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Abstract

Self-organizing networks are a novel communication technology that has gained
a lot of importance in the last decade. This thesis focuses on communication
and security aspects of self-organizing networking technology. We analyze the
problems in such networks with the main focus on security and reliability issues.
Using this analysis as basis we present a security concept for self-organizing net-
works which outlines requirements and recommendations which allow designers
and developers of such systems to select appropriate measures to secure their
systems based on their requirements and node capabilities. Using this security
concept as guidance we evaluate existing mechanisms for self-organizing net-
works and present solutions for the integral components identity management,
secure route establishment and management, secure communication and protec-
tion against misbehavior. Within identity management we focus on the issue
of providing unique, verifiable and undeniable identities in order to address the
issue of Sybil attacks in open systems, which is still a major concern. We present
two solutions for this problem based on Trusted Computing principles and mech-
anisms facilitating the Trusted Platform Module and the PrivacyCA concept to
address privacy concerns. We investigate routing algorithms according their
suitability as building blocks for secure solutions for self-organizing networks.
We present the most important existing secure routing protocol and provide an
evaluation of its capabilities and outline its drawbacks. Based on this analysis
we present our own solution which incorporates the ideas and recommendations
outlined in the security concept. Our secure routing algorithm is designed to
incorporate heterogeneous devices ranging from wireless sensor nodes to pow-
erful workstations. The secure routing algorithm is able to adapt quickly to a
changing environment and copes well with churn. Another major point in the
design and implementation was to provide protection from the most common
attacks known in self-organizing networks. We show the design and architecture
of a framework we developed in which we have integrated all the previous pro-
tocols into a comprehensive solution for secure overlay networking. We evaluate
the performance and efficiency of this solution in a scenario as it was used in
a European research project as well as in overlay networking simulation. The
framework can be used efficiently in closed systems if cryptographic material
must be deployed manually and in open systems if Trusted Platform Modules
are available.
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Notation

We use the following notation to describe security protocols and cryptographic
operations in all the following chapters. These are the most commonly used
notations. If there are some additional notations required which are more specific
to the described issues in the chapter itself we will provide an additional notation
section in the specific chapter.

Symbol Description
A, B Principals, such as communicating nodes
SK A symmetric key
PA, PB Public (endorsement) keys of principals A, B
PrA, P rB Private (endorsement) keys of principals A, B
H(M) Cryptographic hash value of message M
MACSK

(M) Message authentication code (MAC) of message M using
the key K

SIGPrA(M) Digital signature of message M using the private key
PrA of principal A

ENCK(M) Encryption of message M using the key K
DECSK

(M) Decryption of message M using the key K

For convenience we assume MAC and signature functions that take a variable
number of arguments, simply by concatenating them in computing the function.
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1
Introduction

Experience without theory is
blind, but theory without
experience is mere intellectual
play

Immanuel Kant

In this thesis we were curious to find out if providing security, trust and
connectivity for self-organizing systems, especially for overlay networks, can be
solved using state-of-the-art means from the fields of cryptography, trusted com-
puting, network security and distributed computing. In addition we wanted to
investigate how existing and new mechanisms and protocols can be integrated
into a comprehensive framework which enables secure overlay networking in a
simple and intuitive manner. This search was more than simply trying to find
some gaps in the current research and fill it. Our approach was guided by the
rather philosophical question:

”How should a generic open self-organizing system look like where entities
could participate without having to worry that other entities are able to sabo-
tage the system itself, impersonate or create multiple identities, steal sensitive
information and threaten their privacy?”

One reason for asking this question in the first place was on the one hand the
massive increase in available mass communication technologies such as peer-to-
peer clients, grid computing, social networks and content distribution networks.
On the other hand we felt that with the desire of a growing number of individuals

1
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to express themselves and to distribute their opinions globally, the ability to do
that in a secure, trusted and privacy preserving manner would be of paramount
importance. Thus, with this question in mind, we started to investigate the
problems and available solutions in the broad field of security and self-organizing
systems.

1.1 Self-Organizing Systems

The kind of systems which fall into the category of self-organizing systems is
rather diverse. From RFID tag swarms over wireless sensor networks to all
kinds of overlay networks such as peer-to-peer, grid computing, social networks
and mobile ad-hoc networks, all can be considered self-organizing. The issue of
how to provide connectivity in self-organizing systems has been studied inten-
sively already. However, the overall system design and the heterogeneity of the
involved nodes are of paramount significance and have a tremendous impact on
the complexity of any adequate solution. Thus, even if communication charac-
teristics for distinct self-organizing systems have been analyzed already, we also
performed experiments in order to find suitable protocols and parameters for a
comprehensive solution which takes security into account. Security and trust on
the other hand have been studied usually only in a narrow and incomprehensive
manner, leaving aside the aspects of integration and compatibility of these parts
in a system as a whole.

An overlay network, as outlined in Lua et al. [LCP+05], is a self-organizing
network based on the idea of sharing resources among all nodes. The term over-
lay relates to the fact that they introduce a new communication layer on top of
the existing IP infrastructure. Overlays usually provide various functions such
as efficient search and distribution of data objects, redundant storage of data
objects in the system, selection of neighbor peers for performance reasons, stable
large-scale routing architectures, inherent scalability, unique, abstract and hier-
archical identifier provision, basic authentication, trust and privacy protection,
as well as fault tolerance. In pure overlay systems each node acts as a server and
a client. All nodes are equal. No centralized administration is required since
the necessary management tasks are performed by every node locally using dis-
tributed algorithms. An overlay network can be categorized as unstructured or
structured.

Unstructured overlay networks provide means for node communication with-
out enforcing any specific node organization. The overlay topology is organized
in random graphs in flat or hierarchical manners (e.g. Super-Peer layer). They
usually provide data discovery mechanisms by means of flooding, with or with-
out limits, or random walks. Conversely, structured overlay networks have been
developed to improve the performance of the data discovery process in overlay
networks. Structured overlay networks organize nodes and data in an overlay us-
ing distributed algorithms, such as distributed hash tables (DHT), which impose
constraints on node topology and data placement. Structured overlay networks
enable data discovery with an upper bound of O(logN) hops and O(logN) graph
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neighbors for each node for N overall nodes in the network. These networks have
shown to perform better for data localization in homogeneous Internet-scale sys-
tems. For instance, it is not only guaranteed that data is found if it exists in the
system, but also that the search scales well with the number of peers in the sys-
tem [LCP+05]. Thus, structured overlay networks are known for their efficiency
at locating rare data items in systems with a high number of nodes. However,
recent research shows [PSZ08] that also unstructured overlay networks perform
very well at locating rare data items in large-scale systems if some improvements
are applied.

It has been shown that the constraints imposed on the node topology and
data placement cause a high amount of maintenance traffic and also that the
routing efficiency decreases significantly [RGRK04] in structured overlays. How-
ever, recent work in this area has improved the efficiency of structured overlay
networks in order to cope with churn [CCR04b, CCR05] almost as efficient as
unstructured networks. Also structured P2P system are believed to be less suit-
able for heterogeneous networks where nodes have different capabilities in terms
of computation power, bandwidth, storage and energy consumption. Previous
research was done to increase the ability of structured overlay networks to cope
with such requirements [CCR04c, CCR04a]. However, their ability to efficiently
implement keyword search1 as well as their ability to handle unreliable peers has
not been proven or tested [LCP+05]. Thus, the current competition between
structured versus unstructured overlays will go on and as stated in [LCP+05], it
depends on the application and its required functionalities which overlay is best
suited.

Despite this controversy and a myriad of research in overlay networks, the
issue of security has not been addressed adequately. Research on how peers can
interact securely or how the whole distributed system itself can be secured is in
its infancy. But even worse, most of the secure approaches apply concepts from
the client-server model to the self-organizing networks world which is obviously
not adequate. This means that at this point no overall security concepts and
development frameworks for overlay networks exist which address the relevant
topics in an self-organizing manner, thus leaving them vulnerable in real-life sce-
narios. The results of [SM02, Wal02, CDG+02] have outlined security problems
in overlay networks and provided some initial solutions especially for structured
overlays. In [Bel01], Bellovin has shown that additional security problems exist
in unstructured overlay networks. However, the work of Bellovin [Bel01] also
shows that unstructured overlay networks can increase the ability to provide
connectivity in the presence of Network Address Translation (NAT) and Fire-
walls and are thus ideal to be used as general overlays without being restricted
to any specific use case such as content distribution.

Since self-organizing systems are most commonly implemented as overlay
networks, although native ones such as mobile ad-hoc networks or wireless sensor
networks exist, we focused our research or more precisely the research described

1Is the ability to search for arbitrary string patterns for instance of the name of the stored
object rather than requiring to exactly know the hash key of a specific object in advance.
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in this work on overlay networks. For a introduction into the different overlay
topologies which are available and an outline of the benefits and caveats see
Section 2.1.

1.2 Security in Self-Organizing Systems

We believe that the fundamental guidelines for creating secure structured over-
lays, as partly outlined by Castro et al. in [CDG+02], are also adequate for all
open, dynamic self-organizing systems. In their work they state that before any
such system can be even thought of as being secure, the routing infrastructure
must fulfill first the following requirements:

� Secure assignment of node identifiers,

� Secure routing table maintenance, and

� Secure message forwarding.

Without addressing those fundamental requirements all the higher layer secu-
rity means are rendered meaningless. One can provide as much sophisticated
cryptographic mechanisms, authentication protocols or reliability methods as
wanted, but since there are unsolved problems in the core mechanisms they fail
to provide the promised level of security.

The first point of these three requirements is the most important one in our
opinion. Because if self-organizing systems can not guarantee the provision and
verification of unique and trustworthy identities, there is no way to exert control
over the node and system behavior. Without adequate creation and verification
of identities it is not possible to detect and condemn malicious behavior in such
systems.

Take the simple case where all entities choose their own identity in the system.
First, it is intrinsically impossible to guarantee that the chosen identities are
unique in the system. This may be tackled in a straight-forward manner by
only allowing access to the system to entities whose chosen identifier do not
exist already in the system. Now, you already have a very obvious problem:
how should we treat the case that an entity leaves the system and another one
immediately thereafter joins the system using the same identifier, which in large
systems can occur with high probability. There are some intelligent solutions
to that problem, for instance see the work of Dinger and Hartenstein [DH06]
which also provided a taxonomy and review over available solutions. But even
if these solutions are intelligent and make use of sophisticated algorithms and
complex mathematic schemes, they can only be regarded as remedies for the
effects of applying an inadequate solution, namely using self-chosen identifiers in
the first place. The more serious problem is outlined by Douceur in his seminal
paper [Dou02], about the Sybil attack and its implications, every solution to the
identity problem must also prevent entities to create additional node instances
in the system, even if their identities are unique, otherwise such nodes could
inhibit the overlay networks functionality.
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In order to enable detection of misbehavior as well as counteractions an
adequate solution to the problem of providing secure, unique and Sybil-resistant
identifiers in self-organizing systems must be found.

The second and the third point relate to the issue of confidentiality, au-
thentication and integrity during the route maintenance as well as the message
forwarding phase. The issue of secure routing table maintenance includes the
secure discovery, management and maintenance of routes. Management refers
to the organization of the routing table as well as other protocol specific param-
eters and with maintenance we mean the process of tearing down routes and
disseminating this information throughout the system. In structured overlays,
routing is usually based on distributed hash tables (DHT) and nodes only inter-
act with their neighbors for that matter since the topology of the overlay itself
is fixed. Thus, if nodes join and leave the network the routing tables must be
updated and messages between neighbors are exchanged. Castro et al. intro-
duced in their approach a second routing table which has the constraint that not
any appropriate neighbor, who is sharing the required portion of the identifier
space, is selected but only the nearest one. Since routing in the general con-
text of self-organizing networks must not rely on DHTs but a variety of other
techniques can be used, the establishment, forwarding and selection of routes
must be protected in addition to the maintenance since in each phase important
information about the network topology and state are exchanged.

Secure message forwarding requires that a specific message is delivered to
the destination over the intended path and that the message itself can not be
compromised and any interruption and dropping of messages should be detected.
When a message is forwarded to the destination, each correct node must guar-
antee that it delivers the message to the next node in the route if a specific
route has been selected from the source. Using hash-based message authenti-
cation codes (HMAC) or digital signatures provide authentication and integrity
of the message. Encrypting the message using specific keys, which are selected
depending on the level of security, can also provide confidentiality.

We must not only protect the system from outside attackers but also from
malicious or misbehaving nodes within the system. Thus, different mechanisms
must be combined in order to assure these requirements.

In addition, we believe that it is necessary to provide an overall security con-
cept for self-organizing systems. Especially, the heterogenous nature of entities
participating in such systems in terms of computational power, resource avail-
ability, energy efficiency, mobility, and means for threat mitigation need to be
addressed by such a concept.

Since the different entities in self-organizing system can have different capa-
bilities, providing various levels of security is key to establish a useful and secure
self-organizing system.
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In some scenarios or for specific entities it may only be necessary to provide
protection from outsider attacks, without being able to verify the authenticity of
specific entities. Thus, in such circumstances it is sufficient to be able to verify
if a specific message is authenticated using a distinct key. In some cases, it may
also be necessary to specifically identify the sender and all the relying nodes
of a message and to guarantee the confidentiality and integrity. In addition, in
some scenarios it may be required that the statements of previous sentence are
guaranteed and also that the privacy of each entity is protected. Thus, it is
necessary to design a versatile security concept which can account for all these
requirements but still remains manageable with appropriate effort.

In our work we have addressed the three outlined requirements and provide
solutions for each. Since we believe that the highlighted statements are essential
for the realization of an adequate solution we have taken them into account dur-
ing the design and implementation of our solutions. In order to verify and show
the potential and adequateness of our solutions we have integrated them into a
development framework which can be used to develop secure overlay networking
applications. This was driven by our believe that solely providing solutions for
particular security problems is not sufficient for realizing a secure system. First,
we proposed one general and one specific security concept [KPT08, KP09b] for
self-organizing overlays which allows the selection of adequate security measures
based on the overall system requirements and the available resources of the
participating nodes. Thereafter, we have designed and implemented a secure
routing protocol for unstructured heterogeneous overlays based on this security
concept. The secure routing protocol provides protection from outsider attacks
and enables the detection as well as the prevention of insider attacks. We want
to mention that our system was not intended for open Internet-scale systems but
rather for controllable environments such as in private or public enterprises. This
is mostly due to the fact that the complexity of key management and distribution
in open Internet-scale systems can not be addressed adequately using existing
mechanisms. However, during our research we have also found a solution which
allows us to use our secure overlay networking framework in such environments
with the assumption that each node is equipped with Trusted Platform Modules
(TPM) specified by the Trusted Computing Group (TCG).

1.3 Outline

We first introduce the history and state-of-the-art of self-organizing systems
with the focus on security and trust in Chapter 2. We will outline the most
important trends in that area and provide detailed information about the semi-
nal work done in this area. We will introduce our scalable security concept for
general self-organizing systems in Chapter 4. The ideas of the security concept
has been published in two papers. The first, called General security concept for
embedded P2P systems [KPT08] has been presented at the Mobiquitous 2008
and was mainly concerned with the security concept and the specifics in em-
bedded P2P systems. The security concept has been applied to embedded P2P
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systems during the EU project SMEPP which as about a secure middleware
for embedded P2P systems. The second paper Security Concept for Peer-to-
Peer Systems [KP09b] applied the security concept in a more broad manner to
P2P systems in general and it was presented at the ACM/IEEE IWCMC 2009.
Thereafter, we begin with an investigation into secure and trusted identities
and provide a solution based on trusted computing mechanisms and resources
in Chapter 5. The ideas presented in this chapter have been submitted to NSS
2011 in a paper titled Trusted Identity Management for Overlay Networks. In
Chapter 6 we evaluate existing secure routing protocols according their appli-
cability to our problem. We will also introduce a new scalable secure routing
algorithm, based on the dynamic source routing protocol, which incorporates
the previously defined security concept. Some of the content of this chapter
has been published in two papers. The first was about the analysis of existing
secure routing protocols and their applicability to P2P networks. The paper has
been published in the IEEE conference proceedings of Secureware 2009 under
the title Secure Routing for Unstructured P2P Systems [KP09a]. The new secure
routing algorithm which is based on the security concept and especially designed
for unstructured overlays has been published in the 19th International Euromi-
cro Conference on Parallel, Distributed and Network-based Processing (PDP
2011). The paper has been titled Scalable Secure Routing for Heterogeneous
Unstructured P2P Networks [Kra11]. In the Chapter 7, we describe the design
and implementation of our secure overlay networking framework which incor-
porates the secure identities and secure routing algorithm into a comprehensive
solution for secure overlay communication and management. The concept and
architecture has been published in the 35th Annual IEEE Conference on Local
Computer Networks (LCN 2010). The paper has been titled A scalable secure
overlay framework for heterogeneous embedded systems [Kra10]. Within this
chapter we also evaluate the applicability and performance of our framework.
Thereafter we use the developed secure overlay framework as basis for a well-
known multi-agent system (MAS) and show how easily it can be integrated with
existing applications in order to provide security for an underlying heterogeneous
enviroment. This particular application has been published in the proceedings
of the 5th International Conference on Mathematical Methods, Models and Ar-
chitectures for Computer Network Security (MMM-ACNS 2010). The paper has
been titled Secure Multi-Agent System for Multi-Hop Environments [KDH10].
Some other publications where parts of the theory, concepts and applications of
the work presented in this thesis have been published are in the Journal Security
and Communication Networks with the title An autonomous attestation token
to secure mobile agents in disaster response [HTK10] and the 4th International
Conference on Network and System Security (NSS 2010) with the title Securing
Emergency Response Operations Using Distributed Trust Decisions [DHK10].

For a list of my other publications which are not related with the content of
this thesis see the references at the end of this thesis. These publications are
concerned with intrusion detection, green networking, security and privacy in
mobile computing, wireless networks and the Internet of Things.





2
Background

Science is built up of facts, as a
house is built of stones; but an
accumulation of facts is no more a
science than a heap of stones is a
house

Henri Poincare

The concept of distributed systems, such as peer-to-peer (P2P) and other
overlays or ad-hoc networks, has been around for a long time. Even the Internet
itself was conceived as a distributed system in the first place [Cro69]. It can be
said that the Usenet is the first implementation of a distributed system since
it copied files between computers without central control. Another important
system, the Domain Name System (DNS) makes use of distributed computing
principles and its request/response mechanism is very simple, efficient and scal-
able so that many routing protocols made use of these mechanism. However, in
the late 90’s, as the Internet expanded in unprecedented manner, the prevalent
computing concept became the client-server model. This was because the use-
case patterns of the Internet changed towards more asymmetry and centraliza-
tion since it better reflected the business models of that time. The client-server
model was therefore the straightforward choice at that time. With the beginning
of the new century, with linear increasing amount of Internet users [Min08] and
exponentially growing network traffic [Odl03], the client-server model was not
able anymore to deliver the anticipated network transfer rates and to provide
the desired reliability.

This was the time as the first file sharing clients appeared, which again made

9
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use of distributed computing concepts, especially overlay concepts. In big parts
the trend towards overlay can in big parts be attributed to the fact that it is
possible to achieve higher transfer rates and faster downloads in the presence of
huge amount of users, then was and still is possible with the traditional client-
server model. The first file sharing application has been Napster, which became
very popular very fast. Shortly after, the ideas from the distributed computing
domain have been applied to applications from almost every area, not only for
file sharing. Also a huge amount of different approaches and variations within
the domain of distributed computing have been developed. Therefore, basic
mechanisms for storing data redundantly, efficient data distribution and peer
organization and management have been studied. Most of the work has been
done in the context of overlay networks, since they attracted the biggest amount
of normal internet users and have therefore been the ideal playground to test
ideas and evaluate algorithms. Subsequently we provide a short introduction
into the different overlay topologies and outline their benefits and caveats.

2.1 Overlay topologies

The common denominator of overlay networks is that they form a virtual inter-
connection structure independent from the underlying physical communication
infrastructure as shown in figure 2.1. In terms of the Internet Protocol Suite
this can be seen as a new layer between the transport and the application layer.
Whatever kind of underlying technologies are used, the overlay layer introduces
new functionalities which can be used by all applications implemented on top
of the overlay using its API. The amount of available overlay network imple-
mentations has grown tremendously since the first peer-to-peer networks have
been very successful in providing high performance data distribution to users all
around the world. Thus, content distribution networks, which form the “back-
bone” of almost all highly frequented content sharing websites such as YouTube,
MySpace and similar, make use of such overlay networks.

Figure 2.1 illustrates one of the most prominent facts of overlay networks
which is that real physical interconnections of hosts must not be expressed in the
overlay network topology. However, in some implementations of overlay networks
also parameters from the underlying physical network are taken into account in
the formation of the overlay network. For instance, it may be beneficial to
select the overlay neighbors from the hosts which are physically nearby in order
to realize low latency between neighbors since they are most often contacted
in overlay networks. Sometimes also the available bandwidth to other nodes
influences the characteristics of a particular node especially in superpeer overlay
networks as we will see in the following sections.

2.1.1 Distributed Hash Table (Structured) Overlays

One of the best known or at least most researched kind of overlay network is the
structured overlay. Structured overlay networks impose an ordered structured
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on the whole network and on each node joining the network in order to optimize
the search mechanisms. Most commonly, a distributed hash table (DHT) is
used to create this kind of structure. Usually they are organized in a logical ring
structure, as shown in figure 2.2, since it provides a very intuitive model and can
easily be implemented. Some of the best known DHT overlay implementations
include CAN [RFH+01], Chord [SMK+01], Tapestry [ZKJ01], Pastry [RD01]
and Kademlia [MM02].

Such a DHT ring has a maximum number of nodes n. Each node uses the
overlay network specific ID generation function to obtain its overlay ID. The
ID generation function is usually a well-known secure hash function such as
MD5 [Riv92] or SHA-1 [iosat02]. Depending on the overlay network each node
uses specific information as input for the ID generation function such as the
IP address or random numbers. Each node then tries to join the overlay by
contacting existing nodes in the network and performing a specific algorithm
which updates the network topology and provides the joining node with the
required neighborhood and overlay information. Another common criteria of
DHT based overlay networks is that data objects or object keys in general can
be located with Olog(n) requests. This can be explained by the fact that every
data object which should be introduced to the overlay network is also hashed
and then stored or linked to the node with the nearest matching overlay ID. If a
node searches a specific datum it asks the neighbor whose overlay ID matches the
hash value of the desired datum best. The neighbors of each node are organized
in such a manner that the maximum distance between a datum and a neighbor
is half the amount of overall nodes as illustrated in figure 2.2. The neighbor
with the closest matching ID again performs the same process. This continues
until the datum has been located. For instance in Chord, each node has also
log(n) neighbors which can be contacted for that reason. Thus, each datum can
be found with at most log(n) lookups with a high probability if it is available.
One downside is that it is not so simple to search for arbitrary or partly known
data since the whole search string is required to obtain the hash value.

2.1.2 Superpeer Overlay

Another often used overlay topology is the superpeer overlay. A superpeer topol-
ogy is not like the structured overlay which has tight constraints on its topology
but is also not completely unorganized such as the unstructured overlay. In
the superpeer topology an distinct amount of peers form a hierachy over the
common overlay. These superpeers are selected by parameters specific to the
overlay network. For instance random selection, peers with the most amount of
data available, peers with highest performance or resources such as bandwidth
and computational power. The topology and the selected superpeers can change
overtime since overlays are dynamic and in order to achieve the best performance
the topology changes according to the current network status.

Usually the topology of the superpeer overlay network looks like as shown in
figure 2.3. Common peers form together a normal overlay network based on their
neighbor connections. At some point, usually when the network grows beyond
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some specific size, either some peers from all of these peers are selected to become
superpeers based on the criteria described before or they have been chosen to be
superpeers from startup. During this phase the neighbor connections of all peers
are realigned with the new topology and the superpeer responsible for a specific
sub-overlay network. Searching in these overlays is managed mostly through
the superpeers. Each node who initiates a search first asks his neighbors and
also sends the request to the superpeer. Each superpeer usually holds a list of
the most requested references stored at the nodes connected to it. Therefore,
each superpeer first asks other superpeers if the specific reference in the search
request is managed by one of their connected nodes. If yes, the associated node
is returned immediately. If not the superpeer forwards the search request to its
child nodes. In such an overlay topology the performance is improved against
unstructured networks but the downside is that if something goes wrong many
more nodes are affected by the failure since superpeers are the bottleneck. Thus,
some superpeer implementations let normal nodes connect to more than one
superpeers which again decreases the performance but enhances the robustness.

2.1.3 Unstructured Overlay

The simplest topology and organization structure of overlay networks is the un-
structured overlay. An unstructured overlay is usually formed without any orga-
nizational function in place. Thus, peers usually connect to others which can be
reached through a local broadcast or a multicast. If for instance one node which
has never taken part in the overlay before wants to join the network it usually
connects to some well-known long-living nodes which often can be determined
through the Internet. After the join process has finished successfully and the
node has obtained the current member list of the network, the node selects nodes
as it neighbor nodes. This can be done in different ways, for instance neighbors
can be chosen at random among the members, nodes with the lowest latency
are used or nodes with the highest bandwidth. There a lot of different overlay
implementations available and almost as many neighbor selection mechanisms.
Since this kind of overlay network forms itself very dynamically, the topology
can change very quickly and each node has several connections to other nodes
these networks are thought of being amongst the most robust networks available.

Figure 2.4 shows a possible topology as it may be formed by unstructured
overlay networks . Since initialization and topology creation is more or less
chaotic any snapshot of real-world unstructured overlay networks may look very
different. Nevertheless, it covers most of the relevant features. The amount
of neighbors of one node and the amount of nodes in general are usually not
fixed and also usually not limited. The only upper-bound which usually exists
is the diameter a search and also route requests travel or more precisely the
hops one message can travel. These networks are usually based on flooding or
random-walk style routing and search algorithms.
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2.2 Related Work

We have investigated different secure ad-hoc routing protocols since no secure
routing protocol for unstructured P2P networks existed so far and they have sim-
ilar requirements. A wide range of research work such as [ZH99, PH02, Zap02,
JLR04, WZH05, KGSW05] have applied standard cryptographic mechanisms to
well-known routing algorithms or described theoretical best practices for estab-
lishing routes in a secure manner. They do not think about providing a scalable
protocol which can be adjusted to the users security needs or the node require-
ments. They used digital signatures in a redundant and lavish manner, thus
excluding devices with less computational power.

The Ariadne [HPJ05] protocol, which is based on TESLA [PCTS02], is able
to provide cheaper asymmetric cryptography by means of delayed disclosure
of symmetric keys. This allows very constrained devices to participate in the
secure route discovery process. However, this protocol lacks in the specification
and adequate guidance of selecting the required parameters. Additionally, in
the bootstrapping and security update processes this protocol requires common
asymmetric cryptography (digital signatures and public key certificates) which
has not been taken into account in their performance evaluation. Also they
assume use-cases which are not realistic in overlay networks. For instance, they
assume that only very few peers will actually communicate with each other and
thus would have to perform the more expensive cryptographic functions. All
other peers are only required to forward the requests. As shown in [KP09a]
the use of Ariadne in P2P networks is not practical because we can not assume
that only some specific peers will exchange data. If all peers should be able
to communicate with each other than each peer not only requires symmetric
keys but also public-private keys and pair-wise shared secrets. Thus, in an
environment with arbitrary interactions such a scheme is not applicable.

Another secure routing approach for ad-hoc routing mechanism has been
provided by [GZ02, GZA02]. They provide security for the ad-hoc on-demand
distance vector protocol. This protocol has several features in common with the
dynamic source routing protocol, such as the separation in two phases (discovery
and maintenance). The main problem is that it does not provide verifiable secure
routes. This is because each peer only maintains its local routing view by only
maintaining a forward and backward hop for a specific destination. Thus, it
is not possible to give the source and destination control over used routes and
therefore prevent insider attacks.

Others like [MGLB00, AD01, LS06] have tried to provide security with means
of repudiation or some other kind of trust. But all these approaches rely on
statistical methods and not on mathematical primitives. Statistical methods can
provide means to increase security if cryptographic measures are already taken.
But these mechanisms can not provide security if the worst case adversaries are
assumed. Because they rely on some kind of historic data or on other heuristics
they can be betrayed by playing along for most of the time but deviating from
the protocol if it is in the interest of the adversary.

A similar structured overlay network approach with slightly different archi-
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tecture which also addressed the 3 requirements of [CDG+02] is the one from
Wang et al. [WZH05]. Instead of using a ring topology for the P2P system they
based their system on the Internet Autonomous System Topology in which the
peers are organized by their physical network locality. In this approach the peers
are grouped together into teams as their basic unit. In the proposed system only
selected peers perform routing activities. Instead of using IP addresses in con-
junction with certificates and node IDs they propose to use a network physical
characteristic, called net-print. The reliance of the IDs on the round-trip time
(RTT) to selected routers as a trustworthy component is disputable. The other
requirements are addressed in a similar manner as in [CDG+02].

The well-known P2P framework JXTA also states to be a secure P2P net-
work [YW02]. JXTA makes use of well known mechanisms like SSL/TLS [DR06],
X.509v3 certificates and other common security primitives, protocols and stan-
dards. Nevertheless, these mechanisms are used only for point-to-point encryp-
tion and for peer authentication at the application layer. There are no secure
routing primitives or any special authentication mechanisms for group secu-
rity available directly from the JXTA API. No general security concept exists
which addresses the security requirements, as stated in [CDG+02], directly in the
JXTA framework. There are no explicit mechanisms to protect the P2P network
against attacks from adversaries or threats from misbehaving and selfish peers.
The primary goal of JXTA in terms of security is to provide cryptographic prim-
itives (encryption, digital signatures, hashing, ...) or more precisely interfaces
for such services such as JAAS to the application layer.

Another framework for secure P2P networking is GNUnet [BGH+02]. GNUnet
does not require a centralized service and Bennett et al. also state that they do
not use any other trusted service. In their definition, security more or less equals
anonymity. Their framework is focused on anonymous censorship-resistant file-
sharing. They use a technique which makes it impossible, according to their
description, to distinguish between messages originating from one peer from the
messages that this peer simply forwards. As in all pure overlay network, each
nodes acts as a router and uses encrypted connections to communicate with
others. The connections between nodes are designed in a manner so that the
bandwidth utilization is stable. All nodes monitor each other in order to imple-
ment a game-theoretic model which rewards nodes with higher contribution with
better service. As stated, their focus was on anonymity rather than on secure
identities, secure routing and trust. Especially in the area of trust and secure
identities their framework is not adequate. Also the routing protocol does not
use authentication and integrity protection since it would enable identification
within their model and thus anonymity would not be possible anymore.
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Figure 2.1: Overlay in general
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3
Assumption and Notation

The main character of any living
system is openness

Ilya Prigogine

In this work we do not address the issue of data distribution or efficient con-
tent management but rather how we can provide secure and trustworthy iden-
tifiers, establish secure paths between the nodes in system, provide a scalable
framework which allows nodes to communicate and manage the self-organizing
system in a secure, reliable, trustworthy and privacy preserving manner. De-
pending on the desired application, the framework for secure unstructured over-
lays can be used as either multi-hop communication network or content distri-
bution network.

3.1 Network assumptions

The following assumptions are concerned with the underlaying physical network
composition and structure. These assumptions apply to all the different issues
and solutions provided in this thesis and also the resulting secure overlay net-
working framework.

