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Abstract

Functional near-infrared spectroscopy (fNIRS) is a non-invasive technique
that can reveal hemodynamic and metabolic changes during cortical activa-
tion. In recent years fNIRS has been used mainly to study hemodynamic
responses (changes of oxygenated (oxy-Hb) and deoxygenated hemoglobin
(deoxy-Hb)) to cognitive, visual and motor tasks. A few years ago fNIRS
was proposed as a novel approach in the field of brain-computer interface
(BCI) research. Since that time, only a few research groups have investigated
different concepts using fNIRS as an alternative to, or in combination with,
traditional EEG-based systems for BCI communication. Therefore, there is
still ongoing research needed to investigate the full potential of fNIRS.

This thesis consists of two primary parts. Part one focuses on exploring
the usefulness of mental arithmetic (MA) as a control strategy for optical
BCI (oBCI) systems. The focus of part two is to use operand conditioning,
train subjects to influence their hemodynamic signals volitionalyl and use
this control for an oBCI.

In the first part special emphasis is put on the investigation of brain pat-
terns caused by the performance of a simple mental MA task and whether
these patterns can be classified reasonably well in a single-trial approach.
In detail, this part consists of three interrelated studies whereby the goal
of the first and second study is to investigate the spatial and temporal na-
ture of activation responses and to examine if these responses are stable and
reproducible over multiple subjects. Different experiments were performed
using custom made one-channel and commercial multi-channel fNIRS sys-
tems. Similar results in both studies could be achieved and give evidence
that the activation responses caused by the performance of a simple MA
task may be suitable for an oBCI. Therefore, the focus of study three lies on
the single-trial classification of these responses by means of cue-based BCI
off-line simulations. The offline simulation results confirmed the hypothesis
that patterns, caused by the performance of a simple MA, can be classi-
fied with approximately 80% accuracy and therefore are a suitable control
strategy for oBCI applications.
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In the second part investigations are performed on an operand condi-
tioning, which is also known as ”biofeedback”, approach. In general, in this
approach specific parameters of the recorded brain signals are presented to
the user, for example in the form of a feedback bar. The user learns, by a
trial-and-error strategy, to influence the presented parameter volitionally. In
detail, this part consists of two interrelated studies whereby in the first study
the focus lies on fNIRS-based feedback-training. Subjects were trained to in-
fluence their prefrontal oxy-Hb concentration volitionally and use it finally
as a control signal for an oBCI. Out of this investigation, in a preliminary
feasibility study, the worldwide first realization of an asynchronous fNIRS
based hybrid BCI system is shown and evaluated with a single subject. To
do this, the above mentioned oBCI system is combined with a traditional
EEG-based BCI system to control an electrical hand orthosis. In this study
the subject gained perfect control (100% accuracy) after a short period of
training. This result provides evidence that the combination of an oBCI and
an EEG-based BCI within a hybrid BCI system may be a suitable control
interface.



Kurzfassung

Die funktionelle Nahinfrarotspektroskopie (fNIRS) ist eine nichtinvasive Me-
thode, welche die Detektion von, durch kortikale Aktivierungen induzierten,
hämodynamischen und metabolischen Mustern ermöglicht. In den letzten
Jahren wurde die fNIRS hauptsächlich zur Untersuchung dieser Muster (Än-
derungen in der Konzentration von oxygeniertem (oxy-Hb) und deoxyge-
niertem (deoxy-Hb) Hämoglobin) bei kognitiven, visuellen oder motorischen
Tasks verwendet. Vor einiger Zeit wurde auch die Anwendung der fNIRS
im Bereich der Brain-Computer Interface (BCI) Forschung als ein weiterer,
vielversprechender Ansatz angedacht. Seitdem haben jedoch nur einige wenige
Forschungsgruppen Konzepte zur alternativen oder kombinierten Verwen-
dung der fNIRS Methode untersucht, sodass in diesem Bereich noch grundle-
gende Forschungsarbeit notwendig ist, um das volle Potential der fNIRS
auszuschöpfen.

Diese Dissertation besteht aus zwei Hauptteilen. Der erste Teil fokussiert
die Verwendung von mentaler Arithmetik (MA) als Kontrollstrategie für op-
tische BCI (oBCI) Systeme. Der Fokus des zweiten Teils wiederum liegt auf
der Verwendung des sogenannten ”Operand Conditioning” - Ansatzes. Dabei
werden Versuchspersonen darauf trainiert ihre hämodynamischen Muster wil-
lentlich zu beeinflussen um diese in weiterer Folge als Steuersignale für ein
oBCI verwenden zu können.

Im ersten Teil dieser Arbeit liegt der Schwerpunkt im Speziellen auf der
Untersuchung von hämodynamischen Aktivierungsmustern welche durch die
Ausführung von einfachen MA Aufgaben entstehen. Des weiteren wird die
Klassifizierbarkeit dieser Muster auf ”Single-Trial”-Basis untersucht. Detail-
lierter dargestellt, besteht der erste Teil dieser Dissertation aus drei zusam-
menhängenden Studien, wobei das Hauptaugenmerk in der ersten und zweiten
Studie auf der Untersuchung der räumlichen und zeitlichen Eigenschaften der
Aktivierungsmuster sowie auf deren Stabilität und Reproduzierbarkeit über
mehrere Probanden liegt. Dazu wurden verschiedene Experimente mit einem
selbst etwickelten Einkanalsystem sowie einem kommerziell erhältlichen Mul-
tikanalsystem durchgeführt. Dabei wurden mit beiden Systemen vergleich-
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bare Ergebnisse erzielt, welche darauf hinweisen, dass die durch MA entste-
henden Aktivierungsmuster als Kontrollstrategie in einem oBCI System ge-
eignet sind. Demzufolge lag der Schwerpunkt der dritten Studie auf der
Single-Trial-Klassifizierung dieser Muster auf Basis einer BCI Offline-Simula-
tion. Es konnte festgestellt werden, dass die durch MA entstehenden Ak-
tivierungsmuster mit einer Genauigkeit von annähernd 80% detektierbar sind
und sich somit als Kontrollstrategie für optische BCI (oBCI) Systeme eignen.

Im zweiten Teil dieser Dissertation werden Untersuchungen unter Verwen-
dung des Operand Conditioning Ansatzes, auch als ”Biofeedback”-Ansatz
bekannt, durchgeführt. Im Allgemeinen werden bei einem solchen Ansatz
spezielle Parameter der aufgezeichneten Hirnsignale dem Anwender, zum
Beispiel in Form eines Feedback-Balken, rückgemeldet. Der Anwender lernt
nun durch praktisches Ausprobieren (”Trial-and-Error”), den präsentierten
Parameter willentlich zu beinflussen. Detaillierter dargestellt, besteht der
zweite Teil dieser Dissertation aus zwei zusammenhängenden Studien wobei
in der ersten Studie der Fokus auf fNIRS basiertem Anwendertraining liegt.
Dazu wurden Versuchspersonen darauf trainiert die präfrontale oxy-Hb Kon-
zentration willentlich zu beeinflussen um diese schlussendlich als Kontrollsig-
nal für ein oBCI zu verwenden. Ausgehend von dieser Studie wurde in einer
nachfolgenden Machbarkeitsstudie die Realisierung des weltweit ersten, auf
fNIRS basierenden, asynchronen hybriden BCI Systems gezeigt, sowie an
einer Versuchsperson evaluiert. Dazu wurde das oBCI System mit einem tra-
ditionellen, auf EEG basierenden, BCI kombiniert um eine elektrische Han-
dorthese zu steuern. Unter Verwendung des hybriden BCIs war es der Ver-
suchsperson nach kurzer Zeit möglich, die Orthese mit 100%-iger Genauigkeit
zu kontrollieren. Dieses Ergebnis gibt Hinweise, dass auch die Kombination
von oBCI und traditionellem EEG-basierten BCI in einem hybriden BCI
System ein adäquates Kontrollinterface darstellt.
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Chapter 1

Introduction

”We had discovered the possible existence of an optical
window into the body ... if we could now prove its prac-
ticality for obtaining significant information about the
ongoing metabolic reactions!”

Frans F. Jöbsis (1999)

1.1 General

Near-infrared spectroscopy (NIRS) is an emerging non-invasive optical tech-
nique for the in-vivo assessment of cerebral oxygenation. In recent years
multichannel NIRS has been used to study functional activity of the hu-
man cerebral cortex to cognitive, visual and motor tasks (e.g. [60, 66, 67,
73, 151, 165, 186]) and appears to be becoming an established diagnostic
tool in neonatology (e.g. [70, 166, 169, 182]), pediatrics [26, 170], psychia-
try [38, 61, 81] and neurorehabilitation (for a review see [1, 109]). In addition
to studying brain functions, NIRS is also an increasingly popular technology
used alternatively to [36, 118, 155, 164], or in combination with, electroen-
cephalography (EEG) [54, 128] for brain computer interfaces systems (optical
and hybrid BCIs).

The concept of using optical techniques to monitor changes of biological
tissues is not new. For example, changes in the optical properties in sin-
gle myelinated nerve fibers or nerve trunk during repetitive stimulation were
already reported at the end of the forties of the last century [68, 97, 98]. How-
ever, the foundation stone for the modern non-invasive in-vivo monitoring of
cerebral oxygenation with near-infrared light was laid by Frans F. Jöbsis in
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1977 [80]. In his pioneering work ”Noninvasive, infrared monitoring of cere-
bral and myocardial oxygen sufficiency and circulatory parameters” Jöbsis
introduces an optical window (wavelengths around 700 to 1300 nm) in the
near-infrared (NIR) spectrum of the light in which the radiation can be effec-
tively transmitted through biological materials over longer distances. He used
these findings to monitor, for the first time, oxygen sufficiency and cerebral
circulation on cats and the human brain by near-infrared transillumination.
Since this time NIRS studies have been performed, in the majority of cases,
in neonates (e.g. [22, 31, 32]) using the transcranial cerebral oximetry (for
an overview see [96]). A few studies also investigated the usability of NIR
light reflected from the cortex to study the adult brain (e.g. [50, 57], but it
took more than 15 years before the progress in the NIRS technology allowed
researchers to monitor functional activation of the human cerebral cortex.
First investigations in this field were performed by Villringer et al. [175],
Hoshi and Tamura [77, 78] and Kato et al. [84]. Hoshi and Tamura were
also the first who performed multichannel NIRS measurements [78]. They
recorded brain activity over frontal, temporal and occipital region of the left
and right hemisphere during visual and auditory stimulation as well as in
response to various mental tasks by using five commercial NIRS systems in
parallel.

This research in the direction of functional mapping of human brain ac-
tivity with NIR light (called functional NIRS (fNIRS), NIR imaging (NIRI)
or optical topography (OT)) was motivated by its simplicity of application
compared to other imaging techniques such as functional magnetic resonance
imaging (fMRI) or positron emission tomography (PET) [78]. The fNIRS
signals are strongly correlated to the fMRI Blood-Oxygen-Level-Dependent
(BOLD) signal [157, 160], but compared to fMRI, NIRS has a limited pene-
tration depth (about 25 mm, [124]) and a lower spatial resolution, however,
fNIRS exhibits a higher temporal resolution [37]. Compared to PET, fNIRS
has a higher temporal resolution and nearly the same spatial resolution and
no exogenous contrast medium is necessary. In general the fNIRS devices are
smaller and moveable, less expensive, safe for long term use and less suscep-
tible to motion artifacts then the alternatives. This flexibility allows bedside
monitoring and recording during a huge number of different tasks.

A few years ago fNIRS was proposed as a novel approach in the field of
brain-computer communication. A brain-computer interface (BCI) provides
the user with artificial output channels to control external devices by the reg-
ulation of brain activity [14]. Coyle et al. [35] were the first to investigate the
suitability of fNIRS systems for next-generation BCIs, the so called optical
BCI (oBCI) systems. Since that time, a few research groups have investigated
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different concepts using fNIRS alternatively to, or in combination with, tradi-
tional EEG-based systems for BCI communication [8, 9, 35, 36, 118, 155, 164].
However, there is still ongoing research needed to investigate the full poten-
tial of fNIRS in this field. For example, previous studies not only show the
feasibility of using motor imagery [35, 36, 155] for oBCI systems, but also
other mental tasks, such as mental arithmetic (MA) [8, 9, 118, 139] and mu-
sic imagery [139, 140], exhibit potential as suitable control tasks. Therefore,
it is of interest to investigate the activity patterns during the performance of
these types of mental tasks, which areas are involved during the performance,
and how the activity of the areas changes over time. Furthermore, a com-
mon challenge for BCIs is a stable and reliable classification of single-trial
data, especially for mental tasks. For this it is essential to improve the signal
to noise ratio (SNR) and to reduce false classifications which may occur in
the case of fNIRS primarily due to misclassification of physiological noise [34].

In the following section BCI basics and the necessary components of a
BCI system are briefly discussed. Subsequently, a detailed description of
the basics and principles of the fNIRS technique is given. A review of the
underlying neurophysiological phenomena is followed by a section describing
the technical background of fNIRS recordings and the possible approaches
(Continuous Wave (CW), Time-resolved spectroscopy (TRS) and Frequency-
domain technique (FDT)).

1.2 Brain-computer interfaces

A brain-computer interface (BCI), sometimes also called direct brain inter-
face or brain-machine interface, is a system which provides the user with an
artificial output channel that utilizes the information from neuronal activity
of the brain and which does not rely on the normal output pathways of pe-
ripheral nerves and muscles (for reviews see e.g. [14, 92, 110, 119, 135, 184]).
The concept of BCI systems is not new, the first attempt to evaluate the
feasibility and practicality of brain computer communication was published
more than 30 years ago by Jacques J. Vidal1 [173]. Since this time a multi-
tude of publications in the field of BCI research from different research groups
have emerged. However, the underlying principles and basics are universal.

1The author would like to thank Jacques J. Vidal for his impressive talk and enlight-
ening conversation at the 5th international BCI conference held 2011 in Graz, Austria.
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In general a BCI system is composed of the following five components
(see Figure 1.1).

Figure 1.1: General scheme of the different components of a BCI
system. This scheme can be found (slightly modified) in numerous
articles about BCIs. (Modified from [63].)

Signal acquisition: This component is responsible for the recording of the
brain signal(s) used (for details see section 1.2.1) and provides the input
signal for the signal processing. Depending on the signal acquisition
method used, the signal(s) are amplified and digitized accordingly.

Preprocessing: With the aim to provide optimal data for the subsequent
components, this component includes artifact reduction such as reduc-
ing / removing signals arising from muscle activity and eye movement
or physiological noise (in the case of fNIRS), or canceling out the line-
frequency with 50/60 Hz notch filters. Further filtering in the fre-
quency domain, i.e. low-pass or high-pass filtering, spatial filtering
(bipolar, Laplacian, Common average reference (CAR)) or more sohis-
ticated methods, like independent component analysis (ICA), principal
component analysis (PCA), common spatial patterns (CSP) or tranfer
function models, can be applied.

Feature extraction: In this component features, describing important sig-
nal properties, are extracted from the data. This step is necessary to
find an appropriate representation of the data and to simplify the in-
formation, contained in the data, for the next component. Common
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features are, for example, amplitude measures, autoregressive parame-
ters, the power in certain frequency bands (band power), wavelets and
coupling measures.

Classification (Detection): Provided features from the feature extraction
are used to assign the brain signal to a category. Several classification
schemes are usable. Popular classifiers are, for example, Fisher’s lin-
ear discriminant analysis (LDA), the quadratic discriminant analysis
(QDA), support vector machines (SVM) and Hidden Markov models
(HMM).

Application interface: This component of the BCI system transforms the
output of the classifier into a control signal for application devices (e.g.
a cursor position on a monitor, the hand position of a hand orthosis or a
sound signal) and provides the user with feedback about the assignment
of the recorded brain signal to a category. With this feedback the
control loop of the BCI system is closed (closed-loop system).

1.2.1 Signals and signal acquisition methods

Typically, a BCI detects voluntary changes in electroencephalography (EEG)
signals and translates different brain states into appropriate commands for
communication and control [184]. Additionally, other neurophysiological sig-
nal types are suitable for extracting information from the brain. The meth-
ods can be distinguished, in a first step, by the necessary signal recording
technologies into non-invasive and invasive.

