
Controller Synthesis with

Uninterpreted Functions

by

Georg Ho�erek

A PhD Thesis
Presented to the Faculty of Computer Science and Biomedical Engineering,

Graz University of Technology (Austria),
in Partial Ful�llment of the Requirements for the PhD Degree

Assessors

Prof. Roderick Bloem (Graz University of Technology, Austria)
Prof. Jie-Hong Roland Jiang (National Taiwan University, Taiwan)

July 2014

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science and Biomedical Engineering

Graz University of Technology, Austria

�We can only see a short distance ahead, but we
can see plenty there that needs to be done.�

Alan Mathison Turing

Abstract

Concurrency plays a crucial role in today's computing systems. For hard-
ware systems, pipelining is an important and widespread mechanism to increase
throughput. Such advantages, however, come at a price: concurrent systems re-
quire additional control to avoid issues such as inadequate synchronization, data
races, or simultaneous access to shared resources. Controllers for concurrent sys-
tems are inherently di�cult to implement and test. They are, however, rather
easy to specify: the controller should make sure that the (externally visible) be-
havior of the concurrent system is equivalent to the behavior of a corresponding
sequential reference system.

Using pipeline controllers as an example, we consider cases where the speci�-
cation takes the form of a formula ∀x .∃c .∀x′ .Φ, where x is a vector of �rst-order
variables, representing the state and/or inputs of the system (on which the con-
trol signals may depend); c is a vector of Boolean variables, representing the
signals issued by a controller; x′ is a vector of auxiliary �rst-order variables;
and Φ is a (quanti�er-free) formula in a decidable �rst-order theory fragment.
In particular, we use the theory of uninterpreted functions to abstract complex
datapath elements of the system. This abstraction is crucial to reduce speci�ca-
tions to tractable sizes. Moreover, for correctness with respect to concurrency, it
su�ces to ensure that the same operations are executed on the same operands.
Detailed semantics of single operations are irrelevant. Thus, uninterpreted func-
tions are a very suitable method of abstraction in this setting.

By �nding certi�cates for the variables in c, we synthesize a controller that
is correct-by-construction with respect to the speci�cation. We present several
ways to compute such certi�cates, in particular two methods based on Craig
interpolation. The �rst one is an iterative method, that computes one certi�cate
at a time. For n certi�cates, it requires n calls to an SMT solver, producing n
refutation proofs. As an alternative, in our second approach we generalize Craig
interpolation to what we call n-interpolation. It allows us to compute n coor-
dinated interpolants from one single refutation proof. However, n-interpolation
imposes two requirements on the proof: it must be colorable and local-�rst. We
describe how a standard proof, obtained from an SMT solver, can be transformed
to satisfy these requirements. Alternatively, we show how modular SMT solving
can be used to directly obtain a colorable, local-�rst proof.

We have implemented the interpolation-based approaches in a prototype tool
called Suraq. Using this tool, we are able to synthesize a controller (with two
Boolean control signals) for a DLX processor with a �ve-stage pipeline. The
total time required for synthesis is approximately one hour and 15 minutes.

v

Acknowledgements

Today's research is not an individual but a group e�ort. Therefore, numerous
people deserve to be thanked for their contribution and cooperation without
which this thesis would not be what it is now. First of all, I would like to
thank Roderick Bloem for being the best supervisor a PhD student can ever
wish for. He always took ample time to discuss progress and setbacks with me,
and provide me with his expertise and criticism. I learned a lot from and feel
greatly indebted to him.

I also want to thank Jie-Hong Roland Jiang; �rst and foremost for agreeing
to be the external reviewer for this thesis. In addition to that he was also great
to work with, in particular during the preparation and execution of the QUAINT
project, which was essential to this thesis.

I am also thankful to Ashutosh Gupta, who co-developed the concept of n-
interpolation. He also provided di�erent perspectives on issues I got stuck with,
which greatly helped to get me unstuck.

The people who shared an o�ce with me for some time during the creation of
this thesis also deserve to be thanked: I am very thankful to Karin Greimel, who
was very helpful in getting me acquainted to the �eld of formal methods. I also
want to express my gratitude to Robert Könighofer, who was always available
for fruitful discussions and for bouncing ideas and approaches back and forth.

Bettina Könighofer, Christoph Hillebold, and David Ko�er all deserve to be
thanked for their contribution to the implementation of Suraq. Bettina helped
a lot in refactoring parts of the code under lots of time pressure before a paper
deadline. Christoph made formula objects immutable and unique. He also wrote
the parser for veriT proofs and helped in doing a �rst analysis of them. David
implemented the replacement of equality predicates as part of his Bachelor's
thesis.

Furthermore, I would like to mention Johannes Winter, who provided me
with his vast expertise on debuggers, whenever I ran into tool-related problems.

Moreover, I thank Georg Weissenbacher, for the fruitful discussions on mod-
ular SMT solving, and Georg Schadler, for working on the corresponding imple-
mentation.

I am very grateful to Pascal Fontaine and Bruno Woltzenlogel Paleo for
helping me with installing, understanding, and using their tools veriT and
Skeptik. Moreover, the meetings I had with them in Vienna, and also the
(sometimes lengthy) email conversations were really productive and helpful.

I would also like to thank the Institute for Applied Information Processing
and Communications (IAIK) for providing the best working and learning envi-

vii

viii Acknowledgements

ronment1 a PhD student can ask for. I always felt extremely happy to work here
and to be part of this great team.

Last but not least, I want to thank my wife Maria for enduring all the ups
and downs, all the progress and the delays of this thesis with me. I am grateful
for all her patience and I apologize for sometimes making her wait so long when
I was working long hours.

Funding. The research presented in this thesis was funded in part by the
European Commission through projects COCONUT (FP7-2007-IST-1-217069)
and DIAMOND (FP7-2009-IST-4-248613), by the Austrian Science Fund (FWF)
through project QUAINT (I774-N23) and the national research network RiSE
(S11406-N23), as well as by Graz University of Technology.

Georg Ho�erek
Graz, July 2014

1Except for the building the institute resides in, which � among other issues � is an
unbelievably ugly abomination, giving you the impression that the blueprints were recycled
from a prison building project.

Table of Contents

Abstract v

Acknowledgements vii

List of Tables xiii

List of Figures xv

List of Algorithms xvii

Glossary xix

Acronyms xxi

Notation xxiii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Description . 4
1.3 Contribution . 6

1.3.1 Contribution 1 � Stating the Synthesis Problem 6
1.3.2 Contribution 2 � Computing Certi�cates 7
1.3.3 Contribution 3 � Prototype Tool 8

1.4 Outline of this Thesis . 8
1.5 Related Work . 10

2 Preliminaries 15
2.1 Theories in First-Order Logic . 16

2.1.1 Propositional Logic . 16
2.1.2 First-Order Logic . 16
2.1.3 First-Order Theories . 17
2.1.4 Theory of Uninterpreted Functions and Equality 17
2.1.5 Theory of Arrays . 18

2.2 Satis�ability Modulo Theories Solving and Refutation Proofs . . 19
2.2.1 Eager Encoding . 20
2.2.2 Lazy Encoding . 24
2.2.3 DPLL(T) . 27

ix

x Table of Contents

2.2.4 Refutation Proofs . 27

2.2.5 Certi�cates . 28

2.3 Craig Interpolation . 29

2.4 Burch-Dill Paradigm . 30

3 Modeling 33

3.1 Speci�cation Language . 33

3.2 Creating a Speci�cation . 35

4 Decidability and Complexity 43

4.1 Decidability . 44

4.2 Reduction to Propositional Logic 45

4.2.1 Structure of Proofs . 45

4.2.2 Reduction from SQ to TU 46

4.2.3 Reduction from TU to TE 49

4.2.4 Reduction from TE to Propositional Logic 50

4.2.5 Extracting Certi�cates . 52

4.2.6 Alternative Methods for Certi�cate Extraction 53

4.3 Computational Complexity . 55

5 Interpolation-based Synthesis 57

5.1 Iterative Interpolation . 58

5.1.1 Single Control Signal . 58

5.1.2 Multiple Control Signals 59

5.2 n-Interpolation . 62

5.2.1 Computing n-interpolants 64

5.2.2 The Need for Local-�rst Proofs 66

5.2.3 Creating an Implementation from an n-Interpolant 68

5.3 Proof Transformations . 68

5.3.1 Obtaining a Colorable Proof 69

5.3.2 Reordering Resolution Steps 73

5.3.3 Summarizing the Transformation Steps 73

5.4 Modular SMT Solving . 74

5.4.1 Tree-like Modular SMT Problems 74

5.4.2 Solving Algorithm . 77

5.4.3 Proof Generation . 80

6 Other Synthesis Approaches 83

6.1 Binary Decision Diagrams . 84

6.2 Eager Encoding to QSAT . 84

6.3 Lazy Encoding to QSAT . 85

6.4 Template Instantiating . 87

Table of Contents xi

7 Implementation and Experimental Results 89
7.1 Suraq � A Prototype Implementation 89

7.1.1 Input Format . 90
7.1.2 Formula Processing . 91
7.1.3 SMT Solver Interaction 92
7.1.4 Proof Processing . 92
7.1.5 Interpolation . 93
7.1.6 Output Format and Checking Results 94
7.1.7 Lessons Learned . 94

7.2 Benchmarks . 97
7.2.1 Scalable, Illustrative Example 97
7.2.2 Simple Processor . 99
7.2.3 DLX Processor . 101

7.3 Experimental Results . 102
7.3.1 Runtime Results (n-Interpolation Mode) 102
7.3.2 Proof Sizes (n-Interpolation Mode) 104
7.3.3 Iterative Mode . 106
7.3.4 Key Results . 109

8 Conclusion 111
8.1 Summary in Retrospect . 111
8.2 Goals Achieved . 112
8.3 Future Work . 112

8.3.1 Small Certi�cates . 112
8.3.2 Certi�cate Strength . 113
8.3.3 Modular SMT Solving . 113
8.3.4 Formulas with Multiple Time-Instances of Control Signals 114

8.4 Last Words . 114

Bibliography 115

A List of Publications 125
A.1 Journal Publications . 125
A.2 Publications in Conference and Workshop Proceedings 125
A.3 Relationship between Publications and Thesis 127

B Cooperations 129

Index 131

Author Index 135

Statutory Declaration 139

List of Tables

7.1 Benchmark Characteristics . 98
7.2 Runtime Results (n-Interpolation Mode) 103
7.3 Proof Sizes . 105
7.4 Strong Theory Lemmata . 106
7.5 Runtime Results (Iterative Mode) 107
7.6 SMT Solving Time per Iteration 107
7.7 Proof Size per Iteration . 108

xiii

List of Figures

1.1 Correct-by-Construction Synthesis 2
1.2 Example of Pipeline Concurrency Issues 5
1.3 Contribution Dependence . 6
1.4 Chapter Dependence . 9

2.1 Lazy Encoding . 24
2.2 Proof Rules for T-formulas in CNF 27
2.3 Interpolating Proof Rules . 30
2.4 Burch-Dill Equivalence . 31
2.5 Commutative Diagram . 31

3.1 Simple Pipeline Example . 36

5.1 n-Interpolating Proof Rules . 64
5.2 Splitting Non-Colorable Transitivity-Congruence Chains 71
5.3 Splitting Theory Lemmata . 72
5.4 Reordering Rules . 73
5.5 Tree-like Modular SMT Problem 77
5.6 Modular Proof . 81

7.1 Scalable, Illustrative Example 99
7.2 Simple Microprocessor . 100
7.3 Pipelined DLX Processor . 101

xv

List of Algorithms

5.1 Iterative Certi�cate Computation 60

xvii

Glossary

array property fragment A decidable fragment of the theory of arrays that
allows limited use of quanti�ers [BMS06]. 6, 19

Burch-Dill equivalence An equivalence criterion for pipelined circuits based
on the Burch-Dill paradigm. 30�32, 37, 40, 111, see Burch-Dill paradigm
Burch-Dill paradigm A way to formally specify correctnes of a pipelined pro-
cessor, by showing that (1) �ushing the pipeline followed by the execution of one
instruction in the non-pipelined implementation and (2) performing one step in
the pipeline followed by �ushing it are commutative. This was proposed by
Burch and Dill in [BD94]. 4�8, 30, 32, 35, 38, 111
Burch-Dill style 5, 6, 8, 13, 33, 40, 41, 100, 104, see Burch-Dill paradigm

chordal A graph is said to be chordal, if it contains no chord-free cycles of
length greater then three. 23, 52
clause A disjunction of literals. 16, 17, 22, 25, 27�29, 64, 72, 73, 78�80, 85, 93
congruence closure A theory solver for T qf

U . 25, 27, 86, 92
congruence graph A graph in which terms that belong to the same congruence
class are connected by paths. 25, 70

fragment A syntactically restricted subset of all formulas in �rst-order logic, or
a �rst-order theory. 4, 6, 17, 19, 20, 33�35, 41, 79
conjunctive fragment A fragment that allows only formulas which are con-
junctions of literals. 17, 24, 27
quanti�er-free fragment A fragment that does not allow the use of quan-
ti�ers. 4, 17, 18, 79

literal A (theory) atom, or its negation. 8, 16, 17, 23, 25�28, 54, 63, 65, 69�72,
74�80, 85�88, 94
local-�rst A property of resolution proofs that are used for interpolation. In a
local-�rst proof, both premises of resolution steps with a local resolving literal
are derived from the same partition. x, 8, 9, 58, 64, 66�68, 73, 74, 80, 81, 93,
103, 104, 106, 112, 113, 130

PSPACE The set of all decision problems that can be solved by a Turing
machine using only a polynomial amount of space. 9, 44, 55, 56

QSAT The problem of deciding whether or not a quanti�ed Boolean formula
(without free variables) is satis�able. 55, 56, 83�86, 89

xix

xx Glossary

refutation proof A formal proof that some formula is not satis�able. 8, 27�30,
58, 62�64, 68, 74, 80, 92, 93, 104, 109, 112, 113
resolving literal A literal that occurs in opposite polarity in two clauses and
is used to resolve them. 28, 64, 67, 68, 73

SAT The propositional satis�ability problem. 1, 2, 13, 21, 24, 25, 27, 61, 93,
103�105
SkeptikA proof compression tool. See https://github.com/Paradoxika/Skeptik
and [BFW14]. 14
SMTLIB The Satis�ability Modulo Theories Library. See http://smtlib.org/.
90�92, 94
Surak A legendary Vulcan logician, philosopher, and scientist. Many consider
him the father of the modern Vulcan civilization. 89, 114
Suraq Synthesizer using Uninterpreted Functions, Arrays and Equality. 8, 9,
13, 14, 58, 89�94, 96, 97, 102, 104, 106, 112, 129, 130

theory lemma A formula (within this thesis: usually a clause) that can be
proven from the axioms of the theory in question. 13, 25�30, 64, 65, 68�73, 79,
80, 92, 93, 102�106
theory solver An algorithm to decide satis�ability of the conjunctive fragment
of a theory. 24, 25
transitivity-congruence chain A path in a congruence graph. 26, 70�72
Tseitin variable A variable introduced during Tseitin's encoding. 17, 94
Tseitin's encoding A procedure to transform a formula with arbitrary struc-
ture into an equisatis�able conjunctive normal form, by introducing a linear
number of additional propositional variables [Tse68]. 17, 24, 78, 79, 91, 92

veriT A proof-producing, open-source SMT solver for T
qf
U See http://www.

verit-solver.org/ and [BdODF09]. 14

https://github.com/Paradoxika/Skeptik
http://smtlib.org/
http://www.verit-solver.org/
http://www.verit-solver.org/

Acronyms

ALU Arithmetic Logic Unit. 2

BDD Binary Decision Diagram. 52�54, 58, 83, 84

CNF Conjunctive Normal Form. A conjunction of clauses. 16, 24, 25, 27�29,
63, 91, 92

DAG Directed Acyclic Graph. 28, 91, 94, 95, 98, 104, 105, 113

LTL Linear Temporal Logic. 11

QBF Quanti�ed Boolean Formula. 8, 9, 56, 84�86

SMT Satis�ability Modulo Theories. 1, 2, 7�9, 13, 16, 19, 20, 27, 28, 34, 58,
61, 62, 67, 69, 70, 74�80, 83, 85, 88, 90, 92�94, 102�104, 106, 109, 112,
113, 130

xxi

Notation

Notation Description Page
List

AC(φ) The set of all constraints obtained by applying
the index set construction [BM07] to φ.

22, 23,
47, 48,
55

args(f) The set of all terms (or tuples of terms) used as
arguments for function f in a formula.

22

A[i] The value of array A at index i (�array-read�
function).

18, 19,
21, 34,
38, 39,
47, 48

A〈i� j〉 The array A after writing j to index i (�array-
write� function).

18, 19,
21, 34,
38, 39,
47

a := b Denotes assignment of value b to a. The assign-
ment symbol �:=� will be used instead of �=�,
whenever necessary to avoid confusion with the
equality predicate.

16, 19,
34, 37,
39, 53,
79

B The set of Boolean values: {>,⊥}. 16, 17,
34

CC(φ) The set of all congruence constraints obtained
by performing Ackermann's reduction on φ.

22, 23,
49, 50

clause(n) The clause of proof node n. 28�30,
63

C|φ The clause C with all literals that contain sym-
bols that do not occur in φ removed. That is,
C|φ =

∨
l∈Lits(C), l�φ l.

17, 63

D Domain of discourse; a possibibly in�nite set of
elements which are the subjects of statements
in �rst-order logic.

16, 17,
34

xxiii

xxiv Notation

Notation Description Page
List

expand_negate(Φ) The expansion and negation of a formula Φ as
shown in the proof of Theorem 4.

45, 59�
63

I Index set (in the context of array properties). 21, 47,
48, 55

λ A term that represents �any other index� during
the reduction of array properties to T

qf
U .

21, 47,
48, 55

Lits(φ) The set of literals occurring in φ. xxiii,
16, 17,
26, 74

J·KM The value of � ·� under model M. The subscript
M is dropped, if the model is clear from context.

17, 46�
52, 62

no_array(φ) The formula obtained from TPA -formula φ by re-
moving array-write expressions, replacing uni-
versal quanti�ers in array properties with �nite
conjunctions over the index set and replacing all
array-read expressions with fresh uninterpreted
function instances.

22, 23,
47, 48

no_equal(φ) The formula obtained from T
qf
E -formula φ by

replacing all equality atoms with fresh propo-
sitional variables. Symmetric atoms a = b and
b = a are replaced by the same propositional
variable. Re�exive equalities a = a are replaced
by >.

23

no_func(φ) The formula obtained from T
qf
U -formula φ by re-

placing all uninterpreted function (predicate, re-
spectively) instances with fresh domain (propo-
sitional, respectively) variables.

22, 23,
49, 50

a; b A path from a to b in a congruence graph. xxiv, 26
φ ` ψ Denotes that φ entails ψ. That is, ψ is a logi-

cal consequence of φ. If used with a subscript
φ `T ψ, the entailment holds within theory T.
In particular `T ψ is used to denote that ψ is a
lemma of T.

25, 27,
30, 66

rule(n) The proof rule of proof node n. 28

Notation xxv

Notation Description Page
List

S A fragment of TA, following the grammar given
in De�nition 20 (page 34).

34, 35,
37, 45,
90

skel(φ) The propositional skeleton of φ. 20, 24,
25, 51,
52, 85,
86

SQ The speci�cation language used for controller
synthesis. Corresponds to a closed formula
∀x .∃c .∀x′ .Φ, where Φ is a formula in S.

x, 35,
38, 41,
43�46,
52,
55�58,
84, 87,
90, 97,
114

SQ
+

A generalized version of SQ that allows an arbi-
trary number of quanti�er alternations, as long
as all existential quanti�ers are over Boolean
variables only.

35, 44,
45, 55,
56, 58

symb(φ) The set of non-logical symbols (variables, func-
tion, and predicate symbols) occuring in φ.

17, 30,
59, 62

φ � ψ Denotes that symb(φ) ⊆ symb(ψ). 17

T
p
A Array property fragment of the theory of arrays. 19, 21�

23, 35,
45, 48,
94

TA Theory of arrays. 18, 19,
21, 33,
34, 41

TC(φ) The set of all transitivity constraints obtained
by applying the graph-based reduction [BV00]
to φ.

23, 51

TE Theory of equality. x, 18,
46, 49,
50

T
qf
E Quanti�er-free fragment of the theory of equal-

ity.
18, 21�
23, 51

TU Theory of uninterpreted functions and equality. x, 17,
18, 46,
47, 49,
58, 70,
79, 88

xxvi Notation

Notation Description Page
List

T
qf
U Quanti�er-free fragment of the theory of unin-

terpreted functions and equality.
18,
21�23,
25�27,
49,
58�60,
62, 79,
91, 93

vars(φ) The set of all variables occuring in φ. 35, 46

1
Introduction

1.1 Background and Motivation

Today's computing systems are getting increasingly complex, while at the same
time their role in our society becomes more and more important. In fact, lives
may depend on the correct operation of digital systems embedded in things like
cars, aircraft, and critical medical care equipment. In critical areas, testing alone
may not be su�cient to ensure correctness of a system. Formal veri�cation is one
way to alleviate the problem. A veri�cation procedure produces a proof for the
fact that a system conforms to a given speci�cation. Obviously, an (informal)
speci�cation in natural language is not suited for formal veri�cation. Instead, a
precise and unambiguous formalism is needed to encode the speci�cation. Thus,
the need for formal veri�cation caused a need for formal speci�cations of systems.
Once such speci�cations are available, a natural question is why one actually
has to bother doing implementations manually. After all, formal speci�cations
should, ideally, already contain all the information to automatically synthesize
correct-by-construction implementations. (See Figure 1.1.)

The idea of synthesis was �rst proposed by Alonzo Church [Chu62] in the
early 1960s. Unfortunately, it received only little attention for several decades
because of the high computational complexity. However, in recent years, several
advances were made by imposing some limitations on the speci�cations, or by
considering only parts of systems, instead of entire systems at once. Moreover,
the last decade has brought forward great improvements in the �eld of SAT
and Satis�ability Modulo Theories (SMT) solving. This development was both
fostered and witnessed by corresponding competitions: The SAT competition2

2http://www.satcompetition.org/

1

http://www.satcompetition.org/

2 Chapter 1. Introduction

Design Intent

Formal
Specification

Implementation

Verification

(a) Normal design setting.

Design Intent

Formal
Specification

Implementation

Synthesis

(b) Correct-by-construction synthesis setting.

Figure 1.1: In a normal setting, a user has to create two realizations of the design
intent: a formal speci�cation, and an actual implementation. These can
then be formally veri�ed against each other. Correct-by-construction
synthesis from a formal speci�cation eliminates the need for both manual
implementation and veri�cation.

and the SMT competition.3 Modern solvers are capable to solve many large
benchmarks, despite the NP-complete worst-case complexity of the underlying
decision problem. As SAT and SMT solving often can act as the underlying
decision procedure for a synthesis algorithm, synthesis has greatly bene�tted
from these improvements as well. Nevertheless, scalability certainly remains an
issue for synthesis.

One way to deal with scalability issues is to consider only certain parts of a
system for synthesis, while other parts are still implemented manually. We ob-
serve that many systems actually consist of two types of components. One type
is data-oriented components, also called the datapath of a system. In hardware,
that would be components like adders, multipliers, or even complete Arithmetic
Logic Units (ALUs), as well as memory and register �les. In software, that would

3http://smtcomp.sourceforge.net/

http://smtcomp.sourceforge.net/

1.1. Background and Motivation 3

be (side-e�ect-free) functions, which compute complex arithmetic operations,
cryptographic algorithms, or similar things. Such data-oriented components are
usually comparatively easy to implement and test manually, while they are of-
ten rather hard to formally specify. For example, consider a 64 bits hardware
multiplier. Due to its regular internal structure, it is rather easy to design such
a circuit. Once available, it is also rather easy to test. If it works correctly for
the few known corner cases (one or both inputs 0, 1, 264−1, respectively), plus a
few randomly chosen test cases, we have very high con�dence that the multiplier
circuit is correct. However, giving a formal speci�cation for how all 128 output
bits depend on the 128 input bits is a di�cult, for practical purposes intractable
task.

The second type of components is control-oriented components. In both soft-
ware and hardware systems, controllers make sure that the data operations are
executed in the correct sequence to achieve the overall goal of the computa-
tion. Controllers are often more di�cult to implement, compared to datapath
components. They are also more di�cult to test. Certain errors might only
be triggered in very special scenarios, when executing a particular sequence of
actions, or when using some particular data values. In contrast to datapath
elements, there is no internal regularity, so random testing will not help to build
trust in correctness either. Yet, the properties that a controller has to ensure are
in many cases rather simple to formally specify. Properties like �Every request
will eventually be answered�, or �No two simultaneous accesses to this resource
may be granted� map quite nicely to common speci�cation formalisms.

Based on this observation, we would like to have �the best of both worlds�.
Ideally, we want to have a mixed imperative-declarative paradigm, where we
can implement the parts that are easy to implement (and hard to specify), while
only specifying the parts that are easy to specify (and hard to implement). The
question is how to combine the two parts? One one hand the declarative part
will � in general � have to reference datapath elements in order to express
the desired properties. But on the other hand, we do not want to spell out all
details of those elements. Otherwise, the main advantage of the mixed paradigm
would be lost. Instead, the speci�cation will only consider an abstraction of
the datapath elements. This abstraction must be detailed enough to facilitate
reasoning about correctness, yet abstract enough to be of tractable size. We will
show that uninterpreted functions can, in many practical cases, be used as such
an adequate mean of abstraction. Uninterpreted functions are particularly suited
in concurrency settings. Simply put, when doing several operations concurrently,
correctness should not depend on the semantics of single operations. Instead, it
should su�ce to ensure that the same operations are executed on the same data
in the same order. Uninterpreted functions enable modeling such properties
at minimum cost, as they are not axiomatized in any way, beyond functional
consistency.

In hardware, pipelining is a widespread technique to achieve concurrency
and thus increase throughput. As we will illustrate in Section 1.2, implementing
pipeline controllers correctly is extremely di�cult. The speci�cation, however,

4 Chapter 1. Introduction

is as simple as stating that �the (externally visible) behavior of the pipelined
system should be the same as the one of a non-pipelined reference system�. We
will present more details on how this property can be formalized in Sections 2.4
and 3.2.

1.2 Problem Description

In its most general form, the main problem we tackle in this thesis assumes the
following setting. We have a system whose correctness can be stated in a decid-
able (fragment of a) �rst-order theory. We require that there exists a procedure
to compute Craig interpolants (see Section 2.3) for this fragment/theory, such
that the interpolants are again in the same fragment/theory.4 Moreover, we
assume that some Boolean control signals are not implemented in the system,
but should be synthesized instead. We will show how to synthesize these control
signals such that the system becomes correct with respect to the correctness
criterion that has been stated. To make it more clear, we illustrate this concept
with a concrete example, which has been the driving example for this research:
Synthesis of a controller for a pipelined microprocessor.

Pipelining a microprocessor, unfortunately, can usually not be achieved by
simply inserting pipeline registers at relevant points in the design. The reason
is that the non-pipelined reference design that one would start from usually
relies on the assumption that whenever an instruction is about to be executed,
all previous instructions have completed. This assumption no longer holds for
pipelined designs. In a pipeline, one instruction might depend on data that is
not yet available, because the previous instruction, which computes this data,
is still in the pipeline. An illustrative example can be seen in Figure 1.2. Thus,
in addition to the insertion of pipeline registers, a controller is required to make
sure that the pipelined processor operates as intended.

Burch and Dill [BD94] showed how to formally verify that a given controller
is correct. Their work is based on three important concepts that we will also
build upon. First, they used an implicit speci�cation: when starting with the
same initial memory content, the pipelined and the non-pipelined implementa-
tion produce the same �nal memory content, when (completely) executing an
arbitrary program. Second, they showed how this implicit speci�cation can be
turned into a formula, showing that �ushing the pipeline followed by the execu-
tion of one instruction in the non-pipelined implementation and performing one
step in the pipeline followed by �ushing it is commutative. We will henceforth
refer to this way of specifying pipeline correctness as the Burch-Dill paradigm.
A more detailed explanation of the Burch-Dill paradigm will be given in Sec-
tion 2.4. Third, Burch and Dill already realized that a bit-level description of
the datapath components in a microprocessor would be intractably large. Thus,
they used uninterpreted functions for abstraction.

4We will focus on the quanti�er-free fragment of the theory of uninterpreted functions and
equality, for which this property holds.

1.2. Problem Description 5

IF DE EX MEM WB

MEM

REG

ALU

Instructions:
r1 := MEM[1]
r2 := r1 + r2

r1 = 1
r2 = 2

r1 := MEM[1]

MEM[1] = 15

r2 := r1 + r2

stall

15

15forward

bubble

Figure 1.2: Example of Pipeline Concurrency Issues. When a �ve-stage pipe-
lined processor executes the two statements r1:=MEM[1]; r2:=r1+r2, the
following concurrency issues occur. At some point, the �rst instruction
r1:=MEM[1] has been decoded, but not yet executed, while the second in-
struction r2:=r1+r2 has just been fetched and is waiting to be decoded.
Since decoding the second instruction requires the value of r1 that re-
sults from executing r1:=MEM[1], the pipeline has to be stalled, and a
bubble (that is, an �empty� instruction) has to be inserted, while the �rst
instruction continues execution. When the �rst instruction reaches the
memory access stage, the new value for r1 becomes available. This value
must now be forwarded to the decode stage, to avoid having to wait until
write-back to the register �le has completed.

We build upon the work of Burch and Dill [BD94] and lift it from veri�cation
to a synthesis setting. That is, we assume that the implementation of certain
(Boolean) control signals, such as stall or forward (see Figure 1.2) is not known
and should be automatically synthesized so that the pipelined implementation
becomes correct with respect to the Burch-Dill paradigm. We create a quanti�ed
formula that basically expresses that for every possible state of the system, there
exist values for the control signals, such that for all values of auxiliary variables
(required to formulate the correctness criterion), the correctness criterion holds.
Formally, we have

∀x .∃c .∀x′ .Φ, (1.1)

where x is a vector of variables describing the state of the pipeline (and memory),
c is a vector of (Boolean) control signals that should be synthesized, and x′ are
auxiliary variables, necessary to formulate the Burch-Dill style speci�cation Φ.
Note that Φ is a formula in a �rst-order theory. The variables in x and x′

range over the (uninterpreted) �rst-order domain, whereas the variables in c are
Boolean. Based on such a quanti�ed formula, synthesis of a controller reduces
to �nding certi�cates for the existentially quanti�ed control signals. Certi�cates

6 Chapter 1. Introduction

2b. Interpolation-based Synthesis

1. Modelling Synthesis Problems

2a. Decidability
2d. Other
Synthesis

Approaches

2c. Modular SMT
Solving

3. Prototype
Implementation

Figure 1.3: Contribution Dependence. The di�erent synthesis approaches (2a,
2b, 2d) build on how synthesis problems are modeled as quanti�ed for-
mulas. Interpolation-based synthesis (2b) is also (partially) based on
modular SMT solving (2c). Our prototype implementation (3) is based
on interpolation, but not (yet) on modular SMT solving.

are functions that compute the values for variables in c, based on values for the
variables in x. For pipelined processors, we will use the theory of uninterpreted
functions and equality as well as the array property fragment of the theory of
arrays to formulate Φ. However, our main approach to compute certi�cates (see
Chapter 5) is not limited to these theories. It can be generalized to any decidable
theory (or fragment) for which a suitable interpolation procedure exists.

1.3 Contribution

This section will describe the contribution of this thesis beyond the state of the
art. In summary, there are three main contributions: First, a way to properly
state a controller synthesis problem as a quanti�ed, Burch-Dill style formula;
second, several methods to compute certi�cates from such formulas; and third,
a prototype tool implementing one of the more promising approaches. The rest
of this section will describe those contributions in more detail.

1.3.1 Contribution 1 � Stating the Synthesis Problem

The fundament of every synthesis problem is the formal speci�cation that de-
scribes what should be synthesized. Thus, the �rst contribution of this thesis is
to show how the Burch-Dill paradigm can be adapted and extended to serve as
the speci�cation for our controller synthesis problems. Two main adaptions are
necessary to the standard Burch-Dill paradigm. First, we introduce alternating

1.3. Contribution 7

quanti�ers to account for the yet unknown control signals. However, by having
the existential quanti�er over Boolean signals only, we maintain decidability.

Second, the Burch-Dill paradigm is based on describing a �ush-operation of
the pipeline. Such an operation may take several time steps, and thus the formal
description refers to several instances of signals and values in the design, each
belonging to a particular time step. This is �ne in veri�cation, where the entire
design (and thus all signals and values) are known. However, in synthesis, the
control signals c are not known at the time of writing the speci�cation. Thus,
referring to multiple instances of them is problematic. Somehow, the speci�-
cation would also have to ensure that each instance is functionally dependent
on all the state variables corresponding to the same time step in the same way.
This is problematic, especially with a linear quanti�er structure. We show how
to work around this problem by using completion [HGS03] instead of �ushing.
More details on this issue will be presented in Section 3.2.

1.3.2 Contribution 2 � Computing Certi�cates

Based on speci�cations with the structure shown in Equation 1.1, the main
contribution of this thesis is to show ways to compute certi�cates for the con-
trol variables c. Several di�erent approaches, with di�erent underlying decision
procedures have been investigated.

Contribution 2a. The �rst and rather naive approach for certi�cate computa-
tion is to adapt standard eager-encoding techniques from SMT solving, to reduce
our problem to the purely propositional domain. On the propositional level, the
speci�cation becomes the characteristic function of a relation, describing possible
input/output values. Certi�cates can then be computed with arbitrary symbolic
relation determinization techniques, such as for example a simple cofactor-based
approach.

This approach does not scale very well, mainly because the number of transi-
tivity constraints that are needed for a reduction from equality logic to proposi-
tional logic is extremely large. The main rationale for investigating this approach
was to establish decidability of the problem in an early phase of the research.
More details will be presented in Chapter 4.

Contribution 2b. Craig interpolation [Cra57] is one way to symbolically de-
terminize Boolean relations [JLH09]. We improve this method in two ways.
First, we show that the reduction to the Boolean level is not necessary and
interpolation can be done directly on the theory-level. Second, we show that
instead of the standard iterative approach, where one interpolant (correspond-
ing to the implementation of one control signal) is computed at a time and
back-substituted into the speci�cation, we can compute multiple coordinated
interpolants from a single proof. We will refer to this generalized interpolation
method as n-interpolation. Details will be presented in Chapter 5.

8 Chapter 1. Introduction

Contribution 2c. The n-interpolation algorithm mentioned above requires
a refutation proof with some additional properties. In particular, it must be
local-�rst, meaning that whenever resolution over a literal that is local to one of
the partitions over which we interpolate is done, both premises must be derived
from the same partition. We show that modular SMT solving, an extension of
modular SAT solving [BVB+13], can be used to readily obtain a proof with this
property. Using tree-shaped dependencies, we can also use modular solving to
extend our n-interpolation-based certi�cate computation to formulas with more
than one quanti�er alternation, as long as all existential quanti�ers are over
Boolean variables only:

∀x .∃c .∀x′ .∃c′ .∀x′′ Φ. (1.2)

This will be presented in Section 5.4.

Contribution 2d. Even though n-interpolation is very promising, we investi-
gate some alternative approaches as well, for comparison. One such approach is
to reduce our problem to Quanti�ed Boolean Formula (QBF) solving. Naively,
this could be done by eagerly encoding theory constraints. An alternative to the
eager approach is to add theory constraints lazily, only when needed. A com-
pletely di�erent approach is based on the observation that for many practical
synthesis problems small and simple solutions do exist. Thus, we �guess� such
a solution and try to verify it. If veri�cation fails, we re�ne the guess based
on the counterexample obtained from the veri�cation step. All these alternative
approaches will be described in more detail in Chapter 6.

1.3.3 Contribution 3 � Prototype Tool

We have implemented the n-interpolation-based approach in a prototype tool
called Suraq. To the best of our knowledge, this is the �rst tool that supports
correct-by-construction synthesis based on uninterpreted functions as underlying
abstraction method. Suraq was implemented in Java, and consists of roughly
35, 000 lines of code. More details on its implementation and experimental results
achieved with it can be found in Chapter 7.

1.4 Outline of this Thesis

The structure of this thesis is shown in Figure 1.4. After this introductory chap-
ter, Chapter 2 will revisit the theoretical background on which our research is
based. We will also give important de�nitions and establish notation conven-
tions.

In Chapter 3, we will show how to create a Burch-Dill style speci�cation for
a pipelined processor, so that we can use it for controller synthesis. We will
highlight how we adapted and extended the Burch-Dill paradigm and why these
modi�cations were necessary.

1.4. Outline of this Thesis 9

1.
Introduction

2.
Preliminaries

8.
Conclusion

3. Modelling

4.
Decidability

&
Complexity

7.
Implementation
& Experimental

Results

6. Other Approaches

5.
Interpolation-

based
Approaches

Figure 1.4: Chapter Dependence. After introducing the research problem (1), we
present necessary preliminaries (2). Building on those, we show how to
model synthesis problems with our speci�cation language (3). Moreover,
we discuss the decidability and computational complexity of our synthe-
sis paradigm (4). Based on these, we present concrete approaches (5,
6) to solve the synthesis problems, with a focus on interpolation-based
approaches (5). Our implementation is also interpolation-based, and the
corresponding experimental results are presented (7). Finally, we give a
summary and conclusion (8).
Note that the size of the boxes above is not intended to correlate with
importance or length of any of the chapters.

In Chapter 4, we will show that the problem we consider is decidable in
the form in which we stated it. Furthermore we will discuss computational
complexity, and show that (the generalized version of) our problem is PSPACE-
complete. In order to prove PSPACE-completeness, we will show that we can
transform our synthesis problem into a QBF problem, and vice versa.