We assume that network links are bidirectional; that is, if node A is able to
send messages directly to node B, then B is also able to send messages directly
to A. We do this although the routing algorithms used in this thesis would
also work in networks with unidirectional connections. But since before the
routing algorithms are applied, we use two-way communication for establishing

19
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and verifying identities it would not be guaranteed that the nodes involved in
this process are able to communicate without bidirectional links.

We also assume that nodes may belong to networks whose addresses require
to use NAT to connect to other nodes in the system. Thus, the internal address
may be different from the external address seen by other nodes. For instance,
consider the scenario depicted in Figure 3.1. The nodes H,I,J,K and L,M,N are
behind a NAT or Firewall. Thus, the secure overlay network may get separated
into several parts due to the unavailability of nodes, such as D,H and A, which
connect the separated overlays. But with the availability of such nodes the
separated overlays must be able to merge into a common overlay. A mechanism
must exist which allows overlay network nodes, belonging to the same logical
overlay network, to find and identify each other as soon as a ”bridge” node gets
available. After the separate networks have verified that they actually belong
to the same network, the separate networks must merge. We assume that it is
best that the networks with less nodes or in the case of equal nodes from the
”younger” networks start to join the ”older” network. We make this assumption
since in terms of security it requires several new mutual authentication requests
which guarantees that only legitimate nodes can obtain the relevant overlay
information although it also increases the time complexity of the overall system.
Since such events will not be commonplace and for one node itself the additional
time required for the renewed authentication is marginal but the overall system
security benefits greatly we think it is a valid assumption.

3.2 Node assumptions

The resources of different overlay network nodes may vary greatly, from nodes
with very little computational resources to powerful resource-rich nodes equiva-
lent in functionality to high-performance workstations or servers. To make our
work and results as general as possible, we have designed a security concept and
a routing protocol to also support nodes with few resources, such as PDAs and
mobile phones.

In addition, we assume that in order to allow trusted and secure identities to
be used we require that nodes are equipped with a Trusted Platform Module as
specified by the Trusted Computing Group [Tru07d]. Although current resource
constrained devices such as PDA’s or mobile phones are not already equipped
with such a TPM, the TCG has specified and developed a concept called Mobile
Trusted Module (MTM) to also provide such tamperproof hardware tokens for
these devices and developments such as the ARM TrustZone technology predicts
that also such devices will have such hardware in the future. Our security
concept and all derived protocols and the framework function also without the
existence of TPMs but with the inconvenience that keys and certificates must
be distributed to the nodes in advance and a separate Public Key Infrastructure
must be maintained.
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3.3 Security Assumptions and Bootstrapping

The security of all our protocols and solutions relies on the secrecy and au-
thenticity of keys stored in nodes. We rely on the following keys to be set up,
depending on which security level is used by the node. In the case that TPMs
are available the key setup and distribution process is automatically performed
during the join process. If this is not the case the recommendations and process
described below can be used.

� If a shared secret key is used, we assume a mechanism to set up a secret
key for a network with n nodes.
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� If public-private key pairs are used, we assume a mechanism to set
up one authentic public-private key pair for each node. In addition, the
authentic public keys of legitimate certificate authorities must also be set
up for each node.

To set up shared secret keys, most key establishment protocols involve a so-
called trusted third party or trusted authority. It is also possible to use distributed
approaches which allow to establish keys between nodes if they already have some
trust relationship between each other. If no TPMs are available we require only
one shared secret key instead of pair-wise shared keys which can be efficiently
handled by pre-deployed keying. Thus, we can either use a single network-
wide key shared by all nodes or a set of keys randomly chosen from a key pool
such that two nodes will share one key with a certain probability as outlined
in [EG02, CPS03].

To set up public-private keys an offline PKI approach can be used if TPMs are
not available. Thus, the private and public key as well as the trusted authority’s
public key are embedded in each node. The public keys of other nodes are
authenticated using the trusted authority’s public key. Using such a system
allows us to provide the required authentication but it is not possible to handle
revocation. In order to also enable revocation one can either use a distributed
PKI solution such as [ADH05, LMT09] or implement a distributed revocation
system [AD01, LZPL05, CCF08].

It is necessary to note that if our system is used with an offline PKI ap-
proach it is not possible to execute it as an open system as explained before.
The main reason is that we do not allow arbitrary nodes to join and thereafter
establish secure communication through key agreement in our system. Although
it is possible that arbitrary nodes join our system, security is only provided for
nodes which possess authentic credentials. These legitimate nodes can join and
communicate in a secure manner establishing a virtual private overlay. Thus,
only if TPMs are present (meaning that all nodes are equipped with an TPM)
our secure overlay network can be used as open system. Because TPMs have
built-in certified public/private keys it is possible to verify the authenticity of
these keys without previously distributing keys as described before.



4
Security Concept

It is necessary to study not only
parts and processes in isolation,
but also to solve the decisive
problems found in organization
and order unifying them, resulting
from dynamic interaction of parts,
and making the behavior of the
parts different when studied in
isolation or within the whole

Ludwig von Bertalanffy

In this chapter we will focus on the specification of a security concept for
heterogenous and dynamic overlay networks. We have designed and specified a
new security concept for such networks because the available approaches where
either only concerned with a very specific kind of overlay, i.e., structured P2P
networks, or they are not intended to incorporate different kinds of devices and
capabilities as well as scalability for the security concept in itself. The security
concept that we envision takes the broad range of different devices into account
which should be able to participate in such an overlay network also considering
future developments of the Internet of Things. Therefore, an important aspect of
the design is the search for and definition of security primitives and mechanisms
which can also effectively be applied to systems with limited resources like mobile
devices and sensor nodes (e.g. limited computational power, amount of available
memory and energy, etc.).

23
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4.1 Introduction

The design and implementation of all the protocols and mechanisms as well as
the secure overlay framework itself are based on the described security concept.
The security concept must be designed in a way to cope with the specifics of
heterogeneous network environments such as a diverse set of devices, resources
and use cases. One important aspect in the design of the security concept was
configurability. Thus, giving either each node the freedom to select its desired
level of security with respect to its capabilities or to allow system administrators
to specify which security levels are available and what their requirements are.

Such a security concept must provide a simple way to select adequate secu-
rity measures for a wide range of devices. In our case, the capability to support
powerful workstations as well as constrained mobile devices is equally important
since we deal with heterogeneous networks. With the security concept which
is outlined in this chapter it is possible to achieve a specific security level in
the presence of heterogeneous nodes with diverse capabilities. In addition we
have identified mobility as a requirement of paramount importance. Since mo-
bile peers can participate in our overlay system, the underlying communication
mechanisms (especially routing) must be able to cope with a changing environ-
ment in a secure and efficient manner.

Another important characteristic of our security concept is transparency.
Since nodes with different capabilities can participate in the network, the achiev-
able security level of a specific communication session must be determinable in
advance. Meaning, that before the actual communication process can be started
all nodes participating in this session must be able to see what the capabilities
of the other nodes are in terms of security and are able negotiate the security
level which should be used.

First we will outline some related work concerned with security concepts in
heterogeneous environments and self-organizing networks. Thereafter, we intro-
duce how our security concept is composed theoretically. We have identified
two domains where this security concept applies in our work. We then detail
what particular steps are required in each domain in order to provide security
adequately. Thereafter, we identify the theoretical security levels which are
achievable using specific cryptographic credentials and protocols for each par-
ticular step. Thereafter, we describe the security concept we actually applied
in our prototype implementation and practical work of this thesis and outline
some general considerations which came up during the implementation.

4.2 Background

Zhou and Haas [ZH99] have investigated the security requirements of the upcom-
ing area of self-organizing networks with focus on ad hoc networks in 1999. One
reason to do that was that these kind of networks do not rely on any fixed in-
frastructure but rather use other nodes in the network to stay connected which
was not common at this time. The fact that other nodes are used for con-
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nectivity is also true for overlay networks in general. They studied the effects
of possible threats which ad hoc networks face and what security goals can be
achieved within these networks. They have also identified several new challenges
in terms of security and explored possible solutions for ad hoc networks. In ad-
dition they also outlined new opportunities and advantages of such networks
due to their inherent redundancy of communication paths. They applied repli-
cation and threshold cryptography to build secure and reliable key management
services within their framework. The security goals they identified where avail-
ability, confidentiality, integrity, authentication, and non-repudiation. In their
work they provided an overview of security threats which ad hoc networks face
and presented security objectives which need to be achieved in order to consider
such a network secure. They mainly concentrated their efforts on secure routing
and key management which are the most important issues in their opinion. They
give some recommendations about how routing protocols should protect the ex-
changed information and how key management can be solved in a decentralized
environment which is very useful for our approach in overlay networks.

One of the first works which introduces the notion of different levels of se-
curity in self-organizing networks, especially in mobile ad-hoc networks, is the
one of Yi et al. [YNK01]. Their main focus has been to incorporate trust be-
tween and of nodes into a routing framework and how the routing decisions can
be grounded on these trust representations. They proposed a protocol matrix
based on specific protocol properties which provide security for routing protocols.
The matrix is a list of the common properties required in secure systems such as
authenticity, authorization, confidentiality, integrity, non-repudiation, ordering
and timeliness. They outline all the required properties as well as common secu-
rity threats such as interruption, interception, modification and fabrication, but
they fail to describe how these properties can be used to realize security levels
or what specific measures protocol designers must take to end up with a secure
protocol. Thus, their approach provides a very theoretical high-level view on the
matter containing all the required information but it does not provide details on
how such an security level based routing protocol can be implemented or what
specific mechanisms must be used to protect protocols from attacks. However,
the ideas presented in their work can be used for directions on how to design
and implement a scalable security concept for routing protocols.

More recent work on providing security in self-organizing networks has been
done by Palomar et al. [PETCR06]. They have done a survey on security issues
and analyzed existing solutions and gave recommendations for future research
directions in the domain of overlay networks. They provide a good discourse on
philosophical issues which have been emphasized and discussed heavily within
the overlay network community. In the context of overlay routing they have
identified some key topics. These include in the domain of User Community
such topics as trust and social profiles, identification versus anonymity and node
authentication and access control. In the domain of Content they have outlined
issues such as replication search and retrieval, as well as content integrity and
authentication. Their analysis of existing solutions is then based on these prop-
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erties. Unfortunately, the resulting analysis and the representation lacks clarity
and is not very helpful in the security concept designing process. Also, only very
few existing solutions have been analyzed. Thus, the recommendations for fu-
ture research directions are not very comprehensive and provide only very little
guidance.

Fujii et al. [FRHS09] present a security analysis of overlay routing protocols
with focus on providing a security model which allows to evaluate different secu-
rity levels of routing protocols. They define a concept called Regular Path which
they use to indicate the security level of the analyzed protocol. A regular path
is simply the routing path which does not contain any malicious node. For their
analysis they have also used the three aspects introduced by Castro [CDG+02]
namely ID assignment, table maintenance and message forwarding. Their no-
tion of security unfortunately only covers the issue of availability and does not
investigate issues such as confidentiality, authentication, non-repudiation and
integrity which is most important for us. However, the given results can provide
basic guidelines for defining new secure routing protocols in the context of over-
lay networks with respect to the probability of successful route establishment
for the three different types of routing mechanisms (random, chord, diversity)
they have analyzed.

4.3 Concept composition

In this section we outline the theoretical foundations on which we grounded the
security concept. In our studies we have identified two major areas of communi-
cation which are relevant in an overlay network. These two domains are different
in terms of the used protocols, importance for the functioning of the overlay net-
work itself, as well as in the relative amount of time communication is performed
in these domains. However, both domains are similar in terms of security re-
quirements. Thus, the security concept for heterogeneous overlay networks also
features these two domains of security. We will outline the fundamental phases
or steps required to provide security in both domains in a combined manner.
Meaning that we will make use of the same credentials and security levels in
both domains although the protocols which will make use of these credentials
can be different.

� Routing security

� Group security

Both domains will be considered with the same basic group concept in mind.
A group is simply a virtual aggregation of an arbitrary amount of peers which
follow the same policies and use the same protocols. Every node must be able
to communicate in a secure manner with any other node inside the same group.
Depending on the security level of the group, different mechanisms and keys may
be used. All nodes belong to a default group after they have joined the overlay
network. Thereafter, peers can create or join other groups which are composed
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of a subset of the peers belonging to the default group. Routing security will be
regarded only in terms of a base group or a default group. Every peer belongs
to this default group after he has joined the overlay system. All of the routing
aspects are managed inside of this group because every peer can be used to find
paths to other peers.

As outline before, both domains have the same security requirements and
therefore, the following security aspects apply to both domains.

1. Establishing secure communication,

2. Performing secure communication, and

3. Upholding secure communication.

Establishing secure communication relates to the secure joining of peers,
where the new peer and an existing group member perform mutual authenti-
cation using the required credentials as described in section 4.3.1. When the
new peer successfully joins the group, it will be provided with additional cryp-
tographic material such as a shared secret key or pair-wise shared secrets. With
this cryptographic material members of the same group can communicate se-
curely since all of them are provided with the same keys (point 2). Usually
symmetric keys are used for protecting the communication since they can be
used more efficiently. However, in some security levels also asymmetric cryptog-
raphy is used if a higher level of protection is required and if we also want to
detect insider attacks. In the context of routing security, this means that the
overlay route messages are protected with this cryptographic material. In the
context of normal communication, all messages are protected using the specific
cryptographic keys. Upholding secure communication relates to how to prevent
and limit damage from exposed keys. For instance, we either require session keys
to be updated regularly or tamper-proof hardware is used to store keys. For in-
formation about how to distribute cryptographic material in such environments
see [MvOV01, LN03].

4.3.1 Security levels

The overall security in the overlay system can be set individually for all com-
munication processes on three separate axes. These three axes conform to the
three security aspects given above.

� Admission security (entity authentication and authorization)

� Data security (message authentication and confidentiality)

� Session key protection (rekeying and local side-channel attack countermea-
sures)

Admission security refers to establishing secure communication, Data security
refers to performing secure communication and Session key protection refers to
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Upholding secure communication. For each security aspect, several levels of
security are possible using different kinds of cryptographic material, as stated
in the following tables 4.1,4.2,4.3. We want to note here that we do not address
the issue of how the credentials are distributed to the nodes. We assume that
all peers posses appropriate credentials prior. In the prototype implementation
of our secure overlay network we have used two specific methods. In the first
one we assumed that we deal with a closed system and that all credentials
will be obtained by or distributed to the nodes prior to joining the overlay
network and in the case of asymmetric credentials and offline PKI signed all the
certificates. In the second approach we utilized the functionalities provided by
trusted computing and the TPM in order to realize a open system and also to
provide privacy protection.

Level Admission Security
4 Public-Private Keys (PPK)
3 Pairwise Shared Secret Keys (PSK)
2 Shared Secret Key (SSK)
1 Passphrase, Password, Pin, ...
0 None

Table 4.1: Admission security levels

Admission security relates to the process of establishing secure communica-
tion. It combines entity authentication and authorization, secure neighborhood
management and secure bootstrapping. Most notably the join process for the
overlay network itself and groups is addressed with this aspect. Depending on
the selected security level for admission each node must already possess specific
credentials. As it can be observed from table 4.1 the highest security level can
be achieved if public-private keys are used. This is because all other types of
keys can be established using public-private keys. Using pairwise shared secrets
allows to achieve the second highest security level since each node in the sys-
tem shares one pair of keys with each other node and therefore if one node is
compromised only these keys must be revoked. All other nodes can still per-
form secure communication using their keys. With a shared secret key it is
possible to achieve a higher security level than with just a password since such
shared keys (e.g.: AES) are much longer than normal pass-phrases or passwords.
During the admission process new credentials may be distributed to the joining
node depending on the security level and whether privacy protection is used by
the overlay or not. Privacy protection is only available if TPMs are available
and the trusted authentication protocol with a PrivacyCA is used as described
in Chapter 5. Depending on the security level selected session keys, pair-wise
shared secrets or public private key pairs are provided to the joining node. If
no TPMs are available and public/private keys are used for authentication the
node continues to use these keys. The distributed keys are used for all processes
related with data security.
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Level Data Security
8 Signature + Encryption (PPK + PSK)
7 Signature + Encryption (PPK + SSK)
6 MAC + Encryption (PSK + PSK)
5 MAC + Encryption (PSK + SSK)
4 MAC + Encryption (SSK + SSK)
3 Signature (PPK)
2 MAC (PSK)
1 MAC (SSK)
0 None

Table 4.2: Data security levels

Data security refers to the protection of the data payload (i.e. the routing
information). For the communication process symmetric keys are established
to perform secure communication in order to increase the performance of data
security mechanisms. These mechanisms include the protection of routing in-
formation as well as the protection of normal communication. The benefits of
symmetric keys are that they can be updated or refreshed in order to protect
against side-channel attacks. For example, data security level 4 demands that
each message within a group needs to be authenticated and encrypted using the
current session key of the group (whether for routing or normal communica-
tion). Here again using public private keys allows for the highest security level.
Thereafter, pair-wise shared keys and globally shared keys provide the other
lower security levels. Since, in data security we also can provide confidentiality
the highest security level is the combination of public-private keys with pair-
wise shared secrets. All other combinations according to the previously outlined
security ranking generate the lower security levels.

Level Admission Security
* Key revocation, Misbehavior detection,

SCA countermeasures, ...
+ Session key refreshing

Nothing

Table 4.3: Protection levels

Secret protection relates to the process of upholding secure communication.
All mechanisms and services which prevent and limit damage from exposed keys
or any other secret material belongs to this aspect. This can be achieved through
means such as side-channel attack protection, session key refreshing, malicious
peer detection or trust management. Session key protection refers to how the ses-
sion key of a group is protected from being learned by an attacker (e.g. through
means of side-channel attacks) and how to limit the damage in case that an
attacker actually gets hold of the session key.
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Although a lot of different security levels are possible in the individual ar-
eas, in practical applications some combinations of security levels can not be
considered as principally sensible.

4.4 Applied security concept

For the implementation and verification of our framework we selected specific
combinations of the previously mentioned possibilities. For demonstration and
practical reasons we only use three different levels of security. These levels are
low, medium, and high. The security level can be set independently on three
separate axes. These three axes conform to the three security aspects given
above. In figure 4.1 we have outlined the different aspects of our applied security
concept.

Security Aspect
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Figure 4.1: Levels of security in the group concept

Security level high requires each peer to posses legitimate public and private
keys and applies admission security level four (see table 4.1 and data security
level five (see table 4.2). In security level medium each peer must posses the
same shared secret key and admission security level two and data security level
one are enforced. The low security level only requires that the identity of the
peer is unique. Thus in the lowest security level all peers, whose identity does
not exist in the system already, can join the network. For admission and data
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security level zero are applied. In the described research we have used session key
refreshing in the security levels medium and high. These are the security levels
we used in our prototype implementation but it is also possible to create other
overall security levels from the possible combinations outlined in the tables.

4.4.1 Admission security

Credentials for admission security regarding routing and group communication
fall into one of the following two basic categories for the security concept we
applied in our overlay network:

� Pre-shared secret key (admission security level medium)

� Individual public/private key pair for each peer either pre-distributed or
through TPMs. Authenticity of the public key is established by certifica-
tion with a global public/private key (admission security level high)

For joining the overlay system and for securing each single group, each peer
must at least possess one type of credential to be admitted into the overlay if
not security level low is selected. Pre-shared secret keys are simpler to set up
and can be applied more efficiently to protect messages, but they also bear a
higher potential danger to the overall security in the case of their exposure. In-
dividual public/private key pairs require more complex cryptographic primitives
and protocols, but they limit the damage of key exposure and can even allow
for the exclusion of misbehaving peers from groups and/or the overlay system.

The credentials are usually provided in a static manner to the overlay ap-
plication in case TPMs are not available. The list of authorized members for a
particular group are therefore by default fixed with the following exceptions:

� New devices supplied with the appropriate credentials can enter the overlay
network

� A key validation service can provide dynamic authorization for groups
and/or the whole overlay system

� Trusted Platform Modules are available and the keys are signed by a rec-
ognized CA

With individual public/private key pairs for group security, there are several
options how peers are authorized for joining particular groups:

� A single key pair with an attribute certificate of the public key containing
the list of groups which can be joined

� A separate key pair per peer for each group, where the public keys for the
same group are certified with a different group public/private key pair

Moreover, individual public keys could be authenticated and authorized dy-
namically by an additional trusted service, therefore allowing for dynamic group
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management and the exclusion of misbehaving peers. In the authentication pro-
cess for joining the overlay system or a specific group, the credentials are used in
a mutual authentication protocol (e.g. three-way challenge-response) and then
used to communicate the session key to the new peer. In order to join a group,
a peer must have the required credential. In order to join normal groups, a peer
must be already a member of the overlay system (i.e. in the possession of the
routing credentials). The group then authorizes entry of the peer into the group
or denies it. Authentication and authorization should be possible with every
member of the group. The default decision for admission will be based statically
on the presented credentials. An additional dynamic group authorization service
is possible but currently out of the scope of our research.

4.4.2 Data security

Once a device has joined the overlay system (routing security) or a group (group
security) through successful authentication and authorization (which is not the
case in security level low), it will receive the corresponding session key. The ses-
sion key is used to protect the data exchanged within the group (overlay routing
information or group communication) via the unprotected network infrastruc-
ture. If not security level low is used the data must be at least authenticated
(as originating from an authentic peer or group member). This corresponds to
data security level medium. We use a simple keyed MAC for this process. If
security level high is applied, the data must be encrypted with this session key
and authenticated via a digital signature using the private key of the node.

4.4.3 Session key protection

Session key protection involves two strategies.

� Hardening the extraction of session keys from devices via side-channel
attacks

� Limiting the value of session keys learned by an attacker

As the session keys will be the most frequently ones used, they will also be
the most vulnerable against side-channel attacks. Side-channel resistant imple-
mentation of the cryptographic primitives can be included in peers which are
expected to be subject to side-channel attacks. Periodic refreshing of the session
key decreases the chance of successful side-channel attacks and can be used to
limit the damage of exposed session keys.

At session key protection level low, the session key is never refreshed. At
level medium, the session key is refreshed at certain intervals. In session key
protection level high we additionally envisioned the use of side-channel resistant
implementations of the cryptographic primitives on the respective peer. This
is only possible if such a cryptographic coprocessor is available. In the EU-
project SMEPP we have implemented such a side-channel resistant coprocessor
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and we where thus able to achieve this security level. Usually such an copro-
cessor will not be available and therefore other mechanisms such as issuing new
public/private key pairs using the PrivacyCA concept can be used.

The admission credentials (pre-shared secret key or private key) should be
protected by the same side-channel attack resistant implementations as the ses-
sion key is when security level high is enabled.

4.4.4 Global security considerations

The basic assumption for overlay system security is that most of the authen-
ticated peers will be well behaved. Attackers which are in the possession of
some credentials for the overlay application (malicious insiders) will be consid-
ered as an exceptional case. They must be detected by the peer or network
monitoring modules by identifying suspicious behavior (e.g. dropping of pack-
ets). Depending on the type of credential and the available security services,
the attacker can be excluded from the overlay system (see Section Dealing with
exposed credentials). Attackers without proper credentials (malicious outsiders)
cannot participate in the overlay network and are restricted to attacking the raw
communication infrastructure.

4.4.5 Dealing with exposed credentials

The following list contains obtainable credentials and the appropriate counter-
measures to exclude an attacker which is in possession of such a credential.

Obtained credentials Exclusion measure

Group session key Negotiation of new
group session key

Group entry denied by
dynamic key validation service

Routing session key Negotiation of new
routing session key

overlay system entry denied by
dynamic key validation service

Peer private group key Negotiation of new group key
Peer private routing key Negotiation of new routing key

Group pre-shared key N/A
Routing pre-shared key N/A

Global private key N/A

Table 4.4: Measures against security breach

The above list contains the credentials with increasing severity of their ex-
posure. Therefore, more critical credentials must be better protected against
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disclosure, e.g. by side-channel attack countermeasures. Also notable is that
the disclosure of a private key can only be remedied with the help of a dynamic
key validation service, which can revoke public keys at runtime. Attackers which
possess authentic credentials and exhibit no apparent misbehavior cannot be de-
tected by the overlay system.

4.4.6 Selection of security levels

For a specific overlay application, the selection of security levels can be done
on several levels (globally, group-wise, or locally). As secure routing is a basic
service underlying the whole overlay system, the routing security level is a global
decision. Therefore, the admission security level and data security level for
routing must be set globally. Furthermore it must be decided globally, whether
the session key protection level for routing is set to 0 or not.

Group security levels are set group-wise. Most of the group security levels
are decided by the group creator. This includes the admission security level and
data security level for a group. Also the decision for a session key protection
level of the group of low or medium/high is done by the group creator. In both
cases, for a session key protection level unequal to low, each peer can feature
individually level medium or high, as this involves only local differences of the
implementation of the cryptographic primitives. The decision should be based
on the degree of exposure to side-channel attacks.

4.5 Conclusion

Our work is the first step towards a general security concept for overlay network
which are heterogenous in nature. Currently, no security concept is available
which incorporates a heterogenous set of devices into one comprehensive solution
which also allows to select different security levels for specific nodes. In doing
so, we have divided the concept into two parts. A routing security concept
and a group security concept. Both concepts are based on the same underlying
understanding of a group. The routing concept currently is aware of one base
group whereas the group security concept can handle an arbitrary amount of
groups without breaking the security policies. We have also specified the different
security levels which can be achieved using this concept, which are numerous,
through the usage of different type of cryptography. Since not only the desired
strength of the used cryptographic mechanisms is relevant in context of overlay
network but also their resource requirements, in terms of computational power,
memory and energy, one can easy determine the best combination of mechanisms
and the corresponding security level by using the described security concept.
Therefore, our work helps future middle-ware and applications designers and
developers to select the appropriate cryptographic mechanisms and are able to
specify a security level for their system.



5
Secure Identities in Dynamic Overlays

Awareness of universals is called
conceiving, and a universal of
which we are aware is called a
concept.

Sir Bertrand A. W. Russell

In the previous sections we discussed what essential parts a solution for secure
overlay networking must contain. In addition to these three essential parts we
also designed a security concept which allows to incorporate heterogenous devices
into a security solution. In this chapter we will outline how the first of the three
essential parts, namely the provision and verification of unique identifiers, can
be solved. For that reason, we first provide some motivation and background
on this topic. Thereafter, we introduce the concepts, mechanisms and resources
which we require in order to realize our solution.

5.1 Motivation

One particular characteristic which all overlays have in common, is that they
provide abstraction from the underlying physical resources. This includes also
that nodes in an overlay are addressed using an artificial identifier rather than
a physical address. Using artificial identifiers has some advantages since they
can be of arbitrary structure and length and enable multi-homing very easily. If
identifiers are used which are derived from a physical address, multi-homing is
not possible without significant overhead. Skype [BS06] for instance uses arbi-
trary character strings as node identifiers which are unique inside the Skype sys-
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tem. A message sent to one node identifier is delivered to all running programm
instances of this node identifier simultaneously independent of the underlying
physical address. In other systems the arbitrary identifier is used to establish a
specific structure in the overlay. For instance Pastry [RD01], CAN [RFH+01],
and Tapestry [ZKJ01] use such an approach. However, the fundamental prob-
lem with artificial identifiers is how to create and assign unique and verifiable
identifiers to each node in the system. This is essential because all mechanisms
and protocols for building secure overlay networks are based on the assumption
that unique and trustworthy identifiers exist. As already outlined in Chapter
1, Doucuer described the Sybil attack [Dou02] which allows the creation of an
arbitrary amount of identifiers if no physical binding between the identifiers and
the node exist. Thus, it must be ensured that a binding between one artificial
identifier and one particular node exist which can also be verified remotely.

The most common solution for providing unique and verifiable identities
currently is to use public key cryptography and a certificate authority. The
certificate authority issues a public key certificate for each node identifier by
signing the nodes public key. Thus, we can be assured that the node identifier
is unique and by using cryptographic protocols it is possible to verify the iden-
tity and authenticity of every node. Unfortunately, the process of issuing and
distributing certificates is not simple for large scale open overlay networks such
as content distribution systems and grid computing. Also having a central point
of failure, as introduced through the dependency on a certificate authority, is
often not beneficial in overlay networks, since one of the main goals is to provide
service reliability and robustness. However, there are concepts available how to
make such a certificate authority reliable and also how they can be realized in a
distributed manner. Thus, the issue of issuing and distribution is the problem
which has to be solved.

To ensure non-repudiable identities in overlay networks in general and peer-
to-peer networks in particular, a hardware identity token certified by the manu-
facture’s own infrastructure can be considered a robust solution. Unfortunately,
common off-the-shelf computer architectures do not provide such services in
a customizable way. While smart cards or USB tokens may be a compelling
solution in theory, the secure distribution of them is rather expensive and cum-
bersome, leading to large administrative overhead.

On the other hand, the TCG-specified TPM has extensive support for iden-
tity and anonymity services, such as certified Endorsement Keys, PrivacyCAs
and Dynamic Anonymous Authentication (DAA). Hundreds of millions of desk-
top and server PCs ship with TPMs. Curiously, those are seldom employed in
practice, indeed required to be shipped in a ”disabled” state, and so most users
do not make use of their unique identity.

In this work we provide a solution for deriving and providing unique and veri-
fiable identifiers for large-scale overlay networks using concepts, mechanisms and
resources provided by Trusted Computing. First we provide a fully distributed
solution solely based on the TPMs Endorsement Key (EK) which allows mu-
tual authentication and verification of all nodes in the system. However, since
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the TCG has expressed privacy concerns if the EK certificate is used directly it
introduced the PrivacyCA concept in order to provide anonymous credentials.
Thus, in addition to the first solution we propose a solution which is based
on the PrivacyCA concept although it somewhat interferes with the concept
of distributed system. However, it is possible to either provide a distributed
PrivacyCA or to make a centralized PrivacyCA reliable and robust in order to
not greatly affect the distributed systems concept. In our solution we propose a
modification of the PrivacyCA concept to provide unique identifiers protected by
the tamper resistant TPM to denominate the peers in our network. We use the
standard interfaces provided by the TPM and the TCG Software Stack as well
as libraries developed by the Trusted Computing Group of the IAIK. We imple-
ment a trusted authentication protocol based on these solutions which provides
unique and verifiable identities and mutual authentication for joining an over-
lay network. Note that the protocol could also be implemented on customized
smart cards, but with additional costs and the need to establish a new trusted
authority.

In the following section we will give a short overview over the application
scenario and a motivation. Section 5.3 describes some work already done on this
topic. This is followed by a short introduction to Trusted Computing and the
Privacy CA [PTHD09]. In Section 5.7 we outline our distributed solution based
on the Endorsement Key Certificate. In Section 5.8 we provide an additional
approach using either a robust stand-alone or distributed Privacy CA in order
to address possible privacy concerns. The paper is concluded with a security
analysis, a performance evaluation and a discussion.

5.2 Background

In our work we consider a dynamic heterogeneous overlay network with N par-
ticipating nodes. The term dynamic refers to the fact that the number of nodes
currently joined to the overlay network varies a great deal over time.

5.2.1 Current Problems and Attacks

A multitude of different overlay networks have been developed over the last
decade. Issues such as selfishness, reliability and security have been of interest
in recent research work. This is related to the fact that it has been observed that
in open overlay networks not all users or nodes are providing equal amounts of
resources to the system or actively disturb the system’s execution. The problems
in overlay networks in terms of security and trust can be separated into two
domains: system intrinsic and application specific.