Non-invasive technologies

The non-invasive signal acquisition can be further divided into direct and
indirect methods. Direct methods, like EEG and magnetoencephalography
(MEG) measure activity directly related to the summation of ionic current
flows in syncronously working neurons. Signals recorded non-invasively have
a limited spatial (especially in the case of EEG) and, partly, temporal res-
olution when compared to invasively recorded signals. This phenomenon is
caused by the scalp, the scull, the cerebrospinal fluid and finally the meninges
of the brain which attenuate the electromagnetic signals created by the neu-
rons. Although the activity signals are attenuated, the EEG is the most
commonly used signal acquisition method for BCI systems.

Two different neurophysiological phenomena (event-related potentials
(ERP) and event-related oscillations) of the EEG are suitable for BCI con-
trol. ERPs, including the P300 wave (a component typically induced by an
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infrequent task-related stimulus over the parietal cortex) [53, 163], slow corti-
cal potentials (SCP, positive or negative potential shifts in the EEG) [15, 17]
and steady-state evoked potentials (SSEP: visual (SSVEP) [108, 115, 144],
auditory (SSAEP) [138] or somatosensory (SSSEP) [117] stimuli) are time-
and phase-locked responses. In contrast to ERPs, event-related oscillations
are only time-locked but not phase-locked to the stimulus and can be seen
as changes in the functional connectivity of neuronal networks produced by
thalamocortical circuits [39, 120]. This phenomenon was already observed
by the neurologist Hans Berger in the early thirties of the last century [12]
for alpha EEG activity (8-12 Hz). Berger reported that different events can
block the ongoing alpha EEG activity. Additionally, primary sensory or
motor areas display oscillations in the frequency range of 8 to 13 Hz (the
so-called sensorimotor rhythm (SMR) or mu-rhythm) when they are not ac-
tivated (e.g. not performing motor execution or motor imagery (MI)). Inten-
sive computer-based investigations on this phenomenon were performend by
Pfurtscheller and colleagues in the late seventies [127, 129, 134]. Further, the
mu-rhythms can be associated with beta-rhythms in the frequency range of
18 to 26 Hz [131, 133]. Applying these features, the method of event-related
desynchronisation (ERD) and event-related synchronisation (ERS) [129, 133]
are useful for EEG-based communication [20, 135, 183].

The second method to investigate the electrical activity of the brain in a
direct way, is to detect the weak magnetic fields caused by the ionic current
flows with MEG. With this technique small fields in the range of pT to fT can
be measured with superconducting quantum interference devices (SQUIDs)
in a shielded enviroment. Although this technique combines excellent tem-
poral and good spatial resolution, a practical application is unrewarding be-
cause of the hardware requirements and operating expenses. Nevertheless,
the use of MEG as a signal acquisition method for BCI systems was investi-
gated [19, 85].

In contrast to the direct methods which detect the electrical activity,
indirect methods, like fMRI and fNIRS, measure localised changes of the
blood-supply related to the neuronal activity (for details see section 1.3.1). In
the case of fMRI for BCI [178, 179] the activation of brain regions is mapped
in real-time onto a high-resolution brain model of the subject. However, the
use of real-time fMRI for BCI requires high performance magnetic resonance
scanners and computers as well as techniques for faster acquisition, processing
and analysis of magnetic resonance images [153] and therefore a practical
application is, like for MEG-based BCI systems, not really preexisting. Just
as in the case of fMRI the fNIRS technique measures the metabolic changes
in the brain, but in contrast to fMRI the fNIRS devices (for details see
section 2.1) are smaller and moveable, less expensive, safe for long term use
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and less susceptible to motion artifacts. They are, therefore, more suitable
for BCI systems than MEG or fMRI.

Invasive technologies

Different invasive methods like the electrocorticogram (ECoG), where small
electrodes are placed directly on the surface of the cortex [94, 149], or im-
planted intracortically (small electrode arrays are inserted into the cortex) [71,
105], are possible and produce very good results. However, their invasiveness
limits the applicability and acceptance.

In conclusion, none of the mentioned (non-)invasive methods (EEG, MEG,
fMRI, fNIRS, ECoG, ...) are perfect for signal acquisition, and all have their
advantages and disadvantages. However, beside the EEG, which is at the mo-
ment the most commonly used signal acquisition method for BCI systems,
the fNIRS method also seems to be a promising technique for BCI signal
aquisition.

1.2.2 Approaches to BCI Control: The experimental
strategy

There exist two different strategies to gain BCI control. The first approach
is the so called ”operand conditioning” the second approach is the ”machine
learning” approch.

During operant conditioning, also known as ”biofeedback approach” [89],
specific parameters (features) of the recorded brain signals are presented
to the user, for example, in the form of a feedback bar. The user learns
by a trial-and-error strategy to control the presented parameter volitionally.
Therefore, the user receives continuous information about the alteration of
the parameter. Since feedback is provided, after repeated training different
brain states can be reproduced by the user and are suitable for use as con-
trol commands [17]. Investigations based on this approach are presented in
chapter 4.

In the second approach the training is transferred from the user to the
BCI system. To train and adapt the system to a user a sufficient amount of
training data is necessary. During training the user is required to repeatedly
produce specific brain patterns. From this data, features, describing impor-
tant signal properties, are extracted offline and used to train and optimize
a classifier (e.g. LDA) which can distinguish the specific brain patterns in
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an optimal way. The trained classifier is then used online in a subsequent
feedback session. Investigations based on this approach are presented in
chapter 3.

1.3 Basic concept of fNIRS

1.3.1 Neurophysiological background: The principle of
neurovascular coupling

Neurovascular coupling is a term for the interaction between the neuronal
(electrical) activity and the consequential changes in the regional cortical
blood circulation and metabolism of the brain tissue. The relationship be-
tween localised changes of the blood-supply and neural activity (first intro-
duced by Roy and Sherrington in 1890 [146]) is not only the basis for fNIRS
recording, but also for other recording techniques (e.g. fMRI or PET) based
on vascular responses [102, 174]. However, all these techniques map activity
indirectly via hemodynamic changes, for instance changes in the concentra-
tion of (de)oxygenated hemoglobin ((de)oxy-Hb)2 in the case of fNIRS, and
therefore, an understanding of this coupling mechanism is essential for inter-
pretation [44].

All human cells, including brain cells, require oxygen (via oxy-Hb) and
different essential nutrients to work properly (cellular metabolism). There-
fore, the brain tissue is well supplied with blood through a closely intertwined
network of blood vessels (arteriols, capillaries and venules). The exhcange
of oxygen and nutrients occurs at the capillaries and postcapillary venules
which carry metabolic products and the [deoxy-Hb] back to the heart. This
”metabolic activity of the brain is remarkably constant over time” [143]. The
brain represents only 2% of the body weight but requires about 20% of the
oxygen and nutrients [18, 29, 143]. Each additional activity of a specific
brain region increases the metabolic activity: more oxygen is consumed, the
cerebral metabolic rate of oxygenation (CMRO2) changes and therefore trig-
gers a focal increase in the cerebral blood flow (CBF). Such an increase is
required because ”ionic gradients degraded by neural activity must be restored
and neurotransmitter molecules repackaged” [24].

However, there is a discrepancy between the CMRO2 and the CBF. Fox
and Raichle [58] found that during the resting state an excellent correlation

2In the following sections the concentration of oxy-Hb and deoxy-Hb is denoted as
[oxy-Hb] and [deoxy-Hb]
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between CBF and CMRO2 exists, but during neuronal activation an ”uncou-
pling” between both factors occurs. They hypothesized that ”dynamic, phys-
iological regulation of CBF by a mechanism (neuronal or biochemical) depen-
dent on neuronal firing per se, but independent of the cerebral metabolic rate
of oxygen” occurs [58]. These findings, and the results of a follow up study
on nonoxidative glucose consumption during neural activity [59], prompted
further important studies on basic principles of neurovascular coupling mech-
anisms.

For example, Malonek and Grinvald [103] investigated the spatiotempo-
ral characteristics of the interactions between neuronal activity and cortical
microcirculation by optical imaging spectroscopy (measuring [(de)oxy-Hb])
and reported a sequence of three different physiological events after activa-
tion. First, they found a highly localised initial increase in [deoxy-Hb] which
occured within 2 s after activation onset. This ”initial dip” [103] indicates
that neuronal activity is accompanied by aerobic metabolism (as a change in
the CMRO2). In contrast to the clear occurrence of the increase in [deoxy-
Hb] they found only a weak (barely measurable) complementary reduction
in [oxy-Hb]. This observation led them to the postulation of a second event
which accounts for this weak reduction in [oxy-Hb]: Malonek and Grinvald
suggested, taking account the findings of Kuschinsky and Paulson [91], that
a fast and highly localized redistribution of the cerebral blood volume (CBV)
and the CBF may therefore be responsible. As the third event, a delayed
increase of [oxy-Hb] and decrease of [deoxy-Hb], caused by large increases of
CBV and CBF, was found. Grinvald and colleagues [103, 167] depicted the
resulting excess supply of oxygen, caused by this event, in response to the
consumption, caused by the neuronal activity, as ”watering the entire garden
for the sake of one thirsty flower” [103].

Summarizing these findings, there exist three main factors which par-
tially occur at the same time and affect the [oxy-Hb] and [deoxy-Hb] and
consequently the attenuation of the NIR light (for a detailed description see
chapter 1.3.2). These factors are:

• Cerebral metabolic rate of oxygenation (CMRO2)

• Cerebral blood flow (CBF)

• Cerebral blood volume (CBV)

Wolf et al. [181] investigated the isolated influence of CMRO2, CBF and
CBV on [oxy-Hb] and [deoxy-Hb] in detail. On the supposition of a one-
compartment model they found the following effects which lead, in combina-
tion, to a typical activation induced response of [oxy-Hb] and [deoxy-Hb]:
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CMRO2: An isolated increase in the CMRO2 causes an increase in the
[deoxy-Hb] and a decrease in [oxy-Hb] (depicted in Figure 1.2). These
changes occur because the oxygen is consumed without being replaced
sufficiently (aerobic metabolism).

Figure 1.2: Changes of [oxy-Hb] and [deoxy-Hb] related to an iso-
lated increase of the cerebral metabolic rate of oxygenation (CMRO2).
(Modified from [181].)

CBF: As shown in Figure 1.3 an increase in the CBF leads to an increase in
[oxy-Hb] and a decrease in [deoxy-Hb] because more oxygenated blood
will fill the compartment (washout effect) [181].

Figure 1.3: Changes of [oxy-Hb] and [deoxy-Hb] related to an isolated
increase of the cerebral blood flow (CBF). (Modified from [181].)

CBV: Figure 1.4 shows an increase in both concentrations caused by an
increase in the CBV. The difference in [oxy-Hb] and [deoxy-Hb] increase
depends on the oxygen saturation of the additional blood [181].
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Figure 1.4: Changes of [oxy-Hb] and [deoxy-Hb] related to an isolated
increase of the cerebral blood volume (CBV). (Modified from [181].)

Figure 1.5 shows a schematic depiction of the dynamics of a typical ac-
tivation induced response of [oxy-Hb] and [deoxy-Hb]. As one can see the
[deoxy-Hb] response exhibits a biphasic shape [102] during neuronal activa-
tion which is, as already mentioned, composed of two factors [103]: An early
increase (”initial dip”) starting at activity onset (caused by an increase in the
CMRO2) is followed by a decrease. This decrease is caused by an increase of
CBF and CBV [102]. In contrast the [oxy-Hb] respose exhibits a monophasic
shape [102] whereby the [oxy-Hb] increase is dominated by the increases of
CBF and CBV. After the end of the activity the [oxy-Hb] and [deoxy-Hb]
return to the baseline.

Figure 1.5: Schematic depiction of the typical dynamics of an activa-
tion induced response of [oxy-Hb] and [deoxy-Hb].
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1.3.2 Technical and physical background

The fNIRS technique uses the optical window in the NIR light spectrum
which was found by Jöbsis [80] in 1977. Within this spectral range (wave-
lengths about 700 to 1300 nm), light can penetrate the cranium and reach
sufficient depth [124] to allow an investigation of the metabolism in the cere-
bral cortex [80].

NIR light, which invades the tissue at a particular place at the head,
interacts with the tissue in several ways. The beam becomes diffuse through
scattering of the photons in the tissue.

The scattered photons follow a random path through the tissue, resulting
in a partial absorption of these photons through compounds in the brain
tissue. The interest in fNIRS therefore lies only on a few biological chro-
mophores which exist at reasonable concentrations and which absorb in the
given spectral range. Further it is important to differentiate between chro-
mophores (see Figure 1.63) which exist at fixed (e.g. water or lipids), or vari-
able concentrations and, most importantly, which vary their absorbance with
the oxidation state (e.g. hemoglobin (Hb) and myoglobin (Mb) or cytochrome
c oxidase and other respiratory enzymes). Only these chromophores provide
useful information of the changes in the metabolism and consequently on
neuronal activity. A detailed description of absorbing componds in the brain
tissue and their spectra can be found in the work of Mark Cope [31].

Figure 1.6: Absorption spectra of total tissue cytochrome enzyme,
deoxy-Hb, oxy-Hb, water and lipid.

3Data for total tissue cytochrome enzyme are taken from [31]; data for deoxy-
Hb, oxy-Hb, water and lipid are taken from the Oregon Laser Medical Center
(http://omlc.ogi.edu/spectra/).
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Beside the absorbed photons another part of the photons is back-scattered
and leaves the head several centimetre away from the source location [124].
Theoretical (Monte Carlo (MC) simulation) and experimental investigations
of Okada et al. [124] have shown that the photons travel in a crescent-shaped
path from the source to the detector (see Figure 1.7). If the back-scattered
photons are detected over a longer time period it is possible to draw con-
clusions about metabolic changes in the tissue area that is penetrated by
the photons. These changes, such as increased or decreased CBF, CBV or
changes in CMRO2 are associated with brain activity (see chapter 1.3.1)
and modify the tissue-characteristics. This means that the absorption and
scattering of the photons is changed and, hence, affect the detected light.
Therefore qualitative measures of brain activity can be obtained by measur-
ing the optical attenuation changes at various wavelengths (λi) [175].

While these underlying principles are universal, different approaches for
NIRS instruments (Continuous wave (CW), Time-resolved spectroscopy (TRS)
and Frequency-domain technique) are useable.

Figure 1.7: Photons travel in a crescent-shaped path from the source
to the detector. The figure shows an MC-calculated spatial sensitiv-
ity profile (sophisticated brain model) for a source-detector spacing of
30 mm. (Modified from [124].)

Continuous wave (CW) technique

The CW technique is the simplest method for NIRS instruments. All in-
struments used in this work are based on this technique, therefore a more
detailed description is given.
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Changes in the transmitted NIR light intensity (see Figure 1.8) are used
to calculate relative concentration changes in the chromophores, realized by
utilizing Beer-Lambert’s law (equation 1.1).

A = log

(
I0

I

)
= α · c · d, (1.1)

A is the attenuation (also known in the literature as optical density (OD)),
I0 [mW] is the light intensity entering the tissue, I [mW] is the light intensity
exiting the tissue, α [l/(mol · m)] is the specific extinction coefficient of the
absorber (data taken from [31]), c [mol/l] is the concentration of the absorber
in the natural unit of Molar concentration [M] and d [m] is the geometrical
distance between emitter and detector.

Figure 1.8: Schematic illustration of the CW technique. Light inten-
sity attenuation by the tissue is used to calculate the concentration. If
two or more light sources are used, the soures have to be A) modulated
with a sine oscillation (see chapter 2.1) or B) multiplexed, in order to
separate the light emitted from the sources. (Modified from [42].)

