
angle is decreased so that the basal surface remains flat in the global X3-direction. Two
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Figure 4.3.: Fiber and sheet angles through the wall thickness of the LV starting from the
epicardium, adapted from [135].

overlapping finite element meshes of the same ellipsoidal domain were generated, a fully
structured hexahedral mesh using MATLAB for solving mechanics, and, a fully unstruc-
tured hybrid mesh of an average resolution of ∼200 µm using an image-based mesh gen-
eration technique [127] implemented in the commercial mesh generator Tarantula (CAE
Software Solution, Eggenberg, Austria) for solving electrics. The mechanical mesh con-
sisted of 5406 nodes, comprising 5310 hexahedral mixed Q1/P0 finite elements, whereas
the electrical mesh consisted of 1054146 nodes, comprising 1201507 linear hybrid finite
elements [133]. Both grids were partitioned for parallel execution using parMETIS [73].

Model I - Generic fiber-sheet setup. For a generic fiber-sheet setup, the fiber direction
in the wall of the myocardium varies linearly, from−60° at the epicardium to +60° at the
endocardium, when looking in the (−ξ3), ξ2 direction seen in Fig. 4.2. The sheet orienta-
tion is also introduced with a linear distribution through the thickness of the myocardium
and varies from +85° at the epicardium to −85° at the endocardium, looking in the ξ1,
ξ2 direction. There is no difference in the fiber or sheet orientations between the different
regions of the LV, i.e. anterior, posterior, lateral or septal regions, or between apical or
basal regions. Thus, since both the fiber and sheet orientations are rule-based and vary in
the transmural direction only, this setup is spatially homogeneous.

Model II - Experimentally based LV fiber-sheet setup. As an alternative to the generic
setup, a fiber-sheet setup based on experiments may be constructed. Here, the fiber and
sheet directions are modified to fit the measured data by Rohmer et al. [135] shown in
Fig. 4.3. Using diffusion tensor MRI, they reported fiber and sheet angles for eight differ-
ent regions, Ωi, of the LV, where i ∈ {1− 8} corresponds to septal, anterior, lateral and
posterior sides for both the basal and apical regions respectively. In our model, a linear
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weighting function is used in-between these regions to ensure a smooth transition of the
angles. The fiber and sheet angles for each region Ωi in Fig. 4.3 are interpolated as a func-
tion of the transmural location, ξ1, thus giving the values αΩi(ξ1) and β Ωi(ξ1) for fiber
and sheet angle, respectively. In Fig. 4.4, a conceptual representation of four adjacent re-

Figure 4.4.: Conceptual image of four adjacent regions Ωi, i∈ {1,2,3,4}. Two weights, η ,
for each region are calculated based on the distance to a point, P, in the ξ2 and
ξ3 directions.

gions is shown with the weighting functions to a point P = [Pξ1
,Pξ2

,Pξ3
]T. The values of

the weighting functions, η
Ωi
ξ2

and η
Ωi
ξ3

, goes from 1→ 0 when η
Ωi
ξ2

and η
Ωi
ξ3

goes from the
center of its own region towards the center of a neighboring region in the ξ2 and ξ3 direc-
tions, respectively. Thus, the weighting functions for a region Ωi to a point P, are given by
η

Ωi
ξ2
(Pξ2

) and η
Ωi
ξ3
(Pξ3

), while the values for the fiber and sheet angles for each region are

αΩi(Pξ1
) and β Ωi(Pξ1

). The calculated values for the fiber and sheet angles at point P, are
thus

α(P) =
8

∑
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η
Ωi
ξ2
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)ηΩi
ξ3
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)αΩi(Pξ1
), β (P) =

8

∑
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η
Ωi
ξ2
(Pξ2

)ηΩi
ξ3
(Pξ3

)β Ωi(Pξ1
). (4.22)

Using this setup for both fiber and sheet orientation, we have a transmurally varying spa-
tially heterogeneous model.

4.3.2. Material parameters

For solving the monodomain equations, conductivities were chosen as σiξ = 0.302 S/m,
0.1796 S/m, 0.0443 S/m in the intracellular domain, and as σeξ = 0.625 S/m, 0.236 S/m,
0.236 S/m in the extracellular domain, with ξ being the principal tensor axes f , s and
n, respectively. These choices correspond to monodomain bulk conductivities of σm, f =
0.204 S/m, σm,s = 0.102 S/m and σm,n = 0.037 S/m which led to conduction velocities of
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0.6 m/s, 0.4 m/s and 0.2 m/s along the principal tensor axes f , s and n. Standard values
of Cm = 1µF/cm2 and β = 1400 cm−1 were chosen for the membrane capacitance and
surface-to-volume ratio.

Mechanical material parameters are summarized in Table 4.1. The passive material param-
eters are adapted from [35] where the model was fitted against experimental data reported
by Dokos et al. [32]. The active material parameters are in part adapted from [103], and
in part adapted to give an electro-mechanical delay of 110 ms between peak action poten-
tial and peak active stress as shown in [97]. The pressure parameters are adapted to keep
pressure calculations numerically stable and to obtain realistic pressure-volume loops.

Passive stress Active stress Pressure terms

µK = 3333 kPa kσ = 0.50 kPa mV−1 C = 0.2 ml mmHg−1

a = 0.333 kPa Vr =−86.796 mV R = 750 mmHg ms ml−1

b = 9.242 (-) Vs =−80.0 mV Cp =−900 mmHg ml−1

af = 18.535 kPa ε0 = 1.0 ms−1

bf = 15.972 (-) ε∞ = 0.1 ms−1

as = 2.564 kPa ξ = 0.1 mV−1

bs = 10.446 (-)
afs = 0.417 kPa
bfs = 11.602 (-)

Table 4.1.: Material parameters used in both analytical and numerical calculations. The
passive stress material parameters are adapted from [35], and the active stress
material parameters are adapted from [49].

4.3.3. Initial values and boundary conditions

Electrics. The Mahajan model [91] is employed to describe cellular dynamics. The model
was initialized by pacing a single cell at a pacing cycle length of 350 ms until a stable limit
cycle was observed. The state vector ηηη at the end of this pre-pacing procedure was used
to populate the LV model with an initial state vector, ηηη0. Transmembrane current injection
applied to the endocardial surface at t = 0 ms initiated the propagation of the action poten-
tials at the endocardium to approximate a predominantly transmural activation sequence,
as induced by activation via the Purkinje system. In this approximation the whole endo-
cardium was activated synchronously, electrical activation delays within the endocardium
remained unaccounted for. 350 ms of activity were simulated to cover one full depolariza-
tion and repolarization cycle over the entire LV.

Mechanics, circulatory components and pressure-volume loops. All elements on the
endocardial surface of the LV are subjected to a follower pressure load p. On the base of the
LV, where ξ2 = ξ2max for all ξ3 and ξ1, all nodes have displacement boundaries restricting
movement in the ξ2-direction. Nodes on the basal plane at the epicardium, located where
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BC Coordinates Description

tn =−p ξ1 = ξ1min for all ξ3, ξ2 Endocardial surface
uξ2 = 0 ξ2 = ξ2max for all ξ3, ξ1 Basal surface

uξ3 = 0
ξ2 = ξ2max for all ξ3 Outer ring at base
ξ1 = ξ1max

Table 4.2.: Mechanical boundary conditions in terms of prescribed tractions t and displace-
ments u for the mechanical mesh. tn is the normal component of the traction
vector to the endocardial surface on which p acts.

ξ1 = ξ1max, ξ2 = ξ2max and for all ξ3, have additional displacement boundaries restricting
movement in the ξ3-direction. The boundary conditions are summarized in Table 4.2. The
follower type pressure load p is calculated in five consecutive steps, (i)–(v). The first
step, (i), is a non-physiological initialization load and is used before electrical activation
has started, i.e. when time t ≤ 0. The pressure is increased linearly from 0 to 20 mmHg,
which is considered the end diastolic pressure, EDP, [140]. When the pressure reaches
EDP, electrical activation starts and thus an isochoric contraction ensues since both the
mitral and aortic valves are considered to be closed. The pressure in this load step, (ii), is
increased iteratively for each time step to keep the volume V constant using

pn+1 = pn +(Vn+1−Vn)/Cp, (4.23)

as described in [168], where Cp is a penalty parameter. The value of Cp is set to give a com-
putationally efficient convergence for the isochoric solution. When p reaches 95 mmHg
[140], the ejection phase starts simulating the opening of the aortic valve. In this step, (iii),
the pressure is modeled using the two element Windkessel model [116] described as

C
dp
dt

+
p
R
=−dV

dt
, (4.24)

where C and R relate to arterial compliance and resistance, respectively. Since C and R are
considered constants, they do not account for the nonlinear behavior of arteries [130,131].
Their values are chosen to generate realistic pressure-volume (PV) loops. When dV/dt
becomes positive (reversed blood flow), the aortic valve closes. The current pressure is
considered to be the end systolic pressure and isochoric relaxation of the LV starts, load
step (iv), again modeled using the pressure iteration shown in (4.23). Finally, when p
reaches 12.5 mmHg [140], passive filling is assumed to start as the mitral valve opens.
This final pressure load, called load step (v), is modeled using a linear increase in pressure
until EDP is reached, after which the pressure loop starts over at load step (ii). The load
steps are summarized as

(i) Non-physiological initial phase with linear pressure increase to EDP

(ii) Isochoric LV compression phase using (4.23)
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(iii) Ejection phase using (4.24)

(iv) Isochoric LV relaxation phase using (4.23)

(v) Filling phase with linear pressure increase to EDP

To calculate volume and area of the LV cavities, the quadrilateral faces of the hexahe-
dral elements along endocardial and epicardial surfaces are triangulated. Using the Gauss
divergence theorem ∫∫∫

V

(∇ ·R)dV =
∫����∫

S

R ·nds, (4.25)

the volume V is calculated using ∇ ·R = 1 with, for example, the vector field [R] =
[x,0,0]T. The volume enclosed by the triangulated surface elements is thus calculated by
summing up the signed surfaces as follows; the coordinates of the nodal points, u,v,w, of
each triangular face i are [u]i = [ux,uy,uz]

T, [v]i = [vx,vy,vz]
T and [w]i = [wx,wy,wz]

T. The
edges ai = vi−ui and bi = wi−ui span the triangle i, and the cross product, ci = ai×bi, is
perpendicular to the surface, with the magnitude of its length being twice the element area.
Thus, the area of the triangle i is Ai = ‖ci‖/2, and the normal vector is ni = ci/‖ci‖. The
center of a triangle i is found as pi = (ui+vi+wi)/3. Since the vector field [R] = [x,0,0]T

is used, only the x-components, p(x)i of pi and n(x)i of ni, are required to evaluate the surface
integral in Eq. (4.25). Thus the enclosed volume and its surface are computed by summing
over the surface triangles nel

V =
nel

∑
i=1

p(x)i n(x)i Ai and A =
nel

∑
i=1

Ai. (4.26)

Note that this formulation requires, in general, that the surface is closed and that all surface
normals are pointing outwards. However, for this specific LV geometry and BC defined
here, however, this is not required since the vector field [R] = [x,0,0]T is co-planar with
the LV opening at the base. Surface normals were enforced to point outwards by com-
puting 〈oi,ni〉 where oi = hi−ai with hi being the center of the hexahedron to which the
triangle is attached. In the case of a negative dot product two nodes spanning the triangle
are swapped.

By using this strategy on both the epicardial and endocardial surfaces, an average thick-
ness, h, of the LV wall is calculated, in accordance with [33], as h = 2Vwall/(Aendo +Aepi),
where Aendo and Aepi are the endocardial and epicardial areas, respectively, and Vwall is the
volume of the myocardial wall, defined as the difference between the volumes enclosed
by the endocardial and epicardial surfaces. Defining hed and hes as the thickness corre-
sponding to the end diastolic volume, EDV, and end systolic volume, ESV, respectively,
fractional thickening, hf, is calculated as

hf =
hes−hed

hed
100. (4.27)
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As a metric for examining incompressibility the fractional change in myocardial volume
is calculated as

Vf(t) =
Vwall(t)−V 0

wall

V 0
wall

100, (4.28)

where Vwall(t) and V 0
wall are the volume of the myocardium as a function of time and in

the initial unloaded configuration, respectively. The largest, positive or negative, change
in volume fraction Vf(t) is labeled V max

f , which may be used to gauge how well the in-
compressibility constraints were enforced in the simulation. Furthermore, stroke volume
is defined as SV = EDV−ESV, cardiac output is defined as CO = SV ·HR, where HR is
the heart rate and ejection fraction is defined as EF = (SV/EDV)100.

4.3.4. Transferring data between electrical and mechanical grid

Solving the electrical and mechanical problem poses different constraints on the choice of
spatio-temporal resolution in the respective discretization schemes. The fastest electrical
processes are governed by time constants in the µs range and the spatial extent of a prop-
agating depolarization wavefront is in the sub-millimeter-meter range. On the other hand,
mechanical processes tend to occur at slower space and time scales. Consequently, these
differences in spatio-temporal characteristics suggest the use of different spatio-temporal
discretization, which necessitates the transfer of data between electrical and mechanical
grid. In this study where a weak coupling scenario was considered, only one scalar quan-
tity, the transmembrane voltage Vm, had to be transferred uni-directionally, i.e. from the
electrical grid to the mechanical grid. This procedure was implemented by using the nodal
values of Vm on the electrical grid, and interpolating these values onto the Gauss points of
the Q1/P0 elements of which the mechanical grid is comprised. To facilitate an efficient
search for finite elements in the electrical grid which enclose corresponding Gauss points
of the mechanical grid, an Octree data structure was employed [127].