Several solutions have been proposed which address the problems of self-
ishness, reliability and security in the application domain of overlays in the
presence of BAR nodes. Among them the most work has been published in
the context of establishing trust between nodes on the basis of reputation sys-
tems [AD01, KSGM03, JIB07, HZNR09]. Using reputation allows P2P file-
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sharing applications to tackle selfish behavior of individual nodes by applying
statistical obtained metrics on their file-sharing habits. Also others proposed
that mechanisms developed in the context of Byzantine Fault Tolerant (BFT)
can be used to provide reliability and mitigate selfishness and malicious be-
havior [CDG+02, AAC+05, BRDP10]. However, although several solutions for
particular problems have been proposed, a concise solution which not only focus
on application specific problems is needed as explained subsequently.

Castro et al. [CDG+02] identified three major system intrinsic require-
ments, which are essential to ensure security and reliability of the overlay and
to provide a solid basis to build application specific solutions. These three re-
quirements are:

1. secure identifier assignment mechanism,

2. secure routing table maintenance, and

3. secure message forwarding.

If these requirements are not addressed, any overlay is vulnerable to insider
attacks such as route fabrication and disruption, message interception and cor-
ruption, Sybil [Dou02] and Eclipse attack [CDG+02] performed by Byzantine or
rational nodes. This is because all the application specific solutions assume that
all nodes in the system have unique identifiers which can be verified remotely
from all other nodes. Thus, the first point in the requirements list is the most
important one, since all application specific as well as the other system intrinsic
requirements are based on secure identifiers.

Currently, the most common approach which is applied in real-world appli-
cations and which guarantees unique and verifiable identifiers is to use certified
identifiers issued by a trusted third party such as a well-known certificate au-
thority. We will discuss the proposed solutions based on certified identifiers and
trusted third parties in more detail in Section 5.3. However, although this so-
lution enables unique and verifiable identities it also has the following obvious
weaknesses.

� Low acceptability by the users due to difficult registration and creation
process of the node identifiers

� Complex distribution and status update of the identifier certificates

� Centralized solution which introduces a single point of failure

� Additional costs through certificate maintenance by the CA

The most important restriction or weakness relates to the complex creation,
distribution and management of public key certificates which are used to bind
identifiers to a specific public-private key pair. This must be attributed to the
fact that the identification process is only shifted from the overlay network to
the trusted third party. In order to obtain a certificate the user has to provide
proof of his identity using traditional exogenous processes such as showing a
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passport to a registration officer. Such a organizational effort is a very limiting
barrier for applying certified identifiers on a large scale.

On the other hand Trusted Computing mechanisms and hardware are al-
ready available in common state-of-the art desktop PCs and notebooks. Thus,
we propose in our work to use the information and keying material enclosed
in the Trusted Computing’s TPM. The TPM, which is deployed in an increas-
ing amount on current motherboards, contains a cryptographic key as well as
identity assuring certificate.

5.3 Related Work

Schechter et al. [SGS03] provide an overview of content theft and how it has
increased with the introduction of overlay networks. They provide an overview of
the characteristics of Trusted Computing as well as problems of overlay networks
such as ensuring integrity, confidentiality and availability. Although they provide
no concrete mechanisms or methods how overlay networks can be secured and
trusted, they conclude that if Trusted Computing holds its promises such theft
can be limited or mitigated even in overlay networks.

In [GRB03] Garfinkel et al. describe an intuitive model for understanding the
capabilities and limitations of the mechanisms provided by Trusted Computing.
They describe a flexible OS architecture to support Trusted Computing. In addi-
tion, they presented a range of practical applications that illustrate how Trusted
Computing can be used to improve security and robustness in distributed sys-
tems. They also identified that Trusted Computing can be used to provide
secure identities which can be used to prevent identity theft and Sybil attacks in
overlay network. Unfortunately, this paper also only provides a general overview
without giving any methods or mechanisms which can be used to secure overlay
network.

Balfe et al. [BLP05] show how the functionalities provided by Trusted Com-
puting can be used to establish a pseudonymous authentication scheme for peers
and extend this scheme to build secure channels between peers for future com-
munications. They propose the use of the Direct Anonymous Attestation mech-
anism, which has been adopted by the Trusted Computing Group (TCG) in the
TPM specification [Tru07d], to create pseudonyms for each peer and use them
for authentication. Their solution is more concerned with privacy and anonymity
than with preventing Sybil and eclipse attacks.

Bazzi and Konjevod [BK05] propose a system to counter multiple identities
of one physical node by facilitating the nodes physical location. Within their
work it is possible to provide and verify identities for overlay networks even in
the presence of malicious nodes. They assume that two nodes do not occupy
the same physical location and that the two-way message propagation delay
has a specific upper bound. Their approach relies on the concept of beacon
nodes which report distances to normal nodes. These distance values are then
used to issue geometric certificates. A geometric certificate consists of a set of
distance values between different beacons and a node. These values are signed
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by the beacons and the node. Their approach provides a very elegant solution to
the Sybil problem. However, the involved measurements and required message
exchanges as well as message analysis requirements are very high.

In [GNC+06] Gu et al. proposed a mechanism, called random visitor scheme,
to defend against identity attacks such as Sybil and eclipse. They try to solve
the identifier authentication problem in overlay networks using identity-based
cryptography and identity ownership proof. A randomly chosen delegate carries
some credential that can prove sincerity, ownership, and moderate exclusiveness
of a node. They only provide a preliminary discussion relating cost and strength
of their mechanism.

[DH06] et al. propose a system to tackle the issue of Sybil attacks which
is based on two premises. First, they classify the overlay identifier assignment
process and separate network participants from network nodes. Thus, two chal-
lenges in the context of Sybil attacks are identified. First stability over time, and
second identity differentiation. Thereafter, they propose an identity registration
procedure called self-registration that makes use of the inherent distribution
mechanisms of a overlay network. Using this self-registration mechanism they
assume that it might be possible to effectively regulate the number of nodes per
participant. But they also clearly state that their approach is not Sybil-proof,
but that it might be Sybil resistant. They also concluded that still several ques-
tions remain unsolved within their solution such as how long the time period
lasts in which one can safely assume the network to be dominance-free and the
also the Sybil resistance level of their improved distribution and verification
mechanisms for the self-registration is unknown.

Lesueur et al. [LMVTT08, LMT09] describe solutions to establish and main-
tain distributed certification schemes in structured overlay networks. Since their
original solution is still susceptible to the Sybil attack they proposed to cou-
ple their solution with SybilGuard [YKGF06]. Instead of using SybilGuard we
achieve the protection from sybil attacks through the reliance on the TPM and
the fact that the endorsement key certificates are unique and not detachable
from the TPM hardware. Their solution, as almost all other proposals for dis-
tributed key management, make use of threshold cryptography which is based on
secret sharing as described by Shamir [Sha79]. With threshold cryptography it
is possible to sign or cipher a message using t shares chosen among those issued
to n nodes, where each node owns one distinct share. t shares are needed to sign
or cipher a message, but t − 1 shares hold no information on the shared secret
key. Thus, an attacker must obtain t shares to be able to recover the full shared
secret key.

Jyothi and Janakiram [JD09] propose a solution that enables all honest peers
to protect themselves from Sybils with high probability in large structured over-
lay network. In their proposed Sybil defense system, they associate every peer
with another non-Sybil peer known as SyMon. A given peer’s SyMon is chosen
dynamically such that the chances of both of them being Sybils are very low.
The chosen SyMon is entrusted with the responsibility of moderating the trans-
actions involving the given peer and hence makes it almost impossible for Sybils
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to compromise the system. In contrast to our system, where each node has only
one unique identity and thus Sybils attacks are not possible, their system allows
Sybils in the system but it is built on the premises that no Sybil nodes are chosen
as SyMon.

5.4 Trusted Computing Background

Trusted Computing is a concept of computing which provides a solution to the
problem of how different computing platforms, which have no prior relation, can
establish a trust relationship. This concept has been specified by the Trusted
Computing Group (TCG). It also provides means to authenticate a comput-
ing platform’s software configuration in a distributed manner. The process of
software configuration authentication is called attestation and is performed by
measuring the configuration and mapping it to a distinct value. This mea-
sured value is signed using a unique private key which is stored and will only
be processed on a special hardware component called Trusted Platform Mod-
ule [Tru07c] (TPM). With attestation it is possible for a remote entity to verify
the software identity of a computing platform and enforce policies according to
this software configuration.

The TPM is used as hardware anchor of trust as outlined by the TCG. This
hardware anchor provides several features such as cryptographic primitives, se-
cure storage units and configuration registers similar to a smart card. But in
contrast to a smart card these features are physically bound to a specific comput-
ing platform and are enclosed in a tamper-resilient casing. The cryptographic
features include operations for key generation, hashing, random number gener-
ation, and public key cryptography. The TPM is also able to enforce policies on
the stored cryptographic material. For instance on the Endorsement Key (EK)
which provides the TPM with a unique identity.

In addition to the TPM hardware the TCG also specifies a software infras-
tructure which provides Trusted Service Provider (TSP) interfaces to access
the Trusted Computing functionality on the TPM. The software infrastructure
is called the TCG Software Stack (TSS)[Tru07b]. Within the TSS the main
functionalities such as key and key cache management, command generation
and synchronization are implemented as system service called the Trusted Core
Services (TCS). Through a specific device driver library (TDDL) the TCS can
communicate with the TPM. In order to protect the measurements taken from
the platform from tampering the TPM has also a set of specific registers called
the Platform Configuration Registers (PCRs) where they are stored. If requested
the TPM performs a operation, referred to as TPM Quote, which signs the state of
the PCR with a signing-capable key hosted by the TPM. These signing-capable
keys are called Attestation Identity Keys (AIKs). It is guaranteed that these
Attestation Identity Keys are always protected by a TCG standard compliant
TPM and that the private part is never used outside the TPM. In order to verify
that the signature made with a TPM protected AIK these keys are certified by
a Trusted Computing associated PKI.
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Every current business PC has a built-in TPM on the motherboard. But
these TPMs are not activated per default. In order to use the TPM it must be
initialized and the user must take ownership of the TPM. After the TPM has
been initialized the TPM can be used.

5.4.1 PrivacyCA

The TCG remote attestation architecture requires that a claimant sends a very
detailed description of its system state including a signature to a verifier. With
these detailed descriptions including the signature, created by using the same
key, it is possible for an arbitrary verifier to track every possible platform and
thus the issue of privacy protection must be taken into account. In addition
the detailed description can also be used to find weaknesses and mount attacks
on these systems. Thus, a process is required which makes it impossible that
a distinct platform can not be identified in the case that different independent
services are accessed. This, is an advantage over traditional public key infras-
tructure since certificates issued by common certificate authorities can be corre-
lated over service boundaries. But in the context of trusted computing it should
rather be possible for a verifier to establish that the remote platform has indeed
a standard-compliant TPM. Also the verifier must be able to establish that the
system state descriptions are signed with a key which belongs to such a platform
but the verifier must not know the long-term identity of the platform as long as
it interacts with the same identity for the duration of the service access.

Issuing AIKs

For that matter the TCG has specified the PrivacyCA service [Tru] which pro-
tects the privacy of the users or more precisely the computing platforms. The
PrivacyCA issues certificates for specific attestation identity keys. These certifi-
cates ensure that a specific AIK is owned and protected by a TPM enforcing
specific policies which are outlined by the TCG. One requirement is that the is-
sued AIK certificates have no relation to the identity of the specific TPM which
requested the AIK certificate. Thus, by issuing several AIKs for one distinct
TPM it is possible to hide the identity of the computing platform.

Since in our case we want to protect the system from identity attacks we
limit the PrivacyCA to only issue one AIK per TPM for a defined period of
time. Thus, every user can obtain one AIK from the PrivacyCA at a time. The
user can revoke the AIK by leaving the overlay network which triggers an event
in the PrivacyCA to release the binding between the AIK and the associated
EK. The node can thereafter obtain a new AIK by joining the overlay network
again. If the user does not leave the network properly (e.g.: the users computer
crashes) the user must wait until the AIK is revoked automatically after the
specified expiration date. Thus, it is guaranteed that each host can only obtain
and possess one identity in the overlay network and is not able to perform a
Sybil attack.
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Work-flow PrivacyCA

In Figure 5.1 a schematic overview of the AIK certification process using a Pri-
vacy in the context of remote attestation application is given. First the key
generation process inside of the TPM is triggered. This process creates an RSA
key pair. Thereafter, the platform performs a cryptographically secure protocol
with the PrivacyCA where the AIK public key and the platforms endorsement
key are exchanged. The PrivacyCA verifies the validity of the exchanged infor-
mation and responds with an AIK certificate if the information complies with
its policy. The response is encoded in such a ways so that only the requesting
TPM can decipher the response. The trusted platform then activates the iden-
tity associated with the AIK. Thereafter, the TPM measurements will be signed
with the activated identities corresponding AIK private key and the TPM is able
to provide the public AIK upon request from a remote attestation verifier. The
verifier is able to check if the provided signature corresponds to the public key in
the certificate and can check the validity of the certificate using the PrivacyCA.

Figure 5.1: Overview of the remote attestation process including prerequisites such
as AIK creation and certification.

Security and Privacy Policy

The PrivacyCA behavior is governed by the defined policy which usually specifies
two properties. First, who is allowed to obtain an AIK certificate and second
how much information about the certificate and the AIK request will be stored
at the PrivacyCA.
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For instance, consider a PrivacyCA which is only allowed to issue certificates
for well-known computing platforms. In such a deployment scenario the comput-
ing platforms are required to register prior to system execution. Thus, in such
an scenario it may be valid to store all the information which has been obtained
by the certificate issuing process. In a scenario where the PrivacyCA can issue
certificate to all the platforms even if they are not registered beforehand a more
sensible policy might be the better approach in order to protect the privacy of
the users. Thus, the PrivacyCA can have policies from do not log anything to
record everything depending on the use case and the choice should be left to the
operator.

5.5 Assumptions

In order to realize our solution all nodes participating in our overlay must fulfill
the following requirements.

1. Each node must be equipped with a TCG compatible TPM.

2. Each node must be able to execute TPM specific functions.

3. Each node must be able to perform cryptographic functions such as cal-
culating hash values, encrypting and decrypting blocks of binary data,
generating random numbers and creating and verifying digital signatures.

4. In case of the PrivacyCA solution each node must posses the public key
certificate of the PrivacyCA.

In addition, each node must also be able to communicate with other nodes
using a reliable network protocol. We do not place restrictions on the amount of
memory available, the processor power, or the hardware components the nodes
are equipped with, but they must at least be sufficient to fulfill the previous
requirements.

5.6 Trusted Identity Management

In the following sections we outline the TCG specified components and proce-
dures that facilitate the realization of a trusted identity management service for
overlay networks. We will discuss specific keys, certificates and protocols and
their intended role. In this discussion, we only consider the elements relevant to
the identity creation and management based either solely on the endorsement
key or on a PrivacyCA solution. The first solution is the simpler and more ele-
gant one, but since this solution may raise some privacy concerns we also outline
an privacy-preserving alternative which is based on the PrivacyCA concept (see
section 5.4.1).

Security credentials in general may be represented in different formats. The
credential standard document of the TCG [Tru07a] describes credentials in the
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concrete instantiation of either X.509 certificates [HPFS02] or attribute certifi-
cates [FH02]. Additionally, some TPM functions produce binary blocks of data,
the internal structures of which do not conform to any standard.

First, we provide some background information about the credentials and
keying material which are contained in the TPM and are required for both our
solutions. In the sections thereafter we describe the two solutions.

5.6.1 Endorsement Key and EK Certificate

Every TPM hosts a unique Endorsement Key (EK). The asymmetric key pair
is stored in non-volatile memory inside the TPM. It is impossible to retrieve
the private part of the key. A corresponding TPM Endorsement certificate
contains the public part of the key pair. This certificate represents an assertion
that a certain TPM conforms with the TCG specifications and that the private
Endorsement Key is indeed protected by the TPM. The Endorsement certificate
is signed by the entity which created and inserted the EK.

As the Endorsement Key uniquely identifies a TPM and hence a specific
platform, the privacy of the platform user or users might be at risk if the EK
is employed for remote attestation operations. As a consequence, the TCG
rigorously restricted the set of operations that can be performed with the EK.
For instance it is used during the taking of ownership of the TPM by the user.
Notably it cannot be used to sign PCR values or arbitrary data. This policy is
enforced by the TPM.

5.6.2 Platform Certificate

A system manufacturer vouches for the components of a platform (except the
TPM) with a Platform Endorsement (PE) credential. It represents an asser-
tion that the specific platform incorporates a properly certified TPM and the
necessary support components. A PE states that the platform architecture con-
forms to TCG specifications. A reference to the specific TPM on the platform
is included.

5.7 Endorsement Key Solution

For this specific solution we make use of the TPM MakeIdentity and TPM ActivateIdentity
commands. These commands are usually used for creating and activating the
association between a platform identity and an AIK. More generally these com-
mands have the following functions which can be used to establish a distributed
identity management and authentication solution.

1. TPM ActivateIdentity activates the associated TPM identity which has
been created through TPM MakeIdentity and is specified through the
AIK’s public key hash as input parameter.
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2. TPM ActivateIdentity verifies the association between the AIK private
key and its identity.

3. TPM ActivateIdentity decrypts the input data blob and extracts the ses-
sion key and verifies the connection between the public and private en-
dorsement keys used.

Thus the TPM ActivateIdentity command allows us to send arbitrary data,
encrypted with the public key of the TPM’s endorsement key, to the TPM
which then decrypts the data and returns it to the user. This function only
works when the public key used to encrypt the data corresponds to the TPM’s
private endorsement key. This enables the same functionality as available with a
traditional PKI but additionally guarantees the binding of a specific public AIK
certificate and key to a distinct computing platform.

In order to use TPM ActivateIdentity we first need to create a normal RSA
Attestation Identity Key (AIK) pair on the TPM. This AIK is created using the
TPM MakeIdentity command. Since we do not make use of the AIK as envisaged
but rather require it only for enabling the TPM ActivateIdentity command we
omit the details about the AIK and the AIK certification process for now. The
details are explained in Section 5.8 where the AIK is used as intended. Once,
an AIK has been created the TPM ActivateIdentity command can be used an
unlimited amount of times.

Node A 

(not joined) Node B (joined)

Join Network Request (EK, AIK)

Join Network Response (EK, AIK)

Exchange Certificates and Keys (EK, AIK)

Figure 5.2: Authentication process using Endorsement Key solution.

In Figure 5.2 an overview of the authentication process using the endorsement
key is outlined. The basic requirements are that both nodes have each others
endorsement key certificate in order to verify the identity of each other. Since
the TPM is involved each time the endorsement key is used to encrypt or decrypt
data and each node can only have one endorsement key we can guarantee that
each node can only have one representation in the overlay network and that it
is the one he has provided.
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5.7.1 EK-based Authentication Protocol

Every TPM must be equipped with a corresponding TPM EK certificate, as
outlined in the TCG specification. This certificate contains the public part
of the EK pair, which serves as TPM identity. The private part, called the
private Endorsement Key, is stored permanently inside the TPM and can not
be retrieved once inserted. The certificate is signed by the TPM manufacturer
and vows that the specific TPM conforms with the required specifications and
the private Endorsement Key is kept safe by a TPM. The certificate of the TPM
manufacturer, which is required to verify the authenticity of the EK certificate,
can be downloaded from the manufacturer’s homepage. However, to this date
the only manufacturer to include a TPM EK certificate on chip is Infineon.

If a TPM is shipped without a manufacturer issued certificate, late construc-
tion of an EK certificate may be applicable in selected scenarios, e.g. a limited
deployment in a department-wide setup. Since this is not a suitable approach
for open Internet-scale overlays we assume that all nodes participating in the
overlay network have an Infineon TPM. Other nodes can not take part in our
system because self-created EK certificates can not be verified without a reliable
registration process.

First we provide the basic exchange protocol description which we are using
in the context of TPM backed credentials and keys. The sequence in Figure
5.3 shows the initial process of exchanging the EK public key certificates and
thereafter the process of exchanging messages in an authenticated and confiden-
tial manner. In the following description of the EK-based exchange protocol we
denote one party as the initiator (I) and the second party as the verifier (V).
The initiator is the node which wants to be authenticated and join the overlay.
The verifier is a node already inside the overlay.

1. [I → V ] : EKCertI

2. [V → I] : EKCertV

3. [I] : Message = (. . . , tI , I)

4. [I] : Message∗ = ENCSymI
(Message)

5. [I] : SymI∗ = ENCEKPV
(SymI)

6. [I → V ] : Message∗, SIGEKPrI
(Message∗), SymI∗, SIGEKPrI

(SymI∗)

Figure 5.3: Basic security related exchange protocol

First the initiator sends the public key certificate of its endorsement key
EKCertI to the verifier. The verifier responds with its own public endorsement
key certificate EKCertV . Thereafter, the initiator prepares the message which is
sent to the verifier containing the relevant information and encrypts the message
using a symmetric key SymI . The initiator also encrypts the SymI with the
public endorsement key of the verifier EKPV . The initiator calculates a sig-
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nature using its private endorsement key EKPrI for the encrypted message as
well as the encrypted symmetric key. At last the initiator sends the encrypted
message, signature over the encrypted message, encrypted symmetric key and
the signature over the encrypted symmetric key to the verifier. Each message
which is exchanged using this protocol contains at least the identity of the send-
ing party and a current timestamp in order to account for replay attacks. Using
this protocol the verifier can be sure that the confidentiality of the transmitted
content is protected as well as that the content has been created by the initiator.
Now that we have defined and outlined the basic authentication and confiden-
tial exchange protocol we can provide the description for the authentication and
join process in context of the overlay using EKs. In the following description of
the EK-based identification (authentication) protocol we denote the joining or
claiming entity as initiator (I) and the joined or verifying entity as verifier (V).

1. [I] : AuthentRequest = (I, V,EKCertI , rI , tI)

2. [I → V ] : AuthentRequestS∗, SymSI∗
3. [V ] : AuthentResponse = (V, I, tV , rI , rV )

4. [V → I] : AuthentResponseS∗, SymSV ∗
5. [I] : AuthorizRequest = (I, V, rV , tI)

6. [I → V ] : AuthorizRequestS∗
7. [V ] : AuthorizResponse = (V, I, tV , result)

8. [V → I] : AuthorizResponseS∗

Figure 5.4: EK-based join/authentication protocol

In Figure 5.4 the steps of the join/authentication protocol, which are based
on the Needham-Schroeder-Lowe protocol [NS78, Low96], are outlined. The
outlined protocol is somewhat modified to the original version, since in our case
larger amounts of data are transmitted. Thus, we make use of symmetric cryp-
tography to increase the performance of the overall system. In this version the
steps outlined in the basic exchange protocol 5.3 are omitted but are implicitly
marked through the S∗ at the ending of the request or response. For instance,
AuthentRequest is the created message and AuthentRequestS∗ indicates that
the authentication request is encrypted and signed. SymSI∗ indicates that the
symmetric key used to encrypt the authentication request is also signed and
encrypted as outlined in the basic exchange protocol.

The initiator first creates an authentication request which contains its own
identity. The identity of the verifier, its own public key certificate of the endorse-
ment key, a fresh secure random number and a timestamp. The authentication
request is encrypted with a newly created symmetric key using AES [DR02].
The symmetric key itself is encrypted with the public endorsement key of the
verifier using RSA [RSA78]. The encrypted and signed authentication request
and symmetric key are thereafter sent to the verifier. The verifier uses the public
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key of the initiator to verify the authenticity and integrity of the authentication
request and the symmetric key. If the signature is valid and the timestamp tI is
fresh enough the request is accepted. The private endorsement key is then used
to decrypt the symmetric key and the symmetric key is used to decrypt the au-
thentication request. Now the verifier creates an authentication response which
contains in addition to the identities and the initiator created secure random
number also a timestamp and another secure random number generated by the
verifier. This authentication response is treated the same way as the request and
then sent to the initiator. The initiator verifies the security of the response also
in the same manner as the verifier. In addition it checks if the secure random
number rI is the same as the one originally sent and the timestamp tV is fresh
enough. The initiator now creates an authorization request using the received
secure random number rV and a new timestamp tI in addition to the identifiers.
The request is again encrypted and signed and sent to the verifier. The verifier
checks validity of the request and the correctness of the secure random number
rV . It then creates an authorization response containing a new timestamp and
the result of the authorization process. After this step the identities of both the
initiator and verifier are successfully verified and the both nodes are mutually
authenticated.

If all these checks succeed the verifier can be assured that the initiator pos-
sesses the private endorsement key which matches the specified identity and the
that none of the common attacks such as man-in-the-middle or replay have been
applied. In addition to that the verifier can also be sure that no identity attacks
such as Sybil or Eclipse have been performed. Since the used identity has only
a one to one relation to the keys used for authentication it can be to assure that
only legitimate nodes with only one identity exist in an overlay network if this
solution is used for authentication and joining. The only thing which must be
considered is that each node gives away its public endorsement key certificate.
Thus, it is possible to track user behavior if the endorsement key certificate is
also used by other services in a similar manner. For instance, if other services
require nodes to provide them with the certificate they would be traceable and
their privacy maybe compromised. How important this issue is can currently
not be verified since no real applications of trusted computing are available.
But since the endorsement keys are long-term keys this issue could be exploited.
Therefore, we also provide a solution that solves this problem by incorporat-
ing the PrivacyCA concept, which was originally intended by the TCG for that
matter.

5.8 Privacy CA Solution

As an alternative to the unique and privacy sensitive EK, the TCG introduced
Attestation Identity Keys (AIKs) and the associated AIK certificates. AIK cer-
tificates do not contain any information that links the certificates to the specific
platform hosting the AIKs. The AIK certificates assure that the identity keys
are indeed TPM hosted. Thus, using this solution would enable us to provide
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trusted identities without compromising the privacy. Unfortunately, the original
intention of the PrivacyCA was to provide an unrestricted number of AIKs for
a particular endorsement certificate or TPM. Thus, it would again be possible
to mount identity attacks such as the Sybil or Eclipse attack.

Therefore, in our PrivacyCA solution we must ensure that one particular
TPM or endorsement key certificate is issued one AIK key-pair at a time. This
can easily be solved at the organizational level by modifying the original Pri-
vacyCA configuration. Since in our case we want to protect the system from
identity attacks we limit the PrivacyCA to only issue one AIK per TPM for a
defined period of time. Thus, every platform can obtain one AIK from the Pri-
vacyCA at a time. The user can revoke the AIK by leaving the overlay network
and can thereafter obtain a new AIK by joining the overlay network again. If
the user does not leave the network properly (e.g.: the user’s computer crashes)
the user must wait until the AIK is revoked automatically due to specified expi-
ration date. Thus, it is guaranteed that each host can only obtain and possess
one identity in the overlay network and is not able to perform a sybil attack.

Balfe et al. [BLP05] provided a similar concept using DAA instead of the
PrivacyCA. In their work the trusted DAA service is realized as a traditional
trusted third party and is located outside of the overlay network. Under normal
circumstances this assumption is adequate since almost all solutions in the con-
text of PKI rely on the same assumptions. Thus, we think it is appropriate to
make use of the PrivacyCA concept for providing trusted identities. However,
for a more general solution the PrivacyCA should also be used in a distributed
manner in order to prevent a single point of failure. How to make a certificate
authority distributed is out of scope for this thesis but several solutions have
already been proposed such as [AD01, LZPL05, ADH05, CCF08, LMT09].

In our solution the PrivacyCA is an integral part of the overlay network as
well as the authentication process. Each node must obtain an AIK certificate
from the PrivacyCA and must also possess the PrivacyCA public key in order
to be able to participate in the required security protocols. This could also
be achieved if each peer obtains such a certificate prior to joining the overlay
network. But since we want to achieve an open and dynamic system which is also
reliable it is necessary that the PrivacyCA is also available during the overlay
network runtime so that new nodes can also join at any time.

In figure 5.5 an overview of the authentication process using the PrivacyCA
is given. In contrast to the endorsement key solution, the joining node must
first obtain an AIK certificate from the PrivacyCA with which it then authen-
ticates itself inside the network. The PrivacyCA ensures that only one AIK
certificate is issued per endorsement key at a given time period. The authen-
tication process with the AIK facilitates a normal authentication process using
Needham-Schroeder-Lowe. The nodes inside the network must only verify that
the AIK certificate is still valid and if the issuer is the trusted PrivacyCA.
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Figure 5.5: Authentication process using PrivacyCA solution.

5.8.1 Distributed Privacy CA

An overlay may be formed on-the-fly as open system for a specific purpose.
Thus, it is reasonable to assume that some initial nodes bootstrap an overlay
by admitting outside nodes according to a predetermined policy and by issuing
some cryptographic credentials to them. For example, a policy may specify the
criteria for admitting outside nodes such as the possession of a valid endorsement
key certificate and whether admitted nodes are allowed to admit other outside
nodes themselves.

It is important to note that the outside nodes which are allowed to join the
network may not be known in advance. In our solution it is possible for all nodes
to join as long as they satisfy the policy

In order to realize the before mentioned open system and to give the joined
nodes the possibility to protect their privacy despite using the endorsement
key and attestation identity key certificates for the registration and authenti-
cation process we make use of a distribute PrivacyCA concept. Lesueur et al.
[LMVTT08, LMT09] describe a solution to establish and maintain distributed
certification schemes in structured overlay networks as outline in Section 5.3.
Applying such a solution to the PrivacyCA concept would allow for issuance,
management and revocation of anonymous credentials within the overlay net-
work in a distributed manner. Using a distributed PrivacyCA solves the problem
of privacy by issuing anonymous credentials for each node possessing an endorse-
ment key certificate and the single point of failure issue is solved by partitioning
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the PrivacyCA functionality to a distinct amount of nodes. The distributed
PrivacyCA itself holds a record of the mappings between issued anonymous cre-
dentials and endorsement key certificates in order to only allow one anonymous
credential per endorsement key certificate. If a node leaves the overlay the as-
sociated mapping is erased and thus if the node wants to join again obtains
new anonymous credentials. If a node does not perform the leave procedure
for any reason the mapping associated with its endorsement key certificate is
erased after a specific timeout. This solution solves the privacy problem of using
the endorsement key certificate for authentication with the assumption that ini-
tial nodes exist which are trustworthy and perform the distributed PrivacyCA
functionality.

5.8.2 AIK protocol

Each client platform with a TPM must perform a cryptographically secure proto-
col with the PrivacyCA to obtain an AIK certificate. In the TCG specifications
the commandos and interfaces for the TPM as well as the PrivacyCA actions
are described. However, no particular transport protocol for the exchange of the
information between the client’s platform TPM and the PrivacyCA is specified.
Thus, we subsequently outline the steps required to obtain a AIK certificate
from the PrivacyCA:1

1. On the client platform the Tspi TPM CollateIdentityRequest command
is executed by the TSS which triggers the creation of a new AIK.

2. Through the TSS the TPM MakeIdentity function is invoked in order to
create a new attestation identity key-pair (AIK). The public AIK signed
with the private AIK is returned by the TPM to the TSS.

3. The TSS thereafter creates the request which is sent to the PrivacyCA. The
request contains the signed public AIK and the platform’s endorsement
certificates and is encrypted with the PrivacyCA’s public key.

4. The PrivacyCA decrypts the request using it private key and verifies the
validity of the content. The PrivacyCA also checks that no AIK certificate
has been issued to the client or if a prior AIK certificate exists its validity
has expired.

