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Abstract

The process of extracting information and hitherto unknown relations from ar-
bitrary data sets is known as knowledge discovery, and is widely deployed in
academic and industrial processes. Thereby, machine learning algorithms play
an important role due to their capability to analyze data for which only limited a
priori knowledge is available. Unfortunately, their application and the extraction
of information from the trained algorithm models highly depend on the nature
of the analyzed data and the algorithm models. Therefore, the deployment of
knowledge discovery processes in heterogeneous domains causes the requirement
for time-consuming process adaptations.

This thesis argues that the value-centric feature vector representation used
within machine learning is the main reason for the necessity to create such highly
domain-specific setups. Therefore, the shift from the value-centric representation
to a semantic representation is suggested. This transformation is achieved by a
new method proposed in this thesis – the Semantic Pattern Transformation. The
principle idea behind this process is to analyze the semantic relations between the
feature values within the value-centric feature vectors, and store this information
in a new semantic representation – the Semantic Patterns. With this new rep-
resentation, many of the domain-specific processing steps and adaptations can
be avoided. This significantly simplifies the deployment of knowledge discovery
processes in heterogeneous domains. Furthermore, due to the employed model,
which is independent of the analyzed data and the applied algorithms, many
advantages regarding the interpretation and the analysis of arbitrary data are
gained.

The Semantic Pattern Transformation is based on well-known techniques
such as associative networks, spreading activation, and standard machine learn-
ing techniques. In previous works, the new method has been applied within a
wide range of knowledge discovery processes. By conducting empirical evalu-
ations on the gained results, many improvements and extensions to the initial
versions of the transformation process could be made. This thesis extends these
works in the following way:

First, an in-depth analysis on the integration of machine learning algorithms
into knowledge discovery processes is conducted. Thereby, the problems associ-
ated with the deployment of such schemes in heterogeneous domains are identi-
fied. Second, by analyzing these problems and their core reasons, the shift from
a value-centric to a semantic representation is motivated. Third, the Semantic
Pattern Transformation, its application to arbitrary data, and the subsequent
analysis and interpretation of the generated Semantic Patterns are explained in
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detail. Finally, the proposed method is throughly evaluated by analyzing the
results gained from unsupervised and supervised machine learning algorithms,
and a semantic-aware search algorithm.



Kurzfassung

Aufgrund der signifikanten Menge an elektronischen Daten spielt sowohl in aka-
demischen als auch in industriellen Prozessen das Extrahieren von bisher un-
bekannten Relationen und Wissen aus diesen Daten eine entscheidende Rolle.
Dieser Prozess ist unter dem Begriff Knowledge Discovery bekannt und bedient
sich dabei in vielen Fällen an Algorithmen aus dem Maschinellen Lernen. Diese
Algorithmen spielen eine entscheidende Rolle, da sie sich sich aufgrund ihrer spe-
ziellen Eigenschaften hervorragend für die Analyse von Daten verwenden lassen,
für die kein oder nur ein sehr beschränktes Vorwissen vorhanden ist. Werden
diese Algorithmen aber in heterogenen Domänen mit unterschiedlichen Daten
und/oder abweichenden Knowledge Discovery Zielen angewendet, muss im Nor-
malfall eine aufwendige Anpassung der verwendeten Vorverarbeitungsschritte
durchgeführt werden. Zusätzlich müssen die Prozesse für die Interpretation und
Extraktion des Wissens sowohl an die Modelle der verwendeten Algorithmen als
auch an die spezifischen Eigenschaften der analysierten Daten angepasst werden.

In dieser Arbeit wird argumentiert, dass die Verwendung der wert-basierten
Featurevektoren, wie sie im Maschinellen Lernen eingesetzt werden, einer der
Hauptgründe für diese aufwendigen Adaptierungsschritte ist. Aus diesem Grund
wird ein neuer Transformationsprozess vorgestellt, welcher als Semantic Pat-
tern Transformation bezeichnet wird. Dieser Prozess führt die wert-zentrischen
Featurevektoren durch die Analyse der Relationen zwischen den einzelnen Fea-
turewerten in eine semantische Repräsentation über, die als Semantic Patterns
bezeichnet wird. Durch diese neue Repräsentation fallen viele der bisher not-
wendigen Verarbeitungsschritte, und daher auch deren aufwendige Anpassung
beim Einsatz in unterschiedlichen Domänen weg. Außerdem kann die Wissen-
sextraktion und Interpretation am Ende eines Knowledge Discovery Prozesses
signifikant vereinfacht werden, da unabhängig von den analysierten Daten das
gleiche Modell eingesetzt wird.

Die Semantic Pattern Transformation basiert dabei auf bekannten Technolo-
gien wie Assoziativen Netzwerken, Spreading Activation Algorithmen, und Stan-
dardalgorithmen aus dem Maschinellen Lernen. In jenen, dieser Arbeit voran-
gehenden Publikationen, wurde die Semantic Pattern Transformation bereits in
vielen unterschiedlichen Knowledge Discovery Bereichen angewendet. Die dabei
empirisch gewonnenen Ergebnisse wurden dazu verwendet, um den Transfor-
mationsprozess zu optimieren und um weitere Analyseverfahren zu ergänzen.
Die vorliegende Arbeit ergänzt diese Punkte wie folgt: Erstens: Es wird eine
detaillierte Analyse über die Verwendung von Maschinellem Lernen im Know-
ledge Discovery Bereich durchgeführt. Dabei können systematisch die typischen
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Probleme erkannt werden, die beim Anwenden in heterogenen Domänen auf-
treten. Zweitens: Basierend auf diesen Ergebnissen wird die Umwandlung der
wert-zentrischen Featurevektoren zu einer semantischen Repräsentation moti-
viert und argumentiert. Drittens: In weiterer Folge wird die Semantic Pattern
Transformation und ihre Anwendung zur Analyse von beliebigen Daten im De-
tail erklärt. Abschließend wird eine detaillierte Evaluierung der neuen Methode
in den Bereichen überwachtes-, unüberwachtes Lernen, und semantische Suche
durchgeführt.
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...gold can be created only by stars and by intelligent beings. If you
find a nugget of gold anywhere in the universe, you can be sure that
in its history there was either a supernova or an intelligent being
with an explanation. And if you find an explanation anywhere in the
universe, you know that there must have been an intelligent being.
A supernova alone would not suffice...

David Deutsch, The Beginning of Infinity [17]

1
Introduction

Knowledge Discovery is the process of extracting knowledge and retrieving pre-
viously unknown relations from arbitrary data sets. Due to the every increasing
amount of electronically available data, it is a key process employed within many
research areas and industrial processes. In order to cope with noise and the
fuzzy nature of arbitrary data sets, machine learning algorithms are widely used
within these processes. Unfortunately, in heterogeneous domains – even when
the same knowledge discovery process such as clustering is applied – a specific
machine learning algorithm needs to be selected for each data set according to
the desired knowledge and the nature of the data. Depending on the selected
algorithm, domain-specific processes for data preprocessing and transformation,
as well as specific knowledge extraction procedures need to be defined. The
necessary setup procedure is time-consuming and requires in-depth knowledge
about the selected algorithm and the analyzed data. One of the main reasons for
these issues is the value-centric feature vector representation, which is typically
employed within machine learning.

In order to address these problems, this thesis presents a new method – the
Semantic Pattern Transformation – which transforms the value-centric feature
vectors into a new semantic representation – the Semantic Patterns. Due to
this transformation many of the domain- and algorithm-specific preprocessing,
transformation and knowledge extraction procedures can be avoided or replaced
by general methods regardless of the employed algorithm and the analyzed data.
Furthermore, the Semantic Patterns represent a generic model that first forms
the basis for the application of arbitrary analysis processes including machine
learning algorithms, and second, due to its semantic nature enables the simple
extraction and interpretation of knowledge.

The remainder of this chapter describes the organization of this thesis and

1
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provides an additional guide that focuses on the individual interests of the reader.
Furthermore, the principle motivation for the development of the presented tech-
nique is discussed by looking back at my own experiences gained during the ap-
plication of cross-disciplinary knowledge discovery processes. Finally, the main
contributions of this thesis are summarized.

1.1 Organization

The thesis is organized in eleven chapters that describe all aspects of the Se-
mantic Pattern Transformation and the gained Semantic Patterns. These are
described as follows:

• Chapter 1 – Introduction: The first chapter describes the organization of
the thesis and provides a guide for reading the eleven chapters. Further-
more, the principle motivation for the presented Semantic Pattern Trans-
formation is given by looking back at my work within cross-disciplinary
knowledge discovery. Thereby, all the published scientific works with rele-
vance to this thesis are referenced and briefly explained.

• Chapter 2 – Semantic Patterns - At a Glance: This chapter is an exten-
sion to Chapter 1 – Introduction, and gives a superficial overview of the
Semantic Pattern Transformation by analyzing its properties and benefits
on the basis of a simple demonstration data set.

• Chapter 3 – Knowledge Discovery and Machine Learning : This chapter
gives a detailed analysis of the main obstacles when utilizing machine
learning algorithms within knowledge discovery processes in heterogeneous
domains.

• Chapter 4 – Towards a Semantic Representation: In this chapter, the
value-centric representation within feature vectors is identified as the main
reason for the problems discussed in the previous chapter. This key issue
forms the principle motivation for introducing a semantic-aware represen-
tation, which is achieved by transforming raw feature vectors into Semantic
Patterns via the Semantic Pattern Transformation.

• Chapter 5 – Techniques: Here, the techniques required by the various pro-
cessing layers of the Semantic Pattern Transformation are explained. The
three main components are unsupervised clustering, associative networks
and spreading activation.

• Chapter 6 – Semantic Pattern Transformation: The core contribution of
this work is presented in detail in this and the following chapter. Thereby,
this chapter focuses on the detailed aspects of the five processing layers
required for the transformation of raw feature vectors into Semantic Pat-
terns.
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• Chapter 7 – Semantic Pattern Analysis: This chapter analyzes the struc-
ture of the Semantic Patterns, explains the interpretation of the stored
semantic information and discusses the specific details of the wide range
of analysis methods used for the extraction of knowledge.

• Chapter 8 – Evaluation: This chapter presents a detailed evaluation of
the presented method by comparing the performance of unsupervised and
supervised machine learning algorithms, and semantic-aware search algo-
rithms applied to raw feature vectors and Semantic Patterns. The differ-
ent algorithms are evaluated by various well-known data sets and standard
quality measures used within machine learning.

• Chapter 9 – Related Work : Although, the relevant related work is discussed
throughout the thesis at the appropriate locations, this chapter provides
further details by looking specifically at related concepts and other works
that had a significant influence during the development of the Semantic
Pattern Transformation.

• Chapter 10 – Applications: This chapter discusses the applications of the
Semantic Pattern Transformation in a wide range of knowledge discov-
ery domains ranging from text-analysis within e-Participation, over event
correlation in intrusion detection, to the analysis of data extracted from
the semantic web. All of these examples have been published in scientific
papers, which are described in detail in this chapter. Furthermore, the
various applications also give an insight on the evolution of the Semantic
Pattern Transformation.

• Chapter 11 – Conclusions: Finally the thesis is concluded in this chapter
by looking at the achievements, the remaining issues and giving an outlook
to future research work.

1.2 How to Read?

This section presents a short guide for reading this thesis by recommending
chapters based on the desired information:

• Getting an overview: By reading the following chapters, the reader should
get a good overview on the principle motivation and benefits of the Seman-
tic Pattern Transformation.

– Chapter 1 – Introduction: Here, the own experiences regarding knowl-
edge discovery in heterogeneous domains and the encountered prob-
lems are given. Based on these issues the principal motivation for the
Semantic Pattern Transformation is explained.

– Chapter 2 – Semantic Patterns - At a Glance: The main idea of the
Semantic Pattern Transformation and the structure of the Semantic
Patterns are explained on the basis of a simple demonstration data
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set. Although only superficial aspects are covered, the reader should
get a good impression on the rationale behind the presented method.

– Chapter 10 – Applications: In this chapter, the evolution of the de-
velopment process is covered by explaining all the applications of the
Semantic Pattern Transformation that have been published in scien-
tific papers. For gaining a quick overview it is recommended to read
the summary for each of these applications.

– Chapter 11 – Conclusions: Finally, thoughts on the whole concept,
remaining issues and an outlook are given.

• Looking at the motivation: When reading the following chapters, the
reader should be able to understand the main problems, which form the
principle motivation for developing the presented technique.

– Chapter 3 – Knowledge Discovery and Machine Learning : This chap-
ter describes how machine learning algorithms are used within knowl-
edge discovery processes and describes the main problems when ap-
plied within heterogeneous domains.

– Chapter 4 – Towards a Semantic Representation: This chapter dis-
cusses the reasons for shifting the value-centric feature vector rep-
resentation typically employed in machine learning to the semantic
representation used by the Semantic Patterns.

– Chapter 10 – Applications: By looking at the various analysis meth-
ods employed by the presented applications, the motivation and ben-
efits of a common semantic-aware model become clear.

• Details on the Semantic Pattern Transformation: The following chapters
convey the in-depth details of the Semantic Pattern Transformation to the
reader.

– Chapter 5 – Techniques: This chapter describes all the techniques
used by the transformation process, which include unsupervised learn-
ing, associative networks and spreading activation.

– Chapter 6 – Semantic Pattern Transformation: In this chapter, the
transformation process which is organized in five layers is described
in detail. For a better understanding of these process layers, simple
examples are given within each layer.

– Chapter 7 – Semantic Pattern Analysis: This chapter explains the
structure of the gained Semantic Patterns, their interpretation, and
the basic methods used for their analysis. Furthermore, more details
regarding the parameters that influence the transformation process
are covered.

– Chapter 10 – Applications: This chapter describes the fine aspects of
the problems, which were solved by applying the Semantic Pattern
Transformation to data from heterogeneous domains.
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• Evaluation and comparison to other work : Finally, for understanding the
relations to other works and the evaluation of the Semantic Pattern Trans-
formation the following two chapters are of importance.

– Chapter 8 – Evaluation: The Semantic Pattern Transformation is
evaluated by analyzing the results of unsupervised and supervised
learning, and the application of a semantic-aware search algorithm.

– Chapter 9 – Related Work : This chapter describes other work that is
either related to the presented technique or had a significant influence
during the development phase.

1.3 Defining the Meaning of Semantic

The Semantic Pattern Transformation, as well as the gained representation – the
Semantic Patterns – use the term “semantic” within their name. Furthermore,
it is used throughout this thesis for the description of the presented method and
various analysis processes, such as semantic-aware search algorithms. Before
going into the details of the Semantic Pattern Transformation, and the associ-
ated techniques and processes, the meaning of the term “semantic” within the
context of this thesis needs to be defined.

The term “semantic” is quite often used within the context of linguistics
and describes the relationship between words or sentences. A good example is
Wordnet [25], an electronic lexical database, which links terms of the English
language according to different semantic relations. More recently, the term “se-
mantic” started to play an important role within the “semantic web”, where rich
semantic relations are defined between arbitrary concepts. These concepts and
their relations are modeled by the Resource Description Framework (RDF) lan-
guage [59]. Furthermore, the concept plays an important role in search engines
for increasing the quality of the results, and many other areas, such as semantic
web services or modeling relationships within social networks.

However, within the Semantic Pattern Transformation associative networks
are used to model the relationship between arbitrary feature values. In con-
trast to semantic networks, associative networks only define one type of generic
relation between arbitrary concepts – an association. In this work, an associa-
tion between two feature values is created, when they co-occur within a defined
context. An example would be a weather station, where the temperature of 5
degrees Celsius and the wind speed of 40 knots are measured at a certain time.
Both measurements are taken within the same context, which in this case is
the time of measurement. Thus, an association between the feature value 5 of
the feature temperature, and the feature value 40 of the feature wind speed is
created. Such an association cannot be seen as a typical semantic relation yet,
because only the fact, that these two feature values are associated due to some
context, is modeled.

Thus, the Semantic Pattern Transformation would more accurately be de-
scribed as an Associative Pattern Transformation, and the question on why the
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term “semantic” is used, comes to mind. While the low-level analysis is based
on associations, the high level analysis processes, which are applied to the Se-
mantic Patterns are better described via the meaning of “semantic”. A good
example would be the application of “semantic” search-queries. While strictly
speaking, this still would be an associative search query, the literature also uses
the term “semantic” to refer to such processes. This is best highlighted by the
well-known Latent Semantic Indexing (LSI) method [52], which focuses on the
analysis of documents and terms by analyzing the associations between the con-
tained terms. Therefore, the term “semantic” was chosen in concordance with
its high level usage and meaning within the literature.

1.4 The Semantic Pattern Transformation

The remainder of this chapter explains the motivation for devising the Seman-
tic Pattern Transformation, by looking back on my own experiences gained by
the application of machine learning within cross-disciplinary knowledge discov-
ery processes. This is followed by a short summary, which describes how the
Semantic Pattern Transformation evolved over the last three years. Finally, the
main contributions of this thesis and the Semantic Pattern Transformation will
be summarized, and a list of relevant publications will be given.

1.4.1 Cross-Disciplinary Knowledge Discovery

This section describes my experiences with the application of knowledge discov-
ery processes (machine learning) within intrusion and malicious code detection.
Based on the experiences gained there, the development of the Semantic Pattern
Transformation was motivated.

Polymorphic Shellcode Detection, Network Traffic Classification and
WiFi Analysis

The initial work goes back to my master’s thesis [76] which was conducted at
the Institute for Applied Information Processing and Communications (IAIK)
at the Graz University of Technology. The idea of this master’s thesis was the
combination of the security related areas of the IAIK with the knowledge I have
gained in machine learning at the Institute for Theoretical Computer Science
(IGI), which is located at the same university. Therefore, the master’s thesis
analyzed two security relevant applications of machine learning algorithms. The
first part focused on the detection and analysis of polymorphic shellcodes that
employ camouflaging techniques to avoid the detection by network-based intru-
sion detection systems. Due to these techniques, the application of typical simple
signature based detection methods was not possible. Thus, the network traffic
data was analyzed with a trained neural network for the detection of possible
decryption engines that are employed by polymorphic shellcodes. The fuzzy na-
ture of machine learning improved the detection rates of the always changing
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polymorphic shellcodes significantly. These promising results were published in
[64] and [63].

In the second part of the master’s thesis I focused on the identification of
network traffic by analyzing histograms containing the byte-occurrence values
extracted from TCP/IP packets. Again, the fuzzy nature of machine learning
algorithms is of benefit, since a network protocol is represented by many his-
tograms that have some kind of similarity. Here, Self-Organizing Maps (SOM)
in their standard unsupervised nature were used to get a visual impression of the
256-dimensional histograms. In addition, a supervised version of the SOM was
devised for classifying the histograms and assigning them to various protocols.
The prototypes were later implemented as a Java framework called INFECT
and the results were published in [62] and [82].

In later work, similar algorithms were utilized for the identification of WLAN
chipsets by looking at the differences in the timing characteristics of the captured
traffic. Here, similar to the network traffic classification project, histograms were
used as feature vectors. However, this time the byte-occurrence values were
replaced with the occurrence of the delay times for the acknowledge messages
used by WiFi networks. The initial results and several extensions were published
in [46], [47], and [48].

E-Particpation, Event Correlation and Machine Language Processing

Due to a shift of focus from security related areas to e-Government processes, the
lessons learned in machine learning were soon applied to an e-Government related
area – e-Participation. Here, the automated analysis of text documents and
the understanding of relations between terms and concepts play an important
role. Again, machine learning algorithms for clustering and semantic search
were employed for implementing various knowledge discovery tasks. However,
the feature vectors used in text analysis are quite different from those that
were analyzed in the security related domains. While the previously described
histograms contain values that can be put into relation via a distance measure,
the main feature values used in text analysis – words – are of symbolic nature,
and cannot be compared with standard distance measures. Therefore, in text
analysis, a semantic-aware algorithm called Latent Semantic Indexing (LSI) is
often used which analyzes the semantic relations between terms and documents.
By using LSI, the semantic information contained in the data is retained and
significantly improves the quality of the results gained by machine learning, and
semantic search algorithms. However, the difficult interpretation of the LSI
models and the lack of support for numerical features limited its application in
text analysis and especially in other areas that involved the analysis of arbitrary
combinations of features.

While investigating LSI for e-Participation, I revisited the security-related
knowledge discovery area by analyzing events from intrusion detection systems.
Here, the available features were quite different compared to those encountered
in the previously described works about polymorphic shellcodes, and network
and WiFi traffic analysis. While the histograms employed in these areas contain
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numerical values, the features used in intrusion detection are a combination of
symbolic and numerical features. Thereby, four main problems were identified:

The first problem is related to the nature of the numerical features, which
include properties like error rates, connections per second or the amount of
transferred data. In contrast to the numerical histograms, the value ranges of
these features change from feature to feature, which leads to the requirement for
various preprocessing operations such as normalization. The second problem
occurs due to the combination of symbolic and numerical features. While mean-
ingful similarity measures can easily be defined for numerical features vectors,
these measures do not cover the similarity between symbolic feature vectors.
The third problem is caused by the variation in the number of features used
for the description of events. This variability requires further data-specific pre-
processing operations. Finally, the fourth problem is related to the nature of
the data. In contrast to text data or the byte-occurrence histograms, a priori
knowledge was not available for the event correlation data. Thus, meaningful in-
terpretation methods for getting an overview and discovering hitherto unknown
relations were required. These methods had to be adapted to the specific data
and the utilized machine learning algorithm models. This is a time-consuming
and complex process that significantly increases the effort for the extraction of
meaningful knowledge.

1.4.2 The Need for a Semantic Representation

When analyzing the experiences of the cross-disciplinary application of machine
learning within knowledge discovery, three core problems can be identified that
limit the possibility to rapidly deploy existing setups in heterogeneous domains:

• The requirement for using domain-specific machine learning algorithms
even when the same knowledge discovery task – such as unsupervised clus-
tering – is applied.

• The requirement for algorithm and domain-specific preprocessing tasks
such as normalization, dealing with missing values, or handling symbolic
and numerical features.

• The need for adapting the interpretation of the results depending on the
algorithm model.

A closer look reveals that the main reason for these problems is the value-
centric representation employed by feature vectors that are typically used within
machine learning. Thus, the Semantic Pattern Transformation was developed,
which shifts the focus from the feature values to the semantic relations between
these values. Thereby, the feature vectors are transformed into a semantic repre-
sentation – the Semantic Patterns. This new representation removes the require-
ment for a large number of preprocessing steps including normalization, dealing
with missing values, or choosing a specific algorithm based on the nature of the
data.
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First Applications: e-Participation and Malware Analysis

The first tests and the the initial evaluation was conducted on an e-Participation
related data set and presented in [84]. Here only symbolic features (words) were
used, which simplified the initial algorithm and its evaluation. The Semantic
Pattern Transformation was then extended to cover the heterogeneous features
encountered in event correlation [83]. During the initial evaluation we also com-
bined the lessons learned from Natural Language Processing (NLP) with the
knowledge gained from polymorphic shellcode analysis and employed the new
concept for the analysis of disassembled sequences of polymorphic shellcode en-
gines. The results were presented in [81].

Refining the Transformation: Semantic Web Data Analysis and Pri-
vacy Aspects of WiFi Networks

The initial work on text-analysis and event correlation resulted in the extension
of the Semantic Pattern Transformation, which enabled its application to com-
plete heterogeneous data sets. An example for such a data set is the CIA World
Factbook [11], which contains many numerical and symbolic properties of the
world’s countries. The results of applying the Semantic Pattern Transformation
to this data are presented in [79] and [80].

Based on the learned lessons the new method was again refined and extended
by anomaly detection capabilities, which were employed in the analysis of appli-
cation meta data extracted from the Android Market [78], and in the analysis
of privacy related problems in WiFi networks [50].

Adding Sophisticated Capabilities: Revisiting e-Participation

In the most recent work, the Semantic Pattern Transformation was extended
with the capability to include and analyze time-based information. This was
first used for the analysis of semantic developments over time frames of Twitter
data covering the Egyptian revolution [77]. Also, a prototype of a user interface
was created that enables knowledge discovery on arbitrary data sets transformed
into Semantic Patterns.

1.5 The Main Contributions

The discussed publications are considered as prior work to this thesis. While
they have played an important part in developing and improving the Semantic
Pattern Transformation by empirically analyzing the results on a wide range of
data sets, they lack a detailed description of the transformation process, and do
not carry out a systematic evaluation. These shortcomings are addressed in this
thesis. Its main contributions to the development and the analysis of the Se-
mantic Pattern Transformation are: First, the development of the new method
is motivated by doing an in-depth analysis of current knowledge discovery pro-
cesses. Second, a detailed description of the whole transformation process and
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the utilized techniques is given. Finally, the Semantic Pattern Transformation
is systematically evaluated on a wide range of data sets in the fields of supervised
classification, unsupervised learning, and semantic-aware search algorithms.

Regarding the Semantic Pattern Transformation itself, there are three main
scientific contributions:

1. Deployment of knowledge discovery processes in heterogeneous
domains: The Semantic Pattern Transformation analyzes the semantic
relations between the feature values and transforms the value-centric fea-
ture vectors into Semantic Patterns. This transformation leads to a sig-
nificant decrease in the complexity of the required adaptation processes,
when knowledge discovery processes are deployed in heterogeneous do-
mains. The Semantic Pattern Transformation can be applied regardless
of the nature of the analyzed data, and the subsequently applied machine
learning algorithms do not need specific preprocessing steps for analyzing
the Semantic Patterns.

2. Interpretation and Analysis: The model employed by the Semantic
Patterns can easily be interpreted and visualized. This plays an important
role when analyzing data for which no, or only limited a priori knowledge
is available. The way the semantic information is represented within the
Semantic Patterns allows the application of simple techniques, such as
addition or subtraction, as well as highly sophisticated analysis, such as
machine learning.

Furthermore, and most important, in stark contrast to the value-centric
feature vector representation, the model employed by the Semantic Pattern
Transformation remains the same regardless of the analyzed data, the
defined knowledge discovery goals, and the applied algorithms. This hugely
simplifies the application of analysis processes and knowledge extraction
procedures, which do not need to be adapted whenever the analyzed data
or the knowledge discovery process goals change. Also, existing analysis
processes can be easily extended or arranged in analysis chains for the
creation of more complex analysis processes based on the Semantic Pattern
model.

3. Improvements for machine learning algorithms: Although the Se-
mantic Pattern Transformation comes with many advantages in terms
of application, and analyzing and interpreting the gained results, there
remains an important question: How good is the quality of the results
gained by applying analysis processes to the Semantic Patterns? In or-
der to answer this question, an in-depth evaluation was conducted. This
evaluation compares the results of supervised classifiers, unsupervised clus-
tering algorithms, and semantic-ware search algorithms, when applied to
the commonly used feature vector representation and to the transformed
Semantic Patterns. By looking at these results, the following conclusions
can be drawn: First, the Semantic Pattern Transformation can be safely
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deployed without making any compromises in terms of result quality, while
gaining all the advantages in simplifying the deployment in heterogeneous
domains and simple knowledge extraction procedures. Second, the eval-
uation shows that huge quality improvements can be made for simple al-
gorithms, such as K-Means. Finally, the application of semantic-aware
search algorithms is not possible for the standard value-centric feature vec-
tor representation without applying further processing. Thus, the capabil-
ity to execute such algorithms is an additional advantage of the Semantic
Patterns.

While the details regarding the evaluation procedure and the gained re-
sults will be discussed in Chapter 8 – Evaluation, an executive overview
is already given here: The analyzed data sets, algorithms and the gained
results are presented in Table 1.1. The data sets are taken from the UCI
Machine Learning Repository [28] and represent heterogeneous knowledge
discovery domains. For the evaluation of the results the V-Measure [69]
was used. In the table, columns 1 to 6 describe the details of the analyzed
data sets. The remaining columns describe the results gained by the ap-
plication of the supervised Support Vector Machine (SVM) algorithm, and
the unsupervised clustering algorithms K-Means and EM. The algorithms
have been applied to the raw value-centric feature vectors (not normalized,
indicated by NN), the normed value-centric feature vectors (indicated by
N), and the Semantic Patterns (indicated by P). The Semantic Patterns
have been gained by applying the Semantic Pattern Transformation1 to
the raw value-centric feature vectors. The key results are observed when
looking at the columns for the K-Means algorithm. Here, the application of
the K-Means algorithm to the Semantic Patterns yields huge performance
gains when compared to its application to the raw feature vectors. For the
unsupervised EM algorithm and the supervised SVM algorithm, there are
only insignificant performance gains or losses. However, the main purpose
of the Semantic Pattern Transformation is not to improve the quality of
the results, but to simplify the deployment of knowledge discovery pro-
cesses within heterogeneous domains, and the extraction of knowledge by
utilizing the semantic representation. Still, these results are important in
showing that the new method can be safely deployed without making any
compromises in terms of quality.

1.5.1 List of Publications

In this section, a short overview over the published works, which are relevant
for this thesis, will be given. Thereby, the publications will be grouped into two
main categories: First, the group of publications that have a direct relation to
this thesis, and second, publications that are considered as prior work, or have

1The results were gained by using the parameter-set for the Semantic Pattern Transforma-
tion as described in the third row of the table. These parameters will be explained in Chapter
8 – Evaluation.
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Data set Label Inst DF SF Classes SVM (N) SVM (NN) SVM (P) KM (N) KM (NN) KM (P) EM (NN) EM (P)

Breast Cancer BC
Dermatology DE
KR vs. KP KR
Lymph LY
Mushroom MU
Soybean SO
Splice SP
Vote VO
Zoo ZO

Anneal AN
Colic CO
Credit-A CA
Credit-G CG
Heart-C HC
Heart-H HH
Hepatitis HE

Breast-w BW
Diabetes DI
Glass GL
Heart-Statlog HS
Ionosphere IO
Iris IR
Segment SE
Sonar SO
Vehicle VE
Vowel VO

SVMSVMSVM K-MeansK-MeansK-Means EMEM
SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2

CategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategorical
286 9 2 0.03 0.04 0.04 0.01 0.01 0.06 0.00 0.08
366 1 33 6 0.93 0.92 0.95 0.58 0.09 0.86 0.87 0.87

3196 36 2 0.75 0.75 0.72 0.00 0.01 0.00 0.04 0.00
148 18 4 0.53 0.51 0.48 0.13 0.18 0.25 0.26 0.27

8124 22 2 1.00 1.00 1.00 0.48 0.47 0.45 0.61 0.59
683 35 19 0.92 0.92 0.93 0.59 0.62 0.73 0.79 0.79

3190 60 3 0.71 0.72 0.80 0.03 0.03 0.44 0.41 0.31
435 16 2 0.76 0.74 0.67 0.47 0.48 0.47 0.49 0.45
101 17 7 0.94 0.94 0.97 0.78 0.78 0.82 0.82 0.85

TotalTotalTotalTotal 0.73 0.73 0.73 0.34 0.30 0.45 0.48 0.47
MixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixed

898 6 32 6 0.86 0.86 0.92 0.23 0.03 0.30 0.31 0.32
368 7 15 2 0.31 0.32 0.31 0.13 0.03 0.05 0.10 0.12
689 6 9 2 0.41 0.41 0.39 0.16 0.02 0.25 0.17 0.21

1000 7 13 2 0.11 0.10 0.12 0.01 0.01 0.00 0.01 0.02
303 6 7 5 0.36 0.36 0.29 0.24 0.01 0.36 0.31 0.28
294 6 7 5 0.32 0.31 0.33 0.27 0.01 0.32 0.28 0.25
155 5 14 2 0.25 0.28 0.21 0.13 0.00 0.21 0.22 0.24

TotalTotalTotalTotal 0.37 0.38 0.37 0.17 0.02 0.21 0.20 0.20
NumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumerical

699 9 2 0.78 0.78 0.77 0.73 0.74 0.82 0.72 0.58
768 8 2 0.18 0.18 0.15 0.05 0.03 0.10 0.10 0.08
214 9 7 0.30 0.30 0.50 0.34 0.39 0.33 0.37 0.36
270 13 2 0.36 0.36 0.37 0.25 0.02 0.39 0.29 0.27
351 34 2 0.48 0.48 0.50 0.12 0.12 0.16 0.25 0.25
150 4 3 0.87 0.87 0.87 0.71 0.71 0.75 0.81 0.78

2310 19 7 0.88 0.88 0.90 0.61 0.53 0.59 0.62 0.60
208 60 2 0.23 0.23 0.23 0.01 0.01 0.02 0.01 0.01
846 18 4 0.51 0.51 0.48 0.11 0.19 0.19 0.10 0.19
990 10 3 11 0.63 0.63 0.76 0.06 0.34 0.23 0.19 0.25

TotalTotalTotalTotal 0.52 0.52 0.55 0.30 0.31 0.36 0.35 0.34

Table 1.1: Summary of the V-Measure evaluation results.

an indirect relation to this thesis. For a detailed description of these works and
their purpose within the context of this thesis, the reader is referred to Chapter
10 – Applications:

The following publications are directly related to this thesis:

• 2009

– [84] Automated Analysis of e-Participation Data by
Utilizing Associative Networks, Spreading Activation and
Unsupervised Learning

• 2010

– [83] Event Correlation on the Basis of Activation Patterns

– [81] From NLP (Natural Language Processing) to
MLP (Machine Language Processing)
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– [50] User Tracking Based on Behavioral Fingerprints (as co-author)

– [79] RDF Data Analysis with Activation Patterns

• 2011

– [80] Knowledge Extraction from RDF Data with Activation Patterns

– [78] Android Market Analysis With Activation Patterns

– [77] Extracting Semantic Knowledge From Twitter

The following publications are considered as prior work, or are not directly
related to the thesis, but to the publications listed above.

• [64] Hybrid Engine for Polymorphic Shellcode Detection (as co-author)

• [62] Traffic Classification Using Self-Organizing Maps (as co-author)

• [63] Massive Data Mining for Polymorphic Code Detection (as co-author)

• [46] WiFi Chipset Fingerprinting (as co-author)

• [82] InFeCT - Network Traffic Classification

• [60] Android Security Permissions – Can we trust them? (as co-author)

1.6 Demonstration Data Sets

For many of the explanations within this thesis, short examples will be provided
that highlight certain aspects or allow to gain a quick overview of the discussed
subject. Thereby, these examples and also other discussions are based on two
data sets that are described in the appendix of this thesis. The first one covers
information about the world’s countries, while the second one contains Tweets
extracted from Twitter during the Egyptian revolution in early 2011.





2
Semantic Patterns – At a Glance

The aim of a typical knowledge discovery process is to extract knowledge from
a data set comprised of arbitrary information relevant for a certain domain.
Thereby, the term knowledge is not exactly defined and strongly depends on the
analyzed data and the desired information. Especially, when machine learning
is used for knowledge extraction, the data needs to be organized as instances of
objects that are described via certain properties. These instances are extracted
from the data set according to a desired relation. A simple example would be a
data set that contains instances of the world’s countries, which are described via
various features (properties), such as the size of the population, the country’s
birth rate, its export commodities or unemployment rate. Here, the most obvious
relation would extract one instance for each country. However, other relations
that extract instances describing continents or single export goods would also
be possible.

When applying machine learning the extracted instances typically need to be
modeled as high-dimensional feature vectors, where each dimension represents a
feature and contains the value of this feature. Depending on the desired knowl-
edge and the nature of the describing features, an adequate machine learning
algorithm needs to be selected, and the raw feature vectors must be transformed
according to algorithm-specific preprocessing steps. These steps include the
normalization of feature values, the handling of missing values, and the trans-
formation of symbolic into numerical features or vice versa. The model of the
selected machine learning algorithm is then trained by applying the algorithm
to the preprocessed feature vectors. Finally, the desired knowledge is extracted
from the trained model. Unfortunately, the interpretation of these algorithm-
specific and often complex models is in most cases a tedious task, which needs
to be adapted to the domain-specific setup.

15
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In summary, there are three main issues when applying machine learning
algorithms to heterogeneous knowledge mining tasks: First, the requirement to
select a specific machine learning algorithm according to the analyzed data, sec-
ond the specific adaptation of the preprocessing steps required for this algorithm
and third, the algorithm-specific interpretation of the trained models.

These three principle issues limit the reusability of machine learning algo-
rithms in knowledge discovery processes due to the time-consuming setup and
adaptation process. Based on these issues and my own experiences gained dur-
ing the application of machine learning in heterogeneous knowledge discovery
domains, I developed the Semantic Pattern Transformation, which transforms
the raw feature vectors into so called Semantic Patterns. The remainder of this
chapter gives an overview on the idea behind the transformation, highlights the
employed techniques and demonstrates the benefits by analyzing a simple data
set.

2.1 Demonstration Data Set

For the discussions in this chapter a simple artificial data set is used, which
contains eight instances of countries listed in Table 2.2. Thereby, a country
is described via a feature vector that forms the basis for the application of
machine learning algorithms. The features and their possible feature values for
this example are presented in Table 2.1.

Feature Type Feature values
Export commodity Symbolic coffee, cacao, machinery, 

chemicals
Unemployment rate Numerical 5% to 20%
Fertility rate (average number of children 
per woman)

Numerical 2 to 5 

Table 2.1: The three features and their feature values used within the data set: export
commodity (symbolic), unemployment rate (numerical), and fertility rate
(numerical).

The first feature is of symbolic nature and describes the export commodi-
ties of a country with four possible feature values: coffee, cacao, machinery
and chemicals. Thereby, a country might have none, one or multiple export
commodities1. The second feature is of numerical nature and describes the un-
employment rate of a country. Here, the possible value range is from 5% to
20%. The final feature is also of numerical nature and describes the fertility
rate, which corresponds to the number of births per woman. The value range
for this feature is 2 to 5.

1In a real world scenario the fact that no commodities are exported by a country would
be modeled via a distinct value (e.g., none), because the non-presence of feature values could
also mean that these values are missing.
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Country Exports Unemployment rate Fertility rate
C1 coffee 20% 5
C2 cacao 20% 5
C3 coffee, cacao 20% 5
C4 machinery 5% 2
C5 chemicals 5% 2
C6 chemicals, machinery 5% 2
C7 chemicals, cacao 20% missing data
C8 missing data 20% 5
C9 coffee, cacao missing data missing data

Table 2.2: First category: C1 to C3 – developing countries as indicated by different
export commodities and high unemployment and fertility rates. Second
category: C4 to C6 – highly developed countries as indicated by the export
commodities, and low unemployment and fertility rates. The countries C7
to C9 belong to one of the two categories, but contain missing feature
values.

When looking at the demonstration data set in Table 2.2, one observes that
there are basically two categories of countries. The first one includes the coun-
tries C1 to C3 that have cacao and/or coffee as export goods and high unem-
ployment and fertility rates. The second category consists of the countries C4
to C6, which have chemicals and/or machinery as export goods and low unem-
ployment and fertility rates. The last three countries, C6 to C9 belong to one of
these categories, but have missing values, which will help to explain the nature
of the Semantic Patterns. Furthermore, country C7 creates a link between the
two categories by having export commodities from both of them – cacao and
chemicals. This represents the fuzzy nature of data sets, which is addressed by
the application of machine learning algorithms.

2.2 From Feature Vectors to Semantic Patterns

The Semantic Pattern Transformation introduced in this thesis addresses the
three main problems stated in the introduction of this chapter. First, the prob-
lem of the domain and knowledge-specific selection of a machine learning algo-
rithm is avoided by transforming arbitrary data into a generic semantic repre-
sentation. Second, the semantic nature of the transformation removes the need
for many preprocessing operations including normalization, handling of missing
values, or data transformation. Finally, in contrast to the high-dimensional fea-
ture vectors the generated Semantic Patterns can easily be interpreted, which
shifts the algorithm-specific task to interpret the model to the direct interpreta-
tion of the Semantic Patterns. The advantage of this process is that it does not
depend on the employed algorithm and the nature of the analyzed data.

These three major benefits are enabled by the shift from a value-centric rep-
resentation as employed by the raw feature vectors, to a semantic representation
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Figure 2.1: The trained associative network consists of nodes that represent the fea-
ture values of the analyzed instances, and weighted links between these
nodes which model the semantic relations between these feature values.
The weights of the links must be normed for the subsequent application
of a spreading activation algorithm.

that focuses on the relations between different feature values.
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Figure 2.2: The feature values cacao and coffee of C9 are activated with an initial
value of 1.0. These activations are then distributed to the neighboring
nodes according to the weighted links by applying spreading activation
techniques. The red arrows indicate the spreading activation direction.
The red nodes represent the activated nodes and the yellow ones receive
activation energy form the activated (red) nodes by using spreading ac-
tivation. The grey nodes do not receive activation energy from the acti-
vated nodes.

Before explaining the basic idea behind the Semantic Patterns, a short in-
troduction on associative networks and spreading activation must be given. An
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associative network consists of nodes representing some kind of information, and
weighted links that connect these nodes according to an arbitrary relation. The
strength of these associations are modeled with weights that are assigned to the
respective links. One of the most important methods for extracting informa-
tion form such a network is the application of spreading activation techniques.
Thereby, one or more nodes are activated with a certain activation value that
exceeds a certain threshold. This is merely the process of assigning values to the
selected nodes. Then, those nodes that have an activation value larger than a
pre-defined threshold participate in the following spreading activation process:
The activation values, or activation energies of the activated nodes are spread
to the neighboring nodes via the weighted links. The amount of the transferred
activation energy depends on the link weights, which model the strength of the
associations. In the first iteration of this algorithm only the neighboring nodes
receive activation energy from the active nodes. However, this process can be
repeated for multiple iterations in order to reach more distant regions in the
network. By analyzing the size of the activation values the other nodes receive,
information about the connections (relations) within the network and, thus, the
modeled data can be extracted.

coffee cocoa machinery chemicals 20% 5% 5 2

0.00 0.08 0.38 0.300.00 0.001.151.15

cocoa

1.15

coffee

1.15

20%

0.38
5

0.30

chemicals

0.08

2

0.00

5%

0.00

machinery

0.00

Figure 2.3: After completing the spreading activation process, the activation values
of the network nodes are extracted an arranged in a vector – the Semantic
Pattern.

Based on these techniques, the principle idea behind the layered Semantic
Pattern Transformation is to represent the feature values as nodes within such
an associative network. The semantic relations of these feature values within the
analyzed instances are modeled as links between the network nodes. By acti-
vating network nodes, and applying spreading activation, the previously stored
semantic relations are queried. The resulting node activation values of the whole
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network are extracted an arranged in a vector – the Semantic Pattern. These
patterns, which represent single or multiple feature values, or complete instances
form the basis for all subsequent analysis processes and enable the direct in-
terpretation without knowing the specifics of the employed machine learning
algorithm.

In order to highlight the principle components of the transformation process,
the instances of the country data set are transformed according to the following
steps:

First, for each feature value within the data set a node is created within
an associative network2. Second, the semantic relations of these feature values
within the data set are modeled with weighted links connecting the network
nodes. Here, two feature values are considered to be semantically related when
they co-occur within an instance. The strength of such relations is defined by
the number of co-occurrences and modeled as weights that are assigned to the
corresponding links. The result of this process is a trained associative network,
which is depicted in Figure 2.1.

Country Coffee Cacao Machinery Chemicals 20% 5% 5 2
C1 1.30 0.53 0.00 0.08 1.45 0.00 1.45 0.00
C2 0.45 1.38 0.00 0.15 1.53 0.00 1.45 0.00
C3 1.45 1.53 0.00 0.15 1.68 0.00 1.60 0.00
C4 0.00 0.00 1.30 0.38 0.00 1.38 0.00 1.38
C5 0.00 0.08 0.38 1.30 0.08 1.38 0.00 1.38
C6 0.00 0.08 1.37 1.37 0.08 1.53 0.00 1.53
C7 0.30 1.30 0.08 1.15 1.30 0.15 0.45 0.15
C8 0.30 0.38 0.00 0.08 1.30 0.00 1.30 0.00
C9 1.15 1.15 0.00 0.08 0.38 0.00 0.30 0.00

Table 2.3: The vectors of the Semantic Patterns gained by transforming the feature
vectors of countries C1 to C9 according to the Semantic Pattern Trans-
formation.

Third, for the transformation of an instance represented by a feature vector
into a Semantic Pattern, the nodes corresponding to the instance’s feature val-
ues are activated within the network and the spreading activation algorithm is
applied for one iteration. Thereby, the activation values of the activated nodes
are spread to semantically related (neighboring) nodes according to the strength
of the relations. This process is depicted in Figure 2.2, where the nodes corre-
sponding to the feature values coffee and cacao of the country instance C9 are
activated with an initial value of 1.0. By applying spreading activation these
activations are spread to the neighboring nodes, which is indicated by the red
arrows. After completing the process, the activation values of all network nodes
are extracted and stored in a vector – the Semantic Pattern. The extraction

2For numerical features, some kind of discretization operation needs to be applied. However,
for the sake of simplicity this is not shown in this example, but discussed in detail in later
chapters.



2.3. Understanding Semantic Patterns 21

process and the structure of a Semantic Pattern is visualized in Figure 2.3. The
process is repeated for all instances, which completes the transformation of raw
feature vectors into Semantic Patterns. The generated patterns are listed in Ta-
ble 2.3 and the contribution of the activation values to an instance is visualized
in Figure 2.4.

2.3 Understanding Semantic Patterns

The transformed Semantic Patterns listed in Table 2.3 represent the information
gained by selecting and activating nodes within the associative network and
spreading their activation to the related nodes. In this section an overview
of the pattern structure is given, and several basic interpretation and analysis
techniques are discussed.

2.3.1 Semantic Relations

0

1.00

2.00

3.00

C1 C2 C3 C4 C5 C6 C7 C8 C9

Figure 2.4: The contribution of the node activation values to the country instances.

After completing the transformation process, each instance feature vector has
been transformed to a Semantic Pattern. However, the transformation process
is not limited to complete instances but can also be applied to single feature
values. In order to show how Semantic Patterns can be analyzed and interpreted,
three patterns are created for the two export commodities cacao and coffee,
and the fertility rate 2. These patterns are visualized in Figures 2.5 and 2.6.
While the first figure contains the unmodified patterns, they have been sorted
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according to the activation values or the represented feature values in the latter.
Especially in real applications, were high-dimensional patterns are involved this
representation can be used to gain a quick overview on the principle information
stored within the patterns. In both representations, the x-axis is used for the
nodes representing the feature values and the y-axis contains the node activation
values.

When looking at the pattern for cacao in Figure 2.5, one observes that the
export commodity cacao has the highest activation value, because its node was
activated during the pattern transformation process. Furthermore, there are
also strong activations for the unemployment rate 20%, fertility rate 5 and the
export commodity coffee. The relation to chemicals is weaker and there is no
relation to machinery, the unemployment rate 5% and the fertility rate 2. The
magnitude of these values can easily be verified by looking at Table 2.2 and the
associative network in Figure 2.1. Similar information can be extracted from
the patterns for coffee and the fertility rate 2.

This interpretation enables the analysis of the semantic relations between the
feature values, which reveals important information about the analyzed data.
Furthermore, this example shows that a single feature value is represented by
its semantic relations to other feature values and not its value alone. This is a
significant difference to the standard feature vector representation.

2.3.2 Similarity

By looking at the unsorted patterns in Figure 2.5, one observes that there is a
similarity between coffee and cacao. This is explained by the similar network
regions that are active in both patterns. In contrast, the pattern for the fertility
rate 2 is not related to coffee at all, and there is only a insignificant similarity
to cacao, because the node for chemicals has a small activation in both patterns.
Since Semantic Patterns are simple vectors, a similarity measure, such as the
Euclidean distance or the Cosine similarity can be used to determine their simi-
larity. In case of coffee and fertility rate 2, the Cosine similarity would yield the
maximum distance, because the vectors are orthogonal due the distinct activated
network regions.

2.3.3 Semantic Search

Based on the similarity between Semantic Patterns and the semantic information
contained in the patterns, semantic-aware search queries can be implemented.
Compared to algorithms based on simple keyword matching, such algorithms are
able to retrieve more relevant results, which is demonstrated with the following
query on the demonstration data set:

Assuming, a simple keyword matching search query is executed that retrieves
countries related to the feature value coffee, then the results would only include
those countries that use coffee as export commodity. These countries – C1, C3
and C9 – are listed in the upper part of Table 2.4.
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Figure 2.5: The Semantic Patterns for the export commodities cacao and coffee, and
the fertility rate 2. The x-axis represents the nodes of the associative net-
work, whereas the y-axis represents the activation values of these nodes.
For visualization purposes the maximum value of the y-axis has been
limited to 0.5.
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Figure 2.6: The nodes of the Semantic Patterns from Figure 2.5 are sorted according
to their activation values. For visualization purposes the maximum value
of the y-axis has been limited to 0.5.
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However, when utilizing the semantic nature of Semantic Patterns for the
search algorithm, more relevant results can be achieved. The algorithm is based
on these two steps: First, a Semantic Pattern is generated for the feature
value coffee and second, this pattern is compared to the Semantic Patterns
of the country instances. Obviously those countries that have coffee as export
commodity are the three best matching results. However, the fourth result is
country C4, which exports cacao. Although coffee is not exported by C4, there
is a significant semantic similarity between C4 and coffee. By looking at the
Semantic Pattern of coffee in Figure 2.6 and the descriptions of the countries
in Table 2.2, two observations can be made: First, coffee and cacao are related
due to the co-occurrences in C3 and C9. Second, coffee has a strong relation
to high fertility and unemployment rates as defined by the co-occurrences in
C1 and C3. Since this relation information is stored in the Semantic Pattern,
the search algorithm is also able to retrieve those countries that are semantically
related to coffee but do not export this commodity themselves. The countries C8
and C7, which are retrieved as the fifth and sixth result contain missing values,
but are still have some similarity to the search query due to other features that
have strong relations to coffee. The last three results – countries C5, C6 and
C4, have the least similarity to the Semantic Pattern of coffee. Thereby, C5 and
C6, which export chemicals and have low fertility and unemployment rates, are
still retrieved before C4 due to the relation defined between cacao and chemicals
in C7. As cacao is quite similar to coffee (Figure 2.6) there is a slightly higher
similarity to C5 and C6 than to the last result C4, which has a Semantic Pattern
that is almost orthogonal to coffee.

Apart from the possibility to apply semantic-aware search algorithms, this
example shows that Semantic Patterns are able to cope with missing values. This
is best indicated by the retrieval of C8 which does not contain any information
about export commodities but is related to the search query for coffee due to
high unemployment and fertility rates.

2.3.4 Semantic Pattern Arithmetic

Due to the vector representation of the Semantic Patterns, standard vector arith-
metic can be applied to modify patterns, extract information or generate new
patterns:

Addition: The semantic information contained in multiple Semantic Patterns
can be combined by adding the underlying vectors. The resulting pattern is
then a mixture of the input patterns. In the demonstration data set a coffee-
cacao pattern can be generated by adding the patterns for these two export
commodities.

Subtraction: By subtracting a Semantic Pattern from another one, calcu-
lating the absolute values of the resulting activation values and sorting the Se-
mantic Pattern elements according to the activation values, the main differences
between the two input patterns can be extracted. As example, this procedure
is applied to the patterns for coffee and cacao from the demonstration data set.
The results are shown in Figure 2.7.
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Keyword search for coffeeKeyword search for coffeeKeyword search for coffeeKeyword search for coffee
C1 coffee 20% 5
C3 coffee, cacao 20% 5
C9 coffee, cacao missing data missing data

Semantic aware search for coffeeSemantic aware search for coffeeSemantic aware search for coffeeSemantic aware search for coffee
C9 coffee, cacao missing data missing data
C1 coffee 20% 5
C3 coffee, cacao 20% 5
C2 cacao 20% 5
C8 missing data 20% 5
C7 chemicals, cacao 20% missing data
C5 chemicals 5% 2
C6 chemicals, machinery 5% 2
C4 machinery 5% 2

Table 2.4: This table compares the results when searching for coffee with a keyword
matching search algorithm (upper part) and a semantic-aware search al-
gorithm based on the similarity between Semantic Patterns (lower part).

0

0.20

0.40

coffee cacao machinery chemicals 20% 5% 5 2

Difference coffee/cacao
Unsorted Semantic Pattern

Figure 2.7: Differences between the patterns for cacao and coffee. The large activa-
tion values for cacao and coffee are related to the significant influence of
the initial activation values.
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Mean: By calculating the mean pattern for multiple input patterns or com-
plete pattern sets, a quick overview of the information contained in these pat-
terns is gained. An example for such a pattern set could be a pattern cluster as
found by an unsupervised learning algorithm. In Figure 2.8, two mean patterns
for the two country categories C1 to C3 and C4 to C6 are presented. Thereby,
the activated nodes and the size of their activation values give a quick overview
about the principle properties of the two categories.
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Figure 2.8: Mean Semantic Patterns for C1, C2, C3 (upper half) and C4, C5, C6
(lower half).

Variance: By calculating the variance of multiple patterns in a pattern set,
a quick overview of the similarities and differences within this set is gained.

These are only some examples on how simple vector arithmetic can be used
for the processing and interpretation of Semantic Patterns. However, any other
simple operation or more sophisticated operation, such as machine learning can
be applied.

It is also important to note, that regardless of the applied operation, one
common model is maintained as basis for any subsequent analysis.
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2.3.5 Machine Learning

The main purpose of the Semantic Pattern Transformation is the creation of
one generic model that forms the basis for the application of machine learning
algorithms. The transformation into Semantic Patterns removes many of the
time-consuming steps that are typically necessary when employing such algo-
rithms in heterogeneous domains.

Since Semantic Patterns only contain numerical values – regardless of the
input data – a wide range of machine learning algorithms can be directly applied.
One interesting application is in the area of unsupervised learning, where a priori
knowledge about the analyzed data is typically not available.

2.4 Feature Vectors vs. Semantic Patterns in
Unsupervised Clustering

Unsupervised clustering plays an important role within machine learning, since
a good overview can be gained about the principal structure of the analyzed
data set. This is especially important when only limited or no a priori knowl-
edge about the data is available. In a typical knowledge discovery process, the
application of such an algorithm requires several steps that need to be adapted
according to the available data and the desired information. These steps include

• the definition of a relation that extracts the desired instances and features
describing those instances,

• the selection of an algorithm capable of handling the available data,

• finding an appropriate representation of the data that can be used by the
algorithm,

• applying various preprocessing steps depending on the algorithm, the avail-
able data and the desired information,

• applying the selected algorithm to the preprocessed data,

• and interpreting the results.

The remainder of this section gives an overview of these steps and demon-
strates how many of them can be simplified or removed by applying the Semantic
Pattern Transformation.

2.4.1 Extracting Instances and Features

The first step includes the definition of a relation that extracts the instances
and the features describing those instances. Apart from the process of selecting
the appropriate features, it is also possible to construct new features by apply-
ing mathematical operations on the existing feature values, or using external
information to augment the available data. Within the demonstration data set,
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the country instances are described by the three features shown in Table 2.1.
Since all of these feature are taken for the analysis, the extraction process is not
required here. Furthermore, no additional features are constructed, nor is the
available information augmented by external data.

These extraction steps are also required when employing the Semantic Pat-
tern Transformation. However, due to the easy interpretation of the gener-
ated Semantic Patterns, additional information about the extracted features is
gained. This information could then be used to modify the extraction process,
place the emphasis on certain aspects or ignore non-relevant features.

2.4.2 Selection of the Algorithm

Feature vectors: There is a wide range of unsupervised clustering algorithms
that use heterogeneous models and techniques to analyze instances. Thereby,
those algorithms have different capabilities regarding the processing of symbolic
or numerical data, require different preprocessing steps and employ different
models that are interpreted differently. Therefore, a careful choice must be
made according to the nature of the features and the desired information that
should be extracted from the data.
Semantic Patterns: The Semantic Pattern Transformation transforms arbi-
trary feature vectors comprised of symbolic and/or numerical data into a generic
semantic representation. In this representation a Semantic Pattern contains the
activation values of the associative network nodes, which are numerical values.
Therefore, any unsupervised algorithm capable of handling numerical feature
values can be chosen. Since the interpretation of the results can be shifted from
the algorithm model to the Semantic Patterns, the algorithm does not need to
be chosen according to the interpretability of its model.

2.4.3 Instance and Feature Representation

For the further discussions an unsupervised algorithm is assumed, which uses
the Euclidean distance measure for determining the similarity of the instances.
Examples for such algorithms are the K-Means algorithm, the Neural Gas al-
gorithm family, Self-Organizing Maps, or the Expectation Maximization (EM)
algorithm.

