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Abstract

According to the Federal Ministry of Labor, Social Affairs, and Consumer Protection, ap-
proximately 3.9% of the Austrian population is suffering from permanent visual impairments.
These people are faced with problems, others do not even think of. One example is the daily
navigation through the urban environment, where traffic junctions and busy roads involve
many risks and dangers if one of the sensory organs is impaired. Therefore, especially blind
people urgently need accurate and reliable navigation systems to facilitate their daily routes
and increase their safety.

Navigation in general comprises the three tasks positioning, routing, and guidance, whereby
the routing and guidance performance strongly depends on the position accuracy. Therefore,
the goal of the thesis is the development of a positioning tool which reliably provides accurate
coordinates in in- and outdoor environments based on the built-in sensors of a smartphone.
The core element of the positioning tool is a Rao-Blackwell Particle Filter (RBPF), which
combines relative and absolute position information provided by positioning techniques like
GNSS single point positioning with code measurements, RSSI-based WLAN fingerprinting,
Pedestrian Dead Reckoning (PDR) with inertial data, and barometric height estimation.
The position estimation is further supported by spatial constraints, which can be derived by
integrating maps and a Pedestrian Activity Classification (PAC).

In outdoor environments, a special user-tailored map, which represents path preferences of
blind persons, restricts the possible state space. Since the visual impairment leads to a
different, more predictable movement, location probabilities can be defined. For example,
blind persons most likely walk on pavements, cross the streets at crosswalks only, and follow
tactile ground surface indicators. This knowledge can be used for the creation of a probability
map, in which regions where the probability of the person’s presence is higher are marked
differently in contrast to regions of lower probability. Unfortunately, in indoor environments
the movement of blind persons cannot algorithmically constrained in the same way due to
the small-scaled infrastructure and the very individual navigation habits of blind pedestrians
within buildings. Instead, an occupancy grid map representing the building layout and path
verifications are integrated within the position estimation. Indoors, motion-related activities
like going upstairs or downstairs implicitly include information that the pedestrian has to be
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located at a stairway. Hence, a PAC is employed within the RBPF to constrain the possible
state space.

Due to the high working effort for the creation of the user-tailored map, a restricted test area
had to be defined for the investigations. To avoid this for future applications, a Simultaneous
Localization and Mapping (SLAM) approach is developed and investigated to make the RBPF
applicable everywhere. The automatic map generation requires a more precise position than
the GPS code solution which only provides accuracies in the range of some meters. For
this reason, GNSS Precise Point Positioning (PPP) with accuracies in the decimeter level is
employed instead. Since only the full operational capability of Galileo and COMPASS will
provide enough satellites in urban canyons, the SLAM approach is treated in a simulation
environment.

As a result of the developed RBPF, the position estimation in outdoor environments can
be improved by about 47% to 69%, while the performance gain in indoor environments is
in the range of 40% to 60%. Indoors, the accuracy of the across as well as the along track
position component is within the sensing range of a blindman’s stick. Outdoors, the achieved
accuracy allows a localization at the correct pavement. Furthermore, the evaluation with
simulated data reveals that SLAM provides the optimal framework for the derivation of
location probabilities if a PPP solution is continuously provided.
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Kurzfassung

Gemäß dem Bundesministerium für Arbeit, Soziales und Konsumentenschutz leiden in etwa
3.9% der österreichischen Bevölkerung an einer Sehbehinderung. Viele alltägliche Aufgaben
können von dieser Gesellschaftsgruppe nur sehr schwer gemeistert werden. Ein Beispiel dafür
ist die Navigation durch städtische Umgebungen, in der für sehbeeinträchtige Personen viele
Gefahren lauern. Ein zuverlässiges, genaues Navigationssystem würde das Leben blinder Per-
sonen immens erleichtern und ihre Sicherheit im Alltag und vor allem im städtischen Verkehr
erhöhen.

Die Navigation an sich besteht aus drei Komponenten, der Positionierung, dem Routing und
der Zielführung. Je genauer die Positionierung ist, desto höher ist die Qualität der Routenbe-
rechnung und die entsprechende Zielführung. Das Ziel der Dissertation ist die Entwicklung ei-
nes Positionierungstools auf Basis der Sensoren eines Smartphones, welches sowohl in als auch
außerhalb von Gebäuden Positionen mit hoher Genauigkeit und Zuverlässigkeit liefert. Das
Kernstück des Positionierungstools, ein Rao-Blackwell Partikel Filter (RBPF), kombiniert
dafür relative und absolute Positionsdaten. Diese Daten stammen aus einer Code-basierten
GNSS Einzelpunktbestimmung, einem WLAN-Fingerprinting auf Basis von RSSI-Messungen,
einem inertialen Pedestrian Dead Reckoning (PDR) und einer barometrischen Höhenbestim-
mung. Die Positionsbestimmung wird außerdem durch Karten und Informationen aus einer
Pedestrian Activity Classification (PAC) räumlich eingeschränkt.

Eine blindenspezifische Karte, welche das Gehverhalten blinder Personen repräsentiert, wird
außerhalb von Gebäuden zur Einschränkung des möglichen Zustandsraumes verwendet. Das
ist daher möglich, da das Gehverhalten sehbeeinträchtigter Leute prädizierbarer ist als das
nicht-blinder Personen, zum Beispiel, blinde Personen gehen bevorzugt auf Gehsteigen, kreu-
zen die Straßen nur über Zebrastreifen und folgen taktilen Leitstreifen. Dieses Wissen kann
dazu verwendet werden, um räumliche Aufenthaltswahrscheinlichkeiten abzuleiten. Aufgrund
der kleinräumigen Infrastruktur und des sehr individuellen Navigationsverhaltens von blinden
Personen innerhalb von Gebäuden können solche Wahrscheinlichkeiten nicht für den Innen-
raum definiert werden. Stattdessen tragen sogenannte Occupancy Grid Maps und Pfadüber-
prüfungen zur Positionsbestimmung in Gebäuden bei. Da aktivitätsbezogene Informationen
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implizit ortsrelevante Daten beinhalten (die Aktivität Treppensteigen reduziert den mögli-
chen Aufenthaltsort auf eine Treppe), wird außerdem die im PAC detektierte Aktivität in
die Positionsschätzung integriert.

Aufgrund des hohen Arbeitsaufwandes, der für die Erstellung der blindenspezifischen Karte
notwendig ist, wird ein eingeschränktes Testgebiet für die Untersuchungen definiert. Um in
Zukunft den entwickelten RBPF auch in anderen Gebieten einsetzen zu können, wird inner-
halb der Dissertation ein Simultaneous Localization and Mapping (SLAM) Ansatz untersucht,
um die Kartengenerierung zu umgehen. Die automatische Kartenerstellung erfordert jedoch
eine GNSS-Positionslösung mit Genauigkeiten im Dezimeterbereich. Daher wird im Rah-
men der SLAM-Methode Precise Point Positioning (PPP) anstatt der code-basierten Ein-
zelpunktbestimmung verwendet. Da eine durchgehende PPP-Positionierung im städtischen
Bereich erst bei voller Operationalität von Galileo und COMPASS möglich sein wird, wird
der SLAM-Ansatz innerhalb einer Simulationsumgebung entwickelt.

Durch den Einsatz des entwickelten RBPF kann die Positionierung außerhalb von Gebäuden
um 47% bis 69% und innerhalb um 40% bis 60% verbessert werden. In Gebäuden liegt die
Positionsgenauigkeit somit im Tastbereich der blinden Person, während im Freien die Person
am richtigen Gehsteig lokalisiert werden kann. Die Evaluierung auf Basis von simulierten Da-
ten zeigt, dass die entwickelte SLAM-Methode das optimale Werkzeug für eine automatische
Kartengenerierung ist.
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1 Introduction

As stated in a yearly report of the World Health Organization (WHO), it is estimated that
globally 285 million people are visually impaired, thereof 39 million are blind and 246 million
have low vision (World Health Organization, 2014). Additionally, the WHO reported that
about 90% of the visually impaired have a low income. Considering a first-world country
like Austria, 3.9% of the population suffer from permanent visual impairments (Blinden-
und Sehbehindertenverband Österreich, 2007) and therefore have problems with the daily
navigation through their environment, especially through urban areas and unknown indoor
environments. No other group of the human population depends more on a precise and per-
manent operational navigation system than visually impaired people. Unfortunately, com-
mon navigation systems deliver position accuracies in the range of several meters, which is
not sufficient for a reliable guidance of blind users. Compared to conventional pedestrian
navigation, the quality requirements on the position determination are much higher. The
position must be accurate enough (at the two-meter level and below) so that objects and
locations relevant for guidance instructions are reliably situated within the tactile range of
the blindman’s stick. To achieve these accuracy requirements and to guarantee a continuous
temporal availability without interruptions, the fusion of complementary positioning sensors
and methods is indispensable.

Before going into more detail, the main focus of the thesis has to be defined. As visualized
in Figure 1.1, navigation comprises three general tasks: positioning, routing and guidance.
Within positioning, the location of the user has to be estimated relative to a defined refer-
ence frame, while within routing, the optimal route to a chosen destination is determined
to finally guide the user along this route. The focus of this thesis is the development of an
accurate and reliable positioning tool being part of a navigation system especially tailored
to visually impaired people. The positioning performance is of huge importance, since the
determined coordinates are the base for reliable routing as well as for precise guidance. Con-
sidering visually impaired people, in addition to the announcement of guidance instructions,
an effective obstacle warning has to be installed, which demands for positioning accuracies
within the range of a blindman’s stick. A blind or visually impaired person must rely on the
guidance instructions generated by the system, since the person is unable to compensate any
misinformation by visual faculty. Due to the lack of highly accurate position information, the
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1 Introduction

guidance instructions of today’s navigation systems can only give coarse warnings of obstacles
and rough maneuver instructions.

Figure 1.1: The three tasks of navigation.

Besides these facts, it has to be considered that most of the blind people have a small income
and therefore, it is important to keep the cost of the navigation system low. Consequently,
the goal of the developments within the thesis is to exploit all possibilities of filtering based on
preprocessed measurement data of the built-in sensors of a common smartphone to provide
outdoor as well as indoor positioning. By using the positioning and processing facilities of the
smartphone, no additional device has to be financed and carried along. Even if a social insur-
ance would pay for the costs of a special navigation system, the smartphone comes along with
the advantage to have one device for communication and navigation.

The developed positioning tool uses as much smartphone sensors as possible. On the one
hand, to have redundant information and on the other hand, to compensate the disadvantages
of one sensor by the advantages of the others. Complementary and redundant data improves
the positioning availability, accuracy, and consequently the reliability. In particular, the out-
put of the smartphone-internal GNSS (Global Navigation Satellite System) receiver, the WiFi
(Wireless Fidelity) scanner, and sensors like accelerometer, gyroscope, magnetometer, and
barometer are used to derive absolute and relative position information.

All position information is combined by a particle filter integrating maps of the environments.
For the position estimation, indoor and outdoor environments have to be treated differently
concerning the involved sensors and the spatial constraints arising from the incorporated
maps and building layouts. The indoor positioning is based on 3D coordinates obtained by
a WLAN (Wireless Local Area Network) fingerprinting algorithm, relative position infor-
mation estimated within a Pedestrian Dead Reckoning (PDR) approach using inertial and
magnetometer data, and a relative height information delivered by a barometer. Outdoors,
the WLAN solution is replaced by code-based GPS positions.
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The innovative aspect of the implemented outdoor position solution is the use of spatial
constraints in terms of a user-tailored raster map considering the requirements of blind people.
Since the visual impairment leads to a different, more predictable movement compared to the
movement of common pedestrians, streets and paths can be classified into different categories.
For example, blind persons most likely walk on pavements, cross the streets at zebra crossings
only, and follow tactile ground surface indicators at certain places. This knowledge is used for
the creation of a special occupancy grid map, which can be integrated as spatial constraint
within the filter process. As a particle filter approach is able to handle multivariate data and
nonlinear and non-Gaussian processes, the particle filter is the optimal filter for incorporating
spatial constraints, which cannot be described by any kind of probability distribution. By
representing the estimate by particles, the full information content of a map can be used
within the positioning process. In contrast, the parametric approach of the Kalman filter
(representing the estimate by the first and second moment of a probability function) makes it
difficult to integrate the complete map-information content because of the strict assumptions
concerning the models’ probabilities. Therefore, the particle filter is the chosen algorithmic
framework for the integration of the position data and the user-tailored map. Common
particle filters for outdoor environments only distinguish occupied and non-occupied regions
(streets, buildings, obstacles etc.), while the presented approach subdivides the environment
with regard to the needs and walking behaviors of blind persons.

The creation of the special occupancy grid map, which represents the accessibility of public
areas and the path preferences of blind pedestrians, was done in cooperation with a blind
consultant. Up to now, no adequate map is publicly available containing all essential informa-
tion for the positioning of blind persons. Therefore, the map specifications and requirements,
which have been defined together with the consultant, have acted as a basis for the surveying
of the necessary data. Unfortunately, according to the consultant, in indoor environments
the movement of blind persons cannot be algorithmically constrained in the same way. The
structures are too small in size and the blind persons’ habits are very individual. How-
ever, common occupancy grid maps based on ordinary building layouts are integrated within
the particle filter to improve the system’s performance. Additionally, a wall collision filter
strongly increases the positioning reliability.

Besides the preprocessed sensor data and the spatial constraints given by the different raster
maps for indoor and outdoor environments, the outcome of a Pedestrian Activity Classi-
fication (PAC), which identifies activities like walking, going upstairs, going downstairs or
standing, is used as multiple support within the positioning process. In indoor environments,
the activity provides additional information about the vertical displacement of the pedestrian,
which can be used as complementary data for the height estimation. As not all of the state-
of-the-art smartphones comprise barometers and the WLAN fingerprinting focuses on the
horizontal position performance, this alternative height estimation approach is investigated.
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The vertical displacement is gained by combining a step detection, the determined activity,
and a standardized step height. If the actual activity is going upstairs or going downstairs
and a step is detected, then the step height corresponds to the covered height. The activity
is also used as support for the 2D position estimation. Pursuant to the activity, the possible
state space can be probabilistically restricted. Considering for example a pedestrian going
upstairs, the probability of being at a stairway has to be higher.

At the moment, the developed framework can only be tested and analyzed within a defined
indoor and outdoor test area at the campus of Graz University of Technology. A restricted
test area had to be defined, since the establishment of the user-tailored raster map is a very
time- and cost-consuming process. Hence, as an alternative, a Simultaneous Localization and
Mapping (SLAM) approach is employed within the thesis for the creation of the user-tailored
map. The automatic map generation requires a more precise absolute positioning than the
GPS code solution with accuracies in the range of some meters.

For this reason, multiple-GNSS Precise Point Positioning (PPP), which provides position
accuracies in the decimeter level, is considered. Within the defined test area, different tests
have already been performed, which showed that PPP could be used for the SLAM-based
generation of the map if enough GNSS satellites (at least four GPS or five GPS and GLONASS
satellites) are available within the urban canyons. At the moment this is not the case 24
hours a day due to the still insufficient number of satellites in orbit. Hence, in this thesis
the SLAM approach is investigated in a simulation environment. However, with the full
operational capability of the European Galileo and the Chinese COMPASS more than 100
satellites will be available, which would fulfill the SLAM requirements. Then, the developed
SLAM could be applied to real data. Finally, the application of the SLAM approach for
generating user-tailored maps for indoor environments is reviewed.

1.1 Research questions

One goal of the thesis is the development of a positioning filter for an accurate and reliable
outdoor as well as indoor positioning. Therefore, the measurement data of the smartphone
sensors are supported within the filter by information gained from outdoor and indoor maps.
For the outdoor environment, a user-tailored raster map has to be developed, which is es-
tablished for a restricted test area. To make the developed system applicable everywhere,
another goal is the design of a SLAM algorithm which automatically generates a user-adjusted
probability map of the environment. An effective SLAM could also be used for establishing
probability maps for buildings. For the described goals, the following research questions can
be formulated, which are answered within the framework of the thesis.
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1.1 Research questions

With regard to the development of the positioning filter tailored to blind pedestrians various
questions arise:

– Does a user-tailored occupancy grid map improve the positioning accuracy?

– Which spatial information can be used for restricting the positioning indoors?

– Does a wall collision filter improve the positioning performance?

– Can height changes be determined by combining the PAC and PDR? Is this height
information suitable for the floor detection in buildings?

– Which position can be defined as best estimate in case of a particle filter?

– How good is the outdoor and indoor positioning performance of the developed tool?

The design and implementation of a SLAM approach to establish a probability map of the
environment leads to the following questions:

– Is SLAM suitable for generating a probability map for blind users?

– How good is the applicability of PPP in urban environments? Can PPP be used for
the generation of a probability map based on SLAM?

– How well does the outdoor positioning based on the SLAM-derived probability map
perform?

– Can SLAM also be exploited for establishing probability maps for indoor environments?

For answering the questions formulated above, the following research has been conducted:

– Design and implementation of a Rao-Blackwell particle filter for the position estimation
in outdoor and indoor environments based on absolute and relative position information

– Definition of the requirements for the user-tailored raster map

– Modeling of the indoor environment

– Design and implementation of a wall collision filter

– Derivation of activity-related probabilities

– Design and implementation of a SLAM approach for the derivation of location proba-
bilities representing the path preferences of blind pedestrians

– Establishment of a simulation environment for testing the SLAM

Following existing algorithms have been employed within the thesis:

– GNSS precise point positioning

– RSSI-based WLAN fingerprinting

– Pedestrian dead reckoning based on inertial data

– Barometric height estimation

– Pedestrian activity classification
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1.2 Structure of the thesis

The content of the thesis is structured as follows:

Chapter 2 gives an overview of existing navigation aids and the current research in the
field of navigation of blind pedestrians. Commercially available navigation devices as well
as smartphone applications are investigated with respect to the special navigation needs of
blind persons. Based on the current research, unsolved problems and possible improvements
are discussed.

Chapter 3 focuses on filtering techniques belonging to the family of Bayes filters. First,
the theory of the Bayes filter is explained, which is followed by the fundamentals of non-
parametric and parametric Bayes filter representations. On this basis, three filters - the
Kalman filter, the grid-based estimation and the particle filter are particularly highlighted.

Chapter 4 concentrates on the positioning with current available smartphones and its built-
in sensors. The chapter is subdivided into several sensor specific sections, in which the sensor
characteristics and positioning methods are discussed. The focus is put on methods which
were used for the preprocessing of the raw sensor data within the thesis.

Chapter 5 describes the design of the positioning tool, which is based on a particle filter
integrating absolute and relative position data, as well as spatial constraints obtained from
maps of the environments. The establishment of the outdoor and indoor maps is covered in
detail, and the design of the wall collision filter is specified. Additionally, the contribution of
the activity information within the position estimation is investigated.

Chapter 6 demonstrates the performance of the positioning tool in outdoor and indoor
environments based on defined performance measures.

Chapter 7 treats the generation of probability maps based on a SLAM approach. At first,
the theoretical background and the architectural design of the algorithm are described, fol-
lowed by investigations concerning the performance in outdoor environments. At last, the em-
phasis is set on the applicability of SLAM for generating indoor probability maps.

Chapter 8 summarizes the work and discusses the characteristics of the developed system.
At the end, an outlook with respect to further ideas is given.
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2 Motivation

Compared to pedestrians without any visual impairment, the requirements of blind persons
concerning a navigation system are more demanding in terms of accuracy, availability, relia-
bility, and usability (handling). All tasks of navigation, comprising positioning, routing, and
guidance, are affected by the special needs of blind users and strongly differ from those of
common navigation systems.

Considering positioning, the accuracy has to be at least in the range of a blindman’s stick.
The availability has to be guaranteed 100% of the time with 100% spatial coverage providing
seamless transitions from outdoor to indoor environments and vice versa. Additionally, the
reliability of the position information has to be guaranteed all the time or at least, the blind
user has to be informed if the positioning requirements cannot be satisfied. As the positioning
is the basis for routing and guidance, the demands on the accuracy, availability, and reliability
are very high.

The routing of visually impaired people has to be adapted to the habits and needs of this
special user group. Pathways with low accidental risks have to be favored over dangerous
routes, e.g., pavements with bike parking areas or mailboxes want to be avoided by visually
impaired people. In general, objects which are not in the sensing range of a blindman’s
stick or change temporarily in its volume and location have to be circumvented within the
routing if alternative routes exist. Furthermore, ways with navigation infrastructure for blind
persons (tactile ground surface indicators, traffic lights with acoustic signals, etc.) have to
be preferred. Therefore, for an effective and secure routing, accurate positions have to be
provided. The navigation of blind pedestrians along navigational aids such as ground surface
indicators and the avoidance of hazardous objects require an accuracy, which enables at
least the localization of the pedestrian at the correct pavement. Consequently, the routing
component for blind pedestrians is more demanding compared to the routing of general
pedestrians and requires a more accurate positioning as basis.

The guidance component should include, besides the common instructions for route guid-
ance, an obstacle warning system and should support the blind person in any navigational
purpose along the route. To successfully avoid collisions, the position accuracy has to be in
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2 Motivation

a range, which allows the assignment of the pedestrian to the correct pavement and the an-
nouncement of any risks at the right time. The blind pedestrian can only trust the navigation
announcements if the position accuracy enables an effective navigation.

The way how the navigation announcements are handed to the user is very controversial and
up to now a topic of research. Different possibilities exist, ranging from vibrational to acoustic
solutions. As proposed in Loomis et al. (2008), special virtual acoustic displays have been
developed for providing auditory information to the user via earphones. This acoustic display
supports the guidance by manipulating the auditory direction and the sound volume of the
navigation announcements. Closer landmarks are announced with a higher sound level than
more distant ones. Additionally, the direction of the sound corresponds to the direction which
has to be steered. However, different studies approve that blind persons prefer non-acoustic
solutions over acoustic ones, since the sense of hearing is preferably used for navigating
through the daily life and for quickly noticing risks and dangers.

In the following, currently available navigation devices and recent developments are investi-
gated concerning the usability for blind persons. Within section 2.1, different commercially
available systems which are either developed as self-contained navigation device or imple-
mented as an application for a supporting device (tablet, smartphone, etc.) are discussed. An
overview of the ongoing research is given in section 2.2. Due to the primary focus of the thesis,
the emphasis of the state-of-the-art investigation in the field of science is set on positioning.
Finally within section 2.3, unsolved problems are outlined based on the state-of-the-art prod-
ucts and research. The focus hereby is especially set on the topic of positioning. The section
is concluded with possible improvements for the identified problems.

2.1 Products for the navigation of blind persons

Present navigation systems for visually impaired pedestrians by all means comprise GNSS-
based single point positioning, slightly adapted navigable maps for the purpose of route
planning, and coarse guidance instructions mainly restricted to information about obstacles
and Points of Interest (POI). In this context, a few current navigation systems shall be men-
tioned: Breeze, Tormes, MyGo, and Wayfinder Access. In former times, the focus of the
research was the development of self-contained navigation systems. Because of the extensive
positioning and computing possibilities which are offered by smartphones nowadays, the em-
phasis of the product development switched from the design and creation of special mobile
devices to the software development of smartphone applications. In section 2.1.1, navigation
aids, which were especially developed for the navigation of blind pedestrians and are still
commercially available, are presented and compared. In section 2.1.2, the characteristics of
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2.1 Products for the navigation of blind persons

different smartphone applications are discussed under the aspect of the navigation of blind
people.

2.1.1 Mobile devices

The first GPS-based navigation concepts for pedestrians appeared at the turn of the millen-
nium. However, the operation of these devices was complicated and they had to be worn
with a shoulder or neck strap. Products, which are simply applicable and helpful for the
navigation of the blind and additionally low in weight and size, have been launched onto the
market only during the last ten years. A short overview of the currently available navigation
aids is given in the following.

Breeze, manufactured by the company Trekker (Humanware, 2015), is a handheld GPS device
especially developed for the navigation of blind people in outdoor environments. Based on
the estimated path, Breeze supports the blind pedestrian by voice instructions announcing
the names of streets, intersections, and landmarks and gives also step-by-step instructions.
In case of using public transport, Breeze indicates the names of the crossings to avoid missing
the exit. Furthermore, Breeze offers a back-track function and the recording of tracks to use
them for future guidance. Apart from the navigational functionality, the device itself was
also especially designed for the use by blind people. It can be held in one hand and the user
interface is kept as simple as possible, see Figure 2.1a. The disadvantage of Breeze is that
no complementary sensor is integrated to support the GPS-based positioning in GPS-critical
regions or indoors.

BrailleNote GPS of the Sendero Group (Sendero Group, 2014) offers in general the same
functionalities as Breeze such as the announcement of nearby streets, intersections, etc. Paths
can already be explored before the user starts going by a simulated navigation through
the environment. There are two different guidance options comprising speech and Braille
output.

Another similar product is Tormes, which was funded by the European Space Agency (ESA).
Referred to ESA - Technology Transfer Programme (2003), Tormes is a computer with a
Braille keyboard and GPS technology that gives voice instructions. Tormes incorporates
corrections of the European Geostationary Navigation Overlay Service (EGNOS), thus it is
providing accuracies in the range of 1 to 5 meters before applying a positioning filter. It
weighs less than one kilo and can be carried over the shoulder.

As mentioned in Wired (2007), the product Mygo is a feature-laden rolling white cane, which
uses a sensor-camera combination to screen the terrain in real-time (Figure 2.1b). Feedback
to the user about the ground is given via a wireless headset. The product cannot be used as
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2 Motivation

navigation aid, it is only used as assistance for the blind user. It was planned for the purpose
of replacing a guide dog.

(a) Breeze. (b) Mygo.

Figure 2.1: Commercially available navigation aids: Breeze is a handheld GPS device sup-
porting the blind persons with guidance instructions in outdoor environments.
Mygo is a feature-laden rolling white cane providing feedback about the terrain.

Except Mygo, all the above mentioned devices are designed for the navigation in outdoor en-
vironments. For the application within buildings, no commercially available device exists. As
operable indoor solutions arised synchronously with the first smartphones, the developments
are smartphone-based software products.

2.1.2 Smartphone applications

First solutions on mobile phones were developed for the operating systems Symbian and
Windows Mobile. The positioning was purely based on GPS code solutions and the guidance
as well as the operation of the phone was performed by a synthesized voice. Wayfinder Access
was one of the first cell-phone-based GPS navigation software that can be used in combi-
nation with cell phone screen-reading software to assist a pedestrian in navigating through
outdoor environments (American Foundation for the Blind, 2009). The software was origi-
nally developed for Symbian, second or third edition, but was extended for the installation
on Android- and iOS-based phones. For the positioning, either the built-in GPS receiver or
an external Bluetooth GPS receiver can be used. The advantage of an external receiver is the
lower power consumption as well as the higher position accuracy. A similar product is Mo-
bile Geo running on all Windows Mobile operating systems. Mobile Geo mainly differs from
Wayfinder in the way how the map is accessed. While Wayfinder gets its map via the mobile
network, Mobile Geo supports the storage of the maps on the phone.

The introduction of touchscreens was a step back for blind mobile phone users. However, with
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2.2 Research related to the navigation of blind persons

the launch of VoiceOver by Apple on iOS devices, a new era started for blind persons regarding
the use of a smartphone as navigation aid (Apple Inc., 2015). Since then, the smartphone
with its extensive positioning, computing, and communication possibilities is used as basis
for the development of specialized navigation applications. VoiceOver verbally explains the
contents of the screen, starting with the status of the battery, the name of the person calling,
and ending with information about different apps. Thereby, the person just has to swipe
over the screen to get the necessary information. In case of the communication with the user,
the volume of currently played music is automatically reduced. Additionally, iOS devices
are compatible with most of the common electronic Braille displays. Due to VoiceOver, iOS
apple devices are the favored smartphones among blind users.

BlindSquare is a smartphone navigation application for blind users designed in collaboration
with blind persons (BlindSquare, 2012). It is developed by the Finnish company MIPSoft for
the use on iPhones and iPads. The application is based on open data sources and provides
information about the address of the user’s current location, the nearest street crossing,
shops, and services, as well as assistance for the use of public transport. The positioning
of BlindSquare is GPS-aided and therefore only applicable in outdoor environments. The
operation of the app requires VoiceOver. The communication with the user for the purpose of
guidance is voice-controlled. By shaking the smartphone, the user gets information about the
actual location. Favored places and routes are saved to iCloud, consequently, all information
is synchronized and can be used on all of the user’s iOS-devices.

Ariadne GPS is another navigation application especially developed for blind persons, but
offers less extensive navigation possibilities compared to BlindSquare. Searching public POIs
or searching by address are only two missing options amongst others. Neither Ariadne GPS
nor BlindSquare provide turn-by-turn guidance. Myway Classic, another smartphone appli-
cation for aiding blind people, is mainly designed for the recording of walked routes, along
which the person can be guided. Google Maps also provides navigation for pedestrians, but
without any special guidance adaptions for visually impaired users. The mentioned applica-
tions differ concerning the need of an Internet connection. While Ariadne GPS and Myway
Classic can be operated autonomously, the two others obtain the map information and the
POIs from the Internet.

2.2 Research related to the navigation of blind persons

Outdoor positioning based on GNSS can be considered as well-solved (Mautz, 2012). Differ-
ent approaches based on differential, relative, or precise point positioning exist, which provide
position accuracies at the low decimeter or even centimeter level (Hofmann-Wellenhof et al.,
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2008; Groves, 2013). However, all these methods require raw GNSS code or phase measure-
ments which are not available for smartphone users. Consequently, accurate smartphone-
based outdoor solutions are realized by sensor fusion or the use of external Bluetooth GNSS
receivers which transfer the position data to the mobile device.

I want to highlight two different projects, POScity and PONTES, which are relevant for the
navigation of blind pedestrians in outdoor environments and are partly developed at Graz
University of Technology, Institute of Geodesy, Working Group Navigation (former named
Institute of Navigation). Within the project PONTES (Wieser et al., 2007), the Institute of
Navigation worked in a close cooperation with the Styrian Association of the Blind and Visu-
ally Impaired People. Together, a navigation concept comprising the components positioning,
routing, and guidance specially tailored to the blind people’s use have been developed. The
positioning is based on an integrated concept combining GPS positions with dead reckoning
information. The experience gained in PONTES was the basis for the initiation of the project
POScity, the focus of which is the improvement of the positioning.

Parts of the presented thesis have been realized in the course of POScity (Hafner et al., 2015).
The focus of this project have been investigations regarding a particle filter incorporating 3D
coordinates gained from a GNSS precise point positioning algorithm. The position estimation
is supported by a user-tailored map, which allows the derivation of location probabilities.
This user-tailored map represents the accessibility of areas and path preferences of blind
pedestrians. The investigations have shown, that the fusion of PPP with a user-tailored
probability map allows positioning with accuracies of a few decimeters. However, a geodetic
GNSS receiver is necessary to provide these accuracies.

For the positioning within buildings, several indoor navigation systems have been developed
over the past decade. For outdoor applications, GNSS provides positioning 24 hours a day
with an appropriate accuracy and without special infrastructure (Hofmann-Wellenhof et al.,
2008), while indoors no single technology covers the requirements for an accurate and reliable
positioning (Mautz, 2012). Consequently, several indoor systems exist, which are based on
different algorithmic approaches combining various sensor technologies. The current research
treats positioning based on WLAN (Rajamäki et al., 2007) and Bluetooth networks (indoors,
2013), Radio Frequency Identification (RFID) (Ding et al., 2007; Chumkamon et al., 2008),
dead reckoning sensors like accelerometer, gyroscope, magnetometer (Nilsson et al., 2014;
Renaudin and Combettes, 2014), barometer, and cameras, etc.

The research in this field is very extensive and has a wide variety, because either the system
does not provide the required accuracy, or special infrastructure has to be installed. Accu-
rate systems are based on sensor fusion, e.g., Fischer et al. (2008) support the inertial-based
pedestrian dead reckoning by absolute positions gained from ultrasound data, Rantakokko
et al. (2011) combine PDR with Ultra Wide Band (UWB) ranging data, and Lópes-Salcedo
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et al. (2008) integrate measurements based on high-sensitivity GNSS and WLAN, but also
data from an Inertial Measurement Unit (IMU) realized by Micro-Electro-Mechanical Sys-
tem (MEMS) technology. Fallah et al. (2013), Woodman (2010), and Mautz (2012) give a
comprehensive overview of existing methods in the field of indoor positioning. In the fol-
lowing, some outstanding research projects are pointed out, which focus on positioning and
navigation of blind pedestrians.

Noppa was a three-year pilot project funded by the Ministry of Transport and Communication
of Finland (Virtanen and Koskinen, 2004). The aim of the project was to support blind pedes-
trians by public transport information and guidance in indoor and outdoor environments. As
stated in Eltis - the urban mobility observatory (2008), Noppa was the first pedestrian navi-
gation system offering real-time public transport information and speech recognition. For the
outdoor navigation, code-based GPS, pedometer and compass data is used, while indoors, an
integration of Bluetooth, WLAN, and compass/pedometer data is carried out. Therefore, a
pocket PC in combination with a Bluetooth GPS receiver is employed. In the literature, no
specifications concerning the position accuracy can be found.

LaureaPOP is an extended version of the system Noppa improving the indoor positioning
(Rajamäki et al., 2007). LaureaPOP and Noppa are both designed for the use on a commer-
cially available mobile phone. The system tries to convey the layout of the indoor facility
to its user orally, including information about obstacles, the distance to destinations as well
as navigation aids. The indoor localization is done with a WLAN positioning service of the
Finnish company Ekahau (Ekahau, 2015). Since the year 2000, Ekahau has been operating
in the field of designing, deploying, and maintaining WiFi networks. Based on their WiFi
experience, they established a WiFi-based Real-Time Location System (RTLS), being one of
the first offering such a service.

As proposed in Ran et al. (2004), Drishti is a wearable computer with a vocal communication
interface and a wireless connection to a precise position measurement system. While outdoors
Differential GPS is used, an ultrasound-based system provides the location indoors. The
indoor positioning requires the installation of several ultrasound pilots within the building
and two beacons which are mounted on the user’s shoulder. Disregarding the inconvenient
infrastructure, the ultrasound system convinces with its position accuracy of 22 cm (Ran
et al., 2004). The transfer from outdoor to indoor is communicated to the system by a vocal
command of the user.

The navigation system PERCEPT pursues a completely different solution. As mentioned in
Ganz et al. (2012), it provides enhanced perception of the indoor environment by using RFID
tags installed within the building. When entering a building, the person, who is equipped
with a PERCEPT system, has to head for the so-called kiosk at the building entrance.
There, the user can enter her/his intention, where she/he wants to go. Since the kiosk has
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an integrated RFID tag, the navigation system is able to scan the RFID tag which provides
navigation related information. Based on this information, the user is guided to the intended
destination.

Referred to Apostolopoulos et al. (2012) and Apostolopoulos et al. (2014), the project Na-
vatar focuses on indoor positioning based on a particle filter estimating the location with
dead reckoning sensor data and information about the presence of tactile landmarks. The
blind person is regarded as sensor, documenting the appearance of landmarks like doors,
floor transitions, water coolers, ramps, stairs, and elevators. The dead reckoning data is
integrated as transition data within the update of the filter, while the reported landmarks
represent the observations for the measurement update (details on positioning filters are given
in chapter 3). By incorporating the tactile landmarks, the errors of dead reckoning can be
mitigated. Additionally, a building map is integrated within the filter to restrict impossible
pathways (e.g., wall or obstacle crossings). Within the investigations, different particle-filter-
based schemes for automatically computing the step length of the user are treated. Since
no sensor fusion is considered, the adaption to different step lengths within the filter is of
huge importance as the location estimate is directly correlated to this parameter. Due to
the step length estimation within the filter, no calibration/adaption of a user-depending step
length model is required. By adapting the step length within the particle filter, the mean
distance between the location estimation and the ground truth could be reduced from 2.31 m
to 0.02 m. Details on the different performance investigations can be found in Apostolopoulos
et al. (2014).

2.3 Unsolved problems and possible improvements

The outdoor positioning is well covered by GNSS-based techniques. Depending on the applied
method, accuracies between a few meters up to a few centimeters can be reached. However,
smartphones do not provide raw GNSS measurements which are necessary for advanced
techniques yielding accuracies of decimeters/centimeters. Consequently, the smartphones’
GNSS position accuracy is restricted to accuracies of a few meters. Therefore, in the near
future, the smartphone providers have to be convinced to allow access to GNSS code and
phase measurements. With the availability of code and phase measurements, PPP (see
section 4.1.4) could easily be applied on smartphones. The necessary data (precise orbits
and clock parameters) for providing coordinates with accuracies at the low decimeter level is
globally valid and accessible in real-time by web-services like the International GNSS Service
(IGS). Enabling PPP on smartphones would open the door for precise guidance instructions
as well as reliable obstacle warnings.
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In indoor environments, no technology fulfills all positioning requirements in terms of accu-
racy, reliability, and availability. Therefore, several approaches are topic of current research.
Most of the methods either depend on infrastructure, which has to be installed and main-
tained, or do not satisfy the accuracy requirements for a reliable guidance. As proposed
in Apostolopoulos et al. (2014), dead reckoning assisted by only a few absolute positions
within an advanced Bayes filter approach, which also incorporates building layouts, enables
accurate positioning without any extra infrastructure. However, within this method the user
has to act as sensor reporting the presence of landmarks. A system without any user-driven
feedback would let the blind person focus on the guidance instructions and is consequently
favored.

The current research is showing that a sensor fusion is absolutely necessary to provide ac-
curacy as well as reliability. In indoor as well as outdoor environments, the combination
of complementary sensor data enables positioning 100% of the time. Indoor localization
can considerably be improved by incorporating map information. Unfortunately, up to now
no standard for building layouts has been established, although a standardization and an
automatic disposal of maps at the building entrance would have a strong impact on the al-
gorithmic solutions. At the moment, architectural blue prints without any standardization
are the basis for generating maps which are used in the positioning process as well as for
routing and guidance. By applying a non-parametric Bayes filter representation, the whole
information content of the map can be exploited. Hereby, the particle filter has to be favored
over grid-based approaches to keep the processing effort low.

Outdoors, particle filters are rarely used for the position estimation. Kalman filters are still
state-of-the-art, because of the their compact parametric formulation, which is unbeatable
concerning its computational costs. However, map information cannot be integrated within
Kalman filters without any restrictions due to the Kalman filter’s strict assumptions. The
application of the Kalman filter demands for linear (or slightly non-linear) transition and
observation models, and expects that the uncertainties of the involved data and models
correspond to Gaussian distributions. These assumptions are violated if map information
is integrated. Though, also outdoor maps contain information which improves the position
accuracy. Within probabilistic Bayes approaches, maps, which are additional enriched by
data relevant to blind people, can strongly contribute to the positioning through providing
spatial constraints.
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3 Bayesian filters

In navigation, Bayesian filters are used for positioning purposes estimating the state of a
dynamic system based on a set of sensor measurements. The estimated quantities are not
observed directly, however, the sensors provide partial information about the state. It has
to be considered that the observations are affected by noise. Based on these noisy measure-
ments, Bayesian filters provide a probabilistic estimation of the state of the dynamic system.
Thereby, a probability distribution over the state xt, defined as belief bel(xt), represents the
estimate of the true state and the uncertainty in that estimate at every epoch. Bayesian
filters sequentially determine such beliefs based on all available sensor data. The parameters
which are estimated as well as the observation data are stochastic entities which are related
by an analytical link (Haug, 2012). In general, the state contains all relevant information
required to describe the system under investigation (Ristic et al., 2004). For example, consid-
ering the position and the spatial orientation as parameters describing the system, the state
includes the three dimensional coordinates x, y and z, while the orientation of the object is
represented by the orientation angles roll, pitch and yaw.

The framework of the Bayes filter provides the fusion of different sensor types and information,
aiming at the integration of complementary data (Fox et al., 2003). In case of a sensor fusion,
the measurement models have to be defined for each type of observation, since every sensor
possesses its own characteristics, sources of errors and noise. However, for the positioning task
within navigation, complementary sensors are preferred to compensate the disadvantages of
one sensor by the advantages of the other one and vice versa (Woodman, 2010). More details
on different sensors and their composition are given in chapter 4.