5. After the PrivacyCA has verified the request successfully it issues an AIK
certificate. This AIK certificate is encrypted with a symmetric key. The
symmetric key itself is also encrypted with the clients TPM public EK.
Thus, the response can only be decrypted by the client TPM.

6. At the client the Tspi TPM ActivateIdentity TSS command is executed
using the response from the PrivacyCA. Thus, the clients TPM is called

1Note that some details are omitted for clarity of presentation. For a complete description
please refer to the TCG specifications [Tru], [Tru07b] and [Tru07c].
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to decrypt the response. If the associated AIK is available the symmetric
key is returned.

7. The symmetric key can then be use to decrypt the AIK certificate con-
tained in the response of the PrivacyCA.

The activated AIK consists of two parts. The identity keys stored in the TPM
and an certificated issued by the PrivacyCA which is associated with them. The
AIK certificate proves that the AIK key pair belongs to an authentic TPM. The
AIK certificate contains information the endorsement key and platform endorse-
ment (PE) certificates. However, the contained information does not to allow
to track the client’s platform or to identify the specific hardware configuration.
An AIK certificate can additionally include an arbitrary string which is chosen
by the client. This string can be used for distinction of the certificate among a
set of owned certificates. This maybe helpful for instance if the activated AIK
is associated with a specific task.

5.9 Implementation and Evaluation

5.9.1 Trusted Authentication using EK solution

In this authentication mode we follow the protocol described in Section 5.7.1.
The protocol starts with an initial exchange of keys, the AIK public key and the
Endorsement public key. Having different peers with their TPM enabled, the
authentication process will make encryptions and decryptions with each TPM.
Each machine must be able to encrypt the data so that only the target machine
is able to decrypt this information. This is done with the exchange of the AIK
public keys and the endorsement public key. Thus, we are able to encrypt data
using the public key of the other TPM.

The implementation details of the trusted authentication protocol using the
EK solution are illustrated in Figure 5.6 and outlined below.

1. Peer 1 invokes TMP CollateIdentityRequest2 to generate a key pair called
Attestation Identity Key (AIK). Peer 1 thereafter sends the Endorse-
ment Public Key (EKPUB1) and the Attestation Public Identity Key
(AIKPUB1) to Peer 2.

2. Peer 2 invokes TMP CollateIdentityRequest2 to generate a key pair called
Attestation Identity Key (AIK). Peer 2 thereafter sends the Endorse-
ment Public Key (EKPUB2) and the Attestation Public Identity Key
(AIKPUB2) to Peer 1.

3. Peer 1 generates a random number (R1) and a symmetric key. The sym-
metric key with a hash of AIKPUB1 and AIKPUB2 is encrypted with
EKPUB2, obtained in the initial phase (2). This structure is called asym-
metric blob. R1, among other data as outline in Section 5.7.1, is encrypted
with the symmetric key creating a symmetric blob. The resulting packet
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Figure 5.6: Trusted Authentication Protocol without PrivacyCA.

formed by the concatenation of symmetric and asymmetric blobs assures
that the request can only be decrypted by the intended recipient TPM, in
this case Peer 2.

4. Peer 2 invokes receiveResponse2 to decrypt the data by calling the
TMP ActivateIdentity2 function. This way we obtain R1. Peer 2 gen-
erates a random number R2 and encrypts R1 and R2 following the same
process as peer 1.

5. Peer 1 receives R1 and R2 decrypting in the same way as peer 2 did.
Then it checks that the received R1 corresponds with the R1 that was sent
before. Finally, peer 1 sends R2 without any encryption to peer 2, who
will check if R2 matches.

After this protocol is finished mutual authentication is guaranteed and the
already joined peer knows about the identity of the joining peer and has verified
if it possesses a TPM and the AIK keys are protected by it. Thus, the joining
peer has an activated AIK key pair which can be used further on. Depending on
the applications which are based on such a solution several options for key distri-
bution are now available. For instance, if an overlay network which implements
our security concept uses this solution the verifier peer (in the examples case
peer 2) could provide peer 1 with the current session key, with specific pair-wise
shared keys or issue an certificate for either AIK or any other public-private key
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pair. Thus, the newly joined peer would possess keys which are authorized inside
the overlay network. On what basis or policy peers are allowed to join such a
network is not the scope of this thesis. For instance, it would be possible that
all peers which possess an authentic TPM and EK may join. However, such an
approach would not inherently be secure against insider attacks but since the
EK is used it is possible to detect misuse using specific detection mechanisms.

5.9.2 Trusted Authentication using Privacy CA solution

We have implemented a TPMmanager that handles communication with the TPM
hardware. We needed to modify several libraries from the trusted java framework
2 in order to be used within our solution, these changes will be detailed further
on.

The process starts when a user wants to connect to a network, this user will
be called attestant. This attestant has to obtain an AIK certificate that does
not contain any information that could link to the specific platform hosting the
AIK from the PrivacyCA. To avoid the creation of possible identity attacks, a
PrivacyCA has to check that a certain TPM or endorsement key certificate is
only issued one AIK certificate. The flow that we follow is based on the AIK
protocol described in Section 5.8.2. The implementation details of the trusted
authentication protocol using the EK solution are illustrated in Figure 5.7 and
outlined below.

1. The client prepares a request to send to the PrivacyCA :

� In the first step the client calls the method createRequest that in-
vokes the Tspi TPM CollateIdentityRequest TSS function to initi-
ate a new AIK creation.

� The TSS invokes the TPM MakeIdentity TPM function to create the
new attestation identity key (AIK) that is a RSA key pair.

� The TPM returns a structure containing the public AIK, signed with
the private AIK key. Then, the TSS generates a request where the
data is stored in an identityProof structure containing the signed blob
returned by the TPM, the first random number R1 and the EK and
PE certificates of the platform.

� This data is encrypted with the public key of the PrivacyCA.

� The client sends to the PrivacyCA this request.

2. The PrivacyCA prepares a response to send to the client :

� The PrivacyCA calls the method processRequest where it decrypts
the data, and then it validates its content and the certificates con-
tained in the request. The most important checks are that for the
specific EK no AIK certificate has been issued or if the issued AIK

2Trusted Computing for the Java Platform http://trustedjava.sourceforge.net/

http://trustedjava.sourceforge.net/
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Figure 5.7: Trusted Authentication Protocol with PrivacyCA.

certificate has expired that no AIK certificate has been issued for the
contained AIK. All other checks are similar to the ones a ordinary
certificate authority performs.

� On successful validation the PrivacyCA issues an AIK certificate, en-
crypted with a symmetric key.

� This symmetric blob also contains the random number R1 that was
received before and a new random number generated by the Priva-
cyCA (R2).

� The symmetric key along with a hash of the public AIK is encrypted
with the public key of the EK of the TPM, obtained from the EK
certificate of the request. This structure is called asymmetric blob.

� The result package formed by the symmetric and asymmetric blobs
assure that the response can only be decrypted by the intended re-
cipient TPM.

� After building the response, it is sent back to the client.

3. The client checks the received data from the PrivacyCA:

� Then, the client calls the receiveResponse method that invokes the
Tspi TPM ActivateIdentity TSS function where it decrypts the re-
sponse.
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� The TSS subsequently requests the platforms TPM to decrypt the
response package with the private part of the EK. If the referenced
AIK is available on the TPM, the symmetric key is returned and it
is used to decrypt the symmetric blob contained in the response.

� The client checks if the random number received from the PrivacyCA
is the same number that was generated. Finally, the client sends R2
to the PrivacyCA, in this case without encryption.

5.10 TPM Time Measures

The implemented application accesses the TPM hardware of the machine mul-
tiple times to perform different operations such as credential creation, data
encryption and decryption. In this section we analyze the two authentica-
tion modes and we measure the time required for the authentication process.
How long it takes to execute the main operations of the TPM and the Priva-
cyCA, such as encrypt and decrypt as well as the whole authentication pro-
cess itself. These results will outline the possible benefits and disadvantages
of the two modes. All the tests have been made on HP running Linux and
equipped with Infineon TPMs. The software has been developed for and is inte-
grated in the Secure P2P framework SePP which is available from Sourceforge
http://sourceforge.net/projects/securep2p/.

5.10.1 Trusted Authentication using EK solution

The following section shows the resulting tests we performed for the Trusted
Authentication Process using the EK solution. We have made several consecutive
tests to measure how long the different parts of execution take. Subsequently
we outline the different parts for this solution.

initial phase This phase calls the createRequest2 method, which creates the
AIK credential using the TPM. In this phase we also obtain the Endorse-
ment public key of the TPM. When this is done, the AIK public key and
the Endorsement public key is exchanged between the peers.

encrypt Generates the random number R1, and prepares the encryption with
AIK public key and the Endorsement public key of the other TPM. This
way the intended TPM will be able to decrypt the data.

receiveResponse2 Decrypts with its TPM the encryption blob received from
the other machine. This encryption blob consists in a symmetric and
asymmetric blob structure.

The results of this process is shown in the following table, the last row shows
the total time of execution that the process requires. All the measurements are in
seconds and milliseconds. The first row shows the mean time of all the performed

http://sourceforge.net/projects/securep2p/
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measurements. The second and third row show the maximum negative and
positive deviation from the mean measurements.

Table 5.1: Test Time Measures for TAP without PCA

Test Mean Max - deviation Max + deviation
[ss:SSS] [ss:SSS] [ss:SSS]

initial phase 03:385 00:045 00:035
encrypt 00:170 00:005 00:010
receiveResponse2 02:420 00:030 00:040
Total 05:990 00:050 00:050

The initial phase takes the most time and has also relative high deviation
from its mean time. The most time is consumed by the TPM as it creates the
AIK credentials. The encryption of the request itself has the least influence on
the total time. The receiveResponse2 takes again relative long since it also
has to verify the received request apart from decrypting it.

5.10.2 Trusted Authentication using PrivacyCA solution

The following section shows the resulting tests we performed for the Trusted
Authentication Process using the PrivacyCA solution. We have made several
consecutive tests to measure how long the different parts of execution take.
Subsequently we outline the different parts for this solution.

createRequest Implements the creation of AIK credentials and builds an en-
crypted request using the PrivacyCa public key.

doPrivacyCA Decrypts the request received from the client, extracts the first
random number (R1) and also the certificates of the client. After this is
done, it generates a new random number (R2), and then the PrivayCA
creates a response that is composed of two parts. The symmetric part,
that contains a PrivacyCA credential, R1 and R2; and the asymmetric
part, that contains among other data the symmetric key, which is used
to decrypt the symmetric part. The asymmetric part is encrypted with
the endorsement public key of the client and using the AIK public key to
assure that only the intended client will be able to decrypt the response.

receiveResponse Receives the response from the PCA and decrypts it using the
private key that is stored inside the TPM.

The results of this process is shown in the following table, the last row shows
the total time of execution that the process takes.
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Test Mean Max - deviation Max + deviation
[ss:SSS] [ss:SSS] [ss:SSS]

createRequest 03:50 00:04 00:04
doPrivacyCA 20:10 01:30 01:10
receiveResponse 02:40 00:06 00:10
Total 25:90 01:30 01:20

Table 5.2: Test Time Measures for TAP with PCA

In the PrivacyCA solution the most time is consumed in preparing the keys
and certificates for encryption to allow a correct decryption in the TPM. Mostly
it is because the PrivacyCA has to create a new AIK certificate based on the
AIK credentials received from the TPM in order to build a well formed response.

5.11 Security and Privacy Analysis

The security of our solution depends first on the integrity and tamper-resistance
of the TPM. Although the TPM has been designed and manufactured with
these specific requirements in mind some initial attacks on the integrity of the
data stored on the TPM or transmitted during the communication have been
outlined such as [KDP05, Kau07, Gra09]. However, none of these attacks enables
the disclosure of the private endorsement key, which is the integral part of our
solution.

On the other hand our solution depends on the security of the AIK and the
authentication protocol used. The AIK protocol itself uses well-known crypto-
graphic procedures for transmitting data in a confidential and integrity ensuring
manner. Thus, none of the sensitive information used in the AIK protocol is re-
vealed. The only requirement is that the joining nodes and the PrivacyCA nodes
posses the each others public key certificates. If not they have to exchange them
in the beginning. Thus, if the EK certificate is not encrypted in this process,
which can be simply achieved by using the PrivacyCA public key, it would be
possible for an eavesdropper to learn the EK certificate of arbitrary nodes. The
authentication protocol of the endorsement key solution itself is based on the
Needham-Schroeder-Lowe [NS78, Low96] protocol which is a standard mutual
authentication protocol commonly used. The security of this protocol has been
verified by several independent sources and it is also the most used authentica-
tion protocol in general.

The most important security issue, which was the intent of the whole work,
the provision of unique identities which are not subject to Sybil attacks is ensured
through the reliance on the uniqueness of the endorsement keys and the simple
registration process in the overlay. Since the manufacturer of the TPM provides
the endorsement keys for each platform and signs them, their authenticity can be
verified by checking the signature. The possession of the corresponding private
key as well as the retention of the keys in the TPM is ensured by the used trusted
computing functions and specifications. Thus, our solution can guarantee that
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a node who has joined does possess a unique identity which is bound to the
computing platform it is using and that the same computing platform can not
create multiple identities as well as denying its identity.

5.12 Conclusion

In this chapter we showed how mechanisms and information available through
Trusted Computing and in particular the Trusted Platform Module can be used
to enable the provision of unique trustworthy identities which are associated
with one distinct computing platform. Previous approaches relied either on
the creation of identifiers through hashing some arbitrary information such as
IP addresses, network interface identifiers and other built-in identifiers or the
assumption that each participant has been supplied with asymmetric crypto-
graphic material in advance. These approaches can not guarantee a tamper-proof
binding between the computing platform and the identifier since for instance all
existing network identifiers can change or spoofed and public-private keys can
be generated in arbitrary numbers. Even if a trusted third party would be used
which would enable one person only to obtain one legitimate public-private key-
pair this solution would be on the one hand too static for the requirements of
dynamic overlay networks, on the other hand it would impose an unnecessary
restriction on the association between identifiers and nodes since one physical
person would only be able to participate with one platform in the overlay. It
is much more advantageous to bind computing platforms to identifiers because
this allows a separate level for user bindings in the system as it is possible for
instance within Skype and other overlay networks.

As the measurements show the two approaches have a very different runtime.
One of the main reasons that the PrivacyCA solution is that much less effective
is because we used the original implementation of it, as provided from the IAIK,
and only modified the parts required for our protocol. Thus, maybe if some of
the functions which we do not require are omitted the performance would be
better. The most time was consumed in the PrivacyCA solution by the key
management mechanisms. This could be a good place to start optimizing this
solution.

In case privacy is required the only solution which is workable is the one
which uses the PrivacCA concept. But if simple deployment and performance
is more of concern, for instance in a closed system as within a company, the
best solution is to perform the authentication process using the endorsement
key solution since it is 5 times faster.



6
Secure Routing

Whenever a theory appears to
you as the only possible one, take
this as a sign that you have
neither understood the theory nor
the problem which it was
intended to solve

Sir Karl Raimund Popper

In the previous chapter we have provided a solution for the first essential part
for establishing a secure overlay network, namely the provision and verification
of unique identifiers. Having such identifiers enables us to provide solutions for
the next essential part which is secure route establishment and maintenance. In
this chapter we will now focus on the aspect of routing and especially on secure
routing algorithms for unstructured overlays. We first will evaluate what kind
of routing algorithm is suitable for dynamic overlay networks. Then we will
verify the applicability of the most prominent secure routing algorithm to our
environment. We will discuss the advantages and shortcomings of this routing
protocols and present our own solution to the this problem. In the end we
evaluate and present the performance of our secure routing protocol and discuss
our solution.

6.1 Introduction

To be able to apply a security concept and implement secure unstructured over-
lays it is necessary to first identify and define the constraints for the intended
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overlay network. Because these assumptions and constraints greatly influence
the requirements for the security concept and the secure routing algorithms it-
self. In general, overlays can be described in terms of node duties and interaction
rules. We provide the characteristics of overlays as we envision them. For the
work described in this chapter we define an overlay system and the participating
nodes in the following way, which is only one of many possible ones.

� No single online entity exists controlling the execution of the system.

� All nodes are only governed by the overlay networking protocols and mech-
anisms.

� The system modifies itself to adapt to changes in the composition of the
system.

� The system reacts on communication failures and node faults.

Also specific assumption in relation to the physical capabilities and charac-
teristics of the network and the nodes must be specified for a comprehensive
solution. We assume a very heterogeneous system in terms of node resources
and network technology. Thus, we do not place any restrictions on the nodes
in terms of available computing power, memory or energy capacity. Meaning
that a node can either be a powerful server but also a constrained embedded
device. Nodes can communicate using any available network or communication
interface which is able to transport IP packets. The nodes can be connected via
fixed wired or wireless networks or use mobile ad-hoc networks to communicate.
Nodes are not required to be at fixed locations or always powered on.

Thus, we end up with a dynamic and heterogeneous system. It is necessary
to take that into account in the design of any routing protocol able to function
in such an environment. We have studied various routing protocols which are
used in similar configurations. We have investigated protocols such as DSR,
DSDV, AODV, OLSR, TORA and ZRP. Protocols like DSR, DSDV and AODV
[PB94, Joh94, JM96, PC97, PBR99] have been developed for mobile ad-hoc
networks and were studied intensively. We have come to the conclusion that the
dynamic source routing protocol [JM96] is the best choice for the basis of our
secure routing protocol. The complete path from the source to the destination
is transmitted in each packet. Thus, the route can be verified at each node on
the route. For a more elaborate discussion on routing protocols see Section 6.12.

6.2 Security Routing Concept

The design and implementation of the protocols used in our secure overlay solu-
tion, not only the routing protocols, use a simple but efficient security concept
as their foundation. This security concept has been designed with heterogeneous
system environments in mind. Another aspect in the design of the security con-
cept was configurability, giving each node the freedom to select its desired level
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of security with respect to its capabilities. For more information on the security
concept see Chapter 4.

In order to realize the security concept we have deducted some necessary
assumptions. These assumptions are made in order to achieve security in overlays
which would otherwise not be possible. Unfortunately, some of the liberties
which are usually found in insecure overlays have therefore been restricted due
to the lack of suitable alternatives. The limitations are related to the distribution
of credentials and the verification of authenticity.

� We require each node to possess suitable credentials. Credentials in our
case can either be some kind of shared secrets, symmetric or public/private
keys.

� We require that each node has a unique verifiable identity. Meaning that it
must be ensured that no peer with the same identity exists in the system.
In systems with more sophisticated security requirements it may also be
required that each identity is undeniably linked with the authentication
and secret information. This is a very important requirement as outlined
in [DFM00, Dou02, SM02, Wal02].

� In order to achieve the previous requirements each node must have the
capability to store crucial information like the credentials and other cryp-
tographic material in a secure manner. Such a protected storage can be
as simple as a software keystore or more preferably a smartcard or the
like [RKS02, vO03]. There are also some new concepts which try to not
only bind such a protected storage to a user using a PIN or password
but also to a specific machine or system state using trusted computing
mechanisms [HTK10].

For a specific overlay application, the selection of security levels can be done
on several levels (globally, group-wise, or peer-wise). As secure routing is a
basic service underlying the whole overlay system, the routing security level is a
global decision. Therefore, the admission security level and data security level
for routing must be set globally. Group security levels are set group-wise. Most
of the group security levels are decided by the group creator. This includes the
admission security level and data security level for a group. Also the decision
for a session key protection level of a group is done by the group creator. For a
session key protection level unequal to zero, each peer can feature individually
level one or two, as this involves only local differences of the implementation
of the cryptographic primitives. The decision should be based on the degree of
exposure to side-channel attacks.

6.3 Routing Security

First we have examined different unsecured routing protocols and we came to the
conclusion that Dynamic Source Routing (DSR) is the best fit for our purposes



64 Chapter 6. Secure Routing

since it has low overhead, is ad-hoc in nature and doesn’t require permanent com-
munication between nodes. Thereafter, we investigated different secure variants
of DSR which have already been proposed. The most famous secure incarnation
of DSR is Ariadne [HPJ02, HPJ05]. Ariadne incorporates most of the other
secure versions of DSR [JLR04, KGSW05] into its framework. It also allows for
an additional source for asymmetric cryptographic security through the use of
broadcast authentication based on delayed disclosure of keys. In the following
sections we outline the fundamental features of Ariadne. We mostly outline
Ariadne used in combination with the broadcast authentication protocol called
TESLA [PCTS02], since it is substantially different to the more common vari-
ants using either pair-wise shared secrets or public and private keys. Ariadne is
not intended to be used as overlay routing protocol but it is a good choice for
secure ad-hoc routing, which has several similarities with overlay routing. We
give a short introduction into DSR on which Ariadne is based.

6.3.1 Security Threats

In general security threats can be divided into outsider vs. insider attacks.
Outsider attacks are performed by unauthorized users or nodes which do not
have access to network. Thus, they have to rely on methods such as fabrication
and interception in regard to the security attacks outlined by [Sta99]. Insider
attacks are performed by legitimate users of the network which are authorized to
access relevant information and possess appropriate credentials. For these kind
of attacks all attack methods such as interruption, interception, modification and
fabrication are possible. In regard to routing security in case a source routing
algorithm is used, we can outline the following outsider attacks:

� Denial of service - is an attack where one or more malicious nodes try to
block access to a specific service through sending so many service requests
that the service can not handle them all.

� Man-in-the-middle attack - is an attack where a node tries to relay re-
quests and impersonates a legitimate node in order to be able to access
the transmitted information.

� Replay attack - is an attack where a node replays previously intercepted
requests in order to disrupt or force to terminate ongoing communication
between legitimate nodes.

In addition to these attacks insider can also perform some additional attacks
which are the following:

� Sybil attack - is an attack where a malicious nodes creates a large number
of identities in order to control the networks behavior.

� Eclipse attack - is an attack where colluding malicious nodes try to control
the communication possibilities of other legitimate nodes.
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� Route modification - is an attack where malicious nodes modify the mes-
sages sent during the route establishment or maintenance phase. Depend-
ing on the goal of the malicious node different modifications are possi-
ble. For instance, the malicious node could try to have all routes running
through it in order to disrupt or separate the overlay network. Or it could
mount denial of service attacks against a specific node by adding that node
to all routes.

� Grey- or Blackhole attack - is an attack where nodes selectively forward
traffic. If traffic from specific nodes or of a specific type is not forwarded
it is called Greyhole. If none of the traffic is forwarded by a specific node
it is called Blackhole.

� Wormhole attack - is an attack where two or more nodes collaborate to
tunnel traffic between them in order to disrupt the correct execution of
network protocols.

A suitable secure routing protocol must provide protection against all or most
of these attacks since there is no definitive solution to prevent the Wormhole at-
tack. Some solutions which impede the Wormhole attack such as temporal and
geographical leashes [HPJ03], or graph theoretical considerations [LPM+05] ex-
ist. Subsequently we will analyze existing secure routing protocols and will only
consider such algorithms which provide protection against all of these attacks
except the Wormhole attack.

6.3.2 Dynamic Source Routing

DSR is an simple and efficient on-demand ad hoc network routing protocol based
on source routing and composed of two parts, route discovery and route mainte-
nance. The basic principle of source routing is that each peer sending a packet
to a distinct destination specifies the sequence of hops the packet has to follow
on its way to the destination. DSR consists of two different processes, the Route
Discovery and Route Maintenance, which are explained subsequently. For more
detailed information see [Joh94], [JM96], [JMB01].

Route Discovery

If a peer wants to send a packet to a distinct destination but does not have a
route to this destination in its local Route Cache, the peer initiates the Route
Discovery process to find one. The sending peer is known as the initiator of the
Route Discovery, and the destination of the packet is known as the target. The
initiator sends a ROUTE REQUEST packet as a local broadcast, specifying the
target and a unique identifier. If a peer receives a fresh request, it appends its
own peer address to a list in the request and broadcasts the request again until
the request reaches its target peer. The target sends a ROUTE REPLY back to
the initiator of the request, containing the discovered route.
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Route Maintenance

The Route Maintenance process is initiated if forwarding a packet to the next
hop specified in the route fails. Such a broken route can occur due to changes in
topology or peer failures. If a peer discovers a broken link it returns a ROUTE
ERROR to the initiator of the packet, containing a reference to the broken link
between the current peer and the next hop peer. The initiator then removes this
broken link from its Route Cache. For subsequent packets to this destination,
the initiator may use any other route to that destination in its Route Cache, or it
attempts to start a new Route Discovery process for that target if no alternative
route is available.

6.3.3 TESLA

The dynamic source routing mechanism of Ariadne uses flooding for the Route
Discovery process. Thus, the first major step towards a secure overlay routing
protocol is to enable source authentication in our overlay system. A broadcast
authentication protocol suitable for a heterogenous pure overlay system should
have the following requirements:

� Low computational overhead,

� Low communication overhead,

� Scalability, and

� Applicable to different communication environments

Broadcast authentication protocols covering these requirements have already
been proposed. The research of Perrig et al. [PCTS00], [PCST01] led to the
specification of TESLA [PCTS02]. TESLA can also be used with wireless sensor
nodes as shown in [PST+02]. The protocol has the following special requirements
which must be fulfilled by peers:

� The sender and the receivers must be at least loosely time-synchronized

� Either the receiver or the sender must buffer some messages

The main idea of TESLA is that the sender attaches to each packet a MAC
computed with a key k known only to itself. The receiver buffers the received
packet without being able to authenticate it. With strict adherence to a publicly
known schedule the sender discloses the key k and the receiver is able to authen-
ticate the packet. Consequently, a single MAC per packet suffices to provide
broadcast authentication, provided that the receiver has synchronized its clock
with the sender ahead of time and exchanged authenticated key commitments.
Because of the delayed key disclosure and the characteristics of hash functions,
asymmetry is achieved. This means that receivers can verify the authenticity of
the message, but can not generate valid authentication information themselves.
Because before the keys are disclosed the time interval at which the keys are
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valid has already expired. Thus, if an attacker uses a disclosed key of another
node to generate authenticated message on its behalf, other nodes will not ac-
cept these messages since the time interval in which the used key is valid has
already passed.

Figure 6.1: One-way hash chain

TESLA repeatedly uses a one-way hash function to generate a one-way key
chain. The elements of the one-way hash chain represent the individual symmet-
ric keys which are used for computing the MAC. Figure 6.1 shows the construc-
tion of the one-way key chain. The elements are calculated by applying the hash
function H repeatedly n times on a randomly selected element sn. The element
calculated last s0 is used as commitment to the entire one-way chain. Every
element si in the one-way chain can be verified to be authentic by applying the
hash function H repeatedly i times to itself and resulting in the element s0. The
keys si are disclosed in the following order s1, . . . , sn. Also all receivers must be
loosely time synchronized with the sender up to some time synchronization error.
For more information about the TESLA protocol please refer to [PCTS02].

6.3.4 Ariadne

Ariadne is a secure on-demand routing protocol for ad-hoc networks based on
the dynamic source routing (DSR) protocol. As already mentioned previously, in
this analysis we use Ariadne in combination with TESLA. For the two other use
cases, pair-wise shared secrets and digital signatures, the security and protocol
steps are similar with the exception that the asymmetry relies on the keys. In
the other two use cases no keys are disclosed and therefore it is not necessary
to wait and buffer messages before they can be authenticated. But since digital
signatures are rather expensive in terms of computational power and the key
management and storage efforts for pair-wise shared secrets are tremendous,
TESLA could be a good alternative.

There are 3 basic mechanisms Ariadne adds to DSR in order to secure it.
First, a MAC over the route request is computed with the shared key KSD and
added to the REQUEST. This key is only shared by the specific source and
destination. Therefore, the destination can easily verify the authenticity and
freshness of the request using the shared key KSD).
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The second mechanism authenticates every peer participating in the Route
Discovery process. This is done for the request and the reply. This means that
the source of the request must be able to authenticate every peer in the hop list
of the reply. Also the destination must be able to authenticate every peer in
the hop list of the request in order to identify a legitimate route and create a
correct reply. This is achieved by the requirement that each hop authenticates
new information in the request. The target buffers the request until all hops
can release the corresponding TESLA keys. Then the destination checks this
information and creates the reply if all information could be verified.

In order to prevent route modification attacks the third mechanism uses one-
way hash functions to verify that the route was not modified. Each node on
the route adds its identity to the hop list and signs it with its current hash key.
This approach is called per-hop hashing. To be able to modify the route an
attacker must be able to invert the used one-way hash function. The other case
mentioned in [HPJ02] is not an attack, because if a peer hears a request, without
the peer listed he wants to remove, he actually is on a legal route without the
other peer.

6.4 Implementation

In this section, we describe how we implemented Ariadne in a overlay fashion
which is somewhat different to the original version. First, we use a off-line
certificate authority for the bootstrapping process. This CA manages the IDs
of all peers in the network and ensures that no ID is used by two peers. It
also issues the public/private keys for each peer before start-up. Therefore, all
legitimate peers have a public key and a unique peer ID signed by that authority
which can be used for secure TESLA key exchange and time synchronization.
All the peers are deployed with a copy of the CA’s public key to be able to verify
the authenticity of other public keys.

6.4.1 Sender Setup

First, the sender defines time intervals of duration Tint. Every key of the key
chain is then assigned to one interval. Since all keys are only used once, the
length of the one-way chain determines the maximum communication interval
before a new key chain must be generated. The keys to sign the hop list in a
request are chosen so that they can be released at the timeout and the destination
does not need to buffer the message until the keys are released. Perrig et al.
proposed in [PCTS02] to choose the key disclosure delay according to the formula
d = RTT/Tint + 1, where Tint is the interval duration and RTT is the round
trip time between sender and receiver.
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6.4.2 Initialization Process

In order that each receiver can authenticate messages using TESLA he must be
loosely time synchronized with the sender. The receivers must also posses an
authenticated key of the one-way key chain used by the sender and be aware
of the schedule of key disclosures. The authenticated key of the one-way hash
chain is s0 which is signed with the nodes private key and distributed on request
to the receivers.

Time Synchronization

To achieve time synchronization we implemented a simple time synchronization
3-way-handshake protocol. Instead of using the 2-way protocol for time syn-
chronization, as specified in [PCTS02], we use a 3-way protocol. This allows us
to obtain information about the propagation delay between sender and receiver
at both locations. Figure 6.2 shows the 3-way time synchronization protocol be-
tween two peers. The initiator first records its local time tiReq and sends a time

Figure 6.2: Direct time synchronization between peers

synchronization request containing a nonce to the receiver peer. Upon receiving
the request, the destination records its local time tdReq and replies with a signed
response message containing tdReq, the nonce received from the initiator, and a
new nonce. Finally, the initiator completes the process at time tiResp by sending
a signed response containing the received nonce to the receiver, which obtains
it at tiResp. With the difference tiResp − tiReq of every request-response pair we
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measure the round trip time which is later used as maximum time synchroniza-
tion error. After this process, the initiator can calculate the upper bound on the
current destinations’s time as td = tdReq + (tiResp − tiReq) by assuming that the
time synchronization error is ∆1 (the full round-trip time (RTT)). Analogous
the receiver can calculate the upper bound on the current initiator’s time as
ti = tiResp + (tdResp − tdReq).