Chapter 5 is dedicated to interpolation-based approaches for certi�cate com-
putation. We will �rst show an iterative approach based on resubstitution. Next,
we will present a generalized interpolation scheme called n-interpolation, with
which we can compute multiple coordinated interpolants from a single proof. As
n-interpolation requires proofs to be local-�rst, we present two ways to obtain
such proofs. The �rst way is to rewrite a proof obtained from a normal SMT
solver. A second approach is to use modular SMT solving.

Alternative approaches for certi�cate computation, in particular an idea
based on lazily encoding theory constraints into a QBF problem, will be dis-
cussed in Chapter 6.

Our prototype synthesis tool Suraq, which is based on the n-interpolation
approach will be discussed in Chapter 7. This chapter will also give our experi-
mental evaluation of the synthesis �ow.

Chapter 8 will summarize our work, point out the most important conclu-
sions, and talk about potential future work.

10 Chapter 1. Introduction

1.5 Related Work

Declaration of Sources

This section is based on and reuses material from the following sources,
previously published by the author:

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis
for pipelined circuits using uninterpreted functions. In Singh et al.
[SJKB11], pages 31�42.

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer,
Jie-Hong Roland Jiang, and Roderick Bloem. Synthesizing mul-
tiple boolean functions using interpolation on a single proof. In
Jobstmann and Ray [JR13], pages 77�84.

References to these sources are not always made explicit.

Research on automated synthesis has prospered signi�cantly over the last decade.
Before we talk about recent achievements made with respect to synthesis, let us
brie�y discuss some often neglected correlated aspects of synthesis settings in
general. First of all, synthesis removes redundancy from the design process.
Instead of creating a formal speci�cation and an implementation, the user just
creates the speci�cation (see Figure 1.1). While this can save time and e�ort,
it can also be a source of errors. With a manual implementation process, the
same mistake would have to happen in the implementation and in the spec-
i�cation in order for the error to remain unnoticed. In a synthesis setting,
an error in the speci�cation will lead to a faulty implementation that is not
directly detected. As it is not clear whether writing correct speci�cations is
any easier than writing correct implementations, the main underlying problem
has just been shifted to a di�erent domain. This issue has so far not really
been addressed in literature. Some closely related problems are considered by
Könighofer et al. [KHB09, KHB10, KHB13]. They present methods to �debug�
formal speci�cations. On one side, they consider incomplete speci�cations, that
is, speci�cations that miss some important properties and thus do not constrain
the synthesized systems enough. This is addressed by simulating a generalized
version of the synthesized system, and letting the user decide whether or not
the simulation exhibits undesired behavior. On the other hand, they consider
over-constrained speci�cations, which are unrealizable. This is addressed by
presenting and simulating a counterstrategy, which demonstrates the cause of
unrealizability. Fixing unrealizable speci�cations is also the focus of [LDS11]
and [AMT13], who each present methods to automatically �nd assumptions on
the environment which �x the problem of unrealizability.

1.5. Related Work 11

Apart from the completeness and correctness of speci�cations, there is an-
other issue with synthesis. In most design settings, there are side conditions to
the primary goal of implementing a correct system. These are often of a quantita-
tive nature. For example, the �nal system should be as �small� as possible, with
respect to some metric such as lines of code, or number of logic gates. Bounded
synthesis [SF07, FS13] is one way to address this issue. It inherently always
�nds the system with the smallest possible state space. In symbolic synthesis
algorithms, small results can be achieved by optimizing the determinization of
the winning strategy. A good overview of di�erent methods to do that is given
in Section 2 of [EKH12]. There are also other quantitative properties of sys-
tems, apart from their size. For example, one would prefer a system that reacts
to a request as fast as possible, compared to a system that just waits for some
time before reacting � even if the speci�cation only requires that a reaction
happens eventually. Quantitative properties of this type have been addressed
in [BCHJ09]. Another important property of a system is its robustness against
failures of the environment. From a mathematical perspective, the behavior of
a system after the environment has made an error is not speci�ed and can thus
be arbitrary. However, a system that tries to recover from the error in some
way is clearly preferable over a system that just stops operating after the error,
even though both are correct with respect to the speci�cation. A comprehensive
summary on how to synthesize robust systems is given in [BCG+14].

After this brief overview of side aspects to synthesis in general, let us look
at actual synthesis methods. One important branch of synthesis is concerned
with synthesis of reactive modules from temporal logic formulas. In the late
1980s, Pnueli and Rosner [PR89] established a doubly exponential lower bound
for synthesis from a speci�cation given in Linear Temporal Logic (LTL). Thus,
this kind of synthesis was deemed intractable for examples of interesting size,
until Piterman et al. [PPS06] showed that by restricting the speci�cation lan-
guage, the bound could be brought down signi�cantly. Bloem et al. [BGJ+07a]
have subsequently shown that this restricted language can e�ectively be used
to synthesize examples of industrial scale. Following that, there has been a
proliferation of approaches for synthesis from temporal logic speci�cations. In
fact, there are too many to cite them all. To give just a few examples, consider
[JGWB07, SF07, FJR09, SS09, SS13, MS10, FJ12, JB12, KJB13]. Although
quite successful, these approaches have only limited applicability to the con-
troller synthesis problems we consider. The reason for that is the lack of ab-
straction. LTL and similar temporal logic formalisms are based on propositional
primitives. Thus, they reason on a bit-precise level. Using such a formalism
in our setting means that all system parts that are already implemented would
have to be described on a bit-precise level. In many cases, this is not feasible.
For example, multipliers � which are common datapath elements � have an ex-
ponentially large bit-precise description. Thus, for su�ciently large bit-widths,
modeling them on a bit-precise level is intractable.

To cope with this problem, there has been work on how to use abstraction
in synthesis settings. Synthesis from temporal logic is often reduced to solving

12 Chapter 1. Introduction

in�nite games on �nite graphs. The work by de Alfaro et al. [dAR10] shows
how to use a three-valued abstraction-re�nement to simplify large games. While
this might improve the procedures for solving the game, it does not help with
respect to the problem of specifying complex implementations on a bit-precise
level in a mixed imperative-declarative paradigm. One setting that is based on
this paradigm is program repair [JGB05], which aims at replacing faulty parts of
programs with synthesized components, such that the overall program becomes
correct. Thus, the non-faulty part of the program obviously must be part of the
speci�cation for synthesis. In this setting predicate abstraction has been used
[GBC06] to avoid having to formalize the program fully on a bit-precise level.
Predicate abstraction is also used by Vechev et al. [VYY10], who try to automat-
ically insert synchronization statements into concurrent programs � a problem
originally described by Clarke and Emmerson [EC82]. Their work is similar
to ours with respect to the fact that they, too, assume that the actual data
computation has been implemented, and only the concurrency aspects must be
synthesized. Their approach uses a predicate-abstraction-based re�nement loop,
but instead of just re�ning the abstraction in each iteration, they also give the
complementary option of modifying the program by inserting additional atomic
sections. Predicate abstraction, however, is not equality-preserving, unless the
abstraction is re�ned to a level where it is isomorphic to the original concrete
instance. This makes predicate abstraction inapplicable in synthesis settings
where the speci�cation is based on stating equality between the result computed
by a concurrent system and the corresponding result of a reference system. In
contrast to this, our abstraction with uninterpreted functions preserves equali-
ties, in many cases. This has been exploited in veri�cation settings; for example,
by Burch and Dill [BD94]. However, to the best of our knowledge, we are the
�rst to suggest the use of uninterpreted functions for abstraction in a synthesis
setting.

Another approach that employs a mixed imperative-declarative paradigm
is program sketching [SL13]. Here, the main idea is that the user can leave
�holes� in the program, which are �lled by the synthesizer. More formally, one
can write �??� instead of an integer or Boolean constant. The synthesizer will
then �nd constants such that the program satis�es all assertions. To synthesize
non-constant expressions, the user must provide a template. For example, to
synthesize an expression that linearly depends on a variable x, one can write
�?? * x + ??�. Synthesis itself is done by a counterexample-guided re�nement
loop. In principle, program sketching is quite similar to our work. In both
approaches, there are some unknowns � which should be synthesized � in an
otherwise completely implemented system. Two key di�erences are that program
sketching can synthesize integer values, whereas we only synthesize Boolean con-
trol signals. On the other hand, we synthesize Boolean functions, whereas pro-
gram sketching only synthesizes constants � unless the user provides a template
for a non-constant expression, as illustrated in the example above.

Some work that is rather orthogonal to our own is functional synthesis by
Kuncak et al. [KMPS10, KMPS13]. Whereas in our setting we assume that

1.5. Related Work 13

data operations are easy to implement, and thus focus on synthesizing control
logic, Kuncak et al. focus on synthesizing functions that compute data, based on
speci�cations about the input-output behavior. Their approach is also focused
on software and thus supports unbounded data types, for example numbers and
data structures. Overall, their work nicely complements our own.

Nurvitadhi et al. [NHKL10, NHKL11] have done work based on the same
motivating application. They, too, present a method to synthesize a pipeline
controller. Their approach is, however, quite di�erent from ours. They perform
data-hazard analysis and resolution, while we start from a logic speci�cation, a
Burch-Dill style veri�cation condition, which we use for correct-by-construction
synthesis. Thus, we have formal proof that our synthesis result satis�es the
original speci�cation. Besides the fundamental internal di�erences, there are
also di�erences from a user's point of view. For example, we do require a com-
plete datapath for the pipeline, including (potential) forwarding paths. On the
other hand, our approach does not need manually implemented read-enable

and write-enable signals, nor do we impose the restrictions of [NHKL11] on
the structure of the write interface of the pipeline. Furthermore, even though
pipeline controllers are the main motivation for our work, our approach is more
general and also extends to other controller synthesis problems, where the spec-
i�cation can be stated as a formula like Equation 1.1 or Equation 1.2.

Concerning the internals of our synthesis approach(es), there is a lot of recent
work we rely on and adapt where necessary. Interpolation as a mean of certi�cate
extraction was proposed by Jiang et al. [JLH09]. They consider formulas of the
form ∀a .∃b .Φ, where a and b are vectors of propositional variables, and Φ is a
propositional formula. We extend their work in three ways. First, we allow �rst-
order theory formulas and universally quanti�ed �rst-order variables. Second,
we allow an inner universal quanti�er, which binds auxiliary variables on which
the certi�cates for the existentially quanti�ed propositional variables may not
depend. Third, we also present a method to compute multiple interpolants
from a single proof, whereas [JLH09] proposes only an iterative method, based
on resubstitution. Similar iterative resubstitution has also been used in BDD-
based temporal logic synthesis approaches [BGJ+07a] and in functional synthesis
[KMPS10].

Interpolation in the theory of uninterpreted functions and equality has been
described my McMillan [McM05], and optimized by Fuchs et al. [FGG+09]. We
generalize their techniques to settings with more than two colors to obtain our
colorable proofs. Other recent work on colorable proofs includes [KV09] and
[HKV12].

The concept of modular SMT-solving is based on combining ideas from
McMillan [McM11] and Bayless et al. [BVB+13]. McMillan [McM11] showed
how colorable proofs can be obtained e�ciently, by applying interpolation only
to non-colorable theory lemmata. Bayless et al. [BVB+13] describe how modular
SAT solving works. We propose to combine these ideas, resulting in a modular
SMT solver that produces colorable proofs.

Our prototype tool Suraq relies on a proof-producing SMT solver as un-

14 Chapter 1. Introduction

derlying decision procedure. For proof production, the current implementation
uses the veriT solver [BdODF09]. For various other tasks (equivalence checks,
formula simpli�cation, etc.), Suraq also uses Z3 [dMB08]. To optimize our
synthesis results, we also tried to compress proofs � as smaller proofs yield
smaller interpolants. For proof compression, we used the tool Skeptik [BFW14],
which can read veriT proofs and compress them with several di�erent algo-
rithms [FMW11, BW13].

2
Preliminaries

Declaration of Sources

This chapter is based on and reuses material from the following sources,
previously published by the author:

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis
for pipelined circuits using uninterpreted functions. In Singh et al.
[SJKB11], pages 31�42.

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer,
Jie-Hong Roland Jiang, and Roderick Bloem. Synthesizing mul-
tiple boolean functions using interpolation on a single proof. In
Jobstmann and Ray [JR13], pages 77�84.

References to these sources are not always made explicit. In particular,
de�nitions and notational conventions are strongly based on the papers
listed above. In general, notation largely follows conventions established
in literature � [BM07] and [KS08] in particular.

In this section, we will revisit some theoretical background on which our work
builds. We assume that the reader is already familiar with �rst-order logic and
theories (in particular, the theories of uninterpreted functions and equality, and
the theory of arrays). Thus, we will only brie�y recapitulate some important

15

16 Chapter 2. Preliminaries

de�nitions, in order to avoid ambiguities and establish a consistent notation. For
a thorough introduction into �rst-order theories and decision procedures, the
reader is referred to [KS08] and [BM07]. In the remainder of this chapter, we
will �rst introduce �rst-order theories, in particular the theory of uninterpreted
functions and equality, and the theory of arrays, which we will both need to write
speci�cations for pipelined processors in Chapter 3. Next, we will discuss SMT
solving, as it is the underlying decision procedure for our synthesis approach
presented in Chapter 5. We will also brie�y recapitulate Craig interpolation and
state some relevant de�nitions, as it is the basis for our n-interpolation-based
approach for certi�cate extraction, which is also presented in Chapter 5.

2.1 Theories in First-Order Logic

2.1.1 Propositional Logic

Propositional logic is a language based on atomic propositions which can either
be true (>) or false (⊥). Let B be a set of variables ranging over the Boolean
domain B = {>,⊥}. Then the syntax of propositional logic is de�ned as follows:

atoms 3 a := > | ⊥ | b
formulas 3 φ := a | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ,

for each b ∈ B. We will call anything that conforms to this grammar a proposi-
tional formula. A model for a propositional formula is a mapping that assigns
either > or ⊥ to each variable. The semantics of the connectives ¬, ∧, ∨, and
→ are de�ned as usual.

2.1.2 First-Order Logic

First-order logic is a formal calculus over elements from a (�nite or in�nite)
domain of discourse D. Let X be a set of variables ranging over D, let B be a
set of propositional variables ranging over B, let F be a set of function symbols,
and let P be a set of predicate symbols. The syntax of �rst-order logic is de�ned
by the following grammar:

terms 3 t := x | f (t, . . . , t),

atoms 3 a := > | ⊥ | b | P(t, . . . , t),

formulas 3 φ := a | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ∃x . φ | ∀x . φ,

for each x ∈ X, b ∈ B, f ∈ F, and P ∈ P. Furthermore, we use the following
common naming conventions. A literal is an atom or the negation of an atom.
Literals have a polarity, which is positive if the literal is an atom, and negative
if the literal is a negated atom. Let Lits(φ) denote the set of literals occurring
in φ. A clause is a disjunction of literals. A Conjunctive Normal Form (CNF)
is a conjunction of clauses. Every formula can be transformed into an equisatis-
�able CNF formula, by introducing a linear number of additional propositional

2.1. Theories in First-Order Logic 17

variables, via a procedure called Tseitin's encoding [Tse68]. The variables intro-
duced during Tseitin's encoding are called Tseitin variables. The symbols ¬, ∧,
∨,→, ∀, and ∃ are called logical symbols. All other symbols (variables, functions
symbols, predicate symbols) are called non-logical symbols. We will denote with
symb(φ) the set of non-logical symbols occurring in φ. Furthermore, let φ � ψ i�
symb(φ) ⊆ symb(ψ). For a formula φ and a clause C, let C|φ =

∨
l∈Lits(C), l�φ l,

that is, the clause C with all literals that contain symbols that do not occur in
φ removed.

In formulas of the form ∃x . φ and ∀x . φ the variable x is said to be bound
by the quanti�er. A variable that is not bound by any quanti�er is called a free
variable. A formula without free variables is called a closed formula. A formula
with free variables is called an open formula.

Amodel M for a formula in �rst-order logic is a tuple (JDK , JXK , JBK , JFK , JPK).
JDK is a set of elements that comprise the concrete domain of discourse used by
the model. JXK is a mapping from X to JDK, assigning to every x ∈ X a concrete
object from JDK. JBK is a mapping from B to B, assigning to every b ∈ B either
> or ⊥. JFK assigns a concrete function Jf K, mapping from Dn to D, to each
n-ary function symbol f ∈ F. Similarly, JPK assigns to every P ∈ P of arity n a
concrete function JPK, mapping from Dn to B. We will use the notation J·K to
denote the value of � ·� in a model. If the model to which we refer is not clear
from the context, we will use it as a subscript: J·KM. Based on the usual seman-
tics of Boolean connectives and quanti�ers, we say that a model M satis�es a
formula φ, written as M � φ, i� M makes φ evaluate to >.

2.1.3 First-Order Theories

A �rst-order theory T is a tuple (ΣT,AT). The signature ΣT is a (possibly
in�nite) set of variable, predicate, and function symbols. A T-formula φT is a
�rst-order logic formula such that all variables, predicates, and functions symbols
occurring in φT also occur in Σ. We will sometimes also use the term �theory�
or the symbol T to denote the set of all T-formulas. A is a (possibly in�nite) set
of axioms. Axioms are T-formulas where all variables are bound by a quanti�er.
The intuition behind axioms is that they impose a speci�c �meaning� onto the
symbols in Σ. That is, the axioms are formulas that state properties of symbols
in Σ. For a model M, we write M � T to indicate that M satis�es all axioms of
T.

A fragment of a theory T is a syntactically restricted subset of all possible
T-formulas. There are two fragments which are often of speci�c interest: The
quanti�er-free fragment, which disallows the use of quanti�ers, and the conjunc-
tive fragment which allows only conjunctions of literals.

2.1.4 Theory of Uninterpreted Functions and Equality

The �rst theory we consider is the theory of uninterpreted functions and equality
TU . Its signature is ΣU = XU ∪ BU ∪ FU ∪ PU ∪ {=}, where XU is the set of
all variables ranging over D, BU is the set of all propositional variables, FU is

18 Chapter 2. Preliminaries

a set of uninterpreted function symbols, PU is a set of uninterpreted predicate
symbols and �=� is the equality predicate. We will follow the usual convention
of writing the equality predicate in in�x style. That is, we will write �a = b�,
instead of �= (a, b)�. Furthermore, we will use x as a shorthand notation for
x1, x2, . . . , xn; in particular with respect to arguments of functions and predi-
cates, as well as quanti�ers. That is, we will � for example � write f(x) instead
o f(x1, x2, . . . , xn).

The equality predicate is the only interpreted symbol in TU . Its semantics
are de�ned by the axioms of TU :

Re�exivity: ∀x . x = x, (2.1)

Symmetry: ∀x .∀y . x = y → y = x, and (2.2)

Transitivity: ∀x .∀y . ∀z .(x = y ∧ y = z)→ x = z. (2.3)

For every uninterpreted function symbol f ∈ FU we have:

Function congruence: ∀x .∀y .

∧
i

xi = yi

→ f (x) = f (y); (2.4)

and for every uninterpreted predicate symbol P ∈ PU we have:

Predicate congruence: ∀x .∀y .

∧
i

xi = yi

→ (
P(x)↔ P(y)

)
. (2.5)

The axioms of TU specify the usual semantics of the equality predicate: re�ex-
ivity (Equation 2.1), symmetry (Equation 2.2), transitivity (Equation 2.3), and
congruence with respect to uninterpreted functions (Equation 2.4) and predi-
cates (Equation 2.5).

Henceforth, we will be particularly interested in the quanti�er-free fragment
of TU , which we will denote T

qf
U . Moreover, we will sometimes refer to the theory

of equality TE , which is a subset of TU . The signature ΣE of TE does not contain
uninterpreted function and predicate symbols. The axioms of TE are the �rst
three axioms of TU (Equations 2.1, 2.2, and 2.3, respectively). Also for TE , we

will be particularly interested in the quanti�er-free fragment T qf
E .

2.1.5 Theory of Arrays

The theory of arrays TA was �rst proposed and axiomatized by McCarthy
[McC63]. It is designed for formal reasoning about indexed arrays, by axiom-
atizing how reading from and writing to an array works. We deviate slightly
from standard literature by making TA an extension of TU . That is, we allow
the use of uninterpreted functions in TA-formulas. Thus, the signature of TA
is ΣA = ΣU ∪ { ·[·] , ·〈· � ·〉 }, where ·[·] is the binary array-read function and
·〈·� ·〉 is the ternary array-write function. This notation is to be understood as
follows: A[i] denotes the value of array A at index i. By A〈j � x〉, we denote an

2.2. Satis�ability Modulo Theories Solving and Refutation Proofs 19

array identical to A, except that the value at index j equals x. For convenience,
we will write A = B to express ∀i .A[i] = B[i].

Note that we have introduced �rst-order logic without distinguishing di�erent
data types (also known as �sorts�). This follows the de�nition given in [HR04].
Thus, there is no formal distinction between array variables and other terms,
such as index terms. However, since such a distinction often proves useful in
practice, we will make some syntactic restrictions, when we de�ne our speci�ca-
tion language in Section 3.1.

The axioms of TA are as follows:

Array Congruence: ∀A .∀i .∀j . i = j → A[i] = A[j] (2.6)

Read-over-Write 1: ∀A .∀j .∀x .A〈j � x〉[j] = x (2.7)

Read-over-Write 2: ∀A .∀x .∀i .∀j . i 6= j → A〈j � x〉[j] = A[i] (2.8)

Bradley et al. [BMS06] have identi�ed a fragment of TA that allows limited
use of quanti�ers, but is still decidable. They call it the array property frag-
ment. In the following we will focus on properties of arrays with uninterpreted
indices, as presented in [BM07]. Following their de�nitions, an array property
is a formula of the form

∀i . Fi → Gi,

where i is a tuple of variables, Fi is the so-called index guard, and Gi is the value
constraint. The index guard must conform to the following grammar [BM07]:

ivar := evar | uvar,
iatom := ivar = ivar | evar 6= ivar | ivar 6= evar | >,
iguard := iguard ∧ iguard | iguard ∨ iguard | iatom,

where uvar is any of the variables from i, and evar is an unquanti�ed variable or
constant. In the value constraint Gi, universally quanti�ed variables may only
occur inside array reads A[i]. Furthermore, nested reads like A[B[i]] are disal-
lowed. The array property fragment T

p
A consists of formulas that are Boolean

combinations of quanti�er-free TA-formulas and array properties [BM07].

2.2 Satis�ability Modulo Theories Solving and Re-

futation Proofs

Now that we have de�ned theories, we consider the question of whether or not
a T-formula φT is satis�able with respect to the theory. In other words, we ask
whether or not there exists a model M that satis�es φT and also satis�es all
axioms of T.

De�nition 1 � Satis�ability Modulo Theories (SMT)
A T-formula φ is satis�able modulo T (T-satis�able) i� there exists a model M
such that M � φ and M � A for all axioms A ∈ AT. A formula that is not (T-)
satis�able is called (T-) unsatis�able.

20 Chapter 2. Preliminaries

We also consider the dual of satis�ability: validity.

De�nition 2 � Validity (modulo Theories)
A T-formula φ is valid modulo T (T-valid), i� for all models M for which M � A
holds for all axioms A ∈ AT, it holds that M � φ.

Lemma 1 � Duality of Satis�ability and Validity
A T-formula φ is T-valid if and only if its negation ¬φ is not T-satis�able. A
T-formula φ is T-satis�able if and only if its negation ¬φ is not T-valid.

An SMT solver is an algorithm that takes as input a T-formula and outputs
whether or not the formula is T-satis�able. Usually, a solver also produces
a satisfying model (if the answer is �satis�able�) or a refutation proof (if the
answer is �unsatis�able�) as a byproduct.

We will brie�y look at three di�erent approaches for SMT solving: eager en-
coding, lazy encoding, and DPLL(T). While these concepts are general, we focus
on analyzing them for the theories (and fragments) introduced in Section 2.1.

2.2.1 Eager Encoding

The basic idea of eager encoding is to transform the theory formula φT into an
equisatis�able propositional formula φprop. This is achieved in two steps. First,
every theory atom of φT is replaced by a fresh propositional variable. We will
call this the propositional skeleton of φT.

De�nition 3 � Propositional Skeleton
Let φT be a T-formula. The propositional skeleton of φT, denoted skel(φT), is
the propositional formula obtained by replacing every theory atom with a fresh
propositional variable b.

Lemma 2
Let φT be a T-formula that is T-satis�able. Then skel(φT) is satis�able.

Proof
Since φT is T-satis�able, there exists a model MT such that MT � φT. We
construct a model Mprop that assigns to each variable propositional variable b
the same truth value that the theory atom to which b corresponds has in MT.
Clearly, we have that Mprop � skel(φT). Q. E. D.

After obtaining the propositional skeleton, the second step is to compute so-
called constraints that are added in order to block truth assignments to the
theory atoms that would contradict the axioms of the theory. As the name
�eager encoding� suggests, adding of constraints is done eagerly. That is, a
su�cient set of constraints, denoted Constr (φ), is added such that the resulting
propositional formula

φprop = skel(φ) ∧

 ∧
φc ∈ Constr (φ)

φc

 (2.9)

2.2. Satis�ability Modulo Theories Solving and Refutation Proofs 21

is equisatis�able to the original theory formula φT. The formula φprop can then
be given to a propositional SAT solver, which will determine its satis�ability.

For T p
A, there exists a three-stage eager encoding procedure. The �rst step,

which we call index set construction, reduces a T
p
A-formula to a formula in

T
qf
U [BM07]. The second step, called Ackermann's reduction [Ack54], removes

all uninterpreted function and predicate instances and replaces them with fresh
variables of the correct type. This yields a formula in T

qf
E . Finally, a graph-

based construction [BV00] reduces the formula to propositional logic. For a
T
p
A-formula φ, we will compute a set of constraints Constr i(φ) in each of the

steps. The union of these constraints Constr (φ) =
⋃
i Constr i(φ) will be suf-

�cient to make the corresponding φprop (see Equation 2.9) equisatis�able to φ.
We will now brie�y revisit the details of these reduction techniques, as we will
later use them as the basis for the validity-preserving reductions described in
Section 4.2.

Index Set Construction

Bradley et al. [BM07] show how T
p
A-formulas can be reduced to T

qf
U -formulas.

First, all array-write expressions are removed by introducing fresh variables. The
corresponding instances of the write-axioms (Equations 2.7 and 2.8) are added
to the set of constraints.

Example 1
Let φ be a T

p
A formula that contains the array-write term A〈k�x〉. We introduce

a fresh variable B and replace every occurrence of A〈k� x〉 with B. We also add
the conjunction B[k] = x ∧ ∀i . i 6= k → B[i] = A[i] to the set of constraints.

Next, we compute the so-called index set I. The index set is the union of all
terms that are used for array read-access (unless they are universally quanti�ed
variables), all terms that occur as an evar in the index guards, and the special
term λ that represents �any other index�. It is important that λ is distinct from
any other term in the index set. Thus, we add∧

i ∈ I\{λ}

i 6= λ (2.10)

to the set of constraints.
It has been shown [BM07] that considering this �nite set I of indices only is

su�cient for proving or disproving satis�ability. Thus, we replace all universal
quanti�cations in the array properties with �nite conjunctions over the index set
I. That gives us a quanti�er-free TA-formula without array-write expressions.
Finally, we replace all array-read expressions with instances of (fresh) uninter-
preted functions. For example, A[i] is replaced by A(i).5 The resulting formula

is in T
qf
U .

5Note that for simplicity and readability, we name the fresh uninterpreted functions exactly
the same as the corresponding arrays. The distinction is made by using square brackets [·]
with arrays, and parenthesis (·) with uninterpreted functions.

22 Chapter 2. Preliminaries

De�nition 4 � no_array()

Let φ be a T
p
A formula. Then no_array(φ) is the T

qf
U -formula obtained by the

transformations outlined above.

De�nition 5 � Array Constraints
Let φ be a T

p
A-formula. Then AC (φ) is the set of all constraints obtained by

applying the index set construction outlined above.

Ackermann's Reduction

Ackermann's reduction [Ack54] replaces every uninterpreted function instance
f (x) with a fresh domain variable dxf , and every uninterpreted predicate instance

P(x) with a fresh propositional variable bxP . The constraints which are added
make sure that the fresh variables are equal whenever the function (predicate,
respectively) instances they represent are equal according to the congruence
axioms. For example, let f be a unary function, and let dxf and dyf be the fresh
variables replacing the function instances f (x) and f (y) respectively. Then the
following constraints are added during Ackermann's reduction:∧

a,b∈ args(f)

(
a = b→ daf = dbf

)
. (2.11)

It should be obvious how to generalize this constraint generation to n-ary func-
tions and predicates. Also note that each conjunct in Equation 2.11 can easily
be turned into a clause, by using the equivalence (ϕ→ ψ) ⇐⇒ (¬ϕ ∨ ψ).

De�nition 6 � no_func()

Let φ be a T
qf
U -formula. Then no_func(φ) is the T

qf
E -formula obtained by re-

placing every uninterpreted function instance f (a) with a fresh domain variable
xaf and every uninterpreted predicate instance P(a) with a fresh propositional

variable baP .

De�nition 7 � Congruence Constraints
Let φ be a T

qf
U -formula. Then CC (φ) is the set of all congruence constraints

obtained by applying Ackermann's reduction.

Graph-based Reduction

Ackermann's reduction gives us a formula in T
qf
E . The last step required to reduce

this to an equisatis�able propositional formula is to remove equalities. Bryant
and Velev [BV00] have introduced such a reduction based on an equality graph.

For a T qf
E -formula φ, it proceeds as follows. First, every re�exivity instance a = a

in φ is replaced by >. Second, every equality atom is rewritten such that the �rst
term precedes the second term with respect to some total order. This takes care
of ensuring symmetry. Next, every equality atom a = b is replaced by a fresh
propositional variable ba=b. In order to take care of transitivity, we construct
a so-called non-polar equality graph: This graph has a node for every term and

2.2. Satis�ability Modulo Theories Solving and Refutation Proofs 23

an edge for every equality literal (regardless of its polarity) in the formula. This
graph is then made chordal.

De�nition 8 � Chords, Chord-free Cycles, and Chordal Graphs
In a graph G, let n1 and n2 be two non-adjacent nodes in a cycle. An edge
between n1 and n2 is called a chord.

I�, in a cycle, there exist no non-adjacent nodes that are connected by an
edge, the cycle is said to be chord-free.

A graph is called chordal, i� all of its cycles of length greater than 3 are
chord-free.

A graph can be made chordal by adding additional edges. Based on the chordal
graph, we can compute the transitivity constraints. For every triangle (x, y, z)
in the graph, we add the following constraints:

(bx=y ∧ by=z → bx=z) ∧
(bx=y ∧ bx=z → by=z) ∧
(by=z ∧ bx=z → bx=y) (2.12)

De�nition 9 � no_equal()

Let φ be a T
qf
E -formula. Then no_equal(φ) is the propositional formula obtained

by the procedure outlined above.

De�nition 10 � Transitivity Constraints
Let φ be a T

qf
E -formula. Then TC (φ) is the set of all transitivity constraints

obtained by applying the graph-based reduction outlined above to φ.

Theorem 1
Let φ be a T

p
A-formula. Then the propositional formula

φprop = AC (φ) ∧
CC (no_array(φ)) ∧
TC (no_func(no_array(φ))) ∧
no_equal(no_func(no_array(φ)))

is satis�able if and only if φ is satis�able modulo T
p
A.

Proof
See [BM07], [Ack54], and [BV00]. Q. E. D.

Concerning computational complexity, this reduction can be done in polynomial
time: For a T

p
A-formula φa of size na, the size of the index set is bound by O(na).

Also, the number of array properties that occur in φ is bound by O(na). Thus,

the size of the equisatis�able T qf
U -formula φu obtained by the reductions outlined

above is bound by O(n2a). Ackermann's reduction also causes a quadratic blow-
up. Let nu be the size of φu. The number of function and predicate instances
occurring in φu is bound by O(nu). Thus, at most O(n2u) constraints are added,
as one constraint for each pair of function/predicate instances is necessary. Let

24 Chapter 2. Preliminaries

Figure 2.1: Lazy Encoding. The propositional skeleton of φ is given to a SAT
solver. If a satisfying assignment is found, it is checked by a theory
solver. If the assignment is consistent with the theory, φ is T-satis�able.
Otherwise, a blocking clause is generated and the SAT solver searches for
a new assignment. This is repeated until either a T-consistent assignment
is found, or the SAT solver cannot �nd any more assignments.

the resulting formula be φe, with size ne. The number of equalities in φe is
bound by O(ne). Thus, the equality graph has at most O(ne) nodes and O(n3e)
triangles. As the graph-based reduction adds one constraint for each triangle,
the size of the resulting propositional formula is bound by O(n3e).

2.2.2 Lazy Encoding

Lazy encoding is based on the interaction between a SAT solver and a so-called
theory solver. A theory solver is an algorithm that can decide satis�ability of
the conjunctive fragment of a theory. In contrast to eager encoding, where a
su�cient set of constraints is computed at the beginning, lazy encoding starts
with no constraints at all, and lazily adds constraints only when required.

The principle of lazy encoding is shown in Figure 2.1. To decide whether or
not a T-formula φ is T-satis�able, the propositional skeleton skel(φ) is given to
a SAT solver.6 If the SAT solver returns �unsatis�able�, the procedure is done
and we know that φ is not T-satis�able. If, however, the SAT solver returns
�satis�able�, we obtain a satisfying assignment for the truth values of the theory
atoms in φ. This assignment is a formula in the conjunctive fragment of T,
which we pass to the theory solver. If the theory solver returns �satis�able�, we
have found an assignment of truth values to the theory atoms that is consistent

6We will assume that φ is given in CNF. If not we apply Tseitin's encoding to obtain an
equisatis�able CNF.

2.2. Satis�ability Modulo Theories Solving and Refutation Proofs 25

with T. Thus we know that φ is T-satis�able. If, however, the theory solver
returns �unsatis�able�, we have to look for another assignment, as the present
one is not consistent with T. To obtain a di�erent assignment, we negate the
inconsistent assignment � which conveniently turns it into a clause � and add
it as a so-called blocking clause to the CNF of skel(φ). The blocking clause
ensures that the next satisfying assignment obtained from the SAT solver (if
one exists) is di�erent from the current, T-inconsistent assignment. This loop is
repeated until we encounter one of the following two terminal cases. Either the
SAT solver suggests an assignment that the theory solver �nds to be consistent
with T, in which case φ is T-satis�able. Or we have added so many blocking
clauses that the SAT solver cannot �nd any more assignments, in which case
φ is not T-satis�able. As every blocking clause excludes (at least) one of only
�nitely many assignments, the loop is guaranteed to terminate.

Note that all the blocking clauses are valid within the theory. That is, every
model that satis�es all axioms of the theory also satis�es the blocking clauses.
We will thus also refer to these clauses as theory lemmata.

De�nition 11 � Theory Lemma
A clause C is a theory lemma of theory T i� for every model M it holds that
either M � C, or there exists an axiom A ∈ AT such that M 2 A. We will write
` T C to denote that C is a lemma of theory T.

Congruence Closure

The well-known congruence closure algorithm, which was �rst introduced in the
late 1970ies [NO77, Sho78], is the most common theory solver for T

qf
U . Given

a conjunction of T qf
U -literals, it computes a set of congruence classes, such that

the conjunction of literals implies that all terms in the same congruence class
are equal. This is done in the following way. First, all terms for which there is a
(positive) equality in the conjunction of literals are put into the same congruence
class. All remaining terms are put in singleton classes. Next, classes are merged,
if they contain common terms. This accounts for the transitivity of the equality
predicate. Next, classes are merged based on function congruence. That is,
if two classes both contain an instance of the same uninterpreted function, and
corresponding parameters are already in the same congruence class (which means
that they are equal), the classes of the function instances are merged. These
steps are repeated until no more merging can be done. In the last step, all
the disequalities from the conjunction of literals are checked against the merged
congruence classes. If there is a disequality that contradicts the congruence
classes, that is, both its terms are in the same congruence class, the conjunction
of literals is unsatis�able. If no such disequality exists, the conjunction of literals
is satis�able.

The congruence closure algorithm can be used to compute a congruence
graph [FGG+09, FGG+12] according to the following de�nition.

De�nition 12
A congruence graph over a set A of atoms is a graph which has terms as its

26 Chapter 2. Preliminaries

nodes. Each edge is labeled either with an equality justi�cation, which is an
equality atom from A that equates the terms connected by the edge, or with a con-
gruence justi�cation. A congruence justi�cation can only be used when the terms
connected by the edge are both instances f (a1, a2, . . . , ak) and f (b1, b2, . . . , bk) of
the same uninterpreted function f . In this case, the congruence justi�cation is
a set of k paths in the graph, connecting ai with bi, not using the edge labeled by
the congruence justi�cation.

De�nition 13 � Transitivity-Congruence Chain
A transitivity-congruence chain π = (a ; b) is a path in a congruence graph
that connects terms a and b. Let Lits(π) be the set of literals of the path, which
is de�ned as the union of the literals of all edges on the path. The literal of an
edge labeled with an equality justi�cation p is the set {p}. The set of literals of
an edge labeled with a congruence justi�cation with paths πi is recursively de�ned
as
⋃
i Lits(πi).

Transitivity-congruence chains are a useful data structure for splitting theory
lemmata in the context of interpolation (see 2.3 for details). The property stated
in the following theorem will be very useful.

Theorem 2
The conjunction of the literals in a transitivity-congruence chain (a; b) implies

a = b within T
qf
U . That is, (

∨
l∈Lits(a;b) ¬l) ∨ (a = b) is a theory lemma.

