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Abstract

Large data repositories, such as those used in enterprises, typically store

many millions of unstructured, human-readable documents, which contain

complex, high-dimensional, multi-faceted information. Such repositories ex-

hibit a highly dynamic behavior characterized by continuous adding, removing

and modification of the data set elements. This work deals with the develop-

ment and application of interactive visual techniques supporting exploratory

analytical processes in large, complex, dynamically changing data sets. Devel-

oped visual techniques and algorithms empower the user to obtain an overview

and gain insight into the data set at different levels of detail through orga-

nizing and structuring the data according to relatedness. Through unveiling

underlying, implicitly present structures, the user can understand the degree of

relatedness between these structures, identify features revealing their essence,

perceive their size and cohesion, discover anomalies and outliers, and correlate

orthogonal facets of the data such as rich metadata. Particular focus is laid

on capturing dynamics by revealing changes and trends, and unveiling causal

relationships. Developed visual techniques were integrated and combined with

automatic processing methods into interactive user interfaces for discovery and

analysis of topical-temporal patterns in textual data. Also, to demonstrate the

applicability of the developed technologies on other domains and data types,

selected techniques were applied on semantic data. Performed research and

development was driven by real-world needs from application domains such as

business and governmental intelligence, and media analytics. Feedback from

early adopters helped improve applicability of the resulting visual techniques,

leading to their productive deployment in selected knowledge discovery work-

flows and use cases. Data collected from the performed usability experiments

was analyzed to identify and fix usability issues, and allow statements on per-

formance of the developed technologies.
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Chapter 1

Introduction

1.1 Motivation

The already enormous amount of information available electronically is grow-

ing at a very high rate. An IDC study [IDC 2007] conducted in 2006 estimates

that by 2006 the amount of information available in digital form is approx-

imately 161 Exabyte. An updated forecast [IDC 2008] from 2008 revealed

that the information growth outpaces the estimates made a year before, and

that by 2012 the amount of information will double every 18 months. While

tools for finding and retrieving a single or a few relevant pieces of informa-

tion have been successfully applied in practice, it is clear that when a holistic

view on large amount of complex data is needed, scalable analysis techniques

considering the entirety of the data set are required.

Knowledge discovery (KD) is a process of automatically processing very

large amounts of raw data in order to identify patterns and extract new knowl-

edge [Fayyad et al. 1996]. Knowledge discovery is wide area of research where

variety of approaches can be applied to perform the analysis. Typically sta-

tistical and machine learning methods are used, however, approaches such as

rule-based systems, artificial neuronal networks, natural language analysis and

similar may also be employed. Knowledge discovery process typically includes

the following steps: data selection and gathering, data pre-processing and

cleansing, data transformation, data mining and analysis, presentation and

visualization, as well as user feedback. In this process it is the mining step

is where patterns are identified and new knowledge is extracted and aggre-

gated from large amounts of raw data. Traditionally, data mining techniques

are applied on structured information saved in databases. However, a signif-

icant part of the available information is typically present in unstructured or

weakly structured form, such as multimedia files or text documents, which

1
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necessitates adequate mining techniques.

Mining methods rely solely on automated machine computation capabil-

ities. Automated analysis techniques have a tendency of being very hungry

for computing power, and although computer hardware has experienced enor-

mous speed ups during the past decades, for certain tasks machines still do not

come even close to the capabilities of humans. In contrast to automatic ana-

lytic methods, visualization techniques make use of the enormously powerful

human visual system, which is capable of recognizing patterns and identifying

correlations at once, even in huge amounts of data. Humans can quickly see,

explore, and understand complex relationships as long as the data is available

in a form which is convenient for the eye to process information: the visual

representation. This remains true even when the underlying data is incomplete

or contains contradictory information to a certain degree.

Visual analytics is defined as the science of designing and applying interac-

tive graphical user interfaces with the aim of facilitating analytical reasoning

[NVAC 2005]. It is an interdisciplinary field based on information visualiza-

tion, knowledge discovery, as well cognitive and perceptual sciences. Visual

analytics combines the advantages of visualization techniques with automatic

processing by machines to provide means for effectively revealing patterns and

trends, and unveiling hidden knowledge in complex data. Interactive visual

techniques are an effective enabler for exploratory analysis [Tukey 1977] em-

powering users to pose and test a hypothesis, provide assessments and quickly

derive conclusions. These characteristics make visual analytics effective for

gaining insight into and acquiring knowledge about a data set the user is

unfamiliar or only partially acquainted with.

1.2 Focus

1.2.1 Scope

The main topic of this work is the development and application of interac-

tive visual techniques for supporting exploratory analytical processes in large,

unstructured, complex, dynamic data sets. To narrow down the scope and

define the focus more precisely, the characteristics of the targeted data sets

are specified as follows:

• Large data set is, in the context of this work, a repository containing up

to several million elements, as used in typical organizations (enterprises),

whereby data set elements are usually documents, but can also be any

other kind of entity such as for example ontological concepts. Therefore,
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large scale is understood to be significantly smaller than huge, Web-scale

data sets with sizes of up to billions of elements.

• Unstructured, or weakly structured, data lacks, to a large degree, an

explicit structure organizing data set as a whole. An example is infor-

mation present in human readable text documents stored in a file system,

as opposed to data stored in a relational databases or spreadsheets.

• Complex information, in the context of this work, consists of data el-

ements characterized by rich metadata and high-dimensionality, i.e. a

very large number (thousands) of describing features (or variables, or

dimensions), where at the same time these features can be of different

types, for example topical, temporal, or geospatial, each type describing

a different aspect of the data elements.

• Dynamically changing data sets are characterized by a significant in-

flux of new, removal of old, as well as modification of present data set

elements. However, it should be noted that handling of document ver-

sioning is not within the scope of this work.

In the past the visual techniques were applied on large, but predominantly

static data sets, with the analyses usually focused on a single aspect of the

data, for example on similarity in text or gene expression data, or trends in

financial (numeric) information. Visual tools for discovery and analysis of

complex relationships and correlations, i.e. those taking into account different

aspects of the data, such as topical, temporal, or geospatial, in dynamically

changing repositories are still underrepresented. Investigation of possibilities

for combining visual and automated techniques for analysis of such reposi-

tories, with the aim of applying them in real-world, productive knowledge

discovery scenarios is an exciting and promising area of research, and it also

represents the novelty introduced by this work.

Research performed within this work was on one hand inspired by the

creative impulse wishing to improve on existing visual techniques and meth-

ods, and on the other hand driven by the real-world needs from application

domains such as business and governmental intelligence or media analytics.

The applied character of the performed research should be underlined by close

cooperation with technology recipients from the industry, where the involve-

ment of early adopters in the development cycle has the purpose of increasing

the practical applicability of the resulting visual analysis methods. Developed

visual techniques were productively deployed in specific knowledge discovery

workflows and use cases.
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1.2.2 Goals and Research Questions

The main goals which should be achieved by the developed visual techniques

were derived during a discussion process involving (i) users with particular

needs in the application domains such as business, governmental and media

intelligence, and (ii) on the other side Know-Center’s Knowledge Relationship

Discovery [KC-KRD 2011] research team which generated ideas, suggestions

and proposals how to address these needs through visual analysis and knowl-

edge discovery methods. Visual analysis techniques and algorithms which

resulted from this process are targeted at the domain expert users, and should

enable them to accomplish the following:

1. Obtain an overview and gain insight into the data set at different levels

of detail.

2. Navigate and explore the data set along the implicitly present structure

arising from organizing and aggregating data set elements according to

their relatedness. To facilitate explorative navigation on that structure

the user must also be able to:

(a) understand the degree of relatedness between different data set ele-

ments and/or aggregated structures, including discovery of anoma-

lies and outliers,

(b) perceive the size and cohesion of the discovered structures,

(c) identify important features which reveal and describe the essence

of the structures and/or data set elements.

3. Reveal trends and changes over time occurring in the data set, including

causal relationships and recurring events,

4. Correlate the discovered structures with other, orthogonal facets of the

data, such as various metadata or extracted entities.

To summarize, the main goal of this work is to develop visual techniques and

methods for discovery and analysis of topical-temporal patterns in textual

data and their correlation with rich metadata.

The concept of ”relatedness”, being central to this work, deserves particu-

lar attention. In the context of this work relatedness should be understood as

the degree of connectedness of some kind between a pair of entities or, more

specifically, the strength of an implicit or explicit relationship of a possibly

complex or abstract type, connecting a pair of entities. A few examples:
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• topical similarity is probably the most natural measure of relatedness

for text documents

• a relationship between text documents arising due to sharing the major-

ity of the authors

• a relation between a scientific organization and an expert due to activity

in the related fields of research

• complex relationships, i.e. those simultaneously taking into account dif-

ferent aspects of the data, such as topical, temporal, spatial, etc.

Allowedly, the concept of relatedness as defined above is wide. It would be out

of the scope of this work to provide evidence that technologies and methods

described in this work can address relatedness in its general sense. Instead,

this work focuses on discovery and analysis of patterns arising from topical

relatedness in textual data sets. While the developed techniques should, in

principle, be applicable to large, high-dimensional, dynamic data sets in gen-

eral, in the context of this work they are targeted primarily to relatedness

analysis in metadata-rich text repositories, such as enterprise content and

knowledge management systems, news and media repositories, scientific pub-

lication, patent or legal documentation databases, etc. The reason being, that

this work was driven by practical problems and requirements in application

domains such as business and governmental intelligence, or media analysis,

where the importance of analysis of textual data can not be overestimated

[Zanasi 2005].

However, to demonstrate the applicability of the developed techniques on

data types other than text, a selection of developed techniques is applied

on semantic data (ontologies). For this purpose, a proof-of-concept visual

application was developed addressing discovery and analysis of patterns which

arise from semantic relatedness between concepts from different knowledge

bases.

While large scale and high-dimensionality are two challenges commonly

perceived as ”hard” in visual analytics and knowledge discovery methods, this

work also considers a third one which, although common in real-world data

sets and applications, has often been given less attention: the fact that in

today’s fast paced world data sets grow and change at an astonishing rate.

Therefore, addressing dynamics in large, high-dimensional data sets is one of

the primary concerns of this work. Examples of temporal analysis include

the discovery of a series of recurring events occurring in a fixed chronological

order, or gaining insight into causal dependencies between events.
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Based on the above discussion, the research questions this work addresses

are as follows:

1. How can visual analytics techniques, i.e. visual methods combined with

automatic processing, be used to achieve the above listed goals?

2. Does the integration of multiple visualization components into a single

interactive user interface provide an effective instrument for simultane-

ously addressing all goals?

3. Can the developed techniques be extended and applied on more than

one data type and more than one type of relatedness?

1.2.3 Methodology

To achieve the goals listed above the following methodology was executed:

• Investigation of the available visual analysis tools and related algorithms

which are applicable to the proposed application domain, and an analysis

of those in order to identify areas offering largest potential for innovation

and where the largest impact can be achieved.

• Definition of the application domain(s) and selection of the data sets.

Analytical scenarios to be addressed were defined in cooperation with

the early adopters.

• Design and implementation of the visual components along the lines of

usability engineering.

• In parallel with the design and implementation heuristic evaluation was

applied. Improvements were integrated into developed components ac-

cording to evaluation results.

• At a later stage of development usability evaluation was performed. By

running a series of controlled experiments, the performance of the visual

components and tools was measured on specific tasks. The collected

data was statistically analyzed to identify and fix usability issues, and

allow statements on performance of the developed technologies.

• Depending on usability evaluation results improvements were imple-

mented, and the resulting visual tools were applied in productive en-

vironments.

The used methodology was conceived to ensure that the design and imple-

mentation of the visual techniques are successful in yielding visual components
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and tools which are suitable for addressing the targeted goals and subsequently

demonstrate that, for selected use cases and problem classes, developed com-

ponents and tools can provide an improvement compared to traditional, i.e.

non-visual, approaches.

It should be noted, that the contributions of this work build upon well-

known visual representation, which are developed further through introduction

of new ideas and techniques, and refined in detail depending on the results of

the usability evaluation studies and feedback collected from early adopters, to

achieve practical applicability in real-world scenarios. Note that planing and

conceiving completely new visual representations from scratch was not a goal,

as this would imply a strong shift of focus towards cognitive and perceptual

sciences, which is clearly out of the scope of this work.

1.3 Contributions

Contributions of this work include development of methods, components and

tools for visual analysis of large, unstructured, dynamic data sets. Developed

techniques were evaluated and deployed in selected knowledge discovery pilot

applications.

Several interactive visualization components, each addressing some of the

goals defined in the previous section, were developed. These are in particular:

• An information landscape featuring hierarchical space subdivision and

dynamic topography: this advanced visualization component is capable

conveying relatedness, quantitative distribution, cohesion, and changes,

features hierarchical data structuring and navigation, and offers various

visual channels for encoding other orthogonal aspects of the data which

are typically expressed as rich faceted metadata.

• A stream-view component for visualization of temporal data, including

tracking of change, identification of trends, temporal patterns, cyclic

phenomena and causal relationships.

• Extensions of standard GUI widgets such as trees and tables.

A framework for combining and integrating various components into a

single unified, coherent user interface was implemented along the line of coor-

dinated multiple views paradigm. Through view coordination tight coupling

of several visual components was achieved where interactions performed in

one component are immediately reflected in all components within the GUI,

extending analytical functionality beyond the capabilities of each single visual

components.
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Developed visual techniques were designed for supporting knowledge dis-

covery workflows and use cases. As such they integrate or are applied on

the results of mining algorithms provided by the KnowMiner framework

[KnowMiner 2011], such as for example information extraction and named

entity recognition, clustering and classification, faceted search and faceted

metadata, and others. In this context a prominent position is occupied by a

scalable, incremental, hierarchically aggregating ordination algorithm, which

was developed with the purpose of providing structures and geometry to the

visual components listed above. This algorithm, and its evaluation using visual

stress analysis, represents an important contribution of this work.

The development of the visual techniques and algorithms has been per-

formed in collaboration with early adopters who employed the developed tech-

nologies for addressing particular real-world knowledge discovery use cases.

Feedback collected from pilot users during early stages of the development

helped reveal the strengths of the proposed concept, identify weaknesses, gen-

erate ideas for improvements, and define the directions of further development.

Built upon the aforementioned technologies a prototypical demonstrator

application, the Knowledge Discovery Visual Environment (KDVE), consisting

of multiple coordinated visual components was used as proof of concept and

testbed. Usability evaluation was performed on the demonstrator including

formal experiments, thinking aloud tests, and heuristic evaluation. Following

tasks were performed using Reuters Corpus Volume 1 (RCV1) [RCV1 2000],

an English language news corpus, to allow statements on the performance of

the visual techniques:

• Explorative analysis of temporal-topical relationships through multiple

visual components: a user interface including a temporal and topical

visualization was compared to a user interface consisting of a temporal

visualization and standard GUI widgets.

• Navigation in topical hierarchies and exploration of topical relationships:

a complex user interface including visualization components was com-

pared to a user interface consisting of standard GUI widgets (such as

trees and tables) only.

• Usage of visual channels for correlating metadata and topical relation-

ships: evaluation of perceptibility of symbols (color only vs. color and

icons) used in an information landscape.

Generally speaking the evaluation results did confirm the usefulness of the

visual components and the integrated user interface in executing of particu-
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lar analytical tasks, but also revealed some substantial usability issues and

identified areas where the results were inconclusive.

A second prototype application, the Semantic Mediation Tool (SMT),

demonstrates the applicability of visual techniques for data sets other than

text. This tool addresses collaborative, semi-automatic alignment of ontolo-

gies through a combination of alignment algorithms and a visual user interface

consisting of several coordinated visual components.

1.4 Structure of the Document

After defining the goals and outlining the methodology and contributions of

the thesis in this chapter, the rest of the document is organized as follows:

Chapter 2 presents state-of-the-art and discusses related work. It intro-

duces central concepts and principles of information visualization and visual

analytics, and outlines their role within knowledge discovery processes. A brief

survey is given on visual methods providing on overview of large, unstruc-

tured data sets, and for visualization of change and temporal data. The chap-

ter also includes a summary on ordination and clustering algorithms. Pub-

lications authored or coauthored by me contributing to this chapter include

[Sabol et al. 2008a] (journal publication), [Sabol et al. 2008b] (book chapter),

and an upcoming book chapter on ”Visual Analysis and Knowledge Discovery

for Text” accepted for publication (as of December 2011) in ”Large-Scale Data

Analytics” (to be published by Springer).

Chapter 3 introduces relevant early research performed by the author be-

fore the goals and the focus of this work were defined. Some visual techniques

and algorithms described in this chapter introduce new ideas, others represent

an intermediate state in the development, while others provide fundamentals

which were used and extended to achieve the goals listed in Chapter 1.2.2,

and which led to the development of the techniques described in the follow-

ing chapter. Publications authored or coauthored by me contributing to this

chapter include but are not limitted to: [Andrews et al. 2002] (journal publi-

cation), [Sabol et al. 2007], [Kienreich et al. 2005a], [Kienreich et al. 2005b],

[Granitzer et al. 2004], [Andrews et al. 2004], [Kappe et al. 2003],

[Kienreich et al. 2003b], [Granitzer et al. 2003], [Sabol et al. 2002a] (confer-

ence proceedings), and [Andrews et al. 2003] (poster).

In Chapter 4 describes algorithms and visual techniques, providing an ex-

pert user with tools for exploratory visual analysis of large, complex, unstruc-

tured, dynamically changing repositories. The chapter begins with a descrip-

tion of scalable, incremental aggregation and ordination algorithms used to
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automatically extract structure from the data set and transform the data into

a representation suitable for visualization. Subsequently, components provid-

ing an interactive visual representation of data set are introduced. Finally, an

analytical user interface consisting of several visual components built around

a coordinated multiple view framework is described. The chapter also dis-

cusses the choices made and compares the developed techniques to state of

the art. Publications authored or coauthored by me contributing to this chap-

ter include [Granitzer et al. 2010] (journal publication) [Sabol et al. 2010b],

[Muhr et al. 2010], [Seifert et al. 2010a], [Sabol et al. 2009a],

[Sabol et al. 2008c], [Sabol et al. 2007] (conference proceedings), and

[Onn et al. 2011], [Sabol et al. 2009b] (posters).

Chapters 5 describes selected implementation details and the overall soft-

ware architecture of the developed components and tools. This includes the

VisTools library which implements the visual component and the coordination

functionality, and the KnowMiner framework which embeds the developed or-

dination algorithm. KnowMiner, the Knowledge discovery framework devel-

oped at the Know-Center over the past decade, also provides numerous other

algorithms which, although not developed within this work, provide results

used by visual components and tools, and therefore represents an essential

part of the overall software architecture. Publications coauthored by me con-

tributing to this chapter include [Klieber et al. 2009a], [Klieber et al. 2006]

(conference proceedings).

Chapter 6, demonstrates how the two prototype visual applications can be

used to address specific analytical tasks, whereby Knowledge Discovery Visual

Environment (KDVE) is applied on metadata-rich text data, while Semantic

Mediation Tool (SMT) is applied on ontological concepts. Several examples

and simple use cases are presented to illustrate the advantages of the systems

are discussed. Also, use case addressed by productive installations employing

the developed visual techniques are briefly outlined and discussed.

Chapter 7 concentrates on the algorithms implemented in Visualisation

Islands. Design decisions and a detailed description and analysis of the three

processing steps for constructing the visualization is given. The algorithms

(or classes of algorithms) described are: clustering of the retrieved documents

using single-pass, k-means, or hierarchical agglomerative clustering algorithms;

mapping the documents from the high-dimensional term space to the 2-D

viewport space using a force-directed placement algorithm; generation of a

2-D or 3-D style map background image. Central to this chapter are two

Bachelor Theses which I have supervised: [Krnjic 2008] and [Weitlaner 2009].

Chapter 8 provides a summary of the results achieved in this work and

also discusses ideas for improvements in areas which have not been addresses
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in a satisfactory manner. The chapter concludes with an outlook for future

research.

Appendix A briefly introduces the author, provides a list of his publications

and gives a short overview of his past research activities. The document

concludes with the Bibliography, containing a comprehensive list of relevant

scientific literature.
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Chapter 2

Foundations and Related

Work

This chapter gives a short introduction to information visualization and vi-

sual analysis, presents state-of-the-art relevant to this work, and discusses the

advantages and disadvantages of related work. After introducing the reader

to general principles of information visualization and visual analytics, and

their application in the context of knowledge discovery processes, a summary

of algorithms used for aggregating data and computing geometry needed by

the visualizations is provided. The chapter concludes with a survey on rele-

vant visual techniques, including space filling visual methods for providing on

overview and exploration of large, unstructured data sets, and methods for

visualization of change and temporal data.

2.1 Principles of Visually Supported Analysis

Visualization in general includes all techniques dealing with creating images or

animations for communication of data, information and knowledge. Visualiza-

tion relies on the human visual perception capabilities, allowing us to process

large amounts of information and recognize patterns at once by simply seeing

things. Preattentive processing [Treisman 1985] is an illustrative example, al-

lowing humans to process information automatically and without the need for

focused attention, in as little as 200 to 250 milliseconds. It requires adequate

use of visual features such as color, contrast, size, curvature, size, etc. En ex-

ample is given in Figure 2.1, where the red circle can be detected immediately

in the left image, while in the right image it is possible only through scanning.

Through the use of computer graphics and pervasiveness of computers

visualization has expanded into many fields of human activity. Depending

13
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Figure 2.1: Visual representations where preattentive processing is possible

(left) and not possible (right) [Healey 2009].

on level of abstraction and complexity (see Figure 2.2) visualization can be

subdivided into:

• Data visualization deals with representing data as raw material in partic-

ular format. A common example is scientific visualization which graphi-

cally represents data which has a natural geometric representation in the

real world, such as for example simulation or sensory data, with typical

applications being in the fields of physics, medicine, industry etc.

• Informations visualization is about representing abstract information

spaces, i.e. information which does not have a natural representation

in the real world. Instead, the abstract information, being a result of

processing, manipulation and interpretation of data in a given context,

is represented in an abstract way suitable for that particular context.

• Knowledge visualization is about communication of knowledge as identi-

fied, classified, and as valid recognized information, with visual represen-

tations depending on formal, domain-specific models used to represent

abstract concepts, facts and conditions.

Note that alternative classifications for visual representations are also avail-

able, for example in [Lengler 2007] where authors attempt to classify a large

number of different representations into a so-called ”periodic table of visual-

ization methods”.
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Figure 2.2: Data vs. information vs. knowledge.

2.1.1 Information Visualization

Since information visualization focuses on representing abstract information

which has no natural visual representation, the design and geometrical compo-

sition of the used visual representation must be adapted to the characteristics

of the visualized information and the context in which this information is

used and interpreted. Different visual representations can fall into one of the

following fundamental categories [Eibl et al. 2001][Nardi & Zarmer 1990]:

• Formalisms are abstract schematic representations which typically do

not have equivalents in the real-world, requiring the user to learn how

to read and use them. The advantage of formalisms is that they have

a clearly defined sematics. Simple examples are using arcs to represent

percentages or using an x-y plot to visualize dependency between two

variables.

• Metaphors visualize abstract information using an well-known equivalent

for information which does have a natural representation in the real

world. Metaphors are usually more intuitive than formalisms, because

the user can infer the meaning through analogy. However, this comes

at the price of ”fuzzier” semantics, as analogies between two different

domains have to be drawn. An example is using a geographic map

metaphor for visualizing pools of gene expression data arranged and

located depending on relatedness.

• Models are based on internal mental representations of real physical

system - the mental models - which can be mentally manipulated to

simulate the system and reason about the real world. Therefore, models
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present information which has a real-world representation in its natural

form, for example using 3D virtual worlds.

Due to the abstract nature of the visualized data, visual representations

used in information visualization make use of formalisms and metaphors. Mod-

els are used only in special cases, for example geovisualization can be employed

when abstract data can be mapped onto geospatial coordinates. Despite a wide

variety of available visual representation each with a distinct interaction model,

design guidelines for information visualization applications can be summarized

in the well-known visual information seeking mantra: ”overview first - zoom

and filter - details on demand” [Shneiderman 1996]. When designing a visual

representation decisions have to be made concerning the mapping of data set

(logical) attributes to the visual attributes of the items in the visualization.

Some often used visual coding principles are:

• Size coding: Size is use to indicate quantitative, numeric information

such as a length of a document or a number of elements within a collec-

tion.

• Color coding: Using different colors is good for coding discrete (nominal)

values, such as the type of an object. Color is also show quantitative

information, but faces problems when several colors are mixed. A special

case of color coding is transparency coding.

• Brightness coding: Brightness is suitable for numeric information. It is

similar to size coding, but has the advantage that it can be applied when

the space is limited.

• Shape coding: Shapes are typically used to display non-numerical, dis-

crete (nominal) information. Shapes can be purely geometric structures

or metaphors derived from real world objects. As metaphors influence

the mental model of the user care must be taken to use match visual

metaphors to properties of the data.

• Proximity coding: The distance between objects in the visualization

can be used to code numeric relationships in the data, for example in

graphs connected elements will be placed closer to each other than the

unconnected.

• Position coding: A position of an object relative to an axis is usually

dependent on some numerical value. Nominal values can also be coded

this way when the order of the attributes which are placed on the axis

is defined.
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Besides the visual design the interactivity of a visual component is of its

central properties. A visualization must offer the possibility to intuitively

navigate the information space, manipulate the displayed objects, request ad-

ditional information, and perform operations specific to that particular com-

ponent. Typical interactions offered by interactive visual components are:

1. Zooming: Zooming in displays a smaller region of the currently displayed

for a more detailed display. Zoom out is the opposite operation, changing

the view from a smaller space area to a large one decreasing the level of

detail.

2. Panning: When the visualization space is larger than the available screen

area (smooth) motion from one part of the visualized space to another

reveals information which was previously outside of the displayed screen

area.

3. Selection: This operation chooses a set of displayed objects so that some

other operation can be applied on them.

4. Dragging: Moving a group of (selected) objects so that their position is

changed compared to the rest of the visualized objects. Dragging usually

triggers another operation specific to the involved visual component.

5. Filtering: The operation of removing, temporarily or permanently, un-

interesting elements from the display, according to a specified criteria.

6. Pointing to: By pointing, for example with the mouse pointer, a visu-

alized object is declared to be in the focus of user’s interest, usually to

reveal additional information on the object.

Although the field of information visualization is still relatively new, there

is already a large number of various visual representation and components

each targeting different characteristics of the data or different user needs.

Various schemata for classifying different visual representations and visualiza-

tion systems were proposed. In [Shneiderman 1996] a taxonomy was proposed

depending on seven data types (1-, 2-, 3-dimensional data, temporal and multi-

dimensional data, and tree and network data) and seven user tasks (overview,

zoom, filter, details-on-demand, relate, history, and extract). In another ex-

ample [Andrews 2010a] visual representations can be classified depending on

the characteristics of the data into those visualizing:

• linear structures

• hierarchies
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• networks and graphs

• multidimensional metadata

• high-dimensional feature spaces (such as text)

• query spaces

For further reading on information visualization up-to-date information can be

found in [Ware 2004], [Chen 2006] and [Spence 2007]. For a wider, more uni-

versal approach spanning the fields of psychology, perception, and cognition,

over art and design, to engineering disciplines of visualization, computer graph-

ics and user interfaces [Ware 2004] and [Tufte 1990] can be recommended.

2.1.2 HCI and Usability Evaluation

Human-computer interaction (HCI) is a discipline concerned with the design,

evaluation and implementation of interactive computing systems for human

use and with the study of major phenomena surrounding them. [Hewett 1992].

It is a field at the intersection of computer science, design, behavioral and

perceptual sciences with the goal of providing usable interactive computer

interfaces. Usability is a measure for ease of use and effortlessness of learning

how to use a system, or more formally the extent to which a product can be

used by specified users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use [ISO 1998]. These three attributes

of usability can be objectively and subjectively measured:

• Effectiveness is the accuracy and completeness with which users can

achieve specified goals.

• Efficiency is the amount of resources expended to achieve the specified

goals in relation to effectiveness.

• Satisfaction describes freedom from discomfort, and positive attitudes

towards the use of a software product.

Usability engineering focuses on practical methods for building usable user

interfaces. It is an process in which a user interface is prototyped accord-

ing to general and project-specific guidelines and principles, and then tested

and evaluated to uncover and remove the deficiencies. The process is re-

peated iteratively to further refine and tune the interface. At the heart of this

process are usability evaluation activities aiming to uncover usability issues

and measure the performance of the user interface. Depending on the goal

which should be achieved usability evaluation methods can be subdivided into

[Andrews 2010b]:
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• Exploratory evaluation, which is performed before or during early design

stages, explores current usage and space for potential new ideas and

designs.

• Predictive evaluation, performed in late design stages and before imple-

mentation starts, delivers estimates on the quality of the future interface.

• Formative evaluation, which is usually performed during design and

early prototyping phases, focuses on collecting qualitative observations

on what could/does go wrong and why, with the goal of improving the

user interface.

• Summative evaluation, which is performed in the later implementation

stages, collects quantitative measurements such as duration of tasks or

error count, in order to asses and compare the objective performance of

the user interface.

Usability evaluation techniques are also differentiated depending on who is

involved in the evaluation:

• Usability inspection methods involve usability experts only, who apply

heuristics and judgment in performing the evaluation. One examples is

the heuristic evaluation, where several evaluators inspects an interface

design against general principles and produce a list of potential issues.

Another example is the cognitive walkthrough, which focuses on learn-

ability, where a team of experts executes a task in the mind set of a

novice user to estimate the chances the user would successfully execute

throughout various steps of the tasks. Both examples are formative

evaluation techniques.

• Usability testing methods are about empirical testing of user interfaces

with real, representative users. An example is the thinking aloud test,

a formative method where users comment all their actions in a task

with verbal descriptions of what they are seeing, thinking, doing and ex-

pecting. Another example are formal experiments, a summative method

where the performance of an implemented design is objectively measured

and/or compared to alternative designs.

The importance of usability engineering, and in particular usability evaluation,

for delivery of interactive visual interfaces can not be overestimated. This is

especially true when innovative, advanced techniques, such as visualization,

are involved. For further reading on HCI and usability-centered design of

computer user interfaces see [Shneiderman et al. 2009].
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2.1.3 Visual Analytics and Knowledge Discovery

Visual analytics is defined as the science of designing and applying interac-

tive graphical user interfaces with the aim of facilitating analytical reasoning

[NVAC 2005]. It is an interdisciplinary field based on information visualiza-

tion, knowledge discovery, cognitive and perceptual sciences, which combines

the advantages of visualization techniques with automatic processing by the

machines. While information visualization techniques were successful at pro-

viding visual representation of large collections of abstract information, data

mining algorithms approach the analysis of large data sets from the purely

automatic point of view. Combination of visual and automated analysis tech-

niques has been discussed by several authors, such as in [Shneiderman 2002]

and [Keim et al. 2008]. Visual analytics strives to achieve a tight integration

between humans and computers, where the computer performs the automatic

analysis and presents the results in visual form, while the humans steer the

process by interacting with the visualization and providing feedback. An ad-

vantage of the tight integration of visual methods with automatic processing

is the opportunity to interchangeably apply visual and automatic techniques,

as needed by the user. Also, user feedback can be utilized to adjust and im-

prove the models used by automatic methods. This extended scope of visual

analytics over information visualization has been outlined by extending the

well-known information visualization mantra which becomes the new visual

analytics mantra: ”analyze first - show the important - zoom, filter and ana-

lyze further (iteratively) - details on demand” [Keim et al. 2008b]. Advances

introduced by visual analytics approach have implications on the targeted data

set characteristics. While information visualization is typically applied on

large, predominantly static, homogeneous data sets, visual analytics methods

focus on huge, dynamically changing, heterogeneous repositories containing

complex, incomplete, ambiguous and conflicting information.

The motivation behind applying visual analysis techniques is that when

massive amounts of complex information are transformed by machines into

a form convenient for visual representation, human eye’s wide pathway into

the brain allows users to quickly understand and efficiently explore complex

patterns, and immediately apply their knowledge and creativity. Analytical

processes in large, dynamic, complex data sets, which take advantage of the

powerful human visual system backed by automated processing, enable users to

see and recognize patterns, identify correlations, perform on-demand analysis,

and gain insight into complex relationships. Besides applying human percep-

tual abilities on large data sets, the involvement of humans in the analytical

process has several other advantages: humans can deal with noisy, ambigu-

ous, conflicting or incomplete data easily, can apply explorative examination
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Figure 2.3: The knowledge discovery chain [Fayyad et al. 1996].

even when the data is poorly understood or the goals are vaguely defined, and

are capable of adjusting their strategies and goals on-the-fly based on their

experience and intuition.

A particularly interesting aspect of visual analysis workflows is the sup-

port for generation and validation of hypothesis. Visual representations allow

humans to see patterns for which users, equipped with their knowledge and

intuition, may come up with possible causes and explanations - which is a

potentially valid hypothesis about the data. Visual analysis methods provide

means for validation of such hypotheses, typically through a combination of

visual and automatic methods. The generation of hypotheses and their valida-

tion through on-demand analysis, produce new insights and facts which steer

the further direction of the analytical process. Analytical reasoning is sup-

ported based on the revealed patterns and confirmed (or rejected) hypotheses,

resulting in a process which empowers users to provide assessments, derive

conclusions, and communicate the knowledge they have acquired.

Knowledge discovery is defined as the overall, nontrivial process of iden-

tifying valid, novel, potentially useful, and understandable patterns in data

[Fayyad et al. 1996], where the phrase knowledge discovery emphasizing that

higher-level knowledge is the end product discovered from the raw data. The

field stands at the crossroads of various research fields, most notably ma-

chine learning, pattern recognition,statistics, artificial intelligence, visualiza-

tion, and high-performance computing. Knowledge discovery is a process con-

sisting of several steps (see Figure 2.3) which are all essential to ensure that

useful knowledge is identified in the data. Applying visual techniques in knowl-

edge discovery scenarios implies combining the machine processing power with
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the human visual processing capabilities to effectively reveal trends and pat-

terns, and to unveil evidence based on complex data. Therefore, visual ana-

lytics can be also be seen as a further development of the classical information

visualization put into the context of knowledge discovery. In the context of

knowledge discovery process the two steps which are of particular concern

for visual analytics are the data mining step, where specific algorithms for

identification of patterns and extraction of knowledge are executed, and the

interpretation/evaluation step which is a natural fit for application of visual

techniques.