Time Sync Request

Figure 6.3: Time synchronization request message format

The time synchronization request message contains six parameters as shown
in Figure 6.3.Source and Destination are set to the IDs of the initiator and
receiver peer. Route is set to the source route to the receiver peer. To make it
possible for the receiver to reply to the request, the source route actually used
is stored in Used Route. This is needed because time synchronization mostly
happens before a route between these peers has been established and thus the
route field may be empty when it reaches the receiver. Request Nonce is set to
a random value to ensure message freshness and avoid replay attacks.

Time Sync Response

Figure 6.4: Time synchronization response message format

The time synchronization response message from the receiver to the initiator
peer consists of ten fields as shown in Figure 6.4. Source and Destination are
set to the IDs of the receiver and initiator peer. Route is set to the route over
which the message should be sent and can be retrieved by reversing the used
route field in the received request message. Algorithm ID is a unique identifier
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of the used algorithm to calculate the signature over the TESLA time and the
response nonce. TESLA Time specifies the time relative to the time of the start
of time interval zero (T0). The Response Nonce is set to the value of the request
nonce in the time synchronization message to avoid replay attacks. The Used
Route and Request Nonce fields from the new request are set to the used route
and a new nonce.

Time Sync Final

Figure 6.5: Time synchronization final message format

The final time synchronization response message from the initiator to the
receiver is equal to the response message. The format of this message is shown
in figure 6.5. Asymmetric cryptography is used to sign time synchronization
response messages as specified in the original version. Every peer is able to
authenticate the time synchronization response with the other’s peer public key.
After the time synchronization both peers know the round trip time and the
TESLA time of the other peer and are therefore loosely time synchronized and
can calculate an upper bound of the other’s peer TESLA time.

6.4.3 Key Exchange

To be able to authenticate signed messages, TESLA keys and public keys must
be known by the communicating peers. If a peer does not have the key to
authenticate a received message a key exchange must be performed. The key
exchange process uses a simple protocol consisting of two messages, the Key
Request and Key Response.

Key Request

The key request message contains the following fields as shown in Figure 6.6.
Source and Destination are set to the IDs of the initiator and receiver peers and
Route to the effective route between them. The TESLA Key Algorithm ID is the
unique identifier of the used algorithm to calculate the TESLA signature with
the peers private key of TESLA key at TESLA Key Index. The TESLA key
chain length, TESLA key validity interval and TESLA key disclosure delay are
additional information necessary for verifying the signature. The TESLA Key is
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Figure 6.6: Key request message format

an already disclosed key and the TESLA Key Index is the corresponding index
of that key. The Public Key Algorithm ID is the unique identifier of the used
algorithm to calculate the Public Key Signature. As with time synchronization,
key exchange mostly happens before routes have been established. Therefore,
the initiator has to send also the used route to the destination so that this peer
is able to reply to the request.

Key Response

The destination peer replies to the request with a key response message which
has the same fields as the key request message except that the message type is
different and that the used route, which is not needed in that case, is omitted. To
verify the key exchange messages, first the signature of the contained public key
has to be verified with the CA’s public key. Afterwards, the contained TESLA
key and key schedule can be verified with the previously verified public key.

6.4.4 Routing Processes

Route Discovery

The Route Discovery process works as described in section 6.3.2. Ariadne at-
tempts to authenticate peers and secures only a basic version of DSR without
possible optimizations. The Route Discovery process consists of two stages as
in the original DSR. First the initiator floods the network with a route request
and the target returns a route reply. Each request packet in our implementation
contains the following parameters as shown in figure 6.7. Source and destination
are set to the IDs of the initiator and target peers. The initiator sets the ID to
a unique value not recently used in initiating a route discovery. The timeout is
the upper bound of the expected arrival time of the request at the target. The
initiator sets the Signature to the digital signature over the fields message type,
source, destination, ID, and timeout. The hash chain is initialized to the hash
over the Signature and the peer list, the key indexes and MAC list to empty
lists. The TTL is set to a value which specifies how many hops such a request
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Figure 6.7: Route request message format

may travel at maximum. This value depends on the overlay network size and is
adjusted accordingly.

When any peer A receives a request for which it is not the target, the peer
performs some checks to verify that the packet is valid, for more information see
[HPJ02]. If all checks succeeded the peer modifies the request by appending its
own address to the peer list, replacing the hash chain field withH(A, hashchain),
appending a MAC over the entire request (except the TTL field because it
changes after every hop) to the MAC list, and decrementing the TTL. The peer
uses the TESLA key KAi

to compute the MAC, where i is the index of the
first key that will be disclosed after the timeout. Finally, the peer broadcasts
the modified request. When the target peer receives the request, it checks the
validity by verifying that the keys from the time interval specified have not been
disclosed yet, that the signature is valid, and the hash chain field is equal to:
H(hn, H(hn−1, H(hn−2, ...,H(h1, signature), ...))) where hi is the peer address
at position i of the peer list, and where n is the number of peers in the peer
list. If the target peer determines that the request is valid, it returns a route
reply to the initiator containing the fields shown in Figure 6.8. The Source,
Destination, ID, Timeout, Peer List, MAC List, and Key Indexes fields are set
to the corresponding values from the request. The Signature is computed over
the preceding fields in the reply with the key list initialized to the empty list.
The reply is then returned to the initiator of the request along the source route
obtained by reversing the sequence of hops in the peer list of the request. A
peer forwarding a reply waits until it is able to disclose its key previously used
to calculate the MAC. The peer then appends this key to the key list field and
forwards the packet according to the source route. When the initiator receives
the reply, it verifies that the signature is valid, that each key in the key list is
valid, and that each MAC in the MAC list is valid. If all of these tests succeed
the peer accepts the reply and the route, otherwise it discards it. For instance,
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Figure 6.8: Route reply message format

if a peer uses an already disclosed key in order to impersonate another peer this
would be identified during the checks. Also if a peer tries to modify the peer list,
in order let a route appear shorter, it would be detected since the hash chain
field contains the hashes of the removed peers and could not be computed using
the modified peer list.

Route Maintenance

Route Maintenance is based on DSR as described in Section 6.3.2. If a peer has
to forward a packet and the link to the next hop is erroneous, it has to send a
ROUTE ERROR message back to the peer who originally sent the packet. We
discuss mechanisms for securing route errors, but we do not consider the case of
attackers not sending errors. To prevent unauthorized peers from sending errors,
we require that an error is authenticated by the sender. Each peer on the return
path to the source forwards the error.

A error packet contains nine fields: (ROUTE ERROR, initiator, destination,
route, algorithm ID, signature, TESLA key index, disclosed TESLA key, target).
The initiator field is set to the address of the peer reporting the error, and
destination is set to the address of the peer which tried to use the erroneous route.
The algorithm ID is the unique identifier of the used algorithm to calculate the
signature of (ROUTE ERROR, target). The target field is the address of the
next hop peer who is not available anymore. TESLA key index is the index of the
used TESLA key to sign the message and last disclosed is the last disclosed key.
Each peer on the return path searches its Route Cache for all routes containing
the link indicated by the error. The peer verifies the correctness of the error
message. If the message has been verified the peer removes all routes containing
the broken link.
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6.5 Performance Evaluation

In this section, we present the results of various measurements we have taken.
First we discuss the needed bandwidth and show ways how it would be possible
to minimize the byte overhead. Then we show the minimal needed timeout for a
route discovery depending on the route length and finally we compare the perfor-
mance of Ariadne with DSR on route recovery. The tests have been performed
on personal computers with Intel Core 2 Duo E8600 processors with 3.33 GHz
and 4 GB RAM and Windows Vista as operating system. The routing algorithm
implementation has been developed and integrated in the SePP framework and
was executed on Java JDK 6 Update 10 runtime environments. We established
an real-world overlay network with up to 20 nodes connected in series resulting
in the maximum path length of 20.

6.5.1 Bandwidth Requirements

Security always comes at the cost of higher overhead. Compared to DSR, Ari-
adne needs much more bandwidth especially during the initialization when all
the bootstrapping has to be done. Without bootstrapping the needed band-
width for Ariadne is about six times higher and with bootstrapping about 80
times higher. The length of the used TESLA-MACs has some influence, but the
most overhead is caused by the asymmetric signatures and the bootstrapping
process, as shown in Figure 6.9.

Figure 6.9: Comparison of the needed bandwidth for DSR and Ariadne

During the bootstrapping process the sender setup and initialization as out-
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lined in Section 6.4.2 and 6.4.1 are performed. To avoid or minimize that
overhead, smaller keys, MACs and signatures or ID-based systems could be
used. Figure 6.10 shows the impact of the route length to the bandwidth needed
and compares DSR with two versions of Ariadne. One version uses MACs and
TESLA keys with a length of 80 bit and the other version works with 160 bit.

Figure 6.10: Comparison of the needed bandwidth depending of the route length and
the length of the used TESLA keys and MACs

6.5.2 Minimal Timeout

The timeout is a very important parameter. All the peers along the route have
to choose a key that is secure until the timeout. Therefore, all the peers have to
wait until the timeout in order to append their used key to the reply and forward
it to the sender. It is desirable to minimize the timeout as much as possible, but
if it is too small than no route discovery will arrive in time at the receiver and
discovery fails. Therefore, we implemented an exponential back-off algorithm
to issue new request messages until a reply is received. Thus, we are able to
cope with varying transmission delays in the overlay network and determine the
current minimal timeout. However, since there are some variations in delay in
the network even if the number of nodes and the topology stays the same an
distinct amount of time must be added to the obtained minimal timeout in order
to end up with a stable solution.

Figure 6.11 shows the minimal needed timeout as function of the route length
with bootstrapping and Figure 6.12 without bootstrapping. From these two
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Figure 6.11: Minimal timeout for a Route Discovery with bootstrapping

figures, it is intuitively evident that the bootstrapping process has a high impact
on the performance. In both figures the minimal needed timeout for a specific
route length is shown. The dotted line shows the mean value of the measurements
and the solid line shows the measurements of one consecutive run.

There are quite some timeout variations in one run between the differ-
ent route lengths. These variations are due to variations in the Java runtime
(garbage collection, thread scheduling) and network delays. Also we always
measured the timeout for the distinct route lengths separately. For instance we
measured the timeout for route length 5 then started the whole route discovery
process from scratch and measured the timeout for route length 6. Thus, due
to the variations it can happen that the minimal timeout for a route with more
hops is lower than for a route with less hops.

6.5.3 Route Recovery

If a route error occurs, another route has to be found. Ariadne needs more time
to find a new route than DSR, because much more information has to be sent
and timeouts have to be considered. The round trip time, and therefore the time
synchronization, is an important factor. The smaller the round trip time, the
smaller the time synchronization error and the discovery timeout can be chosen.
In that way, peers along the route have to wait less until they can add their key
to the reply and forward it to the initiator. DSR needs on average 26 ms to
discover a new route if the current one is broken. Ariadne (with a round trip
time of 20 ms) needs, an average of 130 ms, which is five times more.



78 Chapter 6. Secure Routing

Figure 6.12: Minimal needed time out for a Route Discovery without bootstrapping

6.6 Discussion

Ariadne can provide secure routing using different mechanisms, including a
lightweight asymmetric algorithm called TESLA. Although the efficiency of ap-
plying asymmetric cryptography to the messages at the forwarding or routing
nodes using TESLA is high the source and destination must exchange several
initialization messages which have to be protected by common asymmetric cryp-
tography such as RSA or ECDSA. In addition pair-wise shared secret keys must
be established between the source and the destination in the initialization phase.
Thereafter, Ariadne with TESLA can be used with little performance overhead
to protect the communication between the source and the sender. However, the
delayed key disclosure introduces additional latency which depends on the net-
work diameter, the physical communication latency and on the synchronization
process. This additional latency can be kept relatively low if Ariadne is applied
to very small networks where the nodes are physically nearby. We found out that
Ariadne works well under the assumption that only few nodes communicate with
each other, meaning that only some nodes are actively exchanging data whereas
the others only function as forwarding and routing nodes. Unfortunately, these
assumptions do not hold in the case of overlay networks which consist of several
hundred to millions of nodes which are distributed all over the world and where
usually all nodes will take part in the communication process. Thus, we decided
to look for an alternative secure routing algorithm which lends some ideas ap-
plicable to overlay networks from Ariadne and integrates it to an secure routing
algorithm which is based on DSR and provides scalable and dynamic routing for
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such networks.

6.7 Scalable Secure Routing

In the section on Ariadne we have discovered that although it provides rea-
sonable security and incorporated unique ideas on how to provide asymmetric
cryptography it is still not adequate in our scenario. Foremost, the reliance
on one specific security measure either TESLA, digital signatures or pair-wise
shared secrets is to inflexible for heterogenous environments since they can not
be changed during the runtime and are not appropriate for a wide range of de-
vices. On the other hand, the assumptions and requirements that many required
security measures must be at place before the systems can be used, is also not
applicable for dynamic overlay networks.

To address the lack of solutions for security problems in unstructured over-
lays, we have designed and implemented a comprehensive framework for secure
unstructured overlays. We believe that solely providing solutions for particular
security problems is not sufficient for realizing a secure system. In this section
we outline the design and implementation of a scalable secure routing protocol
for unstructured heterogeneous overlays based on this security concept. The se-
cure routing protocol provides protection from outsider attacks and enables the
detection as well as the prevention of insider attacks.

The main focus in this section will be on an adequate secure routing protocol
which lends some ideas from Ariadne and integrates our security concept in order
to allow for a scalable secure routing. But since authentication is a precondition
for our secure routing protocol we will also mention the parts which are related
to the join process in order get a better understanding of our solution as a whole.
The join protocol and all other protocols which are part of the secure overlay
framework are also based on that security concept. The secure overlay framework
integrates all secure protocols into a comprehensive solution for secure overlay
networking. The secure overlay framework is open source and available from
sourceforge1. We will also discuss the advantages and differences of our solution
to existing routing protocols for overlay networks. In the end we evaluate and
present the performance of our secure routing protocol and discuss our solution.

In this chapter we do not address the issue of data distribution or efficient
content management but rather how routes between nodes can be secured. De-
pending on the application, the routing protocol and the framework for secure
unstructured overlays can be used as either a multi-hop communication network
or content distribution network.

6.7.1 Network assumptions

We assume that network links are bidirectional; that is, if node A is able to send
messages directly to node B, then B is also able to send messages directly to A.
We also assume that nodes may belong to networks whose addresses require to

1http://sourceforge.net/projects/secureoverlay/

http://sourceforge.net/projects/secureoverlay/
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use NAT to connect to other nodes in the system. Thus, the internal address
may be different from the external address seen by other nodes. For instance,
consider the scenario depicted in Figure 6.13. The nodes H,I,J,K and L,M,N
could be behind a NAT or Firewall. They have established connections to nodes
D and A. In case of a NAT or Firewall nodes D and A can communicate to
the nodes behind the NAT or Firewall using the outgoing connection from these
nodes but may not be able to initiate a separate connection to them. Thus,
all the other nodes from the overlay network can communicate with the nodes
behind the NAT or Firewall using the relay nodes D and A. Thus, the secure
overlay network may get separated into several parts due to the unavailability
of nodes, such as D, A and even H, which connect the separated overlays. But
if these nodes are available again the separated overlays must be able to merge
into a common overlay.
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Figure 6.13: Real network topology with Internet and LAN nodes
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6.7.2 Node assumptions

The resources of different overlay network nodes may vary greatly, from nodes
with very little computational resources to powerful resource-rich nodes equiva-
lent in functionality to high-performance workstations. To make our work and
results as general as possible, we have designed a security concept and a routing
protocol to support nodes with few resources, such as PDAs and mobile phones.

6.7.3 Security Assumptions and Bootstrapping

The security of our routing protocol relies on the secrecy and authenticity of
keys stored in nodes. Depending on which security level is used by the node we
rely that the specific keys are available for the execution of the secure routing
protocol and we therefore refer to Chapter 3 for more detailed information about
the security assumptions and the bootstrapping process.

6.8 Secure Routing Protocol

In this section we introduce our secure routing protocol for heterogeneous un-
structured networks. We assume a very heterogeneous environment in terms
of node resources and networking technology. Thus, the routing protocol must
also be designed to function in such an environment. We have studied vari-
ous routing protocols which are used in similar environments. Since, we work
with unstructured overlay networks we concentrated our search on flooding-style
routing protocols. We have chosen the Dynamic Source Routing (DSR) protocol
[JM96] as basis for our secure routing protocol. This was due to the fact that the
complete path from the source to the destination is contained in each message
the secure route can be verified at each node. DSR is also a lightweight protocol
in terms of network utilization and resource requirements. For a more elaborate
discussion about related routing protocols see 6.12.

6.8.1 Architecture

Our routing protocol can also be divided into the discovery and maintenance
phases like the DSR protocol [JM96] we used as foundation.

� Route discovery - This phase is triggered if a node S sends a message with
a destination information D and the node S does not have a route already
available for the destination information D.

� Route maintenance - This process is activated if a node S sends a message
with destination information D using an already established route and
during the forwarding process a link on that path is not available anymore.
The source of the broken route is informed of this problem and uses another
known route for destination information D or invokes the discovery process.
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Both processes operate in an on-demand manner. Meaning that routes are
established as needed and removed if they are failing. Thus, no periodic messages
are required to guarantee the functionality of this protocol.

The routing protocol also incorporates the ideas developed in the security
concept. Thus, its security can be adjusted through the selection of different
security levels. For the sake of simplicity we use three security levels low, medium
and high, as described before, in our demonstration.

H

J

A

K

C
I

B L

F

M
D

N

GE

Figure 6.14: Overlay network topology with groups of different security levels

In figure 6.14 the nodes from the real network topology 6.13 are grouped into
different security levels. The peers in the light grey area belong to security level
medium. The peers in the dark grey area belong to security level high. All peers
outside these areas belong to security level low. Our system has been designed in
such a way that peers with higher security levels can also support lower security
levels if they are provided with the required credentials for their operation. This
figure illustrates the fact that nodes can be grouped into arbitrary groups with
the same security requirements independent from real network structure and
location.
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6.9 Implementation

We have implemented the secure routing protocol in an open source secure peer-
to-peer framework called SePP. The framework provides all the basic capabilities
for overlay networking in heterogenous multi-hop environments. The framework
has built in methods for joining a overlay network with different available au-
thentication mechanisms. Furthermore, it provides for communication confi-
dentiality and integrity using symmetric or asymmetric cryptography. It has a
modular architecture which allows developers to implement their own protocols
for the various task in overlay networking including routing, message transport,
authentication, neighborhood management.

Since it already provided the means for joining a overlay network securely,
key establishment between the peers inside the network as well as using separate
routing protocols it was the perfect platform for implementing and testing our
secure routing protocol. We assume that the different keys used inside the
secure routing protocol are either already available through the security service
module of SePP or can be established using existing functionality. The security
service module can obtain the keys from either a keystore, smartcards or available
trusted computing hardware.

6.9.1 Route Discovery

Depending on the security level different functions of the secure routing protocol
are used or enabled. In security level low, where no cryptographic protection
is applied, the secure routing protocol provides the same functionality as the
dynamic source routing (DSR) protocol. For a detailed description of the DSR
protocol please refer to [JM96]. In this section we describe the operations of
the secure routing protocol in the security levels medium and high which are
different to the operations of plain DSR. We will sketch an exemplary route
discovery process using the network configuration of figure 6.14 with the nodes
H, A, and D providing the shortest path from node I to node L.

Route Request (Medium)

In figure 6.15 the message sequence and actions of the scalable secure routing
protocol for security level medium are outlined. In security level medium the
security of the protocol relies on a pre-shared secret key and a session key SK
shared between all the authenticated nodes of the overlay network. This session
key is obtained by each node after it has joined the overlay network successfully.

The source generates a route request containing source address I and des-
tination information L, message id and a time-stamp ta. The source peer cal-
culates a message authentication code h0 over the request using the current
network session key SK and broadcasts the request with the appended MAC to
its neighbors.

Each neighbor checks if it has seen this request already and processes it if
unseen. Otherwise, it is discarded. Each peer also verifies that the request
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I : h0 = MACSK(I, L, id, ta)

I → ∗ (I, L, id, ta, h0)

H : h1 = MACSK(I, L, id, ta, H)

H → ∗ (I, L, id, ta, H, h1)

A : h2 = MACSK(I, L, id, ta, H,A)

A→ ∗ (I, L, id, ta, H,A, h2)

D : h3 = MACSK(I, L, id, ta, H,A,D)

D → ∗ (I, L, id, ta, SPS , H,A,D, h3)

L : hr = MACSK(L, I, id, ta, H,A,D)

L→ D (L, I, id, ta, H,A,D, hr)

. . .

A→ S (L, I, id, ta, H,A,D, hr)

Figure 6.15: Scalable-secure routing protocol with security level medium

is fresh and is not replayed. This is done by verifying that the current time
lies inside the interval of the time of ta plus the request buffer timeout. The
request buffer timeout should be larger than it takes for the longest route to
establish. The timeout ensures that only the shortest (or which is almost always
the same fastest) routes are used. For instance, if a request reaches a node
which has already forwarded a request the node should discard it since the
already forwarded request is shorter or faster. After the timeout has elapsed the
expired entries in the request buffer are deleted. Thereafter, the node verifies
the correctness of the message and appends its address to the hop list if the
request is valid. Otherwise the request is discarded. The node calculates the
MAC using the session key over the extended request and again broadcasts the
request with the appended MAC to its neighbors.

As the request reaches the destination it is again verified and if bidirectional
connections are available the reverse route is added to the route cache. If bidi-
rectional connections are not available the destination itself performs the same
route discovery process but appends the reply to the request. Therefore, each
peer has also to check if a route request contains a reply and performs the actions
as described in the next section for that reply also.

Route Reply (Medium)

The destination creates a reply using the hop list contained in the request as
route. The destination returns the reply with the appended MAC on the reverse
path it has traveled to the destination. Each peer on the reverse path verifies
the reply and the route itself. Also the freshness of the route reply is verified
at each peer. The route is verified by checking if the own peer ID is contained
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in the specified route and the reply has been received from the preceding peer
in the route. If these requirements are met the reply is forwarded to the next
hop (actually the previous hop in the real route) otherwise it is discarded. In
order to gain some additional performance all peers along the route can add the
established route and the reverse route (if bidirectional connections are assumed)
to their local route cache.

Route Request (High)

In figure 6.16 the message sequence and actions of the secure routing protocol for
security level high are outlined. There are only some marginal differences in the
operation of the protocol between the two security levels. Thus, we only describe
the part which is different from the one with security level medium. With security
level medium it is still possible that a legitimate peer inside the network modifies
the route request for its own benefit (malicious or not). Using security level high
protects from insider attacks and also enables the identification of the malicious
peer.

I : SPS = SIGPrI(I, L, id, ta)

I → ∗ (I, L, id, ta, SPI)

H : h1 = MACSK(I, L, id, ta, SPI , H)

H → ∗ (I, L, id, ta, SPI , H, h1)

. . .

A→ ∗ (I, L, id, ta, SPI , H,A,D, h3)

L : SPD = SIGPrL(L, I, id, ta, H,A,D)

L→ D (L, I, id, ta, H,A,D, SPL)

. . .

H → I (L, I, id, ta, H,A,D, SPL)

Figure 6.16: Scalable secure routing protocol in security level high

The source S creates the digital signature SIGPrI of the complete route
request instead of only a MAC and sends it along with the actual route request.
The signature is used to prevent forgery of the source which could be used to
introduce malicious routes at the destination, if the destination uses the reverse
route. Because each peer possess the session key everyone can create a request
for other peers on their behalf and send them to the destination. No peer on the
path would recognize such a forgery since it can only verified that the last hop
in the hop list is the forwarding peer. Therefore, a malicious peer could create
requests for different sources and fill the route caches of the hops along the path
and the destination with fake routes.

With the use of a digital signature every peer can verify if the route request
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has indeed been created by the specified source. The signature also provides
message integrity. The ID and the timestamp again provide freshness for the
request and ensure that the same request is processed only once. As the request
reaches the destination peer it is again verified and if bidirectional connections
are available the reverse route is added to the route cache.

Route Reply (High)

The destination L creates a reply using the hop list contained in the route request
as route if the request is valid. The route selected by the destination L is signed
using the digital signature SIGPrD. The destination also calculates the MAC
using the session key SK over the complete reply including the signed route.
The peer then returns the reply with the signed route and the MAC using the
reverse path.

Each peer verifies the reply, the signature of the route and the route itself.
The route is verified by checking if the own node ID is contained in the signed
route and the reply has been received from the preceding node in the route and
the signature of the route is valid. This is done using the public key of the
route destination. Thus, it is verified that the route has been selected by the
destination peer and it has not been modified. If these requirements are met the
reply is forwarded otherwise it is discarded. The source verifies the security of
the route reply the same way as the intermediate hops and adds it to its route
cache if it is correct. Thus, we can prevent forgery of the route request by some
malicious node since this would be detected during these checks. For instance if
some node removed some hops from the route the destination would have signed
this forged route but it would not be returned to the source since the nodes
which have been removed would fail to verify the route.

Thereafter, the message which triggered the route discovery process can be
sent using the established route. Each message sent to a non-neighbor peer
carries the route over which this message should be sent. Each peer on the route
now verifies at reception of such a message if the contained route is already
stored in the route cache and has therefore been established in a secure manner.
If the route is contained the messages is forwarded to the next hop in the route
until it reaches the destination.

6.9.2 Route Maintenance

The route maintenance mechanism is triggered when forwarding a message with
a source route where the next hop is not available anymore. Each peer on the
route is responsible for ensuring that the message has been received by the next
hop. A peer tries to retransmit such a packet for a specific number of attempts.
In our case we did not use retransmission because we rely on the TCP protocol
which provides this behavior inherently. If we would use UDP we would need to
include such a mechanism. If a message can not be forwarded the responsible
peer creates a route error and returns it using the reverse path to the source
of the message. Again, if bidirectional connections are not available the peer
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also performs a route discovery to the source of the message and every peer has
to check every route request if it contains a route error and must perform the
actions described in the next sections.

Route Error (Medium)

In figure 6.17 we outline the sequence of messages triggered by a route error.
The responsible peer (initiator) creates a route error message which contains the
failing hop H , its own identity I, a message ID and a time-stamp. The initiator
peer calculates a message authentication code h0 over the request using the
current network session key SK and forwards the route error with the appended
MAC to the previous hop in the route to the source of the message.

I : h0 = MACSK(Error, I, S, id, ta)

I → I−1 (Error, I, S, id, ta, h0)

. . .

I−n → S (Error, I, S, id, ta, h0)

Figure 6.17: Secure routing protocol route error message with security level medium

Each peer verifies the authenticity of the route error and updates its route
cache if valid. The peer then again forwards the route error towards the source
of the original message.

As the route error reaches the source of the original message it is verified
again. If the source has not another route to the destination of the original
message available in its route cache, a new route discovery process for that
destination is started.

Route Error (High)

Figure 6.18 shows the messages which are sent if a route error occurs in security
level high. The responsible peer (initiator) creates a route error message which
contains the failing hop H , its own identity I, a message ID and a time-stamp.
The initiator peer calculates a message authentication code h0 over the request
using the current network session key SK and forwards the route error with the
appended MAC to the previous hop in the route to the source of the message.

Each peer verifies the authenticity of the route error and updates its route
cache if valid. The peer then again forwards the route error towards the source
of the original message.

As the route error reaches the source of the original message it is verified
again. If the source has not another route to the destination of the original
message available in its route cache, a new route discovery process for that
destination is started.
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I : SPI = SIGPrI(Error, I, S, id, ta)

I → I−1 (Error, I, S, id, ta, SPI)

. . .

I−n → S (Error, I, S, id, ta, SPI)

Figure 6.18: Secure routing protocol route error message with security level high

6.10 Security analysis

The security levels and the secure routing protocol are designed in such a man-
ner that for low everybody can participate and no cryptographic protection is
applied. Thus, no guarantees on the security of the system can be given. There
is no protection against the attacks mentioned in Section 6.3.1.

In security level medium shared secret keys are used for node authentication.
Therefore, the secure routing protocol which enforces authentication based on
these secret keys provides protection from outsider attacks. In this security
level we are protected from all the outsider attacks but insider attacks are still
possible.

In security level high digital signatures are used to secure the established
routes. Thus, also insider attacks from non-collaborating peers can be prevented.
Non-collaboration means that the peer does not control any other peer on a path
from the source to the destination. If peers collaborate they can always perform
a Wormhole attack by tunneling the route request from one peer to the other and
effectively shorten the route length. This attack only works if the controlled path
is also the fastest. Otherwise the request would arrive to late to be selected from
the destination as new route to the source. For instance, peer D is the source
and peer C is the peer who meets the destination information requirements.
Now if peer B and peer J of figure 6.14 collaborate and the tunneled request
would arrive earlier than the other one traveling over A and E, this attack still
succeeds. Such attacks can currently only be mitigated if location information
and synchronized clocks are used [HPJ03, PL07].

6.11 Performance evaluation

The following results have been obtained from the implementation of our pro-
tocol in the open source overlay framework SePP. Several peer instances have
been created which have then formed the overlay system. For the join process
of the overlay network we used the SePP framework in the three secure routing
protocol security levels low, medium, and high. After the join process every peer
possess a session key which is shared amongst all peers in the network. The
session key is then also used inside the routing protocol in security level medium
and high.
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We have created and tested our implementation in several network scenarios
with a varying number of peers. We ensured that different path lengths between
peers which send messages exist. Peers or links are also removed randomly be-
tween different peers to force the routing protocol to perform route maintenance
and establish new routes if necessary. Each peer has a pre-configured list of
possible overlay peers which it loads at startup. These peers are contacted and
the peer joins the existing overlay network. The overall member list is learned
thereafter and messaging between the different members is then initiated. We
have measured the time it takes a peer to discover routes to other members in
that network depending on the specified security level.

The tests have been performed on HP personal computers with Intel Core
Duo E8600 processors with 3.33 GHZ and 4 GB RAM and Windows 7 as operat-
ing system. The SePP framework and the secure routing protocol implementa-
tion have been executed on Java JDK 6 Update 17 runtime environments. The
measurements were taken using the Java inherent System.nanoTime() method.
This method provides nano-second accurate timings if performed on SE runtime
environments. For each security level we have performed 100 consecutive runs
where we established routes of lengths from 1 to 8. We therefore created a over-
lay network with 10 nodes which are connected together in series. Meaning, peer
1 is connected with peer 2, peer 2 is connected with peer 3 and so on. From
these measurements we calculated the mean time it took to establish a route.
We measured the times for the route request and reply separately in order see
if there is a difference.

Source Hop(s) Destination
[ms] [ms] [ms]

Low Request 0.5239 0.7543 2.4096

Low Reply 0.8527 0.7238 0.3213

Medium Request 0.7157 0.9204 2.7937

Medium Reply 1.0670 0.8790 0.4032

High Request 42.2055 2.1750 3.6752

High Reply 2.3503 2.2261 39.3460

Table 6.1: Processing time of the different security levels at the participating peers

In Table 6.1 the processing times of the routing protocol with different secu-
rity levels are given. We have measured the time it took the specific peers - the
route initiator Source, the peers along the path Intermediate Hop and the route
endpoint Destination - to process a route message. At the source we measured
the time when the getRoute method was called and the route request was sent
to the neighbors. At the intermediate hops we measured the time from the ar-
rival to the forwarding of the route request to its neighbors or to the next hop
in case of the reply. At the destination we measured the time from arrival of
the request to the point before the reply is created in case of the request. And
for the reply from the end of the request measurement until the reply was sent.
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At the initiator we measured again the time from arrival of the route response
until the route has been added to the route cache.