Proof
The proof works by induction over the length of the chain. As a base case for
induction, we consider a chain (a0 ; a1) of length 1. In this case we have to show
that (a0 = a1) implies (a0 = a1), which is trivial. Next, as induction hypothesis,
we assume that for a chain π = (a0 ; an) of length n, it holds that

∧
Lits(π)

implies a0 = an. Now we extend the chain by one element: π′ = (a0 ; an+1).
We need to show that

∧
Lits(π′) implies a0 = an+1. We already know that∧

Lits(π′) implies a0 = an, because Lits(π) ⊂ Lits(π′). Now, we consider two
cases:

1. The edge from an to an+1 is labeled with an equality justi�cation (an =
an+1). In this case, we need to show that (a0 = an) ∧ (an = an+1)
implies a0 = an+1. Since this is an instance of the transitivity axiom (see
Equation 2.3), this is clearly the case.

2. The edge from an to an+1 is labeled with a congruence justi�cation. In this
case, the terms an and an+1 are instances of an uninterpreted function.
Let an = f (x) and an+1 = f (y). Without loss of generality, we assume
that the length of each path in the congruence justi�cation is less than or
equal to n. Thus, by our induction hypothesis

∧
Lits(f (x) ; f (y)) implies

that for each i we have xi = yi. Thus, from the function congruence
axiom (see Equation 2.4), we conclude that

∧
Lits(an ; an+1) implies

f (x) = f (y). Now we use the same reasoning as in case 1 to show that
(a0 = an) ∧ (an = an+1) implies a0 = an. Q. E. D.

2.2. Satis�ability Modulo Theories Solving and Refutation Proofs 27

Hyp
C

C ∈ φ Axi
C
` TC Res

a ∨ C ¬a ∨D
C ∨D

Figure 2.2: Sound and complete proof rules for a T-formula φ in CNF.

2.2.3 DPLL(T)

The main disadvantage of lazy encoding is that it waits for a full assignment
to all theory literals before checking for theory consistency. This leads to very
speci�c blocking clauses and to a large number of iterations between SAT- and
theory-solver. A possible solution to this problem is a tighter integration between
the propositional SAT solver and the theory solver. The resulting algorithm is
called DPLL(T), which is the basis for most modern SMT solvers.

DPLL(T) is based on the DPLL algorithm [DP60, DLL62], and con�ict-
driven clause learning [MS96, MS99]. It extends these concepts from the propo-
sitional to theory level. We assume that the reader is familiar with DPLL and
con�ict-driven clause learning for the propositional case. If not, Kroening and
Strichman [KS08], or the Handbook of Satis�ability [BHvMW09] provide a thor-
ough overview of the topic.

The key idea behind DPLL(T) is to embed the check for theory consistency
directly into the core of DPLL. Every partial assignment of truth values to
theory literals that is tried by DPLL is immediately passed to the theory solver
for a consistency check. If the partial assignment is not theory-satis�able, we
immediately learn a blocking clause. This blocking clause is much shorter, and
thus more general, than one obtained from a full assignment. Moreover, a good
theorem solver provides more than just a yes/no-answer when given a (partial)
assignment: it returns one or more strong theory lemmata clauses. That is, short
clauses that are valid in the theory and contradict the given (partial) assignment.
These can then be added to the CNF of the formula in question. Furthermore, a
good solver can support theory propagation. That is, given for example a partial
assignment (a = b) ≡ > and (b = c) ≡ >, the solver can deduce (a = c) ≡ >
and propagate this back to DPLL.

Note that the DPLL(T)-framework is theory-agnostic. That is, it can be
used with arbitrary theories for which there is a solver for the corresponding
conjunctive fragment. For T

qf
U , the congruence closure-algorithm presented in

Section 2.2.2 can be used.

2.2.4 Refutation Proofs

Whenever a T-formula φ is not T-satis�able, we can obtain a refutation proof.
Such proofs can be obtained from SMT solvers with relatively little overhead.
Before we look at the details of proofs, we need to de�ne proof rules. Since we
only consider formulas in CNF, we only need three di�erent rules, as shown in
Figure 2.2.

28 Chapter 2. Preliminaries

De�nition 14 � Proof Rule
A named proof rule is a template for a logic entailment between a (possibly
empty) set of premises and a conclusion. Templates for premises are written
above a horizontal line, templates for conclusions below. Possible conditions for
the application of the proof rule are written on the right-hand side of the line.
The name of the rule is written on the left-hand side of the line.

〈name〉
〈premise(s)〉
〈conclusion〉

〈condition(s)〉

The proof rules given in Figure 2.2 form a sound and complete proof system
for proving unsatis�ability of a T-formula φ in CNF. The Hyp rule is used to
introduce clauses from φ into the proof. TheAxi rule is used to introduce clauses
that are theory lemmata of T. The Res rule is the standard resolution rule to
combine clauses that contain one literal in opposite polarity respectively. We
will call this literal the resolving literal. Based on these proof rules, we de�ne
refutation proofs as follows.

De�nition 15 � Refutation Proof
A refutation proof is a Directed Acyclic Graph (DAG) (N,E), where N = {r}∪
NI ∪NL is the set of nodes (partitioned into the root node r, the set of internal
nodes NI and the set of leaf nodes NL), and E ⊆ N ×N is the set of (directed)
edges. Every n ∈ N is labeled with the name of a proof rule rule(n) and a clause
clause(n). The graph has to ful�ll the following properties:

1. clause(r) = ⊥.

2. For all n ∈ NL, clause(n) is either a clause from φ (if rule(n) = Hyp) or
a theory lemma (if rule(n) = Axi).

3. The root node r has no incoming edges, the leaves in NL have no outgoing
edges, and all nodes n ∈ N\NL have exactly two outgoing edges, pointing to
nodes n1, n2, with n1 6= n2. Using clause(n1) and clause(n2) as premises
and clause(n) as conclusion must yield a correct instance of proof rule
rule(n).

It is reasonable to assume that DPLL(T)-style SMT solvers produce proofs that
conform to this format, or can easily be converted to this format.

2.2.5 Certi�cates

A signi�cant part of this thesis is concerned with computing certi�cates for quan-
ti�ed formulas. In particular, we focus on certi�cates for existentially quanti�ed
propositional variables after an outer universal quanti�er. Informally speaking,
a certi�cate � sometimes also called a witness � is a (veri�able) �proof� that
a quanti�ed formula is valid.

De�nition 16 � Certi�cate
Let x be a vector of variables, let c be a vector of propositional variables, and let

2.3. Craig Interpolation 29

Φ(x, c) be a formula in �rst-order logic,7 such that ∀x .∃c .Φ is a valid, closed
formula. Then a certi�cate is a function σ : D|x| 7→ B|c| such that ∀x .Φ

(
x, σ(x)

)
is valid.

2.3 Craig Interpolation

In 1957, William Craig proved an interesting property about formulas in �rst-
order logic [Cra57]. Suppose we have two CNF formulas φ and ψ, such that
their conjunction φ∧ψ is unsatis�able. Then there exists a formula χ, called an
interpolant between φ and ψ that satis�es the following properties.

1. φ implies χ.

2. ψ implies ¬χ.

3. The non-logical symbols that appear in χ also appear in both φ and ψ.

This is usually referred to as Craig's interpolation theorem.
The formulas φ and ψ will be called the partitions of formula φ∧ψ. We will

associate with each partition a unique �color�, and we will say that all symbols
occurring in a partition (but not in another partition) have this color. Symbols
that occur in more than one partition will be called colorless or global . A term
or formula is colorable i� it contains only symbols of one color and colorless
symbols. Terms or formulas that contain symbols of more than one color are
called non-colorable.

An interpolant can easily be computed from a refutation proof for φ ∧
ψ [McM05]. Every proof node is annotated with a so-called partial interpolant.

De�nition 17 � Partial Interpolant
Let φ and ψ be CNF formulas such that φ ∧ ψ is unsatis�able. Let n be a node
in the refutation proof of φ ∧ ψ. Let C = clause(n). A formula χp is a partial
interpolant for C between φ and ψ if φ implies C|φ ∨ χp, ψ implies C|ψ ∨ ¬χp,
χp � φ, and χp � ψ.
Lemma 3
If χ is a partial interpolant for C ≡ ⊥ between φ and ψ, then χ is an interpolant
between φ and ψ.

In Figure 2.3, we present interpolating proof rules, following Pudlák's interpo-
lation system [Pud97].8 In a refutation proof for φ∧ ψ, these rules annotate (in
square brackets) each conclusion with a partial interpolant for the conclusion.
Rules iHyp-φ and iHyp-ψ are used at leaf nodes that have clauses from φ and ψ
respectively. Rules iAxi-φ and iAxi-ψ are used for leaves with theory lemmata,
whose symbols are a subset of the symbols in φ and ψ respectively. Note that

7Note that Φ does not necessarily have to be quanti�er-free.
8Pudlák's system is not the only interpolation system. A di�erent system was proposed by

McMillan [McM05]. In fact D'Silva et al. [DKPW10] show that many di�erent interpolation
systems can be constructed. We focus on Pudláks system because it is symmetric with respect
to the partitions.

30 Chapter 2. Preliminaries

iHyp-φ
C[⊥]

C ∈ φ iHyp-ψ
C[>]

C ∈ ψ

iAxi-φ
C[⊥]

C � φ,` T C iAxi-ψ
C[>]

C � ψ,` T C

iRes
a ∨ C[IC] ¬a ∨D[ID]

C ∨D[(a ∨ IC) ∧ (¬a ∨ ID)]
a � φ, a � ψ

iRes-φ
a ∨ C[IC] ¬a ∨D[ID]

C ∨D[IC ∨ ID]
a � φ, a � ψ

iRes-ψ
a ∨ C[IC] ¬a ∨D[ID]

C ∨D[IC ∧ ID]
a � φ, a � ψ

Figure 2.3: Interpolating proof rules.

these rules cannot deal with theory lemmata that are non-colorable. That is,
these rules assume that the refutation proof is colorable.

De�nition 18 � Colorable Proof
A refutation proof for φ ∧ ψ is colorable if every leaf n ∈ NL of the proof is
colorable. That is, symb(clause(n)) ⊆ symb(φ) or symb(clause(n)) ⊆ Symb(ψ).

2.4 Burch-Dill Paradigm

Burch and Dill [BD94] have suggested an interesting paradigm to verify con-
trollers of pipelined processors. The main idea is to compare the externally
visible behavior of a non-pipelined reference design with that of the pipelined
design. This is illustrated in Figure 2.4. Both the pipelined and the reference
design start from the same initial state S0, representing the contents of the mem-
ory, the register �le, etc. We assume that the pipeline is initially empty. Now we
run an arbitrary program on the reference design. Every step updates the state
of the design, leading to a sequence of states S0, R1, R2, . . . , Rn, illustrated in
Figure 2.4 by red arrows. Now we run the same program on the pipelined design,
leading to a sequence of states S0, P1, P2, . . . , Pn (blue arrows in Figure 2.4). Af-
ter reaching state Pn, we �ush the pipeline and compare the resulting state to
Rn.

De�nition 19 � Burch-Dill Equivalence
Let Rn be the state of a non-pipelined reference design, obtained by running a
program, starting from an initial state S0. Let Pn be the state of a pipelined
design, obtained by running the same program from the same initial state S0

and an empty pipeline. Then the pipelined design is Burch-Dill equivalent to
the non-pipelined reference design, if the externally visible components of the

2.4. Burch-Dill Paradigm 31

P1

S0

R1

PnP2

R2 Rn

flu
sh

step step

step step

pipelined design

reference design

Figure 2.4: Burch-Dill equivalence between a pipelined design and a non-pipelined
reference design.

reference design

pipelined design

flush flush

step

step

Figure 2.5: To show Burch-Dill equivalence, it su�ces to show that the red and the
blue path in this diagram are commutative.

32 Chapter 2. Preliminaries

state obtained by �ushing the pipeline in state Pn are equal to their respective
counterparts in state Rn (see Figure 2.4).

Proving Burch-Dill equivalence based on its de�nition would be rather di�cult.
One would have to consider all possible programs, of all possible lengths. Fortu-
nately, Burch and Dill have shown an easier way [BD94]. Instead of starting in
an initial state with an empty pipeline, let us consider an arbitrary state, where
the pipeline is fully (or partially) �lled. This state is represented by the lower
left circle in Figure 2.5. Now we consider two possible paths. For the red path in
Figure 2.5, we �ush the pipeline and then perform one step in the non-pipelined
reference design. For the blue path, we �rst perform one step in the pipelined
design and then �ush the pipeline.

Theorem 3
If, for an arbitrary initial (pipeline) state, the two paths shown in Figure 2.5 are
commutative, that is, if we obtain the same resulting state from both paths, then
the pipelined design and the reference design are Burch-Dill equivalent.

Proof
Flushing an empty pipeline has no e�ect on the state. Thus, we can �split� the
state S0 in Figure 2.4 into two copies; one for each design. When we do this,
Figure 2.4 basically consists of multiple instances of Figure 2.5, strung together.
(This is illustrated by the dashed arrows in Figure 2.4.) Since we assumed the
paths in every instance to be commutative, we inductively conclude that also
their concatenation is commutative. Q. E. D.

There are some more notable facts about the Burch-Dill paradigm. First of
all, commutativity as shown in Figure 2.5 is a su�cient, but not a necessary
condition for pipeline correctness. One example where this becomes evident is
a pipeline that has invariants. An invariant is a (logical) statement about the
state of the pipeline that always has to hold. States that violate an invariant
should not be reachable from a valid initial state. However, the arbitrary start
state considered in Figure 2.5 could violate an invariant. Thus, it might be
possible that for such a start state, commutativity does not hold. If, however,
an implementation ensures that such a state is never reached, it can still be
correct. Burch and Dill [BD94] suggested to take invariants into account by
only considering start states that satisfy the invariants.

Another important issue is progress. There are situations, where executing
one step in the pipeline actually does not load a new instruction, for example,
because stalling was necessary. In such a case, no instruction should be executed
in the reference design either, to keep the outcomes equivalent. This will pose
an additional challenge for the synthesis of stall signals, which was not present
in veri�cation settings. Details will be explained in Section 3.2.

3
Modeling

Declaration of Sources

This chapter is based on and reuses material from the following source,
previously published by the author:

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis
for pipelined circuits using uninterpreted functions. In Singh et al.
[SJKB11], pages 31�42.

References to this source are not always made explicit. In particular,
de�nitions in Section 3.1 and the example in Section 3.2 are strongly
based on the paper cited above.

In this section we will �rst de�ne the language from which we build the speci-
�cations for our controller synthesis problems (Section 3.1). In short, our spec-
i�cations will be formulas in a special fragment of the theory of arrays TA as
de�ned in Section 2.1.5. We will then show how to create a Burch-Dill style
speci�cation for a pipelined design, based on a simple toy example (Section 3.2).

3.1 Speci�cation Language

The speci�cations for the controller synthesis problems we consider should be
able to express the notion that �for all inputs/states, there exist values for the

33

34 Chapter 3. Modeling

control signals, such that (for all values of some auxiliary variables) a correctness
criterion φ is ful�lled.� Formally, our speci�cations will be a fragment of the
theory of arrays TA.

9 We will �rst de�ne the formulas that we will use as the
su�x to the ∀-∃-∀-quanti�er structure10 mentioned above.

De�nition 20 � Fragment S

Let R be a set of array variables, let X be a set of variables ranging over D, let
B be a set of propositional variables ranging over B, let F be a set of function
symbols, and let P be a set of predicate symbols. Let i = {i1, i2, . . . , ik} be a �nite
subset of X, and let ∀i be a shorthand notation for ∀i1 .∀i2∀ik. Then S is
the fragment of the theory of arrays TA, whose formulas conform to the following
grammar:

formula := array_property | term = term | array_term = array_term |
predicate_symbol(term∗) | propositional_var | > | ⊥ |
¬formula | formula ∧ formula | formula ∨ formula |
formula→ formula

array_term := array_var | array_var〈term� term〉
term := domain_var | function_symbol(term∗) | array_var[term]

array_property := ∀i . iguard i → valconstr i
iguard i := iguard i ∧ iguard i | iguard i ∨ iguard i | atom i

atom i := > | ivar i = ivar i | evar i 6= ivar i | ivar i 6= evar i
ivar i := evar i | uvar i
uvar i := any i ∈ i
evar i := function_symbol(evar i∗) |

any i ∈ X \ i
valconstr i := array_var[ivar i] = array_var[ivar i] |

array_var[ivar i] = evar i |
¬valconstr i | valconstr i ∧ valconstr i |
valconstr i ∨ valconstr i | valconstr i → valconstr i

function_symbol := any f ∈ F

predicate_symbol := any P ∈ P

array_var := any R ∈ R

domain_var := any x ∈ X

propositional_var := any b ∈ B

9Note that, unlike some literature sources, we have de�ned TA to include uninterpreted
functions and predicates.
10We will later generalize this to quanti�er pre�xes with an arbitrary number of alternations

of ∀ and ∃ quanti�ers. This will be particularly interesting with respect to the modular SMT
solving approach that we present in Section 5.4.

3.2. Creating a Speci�cation 35

Note that the fragment S is a subset of the array property fragment T
p
A that

adds some additional syntactic restrictions, such as ensuring that array-reads
and array-writes are only done on actual array terms.

De�nition 21 � Speci�cation Language SQ

Let Φ be a formula in S. Let vars(Φ) = x ∪ c ∪ x′ be the set of variables occurring
in Φ, partitioned into x, c, and x′, such that c contains only propositional vari-
ables, and x and x′ contain variables of arbitrary type. Then the speci�cation
language SQ is the set of all formulas of the form

∀x .∃c .∀x′ .Φ. (3.1)

Intuitively, x is the set of variables that describe the state and/or inputs of the
system for which we want to �nd a controller. The variables in c represent the
control signals for which we want to �nd an implementation. And x′ is a set of
auxiliary variables. The quanti�er structure shown in Equation 3.1 makes sure
that the control signals can depend on the values of variables in x. However,
they must be independent of the values of any variable in x′.

We also consider a generalized version of SQ, where we allow an arbitrary
number of quanti�er alternations. However, we still insist that all existential
quanti�ers are over propositional variables only.

De�nition 22 � Generalized Speci�cation Language SQ
+

Let Φ be a formula in S. Let vars(Φ) = x ∪ x′ ∪ x′′′ ∪ · · · ∪ c ∪ c′ ∪ c′′ ∪ . . . be
the set of variables occurring in Φ, partitioned into x, x′, x′′, . . . , and c, c′, c′′, . . . ,
such that c, c′, c′′, . . . contain only propositional variables, and x, x′, x′′, . . . con-
tain variables of arbitrary type. Then the generalized speci�cation language SQ

+

is the set of all formulas of the form

ΦQ+

= ∀x .∃c .∀x′ .∃c′ .∀x′′ Φ. (3.2)

With this generalization it is, for example, possible to express that certain control
signals can depend on more variables than others: In Equation 3.2, signals in c
can only depend on x, whereas signals in c′ can depend on x and x′. It should
be noted, however, that all the examples we present in this thesis are based on
speci�cations in SQ, despite the fact that our methods for solving them can be
generalized to SQ

+

easily.

3.2 Creating a Speci�cation

In this section we will show how to write a speci�cation ΦQ, which is a formula
in SQ, for a pipelined processor. The procedure is based on the Burch-Dill
paradigm [BD94] (see Section 2.4). We will illustrate the necessary steps with a
simple running example (see Figure 3.1). The generalizations to more complex
pipelined designs are straightforward.

We assume that we have a (high-level) graphical representation of the pipe-
lined design and the corresponding non-pipelined reference design available. In

36 Chapter 3. Modeling

Registers REG

ALURead

Write

source

dest

(a) Non-pipelined reference design.

dest

Registers REG

ALU

control

v
w

Read

Write

source

(b) Pipelined Design.

Figure 3.1: A simple example of a pipelined microprocessor-like design, and the cor-
responding non-pipelined reference design.

the pipelined design, some (Boolean) control signals � controlling for example
forwarding of data values or stalling the pipeline � are not implemented, but
marked for synthesis.

Example 2
In Figure 3.1, we present a sketch of an illustrating toy example, to which all the
examples in this section refer. Despite its simplicity, this example features all the
important building blocks of a microprocessor-like design. Let us �rst examine
the non-pipelined reference design in Figure 3.1(a). The design has two inputs
� s and d � representing a source and a destination address, respectively. The
design contains a register �le REG, which is an address-based memory. That is,
data words can be read from and written to the register �le, using an address to
select one speci�c register in the register �le. This is symbolized by the Read and
Write blocks in Figure 3.1(a). The output of the Read block is the current value
of the register with address s. The Write block updates the register �le so that
in the next time step the register with address d will contain the value present at
the Write block's input. The ALU block represents an arbitrary combinational
function on data words.

All in all, the design sketched in Figure 3.1(a) does the following. In every
time step, the value of the register with address s is read. The function ALU
is applied to this value and the result is stored to the register with address d.

3.2. Creating a Speci�cation 37

This circuit is similar to a microprocessor (although heavily simpli�ed), which
also reads operands from memory, processes them, and writes the result(s) back
to memory. Despite its simplicity, this circuit will su�ce to demonstrate the
concepts of our modeling approach.

Figure 3.1(b) shows a pipelined version of the design in Figure 3.1(a), with
one stage of pipeline registers v and w. In this design, the value read from
the register �le is stored to pipeline register v in the �rst step. The destination
address belonging to this value is stored alongside in pipeline register w. In a
second time step, the function ALU is applied to the value of v and written back
to the register with address w.

This design su�ers from the following concurrency-issue. Suppose that the
�rst part of the pipeline wants to read a value from the address to which the
second part has to write to in the same time step. In this case, the register �le
REG still contains an old value. To address this problem, we add a multiplexer
that provides the choice of either reading from the register �le, or reading a
forwarded value from the second part of the circuit. The choice is made by a
(Boolean) control signal c.

Assume that when c = > the forwarded data is read, and when c = ⊥
data from the register �le is read. It is easy to see that in this simple exam-
ple c := (s = w) is a valid implementation of the controller. Setting c = >
whenever s = w will ensure that (after a �nal �ush of the pipeline) the pipelined
version of the design will leave the register �le in exactly the same state as the
non-pipelined version would have, when given the same sequence of inputs.

Let Φ be the S-formula that comes after the initial ∀-∃-∀-quanti�er pre�x of
ΦQ. The formula Φ is supposed to express Burch-Dill equivalence between the
pipelined and the reference design. Thus, Φ consists of three parts. The �rst
part is a formula, describing the behavior of the design from the (arbitrary)
initial state along the ��ush-step� path (red arrows in Figure 2.5). Analogously,
the second part describes the behavior along the �step-�ush� path (blue arrows
in Figure 2.5). The third part asserts that the two �nal states resulting from
the two other parts are in fact equivalent.

Before we show how to obtain these three parts, we �rst need to discuss how
to model the di�erent parts of a design in an S-formula. To model address-based
memory (such as register �les), we use arrays with uninterpreted indices. One
advantage of this approach is that the actual size of the memory (number of
addresses) and its width (bits per word) do not matter. Our considerations and
computations will be valid for any concrete values for size and width. Inputs and
storage elements for single data words (such as pipeline registers) are modeled
by domain variables ranging over an in�nite or su�ciently large11 domain D.
As an example for such a domain, consider the set Bn, corresponding to n-bit
data words of a processor. Again, our approach is independent of the concrete
choice for D. Combinational datapath elements, such as the function ALU in our
example, are modeled by uninterpreted functions with appropriate arity. This
abstraction completely disregards the semantics of the operations implemented

11We will discuss the precise meaning of su�ciently large in Section 4.2.1.

38 Chapter 3. Modeling

by the datapath elements and focuses solely on functional consistency. That is,
the only important fact we care about is that � given a particular input � the
datapath element will always return the same output. We use primes to denote
time steps. That is, v′ is the value of v after one time step, v′′ is the value after
two time steps, etc.

To obtain the �rst part of Φ, we have to model the �ushing of the pipeline
from an arbitrary current state. This poses a problem that did not exist
in veri�cation approaches based on the Burch-Dill paradigm. Flushing a
multi-stage pipeline requires several time steps. To model each of these time
steps, (symbolic) values for the control signals are required. In veri�cation, this
is not a problem, as all control signals have been implemented and can thus
be replaced with symbolic expressions representing their implementations. In
our synthesis setting, however, the implementation of the control signals is not
known. Since their concrete value in a real execution can be di�erent in every
time step of �ushing, we would have to introduce a fresh propositional variable
per time step. Suppose we have two such variables c and c′. Eventually, we
want to synthesize a function fc(x) that computes the value of c depending on
the inputs/state modeled by x. However, now we would have to ensure that
the values of c′ correspond to the values of a function fc′(x

′) and that whenever
x = x′ we have that fc(x) = fc′(x

′). This consistency cannot be expressed
in SQ. To solve this problem, we use an approach resembling the completion
functions presented by Hosabettu et al. [HGS03]. Instead of actually �ushing
the pipeline, we model the e�ect that completing an un�nished pipeline stage
would have on the observable parts of the design. After completing one pipeline
stage, we consider this stage removed from the circuit and continue completing
remaining stages, if any. Unfortunately, for more complex designs, for example,
pipelines that do out-of-order and/or speculative execution, modeling the e�ect
of completing the pipeline might be more di�cult and not necessarily possible
in a stage-by-stage way. It is up to the pipeline's designer to adequately model
the completion of the pipeline.

Example 3
For the design in Figure 3.1(b), completion is achieved by updating REG[w] to
the value ALU(v). In our example, there are no more stages to complete, thus
�ushing this design is modeled by the following formula, where the �ci� subscript
symbolizes that we are in the path were we �rst complete the pipeline and then
perform one instruction in the reference design.

REG′ci = REG〈w �ALU(v)〉 (3.3)

After completing the pipeline, we model one step in the non-pipelined reference
design. We obtain the �rst part of our equivalence criterion, which we call Φci,
by forming the conjunction of the equations obtained from modeling completion

3.2. Creating a Speci�cation 39

and one step of the reference design.

Example 4
One step of the non-pipelined circuit is modeled by the following equation:

REG′′ci = REG′ci〈d�ALU(REG′ci[s])〉 (3.4)

The conjunction of Equations 3.3 and 3.4 forms Φci.

The second part of Φ, which we denote Φsc, is obtained by modeling one step
in the pipelined design, followed by completion. This is done similarly to the
�ci� part. Since Φci and Φsc describe how the elements of the design are updated
during execution, we de�ne

Φupd = Φci ∧ Φsc. (3.5)

Example 5
During one step, the value of register v is fed to the function ALU , the result of
which is then written to address w of the register �le. Also, the pipeline registers
v and w are updated during the step operation. The new value of w is copied from
input d. The new value of v depends on the value of control signal c. Overall,
we obtain the following formula to model one step of the pipelined design:

REG′sc = REG〈w �ALU(v)〉 ∧ (w′ = d)∧(
(c ∧ v′ = ALU(v)) ∨ (¬c ∧ v′ = REG[s])

)
(3.6)

Completion of the pipeline after this step works analogously to the complete-
instruction path. We obtain the following equation:

REG′′sc = REG′sc〈w′ �ALU(v′)〉 (3.7)

We form the conjunction of Equations 3.6 and 3.7 to obtain Φsc.

The third part of Φ � which we call Φequiv � is supposed to ensure that the
states obtained by the update rules of Φci and Φsc are identical.

Example 6
In our example, the observable state of the design are the values of the register
�le. Thus, we obtain

Φequiv := (REG′′ci = REG′′sc) (3.8)

To complete our speci�cation ΦQ, we now need to partition all the variables
in Φ into sets x, x′, and c. This is done in the following way. All variables
that represent (Boolean) control signals for which we want to synthesize an
implementation are put into the set c. Due to the order of the quanti�ers (see
Equation 3.1), the set x should contain all variables on which the value of the
control signals can depend. All auxiliary variables, which should not in�uence
the value of the control signals, are put in x′.

Example 7
For the design in Figure 3.1, we only have one control signal. Thus, c = {c}.

40 Chapter 3. Modeling

For deciding the value of the control signal, an implementation could look at the
current values of the inputs s and d, the pipeline registers v and w, and the
register �le REG. Thus, we get x = {s, d, v, w,REG}. Finally, all other variables
were just introduced as auxiliary variables to formulate Burch-Dill equivalence.
This gives us x′ = {REG′ci,REG′′ci,REG′sc,REG′′sc, v′, w′}.
Now, we set Φ = Φupd → Φequiv. This gives us our �nal speci�cation:

ΦQ = ∀x .∃c .∀x′ .Φ. (3.9)

Intuitively, Equation 3.9 reads: �For all inputs and states, it holds that there exist
(Boolean) values for the control signals, such that for all values of the auxiliary
variables that follow the update rules of the design, Burch-Dill equivalence holds.�

Note that all variables in ΦQ are bound by one of the quanti�ers. This means
that ΦQ is either equivalent to> (in which case we will call it valid), or equivalent
to ⊥. The latter means that it is not possible to �nd control values that ensure
correctness for all possible states/inputs; the controller synthesis problem is
unrealizable. A possible reason for unrealizability is that the datapath does not
feature enough options to ensure correct behavior.

Example 8
If we remove the multiplexer for data forwarding from the pipelined circuit in
Figure 3.1(b), or if we connect its inputs to wrong wires (e.g. to the output of
the w register instead of the output of the ALU function), the controller synthesis
problem becomes unrealizable.

In situations like the one in Example 8, it is easy to obtain a counterexample;
that is, a situation (state and inputs) for which it is impossible to �nd control
values so that the speci�cation is ful�lled. This data is helpful to �nd out what
needs to be added to the datapath in order to make the controller synthesis
problem realizable.

Another possible reason for unrealizability is that the speci�cation is missing
invariants. As mentioned in Section 2.4, it might be necessary to restrict the
scope of checking Burch-Dill equivalence to initial states that satisfy all invariants
of the pipeline design. In our setting, we can do this as follows. Let Φinv be a
formula that expresses the invariants of the design, and let Φ = Φupd → Φequiv
be the formula that expresses Burch-Dill equivalence (as outlined above), but
does not consider invariants. To take the invariants into account, we use Φ̃ =
Φinv → Φ instead of just Φ in ΦQ.

There is yet another important issue where synthesis di�ers from a veri�ca-
tion setting: ensuring progress. As we mentioned in Section 2.4, there are
situations where a pipeline does not load a new instruction. The Burch-Dill
style speci�cation must be written in such a way that in such situations also the
reference design does not execute an instruction. This causes a problem when
stalling is controlled by a signal that should be synthesized: Always stalling the
pipeline is a way to �trivially� satisfy the speci�cation. This is because in case
of a stall, the speci�cation just compares whether or not the result of comple-
tion (�ci� path) is equal to the result of completion (�sc� path). We propose to

3.2. Creating a Speci�cation 41

solve this problem in the following way. The designer has to provide a formula
Φempty which characterizes an empty pipeline; that is, a pipeline state in which
completion would not have any e�ect on the memory. Obviously, in such a state
issuing a stall signal is not meaningful. Thus, we amend our update rules Φupd
by a conjunct Φempty → ¬cstall. This ensures that eventually a new instruction
will be loaded into the pipeline.

To summarize, we have shown how to create a Burch-Dill style speci�cation
for a pipeline controller synthesis problem, based on a fragment of TA that we
introduced. In the next chapter(s), we will focus on deciding whether or not
formulas in SQ are valid. Furthermore, for valid formulas we will show di�erent
ways to extract certi�cates for the variables in c. It should be noted that the
methods we are about to present are not limited to the synthesis of pipeline
controllers. Instead, they can be applied to any synthesis problem that can be
stated in SQ.

4
Decidability and Complexity

Declaration of Sources

This chapter is based on and reuses material from the following sources,
previously published by the author:

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis
for pipelined circuits using uninterpreted functions. In Singh et al.
[SJKB11], pages 31�42.

� [EKH12] Rüdiger Ehlers, Robert Könighofer, and Georg Ho�erek.
Symbolically synthesizing small circuits. In Gianpiero Cabodi and
Satnam Singh, editors, FMCAD, pages 91�100. IEEE, 2012

References to this sources are not always made explicit. In particular,
the proofs in Sections 4.1, 4.2, and 4.3, as well as the reductions in
Section 4.2 are strongly based on [HB11].

In Chapter 3, we introduced the class SQ of formulas which serve as speci�-
cations for the controller synthesis problems we consider. In this chapter, we
will �rst show that the question of validity of formulas in SQ is decidable. The
proof is constructive, that is, we will show an actual method to solve the deci-
sion problem. We will then show how the standard eager-encoding techniques
(see Section 2.2.1) can be employed to reduce the problem to the propositional

43

44 Chapter 4. Decidability and Complexity

domain. Based on this reduction, we will then show that the problem is coNPNP -
complete, and that the generalized version of the problem, deciding validity of
formulas in SQ

+

, is PSPACE-complete.

4.1 Decidability

Theorem 4 � Decidability of SQ

Let ΦQ = ∀x .∃c .∀x′ .Φ be a formula in SQ. Then the question of whether or
not ΦQ is valid is decidable.

Proof
Let n = |c| be number of variables in c. As the variables in c are, by de�nition,
all propositional, we can replace the existential quanti�er by 2n disjuncts.

∀x .∃c .∀x′ .Φ
m

∀x .
(
∀x′ .Φc=00...00 ∨ ∀x′ .Φc=00...01 ∨ . . . ∨ ∀x′ .Φc=11...11

)
, (4.1)

where Φc=... stands for a copy of Φ in which all instances of the variables in c
have been replaced by either > or ⊥, as indicated by the given bit string. For
each of the disjuncts, we now rename the variables in x′ to obtain

∀x .
(
∀x′00...00 .Φc=00...00 ∨ ∀x′00...01 .Φc=00...01 ∨ . . .

. . . ∨ ∀x′11...11 .Φc=11...11

)
. (4.2)

This ensures that none of the variables in any of the x′i occur anywhere outside
the scope of their quanti�er. Thus, we can switch the order of quanti�cation
and disjunction. This gives us

∀x .∀x′00...00 .∀x′00...01∀x′11...11 .
(

Φc=00...00 ∨ Φc=00...01 ∨ . . .

. . . ∨ Φc=11...11

)
. (4.3)

Now, we put a double negation in front, and push one of the negations over the
quanti�ers to obtain

¬∃x .∃x′00...00 .∃x′00...01∃x′11...11 .¬
(

Φc=00...00 ∨

Φc=00...01 ∨ . . . ∨ Φc=11...11

)
. (4.4)

By pushing the negation further inside, we get

¬∃x .∃x′00...00 .∃x′00...01∃x′11...11 .
(
¬Φc=00...00 ∧

¬Φc=00...01 ∧ . . . ∧ ¬Φc=11...11

)
. (4.5)

4.2. Reduction to Propositional Logic 45

Let ϕ = ϕ00...00 ∧ . . . ∧ ϕ11...11, where each ϕi = ¬Φc=i. Note that ϕ is a
formula in S, which is a subset of T p

A. Clearly, the formula in Equation 4.5 �
which is equivalent to the formula in Equation 4.2 � is valid if and only if ϕ is
not satis�able (modulo its theory). Satis�ability of formulas in S is decidable,
because satis�ability of formulas in the superset T p

A is decidable [KS08]. Thus,
we conclude that validity for formulas in SQ is decidable. Q. E. D.

De�nition 23 � expand_negate()
Let ΦQ = ∀x .∃c .∀x′ .Φ be a formula in SQ. Then expand_negate(Φ) denotes
the formula ϕ = ϕ00...00∧ . . .∧ϕ11...11 obtained by the expansion, renaming, and
negation as outlined in the proof of Theorem 4.

Lemma 4
A formula ΦQ = ∀x .∃c .∀x′ .Φ in SQ is valid if and only if ϕ = expand_negate(Φ)
is unsatis�able.

Proof
See proof of Theorem 4. Q. E. D.

Note that the de�nition of expand_negate(), as well as Lemma 4 can be gen-

eralized to SQ
+

, that is, an arbitrary number of quanti�er alternations, in a
straightforward way.

4.2 Reduction to Propositional Logic

Now that we have established that validity for formulas in SQ is decidable,
we focus on how to compute certi�cates for the existentially quanti�ed Boolean
control signals. In this section, we will describe a �rst, somewhat naive approach
which is based on a reduction to propositional logic. We will perform three
validity-preserving reductions, based on the standard eager-encoding procedure
for T p

A (see Section 2.2.1). We will also provide a proof of correctness for each
of the reduction steps. All proofs share the same basic structure, which we
will explain �rst. Finally, we will show how to extract the certi�cates from the
propositional formula. We will continue to make use of the running example
introduced in Section 3.2 to illustrate the reduction steps.

4.2.1 Structure of Proofs

The proofs for each of the reduction steps all share the same basic structure. In
each case, we want to prove equivalence between two quanti�ed formulas, with
the same quanti�er structure: Universal quanti�cation, followed by Boolean
existential quanti�cation, followed again by universal quanti�cation. Let the
two formulas be ∀a .∃b .∀c . ϕ and ∀x .∃y .∀z . ψ. The proof that validity of the
�rst formula implies validity of the second proceeds as sketched by the following

46 Chapter 4. Decidability and Complexity

equation.

∀a . ∃b . ∀c . ϕ

α

x β

y γ

x
∀x . ∃y . ∀z . ψ (4.6)

We start with an arbitrary interpretation JxK for x in ψ. Next, we map these
values to corresponding values JaK for a in ϕ, according to a mapping α : JxK 7→
JaK. We then use the assumption of the validity of the �rst formula to �nd

values
r
b
z
for b such that for any arbitrary interpretation JcK for c we have{

JaK,
r
b
z
, JcK

}
� ϕ. We use another mapping β :

r
b
z
7→ JyK to �nd values JyK.