4.3.5. Validation of implementation and passive mechanical properties of LV
model

Both the numerical implementation as well as the model of the rabbit LV were subjected
to a set of tests to ensure the soundness of the framework as well as good agreement with
experimental observations. To test the numerical framework, an analytical test case was
designed. A unit cube, free to deform, with the fiber, sheet and sheet-normal directions
organized in the global X , Y and Z directions, respectively, as shown in Fig. 4.5(b), i.e.

[f0] = [1,0,0]T, [s0] = [0,1,0]T, [n0] = [0,0,1]T, (4.29)

is subjected to a scalar value of active stress, resulting in a contraction in the global X di-
rection. The material is assumed to be incompressible and therefore the cube must expand
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in the global directions Y and Z. Thus, the corresponding deformation gradient is

[F] =

 λf 0 0
0 λs 0
0 0 λn

 , (4.30)

where the stretch in the fiber direction, λf < 1, and the stretch in the sheet and sheet-normal
directions, λs > 1 and λn > 1, with a smaller deformation in the s-direction than in the n-
direction due to the orthotropic material properties. Incompressibility in an analytical case
enforces J = 1, leading to the simplified Cauchy stress tensor

σσσ = phI+2(ψ1b+ψ4ff⊗ f+ψ4ss⊗ s)+ψ8fs(f⊗ s+ s⊗ f)+σaf⊗ f, (4.31)

where f = Ff0 and s = Fs0 are the deformed direction vectors, b = FFT is the left Cauchy-
Green tensor and

ψi =
∂Ψ

∂ Ii
, i = 1, 4f, 4s, 8fs. (4.32)

With the deformation gradient (4.30) the components of (4.31) are

σ11 = ph +2ψ1λ
2
f +2ψ4fλ

2
f +σaλ

2
f , (4.33)

σ22 = ph +2ψ1λ
2
s +2ψ4sλ

2
s , (4.34)

σ33 = ph +2ψ1λ
2
n , (4.35)

σ12 = σ13 = σ23 = 0. (4.36)

As the unit cube is free to deform, the stress at equilibrium is zero for all components of σσσ

and ph is readily determined from σ33. Using (4.33) and (4.34) together with the condition
of a volume preserving incompressible material, i.e. detF = 1, the following nonlinear
systems of equations may be deduced,

σ11 = 2ψ1(λ
2
f −λ

2
n )+(2ψ4f +σa)λ

2
f = 0, (4.37)

σ22 = 2ψ1(λ
2
s −λ

2
n )+2ψ4sλ

2
s = 0, (4.38)

λfλsλn = 1. (4.39)

Keeping in mind that ψ4f vanishes if λ 2
f < 1 [56], which is always the case in this particular

example, the system of Eqs. (4.37)–(4.39) can be solved for λf, λs and λn and a given
value of σa (calculated using equation (4.20)). This system was solved using the MATLAB
function fsolve(). The material parameters used is shown in Table 4.1. The same problem
is solved in FEAP and the resulting stretches are compared to the analytical solution for
several values of the action potential Vm.

To our knowledge, there are no data available in the literature which would specifically
characterize the passive mechanical material parameters of the rabbit myocardium. Instead,
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Figure 4.5.: (a) Potential-stretch curves for the analytical solution (solid lines, sub-index
A) and the FEAP solution (circles, sub-index F) in the fiber f, sheet s, and
sheet-normal n, directions; (b) unit cube before deformation (outlined) and
after deformation (solid); (c) overlay of FEM calculation of passive inflation
on experimental data from passive inflation of a rabbit LV. The experimental
data points are adapted from Fig. 4 in [46], and the FEM calculation is shifted
to the left to account for the difference in initial volumes between model and
experiment.

the passive material parameters used and shown in Table 4.1, were fitted against porcine
myocardium [35]. To verify that they are also reasonably valid for a rabbit LV, Model I
is passively inflated to 30 mmHg and compared to experimental data of passive inflation
[46].

4.4. Results

4.4.1. Model validation

Validation results of the numerical implementation are shown in Fig. 4.5(a). The perfect
match between analytical and numerical solution suggests that the implementation of the
model can be considered to be correct. Results of the passive inflation experiments are
shown in Fig. 4.5(c). The FEM solution agrees very well with the experimental data beyond
5 mmHg, indicating that the material parameters retrieved from porcine experiments are
also well suited for models of a rabbit LV.

4.4.2. Effect of heterogeneity in orthotropy upon mechanical contraction

To study the impact of spatial heterogeneities in the arrangement of fibers and laminae
pressure-volume loops were computed for a full cardiac cycle using model I and II. In
both cases the LV is modeled as an electrically and mechanically orthotropic material.
Both models were subjected to the exact same stimulation protocol and the same boundary



82 4. Influence of Spatial Heterogeneity in the Left Ventricle

conditions, with the only difference being that the material structure is described using
a spatially heterogeneous orthotropic tensor in model II based on experimental measure-
ments, as opposed to a rule based spatially homogeneous orthotropic tensor in model I.
Overall, the mechanical behavior observed is fairly similar between the two models, how-
ever, in some aspects striking differences were observed. Both Models I and II are in
good agreement with experimentally observed PV loops [140]. In Fig. 4.6(a), Model II is
shown together with experimental values, both using a normalized volume to account for
the difference in initial LV volumes. Fig. 4.6(b) shows the PV loops for both Models I
and II. The relative comparison reveals that Model II predicts a larger EDV, whereas the
ESV’s are fairly similar between the models. No major differences were observed in any

Figure 4.6.: (a) Comparison of PV-loops between data-based model and experimental re-
sults adapted from [140]. The volume is normalized between EDV and ESV
for both model and experiment to account for the difference in initial volume;
(b) comparison of PV-loops between Models I and II.

parameters which characterize mechanical performance globally, such as wall thickening,
maximum change in myocardial wall volume, stroke volume, ejection fraction and cardiac
output. A comparison of these parameters is summarized in Table 4.3. SV is slightly lower
with Model I, and thus, since HR was the same, CO was lower too.

Despite these similarities, with regard to torsion the difference in predictions was strikingly
different. The average torsion in the short axis plane with Model II was 4.5◦ (Fig. 4.7(c),
whereas the spatially homogeneous fiber and sheet setup in Model I resulted in equal
torsion in all short axis cross sections of 53.5◦ (Fig. 4.7(d). A further noticeable difference
arose with regard to the movement of the apex. In Model I the apex moved only along the
apico-basal direction, aligned with the global X3-direction in our setup, whereas in Model
II a significant movement of the apex towards the septal wall was observed (Fig. 4.7(b).
Therefore, to analyze the torsion of the LV in model II, the long and short axis orientation
required adjustments with Model II, since the long axis is assumed to be aligned with the
main direction of the septal wall. The short axis is perpendicular to the long axis and is
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Results Model I Model II Experiment

hf (%) 33 29 35.2 [151]
V max

f (%) -0.42 -0.51 -7.2 [3]†

HR (bmp) 171 171 198 [158]
SV (ml) 2.7 3.1 1.8 [158]
EF (%) 61 63 53 [158]
CO (l/min) 0.46 0.53 0.421 [158]

Table 4.3.: Comparison of results between Models I, II and experiment. hf=fractional
thickening, V max

f =volume fraction of the wall (maximum change in wall
volume), SV = stroke volume, EF =ejection fraction, CO =cardiac output.
†Average value of through-thickness volume change.

chosen to be close to the endocardial apex, as shown in Fig. 4.7(a). Aligning the centroid
of the cavity in short axis images, taken from EDV and ESV, the torsion may be calculated
by tracking the movement of the mesh.

The radial contraction from EDV to ESV of the endocardium and the epicardium may be
viewed in the septal-lateral and posterior-anterior directions. In both Models I and II, this
contraction is quite similar except for the septal-lateral direction at the epicardial border.
This contraction is visible in Fig. 4.7 as the difference between the dashed lines (EDV)
and solid lines (ESV). Both models also match experimental data quite well [118], except
for the epicardial contraction in the septal-lateral direction where Model II is significantly
closer to experimental values than Model I. A further fundamental difference was observed
with regard to fiber and sheet stresses. This is illustrated in Fig. 4.8 which visualizes fiber
and sheet stresses in a cross section through the septal and lateral wall. As shown, Model
I predicts much higher stress gradients than Model II at the basal epicardial border.

4.5. Discussion

A computational model of the rabbit LV was used to investigate the impact of spatial
heterogeneity in structural orthotropy upon mechanical contraction. While numerous sim-
plifying assumption were made in constructing this model with regard to ventricular ge-
ometry, mechanical boundary conditions, electro-mechanical coupling and the generation
of active stresses which all clearly may influence simulation results, relative comparisons
are possible, allowing to dissect the effects of the one model parameter under study, i.e.
spatial variations in orthotropy. Simulation results suggest that spatial heterogeneity in
structural orthotropy may play a critically important role in mechanical contraction of the
LV. While the predictions of both models, i.e. with and without spatial heterogeneity in
orthotropy, were very similar and matched fairly well with experimental data in terms of
most lumped system parameters such as pressure-volume loops, in some aspects striking
differences were observed. Most notably, this was the case with torsion which turned out
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Figure 4.7.: Geometry at EDV shown with empty regions and dashed lines, and ESV
shown with filled regions and solid lines: (a) the short-axis plane is perpen-
dicular to the long-axis plane which is always aligned with the main direction
of the septal wall; (b) the outlined epicardial surface viewed from the apex
towards the base of the LV. The apex in both EDV and ESV are marked with a
circle and show the movement of the apex towards the septal region; (c) torsion
at the short-axis plane for Model II. The average torsion is 4.5◦; (d) torsion at
the short-axis plane for Model I. The torsion is the same for all regions and is
53.5◦.

to be significantly larger in the presence of orthotropic heterogeneity.

Effects of heterogeneity in orthotropy. While the influence of heterogeneity in struc-
tural orthotropy turned out to be very minor with respect to lumped parameters such as PV
loops which characterize ventricular mechanical performance at a global scale, deforma-
tion was quite sensitive, with torsion being strikingly different between the models.

On the other hand, despite the better match achieved with experimental data in several re-
gards, the use of experimental data on orthotropy led to unphysiological predictions which
were not present in the simpler model. In particular, using model II predicted a longitudi-
nal elongation of the LV which is in contradiction to the longitudinal shortening, as it is
seen in experiments [159].

Potential reasons are: i) the maximum active stress generated, regulated by the parameter
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Figure 4.8.: Fiber and sheet stress in Models I and II: (a) fiber stress in Model I; (b) fiber
stress in Model II; (c) sheet stress in Model I; (d) sheet stress in Model II.

kσ , was not large enough, and therefore, with a smaller fiber component in the longitudinal
direction relative to Model II, the internal pressure of the LV dominated. This highlights
the difficulty of obtaining accurate material properties also for the active material model.
It is unclear whether this would also occur in the presence of a RV. ii) the mapping of
orthotropic data from an anatomically realistic model onto a simplified ellipsoidal model
may have led to distortions, considering that the geometric differences between the ellip-
soidal model and the real geometry in which the measurements of the structure tensors
were performed, were significant. This potential problem could be circumvented by using
datasets which provide both anatomical information via high resolution MRI, and struc-
tural information, acquired by Diffusion-tensor MRI. A further potential discrepancy stems
from the fact that the complex trabeculation of the endocardium remains unaccounted for
in our model, a limitation that is shared with all other modeling studies on ventricular me-
chanics. iii) the mean values as presented by Rohmer were taken and linearly interpolated,
however, the noise and variance in these data is significant. The data were averaged over
large sectors of the ventricles, more detailed data on a per voxel base were not available.
iv) fiber angles in the Rohmer data tended to be smaller than those observed in detailed
histological studies [93, 126] upon which most rule-based approaches are built upon.

Validation. Even though material parameters for the passive behavior of the LV are in-
herently difficult to obtain, the excellent agreement between experimental data and the LV
model for passive inflation, shown in Fig. 4.5, can be considered as an indication of accu-
racy and a justification of using the given passive material parameters in this study. The
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behavior of the passive model differs from experimental observations only for very low
pressures, < 5 mmHg, where the model behaves stiffer. A potential cause underlying this
discrepancy is the folding of the LV wall under these very low cavitary pressures. Upon
inflation, as the pressure increases and the folds unravel, the cavitary volume may increase
without generating any relevant stresses in the LV walls. This behavior, however, would not
be evident in-vivo since low pressures of < 5 mmHg are clearly below the physiological
range in a rabbit LV [140].

Despite obvious differences in deformation between the models, the predicted PV loops
were quite similar (see Fig. 4.6 (b), suggesting that PV loops alone are an insufficient
criterion for assessing accuracy and adequacy of a model. Therefore additional quantities
were computed such as myocardial torsion, the thickening of the myocardial wall, radial
contraction, stresses and global LV functions such as stroke volume, ejection fraction and
cardiac output. Ideally, experimentally recorded displacement fields along with strain mea-
surements and detailed transmural electrical mapping data should be used to better gauge
the model performance, however, such data are not readily available at a sufficiently high
spatio-temporal resolution in 3D.

For Models I and II, the torsion of the myocardium at ESV is shown in Fig. 4.7(c) and
(d). For Model I, the torsion was 53.5◦ which is much higher than the average torsion in
Model II which was only 4.5◦. Physiologically measured values found in the literature are
in the range of∼ 8-12◦ [16,112,163], which means Model I predicts torsions which are far
too large. Possible reasons for the pronounced torsion in Model I are the simplified repre-
sentation of LV geometry and the absence of the RV which would likely reduce torsional
significantly in the LV myocardial wall, particularly in the septal region. The difference in
the fiber and sheet stresses between Models I and II, seen in Fig. 4.8, is probably caused
by the reduced torsion in Model II. This means that Model II is not as influenced from the
applied BC as Model I, which implies that Model II is preferable from a computational
point of view. The averaged thickening, hf, of the ventricular wall for both Models I and
II are close to experimentally observed values for rabbits, as shown in Table 4.3. Using an
averaged value does not capture regional differences in thickening [18, 159], but with the
simplified geometrical model used here, it may provide a more useful comparison as the
thickening alters significantly in the longitudinal direction.