Based on the observations of one or more sensors, the belief bel(xt) of a dynamic system at
a certain point in time t is given by

bel(xt) = p(xt|z1:t), (3.1)

representing the conditional Probability Density Function of the state xt considering all avail-
able sensor measurements z1:t up to time t. More details on basic concepts in probability can
be found in chapter A of the annex. Estimating the belief bel(xt) by a recursive Bayesian
filter, two models, a dynamic model (also called prediction, state transition, or system model)
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and a measurement/observation model, are required. Both models together describe the dy-
namical stochastic system of the state which is declared as Dynamic Bayes Network (DBN).
A general DBN is visualized in the left graph of Figure 3.1, which illustrates the tempo-
ral dependencies between the states of two consecutive epochs and the relationship between
the estimated states x1:t and the observations z1:t. Within the DBN, the dynamic model
p(xt|x0:t−1) defines the object’s dynamics and is responsible for the propagation of the belief
from one epoch to the next, while the measurement model p(zt|x0:t, z1:t−1) corresponds to
the probability distribution representing the likelihood of the measurement at a certain point
in the state space. Consequently, the dynamic model links two consecutive epochs, whereas
the measurement model connects the state xt with the observations zt.

To make the realization of Bayesian filters tractable, the dynamic system is assumed to be a
Markov chain of first order (Thrun et al., 2006). A Markov chain of first order expects that the
state xt is complete and consequently is the best predictor of the future. This means, that past
states x1:t−1 and previous measurements z1:t−1 carry no additional information that would
help predicting the future more accurately. As a result, the past and the future is independent
if xt is known. Considering the Markov assumption that the state xt is complete, the state
transition probability can be simplified to p(xt|xt−1), while the measurement probability is
given by p(zt|xt). The simplification of the DBN by assuming that the state is complete is
illustrated in Figure 3.1.

Figure 3.1: Illustration of a general DBN describing the dynamic stochastic system (left)
and its simplified realization under the assumption that the state is complete
(right).

As stated in Kremer (2005), the basis of Bayesian filtering is the Bayes’ rule, which describes
the relationship between two conditioned probabilities p(x|y) and p(y|x) based on two random
variables X and Y . The Bayes’ rule for the continuous case is defined by

p(x|y) = p(y|x) p(x)
p(y)

=
p(y|x) p(x)∫
p(y|x) p(x)

. (3.2)

In case of the discretization of the state space the integration is replaced by a sum

p(x|y) = p(y|x) p(x)∑
p(y|x) p(x)

. (3.3)
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Introducing the denominator p(y) as a normalization constant η, equations (3.2) and (3.3)
simplify to

p(x|y) = η p(y|x) p(x). (3.4)

Details on the derivation of the Bayes’ rule can be found in section A.1 of the annex.

Based on the Bayes’ rule, the framework of the Bayes filter, which consists of a prediction
and a measurement update step, can be defined. The general concept of Bayesian estimation
is shown in Figure 3.2.

Figure 3.2: Principle concept of Bayesian estimation.

At first, for the tracking of the state through time, the dynamic model has to be applied to
obtain a prior belief bel(xt). Referring to Haug (2012) and Arulampalam et al. (2002), the
link between the prior density defined by p(xt|zt−1) and the belief bel(xt−1) of the previous
epoch is provided by the Chapman-Kolmogorov equation:

bel(xt) = p(xt|zt−1) =

∫
p(xt|xt−1) bel(xt−1) dxt−1. (3.5)

The belief bel(xt−1) of the previous epoch implicitly includes the measurements up to time
t − 1. Therefore, the prior belief corresponds to the probability of the state xt conditioned
on the measurements up to time t− 1.

Whenever a sensor measurement is available, the belief is updated by applying the Bayes’ law
incorporating the current measurements zt. This step is called measurement update and per-
forms the computation of the posterior belief bel(xt) = p(xt|zt) due to equation (3.2):

bel(xt) =
p(zt|xt) p(xt|zt−1)

p(zt|zt−1)

= ηt p(zt|xt) bel(xt),
(3.6)
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with the normalization factor ηt = p(zt|zt−1) (Haug, 2012; Doucet et al., 2010). The normal-
ization factor ηt guarantees that the summation of the posterior belief over the whole state
space results in 1.

Besides the state transition and measurement probability, the initial belief bel(x0) = p(x0)

of the state has to be defined. If prior knowledge is available, bel(x0) is initialized corre-
spondingly, otherwise a uniform distribution is applied. Summarized, the posterior PDF
of the state is determined with respect to all available information including the present
measurements.

The dynamic system considered within this thesis is a pedestrian with visual impairments
walking in indoor and outdoor environments. The observations incorporated within the up-
date step are derived from smartphone sensor data. Considering visually impaired people,
the possible pathways can be restricted compared to common pedestrians. For example, in
outdoor environments it can be assumed that streets are only crossed at zebra crossings.
This information can be additionally integrated besides the smartphone sensor data to es-
timate the posterior Probability Density Function (PDF). Figure 3.3 demonstrates how the
information is probabilistically considered in the Bayes filter framework based on a concrete
application.

Within this example, a blind person is moving along a street exhibiting three zebra crossings.
The goal is to estimate the location of this person along the longitudinal axis of the street.
By considering the movement restrictions of visually impaired persons, in case of crossing the
street, the possible location can be probabilistically limited to crosswalks.

If there is no information about the initial position of the pedestrian, the belief bel(x0) is
initialized uniformly over the state space, see graph (a) in Figure 3.3. If the person crosses the
street, this will be done at a zebra crossing. Therefore, by integrating additional information
such as the path restrictions of blind persons, the possible state space can be reduced to
regions around crosswalks if the person traverses the street. The probability distribution
p(zt|xt) visualized with light green in graph (b) represents the geometric constraints in case
of passing the street. The density function in dark green is the result of the update step,
combining the uniform initial belief bel(x0) with the probability distribution based on the
walking restrictions p(zt|xt).

After crossing the street, the person continues moving along the street and crosses again at the
second crosswalk. The prior belief bel(xt) in graph (c) is obtained by applying the dynamic
model p(xt|xt−1), which corresponds to a forward motion along the street. Every time the
dynamic model is applied, the probability distribution gets spread due to the uncertainty of
the motion. As soon as the person is crossing the street, the spatial constraints deliver the
PDF in light green in graph (d). Multiplying the prior belief bel(xt) by p(zt|xt), most of the
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probability mass is centered around the true position as the dark green PDF in graph (d)
demonstrates. The last graph (e) shows the prior belief after applying the dynamic model
again. Although the uncertainty of the dynamic model causes a larger spreading of the
probability distribution, the actual position can clearly be identified.

Figure 3.3: Illustration of the Bayes filter algorithm with respect to a blind pedestrian mov-
ing along the street.

As demonstrated in the example, the Bayes filter incorporating a dynamic and a measurement
model provides the optimal framework for estimating the state of a dynamic system. The
dynamic model aims at profiting from the information integrated in the previous epoch by
concatenating the posterior belief bel(xt−1) of the predecessor state xt−1 with the belief
estimation of the successor state xt.
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Since the Bayes filter cannot be solved analytically over the whole state space, the algorithmic
approach provides only a conceptual probabilistic framework for recursive state estimation
(Arulampalam et al., 2002). As stated in Thrun et al. (2006), various practical realizations of
the Bayes filter exist, being subject to different assumptions and approximations concerning
the state transition probabilities, the measurement probabilities, and the initial belief. Look-
ing for the optimal filter approach, parameters like computational efficiency, accuracy of the
approximation, and ease of the implementation have to be deliberated. The computationally
tractable realizations of the Bayes filter can be classified into two categories, the parametric
and the non-parametric Bayesian filters. Figure 3.4 shows the hierarchy of the various Bayes
filter realizations.

Figure 3.4: Hierarchy of Bayesian filter realizations.

Along the left-hand side the parametric filters are listed including different realizations of the
Kalman filter and the information filter, while along the right-hand side the non-parametric
filters comprising the grid-based estimation and the particle filter are shown. The special
characteristics of these approaches are described in the following sections 3.1 and 3.2, while a
tabular overview is given in Table 3.1. The overview demonstrates that the approaches vary
in their assumptions and approximations concerning the linearity of the dynamic and the
measurement model, the respective distributions, and the covered state space. The second
column of Table 3.1 refers to the kind of models, which can be applied within the respective
filter. The attribute non-linear means hereby, that both linear and non-linear models are
employable.
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Table 3.1: Characteristics of different Bayes filter implementations

Bayes filter Models Distribution State space

Kalman filter linear unimodal (Gaussian) continuous, infinite
extended non-linear unimodal (Gaussian) continuous, infinite
unscented non-linear unimodal (Gaussian) continuous, infinite

information filter linear unimodal (Gaussian) discrete, infinite
grid-based estimation non-linear multimodal discrete, finite
particle filter non-linear multimodal discrete, infinite

The Kalman filter is restricted to dynamic systems with normal distributed uncertainties. It
is applicable for the modeling of dynamic systems in a continuous and infinite state space.
The huge drawback of this filter approach is the limited treatment of non-linear models. The
information filter has the same assumptions and characteristics as the Kalman filter, but
is more suitable for dynamic systems incorporating many different types of measurements
(Thrun et al., 2006). In contrast, the grid-based estimation and the particle filter may be
defined for linear as well as non-linear functions and can represent arbitrary, multimodal prob-
ability densities. While the particle filter is not limited to a finite state space, the grid-based
estimation can only be applied for a restricted discrete state space.

The filters stated above can further be subcategorized into differently realized implemen-
tations, in which the assumptions and characteristics are slightly modified. Some of these
realizations are already specified in Table 3.1. With the extended and unscented Kalman filter
non-linear models may be handled. What remains, is the restriction to Gaussian distributions.
The Extended Kalman Filter (EKF) belongs to the class of non-linear Kalman filters based
on analytical linearization, while the Unscented Kalman Filter (UKF) extracts sigma points
to circumvent the linearization of non-linear models (Figure 3.4). Nonetheless, their perfor-
mance concerning non-linearity is still restricted, for details see section 3.1.1.

The Kalman filter, the grid-based estimation, and the particle filter, which are all very com-
mon in the field of positioning, are described in more detail in sections 3.1 and 3.2.

3.1 Parametric filters

Parametric representatives of the Bayes filter are approximations with respect to one special
probability distribution, the Gaussian distribution. Consequently, the dynamic as well as the
observation models correspond to Gaussian processes. Because of the assumptions concerning
the model’s distribution, these filters are, referred to Thrun et al. (2006), also called Gaussian
filters. As stated in Haug (2012), within these Gaussian filters, the dynamic and measurement
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model as well as the estimated belief are represented by normal distributions, which are
characterized by the mean µ and the variance σ2. These parameters are the first and the
second moment of a probability density distribution. Since the first two moments characterize
the Gaussian density completely, a recursive propagation of these two parameters is suitable
for optimally estimating the state of Gaussian processes (Haug, 2012).

The most famous parametric representative of the Bayes filter is the Kalman filter, first
introduced in 1960. Kalman filters were the earliest tractable implementations of the Bayes
filter defined for the continuous space (Groves, 2013). Besides the assumption of a Gaussian
distribution, the dynamic and the measurement model have to be linear functions of the state
x. As a consequence, the Kalman filter can only be applied on a limited class of dynamic
systems. Extensions of the Kalman filter for non-linear models exist, but are still restricted
to Gaussian distributions. Two different expanded filter approaches applicable to non-linear
problems are treated in the subsections of section 3.1.1. These two are called extended and
unscented Kalman filter and differ in the handling of the non-linear models. The EKF applies
an analytical linearization, while the UKF is based on extracted sigma points, which are used
for the non-linear transformations.

3.1.1 Kalman filter

Within the Kalman Filter (KF), the beliefs of the Bayes filter are represented by point
estimates of a probability density function. The point estimates are the so-called moments of
a probability density function, whereby the first and second moment correspond to its mean
and variance (Thrun et al., 2006). Therefore, the probability density functions have to be
defined for the dynamic and the measurement model. In case of the Kalman filter, they are
assumed to be Gaussian. Under this assumption, all distribution functions appearing in the
Bayes filter algorithm become Gaussian (Haug, 2012). Considering a normal distribution, all
other moments except the first two are zero and hence, the Gaussian density is completely
characterized by the mean and the variance.

The parametrization of a Gaussian distribution by its first and second moment is called
moments parametrization. The first moment, the expectation of a random variable X is
obtained by

E [X] =

∫ ∞

−∞
x p(x) dx, (3.7)

with p(x) = p(X=x) representing the probability that the random variable X corresponds
to the value x. The variance is defined as the expectation of the squared deviation from the
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mean, which is given by

V ar [X] = E [X − E [X]]2

=

∫ ∞

−∞
x2 p(x) dx− E [X]2.

(3.8)

The probability density function of the normal distribution N (x;µ, σ2) is given by the Gaus-
sian function

p(x) = (2πσ2)−
1
2 exp

(
−1

2

(x− µ)2

σ2

)
, (3.9)

where the mean µ is nothing else but the expectation E [X] of equation (3.7) and σ2 corre-
sponds to the V ar [X] of equation (3.8). In equation (3.9), the mean µ, the variance σ2, and
the state x are expected to be scalar values. The normal distribution given by the Gaus-
sian function is symmetric to its mean and has only a single maximum corresponding to a
unimodal distribution.

In most of the state estimation problems, the state x is a multidimensional vector representing
for example the horizontal coordinates and the orientation of an object. The normal distri-
bution defined for a vector x is named multivariate and obtained by

p(x) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
. (3.10)

Considering a multivariate distribution, the state x as well as the mean µ are vectors of
dimension (n× 1), whereby µ contains the corresponding mean values of x. The covariance
Σ is a quadratic matrix of size (n × n), being symmetric and positive semidefinite. The
variances of the state’s components are given in the main diagonal of the covariance Σ, while
the off-diagonal elements represent the covariances of the state entries.

Since the normal distribution is completely defined by the mean and the (co)variance, the
recursive estimation of the first two moments within the Bayes filter framework represents
the optimal estimation method for Gaussian processes (Haug, 2012). However, the beliefs
can only be computed for a continuous state space, while a hybrid or discrete state space
cannot be modeled by normal distributions. In addition to the Gaussian approximation, the
Kalman filter approach needs linear dynamic and measurement models to guarantee that
the posterior probability density function p(xt|zt) estimated within the Kalman filter is also
Gaussian (Khider, 2005). Therefore, the following three properties have to be fulfilled for the
application of a Kalman filter:

1. The dynamic model p(xt|xt−1) is a known linear function ft(xt−1, εt), whose process
noise εt is drawn from a Gaussian distribution εt ∼ N (0,Qt) with zero mean and
covariance Qt. Qt is the appropriate covariance matrix of the process noise εt.
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2. The measurement model p(zt|xt) is a known linear function ft(xt, δt), whose measure-
ment noise δt is drawn from a Gaussian distribution δt ∼ N (0,Rt) with zero mean
and covariance Rt. Rt is the appropriate covariance matrix of the measurement noise
δt.

3. The initial belief p(x0) is known and corresponds to a normal distribution.

If these three assumptions regarding the linearity and the probability distribution of the
dynamic and measurement model as well as the initialization hold, the estimated belief cor-
responds to a Gaussian density with mean µt and covariance Σt. The covariance Σt of the
estimated state xt represents the uncertainties in the Kalman filter state estimates and the de-
gree of correlation between the errors in those estimates (Groves, 2013).

Considering the mentioned assumptions, the linear dynamic model can be defined by

xt = Φtxt−1 + εt. (3.11)

If xt and xt−1 are state vectors of two consecutive epochs, the state transition matrix Φt

models the propagation of the state from one epoch to the next. The random variable εt

is the uncertainty of the modeled dynamics and is expected to be Gaussian. Following the
Kalman filter’s assumptions, the state transition probability p(xt|xt−1) is then defined by a
normal distribution xt ∼ N (Φtxt−1,Qt) with mean Φtxt−1 and covariance Qt. The state
transition probability, which is obtained by

p(xt|xt−1) = det(2πQt)
− 1

2 exp

(
−1

2
(xt −Φtxt−1)

TQ−1
t (xt −Φtxt−1)

)
, (3.12)

demonstrates the interrelation between the probabilistic form of the Bayes filter and the
Kalman filter realization.

The measurement function models the relationship between the state xt and the current
measurements zt. If the observation equation is linear, the analytical link between the state
and the noisy measurements can be defined by

zt = Htxt + δt, (3.13)

expecting that the so-called design matrix Ht is the ideal (noiseless) connection between
zt and xt at time t. The measurement noise is assumed to be normal distributed and is
given by the random variable δt. As a consequence of the assumptions and the linear obser-
vation model, the probability density of the measurement update corresponds to a normal
distribution zt ∼ N (Htxt,Rt) with mean Htxt and covariance Rt:

p(zt|xt) = det(2πRt)
− 1

2 exp

(
−1

2
(zt −Htxt)

TR−1
t (zt −Htxt)

)
. (3.14)

Based on the defined assumptions, the three essential steps of the Kalman filter algorithm
can be defined (Hofmann-Wellenhof et al., 2003):
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Prediction step / time update: Transition of the state

x̃t = Φtx̂t−1 (3.15)

Σ̃t = ΦtΣt−1Φ
T
t +Qt (3.16)

Gain computation: Computation of the Kalman weight

Kt = Σ̃tH
T
t (HtΣ̃tH

T
t +Rt)

−1 (3.17)

Measurement update: Correction of the predicted state

x̂t = x̃t +Kt(zt −Htx̃t) (3.18)

Σt = (I −KtHt)Σ̃t (3.19)

These steps are performed recursively for the estimation of the trajectory which is repre-
sented by the mean µt, replaced by x̂t within the algorithm, and the covariance Σt. After
an initialization of the filter, the estimates are recursively updated by a weighted average of
the previous estimate and the new estimate derived from the latest observations. All neces-
sary steps, including the initialization of the filter, the prediction and the update step, are
visualized in Figure 3.5.

Figure 3.5: Concept of the Kalman filter.

The algorithm expects an initial estimate p(x0) at time t0 which has to be Gaussian. After
the initialization of the belief, at every point t in time, first, a prior belief bel(xt) represented
by the mean x̃t and the covariance Σ̃t is determined by applying the equations (3.15) and
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(3.16) of the prediction step. For the propagation of the state, the transition matrix Φt and
the predecessor state x̂t−1 are needed. The covariance of the prior belief bel(xt) depends on
the posterior covariance Σt−1, the transition matrix Φt, and the noise of the dynamic model
which is given by Qt. The purpose of the prediction step is the propagation of the state and
the covariance from the previous epoch to the time of the current measurements. In case
of the absence of measurements, the Kalman filter still provides an estimated state and its
error characteristics by applying the dynamic model (Groves, 2013).

The Kalman weight, computed within the gain computation step, defines how the measure-
ments should be weighted in order to optimally determine the actual state xt (Brown and
Hwang, 1997). Therefore, the uncertainty of the predicted state which is given by Σ̃t, the
uncertainty of the measurement model Rt, and the design matrix Ht have to be provided.
This Kalman weight specifies the influence of the current measurements zt on the posterior
belief. By applying equation (3.18) of the measurement update, the posterior belief of the
state xt is determined. Within this step, the Kalman weight Kt manipulates the estimation
of the mean by adjusting the predicted mean by zt−Htx̃ in proportion to Kt. The difference
between the actual measurement zt and the expected measurement Htx̃t is called innova-
tion. Finally, the covariance of the posterior belief Σt is updated by equation (3.19) with
respect to the current Kalman weight and the predicted covariance Σ̃t.

Figure 3.6 illustrates the prediction and measurement update within the Kalman filter in
a probabilistic form, using again the example of localizing a blind pedestrian along the
longitudinal axes of the street by incorporating a dynamic model and information about
the location of the zebra crossings. Since the Kalman filter expects an initialization by a
Gaussian density, the state xt0 and the covariance Σt0 have to be defined. Consequently, the
starting position is given by a unimodal distribution.

Graph (a) of Figure 3.6 shows the posterior belief at a certain point t in time. By applying the
dynamic model, the state is transferred according to the defined motion which is illustrated
in graph (b). The increase of the probability’s spreading is caused by the uncertainty of the
dynamic system. Incorporating the information of being at a crosswalk, one more assumption
has to be made. The information must be assigned to a certain zebra crossing to get a
unimodal Gaussian distribution centered at the location of the crosswalk. Because of the
assumptions defined for the Kalman filter, multimodal information cannot be considered.
By incorporating the information content of the map, which corresponds to the probability
density function in light green in graph (c), the spreading of the posterior belief bel(x)

(dark green function in graph (c)) can be reduced, since the PDF of the measurement (light
green function in graph (c)) is superimposed by the state transition probability (dark green
function in graph (b)). As visualized in graph (d), by applying again the dynamic model,
the probability density of the prior belief gets scattered.
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Figure 3.6: Illustration of the Kalman filter algorithm with respect to a blind pedestrian
moving along the street. The probabilities are represented by Gaussian distribu-
tions.

As stated in Arulampalam et al. (2002), the Kalman filter is the optimal filter for linear models
with appropriate Gaussian distributions. The advantage of Kalman filters compared to other
filters are their efficiency in terms of memory and computation due to the parametrization of
the probability density functions. All parameters are estimated in closed form. The dynamic
and measurement model do not have to be evaluated over the entire state space. Hence,
the Kalman filter is preferred for linear and near-linear systems, the beliefs of which are
unimodal. However, they are only applicable for a restricted class of problems, which can be
described by linear functions with normal distributed uncertainties.

The restrictive assumptions make the Kalman Filter inapplicable for many applications. As
a consequence, expansions of the general algorithm have been developed. The extended
Kalman filter allows the generalization of the theory to non-linear functions by linearizing
the functions by a Taylor series expansion. The unscented Kalman filter applies a stochastic
linearization based on extracted sample points. These sample points are used to propagate
the parameters through the non-linear functions. The belief is then generated by a weighted
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linear regression process of these transformed sample points (Thrun et al., 2006). This process
is called unscented transform and gives the filter the name.

Extended Kalman filter

The Extended Kalman Filter (EKF) is an extended version of the Kalman filter for non-linear
problems. The state transition and the measurement probability can be modeled by non-
linear functions which are linearized through a first-order Taylor series expansion. Therefore,
the functions describing the state transition and the measurement model have to be dif-
ferentiable functions. Referred to Haug (2012), through the linearization of the non-linear
functions, the estimation of the state and the corresponding covariance can again be solved
by applying a Kalman filter approach which is almost identical to that of the linear ver-
sion. However, the EKF requires the computation of Jacobian matrices before performing
the Kalman filter in a recursive manner. Although the Kalman filter’s assumption concern-
ing the linearity can be circumvented, the condition that the probability density functions
correspond to Gaussian distributions remains.

Within the EKF, the dynamic model is given by a non-linear function of the state xt

xt = ϕ(xt−1) + εt, (3.20)

where the non-linear function ϕ(xt−1) replaces the transition matrix Φt in equation (3.11),
and εt is again a random process with zero mean described by the covariance of the system
noise Qt. The measurement model is given by

zt = h(xt) + δt, (3.21)

with h(xt) being the non-linear function specifying the connection between the state xt

and the observations zt. The function h(xt) can be compared to the design matrix Ht in
equation (3.13). δt represents the measurement noise, which is normal distributed according
to N (0,Rt).

Because of the non-linear dynamic and measurement functions given in equation (3.20) and
(3.21), a first-order approximation, which corresponds to a linearization of the function, has
to be applied to obtain the transition matrix Φ and the design matrix H. This is done by
expanding the non-linear functions in Taylor polynomials and maintaining only the linear
terms (Haug, 2012). According to Zarchan and Musoff (2005), the transition matrix Φ and
the design matrix H are related to the non-linear functions by

Φ =
∂ϕ(x)

∂x

∣∣∣∣
x=x̂

, (3.22)
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H =
∂h(x)

∂x

∣∣∣∣
x=x̃

. (3.23)

Consequently, by linearizing the dynamic function with respect to x̂, the elements of the
n× n transition matrix Φ can be determined by

Φj,q =
∂ϕj(x)

∂xq

∣∣∣
x=x̂

, where

j = 1, . . . , n,

q = 1, . . . , n.
(3.24)

The l×n elements of the design matrix H are gained by linearizing the observation functions
with respect to the predicted state x̃:

H i,p =
∂hi(x)
∂xp

∣∣∣
x=x̃

, where

i = 1, . . . , l,

p = 1, . . . , n.
(3.25)

The transition matrix Φ and the design matrix H are consequently the Jacobian matrix rep-
resentations of the non-linear transition and observation models. As outlined in Thrun et al.
(2006), the linearization process approximates a non-linear function f(x) by a linear function
that is tangent to f(x) at the mean of the Gaussian distribution. Due to the linearization of
the models, the estimated belief is no longer Gaussian distributed. The EKF is only able to
calculate a Gaussian approximation to the true belief. Since the approximation represents
a local linearization, the approximation result strongly depends on the non-linearity (espe-
cially at the approximation point) and the uncertainty of the models. It is of huge importance
that the uncertainties of the beliefs are kept low to guarantee a transformation through the
linearized function close to the approximation point.

Different methods exist for the linearization of non-linear functions. As mentioned above, the
Taylor series expansion is applied within the EKF, which is given by:

f(x) = f(x0) +
1

1!

∂f(x)

∂x

∣∣∣∣
x=x0

(x− x0)

+
1

2!

∂2f(x)

∂x2

∣∣∣∣
x=x0

(x− x0)
2 +

1

3!

∂3f(x)

∂x3

∣∣∣∣
x=x0

(x− x0)
3 + . . . ,

(3.26)

with x0 representing the approximation point or also called Taylor point. As stated in
Hoepcke (1980), if the approximation point represents the state x appropriately, terms higher
than order 2 become comparably small and can consequently be neglected. Within the EKF
only the first two terms are used, and therefore, the choice of the approximation point is of
great importance. As assuming a Gaussian distribution, the mean of the posterior belief µt−1

(corresponding to x̂t−1 within the stated Kalman filter algorithm) most likely represents the
previous state within the state transition function and is therefore chosen as Taylor point for
the dynamic model (Thrun et al., 2006):

ϕ(xt) = ϕ(x̂t−1) +
∂ϕ(xt)

∂xt

∣∣∣∣
xt=x̂t−1︸ ︷︷ ︸

Φt

(xt − x̂t−1), (3.27)
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ϕ(xt) = ϕ(x̂t−1) +Φt(xt − x̂t−1). (3.28)

For the linear approximation of the measurement function, the same linearization is utilized
using the prior belief x̃t as approximation point:

h(xt) = h(x̃t) +
∂h(xt)

∂xt

∣∣∣∣
xt=x̃t︸ ︷︷ ︸

Ht

(xt − x̃t), (3.29)

h(xt) = h(x̃t) +Ht(xt − x̃t). (3.30)

As mentioned, the matrices Φt and Ht in equation (3.28) and (3.30) are Jacobian matri-
ces containing all first-order partial derivatives of the functions, as given in equation (3.24)
and (3.25). Once the linearization of the models is done, the EKF algorithm (Hofmann-
Wellenhof et al., 2003; Grewal and Andrews, 2008) is similar to the linear Kalman filter
version:

Prediction step / time update: Transition of the state

x̃t = ϕt(x̂t−1) (3.31)

Σ̃t = ΦtΣt−1Φ
T
t +Qt (3.32)

Gain computation: Computation of the Kalman weight

Kt = Σ̃tH
T
t (HtΣ̃tH

T
t +Rt)

−1 (3.33)

Measurement update: Correction of the predicted state

x̂t = x̃t +Kt(zt − hk(x̃t)) (3.34)

Σt = (I −KtHt)Σ̃t (3.35)

The EKF differs from the common KF approach in equation (3.31) and (3.34) due to the non-
linearity of the underlying models. All other equations are identical.

Because of the linearization, all incorporated models should have low uncertainties. There-
fore, referred to Grewal and Andrews (2008) and Thrun et al. (2006), accurate sensors with
high update rates should be preferred to keep the uncertainty of the state small. Additionally,
if the initial belief is chosen inadequately and the linearization does not describe the system
appropriately, convergence may not be obtained.
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Unscented Kalman filter

According to Haug (2012), the UKF utilizes a numerical instead of an analytical linearization
and consequently, the calculation of Jacobians is not required. Through approximating the
probability density function by discrete points, a non-linear transformation can be applied.
As a result, the Gaussian distribution can be represented more efficiently within the UKF
compared to the EKF. Thereby, so-called sigma points, which are symmetrically arranged
around the mean of the probability density function, are defined. These points are trans-
formed through the non-linear functions and finally, based on these points, an estimation of
the mean and the covariance of the posterior belief is carried out using a weighted sum. Fol-
lowing Grewal and Andrews (2008), this sigma point implementation is also called unscented
transform.

For the unscented transform, sigma points, which are extracted from Gaussian distributions,
are passed through the non-linear dynamic and measurement functions. These sigma points
are chosen to be at the main axes of the covariance. The number of sigma points is defined
with 2n + 1 depending on the dimension n of the state. One of the sigma points is the
mean

χ[0] = µ, (3.36)

whereas, the sigma points χ[1:n] are located symmetrically to χ[0]

χ[i] = µ+
(√

(n+ λ)Σ
)
i
, for i = 1, . . . , n

χ[i] = µ−
(√

(n+ λ)Σ
)
i−n

, for i = n+ 1, . . . , 2n
(3.37)

and depend on the covariance Σ and a scalar factor λ. Referred to Thrun et al. (2006), this
factor is given by λ = α2(n+ κ)− n containing two scaling parameters α and κ. Besides the
covariance Σ, these two scaling parameters are responsible for the distance to the mean. The
choice of sigma points with respect to the dimension n = 1, n = 2, and n = 3 is illustrated
in Figure 3.7. One of the sigma points is located at the mean, while two sigma points per
dimension are symmetrically arranged around the mean with a distance from the mean which
is given by the scaling parameters α and κ, and the covariance Σ.

After extracting the sigma points, a transformation through the non-linear function f is
performed:

γ[i] = f(χ[i]). (3.38)

Then, the transformed sigma points γ[i] act as regression points for a statistical linear re-
gression which is the basis for the computation of the mean µ and the covariance Σ. The
linearization is calculated in a way that preserves the true mean and the true covariance of the

33



3 Bayesian filters

Figure 3.7: Sigma points for the one-dimensional (left), two-dimensional (center), and the
three-dimensional case (right).

posterior distribution. Therefor, corresponding weights for the calculation of the mean and
the covariance have to be determined. The weights ω[i]

m are applied to the sigma points for the
calculation of the mean µ, while ω

[i]
c are the weighting factors for the determination of the co-

variance Σ. The weights ω[i]
m and ω

[i]
c for each sigma point are given by

ω[0]
m =

λ

n+ λ
, (3.39)

ω[0]
c =

λ

n+ λ
+ (1− α2 + β), (3.40)

ω[i]
m = ω[i]

c =
1

2(n+ λ)
, for i = 1, . . . , 2n (3.41)

with β representing the similarity to a Gaussian distribution (β = 2 corresponds to the
normal distribution). The mean µ′ and the covariance Σ′ of the Gaussian density of the
mapped sigma points are obtained by

µ′ =

2n∑
i=0

ω[i]
mγ[i], (3.42)

Σ′ =
2n∑
i=0

ω[i]
c (γ[i] − µ′)(γ[i] − µ′)T . (3.43)

The UKF produces equal or better results than the EKF depending on the non-linearity
of the dynamic and measurement functions and the spreading of the uncertainties. The
reason therefor is, that the UKF considers terms that are of higher order than linear terms.
Consequently, the UKF is more accurate than the EKF.

3.2 Non-parametric filters

Instead of approximating the Bayes filter by a parametric representation under the assump-
tion of a Gaussian distribution, the non-parametric Bayes filters are realized by approximating
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the state space by a finite number of representations. Consequently, the state transition and
measurement probabilities are only evaluated at discrete points in the space. The various
non-parametric approaches of the Bayes filter differ in the way, how the state is approxi-
mated. Thereby, the quality of the approximation depends on the discretization of the space
and the number of parameters which represent the posterior probability density function. As
outlined in Thrun et al. (2006), the higher the number of state space representatives, the
more the non-parametric technique tends to converge to the correct posterior. There are two
main classes of non-parametric Bayes filter implementations:

– Grid-based estimation (histogram filter)
– Particle filter

Both estimation techniques are able to represent multimodal beliefs and do not need strong
assumptions concerning the state transition and measurement model. The primary difference
between these two filter approaches is the representation of the state space. While for the
grid-based estimation the state space is divided into equally spaced grids, the particle filter
is based on particles, which are located within the state space according to their probability.
The following sections cover the algorithmic fundamentals and discuss the characteristics of
each method. Since the grid-based estimation is restricted to the finite space, the particle filter
is, because of its more diversified application, treated in more detail.

3.2.1 Grid-based estimation

As stated in Ristic et al. (2004), Woodman (2010), and Arulampalam et al. (2002), grid-
based methods provide the optimal framework for estimating posteriors in a discrete and
finite space. However, the grid-based estimation can also be applied for the continuous space
by applying a discrete approximation of the probability functions (Burgard et al., 1996).
Therefore, a decomposition of the state space into finitely many regions is performed. Com-
monly, an equally spaced grid is used to divide the possible state space into N discrete grid
cells, whereby the centers of the grid cells are the discrete state representations. As a conse-
quence, the estimated belief corresponds to discrete probabilities representing the likeliness
of being in a certain grid. Following Fox et al. (2003), through the discretization of the state
space, the integration within the state transition probability in equation (3.5) of the common
Bayes filter is replaced by a summation. Applying a grid-based estimation, a fine-grained
decomposition leads to smaller approximation errors, but requires a higher computational
effort (Thrun et al., 2006).

The size of a grid cell has to be chosen with care, since it is fixed throughout the whole
process. The recommended grid size strongly depends on the application, the structure of
the environment, and the dynamic and measurement model. In particular, the motion of the
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tracked object and the uncertainty of the measurement data have to be considered for the
definition of the grid size, since a strong correlation can be observed between these quantities
and the approximation errors.

Within the grid-based estimation, the estimate is represented by discrete probability val-
ues

bel(xt) = {pk,t | k = 1, . . . , N} (3.44)

with pk,t providing the probability of the grid cell xk at time t. Following Thrun et al. (2006),
the state transition probability density for the discrete approximation is then

pk,t =
∑
i

p(Xt = xk|Xt−1 = xi)pi,t−1, (3.45)

whereby the variables xk and xi are individual states of the defined grid. The measurement
update for the grid-based estimation provides the discrete probability pk,t of the grid cell’s
center xk by

pk,t = ηt p(zt|Xt = xk) pk,t. (3.46)

and corresponds to the correction step defined in equation (3.6) of the Bayes filter. The evalu-
ation over each grid cell delivers the discrete probability distribution {pk,t}. The conceptional
design of the grid-based estimation is illustrated in Figure 3.8.

Figure 3.8: Concept of the grid-based estimation.
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In a first instance, the equally spaced grid representing the state space has to be initialized.
A uniform distribution is suited for the initialization if no external information is available.
Once the state space is decomposed and initialized, the estimation is done in a recursive man-
ner executing first the prediction, which is followed by an update step. Within these steps,
the probabilities are recomputed with respect to the appropriate models, however, the decom-
position of the space remains the same. Figure 3.9 visualizes the probabilistic concept of the
grid-based estimation based on the example of localizing a blind pedestrian. Again, the infor-
mation of being at a crosswalk is incorporated in the estimation process.

Figure 3.9: Illustration of the grid-based estimation with respect to a blind person moving
along the street. The probabilities are represented by discrete weights.

Instead of representing the space by a continuous probability function, the space is decom-
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posed into a finite number of grids. Considering the one-dimensional case, a histogram with
equally spaced classes is suitable for representing the location probabilities. For that reason,
the grid-based estimation is also called histogram filter. As illustrated in Figure 3.9, the
histogram classification for the prior and the posterior beliefs stays the same for every epoch.
However, the probabilities change with regard to the state transition and measurement up-
date.

Within the initialization of the filter, which is illustrated in graph (a) of Figure 3.9, the same
probability is assigned to every grid cell. The map information is integrated as continuous
density over the whole space, which is represented by the PDF in light green in graph (b) and
graph (d). By updating the prior belief bel(x0) by the map-based probabilities, a discretiza-
tion takes place. The result of this step corresponds to the histogram in graph (b). Hence,
the magnitude of a class represents the probability of a certain grid cell. The propagation
with regard to the dynamic model, which is shown in graph (c), leads to a spreading of the
probabilities caused by the uncertainty of the dynamic model.

As Figure 3.9 illustrates, the grid-based localization works similar to the general Bayes filter,
but performs a discretization of the state space. The example points out, that multimodal
distributions possessing more than one maximum can be algorithmically considered, which
was not the case for the different approaches of the Kalman filter.

As mentioned in Fox et al. (2003), the main advantage of the grid-based estimation is the
ability of handling arbitrary probability distributions and that there are no limitations con-
cerning the propagation and measurement models. The discrete state representatives can
be passed through propagation and measurement functions of any type. Additionally, due
to the grid cell representation of the state space, map-based information can be integrated
within the filter process. Since a map carries information which cannot be assigned to any
distribution, a map integration would be impossible for the Kalman filter as it violates the
Gaussian assumption. Furthermore, the grid-based estimation offers the possibility of using
negative information, e.g., the person is not within the grid cell.

As outlined in Arulampalam et al. (2002), the drawback of this filter implementation is the
necessary memory for N grid cells and the computational requirements for updating the
state. For each update step, a summation over all N grid cells has to be carried out to
calculate one individual weight. Consequently, one has to trade off the approximation errors
coming with a coarse space decomposition against the computational costs correlated with a
fine-grained grid.

Summarized, the recommendation concerning the use of the grid-based estimation tends to
finite space applications with problems of low dimensionality, since the number of samples
grows exponentially with the dimension of the state (Woodman, 2010).
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3.2.2 Particle filter

In comparison to the grid-based localization, random samples called particles are used to
represent the state space within the Particle Filter (PF). These particles are not equally
spaced like the grid cells within the grid-based estimation. In contrast, they are distributed
with respect to the belief’s probability (Thrun et al., 2006). Consequently, the particle filter
approximates the posterior belief bel(xt) by a set of Ns particles:

χt =
〈
xi
t

〉
, i = 1, ..., Ns. (3.47)

For every sample xi
t a so-called importance weight ωi

t is determined within the measurement
update. The importance weights thus represent the location probability of a particle. Based
on these importance weights, the particles are redistributed in the space. As a consequence,
the spatial distribution of the particles represents the probability distribution and respectively
the belief bel(xt). The new set of particles is the input for the state transition and the
measurement update of the consecutive epoch. Figure 3.10 shows the individual steps of the
particle filter resulting in an iterative process.

Figure 3.10: Concept of the particle filter.

At the beginning of the iteration, the particles have to be initialized. Either they are ran-
domly distributed over the whole state space, or they may follow an appropriate distribution
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based on prior knowledge about the state. Regardless which kind of initialization is chosen,
all initialized particles χt0 have a uniform weight ωi

t0 = 0. After the initialization, the prop-
agation of the sample set from one epoch to the next has to be carried out by applying the
dynamic model. Compared to previous mentioned Bayes filter approaches, no restrictions
concerning the transformation equations exist. Particle filters are qualified to handle linear
as well as non-linear functions.

The set of particles χt obtained from the temporal transformation represents the prior be-
lief bel(xt). As stated in Thrun et al. (2006), the transformed sample set is the basis for
the computation of the importance weights ωi

t, which are determined by incorporating the
current measurements zt by evaluating the observation model p(zt|xt). According to the
computed importance weights ωi

t, a new set of equally weighted particles is generated within
the resampling or importance sampling. Thereby, the resampling transforms the particle set
into another set of samples by applying the Bayes rule on the prior belief bel(xt) as a function
of the importance weight ωi

t. Consequently, the new particle set is distributed according to
bel(xt) = η p(zt|xt) bel(xt). Particle filter approaches which involve a resampling are known
as sequential importance sampling with resampling. Details on the resampling can be found
in the subsection on importance sampling.

The spatial distribution of the resampled particles represents the posterior belief bel(xt).
However, the posterior belief bel(xt) can be derived from the spatial distribution of the resam-
pled particles or by evaluating the weighted particle set determined within in the measurement
update. Nevertheless, for the iterative state estimation it is of huge importance to resample
the particles, since the performance of the filter strongly depends on the spatial disposition of
the samples. As proposed in Thrun et al. (2006), the importance sampling is a probabilistic
implementation of the Darwinian idea of survival of the fittest, focusing the computational
resources to regions in the state space where it is required most.