Now we still need to prove that for all possible interpretations JzK for z in ψ, it
holds that

{
JxK, JyK, JzK

}
� ψ. To do so, we arbitrarily choose an interpretation

JzK for z and use a mapping γ : JzK 7→ JcK to �nd corresponding values JcK. From

the assumption of validity of the �rst formula we know that

{
JaK,

r
b
z
, JcK

}
� ϕ.

What remains to be shown is that this implies
{
JxK, JyK, JzK

}
� ψ. This last

step, as well as the mappings α and γ will be di�erent for each of the proofs.
The mapping β will always be the identity mapping, because in our case b
and y are the same set of Boolean control variables. This also means that
the control functions which we will eventually compute from the propositional
formula will be valid implementations for the original speci�cation. Within
each proof, we will only present the mappings α and γ, and we will show that{

JaK,
r
b
z
, JcK

}
� ϕ implies

{
JxK, JyK, JzK

}
� ψ.

Some of the proofs will require that the domain JDK, from which the interpre-
tations for �rst-order variables are chosen, is large enough so that all variables
in a formula can be assigned pairwise di�erent values. Henceforth, when we
speak of a su�ciently large domain (with respect to a formula ϕ), we will mean
that

∣∣JDK
∣∣ ≥ ∣∣vars(ϕ)

∣∣. Note that in particular any in�nite domain is obviously
su�ciently large with respect to any formula.

In the following sections, we show a validity preserving reduction from SQ

to (quanti�ed) propositional logic in three steps. The �rst step removes arrays,
and yield a formula in TU (see Section 4.2.2). The second step removes uninter-
preted functions and predicates, resulting in a TE formula (see Section 4.2.3).
Finally, the third step eliminates equalities and gives us a (quanti�ed) formula
in propositional logic (see Section 4.2.4).

4.2.2 Reduction from SQ to TU

We start with a formula ΦQ = ∀x .∃c .∀x′ .Φ in SQ. For the reduction to TU
we take the part Φ (that is, the part of ΦQ without the quanti�er pre�x), and

4.2. Reduction to Propositional Logic 47

proceed as in Section 2.2.1. First, all array writes are removed by introducing
new variables and applying the write axioms.

Example 9
Consider the term REG〈w �ALU(v)〉 from Example 3. A new variable REG′ is
introduced, the term is replaced by REG′, and the conjunct

REG′[w] = ALU(v) ∧ ∀i . i 6= w → REG′[i] = REG[i]

is added to the list of constraints.

The new variable will be added to x′, because array-write expressions represent
�future� values of an array on which the control signals should not depend. Next,
we �nd the index set I, as outlined in Section 2.2.1. Then, all universal quan-
ti�cations over array indices are replaced by �nite conjunctions over the index
set I. Finally, we replace all array reads by uninterpreted function instances.
We will denote the set of all function symbols that replace array variables from
x with f , and the set of all function symbols replacing array variables from x′

with f
′
.

Example 10
Consider the speci�cation from Example 7. The index set for this example is
I = {s, d, w, λ}. We now replace all universal quanti�cations with conjunctions
over the index set. For example, the subformula ∀i . i 6= w → REG′[i] = REG[i]
from Example 9 is replaced by∧

i ∈ I

i 6= w → REG′[i] = REG[i]. (4.7)

Next, array reads are replaced by uninterpreted function instances. For example,
REG′ci[w] becomes REG′ci(w).

Now we update x and x′. We remove all array variables, as they are no longer
present in the formula. The new domain variable λ is added to x′. We will
denote these updated sets xU and x′U , respectively.

Theorem 5 � Reduction to TU
For a su�ciently large domain D, the formula ΦQ = ∀x .∃c .∀x′ .Φ is valid if
and only if the formula

ΦQ
U = ∀xU .∀f .∃c .∀x′U .∀f

′
.
(
AC (Φ)→ no_array(Φ)

)
(4.8)

is valid.12

Proof
�⇒�: We assume validity of ΦQ, and proof validity ΦQ

U . Let JxU K,
r
f
z
,
q
x′U

y
,

r
f
′z

be arbitrary interpretations for xU , f x
′
U , and f

′
respectively. Let α be a

12Strictly speaking, ΦQ
U is not a TU -formula. It is not even a �rst-order formula, because of

the quanti�cations over f and f
′
. For our purposes, however, this detail is not relevant. We

will thus treat ΦQ
U as if it were a TU -formula.

48 Chapter 4. Decidability and Complexity

mapping from an interpretation of function symbols in
r
f
z
to an interpretation

of array variables R as follows. For all JfK ∈
r
f
z
let α(JfK) be an interpretation

JRK for an array variable R such that for all i it holds that JfK (i) = JRK [i]. For all
other (non-array) variables in xU , α is an identity mapping. Let γ be a mapping

from
r
f
′z

to
r
R
′z
, de�ned analogously to α. For each array variable R in x, let

its interpretation JRK in JxK be JRK = α(JfRK), where fR is the function symbol

that replaces R in ΦQ
U . For each array variable R

′ in x′, let its interpretation
q
R′

y

in
q
x′

y
be

q
R′

y
= γ(JfR′K), where fR′ is the function symbol that replaces R′ in

ΦQ
U . Let JcK be an interpretation for c such that for all possible interpretations

q
x′

y
we have that

{
JxK , JcK ,

q
x′

y}
� Φ. We have to show that this implies

that

{
JxU K ,

r
f
z
, JcK,

q
x′U

y
,
r
f
′z
}
�
(
AC (Φ)→ no_array(Φ)

)
. It is easy to

see that this is the case. Φ features universal quanti�cation over indices, where
no_array(Φ) only features �nite conjunctions. Any model that satis�es a univer-
sal quanti�cation surely also satis�es a �nite conjunction over the same variable.
Note that since the right-hand side of the implication

(
AC (Φ)→ no_array(Φ)

)
is satis�ed by

{
JxU K ,

r
f
z
, JcK,

q
x′U

y
,
r
f
′z
}
, it is irrelevant whether or not{

JxU K ,
r
f
z
, JcK,

q
x′U

y
,
r
f
′z
}
� AC (Φ). This concludes the proof in �⇒�

direction.

�⇐�: Without loss of generality, we assume that Φ contains no array-write ex-
pressions. If this is not the case we can easily obtain an equivalent formula with-
out write expressions by applying the write axioms. Let JxK,

q
x′

y
be arbitrary

interpretations for x and x′ in ΦQ. Let α and γ be mappings inverse to those of

the �⇒� case. For each JfK ∈
r
f
z
and each

q
f ′

y
∈

r
f
′z

let JfK = α(JRK), and
q
f ′

y
= γ(

q
R′

y
), where R and R′ are the array variables replaced by the functions

symbols f and f ′, respectively. For each JxK ∈ JxK and each
q
x′

y
∈

q
x′

y
let

JxU K = JxK, and
q
x′U

y
=

q
x′

y
). Let JcK be an interpretation for c such that

for all possible interpretations
r
f
′z

for f
′
,
q
x′U

y
for x′U , and JλK for λ we have

M =

{
JxU K ,

r
f
z
, JcK,

q
x′U

y
,
r
f
′z
, JλK

}
� no_array(Φ).

Let ϕλ =
∧
i ∈ I\{λ} i 6= λ. For a su�ciently large domain it is always possible

to choose JλK in such a way that M � ϕλ. The remaining constraints in AC (Φ)
are always satis�ed, because they correspond to instances of the write axioms of
T
p
A. Thus, M � AC (Φ). The assumption of validity of ΦQ

U implies that in this
case M � no_array(Φ). Bradley et al. [BM07] have proven that any model M
that satis�es ϕλ and no_array(Φ) also satis�es Φ (when applying the proper
mapping between function symbols and array variables). Thus, the model M,
where the interpretations for the universally quanti�ed variables in ΦQ have been
chosen arbitrarily, satis�es Φ, under the assumption that ΦQ

U is valid. Q. E. D.

4.2. Reduction to Propositional Logic 49

4.2.3 Reduction from TU to TE

To reduce the formula ΦQ
U = ∀xU .∀f .∃c .∀x′U .∀f

′
.ΦU � which we obtained

from the previous reduction step � to TE we use Ackermann's reduction [Ack54].
As outlined in Section 2.2.1, Ackermann's reduction introduces fresh variables
to replace all instances of uninterpreted functions and predicates. Variables that

replace instances of functions whose symbol is in the set f
′
will be added to x′U .

Variables that replace other function or predicate instances will be added to xU .
We will refer to the updated sets with x′E and xE , respectively.

Example 11
Consider Equation 4.7 in Example 10. After replacing the array reads with func-
tion calls, this equation has the following function instances: REG(s), REG(w),
etc. For these instances, new domain variables x sREG, x

w
REG, etc. are introduced.

One of the constraints of CC (ΦU) is then

(s = w)→
(
x sREG = xwREG

)
.

Both x sREG and xwREG are added to xE.

Theorem 6 � Reduction to TE
Let ΦU be a T

qf
U -formula. Then the formula

ΦQ
U = ∀xU .∀f .∃c .∀x′ .∀f

′
.ΦU (4.9)

is valid if and only if the formula

ΦQ
E = ∀xE .∃c .∀x′E .

(
CC (ΦU)→ no_func(ΦU)

)
(4.10)

is valid.

Proof
�⇒�: We assume validity of ΦQ

U and prove validity of ΦQ
E . Let

r
xaf

z
,
r
xaf ′

z
, JxK,

and
q
x′

y
be arbitrary interpretations for the variables in xE and x′E , where x and

x′ are the variables in the intersection of xU ∩xE and x′U ∩x′E , respectively. Let
D =

r
xaf

z
∪

r
xaf ′

z
∪JxK∪

q
x′

y
. Let α be a mapping from an interpretation D for

domain variables to an interpretation
r
f
z
for function symbols in f , such that for

r
f
z

= α(D) each JfK ∈
r
f
z
satis�es ∀ JaK ∈ D . ∀ JfK ∈

r
f
z
. JfK (JaK) =

r
xaf

z
.

In case such interpretations
r
f
z

do not exist due to functional inconsisten-

cies, α returns an arbitrary interpretation
r
f
z
. Let γ be a mapping from D

to an interpretation
r
f ′

z
for function symbols in f

′
, de�ned analogously to

α. Let
r
f
z

= α(D) and
r
f
′z

= γ(D). Let JcK be an interpretation for c

such that for all possible interpretations
r
f
′z

for f
′
and

q
x′

y
for x′E , we have

50 Chapter 4. Decidability and Complexity

that

{
JxK,

r
f
z
, JcK,

q
x′

y
,
r
f
′z
}
� ΦU . We have to show that this implies that{

JxK,
r
xaf

z
, JcK,

q
x′

y
,
r
xaf ′

z}
� ΦE . Models that do not satisfy CC (ΦU) triv-

ially satisfy ΦE . We only need to consider models that do satisfy CC (ΦU).

Thus, for any function instance f(a) in ΦU , we have JfK (JaK) =
r
xaf

z
, where

r
xaf

z
is the interpretation for the variable xaf with which f(a) has been re-

placed. Thus, we conclude that if

{
JxK,

r
f
z
, JcK,

q
x′

y
,
r
f
′z
}
� ΦU , we have{

JxK,
r
xaf

z
, JcK,

q
x′

y
,
r
xaf ′

z}
� ΦE . This concludes the proof in �⇒� direction.

�⇐�: Let JxK,
r
f
z
,
q
x′

y
, and

r
f
′z

be arbitrary interpretations for x, f , x′,

and f
′
in ΦQ

U . Let α be a mapping from an interpretation for function symbols

to an interpretation for domain variables such that
r
xaf

z
= α(JfK) satis�es

r
xaf

z
= JfK (JaK) for all

r
xaf

z
∈

r
xaf

z
. Let γ be a mapping analogous to α.

Let
r
xaf

z
= α(JfK) and

r
xaf ′

z
= γ(

q
f ′

y
). Let JcK be an interpretation for c

such that for all possible interpretations
q
x′

y
and

r
xaf ′

z
for x′E we have that{

JxK,
r
xaf

z
, JcK,

q
x′

y
,
r
xaf ′

z}
� ΦE .

Due to the de�nition of α and γ, we know that

{
JxK,

r
xaf

z
, JcK,

q
x′

y
,
r
xaf ′

z}
� CC (ΦU). Due to the assumption of validity of ΦQ

E , we therefore know that{
JxK,

r
xaf

z
, JcK,

q
x′

y
,
r
xaf ′

z}
� no_func(ΦU). We have to show that this im-

plies

{
JxK,

r
f
z
, JcK,

q
x′

y
,
r
f
′z
}
� ΦU . This follows trivially from the de�ni-

tions of no_func(ΦU), α, and γ. Q. E. D.

4.2.4 Reduction from TE to Propositional Logic

The previous reduction step resulted in a formula ΦQ
E = ∀xE .∃c .∀x′E .ΦE .

We use the graph-based method by Bryant et al. [BV00], which we discussed

in Section 2.2.1, to reduce ΦQ
E to the propositional level. The result of this

reduction will be a quanti�ed Boolean formula ΦQ
prop . The set of fresh variables

introduced for equalities between two terms from xE will be denoted bx . The
set of fresh variables introduced for equalities between one term from xE and
one term from x′E and equalities between two terms from x′E will be denoted
bx ′ .

4.2. Reduction to Propositional Logic 51

Theorem 7 � Reduction to Propositional Logic
Let ΦE be a T

qf
E -formula. Then, for a su�ciently large domain, the formula

ΦQ
E = ∀xE .∃c .∀x′E .ΦE (4.11)

is valid if and only if the formula

ΦQ
prop = ∀bx .∃c .∀bx ′ .

(
TC (ΦE)→ skel(ΦE)

)
(4.12)

is valid.

Proof
�⇒�: Let

r
bx

z
, and

r
bx ′

z
be arbitrary interpretations for bx and bx ′ in ΦQ

prop .

Let E =
r
bx

z
∪

r
bx ′

z
. Let α be a mapping from an interpretation E to an

interpretation for domain variables in xE as follows. Let JxEK = α(E) such that
for all Jx1K , Jx2K ∈ JxEK we have that Jx1K = Jx2K if and only if Jbx1=x2K = >.
In case such interpretations JxEK do not exist due to transitivity violations, α
returns arbitrary interpretations. Let γ be a mapping from E to an interpreta-
tion for domain variables in x′ de�ned analogously to α. Let JxEK = α(E) andq
x′E

y
= γ(E). Let JcK be an interpretation for c such that for all possible inter-

pretations
q
x′E

y
for x′E , we have

{
JxEK , JcK,

q
x′E

y}
� ΦE . We have to show that

this implies that

{r
bx

z
JcK,

r
bx ′

z}
�
(
Φprop = TC (ΦE)→ skel(ΦE)

)
. Models

that do not satisfy TC (ΦE) trivially satisfy Φprop . We only need to consider
models that do satisfy TC (ΦE). For any equality atom x1 = x2 in ΦE , we have
(Jx1K = Jx2K)⇔ Jbx1=x2K. Due to the de�nition of skel(ΦE), we conclude that if{

JxEK , JcK,
q
x′E

y}
� ΦE , we have

{r
bx

z
, JcK,

r
bx ′

z}
� Φprop . This concludes

the proof in �⇒� direction.
�⇐�: Let JxEK, and

q
x′E

y
be arbitrary interpretations for xE and x′E in

ΦQ
E . Let α be a mapping from an interpretation for domain variables in xE

to an interpretation for propositional variables bx such that
r
bx

z
= α(JxEK)

satis�es Jbx1=x2K ↔ (Jx1K = Jx2K) for each Jbx1=x2K ∈
r
bx

z
. Let γ be a

mapping from an interpretation for domain variables in x′E to an interpre-

tation for propositional variables bx ′ analogous to α. Let
r
bx

z
= α(JxEK)

and
r
bx ′

z
= γ(JxEK ∪

q
x′E

y
). Let JcK be an interpretation for c such that

for all possible interpretations
r
bx ′

z
for bx ′ we have

{r
bx

z
, JcK,

r
bx ′

z}
�(

Φprop = TC (ΦE)→ skel(ΦE)
)
. Due to the de�nition of α and γ, we know that{r

bx

z
, JcK,

r
bx ′

z}
� TC (ΦE). Due to the assumption of validity of ΦQ

prop , we

therefore know that

{r
bx

z
, JcK,

r
bx ′

z}
� skel(ΦE). We have to show that this

52 Chapter 4. Decidability and Complexity

implies that
{

JxEK , JcK,
q
x′E

y}
� ΦE . This follows trivially from the de�nitions

of skel(ΦE), α, and γ. Q. E. D.

4.2.5 Extracting Certi�cates

In the previous sections we have shown how to reduce a formula in ΦQ to an
equivalent propositional formula ΦQ

prop = ∀bx .∃c .∀bx ′ .Φprop . Now we want to

compute functions (in terms of the variables in bx) for the control signals in
c. One naive possibility to do so is to use Binary Decision Diagrams (BDDs).
We compute a BDD for Φprop , and subsequently perform the inner universal

quanti�cations to obtain Φ̂prop = ∀bx ′ .Φprop . Although � in the worst case �

this might blow up the size of the BDD exponentially (with respect to
∣∣∣bx ′

∣∣∣), the
average case may be much more space-e�cient.

The formula Φ̂prop can be viewed as the characteristic function of a multi-
output Boolean relation, with inputs bx and outputs c. There are many dif-
ferent (symbolic) ways to compute functions compatible with a given relation.
An overview of several such methods in the scope of synthesis is given in Sec-
tion 4.2.6. One of the �rst methods that has been proposed is presented in
[WB93]. (See also [BGJ+07b, JLH09].) It proceeds as follows. For every output
ci we �rst perform the existential quanti�cation of all other outputs. From the
remaining formula, we compute the positive and the negative cofactor of ci, to
which we will refer by Φci and Φ¬ci , respectively. These can be used to deter-
mine the on-set, o�-set, and don't-care-set of the function for ci in the following
way:

ON = Φci ∧ ¬Φ¬ci

OFF = ¬Φci ∧ Φ¬ci

DC = Φci ∧ Φ¬ci

Any minimization algorithm for incompletely speci�ed Boolean functions can be
used to compute an actual implementation fci for ci, using the sets ON , OFF ,
and DC . Once this is done, we resubstitute fci for ci in Φ̂prop . This is necessary,
because values of other outputs might depend on the actual choice of ci. After
that, we can proceed with computing a function for the next output.

The control functions can easily be integrated into the original circuit. For a
variable bx that represents the equality x1 = x2, we build a comparator for the
terms x1 and x2 and add it to the design. The outputs of all such comparators
are then used as inputs for the control functions fci . That is, the control signals
ci are Boolean combinations of the comparator outputs. It should be noted that
only terms that appear in the original SQ formula are used as inputs to the
comparators. That is, no new array reads or instances of functions or predicates
are introduced. However, not every comparator necessarily corresponds to an
equality of the original formula. This is due to the fact that during the creation
of the transitivity constraints, new edges are added to the equality graph to
make it chordal.

4.2. Reduction to Propositional Logic 53

Example 12
For the design in Figure 3.1(b), one possible solution is c := (s = w). Thus, we
insert a comparator into the design, whose inputs are connected to the primary
input s and the pipeline register w. The output of the comparator is then the
desired control signal c.

4.2.6 Alternative Methods for Certi�cate Extraction

Declaration of Sources

This section is based on and reuses material from the following source,
previously published by the author:

� [EKH12] Rüdiger Ehlers, Robert Könighofer, and Georg Ho�erek.
Symbolically synthesizing small circuits. In Gianpiero Cabodi and
Satnam Singh, editors, FMCAD, pages 91�100. IEEE, 2012.

References to this source are not always made explicit.

Many approaches for extracting certi�cates from propositional formulas of the
form ∀bx .∃c .Φprop have been proposed. In synthesis settings, such formulas can
be referred to as general strategies [EKH12]. In this section, we describe some
approaches to construct implementations from such general strategies and state
our experiences with them. These experiences are based on experiments with
benchmarks from temporal logic synthesis. An evaluation of how well these
experiences correlate with controller synthesis benchmarks � as presented in
this thesis � remains for future work.

Kukula and Shiple [KS00] described a simple technique to compute a circuit
from a general strategy in BDD form. The main idea is to take the graph
structure of the BDD and instantiate an 8-gate building block for all nodes to
obtain an implementation. The resulting circuits have a very high depth (more
than two times the number of state and input variables) and experience shows
that they are often huge [BGJ+07b].

The temporal logic synthesis tool Anzu [JGWB07] uses a simple, cofactor-
based approach [BGJ+07b], which we already described in Section 4.2.5. There
is also a simple but e�ective optimization, mentioned by Bloem et al. [BGJ+07b].
For each output, they remove unnecessary input variables by existential quan-
ti�cation. We will subsequently refer to this method as the cofactor approach.

Baneres et al. [BCK04] present a recursive paradigm for extracting com-
pletely speci�ed Boolean functions from general strategies. Their approach is
based on �rst computing the single output functions independently, without
resubstitution. In a second stage they recursively resolve inconsistencies re-
sulting from uncoordinated choices during the �rst stage. They also introduce

54 Chapter 4. Decidability and Complexity

a recursion-depth limit. If the limit is reached, their algorithm falls back to
an arbitrary other relation-solving method. We reimplemented their approach
within the temporal logic synthesis tool Ratsy [BCG+10] and applied it to its
general strategies. Unfortunately, �rst experimental results were rather discour-
aging. Without any recursion limit, the approach timed out even for rather
small benchmarks. However, using a recursion limit, we (almost) always hit
the fall-back mechanism. The result of the fall-back mechanism is in almost
all cases the same as if the recursive approach of [BCK04] had not been used
at all. Therefore, this approach does not provide any improvement concerning
circuit size, but only increases computation time signi�cantly. We believe that
this is due to the fact that general strategies in temporal logic synthesis settings
are highly non-deterministic, and in particular have many vertices that [BCK04]
calls �non-don't-care extendable�.

Another approach that we implemented in Ratsy is the Minato-Morreale
algorithm for computing an irredundant sum-of-products [Min92, Mor70]. It is
a recursive procedure that takes a general strategy as an input and computes a
sum-of-products form for a compatible completely speci�ed function. The �nal
result is irredundant in the sense that no single literal or cube can be deleted
without changing the function. We use the recursive structure of the algorithm
to build a multi-level Boolean circuit along the way. The resulting circuits
are comparable in size to the ones obtained through the cofactor approach.
Computation times, however, are signi�cantly higher. To further improve these
results, we also tried using a �cache�. In each step, the algorithm �rst checks
whether a function lying in the desired interval of functions has already been
built as a circuit in previous steps. If so, this function (and the corresponding
wire in the circuit) is reused. To keep the memory footprint of the cache small
and to speed up the process of a cache look-up, we did not store the BDDs of
the functions, but rather used a signature-based approach as in [MCB05]. We
only store the function's output for some random input vectors. These outputs
are called a signature. Signatures have a very low memory footprint. When
doing a look-up, we can use the signature to perform a fast pre-test. This pre-
test may, however, create false positives. Thus, whenever the pre-test yields a
positive result, we (recursively) reconstruct a BDD for the function in question
from the structure of the circuit generated so far. We subsequently use this BDD
to perform a sound comparison to check whether or not the function really lies
within the desired interval. Experimental results have shown that, unfortunately,
we get almost no cache hits. The hits we do get are mostly very small, almost
trivial functions, consisting of only a handful of gates. Thus, the gain due to
sharing is negligible. On the other hand, computation time rises signi�cantly
due to the many look-up checks that have to be performed. We also noticed that
� when extended from completely speci�ed functions [MCB05] to intervals �
the signature-based pre-test gives too many false positives to be of use.

Jiang et al. [JLH09] presented a SAT-solver-based approach to compute func-
tions from a general strategy. Their method is based on Craig interpolation. This
is the basis for our own interpolation-based approaches, which we will discuss in

4.3. Computational Complexity 55

Chapter 5.

A method for computing circuits based on computational learning is pre-
sented in [EKH12]. It starts with simple candidate functions and re�nes them
based on the counterexamples that are returned by a teacher oracle. This is the
only approach we are aware of that clearly outperforms the cofactor approach
with respect to resulting circuit sizes. Computation times are, however, longer
than with the cofactor approach. An adaption of this learning approach to our
controller synthesis problems will be discussed in Section 6.4.

4.3 Computational Complexity

Let us brie�y discuss the computational complexity of the reduction steps pre-
sented in the previous section. Let n be the size of the original SQ formula.
Consider the reduction to uninterpreted functions and equality (Section 4.2.2).
There can be at most n array-write expressions to remove. Moreover, the con-
straints for λ can have n conjuncts at most, as the cardinality of the index set I
is bound by n. Thus, the size of the constraints AC (Φ) is bound by O(n). The
universal quanti�ers in array properties are all replaced by O(n) conjuncts. The
number of array properties is bound by n. Thus, the total size of the reduced
formula ΦQ

U is O(n2). The reduction to pure equality logic (Section 4.2.3) causes
another polynomial increase in size, whose details depend on the number of
di�erent functions, the number of function instances, and the arity of the func-
tions. Ackermann's reduction also introduces a linear number of new variables
(one per function instance). The reduction to propositional logic (Section 4.2.4)
causes a cubic increase in the number of variables and the formula's size, in the
worst case [BV00]. Concerning computation time, all steps so far can be done
in polynomial time.

Let us now consider the generalized speci�cation language SQ
+

(see De�ni-
tion 22 on page 35), which allows an arbitrary number of quanti�er alternations,
as long as existential quanti�cation is over propositional variables only. The
reductions shown in Section 4.2 (and the proofs for their correctness) can be
generalized in a straightforward way.

Theorem 8 � Computational Complexity of SQ
+

Deciding whether or not a formula from SQ
+

is valid is a PSPACE-complete
decision problem.

Proof
The QSAT problem, that is, deciding whether or not a quanti�ed Boolean for-
mula without free variables is valid,13 is known to be PSPACE-complete. We
will show PSPACE-completeness of our problem in two steps. First, we reduce
our problem to QSAT, thereby showing that it is contained in PSPACE. Second,
we will reduce QSAT to our problem, thereby showing that it is PSPACE-hard.

13Note that without free variables �satis�ability� and �validity� actually mean the same
thing, as the formula in question can only be either > or ⊥.

56 Chapter 4. Decidability and Complexity

1. Containment.
Given a formula ΦQ+

from SQ
+

, we apply the reductions described in
Section 4.2. As mentioned above, this can be done in polynomial time and
with a polynomial increase in the number of variables and the length of
the formula. The resulting formula is a QBF. Determining its validity is
an instance of the QSAT problem. As the QSAT problem is contained in
PSPACE, deciding validity for SQ

+

-formulas is also contained in PSPACE.

2. Hardness.
The QBF of a QSAT instance is actually a special case of a SQ

+

formula,
where all variables � not just the existentially quanti�ed ones � are
Boolean. Thus, any algorithm for deciding validity of SQ

+

formulas can
be used directly to decide QSAT instances. As QSAT is PSPACE-hard,
deciding validity for SQ

+

-formulas is also PSPACE-hard.

We have shown that deciding validity for SQ
+

-formulas is both contained in
PSPACE and PSPACE-hard. Thus, it is PSPACE-complete. Q. E. D.

Obviously, the PSPACE-completeness of deciding SQ
+

does not imply that also
the (potentially easier) problem of deciding SQ is PSPACE-complete. For the
QSAT problem, �xing the number of quanti�er alternations results in complex-
ities from the polynomial hierarchy. Thus, for SQ � with its �xed quanti�er
pre�x � we obtain the following complexity:

Theorem 9 � Computational Complexity of SQ

Deciding whether or not a formula from SQ is valid is a ΠP
2 -complete (also known

as coNPNP -complete) decision problem.

Proof
The QSAT∀2 problem, that is, the problem of deciding whether a QBF with
exactly 2 quanti�er alternations and an outermost universal quanti�er is valid,
is ΠP

2 -complete [Wra76]. The rest of the proof proceeds analogously to the proof
of Theorem 8. Q. E. D.

5
Interpolation-based Synthesis

Declaration of Sources

This chapter is based on and reuses material from the following source,
previously published by the author:

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer,
Jie-Hong Roland Jiang, and Roderick Bloem. Synthesizing mul-
tiple boolean functions using interpolation on a single proof. In
Jobstmann and Ray [JR13], pages 77�84.

References to this source are not always made explicit. In particular,
Sections 5.2 and 5.3 are heavily based on the paper cited above. Sec-
tion 5.4, however, contains material that has not been published before.

In Chapter 4 we have shown how to transform speci�cations in SQ into propo-
sitional formulas, from which we can extract certi�cates. In this chapter, we
will focus on interpolation-based techniques for certi�cate computation. Inter-
polation has been used for certi�cate computation in Boolean settings by Jiang
et al. [JLH09]. We improve over their work in two ways. First, we perform inter-
polation on the theory-level, instead of on the propositional level. Thus, we avoid
the cumbersome and sometimes even infeasible translations to propositional lo-
gic that we described in Chapter 4. Details will be presented in Section 5.1.
Second, we show how to compute multiple coordinated interpolants from a sin-

57

58 Chapter 5. Interpolation-based Synthesis

gle refutation proof. This will be discussed in Section 5.2. The price to pay for
multiple interpolants from a single proof is that the proof needs to satisfy certain
properties. In addition to being colorable (which is also required for iterative
single interpolation), it must be local-�rst. We will de�ne local-�rst proofs and
show how to obtain them from arbitrary proofs in Section 5.3.

In Section 5.4, we present an alternative to transforming an ordinary refuta-
tion proof: By using a modular SMT solver, we can directly generate a colorable,
local-�rst proof. Using such a solver we can even solve the generalized problem
of computing certi�cates for existentially quanti�ed propositional variables in
formulas in SQ

+

.
The interpolation-based certi�cate-computation methods are also the basis

for our prototype synthesis tool Suraq, which will be presented in Chapter 7 in
more detail.

5.1 Iterative Interpolation

A �rst naive way to use interpolation for certi�cate extraction would be to use
the method proposed by Jiang et al. [JLH09]. To do so, we take a formula ΦQ in
SQ and transform it to propositional logic, as outlined in Section 4.2. We then
eliminate the inner universal quanti�ers, by expanding them.14 This gives us
a formula of the form ∀b .∃c .Φprop . We then take the part Φprop without the
quanti�er pre�x. As mentioned in Section 4.2.5, the formula Φprop corresponds
to the characteristic function of a Boolean relation whose outputs are the control
signals c we want to synthesize. Thus, by applying the method of [JLH09] to
Φprop , we obtain the implementations for the signals in c.

Interpolation, however, is not just possible on the propositional level. Craig's
interpolation theorem holds for full �rst-order logic. Unfortunately, it does not
guarantee quanti�er-free interpolants, in the general case. It can even be shown
that in some theories a quanti�er-free interpolant does not exist for certain
formulas. Fortunately, the theory of uninterpreted functions and equality is
not one of those. In fact, it has been shown that for unsatis�able formulas
in T

qf
U a quanti�er-free interpolant always exists and can be computed easily

from a refutation proof [McM05, FGG+12]. For the rest of this Chapter we

will thus only consider formulas in T
qf
U , unless explicitly stated otherwise. For

speci�cations ΦQ in SQ that also include array terms, we perform the reduction
described in Section 4.2.2 to obtain a formula ΦQ

U in TU , whose subformula

behind the quanti�er pre�x is in T
qf
U . Thus, we can compute quanti�er-free

interpolants for SQ.

5.1.1 Single Control Signal

Let us �rst consider the case where we want to synthesize just one single control
signal c from a speci�cation ΦQ = ∀x .∃c .∀x′ .Φ, where Φ is in T

qf
U . We perform

14One possible way to do this is to use BDDs. In many cases, BDDs avoid the worst-case
exponential blowup of the quanti�er expansion.

5.1. Iterative Interpolation 59

the expansion-negation procedure, described in Section 4.1 to obtain

ϕ = expand_negate(Φ) = ϕ0(x, 0, x′0) ∧ ϕ1(x, 1, x′1) (5.1)

Note that we have made explicit which variables occur in which part of ϕ, because
this is important for interpolation. For a valid speci�cation ΦQ, the formula ϕ
is unsatis�able (see Lemma 4 on page 45). We compute an interpolant that only
depends on the shared symbols x. This interpolant is a certi�cate for c as shown
in the following theorem.

Theorem 10
The interpolant between ϕ0(x, 0, x′0) and ϕ1(x, 1, x′1) is a certi�cate for c in ΦQ.

Proof
Let χ be an interpolant between ϕ0 and ϕ1. The variables in x

′
0 and x

′
1 occur only

in either ϕ0 or ϕ1, but not in both. Thus, they cannot occur in the interpolant χ.
The only variables that can occur in χ are symb(χ) = symb(ϕ0)∩symb(ϕ1) = x.
Furthermore, we know that ϕ0 → χ and ϕ1 → ¬χ, due to the de�nition of an
interpolant. By reversing the implications we get ¬χ → ¬ϕ0 and χ → ¬ϕ1.
Based on the de�nition of expand_negate() we also know that ϕi(x, i, x

′
i) =

¬Φ(x, i, x′i). By reintroducing the universal quanti�ers for x′i, we get ¬χ(x) →
∀x′ .Φ(x, 0, x′) and χ(x) → ∀x′ .Φ(x, 1, x′). Therefore, ∀x .∀x′Φ(x, χ(x), x′) is
valid. Hence, χ(x) is a certi�cate for c in ΦQ. Q. E. D.

Based on Theorem 10, we can synthesize a single control signal. Note that we
performed interpolation in T

qf
U and thus did not have to perform a reduction to

propositional logic.

5.1.2 Multiple Control Signals

Based on �nding a single certi�cate via interpolation we will now show how
to �nd certi�cates for multiple control signals in an iterative way. Note that
we cannot straightforwardly use the methods proposed in [JLH09], because we
have an inner universal quanti�er (over domain variables) that we cannot simply
eliminate as it can be done in the propositional case. We will discuss this in more
detail towards the end of this section.

Our approach to iterative certi�cate computation is shown in Algorithm 5.1.
It is di�erent to the method presented in [JLH09] with respect to the way expan-
sion of the existential quanti�er is done. The algorithm takes as input a formula
ΦQ = ∀x .∃c .∀x′ .Φ, where Φ is in T

qf
U , and proceeds as follows. We loop over

all control signals c in c and compute one certi�cate for c per iteration. To do so,
we �rst expand and negate Φ (line 3), as explained in De�nition 23 on page 45.
Next, we divide the conjuncts of ϕ into two groups: those where the index that
corresponds to the current c is 0 � which we call ϕA, and those where it is 1 �
which we call ϕB . This is done in Lines 6�10. Based on these groups, we com-
pute an interpolant χ (line 11), which we add to the list of certi�cates computed
so far (line 12). In line 13 we resubstitute the certi�cate we just computed back
into Φ. This is imperative for overall correctness, because the choice for a value

60 Chapter 5. Interpolation-based Synthesis

Algorithm 5.1: Iterative certi�cate computation.

Input : A formula ΦQ = ∀x .∃c .∀x′ .Φ, where Φ is in T
qf
U .

Output: A list of certi�cates χ(x) for each c ∈ c in ΦQ.
1 result = [] // empty list

2 foreach c in c do
3 ϕ = expand_negate(Φ) = ϕ00...00 ∧ . . . ∧ ϕ11...11

4 ϕA = >
5 ϕB = >
6 foreach ϕi1i2...in in ϕ do
7 if index ik of ϕi1i2...in corresponding to c is 0 then
8 ϕA = ϕA ∧ ϕi1i2...in
9 else
10 ϕB = ϕB ∧ ϕi1i2...in

11 χ = interpolant(ϕA, ϕB)
12 result = result + [χ]
13 Φ = Φ[substitute χ for c]
14 c = c \ c
15 return result

for c1 can in�uence the possible choices for another variable c2. Simply imagine
a speci�cation that, for example, says that the choice for c1 is arbitrary, but c2
must always be the same as c1. Thus, once we �x a function for one c, we have
to ensure that all subsequent choices respect this decision. Finally, we remove
c from c in line 14. Since c no longer occurs in Φ after substitution, we do not
need to expand over it in the next iteration.

Theorem 11
Algorithm 5.1 always terminates and computes correct certi�cates for the exis-
tentially quanti�ed variables.

Proof
Termination. All loops in Algorithm 5.1 are just iterations over �nite data
structures, which are thus guaranteed to end. Furthermore, all calls to functions
(computing an interpolant, substitution in a formula, etc.) return a result after
�nitely many steps. Thus, the algorithm always terminates.

Correctness. See proof of Theorem 10. Q. E. D.

The Need for Complete Expansion

The expansion performed in line 3 of algorithm 5.1 creates 2 |c| conjuncts. It may
seem odd that the computation of one single certi�cate requires an expansion
into an exponential number of conjuncts. Indeed, for propositional logic, Jiang et
al. [JLH09] show an iterative procedure that requires expansion over one c ∈ c

5.1. Iterative Interpolation 61

in each step only. Kuncak et al. [KMPS10] use a very similar technique for
formulas in �rst-order logic. Unfortunately, this technique cannot be used for
our problem, because of one fundamental di�erence. The formulas considered
in [JLH09] and [KMPS10] have a ∀-∃-quanti�er structure, while our formulas
have a ∀-∃-∀-quanti�er structure. In the remainder of this section, we will �rst
brie�y recapitulate how iterative certi�cate computation for formulas with an
∀-∃-quanti�er structure can avoid the exponential blow-up. Subsequently, we
will demonstrate why this approach is not applicable to our ∀-∃-∀-formulas.