2.2 Clustering Techniques

Clustering is a name for unsupervised learning techniques which identify

groups, or clusters, of related objects from unorganized, unstructured collec-

tions. Objects assigned to the same cluster are similar according to a certain

criteria, while objects from different clusters have a smaller degree of relat-

edness. To apply a clustering algorithm on a data set, there must be a way

to compute the relatedness between any pair of objects (including data set

elements and clusters). This is accomplished through a definition of a simi-

larity measure, usually the cosine coefficient, or a distance function, typically

Euclidean distance (see [Cha 2007] for a survey on similarity and distance

measures). Clustering (an unsupervised learning technique) is similar to clas-

sification (a supervised learning technique) as both deal with assigning related

objects into buckets, the difference being that in classification the categories

are defined a priori and must be learned before processing, while in clustering

the categories are created dynamically during the computation.

There is a wide variety of clustering algorithms with a different features

and performance characteristics targeting various types of data and applica-

tion domains. Extensive surveys of the field are available in [Berkhin 2002],

[Xu et al. 2005] and [Jain et al. 1999]. While different authors propose a va-

riety of (extensive) taxonomies for classifying clustering algorithms, from the

perspective of this work an overview of important clustering algorithm char-

acteristics can be summarized as follows:

• Partitional vs. hierarchical: Clustering methods are usually divided de-

pending on the the structure which they generate, which may be a single

level of clusters or a hierarchy of cluster.

• Exclusive vs. overlapping: In exclusive methods each object is assigned

to only one cluster, where the overlapping strategy allows multiple as-

signments.



2.2. CLUSTERING TECHNIQUES 23

• Fuzzy vs. hard: Fuzzy methods, being overlapping in their nature, assign

objects to clusters with a degree of membership between 0.0 and 1.0. In

hard clusters members of a cluster have a degree of membership exactly

equal to 1, while non-members exactly equal to 0.

• Deterministic vs. stochastic: Deterministic methods produce exactly the

same results if executed with the same starting conditions. Stochastic

techniques produce different results each time.

• Order sensitive vs. order insensitive methods: Order sensitive methods

generate results which depend on the order of objects in the initial col-

lection. In order insensitive methods the order of items does not play a

role.

• High-dimensional vs. low-dimensional: Clustering methods which excel

at low dimensional data may produce bad results with high-dimensional

data, and vice-versa.

• Incremental vs. non-incremental: Incremental methods allow adding

and removing of objects to an existing clustering result, which is modi-

fied and adapted accordingly to the change. Non-incremental methods

require a re-computation from scratch which may (and likely will) yield

a completely different result. .

• Scalable vs. non-scalable: Non-scalable techniques may produce good

results with small data sets, but the running time becomes prohibitively

expensive for larger data sets. Scalable techniques can handle larger

data sets with acceptable running times.

From the point of view of knowledge discovery and visual analytics, and this

work in particular, scalability (up to millions of documents), ability to handle

very high-dimensional data (thousands of dimensions), and the possibility to

deal with dynamically changing data sets are of paramount importance. The

rest of this section provides a brief overview of common clustering approaches

and their applications relevant to this work.

2.2.1 Hierarchical Clustering

Hierarchical cluster algorithms build a cluster hierarchy, either bottom-up

(agglomerative clustering) starting with one object-clusters and recursively

merging the most similar pairs, or top-down (divisive clustering) where a sin-

gle cluster containing all objects is recursively split, until a stop condition,

usually the targeted number of clusters, is satisfied. Depending on how the
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similarity between clusters is computed in agglomerative clustering, several

linkage strategies exist, the most common being:

• Single-link method defines the similarity between two clusters as the

similarity between the two most similar members, where each member

is from a different cluster.

• Complete-Link method defines the similarity between two clusters is

defined as the minimum off all pairwise similarities between members of

the two clusters.

• Average-link method computes the similarity between two clusters as an

average pairwise similarity between their members.

While a simple implementation of hierarchical agglomerative clustering will

have a time complexity of O(N3), optimized implementations targeting a

particular linking strategy reach a time complexity of O(N2) (single-link

[Sibson 1973], complete-link [Defays 1977], average-link [Voorhees 1986]). How-

ever, quadratic time complexity makes them unsuitable for clustering of larger

data sets. More details on hierarchical clustering algorithms and on their appli-

cation on high dimensional data, such as text, are available in [Voorhees 1986],

[Kaufmann & Rousseeuw 1990], and [Zhao & Karypis 2002].

2.2.2 Partitional Methods

Partitioning clustering methods, given an initial partition, iteratively optimize

clusters by relocation data objects from one cluster to another. The iterative

process converges to a local or global minimum of an optimization criterion.

Depending on the model which is optimized partitional algorithms are be

grouped into probabilistic methods, which optimize a probabilistic model (see

[Dempster et al. 1977]), and k-means method [Hartigan & Wong 1979], which

optimizes a dissimilarity or similarity function, such as the sum of squared

distances between each cluster member and the cluster. The algorithm stops

the the maximum number of iterations has been reached or when the shift in

cluster centroids falls below a specified threshold.

2.2.2.1 K-Means

K-means is one of the (if not the one) most widely used clustering methods.

The main advantages of k-means are its time complexity of O(KN) which,

provided the number of clusters K is constant, scales linearly with the size

of the data set N , and its capability to handle high-dimensional data. This
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was demonstrated in an evaluation [Zhao & Karypis 2002] where k-means, and

bisecting k-means in particular, outperformed hierarchical clustering on text

data. The main disadvantage of k-means is that must be initialized by a set

of initial cluster centroids, so called seeds, and the quality of the local mini-

mum the algorithm converges to depends strongly on this initial configuration.

There are several ways to address this problem in the praxis:

• Running the algorithm several times with different random initial con-

figurations and choosing the best result. The downside of this solution

are much higher running times.

• Positioning the seeds uniformly by finding seed with largest possible

distances between them. This is a simple and common way to address

the problem.

• Running a hierarchical agglomerative clustering on a sample of the orig-

inal set and use the results as seeds. Buckshot and fractionation algo-

rithms are examples of this strategy [Cutting et al. 1992].

The ISODATA algorithm [Tou & Gonzales 1974] is a modification of k-

means incorporating a number of heuristic procedures for splitting, combining,

and discarding clusters to guess the number of clusters and obtain an optimal

cluster set. At the beginning of every iteration various statistical measures

are evaluated, for example large or non-cohesive clusters will be split into two

smaller ones, or if two small clusters are similar they will be merged into a

single one. These cluster splitting and merging strategies, combined with the

inherent capability of k-means to refine the partition when new objects are

added to or old objects are removed from the data set, make k-means a good

candidate for an incremental clustering algorithm.

2.2.3 Scalable Clustering Methods

When applied on huge document repositories, containing many millions data

items, clustering algorithms face scalability problems both in terms of run-

ning time and memory consumption. Given existing methods with linear or

slightly super-linear time complexity, the memory problem poses a more acute

problem. With huge data sets it is hardly possible to keep the whole data set

in the main memory, so clustering algorithms must operate on a subset of

the whole data set, which is the data sampling approach, or on a compressed

representation of data, which is the data squashing approach. Data sam-

pling approaches, such as CURE [Guha et al. 1998], rely on a relatively small

but reliable, representative sample of the data set which is kept in memory for
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main clustering, while the rest of the data set is inserted later. Data squashing

methods, such as BIRCH [Zhang et al. 1996], perform clustering by sweeping

over the data set on disk to create a compressed representation in memory.

Another problem faced by clustering methods is the so-called curse of the

dimensionality: in high-dimensional spaces the distance from an object to its

nearest neighbor becomes indistinguishably small from the distance to the ma-

jority of other data objects. The capability of coping with high dimensionality

differs strongly from one clustering algorithm to the other. Dimensionality

reduction techniques, such as PCA [Jolliffe 2002], may be applied to alleviate

the problem.

2.2.4 Other Methods

In density-based methods, such as DBSCAN [Ester et al. 1996] and DEN-

CLUE [Hinneburg & Leim 1998], clusters are defined as a connected, dense

regions which grow in directions where the density leads. Main advantages

of density based clusters are handling of noise, and that generated clus-

ters may be arbitrary shaped, whereas clusters found by other methods are

mostly of convex, hyperspherical shape. Grid-based methods, such as STING

[Wang et al. 1997] and CLIQUE [Agrawal et al. 1998], partition the feature

space into segments (cubes or cells), and the clustering is performed by merg-

ing adjacent cells which have density above a certain threshold. Grid-based

methods are usually fast and scale well both with data set size and dimension-

ality, but cluster shapes are always limited to union of grid cells which may

degrade accuracy. Cluster ensembles, see [Hu & Yoo 2004], are based on the

fact that different clustering methods have different advantages and disadvan-

tages. They attempt to combine the results of different methods in such a way

to exploit their positive features while suppressing the effects of negative ones.

2.2.5 Clustering for Browsing Document Collections

A hierarchically organized document collection can be explored using a metaphor

of a conventional textbook: the table of contents is suitable for getting an

overview and for providing information on what is contained in the data set.

A cluster hierarchy is a tree whose internal nodes (i.e. sub-clusters) are sub-

trees of hierarchies and whose leaves are single documents. Similar documents

will have a common ancestor lower in the tree, while less similar documents

will have a common ancestor further up in the hierarchy (i.e. closer to the

root). Clusters (including internal clusters) are represented by textual sum-

maries, for example by keyword or titles of the underlaying documents. The
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hierarchy of clusters allows the user us to navigate in the data set and view

the collection at different levels of detail.

Scatter/Gather [Cutting et al. 1993] is a clustering-based document brows-

ing system which computes and presents a cluster-based, dynamic table of con-

tents to the user. Documents are grouped into topically coherent clustered and

labeled by descriptive textual summaries consisting of topical keywords and

titles which represent the contents of the cluster. The hierarchy is generated

by recursively applying a k-means algorithm on the document set. The k-

means issue of initial partition sensitivity is addressed by a strategy including

sophisticated sampling and hierarchical clustering (fractionation algorithm).

Through balancing of the hierarchy and an upper limit of number of clusters on

each hierarchy level a near linear time complexity can be reached (O(N logN),

N being the size of the data set). Guided by cluster summaries the user can

select several clusters or documents for further study and re-cluster those using

a faster but less effective clustering algorithm, the buckshot algorithm, which

uses a simpler sampling schema. Buckshot algorithm simply takes a random

sample of size
√
N , clusters the sample with a hierarchical agglomerative clus-

terer (group average linkage), and uses the clusters as seeds for the subsequent

k-means clustering. The procedure of scattering and gathering of clusters and

documents can be repeated to refine the groups and to pin down topics and

documents of interest.

2.2.6 Faceted Categorization

Clustering has several advantages for exploring a data set, for example it is

useful for showing dominant topical groups. In information retrieval it can be

applied for disambiguating ambiguous queries and eliminating outliers. How-

ever, clustering has several disadvantages such as suffering from the lack of

predictability or the difficulty of finding descriptive labels for the clusters.

Hierarchical faceted categories introduce an alternative system for grouping

documents which introduces meaningful labels with well-defined semantics or-

ganized to reflect concepts relevant to a particular application [Hearst 2006].

Assignments to hierarchical faceted categories can be created manually or

automatically by classifying documents to categories using classification tech-

niques.

Rich semantic metadata provide another application possibility for hier-

archically organized faceted categories. Metadata is assigned manually (for

example creation date or author) or extracted automatically using seman-

tic enrichment methods. Automatic enrichment can be achieved by extracting

domain-specific semantics from document content and enriching it with knowl-
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Figure 2.4: Categories of faceted metadata (left) extracted from text docu-

ments and a topical cluster hierarchy (right) for 296 news documents returned

for query ”IBM PC”.

edge present in external knowledge bases such as thesauri or ontologies. Infor-

mation extraction (IE) [Kaiser & Miksch 2005] methods deal with extracting

structured information from unstructured or weakly structured text docu-

ments using natural language processing methods. IE techniques annotate

text by decomposing it into basic building blocks (such as tokens and sen-

tences), performing part-of-speech tagging (i.e. identification of nouns, noun

phrases, verbs, etc.), extracting named entities (such as persons or locations)

and other metadata, and assigning a well-defined semantics to the extracted

information. Selected annotations can be used to extract metadata which are

assigned to documents.

In Figure 2.4 a comparison between hierarchically organized faceted meta-

data categories (on left) and a hierarchy of topical clusters (on right) can be

seen for 296 documents on ”IBM PC”. In the faceted hierarchy the user can see

which metadata categories are available for the data set (in this case locations,
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organizations and persons), which particular metadata values are mentioned

in the documents, and then select documents containing a particular exact

value. For example by following ”Cluster 2: organization”, ”Cluster 2.22: x”,

”Cluster 2.22.1: Xerox” one can see that a person, who is a high-ranked IBM

official, moved to another organization, Xerox. The topical cluster hierarchy

provides automatically computed labels, which are more numerous and more

”fuzzy” than the faceted hierarchy labels, so the user will have to make an

additional effort for reading and interpreting labels in the particular context.

However, it is possible to discover facts which are not connected to explicitly

available metadata. For example, although no technical metadata describing

CPUs and operating systems is available, by following ”Cluster 3: powerpc,

hungary, motorola”, ”Cluster 3.4: development, windows, microsoft” the user

can discover that Microsoft and IBM have stopped the development of Win-

dows NT for PowerPC systems.

2.3 Ordination Methods

Visual systems dealing with complex, high-dimensional data sets need a way

to present complex relationships present in high-dimensional space in a 2-D

or 3-D visualization space while preserving the original relations as much as

possible. Ordination is an umbrella term for methods which position high-

dimensional objects in a low dimensional space so that similar objects are

placed near each other while dissimilar objects are farther from each other.

Ordination methods are targeted at exploratory data analysis and as such are a

natural match for visual analysis methods. Ordination methods can be seen as

a subset within a broader concept of dimensionality reduction techniques. As

its name implies dimensionality reduction also deals with reducing the number

of dimensions in a high-dimensional feature space, either through elimination

of features (feature selection) or by transforming the original space into a

lower dimensional one consisting of new features (feature extraction). While

ordination targets exploratory analysis through visualization, dimensionality

reduction encompasses methods targeting a broader set of goals, typically

addressing the previously mentioned curse of the dimensionality which poses

a problem for many algorithms. An overview of dimensionality reduction

techniques can be found in [Fodor 2002].

To express the goodness of fit, i.e. the quality of a result produced by an

ordination method a the so-called stress value is computed. Stress expresses

the degree to which the distances in the low-dimensional space differ from

the original distances in the high-dimensional space. High stress values mean

that a particular result poorly reproduces the original distances, while lower
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stress values imply a better fit. Several different stress definitions have been

proposed, the most common one being the sum of squared pairwise distance

differences.

This rest of this chapter gives a short overview of ordination techniques,

and while they all share the same principle - neighbors in the high-dimensional

space must remain neighbors in the low-dimensional, non-neighbors are placed

far apart - the focus is on methods addressing large, high-dimensional data

sets.

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) [Jolliffe 2002] transforms the original

high-dimensional space into a space spawned by a coordinated system such

that for its axes, called principal components, the following holds: the first

dimension of the new space has the direction of the highest variance in data,

and each consecutive principal component, while being orthogonal to all the

previous ones, again has the highest possible variance in the data. PCA is one

of the most widely used dimensionality reduction techniques. It has been ap-

plied both in addressing the dimensionality curse and in exploratory analysis

scenarios involving visualization. For visual applications the first two or first

three principal components are taken yielding a 2D or 3D layout. PCA is usu-

ally computed by eigenvalue decomposition which is quite compute intensive

and does not scale very well to large data sets.

2.3.2 Multidimensional Scaling

Multidimensional scaling (MDS) [Kruskal 1978], [Berry & Groenen 2010] is a

name for ordination techniques which takes a distance or similarity matrix as

input, instead of considering high-dimensional space coordinates and vectors

directly. Pairwise similarity or distance values in the matrix are computed by

applying a similarity or distance coefficient, such as cosine similarity or the

Euclidean distance. Given the matrix and the dimensionality of the target

space, a multidimensional scaling method uses a function minimization algo-

rithm to place data objects in the low-dimensional space in such a way, that

the goodness of fit is maximized and the original high-dimensional distances

are preserved as far as possible. MDS methods can be realized in different

ways for example by using eigenvalue decomposition, or by employing heuris-

tic iterative methods which converge towards a (local) stress minimum, such as

force-directed placement (see bellow: force-directed placement). The former

has the advantage that it finds a global stress minimum, but the ordinations

tend to be very tightly clustered which is not adequate for interactive visualiza-
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tion, while the latter group of methods tends to get stuck in a local minimum,

but can be tuned to generate ordinations adequate for appealing, usable visual

applications. To circumvent the disadvantages and utilize the advantages of

both groups, an eigenvalue decomposition methods can be used to produce

an initial layout which is then iteratively refined with a heuristic method to

produce a visually acceptable layout [Davidson et al. 1998].

2.3.3 Self Organizing Maps

Artificial neural networks (ANN), similar to their biological counterparts, have

the ability to learn by adaptively readjusting their interconnection weights.

Data objects represented by high-dimensional vectors are presented at the

input nodes which are associated with the output nodes over the weighted

network interconnections. Weights between input and output nodes are it-

eratively adapted in a learning process until some termination criterion is

satisfied. Self organizing map (SOM) [Kohonen 1988] is an artificial neuronal

network composed of interconnected input and output layers two node lay-

ers, where the output nodes are are ordered as a 2D matrix (or a hexago-

nal grid) forming a topological map wit bounded regions. Projection of the

high-dimensional input vectors is performed by assigning them to the output

nodes in such a way that vectors which are neighbors in the high-dimensional

space will remain close in the 2D topography. While SOMs can,generally

speaking, handle large high-dimensional data sets such as document collec-

tion [Kohonen et al. 2000], their learning process is comparatively slow. The

computationally intensive procedure requiring many iterations to complete,

and is at the same time sensitive to initial weights and several parameters,

which can cause a suboptimal projection or compromise convergence. This

makes SOMs impractical for agile interactive scenarios where results must be

produced quickly or on-the-fly.

2.3.4 Force-Directed Placement

Force-directed placement (FDP) [Fruchterman & Reingold 1991] is a widely

used iterative technique based on a spring model, for creating aesthetically

pleasing graph layouts. It can be used as a heuristic multidimensional scaling

method, where the similarity or distance matrix is interpreted as an adjacency

matrix of a full weighted graph. The method employs a physical simulation

of a mechanical system, where data set elements are represented by masses

connected to each other as springs. Each pair of masses exhibits attractive

and repulsive forces on each other, depending on whether their distance in

low-dimensional space is larger or smaller, respectively, than their distance
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in the high-dimensional space. Masses are iteratively moved depending on

the resultant force exhibited by other masses, until these forces fade to zero

and the system reaches a minimal energy state.Iteration terminates when the

improvement of stress between two iterations falls bellow a threshold, or even

simpler, when the movement of particle falls bellow a certain rate. Force-

directed placement reproduces the high-dimensional relationships well in 2D

or 3D spaces, and at the same time is flexible enough to allow for adjustment

and fine tuning resulting in aesthetically pleasing, visual appealing, usable

layouts. Another advantage of FDP is that it is inherently incremental. When

a layouted data set is modified, i.e. items are added or removed, changes can

be smoothly incorporated into the old layout without excessive disruptions and

with a fraction of computation effort necessary for a full recompute. This is

not the case for for methods based on eigenvalue decomposition, which require

a full recomputation from scratch, and which may yield a completely different

result event for a moderate modification of the data set.

One drawback of FDP is that the algorithm has a tendency of getting

stuck in a local minimum, especially for larger data sets. There are a number

of strategies for ameliorating this issue, for example adding a certain amount

of jitter to a stabilized configuration may shake it out of a local minimum

and let it converge to a state equal, or closer to the global energy minimum.

Another approach is the barrier breaking where an objects with a low re-

sultant force can tunnel through its low-dimensional neighborhood when its

neighboring objects exert a very high repulsive force on it. However, the main

problem with FDP is that it does not scale well, because each of N objects

must be compared N − 1 objects to compute its next position. This gives a

time complexity of O(N2) per iteration and, if we assume that O(N) itera-

tions are required to reach a stable layout, an O(N3) time complexity results

for the whole algorithm. An efficient optimizations of the n-body problem

known from physics is Barnes-Hut method [Barnes & Hut 1986], which recur-

sively subdivides the space into an octree (for 3D space, or a quad-tree for

2D space) and compares each particle only to particles from the same cell and

to octree cells which represent all particles contained within them. However,

such optimizations are not applicable to high-dimensional data sets, because

as particles move around, the updating of cells in the octree hierarchy becomes

excessively expensive due to a very large number of features carried by each

particle. An alternative approach using stochastic sampling [Chalmers 1996]

was found to have lower running times and was applied for visualization of

very high-dimensional data sets (text repositories). It preserves the advantages

of the force based model, while having a linear execution time per iteration

achieved by considering only a constant size sample, instead of the whole
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data set, when calculating the force on each object. Every object maintains

two sets of constant size: a random set, which is randomly selected from the

whole data set in each iteration, and a neighbor set which emphasizes the

high-dimensional neighborhood of the object. Neighbor set is refined in every

iteration by including random set elements which are closer to the object than

the furthest neighbor collected so far. The strategy reduces the overall time

complexity of the resulting algorithm to O(N2).

2.3.5 Scalable Ordination Techniques

In order to scale to large data sets an algorithm with time complexity smaller

than quadratic is needed. In [Morrison et al. 2002] a hybrid approach was

proposed where a random sample consisting of
√
N elements is taken and

positioned using the force-directed placement algorithm with stochastic sam-

pling in O(N). Each of the remaining N −
√
N data elements is positioned

starting from the 2D position of its nearest neighbor in the sample using a

constant time interpolation technique: beginning from the circle with the ra-

dius equal to the high-dimensional distance between the data element and

its nearest neighbor in the sample, a position is computed using a random,

constant-size subset from the sample, such that the stress with regard to this

subset is minimized. The layout is refined with a constant number of itera-

tions of the sampling FDP algorithm. Nearest neighbor search is performed

by a brute force approach, which takes O(
√
N) time for each element, mak-

ing it the dominant factor. Therefore, the time complexity of the algorithm

is O(N1.5). In [Morrison & Chalmers 2003] the brute-force nearest neighbor

search is improved with a pivot-based technique reducing the time complex-

ity of the algorithm to O(N1.25). Although the pivot-based nearest neighbor

search is only approximate, the quality of the layout, expressed as stress was

comparable to the brute-force approach. In [Jourdan & Melancon 2004] a fur-

ther improvement of nearest neighbor finding strategy reduced the running

time to O(Nlog(N)), with an implementation available in [MDS API 2005].

2.4 Visualizing Large, High-dimensional Data Sets

When users have to deal with large, unstructured, complex, high-dimensional

data sets they are unfamiliar with, such as enterprise document repositories

or patent databases, they need tools allowing the to get an overview of the

data, gain insight in complex relationships and structures hidden in the data,

and discover central concepts and features. This can be achieved with visual

components capable of displaying large data sets and convey relatedness in
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Figure 2.5: A scatterplot visualizing book metadata: publication year (x-axis),

page count (y-axis), file size (icon size), author (icon type).

data sets defined by a large amount of features. Large data sets are usually

handled by space filling visual methods utilizing the screen real estate pro-

vided by high resolution graphics hardware and monitors. Providing overview

and conveying relatedness in large data collections necessitate grouping and

aggregation of related objects and labeling of the aggregated structures so that

the user can quickly find out where to locate information of interest.

2.4.1 Scatterplot

Scatterplot is a visual representation designed for analysis of multidimensional

metadata. Typical scatterplot implementations allows mapping of up to five

different metadata types (or dimensions) to the exes of a 2D display and vi-

sual properties and of displayed items. Besides the x- and y-axis, the available

visual channels which can be used to map additional properties are size, color



2.4. VISUALIZING LARGE, HIGH-DIMENSIONAL DATA SETS 35

Figure 2.6: Parallel coordinates showing nine metadata types on parallel axes

for eBooks (note that synthetic data is used).

and icon of the visualized items. To illustrate the idea an simple example is

given in Figure 2.5: a collection of books is displayed with metadata mapped

to following channels: publication year is mapped on the x-axis, the number

of pages is mapped on the y-axis, rating is mapped on the size and authors

are shown through different icons. The scatterplot was implemented within

a Master-Praktikum [Kandlhofer 2008] supervised by me, by extending the

scatterplot component of the prefuse visualization framework [prefuse 2007]

with a coordinated multiple view capability (also see Section 2.7). While scat-

terplots make good use of screen real estate, their ability to visualize complex

high-dimensional relationships is fairly limited. To a certain degree, this lim-

itation can be addressed by combining multiple coordinated scatterplots in

a single user interface. More advanced scatterplot implementations address

scalability by making use of aggregation techniques to reduce clutter when a

large number of visual items occupies a small area [Nowell et al. 1996].

2.4.2 Parallel Coordinates

When the number of dimensions which should be displayed is much higher

than the number of spatial dimensions and visual channels which are dis-
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playable on screen, the problem can be addressed by the parallel coordinates

method [Inselberg & Dimsdale 1987]. Parallel coordinates visualization en-

ables the visualization of datasets with very many variables and empower the

user to discover relations in high-dimensional data. Dimensions are displayed

as parallel vertical axes, and for every displayed object the values of each vari-

able are displayed on the corresponding axis and connected with a polygonal

line. Patterns and relationships between objects can be identified as their lines

have, locally or globally, similar shapes. Although this visual representation

can handle far more dimensions than a scatterplot, the number of axes is still

insufficient for very high-dimensional data, such as text.

A parallel coordinates visualization in Figure 2.6 displays nine different

types of metadata for a synthetic e-book data est, with the line color encoding

different book publishers. It is easy to see that red e-books have high ratings

and high prices, the blue e-books are cheaper and have lower ratings, while

the green e-books are free of charge and achieve the highest delivery rates.

2.4.3 Treemaps

Treemap [Shneiderman 1991] is a common visual representation used to con-

vey hierarchically structured data. Nodes of the hierarchy are represented as

recursively nested rectangles, where the size of each rectangle corresponds to a

selected property of the underlying data, for example the number of leafs in the

corresponding subtree. Color of the rectangles is typically used to convey fur-

ther properties of a node, and sometimes other representations fitting within

a node’s area, for example histograms or labels, can be used instead. Through

size and color coding the user can easily spot patterns in data which would be

less obvious to recognize in other hierarchy representations. A treemap is a

scalable representation with efficient use of screen space, however various algo-

rithms used to compute the layout of tree map, always produce a compromise

between the following two properties which have an inverse relationship:

• aspect ratio of the rectangles, where high ratios translate to lower read-

ability and visual appealing,

• the order and position of areas, which reflects the relationships within

the hierarchical structure.

In Figure2.7 a tree map of a hard drive, computed by WinDirStat tool

[WinDirStat 2007] can be seen. The size of the directory is mapped to the

rectangle area, while the color indicates the predominant file type. A short

overview of treemap based techniques is available in [Shneiderman 1998-2009]

and [Kerwin 2011].
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Figure 2.7: Treemap showing the file hierarchy on a hard drive.
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2.4.4 Cluster Map

Cluster Map [Clustermap 2011] visualization technique similar to Venn and

Euler diagrams, for visualization of classified objects and their relationships,

or light-weight ontologies in Cluster Map parlance [Fluit 2005]. The main

purpose is to show if and how, i.e. through which features, these sets over-

lap. Other features include guided exploration, auto-generated suggestions for

refinement, semantically rich interaction through filtering and refinement of

metadata facets such as for example information type, people, location, time

etc.

2.4.5 Information Landscapes

Information landscapes employ a geographic landscape metaphor for analy-

sis of complex relationships in large, high-dimensional data sets by conveying

relatedness in the data through spatial proximity in the visualization. Relat-

edness between a pair of data objects is typically defined as the similarity of

the feature vectors describing the data objects, expressing for example topical

relatedness, relatedness through authors or geographical location etc. Hills

represent groups, or visual clusters, of related data objects and emerge where

their count (density) is large. They are labeled by most significant features

from the underlaying data enabling the user to immediately identify clusters

of interest. Hills are separated by sparsely populated areas which are repre-

sented as see. Information landscape also conveys the size and cohesion of

clusters through visual properties. The height of a hill is an indicator of for

the number of data objects belonging to a cluster, while spatial compactness of

the cluster is an indicator for higher cohesion, i.e. higher relatedness of its el-

ements. The resulting visual representation provides an overview of the whole

data by unveiling structures in the data which arise through relatedness and

similarity. Following the labels of visual clusters users can interactively ex-

plore the data set and gain insight into more detailed relationships in the data.

For example Figure 2.8 shows an information landscape created from several

thousand text documents, while an application for visualization of multimedia

data [Sabol et al. 2008b] can be seen in Figure 2.9.

Powered by modern graphics subsystems visualization of hundreds of thou-

sand or millions of data objects becomes feasible, provided scalable ordination

algorithms can projects high-dimensional data objects into the visualization

space. An overview and a brief history of using the geographic landscape

metaphor for visualization of non-geospatial data is given in [Old 2002].
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Figure 2.8: An information landscape built from several thousand documents

on climate change [Sabol et al. 2008c] (see Chapter 4 for details).
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Figure 2.9: An information landscape showing a mix of images and text doc-

uments [Lux 2004].

2.4.5.1 Bead

Bead [Chalmers and Chitson 1992] is one of the first systems to use the land-

scape metaphor [Chalmers 1993] to visualize text data sets. Early versions

employed a simulated annealing ordination method which was later replaced

with a fast force-directed placement method [Chalmers 1996] with quadratic

running rime, allowing the system to visualize small to medium size data sets.

It produces a so-called information terrain where topically similar documents

formed visual clusters. In the first version of Bead, text documents were

freely placed in the virtual 3D space, however the lesson learned was that

due to occlusion effects in 3D and the complexity of navigation in 3D space

placed an excessive cognitive load was placed on the users. To overcome this

issue additional forces were used to pull the documents closer to a 2D plane

effectively producing a 2D layout with smaller variations in height (also called

a 2.1D representation). Triangulation of the layout produced an information

terrain with peaks and valleys which helped the user orientating and navi-

gating through recognition of terrain features. Usability of the resulting 2.1D
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landscape metaphor proved superior than the full 3D representation.

2.4.5.2 SPIRE

The SPIRE (Spatial Paradigm for Information Retrieval and Exploration)

system [Wise et al. 1995] is a set of tools developed for intelligence agencies

targeted at users who need to analyze large amounts of new text documents

in a short period of time. SPIRE automatically analyzes and visually presents

large amounts of text content supporting the user in exploring, retrieving, cat-

egorizing and summarizing. The system offers two landscape visualizations:

the Galaxies visualization uses the metaphor of the night sky with stars rep-

resenting documents and star clusters, i.e. galaxies, representing clusters of

topically related documents; ThemeScape representation is a further devel-

opment of the concept into a more scalable 2.1D landscape metaphor, where

document clusters are represented as elevations of a terrain. SPIRE generates

a visualization in the following process [Wise 1999]:

• A text engine analyzes the documents, extracts discriminating terms and

constructs term vectors. The process includes frequency-based term se-

lection to filter out term with low discrimination power, and in-document

term clustering (so-called condensation clustering value) as good terms

tend to occur in bursts.

• Clustering of document term vectors is performed by a fast divisive clus-

tering algorithm related to k-means clustering with furthest distance

seeding strategy.

• Projection (ordination) into 2D space is performed by a scalable ”An-

chored Least Stress” algorithm, which projects the cluster centroids us-

ing a PCA-based techniques and then places the documents based on

their high-dimensional distances to the projected cluster centroids only.

• Visualization generation is trivial for the Galaxies view (bright dots on

dark background), ThemeScape visualization is constructed by layering

of significant, high-discrimination power terms belonging to the docu-

ment as sedimentary layers of certain thickness over each other to ob-

tain the landscape height. Peaks which arise through this process are

highest where the density of the documents and topical terms is high,

symbolizing clusters of related documents

More details on clustering and ordination algorithms applied in SPIRE is

available in [York et al. 1995]. SPIRE has been developed further with the

goal of scaling to multi-Gigabyte data sets. The improved system, in the
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mean time renamed to IN-SPIRE, is based on a parallelized text engine which

was shown to scale well with Gigabyte-sized data sets, and with the CPU

count (up to 32 CPU cores) [Krishnan et al. 2007].

2.4.5.3 VxInsight

VxInsight [Davidson et al. 1998] is a visual knowledge mining tool, employ-

ing a 2.1D terrain metaphor very similar to the SPIRE ThemeScape visual-

ization. The system was built to analyze various types of high-dimensional

data, not just text. It was successfully applied on gene expression data

[Mosquera-Caro et al. 2004], patent databases [Boyack et al. 2000], and sci-

entific and technology document sets [Boyack et al. 2002]. Early versions of

the ordination algorithm employed a dual algorithm strategy: an eigenvalue

decomposition based MDS method produced an initial layout which was glob-

ally optimal with regard to stress, but typically too tightly clustered to be

useful for visualization; a heuristic method, which would normally converge to

a local minimum, was used to refine the optimal configuration and produce a

usable, visually appealing layout. Later versions of the ordination algorithm

kept only the force-directed method, which was extended with methods for

avoiding of getting stuck in local minima, such as introduction of stochastic

jitter and barrier breaking techniques [Davidson et al. 2001]. Scalability of the

force-based method was addressed by a grid based method which avoids com-

parison to all other vertices when computing the force. Scalability to millions

of objects is expected by the authors, however it is not demonstrated.

2.4.5.4 Other Approaches

Other approaches to ordination and various other applications of informa-

tion landscapes were proposed, for example: In [Skupin 2004] visualization of

scientific publications was performed using a self-organizing map algorithm.

The emphasis was placed on the design of the visual landscape representation

which faithfully reproduces cartographic principles. A meta search engine for

visualization of search results in the Web browser is shown in [Tianamo 2008].

In [Lux 2004] information landscapes are applied on multi-modal data sets

containing images, sounds and text. In addition to multi-media data sets

[Heilig et al. 2009] demonstrated application possibilities such as projection

on a high resolution display (wall), collaboration on a Microsoft Surface multi-

touch table, and zoomable object-oriented interfaces where zooming capability

is extended to visualize contents of single documents within the visualization.