Figure 3.11 illustrates the concept of the particle filter algorithm showing the example of
the blind pedestrian moving along the street and crossing the street at zebra crossings.
In the first step, when there is no information about the position of the pedestrian, the
particles are randomly distributed over the whole state space and equally weighted, see
graph (a).

The information about being at the zebra crossing is incorporated within the measurement
update. The appropriate probability corresponds to the light green PDF in graph (b). The
incorporation of the densities which represent the location probabilities of the crosswalks
results in an importance weight for each particle. In graph (b), the particles equipped with
importance weights correspond to the posterior bel(x). Based on the importance weights, the
particles are resampled in the space. The higher the importance weight, the more particles are
positioned in this region. After the resampling of the particle set, the transition probability

40



3.2 Non-parametric filters

p(xt|xt−1) is applied to propagate the particles from one epoch to the next. Graph (c)
shows the resampled and already transformed particles, representing the prior belief bel(x).
The propagated particles then act as input for the next measurement update. Graph (e)
demonstrates that after a few iterations, most of the particles are located close to the true
state. The example illustrates, that the particle filter automatically focuses the computation
to regions where it is most needed.

Figure 3.11: Illustration of the particle filter with respect to a blind pedestrian moving along
the street. The location probabilities are represented by the spatial distribution
of the particles.

Due to the fact, that the particle filter offers the possibility to locate the particles in regions
of higher probability, a better approximation result compared to the grid-based localiza-
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tion can be achieved with less computational effort. The number of spatial representatives
in regions of low probability can be reduced, while the computation can be intensified in
regions with higher probability. However, the more particles are generated, the better is
the approximation of the posterior probability of the true state. A higher number of par-
ticles increases the probability that the posterior belief of the particle filter converges to
the true one. Since the particle filter initializes the particles randomly, the output is not
reproducible.

As stated in Fox et al. (2003), the advantage of the particle filter is its ability of representing
arbitrary probability densities. The filter can converge to the true posterior even in non-
Gaussian, non-linear dynamic systems. In contrast to the grid-based localization, the state
space is not restricted to finite and discrete characteristics. The disadvantage of this filter
approach is the limitation to problems of low dimensions. The computational costs grow
with the dimension of the state and the number of particles.

Importance sampling

The goal of the particle filter is to generate particles which represent the posterior belief
bel(xt) appropriately. The problem is, that the PDF p(x) of the posterior belief is unknown.
Consequently, the particles have to be drawn from a different but known PDF q(x), the
proposal distribution. As a consequence, a weighting factor ω(x) has to be determined to
account for the mismatch between the target distribution p(x) and the proposal distribution
q(x) (Thrun et al., 2006). As proposed in Haug (2012), the target distribution p(x) is
proportional to the PDF q(x) at each value of x, so q(x) is a scaled version of p(x). The
weighting factor ω(x) is the unnormalized ratio between these two densities and is defined
by

ω(x) =
p(x)

q(x)
. (3.48)

The concept of importance sampling is required if the expectation E [f(x)] of the random
variable f(x) needs to be determined, but the PDF p(x) is unknown. The expectation
E [f(x)] based on the PDF p(x) is defined by

E [f(x)] =

∫
f(x) p(x) dx. (3.49)

As the probability distribution p(x) is unknown, a known proposal distribution q(x) is used
to express the expectation of X by

E [f(x)] =

∫
f(x)

p(x)

q(x)
q(x) dx. (3.50)
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By introducing the weighting factor ω(x) for the quotient p(x)/q(x), the expectation now
depends on q(x):

E [f(x)] =

∫
f(x)ω(x) q(x) dx. (3.51)

Figure 3.12 illustrates the determination of the importance factor ω(x) for the one-dimensional
case based on a multimodal distribution p(x) and a Gaussian distribution q(x). It can be
seen, that the target distribution p(x) is proportional to q(x) by ω(x).

Figure 3.12: Illustration of the creation of the importance factor ω(x).

Considering a first-order Markov process whose posterior probability is given by p(xt|zt), the
expectation E [f(xt)] can be written as

E [f(xt)] =

∫
f(xt) p(xt|zt) dxt. (3.52)

Since the probability p(xt|zt) is unkown, the expectation of f(xt) consequently has to be
expressed by another probability function q(xt|zt). The probability function q(xt|zt) is known
and is therefore suitable for sampling:

E [f(xt)] =

∫
f(xt)

p(xt|zt)
q(xt|zt)

q(xt|zt) dxt

=

∫
f(xt)ω(xt) q(xt|zt) dxt,

(3.53)

with

ω(xt) =
p(xt|zt)
q(xt|zt)

. (3.54)
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Applying now the Bayes’ rule for p(xt|zt), the weight ω(xt) can be written as

ω(xt) =
p(zt|xt) p(xt|zt−1)

p(zt|zt−1)

1

q(xt|zt)
. (3.55)

As p(zt|zt−1) is a normalization term, ω(xt) can be simplified to

ω(xt) = ηt
p(zt|xt) p(xt|zt−1)

q(xt|zt)
. (3.56)

Introducing ω(xt) into equation (3.53) leads to

E [f(xt)] =

∫
f(xt) ηt

p(zt|xt) p(xt|zt−1)

q(xt|zt)
q(xt|zt) dxt

=

∫
f(xt) ηt p(zt|xt) p(xt|zt−1) dxt.

(3.57)

Comparing the two equations (3.52) and (3.57), it is obvious that

p(xt|zt) = ηt p(zt|xt) p(xt|zt−1)

= ηt p(zt|xt) bel(xt)
(3.58)

corresponds to the measurement update of the general Bayes filter. The derivation of the for-
mula of the measurement update shows, that the resampling based on importance weights en-
ables an appropriate particle sampling even if the target distribution is unknown. Due to the
resampling, the samples will be focused on regions of higher probability.

However, resampling leads to a loss of diversity in the particle population which is called
degeneracy problem. The particles are only generated at the initialization of the filter and
therefore, the variance of the particle set decreases with every resampling. As a consequence,
one has to balance the risk of losing diversity with the circumstance of having many samples
wasted in regions of low probability.

As stated in Haug (2012), a suitable measure for the degeneracy of the particles is the effective
sample size Neff which can be obtained by

Neff =
1∑Ns

i=1

(
ωi
t

)2 , (3.59)

with Ns representing the number of particles. The smaller the effective sample size Neff

compared to the number of particles Ns, the higher is the degeneracy. Neff = 1 corresponds
to the case, that only one particle has a non-zero weight, while Neff ≈ Ns indicates very little
degeneracy (Haug, 2012).

There are several strategies to control the variance reduction. Two prominent methods are
listed here:
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– Reduction of the frequency of the resampling depending on the effective sample size
Neff (Thrun et al., 2006): This method maintains the importance weights in memory
as long as no resampling is applied. Between two consecutive resampling steps the
weights are updated by ωi

t = p(zt|xit)ωi
t−1. In case of a resampling, the importance

factors become equally weighted again.

– Regularization based on a kernel density estimate (Haug, 2012): After each resampling
step, the probability density of the particles is estimated. Based on the determined
PDF, the particles are resampled once more, however, some samples are randomly
distributed for improving the spreading over the state space.

Another problem caused by importance sampling, is the particle deprivation. The particle
deprivation happens, if the number of particles is too small or the distribution is not appropri-
ate to cover all regions with high likelihoods. This means that no particle is in the vicinity of
the correct state. This problem can be circumvented by adding a small number of randomly
generated particles to the sample set after each resampling process.

Rao-Blackwellization

Since the particle filter comes along with high computational efforts, high-dimensional esti-
mation problems are hard to treat within a Sequential Importance Sampling (SIS) particle
filter. Decreasing the computational load by reducing the number of particles deteriorates the
accuracy of the estimation. Therefore, Haug (2012) proposes to use a Rao-Blackwellization, if
the dynamic process can be classified into a Gaussian part and a non-Gaussian part. The idea
of the Rao-Blackwell Particle Filter (RBPF) is to split the estimation process into a Kalman
filter and a particle filter process. The posterior density of the Gaussian and linear compo-
nents of the state are estimated within the Kalman filter, while the particle filter focuses on
the processing of the non-Gaussian state components. As a consequence, by applying the
Rao-Blackwell method the dimensionality of the particle filter can be reduced, nonetheless
each component of the state can be estimated optimally.

3.3 Comparison of the different filters

This section introduced the Bayes filter with its parametric and non-parametric representa-
tives. The Kalman filter with all of its expansions (extended and unscented Kalman filter)
belongs to the parametric class of Bayes filters, while the particle filter and the grid-based
estimation (histogram filter) are non-parametric Bayes filters.
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In case that the dynamic and observation model are linear and correspond to the Gaus-
sian class of distributions, the linear Kalman filter is the optimal estimation method. As
outlined in Haug (2012), for Gaussian models with a slight to medium non-linearity, the
extended Kalman filter is the right choice. The EKF approximates the non-linear functions
by a first-order Taylor polynomial leading to a Kalman filter of the same form as the linear
Kalman filter. In contrast, the unscented Kalman filter uses sigma points for the non-linear
transformation. The mean and covariance estimate are determined by a weighted sum of the
transformed points. This procedure produces a better estimate than the one gained by the
EKF. Furthermore, no explicit calculation of Jacobians is required. Through the extraction
of transformation points and the direct use of non-linear functions, the UKF performs better
for high-order non-linearities compared to the EKF. However, the computational load of the
UKF version increases with the dimension of the state, since the number of sigma points
depends on the dimension of the state vector. Nonetheless, the UKF needs much less com-
putational effort than the grid-based estimation and the particle filter.

Further expansions of the Kalman filter exist, but were not treated within this section. One
example is the Monte Carlo Kalman Filter, which approximates the Gaussian density by a
set of transformed Monte Carlo samples. This filter is similar to the unscented version of
the KF, but the approximation performs even better because of the higher number of sample
points representing the state space.

Kalman filters are, because of the moments representation, very time and memory efficient.
However, no Kalman filter implementation determines the posterior probability appropri-
ately, if the involved densities are non-Gaussian, multivariate, or unknown. Different non-
parametric methods for handling arbitrary densities within the estimation process have been
developed over the past decades. The basis for these methods is the extraction of samples
which represent the state space. Due to the sample representation, the integrals of the Bayes
filter can be replaced by weighted sums and therefore the processing becomes feasible. The
samples can either be extracted as equally spaced grid (grid-based estimation) based on
known densities, or, if the density is unknown, by importance sampling (particle filter). The
advantage of non-parametric approaches, in which the state space is represented by samples,
is the ability of integrating map information and state constraints.

The grid-based estimation is based on samples which represent an equally spaced grid. For
the application of the grid-based estimation the state space has to be finite and discrete. For
every iteration step, the dynamic and measurement model is used to update the posterior
probability. As the decomposition of the state remains the same, the posterior belief is
represented by the different probable grid points.

The particle filter decomposes the state space by considering the posterior probabilities,
which means that the particles are distributed according to their probability. Thus, the
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computation is focused to regions where it is most required. As a consequence, less samples
are needed for an appropriate state estimation. However, as stated in section 3.2.2, for the
particle filter implementation, problems like degeneracy and particle deprivation have to be
considered.

In Figure 3.13, the initialization and posterior density representation of the Kalman filter, the
grid-based estimation, and the particle filter are opposed to each other.

Figure 3.13: Initialization of the different Bayes filter implementations and the representa-
tion of the posterior belief.

Since the Kalman filter requires an initialization which conforms a Gaussian distribution,
the filter has to be initialized by a mean and an appropriate covariance. The grid-based
estimation is based on an equally spaced decomposition of the state space initialized with the
same probability for each grid, while the particle filter randomly distributes equally weighted
particles. The posterior probability is either given by a mean and a covariance (Kalman
filter), probabilities over the equally spaced grid (grid-based estimation), or particles, the
distribution of which corresponds to the posterior probability (particle filter). Since the
extracted example is a two-dimensional problem, the covariance of the Kalman filter can be
illustrated as an error ellipse with the mean as center.

Table 3.2 summarizes the properties of the different Bayes filter implementations with regard
to the practical application for indoor and outdoor positioning. The computational require-
ments of the non-parametric approaches are higher compared to Kalman filter implementa-
tions, but their ability of handling non-linear models and arbitrary distributions predominates
the computational drawback. Additionally, the grid-based (histogram) filter as well as the
particle filter are perfectly suited for the integration of map information and other state space
constraints (speed limits, boundaries, etc.). The Kalman filter cannot benefit from map infor-
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mation or spatial constraints due to its Gaussian assumptions. Unfortunately, the grid-based
estimation is limited regarding the applicability for a global localization which is caused
through the finite space representation. Consequently, the particle filter has to be favored
for outdoor and indoor applications if the processing demands of the application are not too
high. If some components of the state fulfill the Kalman filter assumptions, the Rao-Blackwell
method is recommended to reduce the computational burden.

Table 3.2: Comparison of the different Bayes filter implementations, Kalman filter (KF),
extended Kalman filter (EKF), unscented Kalman filter (UKF), grid-based es-
timation / histogram filter (HF), particle filter (PF), with respect to practical
applications.

KF EKF UKF HF PF

multi-modal distributions - - - ++ ++
non-linear functions - + ++ ++ ++
computational load ++ ++ + - -
global localization ++ ++ ++ - ++
map integration - - - ++ ++
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As navigation systems specially tailored to the requirements of blind people are no mass
market products, a custom-built development would be directly reflected in the costs of the
navigation system. Therefore, the goal of the investigations was to keep the costs of the
developed system low by using existing positioning possibilities which can be found in the
sensors of a smartphone. Besides many built-in sensors for positioning, smartphones provide
a lot of opportunities for the communication with the blind person (vibrations, speech).
Additionally, smartphones feature low power consumption and high processing potentials
and can be used anywhere at anytime. Consequently, smartphones with their comprehensive
possibilities in the sense of positioning and computing seem to be the optimal device for the
positioning/navigation of blind persons.

Within this thesis, complementary sensors with different characteristics are used to guaran-
tee an accurate and reliable positioning with 100% temporal and spatial coverage. By using
complementary positioning systems and principles, the disadvantages of one system can be
compensated by the advantages of the others and vice versa. Current smartphones offer al-
ready a wide range of different sensors enabling a position estimation based on complementary
principles. Modern smartphones comprise technologies like GNSS, WLAN, accelerometers,
gyroscopes, magnetometers, and barometers, which may contribute to the determination of
the current location, movement, and orientation of an object. The integration of the mea-
surements of all the mentioned systems and sensors requires appropriate filtering algorithms
(see chapter 3), which finally enable a reliable and continuous three-dimensional positioning
in outdoor and indoor environments.

Outdoors, positioning can be performed via well-established GNSS techniques with accura-
cies ranging from a few decimeters up to some meters (Hofmann-Wellenhof et al., 2008; Sanz
et al., 2013). However, conducting positioning outdoors with GNSS only does not satisfy
the requirements of a reliable guidance especially of blind users. Compared to conventional
pedestrian navigation, the quality requirements regarding availability, reliability, and redun-
dancy are much higher. Accurate coordinates have to be provided continuously without any
interruption, so that objects and locations relevant for guidance instructions can be localized
by the blindman’s stick.
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To fulfill the accuracy requirements, either a sophisticated GNSS positioning like PPP or
relative positioning (see section 4.1), or an integrated concept of position determination is
indispensable. Within the integrated concept, the GNSS signals are augmented by differ-
ent sensors (accelerometers, gyroscopes, magnetometers, etc.) or signals of opportunities
(Chen, 2012b). Signals of opportunities are signals which are originally not intended for
positioning purposes and comprise amongst others radio frequency signals from WLAN and
Bluetooth networks. In outdoor environments, the integrated concept for pedestrian navi-
gation is typically based on GNSS and inertial sensors. Since GNSS strongly depends on
an open view to the sky, an integrated system has to be favored over a GNSS-only solution
if, as it is the case for the positioning of blind people, a continuous positioning is of huge
importance.

Nowadays, different sophisticated GNSS positioning algorithms exist which enable kinematic
positioning with accuracies in the range of a few decimeters or even centimeters with GNSS
data only. These methods are based on raw code and phase measurements and require,
depending on the method, additional data like pseudorange corrections, measurements of a
reference station, or precise orbit and clock products (section 4.1), which are provided by
different online services. Nevertheless, accurate kinematic GNSS positioning is not possible
with smartphones. The reason is simple. Current smartphones do not offer possibilities
to observe the raw GNSS code and phase measurements. Therefore, only preprocessed co-
ordinates based on Single Point Positioning (SPP) methods with code measurements are
available. Consequently, the user has no influence on the processing method, and the posi-
tion accuracy is equal to the accuracy of common code solutions, which is in the range of
some meters.

Inside buildings, there is no GNSS equivalent, which enables positioning with an accuracy
in the range of some meters 24 hours a day and is furthermore independent of especially
installed infrastructure. Inertial sensors need no additional infrastructure, but have the huge
drawback of drifting. That means that systematic errors are accumulated and therefore, the
sensors have no long-time stability. In contrast, radio-based techniques require appropriate
infrastructure, which has to be installed and maintained. Furthermore, the accuracy of
radio-based methods is affected by obstructions and multipath. Consequently, ubiquitous
positioning in indoor environments demands for integrated concepts based on complementary
systems and sensors.

Based on the above mentioned facts, it can be summarized, that neither outdoors nor indoors,
one single technology is capable to provide accurate position solutions at any circumstances
at all times. As a consequence, the positioning tool, which is developed within the thesis, is
based on complementary sensors. The core element of the positioning tool is a Rao-Blackwell
particle filter (see section 3.2.2), which combines preprocessed GNSS, WLAN, accelerometer,
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gyroscope, magnetometer, and barometer data. The way from the raw sensor measurements
through the preprocessing steps to the input of the filter is illustrated in Figure 4.1. Although
the preprocessing of the measurement data is not part of the thesis, the principles of the
different techniques are given in the course of this section, as these are the basis for the
development of the filter. The thesis itself focuses on the optimal design and implementation
of a positioning filter being part of a navigation system for visually impaired people. The
filter combines the already preprocessed data, which are GNSS-based and WLAN-based
coordinates, velocity and heading information estimated within a PDR algorithm, barometric
height data, and an activity determined within the PAC. In the following, details on the filter’s
input data and the necessary processing techniques are given.

Figure 4.1: Input data of the positioning filter determined in preprocessing algorithms based
on the smartphone sensor measurements.

While outdoors, the absolute positions are obtained from the internal GPS SPP software of
the smartphone, indoors, WLAN fingerprinting provides the 3D coordinates [ϕ, λ, h]. Out-
doors as well as indoors, heading and velocity data is used as support for the position esti-
mation to improve the availability, reliability, and accuracy. The heading θ and the velocity
v are computed in a PDR algorithm, which incorporates accelerometer, gyroscope, and mag-
netometer observations. As the deployed WLAN fingerprinting technique is focused on the
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two-dimensional positioning, and the geometric constellation given by the GNSS satellites
disadvantages the height accuracy, neither outdoors nor indoors the height is determined
appropriately. As a consequence, the height estimation further integrates a change in height
∆h which is based on the barometer data.

Besides absolute and relative position information, the activity (walking, standing, going up-
stairs, and going downstairs) of the person acts as input for the filter. A PAC algorithm
based on accelerometer and gyroscope data provides the current activity, which can be inte-
grated within the filter in several ways. On the one hand, an additional relative height ∆h

and spatial constraints for the filter can be derived, and, on the other hand, the model for
the step length estimation within the PDR can be tuned. The last input for the filter are
different kinds of maps acting as environmental constraints within the filter. While the dif-
ferent sensor-related filter inputs are discussed in the course of this section, the incorporation
of map information is described in detail in section 5.1.1 and 5.2.1.

The following sections treat the fundamentals, observables, and positioning algorithms of the
sensors of common smartphones. GNSS-based and WLAN-based positioning are discussed
in section 4.1 and 4.2. Details on inertial navigation based on accelerometer, gyroscope, and
magnetometer data are given in section 4.3, while the barometric-based height estimation is
treated in section 4.4. The principles of the PAC and its contribution to the height estimation
are explained in section 4.5, while the incorporation of the activity as spatial constraint within
the filter is shown in section 5.2.3.

4.1 GNSS positioning

The Global Navigation Satellite System (GNSS) provides 3D coordinates for the filter in
outdoor environments. This chapter focuses on the satellite systems, which are affiliated with
GNSS and the main principles of satellite-based positioning. Furthermore, details on different
positioning methods like single point, differential, relative and precise point positioning are
given. Although at the moment smartphones enable only code-based single point positioning,
the more sophisticated techniques are explained as well, since these methods are considered
for the SLAM-based probability-map generation discussed in chapter 7. Furthermore, the
GNSS positioning on smartphones will be improved as soon as the reading of raw GNSS
signals is available.

As stated in Sanz et al. (2013), the GNSS provides 3D coordinates with a global coverage and
during 24 hours a day. Therefore, satellites orbiting the Earth are continuously transmitting
signals and allow the determination of the user position. The term GNSS comprises all satel-
lite systems contributing to global position determination. Within GNSS, fully operational,
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planned, or prospectively upcoming satellite positioning systems have to be distinguished.
With 24 satellites orbiting the Earth in 1995, the US Global Positioning System (GPS) was
the first fully operational GNSS system followed by the Russian GLONASS (Globalnaja
Navigatsionnaja Sputnikovaja Sistema) in 1996. While GPS maintained the full operational
status permanently till now, the number of operable GLONASS satellites dropped contin-
uously because of missing satellite re-launches due to the reduced space funding. In 2001,
the number of operational GLONASS satellites reached its lowest level with a constellation
of only six remaining space vehicles, which made a continuous GLONASS-only positioning
with global coverage impossible. Referred to the Information and Analysis Center for Posi-
tioning, Navigation and Timing (2014), in the year 2001, the Russian government decided
the modernization of GLONASS which resulted in a full operability with 24 satellites in
2011. From 2011 up to now, GLONASS can be used as self-contained satellite navigation
system independently from support of any other system (Information and Analysis Center
for Positioning, Navigation and Timing, 2014).

The upcoming Galileo system is the European GNSS contribution, which can be used in
an interoperable way together with GPS and GLONASS. Galileo has not reached the Full
Operational Capability (FOC) up to now, however, according to the Information and Analysis
Center for Positioning, Navigation and Timing (2014), the in-orbit validation phase with
four operational satellites and the installation of the appropriate ground infrastructure was
finished in 2012. In 2015, 18 satellites were expected to be in operation, thus Galileo would
reach the FOC status (European Space Agency, 2012). As stated by the European Space
Agency (2014b) and the International GNSS Service (2014b), the fifth and sixth satellites
were launched 2014, but did not reach the nominal orbit because of launching problems.
2015, only six further satellite launches are planned (GPS World, 2015), consequently, the
FOC status will not be reached in 2015. However, until 2020, 30 satellites should be in space,
guaranteeing a visibility of six satellites everywhere on Earth.

According to the Information and Analysis Center for Positioning, Navigation and Timing
(2014), Beidou (also known under the name COMPASS), the Chinese GNSS contribution,
is currently under development and will provide global coverage in 2020. As stated by the
China Satellite Navigation Office (2013), the Beidou constellation has been planned to include
35 satellites, comprising five Geostationary Earth Orbit (GEO) satellites and 30 non-GEO
satellites. Three of the non-GEO satellites are in Inclined Geosynchronous Satellite Orbits
(IGSO), while the rest is in a Medium Earth Orbit (MEO). The five GEO satellites will sup-
port the positioning by correction and integrity data, while the three IGSO satellites improve
the signal availability in GNSS-critical areas (urban canyons, highly obstructed areas, etc.).
As stated by the International GNSS Service (2014b), up to now, the Beidou constellation
consists of five operable GEO, five IGSO and six MEO satellites.
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Besides these four global systems, also regional satellite systems are installed to provide in-
dependent positioning or to support the global satellite positioning systems. The Japanese
Quasi Zenith Satellite System (QZSS) is not intended as stand-alone system, but should
rather complement the global GNSS in particular in the region of Japan (European Space
Agency, 2014a). Corresponding to the Japanese Aerospace Exploration Agency (2014) and
Chen (2012b), three satellites being visible in Japan at very high elevation angles and trans-
mitting GPS compatible signals are planned to improve the GPS performance. The QZSS
signals increase the number of available satellite signals most notably in urban areas of Japan
and Asian Pacific regions, what consequently enables continuous positioning at anytime by
combining GPS and QZSS signals. Furthermore, QZSS aims at improving the position accu-
racy by transmitting appropriate correction data. According to the European Space Agency
(2014a), the first QZSS satellite named Michibiki was brought into orbit in 2010, while the
others are scheduled to be launched before the end of 2017.

In contrast to QZSS, the Indian Regional Navigational Satellite System (IRNSS) is a re-
gional independent satellite navigation system enabling positioning in a surrounding region
of 500 km around India. As stated in Majithiya et al. (2011), the planned system should
consist of seven satellites (three geostationary and four geosynchronous satellites). IRNSS is
expected to provide 3D coordinates with an accuracy of about 10 m in central India and up
to an accuracy of 20 m over the Indian Ocean region. The aim of IRNSS is to improve the
Dilution of Precision (DOP) value and the number of visible satellites, leading finally to an
increased accuracy. As stated by the European Space Agency (2014a), the first satellite was
successfully launched in 2013, while the launch of the remaining six is planned to be between
2015 and 2016.

The global and regional satellite systems are additionally supported by a so-called Satel-
lite Based Augmentation System (SBAS). SBAS is a generic term for different region-based
augmentation systems which are realized by geostationary satellites. They are continuously
visible at certain areas and broadcasting augmentation data comprising correction data and
integrity information (European Space Agency, 2014a; European GNSS Agency, 2014). Fig-
ure 4.2 displays the existing and prospective augmentation systems and their area of opera-
tion. There are three systems which are already operational. The American Wide Area Aug-
mentation System (WAAS), the Japanese MSAS (MTSAT Satellite Augmentation System)
and the European EGNOS (European Geostationary Navigation Overlay Service) provide
correction data for the visualized areas in Figure 4.2. According to the International GNSS
Service (2014b), the Indian GAGAN (GPS Aided GEO Augmented Navigation System) and
the Russian SDCM (System for Differential Corrections and Monitoring) are in a test phase.
Additionally, South and Central America, Malaysia, Africa, and South Korea have separately
announced to start their own SBAS implementations.
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Figure 4.2: Existing SBAS and their covering area.

By combining different global and regional systems, the number of available GNSS satellites
can be strongly increased, which leads to improved DOP values and enhanced integrity. The
integration of different GNSS is of high importance especially in urban and GNSS-denied
areas, since for satellite-based positioning at least observations of four satellites are necessary.
According to Chen (2012b), in the case that all GNSS systems will be operational, more than
100 satellites will be in space, which will increase the positioning availability in GNSS-critical
areas significantly.

4.1.1 Principles of GNSS positioning

The GNSS satellites are continuously transmitting radio frequency signals consisting of three
components - the carrier, the ranging code, and the navigation data. The ranging code
allows the determination of the travel time of the signal, while the navigation data provides
the orbital parameters for the computation of the satellite positions (Sanz et al., 2013). The
ranging code as well as the navigation data is modulated onto the carrier signal. GPS,
GLONASS, Galileo, and Beidou are all providing several carriers with different frequencies
(Hofmann-Wellenhof et al., 2008; Groves, 2013).

The basic GNSS observation for positioning is the travel time ∆t of the signal transmitted by
the satellite. The travel time ∆t can be converted to the traveled distance by multiplying the
travel time with the travel speed, which is the speed of light (Sanz et al., 2013). As stated in
Hofmann-Wellenhof et al. (2008), by observing distances between the user and at least three
satellites, the position of a user can theoretically be determined since the satellites coordinates
are given by the orbital parameters. However, as GNSS is based on a one-way-concept, two
different clocks are involved - one at the receiver and one at the satellite site. Because
of the non-synchronization of the receiver and satellite clocks, the ranging code does not

55



4 Smartphone-based positioning

represent the geometric distance between the satellite and the receiver. Instead, so-called
pseudoranges are observed. Therefore, an additional parameter representing the clock error
has to be estimated besides the receiver coordinates to get a reliable solution. However, it
has to be mentioned that the clocks of the satellites within one GNSS are synchronized by
atomic standards. The remaining offset, which corresponds to the synchronization residual,
is given in the navigation data (Hofmann-Wellenhof et al., 2008).

The principal equation of GNSS positioning at the observation epoch t is given by

Rs
r(t) = ρsr(t)− [δtr(t)− δts(t)] c, (4.1)

with

ρsr(t) =

√
[Xs(t)−Xr(t)]

2 + [Y s(t)− Yr(t)]
2 + [Zs(t)− Zr(t)]

2, (4.2)

where Rs
r represents the measured pseudorange, and ρsr is the geometric distance between the

satellite s and the receiver r. The terms δtr and δts are the receiver and satellite clock error,
and c is the speed of light. The coordinates of the satellites and the receiver are specified
by [X,Y, Z]s and [X,Y, Z]r respectively. Since the navigation data delivers [X,Y, Z]s of
each satellite and the satellite clock error δts, four simultaneously observed pseudoranges
allow the estimation of the unknown parameters [X,Y, Z]r and δtr, which is realized within
a parameter adjustment (Bauer, 2011). The concept for positioning with several GNSS is
similar, however, one additional parameter (for each additional system) has to be estimated
representing the time difference between the GNSS time systems.

The accuracy of the Single Point Positioning (SPP) technique based on ranging code is
in the range of several meters (Hofmann-Wellenhof et al., 2008). Applying more advanced
techniques, the accuracy can be improved up to a few centimeters. However, these techniques
need a more detailed differentiation of the parameters in equation (4.1), considering the
different GNSS error sources. The path of the GNSS signal through the atmosphere, or
more precisely, the ionosphere and the troposphere, is influenced by refraction. Additionally,
the orbit and clock parameters given in the navigation data are predicted values and are
therefore restricted in their accuracy. At the receiver site, multipath and antenna phase
center variations are common error sources. All these errors may be classified with regard to
three main sources of errors. As categorized in Table 4.1, the errors are either related to the
satellite or receiver site, or are caused by the propagation medium. Besides these influences,
further impacts induced by, e.g., relativistic and tidal effects exist, but will not be considered
further because of their small magnitudes.

Considering the error sources of Table 4.1, the observation equation for the ranging code can
be defined as a function of the geometric range and various terms which represent the error
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influences on the distance:

Rs
r(t) = ρsr(t) + ∆ρsr(t) + ∆ρs(t) + ∆ρr(t). (4.3)

The terms ∆ρsr, ∆ρs, and ∆ρr correspond to the errors dedicated to the propagation medium,
the satellite, and the receiver respectively (Hofmann-Wellenhof et al., 2008).

Table 4.1: Classification of the error sources of satellite-based positioning

satellite clock error
orbital error

propagation medium ionospheric refraction
tropospheric refraction

receiver clock error
multipath
antenna phase center variation

Differential positioning, which is also denoted as Differential GPS (DGPS) in literature,
reduces the influence of satellite- and propagation-based errors by applying correction data,
which is provided by so-called reference stations or satellite-based augmentation systems.
Within relative positioning, differencing techniques are used to account for error sources
like the atmosphere, imprecise orbit and clock parameters and additional unmodeled effects.
While for differential as well as relative positioning the data of several receivers are needed,
PPP benefits from precise orbit and clock products provided by various GNSS services. The
accuracy of DGPS is in the range of a few meters, while with relative positioning or PPP
accuracies of a few decimeters or even centimeters can be reached.

Due to the promising accuracies of relative and precise point positioning, these techniques are
perfect candidates for the SLAM-based map generation. However, DGPS and PPP require
less data for the improvement of the position accuracy, which is advantageous in the case of
smartphone applications. Comparing all properties of these three techniques, PPP turns out
to be the optimal candidate for the SLAM-based probability map generation if raw GNSS
measurements are available. While the following sections on differential, relative and precise
point positioning provide more details on the different positioning techniques, chapter 7 treats
the applicability of these techniques for the SLAM algorithm.

4.1.2 Differential positioning

For differential positioning at least two GNSS receivers are needed, whereby the coordinates
of one static receiver (master/reference station) have to be known, while the coordinates
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of the rover need to be determined. The known coordinates and the static measurements
at the master station are used for the computation of corrections for the pseudoranges.
These corrections are modeled as pseudorange corrections and range rate corrections and are
transmitted to the rover (Hofmann-Wellenhof et al., 2008). By applying these corrections at
the rover, atmospheric influences as well as satellite orbit and clock errors can be reduced,
which consequently improves the position accuracy to 1 to 5 meters. The condition for DPGS
is the availability of at least the same four satellites at both receivers.

The pseudorange corrections can be determined by introducing the known coordinates of
the master station into equation (4.3). The pseudorange correction PRCs for one particular
satellite s at a reference epoch t0 is therefore defined by

PRCs(t0) = ρsmaster(t0)−Rs
master(t0)

= −∆ρsmaster(t0)−∆ρs(t0)−∆ρmaster(t0).
(4.4)

In addition to the pseudorange correction PRCs(t0), a range rate correction RRCs(t0) is de-
termined to model the temporal change of the pseudorange correction, which allows finally the
computation of the pseudorange correction for the observation epoch t:

PRCs(t) = PRCs(t0) +RRCs(t0)(t− t0). (4.5)

The application of the correction on the measurements of the rover by

Rs
rover(t)corr = Rs

rover(t) + PRCs(t)

= ρsrover(t) + [∆ρsrover(t)−∆ρsmaster(t)] + [∆ρrover(t)−∆ρmaster(t)]
(4.6)

eliminates the satellite-based errors ρs(t) and reduces the amplitude of the error term caused
by the propagation medium ρsrover(t). The smaller the distance between the master and rover
station, the more similar is the atmospheric effect. Consequently, the closer the stations, the
better is the reduction of the error ∆ρsrover(t). Therefore, the DGPS accuracy strongly
depends on the distance to the master station, which is recommended to be less than 150 km
(Hofmann-Wellenhof et al., 2008). The accuracy can be further improved by installing a net of
reference stations and performing an interpolation of the correction data. As stated in Groves
(2013), DGPS can be realized by self-installed reference stations, various services based on
networks of reference stations, or by satellite-based augmentation systems. Examples for
differential positioning services in Austria are EPOSA (EPOSA, 2015) and APOS (BEV -
Bundesamt für Eich- und Vermessungswesen, 2015).

4.1.3 Relative positioning

Applying relative positioning techniques, accuracies of some centimeters can be achieved for
the kinematic case. However, for reaching such accuracies the carrier phase has to be used
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as observation instead of the ranging code (Hofmann-Wellenhof et al., 2008). Using phase
measurements, for each satellite an additional time-constant parameter, the phase ambiguity
N , has to be estimated, since only the fractional phase Φ of the signal can be observed. The
phase-based distance φ between the receiver r and the satellite s is

φs
r(t) = Φs

r(t) +N s. (4.7)

The observation equation of the phase measurement consequently includes an additional
parameter for the phase ambiguity:

Φs
r(t) +N s = ρsr(t) + (δtr(t)− δts(t))c. (4.8)

Similar to DPGS, at least two receivers are needed, whereby one has to be static, located at
a known position and furthermore, simultaneous measurements from both receivers to the
same satellites must be available. The simultaneous measurements are used to build so-called
single, double, and triple differences which correspond to combinations of measurements of
different receivers to different satellites at different epochs (Groves, 2013). By subtracting
the phase measurements, receiver-based and satellite-based errors are eliminated, while the
reduction of the atmospheric impact strongly depends on the length of the baseline between
the receivers (Hofmann-Wellenhof et al., 2008). The high accuracy improvement cannot only
be accredited to the differencing but also to the use of phase measurements, which are more
accurate than code measurements.

4.1.4 Precise point positioning

Precise Point Positioning (PPP) in comparison to differential and relative positioning needs
no reference stations and therefore only one receiver. The PPP technique allows accurate
point positioning with accuracies in the range of a few decimeters (kinematic positioning) or
even centimeters (static positioning) by applying precise orbit and clock parameters instead
of the parameters given in the broadcasted navigation data. For this reason, PPP needs an
accurate measurement modeling.

As stated in Huber et al. (2011), the huge advantage of PPP is the independency from local
reference stations, since the corrections and parameters are globally valid, and consequently,
the operational range is not restricted. Furthermore, PPP needs no simultaneous measure-
ments and can be performed with code or phase measurements or in combination. However,
for high-accuracy positioning, the use of phase data is indispensable (Sanz et al., 2013). Refer-
ring to Hofmann-Wellenhof et al. (2008), using the phase data of two carriers, the ionospheric
influence can be reduced by an ionosphere-free linear combination, while with a single fre-
quency, additional information is needed to reduce the impact of the ionosphere. Neglecting
the ionospheric influence would degrade the accuracy by several meters.
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To achieve accuracies in the range of a few decimeters in case of kinematic applications,
PPP demands for a very accurate measurement modeling that includes all sources of errors.
Figure 4.3 shows the main GNSS error sources, which have to be either modeled or eliminated
within PPP, whereby the multipath is an effect of GNSS which is location-dependent and
can unfortunately not be corrected by PPP. However, PPP covers the modeling/elimination
of precise satellite orbits and clocks, atmospheric effects, as well as antenna biases. Details
on the processing are given in the following paragraphs.

Figure 4.3: Overview of the main GNSS error sources (Huber et al., 2011).

Precise satellite orbits and clocks are provided by services like the International GNSS
Service (IGS) and are applied instead of the broadcasted parameters. The accuracy of the
products depends on the time span between the observation and the data provision. Detailed
information about all available IGS products can be found on the IGS website (International
GNSS Service, 2014a). The accuracy of ultra-rapid orbits, which are available in real time, is
specified with 5 cm, while the broadcast ephemerides are in the range of 1 m. The accuracy
of the satellite clocks improves by 2 ns if precise clock data is used.

Atmospheric effects have to be modeled or reduced. If dual-frequency data are given, an
ionosphere-free linear combination is performed, while for the processing of single-frequency
data TEC maps of the IGS are used to reduce the influence of the ionosphere. The tropo-
spheric refraction can be modeled by different models, Sanz et al. (2013) recommends the
mapping of Niell.

Antenna biases of the satellites and the receivers have to be considered, which are docu-
mented in ANTEX files, also available at the IGS.
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As stated in Sanz et al. (2013) and Huber (2015), to reach cm-level accuracy for static posi-
tioning and dm-level or better for kinematic positioning, additional influences like relativistic
effects, differential code biases, carrier phase wind-up effects, etc., have to be taken into ac-
count, and the ambiguities of the phase measurements have to be fixed.

Because of the globally valid models and corrections, PPP is favored over differential and rela-
tive positioning for the SLAM-based probability map generation. While DGPS does not meet
the accuracy requirements for the map generation, relative positioning needs measurement
data of a second receiver and comes along with higher computational efforts.

4.2 WLAN positioning

Most mobile devices (laptops, tablets, smartphones, etc.) have integrated WLAN network
interface cards (Kushki et al., 2012), which enable the use of the Wireless Local Area Network
(WLAN) infrastructure for position estimation purposes. Therefore, radio signals which are
exchanged between the Wireless Local Area Network (WLAN) access points and the mobile
device are observed. The positioning techniques reach from basic cell-of-origin approaches,
trilateration, angulation to the most common applied technique fingerprinting. WLAN pro-
vides position accuracies in the range of some meters and can be applied indoors as well as
outdoors.

WLAN access points periodically broadcast beacon signals including a time stamp, path
loss information, and supported data rates. For the position determination, the strength
of these signals, which is called Received Signal Strength (RSS), is measured. Besides this
parameter, WLAN signal features like Angle of Arrival (AoA), Time of Arrival (ToA), and
Time Difference of Arrival (TDoA) may be used for positioning (Kushki et al., 2012). De-
pending on the measured features, different techniques are applied to get the user’s loca-
tion. In Table 4.2, all WLAN observables and the corresponding positioning methods are
listed.

Table 4.2: WLAN measurements and possible positioning methods

Measurements Positioning methods

Received Signal Strength cell-ID, enhanced cell-ID,
trilateration, fingerprinting

Angle of Arrival enhanced cell-ID, triangulation
Time of Arrival trilateration, fingerprinting
Time Difference of Arrival hyperbolic trilateration
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According to Chen et al. (2012), the observables AoA, ToA, and TDoA require additional or
modified hardware, whereas the RSS can be derived from existing observables including the
Media Access Control (MAC) address and the Received Signal Strength Indicator (RSSI).
While the MAC address unambiguously identifies the access point, the RSSI is an indication of
the power level received by the antenna. Since this thesis focuses on positioning with common
smartphones without any additional hardware, this section mostly treats RSS-techniques,
while the other methods are only described briefly.