Consider a formula ∀x .∃c .Φ. We pick one c from c, for which we want
to compute a certi�cate �rst. Let c̃ = c \ c. The trick is to (implicitly) treat
all variables in c̃ as additional �inputs� for the witness function for c. Note,
however, that ∀x .∀c̃ .∃c .Φ is not necessarily valid. For some values of x and
c̃ there might be no value for c that makes Φ true. Another way of seeing this
is that the relation from x ∪ c̃ to c, whose characteristic function is Φ, is not
total. Jiang et al. [JLH09] show how to remedy the problem by completing the
relation. They suggest to replace Φ with Ψ = Φ(x, c̃, c) ∨ ∀c .¬Φ(x, c̃, c). The
intuitive meaning of this is that for values for x and c̃ for which no correct
value of c existed, the new relation will allow an arbitrary value for c. This is
justi�ed by the fact that a correct choice of value for all the variables in c̃ can
never be one for which there is no legal choice for c. Due to the fact that Ψ
now represents a total relation, the formula ∀x .∀c̃ .∃c .Ψ is valid. We compute
expand_negate(Ψ) = ψ0 ∧ ψ1, where

ψ0 = ¬Φ(x, c̃, 0) ∧ Φ(x, c̃, 1) (5.2)

ψ1 = ¬Φ(x, c̃, 1) ∧ Φ(x, c̃, 0). (5.3)

Note that the conjunction of ψ0 and ψ1 is trivially unsatis�able. An interpolant
χ between ψ0 and ψ1 is a correct certi�cate for c, according to [JLH09]. We
can resubstitute χ for c in Φ and proceed to compute a certi�cate for the next
variable in c. Note that in the �rst step the size of the formula passed to the
SAT/SMT solver is only linear in the size of the original quanti�ed formula. For
subsequent steps, the size depends on the size of the interpolants computed in
previous steps. Moreover, n calls to the solver will be necessary to compute n
certi�cates.

Let us see what happens when we try to apply this procedure to ∀-∃-∀-
formulas. As outlined in Section 4.1, we rename the variables x′, which are
bound by the inner universal quanti�er, for each of the conjuncts of the (negated)
expansion. That would lead to formulas

ψ0 = ¬Φ(x, c̃, 0, x′0) ∧ Φ(x, c̃, 1, x′0) (5.4)

ψ1 = ¬Φ(x, c̃, 1, x′1) ∧ Φ(x, c̃, 0, x′1). (5.5)

However, the conjunction of Equations 5.4 and 5.5 is not necessarily unsatis�able,
as shown by the following example.

Example 13
Let Φ = x ′ ↔ (c1 ↔ c2), where x ′ is the only (Boolean) variable in x′, c1 and c2

62 Chapter 5. Interpolation-based Synthesis

are the only two variables in c, and x is empty. We try to compute a certi�cate
for c2, while treating c1 as an input. Performing the expansion and negation
outlined above, we obtain

ψ0 = ¬Φ(c1, 0, x
′
0) ∧ Φ(c1, 1, x

′
0) (5.6)

ψ1 = ¬Φ(c1, 1, x
′
1) ∧ Φ(c1, 0, x

′
1). (5.7)

Consider the model M, where Jc1K = >,
q
x ′0

y
= >, and

q
x ′1

y
= ⊥. Clearly,

we have that

M 2 Φ(c1, 0, x
′
0) (5.8)

M � Φ(c1, 1, x
′
0) (5.9)

M 2 Φ(c1, 1, x
′
1) (5.10)

M � Φ(c1, 0, x
′
1). (5.11)

It follows that M satis�es both ψ0 (Equation 5.6) and ψ1 (Equation 5.7). Thus,
ψ0 ∧ ψ1 is satis�able.

The reason for the potential satis�ability of ψ0 ∧ ψ1 lies in the renaming of
the variables in x′. Without such renaming, the formula would be trivially
unsatis�able. However, if we do not perform renaming, we face another problem.
Without renaming, the variables in x′ are no longer local to either ψ0 or ψ1; they
can now occur in both simultaneously. Thus, an interpolant χ could also depend
on those variables. This could lead to a combinational loop: The value of c1
could depend on the value of c2, and the value of c2 could depend on the value
of c1. We thus conclude that the procedure of [JLH09] and [KMPS10] � which
expands only over one of the variables in c in each step � is not applicable to
∀-∃-∀-formulas.

5.2 n-Interpolation

The iterative approach presented in the previous section requires n calls to an
SMT solver to compute n certi�cates from n refutation proofs. SMT solving is
a costly operation. Thus, we would like to reduce the number of solver invo-
cations. In this section, we will show how to generalize the notion of an inter-
polant to what we call an n-interpolant, computing n (coordinated) interpolants
simultaneously, from a single refutation proof. Again, we consider formulas
ΦQ = ∀x .∃c .∀x′ .Φ, where Φ is in T

qf
U . To obtain an unsatis�able formula for

interpolation, we compute ϕ = expand_negate(Φ) = ϕ0...0 ∧ . . . ∧ ϕ1...1. Gener-
alizing the notions presented in Section 2.3, we will call the conjuncts ϕi the 2n

partitions of ϕ, where n = |c|, and associate a color with the local symbols of
each partition. Note that since the ϕis are obtained by only renaming variables,
the shared non-logical symbols between any two partitions are the same.

De�nition 24 � Global and Local Symbols
Symbols in the set G =

⋂
i∈Bn symb(ϕi) are called global symbols. All other

5.2. n-Interpolation 63

symbols are called local (with respect to the one partition in which they occur).
For ϕ = expand_negate(Φ), we have G = x, and in each partition i, we have
local variables x′i.

Let χ be a vector of formulas (χ1, . . . , χn). Let ⊕ be the exclusive-or (xor)
operator. For a word i ∈ Bn, let χ′ = χ⊕i if for each j ∈ {1, . . . , n}, χ′j = χj⊕ij .
Let

∨
χ be short for χ1 ∨ . . . ∨ χn. Let C|i = C|ϕi

, that is, C|i is C with all
literals that contain symbols that do not occur in ϕi removed. The following
de�nition generalizes the notion of interpolant and partial interpolant from two
formulas to 2n formulas.

De�nition 25 � n-(Partial) Interpolant
Let

∧
i∈Bn ϕi be an unsatis�able CNF formula. Let n be a node in the refuta-

tion proof of
∧
i∈Bn ϕi. Let C = clause(n). An n-partial interpolant χ for C

with respect to the partitions ϕi is a vector of formulas with length n, such that
∀i ∈ Bn . ϕi →

(
C|i ∨

∨
(χ⊕ i)

)
and χ � G. If C ≡ ⊥ then χ is an n-interpolant

with respect to the partitions ϕi.

Based on this de�nition, the following theorem is a generalization of Theorem 10,
showing that n-interpolants are a mean of certi�cate computation.

Theorem 12
The components of an n-interpolant χ with respect to the partitions ϕi constitute
certi�cates for the variables c in the formula ΦQ.

Proof
Since for each i, the variables x′i only appear in ϕi, they cannot be in G; only
x are in G and thus, and n-interpolant can only depend on x. Let χ(x) =
(χ1(x), . . . , χn(x)) be an n-interpolant with respect to the partitions ϕi. Due to
the de�nition of n-interpolants, we have that for each i ∈ Bn

ϕi →
∨
χ(x)⊕ i (5.12)

holds. After reversing the implications and expanding the de�nition of ϕi, we
obtain ∧

¬χ(x)⊕ i→ Φ(x, i, x′i). (5.13)

After reintroducing the quanti�ers for x′, we obtain∧
¬χ(x)⊕ i→ ∀x′ .Φ(x, i, x′). (5.14)

Therefore, ∀x . i = χ(x)→ ∀x′ .Φ(x, i, x′). Therefore,

∀x .∀x′ .Φ(x, χ(x), x′). (5.15)

Hence for each j ∈ {1, . . . , n}, we have that χj(x) is a witness function for cj in
ΦQ. Q. E. D.

64 Chapter 5. Interpolation-based Synthesis

mHyp
C [i]

C ∈ ϕi mAxi
C [i]

C � ϕi

mRes
a ∨ C [i] ¬a ∨D [i]

C ∨D [i]
i ∈ Bn, a ∨ C ∨D � ϕi

mRes-G
a ∨ C [χC] ¬a ∨D [χD]

C ∨D [((a ∨ χC1) ∧ (¬a ∨ χD1),
. . . ,

(a ∨ χCn) ∧ (¬a ∨ χDn))]

a � G

Figure 5.1: n-Interpolating proof rules for an unsatis�able ϕ =
∧

i∈Bn ϕi. These rules
can only annotate proofs that are colorable and local-�rst.

5.2.1 Computing n-interpolants

As we have just seen, n-interpolants can serve as certi�cates. Let us thus now
see how we can compute them. In Figure 5.1, we present annotating proof rules
for n-interpolants, similar to the ones shown in Section 2.3. Note that due to
the way we have de�ned refutation proofs (see De�nition 15), we do not require
any theory-speci�c proof rules. Theory-reasoning is done via theory lemmata
that are introduced as leaves of the proof by the mAxi-rule. The proof rules
annotate each conclusion of a proof step with an n-partial interpolant for the
conclusion with respect to the partitions. These annotation rules require two
properties of the proof. First, it needs to be colorable.15 That is, every leaf of
the proof contains only global symbols and/or symbols that are local to exactly
one partition. Second, it needs to be local-�rst.

De�nition 26 � Local-�rst Proof
A refutation proof is local-�rst, if for every resolution node with a resolving
literal that contains local symbols, both its premises are derived from the same
partition.

In Figure 5.1, the rule mHyp annotates the derived clause C with i if C appears
in partition ϕi. Similarly, the rule mAxi annotates theory lemma C with i if
C � ϕi. Rules mRes and mRes-G annotate resolution steps. mRes-G, which
is only applicable if the resolving literal is global, follows Pudlák's interpolation
system [Pud97] n times, once for each of the components of the partial inter-
polant. mRes is only applicable if both premises are annotated with the same
n-partial interpolant and this n-partial interpolant is an element of Bn. Note
that despite these restrictions, these rules will always be able to annotate a proof
that is colorable and local-�rst.

The intuition behind the annotation rules is as follows. Every partition ϕi
corresponds to a vector i of values for the variables in c. Moreover, the partition
represents a set of values for x, for which the values i cannot be used for c in
order to satisfy Φ. Remember that ϕi = ¬Φi. The rule mRes-G basically works

15We extend De�nition 18 (page 30) from two partitions to 2n partitions in the obvious way.

5.2. n-Interpolation 65

like a multiplexer. Based on the truth value of a literal over variables from x
only, it selects the child node in which the literal appeared in polarity opposite
to the present value. This makes sure that we will not end up in a partition that
corresponds to values for c that are not allowed for the values of x that led us
there. In other words, the partition we end up in will correspond to values for
c that will satisfy Φ for the values of x that led us there. We will now provide
a more formal argument for the correctness of the annotation rules in the proof
of the following theorem.

Theorem 13
Annotations in the rules in Figure 5.1 are n-partial interpolants for the respective
conclusions with respect to the partitions ϕi.

Proof
We prove the theorem using induction over the proof structure. All annotations
must satisfy the conditions of an n-partial interpolant. Note that

∨
i ⊕ i = ⊥

and if i′ 6= i then
∨
i′ ⊕ i = >.

Base cases:

� mHyp: Let i′ = i. Since C ∈ ϕi, C|i′ = C. Therefore, C|i′ ∨
∨
i⊕ i′ = C.

Since C ∈ ϕi, ϕi′ → C. Therefore, ϕi′ → C|i′ ∨
∨
i ⊕ i′. Now, let i′ 6= i.

Therefore, C|i′∨
∨
i⊕i′ = >. Therefore, ϕi′ → C|i′∨

∨
i⊕i′. Furthermore,

since i consists of propositional constants only, we have i � G.

� mAxi: Let i′ = i. Since C � ϕi, C|i′ = C. Therefore, C|i′ ∨
∨
i⊕ i′ = C.

Since C is a theory lemma, ϕi → C|i′ ∨
∨
i⊕ i′. For i′ 6= i, we again have

C|i′ ∨
∨
i⊕ i′ = > and thus proceed as in the previous rule. Also, i � G,

just as reasoned above.

Inductive cases:
As induction hypothesis, we assume that the annotations of the premises are
correct n-partial interpolants.

� mRes: Let i′ = i. From the induction hypothesis it follows that

ϕi′ → a ∨ C ∨
∨
i⊕ i′ and ϕi′ → ¬a ∨D ∨

∨
i⊕ i′. (5.16)

Following a �resolution-like� reasoning, it follows that ϕi′ → C∨D∨
∨
i⊕i′.

For i′ 6= i, the disjunct
∨
i⊕ i′ becomes > again, and we can reason as in

the base cases. i � G also follows from the same argument as in the base
cases.

� mRes-G: Due to the de�nition of n-partial interpolants, for each i ∈ Bn
we have

ϕi → a ∨ C|i ∨
∨
χC ⊕ i and ϕi → ¬a ∨D|i ∨

∨
χD ⊕ i. (5.17)

After taking conjunction of the two implications, we obtain

ϕi → (a ∨ C|i ∨
∨
χC ⊕ i) ∧ (¬a ∨D|i ∨

∨
χD ⊕ i). (5.18)

66 Chapter 5. Interpolation-based Synthesis

After expanding the de�nition of or-of-xor of vectors and moving a and ¬a
inside the vector disjunction, we obtain

ϕi → (C|i ∨
n∨
j=0

(a ∨ χCj ⊕ ij)) ∧ (D|i ∨
n∨
j=0

(¬a ∨ χDj ⊕ ij)). (5.19)

Using (a ∨ b) ∧ (c ∨ d) ` (a ∨ c) ∨ (b ∧ d), we obtain

ϕi → (C ∨D)|i ∨ (

n∨
j=0

(a ∨ χCj ⊕ ij) ∧
n∨
j=0

(¬a ∨ χDj ⊕ ij)). (5.20)

After moving out the disjunctions, we obtain

ϕi → (C ∨D)|i ∨
n∨
j=0

((a ∨ χCj ⊕ ij) ∧ (¬a ∨ χDj ⊕ ij)). (5.21)

After moving out the ⊕ operator, we obtain

ϕi → (C ∨D)|i ∨
n∨
j=0

((a ∨ χCj) ∧ (¬a ∨ χDj))⊕ ij . (5.22)

Since {a, χC , χD} � G, symbols in the annotation of the conclusion are
also within G. Q. E. D.

5.2.2 The Need for Local-�rst Proofs

The local-�rst property is actually needed to compute coordinated interpolants.
Using an example, we will illustrate that without this property we could poten-
tially get incorrect results.

Example 14
Consider the formula ∀a, b . ∃c1, c2 .∀l . Φ(a, b, c1, c2, l), where

Φ(a, b, c1, c2, l) =(c1 ∧ ¬c2 ∧ ¬a) ∨ (¬c1 ∧ c2 ∧ ¬b)∨
(c1 ∧ c2 ∧ ((¬l ∧ a) ∨ (l ∧ b))) (5.23)

and � for the sake of simplicity � all variables are Boolean. We will compute
certi�cates for c1 and c2 in terms of a and b. After instantiating for all values
of c1 and c2, and negating the instantiated formulas, we obtain

ϕ00 => (5.24)

ϕ01 =b (5.25)

ϕ10 =a (5.26)

ϕ11 =(l ∨ ¬a) ∧ (¬l ∨ ¬b) (5.27)

ϕ =ϕ00 ∧ ϕ01 ∧ ϕ10 ∧ ϕ11. (5.28)

5.2. n-Interpolation 67

The set of global variables is G = {a, b}. Since l appears only in ϕ11, we do
not need to rename it. Suppose the following is the proof of unsatis�ability of ϕ
produced by an SMT solver.

Res

Res
a l ∨ ¬a

l
Res

b ¬l ∨ ¬b
¬l

⊥

In the above proof, l is used as a resolving literal in the very last proof step. Thus,
the proof violates the local-�rst property. If we compute an interpolant between
ϕ00∧ϕ01 and ϕ10∧ϕ11 by applying Pudlák's original interpolation rules [Pud97]
on the proof, then we obtain the following annotated proof.

Res

Res
a [>] l ∨ ¬a [>]

l [>]
Res

b [⊥] ¬l ∨ ¬b [>]

¬l [b]

⊥ [b]

Similarly, if we compute an interpolant between ϕ00 ∧ ϕ10 and ϕ01 ∧ ϕ11 by
applying the original interpolation rules on the proof, then we obtain the following
annotated proof.

Res

Res
a [⊥] l ∨ ¬a [>]

l [a]
Res

b [>] ¬l ∨ ¬b [>]

¬l [>]

⊥ [a]

From the above annotations, we learn χc1 = a and χc1 = b, which are not valid
certi�cates if they are used together because Φ(a, b, a, b, l) is not a valid formula.
Lets consider the following unsatis�ability proof, which satis�es the local-�rst
property.

Res
l ∨ ¬a ¬l ∨ ¬b
¬a ∨ ¬b

Res
a

¬b
Res

b

⊥
If we annotate this proof with our annotation rules, we obtain

Res
∨¬a [(>,>)] ¬l ∨ ¬b [(>,>)]

¬a ∨ ¬b [(>,>)]
Res

a [(>,⊥)]

¬b [(>, a)]
Res

b [(⊥,>)]

⊥ [(b,¬b ∨ a)]
.

From the above annotations we learn χc1 = b and χc1 = ¬b ∨ a, which are valid
certi�cates.

It is also noteworthy that McMillan's interpolation rules [McM05] do not produce
coordinated interpolants, not even with a local-�rst proof. The reason for that
is that McMillan's system is asymmetric with respect to the partitions, whereas
Pudlák's system is symmetric.

68 Chapter 5. Interpolation-based Synthesis

5.2.3 Creating an Implementation from an n-Interpolant

Since an n-interpolant � computed according to the rules in Figure 5.1 � is
always quanti�er-free, we can easily convert it into an implementation. To create
a circuit for one element of the n-interpolant, we create, for every resolution node
with a global resolving literal, a multiplexer that has the resolving literal at its
selector input. The other inputs connect to the outputs of the multiplexers
corresponding to the child nodes. For leaf nodes and resolution nodes with local
resolving literals, we use the constants >,⊥, depending on which partition the
node belongs to. The output of the multiplexer corresponding to the root node is
the �nal certi�cate function. Note that, unless we apply logical simpli�cations,
the circuits for all certi�cates all have the same multiplexer tree and di�er only
in the constants at the leaves of this tree.

Also note that due to the local-�rst property, all nodes that are derived from
a single partition are annotated with the same n-partial interpolant. Thus, we
can disregard such local sub-trees, by iteratively converting nodes that have only
descendants from one partition into leaves. This does not a�ect the outcome of
the interpolation procedure.

Now, this gives us a Boolean circuit which has the resolving literals of the
refutation proof as its inputs. Resolving literals can either be propositional vari-
ables, equalities between two domain terms, or instances of uninterpreted pred-
icates. Propositional variables can be used directly in a Boolean circuit. For
equalities between domain terms, we create a comparator. It is interesting to
note that, unlike in the certi�cate computation process described in Section 4.2.5,
interpolation can introduce new domain terms � particularly instances of unin-
terpreted functions � that were not present in the original formula. The reason
for this will be explained in Section 5.3.1. This means that, potentially, we
have to duplicate the combinational circuits that are represented by uninter-
preted functions in order to have the new domain terms available as comparator
inputs. The same holds for new instances of uninterpreted predicates.

5.3 Proof Transformations

Our n-interpolation procedure requires refutation proofs to be colorable and
local-�rst. These properties are not guaranteed by e�cient modern SMT solvers.
In this section we will show how to transform a refutation proof conforming to
De�nition 15 (page 28) into one that is colorable and local-�rst. Our proof
transformation works in two steps. First, we will split any non-colorable theory
lemmata, similar to the technique presented in [FGG+12]. This gives us a col-
orable proof. In the second step, we will reorder resolution steps to obtain the
local-�rst property. Reordering is based on standard techniques from literature.
(See, for example, [DKPW10].)

5.3. Proof Transformations 69

5.3.1 Obtaining a Colorable Proof

There are two reasons for which a proof may not be colorable. Non-colorable
literals (introduced as part of a theory lemma), and non-colorable theory lem-
mata.

Non-Colorable Literals

Let us �rst see how non-colorable literals can be introduced into a proof.

Example 15
Let a0 and a1 be (domain) variables from two di�erent partitions, and let x
be a global (domain) variable. Furthermore, suppose that the partition of a0
logically entails a0 = x , and the partition of a1 entails x = a1. Then, based
on the transitivity axiom (see Equation 2.3), an SMT solver may introduce the
following theory lemma:

(a0 6= x) ∨ (x 6= a1) ∨ (a0 = a1). (5.29)

Note that this lemma contains the non-colorable literal a0 = a1.

In [HGK+13], we presented a way to remove non-colorable literals from a proof.
This approach was based on the fact that in a refutation proof every literal is re-
solved eventually, and that the original formula does (per de�nition) not contain
any non-colorable literals. Using this information, the proof can be restructured
to remove the non-colorable literal. However, upon closer investigation, it turns
out that there is actually a much simpler solution that will be explained in the
remainder of this section.

The question one should ask is why a DPLL(T)-based SMT solver introduces
new literals in the �rst place. As outlined in Section 2.2.3, the DPLL(T) algo-
rithm checks partial assignments (which are conjunctions of literals) for theory-
consistency, and introduces blocking clauses (which are the negation of incon-
sistent assignments). By construction, the blocking clauses can only contain
literals that occur in the formula to solve. Also, blocking clauses are, by de�ni-
tion, theory lemmata. If the solver would just introduce these blocking clauses,
the �nal refutation proof would not have any non-colorable literals. However,
one important reason for producing refutation proofs is that a third party should
be able to easily verify that the formula in question is indeed unsatis�able. The-
ory lemmata resulting from blocking clauses can, however, be rather larger, and
it might not at all be obvious that they are indeed theory lemmata. To remedy
this situation, many good SMT solvers provide proofs that long and complex
theory lemmata are a logical consequence of simpler and easier to check theory
lemmata. These proofs can contain literals that did not occur in the original
formula to solve and thus can potentially be non-colorable.

Example 16
Let a0 and a1 be two local variables, as in Example 15. Let x and y be two global
variables. Furthermore, let f(·) be a unary uninterpreted function. Suppose

70 Chapter 5. Interpolation-based Synthesis

that during a run of DPLL(T), an SMT solver has made the following (partial)
assignment to theory literals:

(x 6= a0) ∨ (a0 6= y) ∨ (y 6= a1) ∨ (f(x) = f(a1)) (5.30)

This assignment is not consistent with TU . However, to make this easily veri-
�able, a solver might want to prove this fact based on simple theory lemmata.
Such a proof could look like this:

Res

Res

Trans.
(x 6= a0)∨
(a0 6= a1)∨
(x = a1)

Trans.
(a0 6= y)∨
(y 6= a1)∨
(a0 = a1)

(x 6= a0) ∨ (a0 6= y)∨
(y 6= a1) ∨ (x = a1)

Congr.
(x 6= a1)∨
(f(x) = f(a1))

(x 6= a0) ∨ (a0 6= y) ∨ (y 6= a1) ∨ (f(x) = f(a1))

In this proof, all leaves are simple instances of the theory axioms transitivity
(Equation 2.3) and function congruence (Equation 2.4). Thus, they are more
easily veri�able than the �nal theory lemma. Note, however, that the proof for
the theory lemma contains the non-colorable literal (a0 = a1) that did not occur
in the original formula to solve (and thus also does not occur in the �nal theory
lemma).

Since we are just interested in computing (n-) interpolants, and not in (easily)
checking proofs, we can simply disregard the proofs of (complex) theory lem-
mata. That is, if a proof node is derived solely from theory lemmata � and
thus is a theory lemmata itself � we make this node a leaf of the proof by
removing its children. This way, the proof will only contain literals that occur
in the original formula to solve. By de�nition, all those literals are colorable.
Therefore, we will henceforth assume that all literals occurring in proofs are
colorable.

Splitting Non-Colorable Theory Lemmata

Even if all literals occurring in a proof are colorable, the proof can still contain
non-colorable theory lemmata. For example, the theory lemma in Example 16
contains the literals x 6= a0 and y 6= a1, which have di�erent color. We will
show how to split such non-colorable theory lemmata into colorable ones. Our
splitting approach is a generalization of the one used in [FGG+12] to more than
two colors. We proceed as follows. First, we convert the theory lemma back into
an assignment that is not T-satis�able by inverting all literals and converting
the disjunctions to conjunctions. Next, we compute the congruence graph over
all positive literals in the unsatis�able assignment. For each of the negative
literals of the assignment, we then check whether its positive form is implied by
the congruence graph, and compute the corresponding transitivity-congruence
chain. Note that since the assignment is unsatis�able, at least one such literal
(and the corresponding transitivity-congruence chain) must exist.

5.3. Proof Transformations 71

𝑓(𝑙1) 𝑓(𝑙2)

𝑙1 𝑙2 𝑔 𝑙1 = 𝑔 𝑔 = 𝑙2

(a) Non-Colorable Transitivity-
Congruence Chain for (f(l1) ; f(l2))

𝑓(𝑙1) 𝑓(𝑙2)

𝑙1 𝑔 𝑙1 = 𝑔

𝑓(𝑔)

𝑔 𝑙2 𝑔 = 𝑙2

(b) Colorable Transitivity-Congruence
Chain for (f(l1) ; f(l2))

Figure 5.2: Splitting a non-colorable transitivity-congruence chain by introducing
global intermediate terms.

The transitivity-congruence chain will be the basis for splitting the non-
colorable theory lemma. As a prerequisite, we need to make all edges in the
chain colorable. A colorable edge is an edge for which there is a color w such
that all the edge's literals are w-colorable. Edges with an equality justi�ca-
tion already are colorable, as we assumed that no non-colorable literals occur in
the theory lemma. Edges with congruence justi�cations, however, may still be
non-colorable. That is, the two terms they connect might belong to di�erent par-
titions, and/or some of the paths that prove equality for the function/predicate
parameters might span over more than one partition. Fuchs et al. [FGG+12]
have shown how to recursively make all edges in a chain colorable by introduc-
ing global intermediate terms for non-colorable edges. We will illustrate this
procedure with a simple example, and refer to [FGG+12] for details.

Example 17
Suppose we have the two local terms f(l1) and f(l2), where l1, l2 are from two
di�erent partitions, and a global term g. (See Figure 5.2.) A possible (non-
colorable) congruence justi�cation for f(l1) = f(l2) could be given as (l1 =
g, g = l2). The edge between f(l1) and f(l2) is now split into two (colorable)
parts: f(l1) = f(g), with justi�cation l1 = g, and f(g) = f(l2), with justi�cation
g = l2. Note that f(g) is a new term that (possibly) did not appear in the con-
gruence graph before. Since we assumed that there are no non-colorable equality
justi�cations in our graph, such a global intermediate term must always exist. It
should be clear how to extend this procedure to n-ary functions.

Note that in a colorable chain, every edge either connects two terms of the
same partition, or a global term and a local term. In other words, terms from
di�erent partitions are separated by at least one global term between them. We
now divide the whole chain into (overlapping) segments, such that each segment
uses only w-colorable symbols. The global terms that separate symbols with
di�erent colors are part of both segments.16 Assume for the moment that the
chain starts and ends with a global term. We will show how to deal with local
terms at the beginning/end of the chain later. For ease of presentation, also
assume that the chain consists of only two segments. An extension to chains
with more segments can be done by recursion. We take the �rst segment of the
chain (from start to the global term that is at the border to the next segment),

16If there is more than one consecutive global term, we arbitrarily choose the last one.

72 Chapter 5. Interpolation-based Synthesis

Res

Res
n1 : [cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= kg ∨ cg = kg] n2 : [fg 6= h3 ∨ h3 6= kg ∨ fg = kg]

n3 : [cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= h3 ∨ h3 6= kg ∨ cg = kg]
n4 : [a1 6= b1 ∨ b1 6= cg ∨ cg 6= kg ∨ kg 6= l1 ∨ a1 = l1]

n5 : [a1 6= b1 ∨ b1 6= cg ∨ cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= h3 ∨ h3 6= kg ∨ kg 6= l1 ∨ a1 = l1]

Figure 5.3: Splitting theory lemmata. Suppose we have created the transitivity-
congruence chain (a1 ; b1 ; cg ; d2 ; e2 ; fg ; h3 ; kg ; l1) from
a theory lemma, where all the edges are colorable. The number in the
index indicates the partition of the respective term, with g being used
for global terms. First, we consider only the part from the �rst to the
last global term (cg and kg, respectively). We �split� this sub-chain into
the chains (cg ; d2 ; e2 ; fg ; kg) and (fg ; h3 ; kg) and convert
them into (colorable) theory lemmata (nodes n1 and n2, respectively).
By resolution, we obtain n3. Now, we create the theory lemma in node
n4, which corresponds to all links of the original chain which we have
not dealt with already, and a �shortcut� over the part we have already
considered: (a1 ; b1 ; cg ; kg ; l1). Note that this is also a colorable
theory lemma. By resolution over n3 and n4, we obtain n5, whose clause
is identical to the theory lemma from which we started.

plus a new �shortcut� literal that states equality between the last term of the �rst
segment and the last term of the entire chain, and use them as implying literals
for a new theory lemma clause. The implied literal of this theory lemma will
be an equality between the �rst and the last term of the entire chain. Next, we
create a theory lemma with the literals of the second segment of the chain. Note
that the implied literal of this theory lemma (which occurs in positive phase)
is the same as the shortcut literal used in the theory lemma corresponding to
the �rst segment. There, however, it occurred in negative phase. Thus, we can
use this literal for resolution between the two theory lemmata. We obtain a
new internal proof node whose clause has all the literals of the entire chain as
implying literals, and an equality between start term and end term of the chain
as the implied literal. That is, the clause of this new internal node has the same
conclusion as the non-colorable theory lemma from which we started.

In case the start/end of the chain is not a local term, we �rst deal with the
sub-chain from the �rst to the last global term, as described above. Note that if
both start and end of the chain are local terms, they have to belong to the same
partition, because otherwise the implied literal would be non-colorable. That
would violate the assumption that the proof is free of non-colorable literals. We
create a theory lemma with the local literals from the start/end of the chain,
and one shortcut literal that equates the �rst and last global term. This literal
can be used for resolution with the implied literal of the node obtained in the
previous step.

In summary, this procedure replaces all leaves that have non-colorable theory
lemmata with subtrees whose leaves are all colorable theory lemmata, and whose
root is labeled with the same clause as the original non-colorable leaf.

Example 18
Fig. 5.3 shows how to split the non-colorable theory lemma (a1 6= b1 ∨ b1 6= cg ∨
cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= h3 ∨ h3 6= kg ∨ kg 6= l1 ∨ a1 = l1).

5.3. Proof Transformations 73

Res
g ∨ l ∨D ¬g ∨ E

Res
l ∨D ∨ E ¬l ∨ C

C ∨D ∨ E

Res
g ∨ l ∨D ¬l ∨ C

Res
g ∨ C ∨D ¬g ∨ E

C ∨D ∨ E

Res
g ∨ l ∨D ¬g ∨ l ∨ E

Res
l ∨D ∨ E ¬l ∨ C

C ∨D ∨ E

Res
g ∨ l ∨D ¬l ∨ C

g ∨ C ∨D Res
¬g ∨ l ∨ E ¬l ∨ C
¬g ∨ C ∨ E

Res
C ∨D ∨ E

Figure 5.4: If a local resolving literal l resolves premises that are derived from two
di�erent partitions, we can push this resolution step towards the leaves
using one of the above transformation rules. After the transformation,
the proof �rst resolves l then g.

5.3.2 Reordering Resolution Steps

The last transformation we need to perform is making the proof local-�rst. To
do this, we use the standard reordering techniques from [DKPW10], which are
shown in Figure 5.4.17 Depending on the matching pattern we can apply one of
those two rules to reorder resolution steps. By repeated application we can push
resolutions over local resolving literals towards the leaves of the proof, until all
their respective premises are derived from just a single partition.

5.3.3 Summarizing the Transformation Steps

The �nal result of the proof transformation steps outlined in the Sections above
is a colorable, local-�rst proof, from which we can compute an n-interpolant.
This is summarized in the following theorem.

Theorem 14
After splitting all non-colorable theory lemmata and reordering the resolution
steps, we obtain a colorable, local-�rst proof.

Proof
Colorability. A proof is colorable, i� all its leaves are colorable (see De�ni-
tion 18, page 30). There are two kinds of leaves in the proof. The �rst kind has
clauses that are part of the original formula to solve. Since such a clause must
belong to exactly one partition, it is colorable. The second kind has clauses that
are theory lemmata. All non-colorable theory lemmata have been split into col-
orable ones by the procedure outlined in Section 5.3.1. Thus, all theory lemmata
at leaf nodes are colorable.

Local-�rst. Resolutions over local resolving literals have been pushed to-
wards the leaves as far as necessary by the reordering procedure outlined in
Section 5.3.2. Thus, the proof is local-�rst. Q. E. D.

17Note that these rules assume that the proof is redundancy free, which can be achieved by
the algorithms presented in [Gup12].

74 Chapter 5. Interpolation-based Synthesis

5.4 Modular SMT Solving

To compute n-interpolants, refutation proofs need to be colorable and local-�rst.
In the previous section, we have shown how to transform an arbitrary refutation
proof that conforms to De�nition 15 (page 28) in such a way that it satis�es
these properties. In some instances, however, these transformations (especially
reordering to obtain the local-�rst property) can be too expensive with respect
to computational resources. Thus, it is desirable to directly obtain a proof that
already satis�es these properties. To achieve this goal, we propose modular
SMT solving, which is a result of mixing and extending ideas from [McM11] and
[BVB+13]. We extend the approach of [BVB+13] from propositional satis�abil-
ity to SMT problems. Furthermore, we are interested in tree-like dependencies,
whereas [BVB+13] focuses on linear dependencies. The technique we are going
to present extends to the generalized version of our synthesis problem, as stated
in Section 4.3, where we allow multiple quanti�er alternations, as long as all
existential quanti�ers are over propositional variables only.

5.4.1 Tree-like Modular SMT Problems

A tree-like modular SMT problem is an SMT problem where the formula to
decide is a conjunction whose conjuncts are distributed over the nodes of a tree.
That is, every node in the tree is associated with a formula. Moreover, every
node is also associated with a set of literals. The initial18 set of literals of a node
is de�ned below.

De�nition 27 � ch(v), pa(v), anc(v), desc(v), φ(v)
Let v be a node in a tree-like modular SMT problem. Then ch(v) is the set
of v's children, or ∅, if v is a leaf; pa(v) is the parent of v, or ∅, if v is the
root; anc(v) = {pa(v)} ∪ anc(pa(v)) is the set of ancestors of v; desc(v) =⋃
i∈ ch(v){i} ∪ desc(i) is the set of descendants of v; and φ(v) is the formula

associated with v.

De�nition 28 � Literals of Nodes
Let v be a node in a tree-like modular SMT problem. Let Lits(φ(v)) be the set
of literals occurring in φ(v). Then the set of literals associated with a node is

L(v) =

 ⋂
i∈ ch(v)

La(i)

 \ L(pa(v)), where (5.31)

La(v) = Lits(φ(v)) ∪
⋃

i∈ ch(v)

La(i). (5.32)

Intuitively, La(v) is the set of all literals �reachable� from node v while traversing
the tree towards the leaves. On the other hand L(v) is the set of literals which
are reachable from all children of node v, but not from any siblings of v � as

18Due to interpolation-based splitting of theory lemmata, these sets may grow during the
solving process. Details will follow in Section 5.4.2.

5.4. Modular SMT Solving 75

otherwise they would be in L(pa(v)). The sets La(v) can be computed bottom-
up (that is, from the leaves to the root), while the sets L(v) can be computed
top-down (that is, from the root to the leaves).

The semantics of a tree-like modular SMT problem is the conjunction of
the formulas of all nodes. That is, by forming this conjunction, the tree-like
modular SMT problem is converted into an equivalent regular SMT problem.
More formally, we de�ne a function solve(v, α) that takes a node v and a (partial)
assignment α over the literals of v's ancestors such that calling solve on the root
node and with an empty assignment returns the overall solution of the tree-like
modular SMT problem.

De�nition 29 � Γ(v)
Let v be a node in a tree-like modular SMT problem. Then Γ(v) =

∧
i∈ desc(v) φ(i)

is the conjunction of the formulas associated with the descendants of v.

De�nition 30 � φ[α]
Let φ be a �rst-order formula. Let α be a (partial) assignment to the literals
occurring in φ. Then

φ[α] =


> if φ evaluates to true under α,

⊥ if φ evaluates to false under α,

? otherwise.

(5.33)

Note that the �?� case can occur because α is not necessarily a full assignment.

De�nition 31 � A(v, α, β)
Let v be a node in a tree-like modular SMT problem. Let α be a (partial) as-
signment of the literals in

⋃
i∈ anc(v) L(i). Let β be a full assignment of the

literals in L(v). In the following, γ represents a full assignment of the literals in⋃
i∈ desc(v) La(i). We de�ne

A(v, α, β) =


γ if there exists a γ such that α ∪ β ∪ γ � T and

Γ(v)[α ∪ β ∪ γ] = >,
⊥ if for all possible γ it holds that Γ(v)[α ∪ β ∪ γ] = ⊥ or

α ∪ β ∪ γ 2 T,
? otherwise.

De�nition 32 � solve(v, α)
Let v be a node in a tree-like modular SMT problem. Let α be a (partial) as-
signment of the literals in

⋃
i∈ anc(v) L(i). In the following, β represents a full

assignment of the literals in L(v), and γ represents a full assignment of the
literals in

⋃
i∈ desc(v) La(i). We de�ne

solve(v, α) =


β ∪A(v, α, β) if there exists a β such that A(v, α, β) 6= ⊥ and

A(v, α, β) 6= ? and φ(v)[α∪β∪A(v, α, β)] = >,
⊥ if for all possible β it holds that A(v, α, β) = ⊥

or φ(v)[α ∪ β ∪A(v, α, β)] = ⊥,
? otherwise.