Feature vectors: Since the model of the chosen algorithm depends on the cal-
culation of the Euclidean distance, one needs to make sure that the employed
feature vectors use an adequate structure. For the two numerical features –
unemployment and fertility rate – this representation is simple, because the val-
ues are directly stored as elements within the feature vector. However, for the
symbolic export commodities feature this process is not straightforward for two
reasons: First, the number of export commodities varies from country to coun-
try and second, the symbolic values cannot be directly used for the distance
calculation. Thus, some kind of transformation process must be applied to these
feature values. A simple approach would assign numerical values to each export
commodity. However, this would cause two problems: First, the variation in the
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number of exported commodities cannot me modeled by this approach. Second,
although, the numerical values allow the application of distance measures, the
gained information would be meaningless: The question whether cacao is closer
to coffee than to machinery cannot be answered without any additional infor-
mation. A typical method to overcome these problems is the creation of an entry
for each symbolic feature value and storing whether the feature value is present
in the given instance. This is depicted in Table 2.5, where the two numerical fea-
tures are directly stored in the feature vector and the export commodity feature
was transformed according to the described procedure.

Country Coffee Cacao Machinery Chemicals Unemployment rate Fertility rate
C1 1 0 0 0 20% 5
C2 0 1 0 0 20% 5
C3 1 1 0 0 20% 5
C4 0 0 1 0 5% 2
C5 0 0 0 1 5% 2
C6 0 0 1 1 5% 2
C7 0 1 0 1 20% missing data
C8 missing datamissing datamissing datamissing data 20% 5
C9 1 1 0 0 missing data missing data

Table 2.5: The value-centric feature vectors representing the country instances.

Semantic Patterns: For the Semantic Pattern Transformation the feature
vector representation depicted in Table 2.5 contains all the required information.
However, for the creation of the network the ordered structure of the features
and feature values is not required. It is sufficient to have all feature values and
their feature listed for each instance, which is shown in Table 2.6. The instances
are then transformed to Semantic Patterns according to the previously described
process.

Country Feature values
C1 E:coffee, UR:20%, FR:5
C2 E:cacao, UR:20%, FR:5
C3 E:cacao, E:coffee, UR:20%, FR:5
C4 E:machinery, UR:5%, FR:2
C5 E:chemicals, UR:5%, FR:2
C6 E:chemicals, E:machinery, UR:5%, FR:2
C7 E:chemicals, E:cacao, UR:20%
C8 UR:20%, FR:5
C9 E:coffee, E:cacao

Table 2.6: The unstructured input representation for the Semantic Pattern Transfor-
mation. The features are abbreviated as follows: E : export commodity,
UR: unemployment rate, and FR: fertility rate.



2.4. Feature Vectors vs. Semantic Patterns in Unsupervised Clustering 31

2.4.4 Preprocessing

Normalization

Feature vectors: The application of an unsupervised learning algorithm based
on the Euclidean distance requires the normalization of these vectors. The reason
is highlighted by looking at the unemployment and fertility rate features. There
are two categories of countries in the data set – one with a low unemployment
rate with 5% and the other one with 20%. For the fertility rate, there are groups
with 2 and 5 children per woman. In this example, there is a strong correlation
between a high unemployment and a high fertility rate. By only taking these
two features into consideration, the Euclidean distance between the countries
C1 and C5 can be calculated in the following way: d2 = (20− 5)2 + (5− 2)2 =
152 +32 = 225+9 = 234. This calculation reveals that the distance between the
two unemployment rates contributes a significant part to the overall distance
(225 vs. 9).

The unemployment rate is a good indicator for the economic properties of a
country, and high values like 20% typically come along with other properties,
such as certain export commodities, or the size of the agricultural, industrial
and service sectors. In a similar way the fertility rates of industrial countries are
significantly lower than those of developing countries. However, the information
carried by the same feature value ranges is quite different in both features. The
2% difference between unemployment rates of 5% and 7% does not carry much
information, but the same difference – in terms of the value – between a fertility
rate of 2 and 4 children per woman is very significant. For other combinations of
features, such as the population count and the birth rate, there is a much larger
deviation of the value ranges. Since the Euclidean distance does not consider the
different amount of information carried by the value ranges of the features, an
appropriate normalization technique must be applied. This choice depends on
the analyzed data, but typically the main purpose is to distribute the significance
of the features’ value ranges equally.

The deviation of the value ranges can also be observed in the demonstration
data set: 0 to 1 for the export commodities, 5 to 20 for the unemployment
rate and 2 to 5 for the fertility rate. Thus, the feature vectors must be normed
before applying the unsupervised clustering algorithm.

Semantic Patterns: Normalization of the input feature vectors is not required,
because the Semantic Pattern Transformation analyzes the relations between the
feature values and not the values themselves.

Missing Values

Feature vectors: The missing values within the instances also need to be
considered when applying the machine learning algorithm. In this example the
algorithm is based on the Euclidian distance. A simple method would ignore
the features with missing values when calculating the distance. Assuming the
distance between C6 and C7 is calculated, then the missing fertility value in C7
would cause the removal of the fertility feature for the calculation.
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Semantic Patterns: The handling of missing values is not required, since they
are simple ignored during the creation of the associative network. In contrast
to the raw feature vector representation, a feature value in a Semantic Pattern
is represented by the semantic relations to other feature values. Thus, when
calculating the similarity of the two countries C6 and C7, there is not need
to exclude the fertility rate feature as in the raw feature vector representation:
First, the other feature values of C7 contribute their information about the
relations to the missing fertility rate value and second, in C6 the fertility rate
feature also provides information about the other features in C6. This is a
significant difference to the similarity calculation of the raw feature vectors where
the fertility rate of C6 was also dropped. The additional semantic information
also provides an interesting opportunity for the application of semantic-aware
search algorithms.

2.4.5 Applying the Algorithm

Feature vectors: The algorithm is applied to the preprocessed feature vectors,
which are shown in Table 2.5.

Semantic Patterns: The algorithm is applied to the Semantic Patterns shown
in Table 2.3. In this case the dimensionality of the Semantic Patterns is equal
to those of the feature vectors. However, in general when numerical values are
used the number of dimensions is higher than that of the value-centric feature
vectors3.

2.4.6 Interpretation of the Results

After applying the unsupervised algorithm, the desired information can be ex-
tracted via the just found feature vector clusters and/or the trained model of
the algorithm. Depending on the employed algorithm the following information
can be extracted from the model: the cluster quality, the quantization errors
made by the cluster prototypes, the complexity of the model, information about
outliers, or the trained data in general. The nature and availability of this infor-
mation depends on the techniques the machine learning algorithm is based on.
Whereas some algorithm models allow the direct extracting of certain properties,
others require the application of further processing in order to gain the desired
information. The variation in the algorithm model structure is an obstacle when
analyzing data from heterogeneous domains. In order to avoid the model-specific
setups and adaptations, information can also be extracted by interpreting the
feature vectors or the Semantic Patterns, which are organized according to the
partitions created by the machine learning algorithm.

Feature vectors: When analyzing the feature vectors directly, several issues
need to be taken into consideration:

3In this example the numerical values were directly represented by the network nodes.
This was only possible because of the low number of feature values used by these features.
Typically, additional discretization operations would be required for mapping the numerical
values to network nodes.
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• The feature vectors represent the data after applying the required pre-
processing steps. However, in contrast to the Semantic Patterns the pre-
processed data does not contain any additional information like semantic
relations when compared to the raw data.

• Typically some normalization procedure was applied to the feature vectors
prior to the application of the machine learning algorithm. Thus, any
information extracted from the gained feature vector partition sets must
always be mapped back to the raw data contained in the feature vectors
and vice versa.

• The raw feature vectors must be transformed according to the capabili-
ties of the algorithm during the preprocessing operations. Therefore, the
procedure applied for the extraction of information must take the applied
transformations into consideration.

• When further analysis processes, such as search algorithms, the extraction
of relations within the analyzed data, or any other operation are required,
then these operations always need to be adapted to the data stored within
the feature vectors and must consider the differences between symbolic and
numerical data and possible value ranges.

Semantic Patterns: The interpretation and extraction of information from the
Semantic Patterns is a simple process that remains the same regardless of the
analyzed data. The common model and the simple interpretability are major ad-
vantages when compared to the specific analysis required for the interpretation of
the feature vectors or the trained models. Furthermore, the transformation into
Semantic Patterns enables the direct application of additional techniques, such
as semantic search algorithms without any additional data-specific processing
steps.

2.5 Chapter Conclusions

This chapter gives a high level overview of the Semantic Pattern Transformation
and the information contained in the Semantic Patterns. In summary, the shift
form the value-centric to the semantic representation comes with many advan-
tages for preprocessing the data and interpreting the results. The concepts and
ideas presented in this chapter will be discussed in detail in the remainder of
this thesis.





3
Knowledge Discovery and Machine

Learning

Knowledge discovery in databases (KDD) – also known as knowledge mining, or
data mining – is described in [24] as the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data. KDD
is a generic description of a process that is based on multidisciplinary areas such
as machine learning, statistics or artificial intelligence (AI), and is nowadays
widely deployed in scientific research and industrial processes. Regardless of
the utilized techniques, many different steps need to be applied to the raw data
before the end product – knowledge – is gained.

Especially, machine learning plays an important role within knowledge dis-
covery for a wide range of tasks including the extraction of unknown relations,
the unsupervised clustering of data, or the training of a classifier for identifying
distinct classes of data. Although the employment of machine learning algo-
rithms yields many benefits, quite a large number of domain and task-specific
procedures are necessary that require time-consuming setups. These setups
strongly depend on the desired knowledge, the nature of the input data and
the specific machine learning algorithms.

In order to understand the steps involved in a generic knowledge discovery
application, this chapter introduces two knowledge discovery models from the
industrial and academic sectors. The focus will then be placed on the relation
between machine learning and knowledge discovery by describing the processing
steps involved in the application of a machine learning algorithm. Finally, the
deployment of machine learning within knowledge discovery will be discussed and
the main obstacles for the utilization in heterogeneous domains will be identified.

35
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3.1 Knowledge Discovery

In this section the principle steps of generic knowledge discovery processes will
be explained on the basis of abstract knowledge discovery models. These models
provide a framework for the extraction of knowledge from arbitrary data sets. In
addition to these models, the knowledge discovery process will be further refined
by providing additional definitions that form the basis for the deployment of
machine learning algorithms within knowledge discovery.

3.1.1 Knowledge Discovery Models

The knowledge discovery process involves many different processing steps that
include the extraction of data, the selection of adequate algorithms, the trans-
formation of this data into a suitable algorithm-specific representation, the ap-
plication of the algorithm and the final knowledge extraction process. Due to
the large variability in the process structure, when used for different domains,
abstract models have beed defined that identify common procedures. Although
the details of the models depend on the targeted environment, they all address
similar problems. In the remainder of this section two important models from
academia and industry will be discussed in detail and further references to other
relevant models within the literature will be given. For a thorough discussion on
the well-known models we recommend reading Chapter 2 of [12] and the work
by Kurgan et al. [45].

Model According to Fayyad et al.

According to [12], the model introduced by Fayyad et al. in 1996 [24] is per-
ceived as the leading research model. Thereby, Fayyad et al. describe the generic
knowledge discovery process with nine steps that are applied whenever knowl-
edge from a specific domain data set needs to be extracted. These steps are
depicted in Figure 3.1 and described as follows:

1. Developing an understanding of the application domain: Prior
to the application of any algorithm for the extraction of knowledge, the
specific domain and its data must be understood. Furthermore, based on
the broader aim of the knowledge discovery process applied to the data,
the specific goals for the employed algorithms must be defined. This step
also includes the integration of prior knowledge, which might be available
from other sources.

2. Creation of a target data set: Based on the defined goals, a target
data set composed of the relevant variables is composed. Typically, this
extraction process is related to querying the data base that contains the
data set.

3. Data cleaning and preprocessing: This step applies the necessary
preprocessing steps for transforming the data into a representation that is
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suitable for the algorithms applied later. The principle procedures include
restructuring the data, applying normalization, handling missing values
and noisy data, and applying other transformation operations.

4. Data reduction and projection: Depending on the defined goals, spe-
cific variables contained in the data set are selected, extracted, or trans-
formed into an adequate representation.

5. Selection of a data-mining task: This step matches the goals – defined
in Step 1 – to a specific data-mining method such as clustering, training a
classifier, applying regression etc.

6. Selection of a specific data-mining algorithm: Depending on the
more general data-mining method, one of the many available algorithms
must be chosen. Among the pre-defined goals, the chosen algorithm de-
pends on the available data, the nature of the desired knowledge mining
tasks and the domain-specific environment.

7. Data-mining: The chosen data-mining algorithm is applied to the data
in order to extract information. The quality of the process and the ability
to achieve the previously defined goals strongly depends on the choices
made in the previous steps.

8. Interpretation: The results gained from the application of the data-
mining algorithm need to be interpreted in order to extract the desired
knowledge. The methodology used for the knowledge extraction process
strongly depends on the specific setup defined in the previous steps, and
especially on the models employed by the chosen data-mining algorithms.

9. Using the discovered knowledge: After making the appropriate choices
and successfully executing the previous steps, the extracted knowledge
represents the final product of the knowledge discovery process, or forms
the input for further operations.

Due to the well founded establishment of this model within the KDD area,
it will be used as a basis for the discussions in the remainder of this chapter.

Six-Step Model by Cios et al.

While the model of Fayyad et al. comes from an academic environment, the
five-step CRISP-DM knowledge discovery model [73] was specifically adapted
to address the requirements for knowledge discovery processes within industrial
environments. In order to combine academic and industrial aspects, hybrid
models have also been developed. An example for this category is is the model
defined by Cios et al. [61], which is comprised of six principal processing steps
that clearly indicate that the model inherited the industrial nature of CRISP-
DM:
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Figure 3.1: The knowledge discovery process defined according to the nine steps of
the Fayyad et al. model (left) and according to the six steps of the Cios
et al. model (right).

1. Understanding of the problem domain: In this initial step of the
project, the problem domain is investigated in detail, the key people are
identified and project goals are determined and then transformed into
knowledge discovery goals.

2. Understanding of the data: Here, the appropriate data is selected,
checked for various properties such as redundancy, missing values, com-
pleteness, and plausibility. After applying these processes, a verification
process ensures that the available data is useful for the knowledge discovery
goals determined in the previous step.

3. Preparation of the data: In this step, the available data is prepared
for the actual application of the specific knowledge discovery algorithms
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within the next step. The preparation procedures include the application
of various preprocessing steps for the selection and extraction of features,
the derivation of new features, the reduction of the dimensionality, the
cleaning of data, and the application of other procedures required by the
employed knowledge discovery algorithms.

4. Data mining: The knowledge discovery algorithms, which were selected
in the first step, are applied to the prepared data.

5. Evaluation of the discovered knowledge: In this step the results of
the knowledge discovery algorithms are evaluated. This evaluation process
includes the understanding of the results, determining whether the gained
knowledge is valuable, the interpretation of this knowledge by domain ex-
perts, and finally, understanding the impact of the gained knowledge.

6. Use of the discovery knowledge: The final step includes the utiliza-
tion of the gained knowledge within the defined project and the possible
application of the existing setup within other domains.

Other Models

Depending on the environment and the specific purposes various academic, in-
dustrial or hybrid knowledge discovery models have been developed. Within
the academic category the previously described nine-step model of Fayyad et al.
introduced in 1996, and the eight-step model of Anand et al. [2] and [3] intro-
duced in 1998, play the most important role. The CRISP-DM model is a pure
industrial standard and together with the academic models it forms the basis for
the definition of hybrid models that combine aspects from both environments.
The previously described model by Cios et al. [61], and the model introduced
by Cabena et al. [10] belong to this last category.

For an in-depth discussion and comparison of these models the reader is
referred to [12] and [45].

3.1.2 Knowledge Discovery Processes (KDPs) and
Knowledge Discovery Tasks (KDTs)

Based on the knowledge discovery model by Fayyad et al., an additional defini-
tion that describes a knowledge discovery task (KDT) is required to allow more
generic setups. Typically, when knowledge should be extracted from an arbi-
trary domain data set, multiple algorithms need to be applied in order to gain
the desired information. For each of these algorithms the steps defined within
the knowledge discovery model need to be applied. Based on these assumptions
the following definitions are made: The application of an arbitrary knowledge
mining algorithm and the setup of the necessary process steps according to the
knowledge discovery model is defined as Knowledge Discovery Task (further de-
noted as KDT). The application of one or multiple KDTs to extract the desired
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information from an arbitrary domain data set is combined within a Knowl-
edge Discovery Process, or KDP. The complete KDP is visualized in Figure 3.2
and includes the selection of a domain-specific data set, the definition of the
desired knowledge to be extracted (Knowledge discovery goals), the application
of multiple Knowledge Discovery Tasks (KDT) required for the extraction of in-
formation, the subsequent reasoning, and finally the appropriate representation
(Knowledge processing) of the gained knowledge. Thereby, the KDTs can either
be independent or arranged in a processing chain, where the output of a single
KDT or multiple KDTs is used as input for another KDT. The final output is
the gained Knowledge, which depends on the specific domain and the desired
information.

In order to avoid the adaptation of the process for each different domain, the
employed techniques should be as reusable as possible. However, the setup of
the KDTs within a KDP is domain-specific and needs to be adapted whenever
the nature of the data changes, even when the knowledge discovery goals remain
the same.

KDP

Knowledge discovery goals

Knowledge processing

Target data set

Preprocessing

Data extraction

Data mining method

Data mining 
algorithm

Knowledge extraction

Data mining

KDT

KDT

KDTKDT

KDT

Domain-specific data set

KDT
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Figure 3.2: A knowledge discovery process (KDP) for a domain-specific data set in-
volves the application of multiple knowledge discovery tasks (KDTs) that
may depend on the output of other KDTs.
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3.2 Machine Learning

This chapter focuses on the processing steps required for a typical machine learn-
ing setup. Thereby, an arbitrary machine learning algorithm will be seen as a
black box that takes data as input, analyzes this data by training a model, and
yields a certain result that needs to be interpreted for the extraction of knowl-
edge. This superficial view on the algorithms is adequate for the description of
the processing steps involved in a machine learning setup. For more details on
machine learning and the algorithms utilized in this thesis, the reader is referred
to Chapter 5 – Techniques.

3.2.1 Data

Prior to the application of a machine learning algorithm, the analyzed data must
be transformed into the appropriate representation. For most machine learning
algorithms this is the value-centric feature vector representation. Before going
into the details of this representation, a closer look at the nature of the data
needs to be taken.

Data Set

A domain-specific data set is the basis for the application of all machine learning
algorithms and contains data of arbitrary nature. Typically, before the appli-
cation of an algorithm, certain data needs to be selected, extracted and trans-
formed into a representation that is adequate for the applied machine learning
algorithm.

Raw Data or Variables

Before taking a closer look on how the data needs to be prepared prior to the
application of machine learning algorithms, the nature of the data itself needs
to be discussed. Thereby, the variables, which are used for the description
of arbitrary objects, can be assigned to various categories depending on the
nature of their corresponding values. In statistics, the differences between these
variables play an important role, since they influence the applicability of different
algorithms. The same applies to machine learning, where the choice of the
algorithm, the applied preprocessing steps, the possible data transformations,
and the applied knowledge extraction methods depend on the nature of the
data.

The following categorization shows the different categories of variables and
explains their differences. There are more detailed categorizations in the liter-
ature, but for the scope of this work the subsequent descriptions are sufficient.
For a discussion of this topic within a machine learning context we refer to Part
1 - Chapter 2 of the book Data Mining written by Witten et. al [90].

• Categorical variables: Variables of this category contain values that are
represented by distinct symbols. Such symbols could be names, labels,
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characters or even numerical values. The distinct property which clearly
separates those variables from numerical ones is not the nature of the values
itself, but the fact that the values of such variables cannot be put into a
relation via a distance measure. Thereby, two major groups of variables
can be defined:

– Nominal: The values of such variables can neither be related via a
distance measure nor can they be sorted. When looking at export
commodities such as iron, coffee or machinery it is not possible –
without taking any other information into account – to say whether
iron is closer to coffee or to machinery. In this case it also not possible
to rank the values.

– Ordinal: Ordinal variables contain values that cannot be related
via a distance measure, but the values themselves reveal their rank
within the variable. As example, the ordinal values low, medium and
high of a variable that describes the speed of a fan are considered: In
this case the values can be ordered but it is not possible to define a
meaningful distance between the values themselves: Is the distance
between low and medium smaller than between medium and high?
Also, the addition or subtraction of such values is not possible: Is the
result of adding low and medium equal to high?

• Numerical variables: The common properties among all numerical val-
ues and the further described sub-categories are the rank and the distance
properties. The first one, which is also fulfilled by the ordinal variables,
means that a feature value itself carries the information on how it is ranked
among the other feature values of the given variable. The second property
indicates that a meaningful distance can be calculated between the feature
values of a given feature.

These two properties are highlighted by the following example for a variable
that stores the elevation of a geographic location: In this case, the rank
property is fulfilled, because without any further information it can be
derived that an elevation of 1903 meters is higher than an elevation of
1666 meters. The distance property is also fulfilled, because a distance
between the evaluation values can be defined, and used to compare these
values: an elevation of 1473 meters is much closer to 1410 meters than it
is to 2007 or 1982 meters.

Other properties, such as the linear or nonlinear scale of a variable, or the
possibility to apply mathematical operations such as division or multipli-
cation depend on the exact nature of the variable.

– Continuous: Such variables contain real values that describe some
numerical aspect of an object. Examples are the values of a tempera-
ture sensor, the birth rate of a country, or the latitude and longitude
values of a geographical location. Thereby, the term continuous is a
very general term that can be categorized in further sub-categories
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such as interval scale or ratio scale variables. It is important to note
that integer based values, such as the number of wheels on a car, are
often associated with this category. However, in a mathematical sense
these values are not considered as continuous.

– Interval scale: Such variables are based on a linear scale and may
contain any real positive or negative values. Furthermore, a rank can
be introduced based on the values and the same importance of the
values is kept throughout the value range due to the linear property.
Another important aspect of interval scales is that multiplication and
division is not possible in the general case, which is highlighted by
another example for elevation values: In general, interval-based values
use a defined zero point. E.g., zero degrees Celsius or the elevation
at sea level, which is 0 meters. However, this zero point does not
indicate that there is no temperature or elevation at this level, it is
simple a point of reference. Therefore, when looking at the elevation
and taking sea depths into account one cannot say, that 200 meters of
elevation are twice as much as 100 meters, since the true zero point
is the maximum depth of −10924 meters at the Mariana Trench.
Further examples for intervals are temperature values or the years as
defined in a calendar.

– Ratio scale: In contrast to the interval scale, these variables are
based on a nonlinear scale. Otherwise the same properties hold. Ex-
amples are the exponential growth function of bacteria or the loga-
rithmic response to light of the human eye.

When transforming the data into a representation that is suitable for a ma-
chine learning algorithm, the category of each variable needs to be determined
in order to apply the appropriate preprocessing and transformation steps based
on the specific machine learning algorithm. For the further discussions in this
chapter and the Semantic Pattern Transformation, these definitions need to
be extended by introducing two further categories to which all of the different
variable-categories described above can be assigned.

• Symbolic variables (SF): These variables or features contain values
that cannot be put into a relation by applying a distance-measure. Thus,
the nominal and ordinal variable fall into this category. As example, the
feature values iron, fruits and coal of the feature export commodity are
considered. They cannot be brought into a relation by a simple distance
measure1. Although, one could still assign numerical values to the feature
values and calculate the distance, this would not result in a meaningful
relation.

1This would only work if we would use other aspects for describing these commodities: e.g.,
weight, density etc. However, here it is assumed that this data is not available and the values
themselves represent the only available information.
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• Distance-based variables (DF): The feature values of such features can
be brought into a relation by defining a distance-measure such as the Eu-
clidean distance. The previously described continuous, interval scale and
ratio scale variables belong to this category. Here, the most important as-
pect is not only the calculability of the distance between different values,
but the information conveyed by the calculated distance value. If the in-
formation carried by this distance is meaningful, the feature is considered
as distance-based. It is not possible to give a general definition of “mean-
ingful” since this depends on the nature of the data and the corresponding
domain. Thus, the terminology is highlighted with several examples: The
continuous feature unemployment rate which contains percentage-based
feature values can clearly be assigned to distance-based features since the
distance between values carries information about the relation between
different values: One can clearly say that an unemployment rate of 5% is
closer to 10% than it is to 30%. However, in certain cases the feature values
themselves might carry more information than could be expressed by the
distances between these values. A good example would be the number of
wheels of a vehicle. Here, the information whether a vehicle has two, four
or six wheels reveals much more information than the distance between
these values. For further details on this subject the reader is referred to
Section 6.1.1 of Chapter 6 – Semantic Pattern Transformation.

Features, Properties or Attributes

Within the physical world the previously discussed raw variables are properties
that describe certain aspects of arbitrary objects ranging from natural ones
such as plants or animals, over man-made ones such as cars or buildings, to
abstract concepts, such as countries or political parties. In machine learning
these properties are named properties, attributes or features. The latter – features
– will be used for the remainder of this thesis. In the context of features the
following concepts play an important role:

• Feature value: A feature value is an arbitrary numerical or categorical
value that describes some aspect of a feature. According to the previous
description this could be a numerical value like the unemployment rate of
a country or a temperature measurement of a sensor. It might also be a
categorical value like the name of an export commodity (e.g., iron), or a
single term within a textual description. Regardless of the value and its
type, the feature value gets a meaning when put into the context with a
feature that describes some aspect of an object.

• Feature: A feature is a property that describes some aspect of an arbitrary
object with one or more feature values. Typically, multiple features are
used for the object description. An example would be a country that is
described by various features such as export commodities, unemployment
rate, literacy and their corresponding feature values. The type of a feature
is characterized by its feature values and thereby can be assigned to either
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the symbolic or the distance-based category described previously in this
section.

Instances or Examples

An instance is any kind of entity within the data set that is described by sym-
bolic features, distance-based features or an arbitrary combination of both types.
Thereby, the number of features can vary from instance to instance and the same
features can be used multiple times within the same instance. An example for
instances would be the countries within the CIA World Factbook [11] that are
described by various symbolic and distance-based features such as population
size, language, unemployment rate or export commodity. Since a country exports
more than one commodity, the corresponding feature might occur multiple times
within the same instance. Due to missing values (e.g., the unemployment rate)
or non-existent properties (e.g., the length of the coastline), a feature might not
be present in all of the instances.

Extracting Data According to a Relation

An instance could also be defined as the collection of features that co-occur
according to a defined relation. Thereby, a relation could already exist due
to related properties used to describe an entity, or arbitrarily defined on the
data within a data set. Typically, when analyzing a data set, these relations are
already defined or can easily be derived. The hierarchy of the instance extraction
process is depicted in Figure 3.3, and Example 1 illustrates how data is arranged
within a data set.

Example I: Extracting instances from a data set containing
descriptions about the world’s countries

The following examples describes the aspects of feature values, features,
instances and relations. Demo Data Set 1 is a data set comprised of
various symbolic and distance-based features related to the world’s
countries. By applying a relation that combines features describing a
country, instances (countries) can be extracted from the data set. These
instances are described by multiple symbolic (e.g., export commodities)
or distance-based features (e.g., unemployment rate) with corresponding
feature values such as an unemployment rate of 10%, or the export
commodity iron.

3.2.2 Data Representation – Feature Vectors

Based on the definitions of feature values, features, instances and the high level
relations that extract data from a given data set, the basic representation used
for machine learning algorithms can be defined – the feature vectors. In this
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Figure 3.3: Hierarchy for the description of a domain-specific data set. The instances
are extracted from the raw data set according to a relation. Each in-
stance is described by various symbolic and/or distance-based features
that contain feature values. The feature values and features are the basic
components of the data set.

Country Coffee Cacao Machinery Chemicals Unemployment rate Fertility rate
C1 1 0 0 0 20% 5
C2 0 1 0 0 20% 5
C3 1 1 0 0 20% 5
C4 0 0 1 0 5% 2
C5 0 0 0 1 5% 2
C6 0 0 1 1 5% 2
C7 0 1 0 1 20% missing data
C8 missing datamissing datamissing datamissing data 20% 5
C9 1 1 0 0 missing data missing data

Table 3.1: The feature vectors representing the country instances of the demonstra-
tion data set used in Chapter 2 – Semantic Patterns – At a Glance. Each
vector contains the same number of features, which remain at the same
indices within the instance set. The feature values of the various features
are stored within the elements of the feature vectors.
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representation the instances, which are extracted via an arbitrary relation, are
represented as vectors that contain the describing features and their feature val-
ues. Thereby, each element of a feature vector corresponds to a feature and
contains the feature value that is used for the description. The position or the
index of each feature within the vector must remain the same over all instances
that are represented as feature vectors. As example, the feature vectors de-
scribing the countries of the demonstration data set from Chapter 2 – Semantic
Patterns – At a Glance are shown again in Table 3.1.

Unfortunately, this commonly used feature vector representation is the main
obstacle when deploying the same machine learning scheme within multiple do-
mains.

3.2.3 Machine Learning Setup

Before machine learning algorithms can be applied, the data needs to be trans-
formed into a feature vector representation. Thereby, the processing steps dis-
cussed in this section depend on the nature of the data, the capabilities of the
specific algorithm, and the desired knowledge that should be extracted by the
machine learning algorithm.

In [42], Kotsiantis et al. give a detailed presentation of the preprocessing
steps required for the application of a supervised learning algorithm. Although
the authors focus on the supervised nature of a machine learning algorithm,
many of the explained preprocessing steps are also applicable to other learning
scenarios, such as unsupervised clustering or extracting information about the
relations between features and feature values. In order to provide a more generic
machine learning model, the remainder of this section summarizes the principle
operations presented in [42] and adds further processing steps. The resulting
machine learning model is depicted in Figure 3.4.

Domain-Specific Data Set

Similar to a more general knowledge discovery process, an arbitrary domain-
specific data set forms the basis for all further tasks required for the application
of a machine learning algorithm. The nature of this data and the aspects covered
by the data set form the basis for all further steps. Thereby, the data set could
be an existing source of data, or the result of a specific data collection operation
that was initiated due to the definition of arbitrary machine learning goals.

Machine Learning Goals

Prior to the selection of features and instances from the domain-specific data
set, the goals of the machine learning scheme must be defined. In principle
these goals define which knowledge should be gained by the application of the
machine learning algorithm. Thereby, they could range from training a super-
vised classification algorithm, over the application of unsupervised learning for
retrieving clusters of related concepts, to any arbitrary analysis that retrieves
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Figure 3.4: Machine learning model based on the processing steps defined by Kot-
siantis et al. [42] and extended by further steps in order to cover different
machine learning schemes.

hitherto unknown relations from the data set. Thus, the definition of the goals
also determines the required algorithm families. The process of selecting specific
algorithms from the chosen families needs to take place in a later step, because
this choice depends on the nature of the data contained in the selected features.

The goal finding process is a vital basic step that influences all further choices
including the specific machine learning algorithm, all preprocessing steps re-
quired to transform the data into an algorithm-specific representation and the
employed method for extracting information from the trained algorithm model.
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Instance Extraction

After defining the desired knowledge, and thereby the project goals, the available
data must be transformed into the feature vector representation required by the
employed machine learning algorithms. In order to do so, a relation must be
defined on the existing data, that extracts instances from the raw data (e.g.,
country descriptions as in Example 2). These instances contain the feature and
their feature values, which are later used for the training of the employed machine
learning algorithm.

Example II: Defining relations on a data set containing infor-
mation about the world’s countries.

Assuming a data set that contains the raw data of the world’s
countries, relations can be defined on this data in order to extract
instances for the subsequent application of the selected machine learning
algorithms. The most obvious relation in this case would be an operation
that extracts the country instances, which are described with features
such as population count, unemployment rate or export commodities.
However, other relations that group the available data into other
instance sets are also possible. An example would be a relation that
extracts instances for the world’s continents, and thereby combines
all the features and feature values of the countries located on a given
continent.

Feature Selection

This process selects and extracts features that are considered as relevant for
the extraction of the desired knowledge, and removes other non-relevant or re-
dundant features. Thereby, the number of features, which corresponds to the
dimension of the later used feature vectors, should be kept as small as possible
due to the accompanied decrease in computational complexity and the increase
of the expected quality of the trained model.

The feature selection process can either be focused on single features that
are either removed or selected depending on their relevance for the desired in-
formation, or on subsets of different features that are selected according to their
relations. In the latter case, e.g., redundant features that are strongly correlated
could be removed. Many different simple and sophisticated feature selection
algorithms exist and their application depends on the available data and the
desired information. Although parts of the selection process can be automated
via feature selection algorithms, in most cases the manual selection of features
according to the available data and the defined machine learning goals still plays
a significant role.
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Feature Construction

In this step, new features are constructed on the basis of existing features as
highlighted by Example 3. Basically, any operation that uses some existing
information as input and yields a new feature as output can be utilized here.
Typically, such operations need to be defined manually by the domain experts.
However, in certain cases the construction of new features can also be automa-
tized by employing algorithms that use the information contained in the existing
features and create new features based on this information. Examples for such
algorithms are the GALA and the FICUS algorithms [37], [56].

Example III: Feature construction.

Given the numerical features population count and television sets
used for the description of a country, then a new feature television sets
per 1000 people could be easily constructed by dividing the number of
television sets by the population count and multiplying the result with
1000.

Instance Selection

After selecting the available features, constructing new ones and arranging them
into instances, an instance selection process is typically applied to create the in-
stance set that is used as input for the later applied machine learning algorithms.
It is important to note that this selection process is not related to the relation
for extracting the basic instances as discussed in the previous Instance extrac-
tion step (e.g., by extracting only European countries). Instead, this selection
process focuses on the filtering of instances that contain obvious irrelevant or
corrupt data, outliers, or duplicate instances, and deals with instance sets that
have imbalanced class distributions. The latter case plays an important role
during the training phase of a supervised learning algorithm.

The application of the instance selection processes depends on the machine
learning goals, the employed algorithms and the nature and the quality of the
data. Thereby, the process may include operations based on simple methods
that filter instances according to their contained data, or more sophisticated
operations: Examples for the latter are statistical methods for discovering feature
values that do not fit into the probability distribution defined by the other values,
or unsupervised algorithms that are applied to the instances for the identification
of outliers.

The instance selection process does not play an important role within the
context of Semantic Patterns.

Algorithm Selection

Depending on the machine learning goals and the thereby required algorithm
families, specific machine learning algorithms need to be chosen. Although,



3.2. Machine Learning 51

many machine learning algorithms are available within an arbitrary family, a
careful choice must be taken that takes various properties of the data and the
desired knowledge into account:

• Nature of the data: The nature of the features and feature values con-
tained in the to-be-analyzed instances has a major influence on the algo-
rithm selection process. Certain algorithms cannot handle categorical or
numerical data, require a certain structure within the data, or have a bad
performance on certain kind of data. In order to cope with the limita-
tions of a selected algorithm, transformation operations can be applied to
the data. However, such operations might be complicated or even cause a
degradation of the data quality. An example would be a transformation of
numerical values into categorical ones, also known as discretization, when
an algorithm is used that is only capable of handling the latter category.
Here, the distance information contained in the numerical values is lost
during the transformation.

• Algorithm model: Although many algorithms achieve the same principle
goal – e.g., the unsupervised clustering of data – the employed techniques
and thereby the algorithms models are quite different. The nature of the al-
gorithm model strongly influences the knowledge extraction methods that
need to be applied at the end of the machine learning processing scheme.
Certain models are easier to interpret than others, or enable the extraction
of specific information.

• Desired knowledge: The type of knowledge that should be gained af-
ter the application of the machine learning algorithm must carefully be
analyzed before an algorithm is chosen, because the available knowledge
depends on the employed algorithm and its specific model. When a clus-
tering algorithm shall be applied in order to find anomalies within the
data, certain algorithms might be better suited than others depending on
the employed techniques and models.

The selected algorithm family and the specific algorithm have a strong in-
fluence on all subsequent steps prior to the application of the machine learning
algorithm. In order to apply the appropriate preprocessing steps one needs to
know exactly which model the selected algorithm employs, which data it can
handle and which limitations it has.

Nowadays, there is a vast number of machine learning algorithms that are
based on different techniques and have been adapted according to the require-
ments of different environments. A good overview on the most important ones
is given in [90]. The algorithms that play a role within this thesis are discussed
in Chapter 5 – Techniques.

Preprocessing – Data Transformation

Most machine learning algorithms are able to handle only categorical or numer-
ical values. Thus, depending on the data and the selected algorithm, categorical
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values must be transformed into numerical ones or vice versa.

Furthermore, special care must be taken when the number of features is
not constant over the extracted instances. Thereby, a feature might not occur,
occur once or multiple times within each of the analyzed instances. One needs to
make sure that this is represented adequately in the feature vector representation
needed for the machine learning algorithm.

In contrast to the direct representation of distance-based values within a
feature vector, transformations must be applied to categorical values. Here, an
example would be the bag-of-words model that is widely used within text analysis
but can also be extended to other categorical data. Thereby, an element for each
feature value of a given categorical feature is created within the feature vector
and the absence or existence of the feature value is marked via a numerical value.

Regardless of the applied transformation operations, they must always be
chosen and adapted in concordance with the selected machine learning algorithm.

Preprocessing – Handling of Missing Feature Values

Within the feature vector representation, the number of features and their po-
sition within the feature vector need to be constant within the set of analyzed
instances. However, quite often features are missing within a subset of the
analyzed instances. Thereby, the term missing refers to several possible expla-
nations: First, the feature is not appropriate for the given instance, second,
the corresponding data is not available due to errors in the data set, damaged
sensors etc., and third, the value of a feature does not play a role within the
analysis. While the first case is already covered by the previous data trans-
formation step, the other cases are related to missing values that need to be
considered. The reason why the missing values cannot be left within the data,
is that the employed machine learning algorithm typically is not able to handle
them.

Thus, there are various strategies that deal with missing feature values, which
are summarized by Kotsiantis et al. [42]:

• Removal of the instances with missing feature values: While this is the
simplest approach, it also removes the information contained in these in-
stances. This might have a negative influence on the quality of the results,
especially when small data sets are analyzed.

• Replacement of the missing values with the most common feature value of
the corresponding feature: This can either be seen in the context of all
instances or only for the class the instance with the missing value belongs
to. Obviously, the last method is only relevant when class information is
available.

• Replacement of the missing value by the mean value of all feature values of
the corresponding feature: Again, this can also be seen within the context
of all instances or within the class of the instance with the missing value.
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• Retrieval of the instance that has the largest similarity with the instance
that contains the missing value: The missing value is then replaced with
the feature value from the retrieved instance.

• Treatment of missing values as special values: For categorical values a new
feature value “missing” could be introduced.

As discussed in the next chapter, the need to handle missing feature values is
caused by the value-centric representation that forms the basis of the commonly
used feature vectors.

Preprocessing – Data Normalization

Within machine learning algorithms feature vectors are typically related via
some kind of distance measure. Thereby, when multiple numerical features are
used for the description of an instance, their value ranges typically diverge and
therefore have a different influence on the distance calculated between two fea-
ture vectors. These differences can also be compared to weights that correspond
to the relevance of the features. Especially in unsupervised learning no addi-
tional information such as class labels is available that might help the algorithm
during the training phase to determine the importance of each feature within
the available feature vectors. Therefore, normalization procedures need to be
applied that aim to equalize the influence of different numerical features on the
distance calculation.

However, normalization does not consider other available information about
the importance of features that could be used to emphasize certain features
while attenuating others. Even if such information is available, the assignments
of appropriate weights to the features and their values is no straight-forward
process.

Algorithm Application

In this step the machine learning algorithm is finally applied to the feature vec-
tors representing the instances. Depending on the algorithm family, specific
modes of training might be necessary that use different subsets of the available
feature vectors for algorithm training and for evaluating the results. The de-
scription of these schemes is beyond the scope of this thesis and the reader is
referred to e.g., [9].

Interpretation

The trained model of an arbitrary machine learning algorithm forms the basis
for extracting and interpreting the knowledge that was defined in the second step
(Machine learning goals). Although there is a wide range of algorithms that in
principle yield the same results, the employed models often are based on distinct
techniques. Therefore, the knowledge extraction and interpretation procedures
must be adapted to this model. Also, the availability of information depends on
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the employed model and cannot be guaranteed for all algorithms within a given
family. Due to these reasons, the specific choice of the machine learning algo-
rithm in the step Algorithm selection must take the previously defined machine
learning goals into consideration.

3.3 Machine Learning and Knowledge Discovery

In Figure 3.5 the knowledge discovery process based on the Fayyad et al. model
is compared with the typical processing steps required by a machine learning
algorithm. As the visualization indicates, many of the operations from knowledge
discovery can be directly mapped to operations from machine learning. This is
not surprising since the previously discussed knowledge discovery models are
generic ones that cover all possible techniques and algorithms employed in a
KDP. The application of machine learning is merely one of many methods that
can be applied within knowledge discovery.

Similar to the previously defined knowledge discovery task (KDT), a ma-
chine learning based knowledge discovery task (ML-KDT) can be defined that
represents a module within a complete KDP process as it was already depicted
in Figure 3.1. This figure has been adapted to machine learning in Figure 3.6.

3.4 Deployment in Heterogeneous Domains

The deployment of a KDP characterized by the domain and the knowledge dis-
covery goals requires various processing steps. Unfortunately, many of these
steps require manual interactions and adaptations that require a large effort
and need to be changed whenever the nature of the analyzed data or the goals
change. Furthermore, in a typical scenario the setup even needs to be changed
even when the defined goals remain the same, but only the nature of the input
data changes. The following summary is based on the processing steps discussed
in this chapter, and identifies the main obstacles in the heterogeneous application
of the same KDP within multiple domains:

• Specific setup for each algorithm: The choice of the algorithm depends
on the nature of the data and thereby on the domain. I.e., some su-
pervised and unsupervised algorithms were developed only for continuous
data, while others can only be applied to categorical data and the ap-
plication to mixed data requires preprocessing of the data. Furthermore,
certain algorithms require different normalization steps in order to work
correctly.

• Need for an interpretable model : Given a data set from a specific domain,
the analysis must be based on the best available algorithm for the de-
sired knowledge mining tasks. However, for the extraction of meaningful
knowledge, the applied algorithm also needs to employ a model that is
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Figure 3.5: This figure compares the KDP model (left) to a machine learning scheme
(right). The connections indicate how the processes of both models are
related. Although the order and the specific names of the processing
steps differ, they both represent the same tasks on an abstract level.
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Figure 3.6: The KDP model adapted to incorporate machine learning based knowl-
edge discovery tasks (ML-KDT).

easy to interpret. Depending on the desired knowledge and the appro-
priate algorithms, a good balance between these two – often conflicting –
requirements must be found.

• Domain-specific issues: Typically, different knowledge mining tasks require
a specific setup, which includes choosing a specific algorithm, preprocessing
the data according to the algorithm requirement and devising a method
that extracts the desired knowledge from the generated model. Since the
complete knowledge discovery process within a given domain and data set
typically involves multiple of such heterogeneous knowledge mining tasks,
much effort must be placed into the specific setup of each algorithm. When
additional tasks are added, this setup process needs to be repeated due to
the general incompatibility of preprocessing steps, the employed algorithms
and the trained models.

• Non-extensibility : The previous issue also implies that existing knowledge
mining tasks cannot be easily extended to cover other aspects of knowledge
extraction. Therefore, simple additional requirements might cause time-
costly changes in preprocessing steps and algorithms.

3.5 Chapter Conclusions

This chapter first discusses generic models for knowledge discovery processes
(KDP), which consist of one or multiple knowledge discovery tasks (KDT) that
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are either independent from each other or use the output of other KDTs as input.
Second, the application of a machine learning scheme and the required process-
ing steps are discussed in relation to the deployment within KDPs. Especially,
when data of heterogeneous domains is analyzed, many of these processing steps
and the employed algorithms must be adapted to the existing data and desired
knowledge. This is a rather time-consuming setup, which includes the adapta-
tion of many steps which limits the heterogeneous deployment of KDPs. In the
next chapter the value-centric feature vector representation will be identified as
the main reason for the required setup changes, and the shift towards a semantic
representation will be motivated.





4
Towards a Semantic Representation

The integrating of machine learning procedures into heterogeneous Knowledge
Discovery Process (KDP) enables highly sophisticated analysis process. Unfor-
tunately, the setup procedure for such KDPs heavily depends on the domain-
specific data set, the desired information and the employed algorithms, which
significantly limits the reusability of existing setups.

In this chapter, the domain-specific setup procedure and the associated pro-
cesses will be analyzed in respect to the complexity of the required adaptations.
Based on this analysis, the core issue – the value-centric representation of feature
values within the feature vectors – will be identified, and the benefits of shifting
to a semantic representation will be discussed. The principles behind this se-
mantic representation form the basis for the Semantic Pattern Transformation.

4.1 Analysis of the Processing Steps

The application of a machine learning algorithm within knowledge discovery
requires the application of many preprocessing steps. In this section, these steps
will be discussed in the context of the adaptations that are necessary when the
domain data set, or the knowledge discovery goals change.

4.1.1 Complexity of the Required Adaptations

In Figure 4.1 the basic processing steps of a machine learning based knowledge
discovery task (ML-KDT) are depicted. These steps are subject to adaptation
when changes are made to the machine learning setup. The complexity of these
adaptations is indicated by the following colors: green (low complexity), yellow
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Figure 4.1: The effort required to adapt the processing steps for heterogeneous do-
mains. The complexity of the first two steps is not considered, because
they need to be defined manually and describe the basic environment for
the complete process.
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(medium complexity), and red (high complexity). Thereby, the first two steps –
the selection of the domain-specific data set, and the definition of the machine
learning goals – are not taken into consideration, because they form the basis
for arbitrary knowledge extraction procedures and need to be defined manually
per default.

• Data: The analyzed data changes when different aspects of the same
domain data set need to be analyzed, or when another knowledge discovery
domain is investigated.

• Goals: Here, the analyzed data remains the same, but the machine learn-
ing or knowledge discovery goals are changed. Typically, these changes
lead to significant setup adaptations including the selection of a different
algorithm family and the associated algorithms, the adaptation of the data
preprocessing and transformation steps, and the required transformation
of the final knowledge extraction process.

• Instance Extraction (high): In general, the process of defining a re-
lation, which combines the features into instances, is a manual operation
that needs to be adapted to the domain data set and the machine learning
goals. In some cases the data set is already organized in a way that enables
the direct extraction and use of the appropriate instances, but this is not
the typical scenario. Furthermore, after defining the relation, a specific
instance selection process might be applied that extracts a subset of the
instances according to some defined aspect. Examples are the filtering of
outliers, the focus on a certain class of instances, or the application of any
other filter that is chosen according to the defined machine learning goals.
Although certain aspects, such as outlier detection can be automized and
probably do not need to be adapted when the setup changes, most of the
applied operations still need to be executed manually.

• Feature selection/construction (medium): For the typical applica-
tion, some of the feature selection processes can be automized due to tech-
niques that automatically identify the relevance of certain features (e.g.,
the Principal Component Analysis [74]). However, the manual selection
still makes sense, especially when a priori domain knowledge is available.
The feature construction process can be partly automatized but is largely
based on manual operations. However, this process is not always required,
which justifies the assignment to the medium complexity category.

• Algorithm selection (high): The selection of a machine learning al-
gorithm strongly depends on the analyzed data and the defined machine
learning goals. Therefore, this process needs to be adapted whenever the
setup changes.

• Preprocessing (high): Preprocessing and data transformation are also
highly domain-specific, because they need to be adapted to the data and
the selected algorithm.
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• Algorithm application (low): The setup for the application of the algo-
rithm largely consists of the preprocessing steps that need to be applied to
the data in order to provide the correct structure for the algorithm. How-
ever, the application of the algorithm typically does not require complex
manual interactions or setup procedures.

• Interpretation (high): The interpretation of the results strongly de-
pends on the data, the deployed algorithm and the defined machine learn-
ing goals and, thus, is considered to require significant manual effort when-
ever the domain changes.

4.1.2 Reasons for the Adaptation Complexity

This section takes a closer look on the processing steps that require complex
adaptations when the setup changes, and identifies seven specific Reasons for
this complexity.

Algorithm Selection

The selection of the algorithm plays a decisive role in the quality of the results
gained by the application of a knowledge discovery process. Thereby, two issues
need to be taken into consideration during the selection process: First, the
selected algorithm influences all the preprocessing steps and the final knowledge
extraction step, which all need to be adapted according to the capabilities and
properties of the selected algorithm. Second, the defined knowledge discovery
goals and nature of the analyzed data place bounds on the algorithm selection,
which must be considered.

The first issue causes the required adaptation of the subsequent processing
steps and thus induces a significant part of the setup complexity. The second
issue causes the requirement to select different algorithms, even when only the
analyzed data changes, but the knowledge discovery goals remain the same.
When analyzing these two issues, the first two Reasons are identified:

• Reason 1 – Nature of the data: The analyzed data is comprised of
instances described with numerical and/or categorical features. Thereby,
the composition of these features – only numerical features, only categor-
ical features, or a mixture of both types – requires the selection of an
adequate algorithm that is capable of handling the available data. Be-
fore the algorithm can be applied, the data must be transformed into the
common feature vector representation (discussed in Reason 3 ), which is
only capable of representing numerical values. Thus, when categorical fea-
tures are present within the data set, they need to be transformed into
a numerical representation. Unfortunately, in reality there is no perfect
numerical representation of categorical features within the value-centric
feature vector representation. A good discussion on the issues that oc-
cur when handling categorical data is presented in [33], where Guha et al.
present the unsupervised learning algorithm ROCK, which is capable of
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handling categorical data. When an appropriate choice has been made,
the analyzed data needs to be processed according to the requirements of
the selected algorithm, which is described in Reason 3.

• Reason 2 – Suitability of algorithm model for knowledge discov-
ery: Machine learning algorithms, even when they belong to the same
algorithm family (e.g., supervised learning), are based on different tech-
niques which influence the aspects of the algorithm model. Thereby, the
ability to extract certain type of knowledge from a given model might be
subject to strong limitations or at least requires the application of very
specific extraction processes, whose complexity depends on the nature of
the model. Due to this limitation, a careful choice must be made in order
to achieve the defined knowledge discovery goals. Details on the algorithm
specific knowledge extraction processes are given in Reason 7.

Preprocessing – Data Transformation

After selecting an appropriate algorithm, the available data must be transformed
into an adequate feature vector representation that can be handled by the algo-
rithm. Thereby, the following two Reasons need to be considered:

• Reason 3 – Representation of categorical and numerical features:
The difference in the capabilities of machine learning algorithms to handle
categorical and numerical features has a major influence on the algorithm
selection process, as discussed in Reason 1. When a certain algorithm has
been chosen according to the nature of the data, a feature vector repre-
sentation adapted to the algorithm must be found for the categorical and
numerical features. While in most cases the feature values of numerical
features can directly be mapped to the value-centric feature vector repre-
sentation, data and algorithm-specific transformations need to be applied
to the categorical features.

• Reason 4 – Variability in the number of features describing the
instances: The feature vector representation requires that each instance
is described with the same number of features, which must remain at the
same position for the complete instance set. However, not all objects rep-
resented as instances can be described directly in this way. Some features
might only be present within certain instances and absent within others.
Furthermore, features might occur more than one time in one instance.
This variability could be related to missing values, but in the most cases
is caused by the nature of the properties use to describe the instances.
Regardless of the cause, an adequate transformation needs to be applied
in order to make the description compliant with the feature vector repre-
sentation.
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Preprocessing – Handling of Missing Values

Even when the number of features is constant or an adequate feature vector
representation has been found for instances with different number of features,
there is still the possibility of missing values.

• Reason 5 – Handling of missing values: Missing values must not
be confused with values that are not present, because their corresponding
features or properties are not needed, or are not valid for the described
object. The fact that a country does not export iron is not considered as
a missing value. However, the non-availability of data due to errors, or
not capturing the data during the data extraction process, are considered
as missing values in this context. In the first case, the information that
a property is not available needs to be addressed by the transformation
operations. In the second case, the information is simply not present and
some way of representation needs to be found for the feature vectors. The
selection of one of the available methods discussed in the previous chapter
is a manual process and depends on the environment defined by the data
and the machine learning goals.

Preprocessing – Data Normalization

The requirement to normalize the feature values and thereby equalizing the
influence of the features contained in an instance is a mandatory step in most
of the machine learning setups. The rationale for this requirement is based on
the value-centric feature vector representation:

• Reason 6 – Data normalization: The value-centric feature vector
representation is based on numerical values, which are either directly ex-
tracted from numerical features, or are the result of applying transforma-
tions to categorical features. Since these feature values are stored in the
vectors, their different value ranges have a direct influence on the similarity
calculation employed by machine learning algorithms (especially within un-
supervised algorithms). In order to equalize this influence, normalization
operations need to be applied. Although some default operation could be
applied to arbitrary feature vectors, better results typically can be achieved
when the strategies are chosen manually according to the analyzed data
and the selected algorithms.

Interpretation

In order to extract knowledge after the application of a machine learning algo-
rithm, the algorithm model needs to interpreted. Unfortunately, this interpreta-
tion process heavily depends on the selected algorithm and the thereby utilized
model.

• Reason 7 – Model dependent knowledge extraction: Depending
on the model employed by the algorithm, limits are placed on the possi-
bility to extract information after training the model. As example, the
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kernels employed by Support Vector Machines [13] are more difficult to
interpret than the model used for the Self-Organizing Map [39], which was
specifically designed for the visualization of high-dimensional data.

Due to these limits, the interpretation of the results can also be shifted
from the models to the actual feature vectors. The application of a ma-
chine learning algorithm typically assigns the analyzed feature vectors to
different categories or groups. By focusing the analysis on the properties
of the feature vectors within these groups, the possible complex processing
and interpretation of the algorithm models can be avoided. However, due
to the structure of the feature vectors, the extraction of knowledge is not
straightforward and multiple issues need to be considered: First, due to
the transformation and preprocessing steps applied to the feature vectors,
some kind of mapping operation needs to be applied that translates the
information back to the original contained information. Second, only the
feature values of the features are contained in the feature vectors. There
is no additional information on the relation of these features or values,
and thus further processing is required in order to gain such information.
Third, transformations from categorical into numerical values and vice
versa need to be considered when interpreting the results. Finally, if
further information needs to be extracted via additional processing op-
erations, then again, specific adaptations need to be applied in order to
format the input accordingly.

4.1.3 Adaptation Complexity – Summary

These seven Reasons can be assigned to five main issues that cause the require-
ment to adapt the processing steps:

• Nature of the data – numerical and categorical features: Reason
1 in Algorithm selection and Reason 3 in Preprocessing – Data transfor-
mation

• Model and data dependent knowledge extraction and interpre-
tation process: Reason 2 in Algorithm selection and Reason 7 in Inter-
pretation

• Variability in the number of features describing the instances:
Reason 4 Preprocessing – Data transformation

• Handling of missing values: Reason 5 in Preprocessing – Handling of
missing values

• Data normalization to cope with different value ranges: Reason 6
in Preprocessing – Data normalization

When looking at Figure 4.1, there are further three processing steps that were
not discussed discussed in this analysis: Instance extraction, Feature selection
and construction, Instance selection and Algorithm application. Thereby, the
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last one – Algorithm application is not discussed, because the pure application
of the algorithm is for the most part not domain-specific. The important adapta-
tions are already covered by the preceding preprocessing operations. The other
processing steps are not relevant for the discussions due to another reason: The
Semantic Pattern Transformation introduced in this thesis, cannot simplify or
remove the adaptations required for these steps.

4.2 The Value-Centric Representation

By analyzing the seven reasons for the adaptation complexity of the processing
steps, several core issues can be identified that are based on the value-centric
feature vector representation.

• Independence of the feature values: The value-centric representation
stores the feature values independently of each other. By looking at a fea-
ture vector alone, the relations between features and feature values are not
revealed. Thus, additional operations such as calculating the correlation
between features are required to reveal these relations.

• Numerical representation: The value-centric representation can only
handle numerical values. Thus, categorical features and their values must
be transformed into numerical ones prior to the application of a machine
learning algorithm. The simplest transformation process just assigns nu-
merical values to the categorical feature values. However, this represen-
tation is problematic since categorical values, which cannot be related via
distances, are then simply transformed into a numerical representation for
which the distance calculation is still applied within the machine learning
algorithms. In order to cope with this issue, typically one dimension is
used for every categorical feature value and its number of occurrence or its
absence is represented with numerical values. However, this still requires
special distance measurements that take the categorical nature into ac-
count. Unfortunately, when categorical and numerical features are mixed,
then the deployment of distance measures applicable to the categorical
parts may not be beneficial for the numerical values or vice versa.

• Different meaning of the values: Even when only numerical features
need to be represented as feature vectors, and the problem imposed by
the transformation of categorical values into numerical ones can be safely
ignored, there is still a fundamental problem: The values stored in the vec-
tors are only meaningful when viewed in context with their corresponding
feature. Thus, two feature values of different features cannot be compared
in theory because they represent different properties. However, despite this
incompatibility the values are still combined when calculating the distance
between two instances. Thereby, the different value ranges are compen-
sated by equalizing them with normalization operations. These removes
the imbalanced influence of different features, and allows the combination
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of all feature values within distance calculation operations. However, two
issues remain: First, this equalization of the weights is still arbitrary since
it does not represent the real relevance contributed by the features and
their relation to others, and second, the values are combined within the
distance calculation, although they might represent completely different
properties.