Figure 4.4: Angulation based on AoA observations.

As shown in Figure 4.4, with two AoA measurements, the 2D coordinates of the user can be
determined by angulation. The principle of angulation is the computation of the intersection
point of the appropriate Lines Of Position (LOP). In case of AoA measurements, the LOP
corresponds to a straight line. This technique requires a special antenna or antenna arrays
(Chen et al., 2012).

(a) Lateration based on ToA observations. (b) Hyperbolic positioning based on TDoA obser-
vations.

Figure 4.5: Positioning with ToA and TDoA observations.

The ToA corresponds to the travel time of the radio signal, which can be converted to a
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distance if the propagation speed is known. As shown in Figure 4.5a, lateration with three
distances provides the coordinates of the user. By performing hyperbolic lateration with
TDoA measurements, which can be derived from ToA observations, the influence of errors
can be reduced. Hyperbolic positioning needs at least three ToA measurements providing two
TDoA observables, see Figure 4.5b. For TDoA as well as ToA positioning, a synchronization
at least among the transmitters is needed, which may be realized with a GNSS receiver or a
location measurement unit (Pahlavan and Krishnamurthy, 2013).

Based on the RSSI and the MAC address of every observable access point, cell-of-origin,
multilateration, and fingerprinting techniques can be applied. As stated in Chen et al. (2012),
the cell-of-origin or cell-ID method was the first RSSI-based positioning implementation. The
principle of this method is, that the user coordinates correspond to that of the nearest WLAN
access point (Figure 4.6a), which is the access point with the strongest RSSI. The position
accuracy is equal to the radius of the circular signal coverage error.

The accuracy can be improved by using the actual signal strength, which can be converted to
a distance, in addition to the assigned cell. The Surface of Position (SOP) can consequently
be reduced to a doughnut, see Figure 4.6b. The combination of the cell-ID and an additional
observation is denoted enhanced cell-ID positioning (Chen, 2012a; Bensky, 2008). Using a
sectorizational antenna, the direction of the signal can be restricted to a certain sector which
further minimizes the SOP.

(a) Cell-of-origin technique. (b) Doughnut representing the SOP of enhanced
Cell-ID positioning.

Figure 4.6: Positioning based on information about the cell-ID.

As mentioned in Pahlavan and Krishnamurthy (2013), when performing multilateration, the
RSSI values have to be converted to distances, which requires an appropriate path-loss or
radio propagation model (Rayleigh fading model, Rician distribution model, etc.). These
models are often defined experimentally. However, walls and obstacles within buildings de-
grade the quality of the determined distance, since the propagation does not correspond to a
line-of-sight propagation. By using the Floor Attenuation Factor (FAF) propagation model,
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the effects of indoor obstacles can be slightly treated by adopting the Wall Attenuation Factor
(WAF) with respect to the present indoor environment. The WAF is empirically determined
and depends on the building layout and the construction materials. However, even if building
structures are considered within the path loss model, dynamic indoor environments, moving
humans, and multipath effects downgrade the accuracy.

Referred to Chen et al. (2012), fingerprinting methods can be used if the measurements are
correlated with the location of the user. Within fingerprinting, two different phases, the
training and the positioning phase, have to be distinguished. During the training phase,
location-dependent measurements at so-called reference points have to be collected. There-
fore, as Figure 4.7 shows, the space is divided into cells, whereby the center of the cells
are the reference points with known coordinates. Both, the coordinates of the reference
points and the corresponding RSSI measurements are called a fingerprint and are stored in
a fingerprinting database (radio map).

Figure 4.7: Fingerprinting-based positioning.

The concept of the positioning phase is illustrated in Figure 4.8. The goal is to find the
reference point with those RSSI observations, that match the real-time RSSI measurements
best. The position of the user corresponds therefore to the reference point with the maximum
correlation, which can be determined by computing the signal distance considering all i

WLAN access points:

d(k) =

(
n∑

i=1

|si − fi(k)|q
)(1/q)

, (4.9)

with fi(k) being the collected and stored RSSI tuple at the reference point k and si being
the measured RSSI data. For WLAN fingerprinting, the Manhattan distance (q = 1) and the
Euclidean distance (q = 2) turned out be the most efficient. These computed signal distances
act as basis for finding the reference point with the maximum likelihood, which corresponds,
in case of observing RSSI values, to the reference point with the minimum signal distance d(k).
The nearest neighbor x̂ML in signal space can therefore be found by

x̂ML = argmin
xk

d(k). (4.10)
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As this maximum likelihood estimator chooses one of the reference points as the estimated
position, the accuracy of this technique strongly depends on the density of reference points.
Instead, using the average of K reference points with largest likelihoods reduces the de-
pendency on the cell decomposition. The K-nearest-neighbor estimator is mathematically
defined as

x̂KNN =
1

K

K∑
i=1

x(i), (4.11)

with x(i) representing the K reference points with the largest likelihoods. Considering fur-
ther the likelihood of each reference point, the performance can be improved by applying a
weighted K-nearest-neighbor estimator

x̂KNN =
1∑K

i=1 ωi

K∑
i=1

ωix(i), (4.12)

with

ωi = f(d(i)). (4.13)

The weight ωi is hereby a function of the signal distance, which is given in equation (4.9).

More advanced fingerprinting methods are probabilistic approaches which are based on the
Bayes theorem. The fingerprint of such an approach is a set of probability density functions
and the estimated position corresponds to the maximum conditional probability. However,
the Bayesian approaches cause higher processing efforts and require more memory. Con-
sequently, maximum likelihood or K-nearest-neighbor estimators have to be preferred for
smartphones. The WLAN positions incorporated within the developed RBPF are based on
a K-nearest-neighbor fingerprinting with K = 4.

The design of the radio map including the number of reference points and training samples
strongly influences the positioning performance. Additionally, the attenuation caused by the
human body degrades the estimation accuracy which can be improved by collecting samples
in several directions during the training phase. Due to the missing standardization of the
RSSI values of different devices, the radio map generated by one device is not necessarily
optimal for another device.

The advantage of the fingerprinting technique is that the environment and therefore the
signal propagation is already modeled within the training data set, and consequently, no
assumptions regarding the path loss have to be made. The disadvantage of this technique
is the time- and thus cost-consuming training phase. Additionally, the radio map has to be
up-to-date and thus maintained due to environmental changes.
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Figure 4.8: The two phases of fingerprinting-based positioning.

Typical fingerprinting accuracies are 2 to 5 meters, which approximately corresponds to the
outdoor performance of GNSS SPP. As stated in Woodman (2010), more accurate systems
with a reported accuracy of 1.4m for 95% of the time exist, however they are based on a high
density of access points, which are especially installed for navigation purposes. Considering
the positioning of blind people, realistic WLAN environments based on already installed
access points have to be investigated. Therefore, an accuracy in the range of the above
mentioned 2 to 5 meters is assumed within the thesis. Based on these assumptions, WLAN
fingerprinting can be treated as indoor equivalent to GNSS with respect to the kind of position
information and the corresponding accuracy.

4.3 Inertial Navigation

Within the thesis, preprocessed inertial data delivers information about the relative motion
of the pedestrian. Hence, this chapter deals with the main principles of inertial navigation,
including the measurement types and the processing techniques. The focus is hereby set on
smartphone sensors and PDR algorithms.

An Inertial Measurement Unit (IMU) measures the accelerations and angular rates, which
can be used to estimate the changes in position, velocity, and attitude. An IMU consists
of three orthogonally arranged accelerometers and gyroscopes measuring the accelerations a

and angular rates ω in three directions:

a = [ax, ay, az]
T , (4.14)
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ω = [ωx, ωy, ωz]
T . (4.15)

While the accelerometers determine the specific force which acts on the IMU, the gyroscopes
measure the angular rates, both with respect to the inertial frame (Woodman, 2010). The
current pose (position and orientation of an object) can be determined by combining the
previous position and the actual estimates for the velocity vector and the three-dimensional
orientation (attitude), both derived from the IMU data. The method of determining absolute
positions based on relative position information is denoted Dead Reckoning (Renaudin, 2014).
However, the initial position and orientation have to be known for subsequently estimating
the trajectory.

Modern low-cost IMUs have additionally embedded magnetometers (digital compass) consist-
ing of three perpendicular sensors, which are detecting the magnetic field’s strength (Mautz,
2012). A magnetometer measures the magnetic flux densities, given in units of Tesla (T),
to determine the direction to the magnetic north pole. Especially in the low-cost sector,
this information acts as support for the gyroscopes in determining the heading of the per-
son.

Since the inertial measurements are given relative to the sensor reference frame (body frame),
the angular motion of the sensor frame has to be monitored to allow a transformation of the
specific force to a reference frame, which is suitable for the application. An inertial measuring
system, the sensors of which are rigidly attached with the moving body of the system, is called
strapdown inertial system (Titterton and Weston, 2004). Such a system demands, because
of the strapdown configuration, a transformation of the measurements into an appropriate
reference frame which could be a Local Level Frame (LLF) or an Earth Centered Earth Fixed
(ECEF) frame (Groves, 2013). The corresponding transformations from the body frame to
the LLF and the ECEF frame respectively can be found in Hofmann-Wellenhof et al. (2003),
chapter 3, and Groves (2013), chapter 2.

The current rotation angles for the transformation can be determined by an integration of
the angular rates. Based on these determined rotation angles, the accelerations can be trans-
formed into the chosen reference system. The integration of the accelerations ẍ given in the
inertial frame with respect to time yields the change in velocity, which further gives the actual
velocity ẋ if information about the initial velocity ẋA is available:

ẋ(t) =

∫ t

tA

ẍ(τ)dτ + ẋA. (4.16)

The initial velocity ẋA corresponds to the velocity of the previous epoch, or in a first instance,
the velocity at the starting point. The current position x(t) can be determined by integrating
the velocity vector ẋ(t) under consideration of the previous position xA:

x(t) =

∫ t

tA

ẋ(τ)dτ + xA. (4.17)
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In equation (4.16) and (4.17), τ represents the integration variable with respect to time.

As stated in Titterton and Weston (2004), the accelerometers measure the specific force,
which includes besides the object’s accelerations, accelerations caused by the gravitational
forces of the Earth. This fact has to be accounted for to get the acceleration of the device.
The main principle of inertial navigation is visualized as block diagram in Figure 4.9. It
includes the determination of the actual attitude for the transformation of the accelerations
into the appropriate coordinate frame, the gravity compensation, and the double integration
for the final estimation of the position. The diagram represents the main functions of a
strapdown inertial navigation system.

Figure 4.9: The concept of strapdown inertial navigation.

Since an IMU measures the changes in orientation and position only, the accuracy of the es-
timated parameters is degraded with time because of the accumulation of systematic sensor
errors. Without any additional information from external sensors, the accuracy of the esti-
mation gets continuously worse. Furthermore, the quality of the position strongly depends
on an accurate parameter initialization. However, as stated in Mautz (2012), performing
inertial navigation in combination with an external sensor, which continuously updates the
position and orientation, gives more precise motion information compared to an interpolation
between the trajectory points determined without inertial data.

The inertial system of a smartphone is realized by Micro-Electro-Mechanical System (MEMS)
sensors, which are very small in size, weight, and its cost, but come with low quality sensor
characteristics. Gyroscope and accelerometer sensors can be classified with respect to their
quality, which is mainly effected by the different inertial sensor technologies (Renaudin, 2014).
As stated in Woodman (2010), different error sources like noise, bias, bias instability, cali-
bration errors, and temperature instability are the basis for separating the sensors into three
quality grades: the navigation grade, the tactical grade, and the low-cost sensors (sorted with
decreasing quality). The MEMS (Micro-Electro-Mechanical System) sensors of smartphones
belong to the class of low-cost sensors. The navigation and tactical grade sensors are still
to large in size and are therefore not applicable for pedestrian navigation. Due to the large
amounts of drift and noise caused by low-cost sensors, positions with meter-level accuracy
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cannot be provided even over a period of only some minutes. Therefore, in the field of pedes-
trian navigation, different algorithms have been introduced which exploit the biomechanical
and physical characteristics of the human stride to compensate for the bad error characteris-
tics of the sensors. These algorithms are called Pedestrian Dead Reckoning and are divided
into inertial-based (constrained) and step-based approaches.

The inertial-based approach is based on the concept of strapdown inertial navigation, where
the accelerations are integrated two times along its path to estimate the relative position.
Within the inertial-based PDR approach, the rapid accumulation of measurement errors is
prevented by using the standstill phases during a step for the correction of the Inertial Navi-
gation System (INS). Within this phase, the foot is put on ground, and consequently no accel-
erations occur and the velocity is zero. As stated in Renaudin (2014) and Woodman (2010),
this information can be used as Zero Velocity Update (ZUPT). To detect the ground phases
correctly, this method makes a foot-mounted IMU indispensable.

While the inertial-based PDR approach focuses on the incorporation of ZUPTs during the
standstill phases of a stride, the objective of the step-based approach is to use the inertial
data to detect a step, determine the step’s length, and estimate the direction of the step.
This method is robust enough to deliver relative positions based on inertial data of current
smartphones, regardless if the smartphone is handheld or carried in a pocket. Since step-based
algorithms can be applied for a variety of sensor positions, the input of the RBPF is based
on a step-based Pedestrian Dead Reckoning (PDR) approach. In the following section 4.3.1
the characteristics and the algorithmic concept of the algorithm employed in this thesis are
discussed.

4.3.1 Step-based pedestrian dead reckoning

Step-based PDR algorithms are separated into three steps: step detection, step length estima-
tion, and heading estimation. Every time a step is detected, the position x(t) = [n(t), e(t)]T

is updated by the estimated step length sl(t) and direction θ(t), as long as the coordinates
of the previous epoch t− 1 are known:

n(t) = n(t− 1) + sl(t) · cos θ(t), (4.18)

e(t) = e(t− 1) + sl(t) · sin θ(t). (4.19)

Figure 4.10 visualizes the concept of relative positioning based on step-based PDR. The
vectors ∆xt−1 and ∆xt in Figure 4.10 represent the relative change in the horizontal position,
while their norms ‖∆xt−1‖ and ‖∆xt‖ correspond to the appropriate step lengths sl(t − 1)

and sl(t).
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Figure 4.10: The concept of step-based PDR.

In contrast to the inertial-based approach, the traveled distance is determined by a signal
segmentation instead of double integrating the acceleration data. This makes the step-based
approach eligible for different sensor positions like waist, foot, hand, backpack, etc. How-
ever, different sensor locations result in different signal amplitudes and characteristics, which
consequently lead to various step-based PDR approaches. The input data of the RBPF is
based on a PDR approach, which assumes that the person carries the smartphone in the
hand. Thus, the applied methods focus on the signal characteristics of hand-held sensors. In
the following, the concept of the employed PDR is described. More details can be found in
Moder et al. (2015), Hafner et al. (2014b), and Aichhorn et al. (2013).

Step detection: The correct identification of a step is the basis for the step-based PDR.
Only if a step is detected, the estimated step-length and heading are used for a position
update. Steps can be identified by applying different methods ranging from simple peak
detection, zero-crossings techniques, stance-phase detection to more advanced approaches of
segments (pattern) identification. Within the applied method, the step detection is done by
identifying the step’s cycle pattern as proposed in Park and Suh (2010), whereby the segmen-
tation is based on the total acceleration a =

√
a2x + a2y + a2z and empirically defined thresh-

olds. After detecting a step, the elapsed time between two standstill phases has to be deter-
mined, since this time span tstep is required as input for the applied step length model. There-
fore, a peak detection based on the total accelerations is performed.

Step length estimation: The length of a step is typically determined with a model which
is either a constant/quasi-constant, a linear, a non-linear, or an artificial intelligence model
(Chen et al., 2011). The model parameters have to be determined in a training phase or are
defined empirically. Within the applied PDR approach, the traveled distance is based on an
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empirical model defined in Chen et al. (2011) and is given by

sl =

0.7 + a (h− 1.75) + b

(
1

tstep
− 1.79

)
h

1.75

 c, (4.20)

with sl being the step length, h the height of the pedestrian, and tstep the step’s time span.
The parameters a, b, and c are coefficients. While c is a personal factor, which represents the
person’s particular walking style and has to be trained either on-line (with external sensor
data, e.g., GNSS) or in advance, the other two are given (a = 0.371 and b = 0.227). To keep
the processing at the smartphone as simple as possible, c was determined in advance with
respect to the actual test person.

Heading estimation: For the heading estimation, the orientation of the sensors relative
to the person has to be either known or calibrated. The applied approach is based on the
assumption that the smartphone is carried handheld in walking direction, and therefore the
orientation is constant. While for the step detection and the step length estimation only the
data of the accelerometers are considered, a robust heading computation requires data of all
three sensor groups (accelerometer, gyroscope, magnetometer). Especially in indoor envi-
ronments, a magnetometer-only heading solution strongly suffers from magnetic deviations
making the heading unreliable for brief intervals, which consequently reduces the magnetome-
ter’s applicability as standalone heading sensor. In contrast, an angular-rate-based heading
is subject to drift caused by the accumulation of errors. Since the quality of the MEMS gy-
roscopes is not good enough, the incorporation of the digital compass is absolutely necessary
and therefore, a combination of both data within an appropriate filter has to be preferred
(Chen, 2012b). Thereby, the magnetometers provide absolute heading information, while the
gyroscopes deliver relative information. The accelerometer data is needed for analytically
leveling the three-axis magnetometer. The approach developed at the Institute of Geodesy,
Working Group Navigation is outlined in Hafner et al. (2014b).

4.4 Barometer-based height information

Modern smartphones have built-in barometers to detect changes in height, which can be used
as support for the height estimation based on WLAN or GNSS (Kuusniemi et al., 2012). In
indoor environments, the height is an important factor, since the incorporation of a floor map
within the position estimation requires floor level information. The WLAN height does not
meet the requirements for a reliable detection of floor transitions, since the height cannot be
modeled sufficiently by fingerprints. Outdoors, the GNSS height is the coordinate component
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which can be determined worst due to the constellation of the satellites. Consequently, a
sensor fusion is performed for the height determination.

As mentioned in Groves (2013), the barometer measures the ambient air pressure. As the air
pressure decreases with increasing height, the air pressure can be used to determine the change
in height by applying a standard atmospheric model, which is given by

∆hbaro =
Ts

kT

[
pb
ps

−RkT
g0 − 1

]
, (4.21)

with pb being the measured air pressure, ps and Ts the pressure and temperature at a defined
height, kT = 6.5× 10−3 K m−1 the atmospheric temperature gradient, R = 287.1 J kg−1 K−1

the gas constant, and g0 = 9.80665m s−2 the average acceleration due to the gravity at the
surface of the Earth. For ps and Ts either standard parameters for the sea level can be used or
parameters measured at the trajectory’s starting point need to be determined. By combining
the barometric relative height with an external height information, absolute heights can be
gained. The model given in equation (4.21) is one possibility amongst others to determine
changes in height. Another model can be found in Bevermeier et al. (2010). The unit for
pressure corresponding to the International System of Units (SI) is pascal (PA), but hPA or
millibar are more commonly used for the atmosphere pressure.

The accuracy of the estimated height change is in the range of a few meters, depending on
the atmospheric stability and the period of time the barometer is used. Li et al. (2013)
reported, that for a period of 10 minutes the variations of a smartphone barometer are
less than 0.2 hPa which corresponds to 1 to 2 meters in height. Investigations within our
research group revealed that the accuracy over a shorter period of time is better, enabling
the detection of floor transitions with a success rate of 100%. Nevertheless, a sensor fusion is
indispensable, since on the one hand, weather fronts can cause barometric height errors, and
on the other hand, in indoor environments meter-level variations can occur due to ventilation
or door/window opening (Groves, 2013). However, if the air is stable, the barometric height
is more reliable than the GNSS or WLAN height (Li et al., 2013).

4.5 Pedestrian activity classification

Since barometers are not standard in state-of-the-art smartphones and WLAN fingerprinting
delivers poor height information, but the detection of the correct floor level is very important
for providing the appropriate floor plan, an alternative or back-up system had to be found
for the height estimation in indoor environments. A Pedestrian Activity Classification (PAC)
algorithm detecting the activities going up- or downstairs can deliver this information. Ad-
ditionally, the PAC can assist a PDR algorithm by reducing errors within the step length
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estimation (Moder et al., 2015). Furthermore, the current activity delivers spatial constraints
for the estimation of the horizontal coordinates (section 5.2.3) and restricts, by a combined
evaluation of the activity and the location, floor level changes to areas, where a transition
between different floors is possible.

In general, the human activity recognition is based on machine learning techniques. The
PAC algorithm has to be trained with a set of labeled data including all classes of activity
(Moder et al., 2014a). Based on the training data, which consists of selected features and
the corresponding classes, the learning algorithm generates a classifier. After the training
process, the classifier is able to identify the class based on an input vector containing feature
values (Wisiol, 2014). As mentioned in Frank et al. (2010), different methods like k-nearest
neighbor approaches, support vector machines, artificial neural networks, decision trees, or
Bayesian techniques can be applied for the activity classification.

The PAC algorithm, which is the basis for the activity determination within this work, was
implemented in the framework of a master thesis (Wisiol, 2014) at the Institute of Navigation,
Graz University of Technology (now Institute of Geodesy). Within the PAC, accelerometer
and gyroscope measurements are used for the feature computation. In general, the PAC is a
method for monitoring any kind of activity of a person. For the support of the positioning
within this thesis, the following activities have been defined for the recognition within the
Pedestrian Activity Classification (PAC):

– walking,
– standing,
– going upstairs,
– going downstairs.

For training the algorithm, a data set with a duration of about 20 minutes was collected by a
pedestrian carrying the smartphone handheld in walking direction. During these 20 minutes,
the test person performed all four defined activities. The time series was labeled correctly
before training the classifier.

For the robust identification of the activities going upstairs and going downstairs the observed
accelerations have to be transformed from the body frame of the sensors to the local level
frame to separate the horizontal and vertical components. For the transformation, the orien-
tation angles roll and pitch are used. The vertical acceleration component in the LLF is the
most relevant information for recognizing going upstairs and going downstairs. Consequently,
besides the norm of both measurement groups, the horizontal and vertical component of the
accelerations act as input for the feature computation. The horizontal component ahorizLLF

and the vertical component avertLLF are given by

ahorizLLF
=
√
a2nLLF

+ a2eLLF
, (4.22)
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avertLLF = auLLF , (4.23)

where anLLF and aeLLF are the accelerations in north and east direction in the LLF, while
auLLF represents the acceleration along the vertical axis. The total acceleration atotal and
the total angular velocity ωtotal are computed by the norm over the acceleration vector
[ax, ay, az]

T and angular rate vector [ωx, ωy, ωz]
T measured in the sensor frame:

atotal = ‖a‖

=
√
a2x + a2y + a2z,

(4.24)

ωtotal = ‖ω‖

=
√
ω2
x + ω2

y + ω2
z .

(4.25)

Suitable features for training the classifier are statistical values as the maximum, mean, stan-
dard deviation, and root mean square, or less established parameters like the interquartile
range, Main Frequency Component (MFC), amplitude of the MFC, arc tangent of the ratio
of the vertical and horizontal component, and the Activity Unit (AU). These features rep-
resent parameters of the time and frequency domain. As demonstrated in Wisiol (2014), a
window size of 32 samples (with 25 overlapping samples) is best qualified to detect the de-
fined activities. This means, that 32 samples are taken for the determination of the current
activity. Then, the window moves 7 samples ahead for taking the next 32 samples. Thereby,
an overlapping of 25 samples is given for two consecutive iterations.

As the smartphone used in this thesis offers a maximum measurement frequency of 28 Hz
for the accelerometers and gyroscopes, 32 samples cover a period of 1.14 s which is approx-
imately the duration of one double step. Since the activities are all related to walking, the

Figure 4.11: Training phase for the extraction of a classifier: The inertial data transformed
to the LLF acts as input for the feature computation. The training of the
classifier happens within a learning algorithm based on the extracted features.
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performance of the PAC based on 32 samples turned out to be best. However, the best
qualified number of samples depends on the application and the measurement frequency of
the device.

In Figure 4.11 the training phase of the PAC is illustrated as block diagram. The output of the
training phase is the classifier (red box), which is the basis for the activity recognition. The
Waikato Environment for Knowledge Analysis (WEKA) software was used as classification
and evaluation tool. As stated in Hall et al. (2009), WEKA is an open source software which
enables the application of state-of-the-art machine learning techniques on a variety of data
formats. The software can be used on different platforms and has many preprocessing tools
and data visualization facilities. As mentioned in Wisiol (2014), the built-in classifier J48,
which belongs to the Decision Tree C4.5 classifiers, was used for training the classifier based
on the training data set.

Wisiol (2014) showed, that the classifier performs best with personal training data. Classifiers
can also be built with impersonal (the training data is of a different person) or hybrid training
data (combination of personal and impersonal data). However, although the impersonal and
hybrid training data lead to a worse PAC performance, the activities can be detected correctly
with a success rate of at least 93% (Wisiol, 2014).

The evaluation of the classifier is done by a 10-fold cross validation. The validation revealed
that standing can be detected best with a success rate of 100%, since the extracted feature
values differentiate from the walked activities. The recall rate for walking and going down-

Figure 4.12: Comparison of two features (MFC of the vertical acceleration in the LLF versus
the AU of the total acceleration) extracted from accelerations, which include
the activities going downstairs (DS), standing (ST), going upstairs (US), and
walking (WA).
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stairs is about 99%, while going upstairs shows a worse result with only 94% due to feature
similarities to walking (Moder et al., 2014b). The overall success rate of the PAC is about
99%, whereby personal training data is used.

Figure 4.12 shows the separation of the different activities based on two different features,
the AU of the total acceleration and the amplitude of the MFC of the vertical acceleration.
While standing is clearly separated from the three others, a fluent transition between going
upstairs, going downstairs, and walking can be observed.

4.5.1 PAC-based height estimation

In indoor environments, the detection of the current floor, which is needed for Bayesian
filters incorporating navigable maps, fails without a reliable height information and makes
robust position estimation impossible. Therefore, besides the barometric height estimation,
alternative approaches are investigated to determine the current floor. By detecting the
activities going upstairs and going downstairs and assuming a standardized stair height, an
additional height information can be obtained.

Figure 4.13: Computation of the height based on the results of the PAC and the PDR, and
the standardized heights of the stairs.

In detail, a vertical displacement is computed by combining the information of the step
detection gained from the PDR, the activity of the PAC, and the standardized step height
(Figure 4.13). If the actual activity is going upstairs or going downstairs and a step is
detected, then the height of one stair corresponds to the covered height. This can be done,
since the stair height in general is the same in most of the buildings.
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The focus of the thesis is the design and development of a navigation filter for the purpose of
positioning against the background of the navigation of blind persons. As mentioned in previ-
ous chapters, the position determination is based on today’s smartphone sensors, comprising
GNSS, WLAN, inertial, magnetometer, and barometer technologies. All of these data types
are preprocessed within appropriate algorithms, which provide absolute and relative position
information as input for the positioning filter, see chapter 4. The smartphone’s internal GPS
chip provides a GPS SPP code solution, while in indoor environments a WLAN fingerprinting
algorithm, which is described in section 4.2, is applied for the determination of 3D coordinates.
The WLAN and GNSS coordinates refer both to the global World Geodetic System 1984
(WGS84) reference frame. The proposed PDR method (section 4.3.1) delivers the change in
distance and heading based on accelerometer, gyroscope, and magnetometer data, while the
barometer gives information about the change in height (section 4.4).

In addition, information about the current activity is used as spatial constraint within the
filtering process and in combination with the output of the PDR to determine a relative
height. The estimation process is further supported by different kinds of map information.
For the position determination in outdoor environments, a user-tailored raster map is used
to derive location-based probabilities corresponding to the movement restrictions of blind
persons. Unfortunately, as stated by blind people themselves, such location-based probabili-
ties cannot be defined for indoor environments due to the small-scaled environment and the
very individual navigation habits of blind persons within buildings. However, a map of the
building layout is incorporated within the filter. Furthermore, a wall collision filter proofs
the plausibility of room and floor changes within buildings.

Based on the investigations concerning the applicability of the different Bayes filter imple-
mentations (chapter 3), the filter design for the outdoor and indoor positioning is defined.
The main goal was to fulfill the quality requirements of an reliable and accurate navigation
system especially tailored to the use of visually impaired persons. To benefit from all the
mentioned input data, a particle filter approach was chosen as core element of the position-
ing tool. To keep the processing costs as low as possible and to provide the correct floor
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plan in indoor environments, the height estimation is done in an outsourced Kalman filter.
Consequently, a Rao-Blackwell particle filter, which estimates the 2D coordinates within a
particle filter and the height within a Kalman filter, is chosen to be the optimal filter for
this application. The conceptual design of the developed RBPF is illustrated in Figure 5.1,
which is the basic framework for the position estimation in outdoor and indoor environments.
As for the outdoor and indoor positioning different maps and observations are involved, two
separate, but similar, filter approaches had to be developed.

Figure 5.1: Principle design of the positioning filter which corresponds to a RBPF.

The outdoor RBPF is based on GNSS, PDR, and barometer data, and profits from the
user-tailored raster map. The activity recognition is only used for the correction of the step
length within the PDR in case of going upstairs or downstairs (Moder et al., 2015), because
outdoors, the defined activities are not suited to derive spatial constraints for the position
determination.

WLAN, PDR, barometer, and PAC data are combined within the indoor RBPF, which is
further supported by information gained from a building layout. Since indoors the use of
the correct floor plan depends on information about the current floor level, a floor detection
algorithm has to be installed within the height estimation process. Moreover, to proof the
plausibility of the particle propagation, a wall collision filter, which verifies room and floor
changes, is part of the designed filter. As the recognized activities provide spatial constraints
for indoor environments, these are considered as well.

Consequently, two different Rao-Blackwell filters, one for outdoors and one for indoors, are
designed. The algorithmic concepts, the map integration, as well as the derived spatial
constraints are treated separately for the different environments within section 5.1 and 5.2.
In chapter 6, the performance of the filters is investigated.

The positioning tool was developed with the software package MATLAB R2013a and realized
as Graphical User Interface (GUI) to investigate different filter settings. During the develop-
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ment of the tools and functions, the real-time applicability of the positioning was always kept
in mind, so that at the end of the development and validation phase, a transfer of the software
concept onto a smartphone is no problem. The implemented GUI, the main features of which
are shown in Figure 5.2, provides amongst others the following options:

– Import of preprocessed sensor data
– Simulation of measurement data based on a reference trajectory
– Application of different navigation filters with various adjustment possibilities
– Visualization and analysis of the filter results
– Generation of movies showing the performance of the filter

Figure 5.2: Main features of the GUI, which is called Filter Tool for Navigation Applications.

As device for the investigations, a smartphone Samsung Galaxy Nexus, manufactured in 2011,
is used. The operating system of this smartphone is Android 4.0. The smartphone features an
internal GNSS receiver, a WLAN scanner, a barometer, as well as three-axis accelerometers,
gyroscopes, and magnetometers. The operation of the smartphone is done via a touch-screen.
At the Institute of Geodesy, Working Group Navigation (TU Graz), special smartphone
applications have been developed for measuring the sensor data, which is recorded in text
files. These files are the basis for the processing, which is done on an Intel i7 desktop CPU with
a processor speed of 3.2 GHz and 12 GB RAM. During the measurements, the smartphone is
handheld by the pedestrian and points in walking direction.

5.1 Outdoor positioning

As mentioned in the previous sections, for the positioning in outdoor environments a user-
tailored raster map has been generated, which is incorporated within the state estimation.
Based on the user-tailored raster map, map-based probabilities can be derived, which rep-
resent the walking habits and path preferences of blind pedestrians. These probabilities are
integrated in the state estimation process to derive map-based importance weights contribut-
ing to the 2D positioning. Thereby, the position accuracy and reliability can be improved.
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In Figure 5.3, the concept of the Rao-Blackwell positioning filter for the outdoor environ-
ment is visualized. The particle filter estimates the 2D coordinates, while a Kalman filter is
responsible for the height determination.

Figure 5.3: Rao-Blackwell estimation process for the positioning in outdoor environments.
The height is determined within a Kalman filter, while the estimation of the
horizontal position is performed within a particle filter.

As Figure 5.3 illustrates, the Kalman filter estimates the height based on GNSS and barometer
data. The height component of the GNSS solution and the barometer-based relative height
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are used together with their corresponding covariances within the measurement update, given
by equation (3.18) and (3.19), to estimate a posterior belief of the current height. In case
of the Kalman filter, the posterior belief bel(xt) is represented by the mean x̂t and the
covariance Σ̂t of the estimated height (compare section 3.1.1). The developed Kalman filter
is described in detail in section 5.1.2.

The particle filter integrates all data, which are relevant for the estimation of the horizontal
coordinates. Besides the GNSS coordinates and the PDR data (velocity and heading), the
probability map is defined as input for the particle filter. The PDR data, which describes the
motion of the pedestrian, is used for the propagation of the particles. The predicted particle
set χt corresponds to the prior belief bel(xt), which acts as basis for the derivation of the
importance weights within the measurement update. Hereby, the GNSS observations as well
as the probability map deliver separate importance weights, which are combined to get the
posterior probability of each particle. These probabilities are used to resample the particles
in the state space to focus the processing in regions where the probabilities are highest, see
section 3.2.2. Details on the implemented particle filter approach are given in section 5.1.3,
while the generation of the user-tailored raster map and the derivation of the corresponding
probabilities are described in section 5.1.1.

5.1.1 Maps tailored to blind people

For the derivation of spatial constraints, which represent the navigation habits of blind pedes-
trians, special occupancy grid maps, representing all relevant elements of the scenery, have
to be established. Considering blind persons, regions where the person can move without
any restrictions have to distinguished from those with dangers and obstacles. Visually im-
paired people preferably walk on pavements, cross the streets only at zebra crossings, and
avoid unratable objects like bike parking areas or shared cycle- and pathways. Further-
more, pathways, which provide navigation assistance like tactile ground surface indicators
or acoustic traffic lights, are favored. Based on these walking and navigation habits appro-
priate location-based probabilities can be derived acting as geometric constraints within the
positioning filter.

For the incorporation of the map within the particle filter, it is of great importance, that the
map information is provided as raster map. Although a raster map needs a higher storage
capacity compared to a vector map, it is better suited for the integration within the particle
filter as geometric operations can be circumvented. A georeferenced raster map enables a fast
verification of the pedestrian’s location within the map if the grid size is known. The map
coordinates deliver then the corresponding location probabilities. Furthermore, by classifying
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5 Filter design for the positioning of visually impaired people

the features of the map grid cells, information about the grid cell’s characteristic (representing
a zebra crossing, pavement, etc.) can be provided.

Within the thesis, a concept had to be developed, which enables an easy and fast retrieval
of the relevant map information based on a georeferenced raster map. Figure 5.4 shows
the design process of the map including all sources of input data, which comprise a vector
dataset, the preferred pathways of blind persons, and data which is relevant for blind people
and missing in the dataset.

Figure 5.4: Concept for the generation of the user-tailored raster map.

As illustrated in Figure 5.4, the basis for the generation of the georeferenced user-tailored
map was a vector map due to the absence of a suitable raster map. The vector map contains
already most of the relevant information. However, the vector map describes the environment
as a graph, which consists of nodes and arcs representing the environment’s objects and
features. Regardless which object is mapped, it is done by nodes and node connecting arcs.
In case of a vector map, the verification of the current position relative to an object is
done with the help of analytical geometry, coming along with high computational effort.
On the contrary, mapping the environment as a raster and assigning an appropriate value,
which represents the feature (e.g., building, street, pavement, zebra crossing, etc.) to each
raster element, enables an easy and fast verification of the underlying object. Therefore, a
conversion from the vector map to a raster representation is performed.

The original vector map is provided as CAD dataset by the surveying office of Graz. Within
the CAD dataset, different objects are assigned to different layers. The information con-
tent of the map is based on geodetic surveys, which were performed in 2009. Conse-
quently, the dataset had to be updated in areas, where construction works took place.
The map coordinates correspond to the projected spatial reference system MGI Austria
GK (east).
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For the design of the user-tailored map, a consultant, who is blind by herself, was involved in
the developing process. The map was generated within the project POScity in cooperation
with the company Strauß & Hollinger : GeoIT OG and the consultant Alice Geiger. Details
on the map generation can be found in Hafner et al. (2014a) and in the final report of
the project POScity (Hafner et al., 2015). Alice Geiger gave an insight into the navigation
manner of visually impaired persons, inspected the existing dataset of the surveying office, and
supported the derivation of the map-based probabilities. The existing dataset was enriched
by missing blind-relevant data, while irrelevant information was eliminated from the map.
Based on Alice Geiger’s expertise and recommendations, a concept for the integration of the
user-tailored map into the positioning process has been worked out. Based on this concept, I
defined the map requirements, whereby the user-tailored raster map itself was then generated
by the company Strauß & Hollinger : GeoIT OG.

For the automatic generation of the raster map, the information content of the vector map
had to be generalized. Figure 5.5 demonstrates the generation process of the user-tailored
raster map from the vector map containing all relevant information via the generalization
into the final product. The vector dataset illustrates the enriched and updated dataset of
the surveying office. Within the first generalization, the goal is a consistent classification of
the point data, while the second generalization focuses on the consistency with regard to line
data. During this process, duplicates are eliminated and unambiguous classification keys are
assigned to each feature. After the generalization, the dataset is topologically correct over
all different layers.

Figure 5.5: For the semi-automatic generation of the raster map, a generalization of the
vector map had to be performed in advance. © Strauß & Hollinger : GeoIT OG
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Due to the extensive work for the generation of the user-tailored map, the test area had to be
restricted to a limited area of Graz. For the choice of the test area, special attention was paid
on the presence of infrastructure relevant to blind people and the possibility to test various
different pathway scenarios. The area needs to include tactile ground surface indicators,
acoustic traffic lights, zebra crossings, etc. At the end, the surrounding of the campus of Graz
University of Technology, comprising all kinds of features, had been chosen due to practical
reasons having the test environment close to the Institute of Geodesy.

The final user-tailored raster map of the test environment is shown in Figure 5.6 and has a
spatial resolution of 25 cm. Each color represents a special feature, for example, red symbol-
izes buildings, blue is a parking lot and green represents a grassed area. Since no information
was available for the inner courtyards of the building blocks, the information was taken from
a digital surface model or an aerial image.

Figure 5.6: User-tailored raster map for the surrounding of the campus of Graz University
of Technology. The raster map is visualized with a digital surface model in the
background. © Strauß & Hollinger : GeoIT OG

The generated user-tailored raster map acts as basis for the derivation of map-based proba-
bilities. To enable the modification of the probabilities at any time, the raster map had to be
designed appropriately. Each raster element contains a feature value, which corresponds to a
certain layer. As illustrated in Figure 5.7, within the GUI, the probability of each layer can
be defined and adapted. Therefore, different probability maps can be generated to investigate
the filter performance based on diverse spatial constraints. The map in Figure 5.7 represents
an exemplary probability map of the test area. The particle filter uses such a probability map
to enhance the estimation of the most likely position of the pedestrian.
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5.1 Outdoor positioning

Figure 5.7: Definition of the probabilities for each layer, which is the basis for the generation
of the probability map.

5.1.2 Height estimation within the Kalman filter

The algorithmic concept of the Kalman filter estimating the height is visualized in Figure 5.3.
Since the probability map provides no height constraints, the particle filter is not necessarily
required for the height determination. By outsourcing the height estimation into a Kalman
filter, the computational efficiency of the filtering process could be improved. This is possible,
since the Kalman filter assumptions regarding the linearity and the model’s distribution suit
for the application of estimating the current height.