An approach for supplying user feedback through modifications of the visual

layout and readjusting (learning) the model was proposed in [Neidhart 2005].
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Figure 2.10: A mock-up illustrating the principle of Perspective Wall (arrows

indicates the direction of time).

2.5 Visualization of Temporal Data

Time series analysis is of paramount importance in areas where the tempo-

ral aspect is central to the data, for example in signal processing. However,

even in data sets which are not primarily concerned with time, time-related

metadata, such as creation date or a particular time stamp, is very often

present and constitutes an important additional aspect of the data. Also,

many repositories are subjects to changes over time and understanding these

changes can play an important role. Visualization of time-dependent data

deals with visual metaphors and tools for capturing and understanding the

changes and discovery of major trends in the data set. This section gives a

brief overview of relevant techniques, for a more comprehensive survey see

[Muller & Schumann 2003] and [Chin et al. 2009].

2.5.1 Perspective Wall

Perspective Wall [Mackinlay et al. 1991] is a technique for visualizing linear

information featuring smooth integration of a detailed and contextual views.

It is a 3D interactive animation of a 2D layout spanned over a 3D wall, where

the information is placed along the time axis which flows from left to right

side of the visualization. The wall consists of three regions:

• A central region, which faces the viewer, is used for viewing detailed

information within a specified time interval.

• Two context regions, which are placed on the left and on the right of
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Figure 2.11: An example illustrating the idea behind ThemeRiver.

the central region, and bent in 3D perspective towards the rear part of

the scene. Information before and after the interval shown in the central

region is shown on the left and right context region, respectively.

Through the use of 3D perspective for the context regions, a visual distortion

is introduced which shows temporally closer information is larger and in more

detail, while temporally distant information is scaled down and displayed at

low level of detail. The idea is illustrated in Figure 2.10. The geometry of the

representation allows for visualizing wide time intervals and provides efficient

use of screen real estate. Smooth transitions of views are possible by sliding

the time axis over the wall.

2.5.2 LifeLines

LifeLines [Plaisant et al. 1996] is a visualization of personal histories, with

applications including for example professional histories or medical records

[Plaisant et al. 1998]. LifeLines provide an overview of a personal history

minimizing the chances of oversight, and facilitates discovery of unexpected

trends or anomalies. The visual representation places multiple facets of per-

son’s records on the y-axis, in case of medical records for example consulta-

tion histories, symptom manifestations, treatments, hospitalizations etc. Each

facet is displayed as an individual horizontal time line extending over the x-

axis (the time axis). Color and thickness of the line represent relationships

or significance, while icons placed along the line represent events, for example

consultations with a particular physician or administration of medicaments.

Filtering and zooming functionality is also supported.
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2.5.3 ThemeRiver

ThemeRiver [Havre et al. 2002] uses a river metaphor to visualize topical

changes in large documents collection. Design of the visual representation

was based on discussions on perceptual processes in [Hoffman 2005], on how

human mind perceives images features such as symmetry, proximity, continu-

ity, closure and similarity, and on the fact that continuous shapes are easier to

perceive than those containing abrupt changes and discontinuities [Ware 2004].

Topically related groups of documents are visualized as color coded currents

flowing along the x-axis which represents the flow of time. The thickness of a

current at the given x-coordinate represents the strength of the topic at the

corresponding moment in time. Change of the width represents the change of

topic’s strength allowing the discovery of topical trends: narrowing or broad-

ening of current’s width indicates decreasing or increasing of the strength of

the corresponding topics. Various topical currents, each shown in different

color, are stacked over each other to produce a single river of topics, where

relationships and correlations between various topics can be identified. Figure

2.11 illustrates the idea behind ThemeRiver. ThemeRiver and numerous simi-

lar visual representations have been applied on data sets other than document

collections. One of them is, for example, NameVoyager [NameVoyager 2011],

an Internet-based visualization of baby name trends and changes in name

popularity.

2.5.4 More Temporal Data Visualizations

Commonly, the the flow of time is displayed along a straight axis. A spi-

ral axis, such as used in [Weber et al. 2001] provides certain advantages, for

example, it is suitable for detecting cycles and recurring events, and it al-

lows for displaying long time intervals with high temporal resolution even

when the available screen real estate is not large. TimeWheel and Multi-

Comb [Tominski et al. 2004] are examples of temporal data visualizations for

multi-dimensional data. They employ an axes-based principle, such as par-

allel coordinates (see Section 2.4.2) to visualize multiple dimensions. While

parallel coordinates shows the variables as parallel axes, MultiComb places

the axes radially in the x-y plane. The time flow is represented by a centrally

placed z-axis which is orthogonal to the x-y plane. In the resulting 3D visual-

ization a time-dependent graph plot is obtained showing the development of

each dimension.
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Figure 2.12: A visualization showing a global tag cloud (central area) and tag

clouds for six different categories (surrounding areas).

2.6 Other Visualizations

After providing a survey on visualization of topical and other high-dimensional

patterns, and on visualization temporal data and temporal developments

[Sabol et al. 2008a], a short introduction to visualization of other aspects of

the data, such as geospatial information, keyword and concept information,

and relationships between the concepts, shall also be given. As these visual-

izations are not the focus of this work only a brief overview is given here.

2.6.1 Tag Clouds

Tag clouds are an increasingly popular visual representation consisting of key-

words and short phrases which describe the content of a text document collec-

tion. Displayed terms are extracted from document content using information

extraction [Kaiser & Miksch 2005] and statistical techniques. Size, color and

layout of the displayed terms are driven by their importance as well as by aes-
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Figure 2.13: Geo-visualization of Austria showing locations referenced in news

articles. Location references are shown as cones, with the size corresponding

to the number of articles referencing that location.

thetic and usability criteria [Seifert et al. 2008]. Figure 2.12 shows a tag cloud

where terms are subdivided into several categories. The assignments of terms

to categories is either manually defined or computed automatically using text

classification methods. Each category is assigned an area which is generated

by constructing a Voronoi diagram [Okabe et al. 2000, Aurenhammer 1991],

whereby the generator points are either set manually or are computed by an

ordination algorithm depending on the topical similarity of the category con-

tent.

2.6.2 Geovisualization

Since the advent of Google Maps, geovisualization has definitely become main-

stream. Visualization of geospatial metadata is a natural fit for various geo-

visualization approaches [Dykes 2005]. Geospatial information automatically

extracted from text can be shown on geographical maps [Scharl & Tochtermann 2007]

to reveal where something is happening. For example, in Figure 2.13 a geovi-

sualization of locations extracted from German news articles [Lex et al. 2008]

can be seen. The extracted locations, shown on a map of Austria, are repre-

sented by cones where the size of a cone corresponds to the number of news

articles referencing a particular location. Clicking on a cone triggers a filtering

mechanism which restricts the list view on articles mentioning the correspond-

ing location.

GeoTime [Kapler & Wright 2005] is a geovisualization which fuses the tem-

poral component together with the geospatial. It employs a 3D visualization

consisting of a geographic map shown in the x-y plane, where the flow of time

is orthogonal to the map, i.e. shown along the z-axis. GeoTime facilitates
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Figure 2.14: A graph visualization of relationships between concepts extracted

from a text data set. Edge bundling improves clarity and reduces clutter in

the edge layout. (Data courtesy of German National Library of Economics,

2011.)

tracking of ground movements over time and provides means for identification

of activity hot spots in both space and time.

2.6.3 Visualizing Relationships

Relationships between concepts (e.g. keywords or named entities), which are

either defined manually or extracted automatically from text using informa-

tion extraction methods, can be visualized by graph visualizations techniques

[Herman et al. 2010]. For example PhraseNet [van Ham et al. 2009] displays

relationships between terms within a document, while in [Kienreich & Seifert 2010]

an edge bundling technique is applied to reduce clutter and improve clarity

when visualizing relationships between persons extracted from a text corpus.

FacetAtlas [Cao et al. 2010] relies on faceted retrieval for visualizing relation-

ships between faceted metadata.

Figure 2.14 shows a graph visualization used to present relationships ex-

tracted from approximately 25000 documents. Concepts are placed in the

2D visualization plane depending on their interconnectedness using a force-

directed placement algorithm (see Section 2.3.4). The edge bundling technique

mentioned above is applied to improve clarity and reduce clutter which would

otherwise occur due to a large number of relationships.
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2.7 Coordinated Multiple Views

Properties and capabilities of each visual representation are designed to tar-

get the characteristics of the specific data type [Shneiderman 1996], such as

temporal data, geographic information, hierarchical or graph structures etc.

In complex, heterogeneous repositories which contain various data types, the

analysis of a data set necessitates considering more than just a single aspect of

the data. In application domains with data sets characterized by patterns not

only within each separate data aspect, but also by patterns between the dif-

ferent aspects, these patterns may resist analysis unless all aspects can be an-

alyzed simultaneously. Visual representations employ a specialized metaphor

which is restricted to revealing patterns only for one, or a small amount of data

aspects. As a consequence, a visual user interfaces capable of simultaneously

conveying different aspects of the data will usually employ several specialized

visual components. In such a complex user interface should behave in a co-

herent, unified way is necessary that different components act and function in

a harmonious, coordinated fashion.

Coordinated multiple views (CMV) is a paradigm for systems which use

two or more distinct views to support the investigation of the same conceptual

entities. User interfaces built along the lines of CMV paradigm achieve the

tight coupling of several components effectively fusing them into a single coher-

ent user interface where interactions performed in one component are imme-

diately reflected in all components within the GUI. In[Baldonado et al. 2000]

a collection of guidelines for using coordinated multiple views in information

visualization are given. These boil down to the recommendation than in oder

to reduce the cognitive load on the user multiple views should only be used

when the diversity of data aspects in complex data sets can not be handled

by a single view. Care should be taken to balance the costs and benefits of

using multiple visual representations. Also highlighted are the necessity to use

complementary views, which need to be kept in consistent states at all times

employing a well-defined, consistent coordination model.

A Snap-Together, a system backed by a relational data model, was pro-

posed in [North & Schneiderman 1999]. It allows the user to dynamically com-

bine and bind different visualizations to produce customized user interfaces,

where coordinations are specified by joining different data properties, effec-

tively ”snapping” various visualizations together. Users can construct and

apply different coordination actions between views themselves, such as for ex-

ample brushing-and-linking, drill down, overview and detail, and synchronized

scrolling. The concept was developed further in [North 2000] and was applied

in a commercially available SpotLite DecisionSite tool [DecisionSite 2001],
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which is a enterprise visual analysis suite composed of a series of coordinated

visualizations including scatter-plots, pie charts, bar charts, function graphs,

geographic maps, lists, tables etc.

Another approach to view coordination employs the well-known model-

view-controller architecture, as proposed in [Pattison & Phillips 2000]. Model-

View-Controller (MVC) is a architectural pattern applied in user interface soft-

ware engineering which focuses on separation of concerns between the model,

which manages and provides access to the data, the view, which is concerned

with rendering and interaction and the controller, which implements the do-

main logic. Comprehensive information on various approaches, methods and

models used in coordinated multiple views based user interfaces can be found

in [Müller 2005] and [Roberts 2007].



Chapter 3

Early Contributions

This chapter describes my early research and development results, including

new ideas, concepts and methods, which are important and relevant to this

work. Concepts and methods introduced in this chapter are:

• Incremental clustering and ordination algorithms and the information

landscape with dynamic topology are introduced in the WebRat system

for topical visualization of search result sets.

• A scalable system for similarity-driven visualization of large, hierarchi-

cally organized document collections containing up to millions of docu-

ments was realized in the InfoSky project.

• Tools and methods for temporal visualization were introduced in the

following projects: a visual application for discovery of communication

patterns within a meeting was developed in MISTRAL project; a pro-

totype search result analysis application, developed in OnAir project,

includes a temporal analysis component.

These results were realized in separate projects and systems, and were only

later extended and combined into a consistent visual set of tools, described in

Chapter 4, for addressing the goals defined in Section 1.2.2.

3.1 Starting Point

Visualisation Islands [Sabol 2001], developed during my Master’s Thesis as one

of the visual front ends for the xFIND search engine [Andrews et al. 2001], is

an simple visual system, implemented in Java, for topically organizing search

result sets. The system clusters and visualizes search results in the form

of an explorable, topically organized information landscape (see Figure 3.1).

51
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Figure 3.1: Visualisation Islands showing clustering and an information land-

scape for search results returned for query ”visualisation”.

The topical map visualization is constructed by first applying k-means or

hierarchical agglomerative clustering algorithms on document keyword vec-

tors which are returned by the xFIND engine. Document vectors are subse-

quently projected into the 2D visualization space according to their topical

similarity using a force-directed placement algorithm with stochastic sam-

pling [Chalmers 1996]. A topographic background image is computed based

on 2D document density. The system supports zooming, selection, keyword

filtering and iterative scattering and gathering of results along the lines of

[Cutting et al. 1992]. However, the system is very limited with respect to

scalability (up to 1000 documents), handling of high-dimensional data (up

to 10 keyword per document), can not deal with dynamically changing data

collections, provides no possibilities for visualization of rich metadata, has no

extension mechanisms for support of additional visualizations (other than the

information landscape), and no view coordination.

This work continues where Visualisation Islands has stopped, gradually

introducing new ideas, algorithms and visual techniques capable of handling

large, unstructured, complex, dynamically changing data sets.
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3.2 Incremental Visualization of Search Results

WebRat [Sabol et al. 2002a] is an light-weight, interactive system for visualiz-

ing and refining search result sets collected from several search engines. Rather

than presenting a linear ranked list of search results, documents matching a

query are clustered on-the-fly and visualized as an dynamic information land-

scape. The main feature of WebRat is, that as documents returned from

search engines are pouring in, thematic clusters and visual representation are

built, analyzed, and visualized incrementally and in real time. This is an agile

approach to search result set exploration, allowing the user to start exploring

search result sets almost immediately after the search query was executed,

in contrast to traditional meta-search engined which let the user wait until

a certain amount of results was collected. This incremental capability makes

WebRat one of the first (if not the first) systems employing an animated in-

formation landscape with fully dynamic topology.

WebRat was developed at the Know-Center’s [Know-Center 2011] Knowl-

edge Discovery Division team. My roles in the project involved the overall

conception, the ordination algorithm, and to a certain degree the clustering

algorithm and the map generation algorithm.

3.2.1 Goals

The standard web search interfaces of today differ very little from the interfaces

of the first full text searchable databases decades ago. Users type in one or

more query terms and the results of searches on billions of web pages are

presented as simple linear, ranked lists of matching documents, in decreasing

order of relevance. Such representations are incapable, however, of expressing

the manifold topical dimensions contained in typical search result sets. On

closer examination, the several drawbacks of traditional ranked lists stand

out:

1. Only a small subset of the matching documents can be displayed on a

screen at a time.

2. To find relevant documents, users may have to scan a large amount of

textual information word by word, narrow down the search query, or

both.

3. Only recently search engines began provided the user with keyword sug-

gestions to use for query refinement, however not within different topical

contexts present in the data.
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4. Topical interconnections or clusters present in the result set are hidden

from the user. Relationships between information entities which should

be obvious and easy to discover are obscured.

Hence, users may be hindered in two of their fundamental tasks: finding

relevant information, and placing information into context. While many re-

trieval and visualization systems have attempted to address these issues, most

rely on pre-calculated schemes, require sophisticated graphics hardware or can

only operate in a powerful server environment. However, most users have stan-

dard office PCs at their disposal, and any requirements beyond that restrict

the usefulness of any solution. The WebRat system, designed to addresses

these problems, is built around a framework capable of:

• querying various web data sources in the fashion of a meta search engine;

• dynamic, incremental clustering and ordination of search results;

• extracting keywords describing topics and using these as cluster labels;

• interactive visualization of results.

All calculations can be performed on standard office machines, visualization

works with low-performance graphics hardware, and no dedicated server or

service environment is necessary.

3.2.2 Concept

WebRat supports the identification of topical clusters of search results through

dynamic, incremental clustering, ordination and visualization. A thematic

landscape of matching documents is generated and updated on-the-fly as

search results arrive. WebRat also simplifies query refinement, by labeling

thematic clusters with automatically extracted discriminating keywords. Fig-

ure 3.2 shows a typical WebRat visualization (left), zoom in on a cluster

(up-right), and query refinement using cluster labels (down-right).

WebRat supports the retrieval process by dynamically identifying and vi-

sualizing clusters of similar documents, and by offering means for search query

refinement. Users start the query process by entering a number of query terms

which are sent to various data sources. The results form islands on a virtual

contour map which are labeled with the according keywords. The thematic

landscape of matching documents is generated and updated at regular intervals

as more and more search results arrive. As the generated thematic landscape

is getting more stable as the number of processed search results increases, the

user is given the possibility to zoom in to reveal more details, and navigate
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Figure 3.2: Visual query refinement with WebRat: 1) overview for query

”Knowledge Management”, 2) zoom in on ”certification” cluster, 3) Refining

the query with the term ”Information”.

to different regions of the map freely, even while the landscape generation

is still in progress. Query refinement is simplified by labeling thematic clus-

ters with automatically extracted keywords. Labels are calculated on the fly,

so as to always describe the most obvious concentrations of documents (the

largest islands) in the visualization. Users can invoke a context menu for each

label which allows to re-query any of the used data sources by refining the

original query with the label keywords. In this way, the system supports the

user in gaining on overview of the data, discovering major topical clusters and

narrowing down the result set by formulating a refined search query.

Therefore, a typical retrieval process using WebRat consists of the following

steps (see Figure 3.2):

• The user enters some initial query terms, probably of a general nature.

• The user examines the visualized result set for topics of interest.

• The user zooms in on the chosen topical cluster to reveal more detailed

topical keywords.

• The user launches a new search through a topic of choice, refining the
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Figure 3.3: A series of nine snapshots of WebRat incrementally processing

about 300 scientific paper abstracts.

initial search.

• The user browses the refined result set from the specified search en-

gine(s).

3.2.3 Incremental Visualization

The incremental capability is illustrated in Figure 3.3 where a set of about

300 scientific paper abstracts on knowledge management is incrementally clus-

tered, projected and visualized. On the top-left a first snapshot can be seen

which contains about a quarter of the whole data set. Document count in-

creases line-by-line from left to right, with a complete data set visualized in
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the snapshot shown on the bottom-right. It can be seen that main topical

structures mostly remain stable during the process, giving the user the possi-

bility to explore the search results set before all data has been retrieved and

processed. Although smaller changes and adjustments do occur, they are in-

corporated gradually and smoothly so that the user can follow the movement

of the landmarks. In this way the user does not loose orientation and can

retain recognition of his points of interest.

3.2.4 Architecture

The WebRat framework consists of four main components, shown in Figure

3.4:

1. High-Dimensional Component: Retrieves the search results from the

search engines and creates a high-dimensional representation for each

result. It includes the following subcomponents:

• The Grabber sends search queries to different search engines, re-

trieves the document-snippets from the result lists and adds them

to the global document pool.

• The Vectorizer analyses document snippets with a language-independent

method known as n-gram decomposition, to create high-dimensional

representations of the retrieved documents. Subsequently a TF-

IDF weighting scheme is applied. A cosine similarity function for

comparing the vectors is provided.

• The High-Dimensional Centroid Computation Unit computes the

high-dimensional centroids for new clusters and continuously up-

dates the existing clusters as new documents are inserted

• The Keyword Extractor applies a weighting scheme to identify

terms (n-grams) which best describe clusters and/or regions of in-

terest in the 2D layout. Subsequently keywords are extracted by

identifying the words and text segments which were the sources of

the n-grams with the highest rating.

2. Mapping Component: performs the dimensionality reduction from the

high-dimensional term-vectors to the 2D visualization space. It com-

prises two sub-units:

• The Force-Directed Placement (FDP) Unit performs multidimen-

sional scaling of the data set: based on high-dimensional term vec-

tor similarities, 2D document positions are computed preserving
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the high-dimensional relations as far as possible. The FDP algo-

rithm can operate in cluster-oriented mode to improve performance

and layout separation.

• The Low-Dimensional Centroid Updater continuously recomputes

the low-dimensional cluster centroid positions as the clusters chil-

dren are repositioned by the layout algorithm. As documents are

added to clusters their weights are adjusted to ensure that the FDP

interactions between document and clusters are performed with cor-

rect strength. This scheme significantly improves the performance

of the FDP algorithm.

3. Low-Dimensional Component: consists of a user interface, a landscape

generator and a 2D clustering module:

• The User Interface sub-component presents the visualization and

handles the interactivity and navigation. It dispatches events and

tasks to other components depending on user actions.

• The Landscape Generator computes a shaded islands landscape

based on the 2D document density. Labels describing different

landscape regions are computed dynamically from the extracted

keywords depending on the zoom level and context.

• The 2D Clustering Module analyses the landscape to identify po-

sitions of the 2D document density maxima created by the FDP

algorithm. These are used as cluster seeds. Clusters are then cre-

ated by assigning each document to the nearest seed. In doing so,

a feedback loop is created to the FDP algorithm, which uses the

created clusters to improve performance and layout quality.

4. Shared Component: consists of document and cluster pools, high-

dimensional and low-dimensional metric definitions, threading and con-

trol logic facilities, an event model, as well other components shared by

the three processing components.

For maximum adaptability to various data sources and visualization metaphors,

each component is separately configurable and exchangeable. The components

operate as Java threads, communicate with each other through a shared data

pool, and use an event model for exchanging messages or requesting specific

operations.
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Figure 3.4: The system architecture of WebRat.
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3.2.5 Integrated Ordination and Clustering Algorithm

A selection of most important algorithmic details is described in this Section.

Some techniques deemed less relevant for this work, such as reconstruction of

uniwords from n-grams needed for labeling, or optimizations of the map image

generation, are only outlined (more details can be found in [Sabol et al. 2004]).

In WebRat, a cosine similarity coefficient (3.1) is used to compare high-

dimensional document vectors ~v and compute a similarities between them.

Topical similarities between pair of documents (sim(di, dj) ∈ [0, 1]) are needed

by the ordination algorithm to compute 2D document positions ~p = (x, y). A

force-directed placement algorithm was chosen as ordination method because

it produces visually appealing layouts and because it is incremental - new

documents can be added to an already computed 2D configuration without

disrupting the layout and without the need to recompute the layout from

scratch. The algorithm iteratively computes document positions by letting

each document interact with all other documents in the set in every iteration.

sim(di, dj) =
~vi · ~vj
||~vi|| ||~vj ||

(3.1)

dist(di, dj) = ||~pi − ~pj || (3.2)

The force (3.3) between two documents has three components: An attrac-

tive component proportional to the high-dimensional similarity between the

two document vectors (3.1), a repulsive component inversely proportional to

the Euclidean distance (3.2) between these two objects in 2D, and a weak

constant gravitational component grav. The first component is an attractive

component which pulls objects with similar content together with the strength

proportional to their similarity. The second component is a short-distance, ex-

ponential repulsive component which pushes two objects apart and prevents

them from ever coming too close. Excessively high repulsive forces can be

clipped, allowing very similar objects to create tight visual clusters of the-

matically strongly related documents. The third component is a weak but

constant gravitational force, which provides cohesion to the layout. It ensures

that even very dissimilar objects are attracted to the rest of the data set once

they become very distant, preventing outliers from drifting into infinity.

force(di, dj) = sim(di, dj)
a − 1

dist(di, dj)r
+ grav (3.3)

It should be noted that this force function does not yield 0 when distHD(di, dj) =

distLD(di, dj), i.e. the FDP algorithm using this function does not strive
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to exactly reproduce the original high-dimensional (HD) distances in low-

dimensional (LD) 2D space (a force function that would do that is as simple as

force(di, dj) = distLD(di, dj) − distHD(di, dj). The reason being, that striv-

ing to reproduce HD-distances exactly, would in many cases yield a 2D layout

which is not suitable for visualization [Davidson et al. 1998]. Our numerous

experiments confirm this fact: distances between various visual clusters may

vary by a large margin, and many clusters become too tight for any structure

to be discernible. After experimenting with different approaches, the partic-

ular force model in 3.3 was chosen, because it is simple and fast to compute,

and it produces layouts which reflect high-dimensional relationships faithfully

(though not exactly) while at the same time being visually appealing and us-

able. Another important advantage is that a degree of control over the final

layout is provided, in particular:

• Exponent a ∈ (0,∞) in the first term is normally 1, but when the average

similarity in the data set tend to be too low, its value should be decreased

resulting in higher, more discriminative similarity values. If the average

similarity tends towards 1 the exponent a should be increased reducing

the similarity values. Choice of a is data set dependent and already a

very simple heuristic for adjusting this value will has a significant positive

impact on both the separation power and the convergence speed of the

algorithm.

• Exponent r ∈ (0,∞) in the second term has a default value 1, but

increasing it will produce tighter visual clusters while decreasing it will

result in a more uniform layout. This allows for fine-grained control over

the amount of separation in the layout.

2D coordinates of every document are calculated by letting it interact with

all other N1 documents in the data set, N being the number of documents

inserted in the pool so far, and subsequently averaging the results over all

interactions. For example, Di.x, a new x-coordinate of object di, is calculated

with the following equation:

di.x = di.x +
1

N − 1

N∑
j=1,j 6=i

force(di, dj)(dj.x − di.x) (3.4)

The y-coordinate di.y is calculated analogously.

Thus, at each iteration of the algorithm a new position is computed for

every object. The iteration continues until a termination condition is satisfied.

The commonly used termination condition is that of mechanical stress, which

is is defined as follows:
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stress =
N∑

i,j=0, i 6=j

(distHD(di, dj)− distLD(di, dj))
2 (3.5)

However, computation of stress is quadratic in time with N and there-

fore computationally too intensive for practical purposes. Also, the above

definition of stress is not applicable to the used force function (3.3) directly,

because it does it is not designed to reproduce high-dimensional distances ex-

actly. Therefore, a more light-weight, adaptive condition is used, which can be

summarized as: execution terminates when all documents have been retrieved,

and when object positions have stabilized sufficiently, i.e. the average object

speed has sunk under a certain threshold.

The time complexity of the described approach is O(N2) per iteration.

As the size of the pool grows comparing every object to all others becomes

very slow. To overcome this limitation the implemented FDP algorithm uses

two important optimizations to improve performance and enhance the layout

quality: document skipping and clustering.

Document skipping optimization, which proved to be very useful in in-

cremental environments, involves tracking of speeds on a per document bases.

Documents which have been processed by the layout algorithm for a longer pe-

riod of time, may have reached a (possibly temporary) stable position. Their

positions need not be recomputed in each FDP iteration. In effect, they can

remain dormant for a number of iterations, reducing the computational com-

plexity significantly. A heuristic (based on testing and experience) determines

when the movement of a document can be considered as ”almost still”, and

assigns a sleep period to the document depending on two parameters: how

small its last movement was, and how long the previous sleep period has been.

Use of a clustering technique has a significant impact on time complexity

of the algorithm. Once the number of documents which being processed has

exceeded a predefined limit, the computed 2D layout is used to identify the

coordinates of document density maxima in 2D which are used as seeds for

clustering in the 2D space (more details on map rendering, seeding and clus-

tering follow bellow). In the following iterations, FDP algorithm operates in a

special cluster-mode: document positions are computed by letting each docu-

ment interact only with thematically and spatially neighboring documents, i.e.

those belonging to the same cluster, and with all other cluster centroids, which

represent thematically and spatially distant documents. When computing new

document positions each cluster influences its non-members with the weight

of all documents it contains. 2D cluster centroids themselves are continuously

updated as the documents they contain are moved. If the number of created

clusters is approximately
√
N , then the per-iteration computation complexity
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is reduced from O(N2) to roughly O(N1.5). This increases the scalability of

the algorithm notably, however when the data set size grows beyond 1000 doc-

uments the algorithm becomes too slow for real time incremental computation

on a standard desktop PC (2GHz CPU).

Two different strategies for inserting new documents into the cluster parti-

tion and the layout were evaluated. The first strategy is to identify the cluster

most similar to the document in high-dimensional space, insert the document

into this best fitting cluster, update the cluster’s high-dimensional centroid,

and initialize the document’s 2D position with the cluster’s 2D centroid po-

sition. However, scheme has serious problems with outliers. FDP algorithm

has the property of pushing outliers towards the outer limits of the layout.

Inserting an outlier into a compact cluster containing very similar document

distorted the cluster’s high and low dimensional centroids by a large degree.

The second strategy is to insert new documents into the layout but not into

any cluster. By leaving them ”unclustered” for a while, their 2D positions

computed by the FDP algorithm are influenced by cluster centroids only. In

the course of FDP execution the document’s position stabilizes in the vicinity

of the most similar cluster - if the document is an outlier it will be pushed

by FDP close to an ”outlier cluster” (i.e. a topically not very coherent group

of outlier documents) on the outer limits of the layout. Once the document

set has been incrementally extended with new documents by a pre-defined

amount, the whole 2D configuration, comprising old and new documents, is

partitioned anew by the 2D clustering routine. During that operation new

documents are integrated in the spatially closest cluster, and clusters repre-

sentation are updated by computing the high- and low-dimensional cluster

centroids.

When new documents are added to an already existing group, the posi-

tions of documents inside the group experience strong movements as the new

documents seek their positions within the group. The groups tend to maintain

or even increase their cohesion and only a very small number of documents

leave a group and move toward another one. However, those that do so will

be integrated in another group once the 2D clustering routine is re-triggered

again. This strategy resembles a k-means clustering algorithm with with clus-

ter seeds being density hotspots computed by FDP. Seeding and clustering

is performed periodically in the 2D space, and the partition is incrementally

extended as new documents arrive.

Landscape background image generator computes a topographic map im-

age based on the 2D document coordinates computed by the FDP algorithm.

To generated the landscape image an elevation matrix is first computed, with

dimensions corresponding to the image resolution (usually 500 x 500). Each
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document can be thought of as a small peak having the shape of a spherical

cap with a height proportional to its relevance. Objects are placed on the

elevation matrix, so that in areas where document density is large the peaks

overlap and their heights are superimposed adding to the elevation values of

the underlying matrix cells. In the resulting matrix every cell contains the

height of the accumulated mountain above it.

To obtain a topographic map-style image the algorithm writes color values

into pixels depending on the height in the corresponding cell of the elevation

matrix. With the appropriate choice of colors the resulting image resembles

a geographic map with peaks at areas where document density is large, while

low density areas will be represented as oceans or valleys. A 3D style image

van be computed by computing a slope value for the matrix cell using values

in the neighborhood cells. Color shade of the corresponding pixel is modified

depending on the slope, where a lighter shade is assigned if the slope is positive

and a darker one if the slope is negative. For a fixed resolution of the image,

the method scales linearly with the number of documents, however to make it

reasonably quick for real-time environments the resolution of the used elevation

matrix had to be smaller than the image resolution. Further optimizations

were proposed and tested by colleagues such as using various lookup tables,

using pre-calculated images for document peaks which are alpha blended at

runtime, using using kernel-based filtering of images for lighting etc.

WebRat detects density maxima positions in the elevation matrix, which

correspond to clusters in the landscape image the user sees, by means of image

processing. These maxima serve two purposes: they are used as 2D cluster

seeds in the accelerated, cluster-oriented version of the force-directed place-

ment algorithm, and they serve as anchor points for labeling the visualization

with appropriate keywords. Labels are computed from the highest weight n-

grams from the high-dimensional centroids. As n-grams are meaningless to

the users, the words from which the n-grams originate are computed using a

statistical mapping technique developed by team colleagues.

It should be emphasized that a unique feature of WebRat is the feedback

loop created between the low-dimensional and high-dimensional representation

of the documents, by the FDP algorithm driving the density maxima detection

and clustering, while the clusters are fed back into FDP to improve its time

complexity.

3.2.6 Evaluation

WebRat has been subjected to evaluation using an on-line questionnaire af-

ter a two-week test phase. For assessment of acceptance of WebRat as a
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search engine, as well as for obtaining information about features that could

be improved a simple questionnaire was composed. A group of seven subjects

recruited at the Know-Center was asked about several aspects concerning data

sources to be searched and the handling of the tool. Subjects had to answer

questions on a seven-point scale as well as open questions.

A summary of the results is as follows: Subjects were asked about the

importance of several data sources queried by WebRat. The organization

of individual information such as personal documents and emails as well as

the organization of newsgroup archives was announced to be most important.

Moreover, subjects suggested WebRat to be useful among others to search item

pools, diagnostic manuals or clinical records. Regarding search functionalities

subjects claimed thesaurus and synonym support to be helpful and missed the

possibility for cross media queries. Altogether, they stated the search func-

tionalities to be sufficiently described, the search site to be well manageable,

labels to be significant, navigation functionalities to be sufficiently described,

and results easy to interpret. Concerning result functionalities subjects missed

a a back button and an indication about how much time is left until the search

process has been completed.

It can be concluded that WebRat was found to be most helpful when

searching a domain one is not familiar with, since it gives a good overview and

hence an entry point to the domain. Moreover, test users positively judged

that WebRat gives insight into the vocabulary used in the searched knowledge

domain as well as how search results relate to each other. Although super-

ficial, these results provided valuable input which already resulted in some

improvements in the user interface.

3.2.7 Other Applications

The characteristics of environmental information make it a challenging field

for search engines and query refinement tools. Environmental information is

typically made up of a variety of different data types, and is typically en-

riched with meta-information. The environmental context is saturated with

abbreviations and multiple meanings of words, rendering the snippet informa-

tion returned by standard web queries mostly useless. WebRat was applied

as a retrieval tool for querying environmental data catalogs (Austrian and

German Environmental Data Catalogue: UDK, www.umweltdatenkatalog.de)

[Tochtermann et al. 2002] and [Tochtermann et al. 2003]. Meta-information

returned by these systems was incorporated and given priority compared to

snippet information. As environmental metadata is usually of high quality

WebRat was able to deliver higher quality clustering and visualization.
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Figure 3.5: Comparing two environmental information sources (in German),

UDK Germany and UDK Austria, for the search query ”Atom*”.