76 Chapter 5. Interpolation-based Synthesis

If solve(r, ∅), where r is the root node of a tree-like modular SMT problem,
returns ⊥, the problem is unsatis�able. If it returns an assignment, the problem
is satis�able. Note that solve(r, ∅) cannot return �?�, because the root has no
ancestors and thus there are no unassigned literals left during the evaluation of
the formulas of the nodes.

Henceforth, we will focus on tree-like modular SMT problems for which the
formula in all internal nodes is (initially19) empty (corresponding to >). The
generalization to non-empty internal nodes is straightforward but not relevant
for the synthesis problems we consider.

From Synthesis Problems to Modular SMT Problems

We consider formulas of the form

ΦQ+

= ∀x .∃c .∀x′ .∃c′ .∀x′′ Φ, (5.34)

and wish to synthesize certi�cates for the existentially quanti�ed Boolean vari-
ables c, c′, To do so, we �rst expand the innermost existential quanti�er, as
shown in the proof of Theorem 4 in Section 4.1. We then proceed to expand
the next existential quanti�er (which is now the innermost existential quanti�er),
and continue this expansion, until all existential quanti�ers have been expanded.
The partitions of the resulting formula are then assigned to the leaves of a tree-
like modular SMT problem, as shown in the following example.

Example 19
Consider the following formula with two levels of existential quanti�ers:

ΦQ+

= ∀x .∃c1, c2 .∀x′ .∃c′1, c′2 .∀x′′ .Φ. (5.35)

When we expand the innermost existential quanti�er and rename the inner uni-
versal variables, we obtain

ΦQ+

= ∀x .∃c1, c2 .∀x′, x′′00, x′′01, x′′10, x′′11 .Φ00 ∨ Φ01 ∨ Φ10 ∨ Φ11. (5.36)

When we now expand the remaining existential quanti�er, we obtain

ΦQ+

= ∀x, x′00, x′′00,00, x′′00,01, x′′00,10, x′′00,11, (5.37)

x′01, x
′′
01,00, x

′′
01,01, x

′′
01,10, x

′′
01,11,

x′10, x
′′
10,00, x

′′
10,01, x

′′
10,10, x

′′
10,11,

x′11, x
′′
11,00, x

′′
11,01, x

′′
11,10, x

′′
11,11 . Φ00,00 ∨ Φ00,01 ∨ Φ00,10 ∨ Φ00,11 ∨

Φ01,00 ∨ Φ01,01 ∨ Φ01,10 ∨ Φ01,11 ∨
Φ10,00 ∨ Φ10,01 ∨ Φ10,10 ∨ Φ10,11 ∨
Φ11,00 ∨ Φ11,01 ∨ Φ11,10 ∨ Φ11,11.

19Due to con�ict-driven clause learning and the addition of theory lemmata that serve as
blocking clauses for theory-inconsistent (partial) assignments, the formula of a node may
change over time � while always preserving the overall semantics of the tree-like modular
SMT problem.

5.4. Modular SMT Solving 77

Figure 5.5: Tree-Like Modular SMT Problem. Each leaf of the tree is associated
with one formula Φi,j . Each node is associated with a set of literals.

We now assign the 16 partitions Φi,j we obtained to the leaves of a tree-like
modular SMT problem, as shown in Figure 5.5. Note that the number of par-
titions we obtain is independent of the number of quanti�er alternations. The
number of partitions solely depends on the number of the existentially quanti�ed
variables, regardless of how they are distributed over the quanti�er levels. The
number of quanti�er levels, however, determines the height of the tree of the
resulting modular SMT problem.

5.4.2 Solving Algorithm

We propose the following algorithm for solving tree-like modular SMT problems
and explain it based on an example where the tree consists of just one root
node with two leaves as its direct children. The generalization to larger trees is
straightforward.

Every node in the tree runs an instance of the DPLL(T) algorithm to �nd
(partial) assignments for the literals associated with the node that satisfy the
formula of the node (modulo the considered theory). Once a (partial) assign-
ment has been found, it is communicated to the child nodes. Each child node
now tries to extend the given assignment by �nding a (partial) assignment for
its own variables so that the conjunction of the parent assignment and its own
assignment satis�es the formula of the child node.20 There are three possible
outcomes for each child node. First, the child may �nd an extension to the given
assignment that satis�es its formula. In this case, the extended assignment is

20Note that this can be done in parallel for all of the children of a parent node.

78 Chapter 5. Interpolation-based Synthesis

communicated back to the parent node. Second, under the given partial assign-
ment from the parent node, the formula of the child may be unsatis�able (⊥).
This is communicated back to the parent. Third, a child may not be able to
determine whether or not a satisfying extension of the given assignment exists,
because the partial assignment obtained from the parent is not complete enough
yet. In this case �unknown� (�?�) is communicated back to the parent node.

Once a parent node has received the answers from all its children, there are
again three possible cases. If one or more children report unsatis�able, the parent
learns a blocking clause corresponding to its current partial assignment to avoid
trying the same (partial) assignment again in later steps. If no child reports
unsatis�able, but one or more children report �unknown�, the parent makes
another decision, extending its own partial assignment and queries all children
again, now with the extended partial assignment. In the remaining case, all
children have reported satis�able, along with their respective assignments. In
this case, the parent takes the conjunction of all assignments obtained by the
children and checks it for theory consistency.21 If the conjunction is theory
consistent (and we are at the root node), we have found a satisfying, theory-
consistent assignment for all partitions, and the overall result is satis�able.

The more interesting case is the one where the conjunction is not theory con-
sistent. In this case, we need to somehow block this conjunction of assignments
from occurring again. In a regular SMT setting, we would simply learn and add
a blocking clause. However, as this blocking clause would contain (local) literals
from more than one partition, there is no node to which we can add it while
preserving the modular structure of the SMT problem. Therefore, we proceed as
follows. Assume for ease of presentation that there are just two child nodes. If
the conjunction of their assignments is unsatis�able, we compute an interpolant
with respect to the two assignments. We then perform Tseitin's encoding on
the interpolant to obtain a single literal that represents it. The clauses that
result from Tseitin's encoding are added to the current node, as they can (due
to the de�nition of an interpolant) only contain literals that are in the set of
literals of this node. Next, we create a clause that will be added to the �rst child
node. We take all the literals of the assignment of the �rst child, negate them,
and add them to the clause. Furthermore, we add the literal that represents
the interpolant. The resulting clause basically states that the assignment of the
�rst child implies the interpolant, which is true by de�nition. Thus, adding this
clause does not restrict the formula to solve in any way. For the second child,
we do the same thing, except that we add the negation of the literal that repre-
sents the interpolant. The literal that represents the interpolant is added to the
set of literals of the parent node. Note that no matter what value the parent
node assigns to this literal, at least one of the children will compute a di�erent

21This is necessary because theory consistency is not a compositional property. That is,
even though the assignment of every child may be theory consistent, their conjunction may
still be theory inconsistent.

5.4. Modular SMT Solving 79

assignment in subsequent steps.

Lemma 5
The tree-like modular SMT problem that results from adding clauses as described
above is semantically equivalent to the original tree-like modular SMT problem.

Proof
This follows trivially from the de�nition of an interpolant and from the fact that
blocking clauses are theory lemmata. Q. E. D.

Example 20
Consider a node with two child nodes. Let the assignments A0 and A1 returned
from the children be

A0 := (x = u) ∧ (u = z) (5.38)

A1 := (x = v) ∧ (v 6= z) (5.39)

Obviously, the conjunction A0∧A1 is not TU -satis�able. One possible interpolant
between A0 and A1 is χ := (x = z). Since in this example the interpolant already
is a single literal, we do not need to perform Tseitin's encoding. Thus, we add
the following clause to the �rst child's formula

(x 6= u) ∨ (u 6= z) ∨ χ, (5.40)

and the following clause to the second's child formula

(x 6= v) ∨ (v = z) ∨ ¬χ. (5.41)

The new literal χ is added to the set of literals of the parent node.

The procedure terminates in the following two cases. If the root node obtained
assignments from all its children and the conjunction of these assignments is
theory consistent, then the procedure terminates with the overall result �satis�-
able�. The second case is that the root node has tried all possible assignments
of its literals, and none of them were satis�able with respect to all children. In
this case, the procedure terminates and returns unsatis�able.

Note that this modular SMT solving procedure is (almost) theory-agnostic.
The only prerequisites are that the theory (or fragment, respectively) is decid-
able, and that there is a procedure to compute interpolants for conjunctions of
theory literals that are again in the considered theory (fragment, respectively).

For example, T qf
U satis�es these prerequisites. It is decidable and quanti�er-free

interpolants can be computed [FGG+12]. On the other hand, for example the
quanti�er-free fragment of the theory of linear integer arithmetic does not satisfy
these properties. For some unsatis�able formulas in linear integer arithmetic, no
quanti�er-free interpolant exists.

Theorem 15
The modular SMT solving procedure outlined above terminates and produces cor-
rect results.

80 Chapter 5. Interpolation-based Synthesis

Proof
Termination. The number of new literals introduced due to interpolation of
child assignments is �nite for each node. This is due to the fact that for each the-
ory inconsistent conjunction of child assignments (of which there are only �nitely
many), interpolation and introduction of new literals is only performed once.
The clauses added after interpolation prevent the same inconsistent conjunction
of child assignments from occurring again. Thus, every node runs DPLL(T) on
a �nite number of literals and a �nite formula. DPLL(T) is known to terminate,
thus every node (including the root node) terminates.

Correctness. The procedure returns satis�able, if a theory-consistent assign-
ment that satis�es the formula at every (leaf) node has been found. Thus, the
conjunction of all these formulas actually was satis�able and the result is cor-
rect. The procedure returns unsatis�able, if the root node has tried all possible
assignments to its literals and none of them could be extended to assignments
satisfying the formulas at all (leaf) nodes. Thus, the conjunction of this formulas
actually is not satis�able and the result is correct. Q. E. D.

5.4.3 Proof Generation

When solving a formula that corresponds to a synthesis problem � such as the
expanded version of Equation 5.34 � all non-leaf nodes of the modular SMT
solver are initialized with empty formulas. At the end of the procedure � once
unsatis�ability has been established � the non-leaf nodes will contain clauses
learned from con�icts and theory lemmata. In particular, the root node will
contain a set of clauses whose conjunction is unsatis�able and a refutation proof
can be computed in the standard way. This corresponds to the green part of
the proof in Figure 5.6. Note that, by construction, the clauses in the root node
only use literals that are in the set of literals associated with the root node. In
terms of our synthesis problem, that would be global literals, corresponding to
variables in the outermost universal quanti�er. Thus, also the refutation proof
contains only such literals. Every clause in the root node is either a theory
lemma, or a logical consequence of one of its children; namely from the one that
reported unsatis�able at the time the clause was learned. From the con�ict that
lead the child to reporting unsatis�able, we can construct a proof for the learned
clause. This corresponds to the red and the blue part in Figure 5.6. This proof
only uses literals that are associated with the respective child node, or literals
from any node on a path to the root. We can continue to construct proofs for
learned clauses in this way, until we reach the leaves and thus clauses that are
part of our original formula to solve. Concerning theory lemmata, there are two
cases. Theory lemmata that were learned directly at a node only contain literals
from this node and nodes on the path to the root. Thus, they cause no problems
with respect to obtaining a colorable, local-�rst proof. Theory lemmata that
were learned while checking the conjunction of several child nodes are not used
directly, but split into colorable theory lemmata using interpolation, as outlined
in the previous section. Thus, they also cause no problems. Thus, we can obtain

5.4. Modular SMT Solving 81

Figure 5.6: Modular Proof. Each part consists only of resolution steps over the
variables from the label of the respective part or a label of any part that
is on a path to the root.

a proof with a structure as shown in Figure 5.6. This proof is colorable and local-
�rst by construction. It even has a generalized local-�rst property, that is, it is
local-�rst with respect to the expansion of each level of existential quanti�cation.

Interpolation

We can use one single proof obtained from the procedure outlined above to com-
pute certi�cates for all existentially quanti�ed variables of all quanti�er levels,
using n-interpolation. When computing certi�cates for the variables of the in-
nermost existential quanti�er, we proceed as outlined in Section 5.2. We remove
all the local derivations (black parts in Figure 5.6) from the proof and compute
an n-interpolant. To compute certi�cates for the variables of the next existen-
tial quanti�er, we can remove one more level of (now) local derivations (black,
red, and blue parts in Figure 5.6) and compute another n-interpolant on this
truncated proof. In other words the di�erence when computing n-interpolants
for di�erent levels of existential quanti�cation is just how much of the proof can
be regarded as local.

6
Other Synthesis Approaches

The previous chapter presented interpolation-based synthesis approaches. In
this chapter, we will discuss some alternatives that are based on di�erent de-
cision procedures. These have not been investigated to the same level of de-
tail as interpolation-based synthesis. We just want to sketch the basic ideas of
how to base the synthesis problem on di�erent decision procedures. A more
detailed analysis and comparison to interpolation-based synthesis remains for
future work.

First, we brie�y recapitulate the BDD-based cofactor approach which we
introduced in [HB11]. Next, we discuss two alternatives to reduce our synthesis
problem to the QSAT problem. The �rst one is inspired by eager SMT encoding
techniques, the second one mimics lazy encoding. The last alternative approach
that we will brie�y discuss is a template-instantiating approach.

83

84 Chapter 6. Other Synthesis Approaches

6.1 Binary Decision Diagrams

Declaration of Sources

This section is based on and reuses material from the following source,
previously published by the author:

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis
for pipelined circuits using uninterpreted functions. In Singh et al.
[SJKB11], pages 31�42.

References to this source are not always made explicit.

The BDD-based approach � originally suggested in [HB11] � has been de-
scribed in Chapter 4. We brie�y repeat the main steps and state some expe-
riences. As we have shown in Chapter 4, a formula ΦQ in SQ can be reduced
to a (quanti�ed) propositional formula ΦQprop . In [HB11], we suggested to use

BDDs to extract certi�cates from ΦQprop . This is done by creating a BDD for the

quanti�er-free su�x of ΦQprop , using it to perform the inner universal quanti�ca-

tion of ΦQprop , and using a cofactor-based approach to compute certi�cates.
Our experience (see [HB11]) shows, however, that BDDs seem to be a sub-

optimal data structure for this kind of problem. The BDD for transitivity
constraints can become exponentially large, irrespective of the variable order-
ing [BV00]. In our experiments, most of the computation time was indeed spent
on computing a BDD for the transitivity constraints. Without dynamic reorder-
ing, we run out of memory quickly; with dynamic reordering enabled, most of
the computation time is spent for reordering. This is illustrated by the following
experimental results: In a �rst experiment, with dynamic reordering enabled, it
took approximately 14 hours to compute the BDD for the very simply toy exam-
ple that was used for illustration in Chapter 3. We stored the variable order that
had resulted from dynamic reordering at this point and used it as a �xed order
for subsequent experiments, thereby reducing the computation time to roughly
10 minutes. It should also be mentioned that this rather simple example resulted
in 151 propositional variables, after the reduction steps.

6.2 Eager Encoding to QSAT

The idea behind eager encoding to QSAT has already been mentioned in the
proof of Theorem 8 (see page 55). For a formula ΦQ = ∀x .∃c .∀x′ .Φ, we per-
form the reductions described in Section 4.2 on Φ. As a result, we obtain a QBF
ΦQ
prop = ∀bx .∃c .∀bx ′ .Φprop. We can pass this QBF to a certi�cate-producing

QBF solver. The certi�cates returned are a solution for our synthesis prob-

6.3. Lazy Encoding to QSAT 85

lem. Note that with respect to QBF solvers, there are two types of certi�cates:
syntactic certi�cates (Q-resolution proofs or Q-consensus proofs), and semantic
certi�cates (Skolem functions or Herbrand functions) [BJ12]. We are interested
in the semantic certi�cates, that is, Skolem functions for the variables in c.

Preliminary experiments with this approach, however, suggest that for syn-
thesis problems of reasonable size, the number of constraints introduced by the
reductions can be very large. In particular, the number of transitivity constraints
tends to become so large, that we ran out of (several hundred GB of) disc space
while trying to write the input �le for a QBF solver. For smaller instances, where
the input �le for the QBF solver could be generated, the preliminary experiments
suggest that the resulting QSAT instances are rather hard to solve for current
certi�cate-producing QBF solvers. As we mentioned in [HGK+13], we tried to
run DepQBF [LB10] on an example that the interpolation-based synthesis ap-
proach can synthesize within a few seconds, and it exhausted all 192 GB of main
memory within approximately one hour and did not produce a result. After this
rather discouraging �rst results, this approach was not investigated further.

6.3 Lazy Encoding to QSAT

As we have seen in the previous section, eager encoding to QSAT can pro-
duce very large QSAT instances. One obvious way of trying to cope with
this problem is to try a more lazy encoding approach instead. Consider again
a formula ΦQ = ∀x .∃c .∀x′ .Φ. Now instead of eagerly computing all con-
straints to obtain an equivalent QSAT instance, we simply consider the propo-
sitional skeleton skel(Φ) (see De�nition 3, page 20) and pass the QSAT instance
ΦQ
prop = ∀bx .∃c .∀bx ′ . skel(Φ) to a QBF solver. If this instance happens to be

satis�able, we can compute certi�cates and are done. Note that such a certi�cate
would be correct for all possible truth values of equalities between variables in
x � even those that do not correspond to any actual values of x due to, for
example, transitivity violations. Thus, such a certi�cate would clearly be a valid
solution for our synthesis problem. It is, however, much more likely that the
resulting QSAT instance is unsatis�able. In this case, we can obtain �certi�-
cates�22 for the universally quanti�ed literals � that is, propositional constants
for the variables in bx and a function c 7→ bx ′ for each variable in bx ′ � that
demonstrate this unsatis�ability. Assuming that the original formula ΦQ was
valid, these certi�cates must be inconsistent with the theory. In lazy encoding
for SMT solving (see Section 2.2.2), inconsistent assignments are removed from
consideration through blocking clauses. In an analogous way, we now want to
update our QSAT instance with constraints that prevent the solver from return-
ing the same theory-inconsistent certi�cate again. We will explain one possible
way to do this in the next section. Just as in lazy encoding for SMT solving, we
repeat this process until enough constraints have been added so that the QSAT

22Our de�nition of certi�cates (De�nition 16, page 28) considers only existentially quan-
ti�ed variables. However, a generalization to universally quanti�ed variables (in case of an
unsatis�able QSAT instance) is straightforward.

86 Chapter 6. Other Synthesis Approaches

instance becomes satis�able and we can compute a certi�cate for the signals to
synthesize.

Finding Constraints from an Unsatis�able QSAT Instance

There are two di�erent cases to consider. Theory inconsistencies can arise just
from literals of the outer universal quanti�er, or they can also include literals
from the inner universal quanti�er. Let us �rst look at the easier case, where the
inconsistency comes solely from literals of the outer universal quanti�er. Since
this is in fact the outermost quanti�er, certi�cates for literals under this quanti-
�er are Boolean constants. Thus, we can use the congruence closure algorithm to
check whether or not the assignment of constants to literals is theory consistent.
If the assignment is theory consistent, the inconsistency includes literals of the
inner universal quanti�er. We will deal with this second case in a moment. If,
however, the assignment is inconsistent with the theory, we can compute con-
straints to block this assignment in future iterations. Let A be an unsatis�able
core of the inconsistent assignment. Then we re�ne the formula of our QSAT
instance as follows:

¬A→ skel(Φ). (6.1)

This makes it easier to satisfy the QSAT instance, because any assignment that
is a superset of A now trivially satis�es the formula. We iterate this constraint
learning procedure until either the QSAT instance becomes satis�able, or the
certi�cate we obtain does not have an inconsistent assignment for the literals
of the outermost universal quanti�er. Note that we can potentially learn more
than one constraint per iteration, if the inconsistent assignment contains more
than one unsatis�able core.

If there are no inconsistencies within the literals of the outer universal quan-
ti�er, yet the QSAT instance is still unsatis�able, we need to consider the literals
of the inner universal quanti�er. The certi�cates for these literals are, however,
not constants but functions of the existentially quanti�ed variables in c. What
we need now is an (e�cient) way to prevent the solver from returning the same
functions again in subsequent calls. One possible approach is as follows: We
iterate over all (�nitely many) possible values for c and for each set of values,
we compute the values of the literals of the inner universal quanti�er. For at
least one value of c, the resulting values of the literals of the universal quanti�ers
must be theory inconsistent. Once we have identi�ed such an inconsistency, we
can proceed as above and update the formula of the QSAT instance. This is
done in the same way as in the �rst case (see Equation 6.1). The only di�erence
is that the assignment A is now over variables from bx ∪ c ∪ bx ′ .

Eventually, we will have learned enough constraints to make the QSAT in-
stance satis�able and obtain the certi�cates for the signals to synthesize. How-
ever, one potential drawback of this approach is that it might need a very large
number of iterations before the QSAT instance becomes satis�able. Moreover,
it is not clear how long each run of the QBF solver will take. We expect that
for non-trivial benchmarks the number of iterations is rather high, and also

6.4. Template Instantiating 87

the solving time per iteration will increase steadily. While the �rst few solver
calls (which return �unsatis�able�) might be rather fast, it should take more and
more time, as more constraints are added. At this point, however, this is just
an intuition and not backed by a thorough experimental investigation.

6.4 Template Instantiating

The idea of template instantiating stems from the fact that for many synthesis
problems, especially for pipeline controllers, very small solutions exist. Thus,
trying to �guess� them and check if the guess was correct might be feasible.
In its simplest form, this approach can be based on an observation that we
mentioned in Section 4.2.5 and formalize in the following lemma.

Lemma 6
Given a formula ΦQ = ∀x .∃c .∀x′ .Φ in SQ, if there exists a certi�cate for
the variables in c, there exists one that can be constructed solely by Boolean
combinations of propositional variables occurring in x, uninterpreted predicate
instances which occur in Φ and do not contain variables from x′, and equalities
over terms which occur in Φ and do not contain variables from x′.

Proof
In Section 4.2.5 we have shown a method to transform ΦQ into an equivalent
(quanti�ed) propositional formula ΦQ

prop , from which we can extract such a cer-

ti�cate. This method can be applied to all formulas ΦQ for which a solution
exists. Q. E. D.

Based on this lemma, we can �nd a solution by searching the space of all possible
functions over these literals. There are many possible ways to perform this
search. In the following, we describe a simple approach that starts with small
functions. We �rst construct the set of literals, as outlined in Lemma 6. Next,
we iterate over all literals in this set and check whether the formula consisting
of just this one literal (or its negation, respectively) is a valid solution to our
synthesis problem. The check can be done by substituting the alleged solution
for the corresponding c in Φ, expand over all other variables in c\ c, negate, and
check for satis�ability. If the solution is not correct, we try the next literal. If
no solution consisting of just one literal is correct, we try Boolean combinations
of two literals, then three literals, etc.

Alternatively, we can also enlarge the set of literals by constructing equali-
ties over new terms (which are obtained by applying an uninterpreted function
to an existing term), or adding new uninterpreted predicate instances (whose
parameters are existing terms). Introducing new literals can facilitate �nding
short solutions, as illustrated by the following example.

Example 21
Suppose one possible solution for one c ∈ c in a synthesis problem is P (a).
Suppose further that the predicate instance P (a) does not occur in the original
formula, but the instance P (x) does. Moreover, suppose that also the terms a

88 Chapter 6. Other Synthesis Approaches

and x appear in the original formula. We know that there exists a solution that
is expressible solely by the literals listed in Lemma 6. For example, suppose that
a = x ∧ P (x) is also a correct solution.23 Using only literals listed in Lemma 6,
the solution is (at least) two literals long. By introducing the (new) literal P (a),
the solution can be shortened to just one single literal.24

An obvious disadvantage of the template instantiation method is that a large
number of SMT solver calls is necessary to check potential solutions. On the
other hand, most of the checks might be rather fast. Experience suggests that
�nding a satisfying assignment is usually much faster than proving unsatis�abil-
ity. Moreover, an incremental SMT solver could be used to potentially further
decrease the time required to perform multiple subsequent checks.

The simplest form of template instantiation that we just described just uses
the satis�able/unsatis�able answer from the SMT solver. The solver can, how-
ever, provide more than that. In case the answer is �satis�able� � that is, the
guessed solution is not correct � the solver can provide a concrete counterex-
ample. That is, an assignment to the variables in the formula such that the
current guess computes the opposite of what it should compute. We can use
such counterexamples to guide the re�nement of the guesses. Such a guided
re�nement is also called learning [Ang87]. In our setting, we can use learning
techniques similar to the ones described in [EKH12].

23Note that a = x ∧ P (x) implies P (a) (in TU), but not vice versa.
24Note that we disregard the �cost� associated with creating a new predicate instance P (a). If

P has a complex combinational implementation, the solution a = x∧P (x) might be preferable,
if P (x) is already available in the circuit.

7
Implementation and Experimental

Results

We have implemented the interpolation-based synthesis approach (Sections 5.1
and 5.2) in a prototype tool called Suraq. It is available as open source (under
LGPL v3); all details can be found on the Suraq website.25 Preliminary tests
with eager encoding to QSAT (see Section 6.2) were also done with this proto-
type. In this chapter, we will �rst describe Suraq and its development history
in more detail. To some extent this will repeat what we described in previous
chapters (mostly Chapter 5), but from a more procedural and implementation-
speci�c point of view. We will also include some of the �lessons learned� that
are imperative for turning the theoretical concept into an e�cient synthesis tool.
After that we will describe the benchmarks that we used for the experimental
evaluation. Finally, in the last section of this chapter, we are going to present
the results of these experiments.

7.1 Suraq � A Prototype Implementation

Suraq is short for Synthesizer using Uninterpreted Functions, Arrays and
Equality.26 It is implemented in Java and consists of over 130 classes (dis-
tributed in roughly 13 sub-packages) and more then 35, 000 lines of code. The
decision to implement the tool in Java is mostly based on our familiarity with

25http://www.iaik.tugraz.at/content/research/design_verification/suraq/
26Any similarities between the name Suraq and Surak, the �legendary Vulcan philoso-

pher, scientist, and logician� (see http://en.memory-alpha.org/wiki/Surak) are of course
purely coincidental. ;-)

89

http://www.iaik.tugraz.at/content/research/design_verification/suraq/
http://en.memory-alpha.org/wiki/Surak

90 Chapter 7. Implementation and Experimental Results

the language and the Eclipse IDE. Moreover, we thought that a strongly typed
language would ease handling of complex formulas of di�erent (derived) types.
We also considered automated garbage collection to be an advantage, mostly
taking away the burden of debugging memory leaks. As the original plan was to
outsource most of the computational complexity to an external SMT solver any-
way, the performance penalties of using the Java virtual machine were expected
to be insigni�cant.

In the remainder of this section, we will explain all the steps the tool performs
during a normal run. Along the way, we will give some information on the
�history� of the development process and the rationales for the most important
design decisions.

7.1.1 Input Format

The �rst step in a run of Suraq is to read the speci�cation ΦQ from a �le.
The input format is based on the SMTLIB (version 2) format [BST10]. In short,
SMTLIB is used to state a formula Φ in S (see De�nition 20, page 34). The ∀-∃-∀-
quanti�er pre�x that we need to form a formula ΦQ in our speci�cation language
SQ (De�nition 21, page 35) is given implicitly. Annotations and variable types
determine which of the variables in Φ is bound by which of the quanti�ers.

In more detail, a Suraq input �le is composed of S-expressions and possi-
bly comments, following the basic syntax of SMTLIB. The �rst expression in a
Suraq input �le must be (set-logic Suraq). This implicitly declares an unin-
terpreted sort Value and a Boolean sort Control. Following the set-logic com-
mand, one can use the SMTLIB command declare-fun to declare the variables,
uninterpreted functions, and uninterpreted predicates occurring in Φ. Variables
must be of sort Value, (Array Value Value) (that is, arrays mapping from
indices of sort Value to elements of sort Value), Bool, or Control. Variables
of type Control represent the (Boolean) control signals for which an implemen-
tation should be synthesized. That is, these variables are (implicitly) bound
by the existential quanti�er in ΦQ. All variable declarations (except those of
sort Control) can also be annotated with the attribute :no_dependence. This
means that the synthesized control signals may not depend on the value of such
a variable. In other words, variables that have the :no_dependence attribute
are bound by the inner universal quanti�er of ΦQ; all other variables are bound
by the outer universal quanti�er. In addition to declaring variables, one can also
use the SMTLIB command define-fun to de�ne macros that are abbreviations
for an expression. These follow the syntactic rules of SMTLIB with the addi-
tional constraint that the sort Control may not be used as a parameter type.27

Finally, the assert command can be used to state the actual formula Φ, using
the variables, functions, predicates, and macros de�ned before. To state the
formula, the standard SMTLIB operators not, and, or, xor, => (implication),
ite (if-then-else), = (pairwise equality), and distinct (pairwise inequality) can

27Instead, one should use the type Bool. Variables of type Control can be used in any place
where a Bool expression is allowed.

7.1. Suraq � A Prototype Implementation 91

be used. In addition to that, the standard array-read function select and the
standard array-write function store can be used. Within the formula Φ, vari-
ables of sort Control can be used in any place where a term of sort Bool would
be allowed. If more than one assert command is given, Φ is the conjunction
of the formulas of the individual assert commands. Other SMTLIB commands
are not supported by Suraq.

Suraq parses the input �les in two steps. First, it just parses the tree of S-
expressions, without interpreting them. In a second step, this tree is recursively
processed and interpreted. The result of this parsing phase is a list of variables
(per sort), a list of variables that have the :no_dependence attribute, and the
actual formula Φ.

To store formulas internally, Suraq uses its formula package. This package
provides one class for each type of formula: And-formula, Or-formula, Not-
formula, etc. All these classes implement the Formula interface, which provides
all the methods that can be executed on any arbitrary formula. This represen-
tation basically corresponds to the syntax tree of the original formula. Objects
of type Formula are immutable. This provides one important advantage. If a
formula contains two identical subformulas, they can be represented by the same
object (and not just two equal objects). This e�ectively turns the syntax tree
into a DAG. We achieved this property by making all the class constructors pri-
vate, and just provide static create methods with the same signature(s). These
methods �rst check if an object equal to the requested ones already exists, and if
so return the existing object. Weak references to all existing objects are stored
in a HashMap, which allow for fast and e�cient look-ups. Weak references are
necessary to allow for the garbage collection of objects that are no longer in real
use.

7.1.2 Formula Processing

After parsing the input �le and creating the internal representation of the main
formula, Suraq performs a series of transformations to the formula. First, all
instances of define-fun macros are ��attened�. That is, any call to a macro is
replaced with the actual body of the macro that it abbreviates. The result is a
formula that does not contain any instances of define-fun macros any more.
This step is necessary because macros could have array variables as parameters.
Array variables will be replaced by uninterpreted function instances in one of
the next steps. Unfortunately, uninterpreted functions cannot be parameters
of define-fun macros in SMTLIB. As a secondary reason, several of the later
steps are a little easier to perform and check, if the formula does not contain
macros.

Second, the formula is reduced to T
qf
U using the procedure suggested by

Bradley et al. [BM07], which we outlined in Section 2.2.1. Suraq also removes
all (non-Boolean) ite expressions by introducing auxiliary variables.28 Next, the
formula is expanded (with respect to the existentially quanti�ed variables) and

28This can be seen as being part of Tseitin's encoding to obtain a CNF.

92 Chapter 7. Implementation and Experimental Results

negated (see De�nition 23, page 45). As derivations that are done purely within
one partition are irrelevant for interpolation, we can perform simpli�cation (for
example by Boolean constant propagation) on each partition formula. Since the
expansion step introduced Boolean constants into the formula, simpli�cation
at this stage makes sense even if the original formula was already simpli�ed
maximally. As a last formula processing step, Suraq performs Tseitin's encoding
of each partition formula, to obtain a CNF. The conjunction of all partition CNFs
can then be passed to an SMT solver.

7.1.3 SMT Solver Interaction

Suraq's interaction with SMT solvers works as follows. The input for the solver
is written to a �le (in SMTLIB format). The solver is then started as an external
process, whose output is also written to a �le. Suraq waits for the external
process to terminate and the reads the solver's output from the respective �le.
Suraq currently uses two SMT solvers: Z3 [dMB08] and veriT [BdODF09].
Z3 is used to simplify the partitions formulas before Tseitin's encoding, as it
supports a simplify command that does just that. Originally, the plan was
to use Z3 also as the main underlying SMT solver. However, it turns out that
the refutation proofs produced by Z3 do not conform to the format described
in De�nition 15 (Section 2.2.4), and it is not trivial to transform them into this
format either. veriT, on the other hand, produces proofs (almost) conforming
to De�nition 15. Thus, Suraq relies on veriT for refutation proof production.

7.1.4 Proof Processing

After veriT has produced a refutation proof, Suraq parses and processes this
proof. Processing involves the following steps. In veriT's proof format, sev-
eral resolution steps can be combined into one. During parsing, Suraq splits
these into binary resolutions. Furthermore, Suraq discards all subproofs of
theory lemmata, as outlined in Section 5.3.1. This way, no non-colorable lit-
erals will occur in the remaining proof. Suraq is also capable of checking the
proofs produced by veriT,29 although this is deactivated by default. To check
theory lemmata, Suraq has its own implementation of the congruence closure
algorithm.

In the next step, Suraq splits all non-colorable theory lemmata into colorable
ones, as outlined in Section 5.3.1. Since there is no dependence between di�erent
theory lemmata, this can be done in parallel. Suraq supports a command line
option to specify how many threads should be used to split theory lemmata.
There are only very few things that need to be synchronized between these
threads. Basically, synchronization is only needed for creating new formula
objects (to keep them unique), �nding fresh IDs for new proof nodes, and adding
proof nodes to the proof. The computation time consumption of these operations
is negligible, compared to the actual splitting operations. Thus, a very high

29It should be noted that this feature was added mainly to �nd bugs in Suraq. No errors
in veriT's proofs were discovered during this research.

7.1. Suraq � A Prototype Implementation 93

degree of parallelism and a correspondingly high speed-up can be achieved. This
has been con�rmed experimentally.

Another noteworthy fact is that, in many cases, Suraq found much shorter
(and thus stronger) theory lemmata during splitting. Shorter theory lemmata
make some resolution steps unnecessary and thus lead to shorter proofs. Since
rewriting the proofs internally did take an extensive amount of time � due to
some limitations in Suraq's internal data structures � we took the following
work-around approach. After splitting all theory lemmata, the resulting leaves
of the proof (theory lemmata and clauses from the actual formula) were given
to a propositional SAT solver. A SAT solver was used instead of an SMT solver,
because an SMT solver might potentially have introduced new non-colorable
theory lemmata. A SAT solver, however, does not introduce new leaves into
the proof. The SAT solver is, however, still able to produce a refutation proof,
because the set of theory lemmata that is added to the propositional skeleton
of the original formula obviously su�ces to proof unsatis�ability, as we already
have a refutation proof that uses only these theory lemmata. This can be seen
as a special case of eager encoding, where not an exhaustive but a su�cient set
of constraints is added to the propositional skeleton. For simplicity, the SAT
solver used by Suraq is also veriT, just in propositional mode. It turns out
that the proof produced by this second run is up to 40�50% smaller than the
�rst one.

The last proof-processing step is to reorder the resolution steps such that the
proof becomes local-�rst. This is done by repeated, recursive application of the
rewrite rules presented in Section 5.3.2. After this last step, the proof is ready
for n-interpolation.

7.1.5 Interpolation

Suraq is capable of performing n-interpolation as well as �standard� interpo-
lation for iterative synthesis (see Section 5.1). In case of n-interpolation, the
�rst step is to discard all parts of the proof that are derived just from a single
partition, as the n-partial interpolant for all these nodes would be the same any-
way. After that, a recursive procedure annotates every node of the proof with
its corresponding n-partial interpolant.

For iterative synthesis, we do not need to split the theory lemmata, nor do we
need to reorder resolution steps. After parsing the proof (which includes splitting
multi-resolution steps into binary resolutions), we can immediately compute an
interpolant by recursively annotating proof nodes with partial interpolants. To
�nd partial interpolants for (potentially non-colorable) theory lemmata, we have

implemented the T
qf
U -interpolation procedure by Fuchs et al. [FGG+12].

Once we have computed the n-interpolant (or all standard interpolants iter-
atively), the following �nal steps have to be performed. First, we simplify the
interpolant(s), using the logic synthesis tool abc.30 This is particularly impor-
tant for iterative interpolation, in order to avoid creating an unnecessarily large

30http://www.eecs.berkeley.edu/~alanmi/abc/

 http://www.eecs.berkeley.edu/~alanmi/abc/

94 Chapter 7. Implementation and Experimental Results

SMT solver input �le in the next iteration. Next, all occurrences of Tseitin vari-
ables in the interpolant(s) are replaced with the formulas they represent. Finally,
all instances of uninterpreted functions that actually represent array variables
are converted back into proper array reads. This is necessary to ensure that the
�nal result is syntactically compatible to the original speci�cation.

7.1.6 Output Format and Checking Results

The output format of Suraq is also based on SMTLIB. Basically, the output
�le of Suraq is a copy of the input �le, with some important changes. First,
the formula that was asserted in the input �le will be asserted in negated form
in the output �le. Second, for each control signal c_i that was synthesized, a
statement of the following form is added:

(assert (= c_i <synthesis result>)) (7.1)

Furthermore, the initial command (set-logic Suraq) is replaced with the stan-
dard SMTLIB command (set-logic Arrays), an explicit declaration of the
uninterpreted sort Value is added, all occurrences of sort Control are changed
to sort Bool, and all occurrences of the attribute :no_dependence are removed.
Finally, a (check-sat) command is added at the very end. This yields a �le
that can be given to any SMTLIB-compatible SMT solver that can decide T

p
A.