However, as already mentioned biological tissue is a highly scattering
medium. Therefore, the photons’ path length increases, compared to a trans-
parent medium, as a result of scattering events. This elongated path length
leads to higher scattering losses. In order to describe the light absorption
process the Beer-Lambert Law has to be modified [43] by terms taking into
acount this elongated path length (equation 1.2)

A = log

(
I0

I

)
= α · c · x · d+K. (1.2)
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The Beer-Lambert Law is extended by a differential path length factor x
(estimated factor, based on empirical studies [47]) which takes into account
the increased length and a term K takes into account the scattering loss.
This term is influenced by the geometry of the measurement and can be seen
as time-invariant in a small time interval [33]. Therefore the attenuation
change (caused by a concentration change ∆c ) between two time points (t1

and t2, t1 < t2) can be expressed by the following equation:

∆A = log

(
I0

I(t2)

)
− log

(
I0

I(t1)

)
= α ·∆c · d · x. (1.3)

To calculate the concentration changes of oxy-Hb and deoxy-Hb two wave-
lengths (λ1, λ2) are necessary. Therefore equation 1.3 has to be extended for
two absorbers and two wavelengths (equation 1.4 and 1.5),

∆Aλ1
xλ1 · d

=
(
α(λ1,oxy−Hb) ·∆coxy−Hb + α(λ1,deoxy−Hb) ·∆cdeoxy−Hb

)
(1.4)

and

∆Aλ2
xλ2 · d

=
(
α(λ2,oxy−Hb) ·∆coxy−Hb + α(λ2,deoxy−Hb) ·∆cdeoxy−Hb

)
. (1.5)

By combining both equations, relative concentration changes of oxy-Hb
and deoxy-Hb can be calculated (equation 1.6),

∆C = α−1 ·∆A = α−1 ·

[ ∆Aλ1
xλ1 ·d
∆Aλ2
xλ2 ·d

]

=

[
α(λ1,deoxy−Hb) α(λ1,oxy−Hb)
α(λ2,deoxy−Hb) α(λ2,oxy−Hb)

]−1

·

[ ∆Aλ1
xλ1 ·d
∆Aλ2
xλ2 ·d

]
=

[
∆cdeoxy−Hb
∆coxy−Hb

]
. (1.6)

Time-resolved spectroscopy (TRS)

For the TRS, ultrashort laser pulses with a duration of picoseconds are used.
The emerging light provides a temporal profile about the optical interaction
of the photons with the tissue (see Figure 1.9) [28, 42, 43, 126].

With this approach the mean optical path length L (for a given source
detector spacing d) and therefore the differential path length factor x can be
derived from the transit time (”time of flight”, [28]) t of the light, the speed
of light c and the refractive index n [21] of the tissue as follows [28, 43],
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Figure 1.9: Schematic illustration of the temporal profile of an ul-
trashort (picosecond) pulse, and the emerging intensity. (Modified
from [42].)

L = x · d =
c · t
n
. (1.7)

By using different wavelengths, absolute concentration values of the ab-
sorbers can be calculated. A more detailed description of the TRS technol-
ogy and the equations used for calculation of absorber concentrations can be
found elsewhere [28, 42, 43, 75, 126].

Frequency-domain technique (FDT)

The FDT is a cost-efficient alternative to the TRS method [75]. Theoreti-
cally with the FDT the same information as with the TRS can be calculated.
For the FDT the NIR light source is modulated with a high frequency oscil-
lation (f , in the range of 100 MHz). The intensity-modulated light passes
through the tissue and undergoes an attenuation and an phase shift ∆Φ (see
Figure 1.10) [42].

For frequencies, f , below 200 MHz this phase shift ∆Φ is linearly related
to the mean optical path length L [2, 42] which can be calculated, using the
speed of light, c, and the refractive index, n, [21] of the tissue, as follows [47],

L =
∆Φ · c

2π · f · n
. (1.8)

Therefore, with the knowledge of ∆Φ, a direct conversion of the attenu-
ation into absorber concentration is possible [42]. A detailed description on
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Figure 1.10: Schematic illustration of the Frequency-domain tech-
nique (FDT). Attenuation and phase shift are indicated. (Modified
from [33, 42].)

the underlying theory, different approaches, and requirements of FDT can
be found in [2, 27, 28].

1.4 Aim of this work

The main focus of this work was to explore the usefulness of fNIRS in the field
of optical and hybrid brain-computer interfaces. Special emphasis was put
on the use of brain patterns caused by the performance of a simple arithmetic
task which can be classified reasonably well in a single-trial approach. Further
investigations were performed on the biofeedback approach. Out of this
approach a preliminary feasibility study was carried out on the use of a
hybrid BCI system. This thesis is organized into the following chapters:

Chapter 1 introduces and defines the basics and principles of the fNIRS
technique. The underlying neurophysiological phenomena and the tech-
nical background of fNIRS recordings are presented in detail. Further
BCI basics and the required components of a BCI system are briefly
discussed.

Chapter 2 provides a detailed description of the fNIRS systems used in the
context of this work. Further signal processing methods used in this
thesis are presented. Preprocessing methods to reduce systemic signals
which influence the fNIRS recording will be detailed. Finally, feature
extraction and classification methods used are discussed.

Chapter 3 describes the concept of using hemodynamic responses caused
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by performing MA tasks as a control signal for an oBCI system. This
chapter is mainly based on three publications [8, 9, 130].

Chapter 4 describes the realization and evaluation of a real-time feedback
system based on a one-channel fNIRS-system for usage as an oBCI. This
chapter also includes a case study on using the oBCI system in combi-
nation with an SSVEP-based BCI application as a ”hybrid” BCI [128].

Chapter 5 contains a summary and conclusion of the present thesis.



Chapter 2

Methods

This chaper provides a detailed description of the fNIRS systems used in the
context of this work. Further signal processing methods principally used in
this thesis are presented. Preprocessing methods to reduce undesired sys-
temic signals which influence the fNIRS recording will be detailed. Finally,
feature extraction and classification methods, which are used in the frame-
work of this thesis, will be briefly discussed.

2.1 Signal acquisition: fNIRS-systems used

2.1.1 One-channel custom-made system

Inspired by the work of Coyle et al. [35] a one-channel fNIRS-system (Fig-
ure 2.1) was developed in the framework of a diploma thesis [4, 5]. With
this system characteristic hemodynamic responses during cognitive, visual
or motor tasks can be measured in real-time. The developed fNIRS-system
uses the continuous wave method (chapter 1.3.2) and operates at two dif-
ferent wavelengths. Two light emitting diodes (LEDs) with a wavelength of
670 nm and of 890 nm (L6112-01 and L2656-03, Hamamatsu Photonics K.K.,
Japan) are used as light sources. Both have a narrow spectral half width
(< 50 nm) and a narrow lobe. The LEDs are placed in direct contact with
the scalp (see Figure 2.2A). For light detection a single avalanche photodi-
ode (C5460-01, Hamamatsu Photonics K.K., Shizuoka, Japan), connected
to the scalp via an optical fiber with a diameter of 2.5 mm, is used. The
distance d between LED-sources and detector is 3 cm, which corresponds to
a penetration depth of approximately 2.5 cm [124]. In order to separate the
light emitted from the two sources, the amplitude of each LED was mod-
ulated with a sine oscillation (3 kHz and 7 kHz). A dual lock-in amplifier

19
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(Model 7265, AMETEK Signal Recovery, Oak Ridge, USA) was used to
obtain the intensities at the two modulated frequencies. These intensities
correspond to the two LED wavelengths. The modulation frequencies have
no influence on the absorption coefficients, since they are only determined
by the wavelengths of the LED-lights. The output of the lock-in ampli-
fier can be recorded, with different sampling frequencies, by a data acquisi-
tion card (NI PCI-6024E, National Instruments, USA). The recording and
analysis software is implemented in MATLAB and Simulink (MathWorks)
using rtsBCI [147] and BIOSIG (http://biosig.sf.net). The fNIRS sys-
tem measures relative changes of [oxy-Hb] and [deoxy-Hb] (implementation
of equation 1.6 in section 1.3.2) in the unit of µmol/l (further denoted as
µM) by using an estimated differential path length factor based on empirical
studies [47]. For comparison with the commercial multi-channel system the
concentrations can also be converted into the unit of mM mm. Since contin-
uous wave systems cannot measure the optical path length [75] the scale unit
molar concentration (mmol/l) multiplied by the unknown path length in mm
(further denoted as mM mm, for details see chapter 1.3.2) is also prevalent.
A picture of the complete setup is given in Figure 2.3.

Figure 2.1: Components of the fNIRS-system developed at Graz Uni-
versity of Technology. (Modified from [8].)
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Figure 2.2: A) Optode of the one-channel system and B) of the multi-
channel fNIRS-system. Both systems have a source-detector spacing
of 3 cm, which corresponds to a penetration depth of approximately
2.5 cm [124]. For further details on the one-channel optode see [4, 5].

Figure 2.3: Picture of the whole measurement system. The picture in
the upper left corner is the main module of the fNIRS system. The hard-
ware tower shows the whole fNIRS setup including the main module,
an external signal generator, an external power supply, an oscilloscope
for quality check, an ECG amplifier and the lock-in amplifier (from top
to bottom). The subject is wearing the helmet used for placing the
optodes over the prefrontal cortex. (Modified from [5].)
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2.1.2 Commercial multi-channel system

The commercial multi-channel system is an ETG-4000 (Hitachi Medical Co.,
Osaka, Japan; see Figure 2.4A), also based on the continuous wave principle
(section 1.3.2) but using laser diodes as light sources. Different optode probe
sets, consisting of a number of photo-detectors and light emitters, resulting in
a total of up to 52 channels can be used. Figure 2.5 shows different schematic
illustrations of multi-channel arrays and their projections on the cortical sur-
face used for measurements in this thesis (chapter 3.1, 3.2 and 3.3). The sys-
tem uses two different wavelengths (695±20 nm and 830±20 nm) and its fre-
quency is modulated for wavelengths and channels to prevent crosstalk [168].
The inter-optode distance is equal to the one-channel custom-made system
(3 cm), which results in the same penetration depth (approximately 2.5 cm).
The fixed sampling rate of the system is 10 Hz. The fNIRS system measures
relative changes in oxy-Hb, deoxy-Hb and total Hb concentration in the unit
of mM mm.

Figure 2.4: A) Picture of the commercial system ETG-4000 (Hitachi
Medical Co., Osaka, Japan). B) Recording environment. The system is
placed outside a shielded measurement box. C) Multi-channel optode
probeset.
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2.2 Signal processing methods

2.2.1 Preprocessing

With fNIRS characteristic hemodynamic changes in [oxy-Hb] and [deoxy-Hb]
during cognitive, visual, or motor tasks can be measured (e.g. [60, 67, 66, 73,
151, 165, 186]). For the measurement, the NIR light invades the tissue at a
particular place at the head, penetrates the cranium and reaches sufficient
depth [124] to interact with the cortical tissue in several ways. Parts of the
photons are back-scattered and leave the head several centimeters away from
the source location [124]. In order to determine whether the recorded signal
is due to a local functional activity of the human cerebral cortex or to global
interfering signals of the cardiovascular system, it is essential to identify
systemic influences. Figure 2.6 shows a spectral analysis of the recorded [oxy-
Hb] signal, revealing various quasi-periodic physiological rhythms. Given the
typical time constant of the activation response (about 5 to 10 s, [51, 102]),
these rhythms, such as blood pressure (BP), respiratory and cardiovascular
rhythms, may influence and superimpose the recorded activation [8, 34, 51,
87].

Figure 2.6: Power spectral density of the [oxy-Hb] signal (one subject)
showing the influence of pulse waves at frequencies of 1.2-1.7 Hz (equiv-
alent to 72-102 bpm), respiration at around 0.34 Hz (20 breaths/min)
and Mayer wave at a frequency of 0.085 Hz.

The frequency of the pulse waves is typically in the range of 1 Hz (60 bpm)
to 2 Hz (120 bpm). The respiration frequency lies between 0.2 Hz and
0.4 Hz (around 18 breaths per minute) and the Mayer-Traube-Hering waves
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(MTH) [40, 87], which are 3rd order BP waves, occur with a frequency of
around 0.1 Hz. The sources of these influences are located in the tissue over-
laying the brain as well as in the brain tissue itself. To decrement the influ-
ence of these global interfering signals, different methods are suitable. These
methods include the usage of different types of low-pass (e.g. [8, 60, 140])
or moving average filters (e.g. [156]) as well as pulse regression [64], peak
averaging [36], spatial filtering [130] or more sophisticated methods such as
adaptive filtering (e.g. [113, 189]), ICA [52] and PCA [188] (for a review
see [104]).

Filters in the frequency domain

Using standard finite impulse response (FIR) or infinite impulse response
(IIR) filtering is the simplest approach to improve the signal quality and
facilitate the subsequent processing stages. For example, in chapter 3.1 a
0.09 Hz low-pass Butterworth filter of order 4 with 60 dB in the stop band
(stop frequency at 0.45 Hz) is used to reduce pulse and respiration related
effects. The effects of Mayer waves were not removed with this filter. Further-
more, a 0.01 Hz highpass filter is used to remove baseline drift. Figure 2.7
compares the recorded signal before and after applying the preprocessing
step. Further in online studies moving average filters are used to reduce the
physiological noise (see chapter 4.1.1 or [156]).

Figure 2.7: Representative case (subject S1, experiment 2, chap-
ter 3.1) of filtering in the frequency domain. A) Time series, power
spectral density and averaged response of [oxy-Hb] and [deoxy-Hb] dur-
ing the performance of an MA task before and B) after applying a
0.09 Hz low-pass and a 0.01 Hz highpass filter.
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A disadvantage of such a filtering process is a possible reduction of hemo-
dynamic responses caused by functional activity of the human cerebral cortex
as well as the global interfering signals. This is due to the fact that parts
of both components may overlap in some frequency bands, especially in the
case of Mayer waves, which are located around 0.1 Hz [104, 189]. Therefore
other preprocessing procedures might be useful.

Spatial filtering

Some methods to reduce the physiological noise may evolve from approaches
used in fMRI or EEG analysis [104, 189]. For example, spatial filters, like
bipolar or Laplacian derivation and common average reference (CAR), are
used in the analysis of multichannel EEG signals. A new approach, for the
first time implemented in [130], is the application of such spatial filters. For
example in chapter 3.2 the CAR approach is used to reduce the influence of
BP changes in the hemodynamic signal. In EEG recordings CAR is used in
order to eliminate the influence of the reference electrode, for fNIRS the idea
behind the application of CAR is the fact, that the global interfering signals
influence all channels. For this purpose the mean of all channels is calculated
and subtracted from each single channel and for every time point. In this
way interfering signals should be reduced.

Figure 2.8 shows the application of CAR filtering in the case of a right
hand movement task on a representative subject. The measurement grid was
arranged above the motor cortex. For fNIRS recording the multichannel con-
tinuous wave system (chapter 2.1) was used. Furthermore, the continuous
BP signal (CNAPTM Monitor 500, CNSystems Medizintechnik AG, Graz,
Austria) and the respiration (resp) were recorded. From the BP signal the
diastolic BP (BPdia) was extracted. Figure 2.8A depicts the averaged con-
centration changes (mean ± SE) of [oxy-Hb] and [deoxy-Hb] during hand
movement execution. As one can see nearly all channels exhibit the same
hemodynamic response, which is caused by the performance of the motor
task and superimposed by a global BP change (the averaged BPdia response
is also shown in the Figure). Additionally, the topographic distribution of the
[oxy-Hb] response (calculated for the time range 6 to 8 seconds) indicates an
activation pattern over the whole motor cortex. After applying CAR filtering
(Figure 2.8B), the global interfering signal is removed and the multichannel
map and the topographic distribution of the responses exhibit a clear focal
activation pattern, which corresponds to the given task.
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Figure 2.8: An example of applying spatial filtering. A) Averaged
concentration changes (mean ± SE) and topographic distribution of
[oxy-Hb] and [deoxy-Hb] during hand movement execution (seconds
0 to 6) before and B) after applying CAR filtering. Additionally the
averaged BP response which superimposes the hemodynamic activation
response is shown.
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Other methods currently under investigation

In this section further methods, which are currently under investigation (not
used in this thesis), are presented. As mentioned above the application of
spatial filters is only usable for multichannel recordings. Therefore other
methods, which can be applied on oBCI approaches using only one or two
channels (see chapter 3.3 and 4.1) are under investigation by our group. In
this part preliminary results on the reduction of physiological rhythms using
ICA and transfer function models (TF) are presented. This section is based
mainly on one publication [6]:

• G. Bauernfeind, I. Daly, and G. R. Müller-Putz. On the removal of
physiological artifacts from fNIRS. Proceedings of the 3rd TOBI Work-
shop 2012, 24-25, 2012.