The parameters which are estimated within the Kalman filter are the ellipsoidal height h

referred to the reference frame WGS84, and the height component ḣ of the velocity. Therefore,
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the state vector xt has two components, which are:

xt =

[
h

ḣ

]
t

. (5.1)

The absolute height hGNSS , based on the GNSS observations, and the relative height ∆hbaro,
gained from the barometer, serve as input for the Kalman filter, see Figure 5.3. hGNSS is given
as ellipsoidal height in the reference frame WGS84. Since the barometer delivers no absolute
height information, no reference system has to be defined. Besides hGNSS and ∆hbaro, the pre-
processing of the GNSS and the barometer sensor data provides the corresponding variances
σhGNSS

and σ∆hbaro
. Consequently, the input for the Kalman filter, the observation vector zt

and the covariance of the observations Rt, can be defined as follows:

zt =

[
hGNSS

∆hbaro

]
t

, Rt =

[
σ2
hGNSS

0

0 σ2
∆hbaro

]
t

. (5.2)

As the observation and state vector have been identified, the time and measurement update of
the Kalman filter, given by equation (3.15) to (3.19), can be derived. Therefore, the dynamic
model and the relation between the observations and the unknown parameters of the state
vector (measurement model) have to be defined.

Time update

The time update of the state x̃t = Φtx̂t−1 within the Kalman filter is realized by[
h̃
˜̇
h

]
t

=

[
1 ∆t

0 1

]
t

[
ĥ
ˆ̇
h

]
t−1

, (5.3)

where ∆t is the shorthand notation for ∆t = tk+1−tk. For the definition of the transition ma-
trix Φt, a uniform velocity is assumed delivering the height h at epoch t by

h̃t = ĥt−1 +∆t
ˆ̇
ht−1. (5.4)

Besides the state, also the covariance has to be propagated from the previous to the current
epoch within the prediction step. For the time update of the covariance given in equa-
tion (3.16) the system noise has to be defined to compensate for the idealized assumption
of the dynamic model (Hofmann-Wellenhof et al., 2003). Referred to Legat (2002), the
second-order time derivative ḧ of the height is suitable for the description of the system
noise. Since the change of the height is defined by a uniform motion with constant veloc-
ity, the acceleration is qualified to account for any kind of disturbances with respect to the
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assumed motion. As described in Hofmann-Wellenhof et al. (2003), the impact of the ac-
celeration ḧ on the state vector components h and ḣ can be derived by principal laws of
kinematics:[

∆h

∆ḣ

]
t

=

[
1
2∆t2

∆t

]
ˆ̈
ht−1,

= N t
ˆ̈
ht−1.

(5.5)

The matrix N t is denoted as noise transition matrix. The covariance matrix Qt of the
system noise, which is required for the covariance update given in equation (3.16), can now
be determined by applying the law of error propagation:

Qt = N tRnN
T
t , (5.6)

with

Rn =
[
σ2
ḧ

]
. (5.7)

The variance σ2
ḧ

describes the uncertainty of the dynamic model. The covariance matrix Qt

enables the handling of the imperfect dynamic model by increasing the covariance Σ̃t of the
predicted state x̃t corresponding to Σ̃t = ΦtΣt−1Φ

T
t +Qt. Consequently, the system noise

influences the impact of the prediction to the final state estimate, whereby a low variance
corresponds to a high impact of the prediction.

For investigation purposes, the system noise can be adapted within the user interface, since
this parameter essentially influences the performance of the filter. In general, this parameter
strongly depends on the input data, its covariance, and the assumed motion. Therefore, the
adaption of the system noise has to be done with regard to the dynamic system and the
corresponding observations.

Measurement update

If GNSS or barometer observations are available, the predicted state is updated accord-
ing to equation (3.18) by incorporating the measurements. For the measurement update,
the observation equations for both types of observations, hGNSS and ∆hbaro, have to be de-
fined: [

hGNSS

]
t
=
[
1 0

] [h
ḣ

]
t

, (5.8)

[
∆hbaro

]
t
=
[
0 ∆t

] [h
ḣ

]
t

. (5.9)
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The matrices linking the state vector xt with the observations hGNSS and ∆hbaro are denoted
by HGNSS and Hbaro. As equations (5.8) and (5.9) show, the relation between the observa-
tions and the state vector components are given by linear functions of h and ḣ. Depending on
the availability of observations, the state is either updated by one measurement group (GNSS
or barometric data) or by both. The incorporation of both groups demands a combination
of the design matrices HGNSS and Hbaro:[

hGNSS

∆hbaro

]
t

=

[
HGNSS

Hbaro

][
h

ḣ

]
t

= Ht xt,

(5.10)

resulting in a design matrix Ht, which is equal to an identity matrix of size [2× 2] if a
constant measurement frequency of 1 Hz is used.

Since hGNSS and ∆hbaro are assumed to be independent measurements, the covariance matrix
Rt of both measurement groups depends on the covariance RGNSS of the GNSS height hGNSS
and the covariance Rbaro of the barometric height ∆hbaro in the following form:

Rt =

[
RGNSS 0

0 Rbaro

]
t

, (5.11)

with

RGNSS = σ2
hGNSS

(5.12)

Rbaro = σ2
∆hbaro

, (5.13)

with σ2
hGNSS

and σ2
∆hbaro

being the variances of the GNSS-based and barometer-based input
data. The variance of hGNSS is provided as NMEA output by the smartphone and is in the
range of some meters. The actual accuracy strongly depends on the number of currently
visible satellites and their constellation. The variance of ∆hbaro is defined within the prepro-
cessing of the barometer measurements. The accuracy is empirically determined based on
several measurement datasets, whereby a standard deviation of σ∆hbaro

= 0.7m turned out
to be the value which represents the barometer accuracy best.

The defined design matrices and the appropriate covariances of the observations are the
basis for the measurement update, which is responsible for the update of the state and the
covariance with regard to the determined Kalman weight Kt and the current observation
vector zt by applying equation (3.18) and (3.19).

5.1.3 2D position estimation within the particle filter

Outdoors, the particle filter combines the estimated GNSS position, the velocity and heading
output of the PDR algorithm, and the information retrieved from the user-tailored raster map
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to reliably estimate the current position of the blind person (see Figure 5.3). The particle
filter is chosen for the estimation of the geographic coordinates ϕ and λ due to its ability of
integrating map information.

The principle framework of the particle filter is given by the Chapman-Kolmogorov equation
defined in equation (3.5) and the Bayes’ law given in equation (3.6). While the Chapman-
Kolmogorov equation is the basis for the propagation of the particles, the Bayes’ law incor-
porates the current measurements into the state estimation process. As the implementation
of the Bayes filter is not computationally tractable, the particle filter approximates equa-
tion (3.5) and equation (3.6) by representing the state space by a set of particles. The
importance sampling described in section 3.2.2 is the basis for the implementation of the
particle filter. However, the practical implementation strongly depends on the application
and is therefore described in the course of this section.

As shown in Figure 5.3, the developed particle filter incorporates the PDR data for the prop-
agation of the particles, while the GNSS input and the map are used for the determination
of the importance weights. Since information about the actual movement of the pedestrian is
available, the PDR data is used instead of a common pedestrian motion model to propagate
the particles from one epoch to the next. The importance weight is computed with respect
to two uncorrelated data sources (GNSS and map) and provides the posterior PDF of the
state.

Based on the Chapman-Kolmogorov equation in equation (3.5) and the particle representation
of the state, the prediction within the particle filter can be defined by

bel(xt) = p(xt|zt−1,ut)

=
∑
Ns

p(xt|xt−1,ut) bel(xt−1),
(5.14)

with ut representing the transition data gained from the PDR algorithm. The measurement
update incorporates the GNSS position solutions zt and the map-based probabilities given
by m in the following form:

bel(xt) = p(xt|zt,m)

= ηt p(zt,m|xt) bel(xt)

= ηt p(zt|xt) p(m|xt) bel(xt).

(5.15)

Since the GNSS positions and the map are independent data sources, the probability density
function p(zt,m|xt) can be split into two PDFs. One PDF represents the measurement likeli-
hood p(zt|xt), while the other one stands for the map-based probabilities p(m|xt).

In the following, details on the initialization of the filter, the propagation model, the compu-
tation of the importance weights, and the resampling of the particles are given. The Dynamic
Bayes Network of the designed particle filter is illustrated in Figure 5.8.
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Figure 5.8: DBN of the designed particle filter.

Initialization of the particle filter

For the recursive state estimation within the particle filter, a once-only initialization of the
particle space has to be performed. After the initialization, a particle set χt represents
the probability density of the state space. Within the positioning tool, a particle is de-
fined by xi

t = [ϕ, λ, θ]T comprising the geographic coordinates and the orientation of the
pedestrian. The orientation corresponds to the heading (direction of the along axis) defined
in section 4.3.1, in general, describing the walking direction of the person with respect to
geographic north, i.e. the course angle.

Within the positioning tool, several methods for the initialization exist. The particles can
either be randomly extracted from a uniform distribution over the whole state space, or can
be drawn from a normal distribution with external information about the mean and the
appropriate covariance. In case of the geographic coordinates ϕ and λ, the coordinates of the
starting point of a trajectory (e.g. entrance of a building, crossing, etc.) or the first GNSS
solution are qualified as mean for the Gaussian initialization. The corresponding covariance
depends on the quality of the information. Regardless if the initialization is done by a random
or a defined PDF, the user-tailored map is used as constraining factor to exclude improbable
particles already during the initialization. The heading is initialized randomly within the
interval [0◦, 360◦] or by a Gaussian distribution N (θmag, σθmag) with the magnetic heading
θmag as mean and the heading’s measurement noise σθmag as covariance.

Besides the particles’ distribution in the state space, the number of particles Ns has to be
defined within the initialization of the filter. Within the GUI, an arbitrary value for Ns can
be chosen with regard to the application and the employed data. A number Ns between 500
and 1000 proved to be qualified for the outdoor positioning. An investigation on the actually
necessary number of particles is given in chapter 6, which demonstrates that the choice for
Ns depends on the input data and its quality. In a first instance, the Ns initialized particles
have equal weights ωi

t0 = 1/Ns.
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Particle propagation

Within the propagation step of the particle filter, a new set of particles is generated by
sampling the state transition probability p(xt|xt−1,ut). This PDF is conditioned on the
particle’s state xt−1 of the previous epoch t − 1 and the control or transition data ut. The
control data ut implies the actual velocity vt and change in heading ∆θ determined within
the PDR algorithm. The PDR data is used for the propagation of the particles to enable a
particle transition in the best possible way.

Another possibility for the particle propagation is the application of a generic motion model
independently of any measurement data. In this case, the PDR is used for the computation
of a PDR-based importance weight within the correction step. Particles which are propa-
gated consistently to the actual velocity and heading would therefore get large weights, while
particles whose propagation does not correspond to the determined motion are assigned with
low weights. Investigations in the course of this thesis showed that within this approach,
many propagated particles have a low PDR-based importance weight, and therefore, only a
few particles contribute in the state estimation. The consequence is, that much more par-
ticles have to be generated. As a result, the particle propagation is done with PDR data
to reduce the uncertainty of the propagation and thus, the number of necessary particles.
Consequently, the vector ut, expressed by

ut =

[
v

∆θ

]
t

, (5.16)

is used for the particle propagation. To preserve the diversity of the particles, the parameters
v and ∆θ are spread according to the measurement uncertainty of the IMU

v′t = vt +N (0, σv) (5.17)

∆θ′t = ∆θt +N (0, σ∆θ), (5.18)

by adding Gaussian noise corresponding to N (0, σv) and N (0, σ∆θ) to the determined motion
parameters. Based on v′t and ∆θ′t, the coordinates and the heading of the particles at time t

are calculated by:

θit = θit−1 +∆θ′t, (5.19)

ϕi
t = ϕi

t−1 +
∆t v′t cos θt

R
, (5.20)

λi
t = λi

t−1 +
∆t v′t sin θt
R cosϕ0

, (5.21)

where θt−1, ϕt−1, and λt−1 correspond to the particles’ parameters of the previous epoch
t−1. The Earth radius R and a mean latitude ϕ0 of the test ground are applied to transform
the relative motion into the geographic reference system.
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Within the defined filter, the change of the heading ∆θPDR is used instead of the absolute
heading θPDR. The current heading θt is estimated within the particle filter, as this reduces
the PDR-typical drift due to the integration of additional constraints and observations within
the estimation process.

The applied approach could be improved by defining a dynamic model based on PDR data
which also accounts for accelerations. However, the accelerations which are typically caused
by blind pedestrians are rather small, and therefore are in the range of the particles’ diversity
given by the measurement uncertainty of the IMU.

Computation of the importance weight

The sequential importance resampling, where the particles are drawn with regard to the
importance weights, is the general framework for the implementation of the measurement
update of the particle filter (Arulampalam et al., 2002; Ristic et al., 2004). The importance
weight ωi

t, which acts as basis for the resampling of the particles, is a combination of two in-
dependent groups of weights. While GNSS provides an observation-based importance weight
ωGNSS

i
t, the user-tailored raster map delivers a map-based probability which corresponds to

the importance weight ωmap
i
t (see Figure 5.3).

The importance weight ωGNSS
i
t, which represents the likelihood of the GNSS measurements

zGNSSt = [ϕ, λ]TGNSS at a certain point in the state space, is determined by evaluating the mea-
surement probability p(zGNSSt|xt) based on zGNSSt and the appropriate covariance

ΣGNSS =

[
σ2
ϕGNSS

0

0 σ2
λGNSS

]
. (5.22)

In case of the GNSS observation zGNSSt, the probability of the measurement is evaluated by
determining whether zGNSSt corresponds to the normal distribution zGNSSt ∼ N (Htx

i
t,ΣGNSSt)

with mean Htx
i
t and covariance ΣGNSSt. Consequently, the GNSS-based importance weight

ωGNSS
i
t is gained by

ωGNSS
i
t = p(zGNSSt|xi

t)

= det(2πΣGNSSt)
− 1

2 exp

(
−1

2
(zGNSSt −Htx

i
t)
TΣGNSS

−1
t (zGNSSt −Htx

i
t)

)
,

(5.23)

with xi
t being the particles which represent the state space. Ht corresponds to the design

matrix describing the noise-free relationship zGNSSt = Htxt between the unknown state
xt and zGNSSt. Ht is required to relate zGNSSt to the particle set xi

t and has following
structure:

Ht =

[
1 0

0 1

]
. (5.24)
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Within the user interface of the positioning tool, the map-based probability can be defined for
each layer of the user-tailored raster map, see section 5.1.1. To get the map-based probability,
the particle’s location has to be determined in relation to the map. In case that the particle
xi
t is located in an impossible particle space (obstacle, wall, indoor environment, etc.), a prob-

ability of zero is assigned to the appropriate map-based importance weight ωmap
i
t. Otherwise,

ωmap
i
t corresponds to the location probability which was defined in the GUI. Consequently,

the map-based probability becomes

ωmap
i
t =

0 . . . impossible particle space,

pmap . . . otherwise.
(5.25)

In comparison, the integration of the information content of a common map of the outdoor
environment would provide the following map-based probabilities

ωmap
i
t =

0 . . . impossible particle space,

1 . . . otherwise,
(5.26)

differentiating only the impossible from the possible particle space.

The importance weight ωi
t as input for the resampling is determined by combining ωGNSS

i
t

and ωmap
i
t by

ωi
t =

〈
ωGNSS

i
t, ωmap

i
t

〉
. (5.27)

Because of the fact that both groups of importance weights are uncorrelated, the final impor-
tance weight ωi

t is given by the multiplication of ωGNSS
i
t and ωmap

i
t, since

p(z|x) = p(z1, z2|x) = p(z1|x)p(z2|x) (5.28)

for two independent observations z1 and z2. However, before combining ωGNSS
i
t and ωmap

i
t,

the corresponding weights have to be normalized:

ωGNSS
i
t =

ωGNSS
i
t∑

Ns
ωGNSS

i
t

, ωmap
i
t =

ωmap
i
t∑

Ns
ωmap

i
t

. (5.29)

After the computation of ωi
t, the equal weights of the particle set χt are replaced by the

combined importance weights ωi
t. Consequently, the particle set χt =

〈
xi
t, ω

i
t

〉
represents the

posterior probability of the state xt based on all available input data. The corresponding
posterior probability function bel(xt) is gained by

p(xt|zt,m) ≈
Ns∑
i=1

ωi
t δ(xt − xi

t), (5.30)

where δ(·) is the Dirac delta measure (Ristic et al., 2004), and m represents the user-tailored
raster map. p(xt|zt,m) is the basis for the generation of a resampled set of particles for the
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consecutive epoch and for the determination of the walked trajectory. In section 6.1, the
highest weighted particle, the sample mean, the weighted sample mean, and methods like
k-means clustering are theoretically investigated for the derivation of the trajectory based on
p(xt|zt,m). In section 6.2, the optimal representative of the trajectory is identified with the
help of realistic measurements.

Resampling

Within the resampling, a new set of Ns particles is generated by randomly sampling the
states of the particles in proportion to their importance weights (Woodman, 2010). Due to
the resampling of the particles, the degeneracy problem can be solved, since the particles
are redistributed according to their actual probability. Therefore, as shown in Figure 5.9, by
considering a resampling within the particle filter, the processing will be focused on regions
of higher probability, and the number of particles with low weights can be reduced. After the
resampling, the new set of Ns particles have equal weights ωi

t = 1/Ns.

Figure 5.9: Resampling of the particles, in which particles with low weights are reduced.

Referring to Hol et al. (2006), the resampling modifies the weighted approximated density
given in equation (5.30) to an unweighted density by eliminating particles with low impor-
tance weights and by duplicating particles with high importance weights. Therefore, the
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probability density in equation (5.30) is replaced by

p(xt|zt,m) ≈
Ns∑
i=1

1

Ns
δ(xt − xi

t
∗
), (5.31)

with xi
t
∗ representing the new set of particles. As stated in Hol et al. (2006) and Douc et al.

(2005), several methods for the generation of a resampled set of particles exist. The investiga-
tions show, that all resampling algorithms lead to comparable results. Within the thesis, the
systematic resampling has been chosen due to its simple implementation.

5.2 Indoor positioning

Referring to Alice Geiger, the blind consultant, it is impossible to generate a user-tailored
map for indoor environments. The navigation behavior cannot be modeled in the same way as
outdoors, because of the small-scaled structures and the very individual walking and naviga-
tion habits of blind persons in indoor environments. However, a SLAM approach, which maps
the walking habits of only one person or if desired of several persons, could be qualified to in-
corporate navigation habits in the position estimation, see section 7.4.

Nevertheless, for nearly every public building appropriate building layouts exist, which can
be integrated as spatial constraint within the particle filter. Hereby, the problem is the
low public availability of these building maps. While maps of outdoor environments are
widely available due to different online services, indoor maps are rarely accessible publicly
and are not standardized yet. Though, the availability of indoor maps is increasing and
the automatic providing of building layouts at the entrance of public buildings by any kind
of data transfer is under discussion. As proposed in Woodman (2010), different companies
like Micello (Micello, 2015), HERE (HERE, 2015), or indoors (indoors, 2015) are already
providing the creation of detailed plans for navigation and location-based applications. At
the moment, indoor maps are mainly available for public buildings like airports, shopping
centers, or train stations. Within the thesis, an occupancy grid of the indoor environment
has been established.

Besides the geometric constraints which are provided by the map, the state estimation in
indoor environments is additionally supported by an algorithm which verifies the plausibility
of pathways. This algorithm guarantees that rooms are only entered/left through doors, and
floor changes are only possible at stairs or elevators. A so-called wall collision filter improves
the 3D positioning by checking the plausibility of room and floor changes. Thereby, the
reliability of the state estimation can be strongly improved.
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Figure 5.10: Rao-Blackwell estimation process for the positioning in indoor environments.
The height, determined within a Kalman filter, is the basis for the floor detec-
tion which delivers the map of the correct floor. Besides the classified activity,
the building layout acts as spatial constraint within the particle filter estimating
the horizontal position.
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5.2 Indoor positioning

As observations for the indoor RBPF, the PDR parameters v and ∆θ, the coordinates ϕ,
λ, and h determined within the WLAN fingerprinting, and the barometric relative height
∆hbaro, are used. In addition, the activity provided by the PAC and the corresponding
relative height ∆hPAC are integrated in the state estimation.

Similar to the Rao-Blackwell filter for the outdoor environment, the filter approach for indoor
environments consists of a central particle filter estimating the coordinates ϕ and λ (referred
to WGS84), and of a Kalman filter, which provides the current ellipsoidal height h. Again,
by outsourcing the height estimation, the computational efficiency of the state estimation
could be increased. The difference to the outdoor approach is that the integration of map
information requires the determination of the floor level. Therefore, the Kalman filter addi-
tionally identifies the actual floor. The algorithmic concept for the state estimation in indoor
environments is demonstrated in Figure 5.10.

As illustrated in Figure 5.10, the height estimation integrates the absolute height h computed
within the WLAN fingerprinting and information about the change in height ∆h, which is
either based on the barometer data (section 4.4) or results from a combined evaluation of
the PDR and PAC output (see section 4.5.1). By estimating the height and the floor within
the Kalman filter, much less particles are required within the particle filter, since the state
estimation process can already be limited to a certain floor. Details on the Kalman filter and
the appropriate floor detection are provided in section 5.2.4.

Within the particle filter, the propagation of the particles is controlled by the velocity v and
the change in heading ∆θ determined by the PDR algorithm, while the WLAN positions ϕ

and λ are used for the importance sampling. The importance sampling is further supported by
the building layout, the wall collision filter, and the spatial constraints derived from the actual
activity. The particle filter concept is explained in section 5.2.5, while details for the map
preparation and the design of the wall collision filter are given in section 5.2.1 and 5.2.2. The
derivation of the activity-based constraints is discussed in section 5.2.3.

5.2.1 Occupancy grid map for indoor positioning

For the integration of the information content of a building layout within the particle filter, the
spatial data has to be prepared in machine-readable form. A data structure which is suitable
for representing buildings with multiple floors has to be defined for the processing of map-
based information. Therefore, the three-dimensional building is modeled as 2.5-dimensional
data. This means, each floor is represented by an appropriate floor map and a minimum and
maximum height representing the vertical extension of the floor. Consequently, all features
(obstructions and walls) of one floor are projected independently of their vertical extension
onto the map of the corresponding floor. By providing the current height of the pedestrian,
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the correct floor can be identified by comparing the estimated height with the minimum and
maximum height of the building’s different floor levels.

Referred to Thrun et al. (2006), the indoor environment can either be represented by a
feature-based or a location-based map. In general, a map is a list of objects in the environment
and their locations in the form of m = {m1,m2, . . . ,mN}, with N representing the total
number of objects. In case of a feature-based map, the index n = 1 . . . N corresponds to the
number of a feature and mn contains the coordinates of that feature, while the index n with
regard to a location-based map already represents a specific location. Considering a planar
map, the map elements are given by mx,y instead of mn corresponding to the dimension of the
map. Consequently mx,y is the direct link to the feature’s coordinates.

Within the thesis, a combination of the feature-based and the location-based representation
is chosen. The building layout is mapped as location-based map representing occupied and
non-occupied regions for the incorporation within the particle filter, while the room polygons
and doors for the wall collision filter are stored as feature-based datasets. The location-
based map, which corresponds to a raster map, needs a lot more storage capacity as the
feature-based map. However, this fact can be neglected, because of the finite extension of
the indoor environment. By providing the building layout as georeferenced raster map, the
processing effort within the filter can be reduced due to the absence of geometric operations.
A raster map, providing information about the occupancy of a pixel by a binary value, is
called occupancy grid map (Thrun et al., 2006).

The feature-based representation is suitable for the wall collision filter, since doors and walls
can be mapped easier by lines and polygons and the path verifications can be performed by
simple geometric operations. Therefore, the spatial information has to be provided as dataset
containing all relevant features and the corresponding positions. Details on the processing
within the filter are given in section 5.2.2.

For the indoor positioning investigated within the thesis, a test area has been defined, on
the one hand, for the construction of the occupancy grid maps and, on the other hand, for
the installation of the WLAN fingerprinting database. The campus building Steyrergasse
30, in which the Institute of Geodesy is located, was chosen as test area. The building has
five floors, with a planar extension of about 1300m2 at each floor. Figure 5.11 exemplary
illustrates the mapping of the five-story building as occupancy grid maps. Each floor of
the building is represented by an occupancy grid map, which allows the verification of the
occupancy of a grid cell, and an appropriate minimum and maximum height, which define
the vertical extension of the floor.

For reducing the processing effort within the particle filter, a room index is assigned to every
unoccupied pixel of the occupancy grid map prior to the state estimation. In this way, geo-
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Figure 5.11: The occupancy grid maps and the height levels of each floor based on the
original building layouts. The minimum and maximum height define the vertical
extension of the floor.

metric operations for the determination of the current room can be circumvented. Therefore,
each room had to be defined as a planar polygon and stored in a feature-based map. Every mn

element of the feature-based map contains the room index and the polygon coordinates. The
room index is unambiguous and allows the identification of the room type, since the following
classification key for the assignment of room indices has been defined:

mϕ,λ =



1 < mϕ,λ < 100 . . . office room,

100 < mϕ,λ < 199 . . . corridor,

1001 < mϕ,λ < 1999 . . . stairs,

2001 < mϕ,λ < 2999 . . . elevator.

(5.32)

The classification into office rooms, corridors, stairs, and elevators enables a differentiation
within the particle filter. Consequently, floor level transitions can be limited to stairways
and elevators.

Based on the feature-based map containing the room polygons and the corresponding room
indices, a developed room detection algorithm assigns a room index to every unoccupied
pixel of the raster map. Therefore, geometric operations have to be performed only once to
derive the properties of the location-based map mϕ,λ. Consequently, each element of the map
refers to a certain location and contains a room index. After this step, unoccupied pixels are
represented by room indices, while occupied pixels are still represented by zero. Figure 5.12
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shows the planar polygons defining the shape of the rooms (left) and the resulting occupancy
grid map enriched by information on the room type (right).

Figure 5.12: The defined room polygons (left) are the basis for the assignment of the room
index to a certain location (right).

The room polygons in the left graph of Figure 5.12 are drawn in multiple colors, while the gray
lines represent the doors within the building, which are required for the wall collision filter.
The right hand graph of Figure 5.12 shows the result of the room classification. To illustrate
the differentiation of the various office rooms, the rooms are colored in distinguishable greens.
The resolution of the location-based map is 10 cm, which is sufficient for the positioning
support within the filter.

The generated location-based map is used within the particle filter in several ways. On the
one hand, to verify if a grid cell of the map is occupied or not, and on the other hand, to
determine in which room the particle is located. The room index is used to avoid a floor
level change in office rooms and corridors, but also for the verification of the plausibility of
the particles’ pathways by the wall collision filter.

For the wall collision filter, the geometry of the rooms and doors, and the connectivity of
these elements has to be defined. Therefore, two feature-based datasets are required, which
are connected by door indices. One dataset contains all room-relevant information, like the
room index, the polygon defining the geometry of the room, the number of doors of a room,
and corresponding door indices, which allow the unambiguous identification of a certain door.
Thus, the feature-based map defining the room polygons for the room classification has to
be extended by information about the doors. The second dataset comprises the door indices
and the edge coordinates of the door. The door dataset is hereby directly linked to the room
dataset by the unambiguous door index. The composition of the two datasets and the corre-
sponding connection is shown in Figure 5.13. Based on these two datasets, the plausibility
of the particles’ pathways is proofed within the wall collision filter.
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5.2 Indoor positioning

Figure 5.13: The feature-based datasets for defining the rooms and doors of the building.

5.2.2 Wall collision filter

The wall collision filter verifies the plausibility of the pathways after the particle propagation.
In general, the wall collision filter checks the following cases:

– Did the particle take a valid path from one room to the next?
– Did the particle take a valid path from one floor level to the next?

After the application of the dynamic model based on the PDR motion parameters, the plau-
sibility of the pathway of a particle has to be proofed. The propagated particle can be either
in an occupied grid cell, or it was propagated along an impossible pathway (e.g., changing the
room through a wall or the floor through the ceiling). Before the wall collision filter verifies
the plausibility, the location of the particle has to be checked regarding the occupancy of the
grid cell. A particle, which is assigned to a grid point representing a wall or an obstacle, has
to be disregarded within the state estimation and should consequently not be treated within
the wall collision filter. The left hand graph in Figure 5.14 exemplarily illustrates particles
which are distributed without consideration of the environmental structures, while the graph
on the right of Figure 5.14 demonstrates the particles’ spatial distribution with regard to the
building infrastructure.

Figure 5.14: Distribution of the particles without/with consideration of the environmental
structures.
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The occupancy of the space is hereby verified by checking the grid cell’s property, which is
given in the location-based map mϕ,λ. If the particle is located at an occupied map element
mϕ,λ, the importance weight is set to zero, and therefore, the particle is not used for the later
position estimation.

Figure 5.15 shows the transformation of the particles from one epoch to the next. Hereby,
the wall collision algorithm has to check, whether the particle’s pathway is valid. Particles
will only be propagated from one room to the next if a door is between those rooms and the
particle took exactly the way through.

Figure 5.15: Verification of the plausibility of the propagated particles’ path.

The left graph in Figure 5.15 shows the case, where two rooms are separated by a wall. If
the PDR parameters indicate a motion to the next room, the wall collision filter will be
responsible for assigning an importance weight of 0 to wrongly propagated particles. The
right graph shows the case, where two rooms are connected by a door. Here, the wall
collision filter has to verify if the particles took the way through the door. Particles which
are propagated correctly are assigned with an importance weight of 1, the others with an
importance weight of 0. The same plausibility check has to be done for the vertical pathway,
guaranteeing floor transitions only at stairs and elevators.

The algorithmic concept of the wall collision filter is illustrated in Figure 5.16. The concept
is tailored to the verification of room changes, however, the algorithm for the floor transition
operates similarly. In indoor environments, besides the 2D coordinates and heading, the
particle’s state comprises the index of the room and the corresponding floor. This information
enables a fast access to building relevant information within the wall collision filter. The floor
is determined within the Kalman filter (5.2.4), while the current room is determined with
the help of the location-based map mϕ,λ after the state transition within the particle filter
(section 5.2.5). Based on the propagated particle’s state xi

t and its predecessor state xi
t−1,

the goal of the wall collision filter is to derive an importance weight with regard to the taken
pathway. Thus, the room indices of the predicted state xi

t and its predecessor xi
t−1 are

compared:

#room(xi
t) == #room(xi

t−1). (5.33)
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If the rooms are identical, an importance weight of 1 is assigned to the predicted particle. In
case of different rooms indices, the validity of the pathway has to be verified. Therefore, the
connectivity of these rooms has to be proofed. Since the indices of the doors #doorm are given
in the room dataset, the accordance of the doors can be figured out:

#door(#room1) == #door(#room2). (5.34)

The next step checks whether the particle was propagated through the connecting door. Thus,
the edge coordinates of the door are looked-up in the door dataset. Based on the door-defining
line and the pathway, which is given by the particle’s coordinates of the current and the previ-
ous epoch, the validity of the particle’s propagation can be verified. If the motion corresponds
to the possible way through a door, the particle is considered within the state estimation,
otherwise an importance weight of 0 is assigned to the particle.

Figure 5.16: Algorithmic concept of the wall collision filter.

The plausibility verification for the floor change works similarly. Within this verification,
the floor of the predicted and the predecessor state and the room type are additionally
considered. Only if the particle’s motion denotes a change in the floor level, the index of
the room is checked concerning the possibility of a floor change. Red areas illustrated in
Figure 5.17 symbolize, where floor transitions are possible according to the defined room
type. The index must be in the intervals 1001 < #room < 1999 and 2001 < #room < 2999,
which represent stairs and elevators (compare section 5.2.1). Therefore, only particles, whose
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vertical propagation was done at stairs or within an elevator, are assigned with an importance
weight of 1.

Figure 5.17: Floor changes are only possible at red-colored grid cells.

Consequently, following importance weights are assigned due to the path verification within
the wall collision filter and the prior occupancy check:

ωpath
i
t =


0 . . . occupied grid

0 . . . unoccupied grid: invalid pathway

1 . . . unoccupied grid: valid pathway

(5.35)

The outcome of the wall collision filter, the importance weight ωpath
i
t, is considered for

the determination of a map-based importance weight ωmap
i
t, which is described in sec-

tion 5.2.5.

5.2.3 Activity-based environmental constraints

In general, motion recognition is used as multiple support within positioning. There are
various methods to improve the position estimation by motion related activities. An overview
about the different domains is given in Frank et al. (2010). In Bayesian location estimation
systems, the activity can be used for the selection of an appropriate movement model or to
restrict the possible state space in combination with a floor plan. In contrast, Radu and
Marina (2013) or Haibo et al. (2012) demonstrate the detection of floor changes based on the
monitored activity, while Ibarra-Bonilla et al. (2014) adapt the step length within the PDR
with regard to the current activity. Susi et al. (2013) show that an activity recognition is able
to determine, how the person is carrying the smartphone (hand-held in walking direction,
held in the swinging hand, etc.), which is necessary for the adaption of the PDR algorithm.
On the contrary, Ling et al. (2010) use the activities standing, walking, and walking fast
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as assistance for the fingerprinting-based WLAN positioning with a smartphone. Since the
smartphone used in Ling et al. (2010) updates the scanned WLAN information about every 8
to 10 seconds, the detected activity provides information for the interpolation of the motion
in between.

Within this thesis, the activity, which is provided by the PAC algorithm, is used in multiple
ways. As described in section 4.5, the employed PAC determines whether the person is
standing, walking, going upstairs, or going downstairs. Combining the PAC output with the
PDR data, changes in height can be derived if the step height is known, see section 4.5.1.
Furthermore, the activity is used to adapt the step length estimation within the PDR due to
the shorter step length at stairs. The third application is the retrieval of spatial constraints
based on the activity in combination with the map.

Since some of the classified activities can only be performed at a limited number of places, the
combined evaluation of the activity and the map delivers spatial constraints for the position
estimation within the particle filter. Considering the activities defined in section 4.5, the
activities going upstairs and going downstairs indicate that the pedestrian is located at the
building stairways. In contrast, walking can be performed in office rooms and at the corridors.
Based on the recall rates of the activity classification (see section 4.5), so-called PAC-based
importance weights ωPAC

i
t can be defined. If the recognized activity is walking, the probability

that the pedestrian is in one of the office rooms or at the corridor is assumed to be higher.
The magnitude of the probability is defined with respect to the recall rate of walking, which
is 99%. Since stairways cannot be excluded due to the remaining probability of 1%, the
following importance weight has been defined for walking :

ωPAC
i
t =

0.9 . . . office room, corridor,

0.1 . . . stairs.
(5.36)

As mentioned in section 4.5, the recognition of the activities going upstairs and going down-
stairs performs worse. The recall rate is about 95%. Consequently, the probability of being
at stairs has to be defined less strictly, leading to a probability of

ωPAC
i
t =

0.2 . . . office room, corridor,

0.8 . . . stairs.
(5.37)

The above defined probabilities are visualized in Figure 5.18. The left hand graph illustrates
the probabilities for the activities going upstairs and going downstairs, while the right hand
graph symbolizes the ωPAC

i
t for walking. As demonstrated, the pedestrian activity recognition

allows the derivation of spatial constraints.
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Figure 5.18: Defined probabilities with regard to the current activity. Left: probabilities for
going upstairs and going downstairs. Right: probabilities for walking.

5.2.4 Height estimation within the Kalman filter

As illustrated in Figure 5.10, the estimation of the state parameters is done in a RBPF with
the particle filter as core element determining the 2D coordinates, the heading and map-
essential parameters like the current floor and room, while the Kalman filter is responsible
for the height computation. Based on the height estimate, a floor detection is performed to
provide the correct floor plan for the particle filter. The outsourcing of the height estimation
is done due to the same reason as for the outdoor positioning. The reduction of the compu-
tational effort is even more important for the indoor positioning, since the wall collision filter
causes an additional computational load.

For the indoor positioning, it is investigated, whether a relative height ∆hPAC , which is based
on the PAC and PDR output as well as a standardized step height (see section 4.5.1), can
be used instead of the barometric relative height ∆hbaro in case that the smartphone has
no internal barometer. Indoors, the absolute height information is provided by the WLAN
fingerprinting and is a ellipsoidal height which is referred to WGS84. Inside buildings, a
reliable height estimation is of great importance if a map is incorporated in the filter process.
Therefore, ∆hPAC is investigated as alternative for ∆hbaro.

In case of the availability of hWLAN , ∆hbaro, and ∆hPAC , the observation vector zt and the
corresponding covariance Rt are represented by

zt =


hWLAN

∆hbaro

∆hPAC


t

, Rt =


σ2
hWLAN

0 0

0 σ2
∆hbaro

0

0 0 σ2
∆hPAC


t

. (5.38)

The covariance matrix Rt of the measurements contains the variances σ2
hWLAN

, σ2
∆hbaro

, and
σ2
∆hPAC

in the main diagonal, representing the uncertainties of the corresponding observations.
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Since the observations are assumed to be uncorrelated, the off-diagonal elements are zero.
However, within this thesis, ∆hbaro and ∆hPAC are not evaluated in combination. Either
hWLAN is combined with ∆hbaro or with ∆hPAC . The reason therefor is, that ∆hPAC is
treated as an alternative for ∆hbaro in case of the absence of a barometer. Consequently, the
conformity of ∆hbaro by ∆hPAC is the focus of research.

The state vector is the same as in the Kalman filter for the outdoor positioning, comprising
the ellipsoidal height h and the velocity component ḣ of the height, as given in equation (5.1).
Based on the defined observation vector zt and the state vector xt, the time and measurement
update are defined in the following.

Time update

Since the state vector is equivalent for the height estimation in outdoor and indoor environ-
ments, the time update x̃t = Φtx̂t−1 corresponds to the one defined in section 5.1.2, given
by equation (5.3). Also the system noise covariance matrix Qt is the same as presented
in equation (5.6), whose derivation is based on equation (5.5). However, as mentioned in
section 5.1.2, Qt has to be defined with respect to the uncertainty of the assumed dynamic
model and the incorporated measurements.

Measurement update

The measurement update is expanded by the PAC-based height component, while the GNSS
input is replaced by height information of the WLAN fingerprinting. The measurement model
for the WLAN input and therefore the design matrix HWLAN corresponds to the one of GNSS
given in equation (5.8), only the observation hGNSS has to be exchanged by hWLAN . The
measurement model for the barometer data is exactly the same as in equation (5.9), while
the measurement model for the incorporation of ∆hPAC is[

∆hPAC

]
t
=
[
0 ∆t

] [h
ḣ

]
t

= HPAC xt,

(5.39)

with HPAC representing the design matrix for the PAC data. Depending on the measurements
availability, either one or two types of observations are integrated in the height estimation.
If two observations are considered, the observation vector is either zt = [hWLAN ,∆hbaro]

T or
zt = [hWLAN ,∆hPAC ]

T . The appropriate measurement models and thus the design matrices
of these two different approaches are given by[

hWLAN

∆hbaro

]
t

=

[
HWLAN

Hbaro

][
h

ḣ

]
t

, (5.40)
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[
hWLAN

∆hPAC

]
t

=

[
HWLAN

HPAC

][
h

ḣ

]
t

, (5.41)

respectively, leading to the noiseless relation zt = Htxt between the observations zt and
xt. Because of a measurement frequency of 1 Hz, the time interval ∆t within the de-
sign matrices Hbaro and HPAC , given in equations (5.9) and (5.39), can be replaced by
a one.

By assuming that the measurement groups are uncorrelated, the covariance matrix Rt of
the observations corresponds to a matrix of dimension [2× 2] with the covariance of each
measurement group in the main diagonal. In case of the fusion of hWLAN and ∆hbaro, the
covariance matrix Rt is given by

Rt =

[
RWLAN 0

0 Rbaro

]
t

, (5.42)

while in case of the combination of hWLAN and ∆hPAC , Rt corresponds to

Rt =

[
RWLAN 0

0 RPAC

]
t

, (5.43)

with

RWLAN = σ2
hWLAN

, Rbaro = σ2
∆hbaro

, RPAC = σ2
∆hPAC

. (5.44)

The variance σ2
hWLAN

is derived within the WLAN-fingerprinting algorithm, σ2
∆hbaro

is fixed
with an empirical value of (0.7m)2 (see section 5.1.2), while the variance for ∆hPAC is assumed
to be σ2

∆hPAC
= (0.1m)2.

Based on the defined matrices for the time and measurement update, the Kalman filter iter-
atively estimates the state x̂t and the corresponding covariance Σt by applying the formulas
of the three Kalman filter steps, which are given by equation equation (3.15) to (3.19). De-
pending on the availability of the observations, the design matrix Ht and the covariance
matrix Rt of the observations have to be adapted.