The solver should report �unsatis�able�, i� the synthesis result is correct. Suraq
even has a command-line argument --check_result that instructs it to directly
call Z3 on its output �le to verify correctness of the synthesis result.

7.1.7 Lessons Learned

This section will brie�y summarize the most important lessons learned during
the implementation of Suraq. Without the optimizations mentioned here, the
tool would not have been able to deal with benchmarks beyond toy size.

Reusing Immutable Formula Objects

Originally, objects of classes from the formula package were regular, mutable,
non-unique objects. For larger formulas, this turned out to be a huge waste
of memory. In particular, when parsing (large) proofs, the same literals occur
repeatedly, in the conclusions of di�erent proof nodes. Creating a new object
every time was an enormous waste of time (for object allocation and initializa-
tion) and memory. Thus � as mentioned in Section 7.1.1 � we switched to
immutable formula objects that are reused.

DAG-Sharing

It turned out that the proofs obtained from veriT have a very high degree of
DAG-sharing. That is, the size of the tree resulting from unrolling the DAG is
signi�cantly larger than the DAG itself. To give an example, for a proof with

7.1. Suraq � A Prototype Implementation 95

approximately 1.8 million nodes, unrolling the DAG resulted in more than 1018

nodes.31

Since interpolants are computed by annotating proof nodes with partial in-
terpolants, the syntactic structure of an interpolant is the same as the structure
of the proof it was computed from. That means that proofs with a high de-
gree of DAG-sharing lead to interpolants with an equally high degree of sharing.
Thus, without the formula-reusing mechanism outlined above, it would have
been impossible to even compute interpolants.

As a consequence of this high degree of sharing and the extremely large sizes
of unrolled DAGs, all recursive methods on proof and formulas � even the most
simple ones � need to be implemented �DAG-aware�. That is, intermediate
results for each node should be stored, and when a node is visited again at a later
time, the intermediate result should be reused instead of recursively descending
to the nodes children again.

Recursive Methods With Set Results

Many of the recursive methods of proofs and formulas have sets as results. For
example, there are methods to compute the set of all variables occurring in a
given formula. A naive way of implementing such methods would be as follows.
In each step, a new Set object is allocated. All elements of the sets obtained
from recursive calls are added to this new set. The set is then returned as a
result. The obvious disadvantage of this method is that for each step, a new
object has to be allocated and elements need to be copied. To alleviate the
problem, the signature of the method can be changed so that a reference to a
Set object can be passed as a parameter. Now, instead of allocating a new Set

object, elements can, in each step, simply be added to the given set.

Memory Footprint of HashSets

The HashSet class is a widely used implementation of Java's Set interface. One
of its major drawbacks is that, in its default con�guration, it wastes quite some
memory. Whenever the size of the set becomes larger than 0.75 times the current
size of the hash table, the size of the hash table is doubled. Thus, for example,
a set with 7 elements actually uses memory for 16 elements. This can become
a problem when the number of such sets gets large. For example, if every node
in a (large) proof stores one such set (even when it is small), the total amount
of memory wasted can become an issue. To alleviate the problem, di�erent
Set implementations, such as for example TreeSet can be used. For large sets,
however, HashSet is still good alternative, because of the fast access to elements.

31Note that 263 ≈ 1019. Thus, computing the tree-size of proofs had to be implemented
using the BigInteger class, as even a long would over�ow for some of our examples.

96 Chapter 7. Implementation and Experimental Results

Assert Statements

Development and debugging of Suraqmade extensive use of assert statements.
An assert statement takes a Boolean condition which represents some invari-
ant/assumption that is supposed to hold at a particular place in the program. If
this place is ever reached with the condition being false, an exception is thrown
and the program terminates. If such assertions are used extensively, they con-
tribute to an early-fail characteristic of the program. That is, the program fails
much earlier than it would without the assertion. Thus, the point of failure is
usually much closer to the cause of the failure. This is particularly important
when dealing with very large data structures. This is illustrated by the following
example. Before we extensively used assert statements, we encountered a bug
where an object representing one node in a large proof was in an inconsistent
state. Using a debugger, we discovered, however, that at creation time the ob-
ject was constructed in a consistent state. It was not trivial to �nd out which
of several recursive operations on the large proof left the object in question in
an inconsistent state. By adding assertions about the consistency of the object's
state to each method, localizing the problem became signi�cantly easier.

Another big advantage of assert statements is that they can be activated
or deactivated through a command-line option of the Java virtual machine.
Thus, once enough con�dence in the correctness of the implementation has been
achieved, they can be deactivated and no longer impose a performance overhead.

Java Programs with Large Heaps

During the development of Suraq we noticed that many Java-related tools (de-
bugger, pro�ler, memory analyzer, libraries for serialization/deserialization of
objects, etc.) encounter various performance problems when confronted with a
program that requires a large amount of heap space. This is one issue that, in
hindsight, is an argument against the decision to use Java for this project. On the
other hand, it is unclear, if the corresponding tools for a di�erent programming
language would have worked any better.

7.2. Benchmarks 97

7.2 Benchmarks

Declaration of Sources

This section is based on and reuses material from the following source,
previously published by the author:

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer,
Jie-Hong Roland Jiang, and Roderick Bloem. Synthesizing mul-
tiple boolean functions using interpolation on a single proof. In
Jobstmann and Ray [JR13], pages 77�84.

References to this source are not always made explicit. In particular,
Sections 7.2.1 and 7.2.2 are heavily based on the paper cited above.
Section 7.2.3, however, contains material that has not been published
before.

In this section, we will present the benchmarks that are the basis for our ex-
perimental evaluation in Section 7.3. In addition to the three benchmark fam-
ilies presented here, we also used the simple pipeline example that we used to
illustrate our modeling approach (see Example 2) in Section 3.2. All the bench-
marks are part of the Suraq distribution.32 Some important characteristics of
the benchmarks are summarized in Table 7.1.

7.2.1 Scalable, Illustrative Example

The �rst family of benchmarks we want to discuss was originally presented
in [HGK+13]. It is a very simple, yet nicely scalable circuit, whose smallest
version is shown in Figure 7.1. It has two input bit-vectors i1 and i2, carry-
ing non-zero signed integers, and also two output bit-vectors o1 and o2 carrying
signed integers. The block neg �ips the sign of its input. The outputs are con-
trolled by two bits, c1 and c2. These are the signals we wish to synthesize, based
on the following speci�cation: The signs of the two outputs must be di�erent.
Formally, this speci�cation can be stated in SQ as follows

∀i1, i2 .∃c1, c2 .∀o1, o2 .((c1 ∧ o1 = i1 ∨ ¬c1 ∧ o1 = neg(i1))∧ (7.2)

(c2 ∧ o2 = i2 ∨ ¬c2 ∧ o2 = neg(i2)))→ (pos(o1)⊕ pos(o2)),

where the predicate pos returns > i� its parameter is positive. To compute
certi�cates for c1 and c2, we must add the axiom

(pos(i1)⊕ pos(neg(i1))) ∧ (pos(i2)⊕ pos(neg(i2))). (7.3)

32http://www.iaik.tugraz.at/content/research/design_verification/suraq/

http://www.iaik.tugraz.at/content/research/design_verification/suraq/

98 Chapter 7. Implementation and Experimental Results

Table 7.1: Benchmark Characteristics. The �rst column lists the name of the
benchmark. The second column states the number of control signals to be
synthesized. The third column gives the number of variables on which the
synthesized control signals may depend. Conversely, the fourth column
gives the number of auxiliary variables, on which the control signals may
not depend. Note that the numbers in columns 3 and 4 refer to the num-
ber of all variables (propositional, domain, and array variables). The �fth
column gives the number of uninterpreted functions, the sixth column the
number of uninterpreted predicates that occur in the benchmark. Note
that these refer to the number of di�erent functions/predicates declared,
and not to the number of function/predicate instances within the formula.
The seventh column gives the number of array variables (including auxil-
iary array variables, that is, variables on which the control signals may not

depend). The eighth and ninth column give the size of the main formula,
that is, the number of nodes in the syntax tree, after instantiation of all
define-fun macros. In column 8, the size is computed based on a DAG
with sharing, the data in column 9 is based on unrolling the DAG into a
tree. All data, except for columns 8 and 9, is based on the original input
�le.

1 2 3 4 5 6 7 8 9

Name |c| |x|
∣∣x′∣∣ |F| |P| |R| Size

(DAG)
Size
(tree)

simple_pipeline 1 5 5 1 0 5 8 8
illus_02 2 2 2 1 1 0 21 21
illus_03 3 3 3 1 1 0 29 29
illus_04 4 4 4 1 1 0 37 37
illus_05 5 5 5 1 1 0 45 45
illus_06 6 6 6 1 1 0 53 53
illus_07 7 7 7 1 1 0 61 61
illus_08 8 8 8 1 1 0 69 69
illus_09 9 9 9 1 1 0 76 77
simple_processor 2 6 11 6 1 5 36 38
dlx_stall 1 23 87 9 5 21 639 1214
dlx_f-a-ex 1 23 86 9 5 21 636 1219
dlx_f-b-wb 1 23 87 9 5 21 635 1205
dlx_stall_f-a-ex 2 23 86 9 5 21 638 1213

7.2. Benchmarks 99

neg

i1
o1

c1

neg

i2
o2

c2

Figure 7.1: Scalable, Illustrative Example. The control signals c1 and c2 control
whether an output equals the corresponding input, or the negation of the
corresponding input. The speci�cation states that the signs of the output
must be di�erent.

Note that this example also illustrates how the certi�cates for di�erent control
signals can depend on each other. Thus, computing them independently may
not work. For instance, we may choose c1 = > or we can take c2 = >, but we
cannot choose c1 = c2 = >.

We scale this example up in the following way: For a natural number n ≥ 2,
the circuit has n inputs ij , n outputs oj , and n control signals cj . For each j,
we have that

((cj ∧ oj = ij ∨ ¬cj ∧ oj = neg(ij)). (7.4)

Furthermore, the speci�cation states that the chained xor of all output signs is
true. That is,  ⊕

1≤ j≤n

pos(oj)

 = >. (7.5)

7.2.2 Simple Processor

In Figure 7.2, we show a simple (�ctitious) microprocessor with a 2-stage pipeline.
To keep the design simple, we deliberately left out some features most micropro-
cessor usually have: for example, a register �le, or the ability to directly access
arbitrary memory locations.33 MEM represents the main memory. We assume
that the value at address 0 is hardwired to 0. That is, reading from address 0

33Reading from arbitrary memory locations can, however, be achieved by using self-
modifying code.

100 Chapter 7. Implementation and Experimental Results

MEM

op-b-of

op-a-of

0 1

inst-of

0

0
=

0 1

0

addr-of 0

1

is-BEQZ

incrPC

c2

ALU

0
1

c1

addr addr

value value

jump-addr

op
co

de

take-jump

Figure 7.2: A simple microprocessor with a 2-stage pipeline. (Source: [HGK+13])

always yields value 0, and writing to address 0 has no e�ect.34 The blocks inst-
of, op-a-of, op-b-of, and addr-of represent combinational functions that decode a
memory word. The block incr increments the program counter (PC). The block
is-BEQZ is a predicate that checks whether an instruction is a branch instruc-
tion. The design has two pipeline-related control signals for which we would like
to synthesize an implementation. Signal c1 causes a value in the pipeline to be
forwarded and signal c2 squashes the instruction that is currently decoded and
executed in the �rst pipeline stage. This might be necessary due to speculative
execution based on a �branch-not-taken assumption�. The implementation of
these control signals is not as simple as it might seem at �rst glance. For ex-
ample, the seemingly trivial solution of setting c1 = > whenever PC equals the
address register is not correct. For example, if both the address register and PC
are equal to 0, forwarding should not be done, because writing to address 0 has
no e�ect on MEM.35 By taking out the blue parts in Figure 7.2, we obtain the
non-pipelined reference implementation which we used to formulate a Burch-Dill
style equivalence criterion, as outlined in Section 3.2. The resulting formula was
used as a speci�cation for synthesis.

34Writing to address 0 can be seen as a �no-operation� (NOP) instruction.
35We actually made this mistake while trying to create and model-check a manual imple-

mentation for the control signals, and it took some time to locate and understand the problem.

7.2. Benchmarks 101

IF DE EX MEM WB

IMEM
REGFILE

ALU

stall

forward

DMEM

Figure 7.3: Pipelined DLX Processor. The design consists of �ve pipeline stages
(shown in blue) with pipeline registers (shown in green) in between. The
dashed lines represent potential data-forwarding paths. Since there are
two operands that could potentially be forwarded from three di�erent
pipeline stages, six Boolean signals are required to control forwarding.
The seventh control signal can stall the pipeline if necessary.

7.2.3 DLX Processor

The most complex benchmark we used is a �ve-stage pipelined DLX processor,
as introduced by Hennessy and Patterson [HP96]. An abstract sketch, showing
the �ve stages of the pipeline is depicted in Figure 7.3. The DLX processor
features three di�erent addressable memories, the register �le REGFILE, the
data memory DMEM, and the instruction memory IMEM. We have identi�ed
the following seven Boolean control signals:

� forward-a-from-ex,

� forward-a-from-mem,

� forward-a-from-wb,

� forward-b-from-ex,

� forward-b-from-mem,

� forward-b-from-wb, and

� stall.

The names of these signals indicate what each of them controls: For signals
whose names start with forward, setting forward-X-from-Y to > means that
operand X is forwarded from pipeline stage Y. Signal stall stalls the pipeline, if
set to >.

102 Chapter 7. Implementation and Experimental Results

By adding manual implementations for some of the control signals, we have
created several di�erent variants of this benchmark, with di�erent numbers of
signals to synthesize.

7.3 Experimental Results

For our experimental evaluation, we used the benchmarks described in the pre-
vious section. From the DLX benchmark-family, we picked three representa-
tives: �dlx_stall�, which has just one control signal (stall); �dlx_f-a-ex� and
�dlx_f-b-wb�, which also have one control signal each (forward-a-from-ex and
forward-b-from-wb, respectively); and �dlx_stall_f-a-ex�, which has two con-
trol signals (stall and forward-a-from-ex). Unfortunately, Suraq was unable
to handle DLX benchmarks with more control signals.

The experiments were performed on a machine with 3 quad-core Intel Ne-
halem CPUs with hyperthreading, giving a total of 24 logical cores.36 The
machine has 192 GB of main memory available. The Java virtual machine was
invoked with a heap size limit of 150 GB and a maximum stack size of 2000 MB.
Assertions (see Section 7.1.7) were disabled.

Suraq keeps track of many interesting numbers and statistics. In the re-
mainder of this section, we will focus on analyzing the most interesting and
important results and draw some conclusions. We will �rst look at results from
n-interpolation mode, before also giving some results for the iterative interpo-
lation mode. Finally, in Section 7.3.4, we will summarize our key experimental
results.

7.3.1 Runtime Results (n-Interpolation Mode)

The �rst thing we analyzed were the runtimes of the di�erent benchmarks, and
how the total time is distributed over the major tasks performed by Suraq.
These results are shown in Table 7.2. We can see that for the simple benchmarks,
in particular the ones of the illus_XX family, most of the time is spent in creating
the input �le for the SMT solver. One can also see that this time increases
roughly exponentially with the number of control signals. This is no surprise, as
each additional control signal doubles to number of partitions that need to be
created, encoded, and simpli�ed. All other tasks only need negligible time, for
these benchmarks.

Another interesting fact is that the simple_processor benchmark can also
be solved in a very short time, despite the fact that this benchmark models a
complete microprocessor � even if it is a simple one. This shows that using
uninterpreted functions is a good mean of abstraction in such a case, turning a
non-trivial problem into an easily solvable instance.

Since the aforementioned benchmarks can all be solved so fast that no in-
teresting conclusions can be drawn about the distribution of the runtime over

36Note that, except for splitting of non-colorable theory lemmata (where we used all 24 cores
available), Suraq is single-threaded.

7.3. Experimental Results 103

Table 7.2: Runtime Results (n-Interpolation Mode). Column 1 names the
benchmark. Column 2 gives the time for the formula reductions (see Sec-
tion 7.1.2), that is, the total time required for reading the speci�cation,
performing the formula reductions, and creating an input �le for veriT.
Column 3 gives the time required by veriT to solve this input and create a
proof. Column 4 gives the (wall clock) time taken to split all non-colorable
theory lemmata, using 24 parallel splitter threads. Column 5 gives the
time taken by veriT for propositional SAT solving with the stronger the-
ory lemmata obtained from splitting (see Section 7.1.4). Column 6 gives
the time to reorder the proof to make it local-�rst. Column 7 gives the
time spent on proof parsing, including splitting of multi-resolution nodes.
This combines the time for parsing the SMT proof and the propositional
SAT proof. Column 8 gives the total time required for synthesis. All times
are given in seconds, and rounded to integers.

1 2 3 4 5 6 7 8

Name
Formula
Reduc-
tion

SMT
Solving

Splitting
Leaves

SAT
Solving

Re-
ordering

Proof
Parsing

Total

simple_pipeline <1 <1 <1 <1 <1 <1 1
illus_02 <1 <1 <1 <1 <1 <1 <1
illus_03 <1 <1 <1 <1 <1 <1 1
illus_04 1 <1 <1 <1 <1 <1 2
illus_05 2 <1 <1 <1 <1 <1 3
illus_06 4 <1 <1 <1 <1 <1 5
illus_07 7 <1 <1 <1 <1 <1 11
illus_08 14 1 <1 <1 <1 <1 17
illus_09 28 3 <1 <1 <1 <1 34
simple_processor <1 <1 <1 <1 <1 <1 4
dlx_stall_f-a-ex 6 1718 6 7 n/a 442 n/a

104 Chapter 7. Implementation and Experimental Results

di�erent subtasks, we also included one of the DLX benchmarks in this series
of experiments. Unfortunately, it runs out of memory during reordering of the
refutation proof to make it local-�rst. Thus, the time for reordering and the
total runtime are not available for this benchmark. We can see, however, that
formula reduction is very fast for this benchmark, and most of the time is spent
in the SMT solver. Splitting of non-colorable leaves can also be done rather fast.
The SAT solver run to obtain a proof based on the (stronger), colorable theory
lemmata is also extremely fast, compared to the original SMT solver run. This
leads us to conclude that the SMT solver spent a signi�cant part of its runtime
on checking the theory-consistency of (partial) assignments and creating theory
lemmata to block inconsistent assignments.

There is one more thing to remark about the runtime results. In [HGK+13],
we presented runtime results for (a subset of) these benchmarks. The results
shown here are, however, signi�cantly better than the ones in [HGK+13]. This
discrepancy is due to improvements in Suraq that have been implemented since
the publication of [HGK+13]. In particular, all methods in the formula pack-
age were rewritten to be DAG-aware (see Section 7.1.7), leading to signi�cant
improvements in runtime and enabling solving some benchmarks that could not
be solved before.

7.3.2 Proof Sizes (n-Interpolation Mode)

In addition to analyzing runtime, we have also looked at the sizes of the refutation
proofs occurring in n-interpolation mode. The results are shown in Table 7.3.
Let us �rst look at the size of the original proof (column 2). For the illus_XX
benchmarks, we again see a roughly exponential increase in proof size. Since
these benchmarks involve hardly any theory-reasoning, it is not very surprising
that the number of non-colorable theory lemmata is rather small. This also
explains why the time needed for splitting (see previous section) is so low for
these benchmarks.

Another interesting point is that, especially for the larger benchmarks (sim-
ple_processor and dlx_stall_f-a-ex), the size of the proof obtained from SAT
solving (column 5) is signi�cantly smaller than the original proof. In case of
the DLX benchmark, this reduction is over 60%. We conjecture that veriT's
theory solver is not well suited to the characteristics of these benchmarks. We
believe that this is caused by the rather long �chains� of transitivity (mixed with
function congruence) that arise from the Burch-Dill style equivalence criterion.
This would explain why the issue surfaces more prominently for the DLX bench-
marks than it does for the simple_processor benchmark. The simple processor
has only a two-stage pipeline, whereas DLX has a �ve-stage pipeline. Thus, the
transitivity-chains are potentially signi�cantly longer for DLX. Details about
how many (non-colorable) theory lemmata could be made stronger � and by
how much � are shown in Table 7.4.

Concerning making the refutation proof local-�rst, note that for a rather low
number of control signals, the increase of the proof size due to reordering is not
as bad as for benchmarks with more partitions. This is also to be expected,

7.3. Experimental Results 105

Table 7.3: Proof Sizes. The �rst column gives the name of the benchmark. The sec-
ond column states the size of the proof, as obtained from veriT, however
with subproofs of theory lemmata already removed. The third column
gives the number of leaves that are non-colorable and need to be split,
and the fourth column gives the total number of leaves. Columns 5 gives
the size of the proof obtained by calling a SAT solver on the skeleton of
the original formula, together with the colorable theory lemmata and the
(stronger) theory lemmata obtained from splitting. This is the proof that
is given to the reordering procedure. The size of the proof after reordering
is given in column 6. Column 7 gives the size of the proof that is used for
n-interpolation, that is, the reordered proof with local subproofs removed.
All proof sizes are given as the number of nodes in the DAG.

1 2 3 4 5 6 7

Name
Original
Proof

Leaves
to split

Leaves
(total)

Before
Reorder-

ing

After
Reorder-

ing

w/o
Local
Sub-
proofs

simple_pipeline 506 2 178 496 494 12
illus_02 102 2 44 106 106 12
illus_03 179 3 77 198 218 26
illus_04 390 7 133 356 428 46
illus_05 408 9 165 700 971 115
illus_06 669 4 176 758 1 576 320
illus_07 1 006 11 219 916 2 823 785
illus_08 1 101 6 242 2 214 8 082 1 347
illus_09 1 101 7 269 1 388 5 364 1 293
simple_processor 9 576 123 1 503 6 853 7 899 73
dlx_stall_f-a-ex 856 121 2 748 21 349 333 260 n/a n/a

106 Chapter 7. Implementation and Experimental Results

Table 7.4: Stronger Theory Lemmata. This table shows how many theory lem-
mata could be made stronger, in relation to the total number of theory
lemmata considered. Column 1 gives the name of the benchmark. Col-
umn 2 shows how many theory lemmata were made stronger during split-
ting. Column 3 puts this into context, by showing the total number of
theory lemmata that were split. Column 4 shows how many literals were
saved in total.

1 2 3 4

Name
Theory lemmata
made stronger

Theory lemmata
to split

Literals saved

simple_pipeline 2 2 14
illus_02 0 2 0
illus_03 0 3 0
illus_04 0 7 0
illus_05 0 9 0
illus_06 0 4 0
illus_07 0 11 0
illus_08 0 6 0
illus_09 0 7 0
simple_processor 74 123 227
dlx_stall_f-a-ex 1 815 2 748 6 476

as with more partitions, there are more nodes in positions where they do not
belong in a local-�rst proof.

Column 7 in Table 7.3 gives the size of the proof as it is used for the actual
n-interpolation. That is, all derivations that are done solely within one partition
have been removed, and only the global part of the proof remains. The size of
this proof also correlates directly with the size of the resulting n-interpolant and
hence the size of the synthesized implementation of control signals. Remember
that, in principle, for n-interpolation every node in the proof corresponds to one
multiplexer in the interpolant. It is interesting to note that the size of these
�nal proofs is signi�cantly smaller than the total size of the proof, including the
local parts. For the simple_processor benchmark, the di�erence is even more
than two orders of magnitude.

7.3.3 Iterative Mode

We now compare the results of n-interpolation mode with iterative mode. To-
tal runtimes for iterative mode are shown in Table 7.5. Table 7.6 details the
SMT solving time per iteration. These experiments include three additional
DLX benchmarks with one control signal each. These were not tested with n-
interpolation mode, as for just one signal n-interpolation mode does not make
sense. In n-interpolation mode, Suraq reorders the proof to make is local-�rst.
This is, however, not necessary if just one single interpolant is computed. Thus,
for n = 1, iterative mode is always clearly superior to n-interpolation mode.

Note that, in general, iterative mode takes signi�cantly longer for the bench-

7.3. Experimental Results 107

Table 7.5: Runtime Results (Iterative Mode). Column 1 gives the name of the
benchmark. Column 2 gives the total synthesis time in iterative mode.
Times are in seconds, rounded to integers.

1 2

Name Total Runtime

simple_pipeline <1
illus_02 1
illus_03 2
illus_04 3
illus_05 6
illus_06 12
illus_07 31
illus_08 66
illus_09 485
simple_processor 4
dlx_stall 537
dlx_f-a-ex 1 358
dlx_f-b-wb 2 174
dlx_stall_f-a-ex 4 528

Table 7.6: SMT Solving Time per Iteration. If a benchmark does not require
more than a certain number of iterations, the remaining columns are left
empty.

Iteration

Name 1 2 3 4 5 6 7 8 9

simple_pipeline <1
illus_02 <1 <1
illus_03 <1 <1 <1
illus_04 <1 <1 <1 <1
illus_05 <1 <1 <1 <1 <1
illus_06 <1 <1 <1 <1 <1 <1
illus_07 <1 <1 <1 1 <1 <1 <1
illus_08 1 <1 <1 1 2 2 2 1
illus_09 3 5 22 45 24 23 10 9 6
simple_processor <1 <1
dlx_stall 267
dlx_f-a-ex 573
dlx_f-b-wb 590
dlx_stall_f-a-ex 1 711 923

108 Chapter 7. Implementation and Experimental Results

T
a
b
le

7
.7
:
P
ro
o
f
S
iz
e
p
e
r
Ite

ra
tio

n
.

If
a
b
en
ch
m
a
rk

d
o
es

n
o
t
req

u
ire

m
o
re

th
a
n
a
certa

in
n
u
m
b
er

o
f
itera

tio
n
s,

th
e
rem

a
in
in
g

co
lu
m
n
s
a
re

left
em

p
ty.

Itera
tio

n

N
a
m
e

1
2

3
4

5
6

7
8

9

sim
p
le_

p
ip
elin

e
5
0
6

illu
s_

0
2

1
0
2

1
6
6

illu
s_

0
3

1
7
9

4
9
3

5
0
8

illu
s_

0
4

3
9
0

6
8
0

7
2
4

1
2
5
1

illu
s_

0
5

4
0
8

2
1
3
3

3
6
0
8

3
2
9
8

3
3
6
1

illu
s_

0
6

6
6
9

2
5
2
1

1
7
9
9

3
9
0
6

9
0
4
3

1
0
0
8
8

illu
s_

0
7

1
0
0
6

6
4
3
0

7
2
1
0

2
6
0
7
2

2
3
9
4
1

2
6
5
4
3

3
2
0
0
9

illu
s_

0
8

1
1
0
1

7
3
5
2

3
3
3
2

1
6
3
1
2

3
2
0
8
7

5
2
7
8
2

6
0
8
2
2

7
3
8
8
7

illu
s_

0
9

1
1
0
1

2
7
2
1
0

6
0
0
0
2

1
6
5
6
3
6

1
1
7
5
3
5

2
4
3
3
3
2

2
3
1
7
8
9

3
9
1
2
7
7

2
8
1
3
1
3

sim
p
le_

p
ro
cesso

r
9
5
7
6

8
6
8
2

d
lx
_
sta

ll
8
9
8
3
4
5

d
lx
_
f-a

-ex
1
4
9
0
0
2
8

d
lx
_
f-b

-w
b

2
2
7
1
2
8
8

d
lx
_
sta

ll_
f-a

-ex
8
5
6
1
2
1

1
4
6
0
5
8
2

7.3. Experimental Results 109

marks of the illus_XX family. On the positive side, since iterative interpolation
does not require reordering the refutation proof � which was too costly for
larger DLX benchmarks � the iterative approach is able to �nish synthesizing
both control signals of the dlx_stall_f-a-ex benchmark.

In Table 7.7, we show the size of the refutation proof in each iteration. These
results are particularly interesting: On one hand, one would expect the proof
sizes to decrease with each iteration, as the number of partitions is decreasing
exponentially. On the other hand, one would expect an increase, as the problem
is made more complicated by the resubstitution of each interpolant. It was not
clear a priori which of these e�ects would be dominant. From Table 7.7, we
can see that proof size almost always increases with each iteration. Thus, we
conclude that � in general � the size reduction cannot counteract the negative
e�ect of resubstitution. Note that in the few exceptional cases where the proof
size actually decreases from one iteration to the next, also the solving time
(see Table 7.6) decreases, whereas in general, runtime also increases with each
iteration.

7.3.4 Key Results

Let us brie�y summarize the key results of our experimental evaluation. First,
our most important achievement is that we managed to synthesize a controller
(consisting of two control signals) for a �ve-stage pipelined DLX processor [HP96].
The synthesis time is approximately 1 hour and 15 minutes. Since the DLX
benchmark is of realistic size and complexity, this proves that our approach
for abstraction using uninterpreted functions and interpolation-based certi�cate
computation is scalable enough for real-world problems.

Second, our experiments have revealed that neither iterative interpolation,
nor n-interpolation is clearly superior over the other. Instead, it depends on
the characteristics of the benchmark which approach performs better. While for
some benchmarks n-interpolation clearly outperforms iterative interpolation, in
other instances the need for proof reordering makes n-interpolation inapplicable.
In the future, we hope to alleviate this problem by using modular SMT solving.

Third, we conclude that in most cases, resubstitution of one solution in it-
erative mode makes the SMT problem of the following iteration harder, despite
that fact that the next iteration will only have half the number of partitions.
This underlines the fact that the solutions computed via interpolation are rather
large and complex, compared to manual implementations.

8
Conclusion

To conclude this thesis, we will once more summarize the research challenges
that we faced at the beginning. After that, we will again highlight the most
important goals achieved, and the contributions made to advance the prior state-
of-the-art. Finally, we will present new challenges that emerged due to our work,
which remain for future investigation.

8.1 Summary in Retrospect

The challenge we were facing when starting this research was the following.
How can we synthesize some Boolean control signals for a system that is already
partially implemented? In particular, we considered pipelined microprocessors,
where pipeline control is easy to formally specify, but hard to implement manu-
ally. On the other hand, datapaths of microprocessors are comparatively easy to
implement. Using state-of-the-art property synthesis tools of the time did not
seem feasible, as this would require to formally specify the datapath's behavior
on a bit- and cycle-accurate level. This would have led to speci�cations of such
a large size that they would clearly have been intractable for synthesis tools.
Thus, our challenge was to come up with a di�erent speci�cation formalism that
would allow us to abstract these complex parts. It soon became clear that un-
interpreted functions might provide just what we needed, as they had already
been used successfully in a similar veri�cation setting by Burch and Dill [BD94].
The Burch-Dill paradigm also allowed us to transform a temporal problem into
a non-temporal domain. While it is not clear how this can be done in the general
case, it works �ne for pipelined processors. To express our synthesis problems,
we extended Burch-Dill equivalence conditions with mixed quanti�ers.

111

112 Chapter 8. Conclusion

After establishing the speci�cation formalism, the next challenge was to �nd
ways to compute certi�cates for the existentially quanti�ed Boolean control sig-
nals. While � in an early stage � several di�erent methods (see Chapter 6)
were considered, we decided to focus on interpolation-based approaches, as they
seemed to be most promising (see Chapter 5). Thus, our prototype tool Suraq
implements these approaches (see Chapter 7).

8.2 Goals Achieved

With this thesis, we have advanced the state-of-the-art in the following ways.
First, we have created a speci�cation formalism that allows us to state syn-
thesis problems for Boolean signals in certain settings where parts of a system
are already implemented. Existing parts can be e�ciently abstracted using un-
interpreted functions. The primary example of such a setting is synthesizing
controllers for pipelined microprocessors with pre-implemented complex datap-
ath elements.

Second, we have presented several ways how to solve such synthesis prob-
lems, by computing certi�cates for the existentially quanti�ed variables in for-
mulas of the form ∀x .∃c .∀x′ .∃c′ .∀x′′ . . .Φ. One of these ways is based on
n-interpolation, a generalized version of Craig interpolation that we introduced,
where multiple coordinated interpolants are computed from a single refutation
proof. Refutation proofs for n-interpolation need to be colorable and local-�rst.
We have presented proof transformation procedures to obtain these properties.
We have also introduced modular SMT solving, which can directly produce col-
orable, local-�rst refutation proofs.

Third, we have created a prototype implementation to demonstrate the fea-
sibility of our synthesis approach. To the best of our knowledge, our synthesis
tool Suraq is the �rst and � as of writing this thesis � currently only tool
that supports synthesis of controllers based on speci�cations with uninterpreted
functions as a mean of abstraction. Using Suraq, we were able to synthesize a
controller for a �ve-stage pipelined DLX microprocessor [HP96], which demon-
strates the scalability of our approach.

8.3 Future Work

While working on our primary research goals, we have also come across several
related aspects, for which further research is clearly indicated. In this section,
we will brie�y outline these questions, which remain for future work.

8.3.1 Small Certi�cates

So far, we have focused solely on the logical correctness of the certi�cates we
compute. For practical purposes, it would, however, also be interesting to take

8.3. Future Work 113

their size37 into account. It is interesting to note that � for many examples
� very small (manually implemented) solutions exist, yet our synthesis tool
only �nds comparatively large solutions. This is not unlike the situation with
temporal logic synthesis tools [BGJ+07a].

When sticking with interpolation-based approaches, the size of the certi�cate
is clearly correlated to the size of the refutation proof. Thus, existing techniques
for proof compression (for example [FMW11] and [BW13]), provided by tools
such as Skeptik [BFW14], already work towards this goal. The open question
that remains is whether we can �nd techniques to compress the proof speci�cally
for obtaining small interpolants. Going one step further, it would also be inter-
esting to investigate whether the SMT solver can already be tweaked towards
�nding a proof that yields small interpolants.

As an orthogonal approach, it would also be interesting to look for di�erent
approaches for certi�cate computation, speci�cally tailored to respect size met-
rics. The template instantiation approach that we presented in Section 6.4 is a
�rst step in this direction.

8.3.2 Certi�cate Strength

In many applications, it might be desirable to obtain either rather weak, or rather
strong certi�cates. That is, certi�cates with a rather large, or a rather small ON-
set. For example, when synthesizing a stall signal for a pipelined processor,
one usually wishes to have the stall signal set to > only if absolutely necessary.
Interpolant strength has been investigated by D'Silva et al. [DKPW10]. It would
be interesting to see how and to which extent their results can be ported to n-
interpolation. Since n-interpolation requires a local-�rst refutation proof, some
of the freedom used for tweaking interpolant strength in [DKPW10] is already
lost. Furthermore, the interdependence of the components of an n-interpolant
provides some interesting challenges. For example, strengthening one component
might weaken another component.

8.3.3 Modular SMT Solving

While we have introduced the general concept of modular SMT solving in Sec-
tion 5.4, this approach has not yet been evaluated experimentally. However,
irrespective of the results of experimental evaluation, we believe that there are
ample possibilities for optimization that should be investigated. A more detailed
analysis will, however, have to be postponed until after the �rst experimental
evaluation.

37Possible metrics for measuring the size of a certi�cate include the number of nodes in
the syntax tree/DAG, or the number of standard logic gates to implement the certi�cate in a
circuit.

114 Chapter 8. Conclusion

8.3.4 Formulas with Multiple Time-Instances of Control
Signals

In Section 3.2, we discussed the problem of modeling control signals in multiple
time steps. Our speci�cation language SQ does not allow us to express the
dependencies and consistency requirements that are required in such a case. (See
page 38 for details.) We are currently investigating if Henkin quanti�ers [Hen61]
provide the expressibility we require for this problem. If so, we could build upon
the work of Balabanov et al. [BCJ14] to compute certi�cates in such a setting.

8.4 Last Words

In the spirit of Surak,38 we conclude this thesis by saying:

�Live long and prosper.�

38http://en.memory-alpha.org/wiki/Surak

http://en.memory-alpha.org/wiki/Surak

Bibliography

[Ack54] Wilhelm Ackermann. Solvable cases of the decision problem. Stud-
ies in Logic and the Foundations of Mathematics, 1954.

[AMT13] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy
guided re�nement of GR(1) temporal logic speci�cations. In Job-
stmann and Ray [JR13], pages 26�33.

[Ang87] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319�342, 1987.

[BCG+10] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hof-
ferek, Robert Könighofer, Marco Roveri, Viktor Schuppan, and
Richard Seeber. RATSY - a new requirements analysis tool with
synthesis. In Tayssir Touili, Byron Cook, and Paul Jackson, ed-
itors, CAV, volume 6174 of Lecture Notes in Computer Science,
pages 425�429. Springer, 2010.

[BCG+14] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel,
Thomas A. Henzinger, Georg Ho�erek, Barbara Jobstmann, Bet-
tina Könighofer, and Robert Könighofer. Synthesizing robust sys-
tems. Acta Inf., 51(3-4):193�220, 2014.

[BCHJ09] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger,
and Barbara Jobstmann. Better quality in synthesis through quan-
titative objectives. In Bouajjani and Maler [BM09], pages 140�156.

[BCJ14] Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-
Hong Roland Jiang. Henkin quanti�ers and boolean formulae:
A certi�cation perspective of DQBF. Theor. Comput. Sci.,
523:86�100, 2014.

[BCK04] David Bañeres, Jordi Cortadella, and Michael Kishinevsky. A
recursive paradigm to solve boolean relations. In Sharad Malik,
Limor Fix, and Andrew B. Kahng, editors, DAC, pages 416�421.
ACM, 2004.

[BD94] Jerry R. Burch and David L. Dill. Automatic veri�cation of pipe-
lined microprocessor control. In David L. Dill, editor, CAV, volume
818 of Lecture Notes in Computer Science, pages 68�80. Springer,
1994.