When multiple data sources are available for querying, it is often inter-

esting to know how the result sets returned compare to each other. WebRat

allows users to compare data sources using a visualization where each entry

returned is color coded according to its source. Since documents are coded

with different colors the resulting color of each island depends on document-

source distribution: islands displayed only in the (pure) color of a single source

contain no documents from other data sources. In contrast topics which are

covered by more than one source appear colored additively by the base col-

ors of all contributing sources. Figure 3.5 displays the result of a ”Atom*”

query (all terms starting with ”Atom”) executed against the Austrian (red)

and the German (blue) UDK search services. The sources return results with

just a few common topics, which is an observation matching reality: Austria,
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not having any nuclear power plants, is mainly concerned with civil protec-

tion. Therefore the query reveals topics at the bottom of Figure 3.5 such as

”International Cooperation” or ”Bezirkshauptmanschaft” (an Austrian state

administration unit which, among other tasks, deals with the protection of

Austrian citizens). On the other hand, results from the German UDK cover

more technical aspects such as atom absorption spectroscopy and circulation

processes (both in the top left corner), laws for radiation protection (middle)

and nuclear crime (middle right). Clearly the layout splits into a technical

part in the top-left, which is covered mainly by the German UDK, and a juris-

diction and administration part in the middle and bottom parts of the layout,

which are covered by both services. There are also a few overlapping regions

in the middle-top which are related to ground and radioactive waste, issues

concerning both Austria and Germany.

Hyperwave Information Server (HIS) [Hyperwave IS/6 2011] is a knowl-

edge and document management system which stores documents and other

objects in a hierarchically organized repository resembling a file system direc-

tory structure. The standard Web-interface displays a tree representation of

the hierarchically structured repository on the left side, and a list of documents

in the currently selected collection on the right side. However, this conven-

tional view does not offer the possibility to get an overview of the knowledge

contained in all documents and sub-collections belonging to the current col-

lection, not does it display thematic relationships between these knowledge

entities. Hyperwave Web-interface was extended with the WebRat to provide

insight into complex thematic relations in the repository and to aggregate

the knowledge present in several hierarchy layers to provide an overview to

the user [Kienreich et al. 2003a]. The integration of WebRat into Hyperwave

Web interface was accomplished by integrating a WebRat-based Java applet

in distinguished HTML page on the Hyperwave server - the Collection Head.

When a collection is selected in the tree view, WebRat recursively scans all

documents present in that collection and its sub-collections, and processes

them on-the-fly to generate a visual aggregation of the knowledge present in

the chosen sub-hierarchy. In this way the WebRat gives an topical overview

and, in addition to hierarchy navigation via the collection tree, provides means

for topical exploration and navigation of the documents. That provides a ben-

efit in cases when the user is unfamiliar with the document corpus or when

the hierarchical structure of the repository does not reflect topical structures

within the corpus.
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3.3 Visualizing Hierarchical Document Collections

InfoSky [Andrews et al. 2002] is a system for exploration of large, hierarchi-

cally organized document collections, providing a visual representation capable

of providing an overview of the whole data set at once, and a deeper, more

detailed insight at any level of the hierarchy. It employs a metaphor of the

night sky viewed through a telescope, where topically similar documents are

placed close to each other and visualized as stars, forming galaxy-like clusters

with distinct, recognizable shapes. Hierarchy of collections is visualized as

nested polygonal areas whose size is a measure for the number of documents

they contain. Navigation through the hierarchy is animated and provides a

seamless zooming transitions between the overview and detailed views at the

lower hierarchy levels. Labels showing collection names and a summary of

their content are displayed to provide orientation. They are dynamically dis-

played and hidden during navigation, automatically adjusting to the chosen

level of detail (i.e. zoom level). Searching is supported through highlighting

of hits in different colors allowing the user to immediately see the distribution

of hits over the hierarchy and correlations of different searches The layout al-

gorithm employs a combination of force-directed placement and Voronoi area

subdivision, and exploits the hierarchical structure to achieve scalability.

An important feature of InfoSky is that it scales to large data sets, some-

thing not possible with the previously described system, the WebRat. How-

ever, it should be noted that the algorithms for computing the visualization

geometry require a hierarchically organized structure, which is exploited to

achieve scalability. ”Flat”, unstructured data sets are not supported by the

system.

My contribution to the development of InfoSky are as follows: design and

implementation of the user interface component and the client server architec-

ture, significant contributions to the scalable layout algorithm, and involve-

ment in the usability testing of the interface. I am registered as inventor,

along Frank Kappe and Wolfgang Kienreich, on pending EU and US patents:

EU Patent Application Number 020077426 (5.4.2002), US Patent Application

Number 60/376474 (29.4.2002). InfoSky system was developed for Hyper-

wave AG [Hyperwave 2011] by Know-Center GmbH [Know-Center 2011], in

collaboration with the Institute for Information Systems and Computer Me-

dia [IICM 2011] of Graz University of Technology. The system was developed

over a period of three years with yearly deliveries of new, improved versions

[Kappe et al. 2003], [Andrews et al. 2004].
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3.3.1 Requirements

Using structures to organize large amounts of data is common in information

systems. User understand hierarchical organization of things from everyday

life, which makes exploring and navigating hierarchies more familiar. As a

consequence hierarchical structures are one of the most commonly used ways

of organizing data, such as for example in file systems. Exploration of hier-

archically organized data sets by following parent-child relationships allows

users to quickly narrow down the scope and access data even in very large

collections. However, typical hierarchy representations, such as tree widgets,

do not communicate any other properties in the data other than the hierar-

chical organization. Information on size, topical similarity or an overview of

the data set require the use of additional components.

Requirements on InfoSky were to eliminate these shortcomings and deliver

the following additional capabilities:

1. Scalability: visualize large, hierarchically structured document reposito-

ries containing millions of documents.

2. Topical similarity: Along the hierarchical structure, topical relationships

in the data set should be represented, all within a single visualization.

3. Size: Estimation of the amount documents present in branches of the

hierarchy should be supported through visual properties.

4. Overview and detail: Provide both a global overview and a possibility

to seamlessly navigate down to the leaf level for a detailed local view.

5. Unified frame of reference: Use a metaphor which promotes visual recall

and recognition of features, and provides a single, consistent view for all

users to promote communication and collaboration.

6. Exploration: Provide simple, intuitive facilities to browse and search the

data set.

TreeMap is visual representation 2.4.3 which comes closest to InfoSky, how-

ever TreeMaps can not deliver all of the requirements listed above. While

TreeMaps can visualize large hierarchies they do not display leafs, thus lack-

ing the possibility to provide an overview of the whole data set and deliver

detail all the way down to leaf level. Also, due to use of rectangular areas,

conveying both size and relationships, while a the same using all of the avail-

able area is, subject to significant compromises in TreeMaps, often leading to

rectangles with extreme height to width ratio.
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Figure 3.6: InfoSky user interface consisting of a visualization component, a

tree and a table, all showing the top level collections.

3.3.2 Visual Interface

InfoSky requires that the document repository is organized as a hierarchy

of collections, where each collection can contain documents and further sub-

collections. Each document and collection can be members of more than one

parent, i.e. the system is not limited to tree structures but can also handle

directed acyclic graphs. To visualize the data set InfoSky visual employs the

metaphor of a night sky viewed through a telescope. Collections are visualized

as nested polygonal areas, which contain further areas (sub-collections) and

document visualized as stars. At every level of the hierarchy both collections

and documents are positioned in such a way in the 2D space that topically sim-

ilar object are placed close to each other, while dissimilar ones are positioned

far apart. Also, the size of collection areas and the density of stars provide the
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possibility to visually estimate the size off a hierarchy branch. The resulting

distribution of points and areas resembles stars organized into constellations

and galaxies, where zooming in reveals deeper and finer structures, similar to

increasing magnification when exploring the sky with a telescope. The direc-

tion the telescope is pointing to can be modified to shift the focus and show

other regions of the visualization.

Figure 3.6 shows the InfoSky user interface visualizing a collection of con-

sisting of 149,195 files in 7643 hierarchically organized collections from the

Dmoz [dmoz 2004] ”Computers” hierarchy (retrieved in September 2004). The

user interface consists of five main components:

• InfoSky visualization, on the right hand side, shows an overview of the

data set. Magnification level and direction of the telescope are automat-

ically adjusted to provide optimal viewing size for the currently chosen

collection. A small map in the right upper corner reveals which part of

the visualization is currently visible on screen.

• A tree on the left hand side shows the hierarchy, with the currently

chosen collection (”Root”) highlighted.

• A table on the bottom shows metadata, such as size, date and keyword,

for direct children of the currently chosen collection.

• A tool bar on the top of the window offers navigation and searching

functionality, and provides an address box showing the current location

in the hierarchy.

• A status bar at the very bottom reveals the child count (documents and

collections separately) for the currently chosen collection.

3.3.3 Searching and Highlighting

Searching and highlighting of search hits within the visualization unveils the

distribution of hits over the collections. In Figure 3.7 three searches have been

executed: ”linux” shown in magenta, ”windows” shown in green, and virus

shown in red. While the two big clusters seen on the lower left are obviously

the ”Linux” and ”Microsoft Windows” collections (also seen in Figure 3.8

on the bottom), it is interesting to see how search hits distribute over other

collections. For example, in the ”Consultants” collection (center of the image)

”Linux” is obviously mentioned more often than Windows, while the largest

cluster of ”Virus” related hits can be found in the ”Security” collection.
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Figure 3.7: Search results for ”linux” (magenta), ”windows” (green), and

”virus” (red).

3.3.4 Navigation

Navigating the hierarchy is as simple as clicking on the labels which cause

the system to automatically shift focus to the chosen region and magnify

it to optimal viewing size. When navigation deeper in the hierarchy more

details are revealed: areas and labels representing collections at deeper levels

of the hierarchy will be shown providing a level of detail appropriate for the

chosen zoom-level. Figure 3.8 shows an example where, starting from the root

collection, the user navigates deeper clicking first on ”Software” and than

”Operating Systems” collections. Support for view coordination in InfoSky is

provided for navigation: the user can choose a collection in the visualization,

tree, table of the address bar, and all other views will adjust accordingly. Free

navigation in the visualization is also supported to provide fine-grained control

of magnification factor and telescope direction. The user can zoom in and out

using the mouse wheel, and pan by dragging while keeping the left mouse

button pressed.
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Figure 3.8: Navigation the hierarchy collections ”Software”, ”Operating Sys-

tems”, ”Linux” (highlighted with gray overlay).
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3.3.5 Algorithms

InfoSky is a server-client system implemented in Java. Given a hierarchically

structured document set the geometry of the visualization is entirely computed

on the server stored there on the disk. When a client connects to the server all

2D document coordinates transfered immediately, but the rest of the geome-

try and metadata is delivered only on demand while the user is navigating the

hierarchy. This allows the client to immediately provide an overview of the

whole repository, while the amount of transfered data remains within limits

even for large data sets. Another advantage of dynamic loading is, that the

amount of geometry and metadata present on the client at each moment is

only a fraction of the geometry and metadata for the whole hierarchy: besides

2D document positions for the whole data set, only a single hierarchy branch

is present on the client. As a result, even for data sets including more than a

million documents and tens of thousands collections, client memory consump-

tion remains low and rendering performance sufficient even for small desktop

machine.

The algorithm executed on the server to generate the geometry of the

hierarchy performs recursively from top to bottom in such a manner, that at

each moment only one parent collection and its children, including documents

and sub-collections, are loaded in memory. Provided there are no collections

with excessively large number of children (i.e. max a few thousands), the

algorithm can compute the geometry for millions of documents within several

hours on a small server or even a desktop machine. The algorithm has two

main phases:

1. The first phase, which proceeds in a bottom up fashion, begins by pars-

ing the documents of a collection, transforming them into a term vector

representation and adding them together to compute the collection cen-

troid. Document vectors and the collection centroid are stored on the

disk, and the process continues by moving one level up in the hierarchy,

where the centroids of parent collections are computed by adding their

children’s vectors. Note: if a collection contains both sub-collections and

documents, an additional synthetic sub-collection is created to hold the

collection’s documents (i.e. the hierarchy is transformed so that each

collection contains either sub-collections or documents). The first phase

is completed when centroids of top level collections have been computed

and stored.

2. The second phase recursively processes the hierarchy in a top down man-

ner, and uses collection centroids and document vectors computed in the

first phase to generate the 2D geometry. For every collection, beginning
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with the root, following steps are executed:

(a) Ordination: Centroids of the collections’s sub-collections (or docu-

ments) are positioned in the 2D space so that topically similar ob-

jects are placed close to each other and dissimilar ones are placed

further apart. The ordination is computed using a force-directed

placement algorithm with a force model defined in equation 3.3.

Stochastic sampling using neighbor and random sets, along the lines

of [Chalmers 1996], was used to improve the running time and add

a source of jitter to reduce the probability of getting stuck in local

minima.

(b) Inscribing: The layout computed in previous step is first normal-

ized to occupy [−1, 1] 2D space, with the origin o in (0, 0), the

square bounding the normalized space being B. Then the layout is

inscribed into the convex polygonal area A of the parent collection

using the following simple geometric transformation:

i. Point c, being the center of gravity of the polygon A, is aligned

with the origin of the normalized [−1, 1] space o.

ii. For each point pi in the normalized space an infinite ray ri is

cast from o to pi intersecting the polygon A at point ai, and

the square B at point bi

iii. The inscribed point p′i is placed on ri so that dist(c, p′i) =

dist(o, pi)
dist(c,ai)
dist(o,bi)

(c) Voronoi area subdivision: The collection’s polygon is subdivided

into nested sub-polygons by assigning a polygonal area to each sub-

collection. This is performed by applying a variant of additively

weighted power Voronoi subdivision [Okabe et al. 2000], with in-

scribed sub-collection centroid positions as control points. The re-

sulting size of each created area is related to the total number of

documents contained in the subtree starting at that sub-collection.

Note: if the collections contains documents, i.e. the bottom of the

hierarchy has been reached, then no area subdivision is performed

and the recursion stops.

3.3.6 Evaluation

InfoSky was developed over a course of more than tree years. After about

a year and a half a first complete prototype was ready and was tested in a

preliminary usability study [Andrews et al. 2002]. This study revealed var-

ious deficiencies which were fixed in the next two versions of the tool. A
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Figure 3.9: InfoSky evaluation setup.

second evaluation was performed on the final InfoSky version in spring 2004

[Granitzer et al. 2004]. Both tests consisted of formal experiments which were

performed in an environment as shown in Figure 3.9. For both tests users were

given a short introduction to the features of the tested user interface and re-

ceived a two minute training to become familiar with the interactivity. After

the test each user was interviewed to collect additional feedback. The test

were recorded on video providing the possibility to analyze user reactions ex-

tract the exact timings for each task. For all tasks the application window was

maximized to make use of the full screen area, and the search functionality

was disabled.

3.3.6.1 Preliminary Evaluation

In the first formal experiment performed in 2002 a comparison between the

InfoSky visualization and the standard tree widget was performed. Users

could perform tasks in the visualization or in the tree, use of both components

simultaneously was prohibited. The test dataset used in the test consisted

of 110.000 newspaper articles from the German Sueddeutsche Zeitung. Two
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Figure 3.10: InfoSky test conditions: V on the left and T on the right.

sets of tasks, A and B, were formulated consisting of five pairs of equivalent

tasks. Pairs of tasks are equivalent in the sense of their complexity, i.e. their

solutions lay at the same hierarchy depth and involve approximately the same

number of inspections and choices. Eight test users were divided randomly

into four groups of two. Half of the users began with the visualization and

then used the tree, condition V, the other half used the tree view first and

then the visualization, condition T (see Figure 3.10). Within each condition

two users began with the task set A and the other two with the task set B.

Without going into details of each task, they can be summarized as follows

(ordered in ascending level of difficulty):

• Tasks 1 and 2: Find a sub-collection within a collection, with task 2

being slightly more difficult to complete.

• Task 3: Estimate which of the two sub-collections contains more docu-

ments.

• Task 4: Give the exact number of documents in a sub-collection.

• Task 5: Find a document on a particular topic within a given subtree.

Evaluation revealed that the tree performed better than the visualization

on average, and that the results were statistically significant (p ¡ 0.05, paired

samples t-test, 39 degrees of freedom, t = 3.038). Besides users’ familiarity

with the tree, following issues could be identified as reasons for the result:

• A portion of Voronoi polygons, typically those in the center of each

collection, were too small.
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• A the bottom of the hierarchy, where documents are shown, labeling

techniques is not adequate. Due to potentially large number of docu-

ments only titles of documents near to the mouse pointer were shown

in what was perceived by users as a list. Two problems were associated

with this labeling style:

– When more than a few document titles were displayed the display

still became cluttered with text.

– Users tried to scan through the ”list” which changed the moment

the mouse was moved. This was perceived by users as ”jumping

around” of document titles.

From interview results it was clear the users felt more familiar with a tree

view than with the visualization, although they liked the overview provided

by the visualization and could imagine themselves using it for exploration

of a document corpus. Users also indicated that a combination of tree and

visualization could be a powerful solution exploiting the advantages of both

representations.

3.3.6.2 Main Evaluation

InfoSky visualization and user interface were subsequently redesigned under

consideration of the above evaluation results. This included the following

changes:

• Voronoi subdivision and force-directed placement algorithms were modi-

fied and tuned in order to prevent creation of excessively small collection

polygons.

• Labeling of documents in the visualization was completely overhauled:

– Keywords are extracted for both collections and documents. A

label now consists of an upper row showing the tile and a lower row

showing the keywords. This is useful in cases when titles do not

provide a topical description of the object.

– A zoom-factor sensitive label merging algorithm avoids clutter by

ensuring that the amount of text displayed on screen is limited.

Displayed labels are always adjusted to the current level of detail.

• The full list of children (i.e. documents and sub-collections), including

metadata, belonging to the currently chosen collection is shown in a

table.
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• A navigation bar is added on the right of the tool bar, showing the

currently selected collection (i.e. location) in the hierarchy. A drop

down menu reveals collection’s parents up to the root collection.

• A variety of smaller issues and annoyances was corrected, interactiv-

ity was polished and animated transitions in the visualization became

smoother.

The resulting interface, shown in Figure 3.6, resembles typical file system

navigation tools, such as Windows Explorer, in look and feel. Design of the

interface was driven by the wish to provide users with an interface they are

familiar with, extended by the InfoSky visualization.

The test setup differed from the previous one, as in addition to testing the

visualization and tree separately, combination of the visualization and tree

was also tested. Other components, such as the tree and the navigation bar

were available to test users all the time (with the exception of searching).

Three sets of tasks, A, B, and C were formulated consisting of six triples

of equivalent tasks. As in the previous test, the tasks were designed to be

equivalent among the three sets in the sense that their solutions lay at the

same level of the hierarchy and involved inspecting approximately the same

number of choices at each level. Nine test users were recruited for the study

and divided into three groups of three. Users of the first group began with

the visualization (condition V), then used the tree (condition T), and finally

executed the tasks with both views available (condition VT). Other two groups

used alternating ordering of test conditions. Data set used for testing consisted

of 80.000 newspaper articles from the German Sueddeutsche Zeitung.

Tasks performed by the users included the following:

• locating a collection within the hierarchy,

• locating a document within the hierarchy,

• estimating and comparing the number of documents contained in two

collections,

• counting the number of documents which are direct children of a collec-

tion,

• for a given document, locating and counting the number of topically

similar documents within the same collection.

It should be noted that majority of the tasks in this usability study were signif-

icantly more complex than tasks in the first study, and demanded navigation
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into deeper parts of the hierarchy. Also, some tasks, such as locating topically

related documents, were not performed at all in the first study.

Statistical evaluation of the times required to performed the tasks indicate

that there are significant differences between the three test conditions. Note

that when a test user could not complete the task within a predefined max-

imum time, a time-out was recorded and this result was not included in the

statistical evaluation. A summary of the results is as follows:

• Combination of the visualization and tree (condition VT) performed sig-

nificantly better than the visualization alone (condition V). Statistical

results are confirmed by comments given by users in the follow-up inter-

views, where the value of the visualization was recognized as an overview

and orientation tool useful for avoiding getting lost when navigating deep

in the hierarchy.

• Combination of the visualization and tree (condition VT) still did not

perform as good as tree alone (condition T).

• However, when using the tree browser (condition T) seven time-outs

were reported, indicating that the task could not be solved in reasonable

time, but at the same time only four time-outs occurred when using

the combination of visualization and tree (condition VT). Majority of

time-outs were reported when users got lost in the hierarchy and were

unable to find a path of navigation towards the desired destination. This

is a strong indication that the visualization is useful for understanding

both the overall structure of the hierarchy and the context of the current

position.

• When using visualization only (condition V) or tree only (condition T),

about half of all time-outs occurred in task where the user was asked

users to navigate to an item deep in the hierarchy. However, in combined

view (condition VT) only one user reported a time-out. This further

underlines the having both provides advantages for navigation of the

hierarchy.

• In interviews the users consistently described the combination of visual-

ization and tree as more satisfying than any of the two alone.

• Issues with labeling were rarely reported. The overhauled labeling strat-

egy removed the majority of problems identified in the first study.

• Far less small usability issues and annoyances were identified than in

the first study. Obviously, this version of InfoSky is significantly more

mature and more polished than the first one.
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The conclusion is that the combination of visualization and tree is a promising

approach which was well accepted by the users. It delivered results more often

than the tree alone, but was still slower on average in all tests. However, this

might be the result of the fact that users are far more familiar with a tree.

It is likely that for tasks where context and overview can be exploited, the

combined view would come closer to the performance of the tree view, given

the comparable amount of training and experience. On the other side for users

which are familiar with the hierarchy the visualization will probably not offer

any advantages.

3.4 Temporal Visualization

Addressing analysis of temporal aspects, in addition to topical relationships, is

a frequent requirement, for example in understanding the history of search re-

sult sets. For some data types, such as audio and video, temporal information

is not just an additional metadatum but an essential ingredient of that data.

This section introduces two project which apply visual methods for analysis

of temporal aspect of the data set.

3.4.1 Temporal and Topical Analysis of Search Results

In the OnAir project [Kienreich et al. 2005a], [Kienreich et al. 2005b] an in-

telligent retrieval system was developed including a prototype client solution

for visual presentation of search results. It was implemented in cooperation

with the APA DeFacto [APA-DeFacto 2011], a subsidiary of the Austrian Press

Agency which manages the largest media archive in Austria. Although a sig-

nificant effort was invested into retrieval technology, this section focuses on

visualization features and related algorithms only. My focus in the project

was predominantly on ordination and clustering algorithms, and also included

conception of the user interface.

An important feature of OnAir is that in addition to visual analysis of

topical relationships, it introduces analysis of temporal development of topical

clusters. Exploiting of rich metadata present in the search results was also one

of the goals of the project. However, it should be noted that OnAir is targeted

at non-expert users. Therefore, visualizations employed in OnAir are ment to

provide a quick (ad-hoc) overview of a smaller amount of highly relevant search

results, they are not designed for into-deep exploratory analysis of large data

sets. Also, to avoid overloading the user with a complex user interface, the

interface permits the visualizations to be viewed only one at a time, and does

not provide support for coordination between them.
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Figure 3.11: OnAir user interface.

Figure 3.12: Visualization of cluster temporal development (left) and topical

relationships (right).
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The system was implemented in a full 3-tier architecture including:

• a database backend and retrieval engine

• a middleware component, implemented in Java, provides ordination and

clustering algorithms, metadata collection and aggregation, and control

logic

• a user interface component, implemented in .NET, provides a search

result list and multiple visual components

News returned as response to a search query are analyzed on-the-fly and, in

addition to a ranked list presentation, are shown in several visualizations.

Visualization and corresponding on-the-fly analysis techniques were tuned to

process a relatively small amount (typically up to several hundreds) of most

relevant search hits as quickly as possible, so that the user can begin exploring

them as soon as possible. Scalability to large data sets was not the goal of the

project. With this in mind the following algorithms were applied:

• Hierarchical agglomerative clustering (complete link) was used to extract

topical clusters from search results. Although not scalable, this methods

produced topically coherent clusters and proved fast for small data sets.

A k-means variant was used only for data sets above a certain size.

• Force directed placement was used as ordination algorithm. For speed

reasons single search results were not processed, only cluster centroids

were projected to provide an overview of major topics and their relation-

ships.

• Rich metadata present in search hits, such as persons, organizations,

locations, and various descriptors, were collected and aggregated, and

presented as a tree of faceted metadata.

Figure 3.11 shows the OnAir user interface consisting of following compo-

nents:

• Top: A summary of the search query.

• Left: Search result list displaying the title, source, date and relevance of

each result.

• Bottom-left: a simple visualization of clusters sizes

• Right: A tab pane containing several views:
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– A tree view showing the clusters and the faceted metadata tree

(visible in Figure 3.11). In faceted metadata tree (starts at node

”Meta”) nodes in the first level represent the type of metadata, such

as organizations, descriptors or persons. Hanging on the metadata

type nodes are the particular instances of that type, such as names

of particular organizations or places. Clicking on these nodes filters

the search result list to show only hits containing that particular

instance.

– A simple graph view of the clusters (not shown).

– A visualization of temporal developments of topical clusters (shown

in Figure 3.12 on left). The visualization resembles closely the The-

meRiver representation (see Section 2.5.3), whereby cluster sizes are

are relative (as percentages), not absolute.

– A landscape visualization (shown in Figure 3.12 on right), showing

topical clusters, their sizes (visualized as height) and their topical

relatedness (conveyed by spatial proximity between them). between

3.4.2 Visualization of Communication Patterns in Meetings

Multimedia data has a complex structure consisting of inter- and intra-

document relationships (for example text refers to images in the same doc-

ument, an audio references an external documents etc.). To exploit the poten-

tial of these implicitly present relationships methods for semantic extraction

and cross-media exploration need to be devised. In the MISTRAL project

[Sabol et al. 2005] an architecture for measurable, intelligent and reliable se-

mantic extraction and retrieval of multimedia data (MISTRAL) was devel-

oped. The system extracts a variety of semantically relevant metadata from

one media type and integrates it with concepts derived from other media

types. Semantic extraction is the ingredient which differentiates MISTRAL

from approaches which predominantly focus on low-level feature extraction.

In the context of the project several client applications for semantic re-

trieval and analysis of multimedia data were built. My contribution to the

project was primarily on a visual application for discovery of communication

and conversation patterns in a meeting. Visual Conversation Analysis (VCA)

[Sabol et al. 2007] is a MISTRAL client application for visual browsing and

analysis of communication patterns between participants of a meeting. A

prominent feature of VCA is that it introduces several components support-

ing visualization and browsing of temporal data, which are integrated into a

complex user interface using a framework for view coordination.
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Figure 3.13: MISTRAL modules.

3.4.2.1 MISTRAL Overview

Due to resource and technological considerations developing of a fully generic

system would be overly complex and and impossible to realize in a realistic

amount of time. In order to focus the development of extraction algorithms

the project targets extraction of semantic data from meetings. ”Meetings”

application domain concentrates on video materials showing one or more per-

sons talking or discussing a particular subject. Additionally to recorded video

materials accompanying documents, such as PowerPoint slides, are also con-

sidered and analyzed by the system.

Main building blocks of MISTRAL are shown in Figure 3.13. The capabil-

ities of main modules are briefly described without going into algorithm and

implementation details:

• Video unit detects, tracks and recognizes multiple person faces from

images and recorded video data in real time.

• Audio unit processes multi-channel audio signals recorded by a linear

microphone array. After estimating and suppressing background noise

it detects voice activity, speaker’s position and gender, and performs

speaker indexing (i.e. speaker recognition).

• Sensory data unit collects user input, such as mouse clicks and keystrokes,

and tags them with time stamps and active application information.

Also, text data currently displayed by the active application is grabbed

for further processing by the text unit.
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• Text unit employs text mining and retrieval techniques to extract named

entities, topics and concepts, and to provide searching functionality for

textual data.

• Multi-modal merging unit fuses features extracted from different modal-

ities (video, audio and text) and produces a combined extraction result

in a MPEG7-style [MPEG7 2004] format.

• Semantic enrichment unit provides inference capabilities capable of de-

riving new semantic concepts from the extracted ones. It also detects

and resolves inconsistencies and contradictions resulting from merging

the results of extraction units.

• Integration of components is achieved through a shared MPEG7 data

structure and a data storage component, including a benchmarking sys-

tem and client for data access and annotation.

• Applications: five different client applications were implemented for re-

trieving and browsing results generated by MISTRAL components.

See MISTRAL project homepage [MISTRAL 2005] for more detailed informa-

tion on the system.

3.4.2.2 Visual Conversation Analysis Tool

Visual Conversation Analysis (VCA) tool is a user interface for visually sup-

ported navigation and browsing of meeting recordings, including video, audio

and text materials, and extracted semantic metadata. Input data is provided

by MISTRAL extraction modules, extended manually using the annotation

application. Requirements on VCA were to enable the user to accomplish the

following:

• Viewing speaker activity over time to discover when participants were

holding a monologue, or were engaging in dialogs and discussions.

• Viewing topics discussed and entities (such as persons or organizations)

mentioned over the duration of a meeting. Also included are topics

and entities extracted from materials presented at the meeting, such as

PowerPoint slides.

• Discover the relationships between speakers and topics, i.e. discover

which participants were actively discussing on which topics.
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Figure 3.14: Visual Communication Analyzer (VCA).

• View the recording of the meeting in a video player., accompanied by

a visual storyboard of the meeting including captured video frames and

presented materials (PowerPoint slides).

VCA application, shown in Figure 3.14, is a complex user interface con-

sisting of nine components, with the majority addressing temporal navigation

and temporal visualization of data:

• A timeline component, on the bottom-right, displays the time along the

x-axis. All components above the timeline share the same temporal

coordinates, with the sole exception of the time interval selection bar.

• Interval selection bar, on the top-right, is used for temporal navigation

and zooming purposes. Choosing of a time interval, which is equivalent

to temporal zooming, is achieved by dragging the scroll buttons on the

edges of the scrollbar. The chosen temporal window can be smoothly

moved back and forward in time by sliding the scrollbar left or right.

All other temporal components (placed underneath the bar) will adjust

their content depending on the chosen time interval.

• Search hit bar shows search hits, i.e. events and actions returned by

MISTRAL in response to a search query, positioned along the time axis.

Position and width of the rectangle depend on the time and duration

of the event (one found event is highlighted in red due to a mouse-over
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effect). Clicking on a result triggers a smooth, animated navigation to

the time interval covered by the event.

• Temporal activity view (on the upper right), which resembles LifeLines

representation (see 2.5.2), visualizes presence or absence of actions and

events, in this case speech activity of meeting participants. Participant

are color-coded, color assignments are visible in the legend (see bellow).

• Temporal intensity view (in the center-right) visualizes the intensity of

an activity (or the number of simultaneously occurring events), in this

particular case mentioning of a topic or an entity (such as a person or

organization) during the discussion. Topics and entities are color-coded,

color assignments are visible in the legend (see bellow).

• Component for temporal visualization of time-stamped icons or image

thumbnails, places the images at their position along the time axis. Two

components are present in the user interface (both on the lower right):

– The upper component displays PowerPoint slides at the time point

when they were shown during the meeting. Clicking on a slide

thumbnail will show the slide magnified.

– The lower component displays the storyboard of captured video

frames. Clicking on a video frame thumbnail will make the video

player jump to the corresponding position in the video.

• A video player, on the upper-left, plays the recorded video of the meeting.

• A legend, in the form of a tree (on the lower-left), is used to specify the

color-coding for the meeting participants, and for the extracted topics

and entities. Meeting participant are coded by bright colors, while topics

and entities are coded by pastel colors, where different shades of the same

color are used for different entities of the same type.
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Figure 3.15: VCA architecture.
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VCA is a complex user interface with a complex software architecture

(see Figure 3.15). To ensure that the GUI behaves in a consistent manner,

a framework for coordination of multiple views was introduced and realized

along the lines of the model-view-controller paradigm (see Chapter 2.7). To

provide fast coordinated filtering, selection, zooming and navigation an event

dispatching model based on temporal actions and events was implemented

to notify all views that an update in the visual representation is required

in response to a user action. A shared data manager ensures that all views

maintain a coherent data state and notifies them when the model has changed.

The data, including extraction results (in MPGE7 format), recorded video

materials and grabbed screen data (mainly PowerPoint slides) are provided

by MISTRAL as files (later an optional WebService interface was added).

VCA is implemented in Java and makes use of Java Media Framework (JMF

2.1.1e) for video playback and frame grabbing.



Chapter 4

Algorithms and Visual

Techniques

This chapter introduces visual methods and tools supporting exploratory an-

alytical processes in large, weakly structured, complex, dynamic data sets.

The described technologies are developed to address goals and requirements

defined in Section 1.2.2 (also see Section 1.1 for a more in-depth discussion on

motivation).

The chapter begins by providing an overview of the developed visual tech-

niques and components, and by outlining the used approach of building upon

my earlier contributions (described in Chapter 3). Each of the developed

methods is described into detail over the several following sections. The chap-

ter concludes with sections introducing two prototype applications built by

combining and applying the developed visual techniques.

4.1 Approach and Overview

Driven by the needs of application domains such as business intelligence and

or media analysis, a set of algorithms and visual techniques were developed

targeting expert users and analysts who need powerful tools providing both

an overview capability for familiarizing with new data, as well as into-deep

analysis functionality. Building upon and extending the results described in

Chapter 3 the following strategy was applied to develop visual techniques and

tools capable of addressing the above stated goals:

• Combine the landscape metaphor (see WebRat, Chapter 3.2.2) with the

night sky metaphor (see InfoSky, Chapter 3.3.2) into a representation

for analysis of relatedness (such as topical similarity), which includes

91
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the advantage of both approaches:

– The well-known geographic map representation provides informa-

tion on the amount, density and cohesion of data elements, and

includes ”landmarks” aiding recognition and orientation.

– The night sky visualization displays single data elements offering

the possibility to code features and metadata through visual chan-

nels such as colors and shapes , and to interact with and manipulate

the data set at low level of detail.

• Implement a scalable ordination algorithm applicable on large, unstruc-

tured data sets, by adapting the Infosky hierarchy projection method

(see Chapter 3.3.5) and combining it with a fast hierarchical clustering

algorithm used to generate the hierarchy.

• Exploit the hierarchical structure produced by the clustering algorithm

for navigation in the visualization through the hierarchy of nested areas

(similar to InfoSky, see Section 3.3.4), and as a virtual table of contents

for unstructured data sets (compare to Scatter/Gather, Chapter 2.2.5).