• Meaning of the representation: When looking at the data within a
feature vector, the size of the feature values and their meaning can only
be understood within the context of the specific machine learning setup.
Similar, the feature value itself is only meaningful when the corresponding
feature is known, and in general has a completely different meaning within
another feature. In addition, since different numerical values and categor-
ical values are represented within a feature vector, various preprocessing
and transformation steps need to be applied to the features. Thus, the in-
terpretation of the feature vectors must always be seen within the context
of the whole machine learning setup.

In summary, these four main issues may lead to the requirement for the
manual adaptation of many processing steps once the domain changes.

4.3 The Semantic Representation

As a main contribution of this thesis, a new semantic representation is presented
that shall overcome the problems of the discussed value-centric feature vectors.
This semantic representation is still compatible with the standard feature vector
representation and removes the need for many manual operations within the
processing steps of a machine learning scheme. In this section, the key properties
and benefits of this semantic representation will be discussed without going into
the technical details of the required transformation steps, which will be covered
in the following two chapters.

4.3.1 Basic Idea and Properties

The principle idea behind the presented semantic representation is based on the
information gained by the semantic analysis of the features and feature values
contained in the analyzed instances. Thereby, two feature values are considered
to be semantically related when they co-occur within an instance. The number
of the co-occurrences over the complete set of analyzed instances defines the
strength of the semantic relation.

This new representation comes with the following properties that have a
significant influence on the processing steps of the machine learning setup.

• Feature vector representation: The semantic representation is still
compatible to the standard value-centric feature vector representation.
This is vital for the application of standard machine learning algorithms
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since they all require that the input data is represented as feature vectors.
Therefore, in the following discussions the feature vectors of the semantic
representation will be referred to as semantic feature vectors.

• Common representation: The semantic feature vectors are the result
of applying a transformation operation to the value-centric feature vec-
tors. The semantic feature vectors represent all types of features and their
combination within the given instances. This new representation is based
on the analysis of the semantic relations between the features and their
feature values. Thereby, the semantic feature vectors fulfill the following
three core properties:

1. Numerical values: All features – even categorical ones – and their
values are represented as pure numerical values within the semantic
feature vectors after applying the transformation operation. Thereby,
the transformation ensures that the numerical values can be related
via distance measures, which is not the case for the value-centric rep-
resentation of categorical values within the standard feature vectors.

2. Same meaning: All elements of the semantic feature vectors are of
the same nature and convey the same information. This is in stark
contrast to the value-centric feature vector representation.

3. Similar value ranges: As a consequence of the previous property,
all elements of the semantic vectors have similar value ranges.

• Semantic relations: The semantic vectors contain information that
describes the semantic relations between the represented feature values.
This is also a significant difference to the value-centric feature vectors
where each feature is considered as independent. In the semantic repre-
sentation, a single feature value is represented with a semantic fingerprint
that describes the strength of the relation to other feature values.

The next chapter will give a detailed description of the process that trans-
forms the value-centric feature vectors into the semantic feature vectors.

4.3.2 Influence on the Machine Learning Setup

The described properties of the semantic representation have a significant in-
fluence of the machine learning setup, and remove the need for many manual
operations, which results in the simplification of the required processing steps.
These differences are depicted in Figure 4.2.

• Preprocessing – Data transformation: The definition and application
of manually defined transformation operations based on the nature of the
analyzed features and the selected algorithm is not required. Instead, one
generic transformation is applied in order to transform instances described
by arbitrary numerical and/or categorical features into generic semantic
feature vectors.
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Figure 4.2: Differences between the adaptation complexity required for value-centric
feature vectors and semantic feature vectors.

• Preprocessing – Data normalization: The semantic feature vectors
consist of numerical values only, which have similar value ranges. Thus,
normalization operations are not required.

• Preprocessing – Handling of missing values: The transformation
process analyzes and stores the semantic relations between feature and
feature values. Due to the availability of this additional information, miss-
ing feature values do not need to be handled, because their information is
automatically reconstructed within the transformation process by utilizing
the semantic relations between the feature values.

• Interpretation: The semantic feature vectors can be directly interpreted
without the need to specially adapt the process according to the algorithm
model or the represented features. Thus, one common knowledge extrac-
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tion method can be deployed which is capable of extracting information
regardless of the analyzed features and employed algorithms.

• Algorithm selection: Due to the common numerical representation of
the semantic feature vectors and their simple interpretation, the selection
of the appropriate algorithms is significantly simplified. In general, a single
algorithm per algorithm family can be selected and reused for arbitrary
knowledge discovery processes.

4.3.3 Further Advantages of the Semantic Representation

In addition to the advantages gained by reducing the complexity of the ma-
chine learning setup, this new representation offers high level benefits due to the
common model, which is capable of representing all types of data:

• Extensibility: The Semantic Patterns model is independent of the ana-
lyzed domain and therefore can be used for sophisticated analysis processes
based on the output of single or multiple ML-KDTs. In contrast to the
value-centric feature vector representation, these ML-KDTs do not need
to be adapted when the domain changes.

• Understanding of unknown data: Especially, when no a priori knowl-
edge regarding the features and their relations is available, the common
semantic representation has a key advantage: Regardless of the employed
feature and feature values, the information contained in the semantic fea-
ture vectors is interpreted in the same way, because it focuses on the rela-
tion between feature values and not the values itself. Thus, when unknown
data is analyzed, one is able to gain an understanding of the relations be-
tween the feature values without the need to understand their meaning.

• Visualization: The generic model and the semantic representation con-
tained in the semantic feature vectors enable the creation of simple visu-
alization and analysis procedures that benefit from the common model.

4.4 Semantic Patterns

For the remainder of this thesis the semantic feature vectors will be identified
as Semantic Patterns, which are the result of applying the Semantic Pattern
Transformation to arbitrary value-centric feature vectors. While the basic tech-
niques required for this transformation will be explained in detail in the next
chapter (Chapter 5 – Semantic Patterns Techniques), their arrangement and or-
ganization within this procedure will be covered in Chapter 6 – Semantic Pattern
Transformation.
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4.5 Chapter Conclusions

In this chapter, the value-centric feature vector representation is identified as
the key reason for many setup steps that need to be adapted whenever the
knowledge discovery domain or the associated goals change. In order to solve
these problems, a semantic representation is suggested that does not consider
the feature values themselves, but the semantic relations between them. This
new representation, which is referred to as semantic feature vectors or Semantic
Patterns, removes the need for many manual steps within a knowledge discovery
or machine learning setup, while being compatible with the standard feature
vector representation. The simplification and automatization of the processing
steps enables the deployment in heterogeneous domains. Furthermore, due to the
common model that represents data of arbitrary nature, further advantages in
understanding, visualizing and interpreting data, and the extensibility of existing
KDPs with sophisticated analysis procedures, are gained.





5
Semantic Pattern Techniques

Before going into the details of the Semantic Pattern Transformation, the re-
quired techniques will be explained in this chapter. The basic components are
associative networks, spreading activation algorithms, and supervised and un-
supervised machine learning algorithms. While the associative networks and
spreading activation algorithms are required to analyze, store and query the se-
mantic information contained in the value-centric feature vectors, the machine
learning algorithms are mainly used for the analysis of the transformed Semantic
Patterns. They also play a role within the conversion from numerical features
into categorical ones. Regarding the machine learning algorithms, the focus in
this chapter will be placed on those algorithms that are directly required by the
Semantic Pattern Transformation. The other algorithms, which are used for
the evaluation of the Semantic Pattern Transformation, will only be explained
briefly and the reader will be referred to other works for more information.

5.1 Overview

The Semantic Pattern Transformation converts value-centric feature vectors into
Semantic Patterns by utilizing three different techniques from the areas of ma-
chine learning and artificial intelligence: First, associative networks are used for
storing the semantic relations between feature values gained by analyzing their
co-occurrences within the instances. Second, in order to extract information
from the associative network and generate the Semantic Patterns, spreading ac-
tivation algorithms are employed. Finally, for the evaluation and the analysis
of the Semantic Patterns, the supervised Support Vector Machine (SVM) al-
gorithm, the supervised J48 algorithm, which is based on decision trees, and

73
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the unsupervised K-Means and Expectation Maximization (EM) algorithm are
employed. For storing numerical feature values within the associative network
via a discretization procedure, the unsupervised Robust Growing Neural Gas
algorithm is utilized. It must be noted, that the analysis of Semantic Patterns
is not limited to these algorithms. In fact, arbitrary machine learning algorithms
can be deployed.
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5.2 Semantic and Associative Networks

According to Sowa [75], “...common to all semantic networks is a graphic no-
tation for representing knowledge in patterns of interconnected nodes and arcs”.
The concept of semantic networks was first presented in a work about seman-
tic memory by Quillain [66], and is used for the representation of knowledge
employed for machine learning, artificial intelligence and information retrieval.
The concept is also related to other non-IT related areas such as philosophy,
psychology or linguistics.

The basic components of a semantic network are nodes that represent infor-
mation, and links (arcs) between these nodes that model the relations between
the information elements. Based on the way the knowledge is organized within a
semantic network and how this information is used, the network can be assigned
to one of the following categories: Definitional networks, Assertional networks,
Implicational networks, Executable networks, Learning networks and Hybrid net-
works [75]. An example for a definitional network is described in Example 4.

Example IV: Example for a semantic network describing
countries

In Figure 5.1 an example for a semantic network that describes
countries with various properties is shown. The links between the nodes
refer to the different properties of a given country. E.g., Austria has two
links of the type agreement – one is linked to the node Eurozone and
the other is linked to the Kyoto protocol. By visualizing the information
contained in the semantic network, a quick overview on the similarity
between countries and the relations within the network is gained.
This network could be considered as a definitional network and has a
strong similarity to the semantic networks described with the Resource
Description Framework (RDF) [59] language in nowadays semantic web.
In this description an arbitrary subject (the country) is described via an
object (e.g. the Kyoto protocol) that has a specific relation (agreement)
to the described subject. Thereby, the objects themselves could become
subjects that are described via further objects according to a relation.

Especially, learning networks play an important role in the area of machine
learning and form the basis for artificial neural networks, which are employed
by a wide range of supervised and unsupervised algorithms, such as supervised
artificial neural networks [55], Self-Organizing Maps [39] or Neural Gas [57], [29],
[65].

Another special type of semantic network is the associative network, which
is also a member of the Learning networks category. In contrast to the typ-
ical semantic network, that employs various link types for modeling different
relations, the associative network employs only specific type of link. This type
represents the associations between nodes that are defined according to some
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Figure 5.1: This example shows a definitional network that describes countries with
different properties. Thereby, the properties are encoded as links and
their values are stored within the network nodes.

kind of relation. Their strength is represented by weights that are assigned to
the links, and the employed links can either be bi-directional or uni-directional.
An example for an associative network is described in Example 5.

Example V: Example for an associative network representing
export commodities

Figure 5.2 shows an example for a associative network describing
the relations between commodities exported by different countries. The
network is based on a subset of the data contained in the Demo Data Set
1, and consists of nodes representing export commodities, and weighted
links modeling the associations between these commodities. Links or
associations between various commodities are created when they are
exported by the same country. Their strength is defined by the number
of co-occurrences within all country descriptions. By looking at the
network, one observes that the export commodity coffee is strongly
related to cocoa, has a moderate association with bananas and petroleum
products, and a weak link to chemicals. Furthermore, two clusters of
export goods can be identified that have strong relations between their
members but rather weak links that connect these clusters. The right
cluster has export goods of countries that export coffee, cocoa, bananas,
or petroleum products, whereas the left cluster is related to industrialized
countries that export machinery, chemicals or electronics.

The Semantic Pattern Transformation introduced in this thesis employs as-
sociative networks – similar to the one in Example 5 – with uni or bi-directional
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Figure 5.2: An associative network is based on nodes that carry arbitrary informa-
tion, and weighted links between these nodes that describe the strength
of their association or relation.

links for describing the semantic relations between feature values contained in the
analyzed instances. Together with the spreading activation algorithm described
in the next section, these two methods are the basic components required for
the transformation of value-centric feature vectors into Semantic Patterns.

5.3 Spreading Activation

The initial idea for spreading activation algorithms is based on psychological
studies that tried to find a model for human memory operations. The concept
was then introduced in the artificial intelligence field within computer science,
and adapted continuously for specific applications such as information retrieval
and text analysis. Thereby, the technique is used to retrieve information from a
given semantic or associative network. By activating one or more nodes within
the network with a certain activation value, and following the links emerging
from these nodes, the activation can be propagated to the linked nodes (neigh-
bors). In case of an associative network, the weighted links determine the amount
of the activation energy a node is able to spread to a linked neighbor. This pro-
cess can then be repeated for multiple iterations until some kind of stopping
criterion is met.

In order to avoid the flooding of the network, which means that a large num-
ber of the network’s nodes become activated, various constraints were introduced
that limit the amount of activation energy spread from a source node to a target
node [6].

In the remainder of this section the focus will be placed on the parts of the
spreading activation process that are required for the Semantic Pattern Trans-
formation. In order to gain a more detailed understanding of the algorithm, the
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reader is referred to the work by Crestani et al. [15], who give an excellent over-
view on how spreading activation techniques are employed within information
retrieval. Further details on applications that employ spreading activation are
given in the last part of this section, and additional information regarding the
influence of the various spreading activation parameters on the Semantic Pat-
tern Transformation is presented in Section 7.3 of Chapter 7 – Semantic Pattern
Analysis.

5.3.1 The Basic Spreading Activation Algorithm

Although there are many adaptations of the spreading activation algorithm fo-
cusing on different aspects of information retrieval tasks, the core process is
always based on the same technique:

First, a set of nodes is activated by assigning an activation value that is
higher than the threshold needed to activate a node. At this stage the spreading
activation algorithm is applied, which spreads the energy of the activated nodes
to their neighbors. Also, certain preprocessing steps can be applied in order to
influence the impact of various nodes. Second, the spreading activation process
is repeated for a fixed number of iterations, or until a certain criterion is met.
Third, information is gained by analyzing the activation energies of the nodes
within the network. Here, also certain post-processing steps can be applied in
order to focus on specific aspects.

The steps required for the generic spreading activation process are shown in
Algorithm 1 and described as follows:

• Input:

– The associative network NET contains a set N with an arbitrary
number of nodes ni. Given two associated nodes ni and nj that are
connected via a weighted link wij , then the existence of a link between
two nodes indicates an association between these nodes. The assigned
weight determines the strength of this association. In order to apply
the spreading activation process, the following condition must be met
for each weight: 0 < wij ≤ 1.0.

– The set of nodes A that are considered as active according to some
kind of threshold function.

– Initial activation value IA: This value is used for the initial activation
of the selected nodes. In order to cause the nodes to spread their
activation energy, it must be higher than the activation threshold.

– Set of spreading activation parameters P : These parameters influence
the spreading activation algorithm and typically include basic param-
eters such as the decay factor, the activation threshold, the initial
activation, or the number of iterations. More advanced parameters
could be related to information retrieval or constrained-spreading,
such as fanout factors, special spreading activation techniques etc.
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• Output: The activation state of the associative network after applying the
spreading activation process: NET.

• Line 1 to 3 : The network is reset by setting the activation values of all
nodes to 0.0.

• Line 4 to 6 : The activation values of the given input nodes within the
set A are set to the initial activation value IA. Typically, this value is the
same for all the activated nodes, but for certain operations the value could
depend on other operations that have been applied before the spreading
activation process.

• Line 7 : Preprocessing steps are applied to the initial activation state.
For the basic spreading activation algorithm these are not needed, but,
depending on the specific retrieval task, could include the application of
fanout transformations, more complex activation functions or even the
local application of spreading activation techniques.

• Line 8 to 10 : Here, the spreading activation algorithm is applied for one
or multiple iterations. The number of iterations depends on the employed
stopping criterion, which could be a given maximum number of iterations,
or a function that is fulfilled when a certain network state is achieved. In
this thesis, all spreading activation processes are only applied for exactly
one iteration.

• Line 11 : Here, post-processing operations are applied to the activated
network. For the basic spreading activation process this is not necessary,
but could include the final application of fanout techniques, the application
of filter operations that extract nodes according to various criteria, or the
application of transformations that replace the activation values according
to properties within the local neighborhood.

• Line 12: Finally, the desired information is extracted from the activated
network via an arbitrary process. The nature of this process strongly
depends on the desired information retrieval task.

Thereby, the details of each spreading activation iteration labeled as spreadin-
gActivationIteration in Algorithm 1, are described in Algorithm 2 and explained
as follows:

• Input:

– The associative network NET in an arbitrary activation state.

– The set of nodes A that are considered as active according to some
kind of threshold function.

– The set of spreading activation parameters P .

• Output: The activation state of the associative network after applying the
spreading activation iteration: NET.
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Algorithm 1 Basic spreading activation algorithm

Require:
NET {associative network}
A = {a1, a2, ..., an} {set of nodes to be activated}
IA {initial activation}
P {set of spreading activation parameters}

1: for all ai in NET do
2: setActivation(NET,ai,0) {reset network by setting all activation values to 0.0}
3: end for
4: for all ai in A do
5: setActivation(NET,ai,IA) {set initial activation values for input nodes}
6: end for
7: preProcess(NET,P )
8: while stopping criterion not met do
9: spreadingActivationIteration(NET,P )

10: end while
11: postProcess(NET,P )

12: retrieveInformation(NET )

• Line 1 to 11 : For each node ai in the set A the activation is spread to the
neighboring nodes according to the following procedure.

• Line 2 to 3 : The links L emanating from node ai and the activation value
S of node ai are extracted.

• Line 4-10 : For each emanating link wij in L, the target node aj and the
activation value A are extracted. Then, the activation energy T , which
the target node aj receives from ai is calculated by T = S ∗ wij ∗D. The
received activation energy T is then added to the activation value A already
contained in node aj , and finally this new activation value is stored in the
target node.

5.3.2 Constrained-Spreading

The basic application of the spreading activation algorithm without placing any
constraints on the iterations or the amount of spread energy results in the flood-
ing of the network. A good analysis of this problem is presented in [6], where the
authors prove that unconstrained-spreading yields results that are independent
of the set of initially activated nodes. In order to solve these problems, various
operations that place constraints on the spreading of activation energy have been
introduced.

Limited Distance or Iterations

The distance between two nodes within an associative network can be expressed
by the minimum number of links that need to be traversed in order to get from
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Algorithm 2 Spreading activation iteration

Require:
NET {associative network}
A = {a1, a2, ..., an} {activated nodes}
P {spreading activation parameters.}

1: for all ai in A do
2: L = getEmanatingLinks(ai) {get emanating weighted links wij from ai}
3: S = getActivation(ai) {get activation value of source node ai}
4: for all wij in L do
5: aj = getTargetNode(wij) {get target node aj of weighted link wij}
6: A = getActivation(aj) {get activation value of target node}
7: T = S ∗ wij ∗D {calculate target activation value}
8: A = A+ T {add calculated value to activation value of target node}
9: setActivation(NET,aj ,A) {set new activation value of target node}

10: end for
11: end for

the first node to the second node. Obviously, nodes that have a direct link are
closely related, whereas the degree of association drops with the distance between
two nodes. In each spreading activation iteration, the maximum distance of
reached nodes is increase by one. As a consequence, the unconstrained-spreading
over several iterations reaches nodes that have no significant relations with the
initial nodes. The adequate number of iterations depends on the information
retrieval scenario but typically should be kept low in order to limit the spreading
activation to nodes that have a high degree of association.

In the Semantic Pattern Transformation, the maximum number of iterations
is set to one. The reason is that the associative networks employed within the
transformation are highly connected, and the application of multiple iterations
would cause the flooding of the network which disables the useful extraction of
information.

Decay Factors and Activation Functions

Similar to limiting the number of iterations, a decay factor that attenuates the
spread activation energy, can be applied. As described in Algorithm 2, the
activation energy spread from a given source node to a target node is calculated
by T = S∗wij∗D, where S is the activation value of the source node and wij is the
weighted link between the source node and the target node. D is the mentioned
decay factor, where 0 ≤ D ≤ 1. In case of D = 0.0 activation spreading is
completely suppressed, whereas D = 1.0 does not attenuate the spread energy
at all. The best choice for D depends on the scenario, but typically values below
0.5 offer a good balance between emphasizing the initial nodes and allowing
the neighboring nodes to retain some influence. When multiple iterations are
used, the decay factor ensures that the spread activation energy drops with each
iteration.
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Fanout Factors

When a node is connected to a large number of nodes within the network, its
activation and the subsequent application of the spreading activation algorithm
causes the wide spread distribution of the activation energy. Such nodes have
a large number of semantic relations to other concepts within the network and,
thus, the knowledge gained by including them in the spreading activation process
is low. An example for a highly connected node that does not carry valuable
information is given in Example 6.

Example VI: Fanout and text analysis

The necessity for fanout factors can easily be shown by consider-
ing an example from text analysis. Assuming an associative network
that models the relations between terms within sentences, and further
assuming that stop-word-removal has not been applied to the analyzed
text, then terms like and, or, or is remain in the text and are represented
by nodes within the network. Since such terms are used within sentences
together with arbitrary terms, they are connected to a large number
of other term-nodes and their activation would cause the activation of
large parts of the network. This flooding does not reveal important
information, but on the contrary significantly reduces the quality of the
extracted information.

In order to attenuate the influence of nodes with a large number of connec-
tions, the concept of fanout factors was introduced. Thereby, these factors can
be utilized within different stages of the spreading activation process:

• Before spreading: Here, the initial activation values are attenuated be-
fore spreading activation is applied. In Algorithm 2 this would be intro-
duced after Line 3.

• During spreading: Here, the activation energy, which is distributed to
the neighboring nodes is attenuated. In Algorithm 2 this would be inte-
grated into the calculation of the target node activation energy in Line
7.

• After spreading: Here, the activation values of the nodes after the
spreading process are attenuated according to the fanout factors. In Al-
gorithm 2 this would be executed after applying a spreading activation
iteration (directly after Line 10.

The choice of the best fanout strategy and the calculation of the fanout values
depends on the desired analysis and will be further discussed in Section 7.3.5 of
Chapter 7 – Semantic Pattern Analysis .
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Selection of a Path

This constraint is related to the selection of a preferred spreading activation
path through the network. The benefit here is that the spreading of activation
follows along a selected path while avoiding the activation of undesired regions.
Since this constraint is only applicable when more than one iteration is involved,
it is not applied within the Semantic Pattern Transformation.

5.3.3 Applications

Associative or semantic networks and the application of spreading activation for
information retrieval play in important role in a wide range of systems.

A classic example for the utilization of a semantic network for information
storage and retrieval is WordNet [25], which is a lexical database of the English
language. It contains synonym sets (synsets) of similar words and relates these
synsets via rich semantic relations. WordNet and other similar systems, such as
Wiktionary1 play an important role within text mining applications: [93], [92]
and [58].

Further examples for the application of semantic networks and spreading
activation include word sense disambiguation [88], the storage and retrieval of
information within the semantic web [94], tag recommender systems [86], knowl-
edge retrieval in large databases [32], recommendation systems based on ontolo-
gies [30], and analysis processes based on the semantic information stored within
social networks such as Facebook, Twitter or Google+ [87], [23], [71].

Another very representative example for the utilization of semantic networks
is the nowadays widely used semantic web, which represents the semantic re-
lations between information as machine readable language. Within the seman-
tic web umbrella, which is standardized by the World Wide Web Consortium
(W3C), various concepts such as the Resource Description Framework (RDF)
[59] or the Web Ontology Language (OWL) [70] for modeling ontologies play an
important role. The Semantic Pattern Transformation has also been applied to
data modeled by the RDF language. More information on the results will be
presented in Chapter 10 – Semantic Patterns – Applications.

Especially, the reader is referred to two papers by Kozima et. al ([43] and
[44]). This work is fundamental in the context of this thesis, because the basic
idea for the Semantic Pattern Transformation was conceived after studying the
author’s approach to apply spreading activation techniques for calculating the
similarity between english words. Thus, these two papers will be revisited in
Chapter 9 – Related Work.

5.4 Discretization

The Semantic Pattern Transformation stores the analyzed feature values as
nodes within an associative network. While categorical feature values can be

1http://www.wikitionary.org
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directly mapped to network nodes, some kind of discretization operation must
be applied to the numerical feature values. There are many discretization al-
gorithms available including very simple methods that put the distance-based
values into bins, to more complex methods based on entropy or fuzzy techniques
[40], [91], [21]. However, due to the application of pre-spreading techniques,
which will be discussed in Section 7.3 of Chapter 7 – Semantic Pattern Analysis,
none of these methods, but the unsupervised RGNG algorithm was chosen for
this task.

5.5 Machine Learning

Within the scope of this thesis, machine learning algorithms are mainly employed
for the analysis of the Semantic Patterns in order to train supervised classifiers,
or to recover previously unknown relations within the analyzed data. Thus, this
section gives a short introduction to machine learning and the two main cate-
gories of machine learning algorithms – supervised and unsupervised algorithms.
Later, the algorithms relevant for the Semantic Pattern Transformation will be
presented and references to more detailed descriptions will be given.

The basic principles behind machine learning can be described by looking at
the properties of the employed algorithms and the data analyzed by them:

• Noisy data: Due to the capability of machine learning algorithms to
identify general properties of the analyzed data, the trained models are
able to cope with noisy data.

• Fuzzy nature: Machine learning algorithms are capable to analyze fuzzy
data, where the clear separation in categories or classes is not possible.
In addition, machine learning algorithms are often applied, when simple
decision or classification rules cannot be used due to the high complexity
of the relations within the data.

• Visualization and interpretation: Certain machine learning algorithms
employ models that are capable of visualizing high-dimensional data, which
is of special benefit when previously unknown relations within the data
need to be extracted.

• Unknown relations: Machine learning algorithms can always be applied
to data, even when the relations between the features or the meaning of the
features and their values are not known. Among the possibility to train
classifiers on unknown data without the requirement to understand the
data, the following main benefit can be observed: An analyzer is able to
apply a machine learning algorithm in order to gain a better understanding
of the relations within the analyzed data.

• Empirical data: Machine learning algorithms are often applied in order
to understand relations within data, for which the complete underlying
statistical model is now known. Often, this data is referred to as empirical
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data because its features are based on information captured by arbitrary
sensors.

The application of a machine learning algorithm is called training. Thereby, the
algorithm’s model is adapted according to the data within multiple iterations.
This training, or adaptation process could also be described as learning, but then
many philosophical questions about the nature of learning must be considered.

The two main categories of machine learning algorithms are defined as super-
vised and unsupervised learning. While unsupervised algorithms do not receive
any additional information on the data during the training process, a supervised
algorithm requires constant feedback. Supervised algorithms are also known
as classifiers, because they are able to assign unknown instances to one of the
classes they were trained to differentiate. Unsupervised algorithms are mainly
employed when knowledge should be extracted from a data set, for which only
limited or even none a priori knowledge is available.

The remainder of this section will introduce the key components and issues of
supervised and unsupervised learning algorithms. For a thorough understanding
of machine learning, the reader is referred to well established work within this
area: [90], [22], [8].
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5.5.1 Supervised Learning

A trained supervised algorithm or classifier is capable of analyzing unknown data
and assigning it to one of the classes it learned to differentiate. Thereby, during
the training phase the employed algorithm receives external information from
a supervisor that influences and adapts the creation of the algorithm’s model.
This supervisor acts as a teacher during the analysis of the data and in most
cases provides labels that assign the analyzed data to predefined categories or
classes.

Supervised learning is very similar to human learning, where a teacher or
another information source is available that guides the learning process. E.g., a
child who learns the names of the colors (class labels) will get constant feedback
from her parents, whether the spoken name matches the seen color. This feed-
back is used for learning and storing the appropriate patterns within the brain’s
neurons.

All human and machine based learning must consider one important aspect
that is known as overfitting, which is explained for a human learner in Example
7.

Example VII: Learning multiplication rules

In real life, overfitting is related to the problem when a person
commits something to memory without understanding the background
of the learned concept. Subsequently, this person will not be able
to draw general conclusions and infer high level rules that allow the
correct identification of instances that have not been seen before, but
are related to the learned ones. A good example is the learning and
understanding of the mathematical multiplication rule versus committing
the multiplication results of small numbers to memory. The latter can
be considered as overfitting, because the learner highly specializes on
the results without deriving general rules, and thus will fail to calculate
the results for numbers that were not present during learning.

Although, in general, neither machine learning nor artificial intelligence are
capable (yet) of inferring complex rules such as mathematical concepts, the
problem of overfitting in machine learning has a strong relation to the example
from above and must be considered whenever a machine learning algorithm is
applied. During the training of a classifier, the machine learning algorithm
tries to build a model that has a minimal classification error when applied to
the labeled training data. Thus, in this respect an optimal classifier would be
able to classify all the examples in the training set correctly. Unfortunately,
the performance of the algorithm on the training data alone is very misleading,
which is highlighted in Example 8.



5.5. Machine Learning 87

Example VIII: A simple lookup table as classifier

In this example, a lookup table is used during the training process
to map the analyzed instances to their corresponding class labels. Al-
though, this simple classifier would be capable of classifying all examples
within the training data without making any classification errorsa, it
would fail in the classification of any new instance which was not present
during the training phase, even when it only slightly deviates from the
instances in the training set.

aObviously, this only works when the same instance is not assigned to contradicting
classes.

The problem of the lookup table is similar to that of the person who does
not understand the concept behind the multiplication of numbers: The lookup
table specializes on the training data and is not able to generalize. However,
generalization is a key requirement of any learning scheme, because it enables
the algorithm (and the person) to derive generic rules. These rules allow the
correct classification of instances that deviate from those present during train-
ing, but are still considered similar according to some kind of relation. The
problem of training an algorithm model that is not capable of generalizing, is
called overfitting. It means that the algorithm specializes too much on the data
during the training phase, or in other words over fits this data. In most cases this
causes a drop in performance when applied to the real data. Unfortunately, the
problem of overfitting is not only related to the nature of the algorithm model
alone, but in most cases to the parameters used for the training of its model.
Typically, in order to train an algorithm, multiple iterations are required that
adapt the model step by step according to the training data. The adaptation
of the model to the training data increases with the number of training itera-
tions and thus the classifier achieves a higher classification performance on the
training set. However, the likelihood of overfitting also increases. In order to
cope with this problem, various training schemes have been developed (e.g., [9]).
Although, there are many different versions of these schemes, in general they
avoid overfitting by constantly evaluating the performance of the trained model
on evaluation data that is not part of the training data. As soon as the per-
formance drops on this evaluation set, the training scheme reasons that further
training would over fit the training data and stops the training process. Further
information on that substantial issue within machine learning can be found in
Chapter 1 of the book by Witten et al. [90].

Supervised machine learning algorithms are based on a wide range of different
techniques. Many of these techniques were inspired by the learning process of
our brain and model some parts of its behavior. The most prominent example
for such algorithms are artificial neural networks that model the structure of the
neurons and their adaptation during learning [55].

Another very important example within the supervised category of machine
learning algorithms is the Support Vector Machine. Its training process involves
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the transformation of low dimensional data into a high-dimensional representa-
tion. The SVM then separates this data into different classes by using high-
dimensional planes, which are referred to as hyperplanes [13]. This algorithm is
used for the supervised evaluation of the Semantic Patterns.

5.5.2 Unsupervised Learning

As the name already suggest, there is no supervisor available during the training
phase of an unsupervised learning algorithm. In the real word this corresponds
to Example 9 where a botanist categorizes hitherto unknown objects without
having a guide or supervisor that supports her in this process.

Example IX: Categorization of plants

A good example would be the categorization of plants by a botanist living
in a time when only very limited information or prior work about plants
was available. In order to find adequate categories, certain features of
the plants such as size, shape, time for blossom, color etc. need to be
derived. By using these features, their values and their combinations,
the similarity of different plants can be calculated. This similarity is
then used to assign the plants to their appropriate categories. A very
important question is related to the number of categories or clusters,
which are needed to represent the analyzed plants adequately. Obviously,
only one cluster as it is represented by the term plants is not enough for
more detailed considerations, whereas using a category for each single
plant corresponds to the detailed identification and cannot be used for
analyzing the relations between similar examples. The right number
of categories or clusters depends on the problem to be solved, and the
analyzed data.

In machine learning, unsupervised learning algorithms also analyze data de-
scribed by instances and try to arrange this data in categories or clusters accord-
ing to their similarity. Thereby, in most cases the algorithm model employs some
kind of distance measure that enables the calculation of the similarity between
arbitrary instances. This similarity is then used to arrange related instances
into categories or clusters. The latter term is used more often, thus unsuper-
vised learning is also often referred to as unsupervised clustering. In contrast to
supervised learning, there is no evaluation set available that allows the employed
training scheme to determine when the algorithm model starts to over fit. Here,
the term overfitting refers to the training of a complex model that arranges the
data into too many clusters. In order to cope with these problems, generic meth-
ods from information theory such as the Minimum Description Length (MDL)
[5] are utilized that measure the balance between the model complexity and the
error caused by the model. The model complexity is typically expressed by the
amount of information that is needed to encode the model, whereas the error is
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calculated by summing up the quantization errors (derived from the employed
distance measures) of all instances in respect to their assigned cluster. The bal-
ance between the model complexity and the quantization error is highlighted in
Example 10.

Example X: Model complexity in unsupervised learning

Considering a data set that is analyzed by an unsupervised algo-
rithm, then the trivial model corresponds to representing all the
analyzed data by only one cluster. Although, such a model would have a
very low complexity – only one cluster needs to be encoded – the caused
quantization error is at maximum. On the other hand a model that
represents each instance within the data with a separate cluster has a
very high complexity, which is equal to the encoding complexity of the
raw data, but results in no quantization error at all. Thus, the MDL
criterion is employed to find an adequate balance between the model
complexity and the quantization error.

Unsupervised learning plays a vital role in analyzing data for which no a
priori knowledge is available. By clustering the data according to its similarity,
a quick superficial overview can be gained and the principle properties of the
classes within the data set can be revealed. Clustering can also be understood as
a method that decreases the amount of the analyzed and presented information.
Due to this simplification, advantages for visualizing the often high-dimensional
data can also be gained. Although there are methods like the MDL that aim
to find the adequate number of clusters, in many applications this number still
needs to be adapted according to the desired information and the available data.
The analyzer can increase the number of clusters (the model complexity) when
more detailed information is required or decrease it when a high level overview
about the data is sufficient. Typically, the number of clusters found by the MDL
criterion can thereby used as a starting point.

Similar to the supervised algorithms, there is a wide range of unsupervised
learning algorithms that vary in the capability to handle categorical or numerical
data, employ different distance measures and training procedures, differ in their
capability to visualize high-dimensional data, and employ different strategies to
arrange the data into clusters. Due to the processing steps, which are required
for the setup of a machine learning algorithm and need to be adapted according
to the desired goals and the nature of the analyzed data, the adequate choice of
the appropriate algorithm is vital for the successful extraction of knowledge.

In order to cope with the different nature of the analyzed data, numerous
unsupervised learning algorithms have been developed. Some important exam-
ples that handle numerical data are algorithms based on hierarchical clustering
techniques (e.g. [35]), algorithms from the Neural Gas family [57], or the Self-
Organizing Maps (SOMs) [39]. Other algorithms are also capable of handling
categorical data and include COOLCAT [4], Kernel K-Means[14] or ROCK [33].
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5.6 Adapting the Model Complexity

The Minimum Description Length (MDL) criterion plays an important role in
determining the adequate complexity of a model trained by an unsupervised
learning algorithm. Although the employment of the MDL criterion is highly
beneficial within unsupervised learning, depending on the analysis more detailed
models might be required. This is typically the case when a general overview
about the data has been gained by analyzing an MDL based model. In order to
increase the level of detail, more complex models might be trained on the whole
data or a selected subset of the data.

Within the scope of this thesis, a simple method was used to define the model
complexity based on the MDL criterion. Thereby, the complexity of an MDL
optimal model is continuously increased until the desired complexity is reached.
This principle is depicted in Figure 5.3 and explained as follows: Given the MDL
value M of the model with the MDL optimal complexity, and an MDL override
factor C, then the complexity of the model is increased until the overridden
MDL value Mc = M ∗ C is reached.

MDL 
Mimum: M

MDL 
Override: MC

Model complexity

MDL

MC =M*C

C

Figure 5.3: The optimal model complexity M is achieved when the MDL criterion
is minimal. If a more detailed model is used, the model complexity is
increased until the overridden MDL factor MC is reached.

In this thesis, this procedure is used for two applications: First, in unsuper-
vised clustering to specify the required level of detail, and second, for defining
the complexity of the discretization model used by the Semantic Pattern Trans-
formation to represent the analyzed feature values within an associative network.

5.7 Selected Unsupervised Machine Learning Al-
gorithms

This section will focus on selected unsupervised algorithms that play a role
within the Semantic Pattern Transformation, and the analysis of the thereby
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gained Semantic Patterns. It must be noted that the Semantic Pattern Trans-
formation is not limited to these algorithms and they can be replaced by others,
without adapting the representation used within the Semantic Patterns.

The remainder of this section will first introduce the Vector Quantization
(VQ) technique, which is the basis for the unsupervised Neural Gas algorithms
employed in this thesis. Subsequently, the evolution from Neural Gas over Grow-
ing Neural Gas to Robust Growing Neural Gas will be explained.

5.7.1 Vector Quantization

Vector Quantization (VQ) [31] is technique initially used for data compression
within signal processing tasks, however later was also utilized for training models
within machine learning algorithms. The main idea of VQ is that a model com-
prised of a codebook of multiple prototype vectors describes the feature vectors
of a given data set. Thereby, each prototype represents or compresses multiple
instances or feature vectors. In the trivial case, when only one prototype is
used, all feature vectors of the data set are represented by only this prototype.
Each prototype covers an area that is called Voronoi space in which all feature
vectors are mapped to the same prototype. This mapping is based on a distance
measure that describes the similarity between prototypes and feature vectors.
Typically, the Euclidean distance is used, but depending on the analyzed data
other measures such as the Cosine similarity might also be employed. An ex-
ample for a two dimensional data set, a VQ model trained on the data and the
Voronoi spaces of the model codebook is presented in Figure 5.4. The mapping
of multiple feature vectors to one prototype corresponds to a lossy compression
function that induces quantization errors. For a given VQ model, the overall
quantization error on a data set is calculated by summing up the distances of
each feature vector to its corresponding prototype. This error is an indication
for the quality of the VQ distribution.

Typically, there are two different problems that need to be solved by an
algorithm that finds a VQ model for a given data set. First, given the number
of codebook vectors, they must be placed in a way that minimizes the overall
quantization error. Second, the model complexity, which is the number of
codebook vectors, needs to be chosen. This can either be done manually by using
a parameter that defines the number of codebook vectors, or automatically by
employing a criterion like the MDL.

Vector quantization is the basis for many machine learning algorithms such as
K-Means, Self-Organizing Maps and the family of Neural Gas based algorithms.
An algorithm from the latter category is used for the Semantic Pattern Trans-
formation and will be explained in detail in the following sections. While all of
these algorithms solve the problem of minimizing the quantization error for a
given model complexity, only a few sophisticated algorithms, such as the Robust
Growing Neural Gas, employ measures like the MDL for finding an adequate
balance between the model complexity and the quantization error.
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Figure 5.4: In this example, a Neural Gas algorithm with 10 prototypes was trained
on a two-dimensional data set. For each of the prototypes (black dots)
its corresponding Voronoi region (limited by the blue lines) is shown.
Thereby, all of the feature vectors within such a region are represented
(compressed) by the corresponding prototype.

5.7.2 K-Means and Self-Organizing Maps

The K-Means algorithm was originally introduced in 1967 by MacQueen [54]
and is a widely employed unsupervised machine learning algorithm. Given the
number of prototypes (the k in K-Means) and a data set arranged in feature
vectors, then the algorithm minimizes2 the overall quantization error by finding
an adequate distribution of the k prototypes. The basic version of the K-Means
algorithm is not capable of finding an adequate model complexity, and, there-
fore, was not used for the discretization operation within the Semantic Pattern
Transformation. There have been many extensions to K-Means including the
adaptation to handle categorical features [14], a fuzzy version capable of as-
signing instances to multiple clusters [7], the Expectation Maximization (EM)
algorithm [19], which models the clusters as Gaussian mixture models, and fur-

2In general, only a local minimization is possible.
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ther variants that automatically detect the correct number of cluster prototypes
(e.g. [34]).

The Self-Organizing Map (SOM) is another unsupervised clustering algo-
rithm based on VQ and was introduced in 1991 by Kohonen [39]. In addition to
K-Means it also defines a strong neighborhood topology based on links between
the prototype units. Due to the strength of this topology, the SOM enables the
visualization of high-dimensional data sets on a two-dimensional map.

In Section 7.4.1 of Chapter 7 – Semantic Pattern Analysis, a simple example
will be given where the SOM has been applied to an artificial data set. Also,
the reader is referred to Chapter 10 – Applications, where the paper Event Cor-
relation on the Basis of Activation Patterns is discussed [83]. Here, the SOM
algorithm has been used for the unsupervised analysis of event correlation data
within network intrusion detection.

5.7.3 Neural Gas Family

The basic Neural Gas algorithm was introduced by Martinetz [57] in 1991. Sim-
ilar to K-Means and the Self-Organizing Map, all Neural Gas algorithms employ
Vector Quantization in order to represent the analyzed data with prototypes.
In the following sections three algorithms from the Neural Gas family will be
described: the basic Neural Gas (NG) algorithm, its growing version the Grow-
ing Neural Gas (GNG) algorithm, and finally the Robust Growing Neural Gas
(RGNG) algorithm that is employed by the Semantic Pattern Transformation.
While the simple Neural Gas algorithm has a fixed number of clusters that needs
to be passed as an algorithm parameter, GNG and RGNG start with two pro-
totypes and grow the Neural Gas network according to the underlying data. In
comparison to GNG, the main benefit of RGNG is the employment of the MDL
criterion that determines the required number of clusters automatically.

Neural Gas

The Neural Gas algorithm was introduced by Martinetz et al. [57] in 1991 and
is based on Vector Quantization. The learning process is similar to the Self-
Organizing Map, however the link topology is dynamic as opposed to the strict
topology of the SOM. This loose topology removes the capability to visualize
high-dimensional data sets, but simplifies the training process and improves its
quality due to the dynamic links.

• Input:

– The data set D contains the instances described by feature vectors,
for which the neural gas model is to be trained.

– The number of iterations I determines how often the neural gas train-
ing process is applied to the data.

– The learning rate α determines how strong the adaptation of a pro-
totype is influenced by a feature vector.
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– The maximum link age T determines when a link between two pro-
totypes is removed.

– N is the fixed number of neural gas prototypes that should be trained
for the given data.

– LA is an N -dimensional matrix that contains the link age of each
link.

• Output:

– M represents the trained neural gas model and is a matrix that stores
the neural gas prototypes. Thereby, each row represents the multi di-
mensional vector of a prototype. Therefore, the matrix has N rows
and the number of columns is equal to the number of features con-
tained in the feature vectors.

– L is an N -dimensional matrix that contains the topological informa-
tion of the neural gas model – meaning it keeps the state of the links
between the various prototypes.

• Line 1 : The prototype matrix M is initialized with N random prototypes
stored within the rows. The dimension of the prototypes is equal to the
dimensionality of the feature vectors within the input data D. Each di-
mension represents a feature that is used for the description of the data.

• Line 2 : The link matrix L is a squared matrix with dimension N . In the
initial state, there are no links between the prototypes.

• Line 4 to 22 : For the given number of iterations I the following training
procedure is repeated:

• Lines 5 to 21 : In each training iterations all feature vectors of the data set
D are used to update the neural gas prototypes according to the following
procedure:

• Line 6: A feature vector d is randomly selected from the data set D and
its distance to each neural gas prototype is calculated. The prototypes are
then sorted according to their distance in P .

• Lines 7 to 11 : The feature vector d is presented to the prototypes in P
and the prototypes are updated according to their topological distance k
to d. For the closest prototype p0, the topological distance k = 0, for the
second closest prototype p1, k = 1 and so forth. The update rule moves
the prototype p closer to d by calculating the vector d − p and adding a

fraction of this vector α ∗ e
−ki
λ to p. Thereby, the learning rate α and the

topological distance k influence the size of the adaptation.

• Lines 12 to 14 : These steps are used to update the link structure of the
prototypes. First, a link is created between the two closes prototypes p0
and p1 if it does not yet exist. Second, the age of this link is set to zero
and finally, the link age of all links is increased by 1.
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Algorithm 3 Basic Neural Gas algorithm

Require:
D {data set consisting of feature vectors}
I {number of iterations}
α {learn rate}
T {maximum link age}
N {number of prototypes}
M {Neural Gas prototype codebook}
L {link matrix}
LA {link age matrix}

1: M = createRandomPrototypes(n) {create n number of prototypes with the same
dimension as the input feature vectors and initialize the vectors with random val-
ues}

2: L = initLinkMatrix(n) {create squared link matrix of dimension n}
3: LA = initLinkAgeMatrix(n) {create squared link age matrix of dimension n and

init all link ages with 0}
4: for i = 1→ I do
5: for all d in D do
6: P = calcDistance(d,M) {calculate distances to Neural Gas prototypes and

sort them according to similarity}
7: k = 0 {Init topological distance k = 0. For the closest prototype p0, k = 0,

for the second closest prototype p1, k = 1 and so forth.}
8: for all p in P do

9: p = p + α ∗ e
−ki
λ (d − p) {adapt all units according to their topological

distance from d}
10: k = k + 1 {increase topological distance by 1}
11: end for
12: setLink(L,p0,p1) {take the two prototypes p0 and p1 with the smallest distance

to d and create a link if it does not exist yet}
13: setLinkAge(LA,p0,p1,0) {set link age of link between p0 and p1 to 0}
14: increaseLinkAge(LA,1) {increase the link age of each link by 1}
15: for all pi in P ,pj in P do
16: la = getLinkAge(LA,pi,pj)
17: if {la> T} then
18: removeLink(L,pi,pj) {Remove link between pi and pj if the link age is

older than the given threshold}
19: end if
20: end for
21: end for

22: end for

• Lines 15 to 20 : As the link structure changes over the training iterations,
certain links might become invalid. This is indicated by an old link age.
Therefore, in each iteration all links with an age larger than the given
threshold T are removed.
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5.7.4 Growing Neural Gas

The Growing Neural Gas (GNG) algorithm was invented by Fritzke [29] to over-
come several shortcomings of the basic Neural Gas (NG) algorithm. During the
NG training process the algorithm adapts the size of the topological neighbor-
hood of a prototype, which defines an area in which neighboring prototypes are
also included in the update process. The size of the neighborhood decreases
over the iterations and gets limited to the immediate neighbors of the adapted
prototype at the end of the training process. Here, the rationale is that dur-
ing the early stages of the training process the influence of a feature vector on
the prototypes updates should be larger, because the untrained prototypes are
still located at non-adapted locations with large quantization errors. During
the training process, the prototypes get trained and are relocated to locations
where the feature vectors are represented more accurately, which is indicated by
lower quantization errors. Since these trained positions get closer to the local
quantization error minima during each iteration, only the feature vectors in the
immediate neighborhood should be considered in order to optimize the final pro-
totype locations. While this adaptable training process is reasonable, it comes
with a price: In order to decrease the size of the adapted neighborhood the
number of iterations needs to be given as input parameter. Thus, the training
process is adapted to this number of iterations and during the training process
changes cannot be made to the data set. Therefore, NG can only be applied
in static environments where the data within the analyzed data set does not
change.

The GNG algorithm addresses this problem by implementing an iteration
independent adaptation process that is capable of following dynamic data. The
”growing” nature of the GNG model also has another advantage that is not used
by GNG directly, but by other more sophisticated algorithms based on GNG.
The complexity of the GNG model increases over the training process. Thereby,
the models, which are trained during the initial stages of the training process,
describe the superficial aspects of the analyzed data, whereas the more detailed
ones trained in later iterations cover more and more details of the data set. The
information about the changing model complexity and its influence on the quan-
tization errors can be utilized by criteria like the MDL to automatically find a
model that keeps the balance between complexity and quantization errors. How-
ever, since the complexity of the standard NG algorithm is defined as parameter
– as in K-Means – and thus does not change over the training iterations, criteria
like the MDL cannot be deployed directly within the NG training process.

• Input:

– The data set D contains the instances described by feature vectors,
for which the neural gas model is to be trained.

– The stopping criterion SC determines when the training process stops.
This could be a simple criterion like the maximum number of pro-
totypes, or a sophisticated one such as the Minimum Description
Length.
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– The learning rates α1 and α2 determine how strong the adaptation
of a prototype is influenced by a feature vector.

– The maximum link age T determines when a link between two pro-
totypes is removed.

– The error constants E1 and E2 are used to decrease the overall errors
when a new unit is inserted and at the end of each iteration.

– The link matrix L and the link age matrix LA contain the information
about links and their ages.

– The array error contains the accumulated quantization errors of each
codebook prototype.

• Output:

– M represents the trained neural gas model and is a matrix that stores
the neural gas prototypes. Thereby, each row represents the multi-
dimensional vector of a prototype. Therefore, the matrix has N rows
and the number of columns is equal to the number of features con-
tained in the feature vectors.

– L is an N -dimensional matrix that contains the topological informa-
tion of the neural gas model – meaning it keeps the state of the links
between the various prototypes.

• Line 1 : The initial codebook M containing two prototypes at random
locations is created.

• Line 2 : The structures required by the algorithms are created. These
are the link matrix L, the link age matrix LA and the array error that
contains the accumulated errors of each prototype. Thereby, in the initial
state links do not exist, and the link ages and the quantization errors are
set to zero.

• Line 3 : The iteration counter c is initialized. This counter is needed for
determining when a new unit should be inserted and ensures that there is
an adequate time interval between two insertions.

• Lines 4 to 45 : The complete Growing Neural Gas process consists of train-
ing the existing prototypes and inserting new ones at locations with high
quantization errors. The training and insertion processes continue until
some stopping criterion SC is met.

• Line 5 : The iteration counter c is increased.

• Line 6 : The prototypes p0 and p1 with the smallest and the second small-
est distance to d are extracted. In algorithms based on VQ, the closest
prototype is also called the best matching unit (BMU). The distance cal-
culation depends on the employed distance measure such as the Euclidian
distance or the Cosine similarity.
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• Line 7 : The quantization error for unit p0 is calculated (based on the
employed distance measure) and added to the accumulated error of p0.
These error values are required for determining where a new unit needs to
be inserted.

• Line 8 : A link is created between p0 and p1 if it does not yet exist.

• Lines 9 to 12 : The link age of all links emanating from p0 is increased by
1.

• Lines 13 to 16 : The update rule moves the prototype p0 closer to d by
calculating the vector d−p0 and adding a fraction of this vector α1 ·(d−p0)
to p. The learning rate α1 ensures that the size of the update step is limited.
The same procedure is applied to the topological neighbors of p0, but here
a lower learning rate α2 is used.

• Lines 17 to 23 : After setting the age of the link between p0 and p1 to zero,
the age of all links is checked. If the link is older than the age threshold
T , it is removed.

• Lines 24 to 30 : Units that are not linked to other units are considered
as dead units, because they do not represent any feature vector. Since
they only increase the complexity of the model, and do not reduce the
quantization errors they are removed from the model.

• Lines 31 to 43 : After the training process, the GNG algorithm checks
whether a new prototype should be inserted. If the input-stimuli counter c
is an integer multiple of the parameter λ, a new unit is inserted. Thereby,
the insertion process first extracts the prototype pe that has the maxi-
mum accumulated quantization error (stored in error), second extracts
the topological neighbor pn that has the maximum quantization error of
all topological neighbors PN , third inserts a new unit at the half distance
between pe and pn, and finally updates the link and link age matrices,
and the quantization errors. The accumulated error of pn and pe is de-
creased by a multiplication with the parameter E1 and the error of the
newly inserted unit is set to the just decreased error of pe. In addition, the
now obsolete link between pe and pn is replaced with two links between pe
and pi and pn and pi.

• Line 44 : The quantization errors of all units are decrease by multiplying
them with the parameter E2.

5.7.5 Robust Growing Neural Gas Algorithm

The Robust Growing Neural Gas (RGNG) algorithm presented by Qin et al.
[65] is a member of the robust neural gas algorithms (e.g., [1]) and implements
various measures to improve the robustness of the neural gas learning process.



5.7. Selected Unsupervised Machine Learning Algorithms 99

Thereby, the authors base their definition of robustness on the principles defined
by Huber in [38] for statistics and used as fundamental properties for robust
clustering algorithms by Dave et al. in [16]. A robust procedure has the following
properties:

• The efficiency or accuracy should be good for the assumed model.

• The negative impact in the performance caused by small deviations from
the model assumption should be small.

• The impact of larger deviations from the model assumption should not
have a catastrophic impact.

While Neural Gas algorithms fulfill the first property, they typically have issues
related to the second and third property. These are the sensitivity to the initial-
ization of the prototypes and the drop in performance due to the presence of a
large number of outliers. Another issue which is not directly related to robust-
ness, is the determination of the appropriate model complexity. Since clustering
is an unsupervised learning process, class labels are not available and the num-
ber of clusters must either be given as parameter or automatically determined
by the algorithm. For most of the NG and GNG variants, the number of clus-
ters cannot be determined automatically. This is a major disadvantage when
data needs to be analyzed for which only limited or none a priori knowledge is
available. In order to overcome the robustness issues, and to automatically de-
termine the adequate model complexity, RGNG implements several extensions
to the standard GNG algorithms:

• Employment of the Minimum Description Length (MDL) for choosing an
appropriate model complexity.

• Integration of an outlier resistance strategy that detects and attenuates the
influence of outliers, even when a large number of them is present within
the input data.

• Support for adaptive learning rates that are set according to the age of the
model prototypes. Thereby, the learning rate is lower for older prototypes
within the model, which are already trained on the cluster they represent,
and higher for newly inserted prototypes that still need to be adapted to
the represented data.

• In order to avoid the prototype coincident problem, which occurs when two
prototypes represent the same cluster, RGNG employs a new learning rule
that introduces a repulsion force (initially presented in [20]) that moves
closely situated prototypes apart.

Although all of these sophisticated procedures help to improve the perfor-
mance over the standard NG and GNG based algorithms, the most important
aspect for the Semantic Pattern Transformation was the inclusion of the MDL
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criterion by RGNG. The reason here is that the Semantic Pattern Transforma-
tion is often used in scenarios where none or only limited a priori knowledge is
available about the analyzed data. Thus, the manual definition of the model
complexity is not feasible, and the model complexity determined by the MDL
within RGNG is a good starting point for further analysis.

5.7.6 Expectation Maximization Algorithm (EM)

This algorithm is used in Chapter 8 – Evaluation for the evaluation of the Se-
mantic Patterns within unsupervised learning. The EM algorithm is based on
Gaussian mixture models for representing the analyzed data. When compared to
the simple centroid models used by K-Means and the Neural Gas algorithm fam-
ily, the deployment of these Gaussian kernel allows for a more accurate modeling
of the underlying data.

Since this algorithm is not directly employed by the Semantic Pattern Algo-
rithms, further details will not be discussed here, and the reader is referred to
this explanation [18] for further information.

5.8 Selected Supervised Machine Learning Al-
gorithms

The evaluation of the Semantic Patterns presented in Chapter 8 – Evaluation
is based on two supervised learning algorithms: The Support Vector Machine
algorithm, and the J48 algorithm. The latter is an implementation of the well-
known C4.5 decision tree algorithm.

Both algorithms are not employed directly by the Semantic Pattern Trans-
formation. Therefore, the reader is referred to external sources for further infor-
mation: SVM algorithm [13], C4.5 algorithm [67]. General information about
supervised classification techniques can be found in the work by Kotsiantis [41].

5.9 Chapter Conclusions

The Semantic Pattern Transformation transforms arbitrary value-centric fea-
ture vectors into a common semantic representation – the Semantic Patterns.
This transformation process is based on associative networks, the application of
spreading activation, and the application of supervised and unsupervised ma-
chine learning algorithms.