Stroke volume, ejection fraction and cardiac output are all close to experimentally ob-
tained values, as seen in Table 4.3, for a rabbit LV. Also the heart rate, 171 bpm, is within
the reported values in the literature corresponding to a conscious rabbit. Thus, similar to
the argument concerning the PV-loops, with these values it is only possible to partially
differentiate between, or determine the accuracy of, the models. The discrepancy between
experimentally observed and simulated values for the compressibility of wall volume, V max

f
shown in Table 4.3, is not surprising as the setup of the model assumes near incompress-
ibility, while experimental observations show that there is some compression of the wall
volume due to, for example, blood leaving the coronary arteries during systole [3]. Thus,
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as near incompressibility was intended to be modeled, the low values of V max
f shown for

both models indicate that a large enough value of the bulk modulus was chosen.

The asymmetric contraction pattern in Model II gives a slightly more realistic value of
radial contraction in the septal-lateral direction at the epicardial border when compared to
experimental values [118]. Both Models I and II show realistic values in all other direc-
tions of radial contraction when compared to the same experiments, indicating that radial
contraction is not heavily affected by torsion which is much larger in Model I.

Limitations of the study. An important limitation is the use of a stylized geometry where
the real geometry of a LV is approximated by an ellipsoid. Further, the presence of the RV
influences the mechanical action of the LV, but these effects were neglected in this study.
Apart from the macro-anatomical differences between a real bi-ventricular geometry and
an ellipsoid, as in any other modeling study on cardiac mechanics, the complex trabecu-
lation of the endocardium remain unaccounted for. A simplified phenomenological model
of electro-mechanical coupling was used where the generated active stresses depend only
on the transmembrane potential, ignoring all major physiological factors implicated in the
process of active stress generation such as calcium transients, the interactions of calcium
with myofilaments and metabolic aspects. The absence of a filament model also prevents
modeling of a transverse component of the active stress tensor, as postulated in [128].

Further, as in most previous studies [77, 106, 168], electrical and mechanical model were
weakly coupled. That is, the solution of the electrical quantities is calculated on a static
mesh first, and relevant parameters are then fed into a separate subsequent simulation of
deformation and stress analysis. The main advantage of a weakly coupled approach is
lower complexity and compute time [128], however, in contrast to strong coupling ap-
proaches [104,108] the modeling of phenomena where mechanical stresses influence upon
the electrophysiological properties that govern cellular dynamics, is not possible. That is,
effects of mechano-electric feedback are fully ignored [75]. While strongly coupled ap-
proaches are likely to be key when subtle electro-mechanical effects are to be captured,
most modeling studies refrained from taking a strong coupling approach, mainly due to
the increased complexity of computation schemes and potential problems with numerical
instabilities, although those issues are being addressed [107, 120]. The striking effect of
experiment based fiber and sheet orientations demonstrated in the simulation in this study
clearly indicate the need for realistic geometrical modeling. However, with anatomically
highly realistic models, as they are now state of the art in modeling cardiac electrophysiol-
ogy [11, 124], the mesh density increases significantly to resolve finer anatomical details,
which, in turn, entails a substantial increase in computational costs [105]. Using such high-
resolution meshes for simulating deformation in cardiac mechanics require the consequent
use of advanced numerical methods and parallelization techniques, to enable strongly scal-
able simulation on large scale high performance computing facilities which is key to keep
such high-resolution simulations of cardiac electromechanics tractable.
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Despite these many limitations which are shared by most contemporary modeling stud-
ies on cardiac electro-mechanics, the relative differences observed between Model I and
Model II provides evidence on the non-negligible role of spatial heterogeneity in struc-
tural orthotropy. Particularly the significant influence upon torsion, which characterizes a
striking difference, is a fairly robust feature which is almost certain to be seen in more
advanced models where some of the above listed limitations are lifted.
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5. MODELING THE DISARRAY IN CARDIAC FIBER AND
SHEET ORIENTATIONS

Abstract We present a novel approach to model the disarray of both the fiber and sheet
orientations evident in, especially diseased, myocardium. By utilizing a structure parame-
ter, which determines the level between isotropy and transverse isotropy related to a pre-
ferred material direction, an existing orthotropic constitutive model developed for my-
ocardium is augmented. The structure parameter can be fitted to experimentally observed
angular dispersion data. It is used both for the passive behavior of the myocardium, and
in the determination of the direction of applied active stress. Analytical and numerical
simulations on a simple cube and passive inflation of a section of an LV show that the
dispersion parameter has great effect on myocardial deformation and stress development.
On a simulation of the entire left ventricle, represented by a truncated ellipsoidal finite-
element model incorporating active stress, the dispersion parameter is included and fitted
to both healthy and diseased myocardium. The results show that the dispersion parameter
have a significant impact on pressure-volume loops, and in future simulations the presented
dispersion model for myocardium may advantageously be used together with models of,
e.g., growth and remodeling of various cardiac diseases.

5.1. Introduction

The left ventricle (LV) is the main pumping chamber of the heart which supplies blood
through the circulatory system to the entire body. The LV builds up the necessary pres-
sure by active contraction where the electrical activation of the heart triggers a cascade
of events, referred to as electro-mechanical coupling, which leads to a shortening of the
cardiac myocytes which make up the myocardial wall. Myocytes are arranged in a highly
organized fashion, following a right-handed helical pathway from the endocardium to-
wards the mid-wall, and a left-handed helical pathway from the mid-wall towards the epi-
cardium [93, 135, 169]. This prevailing myocyte orientation is usually referred to as ‘fiber
orientation’. In addition, fiber bundles are arranged into laminar sheets of four to six cell
layers, where the prevailing sheet orientation also varies in both the transmural as well as
the apico-basal direction [85,135,142,190]. At any point in the LV, the structural arrange-
ment of myocytes is reflected in three orthogonal directions along which both electrical as
well as mechanical material parameters are different, thus necessitating to model electrical
and mechanical response of the myocardium as an orthotropic material. These preferred
directions are along the fibers, transverse to the fibers but within a laminar sheet, and per-
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pendicular to the sheets; these directions are thus called the fiber, sheet and sheet-normal
directions, respectively.

In the healthy heart, the fiber alignment follows very closely these helical pathways with
only small angular dispersion (AD) in the range of ∼ 12-15◦, whereas in diseases such as
hypertrophic cardiomyopathy (HCM) or myocardial infarction (MI) the AD may locally
increase with ∼ 65 % (at foci points within the septal wall) [71, 72, 171] or ∼ 50 % (at the
site of infarction) [157, 181, 192] respectively. Less is known about the structural arrange-
ment of laminae. Due to the importance of sheet orientation in myocardial wall thickening
it has been speculated that dispersion of sheet orientations may play a significant physio-
logical role [21]. There are experimental reports supporting the notion that there is quite
a large dispersion of the sheet structure, even in healthy hearts [28, 62, 143]. Although to
our knowledge there are no experimental reports which would quantify sheet dispersion
in diseased hearts, it is likely that dispersion is elevated as well compared to healthy con-
ditions. To the authors knowledge, there are no recently published biomechanical cardiac
models with dispersion, the latest existing models being [169, 171], and there is none that
include sheet dispersion which is why this study focuses on developing a novel approach
for modeling fiber and sheet disarray using an invariant based framework. A previously
published orthotropic and invariant based model which characterizes the nonlinear passive
behavior of myocardium [56] is augmented with a structure parameter which allows to
quantify the degree of dispersion based on experimental measurements of fiber and sheet
angle data. This structure parameter is based on a distribution function developed for the
collagen structure in arteries [47] by incorporating a dispersion parameter which reduces
the directional dependence in the myocardium and may thus be used both for the fiber
and sheet dispersion, something which, to the authors knowledge, has not been modeled
before.

Simulation results indicate that the dispersion has a relevant impact on the myocardium
both during passive deformation and active contraction by reducing the stress response and
changing the deformation pattern. When including the dispersion parameter in a ventricu-
lar simulation incorporating electrical activation the pressure volume loop is considerably
altered by reducing the stroke volume. Since the degree of dispersion is significantly el-
evated under various cardiac pathologies, dispersion should be taken into account when
modeling myocardial tissue in diseased states.

5.2. Modeling Framework

5.2.1. Kinematics

The myocardium may be described by three orthogonal direction vectors f0, s0 and n0
corresponding to the mean fiber, sheet and sheet-normal directions, respectively, in the
Lagrangian description. The isochoric Eulerian counterpart of these direction vectors are
retrieved through the relations f̄ = J−1/3Ff0, s̄ = J−1/3Fs0 and n̄ = J−1/3Fn0, where F
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is the deformation gradient and J = detF is the Jacobian. The circular dispersion of the
fiber and sheet direction vectors around their mean orientations may be modeled using the
structure tensors

Hf = κfI+(1−3κf)(f0⊗ f0), Hs = κsI+(1−3κs)(s0⊗ s0), (5.1)

h̄f = κfb̄+(1−3κf)(f̄⊗ f̄), h̄s = κsb̄+(1−3κs)(s̄⊗ s̄), (5.2)

as described in [47], where Hi is a Lagrangian structure tensor and h̄i = J−2/3FHiFT is an
isochoric Eulerian structure tensor where i ∈ {f,s} correlates to the fiber and sheet direc-
tions respectively. I is the second order identity tensor and b̄ = J−2/3FFT is the modified
isochoric left Cauchy Green tensor.

The formulation of the dispersion parameter κi is described in detail in [47]. Briefly, the
range of valid values for κi are ∈ [0,1/3], where κi = 0 means perfect alignment and
κi = 1/3 means complete dispersion. A formulation of κi may be derived through the
probability density function (PDF), ρi(Θ), using the relation

κi =
1
4

π∫
0

ρi(Θ)sin3
ΘdΘ, (5.3)

where Θ are the distribution angles centered around Θ = 0. The PDF used is given by

ρ(Θ) = 4

√
b

2π

exp{b[cos(2Θ)+1]}
erfi(
√

2b)
, (5.4)

where b is a concentration parameter and erfi(x) = −i erf(x) denotes an imaginary error
function. ρ(Θ) is the standard π-periodic von Mises PDF, normalized by

1
4π

∫
ω

ρ(Θ)dω = 1, (5.5)

where ω is the unit sphere.

The values for κi may thus be fitted against histograms of the dispersion of fiber and sheet
angles for myocardial tissue. To fit the PDF (5.4) to histogram data, the fiber angles Θ in the
data are shifted to Θ̄ by centering around Θ = 0◦ and the maximum likelihood estimates
function in Matlab, mle(), is used together with a custom function describing Eq. (5.4).
The parameter b is thus retrieved with a 95 % confidence interval and using (5.3), κi is
obtained.

The fit of the PDF to fiber dispersion is shown both against healthy myocardial tissue,
Fig. 5.1(a), and against tissue diseased by HCM, Fig. 5.1(b), where the dispersion data is
adapted from [71]. The fit of the PDF to sheet dispersion, however, is only shown against
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Figure 5.1.: Fit of histogram data for fiber and sheet arrays, adapted from [28, 71]: (a)
healthy fiber dispersion with κf = 0.00765; (b) diseased fiber dispersion with
κf = 0.08856; (c) healthy sheet dispersion with κs = 0.02492.

healthy subepicardium, Fig. 5.1(c), where the dispersion data is adapted from [28]. As,
to the authors knowledge, the structure of sheet orientations in a diseased state has never
been investigated, only healthy sheet disarray may be considered at the moment. As seen
in Fig. 5.1, this procedure yields κf = 0.00765 and κs = 0.02492 for healthy myocardial
tissue and κf = 0.08856 for diseased tissue.

5.2.2. Constitutive relations

The form of the strain-energy function used to model the myocardium is given by

Ψ =U(J)+Ψp(Ī1, Ī4f, Ī4s, Ī8fs), (5.6)

where U is a volumetric function and Ψp is an isochoric strain-energy function describing
the passive behavior using the four modified isochoric invariants defined as Ī1 = trC, Ī4f =
f0 ·Cf0, Ī4s = s0 ·Cs0 and Ī8fs = f0 ·Cs0, where C = J−2/3C is the modified isochoric right
Cauchy Green tensor. For the volumetric function

U(J) =
µK

2
(lnJ)2 (5.7)

is used, where µK is the bulk modulus which servers as a user specified penalty param-
eter enforcing incompressibility. The volume preserving passive strain-energy function is
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described by

Ψp =
a

2b
{exp[b(Ī1−3)]−1}+ ∑

i=f,s

ai

2bi
{exp[bi(Ī∗4 i−1)2]−1}

+
afs

2bfs
[exp(bfsĪ2

8fs)−1], (5.8)

where Ī∗4 i = κiĪ1 + (1− 3κi)Ī4 i, i ∈ {f,s} is a modified invariant, as formulated in [47,
122]. This formulation basically uses κi to describe the blending of the isotropic invariant
I1 and the directionally dependent invariant I4 i. It may be noted that in a limiting case,
where κi = 0, the original model, as described in [56] and [36], is retrieved. The material
parameters needed in (5.7) and (5.8) are µK, a(·, f,s, fs) and b(·, f,s, fs) plus the dispersion
parameter κi. The passive Cauchy stress tensor is given by σσσp = 2J−1F(∂Ψ/∂C)FT and
using the notations

ψ j =
∂Ψp

∂ Ī j
, j = 1,8fs, ψ

∗
4 i =

∂Ψp

Ī∗4 i
, i = f,s, (5.9)

this results in

σσσp = phI+2J−1[ψ1 dev(b)+ ∑
i=f,s

ψ
∗
4 i dev(hi)+

1
2

ψ8fs dev(f⊗ s+ s⊗ f)], (5.10)

where ph = dU(J)/dJ is used to enforce the near incompressibility and dev(•) = (•)−
(1/3)[(•) : I]I is the deviatoric operator in the Eulerian description [53]. A scalar valued
active second Piola-Kirchhoff stress term Sa which originates from [103] is calculated in
the Lagrangian description by