• Implement an interactive component for visualization of temporal devel-

opments and trends of clusters and faceted metadata, by combining and

extending ideas from OnAir (see Chapter 3.4.1) and VCA (see Chapter

3.4.2.2) temporal visualizations.

• Further support temporal analysis by visualizing changes in dynamic

data sets using an animated dynamic topography information landscape

(compare to Chapter 3.2.3).

• Supported by findings of InfoSky evaluation (see Chapter 3.3.6), extend

coordination mechanisms from the VCA tool (see Chapter 3.4.2.2) into a

full multiple view coordination framework. Employ the CMV framework

to combine various visualizations and components into a coherent user

interface enabling fused, simultaneous analysis of multiple data aspects

(i.e. topical, temporal and rich metadata).

• Implement proof-of-concept applications demonstrating the capabilities

of the developed technologies for addressing the above stated goals.

Executing along the strategy listed above, a set of technologies was devel-

oped which includes:

1. A scalable, incremental ordination algorithm which, based on relatedness

between data elements (usually topical similarity between documents),
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generates a hierarchically organized layout of large, unstructured data

sets. Benefits provided by the algorithm are three-fold:

• Extracted hierarchical structure can be used for navigating the data

set as a ”virtual table of contents”.

• Projection of data elements and hierarchically organized clusters

into the 2D visualization space is a geometrical representation which

can be used for visual analysis.

• Incremental processing capability allows for incorporating changes

smoothly into an existing hierarchy and layout, aiding the analysis

of dynamic data sets.

2. An advanced, scalable Landscape3D visual component provides an in-

teractive information landscape visualization for conveying complex re-

lationships in the data (see Section 2.4.5). In particular the component:

• Provides an overview of the whole data set including structures

emerging from the data.

• Conveys the degree of relatedness between data set elements, and

provides clues on the size and cohesion of the emerging structures.

• Offers hierarchical, level-of-detail aware navigation capability, which

is supported by labels describing the essence of the data behind the

structure.

• Provides visual coding of metadata and features, enabling their

correlation with the structures.

Additionally, using a high performance rendering subsystem, animation

of dynamically changing landscape topography can be employed to vi-

sualize changes in the data set.

3. An advanced StreamView component conveying temporal developments

of both clusters and faceted metadata categories, allowing for discovery

of trends, temporal correlations between clusters, recurring events etc.

The component also includes temporal selection and navigation capabil-

ities.

4. A powerful framework for fast coordination of multiple views, which in-

cludes a shared coordinated data model, and provides visual property,

logical property and navigation coordination. ”Fusing” multiple visual

components, where each component is specialised for analysis of a dif-

ferent data aspect, into a single coherent user interface enables simul-

taneous analysis of manifold data aspects. For example, a coordinated
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interface consisting of Landscape3D and StreamView visual components

enables ”fused”, simultaneous topical-temporal visual analysis of large

document sets.

5. Several standard GUI widgets, such as a tree and table, which were

extended with view coordination capabilities. Accompanying advanced

visualization components with standard GUI widgets the user is familiar

with is an approach which is well accepted by the users (see conclusion

of Section 3.3.6.2).

6. Two prototypical demonstrator applications consisting of multiple visu-

alizations:

• Knowledge Discovery Visual Environment (KDVE) is a client appli-

cation for analysis of ”topical-temporal-faceted metadata” relation-

ships and correlations in large, dynamic text repositories. KDVE

is the main demonstrator of visual techniques and algorithms de-

veloped in this work.

• Semantic Mediation Tool (SMT) is an application for visually sup-

ported semi-automatic ontology alignment. It uses a subset of the

developed technologies (at the current development stage) and has

the purpose of demonstrating the applicability of the developed

techniques on data types other than text - in this case on semantic

information.

The rest of this chapter presents and describes these technologies into detail,

while a demonstration of how they can be applied to achieve the goals defined

in Section 1.2.2 is available in Chapter 6. All examples use the Reuters Corpus

Volume 1 in English language [RCV1 2000] consisting of more than 800000

news documents, except for the SMT prototype which is applied on semantic

data (ontologies).

4.2 Scalable, Incremental Ordination Algorithm

The ordination algorithm introduced in this section integrates projection and

clustering into a single procedure. It is built by combining and adapting

following two algorithms:

• Divisive (top-down) hierarchical clustering algorithm, described in [Muhr et al. 2010],

which organizes a ”flat”, unstructured data set into a hierarchy of clus-

ters.
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• Projection and layouting algorithm developed in InfoSky (see section

3.3.5) which generates a similarity layout of a hierarchically organized

data set.

My contributions to the resulting scalable ordination algorithm are threefold:

1. The main contribution is the idea and conception of combining and

adapting the above two algorithms into a scalable ordination algorithm

applicable on unstructured data sets [Muhr et al. 2010], [Sabol et al. 2010b].

Also, I was the lead of the implementation team which supplied various

bits and pieces.

2. I am one of the three inventors of the InfoSky visualization system as

listed in EU and US patent applications (see Section 3.3), with my con-

tribution being focused on the scalable similarity layout algorithm for

hierarchical data sets.

3. Conception and initial implementation of hierarchy generation through

recursive application of a k-means algorithm, which includes seeding

(such as in [Bradley & Fayyad 1998] and [Arthur & Vassilvitskii 2007])

and cluster split-and-merge strategies (such as [Tou & Gonzales 1974]).

It should be noted that a member of the development team, Markus Muhr, has

taken over the further development of the clustering algorithm by introducing

and testing various improvements in the areas of seeding, cluster splitting and

merging, incremental processing, and label computation. These improvements

are not the topic of this work.

The resulting ordination algorithm has several advantages and unique fea-

tures:

• High performance and scalability with regard to data set size and

dimensionality. Data sets containing of millions of data items described

by thousands of features have been be successfully processed. Adequate

choice and combination of different methods used within the algorithm,

and carefully chosen parameters, ensure that each method is employed in

a segment where it performs well, and on data subsets which present no

obstacle to method’s scalability. Interweaving of clustering and ordina-

tion into a single algorithm reduces the number of operations and passes

over the data set, further improving performance. Also, all processing

is performed on optimized data structures in the main memory, which

is an important difference compared to the original InfoSky algorithm.

The resulting performance allows for on-the-fly application on small to

medium data sets consisting of up to several ten thousands data items.
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• Generation of a hierarchical structure from unstructured data

based on similarity of data set elements is accompanied by computing

a corresponding hierarchical geometry in 2D space. The algorithm in-

cludes techniques for achieving maximum separation between generated

clusters at every level of the hierarchy, and for extracting descriptive

and discriminative terms for labeling of hierarchy nodes. The resulting

hierarchical structure, which is used as a virtual table of contents, is also

used to navigate in the visualization space.

• Dynamic cluster structure on each level of the hierarchy through

splitting and merging of clusters within the given constraints on the

maximum and minimum number of elements. The strategy attempts

to find the optimal number of clusters at every level of the hierarchy,

while at the same time the minimum and maximum bounds ensure that

the direct child count remains within a range considered usable for in-

teractive analysis, and that the hierarchy does not degenerate. Values

for the minimum Cmin and maximum Cmax number of direct children

are usually set to 3 and 12, respectively, and are driven by usability

considerations: with a typical child count being around 10, scanning of

children to resolve further navigation direction appears appropriate. An

additional advantage of this strategy is that it keeps the computational

costs within well-defined bounds (see bellow).

• Capability to deal with dynamic repositories, meaning that once

an initial layout and the corresponding cluster hierarchy have been com-

puted, changes in the data set can be incorporated smoothly, without

erratic disruptions, and without the need to recompute everything from

scratch. Incremental processing modifies a previously computed con-

figuration and incorporates changes in such a way that the amount of

modifications of the result approximately corresponds to the amount of

changes in the data. Incremental processing not only reduces computa-

tion time, but plays a crucial role when a sequence of landscapes visual-

izations is used to convey changes in the data: without recognition and

smooth transitions users could not follow and understand the changes

[Sabol et al. 2010b]. It should be noted that if a new result would be

computed from scratch for every change in the data set, it is very likely

that this results would not look similar to the previous one at all. The

reason for that is that clustering and ordination algorithms, which are

basically optimization problems for finding a (local) minimum, are sen-

sitive to initial conditions. A small change in the initial configuration of

data may lead to a completely different local minimum.
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Assuming that feature vectors for all data set elements have been computed

(see Chapter 5.1 for details), and that a root area, usually a rectangle, corre-

sponding to the entire data set is defined, the algorithm recursively proceeds

in a top-down manner executing following steps (also see Figure 4.1):

1. Preprocessing: Preprocessing includes preparatory steps which modify

and prepare feature vectors of the processed element set in such a way

that the following algorithm steps can achieve higher performance in

terms of both quality and speed. Preprocessing includes:

(a) Weighting: A copy of the original feature vectors is weighted using

a TF/IDF (or alternatively BM25) weighting scheme in order to

assign a higher weight to features with more discrimination power

(see [Nanas et al. 2003] for a survey of term weighting methods).

(b) Feature selection: An information theory-based measure was

used to remove features of a vector with low information content

[Yang & Pedersen 1997].

(c) Vector normalization: Scale vectors to unit length by projecting

them onto a hypersphere with radius one, so that only the direction

of the, not its length, plays a role.

2. Clustering: Partition of the element set into groups of similar elements

is performed by executing the following procedure (note that clustering

is performed only if the number of data elements is larger than Cmax,

otherwise the next step is executed):

(a) Seeding: k-means++ seeding method [Arthur & Vassilvitskii 2007]

is used to find the initial cluster seeds with the goal of improving

the performance of the following step. The first seed is taken ran-

domly from the data set and the others are selected to maximize

the distance to already selected seeds. Number of seeds is chosen

as Cmin+Cmax
2 .

(b) Partitional clustering: Data elements are clustered using the

spherical k-means clusterer (see Chapter 2.2.2.1) initialized with

seeds generated in the previous step. A balancing strategy is em-

ployed to prevent extreme differences in clusters sizes, as these

would lead to hierarchy degeneration: a large cluster is penalized

when computing similarities between its centroid and and data ele-

ments, if the difference between its size and the average cluster size

becomes excessively large.

(c) Cluster splitting and merging: To find a more optimal num-

ber of clusters an extended x-means [Pelleg & Moore 2000] strategy
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for estimation of number of clusters is used, which allows for both

splitting and merging of clusters [Muhr & Granitzer 2009]. The re-

sulting number of clusters must remain within the limits defined

by Cmin and Cmax. The strategy involves merging of small clusters

if the cohesion of the resulting cluster remains above a predefined

threshold, and splitting of large clusters if the improvement in clus-

ter cohesion is above a threshold, where the thresholds values are

based on experience and estimated through experimenting.

(d) Refinement: If clusters were splitted and merged then the result-

ing partition, with the corresponding cluster centroids, is used as

the initial configuration for the k-means clusterer, which is applied

to further refine the clusters.

3. Cluster labeling: Labels providing a short summary of a cluster are se-

lected from the clusters centroids as feature (terms) with highest weights.

Two types of labels can be computed:

• Discriminative labels are computed from centroids built from weighted

vectors which, in the context of the parent-cluster, provide a de-

scription of the cluster differentiating it from its siblings.

• Descriptive labels are computed from centroids built from the orig-

inal, unweighted vectors, providing an ”absolute” description of the

cluster which is independent from cluster’s context.

4. Projection: Computation of the data set layout and geometry is per-

formed using a modified InfoSky method (see Chapter 3.3.5).

(a) Force-directed placement: Cluster centroids (or vectors of data

elements, if the clustering step was skipped) are layouted in the 2D

space so that topically similar objects are placed close to each other

and dissimilar ones are positioned further apart. This is performed

using a plain force-directed placement (FDP) algorithm, with a

force model defined in equation 3.3. An important difference com-

pared to InfoSky is that there is an upper bound on number of ele-

ments, Cmax, which is very small making FDP perform extremely

fast. Also, applying FDP on small data sets reduces the chances of

getting stuck in a local minimum.

(b) Inscribing: The layout computed in previous step is normalized

to occupy [−1, 1] 2D space, and then inscribed into the convex

polygonal area of the parent cluster using the procedure described

in Chapter 3.3.5.
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(c) Voronoi subdivision: Polygonal area of the parent cluster is sub-

divided into sub-polygons by assigning a polygonal area to each

computed cluster using a Voronoi area subdivision [Okabe et al. 2000,

Aurenhammer 1991], with points inscribed in the previous step

used as control points. In contrast to InfoSky the areas are not

related to the size of corresponding clusters (since the size is con-

veyed by height in the landscape, see next section.

5. Recursion: Apply the above listed steps recursively to the data ele-

ments of each computed cluster, unless the number of data elements is

less or equal to Cmax in which case the recursion stops.

Cosine coefficient (see equation 3.1) is used to compute the similarity between

vectors in all stages of the algorithm.

4.2.1 Incremental Computation

To compute an initial configuration, the algorithm first processes the whole

data set. When the data set changes, i.e. data elements are remove or mod-

ified, and new ones are added, the algorithm is re-run using the previous

configuration as the initial state, in particular:

• New documents are inserted into the existing hierarchy propagating to-

wards the bottom by choosing the most similar cluster at each level.

Removed documents are eliminated from the hierarchy.

• Centroids at all levels of the hierarchy are updated, and those subtrees

which experience a shift larger than a predefined threshold are reclus-

tered using the the recursive procedure described above. Other branches

of the hierarchy are left unchanged.

• Layout of the whole hierarchy is updated in a top-down fashion, where

FDP is initiated using positions computed previously in the step 4.(a).

As FDP is inherently incremental when applied on a previously com-

puted stable stable layout, the old positions will only be slightly altered,

depending on the changes of the corresponding high-dimensional vectors.

Using the previous configuration as an initial state when computing a new,

modified one is necessary because both k-means and FDP are very sensitive to

initial conditions. Running the algorithm from the beginning using arbitrary

initial positions would most likely yield a completely different result. Never-

theless, to guarantee that the incremental changes in the layout and geometry

are smooth, the algorithm should be reapplied while the data set changes are

still bellow a certain threshold (typically less than ten percent).
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Figure 4.1: Ordination algorithm UML diagram.
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4.2.2 Scalability

Given a collection of data set elements of size N , the time complexity of

the k-means clusterer with splitting and merging strategy is O(CmaxN),

provided there is a limit on the maximum number of performed iterations

[Muhr & Granitzer 2009]. As Cmax is constant, usually with the value of 10

or 12, the partitional clustering method can be considered to scale linearly

with N (i.e. in O(N) time). The same is true for preprocessing of N ele-

ments, while labeling of Cmax clusters is performed in constant time (O(1)).

The hierarchy which is created by recursive application of the partitional

clusterer is prevented from degenerating by the balancing strategy, which re-

sults in the depth of the created hierarchy having an upper limit of O(log(N)).

Balancing itself does not increase the complexity as it is implemented within

the similarity computation between documents and centroids, with large clus-

ters being penalized depending on their size. Therefore, time complexity of

the whole hierarchical clustering procedure (including preprocessing and clus-

ter labeling) is O(Nlog(N)).

Plain FDP has a time complexity of O(N3). However, as FDP is always

applied on collections having an upper limit on size equal to Cmax, every FDP

run can be considered to execute in constant time (O(1)). For the same reason

inscribing and Voronoi area subdivision are also considered to execute in con-

stant time. Given that for a non-degenerate hierarchy there are O(Nlog(N))

such collections to be projected, each consisting of Cmax) or less data points

which are projected in O(1) time, the aggregate time required for projection

is O(Nlog(N)).

We conclude that the time complexity of the overall ordination and clus-

tering algorithm is O(Nlog(N)). This conclusion supported by measurements

performed on a Core i7 860 2.8GHz CPU, with 8GB main memory, using Java

64-bit server JVM version1.6.0 23. Figure 4.2 shows scaling behavior for ten

document sets with sizes between 10000 and 100000 documents (in increments

of 10000), execution times (y-axis) are in seconds (see Table 4.1 for exact val-

ues). The algorithm scales to millions of documents, for example the INEX09

[INEX 2009] collection consisting of 2,666,190 Wikipedia Documents was pro-

cessed in about 2 hours on a 2.67GHz Xeon machine with 16GB of memory

[Muhr et al. 2010].
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Figure 4.2: Execution times of the ordination and clustering algorithm, in

seconds, for data set sizes from 10000 to 100000 documents.

Data set size Time (seconds)

10000 10.16

20000 21.28

30000 34.32

40000 47.03

50000 61.23

60000 75.74

70000 88.22

80000 104.88

90000 119.55

100000 141.58

Table 4.1: Algorithm execution times, in seconds, for increasing data set sizes.
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4.2.3 Visual Evaluation

Information loss is inherent when complex relationships from high-dimensional

space are projected into a low-dimensional visualization space. Clearly, the

capability of dimensionality reduction algorithms to preserve original rela-

tionships (i.e. distances or similarities) is very important. The goodness of

fit is typically evaluated by computing a stress values (equation 4.1), which

expresses the cumulative difference between the high-dimensional (Dij) and

low-dimensional (dij) distances for all pairs of data set elements.

S =
∑
i 6=j

(Dij − dij)
2 (4.1)

However, there are two reasons why such a globally computed stress value

may not be ideal for assessing scalable ordination algorithms:

1. Scalable algorithms often attempt to reduce the amount of data element

comparisons by introducing neighborhood-based optimization strategies.

In such cases a good global stress value would not provide information

on possible local stress peaks.

2. Distance proportions which exist in the high-dimensional space may not

be ideal for visualization purposes in 2D space. Therefore, ordination

algorithms need to produce 2D layouts which not only minimize stress,

but also fulfill aesthetical und usability requirements.

Since the ordination algorithm introduced in this work generates the global

layout by combining many locally computed layouts, local stress phenomena

should be given a particular attention.

Equation 4.2 defines a local stress value between a pair of data set elements,

where Wij is the influence of the high-dimensional distance (i.e. to which

extent high-dimensional neighbors contribute to the stress value) and wij is the

influence of the low-dimensional distance (i.e. to which extent low-dimensional

neighbors contribute to the stress value). Dij and dij are assumed to be

normalized (i.e. within the interval [0, 1]]). The total stress for the ith data

set element is given by Si. Exponents a and b determine the size of the

low-dimensional and high-dimensional neighborhood, respectively. The larger

the values for a and b are, the stronger the influence of the neighborhood on

the stress, yielding a local stress value which emphasizes the impact of the

neighborhood. When both values are set to 0 then the standard stress value

will be delivered.

Sij = wijWij(Dij − dij)
2 (4.2)
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wij = (1− dij)
a,Wij = (1−Dij)

b (4.3)

Si =
∑
j

Sij (4.4)

Using the StressMaps [Seifert et al. 2010a], which is a hybrid visual repre-

sentation combining heat maps and information landscapes (see next Section

for a detailed description), it is possible to visually identify areas with locally

elevated stress values. In the following example the case should be examined

when data set elements with large distances in the high-dimensional space are

placed close to each other in the 2D space. For this purpose a was set to 20

and b to 0.

Figure 4.3 shows a standard information landscape consisting of 529 doc-

uments on the upper left, with hills appearing in areas with high document

density. On the upper right the same landscape is shown, where color coding

of data set elements is used to convey stress: blue symbolizes low stress, red

symbolizes high stress, with tones of violet representing values in between. A

StressMap, shown on the bottom left, reflects the stress values in three ways:

data element color, landscape height and landscape texture color (heat map).

In the StressMap hills will appear only in areas where stress value is high,

while regions with low stress remain flat. A heat map texture is applied to the

landscape geometry using a non-linear color palette representing stress values

as color transitions from dark blue (low stress) over red to yellow (high stress).

The StressMap allows for effective identification of areas with high stress.

Due to the fact that the original information landscape metaphor and data

element positions are retained in the StressMap, visual stress assessment can

be performed without any loss of context. Also, by zooming into high-stress

area it is possible to identify responsible data set elements.

Two different localized stress phenomena can be identifies by looking at

the StressMap in the Figure 4.3:

1. Large clusters tend to have high local stress. By comparing high-

dimensional cluster cohesion (i.e. the inverse average inner cluster dis-

tance) to its cohesion in the 2D space, it was found that the latter was

significantly higher. The cause for elevated stress can be attributed to

the Voronoi area subdivision algorithm, which does not consider high-

dimensional cohesion when assigning the amount of area to a cluster. In

this case the elevated stress is caused by distance scaling, which is not

only acceptable but may even be desirable for visualization applications.
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2. Elevated stress values are often found at the cluster boundaries. This

phenomenon is a direct consequence of the neighborhood-based opti-

mization strategies used in the ordination algorithm. The elevated stress

near cluster boundaries is caused by the fact that force-directed place-

ment algorithm only considers data elements from within one cluster,

but does not consider those from the neighboring clusters. As a result,

data elements which are positioned close to cluster boundaries may be

placed close to a random element of another cluster which is distant in

the high-dimensional space. This can be observed in Figure 4.3 on the

bottom right: stress value is locally elevated for two documents at the

boundary between the clusters treaty, india, points and imperial, yen,

corp.

Figure 4.3: An example with 529 documents returned for query China: A

standard landscape is shown on upper left, with data element stress color

coding on upper right. On the bottom left is a StressMap for the same data

set, with a magnification of local stress phenomenon at the border between

two clusters shown on bottom right.
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4.3 Landscape3D Visual Component

Figure 4.4: Landscape3D component showing 400000 documents.

Primary purpose of the Landscape3D component is to visualize complex

relationships in large data sets, with as many as a million data items (and

more) on a standard desktop machine. In 4.4 a landscape visualization of

400000 documents can be seen. Information landscape visualization 2.4.5 con-

veys relatedness, typically topical similarity, in the data set through spatial

proximity in the visualization. Hills represent groups of related documents

separated by sparsely populated areas represented as see. To facilitate orien-

tation and navigation areas are labeled by highly relevant, descriptive terms

from the underlying documents. Through hierarchical organization of the ge-

ometry Landscape3D can both provide an overview of the whole data set and
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offer insight into relationships at finer levels of detail.

4.3.1 Interactivity and Navigation

Figure 4.5: Zooming in the hierarchy of clusters. The visualization shows

approximately 4000 search results on ”terrorism” from the Reuters data set.

Landscape3D is fully interactive allowing zooming (mouse wheel), panning

(dragging), rotating (alt+dragging) and tilting (shift+dragging) of the repre-

sentation. Manipulations of visual document properties (color and icon) are

supported through a context menu. Multiple document selection is possible us-

ing a lasso tool, while single selection is carried out by clicking on a document

with the ctrl-key pressed. Clusters of related data set elements are represented

as labeled areas which are organized hierarchically: zooming in on a cluster

reveals the areas and labels of underlying sub-clusters. In this way adaptive
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level of detail is provided which is adjusted to the zoom level. Labels play a

central role for navigation: clicking on the label will smoothly zoom in on the

selected cluster and reveal the underlaying structure. Navigation guided by

labels down the hierarchical structure is illustrated in Figure 4.5. The land-

scape also conveys the size and cohesion of the clusters. Higher hills emerge

where the document count (density) is large, whereby the compactness of the

cluster is an indicator of the strength of its topical cohesion: for example in

the upper left screenshot in Figure 4.5 compare the clusters israel, netanyahu,

arafat (upper left corner) and eta, spain, blanco (lower right corner).

4.3.2 Visual Property Coding

Figure 4.6: Mapping of features and metadata onto visual properties: in this

case locations mentioned in the documents are mapped onto color. The query

was ”computer industry”.

Another powerful feature is the mapping of document properties and meta-

data to visual properties of the corresponding visual items, such as color, icon

or size. This features enables the user to discover correlations between top-

ical clusters and selected features or metadata. For example in Figure 4.6

geographic entities mentioned in the document content are mapped to col-

ors (note a monochromatic landscape texture for better recognition of item
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colors). Visualized are about 6000 documents from 1996-97 on ”computer in-

dustry”, color assignments are following: New York - blue, California - green,

Tokyo - yellow, Boston/Massachusetts - red, London - white. Relationships

between topical clusters and selected metadata (locations in this case) can

be recognized immediately: it is obvious that cluster ”ibm, microsoft, pc” is

connected with New York (blue) while ”apple, amelio, macintosh” cluster has

more to do with California (green).

4.3.3 Visualizing Change through Dynamic Topography

Large, real world data sets often have a pronounced dynamic behavior: data

elements (documents) are added, removed and modified. The above described

projection algorithm (Chapter 4.2) addresses this issue by the capability to

incrementally incorporate changes in the data without disrupting a landscape

representation the user has already familiarized with. Showing a sequence of

such landscape allows the user to follow the changes through recognition of

known, unchanged parts of the visualization [Sabol et al. 2009b].

An example can be seen in Figure 4.7. On the-top left is the first land-

scape containing 4382 documents on ”computer industry” from 20.8.1996 to

19.5.1997. This landscape was augmented with documents on the same topic

for the following three months. The second landscape, on top-right contains

documents until 19.6.1997 (525 new document are shown in red). The third

landscape, bottom-left, contains documents until 19.7.1997 (497 additional

documents). The last landscape, on the bottom-right, contains documents

until 19.8.1997 (for a total of 5932 documents). Notices how the global config-

uration remains recognizable but several areas have changed: for example the

sea area in the center gradually disappears and the right cluster experiences

a major change.

When the visualized data subset is modified (some documents are removed,

new documents are added) the semantic map is not just filtered it is its

topography that is altered. Old island and hills may disappear, change their

shape or even new ones may arise from the seabed eventually remain as a

permanent addition to the landscape. Other modifications of the topography,

such as drifting of hills towards each other (correspond to merging of previously

separate clusters) or splitting of an island (cluster breakup) may also occur.

Transitions of the landscape topography from an old to a new temporal

configuration are incremental and adaptive in the sense that only those changes

are introduced in the topography which are really necessary. The configura-

tions of the parts of the topography, which are little or not at all affected by

the modification of the data set, remain stable with respect to their previous
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Figure 4.7: A sequence of growing, incrementally computed information land-

scapes. Documents added in each step are shown as red dots.

position and shape. In this way the user can understand the modified topog-

raphy immediately through the recognition and orientation provided by the

already known, preserved (or scarcely modified) elements of the topography.

These adaptive, incremental transitions can be smoothly animated by mor-

phing between the landscapes so that the user can follow and understand the

changes.

4.4 StreamView Visual Component

StreamView is a scalable component for visualizing temporal development of

several groups of data elements. Typically the groups are topically related
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document clusters, but any other group of documents sharing a particular

feature or metadatum, such as a particular person or organization, can be

visualized. In Figure 4.8 ten topical clusters are visualized. Each cluster is

assigned a color as can be seen in the legend in the bottom part of the im-

age. Also shown in the legend is the size of each cluster and the number of

elements within the selected time interval (see interval selection bar bellow).

Above the legend there is a timeline defining the flow of time from left to right

along the x-axis. Above the timeline the central part of the visualization can

bee seen, showing the temporal development of clusters along the time axis.

The amount of documents belonging to a cluster within the corresponding

time interval is represented by the thickness of the cluster, with the possibil-

ity of linear and logarithmic scaling. Interactivity includes mouse-over effects

for displaying detailed cluster information, cluster selection by clicking on the

corresponding cluster stream, and temporal selection of underlying documents

using the interval selection bar shown at the top of the visualization. Three

different alignment styles are available in the visualization: bottom-aligned,

shown in Figure 4.8, centered, which closely resembles ThemeRiver metaphore

(see Section 2.5.3) as shown in Figure 4.9, and top-aligned. Time granularity

of the visualization can also be adjusted to show varying amount of temporal

detail, for example StreamView in Figure 4.8) displays lower temporal resolu-

tion than the one shown in Figure 4.9.

Figure 4.8: StreamView component showing temporal developments of topical

clusters for news on ”terrorism”.

The example in Figure 4.8 shows temporal developments from August 1996

to August 1997 of topical clusters in for news returned in response to a ”ter-

rorism” query. For example it can be seen that israel, palestinian, netanyahu”

and ”eta, basque, spain” clusters both show continuous activity with several

peaks, with the first cluster being overall significantly more intensive (i.e. more

news were reported). On the other side ”peru, fujimori, hostage” cluster has

only one large, significant peak and then fades out to insignificance, leading
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to the conclusion that it was an isolated event.

Figure 4.9: Temporal developments of topical clusters for news on ”oil spill”,

extended by a document group containing the geographic feature ”russia”

(yellow stream on the bottom).

Figure 4.9 shows about 700 documents returned by the query ”oil spill”.

This example illustrates the possibility to correlate the development of topical

clusters with document groups sharing a particular metadata. Topical cluster

”japan, tokyo, shell”, shown in olive in the center, shows two pronounced

peaks, while the metadata cluster ”russia”, shown in yellow at the bottom,

correlates only with the first peak, but not with the second. This might be an

indication that for the first event there is a connection between ”japan, tokyo,

shell” and ”russia” in the context of ”oil spill” (see Section 6.1 for a use case

addressing this question).

4.5 Coordinated Multiple Views Framework

Each visualization component employs a specialized visual representation with

properties and capabilities aiming at revealing relationships and patterns only

for only one, or a small number of different aspects of the data (for example

temporal developments, hierarchical relationships, or similarity). When the

analysis of a data set necessitates considering more than just a single aspect

of the data, user interfaces providing the capability for simultaneous analysis

of manifold data aspects are required. One possible way to address this is-

sue is to integrate various visualizations within a single immersive 3D virtual

environment, such as in the Starlight System [Risch et al. 1998]. A more com-

mon approach is the Coordinated Multiple Views (see Section 2.7) paradigm,

which addresses this challenge by combining several specialized visual compo-

nents and ”fusing” them together into a single, coherent user interface. Views

are tightly coupled by the coordination framework so that changes caused

by interactions performed in one component are immediately reflected in all
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components within the user interface.

For this purpose a coordinated multiple views framework was developed.

To provide for high-performance coordination even for large data sets, and

to ensure coherency of visual properties and navigation without relying on

external data management components, the framework is built upon a model-

view-controller architecture. It includes following features:

• Shared coordinated data model including coordination of:

– Visual properties: color, transparency, icon and size.

– Logical properties: selection.

• Navigation coordination including:

– Current location/focus.

– Adjustment of the viewport and of the representation to make se-

lected items visible on screen.

• A hierarchy provider delivers parent-child relationships needed for nav-

igation along hierarchical structures.

• An event dispatch model and repaint rules which define the order in

which coordination events are generated and dispatched, and specify

when the repainting of components takes place (in order to avoid redun-

dant repaints).

• Visual property providers ensure that different views employ a harmo-

nized visual representation:

– Icon provider: manages available icons and shapes.

– Color provider: manages the color palette.

• Metadata provider delivers harmonized metadata representation for de-

tails on demand operation.

The coordination framework was used to build complex user interfaces con-

sisting of more than ten coordinated components. The performance of the

framework is sufficient to handle data sets consisting of more than a million

coordinated data elements on a standard desktop PC.
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Figure 4.10: Coordination of colors and selection using a Landscape3D (top)

and StreamView (bottom) components. Shown are 6900 documents for query

”space”.
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Figure 4.10 shows an example of view coordination, where colors and se-

lection are coordinated between a StreamView and a Landscape3D: Colors

used to code clusters in the StreamView are also used to color the documents

belonging the corresponding clusters in the Landscape3D. Temporal selection

of document in the StreamView (using the interval selection bar) is reflected

in the Landscape3D where the selected documents shown enlarged.

4.5.1 Additional Coordinated Components

Figure 4.11: Trees showing a topical hierarchy (up-left) and faceted metadata

hierarchy (up-right), and a table (bottom) showing document details.

Besides coordinated visualization components, such as Landscape3D and

the StreamView, selected standard GUI widgets were extended to provide full
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coordination capabilities. Figure 4.11 shows two tree components (up) and

a table component (bellow), shown coordination of document selection (in

bold) and color coding (orange and cyan). The left tree shown a hierarchy

of topical clusters, while the right tree shows faceted metadata categories for

locations, organizations and persons. The table shows detailed information

for documents of the topical cluster 4 (”index, tobacco, rates”), including

document’s title, similarity to the parent and the similarities to its siblings.

4.6 Knowledge Discovery Visual Environment

Knowledge Discovery Visual Environment (KDVE) is a prototype user inter-

face developed for testing and evaluating of new knowledge discovery meth-

ods and visualization components. It primarily relies on the algorithms and

visual techniques described in this chapter to deliver means for visual topical-

temporal analysis of large, dynamic textual data sets. It should be noted

that KDVE also integrates additional algorithmic methods (see Section 5.1)

supporting complex knowledge discovery workflows, as described in Chapter

6.

Application domains with data sets which are characterized by complex

relationships across different aspects of the data may resist analysis unless

different aspects of the data can be analyzed simultaneously. For example the

StreamView representation gives a complete overview of temporal behavior of

groups (clusters) of data elements, but it can not express topical relatedness

between the clusters and the entities, which is the domain of the information

landscape, nor it can convey hierarchical structures which are best shown

as trees. Figure 4.12 shows the main KDVE visual analysis window which

integrates following components into a singe, ”fused” [Sabol et al. 2007] visual

analysis interface:

• One information landscape (on right) showing a topical relatedness

within a hierarchy of topical clusters.

• One StreamView temporal visualization (bottom) showing temporal de-

velopment of the topical clusters.

• Two TreeViews (on left): one showing topical clusters, the other one

showing faceted metadata categories (hidden by the split pane shared

by the topical cluster tree).

• Location bar (top) tracks user’s location in the hierarchy during navi-

gation, showing the topical cluster which the user is currently focusing

on.
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• A TableView (behind the StreamView, hidden by the TabbedPane) one

showing details of the children of the currenttly focused topical cluster.

• A document content viewer (behind the information landscape, hidden

by the TabbedPane) shows the content of a document (on mouse click).

All views are integrated by the coordination framework to provide simulta-

neous, ”fused” topical, temporal and metadata analysis of the data set. The

user can navigate or modify data element properties in any view, and the

changes will be immediately reflected in all others. The coordination frame-

work works behind the scenes to ensure that the state of visualized data set

elements and the displayed subset are consistent over all views. In particular,

the coordination of components includes the following:

• Navigation in the cluster hierarchy (can be triggered in any of the com-

ponents) including the zoom factor, visibility in the viewport and current

position in the hierarchy.

• Document selection (lasso-selection in the landscape, temporal selection

in stream view, or cluster-wise selection in the trees).