While this chapter focused on the details of these methods, the following
chapters will discuss how they are arranged and applied within the whole trans-
formation process.
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Algorithm 4 Growing Neural Gas (GNG) algorithm

Require:
D {data set consisting of feature vectors}, SC {stopping criterion}, α1, α2 {learn
rates}, T,E1, E2 {Maximum link age T and error constants E1, E2}, L, LA, error
{link matrix, link age matrix, quantization error array}, M {Neural Gas prototype
codebook}

1: M = createPrototypes(2) {Initialize random codebook}
2: {L, LA, error} = initStructures(2) {Initialize link matrices and error array}
3: c = 0 {Input-stimuli counter}
4: while SC() != true do
5: c = c+ 1 {Increase input-stimuli counter}
6: {p0, p1} = getBMUs(d,M ,2) {Get the two best matching units p0 and p1}
7: error(p0) = error(p0) + ||d− p0||2 {Calculate and update quantization error}
8: setLink(L,p0,p1) {create a link between p0 and p1 if it does not exist yet}
9: EL = getEmanatingLinks(L,p0) {Get emanating links from p0}

10: for all el in EL do
11: increaseLinkAge(LA,el,1) {Increase the link age of each link el by 1}
12: end for
13: p0 = p0 + α1 · (d− p0) {Move p0 into the direction of d}

PN = getNeighbors(L,p0) {Get all topological neighbors from p0}
14: for all pn in PN do
15: pn = pn+ α2 · (d− pn) {Move each neighbor pn into the direction of d}
16: end for
17: setLinkAge(LA,p0,p1,0) {set link age of link between p0 and p1 to 0}
18: for all {pi in M},{pj in M} do
19: la = getLinkAge(LA,pi,pj) {Get and check link age of each link}
20: if {la> T} then
21: removeLink(L,pi,pj) {Remove link between pi and pj}
22: end if
23: end for
24: for all p in M do
25: EL = getEmanatingLinks(L,p) {Get emanating links of p}
26: if {EL = {}} then
27: removePrototype(p) {Prototype with no links are removed}
28: updateStructures(L,LA,error) {Adapt structures}
29: end if
30: end for
31: if {mod(c,λ = 0} then
32: pe = getUnitMaxError(error) {Get prototype with the maximum error}
33: PN = getNeighbors(L,pe) {Get the topological neighbors of pe}
34: pn = getUnitMaxError(error,PN ) {Get neighbor with the maximum error}
35: pi = 0.5 · (pe+ pn) {Create a new prototype between pe and pn}
36: updateStructures(L,LA,error) {Adapt structures}
37: removeLink(L,pe,pn) {Remove link between pe and pn}
38: createLink(L,pe,pi) {Create link between pe and pi}
39: createLink(L,pn,pi) {Create link between pn and pi}
40: error(pe) = error(pe) ·E1 {Reduce error or pe}
41: error(pn) = error(pn) ·E1 {Reduce error or pn}
42: error(pi) = error(pe) {Set initial error value of pi to value of pe}
43: end if
44: error = error ·E2 {Decrease all errors by factor E2}
45: end while





6
Semantic Pattern Transformation

This chapter describes the details of the Semantic Pattern Transformation. The
process is organized in five layers that extract the feature values and their seman-
tic relations from the analyzed instances, train an associative network and apply
the spreading activation algorithm to generate the Semantic Patterns. Each of
these processes is explained in detail and relevant examples are given.

6.1 Semantic Pattern Transformation

The process of generating and analyzing the Semantic Patterns is separated into
five processing layers depicted in Figure 6.1. The general idea is to extract the
co-occurrence information of different features (Layer 1 ), to store this informa-
tion in an associative network (Layer 2 and Layer 3 ) and to generate Semantic
Patterns by applying spreading activation (SA) strategies (Layer 4 ). Various
analysis techniques can then be applied to the generated patterns (Layer 5 ). The
following sections define the required concepts and describe the five processing
layers.

6.1.1 Layer 1 - Feature Extraction

The first processing layer extracts all features and their corresponding values
from the instance set generated via an arbitrary relation from a domain-specific
data set. Depending on the nature of the information carried by the features,
they can be assigned to two categories – symbolic features and distance-based
features. This distinction plays an important role for the representation of data
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Figure 6.1: Overview of the five processing layers of the Semantic Pattern Transfor-
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Figure 6.2: Layer 1 : The features and their unique feature values are extracted from
the instances and the feature type is determined for each feature. This
information is required for all subsequent processing layers.

within the associative network generated in Layer 2 and Layer 3. After extract-
ing all features, their unique feature values, and determining their category, this
information is stored in a table that is used within all subsequent processing
layers.

Properties of Instances, Features and Feature Values

A set of multiple instances is extracted from an arbitrary data set via a defined
relation. These instances are described via different features and their respective
feature values. Thereby, the following properties regarding the feature type, the
context between feature and feature value, and the number of features used within
an instance need to be considered:

Each feature and all its associated features values can either be assigned
to the symbolic or the distance-based feature type. This distinction plays an
important role for the generation of the associative network in Layer 2 and
Layer 3. Although the categorization could be partly automatized, for certain
distance-based features the overall performance can be improved by interpreting
them as symbolic features. Typically, this is the case when the number of possible
feature values is low, or single or multiple feature values carry information that
might be lost when using the distance information as basis for the mapping
operation in Layer 2. These issues are highlighted in Example 11.



106 Chapter 6. Semantic Pattern Transformation

Example XI: Symbolic vs. distance-based features?

Given a data set, which contains information about a wide range
of airplanes, and a numerical feature that describes the number of
engines an airplane carries: Then, the possible feature values would
range from one engine for small aircraft, to six engines used to power
the world’s heaviest airplanea. Assuming, this number is interpreted as
a distance-based feature, then, the following information is gained by
applying the Euclidean distance measure: The distance between aircraft
with four engines is equal to those with two or six engines.
Now, when taking other information into account, one would come to
the conclusion that typical civilian passenger airplanes are powered by
either two or four engines, whereas six engines are mainly used by special
purpose aircraft. Hence, in terms of usage, aircraft with four engines are
closer related to those with two than to those with six engines. This leads
to the conclusion that in this case the information carried by the specific
values is more important than that carried by their distances. Therefore,
the feature should be assigned to the symbolic category.

aAntanov 225, “the six-engined dream”: http://en.wikipedia.org/wiki/Antonov An-
225)

Regardless of the feature type, each feature consists of one or more feature
values. Thereby, it is important to note that the feature value only conveys
information when viewed in context with its associated feature. This is espe-
cially important when multiple features share the same feature values or different
distance-based features are used. The issue is highlighted in Example 12.

Example XII: Context of features and feature values?

The features Import (import commodities) and Export (export
commodities) of a country are described by the same feature values such
as iron, chemicals or coffee. Although the same values are used for both
features, the information whether a country imports or exports coffee
has a significant influence on other features. Furthermore, by looking at
the feature values without knowing the associated feature, it is not clear
for which description they are used. The value coffee could either belong
to the stated Import or Export features, or to a completely different
feature that describes the items on the menu of a restaurant.
In case of distance-based features this is even more important, since a
value alone does not convey information without knowing its associated
feature. Therefore, a feature value always must be viewed in context with
its associated feature.

Each instance is described with one or multiple features. The number of
features used for the description may vary from instance to instance. When
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looking at all the input instances, neither the number of features per instance
nor the used features need to be constant. Furthermore, the same feature can be
used multiple times within one instance. In machine learning, these properties
and the necessity to handle missing values need to be considered when choosing
the desired algorithm and the appropriate preprocessing operations. This is
highlighted by Example 13. For further information the reader is referred to
the detailed description of the processing steps required for the application of
machine learning algorithms in Chapter – 3 – Knowledge Discovery and Machine
Learning.

Example XIII: Features for the description of an instance?

Demo Data Set 1 contains various features and their values for
the description of the world’s countries. Although, a large number of
features are shared by all countries, some of them are only applicable
to certain countries, such as the size of the claimed maritime area or
features describing nuclear power plantsa. Furthermore a feature might
occur multiple times within the same instance, which is highlighted by
the export commodities of a country. This feature is available for all
country instances, but its number of occurrences varies from country to
country. Due to these issues, an adequate representation must be found
that can be handled by the employed machine learning algorithm.

aIn some cases the absence of features might be indicated via a “null” value like
none or 0.0, but in general non appropriate features are simply not present.
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Grouping of Distance-Based Features

Distance-based features might also be arranged into groups. This grouping has
a positive influence on the performance of the required mapping operation ap-
plied in the next layer. However, this operation is not specifically required by
the transformation process, and special care must be taken that only compatible
features are grouped. Otherwise, preprocessing operations such as normalization
would be needed. This would defeat the purpose of the Semantic Pattern Trans-
formation, which aims to eliminate these operations. One possible application
of grouping is highlighted in Example 14.

Example XIV: Grouping distance-based features?

Within Demo Data Set 1, each country has three distance-based
features describing the percentage of its gross domestic sectors – agri-
culture, industry and services. The values are expressed as percentage
values and the sum over these three features is equal to 100%. When
comparing the feature values, they have the same value range (0% to
100%), and the typical distances between the feature values of all three
features can be considered as similar. Therefore, these features could be
grouped without applying additional preprocessing operations.
In contrast, the following example highlights that grouping might also
lead to the requirement of further preprocessing operations. The feature
birth-rate, which is expressed as births per 1000 people, and the feature
Gross Domestic Product (GDP) per capita (in U.S. dollars) are based
on different value ranges. In order to eliminate these differences, nor-
malization procedures are required. However, as the Semantic Pattern
Transformation aims to remove these operations, the grouping of such
features is considered as counterproductive.

Layer 1 - Processing Steps

The processing steps executed in Layer 1 are defined via the pseudo algorithm
shown in Algorithm 5 and described as follows:

• Input: The instance set (I) containing and arbitrary number of instances.

• Output: The network’s meta-information structure NET I containing all
features F , their corresponding unique feature values FV and their feature
types C.

• Lines 1 to 7 : The desired features F and their values FV are extracted
from the instances within the instance set I, which are generated from an
arbitrary data set via a relation.

• Lines 8 to 11 : Depending on the information carried by the features,
they are assigned to two possible feature types C – distance-based or sym-
bolic. The features, their defined categories and their values are then stored
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Algorithm 5 Layer 1 : Feature Extraction

Require:
I = {i1, i2, ..., in} {set of instances}
NET I {network meta-information structure}

1: for all ii in I do
2: F = extractFeatures(ii) {extract all features from the given instance}
3: for all Fi in F do
4: FV = extractFeatureValues(Fi,ii)
5: storeUniqueValues(NET I,Fi,FV) {add features and feature values to the net-

work’s meta-information structure, only unique values are added}
6: end for
7: end for
8: for all Fi in NET I do
9: C = determineFeatureType(Fi) {determine feature type manually or automat-

ically by inspecting the feature values associated with the given feature}
10: storeFeatureType(NET I,Fi,C) {store feature type in the network’s meta-

information structure}
11: end for
12: DF = getDistanceBasedFeatures(NET I ) {optional: get distance based features}
13: groups = createGroups(DF ) {optional: manually create groups}
14: storeGroups(NET I,groups) {optional: store the group information within the net-

work’s meta-information structure}

for the subsequent Layer 2 processing in the network’s meta-information
structure NET I.

• Line 12 to 14: Optionally, multiple distance-based features that have sim-
ilar value ranges could be arranged into groups. This group information is
then stored within the network’s meta-information structure NET I.
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6.1.2 Layer 2 - Node Generation
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Figure 6.3: Layer 2 : The mapping of symbolic and distance-based feature values to
network nodes based on the feature type.

Within an associative network, information and relations are modeled as
nodes and links connecting these nodes. This processing layer – depicted in
Figure 6.3 – creates the nodes of the network by mapping the previously ex-
tracted feature values to network nodes. Thereby, the feature type – symbolic
or distance-based – plays an important role and determines how this mapping
is realized.

Symbolic and Distance-Based Features

For symbolic features the possible feature values are directly mapped to distinct
nodes by creating one node for each feature value. Thereby, a node representing
a symbolic feature value is uniquely defined by three properties: The name of
the corresponding feature, the feature value and the feature type.

For distance-based features, the process must be altered due to the following
reasons: First, the associative network would grow too large if each real feature
value occurring in the analyzed instances would be mapped to a distinct node.
Second, and even more important, the input range covered by distance-based
values might not be countable and therefore cannot be directly translated into
nodes. The latter would result in the inability to map deviating feature values
of instances that where not available during training. Therefore, some kind of



6.1. Semantic Pattern Transformation 111

operation that maps multiple input values or a value range to a corresponding
node within the network, is needed.

Mapping Distance-Based Feature Values

The mapping operation can be implemented via a discretization algorithm. Al-
though there is a broad range of such techniques available, the decision was
made to use a different approach taken from the area of machine learning – the
unsupervised clustering algorithm RGNG. Although, the application of an un-
supervised learning algorithm typically comes with a higher complexity than the
utilization of discretization algorithms, it offers several advantages in the area of
anomaly detection and the application of spreading activation (SA) techniques.
In other more specific scenarios, the RGNG algorithm could be replaced with an
adequate discretization method. The unsupervised mapping operation is obvi-
ously not limited to the RGNG algorithm – basically any unsupervised clustering
algorithm could be used for the discretization process. However, the RGNG al-
gorithm was selected, because it includes several robust learning techniques and
employs the Minimum Description Length (MDL) [68] to automatically deter-
mine the model complexity. Since the performance of RGNG and similar algo-
rithms has already been evaluated on a wide range of data sets, one can safely
assume that these algorithms will produce good results for the one-dimensional
data represented by single features.

For the application of the RGNG algorithm, the following processing steps
are required: For each distance-based feature, the algorithm is applied to the
corresponding unique feature values and a model is trained. In case of RGNG,
this model contains cluster prototypes that are directly mapped to nodes within
the associative network. Thus, for each of these prototypes a node is gener-
ated and the feature values within the analyzed data are assigned according to
the minimum distance to these prototypes. The values of the prototypes, and
therefore the covered value range depends on the location of the agglomeration
of input values (clusters) (Example 15). If a number n of distance-based fea-
tures were grouped in the previous step, the RGNG algorithm is applied to the
n-dimensional feature vectors consisting of the grouped feature values.

Example XV: Mapping of a distance-based feature

Figure 6.4 shows an example for mapping the feature values rang-
ing from 0 to 100 of a distance-based feature to associative network
nodes. Here, the application of the RGNG algorithm as mapping
operation generates a model with four prototypes (clusters).

Using Distance Information

When training an RGNG map for a distance-based feature or a group of such
features, additional information is gained that is not directly used for building



112 Chapter 6. Semantic Pattern Transformation

0 30 36 80 100

15 33 58 90

Values 
from 

0 to 100

RGNG 
prototypes

used as
network
nodes

Figure 6.4: Mapping of values ranging from 0 to 100 to prototypes for a distance-
based feature. The density of values is indicated by the color ranging from
white (low density) to black (high density). The input value clusters are
represented by RGNG prototypes, which are used as nodes within the
network.

the associative network, but plays an important role for spreading activation
techniques applied in Layer 4. This is discussed in detail in Section 7.3.3 of the
next chapter.

First, when feature values are used to train an RGNG map, the distances be-
tween these values and the best matching prototypes can be determined. When
analyzing the distances between the feature values and their corresponding pro-
totypes, the mean distance and the variance of these values can be extracted.
This information can be used later for anomaly detection by attenuating the
influence of feature values that are not typical for a given node.

Second, the distance between the trained prototypes themselves can be cal-
culated. This information is used within the spreading activation process in
Layer 4 to cause the co-activation of nodes representing feature values that are
close to the input values.

Further details on how this information is structured and how it is used will
be given in the next chapter.

Layer 2 - Processing Steps

The processing steps executed in Layer 2 are defined in Algorithm 6 and de-
scribed as follows:

• Input: The network’s meta-information structure NET I currently con-
taining all features F , their corresponding unique feature values FV and
their feature types C.

• Output:

– The initial associative network NET containing the nodes, which are
created by applying a mapping operation to the feature values within
NET I.

– Additional meta-information is stored within the structure NET I.
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• Line 2 to 3 : The feature values FV and the feature type C are extracted
for each feature F contained in NET I and extracted in Layer 1.

• Line 5 to 8 : For each symbolic feature F , its feature values FV are ex-
tracted, and for each unique feature value FVj a node a within the as-
sociative network NET is created. Thereby, a node is described by three
components: The feature F , feature value FV and the feature type C.

• Line 10 to 11 : For each distance-based feature F , a discretization opera-
tion is applied to its unique feature values FV. Here, the operation is based
on the training of an RGNG map (model). The prototypes PR defining
this map are extracted.

• Line 12 to 15 : For each of the map’s prototypes PR, a node consisting
of the feature F , the value of the prototype pri and the feature type C is
created within the network (NET ).

• Line 16 to 17: Information related to distances within the RGNG map and
between the feature values, and their best matching prototypes is stored
within the network’s meta-information structure NET I. This information
is required for certain subsequent analysis processes.
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Algorithm 6 Layer 2 - Node generation

Require:
NET {associative network}
NET I {network meta-information structure}

1: for all Fi in NET I do
2: FV = getUniqueFeatureValues(NET I,Fi) {get all unique feature values from

the network’s meta-information structure}
3: C = getFeatureType(NET I,Fi) {get type of feature: symbolic or distance-

based}
4: if {C = “symbolic”} then
5: for all FVj in FV do
6: a = createNode(Fi,FVj ,“symbolic”) {symbolic feature values are directly

mapped to network nodes, a node is identified by the represented feature,
its feature value and its feature type}

7: addNode(NET,a) {the node is added to the network}
8: end for
9: else if {C = “distance-based”} then

10: model = trainDiscretizationModel(FV ) {train discretization model on feature
values for the given distance-based feature}

11: PR = getPrototypes(model) {extract prototypes from discretization model}
12: for all pri in PR do
13: a = createNode(Fi,pri,“distance-based”) {a node for a discretization pro-

totype is identified by the represented feature, the value of the prototype
and the feature type}

14: addNode(NET,a) {the node is added to the network}
15: end for
16: distances = getDistances(model) {extract distance information from trained

model}
17: storeDistanceInformation(NET I,distances) {store distance information in

the network’s meta-information structure}
18: end if

19: end for



6.1. Semantic Pattern Transformation 115

6.1.3 Layer 3 - Network Generation
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Figure 6.5: Layer 3 : Generation of the associative network that represents the fea-
ture values and their relations.

In this layer, which is depicted in Figure 6.5, the relations between the feature
values are extracted and links representing these relations are created within
the associative network. Thereby, two feature values of arbitrary features are
considered to be related when they co-occur within the same instance. The
strength of the relation is defined by the number of co-occurrences within the
complete instance set. The relations and their strength are modeled as weighted
links between the network’s nodes corresponding to the feature values.

Extracting Relations From Instances

For each instance, its corresponding feature values, their features and feature
types are extracted. Each feature value is then mapped to the corresponding
node within the network. Thereby, symbolic feature values are directly mapped
to network nodes. For distance-based features the best matching RGNG proto-
type needs to be found, which can then be mapped to a network node. After
applying the mapping operation, a list of all nodes corresponding to the feature
values within the analyzed instance is gained. For each possible combination of
two nodes within this list, a link is created between these nodes, or if it already
exists the weight of this link is increased.
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Normalization

After processing all instances, the weights of the links are equal to the absolute
number of co-occurrences between feature values within the analyzed instances.
Since these absolute values cannot be used for the SA process applied in Layer
4, a normalization technique must be applied. For most of the analysis processes
a local max norm yields the best results: Thereby, the outgoing links of a given
node are normed according to the maximum link weight of these links. This
local norm emphasizes feature values that sparsely occur within the data set,
which allows for a better analysis of their relations.

Fanout Values

By taking a closer look at the nodes and their weighted links, knowledge about
the information carried by a node can be extracted. This knowledge can then
be used to attenuate the influence of certain nodes when applying the spreading
activation techniques in the next layer. The rationale behind the attenuation is
to avoid noise that is introduced by nodes that are connected to a large number
of other nodes within the network. The issues is highlighted by Example 16.
For a detailed discussion on how fanout factors are calculated and how they
influence the spreading activation results, the reader is referred to Section 7.3.5
of the next chapter.

Example XVI: Attenuating the influence of a redundant node

Given an associative network that models the information contained
in instances, which describe countries with various features such as
export commodities, unemployment rates, languages or continents, and
assuming, the analysis is focused on details of European countries only:
Then, the feature continent becomes redundant, because each country
within the analyzed instances is on the same continent. Thus, all other
nodes within the network representing the possible feature values are
linked to the node representing the feature value Europe. When applying
the spreading activation techniques in the next layer, this feature value
would therefore cause the activation of every other node which would
add noise to each generated pattern. Therefore, the influence of such
nodes must be attenuated by employing so called fanout factors.

Layer 3 - Processing Steps

The processing steps executed in Layer 3 are defined via the pseudo algorithm
shown in Algorithm 7 and described as follows:

• Input :

– The instance set (I) containing and arbitrary number of instances.
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– The network’s meta-information structure NET I now containing the
feature information extracted in Layer 1 and the distance-information
extracted in Layer 2.

– The initial associative network NET containing the nodes.

• Output :

– The final associative network NET containing the nodes and the nor-
malized weighted links.

– The fanout values stored within the network’s meta-information struc-
ture NET I.

• Lines 2 to 3 : For a given instance ii all features F are extracted, and an
empty array N reserved for the network nodes corresponding to the feature
values within the instance ii is created.

• Lines 4 to 18 : The feature values FV of the extracted features F are
mapped according to their feature type C to nodes within the associative
network NET. The mapped nodes are stored within the node array N .

• Lines 20 to 30 : For each possible combination of two nodes ai and aj
within the array N , the strength of the weighted link wij between ai and
aj is increased by 1.0. If the link does not exist, it is created.

• Lines 31 : A normalization algorithm is applied to all links within the
network NET in order enable the application of spreading activation tech-
niques in the next layer.

• Lines 32 to 33 : The fanout values fanouts are calculated for each node
and stored within the network’s meta-information structure NET I.
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Algorithm 7 Layer 3 - Network links generation

Require:
I = {i1, i2, ..., in} {set of instances}
NET {associative network with nodes generated in the previous layer}
NET I {network meta-information structure}

1: for all ii in I do
2: N = {} {initialize node list, which will contain all nodes representing the feature

values of the given instance}
3: F = extractFeatures(ii) {extract all features from the given instance}
4: for all Fj in F do
5: C = getFeatureType(NET I,Fj) {get feature type: symbolic or distance-

based}
6: FV = extractFeatureValues(Fj) {extract all features values of the given fea-

ture contained in the instance}
7: for all FVk in FV do
8: if {C = “symbolic”} then
9: a = getNode(NET,Fj ,FVk,“symbolic”) {retrieve node directly from net-

work}
10: addNode(N ,a) {store node in array}
11: else if {C = “distance-based”} then
12: model = getModel(NET I,Fj) {get model for distance based feature}
13: pr = mapFeatureValue(model,FVk) {get the best-matching prototype

for the given feature value}
14: a = getNode(NET I,Fj ,pr,“distance-based”) {retrieve corresponding

node from the network}
15: addNode(N ,a) {store node in array}
16: end if
17: end for
18: end for
19: {loop over all network nodes contained in the array}
20: for all ai in N , aj in N do
21: if {ai != aj} then
22: wij = getWeightedLink(NET,ai,aj) {retrieve the link for the given nodes

from the network}
23: if {wij = NULL} then
24: wij = createLink(NET,ai,aj) {if link does not exist, it is created}
25: wij = 0.0 {initialize new link with weight 0.0}
26: end if
27: wij = wij + 1.0 {increase the weight of the link by 1.0}
28: end if
29: end for
30: end for
31: applyNormalization(NET ) {apply normalization algorithm to network links}
32: fanouts = calcFanoutValues(NET,NET I ) {calculate the fanout values for the net-

work nodes}
33: storeFanoutValues(NET I,fanouts) {store the fanout values in the network’s meta-

information structure}
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6.1.4 Layer 4 - Semantic Pattern Generation
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Figure 6.6: Layer 4 : Generation of the Semantic Patterns.

In Layer 4 the network representing the information and relations contained
within the input instances is used to generate the actual Semantic Patterns,
which form the basis for further analysis processes. Thereby, depending on the
analysis single or multiple feature values or complete instances can be trans-
formed into Semantic Patterns. Typically, for the initial analysis the patterns
for all instances are generated and then used as a basis for further processing
steps.

After selecting the input feature values, the corresponding nodes within the
associative network need to be retrieved. Thereby, as in the previous layers, sym-
bolic feature values are mapped directly and distance-based feature values are
mapped according to the discretization model trained in Layer 2. The mapped
nodes are then activated and their activation is spread via the application of
spreading activation algorithms. Thereby, different parameters concerning the
application of the spreading activation algorithm need to be tuned according
to the desired analysis. A detailed explanation of these parameters and their
influence will be given in the next chapter.

After spreading the activation of all activated nodes, the activation values of
all associative network nodes are extracted and stored in a vector. This vector
is called Semantic Pattern and forms the basis for all further analysis processes.

The structure of a Semantic Pattern is highlighted in Figure6.7.
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Figure 6.7: Structure of a Semantic Pattern. After activating the nodes in the as-
sociative network and spreading their activation, the activation values of
the network nodes are extracted and stored in a vector, which represents
the Semantic Pattern.

Layer 4 - Processing Steps

The processing steps executed in Layer 4 are defined via the pseudo algorithm
shown in Algorithm 8 and described as follows:

• Input :

– The instance set (I) containing and arbitrary number of instances.

– The network’s meta-information structure NET I.

– The final associative network NET containing the nodes and the nor-
malized weighted links.

• Output : The generated Semantic Patterns are stored within the set P .

• Line 1 : Initialize set P which will contain the transformed Semantic Pat-
terns.

• Line 2 to 7 : All features F , their feature type C and their feature values
FV are extracted from the given instance ii.

• Line 8 to 19 : Depending on the feature type C the corresponding nodes
are extracted from the network NET and stored in the set A.
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Algorithm 8 Layer 4 - Pattern Generation

Require:
NET {trained associative network}
NET I {network meta-information structure}
I = {i1, i2, ..., in} {set of instances} P {transformed Semantic Patterns representing
the input instances}

1: P = {} {initialize set that will contain the transformed patterns}
2: for all ii in I do
3: F = extractFeatures(ii) {extract features from the given instance}
4: A = {} {initialize node list, which will contain all nodes representing the feature

values of the given instance}
5: for all Fj in F do
6: FV = extractFeatureValues(Fi) {extract feature values from the instance for

the given feature}
7: C = getFeatureType(NET I,Fj) {get feature type: symbolic or distance-

based}
8: for all FVk in FV do
9: if {C = “symbolic”} then

10: a = getNode(NET,Fj ,FVk,“symbolic”) {retrieve corresponding node
from the network}

11: addNode(A,a) {add node to set}
12: else if {C = “distance-based”} then
13: model = getModel(NET I,Fj) {get model for distance based feature}
14: pr = mapFeatureValue(model,FVk) {get the best-matching prototype

for the given feature value}
15: a = getNode(NET,Fj ,pr,“distance-based”) {retrieve corresponding node

from the network}
16: addNode(A,a) {add node to set}
17: end if
18: end for
19: end for
20: NET A = spreadActivation(NET,NET I,A) {activate selected nodes and apply

spreading activation techniques}
21: p = extractSemanticPattern(NET A) {extract all activation values from acti-

vated network and store them in a vector – the Semantic Pattern}
22: addPattern(P ,p) {add generated pattern to set}
23: end for

• Line 20 : The nodes contained in the set A are activated within the asso-
ciative network and their activation is spread to the neighboring nodes by
applying spreading activation techniques. The resulting activation state of
the network is stored in NET A.

• Line 21 to 22 : The activation values of all nodes of the activated network
NET A are extracted and stored in a vector that is called the Semantic
Pattern p. This pattern is added to the result pattern set P , which forms
the basis for further analysis processes.
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6.1.5 Layer 5 - Analysis

The Semantic Patterns form the basis for arbitrary analysis processes, which
will be described in the next chapter.

6.2 Chapter Conclusions

The Semantic Pattern Transformation is organized in five processing layers that
transform the raw feature vectors into Semantic Patterns. Thereby, associative
networks, unsupervised machine learning and spreading activation are the core
building blocks of the whole transformation process.



7
Semantic Pattern Analysis

The Semantic Pattern Transformation transforms arbitrary feature vectors into
Semantic Patterns. Thereby, the response of the underlying associative network
to an input-stimulus – consisting of one or multiple feature values – is gained
by activating the corresponding network nodes, and spreading their activation
values to the neighboring nodes. The activation state of the complete network
is then extracted and stored in a vector – the Semantic Pattern. These patterns
form the basis for all further knowledge extraction procedures, which include
simple filtering and sorting algorithms for pattern interpretation, the application
of similarity measures for the implementation of semantic search algorithms,
or highly sophisticated machine learning algorithms used for unsupervised or
supervised learning scenarios.

This chapter focuses on the interpretation of the Semantic Patterns, then
goes into various details of the transformation process that were omitted in the
last chapter, and finally presents various knowledge extraction procedures. The
most important of these processes will then be evaluated in the next chapter.

7.1 Interpretation

The underlying vector of a Semantic Pattern represents the activation state of
an activated associative network. Therefore, information about the network and
its response to the input-stimuli can be extracted directly from this vector repre-
sentation without the need to query the network. The remainder of this section
will focus on the interpretation of Semantic Patterns by discussing basic opera-
tions for the extraction and processing of the represented semantic information.
The given examples are taken from the two demonstrations data sets described

123
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Figure 7.1: An example for a Semantic Pattern representing a country. Different
sections of the pattern correspond to different features, and each feature
is represented by one or multiple feature values.

in the appendix of this thesis, where the first contains instances representing
the world’s countries, and the second one is a collection of Tweets that were
published on the social network Twitter during the Egyptian revolution in early
2011.

7.1.1 Interpreting the Activation Values

The basic structure of a Semantic Pattern is depicted in Figure 7.1, where the
value-centric feature vector of an African country has been transformed into a
Semantic Pattern. For visualization purposes, only a small number of feature
values contained in the features Unemployment rate, Exports and Continent are
shown. Thereby, the raw Semantic Pattern depicted in the middle of the figure
contains the activation values that where extracted from the associative network
after applying the spreading activation algorithm. Each value corresponds to the
activation value of a network node, which represents a certain feature value, and
each feature value is associated with a certain feature. The Semantic Pattern
can easily be visualized as shown in the upper part of the figure.

However, in contrast to the simple example in Figure 7.1, most Semantic
Patterns are represented by high-dimensional vectors. Thus, for the interpre-
tation of such patterns the focus is typically placed on certain sub-parts (e.g.,
features), which are extracted by applying simple filters and other operations.

An example for such an operation is the sorting of the activation values and
the subsequent extraction of the most active ones. By visualizing an adequate
number of activation values, a quick overview about the most important proper-
ties of the analyzed pattern can be gained. This is highlighted by two examples
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Figure 7.2: Semantic Pattern for the feature value 70% of the feature GDP-Service.
The 19 most active and thus most semantically related feature values are
visualized.
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Figure 7.3: Semantic Pattern for the feature value 20% of the feature GDP-Service.
The 19 most active and thus most semantically related feature values are
visualized.
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shown in Figure 7.2 and Figure 7.3. In these examples the semantic relations
of the feature GDP-Service are extracted. This feature describes the contribu-
tion of the service sector to the Gross Domestic Product (GDP) in relation to
the agricultural and industrial sector. Thereby, the first pattern represents the
semantic fingerprint of a highly developed country with a large service sector at
70%, while the second example shows the pattern of a country with a smaller
service sector at 20%. In both cases the 19 most active feature values of the
corresponding Semantic Patterns have been extracted and sorted. By looking
at these values, a quick understanding on the semantic relations within the gen-
erated pattern can be gained. For the two examples it is easy to observe that the
feature values 70% and 20% occur in a completely different semantic context.

Since the GDP-Service feature is a distance-based feature, the values 70%
and 20% cannot be directly mapped to nodes within the associative network.
Thus, a discretization operation needs to be applied. Here, the best matching
node within the network for the value 70% is a node representing 67.3% and for
20% there is one with the value 27.51%. These best matching nodes would be
the most activate ones, but are not shown in the bar charts due to scaling issues.
However, the represented values also have a small distance to other nodes of the
GDP-Service feature. These nodes are co-activated as seen by the most active
feature values 58.05% in the first example and 34.95% in the second example.
The reason for this co-activation is the application of the pre-spreading technique
described in Section 7.3.3, which is applied to nodes representing distance-based
feature values.

By looking at the bar charts one can quickly observe that a large service
sector (70% ) is closely related to international agreements such as the European
Union (EU ), the European Organization for Nuclear Research (CERN ), the
European Space Agency (ESA), a rather high GDP per capita (23468$ ) and
chemicals as export good. In contrast, a small service sector (20% ) is strongly
associated with a large agricultural sector (46.03% ), raw materials as export
goods such as palm oil, timber, cocoa, or diamonds, a rather high death rate
(19.56 ), the continent Africa and a low literacy rate (55.9% ).

When the extraction of information should be limited to certain features,
then simple filter operations can be applied. This is shown by the two examples
in Figure 7.4 and Figure 7.5. Thereby, the first one is the result of activating
the feature value Europe of the feature Continent, while the second one uses
the feature value Africa of the same feature. The resulting patterns reveal the
semantic relations of the feature values Europe and Africa. In order to focus
on the feature Exports only, the appropriate feature values are extracted and
sorted according to their activation values. By looking at the bar charts, one can
easily observe the differences between Europe and Africa. While in Europe the
most relevant exports are related to industrial products, such as machinery and
equipment, chemicals or manufactured goods, the most active values in Africa are
raw materials such as cotton, coffee, diamonds or timber. Another representation
is shown in Table 7.1, where the three most active feature values for each feature
of the two Semantic Patterns are extracted.
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Figure 7.4: Semantic Pattern for the feature value Europe of the feature Continent.
Only the activation values related to the feature Exports have been ex-
tracted.
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Figure 7.5: Semantic Pattern for the feature value Africa of the feature Continent.
Only the activation values related to the feature Exports have been ex-
tracted.
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Activated Nodes GDP-Services  70% GDP-Services 20%
Feature Feature ValueFeature Value

GDP$Agriculture

11.93% 46.03%

GDP$Agriculture 4.37% 36.41%GDP$Agriculture

19.62% 19.62%

GDPPerCapita

$23,468 $1,587

GDPPerCapita $16,146 $5,666GDPPerCapita

$7,625 $3,283
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2.02% 2.02%

MilitaryGDP 1.17% 5.08%MilitaryGDP
3.07% 7.61%

PopGrowth

0.32 2.04

PopGrowth 1.04 2.97PopGrowth
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3.63% 26.75%

Unemployment 10.60% 7.35%Unemployment

7.35% 42.76%
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Table 7.1: This table shows a textual representation of the semantic relations for the
values 70% and 20% of the feature GDP-Services.
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Figure 7.6: Semantic activity of the feature value Tahrir over time.
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In other scenarios, information can be extracted by sorting the activation
values of a Semantic Pattern according to the contained feature values. This
representation can be used when time-based feature values are included within
the analyzed instances. In this case, when a Semantic Pattern is generated for
an arbitrary concept, the activation values of the time-related nodes represent
the semantic development of this concept over time. This is shown for a Seman-
tic Pattern that was generated for a term contained in the second demonstration
data set, which covers the Egyptian revolution in early 2011. During this revo-
lution the most important demonstrations against Hosni Mubarak occurred on
the Tahrir place in Cairo. The semantic activity over time contained within the
pattern for Tahrir is visualized in Figure 7.6.

The presented examples highlight that Semantic Patterns can easily be in-
terpreted by applying simple filters and sorting operations. The application
of such and other operations to the patterns does not depend on the nature
of the analyzed data, the defined knowledge discovery process, nor the applied
analysis method. This is a huge advantage for the definition and application
of arbitrary knowledge discovery processes, because it removes the need for the
implementation of domain-specific interpretation methods.

7.2 Pattern Arithmetic

The vector representation of the Semantic Patterns enables the application of
a wide range of simple vector-based operations for the transformation and pro-
cessing of the patterns in order to extract additional information. In this section
the most common operations, such as calculating the similarity of two patterns,
or combining different patterns, and their main purposes will be discussed.

7.2.1 Similarity

The similarity of two Semantic Patterns plays an important role for the appli-
cation of further analysis processes, such as supervised or unsupervised learn-
ing, or the deployment of semantic search algorithms. The differences between
two patterns, as depicted in Figure 7.7, represent the different active regions of
the underlying associative network. This can also be expressed via a distance
measure applied to two vectors, where the calculated distance reflects the se-
mantic similarity. Thereby, two patterns are considered as similar when their
corresponding input-stimuli are semantically related and, therefore, cause the
activation of similar regions within the network. On the contrary, when two
patterns activate distinct regions, then their input-stimuli have no semantic re-
lation at all. In order to model this behavior, the Cosine similarity is the best
choice, because it is based on the angle between two Semantic Patterns. This
means, when two patterns activate distinct regions within the network, they are
orthogonal which is reflected by the maximum distance at π

2 . While the Cosine
similarity is an obvious choice for determining the similarity of Semantic Pat-
terns, the Euclidean distance can also be used, which is an important aspect
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Figure 7.7: These two example patterns represent different regions that are activated
within the associative network. The differences between the patterns can
be used to calculate their similarity.

when applying standard machine learning algorithms for unsupervised or super-
vised learning. The calculation of the similarity also plays an important role
when applying semantic search algorithms, which will be explained in Section
7.4.3. The differences between the two distance measures will then be revisited
in the next chapter, when the semantic search algorithm will be evaluated on
real data.

7.2.2 Adding and Subtracting Semantic Patterns

The application of simple vector-based addition and subtraction are basic oper-
ations that can be applied to Semantic Patterns based on the same underlying
associative network. While the first operation allows the combination of the
semantic concepts represented by different patterns, the second operation is ap-
plied when the main differences between two concepts need to be identified. The
topic of combining two Semantic Patterns is also strongly related to the com-
bination function employed in the spreading activation process, which will be
discussed in Section 7.3.4.

The subtraction of two patterns can be used to gain a quick overview of the
differences in their semantic activations. This is highlighted by the two examples
given in Figure 7.8 and Figure 7.9. In the first case, two Semantic Patterns have
been generated by activating the feature values Europe and Africa of the feature
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Figure 7.8: Difference of the Semantic Patterns for Europe and Africa, sorted ac-
cording to the absolute activation values.
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Figure 7.9: Differences of the export commodities between the Semantic Patterns for
Europe and Africa, sorted according to the absolute activation values.
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Continent. The generated patterns have been subtracted and the absolute values
of their elements have been calculated. By sorting the activation values of the
gained vector, the main deviations can be identified. As easily observed in the
figure, the feature values for Africa and Europe dominate these differences and
are then followed by differences related to the agreements that are signed by
European and African countries. In the second case, the same patterns have
been subtracted. Here, only the activation values of the feature values related
to the feature Exports have been extracted.

7.2.3 Mean Value and Variance

By calculating the mean pattern of multiple input patterns, one is able to gain
a quick overview of the typical feature values contained in the input patters. An
example for the application of this method is the analysis of pattern clusters as
found by unsupervised clustering algorithms.

In a similar way, the variance of multiple Semantic Patterns shows how the
feature values vary within an analyzed pattern group. This is highlighted by an
example that analyzes the countries of the Eurozone: Here, the feature currency
and the corresponding feature value Euro will have a much lower variance than
the feature language and the corresponding feature values.

7.2.4 Activation Energy and Other Operations

By summing up the activation values of a pattern, its total activation energy can
be calculated. This energy is a measure on how strong the network response is
to a given input-stimulus. This information can be used for detecting anomalies.

Also, many other simple or more sophisticated operations can be applied
to the patterns for extracting further information. An example would be the
application of methods like the Principal Component Analysis (PCA), which is
used to reduce the pattern dimensionality by removing non-relevant features.

7.3 Spreading Activation Techniques

The five principle layers of the Semantic Pattern transformation have been de-
scribed in the previous chapter. In this section, the focus is placed on further
details regarding the spreading activation process. Although the principle idea
behind this process is fairly simple, several issues need to be considered dur-
ing its application. These include the appropriate handling of nodes represent-
ing distance-based features, the parameters regarding the spreading activation
process itself, and the application of fanout procedures to enable constrained-
spreading. In general, there is no need to fine-tune these aspects when applying
the Semantic Pattern Transformation to an arbitrary data set. However, it is
important to understand the influence of the different parameters and methods
in order to find the best generic strategies used within the default configuration.
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7.3.1 Types of Semantic Patterns

Before further discussions on the details of the spreading activation process are
presented, the different Semantic Patterns types need to be discussed. Given an
arbitrary knowledge discovery process that involves the Semantic Pattern Trans-
formation: Then, according to Section 3.2 in Chapter 3 – Knowledge Discovery
and Machine Learning, instances described by features with different feature
values can be extracted by applying some kind of relation to the data set. Typ-
ically, these instances are then transformed into Semantic Patterns, which are
subject to further analysis processes. However, the transformation process is
not limited to complete instances. In fact, in can be applied to any combination
of the feature values contained within the data set. The thereby gained pattern
types are summarized in the following list:

• Instances: An instance refers to the combination of multiple feature val-
ues, but is special in the sense that this combination is defined via the
relation applied to the raw data contained within the analyzed data set.
For most of the standard applications of the Semantic Pattern Transfor-
mation, these instances are transformed into Semantic Patterns, which are
then subject to further interpretation and analysis processes.

• Single feature value: Semantic Patterns for single feature values are
generated in order to gain more information about the semantic relations
contained within the associative network. This procedure was already
demonstrated by multiple examples in Section 7.1.1 of this chapter.

• Multiple feature values: Semantic Patterns that are generated for mul-
tiple feature values reveal information about the common semantic in-
formation shared by the input feature values. Here, the application of
adequate nonlinear combination functions is required for the spreading
activation process. The rationale behind these combination functions is
explained in Section 7.3.4 of this chapter. The generation of Semantic
Patterns for single or multiple feature values also plays an important role
within semantic search algorithms. Here, the generated patterns are com-
pared to an existing data set of Semantic Patterns and the most simi-
lar ones are retrieved. Such a data set could be based on the instances
that were used during the training of the associative network or any other
Semantic Patterns based on single or multiple feature values that were
generated based on the trained network.

7.3.2 Generating a Semantic Pattern

Assuming that Layers 1 to 3 of the Semantic Pattern Transformation have al-
ready been applied to an arbitrary data set, then the Semantic Patterns can be
generated by applying spreading activation on the trained associative network.
While the general process was already explained in the previous chapter, here
the focus will be placed on the details of the spreading activation algorithm.
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The detailed procedures are implemented in Algorithms 9 and 10, which are
described as follows:

Based on the trained associative network, Semantic Patterns can be gen-
erated for either the complete instances, or any other combination of feature
values, or even a single feature value.

Algorithm 9 Generating a Semantic Pattern

Require:
NET {trained associative network}
NET I {network meta-information structure}
F = {F1, F2, ..., Fn} {set of input feature values}

1: Ad = getDistanceBasedNodes(F ,NET ) {map distance-based feature values to
nodes Ad}

2: As = getSymbolicNodes(F ,NET ) {map symbolic feature values to nodes As}
3: Ap = applyPreSpreading(Ad,NET,NET I ) {apply pre-spreading to distance-based

nodes Ad}
4: A = {As, Ap} {combine symbolic and pre-activated distance-based nodes}
5: P=applySpreadingActivation(A,NET,NET I ) {apply Algorithm 10 and extract

the Semantic Pattern P}

• Input :

– The trained associative network NET.

– The network’s meta-information structure NET I.

– A set F of symbolic and/or distance-based features and their corre-
sponding feature values.

• Output : The generated Semantic Pattern P .

• Line 1-2 : Depending on the feature type, the symbolic feature values are
mapped to the symbolic or distance-based node sets Ad and As. While
the symbolic feature values are directly mapped to the network nodes, a
discretization model is required for the distance-based feature values.

• Line 3 : For the distance-based feature values, a pre-spreading procedure
is required. This will be explained in detail in Section 7.3.3.

• Line 4-5 : The symbolic and distance-based node sets are combined, spread-
ing activation (Algorithm 10) is applied, and finally the Semantic Pattern
P is extracted.

After extracting the node set A by mapping the feature values F to the
network nodes, the actual spreading activation algorithm is applied in Algorithm
10, which is described as follows:

• Input :



7.3. Spreading Activation Techniques 135

Algorithm 10 Basic spreading activation algorithm

Require:
NET {trained associative network}
NET I {network meta-information structure}
A = {a1, a2, ..., an} {set of nodes to be activated}
IA {initial activation}
D {decay factor}
fanoutBefore: true or false {fanout before spreading}
fanoutDuring: true or false {fanout during spreading}
fanoutAfter: true or false {fanout after spreading}

1: for all ai in A do
2: if (fanoutBefore) then
3: FO = getFanoutValue(NET I,ai) {get the fanout value FO for node ai}
4: setActivation(ai,IA∗FO) {set initial activation IA multiplied by FO}
5: else
6: setActivation(ai,IA) {set initial activation values for input nodes}
7: end if
8: end for
9: for all ai in A do

10: L = getEmanatingLinks(ai) {get emanating weighted links wij from ai}
11: S = getActivation(ai) {get activation value of source node ai}
12: for all wij in L do
13: aj = getTargetNode(wij) {get target node aj of weighted link wij}
14: A = getActivation(aj) {get activation value of target node}
15: T = S ∗ wij ∗D {calculate target activation value}
16: if (fanoutDuring) then
17: T = T∗getFanoutValue(NET I,ai) {adapt activation by fanout value}
18: end if
19: A = combineActivation(A, T ) {apply combination function to A and T}
20: setActivation(aj ,A) {set new activation value A of target node aj}
21: end for
22: end for
23: if (fanoutAfter) then
24: for all ai in NET do
25: FO = getFanoutValue(NET I,ai) {get fanout value for node ai}
26: setActivation(ai,getActivation(ai)∗FO) {set fanout activation of node ai}
27: end for
28: end if

29: P = extractPattern(NET )

– The trained associative network NET.

– The network’s meta-information structure NET I.

– The set A = {a1, a2, ..., an} of nodes to be activated.

– The initial activation value IA, which is typically set to 1.0.

– The decay factor D, which limits the amount of energy spread to
neighboring nodes.
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– The parameters fanoutBefore, fanoutDuring and fanoutAfter, which
describe when and if fanout procedures are applied.

• Output : The result is the generated Semantic Pattern P .

• Line 1 to 8 : Set the initial activation value IA for the nodes contained
in the set A. If the parameter fanoutBefore is activated, the value IA is
multiplied with the corresponding fanout value FO.

• Line 9 to 22 : The spreading activation algorithm is applied for each acti-
vated node ai in A.

• Line 10 : The links emanating from node ai are extracted and stored in L.

• Line 11 : The source activation value S of node ai is extracted.

• Line 12 to 21 : For each emanating weighted link wij , the activation is
spread to the respective target node.

• Line 13 to 14 : The target node aj of link wij is extracted, and its activation
value A is retrieved.

• Line 15 : The core spreading activation technique is applied here: The
target activation value T is calculated by multiplying the source activation
value S with the decay factor D and the weight of the link wij .

• Line 16 to 18 : If fanoutDuring was set to true, then the target activation
value T is multiplied with the fanout value of the source node ai.

• Line 19 to 20 : The calculated target activation value T , which corresponds
to the energy spread from the source node ai, is combined with the ac-
tivation value A of the target node aj . The combination function could
be based on a simple addition or more advanced schemes1. Finally, the
calculated activation value A is set for node aj .

• Line 23 to 28 : If fanoutAfter was set to true then the activation values of
all networks nodes are multiplied with their corresponding fanout values.

• Line 29: Finally, the activation values of all nodes are extracted and stored
as Semantic Pattern in the vector P .

The two algorithms utilize several new concepts that have not been explained
before. These include:

• Pre-spreading for distance based-features: A pre-spreading process
for distance-based feature values is applied in order to cope with problems
related to very detailed discretization models and to loosing the distance
information contained in the original feature values.

1The combination function could also be based on a strategy that requires all the received
activation values before they can be combined. In this case, the activation values would be
stored here and then later combined after the spreading activation process has been completed.
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• Fanout before, during and after spreading: In order to remove the in-
fluence of highly connected nodes, fanout procedures are applied. Thereby,
the fanout values need to be calculated for each node based on the network
structure.

• Combining the activation: In order to combine different activation
values within a target node, different combination functions can be used –
including simple addition and advanced schemes.

These concepts will be described in the following sections and the influence
of their different parameters will be evaluated in the next chapter.

7.3.3 Spreading Activation for Distance-Based Features

The Semantic Pattern Transformation represents arbitrary feature values as
nodes within an associative network and their semantic relations via weighted
links. While symbolic feature values can be directly mapped to network nodes,
some kind of discretization operation is required for representing the distance-
based values within the associative network. Although the discretization op-
eration solves the problem of mapping feature values to nodes, it comes along
with two core problems: First, the discretization operation must find the right
model complexity, which corresponds to the number of nodes used to represent
the distance-based feature values. Second, only the semantic relations between
feature values are maintained, but not the distance-based information that is
contained in the feature values.

Problem 1: Discretization Model Complexity

Obviously, an adequate discretization model complexity is required for accu-
rately modeling the distance-based values contained in the analyzed feature.
The problem is strongly related to finding an adequate model complexity within
unsupervised learning, which was discussed in Section 5.6 of Chapter 5 – Tech-
niques. In fact, the Semantic Pattern Transformation employs the unsupervised
RGNG algorithm for the discretization of distance-based features. This algo-
rithm uses the MDL criterion in order to find an adequate model.

However, depending on the analysis, more detailed models might be required.
In this cases, the MDL override procedure discussed in Section 5.6 of Chapter
5 – Techniques can be applied to the discretization models, in order to gain
a model with the desired level of detail. Unfortunately, while the increased
model complexity helps to highlight fine details within the analyzed data, it
also comes along with a significant problem, which is highlighted in Figure 7.10.
Assuming, the Semantic Pattern Tranformation is applied to instances, which
contain a distance-based feature F1 and a categorical feature F2, and further
assuming, feature F1 consists of several values that have a small distance to
each other: Then, the associative network is built according to the feature value
co-occurrences extracted from the instances. While the feature values C and D
of F2 can be directly mapped to the network nodes, a discretization operation
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Figure 7.10: Problem 1: Discretization model complexity.

must be applied to the values of F1. Assuming, that the discretization algorithm
finds a detailed model that maps values from 9.9 to 10.0 to node A and values
from 10.0 to 10.1 to another node B, then the process yields the associative
network depicted in the middle of the figure. The nodes A and C, and B and D
are linked according to the co-occurrences of their corresponding feature values
within the analyzed instances. Now, two Semantic Patterns, which are depicted
in the lower part of the figure, are generated for the feature values represented
by the nodes C and D. In the first case, the energy is spread from C to A and
in the second case from D to B. Unfortunately, the two gained patterns are not
related at all, which is in stark contrast to the closeness of the feature values
used for their generation.

As a consequence, while increasing the model complexity enables the extrac-
tion of more details, it might also have a negative impact when comparing closely
related distance-based feature values.
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Problem 2: Loosing the Distance Information of Distance-Based Fea-
tures

When distance-based feature values are mapped to nodes within the associative
network via a discretization operation, the distance information of the original
feature values is lost. An example of a trivial setup2 is depicted in Figure 7.11,
where instances are described by only one distance-based feature F1, which con-
tains integer values from 0 to 9. Assuming, that the feature values are mapped
to network nodes via a discretization operation that generates 5 nodes, then the
Semantic Patterns depicted in the lower part of the figure are gained by apply-
ing the Semantic Pattern Transformation. In this case the Semantic Pattern
representation is equal to a simple binary representation, where the presence of

2In oder to emphasize the problems, the instances used for this example only contain a
single feature value. This means that no semantic relations in terms of co-occurrences can be
derived when analyzing the instances.
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a feature value is indicated by the value 1.0 and its absence by 0.0. Thereby, two
issues need to be considered: First, the problem, which was described in Figure
7.10 re-emerges due to the non-similarity of patterns even when they represent
closely related feature values. Second, the distance-information represented by
the original feature values is lost. In fact, within the Semantic Patterns the
distance-based values behave like symbolic values: In the example it is not pos-
sible to say whether the pattern for value 3 is closer to the pattern representing
value 5, or the pattern representing the value 7. As a consequence, the correct
order of the distance-based feature values cannot be derived for the Semantic
Patterns as depicted in Example 1 of Figure 7.14. In summary, the advantage
of modeling the semantic relations between feature values comes along with the
problem of loosing the distance information.

Solution: Pre-spreading for Distance-Based features

Both problems can be solved by applying a pre-spreading strategy for distance-
based features. This procedure is applied to nodes representing such feature
values prior to the actual spreading activation process. The basic idea here is to
co-activate other distance-based nodes of the same feature that represent closely
related feature values.

Before this pre-spreading procedure can be applied, the required distance
information must be extracted within the discretization procedure that is applied
within Layer 2 of the Semantic Pattern Transformation and stored for the later
application of spreading activation algorithms. The extraction of the distance
information in Layer 2 is implemented according to Algorithm 11 and described
as follows:

Algorithm 11 Extracting information for pre-spreading in Layer 2

Require:
NET I {network meta-information structure}
C {MDL complexity override factor}

1: for all distance-based features Fj in F do
2: FV = extractFeatureValues(Fj) {extract all features values FV of the given

feature Fj}
3: D = trainDiscretizationModel(C,FV ) {generate the discretization model D}
4: DM = calculateDistanceMatrix(D) {calculation of the distance between each

node of the model}
5: DM = maxNorm(DM ) {norm the matrix with the maximum distance}
6: storeDistanceInformation(NET I,Fj ,DM ) {store the distance information in the

network’s meta-information structure}
7: end for

• Input :

– The network’s meta-information structure NET I.
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– The MDL override factor C that influences that complexity of the
trained discretization model.

• Output : The information required by the pre-spreading process is stored
within the network’s meta-information structure NET I.

• Line 1 to 7 : For each distance-based feature Fj within the analyzed in-
stances, the following procedure is applied:

• Line 2 to 3 : The feature values FV of the feature Fj are extracted and
used for training the discretization model D. The complexity of this model
is influenced by the MDL override factor C. In this thesis, the unsuper-
vised clustering algorithm RGNG is employed for the generation of the
discretization models.

• Line 4 to 5 : The distance values for each discretization prototype to each
other prototype are calculated and stored in a symmetric matrix DM .
Then, the matrix is normed by the maximal distance contained in the
matrix.

• Line 6 : The matrix DM for feature Fj is stored within the network’s
meta-information structure NET I.

Algorithm 12 Pre-spreading

Require:
NET I {network’s meta-information structure}
NET {associative network}
ad {the distance-based node ad}
σp {the parameter σp that models the influence on the related nodes}

1: DM = getDistanceMatrix(ad,NET I ) {get distance matrix for given node}
2: D = getDistances(ad,DM ) {get distances to other nodes D for node ad}
3: for all di in D do
4: di = 1− di {adaptation of the normed distance}

5: A = e

−(d2i−2)2

2σ2p {application of the Gaussian function dependent on parameter
σp}

6: setActivation(NET ,ai,A) {set the gained activation value for node di}
7: end for

When applying the spreading activation process for generating the Seman-
tic Patterns, the gained distance information is utilized for the distance-based
feature values according to Algorithm 12, which is described as follows:

• Input :

– The network’s meta-information structure NET I.

– The associative network NET.
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– The distance-based node ad for which the pre-spreading process needs
to be applied.

• Output : The activation values of the nodes that are closely related to the
input node ad. These values are determined by applying the pre-spreading
process.

• Line 1 : Get the distance matrix DM for the node a from the network’s
information structure. This matrix has been determined during the gen-
eration of the discretization model as described in Algorithm 11.

• Line 2 : The distances D from node ad to the other nodes are extracted
from the distance matrix DM.

• Line 3-6 : For the distances di of all other nodes the activation values are
calculated.

• Line 4 : The distance value di is adapted by 1 − di. Thus, the maximum
distance is represented by the value 0, whereas the minimum distance is
represented by the value 1.

• Line 5 : The value di is transformed via the Gaussian function. The pa-
rameter σp influences the shape of this function, which is depicted in Figure
7.12.
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• Line 6 : The activation values calculated by applying the pre-spreading
activation process are stored within the network and are used for the ap-
plication of the spreading activation algorithm that analyzes the semantic
relations to other nodes.

Algorithm 12 introduces the parameter σp, which is used to model the size
of the neighborhood of the activated node, which still receives a majority of the
initial energy. The influence of this parameter is shown in Figure 7.12, where the
x-axis describes the normed distance from the activated discretization prototype
to the other prototypes, and the y-axis describes the size of the activation values
after applying the Gaussian function in Line 5 of Algorithm 12. The influence
of different values for σp is also shown.