115

116 Bibliography

[BDF+12] Roderick Bloem, Rolf Drechsler, Görschwin Fey, Alexander Finder,
Georg Ho�erek, Robert Könighofer, Jaan Raik, Urmas Repinski,
and André Sül�ow. FoREnSiC � an automatic debugging envi-
ronment for C programs. In Armin Biere, Amir Nahir, and Tanja
E. J. Vos, editors, Haifa Veri�cation Conference, volume 7857 of
Lecture Notes in Computer Science, pages 260�265. Springer, 2012.

[BdODF09] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe,
and Pascal Fontaine. veriT: An open, trustable and e�cient SMT-
solver. In Schmidt [Sch09], pages 151�156.

[BFW14] Joseph Boudou, Andreas Fellner, and Bruno Woltzenlogel Paleo.
Skeptik: a proof compression system. In 7th International Joint
Conference on Automated Reasoning, 2014.

[BGH+12] Roderick Bloem, Hans-Jürgen Gamauf, Georg Ho�erek, Bettina
Könighofer, and Robert Könighofer. Synthesizing robust systems
with RATSY. In Doron Peled and Sven Schewe, editors, SYNT,
volume 84 of EPTCS, pages 47�53, 2012.

[BGJ+07a] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piter-
man, Amir Pnueli, and Martin Weiglhofer. Automatic hardware
synthesis from speci�cations: a case study. In Rudy Lauwereins
and Jan Madsen, editors, DATE, pages 1188�1193. ACM, 2007.

[BGJ+07b] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piter-
man, Amir Pnueli, and Martin Weiglhofer. Specify, compile, run:
Hardware from PSL. Electr. Notes Theor. Comput. Sci., 190(4):3�
16, 2007.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby
Walsh, editors. Handbook of Satis�ability, volume 185 of Frontiers
in Arti�cial Intelligence and Applications. IOS Press, February
2009.

[BJ12] Valeriy Balabanov and Jie-Hong Roland Jiang. Uni�ed QBF cer-
ti�cation and its applications. Formal Methods in System Design,
41(1):45�65, 2012.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computa-
tion. Springer, 2007.

[BM09] Ahmed Bouajjani and Oded Maler, editors. Computer Aided
Veri�cation, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lec-
ture Notes in Computer Science. Springer, 2009.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What's
decidable about arrays? In Emerson and Namjoshi [EN06], pages
427�442.

Bibliography 117

[BP09] Armin Biere and Carl Pixley, editors. Proceedings of 9th Interna-
tional Conference on Formal Methods in Computer-Aided Design,
FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. IEEE,
2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB
Standard: Version 2.0. In Aarti Gupta and Daniel Kroening, edi-
tors, Proceedings of the 8th International Workshop on Satis�abil-
ity Modulo Theories (Edinburgh, UK), 2010.

[BV00] Randal E. Bryant and Miroslav N. Velev. Boolean satis�ability
with transitivity constraints. In Emerson and Sistla [ES00], pages
85�98.

[BVB+13] Sam Bayless, Celina G. Val, Thomas Ball, Holger H. Hoos, and
Alan J. Hu. E�cient modular SAT solving for IC3. In Jobstmann
and Ray [JR13], pages 149�156.

[BW13] Joseph Boudou and Bruno Woltzenlogel Paleo. Compression
of propositional resolution proofs by lowering subproofs. In
TABLEAUX, pages 59�73, 2013.

[Chu62] Alonzo Church. Logic, arithmetic and automata. In Proceedings of
the international congress of mathematicians, pages 23�35, 1962.

[Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in
relating model theory and proof theory. The Journal of Symbolic
Logic, 22(3):pp. 269�285, 1957.

[dAR10] Luca de Alfaro and Pritam Roy. Solving games via three-valued
abstraction re�nement. Inf. Comput., 208(6):666�676, 2010.

[DKPW10] Vijay D'Silva, Daniel Kroening, Mitra Purandare, and Georg Weis-
senbacher. Interpolant strength. In Gilles Barthe and Manuel V.
Hermenegildo, editors, VMCAI, volume 5944 of Lecture Notes in
Computer Science, pages 129�145. Springer, 2010.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-
chine program for theorem-proving. Commun. ACM, 5(7):394�397,
July 1962.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An e�-
cient SMT solver. In C. R. Ramakrishnan and Jakob Rehof, edi-
tors, TACAS, volume 4963 of Lecture Notes in Computer Science,
pages 337�340. Springer, 2008.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quanti�cation theory. J. ACM, 7(3):201�215, July 1960.

118 Bibliography

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons. Sci. Com-
put. Program., 2(3):241�266, 1982.

[EKH12] Rüdiger Ehlers, Robert Könighofer, and Georg Ho�erek. Symboli-
cally synthesizing small circuits. In Gianpiero Cabodi and Satnam
Singh, editors, FMCAD, pages 91�100. IEEE, 2012.

[EN06] E. Allen Emerson and Kedar S. Namjoshi, editors. Veri�cation,
Model Checking, and Abstract Interpretation, 7th International
Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,
2006, Proceedings, volume 3855 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

[ES00] E. Allen Emerson and A. Prasad Sistla, editors. Computer Aided
Veri�cation, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture
Notes in Computer Science. Springer, 2000.

[FGG+09] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and Cesare
Tinelli. Ground interpolation for the theory of equality. In Stefan
Kowalewski and Anna Philippou, editors, TACAS, volume 5505
of Lecture Notes in Computer Science, pages 413�427. Springer,
2009.

[FGG+12] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and Cesare
Tinelli. Ground interpolation for the theory of equality. Logical
Methods in Computer Science, 8(1), 2012.

[FJ12] Bernd Finkbeiner and Swen Jacobs. Lazy synthesis. In Viktor
Kuncak and Andrey Rybalchenko, editors, VMCAI, volume 7148
of Lecture Notes in Computer Science, pages 219�234. Springer,
2012.

[FJR09] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An an-
tichain algorithm for LTL realizability. In Bouajjani and Maler
[BM09], pages 263�277.

[FMW11] Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
Compression of propositional resolution proofs via partial regular-
ization. In CADE, pages 237�251, 2011.

[FS13] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT,
15(5-6):519�539, 2013.

[GBC06] Andreas Griesmayer, Roderick Bloem, and Byron Cook. Repair of
boolean programs with an application to C. In Thomas Ball and
Robert B. Jones, editors, CAV, volume 4144 of Lecture Notes in
Computer Science, pages 358�371. Springer, 2006.

Bibliography 119

[Gup12] Ashutosh Gupta. Improved single pass algorithms for resolution
proof reduction. In Supratik Chakraborty and Madhavan Mukund,
editors, ATVA, volume 7561 of Lecture Notes in Computer Science,
pages 107�121. Springer, 2012.

[HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis for pi-
pelined circuits using uninterpreted functions. In Singh et al.
[SJKB11], pages 31�42.

[Hen61] Leon Henkin. Some remarks on in�nitely long formulas. In In�n-
istic Methods, pages 167�183. Pergamon Press, 1961.

[HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong
Roland Jiang, and Roderick Bloem. Synthesizing multiple boolean
functions using interpolation on a single proof. In Jobstmann and
Ray [JR13], pages 77�84.

[HGS03] Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam K. Sri-
vas. Formal veri�cation of a complex pipelined processor. Formal
Methods in System Design, 23(2):171�213, 2003.

[HKV12] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Playing in
the grey area of proofs. In John Field and Michael Hicks, editors,
POPL, pages 259�272. ACM, 2012.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach, 2nd Edition. Morgan Kaufmann, 1996.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Mod-
elling and reasoning about systems. Cambridge University Press,
2004.

[HW08] Georg Ho�erek and Johannes Wolkerstorfer. Coupon recalcula-
tion for the GPS authentication scheme. In Gilles Grimaud and
François-Xavier Standaert, editors, CARDIS, volume 5189 of Lec-
ture Notes in Computer Science, pages 162�175. Springer, 2008.

[JB12] Swen Jacobs and Roderick Bloem. Parameterized synthesis.
In Cormac Flanagan and Barbara König, editors, TACAS, vol-
ume 7214 of Lecture Notes in Computer Science, pages 362�376.
Springer, 2012.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem.
Program repair as a game. In Kousha Etessami and Sriram K. Ra-
jamani, editors, CAV, volume 3576 of Lecture Notes in Computer
Science, pages 226�238. Springer, 2005.

[JGWB07] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Rod-
erick Bloem. Anzu: A tool for property synthesis. In Werner
Damm and Holger Hermanns, editors, CAV, volume 4590 of Lec-
ture Notes in Computer Science, pages 258�262. Springer, 2007.

120 Bibliography

[JLH09] Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung. Inter-
polating functions from large boolean relations. In ICCAD, pages
779�784. IEEE, 2009.

[JR13] Barbara Jobstmann and Sandip Ray, editors. Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. IEEE, 2013.

[KHB09] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. Debug-
ging formal speci�cations using simple counterstrategies. In Biere
and Pixley [BP09], pages 152�159.

[KHB10] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. De-
bugging unrealizable speci�cations with model-based diagnosis. In
Sharon Barner, Ian G. Harris, Daniel Kroening, and Orna Raz, ed-
itors, Haifa Veri�cation Conference, volume 6504 of Lecture Notes
in Computer Science, pages 29�45. Springer, 2010.

[KHB13] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. Debug-
ging formal speci�cations: a practical approach using model-based
diagnosis and counterstrategies. STTT, 15(5-6):563�583, 2013.

[KJB13] Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. PARTY:
parameterized synthesis of token rings. In Natasha Sharygina and
Helmut Veith, editors, CAV, volume 8044 of Lecture Notes in Com-
puter Science, pages 928�933. Springer, 2013.

[KMPS10] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Complete functional synthesis. In Benjamin G. Zorn and Alexan-
der Aiken, editors, PLDI, pages 316�329. ACM, 2010.

[KMPS13] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Functional synthesis for linear arithmetic and sets. STTT, 15(5-
6):455�474, 2013.

[KS00] James H. Kukula and Thomas R. Shiple. Building circuits from
relations. In Emerson and Sistla [ES00], pages 113�123.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures � An
Algorithmic Point of View. Springer, 2008.

[KV09] Laura Kovács and Andrei Voronkov. Interpolation and symbol
elimination. In Schmidt [Sch09], pages 199�213.

[LB10] Florian Lonsing and Armin Biere. DepQBF: a dependency-aware
QBF solver. JSAT, 7(2-3):71�76, 2010.

[LDS11] Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assump-
tions for synthesis. In Singh et al. [SJKB11], pages 43�50.

Bibliography 121

[MCB05] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton.
FRAIGs: A unifying representation for logic synthesis and veri-
�cation. Technical report, EECS Dept., UC Berkeley, 2005.

[McC63] John McCarthy. A basis for a mathematical theory of computation.
Computer Programming and Formal Systems, pages 33�70, 1963.

[McM05] Kenneth L. McMillan. An interpolating theorem prover. Theor.
Comput. Sci., 345(1):101�121, 2005.

[McM11] Kenneth L. McMillan. Interpolants from Z3 proofs. In Per Bjesse
and Anna Slobodová, editors, FMCAD, pages 19�27. FMCAD Inc.,
2011.

[Min92] Shin-ichi Minato. Fast generation of irredundant sum-of-products
forms from binary decision diagrams. In Synthesis and Simulation
Meeting and International Interchange (SASIMI'92), pages 64�73,
1992.

[Mor70] Eugenio Morreale. Recursive operators for prime implicant and
irredundant normal form determination. IEEE Transactions on
Computers, 100(6):504�509, 1970.

[MS96] João P. Marques Silva and Karem A. Sakallah. GRASP � a new
search algorithm for satis�ability. In ICCAD, pages 220�227, 1996.

[MS99] João P. Marques Silva and Karem A. Sakallah. GRASP: A search
algorithm for propositional satis�ability. IEEE Trans. Computers,
48(5):506�521, 1999.

[MS10] Andreas Morgenstern and Klaus Schneider. Exploiting the tempo-
ral logic hierarchy and the non-con�uence property for e�cient
LTL synthesis. In Angelo Montanari, Margherita Napoli, and
Mimmo Parente, editors, GANDALF, volume 25 of EPTCS, pages
89�102, 2010.

[NHKL10] Eriko Nurvitadhi, James C. Hoe, Timothy Kam, and Shih-Lien Lu.
Automatic pipelining from transactional datapath speci�cations.
In DATE, pages 1001�1004. IEEE, 2010.

[NHKL11] Eriko Nurvitadhi, James C. Hoe, Timothy Kam, and Shih-Lien
Lu. Automatic pipelining from transactional datapath speci�ca-
tions. IEEE Trans. on CAD of Integrated Circuits and Systems,
30(3):441�454, 2011.

[NO77] Greg Nelson and Derek C. Oppen. Fast decision algorithms based
on union and �nd. In FOCS, pages 114�119. IEEE Computer
Society, 1977.

122 Bibliography

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa'ar. Synthesis of reac-
tive(1) designs. In Emerson and Namjoshi [EN06], pages 364�380.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive
module. In POPL, pages 179�190. ACM Press, 1989.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane
proofs and monotone computations. J. Symb. Log., 62(3):981�998,
1997.

[Sch09] Renate A. Schmidt, editor. Automated Deduction � CADE,
22nd International Conference on Automated Deduction, Mon-
treal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lec-
ture Notes in Computer Science. Springer, 2009.

[SF07] Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In
Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino, and
Yoshio Okamura, editors, ATVA, volume 4762 of Lecture Notes
in Computer Science, pages 474�488. Springer, 2007.

[SHB11] Matthias Schlaipfer, Georg Ho�erek, and Roderick Bloem. Gen-
eralized reactivity(1) synthesis without a monolithic strategy. In
Kerstin Eder, João Lourenço, and Onn Shehory, editors, Haifa
Veri�cation Conference, volume 7261 of Lecture Notes in Com-
puter Science, pages 20�34. Springer, 2011.

[Sho78] Robert E. Shostak. An algorithm for reasoning about equality.
Commun. ACM, 21(7):583�585, 1978.

[SJKB11] Satnam Singh, Barbara Jobstmann, Michael Kishinevsky, and Jens
Brandt, editors. 9th IEEE/ACM International Conference on For-
mal Methods and Models for Codesign, MEMOCODE 2011, Cam-
bridge, UK, 11-13 July, 2011. IEEE, 2011.

[SL13] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475�
495, 2013.

[SS09] Saqib Sohail and Fabio Somenzi. Safety �rst: A two-stage algo-
rithm for LTL games. In Biere and Pixley [BP09], pages 77�84.

[SS13] Saqib Sohail and Fabio Somenzi. Safety �rst: a two-stage algo-
rithm for the synthesis of reactive systems. STTT, 15(5-6):433�
454, 2013.

[THG+08] Ronald Toegl, Georg Ho�erek, Karin Greimel, Adrian Leung,
Raphael Chung-Wei Phan, and Roderick Bloem. Formal analy-
sis of a TPM-based secrets distribution and storage scheme. In
ICYCS, pages 2289�2294. IEEE Computer Society, 2008.

Bibliography 123

[Tse68] Grigori S. Tseitin. On the complexity of derivation in propositional
calculus. Studies in constructive mathematics and mathematical
logic, 2:115�125, 1968.

[VYY10] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-
guided synthesis of synchronization. In Manuel V. Hermenegildo
and Jens Palsberg, editors, POPL, pages 327�338. ACM, 2010.

[WB93] Yosinori Watanabe and Robert Brayton. Heuristic minimization
of multiple-valued relations. IEEE Trans. on CAD of Integrated
Circuits and Systems, 12(10):1458�1472, 1993.

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy.
Theor. Comput. Sci., 3(1):23�33, 1976.

A
List of Publications

According to the Statutes of the Doctoral School of Computer Science at Graz
University of Technology, a PhD thesis must contain a list of publications of
the candidate, detailing the relationship between the thesis and the (relevant)
publications. The reference date for the following list of publications is May
2014.

A.1 Journal Publications

This section lists all journal publications in reverse chronological order.

� [BCG+14] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A.
Henzinger, Georg Ho�erek, Barbara Jobstmann, Bettina Könighofer, and
Robert Könighofer. Synthesizing robust systems. Acta Inf., 51(3-4):193�
220, 2014.

� [KHB13] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. De-
bugging formal speci�cations: a practical approach using model-based di-
agnosis and counterstrategies. STTT, 15(5-6):563�583, 2013.

A.2 Publications in Conference andWorkshop Pro-

ceedings

This section lists all publications in conference and workshop proceedings in
reverse chronological order.

125

126 Appendix A. List of Publications

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong
Roland Jiang, and Roderick Bloem. Synthesizing multiple boolean func-
tions using interpolation on a single proof. In Jobstmann and Ray [JR13],
pages 77�84

� [EKH12] Rüdiger Ehlers, Robert Könighofer, and Georg Ho�erek. Symbol-
ically synthesizing small circuits. In Gianpiero Cabodi and Satnam Singh,
editors, FMCAD, pages 91�100. IEEE, 2012

� [BDF+12] Roderick Bloem, Rolf Drechsler, Görschwin Fey, Alexander Finder,
Georg Ho�erek, Robert Könighofer, Jaan Raik, Urmas Repinski, and An-
dré Sül�ow. FoREnSiC � an automatic debugging environment for C
programs. In Armin Biere, Amir Nahir, and Tanja E. J. Vos, editors,
Haifa Veri�cation Conference, volume 7857 of Lecture Notes in Computer
Science, pages 260�265. Springer, 2012

� [BGH+12] Roderick Bloem, Hans-Jürgen Gamauf, Georg Ho�erek, Bettina
Könighofer, and Robert Könighofer. Synthesizing robust systems with
RATSY. In Doron Peled and Sven Schewe, editors, SYNT, volume 84 of
EPTCS, pages 47�53, 2012

� [SHB11] Matthias Schlaipfer, Georg Ho�erek, and Roderick Bloem. Gen-
eralized reactivity(1) synthesis without a monolithic strategy. In Kerstin
Eder, João Lourenço, and Onn Shehory, editors, Haifa Veri�cation Con-
ference, volume 7261 of Lecture Notes in Computer Science, pages 20�34.
Springer, 2011

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis for pi-
pelined circuits using uninterpreted functions. In Singh et al. [SJKB11],
pages 31�42

� [KHB10] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. De-
bugging unrealizable speci�cations with model-based diagnosis. In Sharon
Barner, Ian G. Harris, Daniel Kroening, and Orna Raz, editors, Haifa Ver-
i�cation Conference, volume 6504 of Lecture Notes in Computer Science,
pages 29�45. Springer, 2010

� [BCG+10] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg
Ho�erek, Robert Könighofer, Marco Roveri, Viktor Schuppan, and Richard
Seeber. RATSY - a new requirements analysis tool with synthesis. In
Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV, volume 6174
of Lecture Notes in Computer Science, pages 425�429. Springer, 2010

� [KHB09] Robert Könighofer, Georg Ho�erek, and Roderick Bloem. De-
bugging formal speci�cations using simple counterstrategies. In Biere and
Pixley [BP09], pages 152�159

� [THG+08] Ronald Toegl, Georg Ho�erek, Karin Greimel, Adrian Leung,
Raphael Chung-Wei Phan, and Roderick Bloem. Formal analysis of a

A.3. Relationship between Publications and Thesis 127

TPM-based secrets distribution and storage scheme. In ICYCS, pages
2289�2294. IEEE Computer Society, 2008

� [HW08] Georg Ho�erek and Johannes Wolkerstorfer. Coupon recalculation
for the GPS authentication scheme. In Gilles Grimaud and François-Xavier
Standaert, editors, CARDIS, volume 5189 of Lecture Notes in Computer
Science, pages 162�175. Springer, 2008

A.3 Relationship between Publications and The-

sis

This thesis is based on the following publications (in chronological order):

� [HB11] Georg Ho�erek and Roderick Bloem. Controller synthesis for pi-
pelined circuits using uninterpreted functions. In Singh et al. [SJKB11],
pages 31�42

� [EKH12] Rüdiger Ehlers, Robert Könighofer, and Georg Ho�erek. Symbol-
ically synthesizing small circuits. In Gianpiero Cabodi and Satnam Singh,
editors, FMCAD, pages 91�100. IEEE, 2012

� [HGK+13] Georg Ho�erek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong
Roland Jiang, and Roderick Bloem. Synthesizing multiple boolean func-
tions using interpolation on a single proof. In Jobstmann and Ray [JR13],
pages 77�84

Throughout this thesis, sections which reuse material from these publications
are marked with grey boxes entitled Declaration of Sources. In addition to
that, the most important relations between these publications and this thesis
are stated below.

In [HB11], we �rst introduced the concept of synthesizing Boolean signals
from speci�cations with uninterpreted functions. We also provided a proof of
decidability, and showed how to reduce the problem to propositional logic. Using
an illustrative toy example, we also showed how to model controller synthesis
problems for pipelined circuits. Thus, Chapter 3 and Chapter 4 are largely based
on [HB11].

In [HGK+13], we have shown how interpolation (on theory level) can be
used to solve our synthesis problem. Furthermore, we introduced the concept
of n-interpolation and showed how it can be done. Thus, Chapter 5 (with the
exception of Section 5.4) is largely based on [HGK+13].

In [EKH12], we show how to use computational learning to obtain func-
tional implementations from non-deterministic relations. The alternative syn-
thesis approach presented in Section 6.4 is based on the same idea. Moreover,
in [EKH12], we discussed alternative approaches for extracting certi�cates from
general strategies, and our experiences with them. This discussion is the basis
for Section 4.2.6.

B
Cooperations

According to the Statutes of the Doctoral School of Computer Science at Graz
University of Technology, a PhD thesis must contain an explanation of cooper-
ations concerning the work described in the thesis. The following list details all
such notable cooperations between the author and other persons. The list is in
no particular order.

� There have been frequent and ongoing discussions with Roderick Bloem
on all parts of this thesis.

� Robert Könighofer participated in many discussions on many di�erent as-
pects of this thesis, and provided valuable feedback.

� Bettina Könighofer provided assistance in implementing and debugging
parts of Suraq.

� Johannes Winter provided his vast experience with programming and de-
bugging tools to help foster the development of Suraq.

� Christoph Hillebold implemented Suraq's parser for veriT proofs and
also refactored the formula package of Suraq such that formulas became
immutable, unique objects.

� A �rst implementation of reordering of resolution proofs within Suraq

was done by Ashutosh Gupta.

� The concept of n-interpolation was developed in close cooperation with
Ashutosh Gupta. Jie-Hong Roland Jiang suggested to use Pudlák's sym-
metric interpolation scheme, instead of the asymmetric scheme by McMil-
lan.

129

130 Appendix B. Cooperations

� David Ko�er implemented an alternative approach to obtain proofs with-
out non-colorable literals, by replacing the equality predicate with an un-
interpreted ternary predicate. This was part of David's Bachelor's thesis,
which was supervised by the author of this thesis.

� Pascal Fontaine provided valuable background information on veriT and
also contributed to fruitful discussion on how to obtain colorable, local-�rst
proofs.

� BrunoWoltzenlogel Paleo provided some customizations of Skeptik which
made interaction with Suraq much easier. He also was part of some very
fruitful discussions on proof transformations.

� Georg Weissenbacher contributed to the development of modular SMT
solving, by providing his expertise on interpolation in �rst-order theories.

� Georg Schadler is implementing the modular SMT solving approach as
part of his Bachelor's thesis, supervised by the author of this thesis. At
the time of writing this list, this was ongoing work.

Index

abstraction, 3, 8, 11
predicate abstraction, 12

Ackermann's reduction, 21�23, 49
array property, 19
atom, 16
axiom, 17

blocking clause, 25, 27, 78, 85
bound variable, 17

cache, 54
certi�cate, 5�7, 13, 28, 52, 53, 63, 64,

67, 81, 85, 112, 113
semantic certi�cate, 85
syntactic certi�cate, 85

characteristic function, 52, 58
chord, 23
chordal, 23
circuit, 68
closed formula, 17
cofactor, 52, 53, 84
color, 29
colorable, 13, 29, 30, 69, 73, 74, 112
colorless, 29
commutative, 4, 32
comparator, 52, 68
completion, 7, 38, 41
con�ict-driven clause learning, 27, 76
congruence

function congruence, 18
predicate congruence, 18

congruence closure, 25
congruence graph, 25
congruence justi�cation, 26
constraints

congruence constraints, 22
transitivity constraints, 23

controller, 3
correct-by-construction, 1, 8

counterexample, 8, 40, 88
counterstrategy, 10

DAG-sharing, 94
datapath, 2�4, 11, 13, 37, 40, 112
decidability, 7, 44
DLX, 101, 102, 104, 109, 112
domain of discourse, 16, 46
DPLL(T), 27, 28, 77

eager encoding, 20, 83
equality graph

non-polar, 22
equality justi�cation, 26
equality predicate, 18
equisatis�able, 16, 20, 23
expansion, 45, 60

�rst-order theory, 17
forwarding, 13, 37, 100, 102
free variable, 17
functional consistency, 3
functional synthesis, 13

garbage collection, 90, 91
global, 29
grammar, 16, 19, 34

HashMap, 91
HashSet, 95
heap, 96, 102
Henkin quanti�er, 114
Herbrand function, 85

immutable, 91, 94
incremental, 88
index guard, 19
index set, 21
index set construction, 21
induction, 26, 65

131

132 Index

interpolant, 4, 29, 78
n-partial interpolant, 63
partial interpolant, 29

interpolation, 6, 7, 13, 26, 29, 54, 57
n-interpolation, 7, 62, 68, 81, 93,

102, 104, 109, 112
iterative, 58, 106, 109
McMillan interpolation, 67

interpolation theorem, 29
invariant, 32, 40
irredundant sum-of-products, 54

Java, 8, 89, 95, 96
Java virtual machine, 90, 102

lazy encoding, 24, 83, 85
learning, 55, 88
linear integer arithmetic, 79
Live long and prosper, 114
logical symbols, 17

microprocessor, see processor
model, 17
multiplexer, 68
multiplier, 3, 11

non-colorable, 29, 30, 69, 70, 73
non-logical symbols, 17

open formula, 17
open source, 89

partition, 29
pipeline, 4, 6, 7, 13, 30, 35, 99, 101,

104, 109, 111, 112
empty pipeline, 41
�ush, 4, 7, 30, 38

pipelined processor, see processor
pipelining, 3
polarity, 16, 28
processor, 4, 6, 30, 35, 36, 99, 101, 102,

109, 111, 112
pro�ler, 96
program sketching, 12
progress, 32, 40
proof rules, 27, 29, 64
propositional skeleton, 20, 24

Q-consensus proof, 85
Q-resolution proof, 85

reactive, 11
re�exivity, 18
relation, 52, 58
reordering, 84
repair, 12
resolution, 28
resubstitution, 52, 53, 109

S-expression, 90, 91
satis�ability, 20, 24, 45

modulo theories, 19
signature, 17, 54
Skolem function, 85
sort, 19, 90
stall, 32, 41, 101, 102
strategy, 53
su�ciently large, 46
symmetry, 18
synthesis, 1, 2, 4�6, 8, 10, 11, 32, 33,

36, 52, 109, 111, 112
functional synthesis, 12

template, 87, 88, 113
temporal logic, 11, 13, 53
theory solver, 24, 27
toy example, 36
transitivity, 7, 18, 51, 52, 84, 104
TreeSet, 95

uninterpreted function, 3, 4, 6, 8, 12,
13, 21, 22, 37, 46, 111

unrealizability, 10, 40

validity, 20, 44
value constraint, 19
veri�cation, 1, 5, 7, 8, 12, 30, 32, 38,

40

Index 133

Note

This index does (in general) not contain any entries that are also listed
in the glossary, acronyms, or notation section.

Author Index

Ackermann, Wilhelm 21�23, 49
Alur, Rajeev 10
Angluin, Dana 88

Balabanov, Valeriy 85, 114
Ball, Thomas 8, 13, 74
Bañeres, David 53, 54
Barrett, Clark 90
Bayless, Sam 8, 13, 74
Biere, Armin 85
Bjørner, Nikolaj 14, 92
Bloem, Roderick 10�13, 15, 33, 43,
52�54, 57, 69, 83�85, 97, 100, 104,
113, 125�127

Boudou, Joseph xx, 14, 113
Bouton, Thomas xx, 14, 92
Bradley, Aaron R. xix, xxiii, 15, 16,
19, 21, 23, 48, 91

Brayton, Robert 52, 54
Bryant, Randal E. xxv, 21�23, 50, 55,
84

Burch, Jerry R. xix, 4, 5, 12, 30, 32,
35, 111

Chatterjee, Krishnendu 11, 125
Chatterjee, Satrajit 54
Chiang, Hui-Ju Katherine 114
Church, Alonzo 1
Cimatti, Alessandro 54, 126
Clarke, Edmund M. 12
Cook, Byron 12
Cortadella, Jordi 53, 54
Craig, William 7, 29

Davis, Martin 27
de Alfaro, Luca 12

de Moura, Leonardo Mendonça 14, 92
de Oliveira, Diego Caminha B. xx, 14,
92

Déharbe, David xx, 14, 92
Dill, David L. xix, 4, 5, 12, 30, 32, 35,
111

Drechsler, Rolf 126
D'Silva, Vijay 29, 68, 73, 113
Dworkin, Lili 10

Ehlers, Rüdiger 11, 43, 53, 55, 88,
126, 127

Emerson, E. Allen 12

Fellner, Andreas xx, 14, 113
Fey, Görschwin 126
Filiot, Emmanuel 11
Finder, Alexander 126
Finkbeiner, Bernd 11
Fontaine, Pascal xx, 14, 92, 113
Fuchs, Alexander 13, 25, 58, 68, 70,
71, 79, 93

Galler, Stefan J. 11, 13, 52, 53, 113
Gamauf, Hans-Jürgen 126
Goel, Amit 13, 25, 58, 68, 70, 71, 79,
93

Gopalakrishnan, Ganesh 7, 38
Greimel, Karin 11, 54, 125, 126
Griesmayer, Andreas 12
Grundy, Jim 13, 25, 58, 68, 70, 71, 79,
93

Gupta, Ashutosh 10, 15, 57, 69, 73,
85, 97, 100, 104, 126, 127

Henkin, Leon 114

135

136 Author Index

Hennessy, John L. 101, 109, 112
Henzinger, Thomas A. 11, 125
Hoder, Krystof 13
Hoe, James C. 13
Ho�erek, Georg 10, 11, 15, 33, 43,
53�55, 57, 69, 83�85, 88, 97, 100,
104, 125�127

Hoos, Holger H. 8, 13, 74
Hosabettu, Ravi 7, 38
Hu, Alan J. 8, 13, 74
Hung, Wei-Lun 7, 13, 52, 54, 57�62
Huth, Michael 19

Jacobs, Swen 11
Jiang, Jie-Hong Roland 7, 13, 52, 54,
57�62, 85, 114

Jin, Naiyong 11
Jobstmann, Barbara 11�13, 52, 53,
113, 125

Kam, Timothy 13
Khalimov, Ayrat 11
Kishinevsky, Michael 53, 54
Könighofer, Bettina 10, 11, 15, 57, 69,
85, 97, 100, 104, 125�127

Könighofer, Robert 10, 11, 43, 53�55,
88, 125�127

Kovács, Laura 13
Kroening, Daniel 15, 16, 27, 29, 45,
68, 73, 113

Krstic, Sava 13, 25, 58, 68, 70, 71, 79,
93

Kukula, James H. 53
Kuncak, Viktor 12, 13, 61, 62

Leung, Adrian 126
Li, Wenchao 10
Lin, Hsuan-Po 7, 13, 52, 54, 57�62
Logemann, George 27
Lonsing, Florian 85
Loveland, Donald 27
Lu, Shih-Lien 13

Manna, Zohar xix, xxiii, 15, 16, 19,
21, 23, 48, 91

Marques Silva, João P. 27

Mayer, Mikaël 12, 13, 61, 62
McCarthy, John 18
McMillan, Kenneth L. 13, 29, 58, 67,
74

Merz, Stephan 14, 113
Minato, Shin-ichi 54
Mishchenko, Alan 54
Moarref, Salar 10
Morgenstern, Andreas 11
Morreale, Eugenio 54

Nelson, Greg 25
Nurvitadhi, Eriko 13

Oppen, Derek C. 25

Patterson, David A. 101, 109, 112
Phan, Raphael Chung-Wei 126
Piskac, Ruzica 12, 13, 61, 62
Piterman, Nir 11, 13, 52, 53, 113
Pnueli, Amir 11, 13, 52, 53, 113
Pudlák, Pavel 29, 64, 67
Purandare, Mitra 29, 68, 73, 113
Putnam, Hilary 27

Raik, Jaan 126
Raskin, Jean-François 11
Repinski, Urmas 126
Rosner, Roni 11
Roveri, Marco 54, 126
Roy, Pritam 12
Ryan, Mark 19

Sa'ar, Yaniv 11
Sakallah, Karem A. 27
Schewe, Sven 11
Schlaipfer, Matthias 126
Schneider, Klaus 11
Schuppan, Viktor 54, 126
Seeber, Richard 54, 126
Seshia, Sanjit A. 10
Shiple, Thomas R. 53
Shostak, Robert E. 25
Sipma, Henny B. xix, 19
Sohail, Saqib 11
Solar-Lezama, Armando 12

Author Index 137

Somenzi, Fabio 11
Srivas, Mandayam K. 7, 38
Strichman, Ofer 15, 16, 27, 45
Stump, Aaron 90
Sül�ow, André 126
Suter, Philippe 12, 13, 61, 62

Tinelli, Cesare 13, 25, 58, 68, 70, 71,
79, 90, 93

Toegl, Ronald 126
Topcu, Ufuk 10
Tseitin, Grigori S. xx, 17

Val, Celina G. 8, 13, 74

Vechev, Martin T. 12
Velev, Miroslav N. xxv, 21�23, 50, 55,
84

Voronkov, Andrei 13

Watanabe, Yosinori 52
Weiglhofer, Martin 11, 13, 52, 53, 113
Weissenbacher, Georg 29, 68, 73, 113
Wolkerstorfer, Johannes 127
Woltzenlogel Paleo, Bruno xx, 14, 113
Wrathall, Celia 56

Yahav, Eran 12
Yorsh, Greta 12

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Signaturwert rcMKiJvN8RT0panZWXWMdtgx6oUVUwryiLdY9H+8LXXAaU/Ch5c2UW6ylQQq5Bx3iar5ndZz5
7gDmjJcD4SP9w==

Unterzeichner DI Georg Hofferek

Aussteller-Zertifikat CN=a-sign-Premium-Sig-02,OU=a-sign-Premium-Sig-02,
O=A-Trust Ges. f. Sicherheitssysteme im elektr.
Datenverkehr GmbH,C=AT

Serien-Nr. 946972

Methode urn:pdfsigfilter:bka.gv.at:binaer:v1.1.0

Parameter etsi-moc-1.1:ecdsa-sha256@173e96df

Prüfinformation Signaturpruefung unter: http://www.signaturpruefung.gv.at

Hinweis Dieses mit einer qualifizierten elektronischen Signatur versehene
Dokument ist gemäß § 4 Abs. 1 Signaturgesetz einem handschriftlich
unterschriebenen Dokument grundsätzlich rechtlich gleichgestellt.

Datum/Zeit-UTC 2014-06-17T09:12:10Z

	Title Page
	Epigraph
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Glossary
	Acronyms
	Notation
	Introduction
	Background and Motivation
	Problem Description
	Contribution
	Contribution 1 — Stating the Synthesis Problem
	Contribution 2 — Computing Certificates
	Contribution 3 — Prototype Tool

	Outline of this Thesis
	Related Work

	Preliminaries
	Theories in First-Order Logic
	Propositional Logic
	First-Order Logic
	First-Order Theories
	Theory of Uninterpreted Functions and Equality
	Theory of Arrays

	Satisfiability Modulo Theories Solving and Refutation Proofs
	Eager Encoding
	Lazy Encoding
	DPLL(T)
	Refutation Proofs
	Certificates

	Craig Interpolation
	Burch-Dill Paradigm

	Modeling
	Specification Language
	Creating a Specification

	Decidability and Complexity
	Decidability
	Reduction to Propositional Logic
	Structure of Proofs
	Reduction from specQSQ to Tu
	Reduction from Tu to Te
	Reduction from Te to Propositional Logic
	Extracting Certificates
	Alternative Methods for Certificate Extraction

	Computational Complexity

	Interpolation-based Synthesis
	Iterative Interpolation
	Single Control Signal
	Multiple Control Signals

	n-Interpolation
	Computing n-interpolants
	The Need for localFirst Proofs
	Creating an Implementation from an n-Interpolant

	Proof Transformations
	Obtaining a Colorable Proof
	Reordering Resolution Steps
	Summarizing the Transformation Steps

	Modular SMT Solving
	Tree-like Modular SMT Problems
	Solving Algorithm
	Proof Generation

	Other Synthesis Approaches
	Binary Decision Diagrams
	Eager Encoding to QSAT
	Lazy Encoding to QSAT
	Template Instantiating

	Implementation and Experimental Results
	Suraq — A Prototype Implementation
	Input Format
	Formula Processing
	SMT Solver Interaction
	Proof Processing
	Interpolation
	Output Format and Checking Results
	Lessons Learned

	Benchmarks
	Scalable, Illustrative Example
	Simple Processor
	DLX Processor

	Experimental Results
	Runtime Results (n-Interpolation Mode)
	Proof Sizes (n-Interpolation Mode)
	Iterative Mode
	Key Results

	Conclusion
	Summary in Retrospect
	Goals Achieved
	Future Work
	Small Certificates
	Certificate Strength
	Modular SMT Solving
	Formulas with Multiple Time-Instances of Control Signals

	Last Words

	Bibliography
	List of Publications
	Journal Publications
	Publications in Conference and Workshop Proceedings
	Relationship between Publications and Thesis

	Cooperations
	Index
	Author Index
	Statutory Declaration