• Document color (driven by the stream view color assignments).

• Document icons (user-assignable from any component).

Coordination of multiple views enables the discovery of patterns over the

boundaries of individual visualizations, for example: Topical-temporal analysis

can be performed by selecting documents belonging to two temporally separate

events in the stream view, and then inspecting in the landscape whether those

documents are topically related or not; Correlations between topical clusters

and occurrences of a metadatum (e.g. persons) can be identified by assigning

different icons to documents mentioning different persons, and then observ-

ing the distribution of these persons over topical clusters in the landscape.

Detailed examples on how this interface is applied to achieve ”fused”, simul-

taneous topical, temporal and metadata analysis is given in the case study in

Section 6.1. Results of usabilities studies performed using this interfaces are

presented in Chapter 7.

4.7 Semantic Mediation Tool

The Semantic Mediation Tool (SMT) is a client-server system for semi-

automatic, visually supported alignment of ontologies. It is being developed in

a collaboration between the KnowCenter’s Knowledge Relationship Discovery
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Figure 4.12: KDVE visual analysis window showing 6900 news documents

on space. Document selection (by time: from June to August), document

coloring (each topical cluster in different color) and navigation in the hierarchy

(location: Cluster 3 shuttle, mars, columbia) are coordinated.

Areas and MIMOS [MIMOS 2011] Knowledge Technology Cluster. MIMOS is

Malaysia’s premier applied research center in information and communication

technologies. MIMOS contributions to the project include an API for ontol-

ogy loading and navigation, an alignment algorithm based purely on linguistic

relationships, and an ontology visualization component. The rest of the sys-

tem was developed using Know-Center technologies. My focus in the was on

conception and implementation of the user interface which, besides the on-

tology visualization component, includes an information landscape, mediation

table and view coordination technology. My other contributions include an

ontology concept vectorizer, alignment algorithm based on clustering, and the

client-server architecture of the system.

4.7.1 Ontology Alignment

Ontology alignment is defined as the process of bringing ontologies into mutual

agreement through automatic discovery of mappings between related concepts
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(see Figure 4.13). The ontologies themselves are unaffected by the alignment

process. differences between ontologies with the aim of allowing their reuse.

Ontology alignment is central for overcoming differences between ontologies

with the goal of facilitating their reuse and interoperability. Collaboration and

integration of systems using different ontologies becomes possible only when

different ontologies are brought into mutual accord.

Automatic ontology alignment methods are attractive because manual cre-

ation of mappings between concepts from different ontologies is excessively

time consuming for all but very small ontologies and therefore. A variety of

approaches exist including methods based on string matching, linguistic meth-

ods, reasoning, machine learning techniques etc. A comprehensive overview of

the field can be found in [Euzenat et al. 2004], with more recent developments

introduced in [Gal & Shvaiko 2008].

Figure 4.13: Ontology alignment.

Although fully automatic ontology alignment appear attractive as the so-

lution of for interoperability of semantic systems, their results are rarely of

sufficient quality. Challenges faced by fully automatic methods are mani-

fold, including vocabulary differences, ontology modeling differences, different

points of view on the modeled reality, etc. Semi-automatic approaches have

been proposed to overcome those challenges by including human experts in

the alignment process [Kotis & Lanzenberger 2008]. Obviously, design of the

user interface is the crucial point for effectiveness of semi-automatic systems.

In [Granitzer et al. 2010] we summarized a set of requirements for interactive

ontology alignment tools from several independent studies. The requirements

are:

1. Presentation of mapping candidates together with the estimated con-

fidence and, if possible, with the inclusion of information on why the

mapping was generated.
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2. Navigation and exploration of ontologies providing detailed information

on every element of the explored ontology.

3. Overview of the alignment results for identification of regions with

promising matching candidates.

4. Capability to adjust the level of detail for the viewed data, as well as

the choosing of the area of interest which shall be explored.

5. Filtering depending on features of the mappings, such as terms describing

the concepts, mapping confidence, status of the mapping (confirmed,

rejected, not inspected), etc.

6. Confirming and rejecting automatically generated mappings as well as

adding and removing mappings manually. If possible, this should be

done such that the system will learn from users interventions.

7. Collaboration via communication, commenting, tagging, and the voting

on and annotating of mappings and ontology elements.

8. Ability to partition the mapping task into chunks assignable to team

members and to monitor team member progress.

9. Saving and loading of users changes.

The SMT system was designed to address all of these requirements, however

some of them, for example requirement 7, are not yet fully supported.

4.7.2 Visual, Semi-Automatic Ontology Alignment with SMT

Given a pair of ontologies in RDF format Semantic Mediation Tool (SMT)

mediates between them by discovering mappings between pairs of concepts,

where each concept is from a different ontology. SMT provides intuitive visual

techniques for exploration of the computed mappings and navigation of the

aligned knowledge bases. These empower the user to efficiently drill down to

the area of interest and collect information required to accept or reject the

automatically computed mappings.

Figure 4.14 shows the result of mediating two small medical ontologies de-

veloped at MIMOS: ”Cardiovascular”, shown in red, contains 414 concepts,

”Occupational Health”, shown in green, contains 331 concepts. On the very

top of the window on the left side of the bar, a legend can be seen showing

ontology names and their associated colors. A search box is shown on the

right side of the bar. On the top-left there is an alignment table showing all

mappings discovered by SMT algorithms. The mappings are sorted by their
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Figure 4.14: SMT Visualization Window.

estimated similarity (confidence). The table shows the name of the concepts

color coded depending on the ontology, a similarity score between 0 and 1, and

a status column showing users assessment of the mapping: accepted, rejected,

or suggested (default value for all mappings that have have not yet been re-

viewed). The user can review the suggested alignments, change their status

to accepted or rejected, and save any changes performed on the mediation.

On the lower-left is the information landscape view which shows an

overview of all concepts from the two ontologies as colored dots. Concepts

are colored depending on which ontology they belong to. The distance be-

tween the dots signifies the dissimilarity between the concepts they represent.

The closer the dots, the more similar the concepts are, so that areas with

dots in different colors contain promising alignment candidates. The Land-

scape places the concepts from the two ontologies into hierarchically organized

clusters, which are represented by nested areas. Each cluster is described by

several descriptive keywords, which are useful when mediating between large

ontologies, because the user can quickly drill deep into the hierarchy by fol-

lowing the keywords and in this way narrow down to his area of interest.

Moving the mouse cursor over the keywords shows the area covered by the

cluster. The user navigates deeper into the cluster hierarchy by clicking on

clusters keywords, which reveals the keywords of its sub-clusters, and so on.

Interactivity includes zooming, panning, and selection of a selected part of the
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landscape. Selection in the landscape triggers a filtering action in the table,

which is updated to show only mappings between concepts within the selected

area. This is shown in Figure 4.14 where concepts in (and around) the clus-

ter ”blood, normal, serum” are selected (shown as enlarged rectangles). Full

text searching and filtering functionality is also supported: after performing a

search the hits will be highlighted in the landscape, while all other concepts

and the corresponding mappings in the table will be filtered out.

Two instances of the Multimedia Semantic Browser (MMSB), which was

implemented by MIMOS, are shown on the right hand side of the window.

MMSB is a graph visualization providing detailed insight into the knowledge

base structure. When a row is selected in the table, the triples belonging to the

mapped concepts are displayed in the MMSBs to provide detailed information

on the concept’s neighborhood within its ontology. Concepts are shown as

colored nodes where the color corresponds to the knowledge base. Literals are

shown with a gray ”information” icon, while predicates are displayed as links

with the name of the predicate labeling the link. Concept neighborhood shown

in MMSBs provides additional information on the concept pair supporting the

user in assessing the suggested mapping.

Collaborative mediation is supported where an administrator selects sub-

sets of the suggested mappings using the landscape to create tasks. Depending

on the labels describing the selected region in the landscape, the administrator

sends the task to an expert-user who has the appropriate knowledge to asses

the mappings. The expert user can only view and modify the status of the

mappings within the assigned task. When the expert asses a mapping, the

mapping is tagged with the experts name. The administrator can view and

override expert’s assessments, and follow the progress of each individual tasks

and of the whole mediation.

Detailed examples on how this interface is applied for semi-automatic,

collaborative ontology alignment is given in the case study in Chapter 6.2.

4.7.3 Alignment Algorithm

SMT features a pluggable algorithm architecture capable of incorporating var-

ious ontology alignment algorithms. As of 2011 two algorithms have been

implemented: the first algorithm is a scalable method based on an unsuper-

vised machine learning approach, which also integrates linguistic information

provided by WordNet [Wordnet 2011]; the second algorithm, developed by MI-

MOS, relies solely on on linguistic relationships between two concepts. It uses

WordNet lexical database to compute the similarity between a pair of terms,

which is proportional to the inverse of the number of edges of the shortest
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path connecting the two terms.

The machine learning based algorithm, developed by me, is based on meth-

ods implemented in the Know-Centers KnowMiner knowledge discovery frame-

work (see Section 5.1). It operates in three stages:

1. Concept Vectorization: In this stage a a multiple feature vector rep-

resentation is computed for each concept. Every concept is described by

the following information: concept label, concept description (if avail-

able), neighboring concept labels, and labels of relationship connecting

to neighbors. Label information is extended with synonyms and, if de-

sired, hypernyms and hyponyms, using the WordNet lexical database.

Features obtained through WordNet are weighted to be weaker (config-

urable) than the original labels. In this way up to four different vector

spaces are spawned, which are used to compute the similarities between

any pair of concepts. Cosine similarity coefficient is used for each vector

space, and a compound similarity value, computed as weighted average

over all spaces, is used to compute the total similarity. Currently the

weights for different vector spaces are fixed, with the importance of vec-

tor spaces declining in the order listed above. In the future version of

the algorithm weights shall be automatically adjusted depending on the

specifics of the ontologies to be aligned.

2. Concept Clustering and Ordination: Vectorized concepts from

both ontologies are hierarchically clustered and projected using the

scalable, hierarchical clustering and ordination algorithm introduced in

/refordination-algorithm. Given that the total number of concepts from

both ontologies is N , then the time and space complexity of this stage

is O(N ∗ log(N)). The 2D similarity layout of concepts is used for visu-

alization in the information landscape component. The balanced cluster

hierarchy, created by recursively applying the modified k-means variant,

groups together similar concepts even when they originate from differ-

ent ontologies. The hierarchy is used by the next stage to efficiently find

matching candidates.

3. Match Finding: To avoid comparing all concept pairs when finding

mappings, which would lead to a quadratic matching time, mappings are

found by inspecting only pairs of concepts assigned to the same cluster

(or sub-cluster). By choosing sub-clusters deeper in the hierarchy in such

a way that the number of concepts within the branch is always smaller

than a fixed threshold V , with V << N , the number of comparisons

performed for each concept is O(V 2), i.e. its upper limit is constant.
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This results in the last stage scaling linearly with N and performing

quickly given a not excessively large value for V (for example 400).

Given that the first and last stage scale linearly, the total complexity of

the algorithm is determined by the clustering step.



Chapter 5

Architecture and

Implementation

This chapter provides an architectural overview of the software frameworks

used to implement visual techniques described in Chapter 4. While only a

fraction of the described software was directly implemented as a part of this

work, a complete picture is given for readers to understand how everything fits

together, how visual methods interact with with the rest of the architecture,

and which mining techniques they are built upon.

The implementation was mainly conducted by extending and applying two

software packages, the KnowMiner knowledge discovery framework and the

VisTools visualization toolkit, which were developed by the Know-Center’s

Knowledge Relationship Discovery Research Area [KC-KRD 2011] over the

course of several years. KnowMiner [KnowMiner 2011] is a large, complex

knowledge discovery framework providing a comprehensive set of techniques

and algorithms targeting primarily text mining and analysis of large, high-

dimensional data sets. VisTools is a visual analytics framework which comple-

ments KnowMiner with a set of coordinated visualization components. While

I was involved in the conception of both KnowMiner and VisTools from their

beginnings, I focused on and primarily contributed to the latter. The concep-

tion and architectural details of the KnowMiner framework, and the specifics

of the wide variety of techniques and algorithms it implements, are not the

contributions of this work. . However, functionality and architecture of both

frameworks must be presented to understand how analytical workflows inte-

grating visual and automatic techniques are realized (also see Chapter 6).

By applying KnowMiner and VisTools together and adequately combining

human capabilities with automatic methods, one can build innovative applica-

tions and systems providing support for interactive, visually supported analyt-
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Figure 5.1: A processing chain of comprising of KnowMiner and VisTools

functional blocks.

ical reasoning. Figure 5.1 shows a coarse grained view of processing pipeline

comprising of KnowMiner and VisTools functional blocks, which closely resem-

ble the well-known Knowledge Discovery Process (compare Figure 2.3). All

examples given in this chapter use the Reuters Corpus, Volume 1 [RCV1 2000]

as data source (unless stated differently) which includes over 800000 news ar-

ticles from the 1990ties.

All software discussed in this chapter (including third party libraries) is

implemented in the Java programming language and requires a Java Platform,

Standard Edition, Version 6 6 [Java SE 6] compatible runtime to execute on.

Visualizations are implemented as Swing components using Java2D for ren-

dering. Some visual components can optionally make use of Java Binding for

OpenGL [JOGL 1.1.1a], for hardware accelerated rendering.

5.1 KnowMiner

KnowMiner [Granitzer 2006] is a software framework offering a rich set of

knowledge discovery algorithms and techniques. As discussed in Section 2.1.3,

Knowledge discovery is the discipline dealing with analytical processes in which

data is transformed and processed to identify relevant information and extract

new, previously undiscovered, meaningful knowledge (see Section 2.1.3 for de-

tails). Thus, from the outside KnowMiner can be seen as a tool for bridging

the divide between large, heterogeneous document repositories and users seek-

ing to gain insight into knowledge hidden within very large piles of data. The

primary focus of KnowMiner is on large textual data sets, where it provides a

wide range of high-performance algorithms and techniques. However, due to

its generic architecture it can be applied on other data types, such as semantic

data (see Section 4.7.2) and multimedia repositories [Lux 2004].

The basic object KnowMiner operates on is usually a document, however,

other type of objects, for example persons or abstract concepts, can also be the

target of an analytical process. (Note that for the sake of simplicity we usually

speak of documents.) During KnowMiner execution, documents propagate
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Figure 5.2: KnowMiner framework modular architecture. Color schema for

modules: yellow - crawling and importing, green - semantic enrichment, red -

information retrieval, blue - data mining, gray - data management.

through various functional blocks, where the algorithms analyze, manipulate

and enrich them with new knowledge. In real-world applications the discovery

process will, depending on the domain and application scenario, involve various

combinations of available algorithms and techniques. Extensive configuration

and parametrization capabilities provide means to tune the algorithms and the

whole system to optimally perform on data from different application domains.

5.1.1 KnowMiner Modular Architecture

KnowMiner is a framework built around a modular software architecture

[Klieber et al. 2006, Klieber et al. 2009a]. Due to its modular architecture

and extensive configuration possibilities KnowMiner can be easily customized
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and tuned to provide application specific solutions, realize complex knowl-

edge discovery workflows and perform optimally on domain-specific data sets.

In addition, the majority of algorithms and methods provided by the frame-

work are accessible thorough a single, high-level, distributed-capable Knowl-

edge Discovery API (KD-API). Knowledge Discovery API has proved powerful

enough for industrial applications, which has been confirmed by successful ap-

plications of the framework in a variety of enterprise scenarios such as patent

analysis, media tracking, governmental document repositories etc.

Discovery algorithms and analytical techniques offered by KnowMiner can

roughly be grouped into following categories:

• Crawling and importing methods access remote repositories to collect

data stored there. Gathered data is transformed into an a single internal

format and imported into a local data back-end used by KnowMiner for

further processing.

• Information retrieval methods provide comprehensive indexing and

searching functionality in content and metadata, including statistical

and semantic-based features.

• Semantic enrichment methods extract structured information from

data, assign it a well-defined semantics and identify important features

characterizing a data element. As textual information is of primary con-

cern, information extraction and natural language processing methods

are typically applied.

• Data mining methods include statistical methods, supported by seman-

tic techniques, to identify patterns and new knowledge. Classification,

clustering, dimensionality reduction and summarization are among the

most commonly applied techniques.

To support humans in exploring and analyzing the data, identifying patterns

in complex information and communicating the newly acquired knowledge,

KnowMiner methods are complemented by visual analysis techniques based

on information and knowledge visualization components from the VisTools

framework (see Section 5.2).

The modular architecture of KnowMiner groups various algorithms into

functional modules. Figure 5.2 shows KnowMiner’s high-level architecture

with the main modules and the data flow between them. Detailed descriptions

of the modules are as follows:

• Import module accesses and crawls external repositories and gathers

the data. In a preprocessing step called format normalization (or for-



5.1. KNOWMINER 129

mat conversion), various formats (such as PDF, MS Word, MS Excel,

HTML, rich text, plain text, ODF etc.) are transformed into an internal

format, so that documents are accessible to other modules in a standard-

ized way. Configurable metadata harmonization provides a possibility to

map metadata from different sources onto a single (application-specific)

internal schema.

• Information extraction module provides statistical and ruled-based

methods for extracting new knowledge from text content. Information

extraction (IE) [Kaiser & Miksch 2005] is a discipline dealing with ex-

tracting structured information from unstructured or weakly structured

text documents using natural language processing methods. IE anno-

tates text and assigns a well-defined semantics to the annotations, which

can be used to as explicit metadata and features describing documents.

IE typically includes the following techniques:

1. Transformation and decomposition of text including tokenization,

sentence extraction, stemming and part-of-speech tagging (i.e. rec-

ognizing nouns, noun phrases, verbs, adjectives etc.).

2. Named entity recognition identifies entities such as persons, organi-

zations, locations, time and numeric information (money amounts,

scientific quantities) and others. Co-reference detection identifies

various spellings or notations of a single named entity.

3. Word sense disambiguation identifies the correct sense of a word

depending on its context.

Full support for English and German is available out-of-the-box, while

support for additional languages can be learned.

• Feature extraction and vectorization module generates statistical

representation for documents from features extracted in the information

extraction module. Multiple vectors per document can be constructed

to capture different aspects of the document, for example: full content

vector, title vector, extracted persons vector, user tags vector etc. Var-

ious feature weighting methods, such as TF/IDF or BM25, and feature

selection schemes are available (see [Nanas et al. 2003] for an overview of

various term weighting methods). The resulting feature vectors are used

for comparing documents by numerous algorithms from other modules.

Relatedness between any pair of documents is expressed as distance or

similarity between the corresponding feature vectors, whereby several

metrics types are supported, such as cosine, dice and Jaccard similar-

ity coefficients, euclidean and city-block distance measures etc. (see

[Cha 2007] for a survey on similarity and distance measures).
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• Information retrieval modules provide comprehensive information

retrieval [Baeza-Yates & Ribeiro-Neto 2011] functionality including:

– Indexer module performs indexing of the document content,

metadata and of results of other analysis methods, such as infor-

mation extraction, classification etc. Supported data types include

text, numerical and date/time, where by the last two can be sup-

ported with arbitrary precision. A special case is indexing of hier-

archical and graph structures where the neighborhood of each node

is also considered.

– Search module executes search queries against the index to se-

lect relevant document sets. Provided are comprehensive document

searching capabilities including: full text search, metadata search,

range search, wildcard search, fuzzy search, Boolean queries, search

by example (also with multiple examples and considering of struc-

tural information), concept search, relevance feedback, query ex-

pansion and suggestions, query spelling correction etc. Hits are

returned as a ranked list sorted by relevance including metadata

and content snippets. Faceted search capability provides filtering

over aggregated metadata-fields (see Section 2.2.6), such as for ex-

amples over persons or geographic locations. Figure 5.3 shows an

example of using faceted categories for search result filtering.

– Associative indexing and search modules discover relation-

ships between related concepts in the indexed data set based on

co-occurrence analysis and various statistical and semantic criteria.

Examples include discovery of relations between persons and orga-

nizations, between organizations and topical categories, or between

any terms from the text content. Users can navigate along the

computed associations by entering one or more search and then fol-

lowing the concepts returned by the system. An example is shown

in Figure 5.4, where by entering ”computer” the system returns

”Microsoft, IBM, Intel,...”. The user can choose any of these terms

to continue exploring the associative concept graph. The concept

graph in this particular case was constructed by associating con-

cepts extracted from a 800000 documents. Associated concepts

can also be used internally by algorithms, for example for search

query expansion, semantic enrichment of documents, or mapping

of knowledge structures onto each other.

• Data mining modules provide comprehensive include the following

pattern recognition and knowledge extraction functionality:
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– Summarization module computes a short summary for one doc-

ument, a group of documents or any text fragment (see [Das & Martins 2007]

for more information on summarization). Computed summaries are

in the form of a list of weighted keywords, whereby descriptive and

discriminative summaries can be generated. Descriptive summaries

describe documents an isolated entity without considering the data

set as a whole. Discriminative summaries describe each document

in terms of what distinguishes it from other documents of a partic-

ular data set (or a subset thereof). Figure 5.5 shows cluster labels,

computed from the content of the underlaying documents.

– Clustering module makes use of on unsupervised learning tech-

niques for computing groups of related documents [Berkhin 2002,

Xu et al. 2005]. Typically clustering is performed on term vec-

tors constructed from document content, resulting in documents

being organized into a topical cluster hierarchy. As the above men-

tioned summarization techniques provide the possibility to gen-

erate a short summary for describing each cluster, the cluster

hierarchy becomes useful for exploration of large data sets pro-

viding a virtual table of contents. Figure 5.5 (on left) shows

such a cluster hierarchy for search results returned by a ”com-

puters” query: by following the labels one can quickly drill down

to documents on the well-known Intel Pentium FDIV bug (see

http://www.intel.com/support/processors/pentium/sb/CS-013007.htm).

A variety of implemented clustering algorithms provides a cluster-

ing solution applicable to various domains and on heterogeneous

data repositories. The choice of the algorithm and the algorithm

parameterization can be performed manually or automatically, de-

pending on the size and characteristics of the data set, and on the

specification of the clustering tasks, the latter including: guess-

ing the number of clusters (given constraints on minimum and

maximum), hierarchical clustering producing several layers of sub-

clusters (optionally including hierarchy balancing), performance vs.

quality considerations etc. The incremental clustering capability

is suitable for applications such as change monitoring in dynamic

repositories, or for evolving of existing knowledge structures.

– Classification module includes several supervised learning ap-

proaches including various flavors of methods such as k nearest

neighbors (KNN), support vector machines (SVM), Rocchio classi-

fier etc. (see [Sebastiani 2002] for more information on classification

methods). Classification tasks includes two different steps:
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1. Training: During the training step assignments of documents

to classes are learned using positive (and optionally negative)

examples resulting in computation of a classification model.

2. Classification: During the classification step the classification

model is used compute class assignments, including confidence

values, for new, previously unseen documents.

Besides assigning documents to categories of a given taxonomy,

classifiers are useful for tasks such as filtering of spam email (a typ-

ical binary classification problem) or sentiment detection for media

analysis. Specialized features such as multi-label classification, in-

cremental updating of classification models, or support for very

large training sets is also provided by selected algorithm implemen-

tations. Figure 5.6 shows a trained classifier with twelve categories

(on left), each representing a major IT company. Training exam-

ples per category include from 50 (Corel) to over 3300 (Microsoft)

documents. Classified documents (on right) have confidence values

assigned for different categories.

– Projection module performs dimensionality reduction [Fodor 2002]

from the high-dimensional term vector space into a 2D visualization

space, by preserving the high dimensional relationships as good as

possible (see Section 2.3 for more information on ordination and

dimensionality reduction methods). In the resulting 2D visualiza-

tion space the spatial distance is a measure for relatedness between

visualized items: related documents are placed close to each other

while dissimilar ones are positioned further apart. The resulting

similarity layouts can be utilized for visual exploration and anal-

ysis purposes, for example using the information landscape com-

ponent (see Section 4.3). Available ordination algorithms include

methods which are both scalable and incremental, thus supporting

explorative visualization of large, dynamically changing data sets.

Figure 5.5 (on right) shows a similarity layout computed by the

ordination algorithm described in Section 4.2.

• Persistence module is a storage solution designed for efficiently storing

and retrieving data involved in knowledge discovery processes, including

externally provided data (document content and metadata, user feed-

back etc.) as well as knowledge generated by KnowMiner (extraction

results, statistical information, cluster hierarchies etc.). Although the

module does not provide knowledge discovery functionality in itself, it

is optimized for common knowledge discovery scenarios and constitutes

an important component of many knowledge discovery workflows.
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Figure 5.3: Faceted search example: Searching for ”computer” returned over

20000 hits, with filtering possible using faceted categories (available are lo-

cations, organizations, persons, tags and sources). Selecting organizations

”Microsoft”, ”Intel” and ”IBM” reduces the hit count to merely over 100.

Figure 5.4: RadialView visualizing associated concept search: concepts re-

turned for query ”computer” (center) include companies, persons and loca-

tions (placed radially around the query term).
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Figure 5.5: A hierarchy of topical clusters (on left) and a similarity layout (on

right) for about 20000 documents returned by the query ”computer”.

Figure 5.6: Classifying documents on ”real-time software” into twelve classes

representing major IT companies. Each document is assigned to more than

one category, with the estimated confidence determining the winning class.



5.2. VISTOOLS 135

5.1.2 Knowledge Discovery API

Due to the complexity of typical knowledge discovery workflows and the in-

volved data transformations, assembling applications directly using KnowMiner

modules may cause a considerable implementation effort. This is especially

the case when the number of used modules is large and the involved data

flows are complex. KnowMiner offers standardized interfaces allowing one to

easily assemble complex workflows based on a high-level knowledge discov-

ery API (KD-API). KD-API provides access to the majority of KnowMiners

algorithms and functions, and in most cases removes the necessity of trans-

forming the data when it is passed from one module to another. KD-API

design focuses on ease of use and hiding of complexity by internally mediat-

ing between modules, or when this is not automatically possible, returning

meaningful error messages. Feedback from developers who are not experts in

knowledge discovery was collected and considered during the development of

several projects, which resulted in numerous refinement iterations of the API.

KD-API provides the possibility to access KnowMiners functionality remotely

over Java RMI. Besides a simple single-node operation a cluster-configuration

is also supported. Distributed operation in clustering mode, which includes

load balancing strategies, is fully supported for read-only workflows, while

write operations must currently be performed on a single master instance.

5.2 VisTools

VisTools is a lightweight visual analytics framework based on the coordinated

multiple views (CMV) paradigm. The framework currently includes several

visualization components as well as extensions of standard GUI widgets (such

as trees and tables), which can be combined using CMV to build visual user

interfaces for exploration and analysis of large, dynamic, heterogeneous data

sets. The framework also offers useful visualization algorithms and utilities,

and provides access to a high-performance rendering engine developed by a

group of specialists at the Know-Center.

5.2.1 VisTools Architecture

VisTools is built around a modular architecture shown in Figure 5.7. The four

modules include:

• Analytical component toolkit (in blue) consists of several visualiza-

tion components and extended standard GUI widgets. Majority of the
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Figure 5.7: VisTools modular architecture. Color schema for modules: green

- coordination of multiple views, blue - visual analysis components (incl. sup-

porting data structures), red - algorithms, yellow - specialized renderers.

components are coordinated views, i.e. they maintain the same state of

visualized data items and provide synchronized navigation behavior.

• Coordination framework (green) ensures that the state of visualized

data and the navigation remain in sync in all views. Coordination frame-

works maintains a shared data pool and implements logic for controlling

the coordination process.

• Algorithm module (red) provides useful visualization algorithms,

which are either used directly by visual components or are employed

by KnowMiner ordination algorithms.

• High-performance rendering (A-graph) engine (yellow) provides

a specialized, high-performance 2D and 3D rendering back-ends for se-

lected visualization components (currently used by the information land-

scape component).
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Figure 5.8: Coordinated components are based on the model-view-controller

paradigm, extended with coordination-related data and logic.

VisTools architecture and implementation are entirely independent of

KnowMiner and the framework can be used stand alone or in combination

with other knowledge discovery software packages. However, it should be

noted that all examples described in this work are based on algorithmic re-

sults provided by KnowMiner. A specialized software library, described in the

Section 5.3, serves as a ”glue” component between KnowMiner and Vistool

providing commonly required data transformations and utilities.

5.2.2 Analytical Components

Central components of a visualization user interface are visual user interface

components. VisTools offers several coordinated visual analysis components,

including:

• Landscape3D - a 3D capable information landscape visualization (see

Section 4.3).

• StreamView temporal visualization (see Section 4.4).

• Scatterplot visualization (see Section 2.4.1).

• RadialView visualization (see Figure 5.4).

• TreeView component (see Figure 4.11).

• TableView component (see Figure 4.11).
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Components are configurable allowing the customization of colors, icons, fonts,

strokes, interactivity and other properties. In this was they can be adapted

to meet the requirements of different usage scenarios.

The basic architecture of each component can be seen in Figure 5.8. The

components are implemented around the well-known model-view-controller

design pattern, which is based on isolation between the data (model), paint-

ing and rendering (view) and the control logic (controller). Every compo-

nent maintains its own control logic and data model, the latter including

component-specific logical and visual information. In a coordinated multiple

view architecture there will be an additional part of the data model, managed

by the coordination system, which is shared by all coordinated component.

Additionally, the control logic of each component must consider the coordi-

nation system and incorporate functionality for correctly handling different

coordination requests. An important feature of the coordination architecture

is that coordinated views may not directly change any coordinated data item

properties and may not directly modify application state which is shared by

several coordinated views. Instead all change requests are passed to the co-

ordinator which notifies the views when model changes are complete and the

views may repaint themselves to reflect these changes. See next Section (5.2.3)

for details on coordination mechanisms.

Landscape3D component derives its name from the possibility to use 3D

hardware accelerated rendering. However, this is not mandatory as rendering

can also be performed by a Java2D-based rendering engine, which is limited to

providing only a direct view from above (i.e. tilting and rotating are not sup-

ported). The 2D renderer is useful in avoiding rendering artifacts and errors

in (rare) cases when 3D driver quality is not satisfactory. Note that because

Landscape3D derives from Landscape, a 2D-based abstract super-class, these

two names may be used interchangeably in the rest of this document.

In cases when scalability and performance requirements are particularly

demanding, the 3D high-performance rendering engine should be employed.

Using the 3D engine Landscape3D can handle up to millions of data items on

a standard desktop machine (scalability subject to graphics card and memory

constraints), whereas the 2D renderer will not provide smooth rendering when

the data set size exceeds 100000. Landscape3D employs the A-graph rendering

engine as its rendering back-end. A-Graph can switch between a Java2D-based

renderer and the Appear 3D scene graph engine, the latter using Java Bindings

for OpenGL [JOGL 1.1.1a] for hardware acceleration. A-Graph and Appear

3D libraries were developed at the Know-Center by colleagues specialising in

high-performance rendering.
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5.2.3 Coordinated Multiple View Framework

Coordination framework (see Section refcmv-framework) can be subdivided in

three functional groups (for details on available coordination capabilities see

Section 4.5):

• Coordinated data item pool maintains logical and visual properties of all

data items subject to coordination. Coordinated data item properties

include color, transparency, icon, size and selection of each coordinated

data item, as well as the information on the currently focused data item

(i.e. user’s ”location”). Important feature of the coordinated data item

pool is that it provides read-only access for coordinated views. Only the

coordinator may perform changes, subject to requests from coordinated

views.

• Coordination protocols defined by the coordinator specify rules that co-

ordinated views must obey in a coordinated environment. The purpose

of these rules is to ensure that all coordinated views see the same consis-

tent state of the coordinated data and that each view is notified about

changes. Whenever a user interacts with a view and that interaction

triggers a change which must be coordinated across other views of an

user interface, the following coordination mechanism is triggered:

1. Coordinated view invokes a coordinator method specifying which

kind of change should be performed and which data items are in-

volved.

2. Depending on the request the coordinator modifies coordinated

properties of the involved data items (such as color or selection)

and/or changes the focus to a different data item (to perform nav-

igation and ensure visibility of the data item).

3. Coordinated view notifies all registered coordinated views about

the change including the type (such as color or selection change,

user focus change, etc.) and the data items involved. When a

notification event arrives a view changes its internal model and

state accordingly and repaints itself. This simple mechanism not

only ensures consistency across different views, but it also enables

a fast and memory efficient execution of coordinated actions which

scales to millions of data items.

• Shared visual elements include icons and colors which must be displayed

consistently over all coordinated views. Coordinated data items specify

icons and colors by name. When a coordinated view needs to draw a data
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item it must retrieve the icon and/or the color from the icon provider

and color provider, respectively.

• Structure traversal is provided by a hierarchy resolver component. Meth-

ods such as clustering generate hierarchies and the hierarchy resolver

provides a standardized way for all coordinated views to, given a data

item (for example cluster), retrieve all its children and its parents(s).

Note that currently only traversing of hierarchies is available, but the

APIs would accommodate a graph based implementation too.

• Metadata provider is an optional component offering a standardized way

for on-demand retrieving of metadata for one or more data items. A

metadata provider can also inform a coordinated view which metadata

is available.

5.2.4 Algorithms

The algorithms module provides several useful visualization algorithms which

may be used directly by the visual component or are employed by KnowMiner

as building blocks of ordination algorithms. These include:

• A force-directed placement (FDP) algorithm for computing similarity

layouts of high-dimensional data along the lines of [Chalmers 1996] (see

Section 2.3.4 for more information on FDP). This FDP implementation

primarily used as a building block of the KnowMiner’s scalable, incre-

mental ordination algorithm described in Section 4.2. FDP can also be

used directly in visual components for on-the-fly layouting of data sets

containing up to several hundreds items.

• A Voronoi area subdivision method [Aurenhammer 1991] is employed in

the same ordination algorithm as the above mentioned FDP. Voronoi

subdivision can also be used directly in visualization components, such

as for example in the tag cloud shown in Figure 2.6.1.

• A stream shape generator takes documents’ cluster membership and

their time-stamps (usually creation date) as input, and computes the

shapes of cluster stream for the StreamView visualization component. It

is a simple and fast algorithm which subdivides the time interval covered

by the document set into subintervals, and for each subinterval computes

the width of the cluster’s stream to reflect the number of documents in

that subinterval. The fact that the routine executes in sub-second time

for millions of documents makes it suitable for on-the-fly computation

of the StreamView geometry.
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Figure 5.9: Integrating KnowMiner and VisTools to create visual analytics

applications.