Example XVII: Pre-spreading

The pre-spreading process is further explained by a simple exam-
ple given in Figure 7.13. Here, the discretization operation is applied to
a distance-based feature that contains values from 0 to 100 and yields
4 nodes representing the values 15, 32, 36 and 82. These nodes are
found by applying the unsupervised learning algorithm RGNG and are
located at position were the density of the input values is high. Then,
for these nodes, a distance matrix containing all distances is calculated
and normed according to the maximum distance.
Now, when a Semantic Pattern for the distance-based value 31 needs to
be generated, the closest node representing the value 32 is selected and
the appropriate row from the matrix is selected. The distance values D
are then adjusted by calculating 1 − D so that the minimum distance,
which is equal to 0, is now represented with the maximum value 1, and
the maximum distance, which is equal to 1, is represented by the value
0. These adjusted values are then used as the input for a Gaussian
function that is influenced by the value σp. While smaller values of σp
keep the pre-activation in the close neighborhood of the activated nodes,
larger values for σp influence a wider neighborhood. These pre-activation
values are then used to activated the network prior to the actual spreading
activation process.

Due to the integration of the information gained by applying pre-spreading,
the advantages of the semantic analysis are gained while keeping the important
distance information between the raw feature values. This comes with two key
benefits: First, the information represented by the distances between feature
values is kept in the Semantic Patterns, which enables the possibility to sort
the transformed Semantic Patterns. This is highlighted by Examples 2 and 3
in Figure 7.14. Second, the problems created by complex discretization models
are eliminated: This is due the integration of the Gaussian function, which
ensures that very close nodes of too complex models receive the right amount of
activation energy.
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Figure 7.13: Pre-spreading example.

7.3.4 Activation Combination Function

In a typical scenario, where multiple nodes are activated within the network and
their activation is spread to their neighboring nodes, the target nodes will receive
more than one activation value from the source nodes. In order to combine
these activation values, some function needs to be applied, which was already
indicated in Algorithm 10. In this thesis, two of such combination functions
are implemented: First, a function that simply sums up all incoming activation
values and adds them to the activation value of the target node, and second,
a combination function that applies the exponential function to the incoming
values before summing them up.
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Figure 7.14: Sorting Semantic Patterns: Example 1: The Semantic Patterns of
the distance-based feature values cannot be sorted, because they are
not related. Example 2: Pre-spreading is applied with a smaller σp

value. The influence of the neighborhood is lower than in Example 3,
where a larger σp value is used for the pre-spreading process. For both
examples it is possible to sort the Semantic Patterns by applying the
Cosine similarity.

SumCombinationFunction

This combination function was selected due to its simplicity and was used solely
during the initial applications of the Semantic Pattern Transformation. The
detailed procedure is explained in Algorithm 13, which sums up all incoming
values and adds the result to the activation energy of the target node. The
disadvantage of this simple method is the linear model, which does not emphasize
nodes that receive activation values from multiple sources.

Algorithm 13 SumCombinationFunction

Require:
A {set of activation values A the target node t with the activation value T receives
via the incoming links}
t {target node receiving the activation values}
T {activation value T of target node t}
NET {Associative network NET}

1: for all ai in A do
2: T = T + ai {add activation value ai to target activation value}
3: end for

4: setActivation(NET,t,T ) {set activation value T for target node t within the network

NET}



146 Chapter 7. Semantic Pattern Analysis

ExpCombinationFunction

The rationale behind the exponential combination function described in Algo-
rithm 14 is to emphasize nodes that receive activation values from multiple
sources. While the previously described SumCombinationFunction has a linear
response, this function implements a nonlinear behavior by integrating the ex-
ponential function. As will be shown in the subsequent chapter, the utilization
of this function yields the better results.

Algorithm 14 ExpCombinationFunction

Require:
A {set of activation values A the target node t with the activation value T receives
via the incoming links}
t {target node receiving the activation values}
T {activation value T of target node t}
NET {associative network NET}

1: T = eT

2: for all ai in A do
3: T = T + eai {add eai to the target activation value}
4: end for

5: setActivation(NET,t,T ) {set activation value T for target node t within the network

NET}

Others

During the evaluation of the Semantic Pattern Tranformation various other
combination functions such as sigmoid ones, or functions that incorporate more
sophisticated strategies for combining the activation values have been tested.
However, none of these strategies could achieve any significant gain when com-
pared to the ExpCombinationFunction. Therefore, further details about these
strategies will not be explained.

7.3.5 Fanout

When integrating fanout strategies into the spreading activation algorithm, then
the process is considered as constrained-spreading. The main purpose is to avoid
the flooding of the network with too much activation energy. Apart from the
fanout values, typical measures are related to limiting the spreading activation
iterations or enabling path constraints. These two methods were already dis-
cussed in Section 5.3.2 of Chapter 5 – Techniques, but cannot be utilized for the
Semantic Pattern Transformation, because only one spreading iteration is exe-
cuted. The requirement for one iteration is necessary due to the large number of
connections within the associative network. Empirical results have shown that
the application of a second spreading activation iteration introduces too much
additional energy in the network, which severely limits the capability to extract
important information.
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However, the Semantic Pattern Transformation still can implement con-
strained spreading by using a decay factor, which is already integrated into the
standard spreading activation algorithm, and the utilization of fanout strategies.
The basic idea of these strategies is to attenuate the influence of nodes that are
connected to a large number of other nodes. This process can be applied during
three different stages of the spreading activation process, which is explained in
the following list. Thereby, a simple example for a highly interconnected node is
given in order to show the influence of the different strategies. For this example,
it is assumed that the countries of the Eurozone are analyzed, which include the
feature Currency. Obviously, all of these countries have the Euro as currency
and therefore the node is linked to all other possible feature values. In order to
avoid the noise generated by spreading its activation, a fanout strategy needs to
be applied:

• Before spreading: Here, the fanout procedures are applied directly after
activating the nodes within the network, and thus before the application
of the spreading activation algorithm. This ensures that the appropriate
nodes are already attenuated so that they cannot spread – or only in a lim-
ited way – their activation energy during the application of the spreading
activation algorithm. In the context of the Semantic Patterns and the Euro
example, this means that the Euro node would be immediately attenuated
after it is initially activated. Then, it cannot spread its activation energy
to neighboring nodes during the spreading activation process. However,
the attenuation at this stage also means, that the resulting pattern will
only contain a very weak or non-existent activation of the Euro node and
thus the interpretation of this pattern would not reveal the Euro feature
value. Depending on the analysis, this might not be the desired outcome.

• During spreading: The fanout procedure can also be applied during the
spreading activation process, when the activation energy is received by the
the connected nodes. This ensures that non-relevant nodes are limited
in their ability to spread the activation but still remain relevant within
the resulting Semantic Pattern. For the Euro example this means that the
corresponding node is activated but does not spread its activation energy to
neighboring nodes. As a result, the interpretation of the Semantic Pattern
will still reveal the feature value Euro, but due to strongly attenuating the
spread energy, the amount of noise is reduced in the resulting pattern.

• After spreading: The same strategy can also be applied after the spread-
ing activation process. Here, the activation values of the resulting Semantic
Pattern would be influenced by the fanout values. For the Euro example
this means: The activation value for the Euro feature value will not be
shown in the interpretation of the resulting pattern, but its energy is still
spread during the spreading activation process. Therefore, this strategy
should not be used as a stand-alone fanout strategy, but in combination
with one or both of the previously described methods. The reason is that,
even when applying the before and during strategies, the Euro node will



148 Chapter 7. Semantic Pattern Analysis

still receive activation energy from other nodes causing a large activation
of this node within the resulting pattern. The activation values of such
nodes can then be reduced by applying the fanout strategy to the final
Semantic Pattern.

The deployment of one or a combination of these different strategies depends
on the specific analysis, but in general the application of fanout values during
the spreading activation process is considered to reveal the best results. The
reason is that the nodes subject to attenuation will still be visible in the final
Semantic Pattern, but do not add noise to the network.

The questions regarding the calculation of these fanout values still remain:
First, how is it decided whether a node is highly interconnected? There is no
absolute measure for a fanout value, because it depends on the size and the
structure of the network. Second, is the fanout value based on the number of
connections, or the weights of the links? In the second case, are the incoming
links or the outgoing links of a node considered? This is important, because the
link weights are not symmetrical when local network normalization strategies
like the ones that will be described in Section 7.3.6 are used.

Since the nodes of the associative networks employed by the Semantic Pattern
Transformation are highly interconnected, the number of connections does not
yield enough information for the determination of adequate fanout values. Thus,
the focus needs to be placed on the total activation energy a node can spread
or receive via its weighted links. This energy is simply calculated by summing
up the weights of all connected links. Whether this calculation is based on the
incoming or outgoing links can be defined as a parameter, but typically the
outgoing links are used.

Based on these thoughts, Algorithm 15 is employed by the Semantic Pattern
Transformation for calculating the fanout values of the network nodes. The basic
idea behind this algorithm is to calculate the total activation energy values of all
nodes and penalize those that strongly exceed the mean total activation energy
value of the network:

• Input :

– The network’s meta-information structure NET I.

– The associative network NET.

– The parameter σf that influences the shape of the attenuation func-
tion.

• Output : The fanout values for all nodes within the network are stored
within the network’s meta-information structure NET I.

• Line 1 : Initialization of the list ET that contains the total activation
energy values of each node within the network. These values are then
used to calculate the mean value and the standard deviation which are the
basis for determining whether a node is connected to an exceptionally high
number of other nodes.
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Algorithm 15 Fanout value calculation

Require:
NET I {network meta-information structure}
NET {trained associative network NET}
σf {factor that influences the shape of the fanout attenuation}

1: Et = {} {list that contains the total activation energy values of all nodes }
2: for all ai in NET do
3: L = getLinks(ai) {get links of node ai}
4: E = 0 {init total activation energy}
5: for all li in L do
6: wi = getWeight(li) {get weight of link li}
7: E = E + wi {add link weight to total activation energy of node ai}
8: end for
9: storeTotalActivationEnergy(Et,E) {store total activation energy within the list}

10: end for
11: M = mean(Et) {mean value of all activation energy values}
12: D = deviation(Et) {standard deviation of all activation energy values}
13: for all ai in NET do
14: E = getTotalActivationEnergy(ai,Et) {get total activation energy of ai}
15: d = E −M {calculate deviation from mean value}
16: d = d

D
{norm d by standard deviation}

17: FO = e
−(d2−2)2

2σf
2 {calculated fanout value}

18: if d < 0 then
19: FO = 2− FO {emphasize nodes with a small total activation energy}
20: end if
21: storeFanoutValue(NET I,ai,FO) {store the calculated fanout value for node ai}
22: end for

• Line 2 to 10 : The total activation energy values for all nodes are calculated
according to the following procedure:

• Line 3 : The links L of the node ai are extracted. Whether these are the
incoming or outgoing links depends on the selected strategy.

• Line 4 to 8 : The total activation energy E is determined by summing all
the weights of the links contained within L.

• Line 9 : The total activation energy E of node ai is stored in the list Et.

• Line 11 to 12 : The mean value M and the standard deviation D for all
total activation energy values are calculated.

• Line 13 to 22 : The following procedure calculates the fanout values for all
nodes within the network based on M , D and the factor σf , which is used
to shape the attenuation function.

• Line 14 : The total activation energy E for the node ai is extracted from
ET .
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• Line 15 to 16 : Now, the deviation d between the mean value M and the
total activation energy E is calculated, and then normed with the standard
deviation D.

• Line 17 : The value d is transformed via the Gaussian function in order to
calculate the fanout value FO for node ai. The parameter σf influences
the shape of this function, which is depicted in Figure 7.15.

• Line 18 to 20 : When the deviation d is smaller than 0, which means that
the total activation energy of the node is below the mean value M , the
node is emphasized. This is based on the inverted Gaussian function as
depicted in Figure 7.15.

• Line 21 : Finally, the fanout value FO for node ai is stored within the
network’s meta-information structure NET I.

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

σ=1.4

σ=1.2

σ=0.8

σ=0.4

Activation value after 
pre-spreading adaptation

Fanout Value

Normed distance  to mean energy 

Figure 7.15: The figure shows the normed distance between the total activation en-
ergy of the given node and the mean network value on the x-axis. The
calculated fanout value is represented by the y-axis and the influence of
the factor σf is shown for the values 0.4, 0.8, 1.2, and 1.6.

The fanout values calculated by the described algorithm are then applied
either before, during, or after the spreading process. This was already highlighted
in Algorithm 10, which describes the spreading activation process employed by
the Semantic Pattern Transformation. An analysis on the impact of these fanout
strategies will be given in the next chapter.



7.3. Spreading Activation Techniques 151

7.3.6 Associative Network Construction

The associative network used within the Semantic Pattern Transformation is
constructed within Layers 2 and 3, which were described in Chapter 6 – Semantic
Pattern Transformation: First, the network nodes are generated by applying a
mapping operation to categorical and distance-based feature values. Second,
the weighted network links are generated by analyzing the co-occurrences of
the feature values within the analyzed instances. The strength of the links
is determined by the number of co-occurrences within the instances. For the
initial weight calculation the counted values are directly used. However, for
the application of the spreading activation process in the subsequent layers, the
weights need to be normed so that they do not exceed the maximal value of
1.0. The Semantic Pattern Transformation currently implements three different
normalization strategies which are described as follows:

• GlobalMaxNorm: Here, the maximum co-occurrence count of the net-
work’s links is taken and all links weights are normed by this value. This
strategy suffers through the following problem: If very strong links exists
that greatly exceed the mean link weight of the network, then the nodes
connected by these links will receive significant higher activation values
than the other nodes. Since, the Semantic Patterns are compared by em-
ploying standard distances measures like the Euclidean distance or the
Cosine similarity, this large activation values have much more influence on
the distance calculation than the smaller ones received by nodes connected
with weaker links. Thus, it might not be possible to utilize nodes that do
not occur often, but therefore provide vital information for the Semantic
Patterns. This effect could be partly compensated by including fanout
strategies but the problem of possible large weight differences will still re-
main. In fact, the initial application of this strategy within the Semantic
Pattern Transformation did not yield acceptable results and thus was not
further investigated.

• LocalMaxNorm: Here, a local normalization strategy is applied for each
node. The weights of the links outgoing from a node are normalized by
the maximum weight of these links. This procedure is applied to each
node, which then has at least one outgoing link with a weight equal to
1.0. While this strategy ensures that nodes are emphasized that represent
feature values, which do not occur often within the instances, one must
chose an appropriate decay factor in order to avoid network flooding.

• LocalSumNorm: Similar to the LocalMaxNorm, this function is based
on a local strategy that considers the weighted links outgoing from a node.
Here, the weights of these links are normed by the sum of the weights of
all outgoing links. The biggest advantage of this strategy is its intrinsic
inclusion of a fanout factor. When a node is connected to a large number
of other nodes, then the weights of the individual links automatically get
penalized due to the distribution of the total weight over many links.
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7.4 Analysis

The remainder of this chapter describes the main analysis processes that were
used for the different applications of the Semantic Pattern Transformation.

7.4.1 Unsupervised Clustering

Standard unsupervised clustering algorithms can be directly applied to the Se-
mantic Patterns that were generated by applying the Semantic Pattern Trans-
formation to feature vectors from arbitrary data sets. By varying the model
complexity of the employed unsupervised learning algorithm, very coarse grained
models for gaining a quick overview, or more complex ones for the detailed repre-
sentation of the analyzed data, can be trained. The extracted clusters can then
easily be analyzed and interpreted by the techniques described in the previous
sections. The Semantic Patterns remove the need to adapt this interpretation
to the employed algorithms and the nature of the data.

1. Generating the initial Semantic Patterns: The Semantic Pattern
Transformation is applied to the instances and the associative network for
the subsequent pattern generation is trained. Depending on the analysis,
the patterns can be generated for the complete instances, for single fea-
ture values or arbitrary combinations or feature values. The clustering of
Semantic Patterns generated for single feature values can be utilized to
categorize these values according to their semantic fingerprints.

2. Application of unsupervised clustering: Without any further prepro-
cessing, the selected unsupervised clustering algorithm is applied to the
Semantic Patterns.

3. Interpretation: The gained clusters and the contained patterns can then
be analyzed according to the methods described in the previous chapters.
Especially, determining the mean and variance values of the patterns con-
tained in a cluster helps to gain a quick overview on the most important
feature values.

In order to highlight the unsupervised clustering process and the influence
of the pre-spreading parameter σp, a simple example based on four distinct
clusters is presented. This example was originally presented by the author of
this thesis in [50], and adapted for the following presentation. Thereby, the
analyzed two-dimensional data is visualized in Figure 7.16 and consists of two
distance-based features. The two-dimensional feature vectors are transformed
into Semantic Patterns by executing the four 4 layers of the Semantic Pattern
Transformation:

• Layer 1 : The data set consists of 2D data-vectors representing two dif-
ferent features. In this case, there are only distance-based features meaning
that the values of these features can be related with a distance measure.
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Figure 7.16: Artificial dataset consisting of four distinct clusters. There are four
RGNG prototypes for each dimension (X1 to X4 for the first feature
and Y1 to Y4 for the second feature).

• Layer 2 : In this layer the nodes for the associative network are created.
Since both features belong to the category of distance-based features, a
discretization operation needs to be applied. Therefore, the RGNG algo-
rithm is applied to the values of both features. The resulting prototypes
for each model are depicted in Figure 7.163 (X1 to X4, and Y1 to Y4).
These eight prototypes of both trained models represent the eight nodes
of the associative network that will be trained in the next layer. In order
to show the influence of pre-spreading and the associated parameter σp,
a complex model consisting of four prototypes per features is generated.
Here, a model with two prototypes per feature would be sufficient, and
would also be found by the MDL criterion.

• Layer 3 : Now, the links of the associative network are created and their
strength is determined by analyzing the co-occurrence information of the
two features within the training data.

• Layer 4 : Now, the spreading activation algorithm is applied to generate
the Semantic Patterns for each instance within the training set. In order
to show the influence of the pre-spreading procedure, two sets of Semantic
Patterns are generated – one for σp = 0.8 and one for σp = 0.1.

3The depicted prototypes are 1D prototypes. When the data is projected on the x-axis, or
on the y-axis one can see that the four prototypes of each model are at the center of gravity
of the projected data vectors.



154 Chapter 7. Semantic Pattern Analysis

• Layer 5 : Now, an unsupervised clustering algorithm is applied to the
generated Semantic Patterns. Here, the Self-Organizing Map (SOM) was
chosen due to its data visualization capabilities.

SOM 16−Jan−2009

U−matrix

 

 

0.00107

2.8

5.61

Figure 7.17: Visualization of the map trained on the Semantic Patterns with pre-
spreading parameter σp = 0.1.

The results of applying the SOM algorithm to the two pattern sets are shown
in Figures 7.17 for σp = 0.1 and Figure 7.18 for σp = 0.8. The instances of the
four clusters are marked by four different colors. Within the map, the dark ar-
eas indicate large distances between the analyzed instances and can be used for
the identification of clusters. In contrast, the distances between the instances
within a bright area are fairly small. Thus, the first map indicates that 16 clus-
ters are found, while the correct number of four clusters is observed within the
second map: This difference is explained by the pre-spreading factor σp: Accord-
ing to the explanations given in Section 7.3.3, the larger σp value compensates
the problems associated with a complex discretization model by increasing the
influence on the neighboring nodes within the pre-spreading process.

7.4.2 Supervised Learning

When class labels are available for the instances, supervised learning algorithms
can be applied to the Semantic Patterns in order to train a classifier. Similar to
unsupervised learning, the Semantic Pattern Transformation process eliminates
the need for preprocessing operations required by many supervised learning al-
gorithms. As for unsupervised learning, the resulting classes of patterns can
easily be interpreted without the need to analyze the model of the algorithm.
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Figure 7.18: Visualization of the map trained on the Semantic Patterns with pre-
spreading parameter σp = 0.8.

7.4.3 Semantic Search

The semantic similarity between patterns is the basis for the application of
semantic-aware search algorithms. By activating the nodes of one or more feature
values contained in the search query, and applying spreading activation, a search
pattern is generated. Similar semantic similar patterns can then be retrieved
from an existing pattern data base according to their similarity with the search
pattern. The whole process is highlighted by Example 18 and described as
follows:

1. Generating the initial Semantic Patterns: Before one is able to apply
semantic search queries, the Semantic Patterns of the search data base
need to be generated. This could either be the patterns generated by
applying the Semantic Pattern Transformation to complete instances (e.g
documents), single feature values (e.g., terms) or an arbitrary mixture of
multiple features values (e.g., sentences)4.

2. Definition of the semantic search query: The semantic search query
needs to be defined either by specifying a feature value, multiple feature
values, or a complete instance. Obviously, when symbolic feature values
are involved, only those nodes of the associative network can be retrieved
that perfectly match the feature values within the search query. This is
different when distance-based feature values are used within the search

4The generation of patterns for single feature values only works when these feature values
have been put into some semantic relation before – e.g. via the analyzed instances.
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query. Due to the possibility to calculate a distance to the nodes repre-
senting the distance-based feature values, a best matching node always can
be retrieved. However, one needs to consider that the network nodes can
only cover those feature value ranges that were present during the train-
ing. Therefore, feature values that are larger than the node representing
the largest value within the network, will always be mapped to the same
node regardless of their value.

3. Generation of the Semantic Pattern for the semantic search
query: The Semantic Pattern Transformation is applied to the input
feature values and a Semantic Patterns representing the search query is
generated.

4. Retrieval of the search results: The Cosine similarity between this
“search pattern” and all of the existing Semantic Patterns is then calcu-
lated and the results are sorted according to their similarity.

Example XVIII: Examples for semantic search queries

Assuming that Semantic Patterns have been generated for various
news articles covering stories about US related politics of the time
when this thesis was writtena: Then, executing a search query for
the term president would retrieved all news articles that contain the
term president, or any other semantically related term such as Obama,
Barack or health reform. This concept can be applied to arbitrary
Semantic Patterns generated by single terms, complete sentences or
even documents.

aEnd of 2011

7.4.4 Anomaly Detection

Anomaly detection aims to find outliers within a data set or instances that
were not seen during training and deviate from the trained model. Since the
response of the network – represented as Semantic Patterns – depends on the
input-stimuli given with feature values, and the links between the network nodes,
non-typical combinations of input feature values can be identified by analyzing
the total activation energy of the pattern. Depending on the analysis, too high
or too low energies can be considered as anomaly.

7.4.5 Semantic Relations

The associative network describes arbitrary relations between feature values. By
activating one or more nodes (corresponding to feature values) within the asso-
ciative network, and spreading their activation via the links to the neighbors,
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details about the semantic relations between various feature values can be ex-
tracted. Many examples for this analysis process have already been shown in
Section 7.1.1.

7.4.6 Feature Relevance

The relevance of a node or its represented feature value depends on its relations
to other feature values. Thereby, a node that has a large number of connections
is considered as non-relevant. When taking a closer look at this problem, one
observes that the requirements for determining the relevance values are strongly
related to the determination of the fanout values, which was discussed in Section
7.3.5. Nodes that are linked to a large number of other nodes within the network
should be limited in their capability to spread activation energy. In a similar
way these nodes are not considered as relevant within the network. Therefore,
in order to determine the feature value relevance, the fanout values, which are
calculated after generating the associative network, can directly be used. By
sorting these values, a quick overview about the relevancy of the feature values
can be gained.

It is important to note that here, the relevance of a node refers to its ca-
pability to provide useful information within the spreading activation process
that distributes its activation energy to the neighboring nodes. While in this
sense the feature value Europe is not relevant for participating in the spread-
ing activation process, the information carried by the node itself might still be
relevant. The removal of the feature value Europe would be beneficial for the
various analysis processes, but would also remove the capability of the analyst
to identify the instances as European countries. Thus, a non-relevant feature
value should not be removed from the instances but only its influence to other
nodes.

7.4.7 Time-Based Analysis Processes

When timestamps are available, this information can be integrated in the same
way as for other features into the associative network. The integration of such
information enables the analysis of semantic development over time.

7.5 Chapter Conclusions

This chapter describes various methods for interpreting and analyzing Semantic
Patterns. Due to the employed vector representation and the semantic informa-
tion contained in the patterns, simple operations like filtering, sorting, adding,
subtracting, or distance measures can be applied to the Semantic Patterns. Fur-
thermore, the Semantic Patterns use a common representation, which enables
the application of these and more sophisticated methods like supervised or un-
supervised learning in the same way, regardless of the underlying data and the
deployed knowledge discovery process.





8
Semantic Patterns - Evaluation

In this chapter, the Semantic Pattern Transformation is evaluated by applying
supervised and unsupervised machine learning algorithms, and a semantic search
algorithm. Thereby, the main focus is placed on the various parameters that
influence the transformation process. All of the evaluations are based on data
sets extracted from the UCI Machine Learning Repository [28], and include
nine data sets based on categorical features, ten data sets based on numerical
features, and seven data sets that contain both feature types. Before presenting
the evaluation results, the required assumptions and the evaluation environment
will be discussed, and a short overview of the conducted evaluations will be given.

8.1 Evaluation Environment

This section gives a quick overview of the evaluation scenarios and the data sets
covered in this chapter. Furthermore, the employed quality measure and the
evaluation environment are described.

8.1.1 Weka

According to the project webpage Weka is described as “Weka is a collection
of machine learning algorithms for data mining tasks. The algorithms can ei-
ther be applied directly to a dataset or called from your own Java code. Weka
contains tools for data pre-processing, classification, regression, clustering, asso-
ciation rules, and visualization. It is also well-suited for developing new machine
learning schemes.”

Weka and the Weka API, which can be directly used from a Java program

159
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were heavily used during the evaluation of the supervised and unsupervised
learning algorithms. Thereby, the Weka implementations of the K-Means, EM,
Support Vector Machine (SVM) (SMO in Weka), and C4.5 (J48 in Weka) algo-
rithms were deployed.

For a detailed description of Weka and knowledge discovery, or data mining
in general, the reader is referred to the book of Witten et. al [90].

8.1.2 Evaluation – At a Glance

In order to systematically evaluate the Semantic Pattern Transformation, and
the various parameters that influence the transformation process, the following
procedures are carried out by utilizing Weka [90]:

• Unsupervised learning: The performance of the unsupervised learning
algorithms EM and K-Means are evaluated by applying the algorithms to
categorical, numerical and mixed data sets from the UCI Machine Learning
Repository. Thereby, different parameter sets are used to configure the
Semantic Pattern Transformation, which is then applied to the raw data
sets. The performance is determined by employing the V-quality-measure.

• Supervised learning: For the evaluation of the performance of super-
vised classification algorithms the supervised Support Vector Machine al-
gorithm, and the decision tree based J48 algorithm are applied to the raw
data and the Semantic Patterns. In order to limit the large number of
possible parameter combinations for the Semantic Pattern Transforma-
tion, the best results from the unsupervised learning evaluation are taken
and used as a basis for the supervised evaluation.

• Semantic search: In order to evaluate the usability of the Semantic
Pattern Transformation for the implementation of a semantic search algo-
rithm, the same UCI Machine Learning Repository data sets are utilized.
Thereby, the usability of the Semantic Patterns as basis for a semantic-
aware search algorithm is determined by calculating the distances between
the instances of a given data set. Based on these distances, which describe
the similarity between the patterns, and the available class labels, the error
rates can be determined and compared for the raw data and the Semantic
Patterns. The process is conducted for the Euclidean distance and the
Cosine similarity.

• Influence of missing values: Finally, the influence of missing values on
the raw data and the Semantic Patterns is evaluated. For this procedure
the best results from the other evaluations have been taken and different
amounts of feature values have been removed from the instances.

• Fanout strategies: Also, the evaluation of unsupervised and supervised
machine learning algorithms has been extended by employing the fanout
strategies discussed in Section 7.3.5 of Chapter 7 – Semantic Pattern Anal-
ysis. In order to limit the possible combinations of input parameters, the
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fanout values have only been evaluated for the parameters that achieved
the best results in the standard evaluation. However, none of the possible
fanout parameter combination could increase the quality of the results.
Thus, the application of these strategies will only be discussed in terms of
the employed parameters, and within the conclusions of this chapter.

• Other evaluations: Other evaluations of advanced techniques like anomaly
detection, feature relevance and the applicability of methods that reduce
the dimensionality of the Semantic Patterns are beyond the scope of this
thesis and subject of future work. For the empirical evaluation of the Se-
mantic Pattern Transformation, the reader is referred to the descriptions
of the published works in Chapter 10 – Applications, which describe the
deployment of the Semantic Patterns in a wide range of domains.

8.1.3 Quality Measure: V-Measure

For the evaluation of the supervised and unsupervised results, the V-Measure is
used for determining the quality of the results. This measure was chosen due to
the advantages described in [69], when compared to the other common measures
such as F-Measure or the External Entropy.

8.1.4 Semantic Pattern Parameters

In summary, the different methods employed within the Semantic Pattern Trans-
formation are configured by various parameters that influence the generation of
the associative network and the spreading activation process. In order to get
an overview of the different parameters that are used within the evaluation
processes, the following summary is given. Thereby, the abbreviations in paren-
theses will later be used for the discussion of the gained results.

• Associative network: The following parameters are related to the con-
struction of the associative network:

– Link normalization (Norm): Two link normalization strategies
are available for the generation of the network: The LocalMaxNorm
(Norm=L) strategy, which applies a local maximum norm to the
links of each node, and the SumLocalNorm (Norm=S) strategy,
which norms the links of each node according to the sum of all link
weights. For details regarding these methods the reader is referred to
Section 7.3.4 of the previous chapter.

– Discretization model complexity MDL override for distance-
based features (C ): This is the MDL override factor that directly
influences the complexity of the discretization model. For further
information the reader is referred to Section 5.6 of Chapter 5 – Tech-
niques, and the description of the pre-spreading procedure for distance-
based features described in Section 7.3.3 of the previous chapter.
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• Spreading activation: The following parameters are related to the spread-
ing activation process (discussed in Section 7.3 of the previous chapter),
which is applied to the trained network:

– Decay factor D : The decay value D influences the amount of en-
ergy spread to the neighboring nodes and plays an important role for
constrained-spreading, which avoids the flooding of the network.

– Combination function (Comb): This function is used to com-
bine multiple activation values that a network node receives. Here,
the linear version SumCombinationFunction (Comb=S) and the
nonlinear variant ExpCombinationFunction (Comb=E) are eval-
uated. For details regarding these methods the reader is referred to
Section 7.3.4 of the previous chapter.

– Pre-spreading (σp): The influence of the pre-spreading process on
the neighborhood is configured by the factor σp. Details on this pro-
cess are covered in Section 7.3.3 of the previous chapter.

• Fanout strategy: The calculation of the fanout values employed in constrained-
spreading and their application are influenced by the following parameters
(as discussed in Section 7.3.5 of the previous chapter):

– Links for fanout calculation (FanLinks): This strategy deter-
mines whether the incoming or outgoing links of a node are considered
for the calculation of its fanout value.

– Fanout shaping (σf): This factor shapes the function used for the
calculation of the fanout values.

– Fanout application (FanApp): The fanout values can either be
applied before, during, or after applying spreading activation.

8.1.5 Data Sets

The UCI Machine Learning Repository data sets used for the evaluation proce-
dures covered in this chapter are listed in Table 8.1. The data set names are
covered in the first column (Data set), and will further be identified by the la-
bels listed in the second column (Label). Thereby, the data sets can be grouped
into three main categories according to the contained features – Categorical,
Mixed and Numerical. Additional information about the data sets is pre-
sented in columns three to six, which include the number of instances (Inst),
the number of distance-based features (DF), the number of symbolic features
(SF), and the number of classes within the respective data set (Classes). Fur-
thermore, the best results for the supervised Support Vector Machine (SVM)
algorithm, and the unsupervised algorithms K-Means (KM) and Expectation
Maximization (EM) are given for each data set. Thereby, the labels within the
parentheses represent the type of data, which is analyzed by the respective algo-
rithm: NN indicates the raw data that is not normed, N represents the normed
raw data, and P means that the data is transformed into Semantic Patterns by
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applying the Semantic Pattern Transformation. For each of these categories, the
V-Measure results of the respective algorithms are listed, where the bold results
indicate the best results for the respective algorithm (SVM, K-Means or EM ).
Also, a total result (Total) is gained by calculating the mean value for the in-
dividual results and presented for each algorithm and data set category. In case
of the Semantic Patterns (P), the results for the Semantic Patterns generated
via the parameter-set described in the third row of the table are listed.

Data set Label Inst DF SF Classes SVM (N) SVM (NN) SVM (P) KM (N) KM (NN) KM (P) EM (NN) EM (P)

Breast Cancer BC
Dermatology DE
KR vs. KP KR
Lymph LY
Mushroom MU
Soybean SO
Splice SP
Vote VO
Zoo ZO

Anneal AN
Colic CO
Credit-A CA
Credit-G CG
Heart-C HC
Heart-H HH
Hepatitis HE

Breast-w BW
Diabetes DI
Glass GL
Heart-Statlog HS
Ionosphere IO
Iris IR
Segment SE
Sonar SO
Vehicle VE
Vowel VO

SVMSVMSVM K-MeansK-MeansK-Means EMEM
SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2SP-Parameters: D=0.5, Comb=E, Norm=L, MDL=1.5, σ = 0.2

CategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategorical
286 9 2 0.03 0.04 0.04 0.01 0.01 0.06 0.00 0.08
366 1 33 6 0.93 0.92 0.95 0.58 0.09 0.86 0.87 0.87

3196 36 2 0.75 0.75 0.72 0.00 0.01 0.00 0.04 0.00
148 18 4 0.53 0.51 0.48 0.13 0.18 0.25 0.26 0.27

8124 22 2 1.00 1.00 1.00 0.48 0.47 0.45 0.61 0.59
683 35 19 0.92 0.92 0.93 0.59 0.62 0.73 0.79 0.79

3190 60 3 0.71 0.72 0.80 0.03 0.03 0.44 0.41 0.31
435 16 2 0.76 0.74 0.67 0.47 0.48 0.47 0.49 0.45
101 17 7 0.94 0.94 0.97 0.78 0.78 0.82 0.82 0.85

TotalTotalTotalTotal 0.73 0.73 0.73 0.34 0.30 0.45 0.48 0.47
MixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixed

898 6 32 6 0.86 0.86 0.92 0.23 0.03 0.30 0.31 0.32
368 7 15 2 0.31 0.32 0.31 0.13 0.03 0.05 0.10 0.12
689 6 9 2 0.41 0.41 0.39 0.16 0.02 0.25 0.17 0.21

1000 7 13 2 0.11 0.10 0.12 0.01 0.01 0.00 0.01 0.02
303 6 7 5 0.36 0.36 0.29 0.24 0.01 0.36 0.31 0.28
294 6 7 5 0.32 0.31 0.33 0.27 0.01 0.32 0.28 0.25
155 5 14 2 0.25 0.28 0.21 0.13 0.00 0.21 0.22 0.24

TotalTotalTotalTotal 0.37 0.38 0.37 0.17 0.02 0.21 0.20 0.20
NumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumerical

699 9 2 0.78 0.78 0.77 0.73 0.74 0.82 0.72 0.58
768 8 2 0.18 0.18 0.15 0.05 0.03 0.10 0.10 0.08
214 9 7 0.30 0.30 0.50 0.34 0.39 0.33 0.37 0.36
270 13 2 0.36 0.36 0.37 0.25 0.02 0.39 0.29 0.27
351 34 2 0.48 0.48 0.50 0.12 0.12 0.16 0.25 0.25
150 4 3 0.87 0.87 0.87 0.71 0.71 0.75 0.81 0.78

2310 19 7 0.88 0.88 0.90 0.61 0.53 0.59 0.62 0.60
208 60 2 0.23 0.23 0.23 0.01 0.01 0.02 0.01 0.01
846 18 4 0.51 0.51 0.48 0.11 0.19 0.19 0.10 0.19
990 10 3 11 0.63 0.63 0.76 0.06 0.34 0.23 0.19 0.25

TotalTotalTotalTotal 0.52 0.52 0.55 0.30 0.31 0.36 0.35 0.34

Table 8.1: Data sets that are used for the subsequent evaluation of supervised and
unsupervised algorithms. The V-Measure results of these evaluations are
also listed in the table.

8.1.6 Algorithm Setup and Tools

For the evaluation, the K-Means, EM, J48, and SMO algorithms are utilized
within a Java program that uses the Weka 3.6 API [90]. Thereby, in order to
calculate the V-Measure, the Weka functionality is extended by the cluster eval-
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uation tools provided by the authors of [69]. Only the following parameters of
the employed algorithms were changed: For the unsupervised algorithms, the
number of clusters was set to the number of classes contained within the ana-
lyzed data sets. For all algorithms, when available, the normalization of the raw
data is activated or deactivated as listed in the result tables. Furthermore, each
algorithm was applied to the respective data for ten iterations by selecting a dif-
ferent seed value for each iteration. In case of the Semantic Patterns, the ARFF
files1 of the respective data sets are transformed into the Semantic Patterns and
exported as ARFF formatted files again, which then can be read by the Weka
API.

8.2 Unsupervised Learning Evaluation

For this evaluation, the two unsupervised clustering algorithms K-Means and
EM are applied to the raw data and to the Semantic Patterns. Since the Se-
mantic Pattern Transformation is influenced by a wide range of parameters that
yield a huge number of different combinations, the following approach is used:

First, a baseline configuration that completely deactivates spreading acti-
vation, is deployed. This is achieved by setting the decay value to zero, which
eliminates the spreading of activation energy from activated nodes to their neigh-
bors. Thereby, most other parameters become irrelevant, because they are only
applicable when spreading activation is activated. This baseline configuration
corresponds to a simple binary feature vector representation, where the presence
of a feature value is indicated with 1.0 and its absence by 0.0.

Second, the influence of spreading activation is evaluated by utilizing vari-
ous combinations of parameters. Thereby, in order to reduce the number of test
runs, the first tests are aimed to eliminate certain parameters that have a neg-
ative influence on the performance. The focus is then placed on the remaining
parameters. The complete evaluation procedure is based on the following steps:

• K-Means and EM are applied to the raw value-centric feature vectors of
the respective data sets.

• The raw feature vectors of the analyzed data sets are transformed into
baseline Semantic Patterns. Here, spreading activation is deactivated by
setting D = 0.0. The two algorithms are then applied to the gained base-
line (binary) Semantic Patterns, and the corresponding V-Measure and
standard deviation values are determined.

• Finally, the real Semantic Patterns are generated by using different param-
eters for the Semantic Pattern Transformation. The evaluated parameters
depend on the type of analyzed data. In that sense, the evaluation of pre-
spreading techniques can only be conducted for the mixed and numerical
data sets due to the availability of distance-based features.

1Attribute-Relation File Format (ARFF): The data sets and the contained instances read
by Weka are stored in this file format.
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• The different results are then analyzed by discussing the gained observa-
tions.

8.2.1 Result Tables

The subsequent sections will discuss the results gained by utilizing different
parameters for the generation of the Semantic Patterns. Thereby, the tables
used for presenting the results are organized as follows: There is one table that
lists the V-Measure results of the corresponding evaluation, followed by a table
that contains the associated standard deviation values for the 10 iterations of
each algorithm and parameter combination. In addition to the individual results,
there is always a total result that is gained by calculating the mean value of the
individual results. The rationale behind these total values is to get a quick
overview of the overall performance when evaluating a parameter set used for
the analysis of the individual data sets.

In all tables, the best results for a group are highlighted by using a bold
font. For the V-Measure values the best results are represented by the largest
values, whereas for the standard deviation values the lowest ones are marked.
The latter give an indication on the robustness of the gained results.

8.2.2 Categorical Data

Nine categorical data sets from the UCI Machine Learning Repository are used
for the evaluation of the unsupervised learning algorithms. For the categorical
data all parameters that influence the pre-spreading process become irrelevant
due to the lack of distance-based features. The reduced number of parameters
simplifies the evaluation process, which focuses on the evaluation of the decay
factors, the link normalization strategy, and the combination function.

Baseline

For the baseline Semantic Patterns, which are generated for the categorical data
sets, the following parameters are chosen:

• Decay factors: D = {0.0}. For the baseline configuration D = 0.0
is used, which completely deactivates the spreading activation algorithm
and makes the combination function and link normalization parameters
irrelevant.

• Others: The parameters for link normalization (Norm) and the combi-
nation of the activation values (Comb) are not relevant for the baseline
Semantic Pattern, because of the decay factor D = 0.0. Also, the MDL
override parameter (C) and the pre-spreading parameter σp are not con-
sidered for the generation of the baseline Semantic Patterns due to the
lack of distance-based features.
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The results gained by applying the K-Means and EM algorithms to the base-
line Semantic Patterns are listed in Tables 8.2 and 8.3. Thereby, the following
observations are made:

• Raw data: For the raw data, the EM algorithm significantly outperforms
the K-Means algorithm. While the total result for the EM algorithm is
V = 0.477 at Vσ = 0.019, it is only V = 0.342 at Vσ = 0.052 for the K-
Means algorithm when the data is normed. This performance drops further
when the K-Means algorithm is applied directly to the raw data, where
V = 0.296 and Vσ = 0.050. These results are not surprising due to the
higher sophistication of the Gaussian kernels employed by EM in compari-
son to the simple centroid model of the K-Means algorithm. This increased
sophistication yields better results while also increasing the robustness of
the algorithm, which is indicated by the lower standard deviation values.

• Baseline Semantic Patterns: In this case, the Semantic Patterns are
generated without applying spreading activation, which is achieved by set-
ting the decay factor to D = 0.0. The thereby generated patterns corre-
spond to a binary representation where the presence or absence of a feature
value is described with the values 1.0 and 0.0 respectively. By using this
representation, the total result for the K-Means algorithm is V = 0.443 at
Vσ = 0.058, which means it is getting closer to that of the EM algorithm
when applied to the raw data (V = 0.477 at Vσ = 0.019). The result of
K-Means and EM on the baseline Semantic Patterns is roughly the same:
V = 0.443 at Vσ = 0.058 for K-Means and V = 0.449 at Vσ = 0.023
for EM. The standard deviation values for K-Means and EM are slightly
higher than for the raw data when applying the algorithms to the baseline
Semantic Patterns.

K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEM
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.341 0.012 0.584 0.004 0.131 0.475 0.587 0.031 0.467 0.782 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.296 0.007 0.094 0.010 0.176 0.472 0.616 0.030 0.476 0.783 0.477 0.002 0.871 0.036 0.258 0.610 0.789 0.410 0.494 0.822

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.443 0.025 0.849 0.003 0.199 0.413 0.728 0.465 0.493 0.814 0.449 0.004 0.767 0.001 0.222 0.590 0.740 0.423 0.489 0.801

Table 8.2: Unsupervised V-Measure results for the raw categorical data sets and the
respective baseline Semantic Patterns.

Semantic Patterns

For this evaluation, the K-Means and EM algorithms are applied to the Seman-
tic Patterns generated for the categorical data sets. In this case, a decay factor
larger than zero is used. Therefore, in contrast to the baseline patterns the se-
mantic relations between the feature values are modeled within the generated
patterns. Furthermore, the influence of the normalization strategy during the
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K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEM
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.052 0.015 0.124 0.005 0.054 0.140 0.026 0.015 0.031 0.054 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.050 0.025 0.011 0.022 0.022 0.228 0.035 0.018 0.029 0.058 0.019 0.000 0.031 0.018 0.059 0.000 0.024 0.000 0.000 0.042

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.058 0.035 0.059 0.006 0.041 0.245 0.019 0.079 0.005 0.033 0.023 0.000 0.053 0.000 0.050 0.000 0.020 0.033 0.000 0.052

Table 8.3: Unsupervised V-Measure standard deviation results for the raw categorical
data sets and the respective baseline Semantic Patterns.

construction of the associative network, and the spreading activation combina-
tion function are evaluated:

• Decay factors: D = {0.1, 0.3, 0.5, 0.7}. The value D = 0.0 is already
covered within the baseline patterns. The other values are chosen to cover
the complete range of useable decay values 0.0 ≤ D ≤ 1.0. Thereby,
low decay factors attenuate the influence of the activated nodes on the
neighboring ones, which means that the information about the semantic
relations carried in the associative network’s links is only utilized in a very
limited way.

• Link normalization (Norm): These parameters define how the link
weights are normed during the generation of the associative network. The
first strategy – LocalMaxNorm (Norm=L) – norms the emerging link
weights of each node by the maximum weight of these links. The sec-
ond strategy – SumLocalNorm (Norm=S) – norms the outgoing link
weights with the sum of the weights of all outgoing links.

• Combination function (Comb): The activation function defines how a
target nodes combines the activation values that it receives from multiple
source nodes. For the evaluation, two combination functions are used: The
first one – SumLocalNorm (Comb=S) – simply sums up the incoming
activation values and sets the gained value as target node activation value.
The second one – ExpSumActivation (Comb=E) – applies the exp
function to each incoming activation value and then sums them up.

• MDL override factor (C) and pre-spreading influence σp: Due
to the lack of distance-based features within the categorical data sets,
the parameters for pre-spreading do not play a role and are not further
discussed in this evaluation.

The results gained by applying the K-Means and EM algorithms to the
Semantic Patterns are listed in Tables 8.4 and 8.5. Thereby, the following ob-
servations are made:

• K-Means: The application of K-Means to the Semantic Patterns results
in a significant performance increase when compared to its application to
the raw data (V = 0.452 at Vσ = 0.044 vs. V = 0.341 at Vσ = 0.051).
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This is also reflected by the slightly increased robustness as indicated by
the lower standard deviations of the K-Means iterations for the Comb=E,
Norm=L parameter combination.

• EM : The application of the EM algorithm to the Semantic Patterns re-
sults in roughly the same performance (V = 0.480 at Vσ = 0.010 vs.
V = 0.477 at Vσ = 0.019) when using the appropriate normalization strat-
egy and combination function (Comb=S, Norm=S). Otherwise, there is
a slight drop in the results. However, one interesting observation refers to
the robustness of the algorithm, which is increased regardless of the em-
ployed parameters as indicated by the smaller standard deviation values
of the results.

• K-Means vs. EM : Although, the performance of the K-Means algorithm
can be significantly improved when transforming the data into Semantic
Patterns, the gained results are still below those of the EM algorithm:
V = 0.452 at Vσ = 0.044 vs. V = 0.480 at Vσ = 0.010.

• Influence of the combination function - K-Means: When looking
at the two result blocks that use the parameter Comb=E, one observes
that the best results and the overall results for the blocks are better than
those that use Comb=S. The best V-Measure values for both blocks are
V = 0.452 versus V = 0.441 and V = 0.439 for the other blocks. The
best standard deviation values are achieved by the block that employs
Norm=L together with Comb=E. The reason for the performance in-
crease for the parameter Comb=E could be the nonlinear combination of
the activation values within the patterns, which in terms of the Euclidean
distance function helps to move non-related patterns further apart, while
keeping closely related together.

• Influence of the combination function - EM : The observations for
the K-Means algorithm cannot be applied to the results gained by the EM
algorithm. There is no significant difference between the results for the
two possible combination functions. Interestingly, and in contrast to K-
Means, the best result is achieved when the parameter Comb=S is used
in combination with the parameter Norm=S. The reason here might be
that due to the Gaussian models used by the EM algorithm the model-
ing is much better and does not require the nonlinear combination of the
activation values.

• Influence of the network normalization method - K-Means: One
observes that the choice of the normalization strategy does not have an
influence on the quality of the results. These are pretty much the same re-
gardless of the employed normalization function (Norm=S or Norm=L).
According to the results, the choice of the combination function has a more
significant impact. However, at least in terms of robustness it seems that
the combination of the parameters Norm=L and Comb=E has a slight
advantage over the combination Norm=S and Comb=E.
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• Influence of the network normalization method - EM : There is no
significant influence of the combination function on the gained results.

• Influence of the decay factor - K-Means: The influence of the decay
factor depends on the normalization strategy and the employed combina-
tion function. While the decay factors D = 0.3 and D = 0.5 yield the best
results for the (Comb=E, Norm=L) and (Comb=E, Norm=S) com-
binations, a weak decay factor of D = 0.1 seems to be the better choice for
the (Comb=S, Norm=L) and (Comb=S, Norm=S) parameter sets.

In general, the size of the decay factor determines how strong each fea-
ture value influences its neighbors when applying the spreading activation
algorithm. The results indicate that for the (Comb=E, Norm=L) and
(Comb=E, Norm=S) combinations too high (D = 0.7) or too low decay
factors (D = 0.1) yield worse results. In the first case, this performance
drop is caused by flooding the network with too much energy, while in the
second case the utilization of the semantic relations is too weak in order to
provide enough information for the K-Means clustering algorithm. This is
indicated by the total result for the parameter combination of Comb=E,
Norm=S and D = 0.1, which is V = 0.442 at Vvar = 0.042. This result is
similar to this gained by applying K-Means to the binary Semantic Pat-
terns, which yields V = 0.443 at Vvar = 0.058 when spreading activation is
deactivated. In both cases, the semantic relations are not or only weakly
utilized during the Semantic Patterns generation. It seems that the ro-
bustness of the results is not so much influenced by the decay factors as it
is by the combination function and link normalization parameters.

• Influence of the decay factor - EM : Similar to the other parameters,
the decay factor does not significantly influence the results gained by the
EM algorithm.

Summary

In summary, the performance of the K-Means algorithm can be significantly
improved by the Semantic Patterns. However, the K-Means performance stays
below that of the EM algorithm, which is roughly the same for the raw data
and the Semantic Patterns.

8.2.3 Mixed Data

Seven mixed data sets from the UCI Machine Learning Repository are used for
this evaluation. These data sets contain distance-based and symbolic feature
values. Due to the availability of distance-based features, the pre-spreading
related parameters need to be evaluated.
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K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEM
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.341 0.012 0.584 0.004 0.131 0.475 0.587 0.031 0.467 0.782 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.296 0.007 0.094 0.010 0.176 0.472 0.616 0.030 0.476 0.783 0.477 0.002 0.871 0.036 0.258 0.610 0.789 0.410 0.494 0.822

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.443 0.025 0.849 0.003 0.199 0.413 0.728 0.465 0.493 0.814 0.449 0.004 0.767 0.001 0.222 0.590 0.740 0.423 0.489 0.801

Comb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=L
0.442 0.029 0.811 0.004 0.245 0.545 0.726 0.387 0.476 0.759 0.441 0.074 0.885 0.000 0.271 0.615 0.786 0.004 0.505 0.826
0.447 0.068 0.846 0.004 0.241 0.482 0.724 0.424 0.476 0.758 0.460 0.079 0.875 0.001 0.258 0.592 0.788 0.250 0.449 0.846
0.452 0.061 0.856 0.000 0.245 0.448 0.733 0.437 0.467 0.820 0.468 0.079 0.874 0.001 0.265 0.592 0.789 0.306 0.452 0.850
0.422 0.069 0.826 0.000 0.209 0.275 0.728 0.419 0.463 0.804 0.465 0.079 0.874 0.001 0.252 0.579 0.799 0.312 0.445 0.847

Comb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=L
0.441 0.056 0.853 0.000 0.244 0.453 0.733 0.399 0.476 0.759 0.433 0.079 0.872 0.001 0.270 0.572 0.794 0.001 0.476 0.829
0.434 0.075 0.820 0.000 0.228 0.411 0.718 0.431 0.472 0.750 0.466 0.079 0.881 0.001 0.280 0.592 0.802 0.298 0.437 0.828
0.439 0.060 0.792 0.000 0.235 0.416 0.741 0.405 0.463 0.836 0.466 0.079 0.871 0.001 0.251 0.581 0.805 0.310 0.445 0.848
0.422 0.067 0.798 0.000 0.224 0.364 0.726 0.376 0.462 0.782 0.462 0.087 0.875 0.001 0.254 0.580 0.776 0.292 0.445 0.845

Comb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=S
0.418 0.029 0.790 0.006 0.236 0.311 0.705 0.449 0.496 0.742 0.472 0.002 0.893 0.000 0.263 0.571 0.767 0.432 0.495 0.820
0.452 0.030 0.860 0.001 0.231 0.470 0.715 0.475 0.491 0.799 0.476 0.002 0.914 0.000 0.261 0.586 0.775 0.427 0.495 0.823
0.448 0.048 0.799 0.009 0.215 0.539 0.725 0.450 0.493 0.758 0.472 0.002 0.897 0.000 0.267 0.584 0.758 0.427 0.484 0.829
0.448 0.033 0.850 0.000 0.230 0.495 0.712 0.435 0.493 0.787 0.473 0.002 0.903 0.000 0.250 0.586 0.773 0.427 0.484 0.829

Comb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=S
0.439 0.029 0.806 0.009 0.250 0.435 0.727 0.439 0.494 0.760 0.475 0.002 0.903 0.000 0.254 0.576 0.764 0.429 0.495 0.852
0.420 0.015 0.775 0.004 0.210 0.436 0.717 0.409 0.443 0.774 0.474 0.002 0.901 0.000 0.271 0.584 0.763 0.427 0.484 0.837
0.429 0.030 0.789 0.009 0.226 0.410 0.716 0.448 0.485 0.749 0.476 0.002 0.904 0.000 0.255 0.586 0.767 0.427 0.484 0.854
0.438 0.040 0.839 0.006 0.246 0.418 0.726 0.409 0.480 0.775 0.480 0.002 0.910 0.000 0.269 0.615 0.771 0.431 0.494 0.825

Table 8.4: Unsupervised V-Measure results for the raw categorical data transformed
into Semantic Patterns.

K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEM
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.051 0.015 0.124 0.005 0.054 0.140 0.026 0.015 0.031 sO Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.050 0.025 0.011 0.022 0.022 0.228 0.035 0.018 0.029 0.058 0.019 0.000 0.031 0.018 0.059 0.000 0.024 0.000 0.000 0.042

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.058 0.035 0.059 0.006 0.041 0.245 0.019 0.079 0.005 0.033 0.023 0.000 0.053 0.000 0.050 0.000 0.020 0.033 0.000 0.052

Comb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=L
0.042 0.041 0.079 0.010 0.044 0.081 0.027 0.025 0.000 0.073 0.010 0.000 0.022 0.000 0.019 0.000 0.010 0.002 0.000 0.034
0.045 0.043 0.080 0.010 0.035 0.135 0.020 0.004 0.000 0.080 0.006 0.000 0.001 0.000 0.020 0.000 0.014 0.000 0.000 0.021
0.044 0.039 0.049 0.000 0.033 0.190 0.021 0.001 0.000 0.060 0.009 0.000 0.002 0.000 0.023 0.000 0.021 0.000 0.000 0.037
0.044 0.041 0.076 0.000 0.023 0.175 0.025 0.016 0.004 0.039 0.010 0.000 0.015 0.000 0.023 0.000 0.014 0.000 0.000 0.042

Comb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=L
0.050 0.044 0.057 0.000 0.039 0.193 0.019 0.014 0.000 0.082 0.007 0.000 0.005 0.000 0.009 0.000 0.015 0.000 0.000 0.036
0.048 0.034 0.079 0.000 0.031 0.202 0.022 0.000 0.007 0.058 0.009 0.000 0.018 0.000 0.025 0.000 0.020 0.000 0.000 0.021
0.048 0.043 0.087 0.000 0.031 0.196 0.021 0.008 0.004 0.042 0.010 0.000 0.006 0.000 0.020 0.000 0.024 0.000 0.000 0.039
0.051 0.040 0.096 0.000 0.032 0.219 0.017 0.007 0.004 0.046 0.013 0.000 0.006 0.000 0.017 0.000 0.010 0.056 0.000 0.028

Comb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=S
0.057 0.038 0.077 0.012 0.032 0.227 0.019 0.038 0.005 0.064 0.012 0.000 0.031 0.000 0.025 0.000 0.013 0.001 0.000 0.038
0.055 0.039 0.062 0.002 0.032 0.206 0.031 0.080 0.006 0.037 0.010 0.000 0.016 0.000 0.030 0.000 0.014 0.001 0.000 0.032
0.052 0.046 0.071 0.014 0.061 0.101 0.032 0.093 0.004 0.050 0.012 0.000 0.021 0.000 0.022 0.000 0.019 0.000 0.000 0.047
0.045 0.039 0.043 0.000 0.029 0.166 0.022 0.054 0.004 0.049 0.012 0.000 0.023 0.000 0.032 0.000 0.014 0.000 0.000 0.040

Comb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=S
0.055 0.041 0.088 0.012 0.031 0.181 0.030 0.059 0.006 0.044 0.010 0.000 0.021 0.000 0.024 0.000 0.020 0.001 0.000 0.022
0.073 0.030 0.055 0.008 0.051 0.214 0.031 0.060 0.146 0.059 0.010 0.000 0.025 0.000 0.024 0.000 0.009 0.000 0.000 0.031
0.059 0.043 0.086 0.014 0.019 0.211 0.032 0.041 0.000 0.084 0.012 0.000 0.024 0.000 0.030 0.000 0.023 0.000 0.000 0.031
0.062 0.047 0.068 0.012 0.027 0.235 0.025 0.101 0.005 0.041 0.010 0.000 0.023 0.000 0.012 0.000 0.016 0.008 0.000 0.028

Table 8.5: Unsupervised results (V-Measure standard deviation values): Semantic
Patterns for the categorical data sets
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Baseline

For the baseline Semantic Patterns, which are generated for the mixed data
sets, the pre-spreading related parameters C, and σp are required. The following
parameters are used for the generation of the patterns: For the baseline Semantic
Patterns, which are generated for the mixed data sets, the following parameters
are chosen:

• Decay factors: D = {0.0}. For the baseline configuration D = 0.0 is
used, which completely deactivates the spreading activation algorithm and
makes the combination function (Comb) and link normalization parame-
ters (Norm) irrelevant.