Floor detection

Based on the estimated height, the current floor is determined. The floor level is only
modified, if the pedestrian is located at regions, where floor transitions are possible (com-
pare section 5.2.2) and if an upward or downward motion is observed within the PAC.
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5.2.5 2D position estimation within the particle filter

While in outdoor environments the derived probability map supports the particle filter in
its positioning task, in indoor environments building layouts, a wall collision filter, and the
recognized activity provide spatial constraints for the estimation of the 2D coordinates ϕ

and λ. Similar to the outdoor approach, the PDR data is used for the propagation of the
particles. The WLAN data, the building layout, the wall-collision filter, and the activity are
integrated in the measurement update to derive a combined importance weight ωi

t for the
resampling. Based on the particle filter framework described in section 3.2.2, in the following,
details on the particle filter initialization, the propagation of the particles, the computation
of the importance weights, and the resampling are given.

Initialization of the particle filter

For an easy and fast verification of the particle’s location with respect to the map, besides
the position and orientation, the state xi

t comprises the floor and the room indices, leading
to a state vector of following structure xi

t = [ϕ, λ, θ,#floor,#room]T . For the initialization
of the coordinates ϕ and λ, and the heading θ, the same possibilities exist as described in
section 5.1.3. The only difference is that for the initialization of the coordinates ϕ and λ

the floor has to be known to apply the spatial constraints of the correct floor plan. By
incorporating the map already in the initialization process, the particles will be distributed
on the floor with regard to the environmental structures. For the initialization of the floor
index, either the floor is defined, or the first estimated height of the Kalman filter is used to
determine the initial floor level. A floor level definition makes sense if the pedestrian enters the
building from outdoors. Therefore, the building entrances and the corresponding doors have
to be mapped, similar to the doors inside of the building, within feature maps containing the
edge coordinates of the doors and the corresponding floor index #floor.

After the initialization of the particles, which is done randomly with respect to the defined
distribution, the room index #room of each particle has to be identified. Based on the
georeferenced occupancy grid map mϕ,λ, #room can be figured out if the floor and the
position is known.

The number of particles Ns can be arbitrarily chosen within the positioning tool correspond-
ing to the quality of the input data, the real-time capability, and the accuracy, which is
demanded for a certain application. Based on several test data sets, a number Ns of about
1000 turned out to be the best for the processing in indoor environments. Investigations con-
cerning the best suitable Ns with respect to processing effort, accuracy, and system stability
are given in section 6.3.

109



5 Filter design for the positioning of visually impaired people

Particle propagation

Equal to the outdoor processing, the propagation of the particles is done by sampling from the
transition probability p(xt|xt−1,ut), with ut representing the control data which corresponds
to the PDR parameters v and ∆θ. The particles are propagated according to the equations
(5.17) to (5.21) of the outdoor particle filter but under consideration of the current floor.
After the propagation of the particle set χt, the room, in which the particle is located, has
to be determined. The propagation provides the prior belief bel(xt).

Computation of the importance weight

The importance weight ωi
t for the resampling is influenced by the WLAN fingerprinting

output and the map-based information. Both data sources provide uncorrelated importance
weights, which are combined according to

ωi
t =

〈
ωWLAN

i
t, ωmap

i
t

〉
, (5.45)

with ωWLAN
i
t being the normalized WLAN-based importance weight, while ωmap

i
t is the nor-

malized map-based importance weight. The distribution of the particles within the build-
ing in combination with the importance weights ωi

t represents the posterior belief of the
state

bel(xt) = p(xt|zWLANt,mϕ,λ) = p(xt|zWLANt)p(xt|mϕ,λ), (5.46)

which is conditioned on the WLAN observation zWLANt and the map mϕ,λ.

For the evaluation of the measurement probability p(zWLANt|xt), which is necessary to fi-
nally get p(xt|zWLANt) (compare equation (3.6)), it is assumed that the WLAN observations
zWLANt = [ϕ, λ]TWLAN follow a normal distribution corresponding to zWLANt ∼ N (Htx

i
t,ΣWLANt)

with mean Htx
i
t and covariance ΣWLANt. The evaluation of

ωWLAN
i
t = p(zWLANt|xi

t)

= det(2πΣWLANt)
− 1

2 exp

(
−1

2
(zWLANt −Htx

i
t)
TΣWLAN

−1
t (zWLANt −Htx

i
t)

)
.

(5.47)

delivers the WLAN-based importance weights ωWLAN
i
t with regard to zWLANt and the corre-

sponding covariance

ΣWLAN =

[
σ2
ϕWLAN

0

0 σ2
λWLAN

]
. (5.48)
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The importance weight ωWLAN
i
t represents therefore the likelihood of the current WLAN

positions based on the spatial distributed particles. The design matrix Ht is needed to
relate the WLAN observation zWLANt to the set of particles xi

t representing the unknown
state xt, which is realized by zWLANt = Htxt. The design matrix Ht for the incorporation
of the WLAN observations has following structure

Ht =

[
1 0

0 1

]
, (5.49)

if xt = [ϕ, λ].

The map-based importance weight ωmap
i
t is a combination of the probabilities which are de-

rived after the propagation of the particles with respect to following questions:

– Is the particle in an occupied or unoccupied grid cell?
– Did the particle take a valid pathway?
– Can the current activity be performed at the particle’s location?

The probabilities with respect to the questions listed above are determined either by incor-
porating the occupancy grid map (section 5.2.1), by verifying the pathway within the wall
collision filter (section 5.2.2), or by deriving activity based environmental constraints (sec-
tion 5.2.3). The verification of the grid’s occupancy and the pathway delivers a path-based
weight ωpath

i
t, while the weight with regard to the activity is given by ωPAC

i
t. The combined

map-based importance weight ωmap
i
t is computed by

ωmap
i
t =

〈
ωpath

i
t, ωPAC

i
t

〉
. (5.50)

By combining all sources of input data, the equal weights of the particle set χt =
〈
xi
t, ω

i
t

〉
can be replaced by the importance weights ωi

t =
〈
ωWLAN

i
t, ωmap

i
t

〉
representing the probability

conditioned on the observations and the map. The posterior probability p(xt|zt,mϕ,λ) is then
given by equation (5.30).

Based on the posterior probability p(xt|zt,mϕ,λ), the trajectory of the pedestrian is de-
termined. In section 6.1, five different approaches are discussed as representation for the
estimated trajectory, while in section 6.3 the optimal method is identified based on actual
measurements.

Resampling

As described in section 5.1.3, the new states of the Ns particles are created by randomly
sampling the propagated states in proportion to ωi

t according to the systematic resampling
method. After the resampling, all Ns particles get the same weight ωi

t = 1/Ns.
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Before analyzing the filter outcome, performance measures for the state estimate and the
uncertainty in that estimate are defined in section 6.1. Based on these performance measures,
the quality of the estimation is evaluated in terms of position discrepancies and error ellipses.
The corresponding investigations for the outdoor as well as for the indoor environment are
presented in section 6.2 and 6.3.

6.1 Performance measures

For the investigation of the estimation results, performance measures have to be defined.
There are two different classes of performance measures. One class assumes the availability of
a ground truth. The other class of performance measures is based on the estimated covariance
matrix. For both classes of performance measures, the state estimate has to be identified.
Since within the particle filter, the state estimate is given by particles, investigations regarding
a suitable parameter representing the state have been performed. Parameters based on the
following methods are analyzed:

– Identification of the particle with the highest importance weight ωi
t.

– Computation of the sample mean.
– Computation of the weighted arithmetic mean.
– Finding a state representative based on k-means clustering.

Based on a suitable state representation, discrepancies between the estimated state and
defined reference points can be computed. If no ground truth is available, the covariance is
the basis for a quality statement. Therefore, an appropriate technique for the determination
of the covariance has to be found, see section 6.1.2.

6.1.1 Representation of the state estimate

Within this section, several possibilities for the representation of the state estimate are an-
alyzed and compared. The basis for the definition of potential representatives is the set of
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weighted particles χt =
〈
xi
t, ω

i
t

〉
resulting from the measurement update, which is equal to

the PDF defined in equation (5.30). This kind of representation is equal to the particle set
after the resampling having the same weights ωi

t, which is given by equation (5.31). However,
the representation of the estimation by the set of weighted particles comes along with more
possibilities for the representation of the state estimate as the spatial distribution of the
particles and the importance weights can be treated separately.

Particle with highest probability: The simplest solution for the determination of the posi-
tion estimate x̂t is to take the particle xi

t with the highest probability

x̂t = argmax
xi
t

p(xt|zt). (6.1)

As the particles representing the previous belief bel(xt) in equation (3.58) have equal weights
ωi
t and ηt is only a normalization factor, equation (6.1) can be simplified to

x̂t = argmax
xi
t

ωi
t, (6.2)

which means, that x̂t corresponds to the particle xi
t providing the highest weight ωi

t.

Outdoors, the state with the highest probability is a particle which is closest to the GNSS
solution zGNSSt and, corresponding to the user-tailored probability map, highly probable.
Within buildings, only particles, whose propagation from the previous to the current epoch
is valid according to the wall collision filter, are considered for the position estimate. Then,
x̂t corresponds to the particle which is closest to the WLAN-fingerprinting solution in an
unoccupied area, which is highly weighted due to the current activity.

The problem of taking the highest weighted particle as best estimate is, that if all particles
have the same weight with respect to the map, the wall collision filter, and the current
activity, the result is the particle closest to the absolute position solution provided by GNSS
or WLAN. Consequently, the best estimate does not consider the collectivity of particles and
strongly depends on the GNSS and WLAN position accuracy.

Sample mean: The sample mean of a set of particles χt =
〈
xi
t, ω

i
t

〉
is given by the arithmetic

mean of the Ns samples
〈
xi
t

〉
x̂t =

1

Ns

Ns∑
i=1

xi
t. (6.3)

The sample mean considers only the distribution of the particles uncoupled from the impor-
tance weights ωi

t and is therefore strongly influenced by the incorporated dynamic model and
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the transition data ut. The measurement update at time t has consequently no direct impact
on the best estimate x̂t at the current epoch t. Only x̂t+1 of the consecutive epoch benefits
from ωi

t through the particle resampling.

Weighted arithmetic mean: The weighted arithmetic mean considers the spatial distribu-
tion of the particles, which is given by xi

t, and the importance weights of the current epoch.
The weighted arithmetic mean of χi

t =
〈
xi
t, ω

i
t

〉
is given by

x̂t =
1∑Ns

i=1 ω
i
t

Ns∑
i=1

ωi
t x

i
t. (6.4)

By incorporating both, the samples xi
t and the appropriate importance weights ωi

t, all kinds of
input data are taken into account. Consequently, the weighted arithmetic mean is a more suit-
able representation of the location estimate compared to the sample mean.

k-means algorithm: The k-means algorithm is also known as k-means clustering. As stated
in Hartigan (1975), the k-means algorithm partitions the set of Ns samples

〈
xi
t

〉
into a

predefined number of groups/clusters, whereby the amount k of clusters has to be smaller
than Ns (Figueiras and Frattasi, 2010). Each element of

〈
xi
t

〉
is assigned to the cluster, for

which the Euclidean distance is a minimum:

xi
t ∈ Cj = argmin

Cj

∥∥xi
t − µj

∥∥ , (6.5)

where µj is the mean value of the cluster Cj . The assignment of the samples to the clusters
is done in an iterative fashion, where in a first step the center of the clusters are initialized
randomly. Then, all samples are assigned to a cluster based on the Euclidean distance to the
cluster centers. Then, the initialized center coordinates of the clusters are replaced by the
mean values of the clusters

µ
(l)
j =

1

N
C

(l)
j

∑
xi
t∈C

(l)
j

xi
t, (6.6)

whereby N
C

(l)
j

represents the number of samples in the cluster C(l)
j at iteration l. After that,

the updated mean values µ(l)
j act as basis for a reassignment of the samples:

xi
t ∈ C

(l)
j = argmin

C
(l)
j

∥∥∥xi
t − µ

(l)
j

∥∥∥ . (6.7)

Equation (6.6) and (6.7) are repeated until the assignment of particles converges, which
means, once the assignment of samples does not change in two consecutive steps, the al-
gorithm terminates (Figueiras and Frattasi, 2010). After having executed the clustering,
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there are two different possibilities to estimate the pedestrian’s current location based on the
k-means algorithm. One possibility is to take the mean value of the cluster with the highest
concentration of particles, which is defined by

x̂t = argmax
µj

NCj , (6.8)

with NCj being the number of particles within the cluster Cj . The second method is based
on the cluster with highest accumulated weight. The location estimate is therefore given
by

x̂t = argmax
µj

∑
xi
t∈Cj

ωi
t, (6.9)

which takes the mean value of the cluster with highest accumulated weight. The sum of the
importance weights ωi

t of all particles belonging to the cluster Cj is consequently the decisive
factor for choosing x̂t.

Comparison of the different representations for the position estimation: In general, the
choice, which method is most suitable for representing the state estimate, depends on the
application. The dynamic and the measurement model, the involved sensor data and un-
certainties, as well as the present environmental structures are all factors which have an
impact on the goodness of fitting the true location. Therefore, two different scenarios, which
represent diverse state transition probabilities, are investigated.

Figure 6.1 shows three realizations of a particle filter scenario in an indoor environment, in
which WLAN delivers different 3D coordinates. The visualized particles are drawn after the
prediction and are already corrected with respect to the building structures. After the prop-
agation, each of the particles has the same weight. The importance weights ωi

t are updated
with according to the WLAN measurements. As in this scenario the building structures are
already considered in the propagation, ωi

t is only influenced by the WLAN solution. As a
consequence, the resulting distribution is unimodal.

In Figure 6.1a, the clustering of the particles is exemplary shown for the first realization,
whereby k = 7 is chosen for the amount of clusters within the k-means algorithm. The
five different state representatives for the three realizations are illustrated in Figure 6.1b
to Figure 6.1d. The particle with the highest importance weight is plotted in dark green,
the sample mean in blue, and the weighted mean in red. The center of the cluster with the
highest accumulated weight is drawn in yellow, while the center of the cluster with the highest
particle concentration is light green. The distribution of the particles is the same in all three
realizations, whereas the WLAN position varies in each of the figures and is displayed as
black circle with a white filling.
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The three different realizations in Figure 6.1 demonstrate that the suitability of the ap-
proaches strongly depends on the present scenario. If the particles’ spatial distribution after
the prediction coincides with the measurement likelihood (Figure 6.1d), which means that
the WLAN measurement is located approximately at the center of the particles, the particle
with the highest weight and the weighted mean are most qualified for the representation of
the state xt. In contrast, in Figure 6.1b and 6.1c, where the PDFs of the dynamic and the
measurement model are not conform, the WLAN measurement differs from the mean of the
spatially distributed particles. Consequently, the choice of the state representation depends
on the accuracies of the models.

(a) Clustering of the samples for realization 1. (b) Unimodal distribution - realization 1.

(c) Unimodal distribution - realization 2. (d) Unimodal distribution - realization 3.

Figure 6.1: Comparison of the diverse state representations based on three different WLAN
measurements, which are visualized in (b) to (d). The clustering of the samples
is exemplarily shown for realization 1 in (a).
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In all of the three realizations, the sample mean is the same, as it does not consider the current
importance weights. Therefore, the sample mean is not qualified as state representative. None
of the other approaches can be excluded, since the actual position is not defined. The three
different realizations only demonstrate the principle concept of the diverse methods. As a
consequence, the suitability of the particle with the highest weight, the arithmetic mean, and
the two different k-means clustering methods as state representative are investigated with
real measurement data in section 6.2 and 6.3.

Figure 6.2 shows another scenario based on a multimodal distribution. In statistics, a multi-
modal distribution corresponds to a probability distribution with two or more maxima (Ross,
2000). After the propagation of the particles, the particles are split into two separated areas
exhibiting a multimodal distribution. Figure 6.2b illustrates a case, where the WLAN posi-
tion solution coincides with one of the particle areas. In contrast, in Figure 6.2d the WLAN
position solution lies in between the two separated particle areas. Now, the representatives
suitability depends on the uncertainty of both involved models. Again, the sample mean

(a) Clustering of the samples for realization 1. (b) Multimodal distribution - realization 1.

(c) Clustering of the samples for realization 2. (d) Multimodal distribution - realization 2.

Figure 6.2: Comparison of the different representations for the position estimation in case of
a multimodal distribution.
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can be excluded, but, as Figure 6.2 demonstrates, in case of multimodal distributions, the
k-means clustering methods have to be favored over the arithmetic mean and the highest
weighted particle if the measurement does not provide information about which of the two
areas is the right one.

6.1.2 Representation of the estimate uncertainty

If a ground truth of the trajectory is given, position discrepancies between the estimated state
x̂t and the true position of the user can be determined. If no reference trajectory is available,
the covariance Σx̂t of the state x̂t is the basis for analyzing the filter performance. While the
position discrepancies indicate the absolute deviation of the estimated trajectory to a ground
truth, the covariance only gives information about the precision of the state estimation based
on the measurement uncertainties and the involved models.

Position residuals: As no reference system delivers the ground truth of the trajectory,
reference points have been defined within the test environment. The coordinates of these
reference points are known and therefore allow the determination of the differences between
the estimated and the reference trajectory if the pedestrian passes one of the reference points.
These differences are called position residuals within the thesis. For a fast identification of
the reference points along the trajectory, e.g., indoors, markers were placed on the floor.
Every time, the pedestrian crosses one of the markers, the ID of the reference point and
the corresponding passing time are recorded. This is realized by a smartphone application
which synchronizes the recorded time with the UTC time and exports the time stamps into
a text file. This smartphone application is operated on a second smartphone by an observer
recording the crossing of the markers.

The reference points are given by a set of horizontal geographic coordinates, which are defined

by xk
ref =

[
ϕk
ref , λ

k
ref

]T
. Based on the reference points xk

ref and the corresponding passing

times tref , the horizontal position residuals between the states x̂(tref ) =
[
ϕ̂(tref ), λ̂(tref )

]T
at tref and the reference points xk

ref can be computed by

∆xkhoriz(tref ) =
√
∆xkn(tref )

2 +∆xke(tref )
2, (6.10)

with

∆xkn(tref ) =
∣∣∣(ϕ̂(tref )− ϕk

ref (tref )
)
R
∣∣∣

∆xke(tref ) =
∣∣∣(λ̂(tref )− λk

ref (tref )
)
R cosϕ0

∣∣∣ ,
where ∆xkn(tref ) and ∆xke(tref ) represent the position residuals in north and east direction,
R is the radius of the Earth and ϕ0 the mean latitude of the test ground. However, x̂(t) is
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provided with an update rate of 1 Hz and has to be related to the time stamps tref . Therefore,
an interpolation of the estimated states x̂(t) with respect to tref is required to get ϕ̂(tref ) and
λ̂(tref ). For the interpolation, the pedestrian’s motion is assumed to be constant between
two consecutive epochs.

Since the triggering of the time stamps is not done automatically, a bias can be observed in
the passing times. The magnitude of the bias is strongly influenced by the reaction of the ob-
server. Furthermore, the fact that the smartphone is carried handheld by the pedestrian, but
the markers are placed on the floor, impedes a precise triggering of the time stamp. As most
of the temporal bias is expected in the along track component leading to position residuals
with a higher magnitude in the direction of the path, the position residuals are differen-
tiated into along track and across track components, ∆xkalong and ∆xkacross. ∆xkalong(tref )

and ∆xkacross(tref ) can be determined through a rotation of ∆xkn(tref ) and ∆xke(tref ) by the
angle between the abscissa of the coordinate system and the along track direction of the
reference path. Consequently, the text file containing the reference point IDs and the cor-
responding time stamps tref has to be expanded by a reference heading θref . ∆xkalong(tref )

and ∆xkacross(tref ) can then be computed by the following rotation[
∆xkalong(tref )

∆xkacross(tref )

]
=

[
cos θref sin θref

− sin θref cos θref

][
∆xkn(tref )

∆xke(tref )

]
. (6.11)

Based on ∆xkalong(tref ) and ∆xkacross(tref ), the filter performance can be investigated in terms
of along and across track errors.

Sample covariance: The covariance Σx̂t of the estimated state x̂t represents the estimate
uncertainty, which is caused by the sensor- and model-related errors. Only the input data
of the filter (see Figure 4.1 as well as section 5.1.3 and 5.2.5) influence Σx̂t . Therefore, the
covariance allows no interpretation about the absolute accuracy of the state estimation with
respect to a ground truth. In general, the computation of the sample covariance is based
on samples representing the probability density distribution of the estimate. In case of the
particle filter estimation, the samples correspond to the particles.

Based on the estimated state x̂t and the particles xi
t, the sample covariance of the state x̂t

can be determined by

Σx̂t =
1

Ns − 1

Ns∑
i=1

(xi
t − x̂t)(x

i
t − x̂t)

T , (6.12)

with Ns representing the number of particles (Bronstein and Semendjajew, 1981; Ross, 2000).
Since the covariance is computed before the resampling of the particles, the measurement
probability p(xt|zt−1,m) has no influence on Σx̂t . Σx̂t is therefore based on the previous
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belief bel(xt) incorporating the state transition probability p(xt|xt−1,ut) and the posterior
belief bel(xt−1) of the epoch t− 1.

Sample covariance based on weighted samples: Besides the spatial distribution of the
particles, this method also considers the importance weights ωi

t. The sample covariance based
on weighted samples represents the covariance of the posterior belief bel(xt). Therefore, the
state transition probability p(xt|xt−1,ut), the measurement probability p(xt|zt−1,m), and
the posterior belief bel(xt−1) influence the covariance estimation. The sample covariance
incorporating the importance weights ωi

t is defined by

Σx̂t =

∑Ns
i=1 ω

i
t(∑Ns

i=1 ω
i
t

)2
−
∑Ns

i=1 ω
i
t
2

Ns∑
i=1

ωi
t(x

i
t − x̂t)(x

i
t − x̂t)

T , (6.13)

whereby the Pearson weighted correlation matrix defined in Pozzi et al. (2012) is the basis
of the sample covariance matrix in equation (6.13). Since the sample covariance based on
weighted samples takes the prediction as well as the measurement model into account, this
covariance representation is more suitable than the sample covariance.

Error Ellipse: Based on the covariance matrix Σx̂t , the error ellipse at each epoch t can be
computed. However, by representing the estimate uncertainty by an error ellipse, a normal
distribution is assumed and therefore, the error ellipse represents a Gaussian approximation
of the actual particle distribution. The size of an error ellipse is given by its semi-major axis
a and semi-minor axis b, while α corresponds to the orientation of the ellipse with regard to
the defined coordinate system. Details on the derivation of the parameters of the error ellipse
can be found in Haug (2012). The semi-major and semi-minor axis a and b of the ellipse are
defined by

a =

√
Σx̂t (1,1) +Σx̂t (2,2) + k

2
, (6.14)

b =

√
Σx̂t (1,1) +Σx̂t (2,2) − k

2
, (6.15)

with

k =
√
(Σx̂t (1,1) − Σx̂t (2,2))

2 + 4Σx̂t (1,2)
2. (6.16)

In equation (6.14), (6.15), and (6.16), Σx̂t (1,1), Σx̂t (2,2), and Σx̂t (1,2) are the elements of the
covariance matrix Σx̂t of the estimated state x̂t:

Σx̂t =

[
Σx̂t (1,1) Σx̂t (1,2)

Σx̂t (2,1) Σx̂t (2,2)

]
. (6.17)
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The orientation of the error ellipse related to the defined coordinate system is given by

α =
1

2
arctan

2Σx̂t (1,2)

Σx̂t (1,1) − Σx̂t (2,2)

, (6.18)

with α being the angle between the abscissa of the coordinate system and the semi-major
axis a of the error ellipse.

Referred to Hofmann-Wellenhof et al. (2003) and Hoepcke (1980), the probability, that the
state xt is located within the area covered by the error ellipse, is 39% if a normal distribution
is assumed. As the error ellipse is based on a particle set χi

t =
〈
xi
t, ω

i
t

〉
which does not

correspond to a Gaussian distribution, it cannot be expected that the error ellipse covers
39% of the corresponding PDF. However, the error ellipse enables a visual interpretation of
the size and orientation of the uncertainty of the state estimation.

6.2 Performance in outdoor environments

In the following, the performance of the outdoor positioning is analyzed. Since the Kalman
filter for the height estimation is similar outdoors and indoors, the results are only given
for the indoor environment in section 6.3.1. Indoors, the height estimation is responsible for
providing the correct floor map and is therefore more important than outdoors. Thus, the
main focus of the investigations is set on the particle filter performance and is reflected by
the sub-categorization of this section:

– Performance investigations regarding the number of particles.
– Investigation regarding the state estimate representation.
– Performance gain due to the user-tailored probability map.
– Positioning performance of one selected trajectory.

In section 6.2.1, investigations concerning the optimal number of particles Ns with respect to
the required computation time and the resulting position residuals are presented. Since the
particle filter estimation delivers a weighted set of particles, in section 6.2.2, the estimated
state has to be identified. Therefore, the various possibilities for the state representation
defined in section 6.1 are evaluated especially for the application of the outdoor RBPF. In
the consecutive investigations, the identified parameter represents the estimated trajectory
for the computation of the position residuals. In section 6.2.3, the performance gain due to
the integration of the user-tailored probability map is demonstrated. Finally, in section 6.2.4
one measurement data set is chosen to exemplarily show one estimated trajectory and the
corresponding evaluation results. The last section 6.2.5 treats the handling of unexpected
walking behavior.
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For the different investigations, the raw sensor data of several walked trajectories have been
recorded and evaluated in a post-processing mode. The post-processing enables a statistical
evaluation of the achieved position accuracy. Figure 6.3 shows besides the reference trajec-
tory, along which the pedestrian walked within the test environment, the defined reference
points representing the ground truth. The trajectory follows hereby the reference points with
increasing numbers. For the investigations within the thesis, different trajectories have been
analyzed to investigate the GNSS availability in the whole test environment. However, for
the performance investigations presented in this document, the same trajectory was walked
four times at different times of the day. Thus, a changing GNSS constellation is given for
the evaluations. By processing four different walks based on different observation data, the
reproducibility of the results can be investigated. Furthermore, statistics over different walks
can be provided. The trajectory includes areas with low to high GNSS signal obstructions.
The duration of each of the walks is about 13minutes.

Figure 6.3: Walked trajectory within the test environment at the campus of TU Graz.

In general, the processing is done as described in section 5.1. However, within this section,
besides the user-tailored probability map, also constraints derived from a common outdoor
map are integrated within the particle filter to investigate the performance gain due to the
user-tailored probability map.

6.2.1 Performance investigations regarding the number of particles

In Figure 6.4, the mean computation times and the mean horizontal position residuals µ∆xhoriz

are shown for two different walks. Each of the two walks is evaluated ten times with a vary-
ing number of particles Ns = {50, 100, 200, 500, 1000, 1500, 2000, 4000}. The particle filter
processing is again repeated ten times, as the outcome of the particle filter is not reproducible
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due to the random initialization of the particles. The illustrated computation times and the
residuals represent the mean of the ten evaluations for different Ns. In Figure 6.4, the resid-
uals illustrated in the bottom row correspond to the horizontal position residuals defined in
equation (6.10). The mean computation times given in the top row of Figure 6.4 are normal-
ized to a trajectory length of 1000 s to make the results comparable.

(a) Walk 1. (b) Walk 2.

Figure 6.4: The mean computation times and the mean horizontal position residuals vs. Ns

for two different walks.

Figure 6.4 shows that the mean computation times are very similar for both walks. In
both cases, the computation times are exponentially increasing with the growth of Ns. In
Table 6.1, the mean computation times for the evaluation of 1000 epochs are also listed as
numerical values together with the corresponding standard deviations σt. The little standard
deviations indicate the similarity of the ten PF evaluations, while the mean computation
times demonstrate that the processing can be done in real-time. The processing with 500
particles already comes along with position residuals which are comparable to the results
with larger Ns and requires as little as 11.87 s and 11.78 s. Even if 1000 particles are chosen,
the computation time for a walk of 1000 s is less than 29 s, which means that the processing
of one epoch needs only 0.03 s.

As Figure 6.4 demonstrates, the mean values for µ∆xhoriz
are strongly decreasing with an

increasing Ns from Ns = 50 to Ns = 500. After Ns = 500, no significant improvement
can be observed. The mean of the horizontal position residuals converges to about 2.04 m
and 2.64 m. In Table 6.2, the numerical values for µ∆xhoriz

and the corresponding standard
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Table 6.1: Mean computation times and the corresponding standard deviations for two dif-
ferent walks with a length of 1000 s with varying Ns.

walk 1 walk 2
Ns time [s] σt [s] time [s] σt [s]

50 1.57 0.04 1.59 0.03
100 2.60 0.06 2.62 0.09
200 4.63 0.03 4.76 0.22
500 11.87 0.14 11.78 0.14

1000 28.35 0.10 27.92 0.08
1500 49.83 0.17 48.88 0.13
2000 76.97 0.30 75.40 0.13
4000 235.45 1.27 229.41 0.44

deviations σ∆xhoriz
are given for different Ns. For reasons of comparability, the last row of

Table 6.2 shows µ∆xhoriz
and σ∆xhoriz

for the GNSS solution.

Figure 6.4 and Table 6.2 show that the increase of Ns from 100 to 500 particles comes
along with a strong improvement of the position accuracy. Walk 1 already provides position
residuals of 2.07m with Ns = 200, which means that the doubling of Ns from 100 to 200
improves the mean horizontal position residual by about 60%. In case of walk 2, the gain
from 100 to 200 particles leads to an improvement of only 22%. The reason therefor is the
worse GNSS performance. However, the evaluation with 500 particles reduces the residuals
significantly, providing an improvement of more than 70% compared to the scenario with

Table 6.2: Mean horizontal position residuals and the corresponding standard deviations for
two different walks with varying Ns.

walk 1 walk 2
Ns µ∆xhoriz

[m] σ∆xhoriz
[m] µ∆xhoriz

[m] σ∆xhoriz
[m]

50 6.09 8.08 13.21 16.34
100 5.27 8.46 9.34 11.54
200 2.07 0.17 7.29 12.84
500 2.05 0.08 2.70 0.25

1000 2.06 0.09 2.84 0.31
1500 2.06 0.05 2.84 0.43
2000 2.04 0.08 2.64 0.26
4000 2.04 0.07 2.64 0.37

GNSS 6.80 3.79 9.23 4.91
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Ns = 100. A further increase of Ns provides only very little or no quality improvements.
Consequently, for the position estimation in outdoor environments a number of Ns = 500 is
recommended.

6.2.2 Investigation regarding the state estimate representation

Within the particle filter, the state estimation is represented by a particle set χt =
〈
xi
t

〉
.

The spatial distribution of the particles corresponds to the PDF of the estimated state. For
the computation of position residuals and the visualization of error ellipses, a suitable state
representative for the PF estimation has to be identified. Within this section, four different
quantities are investigated with regard to the application of the RBPF in outdoor envi-
ronments. As mentioned in section 6.1, the highest weighted particle, the weighted mean,
and two different realizations of the k-means clustering (the mean of the cluster with the
highest accumulated weight and the mean of the cluster with the highest particle concen-
tration) are hereby analyzed in detail. The PF processing for this investigation is done
with 2000 particles, as the focus is set on the identification of the best state representative
and therefore, incalculable effects due to a too small Ns want to be avoided. As Table 6.2
shows, from a number of 2000 particles best results in terms of position residuals can be
assumed.

For the identification of the optimal state representative, the position residuals are determined
for each of the four different realizations. For this purpose, all walks are evaluated ten times,
delivering representative mean values for the horizontal, along track, and across track position
residuals. In Figure 6.5, the mean values of the horizontal position residuals averaged over
ten evaluations are visualized for each reference point. For reasons of comparability, besides
the different realizations of the state estimate, the GNSS residuals are visualized. While the
GNSS position solutions of walk 1 show horizontal position residuals with magnitudes which
are less than 14 m throughout the whole walk, the GNSS trajectories of walk 2, 3, and 4 have
residuals higher than 20 m in the middle of the walks. In contrast, those three walks perform
better than walk 1 in the first ten reference points.

For all of the four walks, an improvement due to the filtering can be observed. The hori-
zontal position residuals ∆xhoriz for the weighted mean, the center of the cluster with the
highest accumulated weight, and the center of the cluster with most of the particles lead to
comparable results. However, in most cases the weighted mean provides the residuals with
lowest amplitudes. Furthermore, it can be observed, that in general a bad GNSS solution
affects the result some epochs later.

The particle with the highest weight exhibits a behavior which strongly differs from the other
three realizations, since it is most affected by the GNSS solution. If the propagated particles
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(a) Walk 1. (b) Walk 1 - GNSS residuals.

(c) Walk 2. (d) Walk 2 - GNSS residuals.

(e) Walk 3. (f) Walk 3 - GNSS residuals.

(g) Walk 4. (h) Walk 4 - GNSS residuals.

Figure 6.5: Error in the horizontal position resulting from four processing strategies applied
to four different walks.
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are close to the GNSS solution, the particle with the highest weight corresponds to the GNSS
position in an area which is highly probable due to ωmap

i
t. This means, that in case of a bad

GNSS position, the state estimate represented by the particle with the highest weighted is
influenced most if the probability map does not constrain the solution.

Figure 6.6a shows the mean horizontal position residuals over all walks, while Figure 6.6b
and 6.6c illustrate the corresponding mean values in along and across track direction. The
mean values in Figure 6.6a indicate that the weighted mean provides residuals with the lowest
amplitudes. The separation into along and across track components demonstrates, that in
three of four cases the particle with the highest weight has the lowest along track residuals
(Figure 6.6b), while the weighted mean works best for the across track direction (Figure 6.6c).
The comparison of the different clustering methods reveals that the trajectories based on the
cluster with the highest accumulated weight fits the ground truth better. Anyway, both clus-
tering approaches provide residuals of higher amplitudes than the weighted-mean, although
the time series of the residuals show comparable characteristics.

(a) Mean horizontal error.

(b) Mean along track error. (c) Mean across track error.

Figure 6.6: Mean error resulting from four processing strategies applied to four different
walks.

Finally, the weighted mean is chosen as representative parameter for the estimated trajectory
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due to following reasons:

– The along track residuals are more affected by an incorrect time stamp recording, since
the reference points are passed in the along track direction of the path.

– Low residuals in the across track component guarantee a positioning at the correct
pavement, which is very important for a reliable obstacle warning and an effective nav-
igation. The along track position accuracy mostly influences the timely announcement
of guidance instructions. The maximum difference in the averaged along track position
residuals can be observed for walk 4 and is about 70 cm (minimum is 3.00 m, maximum
is 3.69 cm). Anyway, the guidance instructions have to be given in advance, and a
difference of about 70 cm only induces a delay of about 0.6 s if the pedestrian walks
with a speed of about 4 km/h.

6.2.3 Performance gain due to the user-tailored probability map

Within this section, the performance gain due to the integration of the user-tailored probabil-
ity map is analyzed. Therefore, the particle filter is processed ten times with the user-tailored
probability map, and another ten times, with a common outdoor map which represents the
presence of buildings and obstacles. The estimated trajectory is represented by the weighted
mean of the particle set χt =

〈
xi
t, ω

i
t

〉
, whereby Ns is chosen to be 2000.

In Figure 6.7, for each of the four different walks, the mean horizontal position residuals aver-
aged over the ten evaluations (left hand side) and the standard deviations (right hand side),
which represent the variability of the ten evaluations, are shown. Besides the residuals of the
two different PF evaluations (user-tailored map vs. common map), the GNSS residuals are
visualized to demonstrate the improvement due to the PF processing.

Figure 6.7a, 6.7c, 6.7e, and 6.7g show that the integration of the user-tailored probability
map significantly improves the position estimation. Although the position residuals are not
always the smallest over the whole trajectory in case of applying the PF integrating the
user-tailored map, the mean of the residuals of all points are the lowest in each of the four
walks, see Figure 6.8. It can be observed that walk 2, 3, and 4, visualized in Figure 6.7c,
6.7e, and 6.7g, have large position residuals between reference point 29 and 36. As illustrated
in Figure 6.3, the reference points 29 to 36 are located along the longest straight path of the
walked trajectory. As the position cannot be constrained in the along track component while
the pedestrian is walking along a straight pavement, the position residuals are increasing with
the length of the walk. The standard deviations visualized in Figure 6.7b, 6.7d, 6.7f, and 6.7h
also show a higher spreading between the reference points 29 and 36.
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(a) Horizontal position residuals - walk 1. (b) Standard deviations - walk 1.

(c) Horizontal position residuals - walk 2. (d) Standard deviations - walk 2.

(e) Horizontal position residuals - walk 3. (f) Standard deviations - walk 3.

(g) Horizontal position residuals - walk 4. (h) Standard deviations - walk 4.

Figure 6.7: Horizontal position residuals ∆xhoriz averaged over ten evaluations and the cor-
responding standard deviations of two different particle filter evaluations.
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The standard deviations of the mean horizontal position residuals, which are visualized in
Figure 6.7b, 6.7d, 6.7f, and 6.7h, demonstrate that a worse GNSS performance partly causes
higher residuals in the PF solutions. Moreover, in 6.7d, 6.7f, and 6.7h the decreasing accuracy
of the PDR solution with increasing time can be observed in particular between reference
points 27 and 36 due to the absence of drift reducing constraints.

The overall mean of the horizontal position residuals are visualized for each of the four walks
in Figure 6.8. Figure 6.7 and Figure 6.8 reveal, that the filter performance strongly improves
due to the integration of the user-tailored map. Although the evaluation with a common
map already reduces the position residuals by about 11% to 20%, the integration of the user-
tailored map comes along with an improvement of about 47% to 69%.

Figure 6.8: Mean of the horizontal position residuals for each of the four walks.

As Figure 6.8 shows, the mean of the residuals based on the PF integrating the user-tailored
probability map of is lowest for walk 1 with 2.04 m, while walk 4 represents a less accurate
result with a mean of 4.49 m. In general, all results are best for walk 1. The worst result in
case of the user-tailored probability is obtained for walk 4, although the GNSS and the particle
filter performance based on a common map are worst for walk 3.

The position residuals are further investigated in along and across track direction, because
of the errors caused by the recording of the time stamps and due to the reason that the geo-
metric constraints are assumed to have more influence on the across than on the along track
component. Therefore, the along track and across track residuals are visualized separately
in Figure 6.9. Although the evaluation is based on the same input data and processing pa-
rameters, the residuals shown in Figure 6.9 do not coincide with the residuals in Figure 6.9.
This is due to the random initialization of the particles.

Figure 6.9 demonstrate that the across track residuals can be further reduced by the in-
corporation of the user-tailored probability map than the along track residuals. Although
a diversity in the mean along track residuals can be observed for the PF based on the
user-tailored map, the across track residuals nearly provide the same results for all walks.
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Furthermore, the improvement due to the PF integrating the common map is more or less
the same in each component.

(a) Along track residuals. (b) Across track residuals.

Figure 6.9: Mean of the along and across track residuals for each of the four walks.

Summarizing, it can be stated that the user-tailored probability map strongly improves the
position estimation. The horizontal position residuals can be reduced by 47% to 69%. Sepa-
rating the along and across track components, a decrease of 30% to 60% can be established
in the means of the along track residuals, while the mean values of the across track residuals
are improved by 72% to 75%.

6.2.4 Positioning performance of one selected walk

Finally, one walk (walk 2) is chosen to exemplarily visualize a determined trajectory in the
defined test environment. Figure 6.10 opposes the trajectories of the input data for the filter
(GNSS and PDR) to the results of the PF integrating the user-tailored probability map and of
the PF using the geometric constraints of a common map. In the background, the features of
the user-tailored raster map are illustrated as a gray-scaled image. While the PDR trajectory
is affected by a drift, which is typical for trajectories derived from inertial data, the GNSS
trajectory spreads according to the uncertainties of a code-based SPP solution, which is in
the range of about five to ten meters.

The particle filtered trajectory illustrated in yellow, which is based on the user-tailored
map, coincides with the reference trajectory (see Figure 6.3) along the entire track of the
pedestrian’s walk. The trajectory follows the correct pavements, crosses the street at zebra
crossings only, and ends in the point, in which the trajectory started. The horizontal position
residuals, which are illustrated in Figure 6.11a, can be improved by 70%, while the gain
yielded by the common map is only 23%. During the entire walk, the along track residuals
of the PF integrating the user-tailored map are less than 5 m except in reference point 30

132



6.2 Performance in outdoor environments

Figure 6.10: Comparison of the evaluation results of the particle filter integrating the user-
tailored probability map and a common map.

and 31 (see Figure 6.11b), while the across track residuals have a maximum of 3.85 m (see
Figure 6.11c). As the maximum across track residual show, the RBPF concept developed
within this thesis provides a localization at the correct pavement for the entire duration of
the walk. 68% of the along track residuals and 80% of the across track residuals are less than
2.2m.