∂Sa

∂ t
= ε(Vm)(kSa∆Vm−Sa), (5.11)

where ε(Vm) is a delay function controlling the rate of activation and relaxation of Sa.
The parameter kSa regulates the amplitude of Sa given the difference in the transmembrane
potential ∆Vm = Vm−Vr, where Vm is the current action potential and Vr is the myocyte
resting potential. A smooth delay function ε = ε(Vm), as proposed in [49], is used which
is given by

ε(Vm) = ε0 +(ε∞− ε0)exp[−exp(−ζr(Vm−Vs))], (5.12)

where ε0 and ε∞ are the limiting values of the delay function when the action potential
Vm is larger or lower than a given phase shift Vs. Further, the transition rate of the delay
function is controlled by the parameter ζr. However, in contradiction to what is written
in [49], the relation between the limiting values must follow ε0 > ε∞ as discussed in [36]
in order to achieve the delay of peak active stress with respect to the upstroke of the action
potential. An active second Piola-Kirchhoff stress tensor Sa is retrieved by introducing a
dispersed structure tensor Ĥa according to

Sa = SaĤa, (5.13)
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where
Ĥa =

κf

1−2κf
C−1 +

1−3κf

1−2κf
I−1
4f f0⊗ f0. (5.14)

The active Cauchy stress is now retrieved by the push-forward operation according to
σσσ a = J−1FSaFT which yields

σσσ a = J−1Saĥa, (5.15)

where
ĥa =

κf

1−2κf
I+

1−3κf

1−2κf
f̂⊗ f̂, (5.16)

and f̂ = f/|f| is the normalized fiber direction vector. The structure tensor (5.14) is formu-
lated so that (5.16) may be seen as a normalization of (5.2)1 where the length change of the
mean fiber orientation does not affect the magnitude of the applied stress as well so that the
condition f̂ · ĥff̂ = 1 is fulfilled which together ensures that (5.15) is a true Cauchy stress
tensor. The total stress tensor is now simply retrieved from the additive decomposition

σσσ = σσσp +σσσ a. (5.17)

The elasticity tensors needed for implementing the passive stress σσσp in the finite element
package FEAP [164] have been shown previously in [35, 47] and for the active stress σσσ a
the elasticity tensor both in Lagrangian and Eulerian description is shown in Appendix
A.1.

5.2.3. Modeling electro-mechanically coupled myocardial tissue

The computation of electrical activation and repolarization and its coupling to passive and
active tissue mechanics have been described previously in detail [36]. Briefly, the spread
of electrical activation and repolarization is described by a reaction-diffusion equation
referred to as the monodomain equation, given by

βCm
∂Vm

∂ t
+β Iion(Vm,ηηη) = ∇ · (σσσm∇Vm)+ Itr, (5.18)

where β is the membrane surface to volume ratio, Cm is the membrane capacitance, Vm is
the transmembrane voltage, Iion is the density of the total ionic current which is a function
of Vm and a set of state variables ηηη , Itr is a transmembrane stimulus current, and σσσm is
the monodomain conductivity tensor with the eigenaxes ζ = f along the fibers, ζ = s per-
pendicular to the fibers, but within a laminar sheet, and ζ = n perpendicular to the sheets.
No dispersion parameters are included in the formulation of the electrical activation. The
eigenvalues of σσσm, are chosen as the harmonic mean of intracellular conductivity, σiζ , and
interstitial conductivity, σeζ

, which renders the monodomain equations axially equivalent
to the more general bidomain equations [92, 109].

The electrical and mechanical models are weakly coupled. That is, the solution of the
electrical quantities is calculated on a static mesh first, using The Cardiac Arrhythmia Re-
search Package (CARP) [175], which is built on top of the MPI-based library PETSc [8].
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Relevant parameters are then fed into a separate subsequent simulation of deformation and
stress analysis using FEAP [164]. In this study, electrical quantities are either calculated
according to (5.18), as it is the case in the model of a left ventricle, Section 5.3.5, or the
transmembrane potential Vm is prescribed directly as an input to the mechanical deforma-
tion analysis.

5.3. Representative Examples and Results

To illustrate the effect of the dispersed myocardial model five representative examples are
studied. i) In Section 5.3.1 an analytical example of a small cube of myocardial tissue
is constructed which is electrically activated to generate active tension. The impact of
dispersion upon mechanical deformation is studied in this model when using the limit
values of the dispersion parameters κf and κs; ii) A second analytical example in Section
5.3.2 aims at showing the influence of dispersion under simple shear; iii) A FE model of a
larger cube of myocardial tissue is used in Section 5.3.3 to investigate the relative influence
of electrically generated active stress in the presence of dispersion of the fiber orientation.
iv) A passive inflation experiment is performed using an LV slice model in Section 5.3.4
to study the transmural change in stress as a function of altered dispersion parameters both
in the fiber and sheet directions; v) A fullblown electro-mechanically coupled LV model
is used in Section 5.3.5 to study the influence of dispersion on pressure-volume loops over
a cardiac cycle where dispersion parameters are chosen to account for both healthy and
pathological conditions.

5.3.1. Cube with dispersion subjected to active stress

An analytical example may be constructed of a unit cube with mean material directions
oriented according to [f0] = [1,0,0]T, [s0] = [0,1,0]T and [n0] = [0,0,1]T in the global X1,
X2 and X3 coordinate system as shown in Fig. 5.2(a). The cube is fixed against rigid body
movement but otherwise free to deform. The cube is activated by increasing the trans-
membrane potential which generates contraction in the fiber direction. The corresponding
deformation gradient is given as

[F] =

 λf 0 0
0 λs 0
0 0 λn

 , (5.19)

where λf, λs and λn are the stretches in the fiber, sheet and sheet-normal directions, re-
spectively. Since the activation in the fiber directions leads to a contraction of the fiber, the
stretches follow the relation λf < 1, λs > 1 and λn > 1. The fulfillment of incompressibility
in the analytical case, i.e. J = 1, leads to the following components of the Cauchy stress
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Figure 5.2.: (a) Deformation of a unit cube when activated in the fiber direction; (b) ana-
lytical result in the fiber, sheet and sheet-normal directions using the distribu-
tion parameters κf and κs. The solid lines represent the analytical solution
with κf = κs = 1/20 (the filled circles show the FE-solution for compari-
son using the same parameters). Using κf = 1/3, the dashed line shows the
stretch response for all three f, s and n-directions, regardless of κs-value. Us-
ing κf = 1/20 and κs = 1/3, the dotted line shows the stretch response in the
f-direction and the dash-dotted line in the s and n-directions.

tensor

σ11 = ph +2[ψ1 +ψ
∗
4f(1−2κf)+ψ

∗
4sκs]λ

2
f +Sa, (5.20)

σ22 = ph +2[ψ1 +ψ
∗
4fκf +ψ

∗
4s(1−2κs)]λ

2
s +Sa

κf

1−2κf
, (5.21)

σ33 = ph +2(ψ1 +ψ
∗
4fκf +ψ

∗
4sκs)λ

2
n +Sa

κf

1−2κf
, (5.22)

σ12 = σ13 = σ23 = 0. (5.23)

Since the cube is free to deform, all total stress components in Eq. (5.20)–(5.22) are zero,
i.e. σσσ = σσσp +σσσ a = 0, and ph may be determined by, e.g., σ33 = 0. The unknowns are the
stretches λf, λs and λn and using the incompressibility condition, λfλsλn = 1, the nonlinear
systems of Eqs. in (5.20)–(5.22) is solved using the function fsolve() in MATLAB, with
respect to λf, λs and λn using given values of Sa, κf and κs. With the material parameters
shown in Table 5.1, and increasing the potential linearly from Vm =Vr to Vm =+50 mV, the
resulting deformation as a function of activation is shown in Fig. 5.2(b). Also, a comparison
is made between the analytical and FE-values obtained for the same model setup using one
set of dispersion parameters. For the limiting case where κf = 1/3 the active stress acts in
all direction and due to the incompressibility the cube cannot deform, resulting in a straight
line at λ = 1 for all directions shown as a dashed line in Fig. 5.2(b). For the limiting case
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Used for Parameter

Passive stress µK = 3333 kPa a = 0.333 kPa b = 9.242 (-)
af = 18.535 kPa bf = 15.972 (-) as = 2.564 kPa
bs = 10.446 (-) afs = 0.417 kPa bfs = 11.602 (-)

Active stress kSa = 0.50 kPa mV−1 Vr =−86.796 mV Vs =−80.0 mV
ε0 = 1.0 ms−1 ε∞ = 0.1 ms−1 ζr = 0.1 mV−1

Table 5.1.: Material parameters used in both analytical and numerical calculations, except
for the values for κf and κs which are shown in respective section. The passive
stress material parameters are adapted from [35], and the active stress material
parameters are adapted from [36, 49, 103].

where κs = 1/3 the sheet direction is isotropic and the sheet and sheet-normal responses are
thus indistinguishable, shown as a dash-dotted line in Fig. 5.2(b). In effect, when κs = 1/3
the material model may be viewed as transversely isotropic.

5.3.2. Influence of dispersion on simple shear

Figure 5.3.: (a) Deformation of a unit cube when sheared a distance γ in the 21-plane; (b)
the σ11 stress response to simple shear of a cube when changing the dispersion
in the fiber direction.

An analytical formulation of simple shear may be derived by assuming plane stress which
leads to the determination of the hydrostatic pressure q. However, since the volume is
constant in simple shear of an incompressible material, i.e. detF = 1, the deformation
gradient of plane strain may also be used. Thus, with simple shear in, e.g., the 21-direction
as seen in Fig. 5.3(a), the corresponding deformation gradient has the components

[F] =

 1 γ 0
0 1 0
0 0 1

 , (5.24)
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leading to the following (non-zero) components of the Cauchy stress tensor

σ11 = 2{ψ1γ
2 +ψ

∗
4f[1+(γ2−1)κf]+ψ

∗
4s(1−2κs)γ

2}+ψ8fsγ +Sa
1−3κf

1−2κf
, (5.25)

σ22 = 2ψ
∗
4s(1−3κs), (5.26)

σ12 = σ21 = 2[ψ1 +ψ
∗
4fκf +ψ

∗
4s(1−2κs)]γ +

1
2

ψ8fs, (5.27)

where the incompressibility condition is retrieved through the plain stress relation σ33 = 0.
Interesting to note is that although the direction of applied active stress is dispersed, there
are no components of the active stress in the 22 or 33-direction due to the incompressibility
assumption. The stress response in the X1-direction for different κf-values is shown in
Fig. 5.3(b) where it is clearly seen that an increased fiber dispersion decreases the stress
in the X1-direction. In this example, the active stress is zero in the reference configuration,
and increases together with the increase of shear. In a FE-analysis of the same problem,
using one set of distribution parameters, matching values are found which is shown as
filled circles in Fig. 5.3(b).

5.3.3. Influence of increased myocyte dispersion

The influence of the level of myocyte dispersion may also be shown using a similar cube,
but now discretized into 10× 10× 10 mm mixed Q1/P0 finite elements with fixed dis-
placement boundary conditions in all degrees of freedom on the faces of the cube where
X2 = 0 and X2 = 10 mm.

Different values for κf are used whilst keeping κs = 0 constant. The cube is activated
to a potential of Vm = +30 mV and the corresponding first principal stress σI is shown
in Fig. 5.4 for various values of κf. As seen in Fig. 5.4, increasing the isotropy in the
myocardial tissue lowers the values of σI, and also decreases the contraction in the X1
direction. This is, on one hand, due to the increased dispersion of the fiber direction which
leads to an increase in active stress components along the X2 and X3-directions, and, on the
other hand, again due to the incompressibility of the material which reduces the influence
of the active stress in the fiber direction.

5.3.4. Passive inflation of ventricular section

A thin left ventricular slice model is constructed by approximating the cross section of the
LV by a cylinder, as illustrated in Fig. 5.5a. Two models, A and B, of the same geometry,
but with different fiber and sheet arrangements are constructed. In model A, the average
fiber angle α varies from +60◦ to −60◦ and the average sheet angle β varies from +85◦

to −85◦ transmurally from the epicardium to the endocardium, where the fiber and sheet
angles α and β are defined in Fig. 5.5(b). In Model B, the fiber and sheet angles are both
α = β = 0 and in Fig. 5.5(c) fiber directions are shown for both models for visual clarity.
The slice geometry is meshed with 400 hexahedral mixed Q1/P0 elements which are fixed
against translation in the ξ2-direction at the cut surfaces, and in the ξ3-direction at the
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Figure 5.4.: Cube of myocardial tissue subjected to an active stress corresponding to
+30 mV with κf = {0, 0.1, 0.2, 0.3} and κs = 0.