• Pre-spreading: Although the main spreading process is deactivated for
the baselines patterns by choosing D = 0.0, there is still the pre-spreading
process for distance-based features that is applied prior to the main spread-
ing activation process. Therefore, the parameters for the model complexity
C and the parameter σp that determines the influence on the neighboring
nodes, must be specified. For this evaluation, the different combinations
for C = {1.0, 1.5, 2.0, 3.0} and σp = {0.0, 0.2, 0.4, 0.6, 0.8} are evaluated.

The results gained by applying the K-Means and EM algorithms to the base-
line Semantic Patterns are listed in Tables 8.6 and 8.7. Thereby, the following
observations are made:

• Raw data: Similar to the results for the raw categorical data, the EM
algorithm significantly outperforms the K-Means algorithm. While the
total result for the EM algorithm is V = 0.165 at Vσ = 0.013, it is only
V = 0.342 at Vσ = 0.069 for the K-Means algorithm when the data is
normed. This value drops completely when the K-Means algorithm is
applied directly to the raw data without normalizing the data, where V =
0.017 and Vσ = 0.003. Again, the more sophisticated model employed by
the EM algorithm might be the reason for this performance difference.

• Baseline Semantic Patterns - K-Means: For the mixed data sets
the parameters C and σp related to the distance-based features need to
be evaluated. For the K-Means algorithm, one observes a significant in-
crease in performance when using the baseline patterns. The performance
drops when a too complex model C = 3.0 is used. This is related to the
discretization complexity problem described in Section 7.3.3 of the previ-
ous chapter, which is also indicated by the slight increase in performance
when using a large σp = 0.8 value that mitigates the negative effect of too
complex models.

• Baseline Semantic Patterns - EM : Again, the EM algorithm performs
significantly better than the K-Means algorithm (V = 0.201 at Vσ = 0.013
vs. V = 0.165 at Vσ = 0.069). For the baseline Semantic Patterns the
performance drops when the discretization model complexity increases.
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Similar to the K-Means algorithm, one observes a slight mitigation of this
problem with an increasing value for σp, but even then the performance is
much worse when compared to the application to raw data.

K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEM
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.165 0.226 0.129 0.155 0.009 0.237 0.269 0.131 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.017 0.028 0.030 0.016 0.012 0.014 0.012 0.004 0.201 0.312 0.103 0.171 0.013 0.309 0.278 0.223

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.192 0.246 0.142 0.142 0.004 0.288 0.317 0.202 0.190 0.291 0.098 0.227 0.003 0.228 0.258 0.227
0.197 0.272 0.143 0.158 0.006 0.285 0.317 0.195 0.182 0.280 0.098 0.162 0.003 0.244 0.258 0.231
0.183 0.243 0.140 0.118 0.005 0.296 0.286 0.194 0.184 0.226 0.099 0.229 0.004 0.245 0.258 0.227
0.201 0.297 0.145 0.158 0.003 0.287 0.318 0.196 0.194 0.291 0.097 0.240 0.003 0.217 0.281 0.229
0.194 0.242 0.142 0.158 0.006 0.293 0.319 0.197 0.192 0.293 0.097 0.232 0.004 0.228 0.258 0.230

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.173 0.223 0.132 0.129 0.005 0.279 0.246 0.198 0.158 0.206 0.118 0.230 0.003 0.136 0.210 0.204
0.199 0.272 0.152 0.158 0.006 0.331 0.272 0.203 0.157 0.205 0.109 0.231 0.001 0.136 0.225 0.196
0.195 0.247 0.148 0.129 0.007 0.337 0.295 0.198 0.157 0.206 0.116 0.221 0.003 0.136 0.212 0.207
0.200 0.255 0.154 0.131 0.008 0.334 0.321 0.198 0.160 0.199 0.133 0.219 0.002 0.136 0.220 0.208
0.196 0.264 0.152 0.131 0.008 0.335 0.289 0.194 0.158 0.199 0.118 0.226 0.002 0.138 0.220 0.207

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.193 0.253 0.135 0.113 0.007 0.356 0.293 0.195 0.167 0.219 0.108 0.209 0.003 0.178 0.217 0.235
0.198 0.271 0.147 0.116 0.007 0.356 0.301 0.189 0.168 0.213 0.096 0.203 0.005 0.178 0.243 0.235
0.204 0.240 0.157 0.145 0.009 0.356 0.327 0.194 0.174 0.223 0.131 0.231 0.002 0.178 0.214 0.235
0.194 0.221 0.154 0.145 0.008 0.359 0.275 0.196 0.168 0.220 0.109 0.171 0.004 0.178 0.261 0.235
0.200 0.258 0.152 0.098 0.007 0.358 0.327 0.197 0.165 0.217 0.103 0.179 0.007 0.175 0.238 0.235

No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0
0.189 0.238 0.155 0.145 0.007 0.332 0.262 0.183 0.159 0.197 0.108 0.215 0.001 0.149 0.235 0.205
0.190 0.285 0.148 0.100 0.008 0.340 0.277 0.171 0.160 0.214 0.112 0.230 0.001 0.139 0.211 0.216
0.181 0.219 0.150 0.086 0.007 0.338 0.281 0.184 0.163 0.201 0.107 0.214 0.001 0.158 0.247 0.213
0.179 0.227 0.152 0.131 0.006 0.316 0.236 0.186 0.169 0.227 0.120 0.232 0.002 0.141 0.252 0.207
0.191 0.246 0.148 0.118 0.007 0.304 0.328 0.188 0.167 0.215 0.117 0.206 0.002 0.157 0.254 0.216

Table 8.6: Unsupervised V-Measure results for the raw mixed data sets and the re-
spective baseline Semantic Patterns.

Semantic Patterns

In this evaluation, the Semantic Pattern Transformation is applied to the raw
mixed data sets for the generation of the associated Semantic Patterns. Here,
the main focus is placed on the influence of the spreading activation parameters
for the distance-base features C and σp. Thereby, the following parameters are
used:

• Decay factors: D = {0.1, 0.3, 0.5, 0.7}. Together with the possible values
for the combination function (Comb) and the link normalization strategy
(Norm), the number of possible combinations is quite huge and the results
in the tables are limited to those decay values that yield the best results
for the K-Means and EM algorithm. For the K-Means algorithm that is
achieved with D = 0.5, and for the EM algorithm D = 0.7 yields the best
results.
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K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEM
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.069 0.054 0.071 0.093 0.007 0.109 0.097 0.051 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.003 0.007 0.010 0.000 0.000 0.000 0.001 0.000 0.013 0.057 0.000 0.032 0.002 0.000 0.000 0.000

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.022 0.075 0.007 0.047 0.003 0.007 0.004 0.012 0.012 0.047 0.003 0.000 0.000 0.027 0.000 0.007
0.012 0.058 0.007 0.000 0.003 0.004 0.004 0.009 0.015 0.070 0.003 0.000 0.001 0.025 0.000 0.005
0.035 0.061 0.007 0.062 0.003 0.009 0.094 0.009 0.017 0.085 0.003 0.000 0.001 0.026 0.000 0.007
0.012 0.056 0.008 0.000 0.003 0.004 0.003 0.009 0.011 0.049 0.003 0.000 0.000 0.022 0.000 0.006
0.013 0.063 0.007 0.000 0.003 0.010 0.002 0.009 0.012 0.044 0.003 0.000 0.001 0.027 0.000 0.006

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.058 0.067 0.044 0.059 0.004 0.108 0.113 0.011 0.008 0.028 0.011 0.000 0.003 0.002 0.000 0.015
0.027 0.061 0.009 0.000 0.004 0.012 0.097 0.008 0.009 0.033 0.017 0.000 0.000 0.002 0.000 0.014
0.035 0.076 0.009 0.059 0.003 0.012 0.076 0.008 0.008 0.031 0.009 0.000 0.001 0.002 0.000 0.013
0.019 0.046 0.008 0.054 0.002 0.013 0.003 0.008 0.008 0.019 0.018 0.000 0.001 0.002 0.000 0.013
0.037 0.076 0.010 0.054 0.004 0.011 0.096 0.008 0.006 0.015 0.012 0.000 0.001 0.002 0.000 0.014

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.043 0.072 0.047 0.069 0.004 0.005 0.098 0.008 0.009 0.044 0.012 0.000 0.005 0.000 0.000 0.001
0.031 0.045 0.010 0.065 0.004 0.006 0.078 0.009 0.006 0.027 0.008 0.000 0.007 0.000 0.000 0.001
0.020 0.066 0.017 0.040 0.003 0.005 0.002 0.007 0.008 0.020 0.032 0.000 0.004 0.000 0.000 0.000
0.035 0.066 0.014 0.040 0.004 0.010 0.104 0.006 0.005 0.021 0.008 0.000 0.005 0.000 0.000 0.001
0.024 0.056 0.014 0.075 0.003 0.010 0.002 0.009 0.010 0.035 0.018 0.000 0.007 0.010 0.000 0.001

No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0
0.039 0.067 0.007 0.040 0.003 0.015 0.131 0.010 0.012 0.044 0.013 0.000 0.001 0.016 0.000 0.012
0.044 0.068 0.007 0.072 0.001 0.015 0.100 0.044 0.010 0.032 0.011 0.000 0.001 0.015 0.000 0.014
0.038 0.051 0.010 0.072 0.003 0.018 0.097 0.014 0.012 0.043 0.008 0.000 0.002 0.017 0.000 0.015
0.053 0.056 0.008 0.054 0.003 0.098 0.141 0.012 0.011 0.034 0.013 0.000 0.002 0.015 0.000 0.014
0.033 0.048 0.010 0.062 0.002 0.096 0.004 0.011 0.010 0.033 0.007 0.000 0.002 0.016 0.000 0.014

Table 8.7: Unsupervised V-Measure standard deviation results for the raw mixed
data sets and the respective baseline Semantic Patterns.

• Link normalization (Norm) and combination function (Comb):
Here, a similar approach as for the decay factors is used: Only the best
combination of the link normalization strategy and the combination func-
tion are shown in the results tables: Comb=E and Norm=L.

• Pre-spreading parameters: The focus of the results tables is placed on
the pre-spreading parameters C and σp. Here, the same combinations as
for the baseline Semantic Patterns are employed: C = {1.0, 1.5, 2.0, 3.0}
and σp = {0.0, 0.2, 0.4, 0.6, 0.8}.

The results gained by applying the K-Means and EM algorithms to the
Semantic Patterns are listed in Tables 8.8 and 8.9. Thereby, the following ob-
servations are made:

• K-Means: Similar to the evaluation of the categorical data sets, the per-
formance of K-Means significantly increases when applied to the Semantic
Patterns. The best results achieved are V = 0.221 at Vσ = 0.009 com-
pared to V = 0.204 at Vσ = 0.020 of the baseline Semantic Patterns, and
V = 0.165 at Vσ = 0.069 of the raw data. Also, the stability of the results
increases, which is indicated by the significantly lower standard deviation
values.
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• EM : For the EM algorithm, the performance increases (V = 0.211 at
Vσ = 0.001) when compared to the raw data (V = 0.201 at Vσ = 0.013),
and the baseline Semantic Patterns (V = 0.194 at Vσ = 0.011). Similar
to K-Means, the stability of the results – gained by applying EM to the
Semantic Patterns – significantly increases.

• K-Means vs. EM : In contrast to the categorical data, the best result
achieved by the EM algorithm (V = 0.211 at Vσ = 0.001) is lower than
that achieved by K-Means (V = 0.221 at Vσ = 0.009). Since this is
also observed for the numerical data, there is an indication that the EM
algorithm slightly looses its advantages when applied to distance-based
features and stays below the performance that is achieved by K-Means
when applied to the Semantic Patterns.

• Influence of the MDL override factor (C ) - K-Means: The best
results are achieved when the factor C = 2.0 is employed, which means that
the discretization models used for the distance-based features are twice as
complex as the models found by using the MDL criterion (C = 1.0). The
overall performance increases from C = 1.0 over C = 1.5 to C = 2.0 and
drops again for C = 3.0. These results indicate – as postulated in 7.3.3 of
the previous chapter – that a too low or too high model complexity has a
negative influence on the performance.

• Influence of the MDL override factor (C ) - EM : In contrast to
the K-Means algorithm, the EM algorithm does not benefit from complex
discretization models. Here, the best results are achieved by choosing
MDL=1.0, which corresponds to the model found when using the standard
MDL criterion.

• Influence of the pre-spreading factor σp - K-Means: In 7.3.3 of
the previous chapter it was also postulated that the effect of too complex
models can be compensated by introducing larger values for σp. This
effect can be observed when looking at the σp values that achieve the best
result for the different C values: While for lower values of C, the best
results are achieved with low σp values, for higher values of C the best
results are achieved with larger σp values, which increase the influence
onto neighboring nodes within the discretization models.

• Influence of the pre-spreading factor σp - EM : In contrast to K-
Means, there is no significant influence of the pre-spreading factor σp.

Summary

In summary, the performance of the K-Means algorithm can be significantly
improved by the Semantic Patterns. In contrast to the categorical data, the
results for the K-Means algorithm, when applied to the Semantic Patterns, are
even slightly better than those of the EM algorithm.
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K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEM
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.165 0.226 0.129 0.155 0.009 0.237 0.269 0.131 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.017 0.028 0.030 0.016 0.012 0.014 0.012 0.004 0.201 0.312 0.103 0.171 0.013 0.309 0.278 0.223

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0 D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0

0.193 0.253 0.135 0.113 0.007 0.356 0.293 0.195 0.190 0.291 0.098 0.227 0.003 0.228 0.258 0.227
0.198 0.271 0.147 0.116 0.007 0.356 0.301 0.189 0.182 0.280 0.098 0.162 0.003 0.244 0.258 0.231

0.204 0.240 0.157 0.145 0.009 0.356 0.327 0.194 0.184 0.226 0.099 0.229 0.004 0.245 0.258 0.227
0.194 0.221 0.154 0.145 0.008 0.359 0.275 0.196 0.194 0.291 0.097 0.240 0.003 0.217 0.281 0.229
0.200 0.258 0.152 0.098 0.007 0.358 0.327 0.197 0.192 0.293 0.097 0.232 0.004 0.228 0.258 0.230

D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0 D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0
0.211 0.320 0.042 0.262 0.001 0.325 0.311 0.215 0.210 0.327 0.127 0.218 0.021 0.237 0.311 0.229

0.201 0.257 0.032 0.262 0.001 0.323 0.311 0.222 0.210 0.322 0.126 0.218 0.021 0.237 0.320 0.229

0.208 0.299 0.035 0.261 0.001 0.326 0.311 0.220 0.211 0.322 0.127 0.218 0.021 0.237 0.320 0.229

0.204 0.281 0.029 0.262 0.001 0.325 0.311 0.220 0.211 0.321 0.128 0.218 0.021 0.237 0.320 0.229

0.207 0.292 0.041 0.263 0.001 0.326 0.311 0.216 0.209 0.310 0.127 0.218 0.021 0.237 0.320 0.229

D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5 D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5
0.216 0.317 0.065 0.249 0.001 0.357 0.320 0.203 0.204 0.322 0.123 0.212 0.016 0.275 0.247 0.233
0.211 0.295 0.052 0.247 0.000 0.355 0.320 0.209 0.204 0.322 0.123 0.212 0.016 0.275 0.247 0.236
0.216 0.314 0.074 0.248 0.001 0.357 0.320 0.198 0.205 0.323 0.123 0.206 0.016 0.275 0.252 0.237

0.212 0.308 0.046 0.249 0.001 0.356 0.320 0.209 0.204 0.320 0.125 0.208 0.016 0.275 0.246 0.236
0.211 0.293 0.063 0.248 0.000 0.354 0.320 0.201 0.204 0.323 0.125 0.208 0.016 0.275 0.249 0.232

D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0 D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0
0.217 0.304 0.048 0.244 0.000 0.390 0.311 0.219 0.206 0.319 0.117 0.229 0.010 0.255 0.277 0.233

0.218 0.313 0.062 0.244 0.000 0.388 0.311 0.208 0.207 0.317 0.126 0.239 0.010 0.255 0.268 0.233

0.221 0.309 0.084 0.243 0.000 0.389 0.311 0.209 0.205 0.319 0.127 0.224 0.010 0.255 0.268 0.233

0.213 0.285 0.057 0.243 0.000 0.387 0.311 0.210 0.206 0.307 0.127 0.240 0.010 0.255 0.268 0.233

0.211 0.295 0.036 0.244 0.000 0.387 0.311 0.205 0.204 0.305 0.127 0.240 0.010 0.255 0.259 0.233

D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0 D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0
0.203 0.294 0.030 0.248 0.000 0.335 0.315 0.196 0.192 0.323 0.108 0.248 0.009 0.201 0.250 0.205

0.208 0.306 0.059 0.248 0.000 0.334 0.315 0.193 0.190 0.321 0.107 0.237 0.009 0.201 0.251 0.205

0.205 0.310 0.050 0.248 0.000 0.334 0.315 0.178 0.193 0.322 0.122 0.243 0.009 0.201 0.249 0.205

0.207 0.300 0.063 0.248 0.001 0.333 0.313 0.192 0.192 0.321 0.122 0.243 0.010 0.201 0.245 0.205

0.210 0.330 0.050 0.246 0.001 0.336 0.315 0.191 0.192 0.323 0.122 0.243 0.009 0.201 0.240 0.205

Table 8.8: Unsupervised V-Measure results for the raw mixed data transformed into
Semantic Patterns.

8.2.4 Numerical Data

Ten numerical data sets from the UCI Machine Learning Repository are used
for this evaluation. These data sets contain only distance-based feature values.
Thus, the pre-spreading parameters play a significant role within the evaluation
process.

Baseline

For the generation of the baseline Semantic Patterns the same parameters as
for the mixed data sets are used. Thereby, the results gained by applying the
K-Means and EM algorithms to the baseline Semantic Patterns, are listed in
Tables 8.10 and 8.11, and the following observations are made:

• Raw data: The result for the EM algorithm (V = 0.346 at Vσ = 0.005)



176 Chapter 8. Semantic Patterns - Evaluation

K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEM
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.069 0.054 0.071 0.093 0.007 0.109 0.097 0.051 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.003 0.007 0.010 0.000 0.000 0.000 0.001 0.000 0.013 0.057 0.000 0.032 0.002 0.000 0.000 0.000

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0 D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0

0.043 0.072 0.047 0.069 0.004 0.005 0.098 0.008 0.012 0.047 0.003 0.000 0.000 0.027 0.000 0.007
0.031 0.045 0.010 0.065 0.004 0.006 0.078 0.009 0.015 0.070 0.003 0.000 0.001 0.025 0.000 0.005

0.020 0.066 0.017 0.040 0.003 0.005 0.002 0.007 0.017 0.085 0.003 0.000 0.001 0.026 0.000 0.007
0.035 0.066 0.014 0.040 0.004 0.010 0.104 0.006 0.011 0.049 0.003 0.000 0.000 0.022 0.000 0.006
0.024 0.056 0.014 0.075 0.003 0.010 0.002 0.009 0.012 0.044 0.003 0.000 0.001 0.027 0.000 0.006

D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0 D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0
0.011 0.016 0.049 0.001 0.000 0.003 0.000 0.008 0.002 0.004 0.005 0.000 0.000 0.006 0.000 0.000

0.017 0.079 0.037 0.000 0.000 0.003 0.000 0.001 0.001 0.008 0.000 0.000 0.000 0.000 0.000 0.000

0.013 0.051 0.039 0.001 0.000 0.001 0.000 0.002 0.001 0.000 0.005 0.000 0.000 0.001 0.000 0.000

0.015 0.055 0.039 0.001 0.000 0.004 0.000 0.004 0.002 0.006 0.000 0.000 0.000 0.006 0.000 0.000

0.013 0.036 0.044 0.001 0.000 0.002 0.000 0.010 0.001 0.006 0.000 0.000 0.000 0.001 0.000 0.000

D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5 D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5
0.011 0.019 0.039 0.004 0.000 0.004 0.000 0.011 0.006 0.044 0.000 0.000 0.000 0.000 0.000 0.000

0.014 0.050 0.030 0.003 0.000 0.004 0.000 0.013 0.006 0.040 0.000 0.000 0.000 0.000 0.000 0.000

0.009 0.017 0.036 0.004 0.000 0.004 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.013 0.038 0.032 0.004 0.000 0.004 0.000 0.013 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000

0.014 0.045 0.040 0.004 0.000 0.004 0.000 0.008 0.001 0.006 0.000 0.000 0.000 0.000 0.000 0.000

D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0 D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0
0.012 0.030 0.040 0.002 0.000 0.003 0.000 0.009 0.001 0.005 0.001 0.000 0.000 0.000 0.000 0.000

0.012 0.015 0.050 0.002 0.000 0.004 0.000 0.014 0.002 0.007 0.000 0.000 0.000 0.006 0.000 0.000

0.009 0.014 0.027 0.002 0.000 0.004 0.000 0.014 0.003 0.006 0.011 0.000 0.000 0.006 0.000 0.000

0.015 0.049 0.036 0.002 0.000 0.004 0.000 0.014 0.003 0.006 0.007 0.000 0.000 0.006 0.000 0.000

0.015 0.047 0.038 0.001 0.000 0.004 0.000 0.014 0.002 0.005 0.006 0.000 0.000 0.006 0.000 0.000

D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0 D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0
0.014 0.047 0.032 0.002 0.000 0.003 0.004 0.011 0.002 0.005 0.006 0.000 0.002 0.000 0.000 0.000

0.014 0.040 0.040 0.002 0.000 0.004 0.004 0.010 0.002 0.005 0.008 0.000 0.002 0.000 0.000 0.000

0.019 0.033 0.030 0.002 0.000 0.004 0.004 0.058 0.002 0.006 0.008 0.000 0.000 0.000 0.000 0.000

0.015 0.044 0.044 0.001 0.000 0.003 0.003 0.009 0.001 0.004 0.004 0.000 0.002 0.000 0.000 0.000

0.012 0.020 0.044 0.002 0.000 0.003 0.004 0.012 0.002 0.005 0.007 0.000 0.000 0.000 0.000 0.000

Table 8.9: Unsupervised V-Measure standard deviation results for the raw mixed
data transformed into Semantic Patterns.

significantly outperforms the results for the K-Means algorithm, which are
at V = 0.307 at Vσ = 0.021 for the normed raw data and V = 0.299
at Vσ = 0.025 for the unprocessed raw data. This observation is similar
to that gained for the categorical and mixed data sets. In contrast to
the mixed data sets, where the performance of the K-Means algorithm
completely drops when applied to the unprocessed (not normed) raw data,
only an insignificant difference can be observed here.

• Baseline Semantic Patterns - K-Means: The results gained by ap-
plying K-Means to the baseline Semantic Patterns are in general better
than those for the raw data. Similar to the results of the mixed data sets,
one observes a performance drop when a too complex model is used. Here,
the performance of the model for C = 3.0 (V = 0.289 at Vσ = 0.028) even
drops below the results, which are gained when applying K-Means to the
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raw data.

• Baseline Semantic Patterns - EM : For the baseline Semantic Pat-
terns, the performance of the EM algorithm drops when the discretization
model complexity increases. Similar to the K-Means algorithm, one ob-
serves a slight mitigation of this problem with an increasing value for σp,
but even then the performance is much worse than that gained for the raw
data.

K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEMEM
Total BW DI GL HS IO IR SE SO VE VO Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.299 0.734 0.052 0.335 0.254 0.121 0.708 0.608 0.006 0.113 0.057 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.307 0.735 0.030 0.388 0.019 0.123 0.705 0.529 0.008 0.188 0.342 0.346 0.718 0.103 0.370 0.289 0.254 0.806 0.621 0.005 0.103 0.194

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.316 0.722 0.032 0.297 0.315 0.113 0.676 0.597 0.011 0.156 0.244 0.317 0.777 0.006 0.312 0.239 0.218 0.651 0.592 0.016 0.174 0.186
0.307 0.722 0.043 0.294 0.306 0.123 0.593 0.588 0.012 0.145 0.248 0.327 0.752 0.001 0.318 0.240 0.218 0.766 0.598 0.016 0.167 0.197
0.309 0.724 0.039 0.275 0.311 0.125 0.563 0.619 0.013 0.164 0.253 0.323 0.727 0.011 0.287 0.229 0.217 0.749 0.600 0.018 0.176 0.218
0.316 0.723 0.034 0.273 0.323 0.137 0.626 0.633 0.009 0.157 0.248 0.317 0.732 0.009 0.316 0.232 0.221 0.637 0.606 0.025 0.175 0.214
0.315 0.719 0.063 0.273 0.316 0.145 0.633 0.590 0.012 0.144 0.248 0.325 0.703 0.006 0.305 0.233 0.216 0.796 0.594 0.019 0.181 0.195

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.315 0.724 0.039 0.329 0.309 0.045 0.717 0.582 0.026 0.198 0.183 0.301 0.777 0.001 0.317 0.150 0.088 0.721 0.591 0.011 0.175 0.183
0.323 0.724 0.025 0.334 0.344 0.071 0.730 0.590 0.012 0.198 0.196 0.287 0.752 0.002 0.321 0.125 0.087 0.615 0.609 0.010 0.187 0.166
0.318 0.719 0.026 0.285 0.316 0.051 0.769 0.600 0.008 0.199 0.203 0.294 0.727 0.004 0.338 0.125 0.086 0.764 0.605 0.012 0.106 0.169
0.317 0.722 0.025 0.298 0.357 0.040 0.712 0.602 0.013 0.199 0.201 0.297 0.732 0.005 0.324 0.133 0.088 0.748 0.594 0.013 0.161 0.179
0.299 0.646 0.015 0.294 0.328 0.026 0.686 0.581 0.014 0.198 0.200 0.283 0.704 0.002 0.326 0.131 0.086 0.642 0.584 0.014 0.161 0.175

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.296 0.724 0.028 0.291 0.297 0.055 0.664 0.573 0.011 0.162 0.154 0.311 0.777 0.002 0.302 0.189 0.052 0.901 0.555 0.005 0.155 0.170
0.294 0.651 0.010 0.290 0.328 0.038 0.724 0.572 0.017 0.151 0.157 0.296 0.752 0.013 0.322 0.190 0.059 0.766 0.552 0.004 0.140 0.164
0.310 0.723 0.028 0.304 0.326 0.042 0.781 0.574 0.016 0.160 0.142 0.298 0.727 0.017 0.298 0.190 0.056 0.859 0.545 0.007 0.118 0.160
0.312 0.723 0.017 0.325 0.327 0.051 0.745 0.589 0.029 0.154 0.160 0.303 0.734 0.020 0.322 0.188 0.054 0.857 0.543 0.006 0.154 0.157
0.305 0.719 0.010 0.297 0.328 0.066 0.753 0.555 0.010 0.164 0.150 0.294 0.704 0.021 0.327 0.190 0.057 0.783 0.550 0.007 0.153 0.153

No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0
0.285 0.723 0.002 0.275 0.294 0.048 0.660 0.580 0.010 0.154 0.101 0.283 0.777 0.003 0.287 0.189 0.063 0.698 0.558 0.005 0.152 0.098
0.290 0.722 0.010 0.288 0.320 0.052 0.669 0.572 0.013 0.173 0.079 0.265 0.752 0.007 0.281 0.189 0.076 0.508 0.553 0.006 0.160 0.112
0.289 0.724 0.010 0.299 0.323 0.086 0.597 0.595 0.015 0.167 0.078 0.289 0.727 0.002 0.259 0.189 0.060 0.832 0.563 0.007 0.150 0.106
0.276 0.723 0.003 0.299 0.290 0.036 0.566 0.584 0.010 0.169 0.080 0.294 0.732 0.005 0.293 0.189 0.070 0.777 0.591 0.007 0.156 0.117
0.260 0.718 0.013 0.271 0.229 0.042 0.520 0.561 0.014 0.151 0.079 0.273 0.703 0.004 0.271 0.186 0.081 0.647 0.586 0.006 0.145 0.100

Table 8.10: Unsupervised V-Measure results for the raw numerical data sets and the
respective baseline Semantic Patterns.

Semantic Patterns

For the generation of the Semantic Patterns the same parameters as for the
evaluation of the mixed data sets are used. The results gained by applying the
K-Means and EM algorithms to the Semantic Patterns are listed in Tables 8.12
and 8.13. Thereby, the following observations are made:

• K-Means: The performance of K-Means, when applied to the Semantic
Patterns significantly increases (V = 0.358 at Vσ = 0.021) when compared
to the results gained for the normed raw data (V = 0.307 at Vσ = 0.021),
the unprocessed raw data (V = 0.299 at Vσ = 0.025) and the baseline
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K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEMEM
Total BW DI GL HS IO IR SE SO VE VO Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.025 0.006 0.000 0.033 0.040 0.037 0.061 0.020 0.004 0.023 0.023 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.021 0.006 0.000 0.023 0.001 0.033 0.078 0.039 0.003 0.004 0.023 0.005 0.000 0.000 0.018 0.008 0.000 0.000 0.001 0.001 0.000 0.026

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.039 0.004 0.038 0.047 0.014 0.029 0.112 0.065 0.009 0.035 0.037 0.028 0.000 0.002 0.018 0.020 0.007 0.140 0.032 0.008 0.011 0.046
0.033 0.004 0.050 0.037 0.008 0.040 0.066 0.069 0.007 0.034 0.012 0.024 0.000 0.000 0.031 0.024 0.005 0.109 0.026 0.010 0.005 0.026
0.047 0.003 0.047 0.059 0.015 0.031 0.187 0.048 0.011 0.037 0.029 0.024 0.000 0.004 0.036 0.023 0.005 0.097 0.022 0.010 0.009 0.035
0.034 0.002 0.030 0.041 0.016 0.039 0.132 0.028 0.008 0.028 0.020 0.015 0.000 0.003 0.015 0.023 0.006 0.043 0.019 0.009 0.007 0.027
0.044 0.003 0.044 0.040 0.010 0.036 0.170 0.065 0.008 0.030 0.030 0.023 0.004 0.002 0.024 0.023 0.000 0.086 0.026 0.013 0.009 0.042

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.045 0.003 0.033 0.030 0.095 0.050 0.098 0.043 0.048 0.020 0.032 0.020 0.000 0.000 0.038 0.055 0.001 0.050 0.026 0.004 0.003 0.018
0.043 0.003 0.031 0.059 0.016 0.072 0.157 0.040 0.007 0.014 0.031 0.012 0.000 0.000 0.047 0.018 0.001 0.011 0.006 0.004 0.000 0.034
0.048 0.004 0.030 0.035 0.107 0.057 0.147 0.055 0.005 0.014 0.028 0.011 0.000 0.000 0.024 0.018 0.005 0.010 0.015 0.005 0.000 0.030
0.031 0.002 0.031 0.035 0.023 0.053 0.073 0.038 0.019 0.014 0.026 0.008 0.000 0.000 0.019 0.006 0.001 0.008 0.017 0.004 0.002 0.023
0.066 0.215 0.021 0.043 0.103 0.036 0.148 0.043 0.013 0.016 0.023 0.013 0.004 0.000 0.032 0.008 0.003 0.026 0.023 0.003 0.000 0.030

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.048 0.003 0.029 0.032 0.090 0.059 0.140 0.054 0.011 0.024 0.034 0.008 0.000 0.000 0.030 0.002 0.009 0.000 0.012 0.003 0.005 0.018
0.060 0.217 0.018 0.028 0.004 0.065 0.152 0.036 0.031 0.021 0.031 0.019 0.000 0.002 0.035 0.002 0.004 0.110 0.011 0.003 0.003 0.021
0.035 0.004 0.029 0.055 0.003 0.054 0.093 0.048 0.011 0.022 0.026 0.011 0.000 0.002 0.032 0.002 0.011 0.004 0.030 0.009 0.003 0.015
0.039 0.002 0.023 0.039 0.003 0.064 0.139 0.031 0.038 0.021 0.028 0.014 0.006 0.002 0.060 0.003 0.007 0.000 0.028 0.006 0.005 0.021
0.034 0.000 0.018 0.044 0.004 0.068 0.102 0.049 0.009 0.025 0.021 0.017 0.004 0.006 0.028 0.002 0.004 0.061 0.030 0.006 0.006 0.024

No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0
0.048 0.004 0.001 0.040 0.090 0.061 0.183 0.047 0.013 0.023 0.019 0.015 0.000 0.002 0.054 0.001 0.004 0.016 0.040 0.006 0.011 0.018
0.037 0.004 0.019 0.033 0.012 0.064 0.124 0.050 0.010 0.024 0.029 0.017 0.000 0.002 0.019 0.001 0.012 0.040 0.047 0.005 0.013 0.029
0.028 0.003 0.019 0.035 0.013 0.067 0.062 0.036 0.007 0.015 0.027 0.023 0.000 0.000 0.046 0.000 0.023 0.071 0.040 0.005 0.016 0.033
0.034 0.002 0.002 0.025 0.088 0.061 0.072 0.036 0.011 0.015 0.030 0.017 0.000 0.002 0.031 0.001 0.016 0.046 0.032 0.006 0.005 0.026
0.054 0.004 0.026 0.060 0.133 0.059 0.143 0.051 0.012 0.032 0.024 0.018 0.004 0.001 0.023 0.008 0.031 0.044 0.030 0.005 0.005 0.031

Table 8.11: Unsupervised V-Measure standard deviation results for the raw numeri-
cal data sets and the respective baseline Semantic Patterns.

Semantic Patterns (V = 0.323 at Vσ = 0.043). The robustness drops for
the baseline Semantic Patterns but is roughly the same for the Semantic
Patterns and the raw data.

• EM : The results of the EM algorithm on the Semantic Patterns (best
result: V = 0.340 at Vσ = 0.007) and the baseline Semantic Patterns
(V = 0.323 at Vσ = 0.043) is in general lower or at maximum roughly
the same in comparison to its application to the raw data (V = 0.346 at
Vσ = 0.005).

• K-Means vs. EM : The performance of K-Means on the Semantic Pat-
terns gains a significant boost and beats the best EM result, which is
achieved on the raw data. This was already observed for the mixed data.

• Influence of the MDL override factor (C) - K-Means: Here, roughly
the same observations as for the mixed data sets can be made. The best
results can be achieved with a model that is neither too complex nor too
simple. Here, this is achieved by using the value C = 1.5. For the mixed
data sets the best choice is C = 2.0.

• Influence of the MDL override factor (C) - EM : The EM algorithm
cannot benefit from the Semantic Patterns generated for the numerical
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data. Regardless of the employed C value, the results are at maximum at
the same level as for the EM algorithm, when applied to the raw data.
However, in contrast to the mixed data sets, there is a similar behavior as
observed for K-Means: The results get better at C = 1.5, slightly decrease
at C = 2.0 and drop significantly at C = 3.0.

• Influence of the pre-spreading factor σp - K-Means: For K-Means
similar patterns as for the mixed data sets can be observed: The best
results for lower values of C are achieved when σp is lower. For larger
values of C the too complex models need to be compensated with larger
σp values.

• Influence of the pre-spreading factor σp - EM : The different σp
values do not have a significant influence on the results gained by the EM
algorithm. The same behavior was already observed for the application of
the EM algorithm to the Semantic Patterns of the mixed data sets.

K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEMEM
Total BW DI GL HS IO IR SE SO VE VO Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.299 0.734 0.052 0.335 0.254 0.121 0.708 0.608 0.006 0.113 0.057 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.307 0.735 0.030 0.388 0.019 0.123 0.705 0.529 0.008 0.188 0.342 0.346 0.718 0.103 0.370 0.289 0.254 0.806 0.621 0.005 0.103 0.194

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5 D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0

0.315 0.724 0.039 0.329 0.309 0.045 0.717 0.582 0.026 0.198 0.183 0.317 0.777 0.006 0.312 0.239 0.218 0.651 0.592 0.016 0.174 0.186
0.323 0.724 0.025 0.334 0.344 0.071 0.730 0.590 0.012 0.198 0.196 0.327 0.752 0.001 0.318 0.240 0.218 0.766 0.598 0.016 0.167 0.197

0.318 0.719 0.026 0.285 0.316 0.051 0.769 0.600 0.008 0.199 0.203 0.323 0.727 0.011 0.287 0.229 0.217 0.749 0.600 0.018 0.176 0.218
0.317 0.722 0.025 0.298 0.357 0.040 0.712 0.602 0.013 0.199 0.201 0.317 0.732 0.009 0.316 0.232 0.221 0.637 0.606 0.025 0.175 0.214
0.299 0.646 0.015 0.294 0.328 0.026 0.686 0.581 0.014 0.198 0.200 0.325 0.703 0.006 0.305 0.233 0.216 0.796 0.594 0.019 0.181 0.195

D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0 D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0
0.333 0.817 0.072 0.293 0.338 0.181 0.611 0.614 0.009 0.164 0.234 0.302 0.579 0.082 0.332 0.285 0.184 0.633 0.634 0.006 0.099 0.183
0.333 0.817 0.076 0.278 0.340 0.181 0.621 0.621 0.009 0.151 0.237 0.300 0.579 0.082 0.307 0.285 0.184 0.636 0.632 0.006 0.117 0.176
0.326 0.817 0.068 0.286 0.335 0.181 0.587 0.604 0.009 0.149 0.228 0.301 0.579 0.086 0.310 0.285 0.184 0.639 0.643 0.006 0.095 0.183
0.327 0.817 0.072 0.269 0.337 0.181 0.604 0.580 0.009 0.166 0.232 0.301 0.579 0.076 0.319 0.285 0.184 0.639 0.632 0.006 0.109 0.185

0.334 0.817 0.071 0.303 0.336 0.181 0.610 0.605 0.011 0.163 0.244 0.300 0.579 0.079 0.311 0.285 0.184 0.633 0.633 0.006 0.109 0.183
D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5 D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5

0.352 0.817 0.099 0.298 0.382 0.143 0.751 0.601 0.018 0.193 0.218 0.339 0.579 0.086 0.348 0.324 0.242 0.761 0.596 0.013 0.187 0.252

0.358 0.817 0.100 0.330 0.385 0.163 0.751 0.588 0.015 0.194 0.232 0.339 0.579 0.086 0.356 0.324 0.242 0.761 0.595 0.012 0.192 0.239
0.352 0.817 0.096 0.315 0.387 0.143 0.738 0.576 0.019 0.193 0.231 0.340 0.579 0.092 0.348 0.324 0.242 0.761 0.603 0.012 0.194 0.241
0.348 0.817 0.103 0.288 0.383 0.158 0.716 0.579 0.015 0.194 0.226 0.339 0.579 0.094 0.355 0.324 0.242 0.761 0.602 0.012 0.181 0.240
0.356 0.817 0.098 0.296 0.378 0.166 0.776 0.604 0.012 0.190 0.225 0.338 0.579 0.107 0.355 0.324 0.242 0.752 0.597 0.012 0.177 0.236

D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0 D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0
0.329 0.817 0.054 0.339 0.330 0.064 0.752 0.563 0.017 0.151 0.199 0.323 0.579 0.105 0.347 0.266 0.228 0.784 0.585 0.015 0.092 0.227
0.328 0.817 0.052 0.320 0.330 0.064 0.753 0.585 0.017 0.144 0.196 0.325 0.579 0.098 0.359 0.266 0.228 0.784 0.584 0.015 0.098 0.238

0.331 0.817 0.055 0.313 0.330 0.109 0.767 0.562 0.012 0.149 0.194 0.323 0.579 0.105 0.358 0.266 0.228 0.784 0.576 0.015 0.090 0.230
0.330 0.817 0.059 0.335 0.328 0.073 0.765 0.560 0.019 0.148 0.199 0.326 0.579 0.099 0.351 0.266 0.228 0.798 0.595 0.015 0.091 0.235
0.333 0.817 0.064 0.321 0.330 0.068 0.764 0.593 0.013 0.158 0.200 0.326 0.579 0.104 0.361 0.266 0.228 0.798 0.585 0.015 0.090 0.237

D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0 D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0
0.322 0.817 0.026 0.326 0.333 0.099 0.739 0.567 0.022 0.136 0.153 0.304 0.579 0.001 0.362 0.200 0.228 0.728 0.574 0.032 0.114 0.224
0.322 0.817 0.029 0.326 0.320 0.127 0.702 0.583 0.017 0.150 0.150 0.307 0.579 0.000 0.364 0.208 0.228 0.735 0.573 0.029 0.113 0.236
0.317 0.817 0.035 0.318 0.320 0.099 0.705 0.556 0.024 0.140 0.154 0.306 0.579 0.001 0.355 0.211 0.228 0.726 0.572 0.035 0.113 0.237

0.328 0.817 0.026 0.342 0.328 0.118 0.759 0.563 0.020 0.150 0.153 0.307 0.579 0.001 0.363 0.219 0.228 0.729 0.575 0.029 0.113 0.233
0.323 0.817 0.029 0.330 0.322 0.099 0.731 0.563 0.023 0.151 0.161 0.304 0.579 0.001 0.356 0.204 0.224 0.713 0.589 0.030 0.119 0.226

Table 8.12: Unsupervised V-Measure results for the raw numerical data transformed
into Semantic Patterns.
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K-Means
Par

K-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-MeansK-Means EMEMEMEMEMEMEMEMEMEMEM
Total BW DI GL HS IO IR SE SO VE VO Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.025 0.006 0.000 0.033 0.040 0.037 0.061 0.020 0.004 0.023 0.023 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.021 0.006 0.000 0.023 0.001 0.033 0.078 0.039 0.003 0.004 0.023 0.005 0.000 0.000 0.018 0.008 0.000 0.000 0.001 0.001 0.000 0.026

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5D=0.0  MDL=1.5 D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0

0.045 0.003 0.033 0.030 0.095 0.050 0.098 0.043 0.048 0.020 0.032 0.028 0.000 0.002 0.018 0.020 0.007 0.140 0.032 0.008 0.011 0.046
0.043 0.003 0.031 0.059 0.016 0.072 0.157 0.040 0.007 0.014 0.031 0.024 0.000 0.000 0.031 0.024 0.005 0.109 0.026 0.010 0.005 0.026

0.048 0.004 0.030 0.035 0.107 0.057 0.147 0.055 0.005 0.014 0.028 0.024 0.000 0.004 0.036 0.023 0.005 0.097 0.022 0.010 0.009 0.035
0.031 0.002 0.031 0.035 0.023 0.053 0.073 0.038 0.019 0.014 0.026 0.015 0.000 0.003 0.015 0.023 0.006 0.043 0.019 0.009 0.007 0.027
0.066 0.215 0.021 0.043 0.103 0.036 0.148 0.043 0.013 0.016 0.023 0.023 0.004 0.002 0.024 0.023 0.000 0.086 0.026 0.013 0.009 0.042

D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0 D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0
0.022 0.000 0.012 0.041 0.007 0.000 0.076 0.026 0.005 0.036 0.014 0.021 0.000 0.000 0.031 0.010 0.008 0.093 0.024 0.006 0.014 0.021
0.018 0.000 0.010 0.037 0.006 0.000 0.041 0.026 0.003 0.039 0.017 0.021 0.000 0.011 0.034 0.010 0.008 0.088 0.025 0.007 0.013 0.015

0.023 0.000 0.011 0.066 0.007 0.000 0.041 0.051 0.003 0.038 0.016 0.021 0.000 0.000 0.031 0.010 0.006 0.092 0.032 0.007 0.013 0.023
0.024 0.000 0.012 0.039 0.007 0.000 0.058 0.051 0.005 0.036 0.027 0.021 0.000 0.000 0.028 0.010 0.009 0.111 0.019 0.008 0.010 0.016
0.019 0.000 0.010 0.031 0.007 0.000 0.041 0.041 0.005 0.033 0.019 0.022 0.000 0.000 0.036 0.010 0.000 0.115 0.025 0.004 0.000 0.025

D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5 D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5
0.023 0.000 0.008 0.046 0.009 0.053 0.050 0.042 0.007 0.001 0.018 0.005 0.000 0.000 0.018 0.000 0.003 0.000 0.000 0.001 0.000 0.023
0.021 0.000 0.009 0.047 0.009 0.025 0.050 0.040 0.006 0.002 0.021 0.006 0.000 0.000 0.029 0.000 0.001 0.000 0.000 0.003 0.000 0.029
0.019 0.000 0.007 0.038 0.006 0.020 0.057 0.032 0.006 0.001 0.021 0.007 0.000 0.014 0.024 0.000 0.003 0.000 0.006 0.002 0.000 0.024
0.021 0.000 0.008 0.044 0.009 0.024 0.061 0.028 0.013 0.001 0.023 0.004 0.000 0.000 0.013 0.000 0.008 0.000 0.004 0.003 0.000 0.012

0.014 0.000 0.009 0.034 0.009 0.023 0.000 0.032 0.008 0.010 0.018 0.014 0.000 0.017 0.020 0.000 0.054 0.000 0.004 0.009 0.001 0.030
D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0 D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0

0.025 0.000 0.028 0.020 0.007 0.052 0.067 0.036 0.003 0.021 0.012 0.018 0.000 0.000 0.029 0.000 0.111 0.000 0.005 0.004 0.001 0.028
0.026 0.000 0.024 0.035 0.007 0.054 0.066 0.029 0.011 0.024 0.011 0.016 0.000 0.000 0.022 0.000 0.102 0.000 0.007 0.002 0.001 0.029
0.030 0.000 0.026 0.034 0.007 0.082 0.056 0.042 0.006 0.023 0.020 0.017 0.000 0.000 0.022 0.000 0.088 0.014 0.008 0.005 0.000 0.029
0.028 0.000 0.024 0.025 0.007 0.076 0.056 0.032 0.012 0.021 0.026 0.020 0.000 0.000 0.027 0.000 0.102 0.028 0.005 0.003 0.001 0.032
0.025 0.000 0.018 0.031 0.007 0.065 0.058 0.024 0.009 0.013 0.021 0.015 0.000 0.000 0.029 0.000 0.066 0.014 0.007 0.002 0.000 0.029

D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0 D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0
0.029 0.000 0.015 0.032 0.000 0.088 0.069 0.027 0.008 0.022 0.025 0.016 0.000 0.000 0.030 0.000 0.008 0.062 0.027 0.005 0.003 0.020

0.025 0.000 0.015 0.017 0.008 0.097 0.039 0.019 0.007 0.021 0.027 0.020 0.000 0.000 0.029 0.000 0.062 0.039 0.034 0.003 0.000 0.029
0.028 0.000 0.012 0.014 0.008 0.088 0.060 0.033 0.008 0.022 0.031 0.021 0.000 0.000 0.031 0.000 0.065 0.038 0.036 0.003 0.001 0.031
0.028 0.000 0.015 0.023 0.008 0.092 0.064 0.034 0.010 0.022 0.011 0.018 0.000 0.000 0.032 0.010 0.008 0.075 0.019 0.009 0.001 0.030
0.030 0.000 0.015 0.031 0.011 0.088 0.069 0.041 0.007 0.021 0.021 0.018 0.000 0.000 0.028 0.000 0.064 0.050 0.012 0.005 0.001 0.022

Table 8.13: Unsupervised V-Measure standard deviation results for the raw numeri-
cal data transformed into Semantic Patterns.

Summary

Again, the performance of the K-Means algorithm can be significantly improved
by the Semantic Patterns. Similar to the mixed data, the K-Means algorithm
performance slightly beats the performance of the EM algorithm. Together
with the results gained for the mixed data, this indicates that the deployment
of the Semantic Patterns especially makes sense when distance-based features
are present. Then, even the simple K-Means algorithm outperforms the results
achieved by the EM algorithm.

8.2.5 Conclusions

By looking at the results for the categorical, mixed and numerical data sets
the following conclusions are drawn: By transforming the raw value-centric fea-
tures into Semantic Patterns, significant performance gains are made for the
K-Means algorithm. In contrast, there are no significant improvements for the
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EM algorithm. This is most likely explained by the higher sophisticated model
employed by the EM algorithm that is already adequate for modeling the raw
data, and cannot be improved when used for the Semantic Patterns. Still, no
significant performance loss can be observed. This indicates that the Semantic
Pattern Transformation can be safely deployed – in order to gain the benefits of
the semantic model for further interpretation and analysis processes – without
making compromises in terms of quality. Furthermore, the results also indicate
that huge performance gains can be made for the simple distance- and centroid
based algorithm family. Although, only the K-Means algorithm was evaluated,
it is assumed that other algorithms such as the Neural Gas algorithm family,
or the Self-Organizing Map will also benefit from the Semantic Patterns. The
rationale behind this assumption is that all of these algorithms are based on
similar models.

8.3 Supervised Learning Evaluation

For the supervised evaluation, the same data sets and parameters as for un-
supervised clustering are used within the evaluation process. Two supervised
algorithms, the Support Vector Machine (SVM) algorithm and the decision tree
based algorithm J48 from the Weka API are utilized. Thereby, for each possible
combination of parameters and data set, the respective supervised algorithm is
applied for 10 iterations. For each iteration, a cross-validation operation with
10 folds is applied.

As in the unsupervised evaluation, the algorithms are applied to unprocessed
and normed raw data sets, to the baseline Semantic Patterns and to the Semantic
Patterns. Due to a runtime error, the J48 algorithm could not be evaluated for
parts of the numerical data sets. Therefore, all of the J48 results are skipped
for this data. However, these results are not considered as important due to two
reasons: First, the performance achieved on the categorical and mixed data sets
is already lower than that of the SVM algorithm, and significantly drops for the
mixed data sets. Second, the partial results for the numerical data sets also
indicate similar results.

The complete results of the supervised evaluation are listed at the end of this
chapter in the Tables 8.16 to 8.25, and summarized as follows: The results gained
by applying the SVM algorithm to the Semantic Patterns are always slightly
better than when applied to the raw data sets. This indicates that the additional
information about the semantic relations can be utilized by the algorithm.

8.4 Semantic Search Evaluation

One of the key features of the Semantic Pattern Transformation is the inclusion
of the semantic relations between feature values within the Semantic Patterns.
This additional information has many benefits that have been explained through-
out this thesis. One interesting application is the deployment of a semantic-aware
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search algorithm. Due to the semantic information contained within the Seman-
tic Patterns this is a straightforward process that just requires the utilization
of an appropriate distance measure. The exact procedure is covered in Sections
7.2.1 and 7.4.3 of the previous chapter, and the principle rationale is highlighted
again in Example 19.

Example XIX: Semantic-aware search algorithm

Given Demo Data Set 1, which contains various instances describ-
ing the world’s countries, and assuming, there is one group of countries
that only export coffee, a large group of countries that export cacao and
coffee, and also countries that export cacao only: Then, the large group
of countries that export both commodities defines a strong semantic
relation between coffee and cacao. This relation is modeled as strong
link within the associative network, which is trained on the country
instances.
Now, given a search query that contains the feature value coffee: Then,
when considering a key-word matching search algorithm, only the coun-
tries that directly export coffee can be retrieved. This corresponds to
searching related instances within the raw value-centric data set. This
behavior can be improved by deploying a semantic-aware search algo-
rithm, which considers the semantic relation between coffee and cacao
and, thus, is also capable of retrieving those countries that only export
the latter.
It turns out that the semantic information contained in the Semantic Pat-
terns can simply be utilized for such an algorithm by applying standard
distance measures.

The evaluation of the semantic-aware search algorithm is not so straight-
forward as its application. When large data sets are analyzed that define many
different semantic relations between the feature values, the definition of the
correctly retrieved results is not a simple task. Thus, another approach for the
evaluation of the semantic-aware search capabilities is followed. It is based on
the following assumptions and evaluations:

• Assumption: A semantic-aware search algorithm retrieves better results
than a keyword-matching algorithm: This is a reasonable assumption, be-
cause a semantic-aware search algorithm utilizes the semantic relations for
retrieving more accurate search results.

• Assumption: Instances of the same classes are more similar than in-
stance of different classes: This is also an obvious and reasonable as-
sumption. Instances of the same classes are considered as similar due to
some kind of relation that supervised and unsupervised algorithms aim to
discover. Although, the capability to separate different classes strongly de-
pends on the available data, it can be assumed that the employed features
and class labels are correlated in some way.
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• Evaluation – Complete Instances: Based on these two assumptions,
the following rationale for the evaluation procedure for a semantic-aware
search algorithm can be defined: Given an arbitrary data set that con-
tains instances of different classes, and further given an instance with a
class label: Then, when searching for related instances, those that be-
long to the same class should be retrieved first. Based on the assump-
tion that a semantic-aware search algorithm is better suited for retrieving
adequate results, there is the expectation that the number of wrongly
retrieved instances is lower for a semantic-search algorithm than for a key-
word-matching algorithm. For this evaluation the implementation of the
semantic-aware search algorithm corresponds to calculating the similarity
(distance) between the Semantic Patterns. The key-word-matching algo-
rithm is represented by calculating the similarity (distance) between the
raw value-centric instances. The performance of these techniques can be
compared by determining the number of correctly retrieved instances. It
is important to note that for this evaluation complete instances are used
within the search query.

• Evaluation – Some feature values: The previous evaluation is based
on search queries that contain complete instances. However, this is not
the only use case for a semantic-aware search algorithm. In many cases
only one or a few feature values (search terms) are specified within the
query (as described in Example 19). In order to model this behavior with
the previously described evaluation procedure, feature values are removed
from the complete instances. The removal of a large percentage of feature
values from an instance, and using this modified instance as search query
comes closer to the scenario where only one or a few feature values are
used within a query. This evaluation can also be seen in the context of the
capability to handle missing values, which was also mentioned as a specific
capability of the Semantic Pattern Transformation.

Based on these discussions, the evaluation used for the evaluation of the
different search algorithms is described in Algorithm 16.

This algorithm is described as follows:

• Input :

– The set of instances I and the corresponding class labels contained
within an arbitrary data set.

– The distance function DF, which is used for the semantic search eval-
uation. For this evaluation the Cosine similarity and the Euclidean
distance are employed.

• Output : The total performance TOTALPERF of the given distance func-
tion DF on the given instance set I.

• Line 1 to 18 : For each class ci within the instance labels, the correspond-
ing instances Ic are extracted and used for the performance evaluation.
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Algorithm 16 Semantic search performance

Require:
I={i1,i2,...,in} {set I of instances extracted from an arbitrary data set containing
class labels}
DF {distance function DF}
TOTALPERF {total performance of distance measure on data set}

1: for all ci in getClasses(I) do
2: CORRECT (ci) = 0 {initialize correct counter for class ci}
3: TOTAL(ci) = 0 {initialize total counter for class ci}
4: Ic = getInstancesWithClass(I,ci) {get instances with class ci}
5: Nc = |Ic| {get number of instances belonging to class ci}
6: for all ii in Ic do
7: D = getDistances(ii,I) {calculate distances from ii to all other instances}
8: Is = sortDistances(D,I) {sort instances according to their distances, starting

with the smallest}
9: for i = 1→ Nc do

10: TOTAL(ci)++ {increase total counter for current class ci}
11: cs = getClass(Is(i)) {get class of instance at position i in Is}
12: if cs = ci then
13: CORRECT (ci)++ {increase correct counter for current class ci}
14: end if
15: end for
16: end for
17: PERF (ci)=CORRECT (ci)/TOTAL(ci) {calculate “correct rate” for given class

ci}
18: end for

19: TOTALPERF = meanValue(PERF ) {calculate total performance on data set}

Thereby, for each instance within Ic the distances to all other instances
are calculated, and the instance set I is sorted according to these distances.
Then the class ci is compared to the class values of the best matching Nc in-
stances, where Nc is the number of instances of the given class ci. Thereby,
the correct number of retrieved results – when the given class ci matches
the class of the instance – are counted.

• Line 2 to 3 : The CORRECT and TOTAL counters for the class ci are
initialized.

• Line 4 to 5 : The instances Is with the class label ci are extracted and
their count is stored in Nc.

• Line 6 to 16 : The performance evaluation for the given class ci and the
distance function DF is executed as follows:

• Line 7 to 8 : Given the instance ii, then the distances to all other instances
in the set I are calculated and then sorted starting at the smallest distance.
The result set is stored in Is.
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• Line 9 to 15 : For the first Nc instances of Is the class labels are compared
to the current class ci. For each correct match, the CORRECT counter is
increased.

• Line 17 : The performance PERF (ci) of class ci is calculated by dividing
the number of the correctly retrieved instances by the total number of
instances within the class ci.