The comparison of both PF results reveals that the integration of the user-tailored probability
map is absolutely necessary for an accurate positioning, which is emphasized by the horizon-
tal, along track, and across track residuals visualized in Figure 6.11. It can be observed, that
the user-tailored map has in general a higher impact on the across track component. In the
along-track component the improvement is less, although the GNSS residuals are about the
same in both directions (compare Table 6.3).

Table 6.3 summarizes the mean residuals of the GNSS and PDR trajectory, as well as the two
different realizations of the particle filter. Furthermore, the results of a different evaluation
approach, which does not incorporate PDR data within the propagation step, are listed. A
common motion model assuming a uniform velocity was used for the particle propagation,
whereas the measurement update is the same as described within section 5.1.3. The residuals
of this PF approach are indicated with wo PDR, while the residuals marked with w PDR
correspond to the results of the above described PF evaluations, which are based on a particle
propagation with PDR data and a measurement update incorporating GNSS and map infor-
mation. Again, the processing was done with the two different maps.
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(a) Horizontal position residuals for one evaluation.

(b) Along track residuals for one evaluation. (c) Across track residuals for one evaluation.

Figure 6.11: Horizontal, along and across track residuals of one evaluation for one selected
trajectory (walk 2).

The residuals of the evaluations without PDR data are averaged over ten particle filter
computations, because of the high diversity in the evaluation results. In general, the eval-
uation without PDR data lead to much worse results. In case of the incorporation of the
user-tailored probability map even a degradation of the residuals compared to the GNSS
trajectory can be observed. This is due to the insufficient propagation of the particles. If
no information about the pedestrian’s motion is used, and the particles are predicted with
respect to an assumed motion model, the motion model’s uncertainty must increase leading
to a higher particle spreading. In case of a GNSS position solution at the false pavement,
the PF consequently follows the wrong side of the street as no further information about
the actual motion is available. In case of the incorporation of the common map, the GNSS
performance can be slightly improved particularly in the across track component due to the
general smoothing behavior of a navigation filter. The less strict constraints does not force
the PF following the wrong pavement and therefore the common map leads to better results
compared to the user-tailored map. The worse standard deviations of the results related to
the user-tailored map (especially in the across-track component) demonstrate the effect of
the strict constraints. Depending on the evaluation, the filter follows different pathways and
therefore, the individual results do not coincide.
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Table 6.3: Mean of the horizontal, along track, and across track position residuals.

µ∆xhoriz
[m] µ∆xalong

[m] µ∆xacross [m]

GNSS 9.14 5.64 5.77
PDR 69.23 38.16 50.56

w
P
D

R PF common map 6.99 3.87 4.84
PF user-tailored map 2.66 1.99 1.37

w
o

P
D

R PF common map 8.74 ± 0.35 5.72 ± 0.34 4.97 ± 0.22
PF user-tailored map 10.24 ± 0.88 5.82 ± 0.49 6.74 ± 0.89

Finally, Figure 6.12 shows the error ellipses for every fifth second along the trajectory. Based
on the weighted sample covariance given in equation (6.13), the ellipses are determined by
applying equation (6.14) to (6.18). The error ellipses represent Gaussian approximations of
the posterior PDFs, which are given by equation (5.30). The PF trajectory and thus the
center of the ellipses are given by equation (6.4), which corresponds to the weighted sample
mean. For a better interpretation of the resulting error ellipses, the GNSS trajectory is
illustrated in black.

Figure 6.12: Error ellipses for every fifth second along the trajectory.

The left graph in Figure 6.12 gives an overview of the shape of the error ellipses along the
whole trajectory, while the right graph shows a part of the trajectory increased in size. The
size and orientation of the ellipses demonstrate the impact of the user-tailored map on the
spatial distribution of the particles. In regions where several pathways are possible, the size
of the error ellipse gets spread. Along pavements, the influence of the building borders can be
observed, as the uncertainty in the along track component grows, but the across track error
diminishes. By changing the walking direction, the shape of the error ellipse mutate due to
the heading change and the various walking possibilities at crossings.
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6.2.5 Investigation related to unexpected walking behavior

Due to the spatial constraints of the user-tailored map, an immense performance gain can
be observed. However, the defined location probabilities are only valid as long as the blind
pedestrian follows the assumed paths. Nevertheless, an approach has to be found, which also
handles unexpected walking behavior and still benefits from the developed RBPF. Therefore,
a test statistic has been introduced, which recognizes e.g., that a person crosses a street
although there is no crosswalk. Figure 6.13 shows the case where the blind person assumes
a crosswalk due to a beveled pavement and crosses the street.

Figure 6.13: Unexpected crossing of the street.

Within the thesis, a concept for the handling of such unexpected movement has been devel-
oped and investigated. Since the method is not sufficiently mature for the integration within
the RBPF, only a concept is presented at this place.

For the detection of an irregular movement an outlier detection algorithm for particle filter
localization, originally developed by Maíz et al. (2009), has been adapted. Maíz et al. (2009)
use a statistic, which is called spatial depth. With the proposed method, outliers among the
measurements are detected and are then rejected for the measurement update within the
particle filter. In general, spatial depth determines the probability of the measurement zt

based on a predicted measurement probability

p(z̃t|zt−1) =
1

Ns

Ns∑
i=1

p(z̃t|x̃i
t), (6.19)

with x̃t representing the propagated particle set according to p(xt|xt−1,ut). As stated in
Maíz et al. (2009), the goodness-of-fit between the predicted probability p(z̃t|zt−1) and zt

can be determined by using the spatial depth statistic

Dt|t−1(zt) = 1−
∥∥∥∥∫ S(z̃t − zt)p(z̃t|zt−1)dz̃t

∥∥∥∥ (6.20)

where S(x) is the spatial sign

S(x) =

 x
‖x‖ , if x 6= 0,

0, if x = 0,
(6.21)
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with x = z̃t − zt. Given a set of particles
{
z̃i
t

}Ns

i=1
, which are drawn from p(z̃t|zt−1), the

spatial depth can be approximated as

Dt|t−1(zt) ≈ 1−

∥∥∥∥∥ 1

Ns

Ns∑
i=1

S(z̃i
t − zt)

∥∥∥∥∥ . (6.22)

Within the thesis, the same statistic is employed for the detection of an unexpected move-
ment. Due to the spatial constraints, as soon as the pedestrian is unambiguously located at a
pavement, the particles follow this pavement according to the determined motion parameters.
If the person crosses the street in an area where no crosswalk is located, the spatial constraints
would not allow the crossing. However, the processing would fail after some epochs since the
heading θ does not coincide with the direction of the pavement. Therefore, the unexpected
movement has to be detected before the processing terminates.

As within the thesis the relation between zt and xt is given by zt = Htx̃t with Ht being an
identity matrix of dimension 2× 2, equation (6.22) can be rewritten as

Dt|t−1(zt) ≈ 1−

∥∥∥∥∥ 1

Ns

Ns∑
i=1

S(x̃i
t − zt)

∥∥∥∥∥ . (6.23)

In case of an outlier, Dt|t−1(zt) gets close to zero, while a conformity corresponding to
zt ∼ p(x̃t) would result in a value close to one. For the detection of an outlier, a threshold
has to be defined, which is 0.025 for the investigations within the thesis.

Based on equation (6.23), two different cases are investigated. One case treats the occur-
rence of an outlier in the GNSS data, while the second case covers the matter of unexpected
movement. Since the RBPF handles outliers very well, detected outliers can be ignored.
In contrast, unexpected movement has to be considered in the position estimation. Conse-
quently, an appropriate algorithm has to distinguish these two cases.

Figure 6.14 shows a spatial depth investigation for two different trajectories - one with an
outlier (Figure 6.14a) and one with untypical movement (Figure 6.14b). In both cases the
spatial depth detects the periods in which the GNSS solution does not agree with the modeled
path preferences. As Figure 6.14 demonstrates, an outlier clearly differs from an unexpected
movement by the duration of Dt|t−1(zt) being close to zero.

In the case, that the spatial depth detects that the pedestrian crossed the street without
using the crosswalk, the RBPF may initialize the particles position according to the latest
GNSS solution but keeps the heading.
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(a) Spatial depth in case of an outlier. (b) Spatial depth in case of unexpected move-
ment.

Figure 6.14: Spatial depth investigation for the detection of unexpected movement behavior.

6.2.6 Conclusion - performance in outdoor environments

The investigations within this section revealed that the GNSS position solution can be im-
proved by about 47% to 69% if the user-tailored probability map is integrated within the
PF processing. For the processing, at least 500 particles are recommended, which come
along with a mean computation time of 0.01 s for the evaluation of one epoch. However, the
processing with 2000 particles guarantees the reduction of the mean position residuals to a
minimum. The mean of the horizontal position residuals in the worst case is about 4.42 m,
while the maximum mean residual in across track and along track direction are 1.65 m and
3.58 m respectively. The low residuals in the across track direction indicate that RBPF is
able to localize of the pedestrian at the correct pavement. For each of the four walks, the
along track residuals do not fulfill the accuracy requirements of blind pedestrians, which are
in the range of about 2 m according to the sensing range of a blindman’s stick. The worse
along-track accuracy has to be taken into account for the temporal announcement of risks
and obstacles and for giving guidance instructions. In contrast, the across track performance
is very important for the provision of the correct warnings and guidance instructions and has
to fulfill the accuracy requirements of 2 m.

6.3 Performance in indoor environments

As indoors, other spatial constraints are integrated within the RBPF compared to outdoors,
the indoor positioning is analyzed separately. As described in section 5.2, an occupancy grid
map in combination with the wall collision filter constrains the particle propagation within
the building. Furthermore, motion-related activities provide location probabilities which are
integrated within the RBPF.
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For this performance investigations, raw sensor data have been recorded for post-processing,
and several pre-defined reference points have been passed to have a ground truth. Three
different trajectories have been chosen to analyze the performance of the filter. These tra-
jectories are illustrated in Figure 6.15, 6.16, and 6.17. Besides the walked trajectories, the
reference points are visualized. Figure 6.15 shows the first trajectory, where the pedestrian
starts on floor level 4, follows the corridor, enters two different rooms before the person walks
downstairs to floor level 3. On floor level 3, the pedestrian only walks along the corridor.
The second trajectory follows the corridor on a single floor (floor level 4) forth and back (Fig-
ure 6.16). In contrast, the third trajectory focuses on walking along corridors on different
floor levels (Figure 6.17).

(a) Floor level 4. (b) Floor level 3.

Figure 6.15: Trajectory 1 within the test ground of the building Steyrergasse 30.

These three trajectories have been selected due to the different impact of the spatial con-
straints given by the PAC, the map, and the wall collision filter. Trajectory 1 has the highest
demands on the wall collision filter, while the determined activity is primarily needed for an
effective floor level detection as it is performed within trajectory 1 and 3. At stairs, a correctly
determined activity supports the positioning in reducing the step length and by providing

Figure 6.16: Trajectory 2 within the test ground of the building Steyrergasse 30.
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(a) Floor level 4. (b) Floor level 3.

(c) Floor level 4.

Figure 6.17: Trajectory 3 within the test ground of the building Steyrergasse 30.

appropriate probabilities for stairways. Trajectory 2 should demonstrate the quality of the
position estimation for the case that no room is entered and the pedestrian stays at the same
floor. Each of the three trajectories are walked several times, whereby the durations of the
walks are about 200 s, 65 s, and 200 s for trajectory 1, 2, and 3. Based on these walks, similar
investigations as shown in section 6.2 are conducted.

As the particle filter performance in indoor environments strongly depends on the provision
of the correct floor plan, in a first instance, the efficiency of the floor detection is investigated
(section 6.3.1). Then, investigations concerning the optimal number of particles Ns are done
(section 6.3.2). Because of the small scaled indoor environment computational break-offs
may occur. Therefore, besides the computation time and the position residuals, the break-off
quota is analyzed. In section 6.3.3, the most suitable parameter for the representation of
the state estimate is identified, while the performance gain due to the incorporation of the
activity is demonstrated in section 6.3.4. Finally, one walk along trajectory 1 is investigated
in detail (section 6.3.5). Hereby, the horizontal trajectory, the position residuals, as well as
the error ellipses are analyzed. Consequently, the investigations for the indoor environment
can be structured as follows:
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– Performance of the height estimation.
– Performance investigations regarding the number of particles.
– Investigation regarding the state estimate representation.
– Performance gain related to the user-tailored probability map.
– Positioning performance of a selected trajectory.

For the different investigations, the measurement data are processed as outlined in the pro-
posed filter design (section 5.2).

6.3.1 Performance of the height estimation

Since indoors, the position estimation needs the correct floor map, an appropriate height
estimation based on redundant information and an efficient floor level detection has to be
installed. Therefore, as described in section 5.2.4, on the one hand, a combination of hWLAN

and ∆hbaro and, on the other hand, a fusion of hWLAN and ∆hPAC are investigated. Trajectory
3 (Figure 6.17) is chosen for the investigation, since this trajectory provides a floor level
change two times. In Figure 6.18, the evaluation results for one walk along trajectory 3 are
shown. Figure 6.18a shows the results of the height estimation and floor detection for the
combination of hWLAN and ∆hbaro, while Figure 6.18b visualizes the same for the fusion of
hWLAN and ∆hPAC . The results demonstrate that in both cases the floor transition is detected
correctly.

(a) Height estimation based on WLAN and
barometer data.

(b) Height estimation based on WLAN and
PAC/PDR data.

Figure 6.18: Floor detection based on the estimated height delivered by the Kalman filter.
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The amount of incorrectly detected floor levels is determined for three different Kalman filter
evaluations. Following three scenarios are treated:

– Kalman filter based on WLAN height data only
– Kalman filter based on WLAN and barometer height data
– Kalman filter based on WLAN and PAC/PDR derived height data

For this investigation, five different walks along trajectory 3 are evaluated. The amount of
incorrectly detected floor levels is listed in Table 6.4. The correspondence of the floor level
is determined at the reference points, whereby one walk comprises 22 reference points. One
incorrectly determined floor level implies that in one of the trajectory’s reference points the
floor level does not coincide with the actual floor level. For the floor level assignment within
the floor detection, appropriate heights are defined. These are given by the medium heights
of two consecutive floors.

Table 6.4: Comparison of the Kalman filter evaluations in terms of incorrectly detected floor
levels.

hWLAN hWLAN & ∆hbaro hWLAN & ∆hPAC

incorrectly detected floors 4 2 0

Table 6.4 shows that the height estimation based on hWLAN only comes along with four
incorrectly detected floor levels out of 110. By integrating ∆hbaro, the amount of incorrectly
detected floor levels can be reduced to a number of 2. The best result with no incorrectly
detected floor levels is achieved by a fusion of hWLAN and ∆hPAC , but strongly depends on a
correct detection of the current activity. However, if the pedestrian takes two stair steps by
one step, the algorithm misinterprets the vertical change. This could be handled by defining
an additional activity, which treats the motion over two stair steps. However, this scenario
is quite unlikely in case of a blind person. A further possibility would be the integration of
the barometer within the PAC.

Figure 6.19 exemplarily shows the performance gain which is caused by the fusion of hWLAN

and ∆hbaro. Therefore, a walk is chosen, for which the KF evaluation delivers an incorrect
floor detection in case of processing with WLAN data only. The support of the height estima-
tion by ∆hbaro provides the correct floor level throughout the complete walk (Figure 6.19b).
In general, changes in height are recognized delayed by WLAN fingerprinting due to the
frequency of the WLAN-scan update of 0.5 Hz.

Anyway, all of the reference points, for which the floor levels are incorrectly detected, are
located in transition zones between two floors (stairs). At these zones, the spatial constraints
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(a) Height estimation based on WLAN data. (b) Height estimation based on WLAN and
barometer data.

Figure 6.19: Contribution of the barometer to the correct floor detection.

due to the map are the same for both floor levels. However, as soon as the pedestrian leaves
the stairs and reaches the corridor, the correct floor level has to be provided. Finally, it can
be stated, that both KF approaches allow the detection of the correct floor level as all of the
incorrectly detected floor levels are still located at stairs.

6.3.2 Performance investigations regarding the number of particles

Within this section, the mean computation time, the mean horizontal position residuals, as
well as the computation break-off quotas are investigated for each of the three trajectories,
by comparing two different walks. Hereby, the focus is set on a varying number of particles
Ns, to find out the optimal Ns for the indoor processing. The particle filter is processed with
Ns = {50, 100, 200, 500, 1000, 1500, 2000, 4000}. To obtain representative values, every
walk is evaluated ten times with a varying number Ns. Consequently, in the following figures
and tables, the mean values over all ten evaluations are illustrated.

Trajectory 1: Figure 6.20 shows the evaluation results of two walks along trajectory 1. The
first row presents the mean computation time over ten evaluations normalized to a trajectory
length of 1000 s, the second row shows the mean horizontal position residuals over all reference
points, while the third row contains the quota of computation break-offs. The quota of
computation break-offs represents the number of incompletely evaluated trajectories given
in % of the overall number of evaluations (10). The computation times and the horizontal
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(a) Walk 1. (b) Walk 2.

Figure 6.20: Mean computation times, mean horizontal position residuals, and computation
break-off quotas vs. Ns for two different walks along trajectory 1 (Figure 6.15).

position residuals are similar for both walks, while the quotas of the computation break-offs
are different. In both cases, the increase of Ns comes along with higher computational
stability. From Ns = 500 upward, no more break-off can be observed. In Table 6.5, the
numerical values of the mean computation times and the corresponding standard deviations
are given. As expected, the increase of Ns comes along with a longer computation time,

Table 6.5: Mean computation times and the corresponding standard deviations for two dif-
ferent walks along trajectory 1 normalized to a trajectory length of 1000 s.

walk 1 walk 2
Ns time [s] σt [s] time [s] σt [s]

50 1.70 0.14 1.62 0.04
100 2.72 0.09 2.64 0.11
200 4.83 0.05 4.70 0.09
500 12.95 0.21 12.79 0.12

1000 28.98 0.28 29.04 0.20
1500 52.25 0.71 51.43 0.32
2000 78.60 0.41 79.04 0.89
4000 235.38 0.86 236.87 1.94
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Table 6.6: Mean horizontal position residuals and the corresponding standard deviations for
two different walks along trajectory 1 with varying Ns.

walk 1 walk 2
Ns µ∆xhoriz

[m] σ∆xhoriz
[m] break-offs µ∆xhoriz

[m] σ∆xhoriz
[m] break-offs

50 1.73 0.15 3 1.47 0.18 8
100 1.59 0.10 - 1.51 0.10 4
200 1.61 0.06 - 1.47 0.12 3
500 1.58 0.03 - 1.48 0.04 -

1000 1.58 0.02 - 1.47 0.03 -
1500 1.57 0.02 - 1.48 0.02 -
2000 1.57 0.02 - 1.48 0.02 -
4000 1.58 0.02 - 1.48 0.01 -

WLAN 3.86 1.86 4.08 1.98
PDR 6.47 2.45 5.29 3.06

which is characterized by an exponential growth. However, the convergence of the position
solution can be improved, which can be verified by the decreasing standard deviation σ∆xhoriz

of the mean position residuals µ∆xhoriz
in Table 6.6.

As Table 6.6 shows, the mean position residuals converge to about 1.58 m in case of the first
walk and to about 1.48 m in case of the second walk. Furthermore, the standard deviations of
the position residuals over ten evaluations are decreasing with increasing Ns. Due to reasons
of comparability, the mean of the horizontal position residuals of the WLAN and PDR tra-
jectories are listed. In case of WLAN and PDR, µ∆xhoriz

and σ∆xhoriz
correspond to the mean

value and the standard deviation over the horizontal position residuals in the reference points.
All other values are based on ten PF evaluations. For the computation of the PDR residuals,
the relative PDR trajectory is initialized at the walk’s starting point.

Trajectory 2: The results for trajectory 2 are illustrated in Figure 6.21. The numerical
values for the computation times are given in Table 6.7, while the position residuals and the
number of break-offs are presented in Table 6.8. Again, the upper graphs in Figure 6.21a
and 6.21b demonstrate that the computation time is exponentially increasing with a growing
Ns. The small standard deviations σt of the computation times given in Table 6.7 indicate
that the computation times are comparable for each of the ten particle filter evaluations.
Furthermore, the comparison shows that the computation times are very similar for the two
different measurement data sets. As Figure 6.21 and Table 6.8 show, although µ∆xhoriz

of the
WLAN and PDR trajectories are in the same range for both walks (Table 6.8), µ∆xhoriz

of the
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(a) Walk 1. (b) Walk 2.

Figure 6.21: Mean computation times, mean horizontal position residuals, and computation
break-off quotas vs. Ns for two different walks along trajectory 2 (Figure 6.16).

PF evaluations are different with about 1.93 m and 1.28 m. However, the higher σ∆xhoriz
of the

WLAN and the PDR trajectories of the first walk indicate a larger spreading in the horizontal
position residuals which may cause the worse filter performance. In both walks, the standard
deviations σ∆xhoriz

are in general decreasing, indicating a convergence of the solutions with
increasing Ns. In case of the second walk, one of the ten evaluations with 50 particles ended

Table 6.7: Mean computation times and the corresponding standard deviations for two dif-
ferent walks along trajectory 2 normalized to a trajectory length of 1000 s.

walk 1 walk 2
Ns time [s] σt [s] time [s] σt [s]

50 1.73 0.44 1.80 0.33
100 2.50 0.12 2.66 0.11
200 4.43 0.17 4.68 0.15
500 12.00 0.19 12.54 0.16

1000 27.82 0.27 28.81 0.19
1500 49.69 0.36 49.91 0.51
2000 76.43 0.45 77.14 0.31
4000 233.66 0.75 230.23 2.29
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Table 6.8: Mean horizontal position residuals and the corresponding standard deviations for
two different walks along trajectory 2 with varying Ns.

walk 1 walk 2
Ns µ∆xhoriz

[m] σ∆xhoriz
[m] break-offs µ∆xhoriz

[m] σ∆xhoriz
[m] break-offs

50 2.05 0.41 - 1.29 0.11 1
100 2.09 0.36 - 1.36 0.18 -
200 1.93 0.17 - 1.35 0.13 -
500 1.96 0.09 - 1.28 0.02 -

1000 2.02 0.10 - 1.28 0.03 -
1500 1.95 0.05 - 1.28 0.02 -
2000 1.95 0.09 - 1.28 0.04 -
4000 1.93 0.06 - 1.28 0.02 -

WLAN 4.14 2.98 4.18 1.80
PDR 4.73 2.32 4.22 2.04

in a computation break-off. Due to the fact, that the pedestrian is walking at the corridor
only, the trajectory is less restricted by the constraints given by the wall collision filter and

(a) Walk 1. (b) Walk 2.

Figure 6.22: Mean computation times, mean horizontal position residuals, and computation
break-off quotas vs. Ns for two different walks along trajectory 3 (Figure 6.17).
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the activity. Consequently, less processing break-offs are caused.

Trajectory 3: Figure 6.22 shows the evaluation results for two walks along trajectory 3.
The characteristics with respect to the computation times and the mean horizontal position
residuals are similar to trajectory 1 and 2. However, the second walk cannot be processed
with 50 particles. The break-off quota of the PF processing is 100%. Consequently, neither
the computation time nor the mean horizontal position residual can be declared for the second
walk for the PF processing with Ns = 50, see Table 6.9 and 6.10.

Table 6.9: Mean computation times and the corresponding standard deviations for two dif-
ferent walks along trajectory 3 normalized to a trajectory length of 1000 s.

walk 1 walk 2
Ns time [s] σt [s] time [s] σt [s]

50 1.91 0.17 - -
100 2.87 0.14 3.02 0.08
200 5.21 0.09 5.55 0.27
500 14.05 0.17 14.57 0.26

1000 31.61 0.48 33.37 0.32
1500 57.21 1.31 57.45 0.70
2000 85.01 1.22 88.23 1.60
4000 251.31 1.70 254.48 1.60

Table 6.10: Mean horizontal position residuals and the corresponding standard deviations
for two different walks along trajectory 3 with varying Ns.

walk 1 walk 2
Ns µ∆xhoriz

[m] σ∆xhoriz
[m] break-offs µ∆xhoriz

[m] σ∆xhoriz
[m] break-offs

50 1.99 0.17 4 - - 10
100 2.10 0.10 2 2.14 0.92 5
200 2.00 0.07 - 1.46 0.10 -
500 2.04 0.05 - 1.42 0.07 -

1000 2.04 0.03 - 1.38 0.05 -
1500 2.02 0.03 - 1.39 0.06 -
2000 2.04 0.02 - 1.38 0.04 -
4000 2.03 0.01 - 1.38 0.03 -

WLAN 3.65 2.02 3.42 1.93
PDR 3.69 2.39 6.06 3.38
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Although the evaluation is based on different measurement data sets, the computation times
given in Table 6.9 are again very similar. As already discussed for trajectory 1 and 2, the small
σt indicate the similarity of the processing times for all ten evaluations. The mean position
residuals listed in Table 6.10 are converging to about 2.03 m and 1.38 m with decreasing
σ∆xhoriz

. In comparison, the mean position residuals of the two WLAN trajectories are
3.65 m and 3.42 m, while the mean values for the PDR solutions are 3.69 m and 6.06 m. The
higher break-off quota of the second walk is due to the worse PDR performance. However, if
the number of particles is chosen correspondingly, the positioning performance of the second
walk is very good with a mean µ∆xhoriz

of 1.38 m.

Comparison of the different trajectories: The evaluation results of the three different
trajectories demonstrate that the position residuals are decreasing with increasing Ns. The
computation times are comparable for all three trajectories. However, the computation times
are highest for the two walks of the third trajectory due to occurrence of two floor-level
changes. The evaluation of the second trajectory induces the least computational effort, since
the pedestrian is walking at one floor only and does not enter any room.

The computation break-off quotas show, that trajectories, which have higher demands on
the wall collision filter and the activity integration, come along with more break-offs. The
second trajectory, which follows the corridor at one floor only, has nearly no break-offs, while
trajectory 1 and 3 are hardly processable with 50 and 100 particles. However, a computational
stability is achieved for each of the three trajectories if Ns is chosen to be higher than 500.
The magnitudes of the converging position residuals are in the range of 1.28 m to 2.03 m and
are independent of the trajectory characteristics. From a number Ns of 500, the residuals
start converging to the final result except the first walk of trajectory 2. The mean of the
residuals of this walk grows from 1.96 m to 2.02 m if the number of particles is increased from
500 to 1000. After that, the processing based on 1500 particles again shows a mean µ∆xhoriz

of 1.95 m. The good result with 500 particles is probably due to a better random initialization
of the particles and a consequently good propagation of the particles.

In general, it can be stated, that at least 500 particles are required for the evaluation if
computation break-offs should be circumvented. 500 particles come along with a computa-
tion time of 0.01 s for one epoch and the position solution starts converging. However, the
computation with 1500 particles guarantees that the mean residual differs only at maximum
0.01 m from the minimum mean residual, while the computation still needs less than 0.06 s
for one epoch.
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6.3.3 Investigation regarding the state estimate representation

Indoors, the environmental structures and the involved algorithms are different compared to
the outdoor environment. Therefore, the best parameter for the representation of the state
estimate has been investigated separately. Again, the particle with the highest weight, the
weighted mean, the center of the cluster with the highest accumulated weight, and the center
of the cluster with the highest particle concentration are computed and analyzed under the
aspect of finding the best representative of the estimated trajectory.

(a) Walk 1. (b) Walk 1 - residuals of the PF input data.

(c) Walk 2. (d) Walk 2 - residuals of the PF input data.

(e) Walk 3. (f) Walk 3 - residuals of the PF input data.

Figure 6.23: Error in the horizontal position resulting from four processing strategies applied
to three realizations of trajectory1.

150



6.3 Performance in indoor environments

As trajectory 1 includes walking on corridors and through rooms, but also a floor-level change
(see Figure 6.15), three walks along trajectory 1 are taken as basis for this investigation.
The particle filter processing is done with 2000 particles, as the focus is not the real-time
processing, but the identification of the best representative.

The graphs on the left hand side of Figure 6.23 show the mean values of the horizontal position
residuals over ten evaluations at each of the passed reference points, while the graphs on the
right hand side illustrate the mean horizontal position residuals for the WLAN and the PDR
trajectory. As the output of the PDR algorithm corresponds to a relative position solution,
the PDR trajectory is initialized at the starting point of the walk for the computation of
the residuals. Neither the WLAN trajectory nor the PDR trajectory is processed within a
filter. In Figure 6.23a, 6.23c, and 6.23e, it can be observed that in indoor environments the
trajectory is represented worst by the highest weighted particle. Concerning the other three
strategies, no explicit statement can be given.

(a) Mean horizontal error.

(b) Mean along track error. (c) Mean across track error.

Figure 6.24: Mean error resulting from four processing strategies applied to three realizations
of trajectory 1.

However, by looking at the mean of the horizontal position residuals over all reference points
for each of the three different walks in Figure 6.24a, the weighted mean can be identified
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as best representative. In addition, if the mean residuals are separated into an along track
component (Figure 6.24b) and an across track component (Figure 6.24c), the weighted mean
turns out to be best parameter for both components. The weighted mean leads to the
minimum mean residual in each of the three walks. Furthermore, similar to the outdoor
positioning, the investigations reveal that the mean across track residuals are smaller than
the mean along track residuals.

6.3.4 Performance gain related to the integration of the activity

In this section, the performance gain related to the integration of the person’s activity as
spatial constraint within the position estimation is demonstrated. Anyway, only a small
improvement is expected, since the spatial constraints provided by the defined activities
standing, walking, walking downstairs, and walking upstairs mainly support the positioning
filter at stairs (see section 5.2). However, as the stairs within the test ground are of small di-
mension, the importance weights ωPAC strongly contribute to the positioning if the pedestrian
follow the stairs.

Within this section, trajectory 3 (Figure 6.17) acts as a basis for the investigations, because
of the fact that this trajectory provides two floor changes. Five different walks are evaluated,
delivering the mean horizontal errors illustrated in Figure 6.25. These values are the mean
over the horizontal residuals evaluated in the reference points, which are based on the mean
of ten particle filter computations with 2000 particles. The trajectory is represented by the
weighted mean µwm.

Figure 6.25: Mean horizontal errors for each of the five walks.

As Figure 6.25 shows, for four of the overall five walks, an improvement due to the activity
integration can be observed. Only the position errors of the fourth walk increase slightly
by about 9 cm due to the incorporation of activity-related spatial constraints. However, the
along track and across track residuals of walk 4 illustrated in Figure 6.26 reveal that only
the along track residuals are affected by the worse performance. In contrast, the across
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track component, which benefits more from the activity integration, is slightly improved by
2 cm.

(a) Mean along track error. (b) Mean across track error.

Figure 6.26: Mean along and across track errors for each of the five walks.

The implemented filter approach for the indoor positioning improves the mean of the hor-
izontal position residuals by about 40% to 60% if the WLAN trajectory is considered as
reference. Hereby, the filter and the appropriate spatial constraints have a higher impact on
the across track component, which comes along with an improvement between 55% (walk 4)
and 75% (walk 3). However, the magnitude of the along track residuals can also be reduced
significantly by about 29% to 54%.

Finally, one walk is chosen to exemplarily demonstrate the impact of the activity integration
on the horizontal position residuals along the trajectory. These residuals are illustrated in
Figure 6.27.

Figure 6.27: Mean horizontal error over ten evaluations of one selected walk.

The reference points 9 and 10 as well as 15 and 16 are located at the stairways. It can be ob-
served, that the integration of the activity has a positive impact on the estimated states at the
stairs, but also on the results of the immediately following reference points.
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6.3.5 Positioning performance of one selected trajectory

Finally, one walk inside of the building is chosen to investigate the positioning performance of
the trajectory in detail. Hereby, the focus was set on trajectory 1 due to its diversity concern-
ing the walk characteristics (Figure 6.15). In a first instance, the outcome of the Kalman filter
estimating the height and the consecutive floor detection is analyzed.

In Figure 6.28, two different Kalman filter evaluations are shown. Figure 6.28a illustrates the
results of the KF integrating hWLAN and ∆hbaro, while Figure 6.28b presents the outcome of
the KF integrating hWLAN and ∆hPAC . In both cases, the floor transitions can be detected
correctly. However, as Figure 6.28b shows, too many steps are classified as walking downstairs
by the PAC algorithm and consequently, the accumulation of ∆hPAC leads to an overestimated
downward motion. Anyway, it has to be mentioned, that the focus of the height estimation
is the detection of the correct floor to provide, on the one hand, the floor map for the PF
and, on the other hand, proper navigation instructions to guide the pedestrian through the
building. Consequently, the accuracy of the absolute height information is not the central
point of this research.

(a) Height estimation based on WLAN and
barometer data.

(b) Height estimation based on WLAN and
PAC/PDR data.

Figure 6.28: Results of the height estimation and the floor level detection.

Based on the provision of the correct floor map, the particle filter provides the estimated
trajectory, which is visualized in Figure 6.29. The trajectory passes two floor levels, starting
in floor level 4 and ending in floor level 3. As the position residuals in Figure 6.30 show,
the maximum of the horizontal position residuals, which is 7.74 m for the WLAN trajec-
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(a) Floor level 4. (b) Floor level 3.

Figure 6.29: Evaluation result for one walk along trajectory 1.

tory and 10.21 m for the PDR trajectory, can be reduced to 2.74 m. The maximum of the
along track residuals is 7.68 m, 8.49 m, and 2.60 m for the WLAN, PDR and PF trajec-
tory, while the maximum of the across track residuals is 6.19 m, 7.32 m, and 1.48 m for the
three trajectories. Therefore, the most improvement can again be gained in the across track
component.

(a) Horizontal position residuals for one evaluation.

(b) Along track residuals for one evaluation. (c) Across track residuals for one evaluation.

Figure 6.30: Mean errors for the selected trajectory 1.
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Table 6.11 contains the mean values of the position residuals over the whole trajectory. The
evaluation by the indoor positioning filter improves µ∆xhoriz

by about 70%, µ∆xalong
by about

68%, and µ∆xacross by about 75%.

Table 6.11: Mean errors for one selected trajectory.

µ∆xhoriz
[m] µ∆xalong

[m] µ∆xacross
[m]

WLAN 4.08 3.21 1.86
PDR 5.29 4.17 3.00
PF 1.20 1.03 0.47

In Figure 6.31, the error ellipses of every fifth epoch of the weighted mean trajectory are
visualized. For the error ellipses, a Gaussian distribution is assumed (see section 6.1.2).
Furthermore, the sample covariance based on weighted samples is adopted, as calculated in
equation (6.4). The ellipse parameters are determined according to equations (6.14) to (6.18).
Their scale corresponds to the scale of the map.

(a) Floor level 4. (b) Floor level 3.

Figure 6.31: Visualization of the error ellipses for every fifth second along the PF trajectory.

Based on the size and orientation of the error ellipses, the impact of the wall collision filter
and the activity-based probabilities can be revealed. The walls along the corridors act as
spatial restriction while the pedestrian is walking straight. The orientation of the ellipse
changes with the walking direction. If no constraints influence the position estimation, the
ellipse starts increasing (see floor level 4, where the pedestrian enters the second room).
While entering the room, the particle distribution gets restricted by the dimension of the
door and therefore, the dimension of the ellipse gets smaller. Before leaving floor level 4
down the stairs, the ellipse has a large east/west extension. This is due to the untypical
distribution of the particles. Some of the particles survived in the room next to the corridor
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in west direction and therefore influence the shape of the ellipse. However, by entering the
stairs, the dimension of the ellipse is diminished drastically due to the restrictions provided
by the detected activity of walking downstairs and the wall collision filter. In floor level 3
the influence of the WLAN and PDR data (see Figure 6.29) can be observed, which cause a
drift to the south of the corridor.

6.3.6 Conclusion - performance in indoor environments

Within this section, the performance of the indoor positioning has been investigated in detail.
The height estimation allows the detection of the correct floor independently of the input
data for the Kalman filter. The fusion of hWLAN and ∆hbaro as well as the combination of
hWLAN and ∆hPAC are both possible solutions for the height estimation within a positioning
tool being part of a smartphone-based navigation system. The investigations revealed that
the PAC-based height can be taken as alternative for the barometric height if the smartphone
has no internal barometer. However, the PAC-based height estimation is concentrated on
stairs, which have a standardized step height, and only supports a vertical displacement of
one stair per step.

The investigations concerning the particle filter performance revealed that the computation
break-off quota can be reduced to zero if the particle filter processing is done with at least
500 particles. The processing with 1500 particles still provides a mean computation time
of less than 0.05 s for 1 epoch, but guarantees that the position residuals converge to a
minimum.

Furthermore, the positive impact of the activity integration on the position estimation could
be shown and the weighted mean of the particles has been identified as best representation of
the evaluated trajectory. The PF evaluations have demonstrated that the horizontal position
residuals can be reduced by about 40% to 60% due to the processing with the designed RBPF
for indoor environments. All of the presented evaluations provide a position accuracy which
fulfills the requirements of a navigation system for blind pedestrians.
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7 Simultaneous localization and mapping
of the blind pedestrian’s path

For the application of the designed Rao-Blackwell particle filters, maps of the outdoor as well
as the indoor environment have to be available. In case of indoor environments, although
architectural blue prints of most of the buildings exist, only a few buildings (mainly pub-
lic buildings) are mapped with respect to the navigation and positioning requirements. On
the contrary, the outdoor environment in developed countries is almost mapped completely.
Common navigation systems are widely incorporating map information for map-matching
the estimated state, calculating the optimal route to a destination, and to visually guide
the user through the environment. However, user-tailored maps, as the one described in
section 5.1.1, are not available and their development comes along with considerable work
and consequently costs. As a consequence, the user-tailored raster map was only created for
a limited test area, and therefore, the developed outdoor RPPF can only be applied within
the test environment at the campus of TU Graz. However, the performance investigations
in section 6.2 demonstrate that the integration of a probability map, representing the en-
vironment and the pathway preferences of visually impaired pedestrians, strongly improves
the accuracy as well as the reliability of the state estimation. Therefore, within the thesis,
the applicability of a Simultaneous Localization and Mapping (SLAM) approach has been
investigated for the purpose of generating a probability map, which more or less corresponds
to the probability map resulting from the user-tailored raster map.

As described in section 5.1.1, the probability map integrated within the outdoor RBPF rep-
resents, on the one hand, the occupancy of the grid cells and, on the other hand, the location
probability with regard to a blind pedestrian. The goal of the SLAM is the direct derivation
of the probabilities with respect to the walking and navigation habits of blind pedestrians
instead of mapping the features of the environment (pavements, tactile ground surface indi-
cators, etc.). Details on the designed SLAM and the resulting map are given in section 7.2,
while the theoretical background and different existing SLAM approaches are presented in
section 7.1. The incorporation of the SLAM-based probability map within the outdoor RBPF
and the corresponding results are discussed in section 7.3. Finally, the applicability of the
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SLAM for the derivation of a probability map, which represents the blind pedestrian’s path
preferences in indoor environments, is briefly investigated in section 7.4.

7.1 Simultaneous localization and mapping

Referring to Thrun et al. (2006), SLAM combines the probabilistic location estimation with
the basic ideas of occupancy grid mapping, which refers to the generation of a consistent
occupancy grid map from noisy and uncertain measurement data. Within the occupancy
grid mapping, the evenly spaced grid, which is defined over the continuous space of locations,
is assigned with occupancy values at locations which are covered by observations. Based on
the defined grid, the posterior probability over the map m is computed conditioned on the
current observations zt and the current state xt, and is given by

p(m|zt,xt). (7.1)

The grid map m defines the space by finitely many grid cells mϕ,λ, leading to m = {mϕ,λ}.
Consequently, if a region is covered by observations, an appropriate occupancy value can be
assigned to the corresponding grid cell mϕ,λ. The transition data ut is neglected within the
posterior over the map m, since the state estimate xt implicitly involves ut. Figure 7.1 shows
the DBN model of the occupancy grid mapping, in which the map m is determined based
on the observations z1:t and the states x1:t. While zt and xt are time variant, the map m is
time independent. In contrast to the DBN model of the designed particle filter illustrated in
Figure 5.8, the map m is the object of interest instead of the state xt.