Figure 5.5.: (a) Coordinate system of an LV model and a section of the LV; (b) average
fiber orientation defined by the angle α in the (ξ2,ξ3)-plane and average sheet
orientation defined by the angle β in the (ξ1,ξ2)-plane. The arrows point in the
positive directions for the angles; (c) average fiber orientation for Models A
and B.

epicardial border to hinder rigid body movement. No electrical stimulus was applied, that
is, the tissue remained electrically quiescent and thus no active stresses were generated.
Instead, the slice is passively inflated by applying a pressure load of p = 100 mmHg to
the endocardial surface in 200 incremental load steps of equal size. The influence of the
κi parameters is investigated either by using a combination of the healthy and diseased
dispersion parameters shown in Fig. 5.1, or by using a combination of perfectly aligned
(κi = 0.0) and very dispersed (κi = 0.2) parameters. The resulting first principal Cauchy
stress σI at p = 100 mmHg is shown for different dispersion parameters. In Fig. 5.6(a) the
healthy dispersion parameters result in a band of higher stresses in the mid-myocardium.
This band of higher stresses is noticeably reduced when using the diseased dispersion
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Figure 5.6.: First principal stress σI at p = 100 mmHg in a section of a ventricular model.
Models A and B pertain to the different fiber and sheet-orientations shown in
Fig. 5.5(b).

parameters, as shown in Fig. 5.6(b). Instead, stresses are more spread out radially and at
the endocardial border stresses are higher relative to the setup (a) where healthy dispersion
parameters were used. This suggests that fiber dispersion alone induces a radial stress
gradient where the highest stresses arise at the inner wall, as commonly seen, for instance,
in pressurized thick-walled isotropic tubes. This is exactly the case when using aligned
sheets and a pronounced fiber dispersion, as can be seen in Fig. 5.6(c). In the opposite case,
i.e. strong fiber alignment and pronounced sheet dispersion, the mid-myocardial band of
increased stress gradients is more pronounced, as shown in Fig. 5.6d. Using both κi = 0.0
(not shown here) in model A leads to results which are virtually identical to Fig. 5.6(a).
For the sake of comparing, in model B the first principal Cauchy stress are also shown
for healthy and diseased dispersion parameters in Figs. 5.6(e) and (f), respectively. In this
case the diseased tissue results in slightly higher stresses at the endocardial border when
compared to the healthy tissue. This is probably due to the increase in dispersion in the
diseased tissue which entails an increase in radial expansion, however, this effect is not
nearly as pronounced as when comparing Figs. 5.6(a) and (b).

5.3.5. Simulation of an LV with healthy and diseased dispersion parameters

To study the influence of fiber and sheet dispersion upon contraction over a full cardiac
cycle an ellipsoidal model of a LV was constructed where the dimensions correlate with a
rabbit LV [174]. Details on model construction have been described elsewhere [36]. The
coordinates of the LV are described in prolate spheroidal coordinates with the axes ξ1,
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ξ3 and ξ2, pointing in the radial, circumferential and longitudinal direction, respectively.
The coordinate system is illustrated in Fig. 5.5(a), The arrangement of fibers and sheets
corresponds to model A in section 5.3.4. Pressure boundary conditions as imposed by
the ventricular deformation and the response of the vascular system are applied on the
endocardial surface. The pressure p in the cavity is governed by the following rules:

(i) Non-physiological initial phase with linear pressure increase to the end diastolic pres-
sure (EDP) (p = 20 mmHg).

(ii) Isochoric LV compression phase, p increases from EDP up to 95 mmHg.

(iii) Ejection phase where pressure-volume relationship is governed by a Windkessel

model, i.e. C
d p
dt

+
p
R
=−dV

dt
until reversed blood flow.

(iv) Isochoric LV relaxation phase, p drops down to 12.5 mmHg.

(v) Filling phase with linear pressure increase to EDP.

In steps (ii) and (iv), the pressure p is computed using the iterative relation pn+1 = pn +
(Vn+1−Vn)/Cp to keep the cavitary volume, V , of the LV constant where Cp serves as
a penalty parameter [168]. In step (iii), where a two-element Windkessel model is used,
the parameters C and R relate to arterial compliance and resistance, respectively. Values
for C and R are chosen to generate pressure-volume (PV) loops which match up with ex-
perimental recordings in rabbits [140]. Material parameters required for calculating the
pressure are C = 0.2 ml mmHg−1, R = 700 mmHg ms ml−1 and Cp =−900 mmHg ml−1.
The material parameters used to describe both active and passive mechanical behavior of
the model are summarized in Table 5.1, except for κf and κs which correspond to the
healthy and diseased dispersion parameters given in Fig. 5.1 and the mechanical boundary
conditions for the LV which are described in Table 5.2. The mesh consists of 5310 hexahe-

BC Coordinates Description

tn =−p ξ1 = ξ1min for all ξ2, ξ3 Endocardial surface
uξ2 = 0 ξ2 = ξ2max for all ξ1, ξ3 Basal surface

uξ3 = 0
ξ1 = ξ1max for all ξ3 Outer ring at base
ξ2 = ξ2max

Table 5.2.: Mechanical boundary conditions in terms of prescribed tractions t where tn is
the normal component of the traction vector to the endocardial surface on which
p acts, and displacements [u] = [uξ1

,uξ2
,uξ3

] in the direction of the coordinates
given in Fig. 5.5(a).

dral mixed Q1/P0 finite elements used to solve the mechanics and 1 201 507 linear hybrid
finite elements for solving the electrics [133]. The Mahajan model [91] is employed to
describe cellular dynamics. The model was initialized by pacing a single cell at a pacing
cycle length of 350 ms until a stable limit cycle was observed. The state vector ηηη at the
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end of this pre-pacing procedure was used to populate the LV model with an initial state
vector, ηηη0. Transmembrane current injection applied to the endocardial surface at t = 0 ms
initiated the propagation of the action potentials at the endocardium to approximate a pre-
dominantly transmural activation sequence, as induced by activation via the Purkinje sys-
tem. In this approximation the whole endocardium was activated synchronously, electrical
activation delays within the endocardium remained unaccounted for. 350 ms of activity
were simulated to cover one full depolarization and repolarization cycle over the entire
LV. The resulting pressure-volume (PV) loops obtained from the simulation are shown in

Figure 5.7.: PV-loops with different values for κf and κs.

Fig. 5.7, when using healthy and diseased values for the dispersion parameters, as well as
a case with no dispersion, i.e. κi = 0.0. While only a minor shift in the PV loops between
the cases no dispersion and healthy dispersion was observed, a strikingly different behav-
ior manifested with the diseased dispersion parameters where end diastolic and systolic
volumes was much larger.

5.4. Discussion

There are numerous reports in the literature which provide evidence for the presence of
dispersion in fiber and sheet orientation in myocardial tissue. Under healthy conditions
dispersion is rather mild, but under certain pathologies such as HCM [15, 33, 167] disper-
sion can be quite pronounced. In the vast majority of modeling studies, however, disper-
sion and its impact upon the mechanical response of the myocyardium has been largely
ignored. In this study, a novel mechanical model of myocardial tissue has been proposed
which explicitly accounts for the dispersion in fiber and sheet arrangement. By changing
two scalar parameters, κf and κs, dispersion of the model along fiber and sheet direction
can be steered independently, thus allowing detailed mechanistic investigations of patho-
logical changes upon the mechanical response. The dispersion parameters determine the
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blend between the isotropic invariant I1 and the directionally dependent invariant I4 i, thus
together they give a dispersed orthotropic structure response where an increased dispersion
leads to an increasingly more isotropic active and passive mechanical response.

Both the analytical and numerical examples investigated in this study suggest that dis-
persion may be a major factor in cardiac electro-mechanics. The increase in dispersion
along the fiber direction showed the most striking effect. This is illustrated, for instance,
in Fig. 5.4 where the increase in dispersion reduces contraction and first principal stresses.
The enforced incompressibility condition is responsible for this reduced contraction, as
seen in the analytical expressions (5.20)–(5.22) and (5.25)–(5.27). From a physiological
point of view, there is a clear interpretion as well. As the dispersion increases, the orien-
tation of myocytes which are responsible for active contraction, is more and more evenly
distributed. When dispersion is large enough, there is no preferred myocyte orientation any
more. This would entail a fully isotropic mechanical contraction which is, however, im-
possible without altering the volume. Moreover, besides distributing the direction of active
contraction, fiber dispersion also has a major impact on the passive myocardial response.
This is illustrated in Fig. 5.6(a) through (c) where the fiber dispersion is increased in a ven-
tricular slice model. During passive inflation of the slice the first principal stresses change
from being elevated in a mid-myocardial band for low fiber dispersion to being elevated
at the endocardial border for high fiber dispersion. This shift in the location of principal
stresses is similar to what is commonly seen when inflating a thick-walled tube.

Although the effects of dispersion in the fiber direction are clearly more striking, simu-
lation results indicate that increases in sheet dispersion lead to significant alterations in
model behavior as well. The overall material response changes gradually from orthotropic
towards transversely isotropic where the sheet response becomes indistinguishable from
the sheet-normal response. This can be seen either in the analytical example (5.21) and
(5.22) where κs = 1/3 gives identical expressions for σ22 and σ33, or, alternatively in
Fig. 5.2(b) where the behavior is identical along sheet and sheet-normal directions. The
difference in passive stress response between a (nearly) transversely isotropic and an or-
thotropic material can be appreciated by comparing Fig. 5.6(d) to Fig. 5.6(a) where the
mid-myocardial stresses are even more elevated for the (nearly) transversely isotropic
material. This large difference in stress response also highlights the importance of or-
thotropy as a factor which has to be taken into account when simulating ventricular electro-
mechanics.

In Section 5.3.5 results are shown for an electro-mechanically coupled model of the LV
for both healthy and pathological dispersion parameters. While the effects of using healthy
fiber and sheet dispersion parameters were fairly minor, using pathological dispersion pa-
rameters had a major impact. As can be seen by comparing the PV loop traces in Fig. 5.7,
a significant shift of the entire PV loop towards larger end diastolic and end systolic LV
cavity volumes occured.
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In summary, our modeling result identified fiber and sheet dispersion as important deter-
minants of electro-mechanical response of cardiac tissue which may need to be considered
when matching model predictions on stress, volume change and deformation pattern with
experimental observations under conditions of pathologically pronounced fiber and sheet
dispersion.

Limitations of the study. The fit of the histogram data to the PDF assumes a bell-shaped
data distribution. This may not be correct in pathological cases with increased fiber disper-
sion. As shown in Fig. 5.1(b), in this dataset of HCM-diseased tissue there appears to exist
two predominant myocyte orientations in the region of interest. It is certainly possible to
retrieve individual dispersion parameters for both predominant orientations, however, this
increased dispersion in HCM was only found within small focal islands throughout the
myocardial wall [71,72] where both orientations were found within each individual island.
Therefore, to appropriately account for the bimodal distribution of orientations, a signifi-
cantly higher spatial resolutions would be required than those commonly used within con-
current FE modeling studies, including this study. Since the spatial extent of a single finite
element in the models used exceeds the size of a focal island in which increased dispersion
can be found, we opted for using only one average direction which corresponds to a fit of
the bell-shaped function over both predominant orientations.

In the LV-model shown in Section 5.3.5, dispersion parameters corresponding to tissue dis-
eased by HCM were used throughout the entire LV wall. This is not a realistic assumption
as the dispersion in the small focal islands seems only to amount to approximately 25 %
of the overall volume of the LV [71, 72]. Available data show sheet and fiber dispersion
averaged over all the islands found in a given ventricle, but no data on spatial distribu-
tion and morphology of such islands are available. Therefore, simulation results show an
overly diseased case which can be considered as a limiting case for dispersion effects.
However, the focus of this study is mainly on presenting the modeling procedure and the
potential effects of fiber dispersion, and not so much on developing a model that strives for
a perfect patho-physiological match for a HCM-diseased LV. In future higher resolution
FE-modeling studies, dispersion parameters may easily be set to vary in each finite ele-
ment, however, considering the paucity of available data on spatial variation in dispersion
such a detailed investigation would appear to be premature. Experimental studies which
characterize spatial and morphological aspects of dispersion over the entire myocardium
in health and disease are therefore of utmost importance to provide a more solid basis for
detailed modeling studies which aim at making more specific predictions.

Further, in the LV-model the κi parameters affected only the mechanical response of the
LV, but not the electrical activation sequence since dispersion remained unaccounted for
in the monodomain equations. That is, the orthotropy in the propagation of the action
potential in the LV model was governed by the mean orientation of fibers and sheets. Ac-
counting for dispersion in the electrical model would reduce orthotropy as well, however,
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the chosen activation sequence, which approximates a normal beat where the entire endo-
cardium is activated almost simultaneously, leads to a strongly transmural activation where
effects of electrical orthotropy are strongly attenuated. Under such conditions the electrical
consequence of dispersion are very minor and can be neglected, particularly when consid-
ering the large uncertainty in experimental reports on conductivity values which vary up
to 300% [138].
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6. ON TENSION-COMPRESSION SWITCHING IN DISPERSED
FIBER-REINFORCED CONSTITUTIVE MODELS

Abstract Large-strain, fiber-reinforced constitutive models are commonly used for solv-
ing complex boundary value problems in the context of the finite element method. In such
models which do not include fiber dispersion, the mathematical and physical motivation for
including a tension-compression fiber ‘switch’ (e.g., in which some portion of the model
is not used if the fibers are in compression) is clear. In cases where fiber-reinforced mod-
els are extended to include the effect of distributed fiber orientations (i.e. models which
include a parameter intended to capture fiber dispersion about a principal fiber direction,
e.g., Gasser, Ogden and Holzapfel, Journal of the Royal Society Interface, 3:15-35, 2006)
neither the mathematical nor physical motivation for tension-compression fiber switching
is so clear, and in fact several choices exist for the material modeler. Here we explore
methods to study such switching mechanisms by analyzing six potential switching cases,
and draw some conclusions about the mathematical robustness and physical interpretation
of the different possible approaches. We propose using two different permeations of the
dispersed fiber-reinforced models, depending on whether one can assume that the fibers
are (nearly) uncoupled or strongly coupled to the isotropic ground matrix.

6.1. Introduction

Large-strain, fiber-reinforced constitutive models are commonly used for solving complex
boundary value problems in the context of the finite element method. Such materials are
often considered to be hyperelastic and are modeled using a strain-energy function in the
framework of continuum mechanics. Because soft biological tissues are commonly rein-
forced with collagen fibers, fiber-reinforced constitutive models play a crucial role in, e.g.,
determining the mechanical state of biological tissues.