The investigations were carried out on a group of 10 subjects (4 male, 6
female, aged 24.2 ± 4.2 years) who participated in an fNIRS study on the cor-
tical effects of BCI training [7]. In this study the subjects performed sessions
of cue-based right hand or feet motor imagery (MI). For fNIRS recordings
the multichannel continuous wave system (chapter 2.1) was used. Further-
more, in two of the sessions the continuous BP signal ((CNAPTM Monitor
500, CNSystems Medizintechnik AG, Graz, Austria) and the respiration were
recorded. From the BP signal the BPdia was extracted. These two signals
(BPdia and resp) were band-pass filtered with 0.07-0.13 Hz and 0.2-0.4 Hz,
respectively, and used in the following approaches to reduce the systemic
perturbances in the recorded [oxy-Hb] signal.

In the ICA approach4 the [oxy-Hb] signal is decomposed into independent
components (ICs) via SOBI ICA [11]. The coherence between each IC and
the BPdia and resp signals is then calculated. ICs for which the coherence
with one of the systemic signals is higher than the mean of all the coher-
ence scores with that artifact signal plus 1 standard deviation are flagged for
removal. The choice of this threshold is based upon a compromise between
removal of the components with the largest coherence with artifact signals
and the desire to retain components with small or zero artifact contamina-
tion. The remaining ICs not flagged for removal are used to reconstruct the
cleaned [oxy-Hb] signals.

4Special thanks to Ian Daly for implementing the ICA approach and performing parts
of the data analysis.
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In the TF approach, by using the BPdia and resp signals, TF models are
applied to remove the related perturbation (Figure 2.9 depicts the use of the
TF on a representative dataset). These models are in the form of

X [n] =
m∑
u=0

guY [n− u] + N [n] , (2.1)

where X refers to the time series of the signal and Y to the source of pertur-
bation [55]. The term

m∑
u=0

guY [n− u] , (2.2)

stands for the perturbance and N is the signal without the influence. By min-
imizing the mean squared error E (N2 [n]) the parameters gu of the transfer
functions are estimated

γxy (−j) =
m∑
u=0

guγyy (u− j) , (2.3)

with j = 0, 1, 2, ...,m where γxy is the autocovariance function of Y [n] and
γxy is the cross-covariance function between X [n] and Y [n].
Finally, one needs to find the optimal value of m in equation (2.2). Ac-
cording to [55] the values for m were chosen between 5 and 15. With the
calculated parameters of gu it is now possible to compute the signal without
the perturbance

N [n] = X [n]−
m∑
u=0

guY [n− u] . (2.4)

For further information on this algorithm see [55].

To compare both approaches the relative [oxy-Hb] power reduction (av-
eraged over the used channels) in the frequency bands between 0.05 and
0.15 Hz, for BP influence (taking into account the frequency roll off of the BP-
dia processing), and 0.2 and 0.4 Hz, for the respiration, were calculated (Fig-
ure 2.10A). Furthermore, the power reduction in the non-influenced bands
(0 - 0.05, 0.15 - 0.2 and 0.40 - 0.8 Hz), denoted as stability, was investigated.
Good artifact removal will reduce the power in the BP and respiration bands
while making no significant changes to the power in the rest of the spec-
trum. Hence, the lower the stability measure the more accurate the removal
of artifacts.
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Figure 2.9: Representative case of applying TF models for BP and
respiration reduction. A) Averaged concentration changes (mean±SE)
and topographic distribution of [oxy-Hb] and [deoxy-Hb] during foot
movement imagination (seconds 0 to 6) before and B) after applying
TF. Also the power spectrum illustrating percentage reduction in Mayer
wave and respiratory rhythms (averaged over all channel) is shown for
[oxy-Hb] and [deoxy-Hb].
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With TFs a mean reduction of 47% (BP) and 28% (respiration) was pos-
sible (Table 2.1). No significant difference (for details see Figure 2.10B) was
found between TF and ICA (44% (BP), 18% (respiration)) using Student’s
t-test. Comparing the stability a significant difference (t(19)=-6.11; p<0.01)
between ICA (24%) and TFs (0.3%) can be found.

Figure 2.10: A) Example power spectral density illustrating percent-
age reduction in Mayer wave and respiratory rhythms via ICA and TFs
on a representative subject. B) General comparison between ICA and
TF. (Modified from [6].)

Both, ICA and TFs, are seen to produce large reductions in Mayer wave
and respiratory influences on the [oxy-Hb] signals (Figure 2.10). However,
while TFs induce only small changes in non-artifactual signal components
ICA induces much larger changes. This suggests that TFs are the most
suitable choice for artifact reduction. However, TFs require a large amount
(around 60s) of data to estimate the coefficients before they can be applied.
By contrast ICA does not require any previous measures of the signal. Hence,
while TFs seem to be more suitable for offline analysis in neuroscientific
studies ICA may be more suitable for online artifact removal and use in an
oBCI.
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2.2.2 Feature extraction

After the raw signals have been preprocessed, in the next step, features de-
scribing important signal properties are extracted from the data. The goal
of this step is to find an appropriate representation of the signals and to
simplify the signal information for classification.

Genres of features

Different genres of features, e.g. amplitude measures (concentration values of
one or more channels at a specific time point or duration), slope (signal slope
over a predifined time window), laterality (differences in activity between two
spatial measurement positions) and variance (measure of signal spread) are
useable. Furthermore, there are four strategies to calculate these features.
The first strategy is to use the raw NIR light intensity, the second is to
calculate [oxy-Hb] and [deoxy-Hb] signals and use one of these signals alone.
The third strategy is to use [oxy-Hb] and [deoxy-Hb] signals together, and
the last one is to use total hemoglobin ([Hbtot] = [oxy-HB] + [deoxy-Hb])
signals.

For example, in [9, 36, 100, 155] concentration values of [oxy-Hb] and
[deoxy-Hb] are used. Whereas, in [139] only the amplitude measures of NIR
light intensity are used. Other studies use, the slope [140] or combine different
genres of features [112, 164]. In this thesis amplitude measures of [oxy-Hb]
(chapter 3.3, 4.1 and 4.2) as well as [deoxy-Hb], [Hbtot] and pairs of [oxy-Hb]
and [deoxy-Hb] (chapter 3.3) are used as features.

Feature selection

After a set of features has been extracted from the signals the next step is
to reduce the number of features (too many features lead to a poor general-
ization of the classification model) and select only those features which are
important for detection or which contribute most to a good online separation
of the different classes. Normally this step is done offline, whereby different
methods to find a suitable subset of features are usable.

An optimal, but time-consuming, approach is to search in all possible
feature combinations and choose a subset of features which yields the best
result. This approach is known as ”exhaustive search” or ”brute search” and
was used in chapter 3.3 to identify the best performing antagonistic feature
combination.

In addition to the exhaustive search, other search strategies (exponential,
sequential and randomized algorithms) are suitable if the feature set is too
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large. The most popular algorithm, used in many BCI studies, is the so-called
sequential floating forward selection (SFFS, for details on this algorithm
see [141]).

2.2.3 Classification

Provided features from the feature extraction block are used to assign the
brain signal to a category. Several classification schemes are usable. Popu-
lar classifiers investigated for use in fNIRS based oBCI systems are Fisher’s
linear discriminant analysis (LDA [46] used e.g. in [9, 100, 140, 164]), the
quadratic discriminant analysis (QDA, used in [140]), support vector ma-
chines (SVM [172] used in [155, 164]) and Hidden Markov models (HMM [142]
used in [139, 155]).

As Fisher’s LDA is used in this thesis, a short description of this classifica-
tion scheme is given. The LDA is a technique for reducing the dimensionality
of the data and identifies a linear hyperplane to discriminate between two
different classes (C1 and C2, for more than two classes several classifiers can
be combined). The hyperplane is chosen in such a way that the distance be-
tween the means of the classes is maximized whereas the interclass variance
is minimized. Therefore an optimal weight vector w has to be found from
training samples, which optimally separates the two different classes by using
a discriminant function y. This function can be written as follows

y = wTx + b0 (2.5)

where y is the calculated output value for a candidate feature subset x of
an unknown class and b0 is the bias or threshold. If y is greater than zero
the data can be classified as class C1 or class C2 if y is less than zero.
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Investigations on the potential
feasibility of using simple
mental arithmetic for
controlling an oBCI

In recent years, the potential feasibility of using functional near-infrared spec-
troscopy (fNIRS) technology alternatively to (e.g. [36, 118, 155, 164]) or in
combination with electroencephalography (EEG) [54, 128] for brain computer
interface systems (optical and hybrid BCIs) was investigated. In particular,
a number of studies could show that various mental tasks, such as motor im-
agery [35, 36, 82, 153, 154, 155] as well as mental arithmetic (MA) and mental
singing [118, 139, 140] or other higher cognitive tasks [3, 100, 121, 164, 171]
are suitable for optical BCI (oBCI) applications. Whereas the use of motor
imagery requires optode placement over the motor cortex the use of higher
cognitive tasks which are associaded with prefrontal cortex (PFC) activity
seems to be more practical and user-friendly (easy and fast optode place-
ment) and suitable for application outside of the lab. In addition a frontal
optode placement avoids signal attenuation and motion artifacts caused by
hair [36].

It is known that the frontal cortex plays a major role in solving an MA
task. Previous neuroimaging studies using functional magnetic resonance
imaging (fMRI) exploring arithmetic tasks revealed left-sided and/or bilat-
eral activation of the ventrolateral (VLPFC) and dorsolateral (DLPFC) pre-
frontal cortex [86, 145, 107] during simple arithmetic operations like one-digit
addition, subtraction and multiplication tasks. Furthermore, several neuro-
scientific studies using fNIRS have also demonstrated the implication of the
PFC during MA [72, 76, 77, 165].

35
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This chapter investigates the concept of using hemodynamic responses
caused by performing MA tasks as a control signal for an oBCI system and
is based mainly on three publications [8, 9, 130]:

• G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller.
Development, set-up and first results for a one-channel near-infrared
spectroscopy system. Biomed Tech (Berl), 53(1):36-43, 2008.

• G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper.
Focal frontal (de)oxyhemoglobin responses during simple arithmetic.
Int J Psychophysiol, 76(3):186-92, 2010.

• G. Bauernfeind, R. Scherer, G. Pfurtscheller, and C. Neuper. Single-
trial classification of antagonistic oxyhemoglobin responses during men-
tal arithmetic. Med Biol Eng Comput, 49(9):979-984, 2011.

3.1 Study 1: Development, set-up and first

results for a one-channel near-infrared

spectroscopy system

Different mental arithmetic (MA) experiments were carried out as part of
the presented study [8]. All experiments were in compliance with the World
Medical Association Declaration of Helsinki. The aim of these experiments
was to measure hemodynamic changes in [oxy-Hb] and [deoxy-Hb] caused
by different MA tasks to identify stable and reproducible activation patterns
and to identify reactive optode positions which could be used for further
oBCI experiments.

3.1.1 Materials and methods

Experiment 1

A group of five subjects (S1 to S5; 3 males and 2 females, all right-handed)
aged 28.4 ± 6.3 years (mean ± SD) participated in this study using the
custom-made one-channel system (for a detailed description of the system
see chapter 2.1). For artifact reduction (pulse and respiration related effects)
a 0.09 Hz low-pass Butterworth filter of order 4 with 60 dB in the stop band
was used. The effects of Mayer waves were not removed with this filter (for
further details see chapter 2.2). In addition, a 0.01-Hz highpass filter was
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used to remove baseline drift. The subjects were seated in a comfortable
armchair. The sources and the detector were placed above the medial area
of the anterior prefrontal cortex, 1.5 cm to the left and right of position FP1
(Figure 3.1A), respectively, according to the international 10-20 system for
EEG recording [74]. During the task, subjects had to perform an arithmetic
operation. In detail, after a visual cue, the subjects had to subtract two
three-figure numbers presented on a monitor within 10 s (e.g., 793-247), after
that a pause of 30 s followed. One recording session consisted of six trials
and lasted approximately 4.3 min. The timing of the experiment is shown
in Figure 3.2. Each subject performed four recordings on two days, resulting
in 24 trials, except for subject S1, who performed 42 trials (seven recordings
in 3 days). From this data the mean task-related concentration changes of
[oxy-Hb] and [deoxy-Hb] referred to a 10 s baseline interval prior to the task
(seconds -10 to 0) were calculated in the unit of µM.

Figure 3.1: A) Optode placement of the one-channel custom-made
system (two light emitting diodes, one detector) and B) multi-channel
fNIRS-system. The multi-channel array was arranged in such a way
that channel 2 was placed over the FP1 position, similar to the one
channel-system. (Modified from [8]; Picture with written permission of
the subject.)

Experiment 2

Measurements were made for a group of 10 subjects (S1, S5 and S6 to S13;
5 males and 5 females, all right-handed) aged 26.6 ± 3 years using the one-
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Figure 3.2: Time course of the MA tasks. After a waiting period
of 11 s, six trials were performed. The time course of one of these
trials is shown separately. 2 seconds before the task started, a green
bar appeared. After the cue (e.g., 793-274 for experiment 1 or 78-7 for
experiments 2 and 3) the subject had to perform subtractions (repeti-
tively for experiments 2 and 3) for 10 s until the green bar disappeared,
which was followed by a pause of 30 s. (Modified from [8].)

channel system. The experimental set-up was the same as for experiment 1,
but the task differed. Instead of performing a single subtraction, subjects
had to perform repetitive subtractions within a time slot of 10 s (e.g., 97-
4=93, 93-4=89, 89-4=85,...; Figure 3.2). For each subject, seven recordings
were made on one day, resulting in 42 trials each. Afterwards the mean
task-related concentration changes of [oxy-Hb] and [deoxy-Hb] referenced to
a 10 s baseline interval prior to the task (seconds -10 to 0) were calculated
for each subject.

Experiment 3

To evaluate the results obtained, additional measurements of four subjects
(S1, S5, S9, S12) from the group of experiment 2 were performed using a com-
mercial multi-channel fNIRS system (ETG-4000, Hitachi Medical Corpora-
tion, Osaka, Japan; for a detailed description of the system see chapter 2.1).
The same paradigm was used as in experiment 2. The 24 channel array (a
detailed drawing is given in Figure 3.5B) of this system was arranged the way
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that channel 2 was placed over the FP1 position, similar to the one-channel
system (see Figures 3.1 and 3.5A). The distance between the source and
the detector is the same as in the one-channel system (d = 3 cm).

The data of experiment 2 (recalculated in mM mm) and 3 were compared
with a cross-correlation based on equation 3.1 of the averaged [oxy-Hb] and
[deoxy-Hb] responses of channel FP1 of both systems. The data of the whole
trial time was used. The Pearson correlation coefficient rxy and the p-values
for the hypothesis that both signals are the same, are calculated by:

rxy =
sxy
sxsy

=
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2
i − (

∑
xi)2

√
n
∑
y2
i − (

∑
yi)2

(3.1)

with n being the length of the signals x and y, sx and sy being the stan-
dard deviation and sxy the covariance of the two signals. So the correla-
tion coefficients r[oxy−Hb] and r[deoxy−Hb] can be calculated by inserting the
one-channel time course as x and the corresponding channel of the multi-
channel-recording as y in the above equation.

The significance of the correlation was calculated by testing the null hy-
pothesis that the ”product-moment correlation coefficient” is zero using Stu-
dent’s t-test on the statistic t = r ·

√
n−2√
1−r2 .