Figure 6.19: Route discovery latency if no route is available

In Figure 6.19 the route discovery latency over different route lengths is
shown if no route is available. The discovery latency in security level low and
medium are only slightly different. The difference relates only to the usage of
symmetric cryptography, in particular the keyed message authentication function
using the shared session key. It shows that the use of symmetric cryptography
only introduces a low slightly growing overhead to the route discovery process.
Although the additional processing time is almost negligible, it becomes relevant
only with higher route lengths which occur seldom, it provides protection from
outsider attacks since a the correct key is required to produce and verify the
route requests and replies. In case of security level high the discovery latency
has increased more significantly, about 5 times more than in the unprotected
case. This increase is almost completely related with the signature creation
process at the source and the destination.

In this experiments we have only measured the processing latencies which are
introduced through the application of cryptographic calculations. We did not
take into account network latencies since they are not relevant for the protocol
performance.
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The verification of the signature at the intermediate hops only requires 1/20
of the signature creation time. But nevertheless the use of these signatures pro-
tects the discovery process from malicious behavior of non-collaborating peers.
This means that if any single peer decides to not perform the protocol as in-
tended they will not gain any advantage over peers which perform the protocol
as intended.

Figure 6.20: Data transmission latency if route is available

In figure 6.20 the data transmission latency over different route lengths is
shown if the route has already been established. If a route has already been
established the data transmission latency is only influenced by the processing
time of the message at each peer. In case of security level low only the route
contained in the message is checked that it has already been established. In
security level medium and high the route itself is verified but also the message
authentication code of the messages is validated. If all checks have been per-
formed successfully the message is forwarded to the destination via the next hop
from the route. Therefore, the latencies vary only between security level low
and medium respectively high because the later two use the same data security
level.



92 Chapter 6. Secure Routing

6.12 Related Work

We have investigated different secure ad-hoc routing protocols since no secure
routing protocol for unstructured overlay networks existed so far and they have
similar requirements. Studies such as [ZH99, PH02, Zap02, JLR04, WZH05,
KGSW05] have applied standard cryptographic mechanisms to well-known rout-
ing algorithms or provide theoretical best practices for establishing routes in a
secure manner. Unfortunately, they have not integrated features such as scalabil-
ity in order to allow users to adjust the security level of the resulting protocol to
fit their needs or to integrate heterogenous devices. Most of the protocols solely
rely on digital signatures without taking into account resource constrained de-
vices so that they use the cryptographic mechanisms in a redundant and lavish
manner. For instance, they apply digital signatures to every request at every
hop which requires verification and creation of signatures at each hop in the
whole network. In our solution if we use security high only the source and the
destination have to create a digital signature and only the nodes on the return
path have to verify the signature. We also provide a less resource intensive se-
curity level for the case that very constrained devices, such as wireless sensor
nodes, are present in the network and require some protection.

Another protocol, called Ariadne [HPJ05], which is based on TESLA [PCTS02],
is able to provide cheaper asymmetric cryptography by means of delayed disclo-
sure of symmetric keys. This enables also very constrained devices to participate
in the secure route discovery process. However, this protocol lacks in the specifi-
cation and adequate guidance of selecting the required parameters. Additionally,
in the bootstrapping and security update processes this protocol requires com-
mon asymmetric cryptography (digital signatures and public key certificates)
which has not been taken into account in their performance evaluation. Also
they assume use-cases which are not realistic in overlays. For instance, they
assume that only very few peers will actually communicate with each other and
thus would have to perform the more expensive cryptographic functions. All
other peers are only required to forward the requests. As shown in [KP09a] the
use of Ariadne in overlay networks is not practical because we can not assume
that only some specific peers will exchange data. If all peers should be able to
communicate with each other than each peer not only requires symmetric keys
also public-private keys and pair-wise shared secrets. Thus, in an environment
with random unbound interactions such a scheme is not applicable.

Another secure routing approach for ad-hoc routing mechanism has been
provided by [GZ02, GZA02]. They provide security for the ad-hoc on-demand
distance vector protocol. This protocol has several features in common with the
dynamic source routing protocol, such as the separation in two phases (discovery
and maintenance). The main problem is that it does not provide verifiable secure
routes. This is because each peer only maintains its local routing view by only
maintaining a forward and backward hop for a specific destination. Thus, it
is not possible to give the source and destination control over used route and
therefore prevent insider attacks.

Others like [MGLB00, AD01, LS06] have tried to provide security with means
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of repudiation or some other kind of trust. But all these approaches rely on
statistical methods and not on mathematical primitives. Statistical methods can
provide means to increase security if cryptographic measures are already taken.
But these mechanisms can not provide security if the worst case adversaries are
assumed. Because they rely on some kind of historic data or on other heuristics
they can be betrayed by playing along for most of the time but deviating from
the protocol if it is in the interest of the adversary.

6.13 Conclusion

In this chapter we have investigated different routing protocols and evaluated
the applicability of one specific secure routing protocol called Ariadne. Since
the existing protocols are not efficient and flexible enough for our scenario, we
presented a secure routing algorithm for pure overlays which provides a scal-
able support for security. This scalable security is based on a security concept
which separates between the admission and the communication process in the
overlay system or more precisely in a overlay group. We have used the same
group notion for the actual routing part and the subsequent data transmission
part. In addition different protection mechanisms can be used to increase the
selected security levels. Since in our protocol the security can be adjusted to the
requirements of the system we achieve a very good security/performance ratio as
shown by the results. We have shown that the performance of the secure routing
protocol is adequate even if more expensive cryptographic operations are used.
The experimental results have been obtained using an open source secure overlay
networking framework where we have implemented our secure routing protocol.

This work is part of a comprehensive solution for heterogenous environments
with multi-hop characteristic. None of the existing approaches provides a solu-
tion which allows for adjustable security. By using this approach we can either
require that all devices be at least powerful enough to apply the highest possible
security level or we find the least common denominator. We have also tried
to find a middle way between these extremes by allowing devices with different
security levels to take part in the same overlay network. Therefore, the routes
can only be established between nodes with the same security level. But since
the requirements for the lower security levels are much less demanding than for
the higher security levels we assume that nodes posses also the credentials for
the lower security levels. This means that if a node can perform security level
high it can also perform security level medium and low since it requires only to
store some additional keys which are much less complex in terms of computa-
tional requirements and management overhead. This is necessary to allow more
restricted devices to route over more powerful nodes also.





7
Secure P2P Framework

A cloud is made of billows upon
billows upon billows that look like
clouds. As you come closer to a
cloud you do not get something
smooth, but irregularities at a
smaller scale.

Benoit Mandelbrot

7.1 Introduction

To address the lack of solutions for security problems in unstructured overlays,
we have designed and implemented a comprehensive framework for secure un-
structured overlays, which we called SePP. We believe that solely providing
solutions for particular security problems is not sufficient for realizing a secure
system. In Chapter 4, we proposed a security concept [KPT08] which allows for
selecting adequate security measures based on the overall system requirements
and the available resources of the participating nodes. We have designed and
implemented a secure routing protocol for unstructured heterogeneous overlays
based on this security concept. The secure routing protocol provides protec-
tion from outsider attacks and enables the detection as well as the prevention
of insider attacks. We have integrated this secure routing protocol into a com-
prehensive framework for secure unstructured overlay networking. We want to
mention that our system is not intended for open Internet-scale systems but
rather for controllable environments such as in private or public enterprises. To
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our knowledge this is the first framework which provides security for unstruc-
tured overlay networks for all parts from joining over routing to communication.

In this chapter we provide a functional design and architecture for a frame-
work for secure unstructured overlay networking. Therefore, we first establish
some requirements inherent to overlay networks we want to secure with our
framework. We deduce some assumptions in accordance to the requirements
and the specifics of cryptographic primitives. A security concept based on the
requirements and assumptions which provides security for different scenarios is
specified further on. After having laid down the theoretical foundation for se-
cure overlay networks we propose a possible framework architecture. We also
provide some information about protocols and mechanisms which can provide
the required functions and security features. The framework is freely available
from sourceforge.

7.2 Assumptions

In this section we outline some of the assumptions we made for the design of our
secure overlay framework. The assumptions as outlined in Chapter 3 are also
appropriate for the secure overlay network framework itself. These assumptions
where:

� Network - We assumed bidirectional links and allowed for nodes to be
behind network translation or a firewall.

� Node - We assumed that we have a network with heterogeneous devices in
terms of resources.

� Security - We assumed that either keys are setup before the system op-
eration or we can use cryptographic material from TPMs to establish the
required keys in each node.

In addition, we want to note that the secure overlay network framework
can be used in various communication areas such as multi-hop communication
networks or content distribution networks. Usually the differences are only at
the application layer, meaning that after the network has formed itself and nodes
are able to communicate the kind of operations performed on top of that are
only subject to the developers imagination.

7.3 Framework Design

We will first introduce the characteristics of overlay networks in general and
derive from them specific requirements for the design of a framework which
provides security for such networks. These requirements relate mainly to the
duties of each node participating in the network and to the rules of interaction
between them. Thereafter, we will make some assumptions which are necessary
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to realize such a framework. The assumptions stem mainly from the security
requirements and the means of their implementation.

The security concept provides a simple way to select adequate security mea-
sures to achieve a specific security level for the whole network consisting of
heterogeneous nodes with different capabilities. The requirements, assumptions
and the security concept determine a specific architecture of a framework for
secure overlay networks. The architecture again imposes some constraints on
the network and security protocols which actually implement the secure over-
lay network. The network and security protocols are the cornerstone of every
framework providing building blocks for secure peer-to-peer networks and will
therefore be subject to intensive analysis and evaluation which we started with
this work.

7.3.1 Architecture

We have developed this middleware to provide means to implement, analyze
and verify different techniques and mechanisms for providing security to overlay
networks. Thus, it was a strict requirement to design the framework architecture
in a modular manner in order to switch between the different security methods
without requiring the other components to be modified.

An overview of the components of the framework is shown in Figure 7.1. All
the components in the figure which are on the left and the right of the Secure
Self-Organizing Network Management component are designed as modules and
can be replaced by other implementations simply through the specification in the
node configuration. This framework and its components run on every node. The
components of which the middleware is composed are described subsequently.

Secure peer-to-peer Network Management

This component is the heart of the framework, coordinates the flow of execution
and manages the interaction between all the other components. Thus, the system
functionality of one node and the behavior of the whole network is controlled
through this component. This component implements only very few specific
mechanisms but it manages the interfaces to the specific implementations and
calls the required methods on demand. Since also the behavior of the whole
network is controlled by this component most of the distributed algorithms and
mechanisms are implemented here or at least the scheduling of the distributed
algorithms is managed. One of the most important features is the processing
of messages. Since this component receives messages in two directions we must
take care of the message order and also that no deadlocks or starvation issues
arise due to that fact.

IO Subsystem

The IO Subsystem consists of several components, the IOHandler, Message Pro-
cessor, Message Receiver(s) and Message Sender. These components are imple-
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Figure 7.1: Middleware architecture

mented according to the requirements of the devices on which the nodes are
hosted. For instance, we have implementations for JavaSE for standard IO and
non-blocking IO, JavaME for standard IO. These components handle the recep-
tion of data from the network interfaces. Since messages usually are expressed
in XML and are often very big, it would decrease the efficiency if we would send
them as they are using the socket API, as we have experienced in earlier versions
of our framework. Thus, we have implemented a scheduling and buffering mech-
anism for overlay network messages. Although, we also have a fragmentation
mechanism in place in the secure overlay network management, which splits big
chunks of application data or reads chunks of data from application data streams
into overlay network messages, it is still beneficial to further fragment these mes-
sages into data frames on the network layer. This mechanism splits the overlay
network messages into data chunks which are then sent with a small trailer to
the destination.
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Routing Service

The Routing Service performs the task of obtaining and maintaining paths to
other nodes. Several interfaces between the secure peer-to-peer network man-
agement and this component exist since every time a message must be sent this
component is consulted. Also if the sending or receiving process failed for some
reason this component is called to establish another route with the remote node.
The actual algorithm which is used for establishing and maintaining routes can
be changed through the node configuration.

Neighbor Service

This component is responsible for finding and maintaining neighbors for the local
node. Finding neighbors depends on the underlying network structure(wired or
wireless) this component generates an abstract view of the network topology and
selects nodes from the whole network to become virtual neighbors of the local
node. This component also interacts with the routing service since it can be
used to reduce the length of routing paths. For that it selects members of the
network and tries if they can be contacted directly. If they can be reached they
are added to the neighbor list and thus reduce the maximum routing path length.
Depending on the members which are selected the overall mean routing path
length can be reduced tremendously as initial indicated by the seminal work of
Stanley Milgram [Mil67] and applied to networks by Watts and Strogatz [WS98].

Grouping Service

The Grouping Service creates, maintains and controls groups, group members
and their interaction. This grouping service is used on top of an existing default
group which is established during the process of joining the network itself. It
provides authenticated and confidential interaction between the members of spe-
cific groups. This specific implementation of the group service can be specified
through the configuration and can therefore be changed. The group service must
also protect the privacy of group members since this information could be mis-
used. For instance, if the operations for finding and joining groups would also
allow all nodes to obtain the current members of the group this could be used
for subsequent attacks on specific nodes and thus trying to get unauthorized
access to such an group. Therefore, we have designed and implemented mech-
anisms which prevent such an attack. If a particular node searches for specific
groups it obtains only information which can be made public without any risk.
This information consists of the required security level of the group, the name
of the group, a public description of the group and one particular contact point
for this group. It would also be possible to implement it without any specific
contact point but then the group join message would need to be broadcasted in
the whole overlay network. Only after having successfully joined this group the
nodes obtain the group member list, which is protected by the group session key.
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Node Service

The Node Service performs tasks which are related to the local node execution.
It handles the node configuration and other relevant local tasks which are not
strictly required for the execution of secure peer-to-peer networks. For instance,
this service records statistical data about the data transfer rates, bandwidth,
message losses and also performs some kind of node misbehavior detection. The
possible applications are manifold but we have not specified or separated them
more precisely and therefore use currently this service for all the tasks which
are not related with any other service. For instance, this service tries to find
misbehaving nodes using the techniques as described by Marti et al. [MGLB00].
Although, our system provides security from outsiders and allows in the highest
security level to detect also insider attacks if the malicious nodes do not collab-
orate and form a wormhole, it is still possible to downgrade the performance of
our system through selfish behavior, such as selectively forwarding messages or
dropping requests which require too much resources. Thus, with the Pathrater
and Watchdog mechanisms, which are explained in Section 7.4.5, it is also pos-
sible to detect potential selfish nodes which do not adhere to the general overlay
principles such as fully participating in all overlay functions.

Security Service

This component provides the required cryptographic primitives and security
functions like encryption, decryption, hashing, secure random number generator,
message authentication codes, digital signatures, certificate management, key-
store manipulation and other related mechanisms. This service can be accessed
on several levels. The different services access it through the secure peer-to-peer
network management component. Application designers can use it through the
API, although not all of the functions are available. It can also be used by the
IO subsystem if necessary although usually the IO subsystem will also access
it through the secure peer-to-peer network management. All the functions can
either be used through the standard Java JCE implementation or also through
the IAIK JCE or IAIK JCE-ME versions, depending on how much resources the
device has available on which the overlay framework is executed. We have also
implemented special processing mechanisms for different keystore mechanisms,
not only all the different keystore formats supported by SUN and IAIK are im-
plemented but also an additional concept called secure docking module (SDM).
The SDM has been developed as part of the Secricom EU-project which allows
access to keys in the keystore not only through passwords or other common au-
thentication means but also combines it with trusted computing mechanisms.
For instance, it is possible to create these hardware keystore and configure it so
that specific keys for particular platforms are only released if the local platform,
to which the SDM is attached, is in a certain trusted state. Thus, we can ensure
that the operating system and the secure overlay network framework have not
been tampered with and it is secure to release the key to the platform or the
framework, respectively. For more information about this process and possible
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application scenarios please see [HTK10, DHK10].

API

The API provides interfaces for application designers as the name already sug-
gests. The relevant functions like init, join, leave, send, receive, broadcast, get-
Members, getNeighbors, addNeighbor, findNode, getGroups, createGroup, join-
Group, leaveGroup, and so on are either realized as common methods or must be
implemented as callback functions as part of the application. The API provides
different methods for sending and broadcasting data depending on the size and
type of data to be transmitted. If only simple messages, which do not exceed
some specific amount of bytes, should be sent than it is possible to provide them
through ordinary byte arrays. If big amounts of data or streaming data should
be sent it is best to use the send/receive/broadcast functions which allow to use
ByteStreams. Otherwise the system would have not been able to handle the
amount of data and provide it to the user through the API since memory would
be the bottleneck.

7.4 Implementation

The behavior of most of the components described in the previous section can
be changed because of the modular design and through the implementation of
different algorithms. In this section we will provide details about the current
implementation and discuss three different protocols used inside the framework.

First we outline the initialization process which is performed for each node
at startup. Thereafter we discuss three different types of protocols currently
implemented in the framework. One protocol is realized directly inside the secure
peer-to-peer network management, one in the routing service and one in the
neighbor service. The first protocol could also be realized in the grouping service
since it actually performs mutual entity authentication and is used for joining
the network, which is the same process as joining a group.

7.4.1 Initialization

During the startup process of each node, distinct actions are performed which
can not be counted clearly to any other service or protocol and are therefore
outlined in this section.

1. Loading the specific node configuration

2. Searching for available nodes

3. Checking for available networks

4. Creating a network if no suitable is available

5. Joining of suitable network
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Each node is created with an unique ID and a set of configuration details spec-
ifying the behavior of the peer-to-peer network and the characteristics of the
participating nodes. This unique ID can either be obtained from the node con-
figuration in the case of preestablished security parameters or derived from any
source which guarantees uniqueness otherwise, for more information see Chapter
5. Since the ID constitutes a security property, it must be guaranteed that an
ID is only assigned to one node. In case of dynamic ID assignment during the
execution of the network it is also necessary to assign an ID always to the same
node. Other node specific configuration details include the security level, activ-
ity intervals, some physical network parameters, secure storage location and the
type of credentials. Especially the credentials are important details which are
actually not stored in the configuration but must be provided during the node
join process (for more information see 7.4.2). The configuration details that de-
termine the behavior of the peer-to-peer network include the routing algorithm,
cryptographic algorithms, neighbor algorithm and physical network parameters.

After a node has been created and its inherent characteristics have been
established, the node searches for a suitable overlay network which it can join.
In order to find a network and be able to join it the node must first find other
nodes. There are several steps in this process which differ between the different
peer-to-peer network implementation. For instance, in a decentralized pure P2P
system a node would usually first try to find nodes in its reachable local area
through a LAN broadcast. Other nodes will usually also be looked up through
known addresses of nodes stored in some kind of repository. In addition, sending
messages to a specific multicast group could also be part of the discovery process.

If other nodes and suitable networks have been found, the node performs the
actions described in section 7.4.2. If no network could be found the node must
create its own network. Therefore, the node uses the set of configuration de-
tails which describe the network behavior to create a new peer-to-peer network.
The node adds himself to the list of members. The actual join process is only
performed if another node joins this network.

7.4.2 Join protocol

After a node has discovered an existing peer-to-peer network and wants to join
this network, a protocol must be executed which guarantees the following prop-
erties:

� mutual entity authentication,

� key agreement or key transport, and

� key authentication

There exist several algorithms and protocols which provide one or several parts
of the described functionality. The join protocol is described in the context of the
proposed security concept in order to guarantee the correctness of authentication
process, the identity of the participating entities and the established session key.
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We decided to use the Needham-Schroeder-Lowe authentication protocol as
basis for our join protocol. We added an additional step to the original pro-
tocol which provides authenticated transport of an existing key between the
joined and the joining node. For detailed information about this protocol see
[NS78],[Low95],[Low96]. This step is added because the two nodes performing
the join protocol do not derive or agree on keys but rather every joining node
is provided with the session key currently used inside the network at the appro-
priate security level after he is authenticated.

It is not necessary to specify one specific node to be responsible for the join
process without violating the security of the network since after authentication
all nodes are equal and possess the current session key. Furthermore, it also
improves the reliability of the network since otherwise a singe point of failure
would be introduced to the system.

7.4.3 Routing protocols

Sending messages to other nodes is the most important function which a frame-
work for peer-to-peer networks must provide. Depending on the intended over-
lay network type different mechanisms are needed to provide the communication
functionality between the nodes. Usually nodes in a overlay network can directly
send messages to nodes that are in their neighborhood. Such a neighborhood
can be physically or virtually restricted. For instance nodes in the internet may
only communicate with nodes with a public address or nodes in an wireless ad-
hoc network can only communicate with their physically reachable neighbors. In
order to be able to send messages to nodes which can not be reached directly a
protocol is required which establishes routes to nodes not in their neighborhood.

The middleware is designed in such a way that different routing protocols
can be implemented and used. They routing protocols can be exchanged easily
through the use of the factory method pattern. We have implemented pro-
active and reactive routing algorithms such as DSR, AODV, OLSR, Ariadne
and our own scalable secure routing algorithm. We have mainly used algorithms
which were designed for mobile ad-hoc networks since they also have peer-to-peer
behavior and therefore fit best for overlay networks.

Our main focus was on routing algorithms based on the dynamic source
routing protocol (DSR)[JM96] and the ad-hoc on-demand distance vector rout-
ing protocol (AODV)[PBR99]. We have also implemented secure variants. The
most famous one among these is called Ariadne[HPJ02] and is based on DSR.
These protocols have the ability to adapt very quickly to changes in the topology.
DSR also does not require periodic exchange of routing messages which further
reduces complexity and increases efficiency in dynamic environments. Another
property of is that they are also well suited for devices which are constrained in
terms of computational power, memory and energy consumption.

We have also designed and implemented a secure routing protocol based on
DSR which we call scalable secure routing (SSR). This routing protocol incorpo-
rates the ideas developed in the security concept and its security can be adjusted
through the selection of different security levels. In Chapter 6 we outlined the
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message sequence and actions of the scalable secure routing protocol for security
level high in Figure 6.16.

Depending on the security level the routing protocol achieves protection from
only outsider to also insider attacks. There exist also other sequences of action
for the scalable secure routing algorithm depending on the selected security level,
for more information see Chapter 4.

7.4.4 Routing table

Somewhat independent from the routing protocol itself different styles of route
tables are available. The most simple one is the path cache. In a path cache
all routes established at a given node are stored as a whole. This means that
for each destination and each route to the destination one entry exists in the
path cache. Such a path cache is simple to maintain and since the whole entry is
stored it allows to verify the security of the route each time the route is obtained
from the table. The other possibility would be to use a link cache which has one
benefit over the path cache. With a link cache it would be possible to calculate
new routes to destinations even if the previously used route is broken. Instead of
storing each route separately in the cache the route is analyzed and only the link
or more precisely the neighborhood information is used to generate a compre-
hensive map of the network using the Dijkstra algorithm. Thus, if a particular
link is broken in the network it is possible using the Dijkstra algorithm to find
an alternative path to the same destination without initiating a new route dis-
covery process. This algorithm can be used to obtain routes to destinations after
a link has been broken and it is even possible to calculate routes to destinations
without any prior route discovery process for this destination but then the secu-
rity assumptions would not be fulfilled anymore. Because it would be possible
to extract routes from the link cache which have not been established using the
secure routing and the associated verification mechanisms and can thus not be
trusted. It may be possible to obtain secure verifiable routes from the link cache
but this was not the focus of our work.

7.4.5 Insider Attack / Malicious Peer Detection

The design and implementation of the secure overlay network allows only for
legitimate peers to take part in the overlay network execution. Depending on the
selected security level, specific requirements must be met by the nodes in order
to join the network and participate in the routing and communication process.
However, even if all nodes which participate in these processes are authentic
and authorized, it is not guaranteed that these nodes behave correctly. Correct,
non-malicious and altruistic behavior may be specified differently depending on
the overlay network application. But usually this involves such behavior as:

� Forwarding of all messages with equal measures,

� Participation in all distributed overlay functions,
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� Provision of network information equally to all nodes, and

� Provision of correct current node status information.

In order to realize such functionality and guarantee the desired behavior of
all participating nodes, an overlay network must be able to measure the behavior
of its nodes. Since overlay networks are decentralized, these functionalities and
countermeasures must be implemented by each node. In addition, the result-
ing behavior information must be protected from modification and fabrication.
Several mechanisms which are usually based on reputation systems have been
proposed and implemented in different scenarios, most often in mobile ad hoc
networks since they possess a unique feature, namely physical link layer acknowl-
edgments, which allows for simpler implementation of such systems.

We have experimented with reputation-based detection and countermeasure
mechanisms called Watchdog and Pathrater [MGLB00], proposed by Marti et al.,
since they are based on the broadcast nature of mobile ad hoc networks which is
somewhat similar to the nature of unstructured overlay networks with broadcast
based routing protocols. Using the Watchdog functionality it is possible to detect
misbehaving nodes and identify Blackholes, Greyholes, message manipulation,
and to some extend also Wormholes. Blackholes are simply data drains where
the misbehaving node drops all information which is not generated by itself. A
greyhole is similar but is more fine-grained in what kind of messages it drops and
what it relays. Message manipulation is not a problem in our system since we
use cryptographic means to detect modifications of messages. Each node verifies
that the messages which sent to its neighbors are also forwarded by them. Thus,
each node watches the behavior of its neighbors and depending on the behavior of
each neighbor assigns or modifies the rating of it. In addition, it is also possible
to rate an entire route or nodes on the route depending on the reliability of
this route. This information can be incorporated into future route discovery
processes and enables the source and destination to dismiss routes depending on
previously obtained knowledge about the reliability of specific nodes or routes.
The reliability of a specific node is based on its reputation and in order to assign
ratings to routes the Pathrater mechanism requires a source routing algorithm to
be used since all the nodes of a specific route must be known in order to calculate
a rating for the whole route. In order that Watchdog can verify if the transmitted
message has been received and forwarded correctly passive acknowledgements
are used. Instead of relying solely on active acknowledgements the network
interface is in promiscuous or monitor mode and checks if a specific message
is forwarded again by the neighbor. One of the difficulties in overlay networks
is that it is usually independent from the underlying physical network. Thus,
in contrast to the research of Marti et al. the underlying physical network
must not be a wireless broadcast network which allows to capture messages
sent by its physical neighbors. In P2P overlay networks, the neighbors of a
node my not be located physically in the same network segment and thus it
is not possible to overhear the their communication. Therefore, the overlay
network must provide a mechanism to obtain such information for each neighbor
of a particular node. This mechanism can be a very simple acknowledgment
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mechanism provided by the neighbor’s neighbor. If node S sends information on
a specific route to destination D, each node on the route returns to its two-hop
neighbor an acknowledgement about the received message. Thus, with a route
as S,A,B,C,D node B sends an acknowledgement for a received message from
node A to node S, node C sends an acknowledgement of a received message from
B to A and so on and so forth. Thus, each node obtains information about its
neighbors if there is a two-hop neighbor which also forwards or receives the same
message. This mechanism can not only be used if routes are already established
but also if routes are discovered. Over time enough information about each
neighbor can be acquired and the Pathrater mechanism can thereafter assign
ratings to each neighbor.

Since it only makes sense to gather information about nodes in the overlay
network if they can be identified correctly and each node can also verify its
identity, the system must be used at a specific level according to our security
concept. In the examples given in this thesis using the security level medium we
can protected from outsider attacks but are not able to identify and distinguish
securely between different nodes if they choose to lie about their identity. In
security level high each node possess a public / private key pair which allows
us to identify each node securely and also allows us to verify the identity at
any given time. We therefore have the possibility at this security level to even
protect against insider attacks using countermeasures such as Watchdog and
Pathrater. We have implemented both approaches in the framework and done
some experiments using simple networks configurations. We have implemented
the same approach also in the PeerSim simulation environment which allowed
us to do more extensive experiments with reputation mechanisms.

7.5 Performance evaluation

We have obtained the results from our Java implementation for the secure overlay
framework as well as from the same Java implementation used in the simulator
called PeerSim. We have created and tested our implementation in several net-
work scenarios with varying amounts of nodes. We ensured that different path
lengths between nodes which send message exist. Nodes or links are also removed
randomly between different nodes to force the routing protocol to perform route
maintenance and establish new routes if necessary. Each node has a randomly
generated pre-configured list of nodes which it knows of at startup. These nodes
are contacted and the node joins the existing P2P network. The overall member
list is learned thereafter and messaging between the different members is then
initiated. We have measured the time it takes a node to discover routes to other
members in that network depending on the specified security level as presented
in Chapter 6. In addition we have taken measurements about the more general
characteristics of our secure overlay network using simulation. Subsequently, we
will show the results we obtained from the simulation.
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7.5.1 Only the shortest route is used

In this section we have evaluated the influence of the amount of neighbors on
the route discovery process and the resulting route lengths. All the simulations
have been performed with 1000 nodes in the overlay network. Each of the nodes
has been initialized with a random set of initial neighbors. The number of initial
neighbors (1,2,5,10,15) has been specified in the configuration file. The actual
amount of neighbors varies since connections are bidirectional and for that reason
the actual amount is almost the double of the initialized size. This statement is
correct until some saturation point is reached which is around 20% of nodes as
neighbors. At this point already 10% less than double of the initial neighbors
are actual neighbors. Each node sends a neighbor request to the initial set of
neighbors and adds nodes to its set of neighbors if it receives a neighbor request
from other nodes. In this experiment we have not introduced any churn into the
system, thus the amount of available nodes always stays the same and no route
error is triggered. We have triggered the route discovery process through sending
10 messages from each node to randomly selected destinations. The simulation
itself is based on cycles and status information is only generated as long as
messages are still transmitted, thus after the 10000 messages have been sent no
further status data is logged. We send 100 messages every 50 cycles. In all of
these experiments we have limited the maximum route length to 15. Thus, after
14 hops the route request is dropped if the destination has not been reached yet.
We also only used the shortest route which was recorded at the destination in
this experiment. Usually several route requests reach the destination depending
on the amount of neighbors, amount of nodes in the system and the maximum
allowed route length.

For all of the following experiments in this section we take into account the
shortest and the longest route which is contained in the nodes routing table
and create for both an average over the whole network. We also calculate the
average of all routes in the whole overlay network. For some cycles at the start of
the simulation the initialization functions of the overlay network are performed.
For this each node sends out neighbor requests and triggers the join process
after it receives a neighbor response from one neighbor. During the join phase
several messages are sent which search for neighbor peers, the overlay network
itself, perform the Needham-Schroeder-Lowe authentication protocol, and the
distribution of the keying material.

In Figure 7.2 the overlay network is initialized with 1000 nodes with each
node having 1 initial neighbor specified. Since each node has one neighbor and
the connections are bidirectional each node ends up having more neighbors than
initially specified. In this case we see that the first routes which are established
in the system have a length of less than 9 but over time the average route lengths
stabilize around 9.2. Since the shortest routes are established first and we check
every 2 cycle it is normal that in the beginning only these are showing up. The
shortest routes decline over time to 7.7 and the longest routes almost reach 11.
What is not shown in this figure is the fact that with having only 2 neighbors in
a 1000 node network only 13% of the messages arrive at the destination because
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Figure 7.2: Route length distribution with 2 neighbors per node and 1000 nodes in
total

for the other destinations no route could be found in the overlay.