The directions of collagen fiber-reinforcement in soft biological materials generally vary
inhomogeneously within the tissues, and fibers are often bundled together to create fiber-
families, in which the fibers are (to some degree) dispersed around a mean, or princi-
pal, fiber direction. Several models for fiber-reinforced materials are presented in the me-
chanics literature that incorporate a principal fiber direction, e.g., [84, 180], and many
models have been presented for specific biological tissues, e.g., arteries [44, 54, 193],
myocardium [22, 56, 67], and cartilage [123, 184]. Some of these models have been ex-
tended to further incorporate a measure of dispersion in the fibers orientations (i.e. they
capture the distribution of the fiber orientations about a principal direction of reinforce-
ment) [5, 37, 42, 47, 61, 121, 122, 171].

107
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Although it is fairly straightforward to model fiber behavior under tension, it is not so
clear what to do once the fibers go into compression. While a fiber, say a collagen fiber
found in arterial tissue, bears load while in tension, it may buckle under compression and
would thus not bear any compressive load alone. A common approach is to view the fiber
as a tension-only quantity and superimpose this behavior with an isotropic matrix material
which may handle compressive loads.

This approach is used in, e.g., the strain-energy function developed by Holzapfel, Gasser
and Ogden [54], which is separated into two terms related to matrix and fiber behaviors
of arterial tissue, i.e. Ψ = Ψm +Ψf, respectively. Here, the matrix material is considered
to be isotropic and incompressible and can be modeled as a neo-Hookean material Ψm =
µ(I1− 3)/2, where µ is the shear modulus in the reference configuration and I1 = trC is
an isotropic invariant of the right Cauchy-Green tensor C = FTF. The behavior of arterial
tissue related to the collagen fiber structure is modeled using a directionally dependent
pseudo-invariant I4 = C : A0 = λ 2

f (the square of the stretch in the fiber direction), where
A0 = a0⊗a0 is a material structure tensor for the fiber reinforcement with direction a0 in
the reference configuration.

Assuming that the embedded collagen fibers are not highly-constrained in the matrix ma-
terial, these fibers buckle under compression and thus the overall material response in
compression is isotropic and captured by Ψm alone. Simplifying the strain-energy func-
tion for the fibers given in [54] to account for only one fiber family, Ψf may be written
as

Ψf =

Ψt
f =

k1

2k2

{
exp
[
k2(I4−1)2]−1

}
if I4 > 1,

Ψc
f = 0 if I4 ≤ 1,

(6.1)

where the superscript t and c stand for tension and compression respectively, k1 > 0 is a
stress-like material parameter and k2 > 0 is a dimensionless parameter, both which control
the nonlinear, equilibrium fiber fabric response. As discussed, e.g., in [54, 56], for both
convexity and strong ellipticity to be fulfilled in tension, the material parameters in Ψf
must fulfill the relations k1 > 0 and k2 > 0. Beyond the physical motivation for the com-
pression ‘switch’ (the fibers buckle), there is also a mathematical reason for switching to
Ψc

f = 0 in compression. Strong ellipticity can not be guaranteed without this switch, which
may have a negative impact on numerical stability of the corresponding finite element
implementations of the constitutive equations.

As the strain-energy function Ψ is separated into two terms, the Cauchy stress tensor

σσσ = 2F
∂Ψ

∂C
FT− phI, (6.2)

can similarly be separated into σσσ =σσσm+σσσ f− phI, where σσσm is the matrix contribution, σσσ f
is the fiber contribution and phI is a term used to enforce incompressibility via a Lagrange
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multiplier ph (a non-physical penalty parameter) and the second order identity tensor I.
The stress tensors σσσm and σσσ f can be written as

σσσm = 2F
∂Ψm

∂C
FT = µb, (6.3)

and

σσσ f = 2F
∂Ψf

∂C
FT =

{
σσσ t

f = 2k1(I4−1)exp[k2(I4−1)2]A if I4 > 1,

σσσ c
f = 0 if I4 ≤ 1,

(6.4)

where b = FFT is the left Cauchy-Green tensor and A = FA0FT = Fa0⊗ Fa0 = a⊗ a
is an Eulerian structure tensor associated with the fibers (characterized by the reference
direction vector a0, |a0|= 1) with direction a in the Eulerian configuration.

In order to visualize the effects of fiber-term switching from tension to compression, we
compare the Cauchy stresses σσσ = σσσm +σσσ f− phI and σ̃σσ f = σσσ f− phI under uniaxial de-
formation of an incompressible material with the fiber orientation a0 in the global 11–
direction. The material is stretched/compressed by λf in the global 11–direction and is free
to deform (i.e. traction free) in the 22 and 33–directions. Thus the deformation gradient
is F = diag(λf,λ

−1/2
f ,λ

−1/2
f ) which assumes both transverse (in-plane) isotropy and ma-

terial incompressibility, i.e. detF = 1. The Lagrange multiplier p is determined from the
33–component of the stress tensor.

Without loss of generality, the material parameters are chosen for a representative case as
µ = 5 kPa, k1 = 10 kPa and k2 = 15 [-], and are not matched to any experimental material
data. In Fig. 6.1(a) we compare the 11–components of the stresses (coincident with the
fiber direction by design); the fiber stress σ̃σσ f does not contribute to the total stress while
the fibers are in compression, i.e. at λf < 1. In compression the total stress tensor σσσ is
instead completely governed by the matrix contribution which yields the appropriate neg-
ative stresses. In Fig. 6.1(b) we show the invariants I1 and I4 during tension-compression
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Figure 6.1.: Uniaxial tension-compression results for the fiber-reinforced model presented
in [54]: (a) Cauchy stresses in the fiber direction for σσσ and σ̃σσ f; (b) invariants
relating to isotropy, I1, and fiber-reinforcement, I4; (c) strain-energy potentials,
both the total Ψ and the fiber contribution Ψf.
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loading in the fiber direction. It is apparent that I4 ≤ 1 at λf ≤ 1, while I1 = 3 at λf = 1, and
I1 > 3 otherwise. In Fig. 6.1(c) we show the corresponding strain-energy response. Thus,
setting the fiber-component of the strain-energy function to zero during compression, i.e.
Ψc

f = 0 when I4 ≤ 1, is motivated in part from physical considerations and in part from
numerical considerations.

For constitutive models with distributed fiber orientations, cf. [5, 37, 42, 47, 61, 171], sta-
bility of the fiber-terms in compression is still problematic, but a physical motivation to
switch off fiber terms is now less clear. With fibers dispersed from the principal direction,
single fibers oriented far from this principal direction may be in tension while the princi-
pal fiber direction is in compression (see, e.g., [57] for a related discussion on a dispersed
model in tension). It must be noted though that such an assumption requires a very large
dispersion or a very large compressions, both which are often outside the physiological
range.

Nevertheless, a non-trivial choice must be made on how to handle compression in mod-
els with distributed fiber orientations. Here we analyze such a model, which includes a
mixture of isotropic and transversely isotropic terms, for six different tension-compression
switching assumptions. In Section 6.2 we outline our mathematical methods, in Section
6.3 we show results, and in Section 6.4 we provide a discussion and conclusion.

6.2. Mathematical methods

We examine the popular fiber dispersion model developed by Gasser, Holzapfel and Ogden
[47]. It includes a dispersion parameter κ , based on the circular von Mises probability
density function, which admits a physical interpretation. This dispersion parameter κ lives
in the range κ ∈ [0,1/3] and is used in the combined pseudo-invariant

I∗4 = κI1 +(1−3κ)I4, (6.5)

which is a mixture of the isotropic invariant I1 and the directionally dependent pseudo-
invariant I4.

We generalize the presentation of the constitutive model from [47] to include six switch-
ing cases, which encompass different possible pseudo-invariants to trigger the tension-
compression changes (Table 6.1, column 2; subsequently labeled as Table 6.12) and dif-
ferent possible strain-energy formulations for use in generalized compression Ψci∗

f , where
the superscript i denotes the Case number, i.e. i ∈ {0, . . . ,6} (Table 6.14). Note that each
Case thus represent a different material model. The combined invariant I∗4 replaces I4 in
(6.1) according to

Ψ
∗
f =

Ψt∗
f =

k1

2k2

(
exp
[
k2(I∗4 −1)2]−1

)
if (Table 6.12) > 1,

Ψci∗
f = (Table 6.14) if (Table 6.12)≤ 1,

(6.6)
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where again, for simplicity, we consider only one fiber direction. Note that when κ = 0 the
fibers are perfectly aligned and Ψt∗

f =Ψt
f(I4), but when κ = 1/3 the distribution is isotropic

and Ψt∗
f = Ψt∗

f (I1). As discussed in [47], for numerical stability (6.6) in tension needs to
be modified for use in compression. Therefore, we investigate six possible switching cases
shown in Table 6.1, where cases 1, 2 and 3 use as a ‘switch’ I4 ≤ 1, and cases 4, 5 and
6 use the combined invariant I∗4 ≤ 1 as a ‘switch’. A zeroth case, where Ψ∗f = Ψt∗

f for
both tension and compression, i.e. no switch in compression, is also shown for illustrative
purposes.

Case i Switch Ici Ψci∗
f σσσ ci∗

f

0 - I∗4
k1

2k2

{
exp
[
k2(I∗4 −1)2

]
−1
}

2k1(I∗4 −1)exp[k2(I∗4 −1)2]h

1 I4 ≤ 1 κI1
k1

2k2

{
exp
[
k2(κI1−1)2

]
−1
}

2k1(κI1−1)exp[k2(κI1−1)2]κb

2 I4 ≤ 1 − 0 0

3 I4 ≤ 1
1
3

I1
k1

2k2

{
exp
[

k2(
1
3

I1−1)2
]
−1
}

2k1(
1
3

I1−1)exp[k2(
1
3

I1−1)2]
1
3

b

4 I∗4 ≤ 1 κI1
k1

2k2

{
exp
[
k2(κI1−1)2

]
−1
}

2k1(κI1−1)exp[k2(κI1−1)2]κb

5 I∗4 ≤ 1 − 0 0

6 I∗4 ≤ 1
1
3

I1
k1

2k2

{
exp
[

k2(
1
3

I1−1)2
]
−1
}

2k1(
1
3

I1−1)exp[k2(
1
3

I1−1)2]
1
3

b

Table 6.1.: Six possible choices for tension-compression switching of the dispersed fiber-
reinforced constitutive model presented in [47]. The columns represent: the
Case number, the criteria for tension-compression switching, the invariant term
used in compression, the corresponding strain-energy function for compres-
sion and the corresponding Cauchy stress for compression, N.B., all Cases use
the same combined invariant, strain-energy and corresponding Cauchy stress
in tension. Case zero, shown for comparative purposes, does not switch from
tension to compression.

As seen in Table 6.14, exclusion of directional (i.e. fiber orientation) dependence for the
strain-energy function in compression may be achieved by simply removing I4 from the
equation, as shown in Cases 1 and 4, or by assigning κ = 1/3 for the dispersion parameter,
as shown in Cases 3 and 6, or alternatively, and in accordance with (6.1), the entire strain-
energy function associated with the fibers may be removed (i.e. Ψci∗

f = 0), as shown in
Cases 2 and 5. Note that all Cases use the same combined invariant, strain-energy and
corresponding Cauchy stress in tension.
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It is now straightforward to write the Cauchy stress for the fiber contribution as

σσσ
∗
f = 2F

∂Ψ∗f
∂C

FT =

{
σσσ t∗

f = 2k1(I∗4 −1)exp[k2(I∗4 −1)2]h if (Table 6.12) > 1,

σσσ ci∗
f = (Table 6.15) if (Table 6.12)≤ 1,

(6.7)

where h = κb+(1−3κ)a⊗a is an Eulerian structure tensor incorporating the dispersed
fiber structure.

We examine two loading conditions: uniaxial tension-compression in the principal fiber
direction and simple shear (with a range of principal fiber directions). We use the mate-
rial parameters from Section 6.1 (i.e., k1 = 10 kPa and k2 = 15 [-]), with the additional
dispersion parameter κ [-] that is allowed to vary in the uniaxial tension-compression de-
formation state, and is set arbitrary to 0.15 in the shear deformation state. Given (6.7), we
can determine the Cauchy stress analytically in terms of the applied deformations, i.e. the
applied stretch λf or the shear γ . Full expressions for these stresses are given in Appendix
B.1. For the uniaxial tension-compression loading state, we investigate the six switching
cases in terms of (i) Cauchy stresses and (ii) the combined tension-compression invariant.
For the simple shear loading state the switching cases are investigated in terms of (iii) the
Cauchy stresses only.

6.3. Results

(i) The Cauchy stress – uniaxial tension-compression. Fig. 6.2 compares the fiber
component of the Cauchy stress σ̃σσ

∗
f = σσσ∗f − phI which aligns with the 11–direction by

design, i.e. σ̃∗ff = [σ̃σσ∗f ]11, for Cases 0–6. The solid black line in Fig. 6.2(a)–(f) highlight
the stress behavior at κ = 0.15 for illustrative purposes. The effect of dispersion in ten-
sion is shown in all cases (the behavior in tension is always the same) where increasing
values of κ decreases the tensile stress response (although it is always positive for λf > 1).
Case 0, as seen in Fig. 6.2(a), is used as a reference to show the effect of not changing
the strain-energy function used in compression from that used in tension. For low κ-values
and increased compressive stretches (λf increasingly < 1) the stress response will first turn
strongly negative followed by a large positive stress. For very large values of κ the stress
response will only be negative. Fig. 6.2(b) illustrates both cases 1 and 4 as they give a
nearly identical stress response. Following the black line in compression, Cases 1 and 4
show a large positive stress in compression until λf ∼ 0.3 where it becomes negative. For
Case 2, Fig. 6.2(c), the stress in compression is always zero. For Case 3, Fig. 6.2 d), the
compressive stress is always negative and independent of the κ-value, and increased com-
pression leads to increasingly negative stresses. In Fig. 6.2(e), Case 5, we see the effects
of using I∗4 ≤ 1 as a switch. The stress in compression for Case 5 is zero until λf ∼ 0.3
where it turns negative, and note that increasing κ shifts the point where Case 5 yields
negative stresses towards lower levels of compression. Lastly, following the black line for
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Figure 6.2.: Cauchy stress results in the fiber direction under uniaxial tension-compression
for six possible choices of tension-compression switching for the dispersed
fiber-reinforced constitutive model presented in [47]. Cases 0–6 shown in (a)–
(f), respectively, cf. Table 6.15. A solid black line follows the stress results at
κ = 0.15.