3.1.2 Results

Experiment 1

Mean changes in [oxy-Hb] and [deoxy-Hb] based on 24 trials for five subjects,
with the exception of subject S1 (42 trials), are displayed in Figure 3.3. The
MA task was always performed between t = 0 and 10 s (marked as the
shaded area in Figure 3.3). All subjects showed a similar activation pattern
involving a decrease in [oxy-Hb] and an increase in [deoxy-Hb].

Experiment 2

The results for seven out of ten subjects based on 42 trials each are shown
in Figure 3.4. Owing to exceptionally high intra-record variability caused by
fitful breathing during the experimental epoch (e.g., a cessation of breathing
when solving the MA task), three subjects did not deliver comparable results
and were excluded. The plots reveal the same significant decrease in [oxy-
Hb] and increase in [deoxy-Hb] in each subject, as found in experiment 1 (see
Figure 3.3), except for S9, who exhibited a decrease in [deoxy-Hb].
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Figure 3.3: Mean concentration changes (mean ± SE) for subjects
S1 (enlarged image) and S2 to S5 during mental arithmetic experiment
1 (N = 42). The shaded area indicates the time period of the MA
task. [oxy-Hb] is plotted in orange and [deoxy-Hb] in blue. (Modified
from [8].)

Experiment 3

The results for four of the subjects who took part in experiment 2 (S1, S5, S9
and S12) are reported in this section and the result for one of these subjects
(S1) is shown in Figure 3.5C. The large image shows channel 2, which was
placed over position FP1, similar to the experiments with the one-channel
system. To compare signals measured with the one-channel system and the
multi-channel system, the result from experiment 2 (recalculated in mM mm)
is included in the large image. Cross-correlation of [oxy-Hb] and [deoxy-
Hb] data for both systems were performed and revealed a highly significant
(p<0.001 for [oxy-Hb] and [deoxy-Hb]) correlation for all subjects (detailed
values are given in Table 3.1). It could be demonstrated that, independently
of the fNIRS system used, the same time course of [oxy-Hb] and [deoxy-Hb]
changes could be obtained.
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Figure 3.4: Concentration changes (mean ± SE) for 7 subjects (en-
larged image, subject S1) during mental arithmetic experiment 2 (based
on 42 trials for each subject). (Modified from [8].)

3.1.3 Discussion

The experiments with slightly different MA tasks (one subtraction for exper-
iment 1 and repetitive subtractions within the task for experiments 2 and
3) revealed relatively reproducible results independent of the system used
(custom-made one-channel system and commercial multi-channel fNIRS sys-
tem). Of special interest are the unexpected [oxy-Hb] and [deoxy-Hb] re-
sponses during the MA task. In all experiments, with both fNIRS systems,
[oxy-Hb] decreased and [deoxy-Hb] increased. This is in contrast to other
results reported (e.g. [165] or [187]). For example, Tanida and colleagues
investigated the relationship between asymmetry of the prefrontal cortex ac-
tivity and the automatic nervous system (ANS) response during MA [165].
They found increases of [oxy-Hb] and total hemoglobin (=[oxy-Hb]+[deoxy-
Hb]) associated with decreases of [deoxy-Hb] in the bilateral PFC. On the
other hand, Hoshi and colleagues [76] found in 9 of 33 healthy subjects the
same decrease in [oxy-Hb] and increase in [deoxy-Hb] over frontal regions of
the dominant hemisphere during MA tasks performance as reported in this
study. However, the remaining 24 subjects showed an increase in [oxy-Hb]
and a decrease in [deoxy-Hb].

In principle, one reason for such unexpected [oxy-Hb] and [deoxy-Hb] re-
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Figure 3.5: A) Schematic illustration of the bilateral positioning of
the two 3x3 arrays. B) Positional layout (2x3x3) of the sources and
detectors. C) Mean concentration changes (mean ± SE) of 24 channels
for subject S1 (42 trials) during the MA task in experiment 3. The
enlarged image shows channel 2, which was placed over the FP1 po-
sition, similar to the one-channel system. For comparison, the curve
shape from experiment 2 is included in the enlarged image. (Modified
from [8].)

sponses could be that extracortical (scalp) effects dominate the results, but
for a source-detector spacing greater than 20 mm the intensely sensitive re-
gion is concentrated to the gray matter [62, 122] and a considerable amount
of the signal changes originates from hemodynamic changes at the surface of
the brain and in the gray matter [123]. Another argument supporting the
assumption that the present data are cerebral signals is that the tissue perme-
ated by the NIR light showed a clear vascular and metabolic response to the
experimental task. This conclusion is confirmed by the results of experiment
3, which demonstrated that, independently of the fNIRS system used, the
same task-dependent time course for [oxy-Hb] and [deoxy-Hb] changes could
be obtained (Figure 3.5C). Another reason for the unexpected responses con-
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Table 3.1: Cross-correlation (r) results of the averaged [oxy-Hb] and
[deoxy-Hb] responses between both systems during experiments 2 and
3. Highly significant values (p<0.001) are marked with a **.

subject ID r[oxy−Hb] r[deoxy−Hb]
S1 0.770 ∗∗ 0.973 ∗∗

S5 0.647 ∗∗ 0.404 ∗∗

S9 0.770 ∗∗ 0.748 ∗∗

S12 0.698 ∗∗ 0.892 ∗∗

cerns the task chosen, since neuronal activation might be more complicated
during MA.

The neural networks involved in mental arithmetic operations are dis-
tributed over the frontal cortex, the inferior parietal lobule and other ar-
eas [41, 86, 107, 145] and are not located exactly under the optodes placed
over the frontal brain. Some evidence for this hypothesis can be found in the
data of subject S1 in experiment 3 (Figure 3.5C). The signals in channels
5, 10 and 12 were similar to that in channel 2 (FP1 position); in contrast,
the channels around channel 6, which corresponds roughly to the dorsolateral
prefrontal cortex [125], exhibited different signals. Thus, the frontal [oxy-Hb]
decrease and [deoxy-Hb] increase may be explained as a surround effect of
an [oxy-Hb] increase and [deoxy-Hb] decrease in areas not yet covered with
the measurement grid. Such a surround effect was already reported during
EEG recordings and is known as ”focal event-related desynchronization /
surround event-related synchronization” [162], but has also been observed in
blood flow studies [45].

However, the relatively low intra-subject variability in the time course of
the hemodynamic response measured over the FP1 position during the MA
task and the reproducibility of the response within different MA experiments
provide evidence that an MA task is suitable for designing an fNIRS-based
oBCI system using only a single channel [36]. Nevertheless, online signal
detection with an optical BCI could be relatively easier with antagonistic ac-
tivation patterns, which means that the hemodynamic responses displaying
an opposite polarity (e.g. [oxy-Hb] increase and decrease) at different optode
locations. But this needs further inquiry involving a more detailed investiga-
tion on the spatial and temporal characteristics of activation patterns caused
by the performance of a simple MA task.
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3.2 Study 2: Focal frontal (de)oxyhemoglobin

responses during simple arithmetic

As stated in the discussion of study 1 (section 3.1), the spatial and tem-
poral characteristics of activation patterns caused by the performance of a
simple MA task need further inquiry. Therefore, the purpose of the present
study [130] was to examine the changes of [oxy-Hb] and [deoxy-Hb] during
the performance of a simple mental arithmetic task over the prefrontal cortex
using a commercial multi-channel fNIRS system. A further goal of this study
was to determine whether a simple arithmetic task can elicit focal changes of
[oxy-Hb] and [deoxy-Hb] over prefrontal cortex locations which can be used
for future optical BCI systems.

3.2.1 Material and methods

Subjects and experimental procedure

The investigations were carried out on a group of ten paid University students
(five males and five females, all right-handed) aged between 26.1 ± 2.7 years
(mean ± SD). The subjects abstained from caffeine before recording, were
seated in a comfortable armchair, and gave written informed consent before
the experiment. The study was approved by the ethics committee of the
Medical University of Graz.

The subjects were asked to serially subtract a one-digit number from
a two-digit number (e.g. 97-4; the same task as in experiment 2 and 3
in section 3.1). Prior to each task a 10 s baseline interval was recorded.
During the task the subjects had to sequentially subtract a one-digit number
from a two-digit number (e.g., 97-4=93, 93-4=89, ...; the initial subtraction
was presented visually on a monitor) as quickly as possible for 12 seconds;
afterwards, a 28 s resting period followed, resulting in a total trial length of
40 s. During the pause, the subjects were instructed not to move and to stay
relaxed by just looking at the black screen. In sum 24 trials were collected.
To avoid enhancement of 3rd order BP waves (so called Mayer waves, [40, 87])
or their sub-harmonics, an experimental paradigm with 12 s activity phase
and 28 s pause was chosen. It is very important to control these waves since
they have large magnitudes and can mask task-related changes [8, 34, 51]
(for further details see chapter 2.2).
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Data acquisition and processing

A continuous wave system (ETG-4000, Hitachi Medical Corporation, Os-
aka, Japan; for a detailed description of the system see chapter 2.1) was
used to record brain oxygenation. The used optode probeset consists of 16
photo-detectors and 17 light emitters (3x11 grid), resulting in a total of 52
channels. The sampling rate was set to 10 Hz. The distance between source
and detector was 3 cm. The lowest line of channels was arranged along the
FP1-FP2 line of the international EEG 10-20 system [74], with channel 48
exactly at the FP1 position (Figure 3.6A). In order to allow a probabilistic
reference to cortical areas underlying the measurement channels a proce-
dure which projects topographical data based on skull landmarks into a 3D
reference frame (MNI-space, Montreal Neurological Institute) optimized for
fNIRS analysis [152] was used. So for each fNIRS channel position (Fig-
ure 3.6B), a set of MNI coordinates (x, y, and z) was calculated together
with an error estimate (SD). The centers of the circle regions represent the
locations of the most likely MNI coordinates for the fNIRS channel projected
on the cortical surface. The edges represent the boundaries defined by the
standard deviation. Furthermore this procedure allows comparison of the
results to results provided by similar fMRI studies (e.g. [86, 107, 145]). For
further details on the corresponding anatomical structures see [125].

After a visual inspection of the raw fNIRS data, channels with poor signal
quality were marked (in three subjects; two, four and nine channels respec-
tively). Afterwards, a common average reference (CAR) spatial filter (for
details see chapter 2.2) was used to remove global influences (e.g. changes
in heart rate or respiratory influences). Therefore, for every time point, the
mean of all non-marked channels was calculated and subtracted from each
channel. For artifact reduction, a 0.09 Hz low pass Butterworth filter of order
4 with 60 dB in the stop band was designed. Additionally, a 0.01 Hz high
pass filter was used to remove baseline drifts. For further details, see [8]. The
subject with nine marked channels displayed too many artifacts and was re-
moved from further analysis, and a second subject showed no stable pattern
and was also omitted.

Calculation of task-related changes and topographic distribution

The mean task-related changes of [oxy-Hb] and [deoxy-Hb] referred to a 10 s
baseline interval prior to the task (seconds -10 to 0) were calculated for each
non-marked channel. For the marked channels, the changes were calculated
by interpolating the surrounding channels.
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The topographic distributions during the tasks are further visualized by
plotting the [oxy-Hb] and [deoxy-Hb] values at their corresponding spatial
position. A 2-D interpolation on a fine Cartesian grid was used to generate
a scalp distribution. Two different points in time are illustrated. The first
point between 0 and 2 s corresponds to the cue presentation and start of the
task; the second point between 10 and 12 s corresponds to the end of the
task. [oxy-Hb] and [deoxy-Hb] are visualized in different plots, but use the
same scale. Increases are plotted in blue and decreases in red (no activation is
plotted in white). Examples of the hemodynamic responses at all 52 channels
are displayed in Figure 3.7 and 3.8.

Statistical analysis

Two 3x5 repeated measures of analyses (ANOVA) were performed separately
for [oxy-Hb] and [deoxy-Hb]. The two factors, ”REGIONS OF INTEREST”
(ROI: frontal, left, right), and ”TIME” (baseline, seconds 8-10, seconds 10-
12, seconds 12-14, and seconds 14-16), were used as within-subject variables.
The MNI coordinates and anatomical locations of the included channels are
given in Table 3.2 and Figure 3.6B. Additionally the effect size measures (η2)
were calculated to obtain information on how strong the effects are [30] and
we checked our data for outliers [159]. No outliers were found.

Table 3.2: ROI, channel numbers, MNI coordinates, composite stan-
dard deviations for the estimation on the cortical surface (SD) and
related Brodmann and anatomical areas.

ROI Channel MNI-space correspondence Cortical areas

x y z SD BA

1 APFC 46 23 72 8 4 10 SFG

47 -8 73 6 5 10 MeFG

48 -31 66 3 5 10 MFG

2 Left DLPFC 18 -51 23 41 5 9 MFG

28 -47 39 28 6 46 MFG

29 -61 11 28 6 9 IFG

2 Right DLPFC 13 48 31 42 5 9 MFG

23 57 26 29 5 46 MFG

24 45 62 29 5 46 MFG

BA, Brodmann area; SFG, superior frontal gyrus; MFG, middle frontal gyrus

IFG, inferior frontal gyrus; MeFG, medial frontal gyrus.
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Figure 3.6: A) Schematic illustration of the multi-channel array (52
channels, 3x11 grid). B) Projections of the fNIRS channel positions on
the cortical surface. Positions are overlaid on an MNI-152 compatible
canonical brain which is optimized for fNIRS analysis [152]. The lowest
line of channels was arranged along the FP1-FP2 line of the interna-
tional EEG 10-20 system, with channel 48 exactly at the FP1 position.
(Modified from [130].)
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3.2.2 Results

Eight out of ten subjects displayed a relative focal bilateral increase of [oxy-
Hb] accompanied by a [deoxy-Hb] decrease in the DLPFC (marked by gray
broken line ellipses in the right upper panel of Figure 3.7B). In parallel, they
showed a decrease of [oxy-Hb], accompanied by a [deoxy-Hb] increase, in
most channels overlaying the medial area of the anterior prefrontal cortex
(APFC) (Figure 3.7B, marked by a black broken line ellipsis).

Figure 3.7A presents the grand average hemodynamic responses ([oxy-
Hb], [deoxy-Hb]) during the task. The largest and thus most stable [oxy-Hb]
decreases in the map are localized at channels 48 (FP1 position) and 37
(3 cm posterior to FP1). The largest [oxy-Hb] increases can be found in the
left hemisphere at channel 28 and in the right hemisphere at channel 24.
Furthermore a peak latency of the hemodynamic responses in the MA task
at second 15, and a delay of the onset of the [oxy-Hb] decrease in the order
of 2 s, was found.

For statistical analysis, the averages of 3 channels of each ROI (ROI1:
APFC, ch 46, 47 and 48; ROI2: left DLPFC, ch 18, 28 and 29; ROI3: right
DLPFC, ch 13, 23 and 24) were calculated. The results of the 3x5 anal-
ysis of variance (ANOVA) revealed the following significant findings: for
[oxy-Hb] the main effect of ROI revealed significance (F(2,14)=27.93; p<0.01;
η2 = 0.80). Furthermore the interaction ROI x time showed significance
(F(8,56)=24.37; p<0.01; η2=0.78). The Bonferroni posttest showed a sig-
nificant change of [oxy-Hb] over left and frontal sites for all time periods
compared to the baseline (Figure 3.7A, lower panels). For [deoxy-Hb] no sig-
nificant main effect of ROI: (F(2,14)=2.61; p<0.11; η2=0.27) could be found.
Although the interaction ROI x TIME showed significance (F(8,56)=3.29;
p<0.01; η2=0.32) the Bonferroni posttest showed no significant changes of
[deoxy-Hb] compared to the baseline. Only in the later time periods sig-
nificant differences between the frontal and the left and right ROI could be
found.