• Line 19 : The total performance TOTALPERF of the data set is deter-
mined by calculating the mean performance value of all classes.

The remainder of this chapter describes the results gained by applying this
algorithm to the different numerical, categorical and mixed data sets. Thereby,
the Euclidean distance measure and the Cosine similarity are used as distance
measures for the search algorithm.

8.4.1 Complete Instances

For this evaluation, the semantic search algorithm is applied to the complete
instances of the categorical, mixed and numerical data sets. Thereby, the per-
formance of two distance measures – the Euclidian distance and the Cosine
similarity – is determined according to Algorithm 16. The search algorithms
are thereby applied to the raw data, to the baseline Semantic Patterns and to
the Semantic Patterns. For the Semantic Pattern Transformation the following
parameters are used: D = 0.5, Norm=L, Comb=E, and when distance-based
features are present, the parameters C = 2.0, σp = 0.2, which are required for
the pre-spreading technique.

The detailed results are presented in Table 8.14, and the following observa-
tions are made:

• General: The results gained for the Semantic Patterns are significantly
better than those gained for the baseline patterns and the raw data. The
performance of both distance functions is roughly the same on the Semantic
Patterns and the baseline patterns. For the raw data, the performance
difference is much larger and depends on the type of data: The Euclidean
distance function performs better on the categorical data and the mixed
data, and the Cosine similarity achieves the better results on the numerical
data.

• Euclidean distance vs. Cosine similarity: Due to the reasons dis-
cussed in Section 7.2.1 of the previous chapter, the Cosine similarity seems
to be the best choice when comparing Semantic Patterns. However, the
most interesting observation here is that the Cosine similarity’s perfor-
mance on the Semantic Patterns is more or less equal to that of the Eu-
clidean distance. This is also observed for the baseline Semantic Patterns.
For the raw data the Cosine similarity’s performance is significantly lower
than that of the Euclidean distance.
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Based on these observations, the following conclusion is drawn: The quality
of a search algorithm can be significantly improved when the raw data is trans-
formed into Semantic Patterns. This improvement is based on the additional
information about the semantic relations that is contained within the patterns.
The most interesting observation here are the unexpected results for the Cosine
similarity and the Euclidean distance when applied to the Semantic Patterns.
Although the Cosine similarity seems to be the better choice for the Semantic
Patterns the same performance as for the Euclidean distance is achieved. This
observation will be further discussed in the next section, where search queries
with only a few feature values (search terms) will be simulated by introducing a
large number of missing feature values for each instance.

Data set EUC (N) EUC (NN) COS (NN) EUC (NN) COS (NN) EUC (NN) COS (NN)

BC
DE
KR
LY
MU
SO
SP
VO
ZO
Total

AN
CO
CA
CG
HC
HH
HE
Total

BW
DI
GL
HS
IO
IR
SE
SO
VE
VO
Total

RAWRAWRAW BaselineBaseline Semantic PatternsSemantic Patterns
CategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategorical

0.52 0.53 0.53 0.52 0.53 0.54 0.54
0.68 0.68 0.66 0.67 0.67 0.81 0.81
0.54 0.54 0.54 0.54 0.54 0.52 0.52
0.63 0.63 0.59 0.60 0.57 0.63 0.61
0.64 0.64 0.57 0.64 0.64 0.68 0.67
0.65 0.65 0.58 0.69 0.70 0.75 0.73
0.48 0.48 0.44 0.48 0.48 0.62 0.57
0.80 0.80 0.62 0.80 0.80 0.78 0.79
0.84 0.83 0.80 0.85 0.84 0.86 0.86
0.64 0.64 0.59 0.64 0.64 0.69 0.68

MixedMixedMixedMixedMixedMixedMixed
0.64 0.64 0.44 0.64 0.65 0.65 0.66
0.59 0.59 0.50 0.59 0.60 0.58 0.62
0.62 0.62 0.55 0.61 0.61 0.61 0.65
0.52 0.52 0.51 0.52 0.52 0.52 0.52
0.86 0.86 0.81 0.85 0.85 0.86 0.87
0.87 0.87 0.84 0.86 0.86 0.86 0.88
0.59 0.59 0.52 0.61 0.60 0.63 0.65
0.67 0.67 0.60 0.67 0.67 0.67 0.69

NumericalNumericalNumericalNumericalNumericalNumericalNumerical
0.86 0.86 0.62 0.74 0.74 0.89 0.90
0.55 0.55 0.53 0.54 0.54 0.55 0.56
0.49 0.49 0.51 0.51 0.51 0.53 0.53
0.64 0.64 0.54 0.63 0.63 0.66 0.69
0.51 0.51 0.46 0.55 0.55 0.63 0.61
0.81 0.81 0.87 0.73 0.73 0.81 0.83
0.61 0.61 0.39 0.54 0.54 0.57 0.57
0.54 0.54 0.52 0.54 0.54 0.54 0.54
0.35 0.35 0.36 0.37 0.37 0.36 0.37
0.15 0.15 0.20 0.21 0.21 0.22 0.21
0.55 0.55 0.50 0.54 0.54 0.58 0.58

Table 8.14: Semantic-aware search results.

8.4.2 Some Feature Values, or the Influence of Missing
Values

By evaluating the influence of missing values on the performance of the semantic-
aware search algorithms, two questions can be answered: First, when missing
values are present within the analyzed data, some strategy needs to be applied
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that appropriately replaces these values or ignores them in the analysis applied
to the data. This topic was covered in Section 4.2 of Chapter 4 – Towards a
Semantic Representation and it was argued that the transformation of raw data
into Semantic Patterns makes the application of such strategies obsolete. This
was explained due to the semantic relations, which are contained in the Semantic
Patterns. Thus, it is reasonable to assume that this information could also help
to improve the quality when missing values are present. In order to verify these
postulations, the algorithm for determining the semantic-aware search perfor-
mance section is modified to remove feature values for the simulation of missing
values. Second, when a large percentage of feature values are removed from the
instances, the resulting search queries can be compared to typical queries that
include only a few feature values (search terms).

The following strategy is used to simulate missing values by removing feature
values from the analyzed instances: The raw data sets are taken as input and
feature values are removed randomly from the instances contained in the data
sets. Thereby, a ratio for the missing values indicates how many of the values
should be removed. Thus, a factor of 50% results in the removal of half of the
feature values in each instance, which are then marked as missing values. The
analyzed data sets are modified according to the selected missing value factors
and stored for the further evaluation.

The performance evaluation utilizes Algorithm 16, which is used for the eval-
uation of the semantic-aware search algorithm. In the described process, a given
percentage of feature values is removed from each feature vector, which corre-
sponds to the presence of missing values. These modified instances are then
compared to the original instances that are contained in the unmodified data
set. The reason for doing this is based on the assumption that a data base
is already available, and that search queries for retrieving data from this data
base are executed. Here, the modified instances that contain the missing values
represent these search queries. The performance is then determined in the same
way as for the semantic search evaluation: The class labels of the instances are
used to determine the number of the correctly retrieved instances.

For the Semantic Patterns, a similar strategy is used: Here, the original raw
data sets are transformed into Semantic Patterns and stored for the further eval-
uation. These data sets are later used as reference data sets. Then, the Semantic
Patterns based on the instances containing missing values are generated by uti-
lizing the associative network trained for the reference data set. The pattern is
then used as search query in order to retrieve related patterns from the reference
data set. The utilization of the trained associative network corresponds to using
the unmodified raw data sets as existing database. The performance evaluation
of the Semantic Patterns that are generated for the modified instances is based
on the same procedure as described before for the raw data sets.

For all evaluations the missing feature value rates of 0%, 10%, 50% and
90% are used, which means that as many feature values are removed from each
instance of the analyzed data sets. Obviously the results gained by using the 0%
rate are equal to those gained for the semantic search evaluation in the previous
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chapter.
The results are presented in Table 8.15. Thereby, the first column describes

the analyzed data set, the left part of the table the results for the Euclidean
(Euc) distance function, and the right part of the table the results gained for
the Cosine similarity (Cos). For both distance functions, the results are listed for
the raw data sets (Raw) and the Semantic Patterns (Semantic Patterns). As
for the previous evaluations the results are grouped into categorical, numerical
and mixed data sets. The last row for each of these groups lists the total result,
which is determined by calculating the mean value over all data sets for the
respective distance function, type of data, and missing value rate.

The following observations are made:

• No missing values (0%): This is mentioned for completeness and corre-
sponds to the semantic search analysis in the previous section. In general,
both distance functions achieve significantly improved results when applied
to the Semantic Patterns. In contrast to the application to the raw data,
where the Euclidean distance in general outperforms the Cosine similarity,
this difference becomes insignificant for the Semantic Patterns.

• Low missing value rate (10%): Here the similar behavior as for the
0% rate is observed. Obviously, there is a minor drop in performance due
to the information loss that occurs due the removal of 10% of the feature
values. Again, the difference between the performance of both distance
measures is significant for the raw data, and insignificant for the Semantic
Patterns.

• High missing value rate (50% and 90%): Here, some interesting
observations are made: First, for the raw data, the difference between the
both distance measures is roughly the same. This is in contrast to the
observations made for the low missing value rates, where the Euclidean
distance outperformed the Cosine similarity. Second, for the Semantic
Patterns the Cosine similarity now significantly outperforms the Euclidean
distance. This is also in contrast to the low missing value rates, where both
functions approximately achieved the same results.

Based on the observations the following conclusions are drawn: Due to the
structure of the Semantic Patterns, the Cosine similarity seems to be the better
choice for calculating the semantic similarity between two patterns. However,
the observations show that this is only true when a large number of values are
missing. When applying spreading activation to instances that contain a large
number of missing values, and therefore have a significantly lower amount of
feature values, there are fewer activate regions within the network. When this
happens, the Cosine similarity is the better choice, because it is at maximum
when the compared vectors are orthogonal2. These observations also correspond
to empirical results that were gained during the application of the Semantic

2This orthogonality is observed when two patterns that contain activation values of distinct
regions are compared.
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Pattern Transformation for executing semantic search queries in a wide range of
domains (Chapter 10 – Applications). In these empirical evaluations, a search
algorithm using the Cosine similarity always retrieved the more significant re-
sults. When more and more regions within the network become active, which is
the case when only a few or none feature values are removed from the instances,
the Euclidean distance seems to be the better choice. Here, the strength of
the activation values becomes more important, because most of the network’s
regions are active.

Distance
Data

Missing

EucEucEucEucEucEucEucEuc CosCosCosCosCosCosCosCos
RawRawRawRaw Semantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns RawRawRawRaw Semantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns

0% 10% 50% 90% 0% 10% 50% 90% 0% 10% 50% 90% 0% 10% 50% 90%

BC
DE
KR
LY
MU
SO
SP
VO
ZO
Total

AN
CO
CA
CG
HC
HH
HE
Total

BW
DI
GL
HS
IO
IR
SE
SO
VE
VO
Total

CategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategoricalCategorical
0.52 0.52 0.52 0.52 0.54 0.54 0.53 0.50 0.53 0.53 0.53 0.51 0.54 0.54 0.53 0.51
0.68 0.66 0.55 0.32 0.81 0.80 0.38 0.22 0.66 0.66 0.67 0.36 0.81 0.80 0.74 0.46
0.54 0.54 0.53 0.52 0.52 0.52 0.51 0.50 0.54 0.54 0.53 0.51 0.52 0.52 0.52 0.51
0.63 0.68 0.63 0.30 0.63 0.59 0.64 0.48 0.59 0.53 0.51 0.32 0.61 0.58 0.56 0.35
0.64 0.64 0.62 0.57 0.68 0.67 0.62 0.53 0.57 0.57 0.56 0.54 0.67 0.67 0.67 0.62
0.65 0.63 0.53 0.22 0.75 0.70 0.09 0.08 0.58 0.56 0.50 0.18 0.73 0.72 0.63 0.28
0.48 0.47 0.44 0.38 0.62 0.46 0.39 0.39 0.44 0.44 0.41 0.37 0.57 0.57 0.54 0.45
0.80 0.79 0.76 0.67 0.78 0.78 0.68 0.51 0.62 0.63 0.67 0.62 0.79 0.79 0.78 0.72
0.83 0.81 0.72 0.31 0.86 0.85 0.64 0.24 0.80 0.79 0.71 0.31 0.86 0.84 0.76 0.41
0.64 0.64 0.59 0.42 0.69 0.66 0.50 0.38 0.59 0.58 0.57 0.41 0.68 0.67 0.64 0.48

MixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixedMixed
0.64 0.63 0.55 0.38 0.66 0.67 0.51 0.38 0.44 0.46 0.50 0.38 0.66 0.66 0.61 0.42
0.59 0.59 0.56 0.51 0.59 0.58 0.52 0.50 0.50 0.50 0.51 0.51 0.62 0.62 0.60 0.57
0.62 0.61 0.59 0.54 0.65 0.65 0.60 0.52 0.55 0.55 0.54 0.51 0.65 0.64 0.63 0.57
0.52 0.52 0.52 0.50 0.52 0.53 0.54 0.53 0.51 0.51 0.52 0.51 0.52 0.52 0.52 0.52
0.86 0.86 0.85 0.81 0.87 0.87 0.85 0.81 0.81 0.81 0.82 0.81 0.87 0.87 0.86 0.84
0.87 0.86 0.85 0.82 0.87 0.87 0.83 0.80 0.84 0.84 0.83 0.81 0.88 0.88 0.87 0.83
0.59 0.58 0.56 0.50 0.64 0.64 0.58 0.55 0.52 0.51 0.55 0.52 0.65 0.65 0.64 0.57
0.67 0.67 0.64 0.58 0.69 0.69 0.63 0.58 0.60 0.60 0.61 0.58 0.69 0.69 0.68 0.62

NumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumerical
0.86 0.86 0.76 0.68 0.91 0.91 0.84 0.69 0.62 0.61 0.59 0.50 0.90 0.89 0.88 0.84
0.55 0.54 0.53 0.53 0.56 0.55 0.54 0.50 0.53 0.53 0.52 0.50 0.56 0.55 0.55 0.53
0.49 0.45 0.31 0.30 0.53 0.52 0.42 0.31 0.51 0.51 0.48 0.29 0.53 0.52 0.48 0.34
0.64 0.63 0.59 0.52 0.69 0.69 0.61 0.53 0.54 0.54 0.55 0.51 0.69 0.69 0.65 0.60
0.51 0.52 0.55 0.54 0.61 0.61 0.56 0.46 0.46 0.46 0.47 0.51 0.61 0.61 0.60 0.57
0.81 0.60 0.47 0.33 0.83 0.81 0.75 0.67 0.87 0.84 0.77 0.34 0.84 0.81 0.76 0.75
0.61 0.53 0.21 0.15 0.57 0.57 0.43 0.17 0.39 0.40 0.44 0.27 0.57 0.57 0.55 0.41
0.54 0.53 0.51 0.50 0.54 0.54 0.51 0.50 0.52 0.52 0.52 0.52 0.54 0.54 0.54 0.53
0.35 0.33 0.29 0.26 0.37 0.37 0.35 0.28 0.36 0.36 0.36 0.31 0.37 0.37 0.36 0.33
0.15 0.15 0.12 0.09 0.22 0.21 0.16 0.10 0.20 0.20 0.17 0.10 0.21 0.21 0.20 0.13
0.55 0.51 0.43 0.39 0.58 0.58 0.52 0.42 0.50 0.50 0.49 0.38 0.58 0.58 0.56 0.50

Table 8.15: Semantic-aware search results when missing values are present.

8.4.3 Conclusions

The Semantic Patterns significantly improve the quality of a search algorithm
in comparison to the raw data. When only a low number of feature values are
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involved in the search query, the Cosine similarity is definitely the better choice.
However, for search queries that include complete instances the performance of
the Euclidean distance and the Cosine similarity becomes almost equal. This has
two significant implications: First, for the standard deployment of a semantic-
aware search algorithm, the Cosine similarity should be used. In the typical
scenarios, the number of feature values within a search query will always remain
significantly lower than the number of feature values contained in the instances
of the underlying data base. Second, when complete instances are compared
the Euclidean distance achieves a similar performance as the Cosine similarity.
This is especially important for supervised and unsupervised algorithms that
employ the Euclidean distance-measure, as it implies that these algorithms can
be safely applied to the Semantic Patterns without any modification.

Interestingly, the application of fanout strategies for the supervised and un-
supervised evaluation did not yield any improved results. On the contrary, in
most of the cases the V-Measure results dropped significantly. This might be
explained by the large number of connections and normalized weights within
the network. Due to the relations created in the analyzed instances the nodes
are tightly interconnected, and it seems that there is no significant difference
between the different nodes which justifies the application of fanout strategies
during spreading activation.
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8.5 Empirical Evaluation

During the development of the Semantic Pattern Transformation many empiri-
cal evaluations for all of the various aspects have been conducted. In this chap-
ter, the results have been extended for supervised and unsupervised learning,
semantic search, and the influence of missing values.

For all the empirical aspects of the Semantic Pattern Transformation the
reader is referred to the published works that will be described in Chapter 10 –
Applications. In these references other analysis processes including anomaly de-
tection, time-based analysis, feature relevance and visualization will be covered.

8.6 Chapter Conclusions

The results for the individual evaluation procedures are summarized as follows:
For unsupervised learning, the simple distance-based algorithms gain a signif-
icant boost in the quality of the results when utilizing the Semantic Patterns.
For the higher sophisticated algorithm EM, the performance remains roughly
the same. For supervised learning, a slight improvement can be achieved. The
final evaluation of the semantic-aware search algorithms reveals that the qual-
ity of the results is significantly improved by utilizing the Semantic Patterns.
Furthermore, when complete instances are analyzed, the results gained by the
Euclidean distance are equal to those of the Cosine similarity.

All together this leads to the following conclusions: The quality of the results,
when utilizing the Semantic Patterns, is at least equal and in most cases signifi-
cantly better, than when using the raw data. This means, that the huge benefits
of the semantic representation can be used without making compromises in terms
of quality. Furthermore, due to the results gained for the semantic-aware search
algorithm, the conclusion can be drawn that unsupervised algorithms based on
the Euclidean distance can be applied to the Semantic Patterns.

SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48J48J48
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.729 0.033 0.925 0.750 0.530 1.000 0.918 0.712 0.755 0.939 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.727 0.036 0.924 0.752 0.510 1.000 0.918 0.719 0.739 0.941 0.718 0.079 0.838 0.952 0.285 1.000 0.895 0.755 0.765 0.896

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.723 0.038 0.924 0.816 0.392 1.000 0.920 0.718 0.742 0.954 0.717 0.045 0.891 0.942 0.289 1.000 0.918 0.755 0.726 0.886

Table 8.16: Supervised V-Measure results for the raw categorical data sets and the
respective baseline Semantic Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48J48J48
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.010 0.011 0.005 0.010 0.033 0.000 0.004 0.007 0.014 0.007 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.009 0.005 0.005 0.009 0.032 0.000 0.003 0.007 0.011 0.005 0.014 0.030 0.012 0.005 0.029 0.000 0.009 0.009 0.023 0.008

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.010 0.010 0.005 0.006 0.028 0.000 0.004 0.005 0.021 0.009 0.014 0.015 0.017 0.006 0.039 0.000 0.003 0.008 0.027 0.008

Table 8.17: Supervised V-Measure standard deviation results for the raw categorical
data sets and the respective baseline Semantic Patterns.

SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48J48J48
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.729 0.033 0.925 0.750 0.530 1.000 0.918 0.712 0.755 0.939 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.727 0.036 0.924 0.752 0.510 1.000 0.918 0.719 0.739 0.941 0.718 0.079 0.838 0.952 0.285 1.000 0.895 0.755 0.765 0.896

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.723 0.038 0.924 0.816 0.392 1.000 0.920 0.718 0.742 0.954 0.717 0.045 0.891 0.942 0.289 1.000 0.918 0.755 0.726 0.886

Comb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=L
0.726 0.036 0.937 0.798 0.423 1.000 0.920 0.748 0.732 0.941 0.689 0.096 0.895 0.872 0.251 0.991 0.873 0.693 0.667 0.864
0.730 0.041 0.942 0.745 0.456 0.999 0.923 0.793 0.704 0.967 0.688 0.091 0.895 0.873 0.234 0.991 0.875 0.688 0.665 0.884
0.727 0.036 0.946 0.723 0.480 0.995 0.927 0.799 0.670 0.966 0.687 0.089 0.920 0.873 0.280 0.991 0.880 0.692 0.571 0.885
0.719 0.036 0.937 0.702 0.485 0.994 0.919 0.793 0.647 0.957 0.677 0.063 0.904 0.883 0.291 0.990 0.862 0.672 0.523 0.901

Comb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=L
0.731 0.039 0.941 0.775 0.462 1.000 0.921 0.770 0.719 0.950 0.694 0.077 0.898 0.875 0.282 0.991 0.874 0.695 0.675 0.881
0.731 0.038 0.946 0.723 0.487 0.995 0.925 0.799 0.704 0.966 0.686 0.075 0.903 0.882 0.275 0.992 0.871 0.695 0.604 0.879
0.723 0.036 0.941 0.719 0.483 0.994 0.921 0.793 0.670 0.950 0.678 0.080 0.906 0.874 0.255 0.990 0.852 0.682 0.593 0.873
0.709 0.036 0.944 0.692 0.464 0.994 0.915 0.784 0.596 0.958 0.679 0.083 0.914 0.871 0.281 0.987 0.863 0.671 0.555 0.887

Comb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=S
0.720 0.039 0.924 0.816 0.394 1.000 0.921 0.711 0.733 0.940 0.688 0.061 0.880 0.881 0.296 0.991 0.872 0.708 0.663 0.838
0.721 0.032 0.923 0.816 0.396 1.000 0.920 0.718 0.747 0.941 0.689 0.077 0.890 0.871 0.291 0.991 0.867 0.715 0.666 0.834
0.717 0.033 0.923 0.814 0.386 1.000 0.922 0.712 0.727 0.939 0.684 0.062 0.891 0.873 0.268 0.992 0.872 0.715 0.659 0.823
0.719 0.036 0.925 0.812 0.384 1.000 0.920 0.718 0.729 0.948 0.688 0.060 0.904 0.872 0.303 0.992 0.870 0.708 0.651 0.830

Comb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=S
0.721 0.042 0.923 0.814 0.384 1.000 0.920 0.717 0.740 0.950 0.685 0.052 0.878 0.878 0.302 0.991 0.875 0.707 0.656 0.830
0.722 0.035 0.924 0.816 0.405 1.000 0.919 0.715 0.741 0.939 0.689 0.082 0.894 0.879 0.285 0.992 0.868 0.710 0.653 0.842
0.725 0.035 0.926 0.815 0.420 1.000 0.921 0.720 0.742 0.944 0.684 0.071 0.907 0.874 0.275 0.991 0.870 0.711 0.646 0.808
0.723 0.029 0.931 0.809 0.421 1.000 0.919 0.729 0.731 0.938 0.690 0.065 0.909 0.877 0.308 0.991 0.865 0.713 0.644 0.835

Table 8.18: Supervised V-Measure results for the raw categorical data transformed
into Semantic Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48J48J48
Total BC DE KR LY MU SO SP VO ZO Total BC DE KR LY MU SO SP VO ZO

N
NN

D 0.0

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

D 0.1
D 0.3
D 0.5
D 0.7

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.010 0.011 0.005 0.010 0.033 0.000 0.004 0.007 0.014 0.007 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.009 0.005 0.005 0.009 0.032 0.000 0.003 0.007 0.011 0.005 0.014 0.030 0.012 0.005 0.029 0.000 0.009 0.009 0.023 0.008

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
0.010 0.010 0.005 0.006 0.028 0.000 0.004 0.005 0.021 0.009 0.014 0.015 0.017 0.006 0.039 0.000 0.003 0.008 0.027 0.008

Comb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=LComb=E  Norm=L
0.010 0.010 0.004 0.007 0.033 0.000 0.004 0.006 0.015 0.007 0.017 0.039 0.011 0.011 0.024 0.002 0.007 0.012 0.023 0.023
0.009 0.010 0.007 0.006 0.032 0.001 0.003 0.008 0.010 0.000 0.017 0.030 0.013 0.009 0.045 0.002 0.007 0.013 0.023 0.015
0.010 0.010 0.006 0.002 0.045 0.001 0.004 0.005 0.012 0.005 0.018 0.023 0.018 0.013 0.035 0.001 0.007 0.008 0.033 0.021
0.008 0.010 0.008 0.003 0.020 0.001 0.002 0.004 0.018 0.008 0.016 0.012 0.015 0.005 0.048 0.002 0.008 0.009 0.024 0.023

Comb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=LComb=S  Norm=L
0.010 0.010 0.006 0.012 0.037 0.000 0.005 0.004 0.013 0.000 0.018 0.027 0.012 0.012 0.038 0.002 0.007 0.010 0.032 0.021
0.009 0.011 0.008 0.004 0.030 0.000 0.003 0.004 0.020 0.005 0.020 0.031 0.011 0.008 0.040 0.002 0.007 0.009 0.027 0.041
0.007 0.006 0.005 0.005 0.020 0.001 0.004 0.005 0.009 0.007 0.017 0.021 0.011 0.010 0.050 0.002 0.011 0.007 0.020 0.020
0.007 0.011 0.007 0.005 0.015 0.001 0.002 0.004 0.014 0.008 0.015 0.022 0.015 0.010 0.035 0.001 0.010 0.012 0.023 0.011

Comb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=SComb=E  Norm=S
0.012 0.017 0.005 0.006 0.050 0.000 0.003 0.009 0.013 0.005 0.015 0.020 0.012 0.011 0.037 0.002 0.005 0.011 0.020 0.014
0.010 0.008 0.007 0.006 0.034 0.000 0.004 0.007 0.022 0.006 0.016 0.029 0.010 0.007 0.042 0.002 0.010 0.009 0.020 0.014
0.011 0.012 0.004 0.006 0.031 0.000 0.004 0.011 0.026 0.004 0.017 0.029 0.014 0.009 0.042 0.002 0.005 0.010 0.019 0.026
0.011 0.016 0.006 0.008 0.025 0.000 0.003 0.009 0.018 0.015 0.016 0.022 0.015 0.011 0.044 0.001 0.005 0.010 0.023 0.017

Comb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=SComb=S  Norm=S
0.012 0.012 0.004 0.008 0.035 0.000 0.005 0.009 0.019 0.014 0.018 0.020 0.016 0.010 0.047 0.001 0.007 0.008 0.022 0.027
0.011 0.012 0.005 0.005 0.039 0.000 0.002 0.013 0.017 0.005 0.014 0.020 0.016 0.007 0.035 0.002 0.005 0.009 0.020 0.008
0.010 0.013 0.007 0.007 0.022 0.000 0.005 0.012 0.015 0.010 0.014 0.018 0.014 0.004 0.030 0.001 0.007 0.013 0.022 0.019
0.010 0.011 0.006 0.006 0.038 0.000 0.004 0.005 0.020 0.000 0.017 0.020 0.013 0.009 0.040 0.001 0.008 0.012 0.026 0.022

Table 8.19: Supervised V-Measure standard deviation results for the raw categorical
data transformed into Semantic Patterns.



194 Chapter 8. Semantic Patterns - Evaluation

SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.374 0.857 0.309 0.410 0.108 0.359 0.324 0.248 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.379 0.861 0.321 0.414 0.104 0.362 0.310 0.278 0.320 0.917 0.380 0.399 0.056 0.192 0.222 0.075

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.375 0.986 0.275 0.417 0.117 0.338 0.313 0.178 0.320 0.929 0.322 0.417 0.056 0.223 0.208 0.088
0.374 0.984 0.275 0.422 0.121 0.339 0.315 0.163 0.320 0.929 0.316 0.408 0.053 0.235 0.210 0.086
0.378 0.990 0.287 0.423 0.118 0.352 0.319 0.157 0.323 0.929 0.332 0.406 0.055 0.247 0.228 0.061
0.373 0.990 0.282 0.428 0.116 0.328 0.300 0.164 0.318 0.929 0.305 0.409 0.053 0.236 0.214 0.079
0.373 0.988 0.275 0.426 0.117 0.331 0.321 0.151 0.318 0.927 0.308 0.415 0.060 0.221 0.218 0.077

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.358 0.987 0.280 0.423 0.122 0.263 0.315 0.113 0.311 0.935 0.277 0.416 0.088 0.198 0.201 0.064
0.361 0.990 0.288 0.414 0.131 0.277 0.317 0.113 0.311 0.927 0.278 0.408 0.076 0.206 0.216 0.069
0.356 0.985 0.295 0.421 0.125 0.268 0.309 0.092 0.312 0.935 0.279 0.428 0.080 0.204 0.212 0.045
0.363 0.988 0.278 0.419 0.128 0.272 0.318 0.136 0.316 0.929 0.279 0.426 0.083 0.209 0.212 0.071
0.360 0.985 0.283 0.411 0.123 0.273 0.322 0.123 0.311 0.924 0.295 0.417 0.080 0.196 0.212 0.054

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.358 0.990 0.253 0.397 0.110 0.312 0.321 0.121 0.308 0.916 0.278 0.397 0.071 0.220 0.207 0.070
0.357 0.988 0.250 0.401 0.105 0.306 0.307 0.143 0.315 0.918 0.295 0.402 0.073 0.222 0.214 0.082
0.349 0.991 0.241 0.395 0.106 0.299 0.299 0.113 0.312 0.912 0.293 0.387 0.076 0.215 0.202 0.102
0.355 0.993 0.254 0.399 0.111 0.314 0.302 0.113 0.311 0.907 0.295 0.396 0.069 0.207 0.214 0.091
0.353 0.988 0.253 0.397 0.113 0.305 0.291 0.127 0.309 0.916 0.288 0.395 0.067 0.208 0.209 0.082

No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0
0.342 0.987 0.281 0.405 0.116 0.243 0.235 0.125 0.309 0.915 0.292 0.377 0.069 0.209 0.221 0.080
0.342 0.985 0.277 0.401 0.113 0.246 0.250 0.122 0.308 0.916 0.306 0.382 0.065 0.208 0.215 0.064
0.338 0.991 0.262 0.400 0.117 0.246 0.242 0.108 0.309 0.914 0.306 0.375 0.069 0.211 0.214 0.073
0.343 0.988 0.284 0.399 0.119 0.245 0.251 0.114 0.303 0.917 0.292 0.368 0.077 0.196 0.210 0.059
0.341 0.988 0.277 0.395 0.118 0.243 0.250 0.116 0.303 0.917 0.284 0.384 0.071 0.194 0.210 0.062

Table 8.20: Supervised V-Measure results for the raw mixed data sets and the re-
spective baseline Semantic Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.018 0.017 0.020 0.010 0.004 0.014 0.018 0.042 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.016 0.024 0.015 0.005 0.008 0.018 0.015 0.028 0.017 0.011 0.007 0.017 0.013 0.028 0.023 0.019

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.017 0.009 0.026 0.012 0.006 0.017 0.018 0.031 0.020 0.005 0.029 0.017 0.008 0.026 0.019 0.033
0.014 0.010 0.016 0.006 0.007 0.018 0.010 0.033 0.017 0.007 0.016 0.012 0.010 0.031 0.014 0.032
0.017 0.006 0.023 0.006 0.008 0.021 0.022 0.034 0.019 0.009 0.022 0.014 0.010 0.023 0.039 0.017
0.016 0.006 0.026 0.011 0.008 0.018 0.017 0.023 0.020 0.010 0.024 0.020 0.006 0.024 0.020 0.035
0.015 0.010 0.016 0.014 0.012 0.015 0.015 0.023 0.020 0.009 0.020 0.018 0.009 0.022 0.023 0.040

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.017 0.006 0.016 0.021 0.013 0.013 0.017 0.030 0.021 0.007 0.024 0.022 0.013 0.028 0.016 0.037
0.018 0.006 0.022 0.020 0.008 0.022 0.021 0.025 0.020 0.005 0.029 0.015 0.014 0.021 0.025 0.032
0.020 0.009 0.024 0.012 0.009 0.025 0.029 0.030 0.017 0.004 0.021 0.027 0.009 0.020 0.024 0.015
0.017 0.006 0.017 0.016 0.009 0.024 0.019 0.028 0.017 0.007 0.013 0.012 0.013 0.032 0.019 0.026
0.015 0.006 0.020 0.011 0.012 0.011 0.019 0.029 0.021 0.016 0.018 0.027 0.017 0.029 0.014 0.023

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.018 0.006 0.026 0.016 0.010 0.013 0.018 0.037 0.018 0.008 0.012 0.018 0.013 0.027 0.026 0.019
0.017 0.010 0.026 0.012 0.007 0.021 0.013 0.027 0.016 0.008 0.010 0.017 0.010 0.036 0.008 0.024
0.018 0.004 0.021 0.018 0.009 0.031 0.015 0.030 0.021 0.008 0.023 0.028 0.008 0.032 0.015 0.030
0.022 0.000 0.029 0.019 0.010 0.033 0.030 0.035 0.019 0.010 0.032 0.019 0.011 0.017 0.021 0.025
0.021 0.007 0.018 0.012 0.011 0.031 0.023 0.046 0.020 0.008 0.026 0.012 0.013 0.022 0.039 0.017

No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0
0.014 0.009 0.016 0.008 0.006 0.017 0.020 0.020 0.018 0.008 0.025 0.019 0.010 0.021 0.015 0.028
0.021 0.008 0.029 0.014 0.011 0.023 0.027 0.034 0.019 0.011 0.020 0.021 0.011 0.025 0.024 0.021
0.016 0.004 0.023 0.014 0.006 0.017 0.022 0.025 0.018 0.008 0.014 0.018 0.011 0.036 0.014 0.023
0.018 0.010 0.017 0.023 0.008 0.017 0.017 0.033 0.017 0.009 0.018 0.015 0.008 0.017 0.028 0.026
0.017 0.007 0.018 0.019 0.008 0.018 0.022 0.027 0.017 0.009 0.020 0.017 0.014 0.016 0.020 0.023

Table 8.21: Supervised V-Measure standard deviation results for the raw mixed data
sets and the respective baseline Semantic Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.374 0.857 0.309 0.410 0.108 0.359 0.324 0.248 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.379 0.861 0.321 0.414 0.104 0.362 0.310 0.278 0.320 0.917 0.380 0.399 0.056 0.192 0.222 0.075

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0 D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0

0.375 0.986 0.275 0.417 0.117 0.338 0.313 0.178 0.320 0.929 0.322 0.417 0.056 0.223 0.208 0.088
0.374 0.984 0.275 0.422 0.121 0.339 0.315 0.163 0.320 0.929 0.316 0.408 0.053 0.235 0.210 0.086

0.378 0.990 0.287 0.423 0.118 0.352 0.319 0.157 0.323 0.929 0.332 0.406 0.055 0.247 0.228 0.061
0.373 0.990 0.282 0.428 0.116 0.328 0.300 0.164 0.318 0.929 0.305 0.409 0.053 0.236 0.214 0.079
0.373 0.988 0.275 0.426 0.117 0.331 0.321 0.151 0.318 0.927 0.308 0.415 0.060 0.221 0.218 0.077

D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0 D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0
0.385 0.911 0.335 0.393 0.110 0.371 0.345 0.230 0.294 0.842 0.226 0.352 0.049 0.233 0.231 0.127
0.387 0.915 0.340 0.400 0.112 0.376 0.339 0.228 0.300 0.851 0.229 0.357 0.043 0.249 0.223 0.149

0.380 0.914 0.335 0.393 0.107 0.358 0.329 0.225 0.296 0.851 0.229 0.362 0.046 0.241 0.223 0.122
0.384 0.910 0.334 0.390 0.114 0.378 0.332 0.227 0.297 0.839 0.242 0.361 0.051 0.240 0.224 0.123
0.383 0.919 0.325 0.394 0.112 0.374 0.336 0.218 0.298 0.857 0.221 0.363 0.046 0.225 0.234 0.143

D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5 D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5
0.363 0.916 0.293 0.374 0.119 0.301 0.323 0.218 0.272 0.847 0.194 0.349 0.053 0.225 0.187 0.051
0.371 0.919 0.304 0.378 0.116 0.302 0.348 0.228 0.279 0.846 0.201 0.353 0.056 0.224 0.201 0.070
0.370 0.918 0.290 0.378 0.115 0.302 0.338 0.246 0.278 0.855 0.195 0.361 0.058 0.227 0.200 0.052
0.370 0.914 0.298 0.382 0.120 0.299 0.345 0.233 0.278 0.840 0.195 0.352 0.054 0.226 0.201 0.075

0.370 0.913 0.295 0.377 0.115 0.312 0.338 0.240 0.283 0.850 0.203 0.354 0.066 0.232 0.204 0.071
D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0 D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0

0.367 0.932 0.317 0.389 0.107 0.320 0.337 0.166 0.281 0.856 0.226 0.327 0.038 0.200 0.174 0.149
0.366 0.935 0.318 0.393 0.106 0.322 0.338 0.152 0.286 0.857 0.193 0.344 0.037 0.218 0.221 0.134
0.363 0.942 0.300 0.391 0.102 0.328 0.331 0.149 0.279 0.851 0.195 0.332 0.033 0.216 0.211 0.115
0.361 0.933 0.303 0.383 0.105 0.317 0.333 0.152 0.286 0.854 0.208 0.331 0.037 0.221 0.194 0.154

0.369 0.942 0.318 0.394 0.105 0.336 0.335 0.153 0.284 0.858 0.204 0.332 0.037 0.223 0.203 0.128
D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0 D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0

0.360 0.936 0.329 0.389 0.104 0.273 0.285 0.203 0.286 0.864 0.246 0.322 0.035 0.232 0.217 0.084
0.356 0.934 0.328 0.384 0.107 0.265 0.274 0.199 0.281 0.867 0.229 0.338 0.043 0.204 0.223 0.065
0.357 0.934 0.320 0.386 0.113 0.255 0.278 0.212 0.278 0.858 0.228 0.303 0.034 0.226 0.201 0.096
0.360 0.936 0.323 0.394 0.108 0.261 0.283 0.215 0.284 0.867 0.224 0.347 0.037 0.214 0.213 0.087
0.361 0.942 0.329 0.392 0.112 0.271 0.281 0.203 0.279 0.864 0.230 0.316 0.035 0.190 0.221 0.099

Table 8.22: Supervised V-Measure results for the raw mixed data transformed into
Semantic Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMO J48J48J48J48J48J48J48J48
Total AN CO CA CG HC HH HE Total AN CO CA CG HC HH HE

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.018 0.017 0.020 0.010 0.004 0.014 0.018 0.042 Not availableNot availableNot availableNot availableNot availableNot availableNot availableNot available
0.016 0.024 0.015 0.005 0.008 0.018 0.015 0.028 0.017 0.011 0.007 0.017 0.013 0.028 0.023 0.019

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0 D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0D=0.0  MDL=1.0

0.017 0.009 0.026 0.012 0.006 0.017 0.018 0.031 0.020 0.005 0.029 0.017 0.008 0.026 0.019 0.033
0.014 0.010 0.016 0.006 0.007 0.018 0.010 0.033 0.017 0.007 0.016 0.012 0.010 0.031 0.014 0.032
0.017 0.006 0.023 0.006 0.008 0.021 0.022 0.034 0.019 0.009 0.022 0.014 0.010 0.023 0.039 0.017

0.016 0.006 0.026 0.011 0.008 0.018 0.017 0.023 0.020 0.010 0.024 0.020 0.006 0.024 0.020 0.035
0.015 0.010 0.016 0.014 0.012 0.015 0.015 0.023 0.020 0.009 0.020 0.018 0.009 0.022 0.023 0.040

D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0D=0.7  MDL=1.0 D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0D=0.1  MDL=1.0
0.016 0.013 0.013 0.013 0.006 0.014 0.019 0.032 0.024 0.016 0.029 0.023 0.010 0.032 0.024 0.033

0.015 0.009 0.011 0.006 0.009 0.011 0.022 0.034 0.023 0.012 0.023 0.022 0.007 0.018 0.035 0.047
0.015 0.010 0.017 0.007 0.007 0.010 0.014 0.040 0.026 0.016 0.022 0.023 0.009 0.027 0.040 0.046
0.015 0.008 0.021 0.008 0.011 0.017 0.019 0.022 0.030 0.012 0.032 0.030 0.012 0.039 0.040 0.045
0.014 0.005 0.015 0.008 0.006 0.020 0.018 0.023 0.028 0.018 0.017 0.025 0.017 0.030 0.034 0.056

D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5D=0.7  MDL=1.5 D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5D=0.1  MDL=1.5
0.016 0.009 0.017 0.017 0.011 0.014 0.025 0.021 0.021 0.010 0.017 0.012 0.010 0.036 0.032 0.031
0.015 0.009 0.016 0.014 0.008 0.020 0.009 0.027 0.025 0.021 0.019 0.020 0.009 0.045 0.028 0.035
0.017 0.007 0.016 0.014 0.010 0.024 0.021 0.027 0.023 0.022 0.026 0.020 0.014 0.030 0.028 0.022

0.014 0.010 0.015 0.008 0.007 0.017 0.017 0.022 0.025 0.010 0.027 0.023 0.009 0.018 0.042 0.047
0.018 0.011 0.020 0.012 0.009 0.020 0.024 0.027 0.025 0.017 0.025 0.033 0.014 0.032 0.027 0.028

D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0D=0.7  MDL=2.0 D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0D=0.1  MDL=2.0
0.018 0.014 0.014 0.010 0.007 0.021 0.021 0.040 0.026 0.009 0.034 0.029 0.009 0.026 0.025 0.047
0.018 0.022 0.012 0.014 0.009 0.017 0.023 0.027 0.026 0.019 0.030 0.018 0.009 0.024 0.039 0.044
0.016 0.007 0.028 0.010 0.014 0.020 0.016 0.020 0.020 0.012 0.020 0.017 0.009 0.024 0.025 0.036
0.018 0.011 0.021 0.018 0.008 0.015 0.021 0.031 0.023 0.019 0.015 0.029 0.008 0.018 0.039 0.033

0.022 0.011 0.022 0.014 0.010 0.033 0.018 0.043 0.023 0.018 0.018 0.023 0.008 0.024 0.026 0.042
D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0D=0.7  MDL=3.0 D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0D=0.1  MDL=3.0

0.019 0.013 0.020 0.007 0.010 0.016 0.024 0.040 0.025 0.015 0.019 0.019 0.013 0.035 0.031 0.046
0.017 0.014 0.021 0.011 0.011 0.025 0.007 0.033 0.023 0.019 0.039 0.024 0.011 0.025 0.020 0.022

0.020 0.017 0.020 0.019 0.009 0.025 0.013 0.037 0.026 0.019 0.042 0.027 0.014 0.022 0.035 0.024
0.014 0.012 0.012 0.014 0.006 0.019 0.016 0.018 0.023 0.015 0.023 0.024 0.010 0.029 0.020 0.039
0.014 0.010 0.016 0.011 0.009 0.016 0.012 0.027 0.026 0.013 0.030 0.018 0.011 0.032 0.034 0.043

Table 8.23: Supervised V-Measure standard deviation results for the raw mixed data
transformed into Semantic Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMOSMO
Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.012 0.007 0.005 0.018 0.015 0.019 0.012 0.001 0.029 0.008 0.007
0.012 0.011 0.007 0.013 0.014 0.013 0.018 0.002 0.021 0.007 0.009

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.013 0.013 0.010 0.013 0.018 0.023 0.000 0.003 0.038 0.009 0.005

0.015 0.021 0.011 0.011 0.024 0.025 0.000 0.002 0.040 0.008 0.007

0.014 0.010 0.011 0.012 0.017 0.028 0.000 0.004 0.040 0.007 0.010

0.015 0.016 0.011 0.017 0.021 0.036 0.000 0.004 0.030 0.009 0.004
0.013 0.016 0.010 0.009 0.018 0.025 0.000 0.003 0.030 0.006 0.009

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.018 0.021 0.009 0.016 0.031 0.023 0.014 0.003 0.041 0.015 0.009

0.015 0.023 0.013 0.012 0.026 0.021 0.009 0.003 0.027 0.013 0.005
0.016 0.019 0.009 0.015 0.036 0.026 0.009 0.003 0.029 0.011 0.006

0.016 0.021 0.009 0.013 0.020 0.027 0.012 0.005 0.030 0.010 0.014

0.017 0.022 0.005 0.016 0.034 0.037 0.012 0.004 0.023 0.009 0.006

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.016 0.014 0.011 0.017 0.022 0.030 0.004 0.005 0.040 0.011 0.006
0.017 0.018 0.013 0.018 0.027 0.023 0.008 0.004 0.038 0.014 0.009

0.015 0.015 0.013 0.017 0.014 0.022 0.011 0.005 0.034 0.013 0.006
0.017 0.014 0.008 0.019 0.027 0.023 0.013 0.006 0.033 0.015 0.007

0.016 0.017 0.011 0.023 0.021 0.019 0.008 0.004 0.033 0.014 0.006
No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0

0.016 0.014 0.010 0.013 0.031 0.022 0.022 0.004 0.016 0.016 0.009

0.011 0.018 0.014 0.009 0.013 0.015 0.008 0.003 0.019 0.011 0.004
0.017 0.022 0.009 0.020 0.029 0.029 0.014 0.005 0.021 0.008 0.009

0.016 0.016 0.011 0.022 0.023 0.025 0.014 0.004 0.020 0.012 0.008

0.016 0.012 0.006 0.011 0.017 0.019 0.032 0.005 0.030 0.014 0.010

SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMOSMO
Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

σ 0.0
σ 0.2
σ 0.4
σ 0.6
σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.521 0.781 0.178 0.296 0.355 0.484 0.872 0.879 0.225 0.514 0.625
0.521 0.777 0.177 0.295 0.358 0.477 0.870 0.880 0.230 0.514 0.628

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0No Spreading/1.0

0.538 0.731 0.141 0.424 0.372 0.489 0.871 0.896 0.280 0.513 0.666

0.541 0.734 0.135 0.432 0.378 0.483 0.871 0.898 0.301 0.503 0.670

0.540 0.729 0.145 0.432 0.369 0.475 0.871 0.897 0.299 0.513 0.669

0.538 0.738 0.138 0.427 0.371 0.471 0.871 0.897 0.282 0.510 0.671
0.540 0.728 0.137 0.431 0.382 0.486 0.871 0.896 0.286 0.512 0.669

No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5No Spreading/1.5
0.544 0.730 0.133 0.475 0.346 0.488 0.838 0.901 0.243 0.507 0.783

0.544 0.734 0.138 0.461 0.349 0.507 0.843 0.902 0.217 0.506 0.785
0.545 0.738 0.134 0.477 0.349 0.478 0.839 0.903 0.248 0.502 0.783

0.544 0.737 0.135 0.472 0.328 0.495 0.833 0.903 0.252 0.506 0.783

0.544 0.730 0.143 0.470 0.337 0.508 0.833 0.903 0.233 0.502 0.784

No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0No Spreading/2.0
0.554 0.736 0.139 0.473 0.262 0.537 0.884 0.900 0.299 0.501 0.813

0.558 0.738 0.138 0.484 0.272 0.552 0.882 0.904 0.296 0.504 0.813

0.558 0.739 0.139 0.487 0.274 0.534 0.879 0.906 0.303 0.500 0.815

0.557 0.727 0.148 0.483 0.276 0.530 0.881 0.902 0.295 0.510 0.814

0.554 0.732 0.144 0.481 0.266 0.520 0.882 0.902 0.291 0.507 0.816
No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0No Spreading/3.0

0.540 0.733 0.134 0.466 0.280 0.528 0.864 0.907 0.171 0.527 0.787

0.542 0.731 0.130 0.475 0.281 0.532 0.887 0.905 0.157 0.522 0.795
0.545 0.728 0.132 0.475 0.289 0.529 0.879 0.909 0.191 0.532 0.788

0.539 0.729 0.128 0.470 0.289 0.535 0.827 0.908 0.175 0.538 0.789

0.537 0.735 0.128 0.475 0.271 0.533 0.801 0.906 0.184 0.548 0.791

Table 8.24: Supervised V-Measure results (left) and standard deviation results (right)
for the raw numerical data sets and the respective baseline Semantic
Patterns.
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SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMOSMO
Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.012 0.007 0.005 0.018 0.015 0.019 0.012 0.001 0.029 0.008 0.007
0.012 0.011 0.007 0.013 0.014 0.013 0.018 0.002 0.021 0.007 0.009

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0

0.016 0.014 0.011 0.017 0.022 0.030 0.004 0.005 0.040 0.011 0.006

0.017 0.018 0.013 0.018 0.027 0.023 0.008 0.004 0.038 0.014 0.009

0.015 0.015 0.013 0.017 0.014 0.022 0.011 0.005 0.034 0.013 0.006

0.017 0.014 0.008 0.019 0.027 0.023 0.013 0.006 0.033 0.015 0.007

0.016 0.017 0.011 0.023 0.021 0.019 0.008 0.004 0.033 0.014 0.006

D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0
0.012 0.016 0.008 0.007 0.020 0.018 0.000 0.003 0.027 0.011 0.014

0.015 0.019 0.009 0.023 0.019 0.023 0.000 0.002 0.036 0.009 0.008

0.011 0.014 0.005 0.012 0.014 0.021 0.000 0.004 0.025 0.011 0.005

0.011 0.011 0.012 0.006 0.018 0.021 0.000 0.002 0.018 0.010 0.012

0.012 0.014 0.012 0.013 0.015 0.024 0.000 0.003 0.023 0.010 0.005

D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5
0.014 0.017 0.006 0.022 0.019 0.024 0.011 0.002 0.025 0.007 0.008

0.014 0.015 0.006 0.018 0.019 0.026 0.011 0.003 0.023 0.011 0.008

0.013 0.012 0.006 0.012 0.024 0.022 0.015 0.004 0.017 0.011 0.009

0.013 0.017 0.008 0.010 0.024 0.008 0.015 0.003 0.021 0.012 0.008

0.016 0.013 0.011 0.020 0.031 0.019 0.018 0.004 0.023 0.010 0.009

D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0
0.014 0.012 0.009 0.019 0.019 0.028 0.000 0.004 0.033 0.010 0.009

0.012 0.014 0.007 0.011 0.025 0.016 0.000 0.003 0.032 0.010 0.006

0.013 0.015 0.012 0.017 0.019 0.023 0.000 0.004 0.026 0.003 0.006

0.015 0.019 0.012 0.019 0.018 0.021 0.000 0.004 0.034 0.013 0.006

0.013 0.009 0.009 0.012 0.023 0.026 0.000 0.005 0.027 0.012 0.006

D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0
0.014 0.013 0.010 0.012 0.024 0.026 0.006 0.005 0.025 0.007 0.007

0.014 0.015 0.006 0.013 0.022 0.023 0.012 0.004 0.031 0.005 0.009

0.014 0.018 0.011 0.024 0.023 0.026 0.000 0.004 0.018 0.009 0.011

0.013 0.010 0.006 0.016 0.023 0.017 0.007 0.003 0.030 0.010 0.009

0.015 0.014 0.015 0.022 0.023 0.018 0.010 0.003 0.015 0.017 0.009

SMO
Par

SMOSMOSMOSMOSMOSMOSMOSMOSMOSMOSMO
Total BW DI GL HS IO IR SE SO VE VO

N
NN

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

σ 0.0

σ 0.2

σ 0.4

σ 0.6

σ 0.8

Raw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw DataRaw Data
0.521 0.781 0.178 0.296 0.355 0.484 0.872 0.879 0.225 0.514 0.625
0.521 0.777 0.177 0.295 0.358 0.477 0.870 0.880 0.230 0.514 0.628

Semantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic PatternsSemantic Patterns
D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0D=0.0  MDL=2.0

0.554 0.736 0.139 0.473 0.262 0.537 0.884 0.900 0.299 0.501 0.813

0.558 0.738 0.138 0.484 0.272 0.552 0.882 0.904 0.296 0.504 0.813

0.558 0.739 0.139 0.487 0.274 0.534 0.879 0.906 0.303 0.500 0.815

0.557 0.727 0.148 0.483 0.276 0.530 0.881 0.902 0.295 0.510 0.814

0.554 0.732 0.144 0.481 0.266 0.520 0.882 0.902 0.291 0.507 0.816

D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0D=0.5  MDL=1.0
0.537 0.764 0.144 0.412 0.383 0.606 0.871 0.900 0.229 0.448 0.609

0.536 0.765 0.142 0.422 0.386 0.589 0.871 0.900 0.221 0.454 0.612

0.535 0.763 0.135 0.411 0.389 0.603 0.871 0.898 0.219 0.454 0.606

0.537 0.766 0.139 0.413 0.400 0.604 0.871 0.899 0.219 0.450 0.609

0.538 0.769 0.139 0.416 0.390 0.606 0.871 0.901 0.227 0.458 0.604

D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5D=0.5  MDL=1.5
0.552 0.767 0.149 0.496 0.373 0.516 0.867 0.900 0.213 0.489 0.753

0.552 0.772 0.151 0.498 0.374 0.497 0.867 0.900 0.228 0.481 0.757

0.549 0.759 0.144 0.502 0.370 0.500 0.863 0.901 0.215 0.479 0.754

0.551 0.758 0.142 0.503 0.372 0.493 0.863 0.901 0.239 0.483 0.758

0.552 0.762 0.140 0.508 0.373 0.509 0.859 0.898 0.226 0.488 0.753

D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0D=0.5  MDL=2.0
0.564 0.754 0.134 0.499 0.326 0.544 0.901 0.897 0.307 0.479 0.794

0.564 0.757 0.140 0.503 0.330 0.550 0.901 0.897 0.297 0.477 0.791

0.568 0.757 0.146 0.504 0.327 0.554 0.901 0.898 0.318 0.487 0.792

0.568 0.757 0.144 0.503 0.319 0.554 0.901 0.895 0.318 0.495 0.795

0.563 0.755 0.141 0.498 0.318 0.557 0.901 0.898 0.283 0.491 0.789

D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0D=0.5  MDL=3.0
0.536 0.762 0.137 0.469 0.297 0.529 0.883 0.907 0.146 0.441 0.786

0.539 0.762 0.137 0.483 0.314 0.533 0.861 0.906 0.162 0.451 0.787

0.534 0.763 0.130 0.471 0.285 0.527 0.856 0.906 0.162 0.451 0.786

0.535 0.760 0.136 0.467 0.290 0.533 0.856 0.907 0.151 0.459 0.791

0.539 0.759 0.141 0.475 0.305 0.553 0.860 0.904 0.149 0.460 0.784

Table 8.25: Supervised V-Measure results (left) and standard deviation results (right)
for the raw numerical data transformed into Semantic Patterns.
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Related Work

The Semantic Pattern Transformation relies on many well-known methods from
the areas of machine learning, semantic or associative networks, discretization
and spreading activation. These techniques have already been discussed in Chap-
ter 5 – Techniques. However, they are not considered as related work, but merely
as tools or elements that are required to implement the Semantic Pattern Trans-
formation.

In terms of related work, the focus is not so much placed on the required
building blocks, but on work that identifies similar problems as discussed in
Chapter 4 – Towards a Semantic Representation, or work that is based on similar
core ideas. The concepts and methods discussed in this chapter within the
context of related work include:

• Machine Learning: The Semantic Pattern Transformation aims to solve
many problems that are discussed in the literature whenever machine learn-
ing algorithms are employed. The first section of this chapter discusses
other work that describes these problems and provides solutions based on
various techniques.

• Latent Semantic Indexing (LSI): Similar to the Semantic Pattern
Transformation, LSI transforms textual data into a semantic represen-
tation that can then be analyzed by clustering or semantic-aware search
algorithms. This section discusses the main differences between the models
employed by LSI and the Semantic Pattern Transformation.

• Measuring node similarities: Within the context of associative net-
works, the calculation of the similarities between different network nodes
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plays an important role. Similar to the extraction of the Semantic Pat-
terns from the trained associative network, the application of spreading
activation plays a vital role within these calculations.

• Calculating the similarity between words: Finally, the two most
important references to related concepts describe the similarity calculation
of different English terms by employing associative networks and spreading
activation. This work was the initial spark for the idea behind the Semantic
Pattern Transformation and its application to arbitrary data.

9.1 Machine Learning

The problems related to the value-centric feature vector representation and the
required preprocessing operations, which were discussed in the Chapters 4 and
3, are well-known in the literature and typically mentioned whenever machine
learning algorithms are applied to an arbitrary problem. A good summary on
this topic is given by Kotsiantis et al. [42].

In order to solve these problems, various approaches have been developed
that include the application of various preprocessing steps, the development of
specific distance-measures capable of handling different data-types, or the trans-
formation of data into another representation that avoids the problems associ-
ated with the value-centric feature vector representation. The last approach is
the main rationale behind the Semantic Pattern Transformation.