Case 6 in Fig. 6.2(f) shows that the fiber stress will drop to large negative values when ini-
tially compressed, but that further increasing compression will cause the stress to increase
again.

(ii) The combined invariant – uniaxial tension-compression. Fig. 6.3(a)–d) compares
the combined invariant I∗4 for cases 0, 1, 3 and 4, respectively. A black line is again used to
highlight the behavior when κ = 0.15. Two transparent planes are used as reference planes.
The horizontal plane indicates I∗4 = 1 and the vertical plane indicates λf = 1. Case 0, seen
in Fig. 6.3(a), shows the behavior of the combined invariant when going from tension to
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Figure 6.3.: Combined invariant results for 4 possible choices of a combined tension-
compression invariant undergoing uniaxial tension-compression for Cases 0,
1, 3 and 4, cf. Table 6.13: (a) behavior of the combined invariant without us-
ing any switch, i.e. Ic0 = I∗4 ; (b) combined invariant Ic1 = κI1 for Case 1; (c)
combined invariant Ic3 = 1/3I1 for Case 3; d) combined invariant Ic4 = κI1
for Case 4, with switching determined by I∗4 ≤ 1; N.B., all Cases use I∗4 for
the combined invariant in tension. A solid black line follows the combined
invariant results at κ = 0.15.

compression. Clearly, I∗4 > 1 may occur even at a large compression depending on the value
of κ . Following the black line, as a representative case, I∗4 > 1 occurs at λf ∼ 0.3, which
corresponds to the compression level when Cases 0, 1, 4 and 5 show negative stresses along
the same line (cf. Fig. 6.2(a), (b) and (e)). Following the black line in Fig. 6.3(b) further
shows that I∗4 makes a sharp decrease for Case 1 at λf = 1 to I∗4 ∼ 0.45. Increasing the level
of compression yields larger values of I∗4 and again at λf ∼ 0.3, I∗4 > 1, similar to Case 0.
The behavior seen in Fig. 6.3 d) for Case 4, is nearly identical to Case 1, except for a jump
in the values of I∗4 around λf ∼ 0.3 that is seen when following the black line. For Case 3,
however, I∗4 is always ≥ 1, in both tension and compression as seen in Fig. 6.3(c).

(iii) The Cauchy stress – simple shear. As Cases 0, 1, 4 and 6 clearly demonstrate non-
physical stress responses in uniaxial compression (cf. Fig. 6.2 (a), (b) and (f)), only Cases
2, 3 and 5 are investigated further in simple shear. Depending on the initial orientation
of the fiber direction, simple shear (with applied displacement γ) may result in tension
or compression of the Eulerian fiber direction. The stretch is shown in Fig. 6.4(a) as a
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Figure 6.4.: Stretch and Cauchy stress results in the fiber direction with varying Lagrangian
fiber angle α and shear γ under simple shear deformation in the 1–2 plane for
Cases 2, 3 and 5, cf. Table 6.15: (a) stretch in the fiber direction for all cases
(inset defines simple shear γ on a unit cube and fiber angle α); Cauchy stress in
the deformed fiber direction σff for: (b) Case 2; (c) Case 3; d) Case 5; Closeup
of Cauchy stress in the deformed fiber direction σff when α = 0◦±4◦ for: (e)
Case 3; (f) Case 5. N.B., positive stresses are normalized by the modulus of
the maximum fiber stress |σmax

ff | while negative stresses are normalized by the
modulus of the minimum fiber stress |σmin

ff | for visual clarity.

function of shear γ and the angle α between the fiber and the 11–direction (cf. inset in
Fig. 6.4(a)). When the angle is zero, i.e. fibers are aligned in the shear direction, there is
no stretch in the fiber direction regardless of the amount of shear. As the angle increases
from zero, however, the stretch also increases with shear until α ∼ 52◦, where λf ∼ 1.28,
after which it decreases again. At α > 90◦, low values of γ may yield λf < 1 whereas
large values of γ yields λf > 1. For α ∼ 142◦ the largest compressive stretch, λf ∼ 0.78,
is found at γ = 0.5 and for 142◦ < α < 180◦ only compressive stretches are seen (while
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γ ≤ 0.5). In Fig. 6.4(b), (c) and d), the Cauchy stress in the Eulerian fiber direction is
shown for Cases 2, 3 and 5, respectively. In Fig. 4, positive stresses are normalized by
the modulus of the maximum fiber stress |σmax

ff | while negative stresses are normalized
by the modulus of the minimum fiber stress |σmin

ff | for visual clarity (as the difference
in magnitude between positive and negative stress values is very large). As the Cauchy
stress is zero in compression by design for Case 2, only one peak is seen in Fig. 6.4(b).
Here the maximum value of the Cauchy stress in tension is 124 kPa and is centered around
α ∼ 52◦. Because all cases have the same behavior in tension, the maximum tensile stress
for all cases is identical. Case 3 has a minimum compressive stress of −0.146 kPa at α ∼
142◦ as seen in Fig. 6.4(c). In Case 5, shown in Fig. 6.4 d), the stress is mostly zero in
compression. At closer inspection, however, for very large initial fiber angles, i.e. where
180◦ > α > 175◦, a small positive stress peak is seen (0.450 kPa) even as the principal
fiber direction is in compression. This is illustrated in the closeup of the fiber stress at
α = 0◦± 4◦ for Case 5 seen in Fig. 6.4(f). However, looking at a similar closeup of the
fiber stress for Case 3 in Fig. 6.4(e), we also see small positive stresses.

6.4. Discussion

Large-strain models for dispersed fiber-reinforced materials in, e.g., soft tissue biome-
chanics, need to solve the problem of switching the form of the fiber potential used in
compression from that used in tension, to provide a consistent physical interpretation and
to ensure both numerical stability and robustness. Cases 1 and 2, and models with similar-
ities to Case 3, are often used approaches to deal with fiber compression, cf. [5, 38, 47]. In
the dispersion models investigated here, Cases 3, 4 and 6 have, to the authors’ knowledge,
not previously been used or investigated in the mechanics literature (a model similar to
Case 5 is employed in [179]).

The ‘switch’ used in Cases 4, 5 and 6, I∗4 ≤ 1, correctly switches when λf = 1 for a uniaxial
deformation, and is motivated by the comparison of (6.1) and (6.6). However, in contrast
to the relation I4 < 1 which is always true in fiber compression, the relation I∗4 ≮ 1 for
large fiber compressions, as seen in Fig. 6.3(a). The combined invariant I∗4 may become
positive in compression because under increasingly large compression (λf increasingly
< 1), I1 becomes� 3 while I4 is only < 1, as seen in Fig. 6.1(b). At which compression
point the combined invariant will shift from negative to positive depends on the value of
the dispersion parameter κ . With progressively larger values of κ , i.e. larger dispersion,
I∗4 > 1 will occur at progressively lower levels of compression in the fibers. Hence, with
this switching approach the dispersion parameter κ has a non-physical and ambiguous
meaning (cf. Cases 4–6), as it reflects both the fiber dispersion and some arbitrary switch
whereby, e.g., negative/positive fiber stresses may occur in compression. For this reason,
we believe that the switch parameter I∗4 ≤ 1 should only be used under loading conditions
which do not trigger I∗4 > 1 while λf < 1.
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Perhaps the most startling results in this study are the positive stresses generated in com-
pression for Cases 1 and 4 in uniaxial tension-compression and for Case 5 in simple shear
(while the principal fiber direction is in compression). Clearly in the uniaxial case, when
compressing a fiber reinforced material in the principal fiber direction, a positive stress
in the direction of compression is not physiologically relevant, but it is seen nonetheless
in Fig. 6.2(b) for Cases 1 and 4. The reason for the positive stress in these two cases is
clear when looking at the combined invariants Ic1 = Ic4 = κI1, in compression. For any
value of κ 6= 1/3, Fig. 6.3(b) and d) show that I∗4 < 1 at λf = 1, which leads to σ̃σσ

c1∗
f > 1

and σ̃σσ
c4∗
f > 1 according to (6.7). This occurrence violates a fundamental requirement that

the reference configuration should be stress-free, i.e. here we see that Ψ∗f (F = I) 6= 0 and
thus σ̃σσ

∗
f (F = I) 6= 0, which should not be, cf. [53]. The condition requiring a stress-free

reference state is naturally fulfilled for Cases 2 and 5, where Ψc2∗
f = Ψc5∗

f = 0 gives
σ̃σσ

c2∗ = σ̃σσ
c5∗ = 0, cf. Fig. 6.2(c), (e) and 6.4(a), (c). Similarly, this condition is fulfilled

for Case 3, whereby in compression the dispersion parameter is set to κ = 1/3, and thus
Ψ∗f (F = I) = 0 as Ic3(F = I) = 1.

The reason for positive stresses for Case 5 in simple shear (while the principal fiber di-
rection is in compression) is perhaps not clear. For α close to (but less than) 180◦, the
isotropic response projected in the fiber direction is actually positive as seen, e.g., in Case
3 Fig. 6.4(e), or when using a neo-Hookean strain-energy function for this deformation
(not shown here). The positive stress in Case 5 may be physiological as it incorporates
a positive stress response for small perturbations of the principal fiber angle around 0
(equivalently 180◦), given some level of dispersion. However, κ still has a dual meaning,
the same as was seen for Case 5 in uniaxial tension-compression. Thus, in Case 5, κ deter-
mines both the degree of dispersion and the amount of shear required to generate positive
stresses while the principal fiber direction is in compression. Therefore, it is less clear what
the parameter κ represents for Case 5.

Although not shown here, using different material parameters in (6.6), within the required
range (k1 > 0 and k2 > 0), only changes the magnitude of the stress response or the com-
pression point where, e.g., I∗4 > 1 may occur. It does not alter the trends shown or the
conclusions drawn from this analysis. We have shown that Cases 2 and 3 generate the
most desirable results, both in terms of a physically consistent morphological interpreta-
tion, robustness and also consistency in the interpretation of the structural parameter κ . We
implemented both of these models in the finite element analysis software FEAP [164], and
verified that they yield numerically stable results identical to those shown in Fig. 6.2(c), d)
and 6.4(a), (b). Case 2, in the physical interpretation, corresponds to the situation wherein
the fibers buckle under compression and are essentially uncoupled to the ground matrix
(and furthermore, are not cross-linked). Thus, when the principal direction of fiber rein-
forcement is in compression the dispersed fibers have no stiffness and do not store strain-
energy. Case 3, conversely, corresponds to another situation, wherein a matrix-fiber bond-
ing does exist, and which results in an isotropic positive fiber potential (the dispersed fibers
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store strain-energy) even in compression.

We have further shown that Case 5 may be used with caution. Although it may yield neg-
ative stresses in uniaxial deformation at some arbitrary (but high) level of compression,
such levels are rarely reached in the physiological applications where the model is most
often used. In effect, Case 5 will thus render an equal stress response as Case 2. However,
as seen in Fig. 6.4(f), Case 5 may advantageously be used to capture positive stress re-
sponses for small perturbations of the principal fiber direction around some critical angle
where the principal fiber direction switches between tension and compression and where,
e.g., Case 2 would instantly set the stress values to zero. Case 5, using I∗4 ≤ 1 as the switch,
may thus be advantageous for numerical convergence in, e.g., a FE simulation, but as we
have shown that this effect is regulated by the dispersion parameter κ , it is unclear how (or
if) this phenomenon has a physical interpretation.

As a final note on numerical stability, we investigated the convexity and ellipticity of the
strain-energy functions show here in Appendix B.2. Therein we show that the strain-energy
function, proposed by Gasser, Holzapfel and Ogden [47], and also used here, is locally
convex in C for both tension and compression. However, from two simple examples we
also show that ellipticity can not be guaranteed in general for incompressible models that
couple the invariants I1 and I4. Nevertheless, the strain-energy function (6.6) has been
implemented in the FE framework FEAP [164], and for all types of deformations tested
it has remained stable. Future investigations are needed to determine the conditions under
which ellipticity is lost.
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A. APPENDIX FOR CHAPTER 5

A.1. Active Elasticity Tensors in Lagrangian and Eulerian
Description

Using the definition M0 := f0⊗ f0 for shorter notation, (5.13) may be written as

Sa = Sa

(
κf

1−2κf
C−1 +

1−3κf

1−2κf
I−1
4f M0

)
. (A.1)

The Lagrangian elasticity tensor is given by Ca = 2∂Sa/∂C which leads to

Ca = 2
Sa

1−2κf

[
κf

∂C−1

∂C
+(1−3κf)

∂ I−1
4f M0

∂C

]
. (A.2)

Expanding the the derivative ∂ (I−1
4f M0)/∂C = I−2

4f M0⊗M0, (A.2) is formulated as

Ca = 2
Sa

1−2κf

[
κf

∂C−1

∂C
+(1−3κf)I−2

4f M0⊗M0

]
, (A.3)

and using the push-forward operation on Ca by [Ca]abcd = J−1FaAFbBFcCFdD[Ca]ABCD leads
to

Ca =−2
Sa

J(1−2κf)

[
κfI+(1−3κf)M̂⊗M̂

]
, (A.4)

where the fourth order identity tensor defined in index notation as [I]abcd = (δacδbd +
δadδcd)/2 is introduced from the push-forward relation FaAFbBFcCFdD

[
∂ (C−1)/∂C

]
ABCD =

−[I]abcd and the definition M̂ := FI−1
4f M0FT = f̂⊗ f̂ is used.
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B. APPENDIX FOR CHAPTER 6

B.1. The Stress Equations as a Function of Applied Stretch λf or
Applied Shear γ

As all stress components shown in the following are related to the fiber part of the stress,
i.e. σ̃σσ f or σ̃σσ

∗
f , the subindex f is not shown on a component level to simplify notation. The

subindex ff, however, is used and denotes the component of the stress tensor aligned in the
deformed fiber direction.