Figure 3.8 shows the hemodynamic responses for a representative sub-
ject. This subject also shows a relative focal bilateral increase of [oxy-Hb]
in the DLPFC in parallel with a decrease of [oxy-Hb] in the medial area of
the APFC. The largest [oxy-Hb] decrease is localized at channel 37 (3 cm
posterior to FP1, Figure 3.8, lower panel left), the largest [oxy-Hb] increases
can be found in the right hemisphere at channel 24 (Figure 3.8, lower panel
right). Note that neighboring channels (ch 27 and 28; ch 24 and 25, marked
by broken line ellipses) display significant [oxy-Hb] responses with opposite
polarity, which underlines the focal increase/decrease of [oxy-Hb] and [deoxy-
Hb] in frontal areas.
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Figure 3.7: A) Grand average (8 subjects) changes (mean ± SE) of
[oxy-Hb] and [deoxy-Hb]. The focal bilateral increase of [oxy-Hb] in the
DLPFC in parallel with a decrease of [oxy-Hb] in the medial area of
the APFC is marked by gray and black broken line ellipses respectively.
B) Topographic distributions during the tasks at two different points
in time (second 0-2; second 10-12). (Modified from [130].)



CHAPTER 3. MENTAL ARITHMETIC FOR OBCI 50

Figure 3.8: Mean concentration changes (mean ± SE) during MA
of a representative subject (S1). This subject also shows a relative
focal bilateral increase of [oxy-Hb] in the DLPFC in parallel with a
decrease of [oxy-Hb] in the medial area of the APFC. The largest [oxy-
Hb] decrease is localized at channel 37 (around 3 cm posterior to FP1,
lower panel left), the largest [oxy-Hb] increases can be found on the right
hemisphere at channel 24 (lower panel, right). (Modified from [130].)



CHAPTER 3. MENTAL ARITHMETIC FOR OBCI 51

3.2.3 Discussion

The purpose of the study was to investigate the spatio-temporal patterns of
hemodynamic responses during a simple MA task in prefrontal brain regions.
In most of the subjects a relative focal bilateral increase (with a left hemi-
spheric dominance) of [oxy-Hb] accompanied by a [deoxy-Hb] decrease in the
DLPFC was found. In parallel, a response displaying an opposite polarity
(decrease of [oxy-Hb] accompanied by a [deoxy-Hb] increase in most chan-
nels overlaying the medial area of the APFC) was found. While the [oxy-Hb]
changes revealed significance in both areas, the [deoxy-Hb] changes were not
significant. The reason for the latter could be the small amplitude of the
[deoxy-Hb] response. Theories of the hemodynamic response (e.g. [25]) pre-
dict the [oxy-Hb] response to be larger than [deoxy-Hb], usually by a factor of
2 or more. Missing significant [deoxy-Hb] effects might be simply explained
by the smaller amplitude of [deoxy-Hb]-responses, even when [deoxy-Hb] is
better for localizing functions, and may correspond more closely to the BOLD
response [157]. Therefore, it is not surprising that no significant [deoxy-Hb]
responses were observed. For example, Hofmann et al. [73] recently reported
large [oxy-Hb] and small [deoxy-Hb] responses in a visual word recognition
task and Herrmann et al. [67] large [oxy-Hb] and small [deoxy-Hb] responses
during enhanced alertness.

First, as speculated in study 1 (see chapter 3.1) a significant simultaneous
[oxy-Hb] increase and [oxy-Hb] decrease in different prefrontal areas during
simple MA occured, which can be explained in the context of ”focal acti-
vation/surround deactivation”. Antagonistic activation patterns have been
already described by brain activation studies using fMRI and EEG. For ex-
ample Ehrsson and colleagues [49] reported, in a foot movement execution
and imagination task, a positive BOLD signal in the foot area and a neg-
ative BOLD in the hand area with slightly greater magnitude during real
movements. This can be interpreted as ”focal activation (positive BOLD)
/surround deactivation (negative BOLD)”. Furthermore Pfurtscheller and
Neuper [136] observed in their EEG study that the event-related desynchro-
nisation (ERD) of alpha band activity does not occur in isolation, but is
often accompanied by an increase in synchronization (ERS) in neighboring
areas that correspond to the same or other modalities of information process-
ing [133]. This phenomenon was called ”focal ERD/surround ERS” [162]. So,
for example, foot movement or foot motor imagery results in a focal ERD at
electrodes overlaying the foot representation area and/or the supplementary
motor area, and in an ERS at electrodes overlaying the hand representation
area. Additionally antagonistic hemodynamic responses were also reported
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by Franceschini [60] and colleagues in a study using fNIRS. They investi-
gated the contra- and ipsilateral hemodynamic response of the sensorimotor
cortex to unilateral voluntary movements, tactile, and electrical stimulation.
For electrical stimulation, but not for voluntary movements and tactile stim-
ulation, they observed an ipsilateral deactivation pattern in parallel with a
contralateral activation pattern. They interpreted the absent deactivation
in the ipsilateral side during voluntary movement and tactile stimulation by
the insufficient subtraction of systemic changes due to the increase of heart
rate. So the deactivation pattern caused by inhibition or decrease in activ-
ity of certain brain areas that do not pertain to the attended process may
sometimes be canceled out by systemic changes. Hence it is appropriate to
remove these systemic influences by different signal processing approaches
(for example using a CAR spatial filter as done in our study) to uncover the
deactivation pattern. In addition, assuming that not every cognitive process
must necessarily lead to an increase in heart rate and therewith result in
higher [oxy-Hb] in the brain, an alternative explanation might be the fact
that [oxy-Hb] must be drained from one part of the brain (deactivation) to
be delivered to another region (activation).

Second, the results reported are in line with fMRI studies that found bi-
lateral activation of the VLPFC and DLPFC and the inferior and superior
parietal cortex, primarily in the left hemisphere, during the performance of
different arithmetic tasks [86, 107, 145]. For example Kawashima and col-
leagues [86] examined brain areas involved in simple arithmetic (addition,
subtraction and multiplication) in eight children and eight adults, respec-
tively. In the adult group they found a left lateralized activation (peak acti-
vation in the inferior frontal gyrus; Figure 3.9B) during the subtraction task
which corresponds to the findings in the present fNIRS-study (Figure 3.9A).

Although the study revealed interesting results concerning hemodynamic
changes in the prefrontal cortex during MA, some limitations should also
be mentioned. First of all, the small sample (N=10) of subjects. Although
statistically significant [oxy-Hb] changes in 8 out of 10 subjects were found,
a bigger sample is needed to clarify some individual changes of [oxy-Hb] in-
crease/decrease during MA.



CHAPTER 3. MENTAL ARITHMETIC FOR OBCI 53

Figure 3.9: A) Grand average (8 subjects) change of [oxy-Hb] (aver-
aged between 10 and 12 s) plotted into a 3D reference frame. The focal
increase of [oxy-Hb] in the DLPFC in parallel with a decrease of [oxy-
Hb] in the medial area of the APFC is marked. B) Surface projections
of color-coded statistical parametric maps (subtraction vs. baseline
control; modified from [86]). The MNI coordinates and anatomical
locations of the activated brain areas are included for both studies.

In summary, the study demonstrated that significant [oxy-Hb] increases
and [oxy-Hb] decreases can be found at optodes placed over the prefrontal
cortex even during simple MA. Furthermore, there is evidence that the an-
tagonistic hemodynamic response pattern during MA may be suitable in an
optical BCI with good performance, and that only 2 prefrontal fNIRS chan-
nels may be necessary to realize such an oBCI system.
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3.3 Study 3: Single trial classification of an-

tagonistic oxyhemoglobin responses dur-

ing mental arithmetic

A robust single-trial detection of brain activity is one relevant issue for all
types of BCIs that are based on classification. The identification of brain
patterns that näıve users can reliably generate and that are stable over time
may significantly contribute to more accurate discrimination. With antago-
nistic activation patterns, as found for the simple mental arithmetic (MA)
task in study 2 (see chapter 3.2), an improved online classification for optical
BCIs using MA should become possible. For this investigation the data from
the previous study was used. In that study antagonistic activation patterns
(focal bilateral increase of [oxy-Hb] in the dorsolateral prefrontal cortex in
parallel with a [oxy-Hb] decrease in the medial area of the anterior prefrontal
cortex) in eight subjects were found. The [oxy-Hb] responses were used to
search for the best antagonistic feature combination and compared to indi-
vidual features from the same regions. Additionally the use of antagonistic
[deoxy-Hb], total hemoglobin [Hbtot] and pairs of [oxy-Hb] and [deoxy-Hb]
features, as well as the existence of a group-related feature sets, was investi-
gated.

3.3.1 Materials and methods

Subjects, experimental paradigm and data collection

In [130] the investigations were carried out on a group of ten paid Univer-
sity students, five males and five females, all right-handed and aged 26.1
± 2.7 years. The study was approved by the Medical University of Graz
Institutional Review Board. Subjects were without medical conditions, com-
pensated for participation, and gave written informed consent after the aim
of the study had been explained to them. For the investigations presented
in this paper the data of eight subjects (three male, five female, aged 26.0
± 2.8 years) which showed a relative focal bilateral increase of [oxy-Hb] in
the DLPFC in parallel with a decrease in the medial area of the APFC was
used.

Data analysis

After removing baseline drifts by using a 0.01 Hz high pass filter, the task-
related changes of [oxy-Hb] referred to a 10 s baseline interval prior to the
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task (seconds -10 to 0) were calculated (For further details see [5] and [130]).
To capture the antagonistic [oxy-Hb] patterns three regions of interest (ROI)
were defined: ROI1 consisted of channels 46, 47 and 48 over APFC, ROI2 of
channels 18, 28 and 29 over left DLPFC and ROI3 of channels 13, 23 and 24
over right DLPFC (Figure 3.6B).

For classification Fisher’s linear discriminant analysis (LDA) classifier was
used. To evaluate the LDA generalization, data recorded from each subject
was split into a training and evaluation set. The former, consisting of 10 or
16 trials respectively, was used to train and test the discriminative power of
[oxy- Hb] feature combinations selected from the different ROIs. The best
performing features were selected and used to train the LDA. The evaluation
set, composed of the last eight trials, was then used to assess the performance
of the trained LDA.

Changes of the [oxy-Hb] response at second 10, 11, 12, 13 and 14 (tm; ±
2 s around the end of the MA task, to cover also delayed task related parts of
the response) were labeled as class MA. Samples at second 26, 27, 28, 29 and
30 (tr; lying in between two MA tasks) were labeled as class REST. Features
consist of an individual [oxy-Hb] value of one channel at a fixed time (tm or
tr). In Table 3.3 and 3.4 the positions of the channels (channel number as well
as underlying Brodmann and anatomical areas) and the corresponding time
points are indicated. For each subject, independent LDAs were trained and
validated (leave-one-out cross validation) with individual [oxy-Hb] responses
for each possible combination (ROIi, tmj, trk) with i=1,2,3; j=1,2, ..., 5,
k=1, 2, ..., 5. Exhaustive Search, i.e., all possible feature combinations were
evaluated, was used in the above procedure to identify the best performing
antagonistic feature combination (ROI1, ROI2, tmj, trk) or (ROI1, ROI3,
tmj, trk) with j=1,2, ..., 5 and k=1,2, ..., 5.

The same procedure was applied also to the antagonistic [deoxy-Hb], an-
tagonistic total hemoglobin [Hbtot] = [oxy-HB] + [deoxy-Hb] and to tuples
of ([oxy-Hb], [deoxy-Hb]). Additionally, antagonistic [oxy-Hb] changes that
perform best over all subjects were investigated (group-related [oxy-Hb] pat-
tern). In the latter the most commonly selected features over all subjects at
the averaged time points of tm and tr were identified.

3.3.2 Results

Off-line simulation

The best performing classifiers, calculated from the training-set, were used
to compute an off-line simulation with the evaluation set (8 trials per class,
summarized in Table 3.3 and Table 3.4). Six out of the 8 subjects (75 %)
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performed better than the chance level (71.9 % (α=0.05) for 8 trials [116])
when antagonistic patterns are used (Table 3.3).

Table 3.3: Classification accuracies (acc.; bold numbers indicate clas-
sification accuracies above the chance level (71.9% for 8 trials)) and
used features (pos.i, indicating the underlying Brodmann and anatom-
ical areas; tm and tr, corresponding time points) for the antagonistic
[oxy-Hb] patterns for all subjects.

Antagonistic [oxy-Hb] pattern

Sub. acc. pos.1 pos.2 tm tr

% Ch. BA. Anat. Ch. BA. Anat. (s) (s)

S1 68.75 46a 10 SFG 24b 46 MFG 10 29

S2 87.50 47a 10 MeFG 24b 46 MFG 13 30

S3 75.00 48a 10 MFG 29c 9 IFG 12 29

S4 87.50 48a 10 MFG 29c 9 IFG 14 28

S5 81.25 47a 10 MeFG 28c 46 MFG 13 26

S6 68.75 46a 10 SFG 28c 46 MFG 10 26

S7 87.50 47a 10 MeFG 18c 9 MFG 10 29

S8 81.25 47a 10 MeFG 28c 46 MFG 12 26

mean 79.69 11.75 27.88

SD 8.01 1.58 1.64

a APFC BA, Brodmann area; SFG, superior frontal gyrus;
b r. DLPFC MFG, middle frontal gyrus; IFG, inferior frontal gyrus;
c l. DLPFC MeFG, medial frontal gyrus

Only one subject performed better than random when using individual
features from ROI1, ROI2 or ROI3, respectively (see Table 3.4). An anal-
ysis of variance (ANOVA) and a Newman-Keuls post test revealed that
antagonistic features perform significantly better than individual features
(F(3/21)=8.74; p<0.001; Figure 3.10). Figure 3.10 depicts the significant con-
trasts of the classification accuracy between the antagonistic and individual
features. The Y-axis indicates the mean classification accuracy over all sub-
jects for the use of antagonistic feature combinations and individual features
from ROI1, ROI2 or ROI3 (see also Table 3.3 and Table 3.4).
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Figure 3.10: Significant contrasts of the classification accuracy be-
tween the antagonistic and individual features. (Modified from [9].)

Comparison of antagonistic [oxy-Hb], [deoxy-Hb], [Hbtot] and pairs
of [oxy-Hb] and [deoxy-Hb]) features

An off-line simulation with the evaluation set using the best performing
antagonistic [deoxy-Hb], [Hbtot] and ([oxy-Hb], [deoxy-Hb]) features (Ta-
ble 3.5) was computed. By using antagonistic [deoxy-Hb] only two subjects
performed better than random. An ANOVA and a Newman-Keuls posttest
revealed that antagonistic [oxy-Hb] features perform significantly better than
antagonistic [deoxy-Hb] features (F(4/28)=2.81; p<0.05). No significant dif-
ferences between antagonistic [oxy-Hb], antagonistic [Hbtot] as well as ([oxy-
Hb], [deoxy-Hb]) tuples were found. In the case of [Hbtot] four and in the case
of ([oxy-Hb], [deoxy-Hb]) three out of the 8 subjects, respectively, performed
significantly better than random.
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Table 3.5: Classification accuracies (in %) for antagonistic [deoxy-Hb],
[Hbtot] and tuples of [oxy-Hb] and [deoxy-Hb] features for all subjects.
Additionally the classification accuracies using a group-related set of
antagonistic [oxy-Hb] features are shown.

Antagonistic pattern

Subj. [oxy-Hb] [deoxy-Hb] [Hbtot] [deoxy-Hb] group-

and [oxy-Hb] related

S1 68.75 68.75 50.00 68.75 68.75

S2 87.50 62.50 81.25 68.75 75.00

S3 75.00 62.50 56.30 75.00 68.75

S4 87.50 81.25 93.75 81.25 87.50

S5 81.25 50.00 68.75 68.75 62.50

S6 68.75 56.25 56.25 62.50 50.00

S7 87.50 62.25 93.75 68.75 75.00

S8 81.25 87.50 81.25 93.75 75.00

mean 79.69 66.38 72.66 73.44 70.31

SD 8.01 12.48 17.33 9.88 10.95

Stability of antagonistic [oxy-Hb] features

According to the findings of the feature selection and off-line simulation most
commonly selected features of all subjects (Ch. 47, APFC and Ch. 28, l.
DLPFC at the averaged time points of tm and tr (tm=12 s, tr=28 s; Ta-
ble 3.3)) were used. The group-related [oxy-Hb] features set achieved on
average a classification accuracy of 70.3% over all subjects (Table 3.5). No
significant differences were found between the use of subject-specific antago-
nistic features and the above group-related feature set. Four out of the eight
subjects performed better than chance level (mean 78.1%).