The calculation of the similarity between two feature-vectors plays an im-
portant role within machine learning algorithms. The usability of such distance-
measures depends on the data types contained in the analyzed data set and is
discussed in the literature [27]. By taking information theory into account, more
sophisticated distance measures based on compression algorithms can be devised
[89], [72].

The problem of combining arbitrary data types is also highlighted when look-
ing at machine learning algorithms focused on unsupervised learning. There is
a wide range or specific algorithms for symbolic or distance-based data avail-
able. Examples for algorithms based on distance-based data are algorithms
such as Self-Organizing Maps (SOM) [39], Hierarchical Agglomerative Cluster-
ing (HAC), Expectation Maximization (EM), Neural Gas based algorithms [57],
[29], [65] or K-Means. In order to cope with symbolic data, existing algorithms
have been modified or newly developed: e.g., ROCK [33], COOLCAT [4], or
Kernel K-Means [14]. Such techniques typically analyze the co-occurrences of
feature values and use this information for unsupervised clustering. A good
summary on the different algorithms can be found in [14], where Cuoto et al.
introduce the Kernel K-Means algorithm for symbolic data.

In summary, the availability of a wide range of different machine learning
algorithms, similarity measures and the in-depth discussion of various prepro-
cessing steps highlight the problems of the value-centric feature vector represen-
tation, which the Semantic Pattern Transformation aims to solve.
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9.2 Latent Semantic Indexing (LSI)

In contrast to the adaptation or creation of distance-measures or new machine
learning algorithms, the proposed Semantic Pattern Transformation technique
focuses on the transformation of the data, before applying standard distance
measures and algorithms. Thereby, the transformation process is based on the
semantic analysis of the relations between feature values within instances.

This idea is also used by Latent Semantic Indexing (LSI) [36], which is widely
employed for text related machine learning tasks and is based on the analysis
of the semantic relations between terms and documents. Although, the idea
behind LSI could be extended and applied to arbitrary data, there are only a
few examples in the literature where LSI has been used in other information
retrieval domains (e.g., for intrusion detection in a paper by Lassez et al. [51]).

Relation to the Semantic Pattern Transformation

LSI employs the mathematical concept of Singular Value Decomposition (SVD)
(e.g., [53]) to transform the term-document matrix into a semantic-aware concept
space. The dimensionality of this concept space is then reduced by extracting
the most important components, which are identified by looking at the largest
singular values. In the new representation, the terms contained within the doc-
uments are represented as concept space vectors which can be directly used for
semantic-aware search algorithms or clustering.

In contrast, the Semantic Pattern Transformation first creates the nodes of
an associative network that represent the feature values (e.g., terms) of a given
data set. The nodes are then linked according to the co-occurrence within the
data set instances (e.g., documents). Thereby, symbolic feature values are di-
rectly mapped to network nodes, whereas for distance-based feature values a
discretization operation is required that maps multiple values to single nodes.
Information about feature values (e.g., terms) or instances (e.g., documents)
can be extracted by applying spreading activation and extracting the activation
values for each node. This information is arranged in a vector – the Seman-
tic Pattern. Thus, the elements of a Semantic Pattern represent the network
activation values for all symbolic and mapped distance-based feature values.

LSI and the Semantic Pattern Transformation have both the advantage that
not only the feature values, but also their semantic context is taken into consid-
eration. This significantly improves the quality of search and cluster algorithms.

On an abstract level the most significant difference between LSI and the
Semantic Pattern Transformation is in the employed model. The interpretation
of the concept space of LSI is not intuitive and cannot be directly used for
extracting the typical characteristics of the analyzed semantic relations between
terms and documents. In contrast, the interpretation of a Semantic Pattern is
trivial: High activation values of network nodes (representing feature values)
indicate their high significance within the pattern. Thereby, by sorting the
feature values according to their activation values, a quick impression of the
pattern can be gained. Furthermore, the intuitive nature of the pattern allows
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the simple adaptation for other analysis processes or the extraction of data
for further processing. Examples are the incorporation of timestamps and the
subsequent extraction of semantic time series of the generated patterns. For
an in-depth discussion on the processing and interpretation of the Semantic
Patterns the reader is referred to Chapter 7 – Semantic Pattern Analysis.

Complexity

While the simple model employed by the Semantic Patterns enables a significant
improvement in terms of flexibility and interpretation, when compared to the LSI
concept space, the LSI model has an advantage in terms of complexity. The SVD
method employed by LSI offers an intrinsic way of reducing the dimensionality of
the semantic concept space by taking the most significant singular values. This
dimensionality reduction is highly beneficial for the application of sophisticated
procedures like unsupervised clustering.

The dimensionality of the vectors employed by the two different methods is
based on the feature values present within the analyzed data. In terms of di-
mensionality, this corresponds to the bag-of-world model which uses one vector
element for each term (or feature value) within the analyzed documents. How-
ever, in contrast to LSI, the reduction of these typically high-dimensional vectors
is not an intrinsic property of the Semantic Pattern Transformation model, and
needs to be added by external methods such as the Principal Component Analy-
sis, or other methods that are based on the analysis of the underlying associative
networks. However, these procedures have not been applied within the scope of
this thesis and will be one of the key areas of future research.

Applications

In current literature, the application of LSI has mostly been limited to the area
of text analysis. In contrast, the Semantic Pattern Transformation was designed
for the application to arbitrary data sets comprised of symbolic and distance-
based features. However, there is no theoretical barrier which limits LSI to the
application within the text analysis domain. On the contrary, the feature value
mapping operations required for the Semantic Pattern Transformation could
also be utilized to adapt the raw feature vectors, in order to apply LSI for the
analysis of arbitrary data sets. In fact, this will be another key area targeted by
further research. However, the interpretability of the LSI concept space would
still remain a problem and could even become worse due to the combination of
arbitrary features.

9.3 Semantic Similarity Between Words

Regarding the application of spreading activation to associative networks and the
subsequent extraction of the Semantic Patterns, there are two essential papers by
Kozima et al. that provided the initial idea for the development of the Semantic
Pattern Transformation: [43], [44]. In the first paper the authors calculate the
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semantic similarity of terms by using the Longman Dictionary of Contemporary
English (LDOCE) as knowledge base for extracting semantic relations of English
terms. The terms and their relations are represented as nodes and links with a
semantic network. In order to calculate the similarity of two terms, the corre-
sponding nodes are activated and the activation is spread to neighboring nodes
(terms) via spreading activation techniques. The activation values of other nodes
(terms) depend on the strength of the semantic relations between the terms and
can be represented in a vector. By calculating the distance between the vectors
of two terms, their semantic similarity can be determined. This method is then
further refined in their second paper about this topic.

The methods presented in these papers, which were published in 1993 and
1995, are based on similar principles as used within the Semantic Pattern Trans-
formation, but their application was limited to textual analysis. The Semantic
Pattern Transformation significantly extends the initial idea in many ways by
adding the capability to analyze data of arbitrary nature, extending the method
in order to cover single, multiple feature values, or complete instances, describing
multiple operations for the analysis of the generated patterns, and by including
advanced spreading activation techniques in order to gain better results. Due
to these extensions the Semantic Pattern Transformation can be deployed in
a wide range of knowledge discovery tasks, which is not possible for the initial
application to term similarity presented by the two referenced papers.

9.4 Measuring Nodes Similarities

In order to extract knowledge from large information databases, which often
can be organized as networks consisting of nodes and links, analysis methods
that explore and query the network structure are needed. Thereby, the network
nodes carry some kind of information, whereas the links model the associations
or relations between the nodes. Thereby, the emerging and incoming links of
the different nodes allow to extract information about the relations between the
various concepts represented by the network, and to discover hitherto unknown
relations. This knowledge extraction is highlighted by Example 20, which models
the relations between words used within different news articles.
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Example XX: Is there a similarity between “Tahrir” and
“protest”?

When analyzing Tweets related to the early 2011 Egyptian revolu-
tion (Demo Data Set 2 ), the extracted terms and their co-occurrences
are represented as nodes and links within a network. By looking at the
neighborhoods of the two nodes protest and Tahrir, one can observe that
these terms are connected to similar other terms such as demonstration,
place, Egypt, or Mubarak. This is due to the fact that a large part of the
demonstrations of the Egyptian revolution occurred on the Tahrir Place
in Cairo. Therefore, the terms protest and Tahrir are used in a similar
context and thus have semantic relations to common terms.

The calculation of such node similarities is discussed in [85], where Thiel et.
al investigate the utilization of spreading activation in order to measure the sim-
ilarity of different nodes within a network. They propose two different similarity
measures: The first one is based on the direct and indirect neighbors of nodes,
whereas the second one also includes distanced neighborhoods for calculating
the similarity.

Definitions

In order to describe the two similarity measures the following definitions (ac-
cording to [85]) are required: Given a semantic network, which contains a set
U of network nodes, an activated node u, and the application of the spread-
ing activation algorithm, then the activation of an arbitrary network node v for
iteration k can be calculated via the following equation:

av(k) =
∑

u∈N(v)

w(u, v) · ak−1u

Thereby, w(u, v) represents the weighted link between node u and v. The
activation values of all nodes v within the network represent the activation vector
(pattern) of the network. By arranging the weighted links in a squared matrix
W that has a dimension equal to |U |, the calculation of an activation vector can
be defined as:

a(k) = αWak−1

The initial activation of arbitrary nodes in iteration k = 0 is represented by
a(0) and is the input for the spreading iteration process, which is then applied for
various iterations (similar to the processes described in Section 7.3 of Chapter
7 – Semantic Pattern Analysis). By summing up the activation vectors of all
iterations one Activation Pattern is generated that can be compared to patterns
generated by other nodes.
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a =

kmax∑
k=0

αk · a(k)(v)

The changes between the different spreading activation iterations are repre-
sented by the velocity vector (for k > 1).

δ(k)(v) = a(k)(v)− a(k−1)(v)

For k = 0 the velocity vector is a null vector. Therefore, the velocity vectors
indicate the change of activations during each iteration. The amount of this
change can be expressed by applying a norm such as the L2 norm to the velocity
vector. According to [6], in each iteration the activation vectors change into the
direction of the principal eigenvector of the weight matrix and become equal
regardless of the initial activation after a sufficient number of iterations. This
means that the amount of change of the velocity vectors will converge to zero
after enough iterations.

Activation Similarity

The first node similarity measure introduced by Thiel et. al is based on the
similarity of the activation vectors that are caused by the activation of different
nodes and the subsequent application of spreading activation.

Given two nodes u and v, their similarity can be calculated by separately
activating node u and v in the network, applying spreading activation for kmax
iterations and extracting the activation vectors a(v) and a(u) from the activated
network and then calculating the similarity between a(v) and a(k). Thiel et al.
employ the Cosine similarity for this calculation.

Signature Similarity

The second kind of similarity measure is based on the velocity vectors and the
amount of change calculated by the L2 norm. Due to convergence to the prin-
cipal eigenvector of the weight matrix, the amount of change decreases from
iteration to iteration. The speed of this process allows to draw conclusions on
the position of the activated node and the structure it is embedded. Therefore,
Thiel et al. introduce the concept of signature vectors. A signature vector for
an activated node v contains the L2 norms for all velocity vectors calculated for
each iteration k and thereby gives an indication on the convergence speed of the
applied spreading activation process.

τk(v) = ||δ(k)(v)||2
For calculating the similarity between two signature vectors the cosine simi-

larity is employed. According to Thiel et al. the signature vectors reveal struc-
tural similarities that cannot be detected via the Activation Similarity. However,
the concept cannot be used with the Semantic Pattern Transformation, because
it requires multiple spreading activation iterations.
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Relation to the Semantic Pattern Transformation

The similarity between Semantic Patterns can be calculated by applying the
Cosine similarity. This is the same distance measure as employed by Thiel et
al. for calculating the similarity of the network nodes’ activation and signature
vectors.

In respect to the first similarity measure (Activation Similarity), the defini-
tions of the Semantic Patterns and the employed activation vectors are practi-
cally the same1. However, the concept of transforming multiple feature values
(e.g instances) into activation vectors and calculating their similarity is not used
within the scope of their analysis. Furthermore, for the generation and compar-
ison of Semantic Patterns only one spreading activation iteration is employed,
whereas Thiel et. al make use of multiple iterations. Multiple iterations have
not been utilized for the generation of Semantic Patterns due to several reasons:
First, since the application of spreading activation is a core technique within
the Semantic Pattern Transformation, the additional computational complexity
induced by multiple iterations should be avoided. Second, and even more im-
portant, due to the high number of interconnections within the networks trained
by the Semantic Pattern Transformation process, the application of a second
iteration typically causes the flooding of the network, which decreases the sig-
nificance of the semantic information gained during the first iteration.

The second similarity measure discussed by Thiel et al. is based on their
concept of node signatures. This concept or a related one is not employed for
the Semantic Pattern Transformation. Although this method reveals additional
information about the network, which cannot be extracted via the Activation
Similarity, it requires multiple iterations of the spreading activation process and
thus cannot be used within the Semantic Pattern Transformation.

9.5 Conclusions

In summary, basic similarities to the ideas and the combination of techniques
behind the Semantic Pattern Transformation can be found in several references
throughout the literature. However, to the best of my knowledge, none of these
approaches has been applied as a general transformation process for arbitrary
data. Neither does any of these works discuss the integration of a semantic-aware
representation within a generic knowledge discovery process, nor the advantages
for the interpretation of the results, which are gained when employing a semantic-
aware model as represented by the Semantic Patterns.

1Indeed, the term Activation Patterns, which is employed by Thiel et al. was also used
during the early development of the Semantic Pattern Transformation, because each pattern
represents the activation state of the underlying activated associative network. This was later
changed to Semantic Patterns, which more accurately describes the employed model.
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Semantic Patterns - Applications

The development of the Semantic Pattern Transformation was motivated by the
problems associated with the application of knowledge discovery processes based
on machine learning in heterogeneous domains. The employed techniques and
the choice of their parameters evolved due to the results gained by the empirical
evaluations of different applications. Thereby, the initial deployments within
text-analysis focused on the basic structure of the transformation process, and
the lessons learned have then been used to define more sophisticated analysis
processes. This chapter describes the works which were published in the context
of the Semantic Pattern Transformation, and highlights its evolution process
over the last years.

10.1 Analysis Processes

In order to describe the evolution of the Semantic Pattern Transformation the
following analysis properties, which are also depicted in Figure 10.1 are used for
the explanations of the various projects:

• Distance-based and symbolic features: This property refers to the
nature of the data, which could contain numerical and/or symbolic fea-
tures. The handling of distance-based features requires the application of
discretization procedures that map the feature values to network nodes.
This capability was not available in the initial versions of the Semantic
Pattern Transformation.

• Unsupervised learning: Unsupervised clustering was one of the earliest
tasks for which the Semantic Pattern Transformation was applied. The

209



210 Chapter 10. Semantic Patterns - Applications

first applications included the unsupervised clustering of text-related data
consisting of categorical features only. By adding the capability to handle
distance-based features, many more application scenarios for unsupervised
clustering became available.

• Supervised learning: Supervised learning was not applied within the
works discussed in this chapter, but played an important role within the
performance evaluation conducted in this thesis.

• Anomaly detection: The Semantic Patterns represent the response of
an associative network to arbitrary input-stimuli. Thereby, the amount of
the activation energy that is distributed to the neighboring nodes reveals
information on whether a given input-stimulus (e.g., an instance describing
a country) is considered as an anomaly with respect to the other input-
stimuli (e.g., an European country within a subset of Asian countries).
The anomaly detection capability was integrated into the later versions of
the Semantic Pattern Transformation.

• Semantic search: Due to the semantic nature of the Semantic Patterns,
the deployment of a semantic-aware search algorithm is one of the most
obvious applications. Since, such an algorithm also relies on the distance-
measures used by unsupervised learning algorithms, the capability to ex-
ecute semantic-aware search queries was already included in the initial
versions of the Semantic Pattern Transformation.

• Semantic relations: Similar to semantic search, the extraction and anal-
ysis of semantic relations are also intrinsic capabilities of the Semantic
Patterns concept, which were already included in the initial deployments.
The same concept can always be applied regardless of the analyzed fea-
tures, and plays an important role for understanding the semantic relations
within arbitrary data, especially when no a priori knowledge is available.

• Feature value relevance: The weighted links, which connect the differ-
ent nodes of the associative network enable the extraction of additional
information regarding the feature values which were used during the net-
work training. One interesting aspect is the feature value relevance, that
can be deduced by measuring the strength of the incoming or outgoing
node connections. Similar information also plays an important role for ap-
plying advanced spreading activation techniques that employ fanout fac-
tors. These advanced strategies were deployed in the later versions of the
Semantic Pattern Transformation.

• Time-based analysis: The inclusion of time-based information shows the
high flexibility of the Semantic Pattern Transformation and was employed
in later stages for the advanced analysis of data extracted from Twitter.

• Visualization: The interpretation and visualization of the information
contained in the Semantic Patterns plays an important part for each
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knowledge discovery process. The common model of the Semantic Pat-
terns, which remains the same regardless of the analyzed data, is highly
beneficial for such processes. In the later applications browser-based visu-
alization and interpretation tools haven been implemented and utilized for
the analysis processes.

Unsupervised
clustering

Supervised
learning

Semantic search Semantic relations

Anomaly detection

Feature relevance

Time-based 
analysis Visualization

Distance-based 
and

symbolic features

Figure 10.1: Analysis processes and properties of the various applications of the Se-
mantic Pattern Transformation.

10.2 Published Works

The Semantic Pattern Transformation has been applied in heterogeneous areas
and the results have been published in different papers. This section describes
the contributions of the different authors, and discusses the different works in
the context of the analysis processes discussed in the previous section.

10.2.1 Collaboration

This section focuses on the key authors that were involved in the later described
publications.

• Myself : The Semantic Pattern Transformation, its improvements, and
the involved analysis procedures were solely devised and implemented by
myself – the author of this thesis.

• Udo Payer: Udo Payer was constantly involved in the discussions regard-
ing the security related applications of the Semantic Pattern Transforma-
tion, and provided vital support and input in the network security related
areas, such as event correlation, intrusion detection and shellcode analysis.

• Günther Lackner: Guenther Lackner and I collaborated on many WiFi
security related issues before the development of the Semantic Pattern
Transformation. In fact, the topic of his PhD thesis [49] focuses on pri-
vacy related issues within WiFi networks, and we found the opportunity
apply the Semantic Pattern Transformation within the context of his work.
Thereby, his focus was placed on the WiFi related issues, while I dealt with
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the knowledge discovery related analysis processes. Günther also collabo-
rated on other publications where he provided important feedback on the
quality of the results and the utilized methods.

• Reinhard Fellner: Reinhard Fellner applied the early version of the Se-
mantic Pattern Transformation within his master’s thesis [26]. Thereby,
among other applications, he analyzed data related to event correlation
within intrusion detection, and provided crucial feedback for the improve-
ment of the Semantic Pattern Transformation. The results were also pub-
lished in a paper [83], which is described later.

10.2.2 Works in Direct Relation to the Semantic Pattern
Transformation

The following publications represent the evolution of the Semantic Pattern Trans-
formation. The empirically gained results were used to improve the employed
techniques and parameters, and to devise new analysis processes.

Automated Analysis of e-Participation Data by Utilizing Associative
Networks, Spreading Activation and Unsupervised Learning [84]

This paper describes the first application of the Semantic Pattern Transforma-
tion to text-related data extracted from the Austrian e-Participation project
Mitmachen.at [84]. The e-Participation process allows citizens to express their
opinions or participate in decision processes by electronic means. In many cases,
this process involves the creation of text by the participants that reflects their
opinions, raises new topics for discussions, or argues for a topic based on various
reasons. These documents can then be analyzed by domain experts who extract
information or knowledge, which is beneficial for the whole decision process.
Unfortunately, this is a time-consuming process that requires the manual inter-
action of domain experts. Thus, automated analysis methods based on machine
learning and clustering play an important role within such processes.

Unsupervised
clustering

Supervised
learning

Semantic search Semantic relations

Anomaly detection

Feature relevance

Time-based analysis Visualization Distance-based and
symbolic features

Figure 10.2: Analysis processes and properties within the context of e-Participation
related text analysis.

In order to test the first version of the Semantic Pattern Transformation, we
transformed the available text data into Semantic Patterns – called Activation
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Patterns at this time – and applied various analysis procedures. Together with
the environment, this corresponds to the following properties (depicted in Figure
10.2) that were defined in Section 10.1:

• Symbolic features: The analyzed data was based on features extracted
from documents in German. These features were German words and thus
of symbolic or categorical nature. At this time the Semantic Pattern Trans-
formation was not capable of analyzing distance-based features due to the
lack of the required discretization operations.

• Unsupervised clustering: The transformed patterns were then subject
to the application of unsupervised clustering algorithms from the Neural
Gas family (Section 5.7.3 of Chapter 5 – Techniques). Here, the first
empirical analysis of the gained results was executed and the influence of
various parameters has been determined. The lessons learned were then
used to fine-tune the Semantic Pattern Transformation.

• Semantic relations: One of the major benefits of the Semantic Pat-
tern Transformation is the simple interpretation of the Semantic Patterns.
Due to the well-known features (German terms) the analysis of the e-
Participation related documents provided us with a perfect opportunity to
test how well knowledge could be extracted from the generated patterns.

• Semantic search: Due to the semantic nature of the patterns, the direct
application of semantic search algorithms is possible. Here, the capability
to perform semantic search queries was tested by using the semantic fin-
gerprints of terms and sentences to retrieve semantically related concepts.

The first results gained by the initial analysis procedures were very promising
and caused the further improvement of the Semantic Pattern Transformation by
including more advanced capabilities.

Event Correlation on the Basis of Activation Patterns [83]

Event correlation plays an important role in intrusion detection in the broad field
of network security. Thereby, the data collected by various sensors is used for the
detection of attacks or anomalous behavior. The data generated by the sensors
is of a heterogeneous nature and includes symbolic as well as distance-based fea-
tures. In [83], we apply the Semantic Patterns concept to the raw feature vectors
comprised of different data types, and apply standard unsupervised clustering
algorithms for further analysis.

After successfully applying the Semantic Pattern Transformation to the sym-
bolic e-Participation data, the focused was placed on the integration of distance-
based features. In order to allow this, some kind of discretization algorithms
needs to be applied to the raw feature values, which are then mapped to the
nodes of the associative network. This procedure was tested by shifting the focus
from the text-related data to event correlation data collected by a network-based
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Figure 10.3: Analysis processes and properties within the context of event correla-
tion.

intrusion detection system. Here, symbolic features like protocol identifiers were
combined with distance-based features like the number of connections per time
frame. After applying the transformation procedure, the focus was based on the
unsupervised clustering of the different attacks contained within the data set
(Figure 10.3):

• Symbolic and distance-based features: The analyzed data set con-
tains both symbolic and distance-based features. Therefore, the necessary
discretization procedures have been integrated within the Semantic Pat-
tern Transformation and evaluated within the context of this analysis.

• Unsupervised clustering: The well-known data set provided us with the
opportunity to evaluate the performance of the Semantic Pattern Trans-
formation when both symbolic and distance-based features are involved.
In order to visualize the clusters representing the different attacks within
the analyzed data set, the unsupervised Self-Organizing Maps algorithm
has been applied. The visualization capabilities of this algorithm allowed
us to gain feedback for the various discretization strategies and associated
parameters, which are necessary for modeling the distance-based features
within the associative network.

Due to the analysis of this heterogeneous data set, the capability to analyze
symbolic and/or distance-based features was added to the Semantic Pattern
Transformation. By evaluating the results of unsupervised clustering, it was
possible to selected the best discretization operations.

From NLP (Natural Language Processing) to MLP (Machine Lan-
guage Processing) [81]

In order to test the Semantic Pattern Transformation and the capability for the
simple interpretation of the Semantic Patterns, the whole concept was applied
to a completely different domain where – compared to text analysis – not so
much a priori knowledge was available: The analysis of the assembler code of
polymorphic shellcodes. Shellcodes are used for the exploitation of buffer over-
flows and have evolved during the last 20 years from simple machine learning
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code that can easily be detected by intrusion detection systems, to very so-
phisticated polymorphic and metamorphic structures that continuously change
by employing encryption and other sophisticated measures. Therefore, machine
learning plays an important role for the creation of advanced detection methods
and understanding the various categories of such shellcodes. Due to our prior
work in the area [64], we came up with the idea to combine the lessons learned
form Natural Language Processing within the Mitmachen project, and the ca-
pabilities of the Semantic Pattern Transformation for the analysis of assembler
code extracted from polymorphic shellcodes.
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Figure 10.4: Analysis processes and properties within the context of polymorphic
shellcode analysis.

In principal, the same procedure as in the Mitmachen project were applied,
but here data was analyzed for which only a limited amount of priori knowledge
was available. Thus, the capability to interpret the generated patterns could be
evaluated within this domain (Figure 10.4):

• Symbolic features: The assembler instructions were used as symbolic
features, which corresponds to the analysis of terms within text-analysis.

• Unsupervised clustering: Again, unsupervised clustering algorithms
were applied to automatically categorize the different polymorphic engines,
which are used to camouflage the actual shellcode.

• Semantic relations: This was the key focus of this analysis. Due to the
limited a priori knowledge, the extraction of meaningful semantic relations
plays a vital role. Within this context, the relations between the assem-
bler instructions employed by the different polymorphic engines could be
extracted and visualized. These results allowed us to gain a better under-
standing of the methods employed by the various engines.

• Semantic search: The semantic search capabilities helped us to find as-
sembler instructions that were used within a similar context – e.g., within
similar decryption engines that decrypt the actual polymorphic shellcode.
In addition, semantic search queries for semantically related assembler in-
struction chains were deployed and analyzed.

By focusing on a data set that contains not so well-known data and relations,
the alleged capabilities in terms of knowledge extraction and interpretation of
the Semantic Pattern Transformation could be evaluated.



216 Chapter 10. Semantic Patterns - Applications

User Tracking Based on Behavioral Fingerprints [50]

The PhD thesis of Günther Lacker [49] focuses on the privacy aspects of pub-
lic WiFi networks. Due to prior work, we found another opportunity for the
application of the Semantic Pattern Transformation here. There are many fea-
tures and properties that might reveal one’s identify and thereby the location
when multiple public WiFi hotspots of the same provider are used throughout
the time. In order to gain a better understanding of this data, and the rela-
tions between the different features, the Semantic Pattern Transformation has
been applied to information extracted from captured email messages. While
this data is not always available, it provided us with a good opportunity to test
the knowledge extraction capabilities of the Semantic Patterns. As depicted in
Figure 10.5, the same analysis processes as for the e-Participation data and the
polymorphic shellcodes, were applied.
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Figure 10.5: Analysis processes and properties within the context of WiFi privacy.

RDF Data Analysis with Activation Patterns [79], and Knowledge
Extraction from RDF Data with Activation Patterns [80]

The semantic web – a web of data – utilizes rich semantic links between con-
cepts that are machine-readable. This enables advanced search queries and the
possibility to link data from various sources. The SPARQL language enables the
extraction of arbitrary aspects of such data sets.

Unsupervised
clustering

Supervised
learning

Semantic search Semantic relations

Anomaly detection

Feature relevance
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Figure 10.6: The World Factbook investigations

For the analysis presented in [79] and [80], we have used data extracted from
an RDF version of The World Factbook [11]. This data set was very important
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for improving techniques and the selection of parameters, because it contains
diverse data types. The following analysis processes were applied (Figure 10.6):

• Distance-based and symbolic features: The description of the coun-
tries contain many symbolic and distance-based features. Furthermore,
the information contained in these features and the semantic relations be-
tween the different feature values are well-known. Thus, the gained results
can easily be verified.

• Unsupervised clustering: Unsupervised clustering algorithms were ap-
plied to the country instances and to the single feature values. This allowed
us to gain a quick overview of the different countries. Again, a verification
of the validity of these clusters could easily be done due to the well-known
features and feature values.

• Semantic relations: Due to the well-known features and semantic rela-
tions, the validity of the information contained in the Semantic Patterns
could easily be verified.

• Semantic search: Here, the semantic search algorithm was improved for
two application scenarios: First, by using complete country instances as
search query, and second by executing typical search queries based on one
or a few specific feature values.

• Feature relevance: This was the first application of the feature relevance
analysis process. By analyzing the structure of the associative network, the
relevance of the different feature values can be determined. Examples for
non-relevant feature values include the different currencies within certain
groups of countries, the export commodities of countries located on specific
continents, or in certain cases the spoken languages.

The application to this data set allowed us to fine-tune the different aspects
of the Semantic Pattern Transformation, and test how the relevance of feature
values could be determined by analyzing the structure of the associative network.

Android Market Analysis With Activation Patterns [78]

In [78] we have analyzed the security permissions along other metadata of
roughly 130.000 apps of the Android Market. By applying the Semantic Pattern
Transformation to the categorical data, we were able to gain a new understand-
ing of the applications through extracting knowledge about security permissions,
their relations and possible anomalies, executing semantic search queries, find-
ing relations between the description and the employed security permissions, or
identifying clusters of similar apps.

Thereby, the following analysis processes have been conducted (Figure 10.7):

• Symbolic features: The relevant features were of symbolic nature and
included application permissions, decryption terms, application categories
and symbolic download count ranges.
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Unsupervised
clustering

Supervised
learning

Semantic search Semantic relations

Anomaly detection

Feature relevance

Time-based analysis Visualization Distance-based and
symbolic features

Figure 10.7: Analysis processes and properties within the context of the Android
Market.

• Unsupervised clustering: Unsupervised clustering was applied to gain a
quick understanding of the analyzed applications, and the different feature
values. The latter refers to the clustering of single permissions and terms
in order to determine in which semantic context they are used.

• Semantic relations: Here, the semantic relations and permissions were of
special interest, because they allowed us to gain a detailed understanding
of the typical permission usage within Android applications.

• Semantic search: Here, semantic search queries containing complete ap-
plication instances and single feature values were executed. In the first
case, semantically similar applications could be retrieved. The second ap-
plication allowed us to specify certain feature values within the search
query (e.g., terms) and retrieve semantically related concepts (e.g., per-
missions).

• Feature relevance: Here, the relevance of certain feature values was
determined. E.g., the permission to allow the utilization of the GPS com-
ponent is not relevant in applications that are related to car navigation
systems.

• Anomaly detection: This analysis played a very important role, since it
allows the extraction of applications that are described by non-typical fea-
tures within a given application group. E.g., an application that describes
itself as a simple wallpaper, but has permissions that allow the determi-
nation of the user’s location, or reading her address book, is considered as
anomaly within the wallpaper application group.

This is a very important practical application of the Semantic Pattern Trans-
formation that has a high relevance to the current malware developments on the
smartphone market. Therefore, it will also be considered as a hot topic for future
work.
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Extracting Semantic Knowledge From Twitter [77]

Twitter – also called the SMS of the Internet – currently has more than 200
million users and processes roughly 140 million tweets a day1 – meaning there is
a huge amount of arbitrary information available for knowledge discovery pro-
cesses. Since a tweet is limited to 140 characters, the information a user wants
to convey must be compressed, which reduces the computational effort required
by automated analysis processes. For the analysis processes within the Seman-
tic Pattern Transformation, we have extracted Tweets related to the early 2011
revolution in Egypt. Here, also the timestamps of the tweets were modeled
within the associative network, which allowed us to automatically extract rel-
evant events, analyze their semantic evolvement over time and automatically
find semantic similar events that occur on other timestamps. In addition, a
user interface was developed that demonstrates the interpretation of the Se-
mantic Patterns, and can easily be extended for arbitrary knowledge discovery
processes.
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Figure 10.8: Analysis processes and properties within the context of Twitter.

Thereby, the following analysis processes have been conducted:

• Symbolic features: The features were based on the terms extracted from
Tweets related to the Egyptian revolution, the retrieved hashtags and the
timestamps of the Tweets. Especially, the combination of timestamps with
the terms and hashtags features allows the extraction of information that is
related to semantic relations between events that occur at different times.
The inclusion of the timestamps also highlights the flexibility of the model
employed by the Semantic Patterns.

• Unsupervised Clustering: Here, unsupervised clustering was applied
to automatically find categories for the analyzed tweets and their features.

• Semantic relations: Similar to the other applications, the semantic rela-
tions between tweets and the extracted features could be extracted. How-
ever, due to the integration of time-based information, we were also able
to analyze the semantic relations between timestamps and terms that were
used within the different Tweets.

1As of March 2011, based on http://blog.twitter.com/2011/03/happy-birthday-
twitter.html, accessed on December 15th 2011.

http://blog.twitter.com/2011/03/happy-birthday-twitter.html
http://blog.twitter.com/2011/03/happy-birthday-twitter.html
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• Semantic search: Based on the semantic relations between terms, hash-
tags and timestamps, we were able to execute search queries similar to the
previous examples, but also search queries that contained time-based in-
formation. By including this information, it was possible to retrieve events
that occur at different timestamps but have a semantic similarity.

• Time-based analysis: For this analysis, the timestamps of the tweets
have been included as features used within the Semantic Pattern Trans-
formation. This allows for further analysis processes that analyze the se-
mantic relations between timestamps and other feature values, or instances
(Tweets). Examples for such analysis processes are: semantic-aware search
queries that retrieve semantically related timestamps, the clustering of
timestamps that co-occur with similar events and the semantic develop-
ment of events over time.

• Visualization: Here, a browser-based user interface was developed that
allows the graphical analysis and interpretation of the Semantic Patterns.
Due to the nature of the employed model, that is independent of the an-
alyzed data, a generic interface can be deployed for arbitrary knowledge
discovery problems and data.

The integration of the time-based information and the development of a user
interface that allows to interpret arbitrary Semantic Patterns present the latest
important mile stones within the Semantic Pattern Transformation, and form
the basis for future work.

10.2.3 Precursors to the Semantic Pattern Transforma-
tion

The works discussed in this section precedes the publications related to the
Semantic Pattern Transformation. We have worked on multiple knowledge dis-
covery domains primarily related to e-Participation and IT security. The re-
quirements for specific algorithms and preprocessing operations for each domain-
specific knowledge discovery problems were the main reasons for developing the
Semantic Pattern Transformation. The foundations for this development were
laid in the following prior works:

• Hybrid Engine for Polymorphic Shellcode Detection [64]: This
work summarizes the first part of my master’s thesis [76] and describes
how continuously changing polymorphic or metamorphic shellcodes used to
exploit buffer overflows can be detected in the network stream by applying
artificial neural networks. Thus, the knowledge discovery relevant part of
this work is related to the training and deployment of supervised machine
learning algorithms.

• Traffic Classification Using Self-Organizing Maps [62]: This paper
describes the second part of my master’s thesis, which focused on the ma-
chine learning based identification of application layer protocols such as
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HTTP, HTTPS, or TELNET by inspecting the transmitted data. Here
the knowledge discovery relevant part was related to protocol classifiers
implemented via supervised machine learning algorithms and the applica-
tion of unsupervised algorithms for discovering unknown relations within
the analyzed data.

• Massive Data Mining for Polymorphic Code Detection [63]: Here,
additional machine learning based methods related to polymorphic shell-
code detection are discussed.

• WiFi Chipset Fingerprinting [46]: The lessons learned from polymor-
phic shellcode detection and network traffic analysis were then employed
for the identification of WiFi chipsets based on timing characteristics.

• InFeCT - Network Traffic Classification [82]: The previously de-
scribed network traffic classification algorithms were extended in this work
by further machine learning methods such as the Support Vector Machines
algorithm.

10.2.4 This Thesis

The previous mentioned publications have applied the Semantic Pattern Trans-
formation within a wide range of knowledge discovery domains. By empirically
validating the results and utilizing the learned lessons for the improvement of the
Semantic Pattern Transformation, the method has been constantly improved.
However, the detailed explanation of the concept, the relations to and between
knowledge discovery and machine learning, and the thorough evaluation have
not been described within these applications, and therefore are the main subject
of this thesis.

10.3 Chapter Conclusions

This chapter describes the scientific publications that are directly related to
the Semantic Pattern Transformation, or are considered as preliminary work
that provided the initial motivation for its development. The evolution of the
new method has been described by explaining how each publication helped to
improve the transformation process and the subsequent analysis of the gener-
ated patterns. Thereby, the new concept has been applied within heterogeneous
knowledge discovery domains. This thesis is considered as the final building
block, that first gives an in-depth description of the whole concept and presents
a thorough evaluation of the performance within unsupervised clustering, super-
vised learning and semantic-aware search algorithms.
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Conclusions and Outlook

Due to the huge amount of electronically available data, and the wide spread
requirement to extract information and relations from this data, knowledge dis-
covery mechanisms are considered as a vital instrument within academic and
industrial processes. Thereby, these methods aim to analyze unknown data, ex-
tract relevant information and discover hitherto unknown relations. Among the
wide variety of different knowledge discovery processes, machine learning plays
an important role. However, when such algorithms are deployed in heterogeneous
domains, the associated preprocessing steps need to be adapted or even redefined
according to the nature of the data and the desired knowledge discovery goals.
Furthermore, the interpretation of the gained results strongly depends on the
employed machine learning algorithms, and the analyzed data. This leads to the
requirement for a time-consuming setup of the deployed procedures, whenever
the data or the knowledge discovery goals change.

Due to the lessons learned from the application of machine learning algo-
rithms in a wide range of heterogeneous domains, and the analysis conducted in
this thesis, one key reason for the discussed problems was identified: The value-
centric feature vector representation, which is typically used within machine
learning.

Therefore, this thesis proposes the Semantic Pattern Transformation that
transforms this value-centric representation into a semantic representation – the
Semantic Patterns. Due to the analysis of the semantic relations between the
feature values, the presented transformation process removes the need for many
time-consuming setup procedures. Furthermore, the model employed by the Se-
mantic Patterns is independent of the analyzed data and, thus, simplifies the
otherwise complex knowledge extraction and interpretation procedures. Another
benefit of the common model is the easy extension of existing analysis processes,

223



224 Chapter 11. Conclusions and Outlook

or the integration of additional procedures without the need for specific adapta-
tions.

For the development of the Semantic Pattern Transformation a wide range
of empirical evaluations have been conducted, and the process has been con-
stantly improved by studying the lessons learned. This is shown by the works
published in relation to the Semantic Pattern Transformation, which represent
the evolution of the concept. These publications range form the initial clus-
tering of categorical data, over the integration of semantic search algorithms,
to the application of sophisticated analysis processes applicable to an arbitrary
combination of categorical and numerical features.

This thesis extends the empirical evaluations by conducting an in-depth
analysis of the Semantic Pattern Transformation within the domains of super-
vised and unsupervised machine learning, and semantic-aware search algorithms.
Thereby, the following observations are made: The quality of the results gained
by simple distance-based unsupervised learning algorithms like K-Means can be
significantly improved when the value-centric feature vectors are transformed
into Semantic Patterns. Also, in the area of supervised learning the results
of the Support Vector Machine algorithm indicate slight quality improvements.
For the semantic-search aware algorithm significant quality improvements can
be achieved, when using the Semantic Patterns. These observations lead to the
following conclusions: First, the quality of the results gained by simple distance-
based supervised and unsupervised algorithms can be significantly improved by
employing the Semantic Pattern Transformation. Second, regardless of the ap-
plied supervised or unsupervised algorithm, the gained results are at minimum
at the same level, and in most of the cases even better as for the raw data. This
means, that the huge benefits gained by the semantic model can be utilized for
machine learning without making compromises in terms of quality. Finally, the
results gained for the semantic-aware search algorithms show the Euclidean dis-
tance and the Cosine similarity achieve the same results when complete instances
are analyzed. However, the performance of the Euclidean distance significantly
drops in comparison to the Cosine similarity, when only a few feature values are
used within the search queries.

The results gained by this evaluation process and the nature of the Semantic
Patterns lead to the following main contributions of this thesis:

1. Improvements for machine learning algorithms: The quality of the
results gained by simple unsupervised machine learning algorithms can
be significantly improved, while it is approximately the same for more
sophisticated ones. For the supervised algorithms a slight quality increase
can be observed, and huge gains are made for the search algorithms.

2. Deployment in heterogeneous domains: The Semantic Pattern Trans-
formation analyzes the semantic relations between the feature values and
transforms the value-centric feature vectors into Semantic Patterns. This
transformation leads to a significant decrease in the complexity of the adap-
tation processes required when knowledge discovery processes are deployed
in heterogeneous domains.
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3. Improved analysis processes: The model employed by the Semantic
Patterns can easily be interpreted and visualized. This plays an important
role when analyzing data for which no, or only limited a priori knowledge
is available. Furthermore, the common model and its simple interpretation
allows for the application of simple techniques, such as addition or sub-
traction, as well as highly sophisticated analysis, such as machine learning.
Furthermore, due to the employed model that is independent of the ana-
lyzed data, new analysis processes can easily be defined and deployed.

Although, many aspects haven been analyzed and explained within this the-
sis and the published works, there remain several questions and research di-
rections for the further improvement and extension of the Semantic Pattern
Transformation. These include the application of mechanisms for reducing the
patterns’ dimensionality in order to decrease the required computational com-
plexity, the development of improved visualization and interpretation techniques
based on the Semantic Patterns, and the focus on further analysis methods such
as anomaly detection, or time-based analysis. Another advanced and interesting
topic is how the Semantic Patterns could be used in multi-hierarchical learning
scenarios, where the Semantic Patterns gained by different analysis for one level
are considered as feature values that are used as input for the Semantic Pattern
Transformation of the next level.





A
Demonstration Data Sets

Throughout this thesis, examples have been presented that are based on the two
data sets described in this appendix. The first one contains the descriptions
of the world’s countries as extracted from an RDF representation of the ”The
World Factbook” published by the CIA [11]. The second data set consists of
Tweets extracted from Twitter that are related to the Egyptian revolution in
early 2011. While the first data set plays the most important role within this
thesis, the second one is especially used in the context of time-based analysis of
Semantic Patterns.

A.1 Demo Data Set 1 - The World Factbook

The first data is based on an RDF representation of the ”The World Factbook”
[11]. This representation contains the descriptions of 261 countries and territo-
ries, and was generated in 2005 by Ben Humphreys1, who provides various Perl
scripts to parse the data from HTML pages and convert it into an RDF pre-
sentation. Thereby, only a subset of the original features have been extracted.
These features are listed in Table A.1.

The data set played an important role during the development and improve-
ment of the Semantic Pattern Transformation for the following reasons: First,
the data set contains a good mixture of symbolic and distance-based features.
Second, the distance-based features are based on different value ranges and
value types: ratios, percentage values, absolute counts etc., which was impor-
tant for improving the Semantic Pattern Transformation. Finally, and probably

1http://www.aktors.org/interns/2005/cia/CIA World Factbook to RDF.htm, accessed on
December 15th 2011.
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Feature Type Description
Export
Import
EnvAgree
Agree
AgrProd
Language
Resource

Feature
UnemploymentRate
LiteracyFemale
LiteracyMale
MilitaryGDP
GDP-Agriculture
GDP-Industry
GDP-Services
GDP-PerCapita
BirthRate
DeathRate
PopBelowPovertyLine
PopGrowthRate
InflationRate

sym export commodities
sym import commodities
sym environmental agreements
sym international agreements
sym agricultural products
sym spoken language
sym natural resources

Type Description
% unemployment rate
% literacy rate of females
% literacy rate of males
% percentage of GDP used for military spending
% contribution to GDP by agricultural sector
% contribution to GDP by industrial sector
% contribution to GDP by service sector
$ GDP per capita in US dollars
real births/1000 population
real deaths/1000 population
% percentage of population below poverty line
% population growth rate
% inflation rate

Table A.1: Features contained within the first data set.

the most important reason: The contained data is well-known and understood
without any additional information. Therefore, it played an important part in
the empirical evaluation of the initial versions of the Semantic Pattern Trans-
formation. The plausibility and correctness of the gained results could easily be
checked without deploying complex evaluation schemes.

The data set was analyzed in two works: RDF Data Analysis with Activa-
tion Patterns [79], and Knowledge Extraction from RDF Data with Activation
Patterns [80]. A summary on these works is given in Chapter 10 – Applications.

A.2 Demo Data Set 2 - The Egyptian Revolution
on Twitter

The second data set was extracted from Twitter by using the now shut down
Google Realtime service. It contains 3712 Tweets covering the beginning of the
Egyptian revolution in 2011. The data set starts at the beginning of the uprising
on January 25th and ends with the resignation of then president Hosni Mubarak.
The employed features are summarized in Table A.2. In order to avoid noise and
limit the amount of information, the following procedure has been applied to the
Tweets: Only the raw text was extracted and analyzed by applying well-known
techniques from Natural Language Processing such as stop-word removal, Part-
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Feature Type Description
Term

Hashtag
TimeStamp

sym Nouns, verbs and adjectives of a tweet after 
applying NLP processing

sym The hashtags of a tweet
sym Timestamp of a tweet

Table A.2: Features contained within the second data set.

Of-Speech tagging and finding the base form on the extracted terms. In addition
to the terms, the hashtags encountered in the Tweets and the timestamps of the
tweets were also extracted. The timestamps played an important role for the
time-based semantic analysis of the data, which was mentioned in Chapter 7 –
Semantic Pattern Analysis. The data set was thoroughly analyzed within [77] –
Extracting Semantic Knowledge from Twitter. A summary on this work is given
in Chapter 10 – Applications.
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[58] J. Morato, M. A. Marzal, J. Lloréns, and J. Moreiro. WordNet Applications.
Processing, pages 270–278, 2004.

[59] M. Needleman. RDF - The Resource Description Framework. Serials Re-
view, 27(1):58–61, 2001.

[60] C. Orthacker, P. Teufl, S. Kraxberger, A. Marsalek, J. Leibetseder, and
O. Prevenhueber. Android Security Permissions Can we trust them? In
MobiSEC 2011, 2011.

[61] N. R. Pal, L. Jain, K. J. Cios, and L. A. Kurgan. Advanced Techniques in
Knowledge Discovery and Data Mining. Advanced Information and Knowl-
edge Processing. Springer London, London, 2005.

[62] U. Payer, M. Lamberger, and P. Teufl. Traffic Classification using Self-
Organizing Maps. In INC 2005 5th International Networking Conference
Workshops Samos Island Greece, 2005.

[63] U. Payer, P. Teufl, S. Kraxberger, and M. Lamberger. Massive Data Mining
for Polymorphic Code Detection. Third International Workshop on Mathe-
matical Methods Models and Architectures for Computer Network Security
MMMACNS 2005, 3685:448–453, 2005.

[64] U. Payer, P. Teufl, and M. Lamberger. Hybrid Engine for Polymorphic
Shellcode Detection. In Lecture Notes in Computer Science, volume 3548,
pages 19–31, 2005.

[65] A. K. Qin and P. N. Suganthan. Robust Growing Neural Gas Algorithm
with Application in Cluster Analysis. Neural Networks, 17(8-9):1135–1148,
Oct. 2004.

[66] M. R. Quillian. Semantic Memory. In M. Minsky, editor, Semantic Infor-
mation Processing, volume 2, chapter 10, pages 227–270. MIT Press, 1968.

[67] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
series in {M}achine {L}earning. Morgan Kaufmann, 1993.

[68] J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15 of Se-
ries in computer science ; vol. 15. World Scientific, 1989.

[69] A. Rosenberg and J. Hirschberg. V-measure: A Conditional Entropy-
Based External Cluster Evaluation Measure. Computational Linguistics,
1(June):410–420, 2007.

[70] G. K. Saha. OWL Web Ontology Language. Ubiquity, 2007(September):1–1,
2004.



236 Bibliography

[71] D. Scanfeld, V. Scanfeld, and E. L. Larson. Dissemination of Health In-
formation Through Social Networks: Twitter and Antibiotics. American
Journal of Infection Control, 38(3):182–8, 2010.

[72] D. Sculley and C. E. Brodley. Compression and Machine Learning: A
New Perspective on Feature Space Vectors. Data Compression Conference
DCC06, 0:332–332, 2006.

[73] C. Shearer. The CRISP-DM Model: The New Blueprint for Data Mining.
Journal of Data Warehousing, 5(4):13–22, 2000.

[74] J. Shlens. A Tutorial on Principal Component Analysis. Measurement,
51(10003):52, 2005.

[75] J. F. Sowa. Semantic Networks. Encyclopedia of Artificial Intelligence,
5(3):291–9, 1992.

[76] P. Teufl. Intrusion Detection and Traffic Classification based on Machine
Learning Techniques. Master’s thesis, Graz University of Technology, 2005.

[77] P. Teufl and S. Kraxberger. Extracting Semantic Knowledge from Twitter.
IFIP International Federation For Information Processing, pages 48–59,
2011.

[78] P. Teufl, S. Kraxberger, C. Orthacker, G. Lackner, A. Marsalek, J. Lei-
betseder, and O. Prevenhueber. Android Market Analysis with Activation
Patterns. In MobiSEC 2011, Aalborg, 2011.

[79] P. Teufl and G. Lackner. RDF Data Analysis with Activation Patterns. In
H. Maurer and K. Tochtermann, editors, Proceedings of the 10th Interna-
tional Conference on Knowledge Management and Knowledge Technologies
iKNOW 2010 Graz Austria, Journal of Computer Science, 2010.

[80] P. Teufl and G. Lackner. Knowledge Extraction from RDF Data with Ac-
tivation Patterns. J. UCS, 17(7):983–1004, 2011.

[81] P. Teufl, G. Lackner, and U. Payer. From NLP (Natural Language Process-
ing) to MLP (Machine Language Processing). In I. Kotenko and V. Skormin,
editors, Proceedings of the Mathematical Methods Models and Architectures
for Computer Networks Security Conference 2010 MMMACNS 2010 St Pe-
tersburg Russia, volume 6258 of Lecture Notes in Computer Science, pages
256–269. Springer Berlin Heidelberg, 2010.

[82] P. Teufl, U. Payer, M. Amling, M. Godec, S. Ruff, G. Scheikl, and G. Walzl.
InFeCT - Network Traffic Classification. Proceedings of the seventh Inter-
national Conference on Networking ICN 2008, pages 439–444, 2008.

[83] P. Teufl, U. Payer, and R. Fellner. Event Correlation on the Basis of Activa-
tion Patterns. In Proceedings of the 18th Euromicro Conference on Parallel
Distributed and NetworkBased Processing PDP 2010, pages 631–640, 2010.



Bibliography 237

[84] P. Teufl, U. Payer, and P. Parycek. Automated Analysis of e-Participation
Data by Utilizing Associative Networks, Spreading Activation and Unsuper-
vised Learning. In Proceedings of the 1st International Conference on Elec-
tronic Participation (EPART 09), volume 5694, pages 139–150. Springer-
Verlag, 2009.

[85] K. Thiel and M. R. Berthold. Node Similarities from Spreading Activation.
2010 IEEE International Conference on Data Mining, pages 1085–1090,
2010.

[86] A. Troussov, D. Parra, and P. Brusilovsky. Spreading Activation Approach
to Tag-aware Recommenders: Modeling Similarity on Multidimensional
Networks. In Proceedings of the ACM Conference on Recommender Sys-
tems, 2009.

[87] A. Troussov, M. Sogrin, J. Judge, and D. Botvich. Mining Socio-Semantic
Networks Using Spreading Activation Technique. In International Work-
shop on Knowledge Acquisition from the Social Web KASW08, 2008.

[88] G. Tsatsaronis, M. Vazirgiannis, and I. Androutsopoulos. Word Sense Dis-
ambiguation with Spreading Activation Networks Generated from Thesauri.
In M. M. Veloso, editor, IJCAI, pages 1725–1730, 2007.

[89] P. M. B. Vitanyi, F. J. Balbach, R. L. Cilibrasi, and M. Li. Normalized In-
formation Distance. Information Theory and Statistical Learning, cs.IR:33,
2008.

[90] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Se-
ries in Data Management Systems). Morgan Kaufmann, 2011.

[91] Y. Yang and G. I. Webb. A Comparative Study of Discretization Methods
for Naive-Bayes Classifiers. In Proceedings of PKAW, volume 2002, pages
159–173, 2002.

[92] T. Zesch, C. Müller, and I. Gurevych. Extracting Lexical Semantic Knowl-
edge from Wikipedia and Wiktionary. In N. Calzolari, editor, Linguistics,
pages 1646–1652, 2008.

[93] T. Zesch, C. Müller, and I. Gurevych. Using Wiktionary for Computing
Semantic Relatedness. In Proceedings of AAAI, volume 8, pages 861–866.
AAAI Press, 2008.

[94] C. N. Ziegler and G. Lausen. Spreading Activation Models for Trust
Propagation. In Proceedings of the IEEE International Conference on e-
Technology, e-Commerce, and e-Service, EEE ’04, pages 83–97. IEEE, 2004.





  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommene Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 


	Title Page
	Abstract
	Kurzfassung
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Organization
	How to Read?
	Defining the Meaning of Semantic
	The Semantic Pattern Transformation
	Cross-Disciplinary Knowledge Discovery
	The Need for a Semantic Representation

	The Main Contributions
	List of Publications

	Demonstration Data Sets

	Semantic Patterns – At a Glance
	Demonstration Data Set
	From Feature Vectors to Semantic Patterns 
	Understanding Semantic Patterns
	Semantic Relations
	Similarity
	Semantic Search
	Semantic Pattern Arithmetic
	Machine Learning

	Feature Vectors vs. Semantic Patterns in Unsupervised Clustering
	Extracting Instances and Features
	Selection of the Algorithm
	Instance and Feature Representation
	Preprocessing
	Applying the Algorithm
	Interpretation of the Results

	Chapter Conclusions

	Knowledge Discovery and Machine Learning
	Knowledge Discovery
	Knowledge Discovery Models
	Knowledge Discovery Processes (KDPs) and  Knowledge Discovery Tasks (KDTs)

	Machine Learning
	Data
	Data Representation – Feature Vectors
	Machine Learning Setup

	Machine Learning and Knowledge Discovery
	Deployment in Heterogeneous Domains
	Chapter Conclusions

	Towards a Semantic Representation
	Analysis of the Processing Steps
	Complexity of the Required Adaptations
	Reasons for the Adaptation Complexity
	Adaptation Complexity – Summary

	The Value-Centric Representation
	The Semantic Representation
	Basic Idea and Properties
	Influence on the Machine Learning Setup
	Further Advantages of the Semantic Representation

	Semantic Patterns
	Chapter Conclusions

	Semantic Pattern Techniques
	Overview
	Semantic and Associative Networks
	Spreading Activation
	The Basic Spreading Activation Algorithm
	Constrained-Spreading
	Applications

	Discretization
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Adapting the Model Complexity
	Selected Unsupervised Machine Learning Algorithms
	Vector Quantization
	K-Means and Self-Organizing Maps
	Neural Gas Family
	Growing Neural Gas
	Robust Growing Neural Gas Algorithm
	Expectation Maximization Algorithm (EM)

	Selected Supervised Machine Learning Algorithms
	Chapter Conclusions

	Semantic Pattern Transformation
	Semantic Pattern Transformation
	Layer 1 - Feature Extraction
	Layer 2 - Node Generation
	Layer 3 - Network Generation
	Layer 4 - Semantic Pattern Generation
	Layer 5 - Analysis

	Chapter Conclusions

	Semantic Pattern Analysis
	Interpretation
	Interpreting the Activation Values

	Pattern Arithmetic
	Similarity
	Adding and Subtracting Semantic Patterns
	Mean Value and Variance
	Activation Energy and Other Operations

	Spreading Activation Techniques
	Types of Semantic Patterns
	Generating a Semantic Pattern
	Spreading Activation for Distance-Based Features
	Activation Combination Function
	Fanout
	Associative Network Construction

	Analysis
	Unsupervised Clustering
	Supervised Learning
	Semantic Search
	Anomaly Detection
	Semantic Relations
	Feature Relevance
	Time-Based Analysis Processes

	Chapter Conclusions

	Semantic Patterns - Evaluation
	Evaluation Environment
	Weka
	Evaluation – At a Glance
	Quality Measure: V-Measure
	Semantic Pattern Parameters
	Data Sets
	Algorithm Setup and Tools

	Unsupervised Learning Evaluation
	Result Tables
	Categorical Data
	Mixed Data
	Numerical Data
	Conclusions

	Supervised Learning Evaluation
	Semantic Search Evaluation
	Complete Instances
	Some Feature Values, or the Influence of Missing Values
	Conclusions

	Empirical Evaluation
	Chapter Conclusions

	Related Work
	Machine Learning
	Latent Semantic Indexing (LSI)
	Semantic Similarity Between Words
	Measuring Nodes Similarities
	Conclusions

	Semantic Patterns - Applications
	Analysis Processes
	Published Works
	Collaboration
	Works in Direct Relation to the Semantic Pattern Transformation
	Precursors to the Semantic Pattern Transformation
	This Thesis

	Chapter Conclusions

	Conclusions and Outlook
	Demonstration Data Sets
	Demo Data Set 1 - The World Factbook
	Demo Data Set 2 - The Egyptian Revolution on Twitter

	Bibliography