In uniaxial tension in the 11–direction, the corresponding deformation gradient is F =

diag(λf,λ
−1/2
f ,λ

−1/2
f ) when the fiber [a0] = [1,0,0]T aligned in the 11-direction (meaning

that σ̃ff = σ̃11). Using (6.4), the only non-zero component of σ̃σσ f = σσσ f− phI in tension is

σ̃
t
11 = 2k1

(
λ

2
f −1

)
exp[k2

(
λ

2
f −1

)2
]λ 2

f , (B.1)

where p is determined from σ̃33 = 0, and in compression σ̃ c
11 = 0. Using (6.7), the only

non-zero component of σ̃σσ
∗
f = σσσ∗f − phI in tension is

σ̃
t∗
11 = 2k1[(1−2κ)λ 2

f +2κλ
−1
f −1]exp{k2[(1−2κ)λ 2

f

+2κλ
−1
f −1]2}[(1−2κ)λ 2

f −κλ
−1
f ], (B.2)

where p is determined from σ̃∗33 = 0. In compression the Cauchy stresses in the 11-
direction are instead

σ̃
c1∗
11 = 2k1[κ

(
λ

2
f +2λ

−1
f

)
−1]exp{k2[κ(λ

2
f +2λ

−1
f )−1]2}κ(λ 2

f −λ
−1
f ), (B.3)

σ̃
c2∗
11 = σ̃

c5∗
11 = 0, (B.4)

σ̃
c3∗
11 = 2k1[1/3(λ 2

f +2λ
−1
f )−1]exp{k2[1/3(λ 2

f +2λ
−1
f )−1]2}1/3(λ 2

f −λ
−1
f ), (B.5)

σ̃
c4∗
11 = σ̃

c1∗
11 , (B.6)

σ̃
c6∗
11 = σ̃

c3∗
11 , (B.7)

where the superscript ci, i ∈ {1, . . . ,6} represent the six cases shown in Table 6.1. Case 0
in compression equals the formulation in tension shown in (B.2), i.e. σ̃ c0∗

11 = σ̃ t∗
11.

Similarly, during simple shear the deformation gradient is

[F] =

 1 γ 0
0 1 0
0 0 1

 ,
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and with the fiber direction [a0] = [cos(α),sin(α),0]T in the Lagrangian description, the
33-direction is stress free and is used to determine p. The non-zero components of σ̃σσ

∗
f in

tension are

σ̃
t∗
11 = 2ψ

t∗
4
[
κγ

2 +(1−3κ)A2
1
]
, (B.8)

σ̃
t∗
12 = σ̃

t∗
21 = 2ψ

t∗
4 [κγ +(1−3κ)A1 sin(α)], (B.9)

σ̃
t∗
22 = 2ψ

t∗
4 (1−3κ)sin2(α), (B.10)

where A1(γ,α) := γ sin(α)+ cos(α) is used to shorten notation, and ψ t∗
4 = ∂Ψt∗/∂ I∗4 is

given by

ψ
t∗
4 = k1

[
κ(γ2 +3)+(1−3κ)A2−1

]
exp
{

k2
[
κ(γ2 +3)+(1−3κ)A2−1

]2}
, (B.11)

where A2(γ,α) := (γ sin(α)+cos(α))2+sin2(α) is used to shorten notation, N.B., A2 = I4
for this deformation. Depending on Table 6.12, the value used to determine if the fiber
direction is in compression is thus either A2 ≤ 1 or I∗4 = κ(γ2 + 3)+ (1− 3κ)A2 ≤ 1. To
determine the Cauchy stresses in compression, it is necessary to derive the derivatives
of the strain-energy functions with respect to the combined invariants for Cases 1–6 in
compression, i.e. ψci∗

ci = ∂Ψci∗/∂ Ici, for i = 1,2, . . . ,6:

ψ
c1∗
c1 = ψ

c4∗
c4 = k1

[
κ(γ2 +3)−1

]
exp{k2

[
κ(γ2 +3)−1

]2}, (B.12)

ψ
c2∗
c2 = ψ

c5∗
c5 = 0, (B.13)

ψ
c3∗
c3 = ψ

c6∗
c6 = k1

[
1/3(γ2 +3)−1

]
exp{k2

[
1/3(γ2 +3)−1

]2}. (B.14)

Now, for Cases 1–6, the 11-component of the Cauchy stresses in compression are

σ̃
c1∗
11 = σ̃

c4∗
11 = 2ψ

c1∗
c1 κγ

2, (B.15)

σ̃
c2∗
11 = σ̃

c5∗
11 = 0, (B.16)

σ̃
c3∗
11 = σ̃

c6∗
11 = 2ψ

c3∗
c3 1/3γ

2, (B.17)

and the 12-components (equally the 21-components) are

σ̃
c1∗
12 = σ̃

c4∗
12 = 2ψ

c1∗
c1 κγ, (B.18)

σ̃
c2∗
12 = σ̃

c5∗
12 = 0, (B.19)

σ̃
c3∗
12 = σ̃

c6∗
12 = 2ψ

c3∗
c3 1/3γ, (B.20)

and finally, the 22-direction components of the Cauchy stresses are all zero for all cases
in compression, i.e. σ̃ ci∗

22 = 0. The projection of the stress tensor in the fiber direction, i.e.
σ̃σσ
∗
f : a⊗a, yields the following fiber component of the stress in tension

σ
t∗
ff = 2ψ

t∗
4 {A2

1[γ
2
κ +(1−3κ)A2

1]

+2sin(α)A1[(1−3κ)sin(α)A1 + γκ]+ (1−3κ)sin4(α)}, (B.21)
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and in compression

σ
c1∗
ff = σ

c4∗
ff = 2ψ

c1∗
4 κγ

[
γA2

1 +2A1 sin(α)
]
, (B.22)

σ
c2∗
ff = σ

c5∗
ff = 0, (B.23)

σ
c3∗
ff = σ

c6∗
ff = 2ψ

c1∗
4 1/3γ

[
γA2

1 +2A1 sin(α)
]
. (B.24)

To summarize, (B.1) and σ̃ c
11 = 0 are used to generate Fig. 6.1, (B.2) and (B.3)–(B.7)

are used to generate Fig. 6.2, while (B.11) and (B.12)–(B.14) together with (B.21) and
(B.22)–(B.24) are used to generate Fig. 6.4.

B.2. Convexity and Ellipticity of Distributed Functions

In this section, convexity of Eq. (6.6) and ellipticity of models that include a coupling
between invariants I1 and I4 are investigated. First considering tension only, the function
T (I∗4 ) := k1/(2k2)

(
exp[k2(I∗4 −1)2]−1

)
is defined, which has the relations

∂T (I∗4 )
∂C

= T ′(I∗4 )H and
∂ 2T (I∗4 )
∂C∂C

= T ′′(I∗4 )H⊗H, (B.25)

where the primes denotes the differentiation of T (I∗4 ) with respect to I∗4 and H is the La-
grangian distributed structure tensor given by

H =
∂ I∗4
∂C

= κI+(1−3κ)A0, (B.26)

where I is the second order identity tensor. Local convexity requires that

M :
∂ 2T (I∗4 )
∂C∂C

: M≡ T ′′(I∗4 )[H : M]2 ≥ 0 (B.27)

for all second order tensors M (cf. Holzapfel and Ogden [56]). Thus, T (I∗4 ) is convex in C
provided that T ′′(I∗4 )≥ 0. The second derivative of T (I∗4 ) with respect to I∗4 is

T ′′(I∗4 ) = k1 exp[k2(I∗4 −1)2]
[
1+2k2(I∗4 −1)2] , (B.28)

and for k1 > 0 and k2 > 0, the inequality T ′′(I∗4 )≥ 0 is fulfilled showing that T (I∗4 ) is a con-
vex function. In fact, T (I∗4 ) is convex both in tension and in compression. However, given
that tension-compression switching is necessary to obtain physically reasonable stresses
(cf. Fig. 6.2 (a)), it remains to investigate convexity in compression for Case 3, (as all
other cases are either zero or do not generate reasonable stresses in compression). We
define a function S(I1) := k1/(2k2)

(
exp[k2(1/3I1−1)2]

)
, which has the relations

∂S(I1)

∂C
= S ′(I1)I and

∂ 2S(I1)

∂C∂C
= S ′′(I1)I⊗ I, (B.29)
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where the primes denote differentiation of S(I1) with respect to I1. Again, local convexity
requires that

M :
∂ 2S(I1)

∂C∂C
: M≡ S ′′(I1)(tr M)2 ≥ 0, (B.30)

for all second order tensors M, which is fulfilled when S ′′(I1)≥ 0. The second derivative
of S(I1) is

S ′′(I1) = k1 exp[k2(1/3I1−1)2]
[
1+2k2(1/3I1−1)2] , (B.31)

and for k1 > 0 and k2 > 0, the inequality S ′′(I1)≥ 0 is fulfilled showing that S(I1) is locally
convex.

To demonstrate ellipticity in a 3-D general setting is very challenging. Given an incom-
pressible strain-energy function Ψ̂(I1, I4), it was shown by Merodio and Ogden [95] (cf.
Eq. 2.50 therein), that for 2-D plain strain, ellipticity is fulfilled in terms of the principal
stretches λ1 and λ2 if

2ψ̂11(λ
2
1 −λ

2
2 )

2n2
1n2

2 + ψ̂1(λ
2
1 n2

1 +λ
2
2 n2

2)

+4ψ̂14(λ
2
1 −λ

2
2 )n1n2(n1a1 +n2a2)(n2a1−n1a2)

+2ψ̂44(n1a1 +n2a2)
2(n2a1−n1a2)

2 + ψ̂4(n1a1 +n2a2)
2 > 0, (B.32)

where ψ̂i j, i, j ∈ {1,4} are the differentiation of Ψ̂ with respect to the invariants I1 and
I4, respectively, n1 and n2 are the components of a unit vector n, and a1 and a2 are the
components of an Eulerian fiber direction vector a=FA0 (see [95] for details). The relation
in (B.32) is here separated into three functions that correlate to the differentiation of Ψ̂,
namely F(ψ̂1, ψ̂11)+G(ψ̂14)+H(ψ̂4, ψ̂44)> 0.

For an isotropic material, only F(ψ̂1, ψ̂11) is non-zero and through manipulation of this
function, Merodio and Ogden [95] showed that the relations

ψ̂1 > 0, and 2(I1−3)ψ̂11 + ψ̂1 > 0 (B.33)

can be used to show that ellipticity holds for 2-D plain strain. Given that ellipticity holds
for isotropy, i.e.F(ψ̂1, ψ̂11)> 0, and by assuming that I1 and I4 are uncoupled, they further
showed that the fiber reinforcement is elliptic if H(ψ̂4, ψ̂44)> 0. Again, through manipu-
lation ofH, it became evident that the relations

ψ̂4 ≥ 0, and ψ̂4 +2I4ψ̂44 ≥ 0 (B.34)

are sufficient conditions to show ellipticity of the fiber reinforcement. It remains to inves-
tigate if a similar relation can be found when ψ̂14 6= 0, i.e. a coupled function (in terms of
I1 and I4) is used. The relation

G(ψ̂14) = 4ψ̂14(λ
2
1 −λ

2
2 )n1n2(n1a1 +n2a2)(n2a1−n1a2)≥ 0 (B.35)
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must then be fulfilled for all allowable combinations of n and a, where the components of
n must obey n2

1 + n2
2 = 1 (n is a unit vector). We can relate the deformed fiber direction

vector a to an angle α by a1 = λ1 cosα and a2 = λ2 sinα and I4 may now be written as
I4 = a2

1 + a2
2. Similarly, the components of the surface vector n are related to an angle β

(representing the 2D direction) through components n1 = cosβ and n2 = sinβ . From the
incompressibility condition, λ1λ2 = 1, the deformations are related by λ if λ1 = λ and
λ2 = 1/λ . Simple calculations using two sets of values for α , β and λ show that (B.35)
is not easily fulfilled. For example, defining G := G(ψ̂14)/ψ̂14 for a shorter notation, with
α = 45◦ and β = 40◦ we have

G < 0 if λ = 1.09 (I4 > 1), (B.36)

G > 0 if λ = 1.10 (I4 > 1), (B.37)

while for α = 125◦ and β = 130◦ we have

G < 0 if λ = 1.09 (I4 < 1), (B.38)

G > 0 if λ = 1.10 (I4 < 1). (B.39)

A coupled strain-energy function has to meet the requirement that G(ψ̂14)≥ 0 for all defor-
mation modes while the sign of G varies, independent of whether I4 > 1 or I4 < 1, i.e. ψ̂14
has to change sign (seemingly) arbitrarily, and independent of the stretch in the fiber di-
rection. Considering the difficulty in constructing such a strain-energy function, it is likely
impossible in most (if not all) coupled models to guarantee ellipticity either for tension or
compression in 2-D plain strain. For example, defining Ψ̂(I1, I4) := (6.6)1, the combined
second derivative is

ψ̂14 = k1κ(1−3κ)exp[k2(I∗4 −1)2][1+2k2(I∗4 −1)2], (B.40)

which is ≥ 0 for all deformation modes, thus showing that (B.35) can not be fulfilled.
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