In Figure 7.3 we see the route length distribution during the experiment with
an initial set of 2 neighbors which corresponds to an average amount of 3.998
neighbors for the whole network. For this experiment again all three curves
start out below 4.35 at which the average route length thereafter stabilizes. The
shortest routes thereafter start to decline and ends at 2.6 after all messages are
sent. But from the curve shape it is clear that this is not the end. If each node
would establish routes to other or all other nodes this value would be lower. This
is because for the calculation of this value only the shortest route of each node
is used. The longest routes increases from 4.35 to around 5.7. The curve shape
of the longest routes indicates that this is almost the end point for that value.

In Figure 7.4 we see the route length distribution during the experiment with
an initial set of 5 neighbors which corresponds to an average amount of 9.978
neighbors for the whole network. For this experiment all three curves really start
at 2.2 hops. In the beginning there is much variation due to the fact that only
few messages have been sent and routes with very different route lengths have
been established. The shortest routes curve immediately starts to decline and
its value is 1.4 at the end of this simulation. Here again is no sign that this is
the lowest value for this parameter since the curve is almost a straight line. The
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Figure 7.3: Route length distribution with 4 neighbors per node and 1000 nodes in
total

average route length again does not change much and stays flat after the first
100 messages at 2.3. The longest routes curve starts immediately to increase
and it looks like it finds its asymptote at approximately 3 hops peer route.

In Figure 7.5 we see the route length distribution during the experiment with
an initial set of 10 neighbors which corresponds to an average amount of 19.890
neighbors for the whole network. In the beginning all three route length curves
start at 1.7. For all the figures the first few cycles are not very meaningful since
the few messages sent and routes established have too much influence on the
overall result and since the destinations are selected by chance this introduces a
lot of variance. However, already after some cycles the general trend or behavior
of the route lengths in this setting becomes visible. The general theme is similar
to the one in the previous figure 7.4. The mean of all three curves is lower than
in the previous one. The overall average route length is after the initial phase
a little below 1.7 and decreases very gently until the end of the simulation to
little over 1.65 hops per route. The shortest route length starts the same as the
overall average but decreases more aggressively to 1.06 hops per route until the
end of the simulation. Again this looks not like it will be the end but it also
seems not to reach only 1 hop. The longest route length curve again starts out
slightly below 1.7 and grows to 2.01 until the end of the simulation. Here we
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Figure 7.4: Route length distribution with 10 neighbors per node and 1000 nodes in
total

will have reached the end point since it does not change much after 3500 cycles
anymore.

In Figure 7.6 we see the route length distribution during the experiment
with an initial set of 15 neighbors which corresponds to an average amount of
29.76 neighbors per node for the whole network. For this experiment all three
curves start at 1.47 hops. The average route length declines a bit and stabilizes
at 1.43 hops thereafter. The main characteristics of the figure is the same as
the two before with the difference that the overall route length is smaller on
average. The longest route length curve immediately starts to increase and
reaches almost 2 hops per route. The shortest route length starts immediately
to decrease and touches almost 1 which also will be the end in this scenario.
In the end of the simulation all messages have been delivered, as it is also the
case for the simulation with 2, 5, and 10 neighbors and about 9680 routes have
been established which is also almost the same for the mentioned simulations.
There are less routes than messages sent since by chance some of the sources
are neighbors of the destination and must therefore not establish a route. We
also initiate the route discovery process even if one of the existing routes at the
source would contain the destination in its path, meaning the destination for a
new message is a hop in another route.
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Figure 7.5: Route length distribution with 20 neighbors per node and 1000 nodes in
total

It would be possible to use the existing route and send the message using the
already established path, but we want to allow the destination also to choose
what route should be established in order to only accept trusted nodes as hops.

The last Figure 7.7 for this experiment shows the amount of established
routes depending on the amount of neighbors. Since we use always only the
shortest route the amount of established routes is almost the same. The slight
differences in the amount of routes for the different amount of neighbors comes
from the possibility that the source and the destination are neighbors and there-
fore need not to establish a route.

Another reason for different amounts of routes, which is not applicable for
these simulations, is the route request timeout. For each route request there
exists a timeout after it is deleted from the request cache in order to allow new
route requests for that destination in case of an route error or any other reason
why no route has been established to a particular destination already. If the
route request timeout is too long it takes too much time for the whole network
to deliver messages if it is too short more routes are established as it may be
necessary. Subsequently we provide some results with different route request
timeouts and show how many routes are established.
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Figure 7.6: Route length distribution with 30 neighbors per node and 1000 nodes in
total

7.5.2 All routes are used

In contrast to the previous section, we now establish all routes which are possible
within the network triggered by the 10000 messages sent from random sources
to random destinations. In this case we use a path cache as commonly used by
dynamic source routing implementations.

In figure 7.8 the route length distribution of the overlay network is shown
which has been initialized with 1000 nodes with each node having 1 initial neigh-
bor specified as before. The figure is almost identical to the one where only the
shortest routes are used. But since in this case usually there does not exist
another route to the destination the figures are the same. We have the same
message delivery success rate of only 13%. This is logical since only some addi-
tional routes can be established to the existing ones since all other parameters
such as nodes, neighbors and maximum routing length stayed the same.

In figure 7.9 we see the route length distribution during the experiment with
an initial set of 2 neighbors which corresponds to an average amount of 3.998
neighbors for the whole network. The length of the shortest routes in the whole
overlay network on average start at around 4.5 and decline thereafter to 2.75
at the end of the simulation. This curve is identical to the one where only the
shortest route is used. Since this curve is created from the sum over all shortest
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Figure 7.7: Amount of established routes for 1000 nodes

routes of each node divided by the amount of nodes this curve will always be
the same all the following simulations as in the case if only the shortest route
used. The average length of all routes in the whole overlay network starts out
around 5.5 and stays the same for the whole time after some fluctuations in
the beginning. Again these fluctuations are cause by the fact that only a few
routes have been established and thus provide not a very good average in the
beginning. The longest routes on average in the overlay network begin with 6.5
hops and grow slowly until the end of the simulation where it reaches 8.5 hops.

In figure 7.10 we see the route length distribution during the experiment with
an initial set of 5 neighbors which corresponds to an average amount of 9.978
neighbors for the whole network. The figure looks similar to the previous one
with the exception that the maximum allowed route length stays more flat or
more precisely increases linearly at a very slow rate. It starts out at 4 and grows
to 4.2 until the end of the simulation. The overall average route length is at
around 3.3 the whole time. The shortest route lengths in this overlay network
are significantly smaller. In this setting 97769 routes have been established after
all of the 10000 messages have been delivered. The established routes have been
created by sending over 97 million route requests whereas 87 million requests
have been dropped on the way due to reaching the hop limit or returning to
a host which has already seen this request. Route requests are also dropped if
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Figure 7.8: Route length distribution with 2 neighbors per node and 1000 nodes in
total

the contained route is not correct or if the request has been corrupted. One
of the downsides of source routing in general is that it does not scale very well
after the networks get too big since all route requests are broadcasted. Where
these limits are is not established but as one can see from these experiments is
that even with 1000 nodes the amount of messages sent for establishing routes
is tremendous although we have not taken churn into account in this simulation.
One way to reduce the amount of requests sent is to use very accurate hop limits
or use variable hop limits. Meaning that the algorithm should start with very
low hop limits and increases this limit if no route could be established. On the
other hand source routing allows for very simple and efficient incorporation of
security mechanisms with the routing algorithm and verification of the security
features at every hop in the route.

In figure 7.11 the route length distribution during the experiment is illus-
trated with an initial set of 10 neighbors which corresponds to an average amount
of 19.890 neighbors for the whole network. Without surprise we see again a sim-
ilar tendency in the figure with the overall average route length at around 2.7
hops per route. The maximum route length starts out at 3.05 and grows to
3.3 until the end of the simulation again in a rather straight line. The short-
est average route length is less then in the previous experiments. It starts at
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Figure 7.9: Route length distribution with 2 neighbors per node and 1000 nodes in
total

around 1.7 hops and drops to 1.07 until the end of the simulation. In this set-
ting over 193000 routes have been established for the 10000 sent messages. The
route discovery process triggered almost 189 million route requests to be sent
in the 1000 node big overlay network. All the messages sent until the end of
the simulation including all the join, authentication, key exchange, routing and
message delivery itself accounted for almost 20 GB of data transmitted over the
network. The 20 GB of data are made up of all the messages sent by each node.
Thus, for instance if a route discovery process has been initiated first the source
broadcasts the request to all its neighbors. Thus, each neighbor again broad-
casts this message to all of its neighbors and therefore the amount of messages
and thereby data sent increases exponentially. Since usually the neighbors in an
overlay network are not nodes within the same broadcast domain the message
must be sent directly to each neighbor. If either a real physical broadcast or
multicasting to neighbors could be used the amount of data transmitted would
be limited significantly.

In figure 7.12 we see the route length distribution during the experiment
with an initial set of 15 neighbors which corresponds to an average amount
of 29.756 neighbors for the whole network. The longest average route length
curve starts with 3 or less hops per route and stays there until the end of the
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Figure 7.10: Route length distribution with 5 neighbors per node and 1000 nodes in
total

simulation. In this figure we can see a lot of jitter for the longest and the
average route length, again the reason is the relatively low amount of routes
established in the beginning. The overall average route length is little below
2.4 and also stays flat until the end. Only the shortest routes curve varies
and shows the same shape and values as if only the shortest route would be
used. In this experiment the 10000 messages trigger the establishment of about
286000 routes in the overlay network with 1000 nodes and the maximum of 15
hops per route. The amount of data transmitted from the start until the end
of the simulation amount to 34 GB. If all transmissions to the neighbor nodes
would be performed by physical broadcasts or multicasts the amount of data
sent would be less than 1/20 of the previous amount. Thus, this seems to be a
very good motivation to use broadcasting and multicasting as often as possible.
Unfortunately, in the current Internet architecture it is not guaranteed that
multicast is supported physically by all routers. But since the reduction is very
significant, more efficient communication mechanisms should be investigated.

The last figure 7.13 for this experiment shows the amount of established
routes depending on the amount of neighbors. In this experiment we use all
routes which can be established with the selected request timeout. Thus, the
amount of established routes varies much between the 6 different settings since
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Figure 7.11: Route length distribution with 10 neighbors per node and 1000 nodes
in total

the possible routes are related with the amount of neighbors in the network.
From the curves for 10, 20 and 30 neighbors one can deduct that for every 10
additional initial neighbors about 90000 more routes are established in an overlay
network with 1000 nodes and 10000 messages sent. In the last section of this
chapter we verify if there is any regularity for this behavior. Another interesting
fact in these simulations is to obtain with what amount of neighbors it is possible
to end up with a network where every node is reachable. In this simulation we
see that it is possible with 4 neighbors. Since, we have only the opportunity to go
from 2 to 4 neighbors we can not verify if it would also be possible already with
3 neighbors. This is because we assume bidirectional connections we usually get
double the initial amount of neighbors up to some point where the neighbor set
gets saturated which starts at 20% of the amount of overall nodes. This means
that if more than 20% of the total nodes are assigned as neighbors we do not
end up anymore with effectively the double amount of neighbors.

7.5.3 Neighbor-Route Distribution

Since the amount of routes established usually should be related to the amounts
of neighbors each node has in the network we tried to find out the correlation
for that. We have experimented with different amounts of nodes in the overlay
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Figure 7.12: Route length distribution with 15 neighbors per node and 1000 nodes
in total

network and with the amount of neighbors ranging from 2 to 99% of the overall
nodes. We specify the amount of neighbors in percentage since we use three
different amounts of overall nodes in the network. We started with 2, 4, 6, 10,
20, 30 percent of neighbors. Then we used 35, 45, 50, 55, 65, 70, 75. The last
data points starting with 80 percent lay more together since many initialized
neighbor nodes are required to get to 99% of neighbors.

In figure 7.14 the amount of routes in relation to the amount of neighbors
per node is illustrated in non-logarithmic fashion. Thus, it is not easy to see
the distribution for the network with 100 nodes. But for all neighbor-route
distribution it is easy to see that there is a peak for the established routes at
around 35% of overall nodes used as neighbors. This means that with that
amount of neighbors the most different routes for one destination can be found.
This also means that with that specific amount of neighbors the overall network
itself is most robust to changes in the topology and node fluctuations.

In figure 7.15 the same route distribution as before is depicted but using a
logarithmic scale for the amount of established routes in order to better accom-
modate networks with less overall nodes. The curves for the different amounts
of neighbors looks almost the same. The four curves show the distribution for
100, 250, 500 and 1000 nodes in the overall network. Another fact which can
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Figure 7.13: Amount of established routes for 1000 nodes

be observed in the logarithmic representation is that starting with 30-35% of
nodes as neighbors the amount of established routes does not increase but is
decreasing.

7.5.4 Message delivery latency

An important factor in an overlay network is the message delivery latency and
especially the latency of the initial message delivery. This means that the time it
takes from sending the message from the source until it reaches the destination
varies greatly depending on the routing algorithm used. If a routing algorithm
is used which works pro-actively, messages are exchanged permanently in order
to have the complete routing table available in case a message has to be sent.
This allows for lower initial message delivery latency but it also adds a lot of
complexity to the overlay network since these messages are exchanged between
the nodes constantly. Depending on the algorithm used, either distance vectors
or neighbor lists are exchanged or broadcasted in the network. Thus, as overlay
networks grow beyond a certain amount of members or if the amount of churn
is high such routing algorithms are not efficient. Thus, other algorithms which
can incorporate the specific features of overlay networks into their mechanisms
are used. We used a on-demand routing algorithm which first checks if the route
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Figure 7.14: Route distribution in relation to the amount of neighbors per node

is already available in the route cache and if not then triggers the discovery
process. Depending on the specific implementation of the on-demand algorithm
it is possible that only the source and/or the destination obtain a correct route
or also all intermediate nodes which are on the route path also store this route
in their cache. There exist several improvements for these kind of mechanisms
in order to obtain routes faster, learn routes from the discovery process and use
the obtained information more efficiently. One of the important features of the
route discovery process is the route request timeout. This timeout specifies how
long a route request for a specific destination is stored in the request cache.
As long as this request is contained in the cache the node does not accept any
new request for this destination. Therefore, this timeout has an effect in very
dynamic networks with an high amount of churn. Since usually in dynamic
networks the routes break very often and new routes to a specific destination
must be discovered. Thus, if the timeout is too long it takes too much time to
establish new routes which again increases the message delivery latency. Another
effect is that if the route request timeout is to short too many route requests
are initiated because it takes too much time for the response to arrive at the
destination.

Subsequently we will go more into the details of churn and its influence on
the message delivery latency. Usually the message delivery latency and churn
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Figure 7.15: Route distribution in relation to the amount of neighbors per node in
logarithmic depiction

can not be analyzed without taking the routing algorithm and in our case the
route request timeout into account. Thus, we will also investigate the influence
of the route request timeout in combination with churn on the message delivery
latency. We will do this with different simulation settings in order to get a clear
picture what the best parameters for specific networks are so that they can be
operated efficiently.

Influence of churn

The efficiency and performance of overlay networks, especially the used routing
algorithm, are strongly influenced by the amount and specifics of churn. Churn
specifies the fluctuations in overlay nodes through joining and leaving nodes in
the overlay network. Hereby also nodes which do leave the network without
informing the overlay have the most influence because the neighbors of the leav-
ing node can not take appropriate action as well as the nodes which require the
disappearing node to communicate with others. Since overlay networks are very
dynamic and have no specified times at which nodes join or leave the network
the topology of the overlay changes constantly. Thus, established routes and the
destinations of a particular communication session may not be valid anymore
during the runtime since intermediate or destination nodes leave the network or
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fail to function. A robust routing algorithm should be able to update existing
routes and perform a new route discovery process if necessary. The routing al-
gorithm used in our overlay network has the ability to adapt to such changes
due to routing errors triggered if a node tries to send a message over a route
which does not exist anymore. Thus, the node detecting the failure returns a
route error (piggy-backing the original message) to the source of the message.
The source deletes all the routes in its route cache which contain the failing
node. Thereafter, the source checks if another route to the specific destination
is available. If not the route discovery process is initiated again. If an alternative
route is established the message is sent to the destination thereafter.

It is also worth noting that it makes a big difference what kind of network
model will be simulated.

For instance in the previous setting we have sent a few messages to randomly
chosen nodes which may be realistic for future Internet-of-Things subnetworks
where everything is connected and different entities want to obtain or distribute
data between each other. It may also be realistic for environmental monitoring
situation where the different sensors simply try to distribute small amounts of
data to different nodes for reasons of redundancy and reliability. But for instance
in common file-sharing or content distribution networks it more often happens
that the nodes exchange big amounts of data with the some nodes without
contacting other nodes at all or at least only for status information. Thus, it is
also very important to simulate such network settings, since our overlay system
should also be applicable in these situations. Thus, we will provide results for
both scenarios.

In addition, it is often advisable in situations where constant churn is ob-
served, no matter what kind of network or routing algorithm is used, to establish
new neighbor connections in order to keep the network highly connected and to
counter problems such as growing route lengths and even partition of the net-
work due to missing links. We will now investigate the behavior of our network
under different churn settings where we modify the amount of nodes joining
and leaving, the maximum amount of additional or missing nodes, the amount
of neighbors and also the possibility of re-neighboring. We will do this by ob-
taining specific values which represent the behavior of our system under such
circumstance such as the amount of routes established over time, the amount
of routes currently used, the amount of requests sent and dropped, the message
queue size, different message delivery latencies and how often it happens that
no route to a destination is available due to churn.

For the experiments in this section we used the following overlay network
settings. We again used 1000 nodes with a maximum hop distance of 15 for each
route request. The route request timeout was fixed to 500 cycles and each node
had 2 initial neighbors which again resulted in 3.98 neighbors on average with
2 neighbors effective minimum and 9 neighbors effective maximum. Each node
sent 1000 messages to the same other node during the simulation. 100 messages
have been sent every 10 cycles in the whole network. Thus, in sum 1 million
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Figure 7.16: Maximum message delivery latency with a maximum of 20% down nodes
and different amounts of churn.

messages have been sent and delivered in the whole overlay network after the
simulation has finished. Regarding churn we have simulated the same network
settings with different amount of churning nodes and maximum down nodes.
The churn interval was always the same with a value of 10 cycles. Meaning, that
every 10 cycles a specific amount of nodes either were available again or were
not reachable anymore. We used amounts of churn of 1,3,5,7,10,15 and 20% of
total nodes. Thus, every 10 cycles 10 - 200 nodes were selected to either become
active or inactive again, depending on their pervious status. We simulated this
setting with 3 different amounts of maximum down nodes of 5, 10, and 20%
which resulted in either 950, 900 or 800 active nodes at minimum.

In figure 7.16 the maximum message delivery latency in relation to different
amounts of churn with a maximum of 20% down nodes is depicted. This simu-
lation shows a very interesting fact about the influence of churn on the overall
network performance. In the beginning the maximum message delivery latency
is lower for the simulations which had less amount of churn and vice versa. For
the curve with 1% churn the maximum message delivery latency is around 100
cycles after 5000 cycles of the simulation, which is half of the latency of the curve
with 20% churn. But after 10000 cycles the whole image changes. The curves
for the highest amounts of churn start to asymptotically approach their maxi-
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mum value much earlier than the ones with lower amounts. Thus, after a little
more than 20000 cycles the curve with the lowest amount of churn has crossed
the curve with the highest amount of churn and keeps increasing with a much
higher rate than all others thereafter. From this figure it is not visible where
the maximum message delivery latency value for this amount of churn lies. All
the other curves, with a possible exception for the curve with the second lowest
churn amount, seem to already approach a value which is lower than 700 cycles
asymptotically. There are several reasons for the observed results. First 1% of
churn which results in only 10 nodes selected to either become active after being
down or vice versa is relatively low. It takes longer that the maximum amount of
nodes which are allowed to be inactive is reached and it takes more time in gen-
eral for a down node to get active again if the amount of churn is lower. Second
the amount of down nodes with 20% is relatively high. Thus, 200 out of 1000
nodes are down after the initial phase and this amount of down nodes is almost
constant, with sometimes 198 or 199 nodes down, until the end of simulation.
Since so many nodes are down there is an increased chance that not many routes
to a specific destination can be found. Thus, if a node is crucial for establishing
a route to a specific destination the messages can only be delivered if the node is
active. These are the reasons for that particular outcome. Thus, the higher the
amount of maximum down nodes, the lower the amount of churning nodes and
the longer the churn periods the higher the maximum message delivery latency.
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Figure 7.17: Maximum message delivery
latency with a maximum of
10% down nodes.
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Figure 7.18: Maximum message delivery
latency with a maximum of
5% down nodes.

In figure 7.17 and figure 7.18 the same network settings and amount of churn
are outlined but the maximum allowed down nodes was different with 10% and
5%. These figures show a slightly different picture but the results are in line with
the conclusion we draw from the figure 7.16. In figure 7.17 the curve with the
lowest churn rate does not cross the one with the highest churn rate anymore,
or more precisely until the end of the simulation. If the simulation is prolonged,
for instance by sending 3 times the amount of messages, the lowest churn rate
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curve still crosses the others but only slightly. Thus, if only 10% of the overall
nodes are down, the influence of low churn rates is not that drastic anymore.
This can also be observed when figure 7.18 is analyzed. Here the amount of
maximum down nodes is low enough so that the amount of churn is positively
correlated with the maximum message delivery latency. If the amount of down
nodes gets below some point it is usually possible to establish alternative routes
and then only the frequency of route errors influences the maximum message
delivery latency.
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Figure 7.19: Average message delivery latency with different amounts of churn.

In contrast to the maximum latency, as shown previously, the average latency
is much more influenced by the average route length and the frequency of route
errors. Thus, the figures 7.19,7.20 and 7.21 all show a direct correlation between
the amount of churn and the average message delivery latency. The only excep-
tion is the curve of 1% churn, which not only shows much more variation then
the others but it also has a higher average latency then the 3% churn curve in the
setting with a maximum of 20% down nodes. The fluctuations in the beginning
can be attributed to the same fact as mentioned for the maximum latency. In
the beginning, as less messages have been delivered the extreme outliers, which
have been created by the fact that nodes will stay down much longer than in
other scenarios, have much more influence on the overall result. As the simu-
lation progresses the curve smoothens out but it still stays above the 3% churn
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curve.
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Figure 7.20: Average message delivery
latency with a maximum of
10% down nodes
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Figure 7.21: Average message delivery
latency with a maximum of
5% down nodes.

For figures 7.20 and 7.21 the same is true but now the positive correlation is
true for all curves. Although, for the figures with 20% and 10% maximum down
nodes it seems that the lowest churn rate curve would decrease with additional
simulation cycles and for 5% to increase until it reaches some ultimate value
which we have not determined.

Figures 7.22,7.23 and 7.24 show the development of the message queue in
relation to different amounts of churn and maximum inactive nodes. All the
curves have been calculated using an moving average. The message queue gives
us a clue about how many messages can currently not be delivered due to not
available routes. This can happen if routes could not be established or routes
have been broken during the delivery of messages and thus the message has
returned to the source and is stored in the queue. One obvious observation is
that the higher the amount of churn the more messages are stored in the queue.
For 20% churn the average amount of messages stored is between 220 and 230.
For the 3% and 5% of churn it is between 100 and 120. All the curves, with
exception of the curve for 1% churn, are almost completely separated and have
relative low variation. The average for the curve with 1% churn has its average
similar to 3% and 5% but on the contrary its variation is high. The message
queue length varies from 50 to 220 messages for this simulation. The reason
for this variation is again the same as mentioned for the maximum and average
message delivery latency. Since too little nodes are getting active every churn
cycle and a lot of nodes are down several destinations can not be reached and
the messages must therefore be queued. The specific values show when the most
routes are not available. The specific times are random since the nodes which
become inactive are also selected by chance.

The overall tendency of the figures 7.23 and 7.24 is the same as for the
previous one with 20% of maximum inactive nodes. However, the overall average
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Figure 7.22: Message queue length with a maximum of 20% down nodes with differ-
ent amount of churn.

of all curves is lower. For 10% of maximum inactive nodes it is between 20 and
100 and for 5% of maximum inactive nodes it is between 5 and 45. Thus, it
can be deducted that the lower the amount of maximum inactive nodes and
amount of churn is in an overlay network the lower the average message queue
length will be. The only exception would be if the amount of churn is very low
so that it takes too long that inactive nodes which are important in the system
because they have many neighbors are getting active again. Also in the figure
with the lowest amount of maximum inactive nodes the simulation with only 1%
churn shows much more variation in the queue length then the others. Why the
variance starts to increase to the end of the simulation is not obvious and can
only be attributed to the random selection process of nodes to become inactive.

Influence of request timeout

In the previous section we have discovered and outlined the general aspects of
churn and its effect on overlay networks. In this section we continue to investigate
the effects of churn combined with the influence of the route request timeout.
Churn in the form of nodes joining requires the overlay network to create new
routes if messages are sent to these nodes and leaving or disappearing nodes
introduce route errors into the system. Route errors require nodes to return
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Figure 7.23: Message queue length with
a maximum of 10% down
nodes
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Figure 7.24: Message queue length with
a maximum of 5% down
nodes.

route error messages and the original message which elicited the error back to
the source on the same path as the original message traveled. On the path back
to the source each node also checks if the failing node is required in some of
its own routes and removes them from its routing table. The source performs
the same check and removes all routes with the failing hop and extracts the
original message which is piggybacked to the route error. Thereafter, the original
messages are sent again and most probably triggers a new route discovery process
depending on the overlay network settings. For instance if only the shortest route
is returned by any route discovery process the source will not have any alternate
route for the destination and thus must start a new discovery process. On the
other hand, if all routes are returned which can provide unique and correct
paths to the destination it is most likely that an alternative route is available
and the source can resend the original message immediately. If it is wise to use
the overlay network in the useAllRoutes setting depends of how much churn is
expected, how much and how often normal traffic is exchanged and also how
well each node is connected in the network and how many hops route requests
are allowed to travel. If all routes are used many more route response messages
are sent which travel a lot of different paths and thus inflicting much additional
traffic. But there is as always a tradeoff because route requests produce even
more traffic since they are broadcasted through the network and are forwarded
until the hop limit is reached or the receiving node has seen the route request
already.

Thus, the message delivery latency as well as the amount of traffic created in
the network depends very much on the specifics of churn, the routing algorithm
used, and the amount of neighbors for each node. For the routing algorithm we
use one of the most important parameters is the route request timeout which
specifies how long it takes before a new route discovery process for the same
destination can be initiated.
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Figure 7.25: Message delivery latency for the overall average and all messages with-
out queuing.

This is not only true for the source but also for each node in the network
since each route request for the same destination received from the same source
is hold in cache until the timeout is exceeded. For the experiments depicted in
Figures 7.25,7.26, and 7.27 we simulated an overlay network with 100 nodes and
4 initial neighbors for each node which resulted in 7.82 neighbors for each node
on average. The maximum amount of hops a route request is allowed to travel is
10. Each node has sent 1000 messages to randomly selected destination during
the simulation but only 100 messages have been sent during each simulation
cycle. In the end 100000 messages have been sent which resulted in 12 million
route requests which where received in the overlay network. The churn in the
overlay network was 1% of the overall nodes with an interval of 3 cycles. Meaning
that every 3 cycles one percent of the nodes are randomly selected and either
disappear or participate again in the network. We do not use and new joining
peers or peers which leave the network correctly for this simulation since the do
not have that impact in the overlay execution. The maximum amount of nodes
which are allowed to be down is 20%.

In figure 7.25 the influence of churn in relation to the route request timeout
for the overall average message delivery latency as well as the overall average
message delivery latency without queued messages is shown. The average mes-
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sage delivery latency from the whole overlay network depicts how long it takes
on average for a message to be delivered to the destination with this simulation
configuration. It starts at 3.5 cycles with an request timeouts starting at 1 cycle
and grows to 4 cycles with a request timeout of 500 cycles. The longest message
delivery time without queueing outlines the longest time it takes to travel from
the source to destination if the message can be sent immediately. This time
starts at around 8.5 with a request timeout of 1 cycle. With a request timeout
of 4 this time shrinks to a little more than 4 cycles. For all other request timeout
it stays at this level since 4 is the maximum amount of hops which are required
to connect two nodes.

In this overlay network configuration the average route length is 1.78 and
thus it takes around 3 cycles for a message to be delivered to the destination
on average which corresponds to the measured value of 3.5 (if all the queued
messages and piggypacked messages would not be counted). The reason why for
very short request timeouts is that since on average it takes more than one cycle
to reach every destination. Actually within one cycle only all one-hop neighbors
are reached. Thus, every new route request is accepted and also route requests
which traveled a different path are accepted by all nodes. The only limiting
factors are now the route request hop limit, the route response cache at the
destination and the routing table at the source. Since it usually makes sense
to use the same timeout for the route response cache as for the request cache
the destination accepts and responds too much more route requests as necessary
if the timeout is too short. Thus, it happens that routes up to the maximum
allowed hops will be accepted and route responses will be sent. If the timeout
is only 1 cycle long each cycle one route will be accepted at the destination and
since longer routes take longer to reach the destination. Although longer routes
will be accepted and route responses with this routes will be sent to the source
these routes will be added to the routing table only under certain circumstances.
For instance only if the routing table at the source does not contain any route
for this particular destination already. This means that in order that add longer
routes are added to the table the shortest route which has been added before
must have been used already and has triggered an route error. Due to this
route error the shorter route and has been deleted in the meantime and thus
route responses with longer routes which arrive a little bit later make it into the
table. This results in longer message delivery latencies and longer average and
maximum route lengths.

In figure 7.26 the influence of churn in relation to the route request timeout
for the longest message delivery latencies without piggybacked messages as well
as the overall longest message delivery latency including also messages which
triggered route errors and where returned to the source. Both values are cal-
culated by obtaining the specific value from each node and thereafter dividing
it through the amount of nodes in the network. The longest message delivery
latency without piggybacked messages starts at about 14 cycles for a request
timeout of 1 cycle. The latency grows relatively constant to 170 cycles with
a request timeout of 500 cycles. For the overall longest latency it looks a bit
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Figure 7.26: Message delivery latencies for messages which where piggypacked on
route errors and for the overall maximum.

different in the beginning with a lot of jitter until the request timeout reaches
25 cycles. Most of the jitter can be explained by the randomness of nodes which
are joining and leaving. If the route request timeout is relatively short the time
until a new route becomes available for a specific destination has more influence
on the longest message delivery times than the request timeout itself. There-
after, the time it takes until new routes get available gets less important and
the request timeouts influence grows. At a request timeout of 500 cycles the
overall longest message delivery latency is around 230 cycles. If a route error
occurs, at most the amount of cycles specified by the request timeout will elapse
until a new route discovery process can be started. At the very worst it could
happen that after a route error occurred the message is returned to the source
and that the route which is obtained in the next discovery process again has a
route error during message delivery. This case can happen all over again but
with drastically decreasing probability for each subsequent discovery process.

In figure 7.27 the influence of churn in relation to the route request and the
amount of route requests delivered is depicted. The figure shows the same longest
message delivery as in the previous figure but it also outlines the amount of route
requests delivered in the whole network for specific route request timeouts. This
allows us to identify the optimal point where both the message delivery latency
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Figure 7.27: Amount of route requests sent in relation to the message delivery la-
tency.

and the amount of route requests delivered are still low. It happens to be at
between 20 and 30 cycles for this network configuration. The average route
length with a route request timeout of 20 is 3.10 and the longest routes which
are established are 4 hops. The amount of route requests sent is about 13.5
million. The overall longest message delivery latency is 23.78 cycles and the
average message delivery latency is 3.28. The average route length with a route
request timeout of 28 cycles is 3.03 and the amount of route requests sent is
11.3 million. The overall longest message delivery latency is 35.65 cycles and
the average latency is 3.4.