Figure 7.1: DBN of the occupancy grid mapping, where the map m is the object of interest.

SLAM can thus be formulated as extension of the occupancy grid mapping. As stated in
Thrun et al. (2006), the goal of the SLAM is to estimate the map m and to localize the
pedestrian relative to that map in parallel. Therefore, SLAM focuses on the simultaneous
computation of the map m and the state xt. Referring to Thrun et al. (2006), the posterior
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with regard to the idea of SLAM is given by

p(xt,m|zt,ut). (7.2)

In contrast to the posterior of the occupancy grid mapping given in equation (7.1), the
posterior in equation (7.2) is conditioned on the observations zt as well as the control data ut,
while xt and m are the objects of interest. Equation (7.2) refers to the online SLAM problem,
which only involves variables of the current epoch. The full SLAM problem determines a
posterior over the entire measurement epochs up to time t

p(x1:t,m|z1:t,u1:t). (7.3)

The connection between the online and the full SLAM problem is given by

p(xt,m|zt,ut) =

∫ ∫
. . .

∫
p(x1:t,m|z1:t,u1:t) dx1 dx2 . . . dxt−1, (7.4)

in which the past poses are integrated out from the full SLAM to get the posterior of the
online SLAM (Thrun et al., 2006). Within the thesis, the online SLAM problem is applied
for the derivation of the SLAM-based probability map. Figure 7.2 illustrates the DBN of the
online and the full SLAM problem, in which the elements to be estimated are marked in gray.
The online SLAM focuses on the estimation of the current state xt based on the observation
and transition data of the actual epoch, while the full SLAM estimates the posterior over all
states x1:t based on all available input data at once.

(a) DBN model of the online SLAM, in which the
map m and the current state xt are the ob-
jects of interest.

(b) DBN model of the offline SLAM, in which the
map m and the states x1:t are the objects of
interest.

Figure 7.2: DBN models for different SLAM implementations.

SLAM methods can be mainly classified into two categories depending on the underlying
Bayes filter implementations. While the EKF-SLAM employs an extended Kalman filter for
estimating the pose and building the map, the FastSLAM does the same on the basis of a
Rao-Blackwell particle filter. The Rao-Blackwell method can be formulated by a factorization
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of the joint PDF p(xt,m|zt,ut). This joint PDF, which represents the posterior over the
state xt and the map m, can be written as

p(xt,m|zt,ut) = p(xt|zt,ut) p(m|xt, zt), (7.5)

leading to two separate problems, which can be solved within a sequential RBPF. The poste-
rior p(xt|zt,ut) is determined within the particle filter, while the map’s posterior p(m|xt, zt)

is estimated in parallel within an EKF, resulting in a joint PDF at the end.

Several SLAM particle approximations have been defined and implemented by names like
Sebastian Thrun, Dieter Fox, Wolfram Burgard, Patrick Robertson, Michael Angermann, etc.
In the following, the characteristics of these SLAM approaches are highlighted. The SLAM
approaches of Thrun, Fox, and Burgard are mainly focused on the application within robotics,
where robots are exploring the environment within buildings. The robot’s odometry data is
typically used for the particle propagation, while feature-detection sensors like cameras or
laser scanners are involved for the retrieval of feature-based maps. An EKF-SLAM realization
based on the robot’s odometry and laser scan data is the GraphSLAM (Thrun et al., 2006).
This EKF-SLAM was originally developed for robots moving in indoor environments. The
approach has been expanded for the outdoor application, in which GPS information acts as
additional observation (Thrun and Montemerlo, 2005). The GraphSLAM realized as a RBPF
is described in Montemerlo et al. (2002).

In contrast, Robertson and Angermann process inertial measurements within a sequential
RBPF based on the typical FastSLAM factorization to derive the structures within a build-
ing. FootSLAM, developed by Robertson, Angermann, and others (Robertson et al., 2009,
2010b), maps the unknown building environment by using the observations of the inertial
sensors, which are attached to the shoes of the pedestrian walking around in the building of
interest. The sensors measure the pedestrian’s step while walking. An extended version of
FootSLAM is PlaceSLAM, in which the humans are treated as sensors reporting the presence
of recognizable features or places. As stated in Robertson et al. (2010a), the accuracy and
stability of the FootSLAM can be significantly increased by integrating human-reported mea-
surements. The combination of several cooperative FootSLAM is FeetSLAM, in which the
data of various walks are combined (Robertson et al., 2011). In WiSLAM, the FootSLAM is
extended for the generation of a map containing the position of WLAN access points (Bruno
and Robertson, 2011). Therefore, WLAN RSS measurements from unknown access points
are fused with odometric data derived from the foot mounted IMU. Similar localization and
mapping approaches based on signal-strength measurements are realized by Huang et al.
(2011) and Ferris et al. (2007).

Another SLAM implementation is the SmartActionSLAM, which is an Android smartphone
application integrating the motion sensors of the smartphone and an optional foot-mounted

162



7.2 Tailored design of the SLAM

IMU to track a person inside of a building (Hardegger et al., 2013). Additional to the inertial
data, which is preprocessed within a PDR approach, activity information like standing and
sitting is incorporated within the SLAM. The SLAM focuses on the generation of a local
landmark map for the monitoring of patients suffering from Parkinson.

7.2 Tailored design of the SLAM

The SLAM developed within the thesis derives a location-based map, which represents the
occupancy of a grid cell mϕ,λ and the location probability with respect to the path preferences
of blind pedestrians. The SLAM is realized by a RBPF implementation. In contrast to
the other mentioned SLAM methods, the implemented SLAM focuses on the derivation of
location probabilities based on an already existing occupancy grid map. This means, the
occupancy grid map is enriched by location probabilities, which are correlated with the
walking and navigation habits of the blind pedestrians, instead of generating a map from
scratch. Missing obstacles are implicitly included in the derived probabilities and therefore,
the SLAM also improves the occupancy information. The idea is to take advantage of existing
map information and to enrich this map by information which represents on the one hand,
the spatial accessibility to blind pedestrians and, on the other hand, the path preferences of
this special user group.

The path of the pedestrian is influenced by physical constraints like walls, obstacles, etc., and
by the pedestrian’s goal, such as reaching a destination. However, only noisy measurements
are available to estimate the position and build the map. The areas accessible for blind
pedestrians are implicitly derived by observing the motion and the current location of the
person. The great advantage of the SLAM-based generation of the probability map is that
individual habits and path preferences can be considered. The probability map can be either
derived from measurement data of one individual person or can be realized as cooperative
approach integrating measurement data of several blind pedestrians.

As discussed in Thrun et al. (2006), for the SLAM-based map generation different options
may be considered.

– Which sensors are suitable for the generation of the SLAM-based map? Sensors or
respectively sensor combinations, which deliver unambiguous position solutions, have
to be favored over sensors leading to ambiguous solutions due to the faster convergence
of the SLAM.

– Are the sensors accurate enough to map the real-world environment? The larger the
noise of the sensors, the more difficult it is to generate a reliable map efficiently.
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7 Simultaneous localization and mapping of the blind pedestrian’s path

– Is the environment of interest sufficiently covered by measurements? The more often a
certain region is passed, the more reliable the resulting SLAM-based map is.

– Which spatial extension should the grid covered within the SLAM have? Does the map
have to be split into n separate mapping problems m = {mpart 1, mpart 2 . . . mpart n}?

These questions have to be kept in mind, while designing a SLAM approach for a specific
application. In the following, the first three factors for the SLAM design are discussed with
regard to the present case. The last of the above options is neglected within the investigations
as for a first trial only the surrounding of the campus has been treated.

As mentioned in section 4.1.1, the accuracy of code-based GNSS solutions is in the range of
some meters. For the mapping of the path preferences of blind pedestrians, which represent
the presence of pavements, zebra crossings, tactile surface indicators, etc., the accuracy re-
quirements are much higher. Therefore, the applicability of PPP for the measurement update
within the SLAM is investigated. PPP is favored over differential and relative positioning,
because of the fact that the PPP products are globally valid and easily accessible through on-
line services (see section 4.1.4). The accuracy in case of kinematic applications is in the range
of some decimeters if the ambiguities can be solved appropriately. Therefore, a continuous
tracking of at least four satellites of the same satellite system is required. However, multipath
and signal obstructions degrade the accuracy in urban environments.

Therefore, several test measurements have been performed in the surrounding of the campus
of TU Graz to proof the applicability of multiple-GNSS PPP. The PPP evaluation revealed
that in principle, PPP is suitable for the SLAM-based probability map generation, but is
limited to restricted day times due to the extensive signal obstructions in urban environment.
For the test measurements, the time span had to be planned in advance for an appropriate
GNSS satellite constellation. The automatic generation of the probability map requires
sufficient satellites in urban areas 24 hours a day, which cannot be guaranteed before Galileo
and COMPASS reach their FOC status. However, several Galileo and COMPASS satellites
will be launched in the near future, improving the situation drastically.

As common smartphones do not provide code and phase measurements, an external GNSS
receiver and antenna had to be employed to record the appropriate GNSS observations. The
Javad SIGMA, offering the possibility of recording GPS as well as GLONASS code and phase
data of several frequencies, was chosen as receiver for the test measurements. The precise
orbit and clock products are obtained from the IGS (International GNSS Service, 2014a).
The evaluation of the GNSS data is done with the PPP software PPPsoft developed at
the Institute of Geodesy, Working Group Navigation (Huber, 2015). Two evaluated PPP
trajectories are exemplarily illustrated in Figure 7.3. Figure 7.3a and 7.3b show the number
of theoretically visible satellites in bright colors compared to the actual measured satellites in
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darker colors. The lower two Figures 7.3c and 7.3d visualize the determined PPP trajectories
against the background of a surface model and of information which is relevant for blind
pedestrians (zebra crossings, pavements, etc.). In Figure 7.3, a PPP trajectory based on a
good GNSS constellation (Figure 7.3d) is opposed to a PPP trajectory based on a bad GNSS
constellation (Figure 7.3c).

(a) Number of visible satellites: test measure-
ment 2014/07/03, trajectory 1. © Katrin
Huber

(b) Number of visible satellites: test measure-
ment 2015/01/28, trajectory 2. © Katrin
Huber

(c) PPP evaluation of the test measurement:
2014/07/03, trajectory 1.

(d) PPP evaluation of the test measurement:
2015/01/28, trajectory 2.

Figure 7.3: Comparison of the PPP performance based on a bad (left) and a good GNSS
constellation (right). The number of theoretically visible satellites compared to
the number of actually observed satellites are given in (a) and (b), while the
resulting PPP trajectories are illustrated in (c) and (d).

In Figure 7.3a, the number of visible GNSS satellites is between 2 and 8, resulting in a
trajectory, which makes the mapping of the blind pedestrian’s path preferences impossible
in several areas (Figure 7.3c). Due to the environmental structures in urban areas, the
number of visible satellites is strongly fluctuating and therefore, the ambiguities have to be
resolved during the walk leading to positions with accuracies in the range of some meters
in phases, where the ambiguities are unknown. In contrast, the GNSS constellation shown
in Figure 7.3b leads to an estimated trajectory which nearly allows a mapping without any
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additional support from PDR data or an occupancy grid map (Figure 7.3d). Figure 7.3
demonstrates that PPP provides position accuracies, which enable the localization of the
pedestrian at pavements and zebra crossings if the GNSS constellation is correspondingly
good. In case of small GNSS outages and outliers, the PDR data in cooperation with the
filter facilitates a reliable and continuous positioning.

However, due to absence of enough satellites during the whole day, the implemented SLAM is
evaluated with simulated measurement data. GNSS PPP as well as PDR data are simulated
with appropriate accuracies to enable a realistic performance evaluation of the SLAM. The
existing framework for the outdoor positioning (section 5.1) was the basis for the development
of the SLAM. The established positioning software has been expanded for the simultaneous
mapping. The Kalman filter estimating the height is the same as presented in section 5.1.2,
only the particle filter defined in section 5.1.3 had to be adapted. The adapted PF concept
is visualized in Figure 7.4.

Figure 7.4: RBPF for the localization and simultaneous mapping of the pedestrian’s path.

In contrast to the outdoor concept presented in section 5.1.3, the filter incorporates an
occupancy grid map (Figure 7.5) which is iteratively updated by the posterior belief p(xt,m)

to finally provide the probability map representing the occupancy as well as the pedestrian’s
path preferences. The designed SLAM approach determines which areas are accessible to a
blind pedestrian, whereby only areas which are spatially covered by measurements can be
updated within the map. The more an area is explored, the more complete the resulting map
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is. The final map is a probabilistic representation of the blind pedestrian’s motion derived
from the posteriors over multiple epochs and trajectories. After some iterations a reliable
probability map is provided.

Figure 7.5: Occupancy grid map representing the buildings and obstacles of the environment.

As illustrated in Figure 7.4, the posterior belief p (xt,m) already acts as input for the con-
secutive epoch. The posterior of the state xt is the basis for the propagation of the particles
within the time update, while the derived probability map delivers an appropriate impor-
tance weight ωmap

i
t if the corresponding area is already covered by the pedestrian. Otherwise,

ωmap
i
t is based on the occupancy grid map.

Based on the SLAM concept illustrated in Figure 7.4, the prediction and update step can be
identified. The final goal is to determine the joint PDF of the state xt and the map m given
in equation (7.5). The estimation of a prior belief bel(xt,mt) is done within the prediction
step, which is corresponding to equation (3.5) defined by

bel(xt,mt) = p(xt,mt|zt−1,ut)

=
∑
Ns

p(xt|xt−1,ut) bel(xt−1,mt−1) dxt−1.
(7.6)

In contrast to equation (3.5), the belief is realized as discrete approximation and is used for the
estimation of xt and mt. The temporal update given in equation (7.6) incorporates the dy-
namic model p(xt|xt−1,ut) based on the corresponding transition data ut.

The posterior belief is estimated within the measurement update according to equation (3.6).
Besides the current measurements zt, the prior belief acts as input for the measurement
update, which is given by

bel(xt,mt) = p(xt,mt|zt)

= ηt p(zt|xt,mt) bel(xt,mt).
(7.7)

The normalization factor ηt corresponds to p(zt|zt−1) and guarantees that the summation of
the posterior belief over the whole state space results in 1. In contrast to equation (3.6), the
measurement likelihood p(zt|xt,mt) depends on xt and mt.
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For the derivation of the SLAM-based probability map, ten different trajectories have been
defined by i coordinate triples [ϕ, λ, h]Ti along the trajectory. Based on these points, mea-
surement data with different characteristics can be simulated (see Figure 7.6). The simulated
trajectories can vary in the assumed velocity and the measurement uncertainties. Path vari-
ations due to the dynamic environment are covered by the measurement uncertainties of the
simulated data. Problems caused by signal obstructions and multipath are not treated within
the simulation, since the investigation focuses on the general ability of a SLAM approach for
deriving location probabilities.

Figure 7.6: Environment for the simulation of GNSS PPP and PDR data.

For the simulation of the measurement data, a reference trajectory xref =
{
xref t

}
with

xref t = [ϕ, λ, h]Tt is generated based on a defined velocity and a measurement frequency of
1Hz. This reference trajectory acts as basis for the simulation of GNSS and PDR data. The
GNSS PPP data xPPP is simulated by

xPPP = xref +N (0,ΣPPP ), ΣPPP =


σϕ

2
PPP 0 0

0 σλ
2
PPP 0

0 0 σh
2
PPP

 , (7.8)

whereby σϕPPP , σλPPP , and σhPPP correspond to the GNSS measurement uncertainty defined
within the simulation environment (Figure 7.6). The investigations presented in the following
are based on σPPP = 0.3m for the GNSS PPP solution.

The PDR data comprising the heading θt and the velocity vt have to be extracted from the co-
ordinate differences in north and east direction, which are obtained by

∆nt−1,t = (ϕt − ϕt−1) R (7.9)

∆et−1,t = (λt − λt−1) R cosϕ0 (7.10)
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with R representing the Earth radius and ϕ0 the mean latitude of the test area. The heading
θ is now given by

θt = arctan
∆et−1,t

∆nt−1,t
+N (0, σθ), (7.11)

with σθ being the heading’s measurement uncertainty. The velocity vt is computed by

vt =

√
∆n2

t−1,t +∆e2t−1,t

∆t
+N (0, σv), (7.12)

with ∆t corresponding to the measurement update rate of 1 s and σv being the measurement
uncertainty of the velocity. Within the simulation environment (Figure 7.6), σv as well as σθ
can be defined, whereby following values σθ = 0.3◦ and σv = 0.1m/s have been chosen due
to the PDR evaluation results.

Based on the simulated PPP and PDR data, the SLAM is performed in an iterative manner
as it is illustrated in Figure 7.4. The probability map is consecutively improved and updated
within the SLAM. As soon as SLAM-based map probabilities are derived, the particle filter
incorporates this information within the state estimation.

7.3 Outdoor positioning incorporating the SLAM-based

probability map

Based on the simulated measurement data, the map is generated by the implemented SLAM
algorithm, while the pedestrian is tracked simultaneously. For each of the ten reference
trajectories (most left figure in Figure 7.7), five measurement data sets have been simulated,
yielding fifty simulated trajectories. Figure 7.7 shows the iterative mapping process of the
SLAM.

The SLAM-based probability map is visualized after every fifth trajectory, whereby regions
which are covered by measurements are updated by appropriate probabilities. The more often
a region is passed, the higher the probability is. The final SLAM-based probability map is
illustrated in Figure 7.8, with the occupancy grid map (uniform light gray) and a digital
surface model in the background. Besides the PPP and PDR data, the occupancy grid map
has acted as basis for the SLAM-driven generation of the probability map. The SLAM has
been performed with Ns = 1500 particles. In Figure 7.8, only areas which are covered by
measurements have appropriate SLAM-based probabilities. The darker the red, the more
often the grid cell mϕ,λ is passed. After several SLAM iterations a reliable probability map
of the environment is generated.
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Figure 7.7: Iterative update of the probability map within the SLAM. The defined reference
trajectories are the basis for the simulation of the measurement data.

The number of required particles have been investigated with regard to the computation time
and the accuracy of the result. The computation time for each of the 50 trajectories has been
determined for different numbers of particles Ns = {50, 100, 200, 500, 1000, 1500, 2000, 4000}.
For an appropriate investigation of the computation time, the computation times of the
trajectories are normalized to 1000 epochs. The mean computation time for 1000 epochs as a
function of the number of particles Ns is shown in Figure 7.9a. The numerical values for the
evaluation of one epoch are given in Table 7.1. As Figure 7.9a and Table 7.1 demonstrate,
the mean computation time t is increasing with a polynomial of degree 2, which can be

Figure 7.8: Probability map generated by the SLAM.
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approximated by t = a0+ a1 ·Ns+ a2 ·Ns
2, whereby a0, a1, and a2 are the coefficients of the

polynomial.

Table 7.1: Mean computation time for one particle filter iteration (one epoch, ∆t = 1 s) for
different number of particles.

Ns 50 100 200 500 1000 1500 2000 4000
time [s] 0.019 0.021 0.022 0.032 0.051 0.076 0.104 0.253

Provided that the input data of the filter is simulated, the horizontal position residuals of
the SLAM trajectory can be determined by computing the differences between the SLAM
position xSLAM = [ϕSLAM , λSLAM ]Tt and the reference trajectories xref t = [ϕref , λref ]

T
t . The

horizontal position residuals are given by

∆xhoriz =
√
∆x2n +∆x2e, (7.13)

with

∆xn = (ϕSLAM − ϕref )R

∆xe = (λSLAM − λref )R cosϕ0.

The terms ∆xn and ∆xe correspond to the position residuals in north and east direction,
while xSLAM is given by equation (6.4) representing the weighted mean of the particle set
χt =

〈
xi
t, ω

i
t

〉
. The numerical values for the mean horizontal position residuals µ∆xhoriz

over
all epochs and trajectories are given in Table 7.2, together with the corresponding standard
deviation σ∆xhoriz

.

Table 7.2: Mean horizontal position residuals and the corresponding standard deviations for
different numbers of particles .

Ns µ∆xhoriz
[cm] σ∆xhoriz

[cm]

50 29.3 0.62
100 24.4 0.41
200 22.4 0.39
500 21.5 0.41

1000 21.3 0.38
1500 21.1 0.42
2000 21.1 0.41
4000 21.0 0.40

The mean value µ∆xhoriz
is decreasing with an increasing number of particles Ns and converges

to a number of 21.0 cm. The improvement of the position solution from Ns = 1000 to Ns =
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4000 is marginal. The standard deviation σ∆xhoriz
of the horizontal residuals is decreasing

from Ns = 50 to Ns = 100, after that no significant differences can be observed. The
convergence of the mean horizontal position residual µ∆xhoriz

can also be seen in Figure 7.9b,
where the mean residuals are drawn as a function of Ns. Additionally to the SLAM residuals,
the mean horizontal position residual of the GNSS PPP solution (µ∆xhoriz

= 0.237 m) is
indicated by the red line. If more than 200 particles are used, the SLAM result shows lower
residuals than the GNSS PPP solution.

(a) Mean computation times of the SLAM nor-
malized to a trajectory length of 1000 s as a
function of Ns.

(b) Mean position residuals of the SLAM as a
function of Ns compared to the mean posi-
tion residual of the GNSS PPP solution.

Figure 7.9: Investigation of the SLAM performance with regard to the computation time
and the position residuals.

As Figure 7.9 shows, the computation time increases with an increasing Ns, while the position
residuals converge to a minimum of about 21.0 cm. Although the computation effort for
the evaluation with 4000 particles is nearly five times higher as the evaluation with 1000
particles, µ∆xhoriz

improves only by 0.3 cm. In contrast, the increment of Ns from 50 to
1000 improves the positioning performance by 8 cm from µ∆xhoriz

(Ns = 50) = 29.3 cm to
µ∆xhoriz

(Ns=1000) = 21.3 cm.

As for each of the ten defined reference trajectories five different measurement data sets are
simulated, the variations in the horizontal position residuals after each trajectory evaluation
have been investigated. Within the SLAM evaluation, the probability map in each iteration
is hereby taken from the previous epoch. The mean residuals have been computed for the
1st, 2nd, 3rd, 4th, and 5th iteration using the residuals of all ten simulated trajectories with
varying Ns = {50, 100, 200, 500, 1000, 1500, 2000}. The corresponding horizontal residuals are
illustrated in Figure 7.10. Although an improvement of the residuals has been expected from
one iteration to the next, the investigations have revealed that the variations are arbitrary
and, consequently, are independent of the current iteration. The reason therefore is that an
absolute offset in the GNSS PPP position solution cannot be reduced by the SLAM if the
offset is located in an unoccupied region. The particle filter only enables a smoothing by the
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incorporation of the PDR data and the corresponding dynamic model.

Figure 7.10: Mean position residuals of all trajectories after each iteration as a function of
the number of particles Ns.

7.3.1 Application of the SLAM-based map within the RBPF

In a next step, the SLAM-based probability map is integrated instead of the user-tailored
probability map within the particle filter processing based on the GNSS SPP solution.
Thereby, the substitutability of the user-tailored probability map by the SLAM-based map is
proofed. Figure 7.11 shows the results of one selected outdoor trajectory.

Figure 7.11: Comparison of the evaluation results of the particle filter integrating the user-
tailored probability map and the SLAM-based probability map.
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The trajectory is processed tow times, one time with the user-tailored probability map
and another time with the derived SLAM-based probability map. The evaluation demon-
strates that the SLAM-based probability map and user-tailored map lead to similar results.
The corresponding position residuals of the illustrated trajectories are visualized in Fig-
ure 7.12.

(a) Horizontal position residuals.

(b) Along track residuals. (c) Across track residuals.

Figure 7.12: Comparison of the horizontal, along track and across track residuals.

The amplitudes of the residuals of the PF integrating the SLAM-based probability map are
a bit lower, but show that the accuracy is more or less the same as the one of the PF based
on the user-tailored map, see also Table 7.3. In Table 7.3, the mean values of the horizontal,
along track, and across track position residuals are given for the GNSS and PDR trajectory

Table 7.3: Mean of the horizontal, along track, and across track position residuals.

µ∆xhoriz
[m] µ∆xalong

[m] µ∆xacross
[m]

GNSS 9.14 5.64 5.77
PDR 69.23 38.16 50.56
PF user-tailored map 2.66 1.99 1.37
PF SLAM-based map 2.28 1.69 1.07
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as well as for the two different particle filter realizations.

Finally, it can be suspected, that the SLAM-based probability map could replace the user-
tailored probability map in case that PPP would be applicable 24 hours a day. If GNSS phase
observations would be available on smartphones, an individual SLAM-based probability map
could be easily generated. The advantage of the SLAM-based probability map generation
compared to the approach described in section 5.1.1, in which the raster map tailored to blind
people acts as basis for the derivation of the probability map, is the possibility to adjust for
environmental changes by rating current data higher than outdated data. Moreover, one
may account for individual preferences by generating the map with data from a single per-
son. Otherwise, the cooperative approach, incorporating data of various blind pedestrians,
at least improves the spatial and temporal coverage of the map area.

7.4 Aspects of the application of SLAM in indoor

environments

In indoor environments, it is impossible to generate a user-tailored raster map valid for
each blind pedestrian due to the small-scaled environment and the very individual naviga-
tion habits of visually impaired people within buildings. The generation of the user-tailored
raster map is very time- and cost-intensive and therefore cannot be tailored to one individual
person. However, without any pre-knowledge, the SLAM offers a possibility to extract a prob-
ability map for indoor environments. As the probability map can be generated automatically,
probability maps for individual blind persons could be realized.

In section 7.3, the applicability of the developed SLAM for the generation of a probability
map representing the path preferences of blind pedestrians has been demonstrated for the
outdoor environment. The combination of the GNSS PPP data and the PDR-based motion
data is accurate enough to build a map representing relevant structures like pavements,
zebra crossings, footpath, etc. For the realization of a SLAM within buildings, a position
estimation with accuracies comparable to the PPP and PDR combination has to be provided
for a reliable mapping of the areas accessible to blind pedestrians, since the environment is
characterized by objects and areas of even smaller size.

Consequently, the combination of the fingerprinting-based WLAN positions with the PDR
motion data does not suffice for the SLAM-driven mapping of the accessible and preferred
areas of blind pedestrians. Other possibilities exist for positioning in indoor environments
(Mautz, 2012), however, the use of a smartphone reduces the number of possible options.
In general, fingerprinting-based Bluetooth positioning is an alternative to the WLAN posi-
tioning but requires, due to the lower signal range, a more dense network of access points.
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As demonstrated in Cinefra (2013) and Faragher and Harle (2014), the accuracy of Blue-
tooth Low Energy is in the best case in the range of 1.5 to 2 meters. In comparison, the
fingerprinting-based WLAN positioning provides accuracies in the range of 2.5 to 3 meters.
The Bluetooth Low Energy signal range is about 10 m, which is two times lower than the
WLAN signal range of about 30 m. Therefore, a denser network is needed for a continuous
tracking. Nevertheless, the positioning accuracy of Bluetooth does not fulfill the requirements
of the SLAM-driven probability map generation. Consequently, up to now, no smartphone-
based positioning technology enables a SLAM of the probability map representing the path
preferences in indoor environments.
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8.1 Summary

The purpose of the thesis was the development of a positioning tool being the basis for a
navigation system tailored to the needs of blind pedestrians. Therefore, in a first instance,
the requirements related to the positioning of visually impaired people in terms of accuracy,
reliability, and availability have been determined. A comprehensive market analysis with re-
gard to navigation and assistance systems for blind persons was accomplished. Additionally,
the contemporary research related to the navigation of visually impaired people has been
discussed. Based on the market and research analysis, unsolved problems and possible im-
provements have been identified. In the design phase of the thesis, these aspects have been
taken under consideration for the development of a positioning concept.

The investigations identified a smartphone as an affordable tool for visually impaired people.
The comprehensive possibilities of a smartphone in terms of positioning, computing, and
communication have been chosen to be the basis for the developments. Hereby, all possible
smartphone sensors are used to have redundant information and to compensate the disad-
vantages of one sensor by the advantages of the others. The redundant and complementary
data strongly contribute to the improvement of the availability, reliability, but also accuracy
of the position estimation.

Then, the goal of the thesis was to exploit all possibilities of filtering to provide, outdoors as
well as indoors, a position solution which fulfills the accuracy requirements of a navigation
system for blind pedestrians. Therefore, the output of the smartphone-internal GNSS receiver
and the WiFi scanner are used besides the sensor data of the accelerometer, gyroscope,
magnetometer, and barometer to derive absolute and relative position information. As the
available sensor data and the environmental structures are different for the outdoor and indoor
environments, two filter approaches have been developed. While outside of the building, the
the GNSS unit delivers absolute positions based on a single point positioning algorithm, a
RSSI-based WLAN-fingerprinting technique supports the filter in indoor environments by
providing 3D coordinates. Outdoors as well as indoors, a PDR algorithm determines the
actual velocity and the change of the heading. Furthermore, the barometer gives information
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about the change in height. Details on the different preprocessing techniques have been given
in the course of the thesis.

The particle filter is chosen as core element for the position estimation due to the fact, that
this filter is optimal for the integration of multimodal distributions and non-linear motion
and observation models under the aspect of estimating the state of a dynamic system in
an infinite space. However, to reduce the computational load of the state estimation, the
outdoor as well as the indoor filter is realized by a Rao-Blackwell particle filter concept.
Thereby, parts of the unknown state are determined by a parametric Bayes filter. In case of
the designed RBPF, the horizontal coordinates are estimated within the particle filter, while
the actual height is the output of a Kalman filter.

Besides the preprocessed measurement data, the developed RBPFs integrate spatial infor-
mation about the environment. The outdoor positioning is supported by a probability map
which represents the path preferences of visually impaired pedestrians and the accessibility of
the outdoor space. Due to the very individual navigation habits of blind persons in indoor en-
vironments and the small-scaled structures within a building, no equivalent probability map
can be generated for the indoor use. Instead, an occupancy grid map and a wall collision
filter facilitate the filter in its positioning task. For the provision of the correct occupancy
grid map, a floor detection algorithm is installed within the filter. Furthermore, the activity
gained from the PAC algorithm provides location probabilities. For example, in case of the
detected activities walking upstairs or walking downstairs, the possible state space can be
restricted to stairways.

The positioning performance of each of the two RBPF approaches has been investigated in de-
tail on a PC with an Intel i7 desktop CPU with a processor speed of 3.2 GHz and 12 GB RAM
using MATLAB. The raw sensor data of several walks along different trajectories in outdoor
and indoor environments have been recorded and evaluated in a post-processing mode. As
an external check for the ground truth, it has been defined that the pedestrian has to pass
several reference points with known coordinates along the trajectory.

The outcome of the filters has been analyzed in terms of necessary number of particles,
computation time and processing break-off quota. Furthermore, for the identification of a
suitable state representation, four different processing strategies (particle with highest weight,
weighted mean, center of the cluster with the highest accumulated weight, center of the cluster
with the highest particle concentration) have been investigated. Based on the optimal number
of particles and an appropriate representative of the state estimate, the impact of the map
and activity integration on the position solution has been shown. Moreover, the position
residuals in along track and across track direction, as well as the error ellipses of the position
solutions are presented.
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The investigations for the position estimation in outdoor environments revealed that at least
500 particles are necessary for the particle filter processing if the convergence of the position
errors towards a minimum should be guaranteed. Less particles may come along with a
much worse position accuracy. The processing of the particle filter based on 500 particles
requires 0.01 s for one epoch. Furthermore, the weighted mean was identified as best state
representative due to the minimum residuals gained by this approach.

The mean horizontal position residual of the whole trajectory is, in the best case, 1.87 m
and, in the worst case, 4.42 m. However, the maximum of the mean across track residual
is 1.65 m, which allows a continuous localization of the pedestrian at the correct pavement.
The mean along track residual has a maximum of 3.58 m, which has to be taken into account
for the announcement of guidance instructions. Finally, it can be stated, that the combined
GNSS/PDR trajectory solution can be improved by about 47% to 69% if the user-tailored
map is integrated within the PF processing. In comparison, a common outdoor map leads
only to an improvement of only 11% to 20%.

To circumvent the labor-intensive generation of the user-tailored map, one of the research
questions of the thesis is, whether the appropriate location probabilities can be automatically
derived by a SLAM approach. However, due to the insufficient position accuracy of the GNSS
code solution, GNSS PPP has to be employed for the SLAM-based map generation. As GNSS
phase data, which is required for the PPP processing, is not accessible on smartphones,
the SLAM was realized within a simulation environment. The investigations revealed, that
SLAM is qualified to provide a probability map which represents the path preferences of
blind pedestrians. For the evaluation of the applicability of the SLAM map, the user-tailored
probability map was substituted by the SLAM-based map within the particle filter. The
evaluation showed, that both maps lead to comparable results.

In indoor environments, the performance of the particle filter strongly depends on the use of
the correct floor map. Therefore, the height estimation and the consecutive floor detection
have been proofed with regard to their efficiency. The investigation revealed that the fusion
of hWLAN and ∆hbaro as well as the combination of hWLAN and ∆hPAC allow the identification
of the correct floor level. Consequently, ∆hPAC can be taken as alternative for ∆hbaro if the
smartphone has no internal barometer. However, the PAC-based height estimation is limited
to stairs which have a standardized step height and only supports a vertical displacement of
one stair per walked step.

Since indoors the wall collision filter can cause processing break-offs, this effect has been
inspected in detail. The computation break-off quota can be reduced to zero if the PF pro-
cessing is done with at least 500 particles. 1500 particles result in a mean computation time
of 0.05 s for 1 epoch, while the position residuals converge to a minimum. Furthermore, the
weighted mean is again identified as best state representative. The integration of the activity,
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the map, and the wall collision filter has a positive impact on the position accuracy. The hor-
izontal errors can be reduced by about 40% to 60% due to the processing with the designed
RBPF. Especially at stairways and at room entrances, the position residuals can be strongly
reduced. Summarizing the indoor results, all presented evaluations provide an accuracy which
fulfills the requirements of a navigation system for blind pedestrians.

In general, the position residuals are smaller in indoor environments. This is due to the better
accuracy of the WLAN fingerprinting and the small-scaled environmental structures within
buildings. However, both positioning approaches strongly improve the original WLAN and
GNSS accuracies. In summary, the two developed RBPFs estimate the 3D coordinates with
an across track accuracy in the range of a blindman’s stick. Indoors, also the accuracy of
the along track component fulfills this requirement. The along track residuals of the outdoor
solution may be higher than the sensing range of a blind pedestrian, but can be handled by an
earlier announcement of guidance instructions and obstacle warnings.

8.2 Outlook

In a future step, the developed algorithms have to be adjusted for the application on a
smartphone. The developed framework has served as tool for the investigation of the best
performing procedures. During the development and implementation phase, the real-time
character of the RBPFs has always been kept in mind. Nevertheless, the processing power
of a smartphone is different from that of a desktop computer and therefore, the bottleneck
for the application of the developed positioning filters on a smartphone is most likely its
hardware performance.

Within this thesis, the potential of the SLAM-based map generation based on GNSS PPP
has been demonstrated. However, up to now, the raw GNSS sensor data is not available on
smartphones. If the GNSS phase measurements would be provided by smartphones, on the
one hand, the SLAM-based map may be generated directly on the smartphone and, on the
other hand, the performance of the outdoor positioning could be improved due to the better
accuracies of the PPP solution.

As the indoor positioning depends on the availability of a WLAN network and an established
radio map, the application of the indoor positioning approach is restricted to only a few
buildings. However, the radio map may be also built on the basis of a SLAM approach.
By collecting the data of several pedestrians, an appropriate radio map could be provided.
Radu and Marina (2013) for example, use a crowdsourcing approach for the establishment
of a WLAN fingerprinting data base. Thereby, motion and map information is used for the
positioning and the update of the radio map.
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Appendix A

Basic concepts in probability

In the following, the basic concepts in probability are given. The formulation is based on the
notation of Haug (2012) and Thrun et al. (2006).

A.1 Multivariate statistics

A random/stochastic variable varies with regard to a probability distribution and cannot be
defined by a deterministic value. Within the thesis, the dynamic system is defined by multi-
dimensional stochastic variables, therefore multivariate probability distributions are required
to describe the system’s stochastic behavior. The sensor measurements, the transition data,
the state, as well as the environment are all modeled as random variables within a Bayes fil-
ter. All these variables can have any arbitrary values according to specific probabilistic laws.
Furthermore, the stochastic system can change with time and consequently, the underlying
probability distribution is changing. To describe such a stochastic variable, a dynamic or
transition equation is needed. The process of calculating these probabilistic laws is called
probabilistic interference (Thrun et al., 2006).

The Probability Density Function (PDF) represents the probability that a stochastic variable
X has a specific value x and is defined by

Prob {X = x} = p(x). (A.1)

In general, probabilities are always positive p(x) ≥ 0. The probability that the stochastic
variable has a value within the limits η and ξ is determined by

Prob {η ≤ X ≤ ξ} = P {η ≤ X ≤ ξ}

=

∫ ξ

η
p(x)dx.

(A.2)
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Appendix A Basic concepts in probability

Considering a multidimensional variable X, the probability that this variable has a value
within the interval η ≤ X ≤ ξ, one has to take the dimension of the variable into ac-
count:

Prob {η ≤ X ≤ ξ} = P {η ≤ X ≤ ξ}

=

∫ ξ

η
RnX

p(x)dx =

nx∏
i=1

∫ ξi

ηi

p(x1, . . . , xnx)dxi,
(A.3)

with nX being the dimension of X.

The Cumulative Distribution Function (CDF) represents the probability Prob {X ≤ ξ} and
is for the one-dimensional case

P (ξ) =

∫ ξ

−∞
p(x)dx. (A.4)

If ξ goes to infinity, the cumulative probability P (ξ) becomes one. The Cumulative Distribu-
tion Function (CDF) for a multidimensional random variable is given by

P (ξ) =

∫ ξ

−∞
RnX

p(x)dx. (A.5)

If the random variable X is discrete instead of continuous, the integral of the PDF and the
CDF in equation (A.2) and (A.4) is substituted by a summation representing the discrete
probability distributions:

P {η ≤ X ≤ ξ} =

ξ∑
η

p(x), (A.6)

P (ξ) =

ξ∑
−∞

p(x), (A.7)

with the property that the sum of all probabilities is equal to one∑
x

p(x) = 1. (A.8)

The joint distribution p(x, y) of two stochastic variables X and Y is called joint PDF and
can be determined by

p(x, y) = p(x)p(y) (A.9)

if the random variables X and Y are independent. The marginal PDF of X is

p(x) =

∫ ∞

−∞
p(x, y)dy. (A.10)
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A.1 Multivariate statistics

The conditional probability p(x|y) represents the probability of a random variable X under
the assumption that the value of Y is known and corresponds to y:

p(x|y) = p(X = x|Y = y). (A.11)

The conditional probability can be determined by

p(x|y) = p(x, y)

p(y)

=
p(x)p(y)

p(y)
= p(x)

(A.12)

if the random processes X and Y are independent and p(y) > 0. Combining the conditional
probability in equation (A.12) with the marginal PDF given in equation (A.10) yields to the
theorem of total probability

p(x) =

∫
p(x|y)p(y)dy. (A.13)

For the discrete case the integral within the theorem is replaced by a sum:

p(x) =
∑
y

p(x|y)p(y). (A.14)

The Bayes rule follows from the relation between a conditional PDF p(x|y) and its inverse
p(y|x). The Bayes rule for the continuous case is defined by

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)∫
p(y|x)p(x)

, (A.15)

while the definition for the discrete case is

p(x|y) = p(y|x)p(x)∑
p(y|x)p(x)

. (A.16)

The Bayes rule is the basis for probabilistic interference. The conditioned probability p(x|y)
corresponds to the posterior probability distribution of X after incorporating the measure-
ments y, which is done by p(y|x). p(y|x) is the inverse conditional probability specifying
the probability of Y assuming that x was the case (Thrun et al., 2006). The probability
distribution p(x) is denoted as prior probability distribution, which is the distribution of X
before having any knowledge about y. Since the denominator of the Bayes rule does not
depend on x, it is the same for any value x and can therefore be treated as normalization
constant η for the posterior probability p(x|y):

p(x|y) = η p(y|x) p(x). (A.17)
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