5.3 Integration of VisTools and KnowMiner

Each VisTools component implements a specialized data model suitable for

the visual representation it provides. The coordination module maintains its

own data structures which fit the needs of view coordination. On the other

side, KnowMiner defines its own data structures in the knowledge discovery

API (KD-API) which are suitable for returning results of various mining or

retrieval operations, such as clustering, ordination, associative search etc.

To enable interoperability between KnowMiner and VisTools and facilitate

creation of analytical visual applications which integrate automatic and visual

methods, a data transformation library was developed, the Knowledge Discov-

ery Visualization Utils (KD-Vis-Utils). As shown in Figure 5.9 the library acts
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as a ”glue” layer between the two frameworks and automatically creates vi-

sual component-specific data models from the KD-API results. It also creates

two central data structures for coordination: the coordinated data item pool

and the hierarchy resolver. Due to remote and clustering capabilities of the

KD-API, visual client-server applications talking to distributed KnowMiner

instances can be created easily.

Data structures employed across VisTools and KD-API make extensive use

of arrays and Java primitive data types (as apposed to object collections and

objects). Also, in cases when lists and maps are required and usage of primitive

types appears adequate, TROVE library providing primitive collections and

maps was employed [TROVE v2.1.0]. These measures led to significant mem-

ory footprint reductions and noticeable performance improvements, especially

on the client side.

5.3.1 Prototype Applications

Two prototype visualization systems based on the described server-client ar-

chitecture were implemented using VisTools, KnowMiner and accompanying

libraries: the Knowledge Discovery Visual Environment (KDVE, see Section

4.6) and the Semantic Mediation Tool (SMT, see Section 4.7).

KDVE is a demonstrator for VisTools and KnowMiner functionality built

on the architecture shown in Figure 5.9. It offers four distinct functional

groups:

1. Import pipeline includes document import and format conversion, in-

formation extraction and document vectorization, text and metadata

indexing, associative indexing, and persisting of imported and extracted

information. Once the importing process is completed for a documents

set, various analytical and retrieval techniques can be applied on them.

2. Information retrieval functions offer extensive document search func-

tionality and provides visual navigation in concept networks using the

associative search.

3. Visual analysis window provides several coordinated views, including

a Landscape3D and a StreamView, for topical-temporal analysis of a

document set (see Figure 4.12).

4. Classification functions offer the possibility to define and train new

classes and classify previously unseen documents. and

These function groups are typically used in combination with each other to

realize various knowledge discovery workflows. Selected workflows, focusing
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on the the third function group - the visual analysis, are demonstrated in the

case study discussed in the next Chapter (6).

Semantic Mediation Tool (SMT), a visually supported ontology alignment

application, uses a smaller part of available techniques than KDVE, but applies

them on semantic information instead of text. SMT’s client-server architec-

ture uses components shown in Figure 5.9 but also introduces new application-

specific components, some of which were developed by MIMOS, which demon-

strates the flexibility and extendibility of VisTools and KnowMiner architec-

tures. As the KD-API functionality goes far beyond of what is needed by SMT,

and at the same time would have to be extended with ontology alignment

methods, SMT introduces its own, simple RMI-based client-server interfaces.

The resulting application consist of the following main components:

• Server:

– Ontology access component accesses the knowledge bases and de-

livers concept information to the alignment algorithms.

– WordNet-based ontology alignment algorithm (MIMOS).

– Clustering-based ontology alignment algorithm, with integrated

similarity layout computation of ontological concepts used for visu-

alization. This component also performs the indexing of the onto-

logical concepts which is used for client-side filtering (KnowMiner,

Know-Center).

• Client:

– Table of concept mappings suggested by the alignment algorithms.

– A landscape visualization providing an overview of all ontologi-

cal concepts involved in the alignment process (VisTools, Know-

Center).

– Two graph visualizations for ontology navigation and exploration.

– Coordination framework.

For an example on how SMT is used to align concepts from a pair of ontologies

see Section 6.2.

It should be noted that besides the two prototype applications, a produc-

tive system was realized within a 5-year applied research project, with me

being the project leader at the Know-Center. The system was built by inte-

grating KnowMiner and VisTools technologies in the m2n Intelligence Man-

agement Framework [m2n IMF 2011]. The architecture of the resulting system
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is beyond the scope of this work, however, integration of VisTools visual tech-

niques and KnowMiner algorithms into the productive system was achieved

using the same building blocks and technologies as described here.



Chapter 6

Case Study

This Chapter demonstrates the use of prototype visual applications on real

world data. Applications of visual analysis methods are described applica-

tion in the context of textual and semantic data, with examples outlining the

relationships between visualization and machine processing. The first exam-

ple demonstrates how the Knowledge Discovery Visual Environment (KDVE)

(see Section 4.6) can be applied to perform a topical-temporal visual analysis

on a set of documents. In the second example the Semantic Mediation Tool

(SMT) (see Section 4.7) is used for semi-automatic matching of concepts from

a pair of ontologies using visual techniques. To follow the presented work-

flows it is assumed that the reader is familiar with the visual and algorithmic

components introduces in Chapters 4 and 5.

6.1 Fused Topical-Temporal Analysis

In the following example visual analysis methods from the Knowledge Discov-

ery Visual Environment (KDVE) are applied to analyze a document set gain

insight into topical and temporal aspects of the data. Demonstrated work-

flow makes primarily use of visual techniques which are backed by the results

of automatic analysis. The Reuters Corpus, Volume 1, in English language

[RCV1 2000], which is a collection of news articles from the 1990ties is used

as data set. The corpus is frequently used in the text mining community for

testing, evaluation and demonstration purposes.

In the provided example the user is seeking to gain knowledge on oil spills

(which unfortunately are recurring incidents nowadays, as they were in the

1990ties). After selecting relevant documents using search our hypothetical

user applies visual methods to identify a particular area of interest and rec-

ognize potential major events. Subsequently, the user focuses on discovering

145
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Figure 6.1: Search for ”oil spill” returns 385 news articles, which is too many

for manual analysis of the whole data set.

whether different events, which occurred in the area of interest, are indepen-

dent and isolated from each other or related and causally connected. Using

explorative analysis techniques user postulates a hypothesis and then attempts

to validate it by applying different analytical strategies. The process of rec-

ognizing patterns, generating a hypothesis and then validating it through on-

demand analysis, generates new insights and facts, even when the hypothesis

is rejected (also see Section 2.1.3). As we will see, important for the success of

this analytical process is a suitable combination between the interactive visual

methods and the result of automated analysis.

6.1.1 Step 1: Getting an Overview

To select news articles on oil spill the user opens a search window, types ”oil

spill” in the search query field and executes the query (Figure 6.1). Informa-

tion retrieval tools excel at finding a single or several relevant pieces of relevant

information, but when a when a holistic view on a data set is needed, tech-

niques providing an aggregated overview of the whole data set are required.

For all documents returned by the query Figure 6.2 shows:

• A similarity layout of documents, computed by an ordination method

(see Section 4.2), is shown in the Landscape visualization component

(see Section landscape-component).
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Figure 6.2: Topical and temporal visualization of all results returned for the

query ”oil spill”.

• A topical hierarchy, computed by a clustering algorithm (see Section

4.2), is shown in the upper TreeView and in the Landscape3D.

• Faceted metadata categories for locations, organizations and persons,

identified by information extraction methods (see Section 5.1.1), are

shown in the lower TreeView.

• Temporal development of the topical clusters and metadata categories

are shown in the StreamView (see Section 4.4).

Note that the the color assignments to clusters defined in the StreamView are

coordinated with document colors in the Landscape.

As seen from the cluster labels, clustering partitions the data set along

geographical regions (such as Japan, Venezuela and Alaska), oil companies

(Shell, Exxon, YPF), technical (pipeline, substances, brent) and commercial

(traders, tax, shares) concepts, etc. Being interested in oil spills in Asia and

Japan the user immediately spots that ”Cluster 6: japan, tokyo, coastguard”

(shown in magenta) exhibits two sharp temporal peaks in the StreamView.

The first peak occurred in the period from end of December 1996 to end of
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January 1997, the second one during the second half of June and the first half

of July 1997. Two questions arise concerning the peaks:

1. Which events caused those two temporal peaks?

2. Are the events independent of each other or are they related or even

causally connected?

In the following, the user will work towards finding answers to those questions

using visual analysis methods.

6.1.2 Step 2: Topical Relatedness of Temporal Peaks

To understand whether the peaks have a topical relationship or not, one can

make use the information landscape combined with time-based selection of

documents using StreamView. This is demonstrated in the Figure 6.3. In

the upper screenshot the user selects documents from the time interval cor-

responding to the first peak, using the interval selection component, which is

the blue bar on top of the StreamView visualization. Here it is important to

know, that selected documents are shown enlarged in the Landscape, while all

other documents (i.e. those outside the chosen time interval) are tiny. In the

lower screen shot the same can be seen for the second temporal peak.

By looking at ”Cluster 6: japan, tokyo, coastguard” in the Landscape,

and comparing the document selection in the upper and lower screenshot, the

user can see that the documents from the first peak are predominantly placed

towards the upper part of the cluster’s area, while documents belonging to

the second peak are concentrated towards the bottom. Knowing that similar

objects are placed next to each other in the Landscape, the fact that documents

from the two peaks occupy rather different areas indicate that the two peaks

are not closely related in the topical sense. If they were, they would appear

intermixed within the same area.

To conclude, a summary of what the user knows so far:

• All documents are relevant to ”oil spill”, as they were retrieved by that

search query.

• Documents in magenta are related to ”japan, tokyo”, because of the

cluster membership.

• Within the context ”oil spill”/”japan, tokyo” the documents form two

temporal peaks which appear to be topically rather unrelated.
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Figure 6.3: Selection of two temporal peaks with the time interval selection bar

(selected documents are larger in the Landscape). In the Landscape documents

from the first peak are predominantly placed at the top of the cluster, while

those from the second peak are at the bottom, indicating that the peaks are

topically unrelated.
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The last point, if proved correct, indicates that the events corresponding

to the temporal peaks are different in the sense of differing in their causes,

involved participants, course of actions etc.

6.1.3 Step 3: Finding Possible Causes of Temporal Peaks

To find out what could have caused the two peaks, the user choses one docu-

ment from the first peak and one from the second, and takes a look on what

is inside. In Figure 6.4 a selected document for the first peak is shown in

white in the upper Landscape, and the document’s content is is shown on the

right next to the Landscape. The same is shown for the second peak in the

lower Landscape and document text. Note that in the user interface the text

pane showing document content is placed in the tabbed pane shared with the

Landscape.

Figure 6.4: Choosing and reading one document (shown in white) from the first

temporal peak (upper row) and one from the second peak (lower row). The

first document mentions an oil spill caused by the Russian ship ”Nakhodka”,

the second one an oil spill caused by the Japanese-operated tanker ”Diamond

Grace”.

The content of the document from the first peak reveals that the Rus-

sian ship ”Nakhodka” caused an oil spill about 300km west from Tokyo. The

document from the second peak states that the Japanese-operated tanker ”Di-
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amond Grace” caused an oil spill in the Tokyo Bay. These could be the possible

causes of for two peaks, but to know for sure one needs to check whether all

(or a significant majority) of the documents from the first peak mention the

Russian ship ”Nakhodka”, but are unrelated to the Japanese-operated tanker

”Diamond Grace”. The opposite should be shown for the second peak. As

reading every document to confirm or reject this would be very time consum-

ing (especially when involved data sets are large) the user will attempt to

answer this question using visual means.

To conclude, a summary of what the user knows at this point:

• Documents on oil spill in the area Tokyo, Japan have two distinct tem-

poral peaks which appear topically unrelated.

• Sample documents form each peak mention different possible causes for

the peaks: Russian ship ”Nakhodka” and Japanese-operated tanker ”Di-

amond Grace”.

The second point is a completely unproven hypothesis at this point, which

needs to be validated by further analytical steps.

6.1.4 Step 4: Validating the Hypothesis using Faceted Meta-

data

To validate the above postulated hypothesis the user resorts to faceted meta-

data categories extracted by the information extraction techniques (see Section

km-modules). The idea behind using faceted metadata categories is to corre-

late documents containing a particular extracted metadata instance with the

temporal peaks. In this case the user will look for correlations between the

temporal peaks and the operator countries of the ships. This is performed

by selecting the locations ”Russia” (the origin of the first ship) and ”Japan”

(country operating the second ship) and checking whether documents con-

taining these two metadata instances correlate with the respective temporal

peaks.

Faceted metadata categories are available in the TreeView on the lower-

left, bellow the topical cluster hierarchy. The two screenshots in Figure 6.5

show the location ”Russia” highlighted in the tree. This has two effects on

the visualizations:

1. The StreamView shows the faceted metadata category ”Russia” along

the topical clusters. The stream for ”Russia” is shown in cyan.
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2. Landscape shows documents mentioning ”Russia” also colored in cyan.

All other documents are now shown in white (using topical cluster colors

is disabled here for clarity).

It is important to remember that documents selected by the time interval

selection bar are shown enlarged, while documents from outside of the selected

time interval are small. The upper screenshot shows documents from the first

peak selected, the lower one from the second.

Looking at the StreamView in Figure 6.5 (same in both screenshots), shows

that Russia correlates strongly with the first peak, but not at all with the

second one. However, an experienced user will notice that during the first

peak the stream for ”Russia” is thinner than the stream for ”Cluster 6: japan,

tokyo, coastguard”. This means that only a subset of documents from the

first peak mentions Russia. Nevertheless, this adds strength to the hypothesis

that the oil spill caused by the Russian ship Nakhodka is responsible for the

the first peak, but is not related to the second one.

Similar can be learned from the Landscape. For the first peak selected

(upper screenshot) only a part of the enlarged documents is in cyan. For

documents from the second peak (lower screenshot) no documents are in cyan.

This fits the conclusion derived from the StreamView: ”Russia” correlates

strongly, but not decisively, with the first peak, while it shown no correlation

with the second.

Unfortunately, the attempt to perform the same kind of analysis with

”Japan” as the highlighted faceted metadata category does not provide any

new insights. As can be seen in Figure 6.6 Japan correlates strongly with both

peaks, in the StreamView and in the Landscape - which was to be expected.

The reason being, that all documents in ”Cluster 6: japan, tokyo, coastguard”

are obviously strongly related to Japan, so that Japan cannot be used to

differentiate between the peaks.

A summary of what the user has discovered in this step is as follows:

• Temporal distribution of documents mentioning ”Russia” correlates

strongly with the first temporal peak, but not at all with the second.

• ”Russia” is mentioned only in subset of documents from the first tem-

poral peak (approx. 40-50

This information provides some insight, but is definitely insufficient for con-

clusions. While the chosen validation strategy is valid and often useful, this

examples demonstrates that the features chosen to perform the correlation

analysis have to be chosen carefully. The user will have to readjust the strat-

egy.
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Figure 6.5: Displaying faceted metadata category for location ”Russia” (in

cyan): In the StreamView it correlates strongly with the first temporal peak,

not with the second. In the landscape the same can be seen. However, only a

subset of documents from the first peak mention ”Russia”.
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Figure 6.6: Displaying faceted metadata category for location ”Japan” (in

cyan): Correlates with both temporal peaks, in the StreamView and in the

Landscape, making no conclusions possible. The reason being, that ”Japan”

is the main feature of the topical cluster, which is mentioned in the majority

of the cluster’s documents.
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6.1.5 Step 5: Validating the Hypothesis using Retrieval

To validate the hypothesis generated in Step 3 (Subsection 6.1.3) the user

can try applying a strategy very similar to the one applied previous step,

however with the use of retrieval instead of faceted metadata. To do this the

user searches for the ship names, ”Nakhodka” and ”Diamond Grace”, and

observes how found documents correlate with documents from the respective

temporal peaks.

The results can be seen in Figure 6.7 for ”Nakhodka” and in Figure 6.8 for

”Diamond Grace”. Note that the search hits are shown in red in the Land-

scape, while the StremView is used only for temporal selection of documents

using the time interval selection bar. As in the above examples, documents

from the selected time interval are shown enlarged in the Landscape, those

outside the interval are small.

What the user can see by looking at the Figure 6.7 it that ”Nakhodka” is

mentioned in almost all documents from the first peak (upper screenshot), but

in only very few from the second (lower screenshot). Figure 6.8 shows that the

opposite is true for ”Diamond Grace”, which is not at all mentioned in the doc-

uments from the first peak (upper screenshot), but is present on all documents

(except one) from the second peak (lower screenshot). An uncertainty which

remains is why ”Nakhodka” is also mentioned in some documents from the

second event. By inspecting one of those documents the user will see that the

main topic is actually about the ”Diamond Grace” oil spill, but ”Nakhodka”

is mentioned since it caused a similar problem at the similar location just six

months earlier.

Considering these results the user can now conclude that following state-

ments hold with high probability:

• ”Nakhodka” is responsible for the first temporal peak and ”Diamond

Grace” for the second.

• The two temporally separated peaks are two separate oil spill events in

the vicinity of Tokyo, Japan, caused by different ships (from different

countries).

This conclusions confirm the hypothesis which was generated by explorative

navigation actions performed in steps 2 and 3.
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Figure 6.7: Searching for ”Nakhodka” and showing hits in red. In the land-

scape correlates predominantly with the first event (top), and mostly not with

the second one (bottom).
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Figure 6.8: Searching for ”Diamond Grace” and showing hits in red. In the

landscape clearly correlates only with the second event (bottom), definitely

not with the first one (top).
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6.2 Semantic Mediation

Semantic Mediation Tool (SMT) applies visual methods to facilitate collabora-

tive, semi-automatic mediation between a pair of knowledge bases (ontologies).

The mediation process consist of two major phases:

1. Automatic computation of mappings between concepts from different

ontologies.

2. Reviewing (i.e. accepting or rejecting) of mapping suggestions created

in the first step by the users.

In the following three use cases are demonstrated: creating a new mediation,

collaborative reviewing, and drill down to the area of interest.

6.2.1 Starting a Mediation Process

Figure 6.9: After logging in the user can choose a pair of ontologies (left) and

start the mediation process (right).

Creating a new mediation is a simple process shown in Figure 6.9. It begins

by choosing a pair of ontologies to be aligned, assigning a name to the new

mediation, and starting the automatic part of the mediation process. Once

the algorithms are done computing mapping suggestions between concepts,

the mediation is saved. At this point the users can begin with the reviewing

process in which the computed mappings are accepted or rejected.

Results of the automatic alignment are shown in the reviewing window

which can be seen in Figure 6.10. The list of mapping suggestions sorted by

estimated confidence is shown in the mapping table (on the upper-left). At the

beginning all mappings have the state ”suggested”, which can be changed by

the reviewer to ”accepted” or ”rejected”. Two different visual representations
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Figure 6.10: Result of mediating two medical ontologies: table of mapping sug-

gestions is on top-left, an information landscape visualizing all concepts from

both ontologies is on bottom-left, and two graph visualizations for browsing

the ontologies are on right.

are available to support the user during the reviewing task: the Landscape

visualization (on bottom-left) provides an overview of all concepts involved in

the mediation process, while the two Multimedia Semantic Browsers (MMSB,

on right) provide a graph visualization for ontology navigation. The example

shown in Figure 6.10 shows the result of mediating two small medical on-

tologies: Cardiovascular with 414 concepts and OccupationalHealth with 331

concepts. The user can now begin with the process of reviewing the suggested

mappings, which is described in the next example.

6.2.2 Collaborative Reviewing

SMT facilitates collaborative reviewing of suggested mappings by selecting a

subset of the mappings and assigning them to a user for reviewing. Parti-

tioning of the suggested mappings into tasks is primarily useful for splitting a

large data set between users to reduce individual workload. However, it also

makes sense to assign mapping suggestions to tasks in such a way, that tasks

correspond to a particular domain or field. Such a task should be assigned to

an expert user who is knowledgeable in the particular domain or field.

A collaborative reviewing scenario involves the following steps:
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1. Area selection: Information landscape is useful at providing an overview

and identifying major groups of related concepts. The user (administra-

tor) selects a chosen group of concepts, where labels provide guidance

revealing what topics a particular area of the Landscape is covering. In

Figure 6.11 selection of concepts using the lasso selection tool (white

curve) in the area ”left/right, heart, failure” can be seen.

2. Task assignment: In Figure 6.12 concepts selected in the previous

step are shown enlarged. The effect of selection is that the mapping

table will show only mappings between the selected concepts, resulting

in 10 mappings (down from 457 total mapping). These 10 mappings are

assigned as a task to the user ”jim” and saved under the name ”heart

failure” (see Figure 6.13). The administrator can create and assign more

tasks by repeating the procedure of selecting areas of related concepts

in the Landscape, and assigning the corresponding mapping suggestions

to users for reviewing.

3. Reviewing: When the user ”jim” logs into the system next time, the

only mappings suggestions available in the table will be those from the

”heart failure” task, which can be seen in Figure 6.14. User ”jim” will

only be able to review these mapping suggestions, access to all others

will be blocked. Reviewing a mapping includes selecting the mapping

in the table, which shows the two concepts in the semantic browsers

(on right). A semantic browser shows detailed information on a concept

within the ontology it originates from, to support the user in making

decisions. The user accepts (green check mark icon) or rejects (red cross

icon) the mapping depending on the presented information.

4. Progress monitoring: The administrator can follow the reviewing

progress for each task and for the whole data set using the task overview

table, shown in Figure 6.15. It shows reviewing progress information for

five tasks of different sizes assigned to different users. The administra-

tor can follow the progress for single tasks (table entries), for all tasks

(status bar, on left), and can see the percentage of mappings suggestions

already assigned to different tasks (status bar, on right).
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Figure 6.11: Selecting the area ”left/right, heart, failure” with the lasso selec-

tion tool.

Figure 6.12: Assign the 10 mappings between selected concepts (enlarged in

the information landscape) to user ”jim”.
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Figure 6.13: Save the newly created task under the name ”heart failure”.

Figure 6.14: After logging in as user ”jim”, only mappings assigned to his task

(”heart failure”) can be reviewed. A few mapping suggestions have been ac-

cepted (green check mark), several others rejected (red cross) in this example.
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Figure 6.15: The administrator can view the progress of tasks assigned to

different users. Here, two tasks out of five show progress.

6.2.3 Drill Down to Area of Interest

This example demonstrates the usefulness of the Landscape visualization when

dealing with large amount of concepts. The landscape provides overview and

orientation in the different topical areas covered by the aligned concepts, and

offers means for explorative navigation toward areas matching the user’s needs

and interests.

In this example two technical classification systems were aligned:

• The ACM Computing Classification System [ACM 1998].

• Malaysian Research and Development Classification [MRDCS 2011],

which is a set of classifications designed for use in the measurement

and analysis of research and development activities in Malaysia.

Since the total number of concepts is larger than in the previous example (745

to 5110), the role of the information landscape gains importance, both as an

overview tool and as an orientation and navigation help. These features be-

come more important when larger ontologies should be mediated, for example

when user’s focus is on one or more specific areas. Landscape empowers the

user to drill down directly to the area of interest guided by labels provided by

the cluster hierarchy.
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Figure 6.16: Mediating the ACM and MRDCS classification systems yields

9128 mapping suggestions. A user with focus on computer networks can im-

mediately identify the area ”networks, international, network” in the mid-left

part of the concept landscape.

Figure 6.16 shows the result of automated aligning of 5110 concepts from

the ACM and MRDCS classification systems, which produces a large number

(9128) of mapping suggestions. To narrow down the mapping suggestions to

those corresponding to user’s particular interest - computer networks - the

user inspects the labels describing different areas of the Landscape. The area

”networks, international, network” (label in red) appears as the appropriate

starting point.

An example of a drill down is shown in Figure 6.17. Beginning from the

”networks, international, network” area (top image), the user propagates to-

ward an area containing specific concepts by following the labels. By zooming

in on area ”networks, international, network” more detailed labels appear de-

scribing smaller areas (middle image), where the sub-area ”networks, network,

nets” is highlighted. Finally, by zooming in on ”networks, network, nets” (bot-

tom image), the user gets the possibility to choose between specific network

types, with ”computer, information, protocolls” coming closest to the desired

topic (computer networks).
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Figure 6.17: Drill-down to the area of interest - computer networks - by fol-

lowing the labels of the topical cluster hierarchy. Concepts are selected using

lasso-selection (bottom).
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Figure 6.18: After the drill-down and selection of topic of interest the amount

of suggested mappings was narrowed down from 9128 (top) to merely 6 (bot-

tom).

Selecting concepts of the area ”computer, information, protocolls” will

update the table to show only mapping suggestions where these concepts occur.

As seen in Figure 6.18, this reduces the number of mappings in the table from

9128 to just 6, allowing the user to focus on concepts of interest.

Explorative navigation capabilities of the information landscape provide a

lot of flexibility to the user in scenarios such as the described one. Guided

by the labels, the user can try selecting different areas in the Landscape and

see immediately in the mapping table whether the selected concepts fit the

topic of interest or not. For example, the user might want to extend the

selected area to include potentially interesting neighboring concepts, or dig

deeper in the hierarchy to provide more focus. Guidance provided by the

labels makes the described method particularly effective when user’s goals are

not precisely defined or when the user is unfamiliar with the data and with

the used vocabulary.
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6.3 Production Scenarios

Visual and algorithmic methods described in this work were integrated with

the m2n Intelligence Management Framework [m2n IMF 2011] resulting in a

productive system covering a variety of knowledge discovery, information re-

trieval and visual analysis scenarios. Development of new technologies and

their application in real-world scenarios was performed in a 5-year applied

research project, me being the project leader at the Know-Center. m2n, the

industrial partner in the project, is an Austrian company offering a semantic

technology-based Intelligence Management Framework. The resulting system

was installed, tested, and finally productively applied in the application do-

mains of business intelligence and governmental document management, with

installations in other application domains to follow.

6.3.1 Business Intelligence

The business intelligence system was designed for analysis of large, growing

patent databases and repositories of related scientific publication. Use cases

addressed by the system [Atzmüller & Sabol 2007] include the following:

• Advanced retrieval using concept search, search by example, collabora-

tive searching, associative searching, etc. (see Section 5.1.1).

• Explorative analysis of topics, relationships and metadata in large data

sets using the Landscape component (see Sections 4.3.1 and 4.3.2).

• Analysis of topical trends using the StreamView component and the

dynamic topography information landscape (see Sections 4.4 and 4.3.3).

• Definition and maintaining of document distribution profiles using clas-

sification and dynamic topography information landscape.

While the first three use cases have already been discussed in one form

or another, the last use case has not, but deserves some attention. The idea

behind it is to use a classifier for automatically dispatching new patents and

publications to persons and groups with specific interests. The recipients of

the dispatched documents need to define the training set of the classifier and

they do that in cooperation with the patent expert who maintains the classi-

fier. Note that the technological enablers for the use case are the incremental

ordination algorithm described in Section 4.2.1 and the information landscape

with dynamic topography presented in Section 4.3.3.

The workflow of the use case involves the following steps [Sabol et al. 2009a]:



168 CHAPTER 6. CASE STUDY

Figure 6.19: Classifier refinement workflow using a dynamic topography in-

formation landscape.

1. Using search to find an initial set of documents describing the area rel-

evant to the recipient.

2. Using the Landscape visualization to perform:

• topical disambiguation by eliminating non-relevant clusters,

• elimination of outlier documents.

This step is necessary because the search is likely to return some non-

relevant and ambiguous results. Visual analysis is applied because the

amount of documents defining a class may be far too large (10000 doc-

uments and more) for manual inspection.

3. Creating a new classification category and training the classifier with the

documents remaining from the previous step.

4. Daily classification and dispatching of new documents from external

sources to the recipients.

5. Periodical refinement of the training set through repetition of steps 1 to

3.

The sketch of the workflow can be seen in Figure 6.19.
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The motivation behind the last step is that every day new documents from

external sources are classified and dispatched to different recipients. However,

due to the fact that new technologies are being patented and published, and

that vocabulary gradually changes with time, it is necessary to readjust and

extend the original training set periodically. To achieve this, new documents

which are potentially good candidates for the training set are added to the

information landscape previously created in the step 2, and analyzed within

the context of the training set.

As the users performing the analysis are already acquainted with the top-

ical and spatial configuration of the information landscape created in the step

2, it is important to integrate the new documents in the existing visual and

topical structures. Through the recognition of old, familiar structures the user

can quickly judge whether the new documents integrate within exiting topical

structure or not. When new topical structures arise the relatedness to the

existing topics is an indicator of whether these are relevant to the user or not.

The described workflow demonstrates, albeit only in a basic form, another

interesting opportunity which arises through the use visualization: the uti-

lization of user feedback for improvement of algorithmic methods, in this case

classification. A more advanced approach to this interesting field of research,

which uses dedicated classification visualization techniques, is described in

[Seifert et al. 2010b].
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Chapter 7

Evaluation

To test the performance and improve the usability of developed visual compo-

nents and applications, usability evaluation (see Section 2.1.2) was performed

in several forms. During the design phase, heuristic evaluation of the com-

ponents and of the planed interactivity model were performed by usability

experts to identify design flaws and shortcomings as early as possible. For-

mal experiments and thinking aloud tests were performed with test users in

the later development phases, and the components were improved and tuned

according to the findings. Finally, during pilot installations of the systems

using the developed visual techniques, user feedback was collected resulting in

further improvements.

The backbone of the efforts toward achieving good usability were formal

experiments, designed to consider and extend on the results of previously per-

formed usability tests [Granitzer et al. 2004]. Results of the previous formal

experiment, and especially the collected user feedback, strongly suggest that

combining an information landscape visualization with tree and table com-

ponents into a coordinated user interface provides tangible advantages for

explorative analysis scenarios (see Section 3.3.6). Such a combined user inter-

face provided higher rates of successful test tasks completion than an interface

without the visualization, or an interface which included only the visualiza-

tion. In interviews users stated their preference for an interface including the

information landscape, a tree and a table. These results determined the di-

rection for user interface design of the KDVE and SMT applications. Both

of them use the information landscape and employ the coordinated multiple

views paradigm to integrate further visualization components, such as trees,

tables, StreamView, graph visualization-based ontology browsers, relevant to

their respective application domain. These include trees, a StreamView and a

table for KDVE, and for SMT a table and graph visualization-based ontology

171
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browsers.

More recently, additional experiments were performed which can be sub-

divided into two groups:

1. Evaluation of a user interface for topical-temporal analysis composed of

a Landscape and a StreamView components.

2. Evaluation of selected aspects of explorative analysis using the informa-

tion landscape.

Performed usability tests were conducted by two students within their bache-

lor thesis, [Weitlaner 2009] and [Krnjic 2008], under my tutorship and super-

vision. It should be noted that the choice of features and functionality which

were tested, was also driven by the practical need of users involved in the pilot

installations of the productive system outlined in Section 6.3. This chapter

describes these two groups of usability experiments, and presents their results.

To conclude, a brief discussion of lessons learned is given and an outlook for

possible further usability improvements is outlined.

7.1 Testing Methodology and Environment

Design of the tests, including the detailed description of the tasks to be per-

formed, were developed by me in cooperation with the students performing

the tests. Experiments were performed to compare the performance of two

different user interfaces, U1 and U2, and determine which of the two inter-

faces performs better for a particular tasks or group of tasks. For example,

use of visualization vs. no visualization or automatic navigation support vs.

manual navigation, were tested.

Each experiment was performed on a group of 10 test users which, with

each user performing 2-3 (depending on experiment) simple tasks on each

user interface. For each task a reasonable time limit was defined which, when

exceeded, resulted in a timeout meaning that the user could not complete the

task successfully. Within-groups experiment configuration was chosen to allow

the test users to provide direct comparative statements on which user interface

they preferred. In withing-groups configuration the users are subdivided into

two groups of equal size. Each user performs the tasks on both user interfaces,

however each group begins with the different interface.

As each user performs the same tasks on both user interfaces, the effects of

learning affect the outcome of the experiment. To limit the effects of learning,

each task is defined on two different, but similar data subsets, D1 and D2.

Performing the task on different data sets yields different outcomes, although
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the task is the same. For example, a user who has performed a task ”estimate

size” on some ”Cluster 1” (D1) using interface U1, will execute the same task

on ”Cluster 2” (D2) using interface U2, yielding different estimated cluster

sizes. If the data sets were not different, the user would likely be faster with

the second interface, as the exact outcome of the test would be known from

performing it with the first user interface. As with the order of the user

interfaces (U1 and U2), the order of D1 and D2 is also switched. Order of user

interfaces and data subsets for each user is given by the following table:

User Interface/Dataset Interface/Dataset

Person 1 U1/D1 U2/D2

Person 2 U2/D2 U1/D1

Person 3 U1/D1 U2/D2

Person 4 U2/D2 U1/D1

Person 5 U1/D1 U2/D2

Person 6 U1/D2 U2/D1

Person 7 U2/D1 U1/D2

Person 8 U1/D2 U2/D1

Person 9 U2/D1 U1/D2

Person 10 U1/D2 U2/D1

Table 7.1: Each user executes the test tasks twice, with the order of user

interfaces (U1, U2) and data subsets (D1, D2) given here.

Experiments were conducted with 10 test users in a controlled environment

with the setup as shown in Figure 7.1, the only differences between the two

experiments being computer speed and screen size. The user interface was op-

erated with a wireless mouse. User’s actions are recorded on audio and video,

with the camera capturing the computer screen and user’s facial expressions in

the mirror. The person conducting the test, who observes and takes notes, sits

behind the user to minimize distraction and prevent possible communication

attempts.

A day before the actual testing, a pilot test was performed with two addi-

tional pilot users trying out the test setup. Pilot users executed the tasks to

identify glitches in the test configuration and in the tasks. After the pilot test

the test tasks were polished up and the timeout limits were tuned accordingly

to the findings, to ensure that the real testing procedure runs as smoothly as

possible.

Before testing each user was give a short orientation script providing infor-

mation about the goals of the test, and was asked to fill out a form providing

basic personal information, such as:
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Figure 7.1: Usability testing environment.