3.3.3 Discussion

The aim of the study was to investigate the usefulness of antagonistic [oxy-
Hb] patterns in the context of single trial classification for oBCI. The results
show that two fNIRS channels placed over predefined brain areas, i.e., left or
right DLPFC and APFC, respectively, may significantly increase the perfor-
mance of optical BCIs compared to the more common approach to use only
one channel (e.g. [118, 148]).

In the feature selection process the best performing antagonistic and in-
dividual features, respectively, were investigated. To account for the low
number of trials available for evaluating the performance, we adapted the
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chance level of classification to guarantee the correct comparison [116]. By
using the best antagonistic [oxy-Hb] features performing an off-line simula-
tion mean classification accuracy (%) of 79.69 ± 8.01 (mean ± SD, Table
3.3) was computed. Individual features performed worse (classification accu-
racies (%) of 63.28 ± 8.48 (ROI1), 59.38 ± 12.05 (ROI2) and 63.28 ± 6.19
(ROI3), Table 3.4). In each case only one subject reached accuracies above
the chance level. In contrast, with the antagonistic features 6 of the 8 sub-
jects (75%) performed accuracies (mean 83.3%) above the chance level. So
the use of antagonistic [oxy-Hb] features, compared to individual [oxy-Hb]
features from ROI1, ROI2 and ROI3, significantly increased the classification
accuracy (Tables 3.3 and 3.4, Figure 3.10).

In addition antagonistic [oxy-Hb] features were compared with antagonis-
tic [deoxy-Hb] and [Hbtot] features as well as ([oxy-Hb], [deoxy-Hb]) tuples.
[deoxy-Hb], [Hbtot] and tuples of [oxy-Hb] and [deoxy-Hb] performed worse
(classification accuracies (%) of 63.38 ± 12.48 ([deoxy-Hb]), 72.66 ± 17.33
([Hbtot]) and 73.44 ± 9.88 ([oxy-Hb] and [deoxy-Hb]), Table 3.5) whereby
only [deoxy-Hb] exhibits significant difference to the use of [oxy-Hb]. These
lower classification accuracies may be simply explained by the fact that
[deoxy-Hb] changes are smaller in amplitude, usually by a factor two or more
(e.g. [72, 101]), and higher in variance than [oxy-Hb] changes, more suscepti-
ble to noise and therefore less suitable as feature for single trial classification.

The performance comparison between the use of subject-specific versus
group-related features surprisingly revealed no significant differences. This
supports the hypothesis that MA generates focal and rather well defined
metabolic response patterns. For the realization of optical BCIs this means
that the considered features are spatially focused, task-related and valid for
several users.

Antagonistic activation patterns known as ”focal activation/surround de-
activation” have been described in different studies. So e.g. ”focal ERD/
surround ERS” was reported during hand and foot movement execution or
imagination in EEG [136, 162] and ”positive BOLD/negative BOLD” in fMRI
([49, 79]. The usability of this phenomenon for classification in motor imagery
based BCI-systems (ERD/ERS) is well documented [135]. So far, however, it
had been unknown that this phenomenon is also present in fNIRS data [130],
and this study showed for the first time the usefulness of this phenomenon
for fNIRS data classification.

Although the study revealed significant results, some limitations should
also be mentioned. First of all, the number of subjects is low. However,
concerning the significant increase of the classification accuracy using antag-
onistic [oxy-Hb] changes instead of individual features only from one single
region, our findings suggest that the use of antagonistic patterns may be a
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suitable control strategy for optical BCIs. However, to clarify this in more
detail, especially in an online study, a bigger sample is needed. Another limi-
tation is the temporal resolution of the hemodynamic response - in the range
of several seconds - which limits the information transfer rates achievable for
BCI-based communication. In [130] a delay of the onset and a peak latency
of the hemodynamic responses in the order of 2 to 3 s was found. With the
paradigm, classification approach and analysis windows used for this study
in mind, around 12 s (MA) to 16 s (REST) (Table 3.3) would be needed to
classify the task reasonably well. By shortening the baseline interval prior to
the task to 5 s this might lead to a maximal achievable information transfer
rate of around 3 to 3.5 bits/min (comparable with results in [36]). To in-
crease this transfer rate further basic research is necessary, e.g. investigating
the use of fast optical signals [65, 83, 181].

In summary, this study suggests that the use of antagonistic [oxy-Hb]
features may significantly increase the classification accuracy. The off-line
simulation results confirmed the hypothesis made in study 2 (chapter 3.2)
that two prefrontal fNIRS channels can capture antagonistic hemodynamic
patterns during a mental arithmetic task that can be detected reasonably
well without the need of time consuming user-adaptation. In combination
with the self paced paradigm the use of antagonistic patterns may be an
important contribution for simple and cheap optical BCI systems which are
currently under development.



Chapter 4

Online oBCI studies with
operand conditioning

During the past years neurofeedback has become more and more important
in neuroscience. Research over the past two decades showed that various
parameters like heart rate and blood pressure as well as brain activity can
be brought under voluntary control after training with feedback. The field
of applications ranges from caregiving to hyperactive children [56, 93] and
epilepsy prevention [48, 176] via stroke therapy [10, 180] through to commu-
nication and control support for paralyzed patients [17, 88, 132, 185]. The
required methods are normally based on electroencephalography (EEG). Be-
sides EEG, such systems have been also realized with functional magnetic res-
onance imaging (fMRI) [177, 179] and magnetoencephalography (MEG) [106,
161]. Additionally to these established techniques functional near-infrared
spectroscopy (fNIRS) seems to be also a suitable method.

The fNIRS signal consists of slow hemodynamic responses (changes in
[oxy-Hb] and [deoxy-Hb]), which are in the order of seconds. Similar slowly
varying bio-signal changes are addressed in the analysis of slow cortical po-
tentials (SCP) in the EEG. SCPs are potential shifts of neuronal assemblies
of the cerebral cortex lasting up to several seconds [15, 16].

Inspired by the work of Prof. Birbaumer’s group in Tuebingen [17, 88]
who used such slow bio-signals to implement a BCI for locked-in patients this
work describes the realization and evaluation of a real-time feedback system
based on a one-channel fNIRS-system (for a detailed description of the system
see chapter 2.1) for usage as an oBCI. This chapter also includes a case
study on using the oBCI system in combination with a steady-state visual
evoked potentials (SSVEP)-based BCI applications as a ”hybrid” BCI [128].
Large parts of the work presented in this chapter already appeared at poster
presentations and in conference proceedings as well as a book section and a

62
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peer-reviewed journal publication [114, 128]:

• G. Bauernfeind, R. Leeb, P. Linortner, C. Neuper, and G. Pfurtscheller.
Using Near-Infrared Spectroscopy (NIRS) to realize an optical BCI.
Proceedings of the Neuromath Workshop 2009.

• G. Pfurtscheller, B. Z. Allison, G. Bauernfeind, C. Brunner, S. Solis
Escalante, R. Scherer, T. O. Zander, G. R. Müller-Putz, C. Neuper,
and N. Birbaumer. The hybrid BCI Front Neurosci, 4:42, 2010.

• G. R. Müller-Putz, R. Leeb, J. D. Millan, P. Horki, A. Kreilinger, G.
Bauernfeind, B. Z. Allison, C. Brunner, and R. Scherer. Principles of
Hybrid Brain-Computer Interfaces. In Toward Practical BCIs: Bridg-
ing the Gap from Research to Real-World Applications, 2012, in press.

4.1 Study 1: Using functional near-infrared

spectroscopy (fNIRS) to realize an opti-

cal BCI (oBCI)

The aim of this work was to implement a real-time fNIRS-feedback system
(optical BCI (oBCI)) based on a one-channel NIRS system (chapter 2.1).
For evaluation of the system a case study with five subjects was performed.
The subjects were trained to influence their prefrontal [oxy-Hb] volitionally.
The experimental procedure included the following steps: a strategy finding
phase where the subjects should find a method to control the oxygenation,
a training phase to consolidate the strategy and a test phase to evaluate the
performance.

4.1.1 Materials and methods

oBCI system

The real-time feedback system is based on the one-channel fNIRS-system
described in chapter 2.1 (Figure 2.1). To implement the real-time system
(Figure 4.1B) a standard PC was used. Data acquisition (sampling frequency
250 Hz), signal processing, control of the feedback-system and the genera-
tion of the output signal (sampling frequency 10 Hz) were implemented in
MATLAB and Simulink (Figure 4.2A). The feedback loop was closed by dis-
playing the output on a monitor. During the signal processing the following
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steps were carried out. After calculating the relative changes of [oxy-Hb] and
[deoxy-Hb] (implementation of equation 1.6 in section 1.3.2) in the unit of
µM, a digital 3 Hz low pass filter of order 5 with an attenuation of 30 dB in
the stop band was used to enable down sampling to 10 Hz (see Figure 4.2C).
Further baseline drifts are removed by subtracting a 10 s moving average.
Additionally a 0.75 s moving average was used to smooth the signal (minimize
pulse artifacts, see Figure 4.2B). The processed [oxy-Hb] change, referred to
a 4 second baseline interval (mean concentration of the last 4 seconds prior
the task), was used as a visual feedback for the subjects. Different types of
feedback are possible. In the strategy finding and training phase a feedback
bar and in the test phase a moving ball was used (the length of the bar and
the position of the ball on the screen, respectively were proportional to the
[oxy-Hb]).

Figure 4.1: A) Components of the one-channel fNIRS-system (chap-
ter 2.1). B) Flow chart of the implemented fNIRS-feedback system with
optode placement on the frontal cortex 1.5 cm to the left and right of
position FP1. (Image reprinted with permission of the subject)

Subjects and experimental procedure

The presented experiment focused on fNIRS-based feedback-training, con-
sisting of three different phases: First strategy finding, second training and
third test phase. The phases can be subdivided into sessions, trials and
tasks. Five subjects (A1 to A5; three females and two males) aged between
25 and 30 years (27.2 ± 1.9; mean ± SD) were recruited for participation.
All subjects had normal or corrected to normal vision and were right-handed
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Figure 4.2: A) Simulink feedback model with blocks for C) concentra-
tion calculation (implementation of equation 1.6 in section 1.3.2) and
B) filter/preprocessing (remove baseline drift and smoothing).

(handedness was investigated by the HDT-test [158]). After the successful
completion of a phase the subjects were entitled to participate in the next
phase. All experiments were in compliance with the World Medical Associ-
ation Declaration of Helsinki. The subjects gave written informed consent
before the experiment. The aim of this experiment was to train subjects to
volitionally control their prefrontal [oxy-Hb].

Strategy finding phase: Within two to four sessions over up to four weeks
subjects were required to find a mental strategy for controlling the
oxygenation (oxy-Hb concentration) over the PFC. The PFC receives
and sends commands to nearly all cortical motor and sensory systems,
as well as many sub-cortical structures and plays a major role in various
higher cognitive tasks (for review see e.g. [111]). So we decided to
leave the type of strategy (quoted hereafter as activation) to be used
to the subjects. The subjects were seated in a comfortable armchair.
The sources and detector were placed over the frontal cortex 1.5 cm
to the left and right of position FP1 (Figure 4.1B) according to the
international 10-20 system for EEG recording [74]. So the measurement
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position is overlaying Brodmann’s area 10. For further details on the
corresponding anatomical structure see [125]. One session consisted
of 40 activation tasks with a duration of 8 s. The start of such an
activation task was indicated by a beep tone, the appearance of a green
cross and the occurrence of a feedback bar. As already mentioned the
feedback bar represents the current oxygenation level referred to a 4
second baseline interval prior to the task. The end of the activation task
was indicated by a low-pitched beep after which a pause of 8 s (black
screen) followed, so one trial lasted 16 s. After such a trial a random
time interval (between 5 to 10 s) was implemented. The timing of the
strategy finding session is shown in Figure 4.3A. Subjects were asked
to perform not more than three different self-chosen activation tasks
in one session to manipulate the feedback bar. After finding a stable
activation task, a final session with the chosen task was performed.
Afterwards the subjects switched to the next phase.

Training phase: During the training phase (up to five weeks) subjects per-
formed one or two training sessions per week. In these sessions an
additional rest condition was added (subjects were told to try to in-
crease the length of the feedback bar in the course of the session). The
start of the rest condition was indicated by a double beep and the ap-
pearance of a green cross. In contrast to the activation task no feedback
was given. During the rest condition the subjects had to stay relaxed.
The end of the rest condition was indicated like the end of the activa-
tion task, by a low-pitched beep. Independent of the task a pause of
8 s, followed by a random time interval (intertrial interval, 5 to 10 s)
was given afterwards. One session consisted of 20 activation and 20
rest trials which occurred in a random order. The timing of a training
session is shown in Figure 4.3B.

Test phase (basket game): In this phase subjects received feedback in
form of a basket game [99]. A green ball started at a predefined posi-
tion and the subjects had to reach a green basket area. Therefore the
screen was splitted into two regions, an upper and a lower half. The
subjects had to reach the target area by relaxing or performing the ac-
tivation task. The timing was equal to the timing in the training phase
(Figure 4.3C). Each session consisted of 20 upper and 20 lower half
trials which occurred in a random order. So two outcomes are possible:
The subjects reached the green basket and executed a correct response
or missed the basket and performed an incorrect response. The perfor-
mance of each session was evaluated by the ratio of the number of total
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correct responses (maximum 20 each class) to the number of trials per
session (40 trials).

Figure 4.3: Time flow of A) strategy finding, B) training and C) test
phase. One session consists of 40 trials with duration of 16 s (8 s task
duration and 8 s pause). Between the trials an intertrial interval of 5
to 10 s was implemented. In the lowest part a conceptual screenshot is
given.

4.1.2 Results

Strategy finding phase: A list of the tested activation tasks of all subjects
who found a stable activation pattern, including the moving direction of
the bar while performing the finally chosen activation tasks, is shown
in Table 4.1. Subject A5 was highly motivated but was not able to
find a stable activation pattern within the sessions. In contrast to
subjects A1, A3 and A4, who showed similar activation patterns, a
decrease of [oxy-Hb], subject A2 selected a task that increased the
frontal oxygenation.

Training phase: Four subjects (A1, A2, A3, A4) entered the training phase.
As mentioned before, subject A5 was not able to find a stable brain
pattern and therefore never reached the training phase. In the train-
ing phase, all subjects were able to improve their [oxy-Hb] change.
For each subject the mean changes of [oxy-Hb] of the final training
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session, based on 20 trials each class, are displayed in Figure 4.4. Un-
fortunately subjects A3 and A4 were not able to exhibit significant
differences between rest and activation (A3: t(19)=-2.006, p=0.059; A4:
t(19)=-0.007, p=0.994; the mean concentration between second 7 to
second 8 was used to calculate the statistic) and therefore not able
to participate in the test phase. For this reason both subjects were
excluded from further measurements. Only subjects A1 and A2 (A1:
t(19)=-4.395, p<0.001; A2: t(19)=4.756, p<0.001) were able to produce
significant differences between rest and activation.

Test phase (basket game): Only subjects A1 and A2 entered the test
phase and used the basket game as feedback scenario. Subject A1 per-
formed three sessions in this phase and achieved a hit rate of 57.5%,
52.5% and 55%, which does not differ significantly from a random per-
formance [116]. Subject A2 performed four sessions in the test phase
and achieved hit rates of 67.5%, 70%, 75% and 80%, which is signifi-
cantly better than a random performance [116]. For each subject and
each test session, the average responses and standard errors (in [µM])
at the end of the feedback period and the number of times of occurrence
of each outcome are given in Table 4.2. The responses of subject A2
in the final test session are displayed in Figure 4.5. In this Figure the
mean ”hit” (target reached) changes of [oxy-Hb] is based on 17 trials
for activation condition and 15 trials for rest condition respectively.