7.6 Related Work

One of the first research work which addressed security in overlay network was
the one from Castro et al. [CDG+02]. It deals with structured overlay network
and routing security based on distributed hash tables (DHT). Some general ideas
about how to achieve a secure P2P system are stated. They identified three
requirements for secure routing which are secure assignment of node IDs, secure
maintenance of the routing table and secure message forwarding. They also
investigated the impact of different attacks on structured overlay network and
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the efficiency of their solution. But since they are only dealing with structured
overlay network and have not addressed anything else besides secure routing their
work can only provide some advice on secure node ID generation and routing
for overlay networks in general.

The well-known P2P middleware JXTA also states to be a secure P2P sys-
tem [YW02]. JXTA makes use of well known mechanisms and protocols. These
mechanisms are used only for point-to-point encryption and node authentication.
There are no secure routing primitives or any special authentication mechanisms
designed for overlay network. No general security concept exists which addresses
the security requirements, as stated in [CDG+02], directly in the JXTA middle-
ware. There are no explicit mechanisms to protect the P2P system against
attacks from adversaries or threats from misbehaving and selfish nodes. The
primary goal of JXTA in terms of security is to provide cryptographic primitives
as service the to the application layer.

7.7 Conclusion

With this work we have provided a general framework for secure overlay net-
works. The framework is based on a security concept which allows for an straight-
forward specification of the security level depending on the requirements of the
application and the capabilities of the participating devices. The framework
has a modular design providing the possibility to change the behavior and the
functionality of the overlay network very easily through the configuration. This
framework allows developers to create secure distributed applications without
taking care of the underlying physical network topology and having in-depth
knowledge of security mechanisms and cryptographic protocols. The framework
has been developed for Java SE and ME and can be downloaded for testing
purposes from our sourceforge project site.





8
Secure P2P Applications

Interesting phenomena occur
when two or more rhythmic
patterns are combined, and these
phenomena illustrate very aptly
the enrichment of information
that occurs when one description
is combined with another

Gregory Bateson

8.1 Introduction

Multi-agent systems (MAS) have been used to solve problems for which stand-
alone or monolithic systems are not well suited. Examples of problems to which
multi-agent systems have been applied include control systems [VDPBS02], [MSH05],
timetable coordination [PBG05], and disaster response [GGGR03], [SMTS05].
MAS are especially promising for disaster response scenarios. Since the spe-
cific tasks of such scenarios like information gathering, on-demand computation,
information distribution, and team coordination are well-suited for MAS.

In close relation to the organization and operation of MAS we find the overlay
network concept since both function as a distributed system. Structured overlay
networks are very prominent since they are well suited for data storage and
distribution. Their internal organization and function is optimized for addressing
data in a distributed environment. Conversely, they are ill suited for the purpose
of a general overlay network that provides general communication and resource
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sharing functions as outlined in Chapter 1 and 2. Unstructured overlay networks
are better suited for establishing a general overlay since they only provide the
means of organizing the overlay topology and providing connectivity between
the separate nodes.

Besides all the functions which have been enabled by multi-agent and overlay
systems, new kinds of network security threats have been introduced [Jan00,
Wal02, Cam04, MK06] as well. These new threats are much more difficult to
address because of the composition and distributed nature of these systems.
Malicious or selfish nodes can distract, disturb, obstruct and impede the correct
execution of overlay network often with little effort [Lun00, Dou02, HPJ03]. In
an unstructured overlay network, every entity is equal. Every entity provides
the same set of functions. In a centralized system, this is restricted to a selected
few. This fact necessitates global protection of all entities and their interactions.

The main contribution of this chapter is to first enable multi-agent systems
to work in multi-hop environments and second to provide means to do that in a
secure manner. Our work provides a comprehensive solution for building a Java-
based multi-agent-system with a secure overlay communication layer. We used
the two existing systems, Java Agent Development Environment (JADE) and
the Secure overlay networking framework (SePP), and integrated them using the
JADE communication interface. Out of the box the communication in JADE is
based on Remote Method Invocation (RMI), which only guarantees end-to-end
security via SSL encryption. Our approach relies on a overlay system to guar-
antee not only authentication, integrity and confidentiality in direct-connected
networks but also in multi-hop environments. SePP as described in Chapter 7 is
based on a scalable security concept that allows to adjust the security measures
according to the needs and capabilities of participating devices. In addition, it
also provides secure routing algorithms which are designed to counter outsider
attacks and allow for the detection of misbehaving legitimate nodes.

In the following sections, we present how the JADE agent middleware and
the SePP framework can be combined to develop a secure multi-agent-system
for multi-hop environments. We briefly outline the design and implementation
of SePP. Thereafter, we present the messaging in JADE and the default network
implementation. Our implementation is concisely described with a focus on
the specific solutions such as the message dispatching or the transparent proxy
generation. At last we provide results and a short benchmark which compares
vanilla JADE and our implementation.

8.2 Motivation

MAS technology relies heavily on the existence of a network infrastructure. Un-
fortunately, in case of an emergency it can not be assumed that an infrastruc-
ture bound network is fully working. Emergencies can occur in isolated regions
which lack the necessary infrastructure such as comprehensive wired or wire-
less network coverage. Also, a disaster which caused the emergency could have
destroyed or disrupted the required infrastructure. The absence of a function-
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ing static network infrastructure necessitates that crucial information for on-site
emergency response must be made available through mobile ad-hoc networks.
Ideally, this mechanism is backed by fall-back communication facilities such as
GSM, UMTS, satellite communication, and TETRA. The information required
to respond properly in case of emergencies usually consists of confidential data
including electric grid maps, floor plans or even privacy sensitive personal in-
formation that should only be made available to authorized personnel. Thus,
the provision of network connectivity, as well as managing access to confidential
data during the emergency response operation is a substantial network security
challenge.

Scenario of a disaster site with 

an ad-hoc network and a LAN. 

The LAN is connected to data-

centers and other first responder 

computing sites (e.g. hospitals, 

blood bank,…)

Software Agent 

Figure 8.1: Example of a disaster response scenario with on-site equipment

To illustrate the applicability of the secure overlay network based agent sys-
tem introduced in this paper, we describe a possible scenario. The object of our
scenario is a mine complex with several stakeholders. For crisis operations it
is essential that all relevant documentation is made available to the emergency
services and on-site personal.

One conceivable emergency situation in a mine complex is the collapse of
several tunnels. A solution that provides access to all relevant information per-
taining to the affected mine(s) such as emergency plans, legal documents, and
reports of mining activities, as well as topographical and cartographic material
is necessary. By applying the multi-agent system concept using a secure overlay
networking framework as communication layer, it becomes possible to provide a
secure decentralized solution to that problem.
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During an emergency different organizations have to cooperate. This includes
fire and rescue, medical, and police, as well as other emergency services such as
mine rescue, or utility services. Each service has its own information infrastruc-
ture including hard- and software, and employs different security mechanisms.
As a common characteristic, we assume that if security measures exist, they rely
on cryptographic keys and functions.

8.3 JADE Multi-Agent System

The Java Agent Development Framework (JADE) is a middleware which simpli-
fies the development of FIPA-compliant agents. The Foundation of Intelligent
Physical Agents (FIPA) is an IEEE Computer Society standards organization
that promotes agent-based technology and the compatibility of its standards
with other technologies. FIPA specifications represent a collection of standards
which are intended to promote the compatibility of heterogeneous agents and
the services that they can represent. FIPA compliant agents even if they are
running on different Agent Management Systems are able to communicate with
each other. JADE provides support for server and desktop computers and con-
strained devices. It has been designed under consideration of scalability and
supports it throughout the complete development cycle. In the following over-
view of the JADE MAS the terms node and peer refer to specific objects of
an MAS which provides communication capabilities and should not be confused
with a node or peer of an overlay network.

8.3.1 JADE Background

The Agent Management Service (AMS) of JADE is responsible for creating and
terminating Agents and is itself implemented as an Agent. This Agent exists
once per Agent Platform, it is running on the so called main agent container.
An agent container is a multi-threaded execution environment consisting of one
thread per agent including some system threads. To manage the services and
slices1 JADE uses the Directory Facility (DF). Similarly to the AMS the DF
is implemented as a single Agent running on the main container. An Agent
platform describes a set of one or more Agent Containers, each running multiple
Agents. Every platform has one main container, where the AMS and DF of the
platform are running. All Agents in JADE are running in so called containers.
A container is the runtime environment of one or more Agents. It is responsible
for scheduling its Agents and provides them interfaces for communication. Usu-
ally one container is running on one machine. The first container of an Agent
platform is its main container and has the AMS as well as the DF running on it.
JADE uses nodes to establish the communication between Agents of different
containers. Every container has its own node, which is an object holding all
information needed to send messages to this container. If an containers Agent
wants to send a message to an other Agent on a different container, it first has

1Is that part of a service that is deployed at a given network node



8.3. JADE Multi-Agent System 139

to get those containers node. This obtained node is a proxy object to the node
on the receiving container. For communication between Agents on the same
container, its own node is used. Agents can use services to distribute comput-
ing. Services are listed at the DF. There Agents can request a service and use
it. A service depends of one or more slices. Slices are particular jobs, which
get processed by single Agents. So if an Agent uses a service, the computation
is split into slices and gets executed by multiple other Agents. JADE uses the
Inner Message Transportation Protocol for communication. IMTP describes the
communication within JADE and the related classes. It is an heading for the
whole inter-container communication.

8.3.2 JADE RMI

The default implementation of JADE is based on Remote Method Invocation
(RMI) for the purpose of inter-agent communication. RMI is Java’s own kind
of remote procedure call in order to provide method invocation over a TCP/IP
network. The main properties of RMI are that there is central entity,called the
RMI-Registry which binds methods in order to make them callable over the net-
work. RMI has a server/client architecture and many clients which access the
server methods. The main-goal while designing RMI was to easily provide an
architecture where code can dynamically be loaded from a server (e.g. for updat-
ing purposes). This is achieved with this client/server- model and serialization.
The RMI mechanism itself provides a “black-box” behavior to the programmer;
he does not have to care about marshalling, un-marshalling and transferring
over the network. Furthermore from a programmers view it is not required to
distinguish between a local and a remote object. The RMI registry is created
in the RMIIMTPManager class in the exportPlatformManager() method and
the PlatformManager is exposed via the bind() call. On the client side the
createPlatformProxy() method calls lookup() and establishes the connection
to the main peer. To summarize, we can say that there is a well defined In-
ternal Message Transport Protocol (IMTP) interface for implementing our own
network layer, but this interface is heavily RMI-orientated. To provide an own
IMTP implementation it is necessary to rebuild the messaging system in a RMI
fashion. This results in heavy usage of Proxy objects for communication.

8.3.3 JADE Messaging

The process how messages are sent is very important to understand how to
implement the IMTP-Layer. This section describes the general sequence of how
messages are transmitted inside the JADE Platform. In the following we have
to distinguish between the main peer, which is responsible for managing the
platform with its nodes and services and the remote peer(s) which uses the main
peer’s interfaces through Proxies.

The first step to create an Agent-Platform is to create a main peer. This
is done by executing the Boot class. Afterwards a new IMTPManager (RMI
or SecureP2P) is created and the PlatformManager object is passed to the
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exportPlatformManager() method to expose the JADE Platform. To connect
to the Platform we start another instance of JADE. The address of the main
peer is passed to the createPlatformProxy() method and the remote proxy to
the PlatformManager is established. With this proxy the remote peers are able
to access all the functions available in the Platform, e.g. creating Nodes, Slices,
etc.

Now, since we have a connection between the remote and the main peer,
we create a Node, which is the communication mechanism inside the Agent-
Platform between the agents. The node is created via the addNode() method of
the PlatformProxy during the creation of the Agent-Container. From now on we
have two local nodes, each on one peer. Each node is associated with an array of
services running on the node. The services are managed by the PlatformManager
on the main peer with the findSlice() and findAllSlices() methods. To
send a message from the remote peer to the main peer the remote peer asks the
PlatformManager via the PlatformProxy which services run on the local node of
the main peer. During this request the main peer serializes his local node and
the remote peer receives a proxy to the local node running on the main peer.
With this proxy the remote peer is able to access the remote node and from now
on the two Agent-Containers (e.g. the Agents running on the Container) have
the ability to communicate. The main part of the communication is done by the
accept() method of the nodes, which receives a command as parameter. For
an example of the JADE messaging process see figure 8.3.

8.4 Secure Multi-Agent System

Based on the general overview in the previous section, we now present our im-
plementation of a secure messaging mechanism. For an architectural overview
of our implementation see figure 8.2. The first step was to emulate the RMI
behavior on top of SePP using different message classes. A message class is a
generalization of a method call. The knowledge about which method should be
called and how it is parameterized is encapsuled within the concrete message
classes. We require two message classes per method. First, a request message
class, whose payload is the parameters of the method. Second, a response mes-
sage class, which contains the return value of the corresponding method. We
chose this design, because it allows convenient message dispatching and because
this architecture is extendible.

8.4.1 Implementation

The SecureP2PIMTPManager is the general entity that advertises the agent
platform and it provides the remote peers with access to the main peer. The
functionality of the SecureP2PIMTPManager is comparable to the RMI registry
as mentioned above, with the difference that we do not have a special storage
facility, where the remote methods are registered. The main peer listens for
incoming requests from the remote peers.
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Figure 8.2: Secure Jade Architecture

The Agent-Platform is exposed via exportPlatformManager(), called on
the main peer. After calling this method, the peer listens to incoming requests
from remote peers. The remote peers connect to the main peer through the
createPlatformManagerProxy() method which receives the peer ID of the main
peer as an argument. createPlatformManager() is a factory-method that cre-
ates a GetPlatformManagerRequestMessage which is sent to the main peer. The
main peer receives the message and creates a response using the GetPlatform-
ManagerResponseMessage object. In the response message the object ID and
the name of the PlatformManager is stored. With this information the Platform-
Proxy on the remote peer can be created. From now on every communication
made between the two peers is done via the PlatformProxy.

As an example we can look at the behavior of the addNode() method which
is called when a new Agent container is added. When called on from a Plat-
formProxy the addNode() method creates a new AddNodeRequestMessage with
the object ID of the remote PlatformManager as a destination. This message
is sent to the main peer. On the main peer the message is dispatched to the
local PlatformManager where the message gets executed with the given param-
eters and a new container is created. The return-value of the method is put
into an AddNodeRequestMessage and sent to the remote peer. When received
the return value is passed to the JADE middleware on the remote peer. When
the PlatformProxy is a proxy for a local object the same message is build but
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not sent into the network but is dispatched locally. The decision whether the
message is sent into the network or dispatched locally is done at the send()

method of the SecureP2PPeer. The second sending concept inside the JADE
middleware, sending from NodeProxy to a LocalNode is a bit different, because
of the different proxy generation. NodeProxies and LocalNodes are held by a
SecureP2PNode and when the writeObject() method during serialization is
called the member object is changed from a normal LocalNode to a NodeProxy.
The sending mechanism itself is identical in sending via the PlatformProxy. The
corresponding message to the method is created, sent and invoked and the return
value is sent via the response message.

The class SecureP2PPeer is the interface to the SePP network through the
SePP framework API. This API allows classes which implement the Component
interface to register themselves to received messages with a specified message
type.

If a message is received at the peer the receivedMessage() method is called.
In this message the received byte-stream is unmarshalled and the JadeMessage is
created. Afterwards a new thread is created. In the thread the dispatchMessage()
method is called where the received and unmarshalled message is passed to the
receive method of the registered handler. The thread is required because the
receiving messages can send new messages before the method returns. The dis-
patching functionality waits on the sending semaphore 8.4.3 and the dispatcher
cannot dispatch more messages, the system is deadlocked. On the other hand
all receiving calls do not depend on a given state; the order of the incoming
messages has to be ensured in the Agent code and not in the dispatching mech-
anism. The advantage in this design approach is that the dispatch mechanism
is completely independent from different message types and different handlers.
New messages or handlers can register themselves within SecureP2PPeer and
the dispatching functionality does not need to be changed.

8.4.2 Object-to-object concept

Each object, that sends and receives JADE-messages, has a unique object ID.
Furthermore every Proxy class (SecureP2PNode after Serialization and Plat-
formProxy) has the remote object ID of its corresponding local entity. Every
message passed from a proxy to a local entity has a defined destination address
(stored in the proxy) and a defined destination object. We need this informa-
tion because it is possible to create multiple containers on a given peer. Without
this object-to-object concept we cannot distinguish which node is the receiver
of the message. With the object-to-object concept we can dispatch the mes-
sage directly to the object which handles the request associated with the given
message.

8.4.3 Sending semaphore

In this section we present how the asynchronous sending and receiving sequences
are mapped to the synchronous, RMI-like method invocations. To turn an asyn-
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chronous method call in a synchronous method call we use 2 maps. The key of
the maps is always the message ID concatenated with the receiving peer id, which
is an unique identifier for the message. In the first map the return value is stored
when the asynchronous callback method is called (receive in case of JadeCom-
ponents). In the second map the semaphores on which the thread of execution
waits, is stored. First the waiting Semaphore with initial value 0; means that
the first acquire forces the thread of execution to wait; is created and stored
in the corresponding maps. Then the message is sent via the asynchronous
sendMessage method of the SecureP2PPeer class. To transfer the synchronous
to the asynchronous call we call the asynchronous sendMessage method of the
SecureP2PPeer and afterwards the acquire method of the Semaphore is called;
now the calling thread waits for the Semaphore to be released. The Semaphore
is released after the return value of the message is stored in the return-value
map. Now the original thread of execution resumes and returns the value from
the map. We have to use Semaphores for this functionality because when the
message is delivered to the local peer, the sendMessage method is blocking and
directly calls the dispatching method of the corresponding JadeComponent. As a
result the return value is already stored before we call acquire on the Semaphore.
If we use a mutual exclusion algorithm the wakeup call would be lost in this case,
with Semaphores the thread resumes its execution.

8.4.4 NodeProxy generation

The difference between NodeProxy and a PlatformProxy is that the Platform-
Proxy is generated explicit whereas the NodeProxy is created implicit through
serialization during the messaging mechanism of JADE. This means that we have
to transparently switch between LocalNode and NodeProxy. To switch between
the nodes we created a class SecureP2PNode which holds the Nodes as an ag-
gregation. When the SecureP2PNodes writeObject() method is called during
serialization the node is changed from a LocalNode to a ProxyNode. Afterwards
the default writeObject() method is called and the current state is serialized.
Thereafter the LocalNode is restored.

8.4.5 A message sending sequence

This section combines the concepts discussed so far and illustrates a sample
communication sequence of the JADE platform. We chose he method accept
for an illustration example of a message sending sequence. Accept is used by
the agents for communicating within the middleware. We presume that the
PlatformProxy was already created and the two nodes are ready to send.

The sequence diagram depicted in figure 8.3 illustrates the whole messaging
process, starting from creating the NodeProxy until the return of the method
accept. In the first step the NodeProxy is created after serializing the Se-
cureP2PNode from higher layers of the JADE middleware using a mechanism
called transparent proxy generation. Afterwards the accept call on the Se-
cureP2PNode is delegated to its Proxy. This proxy creates a request message
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Figure 8.3: Message sequence

and sends it via the SecureP2PPeer class. On the remote container the message
is received and a new worker thread is created. This new worker thread forwards
the message to its corresponding JadeComponent, in this case we have a LocalN-
ode. The next step is to invoke the method related to the message and forward
the return value via the SecureP2PPeer. Back on the main peer the message is
dispatched and the original emphaccept call returns.

8.5 Security Analysis

The main contribution of our work is to first enable multi-agent systems to work
in multi-hop environments and second to provide means to do that in a secure
manner. To establish the exact boundaries of our security analysis we first define
our assumptions on the environment.

1. Each peer or user that is a part of the multi-hop enabled communica-
tion subsystem must be authenticated. This means, each user joining the
system must provide a prove of it’s identity depending on the security
requirements of the overall system.

2. A multi-hop enabled MAS must provide means to communicate even in the
absence of direct connections between the different parts of the MAS. Thus,
it must be possible for agents to communicate with each other in a hop-by-
hop manner in addition to direct communication. This fact requires secure
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routing algorithms which guarantee that only legitimated and trusted hops
are used to forward data.

3. The data communication of the MAS must be protected. Depending on
the system security requirements this can include protection from fabrica-
tion, modification, interruption and interception. This translates to data
authentication and data confidentiality in addition to reply protection.

To conclude the list of assumptions it has to be remarked that it is always
important to scale the security mechanisms according to the potential damage.
Every user should use the best available security measures given his resources.

8.5.1 Analysis of the SePP-Jade solution

The join process in SePP is secured and provides authentication based on the
Needham-Schroeder-Lowe protocol. The different secure approaches used are
shared secrets and public/private keys (pre-configured or TPM hosted). This
guarantees that only legitimated peers can join and participate in the overlay
network.

After peers have joined the SePP network, a secure routing algorithm can be
used to guarantee the integrity of the network. With this secure routing algo-
rithm it is possible to protect against outsider and insider attacks as mentioned
in Section 6.3.1, depending on what security level is used. The secure overlay
network also provides means for data authentication and confidentiality using
well-known state-of-the art cryptographic primitives.

8.6 Performance evaluation

To benchmark our implementation we compared it with JADE’s out-of-the-box
RMI implementation. We used the PartyAgent application from the JADE
examples. Within this application we created 500 PartyGuest agents which
send several messages to each other. We measured the time from the start of
the application until all messages are sent, and the party has officially ended.
During this time about 7000 messages have been sent and received from the
agents. The party host agent is responsible for about 99% of the messages.
We have tested our implementation with the main and remote peer connected
directly and also with one intermediate hop between them. The intermediate
peer show how much delay is introduced per hop on the route to the remote
peer.

The tests have been performed on HP personal computers with Intel Core
2 Duo E8600 processors with 3.33 GHz and 4 GB RAM and Windows 7 as
operating system. The SePP framework implementation has been executed on
Java JDK 6 Update 17 runtime environments.

The values in Table 8.1 have been obtained from different runs of the PartyA-
gent application. These values show how long one specific run of the application
took. In the first column the values from the vanilla JADE version using RMI
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RMI [s] SePP (direct) [s] SePP (1 hop) [s]

1 4.40 15.40 16.20
2 3.70 14.80 16.90
3 3.40 14.30 15.90
4 3.60 16.10 15.80
5 3.50 14.00 15.40
6 3.90 14.60 16.10
7 3.40 13.40 15.40
8 3.70 15.00 15.80
9 3.30 16.00 15.30
10 3.40 14.30 16.00

Mean 3.63 14.75 15.88

Table 8.1: Processing time of the different security levels at the participating peers

without any security features. The next two columns show the amount of time
it took for the same application to finish using SePP with security level medium
as communication layer. The first one has been obtained for the case that the
two peers have a direct connection. The second one depicts the case that there
is one intermediate hop between the main peer and the remote peer. The run
time of the JADE version using SePP is about four to five times slower than the
RMI version. This fact can be attributed to increased processing time for cryp-
tography and the overlay network management and communication overhead.
The usual processing time in SePP without transmission latency is about 500µs.
Thus, sending and receiving 7000 messages alone would account for 3.5 seconds,
which already is the mean run time of the RMI version.

8.7 Related Work

Multi-agent systems have been used in disaster response scenarios previously.
For instance disaster response [GGGR03], [SMTS05] have shown that MAS can
be quite helpful under such circumstances. But these approaches have not ad-
dressed security or multi-hop communication requirements in anyway. They
where only concerned with showing the features MAS can provide in disaster
response.

The JADE developers itself have proposed a security extension for its frame-
work [JAD05]. Anyhow, this security framework is only intended as add-on for
JADE and therefore does not address all requirements for security in such chal-
lenging environments. Also their extension only provided interfaces for JAAS
(Java Authentication and Authorization Service) and they did not implement
any security itself or give instructions on how to use it. There exist also some
other works which have addressed security in JADE. But they are all theoretical
and only outline the requirements and discuss the necessary security features
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formally. One such effort is [VSR07].
Several other works have been concerned with the security of multi-agent

systems. Almost all of them have been only of theoretical nature. They have
outlined the requirements in terms of security and shown what attacks and
threats are possible with in the domain of MAS. The most prominent such work
is [Jan00].

8.8 Conclusion

In conclusion, the proposed multi-agent system with SePP as underlying commu-
nication infrastructure enables the use of agent technology in multi-hop environ-
ments in a secure way. We provided simple means of integrating and enhancing
existing MASs with secure communication mechanisms without the need for re-
design or re-implementation of the MAS itself. We introduced an RMI-style
interaction layer which mediates between the MAS on top of a secure overlay
networking framework. The security management is separated from the MAS ap-
plication and can be adjusted according to the needs of the participating entities.
With our solution it is possible to comply with various security requirements in
a fine grained manner since it is possible to select security levels from a global to
a group scale. The introduced security guarantees increased robustness and the
added multi-hop functionalities justify the marginal negative impact on com-
munication performance compared to JADE’s RMI solution. Furthermore, we
believe that our solution has the potential to increase the efficiency of emergency
response operations for scenarios where an existing network infrastructure has
been destroyed or disrupted and the different parties had to rely on proprietary
or fall-back communication facilities.
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Conclusion

Interesting phenomena occur
when two or more rhythmic
patterns are combined, and these
phenomena illustrate very aptly
the enrichment of information
that occurs when one description
is combined with another

Gregory Bateson

In this thesis, we examined overlay networks in terms of their security and
communication capabilities and by designing our own secure overlay network-
ing framework. The first objective was to study existing security solutions and
frameworks for different kinds of networking and to identify their general require-
ments, concepts and architectures in order develop a security concept suitable for
heterogeneous overlay networks. Next we have evaluated existing solutions for
overlay networking regarding their routing, communication and security capa-
bilities and suitability to be used as building blocks for developing secure overlay
communication protocols and finally a secure overlay networking framework.

During this part of the work, we had to identify an area of networking which
was similar enough to overlay networking and already has an large established
base of routing protocols and ideally also secure ones. It turned out that this area
would be ad-hoc networks. All the properties of mobile ad-hoc networks can also
be found in overlay networks but overlay networks incorporate also other types
of networking not found in mobile ad-hoc networks. However, the mobile ad-hoc
networks characteristics such as mobility, heterogeneity, self-organization, and
peer-to-peer are also the dominant ones in general overlay networks. Thereafter,
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we evaluated several of the most common routing protocols which incorporated
different routing philosophies in order to find the most suitable candidate to be
used as building block. During this search we identified the Dynamic Source
Routing (DSR) protocol as our basis due to its simple architecture, on-demand
nature, easy administration and suitability for security adaption. Another ob-
jective, which clearly crystalized during the investigation of existing solutions
for overlay networking, was the inherent problems of identity management in
overlay networks and the lack of adequate solutions. Thus, we also increased
our efforts to find and develop a solution which both was compatible with our
security concept and could be realized with current technologies whether they
were in software or hardware. After these steps we were in the possession of
the basic building blocks to design and develop secure protocols for routing and
communication in overlay networks. We first evaluated one existing secure rout-
ing protocol which was also built upon DSR and thereafter developed our own
protocol which incorporates the ideas expressed in the security concept. The last
objectives were to incorporate these findings and protocols into a comprehensive
solution which provides security for overlay networking and to evaluate and test
this solution.

In Chapter 4 we presented a security concept for these overlay network. The
security concept provides recommendations and requirements for three different
aspects namely for establishing, performing and upholding secure communica-
tion in overlay networks. We outlined possible security levels within each of these
aspects and specify what kind of information and secrets must be available to
realize it. In the end we presented the security concept and the specific levels
we applied in the secure overlay networking framework we developed. Chap-
ter 5 outlined the problems of identity management in self-organizing networks
and presents two particular solutions which are based on Trusted Computing
principles and mechanisms. We presented a trusted authentication protocol for
overlay networks which makes use of the public key certificate and the private
key, called endorsement key, which are stored in and protected by the Trusted
Platform Module. With the first variant of the trusted authentication protocol
the Trusted Platform Module and the contained credentials allow us to establish
unique and verifiable identities which can not be forged and guarantee that each
node can only posses one identity. However, since in this solution the unique and
long-term endorsement key is used this solution may not be appropriate in open
large-scale solutions with a public or mixed user base since this key could be
used to exploit the privacy of the users. Therefore, we present a second solution
which facilitates the PrivacyCA concept in order to generate anonymous inde-
pendent short-term certificates and keys which are bound to the endorsement
key. These anonymous credentials do not contain any information which would
allow others than the PrivacyCA to associate them with specific endorsement
keys. The nodes can obtain these anonymous credentials from the PrivacyCA
one at a time and therefore do also guarantee that each node possesses only one
identity which is unique. These anonymous credentials are again protected by
the Trusted Platform Modules and can be verified by its inherent mechanisms.
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We provide a performance evaluation of both versions of the trusted authenti-
cation protocol and compare it with a traditional approach which is based on
a common authentication protocol using asymmetric cryptography. In Chapter
6 we present an analysis of the best known secure variant of the DSR protocol
called Ariadne. We outline the strengths and the shortcomings of this protocol
if used in overlay networks. Thereafter, we introduce our solution which is also
based on DSR and incorporates the ideas of the security concept. Thus, our se-
cure routing protocol provides not only security in the routing process but also
allows to select specific levels of security as outlined in the concept. We eval-
uated the performance and security of our protocol in a real world scenario as
part of our secure overlay networking framework which is used in three European
research projects. In Chapter 7 we present the architecture and implementation
of the before mentioned secure overlay networking framework. We provide a
comprehensive evaluation of its communication capabilities in different network-
ing scenarios using a overlay networking simulator. Chapter 8 presents a specific
application of our secure overlay networking framework as it is used in one of
the research projects. In this application our framework functions as secure
communication infrastructure on top of which an Agent Platform is operating.
In this specific case we not only show the applicability of our framework in real
world scenarios but also how simple our framework can be used with existing
applications, or in this case even an entire agent development platform (JADE).

The main conclusion of this thesis is that security can be provided for over-
lay networks using already available or eminent technologies without too much
negative impact on the efficiency. The major problem of previous solutions was
that security was applied only to particular protocols or mechanisms of overlay
networks. Thus, either leaving any comprehensive solution, such as an overlay
networking framework, still vulnerable to attacks and failures or providing so-
lutions which are only applicable under very narrow assumptions and therefore
are not applied in real world scenarios. We showed that with careful design of
an overall security concept and later development of the integral components
of an overlay network - identity management, secure route establishment and
management, and secure communication and protection against misbehavior -
based upon this concept it is possible to provide an applicable solution. We
want also mention that most of the problems of overlay networks are related
to its distributed self-organizing manner but could be solve much more easily if
more efficient operational processes, especially in the area of identity manage-
ment and key distribution, would be available. We evaluated the performance
and applicability of our solution as stand-alone application in real world projects
and also presented an example where our framework can be used as secure com-
munication basis for existing applications. Our solution should be used in closed
environments if the keys and secrets must be distributed manually and can be
used in open systems if TPMs are available for providing identities and crypto-
graphic material. Due to the use of cryptographic protocols and its capability
to adjust to very dynamic environments however it is not recommended to use
our framework in scenarios where the goal is to provide content distribution for
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a very large user base.
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