• Personal information: sex, age and profession

• Vision: wearing glasses, color blindness

• Education and specialization

• Computer usage experience

• Familiarity with visualization tools

• Taking part in usability experiments

After that each test user was given a crash course on the tested KDVE user

interface and the main concepts of the employed visualizations, restricted to

the functionality relevant to the test. Users were only instructed how to use

the relevant functions of the user interface, but not how to execute a particular

task or workflow, as this would have tainted the test results. To minimize the

possibility of users getting lost in the functionality not relevant to the test,

many functions and options were temporarily disabled or completely removed

from the user interface.
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Once the the introduction to the user interface was completed, users were

given several minutes to try it out and familiarize with the interactivity and

functionality. The testing would begin when users were reasonably confident

that they have understood the visualizations and the user interface, and were

able to perform basic operations needed for performing the tests, such as

navigation or selection. At this point users were requested to ask all remaining

questions they had about the interface and about the test. During the actual

testing users were not allowed to ask questions or otherwise communicate

with the person conducting the test as this would affect the duration of the

tasks. However, users were permitted to make comments while performing

tasks but, as the person conducting the test was sitting behind them, direct

communication could not be established.

Testing procedure begins by the person conducting the test handing over

task descriptions to the test user. During the test, all actions performed by

the users are recorded, on video and audio. Time required to execute each task

was recorded by the person conducting the test, who was also observing the

test users during test execution and was taking additional notes. For each task

a time limit If the time required to complete a task was exceeded, a timeout

was recorded and the user was instructed to proceed to the next task.

After the test each user was given a feedback form with statements de-

scribing selected functions of the visualizations and of the user interface.

Users expressed the degree of agreement with the statements on a Likert scale

[Likert 1932] with values ranging from 0 to 6. The statements and values

were formulated such that, in the given context, a higher value would mean

”better” while a lower value would mean ”worse”, except stated differently.

Finally, each user was given the opportunity to orally provide personal impres-

sions, asses the performance of the user interface, and point out its advantages

and disadvantages.

7.2 Topical-Temporal Analysis Experiment

In this experiment two different user interfaces for simultaneous, ”fused” topi-

cal and temporal analysis were compared [Weitlaner 2009]. The user interfaces

can be seen in Figure 7.2. The first interfaces (up in the Figure), which in-

cludes two visualization components, consists of three coordinated views: a

tree (for hierarchy navigation), a Landscape (for analysis of topical similar-

ity) and a StreamView (for temporal analysis). The second interface (down

in the figure), uses only one visualization and consist of the following coordi-

nated views: a tree (for hierarchy navigation), a table (for analysis of topical

similarity) and a StreamView (for temporal analysis).
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The main difference between the two interfaces is that one interface uses the

Landscape visualization for analysis of topical similarity (which is conveyed by

spatial proximity), while the other one employs a well-known table component.

The table displays information on the children of the currently focused cluster

and, most importantly, for each shown sub-cluster or document provides a list

of siblings sorted by topical similarity. In this way the user can quickly find

the most similar siblings and read the exact topical similarities between them,

which are given in numerical form. For example, in the Figure 7.2 (lower

interface), one can see in the table that for ”Cluster 1” the list of sorted

siblings looks like ”3: 0.14317748; 2: 0.140653; 4: 0.12397176; 7: 0.08564...”,

which means that ”Cluster 3” is its most similar sibling, followed by ”Cluster

2”, ”Cluster 7” and so on.

The idea behind comparing these two interfaces is to discover whether a

combination of two visualization, each addressing a different aspect of the data,

performs better than a single visualization paired with standard components,

such as a table and a tree. While trees and tables are familiar to the user,

visualizations pose an additional cognitive load on the user which may lead to

reducing performance of a user interface instead of improving it.

Experiments were performed on a group of 10 users, 2 female and 8 male,

between 20 and 42 years of age. All test users had a technical background

with majority of the being students of technical courses such as mathematics,

computer science or telematics. All user had at least a decade of experience

using computers, with the typical weekly computer use from 25 to almost 100

hours. Five persons had experience with visual software tools, however only

to a small degree. Since the evaluated tools are targeted toward expert users,

the technical inclination of the test users appears adequate. Seven persons

used glasses for working, but nobody was color blind or had any other visual

impairment. Experiments were performed on a Desktop PC using an Intel

Pentium D dual core 3.4Ghz CPU, 3GB main memory and Windows XP

Professional operating system. The PC was connected to a Fujitsu-Siemens

17” LCD monitor with a resolution of 1280x1024 pixels.
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Figure 7.2: Child table showing 10 sub-clusters, with sibling-similarities being

shown for each sub-cluster sorted in descending order.
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7.2.1 Tasks

Users performed three tasks, beginning with discovering simple temporal pat-

terns and then proceeding to more complex topical-temporal analysis. Task

were performed twice, using the two user interfaces described above, according

to the within-groups methodology. The performed tasks, in ascending level of

difficulty, are:

Compare tree-table-StreamView configuration vs. tree-Landscape-StreamView.

In the no-landscape configuration, sibling similarities were listed in the siblings-

table sorted in descending order. Recursive StremView was on per default.

• Task 1 (difficulty level - easy, timeout 90s): Identify two top-level topical

clusters with temporal peaks and find the time interval in which they

occurred, and find one cluster with mostly uniform development

• Task 2 (difficulty level - medium, timeout 180s): Starting from a tem-

poral peak identified in the previous step, identify a sub-cluster which

is mostly responsible for the peak, and fin one sibling that temporally

correlates with the peak and one that does not.

• Task 3 (difficulty level - hard, timeout 240s): Identify the main temporal

peak for a given topical cluster, find out when it occurs and identify a

sub-cluster which is mostly responsible for the peak (i.e. just as in the

previous task). Now find a second sub-cluster which is topically related

AND temporally correlates with the first sub-cluster, and find a third

sub-cluster which is topically related but temporally does NOT correlate

with the first sub-cluster.
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Task 1 Task 2 Task 3

Person 1 122 62 190

Person 2 56 117 113

Person 3 89 103 134

Person 4 I 85 70

Person 5 T 50 I

Person 6 45 84 I

Person 7 131 93 131

Person 8 101 T 125

Person 9 47 60 66

Person 10 T 50 136

Average 84.4 78.2 120.6

Table 7.2: Task execution times, in seconds, with a user interface employing

and information landscape for analysis of topical relatedness.

Task 1 Task 2 Task 3

Person 1 94 75 149

Person 2 126 114 T

Person 3 43 90 111

Person 4 T 105 I

Person 5 118 64 155

Person 6 101 45 65

Person 7 76 77 103

Person 8 96 85 217

Person 9 89 42 71

Person 10 101 130 177

Average 93.8 82.7 131

Table 7.3: Task execution times, in seconds, with a user interface employing

a child table with sorted sibling lists for analysis of topical relatedness.
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7.2.2 Task Execution Times

Table 7.2 shows task execution times for the user interface employing an in-

formation landscape and a StreamView for topical-temporal analysis. Table

7.3 shows task execution times for the user interface employing a table with

sorted sibling lists instead of the Landscape. When a user could not complete

a task within the maximum intended time, the task was interrupted and a

timeout (T) was recorded. If a user completed a task in time but provided a

wrong result the outcome is marked as incorrect (I). Difference between the

average task execution times using the two interfaces is shown in Table 7.4.

Task 1 Task 2 Task 3

User interface with the Landscape 84.4 78.2 120.6

User interface with the table 93.8 82.7 131

Improvement using Landscape over table 9.4 4.5 10.4

Improvement as percentage 10.02% 5.44% 7.94%

Table 7.4: Improvements in average task execution times achieved by using an

interface with a Landscape and StreamView compared to an interface using a

table and a StreamView.

7.2.3 User Feedback

After completing all tasks users filled out a feedback form providing subjective

assessments on:

1. Usefulness and intuitivity of the StreamView temporal visualization.

2. How well each of the two different user interfaces performed.

3. General impressions on the user interface which employs both visualiza-

tions (Landscape and StreamView).

Answers were delivered on a Likert scale from 0 to 6.

7.2.3.1 Feedback on StreamView

Statements used for collecting feedback on the StreamView temporal visu-

alization component are shown in Table 7.5, answers delivered by users are

available in Table 7.6.
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1. Identification of major events is easy 6 .. 0 hard

2. Selection of a time interval is easy 6 .. 0 hard

3. Intuitivity of the temporal visualization is good 6 .. 0 bad

4. Intuitivity of recursive temporal visualization is good 6 .. 0 bad

Table 7.5: Statements used to collect user feedback on the StremView temporal

visualization.

1. 2. 3. 4.

Person 1 6 5 6 5

Person 2 5 6 5 4

Person 3 5 4 6 4

Person 4 6 6 5 4

Person 5 5 5 3 4

Person 6 5 4 6 5

Person 7 5 6 6 4

Person 8 6 5 5 4

Person 9 5 6 6 4

Person 10 6 6 5 6

Average 5.4 5.3 5.3 4.4

Table 7.6: Results of the user feedback on the StremView temporal visualiza-

tion.

7.2.3.2 Feedback on the User Interfaces

Subjective feedback on the Landscape and its combination with the StreamView

for performing topical-temporal analysis was collected using a feedback form

as seen in Table 7.7, with results shown in Table 7.8.

7.2.3.3 General Impressions

General statements on the visual application for topical-temporal analysis were

collected using a feedback form as seen in Table 7.9, with results available in

Table 7.10.
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1a. Finding a cluster with interface using the table easy 6 .. 0 hard

1b. Finding a cluster with interface using the Landscape easy 6 .. 0 hard

2a. Topical-temporal analysis using StreamView and table easy 6 .. 0 hard

2b. Topical-temporal analysis using StreamView and Landscape easy 6 .. 0 hard

Table 7.7: Statements used to collect user feedback about the two different

user interfaces for topical-temporal analysis.

1a. 1b. 2a. 2b.

Person 1 4 5 6 6

Person 2 5 4 5 4

Person 3 4 5 5 5

Person 4 5 5 5 5

Person 5 4 5 3 4

Person 6 6 6 5 6

Person 7 3 6 1 5

Person 8 2 4 2 5

Person 9 4 5 4 5

Person 10 6 6 6 6

Average 4.3 5.1 4.2 5.1

Table 7.8: Results of user feedback collected on the two different user interfaces

for topical-temporal analysis.

7.2.4 Results Discussion

This experiment, which is of particular importance to this work, yielded very

satisfactory results. By comparing execution times of the two compared user

interfaces, it is clear that the interface using both visualization (Landscape

and StreamView) achieved slightly better results than the interfaces which

uses table instead of the Landscape. Although the difference is small (5-10%)

the result demonstrates that the increased cognitive load introduced by the two

visualizations is not excessively high, and that users can very well cope with

such a complex visual interface. Considering that users were familiar with the

table, but used an information landscape for the first time, provides additional

weight to this result. These finding are also supported by the user feedback,

where users clearly stated that the topical-temporal analysis was easier to

perform using the interface employing a Landscape and a StreamView.
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1. Graphical design of the application good 6 .. 0 bad

2. General impression of the application good 6 .. 0 bad

3. Would you use the application professionally yes 6 .. 0 no

Table 7.9: Statements used to collect general user feedback about the visual

application for topical-temporal analysis using both visualizations (Landscape

and StreamView).

1. 2. 3.

Person 1 6 6 4

Person 2 5 5 4

Person 3 5 3 4

Person 4 5 5 4

Person 5 3 4 4

Person 6 6 6 0

Person 7 6 5 3

Person 8 6 1 0

Person 9 5 5 4

Person 10 5 5 3

Average 5.2 4.5 3

Table 7.10: Results of general user feedback on the visual application

for topical-temporal analysis using both visualizations (Landscape and

StreamView).

Users gave very positive feedback on the usefulness and intuitivity of the

StremView temporal visualization. One aspect of how the StreamView is

used in the coordinated user interface did cause some confusion: the recur-

sive StreamView recomputation. When the user starts using the interface,

StreamViews displays temporal developments of the top-level clusters. When

navigating deeper in the hierarchy, the StreamView will recompute the vi-

sualization to show temporal developments of the currently chosen cluster’s

children (sub-clusters). This is not something that each user immediately un-

derstood and a few users were confused by the behavior. Another problem was,

that in situations when users applied temporal selection in the StreamView,

but then navigated to a neighboring or a child cluster in the Landscape, the

temporal selection would suddenly pick the documents from that other cluster,

which was unintended by the user. To ameliorate the situation, a button for
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”freezing” the StreamView on a selected set of clusters, independently of the

navigation in the hierarchy, was introduces in the following version of the user

interface.

Finally, users provided very favorable feedback on the graphic design of the

application and also had a solid general impression about it. However, users

were in average undecided on whether they would use the application profes-

sionally. When asked about this, users declared that several small but annoy-

ing bugs and interactivity glitches reduced the satisfaction of use and made

some operations tedious. The application did not appear polished enough for

productive use. As a consequence, both reported and observed glitches were

fixed in the next version of the application.

7.3 Explorative Analysis with the Information Land-

scape

For evaluating the explorative analysis performance of the information land-

scape in the context of a multiple coordinated view user interface, two separate

sub-experiments with separate set of test tasks were conceived [Krnjic 2008].

The first one addresses navigation in the hierarchically organized cluster hi-

erarchy visualized as nested areas (see Section 4.3.1), while the second one

focuses on visual property coding of metadata and features (see Section 4.3.2).

The tests were performed on a data set containing approximately 10000 news

articles from the Reuters corpus [RCV1 2000] using a GUI configuration con-

sisting of a tree, information landscape and a table, as seen in Figure 7.3.

Experiments were performed on a HP Pavilion dv2000 Widescreen 14.1”

(1280x800) laptop with an AMD Turion dual core 2GHz processor, 4GB main

memory and Windows Vista Home Premium operating system.

Experiments were performed on a group of 10 users, 2 female and 8 male,

between 22 and 35 years of age. All test users had a technical background with

typical computer use from 30 to 70 hours a week, or 47,5 hours per week in

average. Four persons had some experience with visual software tools. Since

the evaluated tools are targeted toward expert users, the technical inclination

of the test users appears adequate. Two persons used glasses for work and no

user was color blind or had any other visual impairment.

7.3.1 Navigation Experiment

This experiment evaluated explorative navigation and browsing of the topical

hierarchy using the information landscape. The goal was to discover whether
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Figure 7.3: User interface configuration used for the two explorative analysis

experiments.

the automatic cluster area focusing provides advantages compared to com-

pletely manual zooming and panning. When automatic cluster area focusing

is disabled the user must set the focus on the chosen cluster by manually

zooming (using mouse wheel) and panning (dragging the mouse). With the

automatic focusing enabled, a user clicking on a cluster label will trigger a

smooth animated transition, lasting about a second, in which the landscape

is scrolled and zoomed in such a way that the cluster area appears centered

and occupies the screen area available to the Landscape (see Figure 4.5). Note

that manual zooming and scrolling are still available, allowing users to adjust

the view should they find it necessary.

7.3.1.1 Tasks

Each user performed three different task on two different data subsets, whereby

the order of data subsets and the order of automatic vs. manual navigation

was interchanged for different users (as described in Section 7.1). The three

tasks performed by the test users, in ascending level of difficulty, are:

• Task 1 (difficulty level - motivational, timeout 120s): Given is a high-

lighted document and its parent cluster. Two other visible cluster are

specified by name (labels). Decide which of the two other clusters is

more similar to the document.
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Task 1 Task 2 Task 3

Person 1 44 100 124

Person 2 102 153 94

Person 3 T 233 60

Person 4 61 125 224

Person 5 32 T 140

Person 6 73 119 45

Person 7 98 T 77

Person 8 36 103 75

Person 9 83 222 145

Person 10 114 T T

Average 71.44 150.71 109.33

Table 7.11: Task execution times, in seconds, with the automatic cluster fo-

cusing.

• Task 2 (difficulty level - easy, timeout 240s): Given a highlighted docu-

ment of interest, identify 5 similar documents and find out which direct

parent cluster these documents belong to.

• Task 3 (difficulty level - medium, timeout 180s): Given is the same

document as in the previous task. Find all neighboring clusters to this

document’s parent cluster.

7.3.1.2 Task Execution Times

Table 7.11 shows execution times for automatic cluster area focusing turned

on, Table 7.12 shows execution times for manual navigation. When a user

could not complete a task within the maximum intended time, the task was

interrupted and a timeout (T) was recorded. Improvement or deterioration in

average task execution times achieved by using automatic cluster area focusing

compared to manual navigation is shown in Table 7.13.
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Task 1 Task 2 Task 3

Person 1 67 166 44

Person 2 45 149 53

Person 3 T 117 37

Person 4 T 186 108

Person 5 80 107 45

Person 6 T 203 131

Person 7 T 195 137

Person 8 95 205 T

Person 9 68 104 90

Person 10 122 T 90

Average 79.5 159.11 81.67

Table 7.12: Task execution times, in seconds, using manual zooming and

panning.

Task 1 Task 2 Task 3

Automatic focusing average 71.44 150.71 109.33

Manual navigation average 79.5 159.11 81.67

Improvement automatic over manual 8.06 8.4 -27.66

Improvement percentage 10.13% 5.28% -33.87%

Table 7.13: Improvements and deterioration in average task execution times

achieved by automatic focusing compared to manual navigation.
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7.3.1.3 User Feedback

After completing all tasks the users were given given a feedback form, to

provide subjective assessments on how easy or difficult it was to perform op-

erations, and how useful a particular function is. Answers were delivered on

a Likert scale from 0 to 6. Statements used for collecting feedback are shown

in Table 7.14, answers delivered by test users can be found in Table 7.15.

1a. Finding a document using auto-focus is easy 6 .. 0 hard

1b. Finding a document with manual navigation is easy 6 .. 0 hard

2a. Finding a cluster using auto-focus is easy 6 .. 0 hard

2b. Finding a cluster with manual navigation is easy 6 .. 0 hard

3. The automatic focusing is helpful yes 6 .. 0 no

Table 7.14: Statements used to collect user feedback after performing the

navigation experiment.

1a. 1b. 2a. 2b. 3.

Person 1 5 5 5 3 5

Person 2 5 5 1 6 1

Person 3 6 6 5 3 5

Person 4 5 5 4 5 5

Person 5 5 5 4 5 3

Person 6 4 4 5 5 4

Person 7 3 1 3 1 0

Person 8 6 5 6 5 6

Person 9 5 2 5 1 5

Person 10 6 1 6 4 3

Average 5 3.9 4.4 3.8 3.7

Table 7.15: Results of user feedback collected after performing the navigation

experiment.

7.3.1.4 Results Discussion

Time measurements show that for the first two tasks automatic focusing was

slightly better than manual navigation, but in the third, most complex task

automatic focusing performed much worse (Table 7.13). Number of timeouts

was 5 for automatic focusing and only slightly larger - 6 - for manual naviga-

tion. These results are inconclusive and do not indicate a clear winner between
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the two navigation strategies. User feedback results (Table 7.15) indicate that

users still preferred the automatic focusing over manual navigation.

From observations and from users comments during the test, the perfor-

mance hit in the third task was due to users loosing orientation and getting

confused. When zoom factor is large, by clicking on a neighboring label or

document the automatic focusing will navigate ”too far away” if that label

or document belong to the neighboring cluster (and not to the one the user

is focusing on). This sudden, large change of focus is unexpected for users

and they would need time to orientate themselves again. Users expressed the

need for turning the automatic focusing off, for example in situations when

they wanted to make smaller adjustments to their current position in the land-

scape. Therefore, a button for switching automatic focusing on and off was

built into the next version of the user interface.

7.3.2 Visual Properties Coding Experiment

Mapping of document properties and metadata to visual properties such as

colors and shapes enables users to discover correlations between topical clusters

and selected features and metadata (see Section 4.3.2 and Figure 4.6). This

goal of this experiment was to discover which type of icons is more suitable for

this purpose: overlayed colored shapes or a single shape - a disk - composed of

different colors. Icons used for testing can be seen in Figure 7.4, where on the

left side colored disks can be seen and on the right overlayed symbols (plus,

circle and cross) in different colors are shown.

Figure 7.4: Icons used for evaluation: disk icons in different colors (on left),

icons with different shapes and different colors (on right).

In the experiment location metadata was correlated with topical clusters.

Three cities were each assigned a different color (London - red, New York - blue

and Tokyo - yellow). When using a disk icons, documents mentioning more

than one city are shown as disks composed of more than one color. When

using colored symbols, documents mentioning multiple cities are shown as
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Figure 7.5: Examples of using colored disks and overlayed colored symbols to

convey properties, with the left image showing a single property and the right

showing two properties mapped [Krnjic 2008].

icons with different symbols overlayed over each other. Documents which did

not mention any of the three cities were shown as a small black dot. Examples

of how icons appear in the Landscape can be seen in Figure 7.5

7.3.2.1 Tasks

Users performed two simple tasks in which they estimated the amounts of

items with specific properties within different clusters. Task were performed

twice, using colored disks and then using overlayed colored symbols, according

to the within-groups methodology. The performed tasks, in ascending level of

difficulty, are:

• Task 1, difficulty level - easy: Find the topical cluster and a sub-cluster

within that cluster, where a specified city is mentioned most often, while

other two cities are mentioned as rarely as possible.

• Task 2, difficulty level - medium: Find two topical clusters where all

three specified cities are mentioned often, and identify one topical cluster

which contains documents mentioning two or more cities.
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Task 1 Task 2

Person 1 56 88

Person 2 52 77

Person 3 93 91

Person 4 70 138

Person 5 T 115

Person 6 77 149

Person 7 187 80

Person 8 69 78

Person 9 72 84

Person 10 54 33

Average 81.1 93.3

Table 7.16: Task execution times, in seconds, using colored disk icons.

Task 1 Task 2

Person 1 44 134

Person 2 61 142

Person 3 114 93

Person 4 81 197

Person 5 81 224

Person 6 114 241

Person 7 157 125

Person 8 81 103

Person 9 52 75

Person 10 67 58

Average 85.2 139.2

Table 7.17: Task execution times, in seconds, using overlayed colored symbols

icons.

Task 1 Task 2

Colored disk icons 81.1 93.3

Overlayed colored symbol icons 85.2 139.2

Difference colored disks vs. overlayed symbols 4.1 45.9

Improvement disks vs. symbols as percentage 4.81% 32.97%

Table 7.18: Differences in average execution time between colored disks and

overlayed colored symbols.
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7.3.2.2 Task Execution Times

Table 7.16 shows execution times using colored disk icons, Table 7.17 shows

execution times for icons composed of overlayed colored symbols. When a

user could not complete a task within the maximum time intended time, ex-

ecuting of the task was interrupted and a timeout (T) is recorded. Difference

between average task execution times between colored disks and overlayed

colored symbols are shown in Table 7.18.

7.3.2.3 User Feedback

After completing all tasks users filled out a feedback form, to provide subjec-

tive assessments on how well colored disk icons and overlayed colored symbol

icons performed. Answers were delivered on a Likert scale from 0 to 6. State-

ments used for collecting feedback are shown in Table 7.14, answers delivered

by test users can be found in Table 7.15.

1a. Property coding using colored disks good 6 .. 0 bad

1b. Property coding with overlayed colored symbols good 6 .. 0 bad

Table 7.19: Statements used to collect user feedback after performing the the

visual property coding experiment.

1a. 1b.

Person 1 5 2

Person 2 6 5

Person 3 4 4

Person 4 6 4

Person 5 4 5

Person 6 5 2

Person 7 5 2

Person 8 5 4

Person 9 6 0

Person 10 5 2

Average 5.1 3

Table 7.20: Results of user feedback collected after performing the visual

property coding experiment.
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7.3.2.4 Results Discussion

The result of this experiment is clear: For visualizing document metadata and

properties, using a colored disk icons is superior to using overlayed colored

shapes. Objective time measurements as well as user feedback confirm this

result. Although one might expect that using both colors and symbols to

differentiate properties would produce better results than using just one shape

in different colors, this was not the case. The reason stated by the user was,

that colored disks had as stronger, clearer visibility. This was especially the

case in overview of the whole data set when individual icons are small. Also,

when using overlayed colored shapes some users got confused, stating that they

would expect colors and shapes, which are different visual channels, to encode

different types of properties (which was not the case in the experiment).

1. Graphical design of the application good 6 .. 0 bad

2. The navigation is in general intuitive yes 6 .. 0 no

3. General impression of the application good 6 .. 0 bad

4. Would you use the application professionally yes 6 .. 0 no

Table 7.21: Statements used to collect general user feedback about the visual

application after performing both explorative analysis experiments.

1. 2. 3. 4.

Person 1 5 6 5 4

Person 2 6 6 5 5

Person 3 5 5 5 4

Person 4 6 5 6 5

Person 5 4 5 4 5

Person 6 6 5 5 4

Person 7 4 2 3 3

Person 8 5 4 5 6

Person 9 2 1 2 3

Person 10 2 5 3 1

Average 4.5 4.4 4.3 4

Table 7.22: Results of general user feedback on the visual application used for

explorative analysis experiments.
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7.3.3 General Impressions

Finally, some general feedback about the graphical design and interactivity

was collected from the users. Again, Answers were delivered on a Likert scale

from 0 to 6. Statements are shown in Table 7.21, answers delivered by the

users are given in Table 7.15. There results are in the positive part of the scale,

where no particular highlights or weaknesses could be identified. Users were

reasonably satisfied with the graphical design and navigation possibilities, and

had a solid, but not excellent, general impression of the application, stating

that they would use it professionally.

7.4 Summary

From the results of the performed experiments it can be said that the devel-

oped technologies proved useful in fulfilling their purposes. Objective measure-

ments and subjective user feedback, presented in this Chapter and in Section

3.3.6, confirm that using multiple-visualization user interfaces for explorative

topical and temporal analysis, provided tangible advantages compared to in-

terfaces using a single visualization or no visualization at all. Valuable in-

formation was obtained on explorative navigation in hierarchically organized

information landscapes and on how document features and metadata should

be represented. These results, together with many smaller findings collected

during the evaluations, such as for example preferred label size and coloring,

animation duration, or detection of several minor (but annoying) interactivity

glitches, were used to improve the visual components and the KDVE user in-

terface. Graphical and interactivity improvements implemented after the tests

resulted in visual components and a user interface which, with high probability,

perform better and provide a better overall experience than what was used for

the experiments. Successful application of the developed visual technologies

in productive environments provides additional strength to this claim.
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Conclusion

This work addressed the problem of analysing and understanding large, het-

erogeneous, dynamically changing repositories through application of visual

analytics methods. Visual methods were combined and integrated with auto-

matic techniques to develop usable methods and tools for explorative analysis

of such complex data sets.

After providing motivation for the use of visual analytics methods in gen-

eral, a survey of the scientific fields relevant to this work was given. Presen-

tation of my results begins with earlier research I have conducted on the use

of visualization for analysis of large, dynamic data sets. Building upon and

combining these results, and extending them with scalable, incremental algo-

rithms and new interactive visual components, culminated in the design of

two prototype applications. The first (and main) prorotype targets the anal-

ysis of dynamically changing, metadata-enriched text document repositories,

while the second one adrdreses semantic knowledge bases. After describing

implementation details of the algorithmic and visualization components, ap-

plications of the developed technologies and prototypes were demonstrated

and discussed. The document concludes with the evaluation of selected tech-

nologies and components.

8.1 Result Summary

The main contribution of this work lies in development, evaluation and appli-

cation of visual methods which, tightly integrated with automatic techniques,

provide analytical means for exploring, analyzing and understanding large,

dynamically changing, metadata-rich data sets. Developed visual techniques

were applied primarily on text documents to reveal patterns and correlations

in and between topical information, temporal information and metadata. Ap-

195
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plication of the developed methods on semantic data demonstrates the wider

applicability of the developed methods. The target audience of all resulting

methods, tools and applications are expert users, typically analysts or knowl-

edge engineers.

In particular, to achieve the goals listed in Section 1.2.2 this work delivers

following important results:

• Incremental, scalable ordination algorithm, which is suitable for visu-

alization of relatedness in large, dynamically changing data sets. The

algorithm computes a hierarchical structure suitable for navigation and

a coresponding geometry used by interactive visual components.

• Scalable visualization components for analysis of relatedness and dynam-

ics in large, dynamic data sets, in particular:

– Information landscape provides an overview of the data and visu-

ally conveys information on relatednes, size and cohesion of struc-

tures arising from the data. Explorative navigation is supported

through a hierarchy of nested, labeled polygonal areas providing

means for level of detail-sensitive orientation. Discovery of corre-

lations betwen relatedness-based structures and selected metadata

and features is supported through color and icon coding of data ele-

ments. Additionally, a dynamic topography landscape supports the

undestanding of changes in relatedness-based structures in dynamic

data sets.

– A StreamView visualization component provides support for dis-

covery and understanding of temporal patterns in the data.

• Scalable view coordination mechanisms address coordination of visual

and logical data item properties over multiple visualization components,

and provide synchronized navigation in the data set. The coordination

framework enables creation of complex user interfaces composed of multi-

ple visual components for simultaneous analysis of different data aspects

(for example topical-temporal analysis using Landscape and StreamView

components).

• Prototypical user interfaces, based on multiple coordinated views, are

available for testing and evaluating visual techniques. The applications

address:

– Fused analysis of topical relatedness, temporal developments and

metadata distribution in large, dynamically changing text reposi-

tories.
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– Visually supported, semi-automatic alignment of ontologies.

The first application is the primary demosntrator showing the usefulness

of the developed technologies for achieving the defined goals. The sec-

ond application demonstrates the flexibility and applicability of selected

techniques on an alternative domain and data type.

• Tight integration of visual methods and automated processing as an en-

abler for several analytical tehniques, tasks and workflows, in particular:

– Combining clustering and ordination techniques to provide hier-

archical navigation capability in similarity layout-based visualiza-

tions.

– Using information extraction to produce faceted metadata cate-

gories, which are used to visualize distribution of metadata over

topical clusters and over time.

– Using high-performance retrieval techniques for filtering and high-

lighting in large scale visualization.

– Supporting creation of and periodical tuning of classifiers using in-

cremental visualization techniques.

• Usability evaluation providing information on the performance of coor-

dinated visual user interfaces:

– Measurements and user feedback confirm that a multiple-visualization,

coordinated user interface for explorative topical-temporal analy-

sis, consisting of Landscape and StreamView components, provides

advantages compared to an interface where one visualization is re-

placed by a standard GUI widget (such as a table).

– Valuable information was obtained on user preferences for ex-

plorative navigation in hierarchically organized information land-

scapes, and on visual representation of document features and

metadata for discovery of correlations between topical clusters and

metadata distribution.

• Successful integration of developed technologies in productive systems

and their application in real-world scenarios.

To conclude, the research questions defined in Section 1.2.2 can be an-

swered as follows:
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1. How can visual analytics techniques, i.e. visual methods combined with

automatic processing, be used to achieve the defined goals?

Answer: An incremental, scalable ordination algorithm is used to com-

pute a hierarchically organized geometry of the data set which organizes

the data depending on relatedness. A StreamView component provides

visual analysis of temporal developments, while an information Land-

scape is used for conveying relatedness in the data set and visualizing

metadata distribution. For supporting analytical tasks integration of

additional automatic methods is provided, such as information extrac-

tion for extracting metadata from text or retrieval techniques for fast

filtering in large data sets.

2. Does the integration of multiple visualization components into a single

interactive user interface provide an effective instrument for simultane-

ously addressing all goals?

Answer: A coordinated multiple view framework is used for fusing the

visualization components into one complex, coherent user interface for

simultaneous analysis of multiple data aspects. Usability evaluation re-

sults show that a user interface for temporal-topical analysis consisting

of two visualizations (Landscape and StreamView) did not cause cog-

nitive overload of the user, and that it performed better than a user

interface where one visualization (Landscape) was replaced by a table

providing data in numerical form.

3. Can the developed techniques be extended and applied on more than

one data type and more than one type of relatedness?

Answer: To demonstrate the flexibility and applicability of selected al-

gorithms and visual techniques (i.e. the ordination algorithm, Land-

scape visualization and coordination framework) were applied on se-

mantic knowledge bases, resulting in a tool for semi-automatic, visually

supported ontology alignment. Instead of addressing topical relatedness

in text data, analytical methods are applied on semantic relatedness

between concepts from different ontologies.

8.2 Future Work

Although many questions have been answered and many problems were suc-

cessfully solved along the way, new challenges never cease to appear and ideas

do not run dry. My future mission includes practical problems which defi-

nitely should be addressed in the next future, as well as some more visionary,

adventurous ideas which are also more tempting.
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The first category is mainly limited to the following two points:

• Direct comparison of the ordination algorithm with other methods. This

task is facing several practical problems, including but not limited to:

To my knowledge no other freely available technique is capable to handle

extreme high-dimensionality (as present in text data), scale to large data

sets, provide incrementality and deliver visually appealing layouts. Also,

for visualization purposes a development of a quality measure which, in

addition to goodness of fit, also considers visual and aesthetical aspects

would have to be developed. The standard stress measure, which only

considers goodness of fit, may not be ideal from the usability point of

view, because the extreme differences in distances occurring in very high-

dimensional data sets, if reproduced faithfully in the visualization space,

would not yield usable and visually pleasing visual representations.

• Usability evaluation of the Semantic Evaluation Tool. Although the

information landscape representation has been the subject of numerous

usability evaluations, its combination with graph visualization methods

and application in ontology alignment scenarios should be the subject of

a more into depth examination.

The list of things which I would personally like to address in the future

includes the following:

• Adding the capability to explicitly visualize relationships in the infor-

mation landscape, effectively making it a scalable, dynamic-topology

graph visualization. This could be achieved along the lines of ideas

presented in [Kandlhofer 2009], [Sabol et al. 2010a], [Sabol et al. 2010b]

and [Kienreich & Seifert 2010].

• Consideration of dynamic, evolving ontologies in the Semantic Mediation

Tool using StreamView visualization and the above mentioned scalable,

dynamic-topology graph visualization.

• Adding infinite zoom-like capability to the information landscape, which

would allow the user to zoom in into the visualized items displaying their

internal structure and content.

• Add a geovisualization component to the KDVE coordinated user inter-

face to provide a fused topical-temporal-geospatial analysis capability.

As adding more different visual components to the user interface in-

creases the cognitive load on the user, performing usability evaluation

would be necessary to assess whether such an interface is useful or over-

loaded.
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• Exploration of visual user feedback mechanisms and how these should

affect the data model backing the visual representation.

• Real-time collaboration using multitouch tables, projection walls and

mobile devices.
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