4.1.3 Discussion

In this work a simple implementation of an oBCI system based on a custom-
built one-channel fNIRS-system is presented. Up to now only a few publica-
tions on online realizations of such systems exist [36, 118, 156]. Furthermore,
some studies only investigated the use of realtime fNIRS feedback without
oBCI application [82, 90]. Comparing these above mentioned studies, in four
of them the optodes (52 channels in [82], 24 channels in [90], two channels
in [156] and one channel in [36]) were placed above the motor cortex. As
described in [36] it is important to maintain a proper and stable connection
with the scalp. Additionally hair can attenuate the signal and cause motion
artifacts [5, 34] so that a high effort is necessary to establish a stable con-
nection. In contrast a single channel placement over the forehead and PFC
respectively [118] seems to be more practical and user-friendly and able to
overcome this problem.
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Figure 4.4: Mean concentration changes (mean ± SE) of rest and
activation class for 4 subjects during the last training session (based
on 20 trials for each class). The rest class is plotted in gray and the
activation class is plotted in orange. The shaded area indicates the
time period of the task.

The results of the first two phases indicate that subjects can learn to
control their prefrontal [oxy-Hb] with the presented system. With the aid of
feedback 4 subjects could find stable strategies. Three subjects (A1, A3, A4)
chose strategies which showed similar activation patterns, a decrease of [oxy-
Hb], while subject A2 chose a task which increased the frontal oxygenation
(the selected strategies are shown in Table 4.1). An explanation of the differ-
ent ”activation” patterns (increase or decrease of [oxy-Hb]) of the subjects
could be the activation and deactivation of different neural networks of the
PFC involved in the chosen strategy. These networks are distributed over the
frontal cortex or other areas, and are not located exactly under the optodes.
Thus, a frontal [oxy-Hb] decrease may be explained as a surround effect of
activation (increase of [oxy-Hb]) in other areas [5, 130]. Such a decrease in
prefrontal [oxy-Hb] was reported by Shimada et al. during visual feedback
of the moving hand in a reaching task and interpreted in terms of prefrontal
”deactivation” [151]. Additionally bidirectionally modulated networks were
also determined by fMRI [79]. The bidirectionality was represented in this
work by positive (activation) and negative (inhibition) blood oxygen level
dependent (BOLD) changes. Also during self-regulation of SCPs significant
deactivations (negative BOLD responses) were found in parietal, frontal and
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Figure 4.5: Mean ”hit” concentration changes of oxy-Hb (mean ±
SE) of rest and activation class based on 17 trials for activation class
and 15 trials for rest class (session 4). The rest class is plotted in gray
and the activation class is plotted in orange. The shaded area indicates
the time period of the task.

prefrontal areas [69]. However, all subjects could raise their activation pat-
tern significantly during the training phase (up to eight training sessions
within five weeks). Unfortunately two subjects were not able to achieve sig-
nificant differences between rest and activation. So only two subjects entered
the final test phase and used the feedback scenario. Subject A2 performed
four sessions in the test phase and could improve the performance from 67.5%
in the first session to a hit rate of 80% in the fourth session. In contrast,
subject A1 performed three sessions in the test phase and achieved a hit
rate of around 55%, which doesn’t differ significantly from a random per-
formance [116]. Nevertheless it seems that subject A1 could achieve control
with further training. The results indicate that subjects can learn to vol-
untarily influence their prefrontal [oxy-Hb] after some training sessions with
the described system. However not all subjects were able to achieve suitable
results in the given training time.

In summary, this study demonstrates that subjects can learn to voli-
tionally control their prefrontal [oxy-Hb]. Further the feasibility of a single
channel oBCI system with optode placement over the PFC was shown, but
additional research is needed to investigate its further potential and applica-
bility.
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Table 4.2: Hits and miss during basket game sessions. Each experi-
mental session consists of 40 trials (20 each class). For each subject and
each test session, the average responses in [µM] and standard errors at
the end of the feedback and the number of times of occurrence of each
outcome are given.

Test phase Upper basket Lower basket Performance

(basket game) targeted targeted

session hit miss hit miss %

A1

mean 0.21 -1.06 -0.79 0.57

SE 0.14 0.16 0.09 0.14
1

No. 8 12 15 5 57.5

mean -0.09 -0.71 -0.88 0.09

SE 0.13 0.14 0.13 0.14
2

No. 11 9 10 10 52.5

mean 0.00 -0.56 -0.45 0.22

SE 0.08 0.11 0.09 0.08
3

No. 15 5 7 13 55.0

A2

mean 1.85 x -0.39 0.88

SE 0.17 x 0.13 0.27
1

No. 20 x 7 13 67.5

mean 0.69 0.15 0.01 0.49

SE 0.10 0.14 0.11 0.09
2

No. 15 5 13 7 70.0

mean 0.39 0.08 0.09 0.34

SE 0.06 0.08 0.04 0.12
3

No. 13 7 17 3 75.0

mean 0.69 0.10 0.00 0.41

SE 0.05 0.17 0.09 0.22
4

No. 17 3 15 5 80.0
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4.2 Study 2: Self-activation of an SSVEP-

based orthosis control using fNIRS

Self-activation is an important factor for BCI systems to become more prac-
tical and user-friendly devices [150]. This means that the user should be
able to switch the system on or offautonomously. In this preliminary study,
the worldwide first realization of an asynchronous hybrid BCI system [128],
which is composed of two different BCIs, was investigated. In this study
the oBCI system (for details see chapter 4.1) was used to turn on and off
an electrical hand orthosis controlled by an EEG-based steady-state visual
evoked potential (SSVEP)-BCI application.

4.2.1 Materials and methods

Hybrid BCI system

The hybrid system (Figure 4.6) consists of the oBCI system introduced in
chapter 4.1.1 and an SSVEP orthosis control system (for details see [95]).
SSVEPs are time- and phase-locked responses in the EEG which occur over
the visual cortex if stimuli are presented in a rapid sequence. If more than
one stimulus is presented, and the subjet focuses on one specific stimulus,
the corresponding frequency can be picked up in the EEG. With this method
multi-class BCIs can be realized. In the presented study the EEG to measure
the SSVEPs was recorded bipolarly from electrodes placed over the occipital
cortex (electrode position O1, 2.5 cm inter-electrode distance, ground Fz,
Figure 4.6B).

Subjects and experimental procedure

One subject, familiar with fNIRS (subject participated in the study described
in chapter 4.1) but naive using SSVEP, performed 4 runs with the hybrid
system. In each run, the subject had to open and close (one activation block
contained positions 1-2-3-4-3-2-1) the orthosis (Figure 4.6D) three times, each
at self paced intervals, with 60 second breaks between the blocks (resting
periods). To open the orthosis, the subject had to focus on an 8 Hz flickering
LED. To close the orthosis, the subject had to pay attention to a 13 Hz
flickering LED (Figure 4.6C). Only if the whole open/close sequence had
been finished, the resting period was initiated.

Prior to the first block, the subject had to self-initiate the SSVEP ortho-
sis control using the fNIRS system as a ”brain switch” [128]. To this end,
the fNIRS measurement was split up into 8 second periods. A prewaiting
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Figure 4.6: A) One channel fNIRS placement over FP1. B) EEG
recording to measure SSVEPs (electrode position O1, 2.5 cm inter-
electrode distance, ground Fz). C) Hybrid BCI system. Orthosis in
front of the presentation screen. The upper part of the presentation
screen displays the ball position, which represents the varying concen-
tration change. The bold horizontal yellow line in the window indicates
the on/off toggle switch threshold. In the lower part of the screen, the
current status of the SSVEP orthosis control (on/off) and the detected
command were shown. D) Stepwise SSVEP orthosis control. E) Ex-
perimental setup. (Modified from [114, 128].)

period was included prior to the first segment, which started at second 18.
Within the periods, the relative [oxy-Hb] change (measured over position
FP1, Figure 4.6A) was used as a visual feedback (green ball). The measured
concentration change, referred to a 4 second baseline interval (mean concen-
tration of the last 4 seconds prior to the period), represents the ball position
on the screen. If the change exceeded a subject-specific threshold, indicated
as a yellow bar on the screen (Figure 4.6C), an on/off (off/on) state switch
of the orthosis control was triggered. The threshold for the first run was
selected from previous fNIRS measurements of the subject (chapter 4.1) and
adapted after the first run to minimize false positives (FP). After each switch,
no other switch command was accepted for a period of 8 seconds (refractory
period, black screen). During the resting periods and after the last activation
block, the subject was instructed to switch off the SSVEP orthosis control
system by using the brain switch again to avoid FP SSVEP activations.
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4.2.2 Results

During the first two runs, FPs were detected in the activation as well as
in the resting period (fNIRS and SSVEP, Figure 4.7). In the third run the
subject displayed a perfect performance with the fNIRS switch and only two
FP detections occurred during the SSVEP orthosis control (for run 3 also
the corresponding [oxy-Hb] signal is shown). In the last run, the subject dis-
played a perfect performance with 100% accuracy, meaning only true positive
(TP) activations in the fNIRS and SSVEP control, respectively. Table 4.3
summarizes these results.

Table 4.3: True positive (TP) and false positive (FP) detections in
self-paced orthosis and fNIRS control. The parameters are given for
the activation (AP) as well as the resting (RP) period.

activation period resting period time

fNIRS SSVEP fNIRS SSVEP AP RP total

TP FP TP FP TP FP FP

run - - (min−1) (min−1) - - (min−1) (s) (s) (s)

1 7 4 5.4 0.0 9 6 4.0 201.6 180.0 381.6

2 3 0 7.7 0.4 7 4 1.3 140.6 180.0 320.6

3 3 0 6.4 0.7 3 0 0.0 162,6 180.0 347.8

4 3 0 6.6 0.0 3 0 0.0 162.6 180.0 342.6

mean 4.0 1.0 6.5 0.3 5.5 2.5 1.2 168.1 180.0 348.1

SD 2.0 2.0 1.0 0.4 3.0 3.0 1.9 25.2 0.0 25.2

4.2.3 Discussion

This feasibility study presented the first implementation of a hybrid BCI sys-
tem combining an oBCI with an EEG-based SSVEP BCI. In general there
are several reasons to combine two different BCI approaches into one hy-
brid BCI, e.g. to improve classification accuracy or bit rate [23], or to avoid
application specific limitations of the single BCIs. For example, a major lim-
itation for solely fNIRS-based approaches is the temporal resolution of the
hemodynamic response - in the range of several seconds - which limits the in-
formation transfer rates achievable for BCI-based communication or control.
In contrast, SSVEP-based BCIs provide one of the fastest communication
approaches for non-invasive BCI systems [13]; however, a major drawback
of such systems is a high FP-rate for asynchronous applications (unintended
commands during resting periods) [137].
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Figure 4.7: Timing of the 4 runs, green areas indicate an activated
SSVEP control. The gray areas indicate resting periods. Red circles
indicate FPs in SSVEP control, black ellipses in fNIRS. The black areas
at the beginning of each run indicate a prewaiting period. For run 3
the [oxy-Hb] level in µM is shown. (Modified from [114, 128].)
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The presented hybrid BCI approach avoids the limitation of the SSVEP
approach by using the oBCI as an on/off switch. One important feature
of such a brain switch is that unintended activations (FPs) should not oc-
cur. However, in the first run FPs of the brain switch were detected in the
activation as well as in the resting period. These FPs were caused by the
fact that the subject-specific threshold for the first run was selected from
previous fNIRS measurements of the subject. After adjusting the threshold,
no further FPs occured in run 3 and run 4, and therefore no false orthosis
movements were detected in the resting periods because the SSVEP orthosis
control was not activated.

In summary the preliminary results provide evidence that the combina-
tion of fNIRS and SSVEP within a hybrid BCI system may be a suitable
control interface, and the promising results encourage further hybrid BCI
research with a larger group of subjects.



Chapter 5

Summary and Conclusion

Several years ago fNIRS was proposed as a novel approach in the field of
brain-computer interface (BCI) research. Since that time, only a few re-
search groups have investigated different concepts using fNIRS alternatively
to EEG-based systems for BCI communication. When this thesis was started,
only hemodynamic responses caused by the performance of motor imagery
were used as a control signal for the so-called optical BCI (oBCI) systems.
However, it was known from different neuroscientific studies that also other
mental tasks, such as mental arithmetic (MA) or mental singing, can induce
hemodynamic changes which can be measured with the fNIRS technique and
therefore may be suitable control strategies for oBCI systems.

Therefore the main focus in this thesis was placed on exploring the use-
fulness of MA as a control strategy for oBCI systems. In the first study on
this subject special emphasis was put on the spatio-temporal investigation of
hemodynamic brain patterns caused by the performance of a simple MA task.
The results of the first study, performing different experiments with slightly
different MA tasks (single and repetitive subtractions), revealed reproducible
results independent of the fNIRS system used. Although the results provided
evidence that MA is a suitable control strategy for oBCI systems, the find-
ings of a decrease in [oxy-Hb] and increase in [deoxy-Hb] over the anterior
prefrontal cortex (APFC) were in contrast to other studies which reported
an opposite polarity. It was speculated that the frontal [oxy-Hb] decrease
and [deoxy-Hb] increase may be explained as a surround effect of an [oxy-
Hb] increase and [deoxy-Hb] decrease in areas not investigated during the
measurements. To investigate this hypothesis in more detail a second study
on a group of 10 subjects measuring hemodynamic brain patterns on larger
cortical areas was performed. The results revealed the same hemodynamic
responses as found in the first study. However, in addition a relative focal bi-

78
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lateral increase (with a left hemispheric dominance) of [oxy-Hb] accompanied
by a [deoxy-Hb] decrease in the dorsolateral PFC (DLPFC) was found. The
results were also in line with fMRI studies which found the same bilateral
activation of the DLPFC. It was further speculated that such antagonistic
patterns, a simultaneous [oxy-Hb] increase and [oxy-Hb] decrease in different
prefrontal areas, may be suitable in an oBCI, and that only two prefrontal
fNIRS channels may be necessary to realize such a system. Therefore, in
a third study a single trial classification of the antagonistic hemodynamic
responses was performed. For this investigation the data of the previous
study was used to search for the best antagonistic feature combination and
compared to individual features from the same regions. Additionally the use
of antagonistic [deoxy-Hb], total hemoglobin [Hbtot] and pairs of [oxy-Hb]
and [deoxy-Hb] features as well as the existence of a group-related feature set
was investigated. The results showed that two fNIRS channels placed over
predefined brain areas, i.e., left or right DLPFC and APFC, respectively, sig-
nificantly (p<0.001) increase the performance, from 63.3 to 79.7%, of oBCIs
compared to the use of only one channel over the APFC or DLPFC. Further-
more, the performance comparison between the use of subject-specific versus
group-related features revealed no significant differences. This supports the
hypothesis that MA generates focal and rather well defined metabolic re-
sponse patterns. For practical optical BCIs this means that the considered
features are spatially focused, task-related and valid for several users. Sum-
marizing all three studies it was shown that the performance of an MA task
is a suitable control strategy for oBCI systems and that only two prefrontal
fNIRS channels are necessary to capture and classify an MA task reasonably
well without the need of time consuming user-adaptation. In combination
with a self paced paradigm the use of antagonistic pattern may be an im-
portant contribution for simple and cheap oBCI systems which are currently
under development.

A further focus was laid on the realization and evaluation of a real-time
fNIRS feedback system for usage as an oBCI. Five subjects were trained to
influence their prefrontal [oxy-Hb] volitionalyl and use it finally as a control
signal for an oBCI. Although all subjects could raise their hemodynamic
pattern significantly during training only two subjects were able to achieve
suitable results in the given training time. However, the results indicate that
subjects can learn to voluntarily influence their prefrontal [oxy-Hb] after some
training sessions. Further, the feasibility of a single channel oBCI system was
shown, but additional research is needed to investigate its full potential and
applicability. Out of these investigations, in a preliminary feasibility study
the worldwide first realization of an asynchronous fNIRS based hybrid BCI
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system was shown. Therefore the above mentioned real-time fNIRS feedback
system was combined with a traditional EEG-based BCI system to control
an electrical hand orthosis. The usability of the hybrid system was finally
evaluated with a single subject which gained perfect control (100% accuracy)
after a short period of training. This result provides evidence that also the
combination of an oBCI and an EEG-based BCI within a hybrid BCI system
may be a suitable control interface.
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