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Kurzfassung

Die zunehmende Bedeutung und Komplexität eingebetteter Software macht moderne Ent-
wicklungsmethoden immer wichtiger. Besonders im Automobilbereich wird mehr und mehr
Funktionalität und Innovation mittels Elektronik anstelle von Mechanik realisiert. Die
groÿe Variantenvielfalt (Fahrzeugtypen, in Software realisierte Funtionalität, etc.) und im-
mer kürzer werdende Entwicklungszyklen erfordern zukunftsweisende Entwicklungs- und
Wiederverwendungsstrategien, wie z.B. generische Softwarearchitekturen. Eine weitere Her-
ausforderung stellt die Heterogenität der Domäne dar. Unterschiedliche Disziplinen mit
spezi�schen Systemsichten sind an der Entwicklung von Fahrzeugen beteiligt.
Software Produktlinien sind eine vielversprechende Methode systematische Wiederverwen-
dung für die Entwicklung einer de�nierten Menge ähnlicher Produkte zu nutzen. Die Auf-
teilung in eine abstrakte Problembeschreibung (inkl. Variabilität) und beliebig viele tech-
nische Realisierungen für das beschriebene Problem verringert nicht nur die Komplexität
der Beschreibung, sondern ermöglicht auch eine konsistente Variabilitätskontrolle. Dadurch
wird die Problembeschreibung zu einem integralen Bestandteil der Produktlinie. Die Art
der Repräsentation muss daher so gewählt werden, dass Produkte e�zient und möglichst
fehlerfrei erzeugt werden können. Auf Basis von bewertbaren Kriterien, die aus der Unter-
suchung verschiedener Domänen resultieren, wurde eine systematische Unterstützung im
Entscheidungs�ndungsprozess zur Auswahl eines Modellierungsparadigmas entwickelt.
Oft sind unterschiedliche Systemsichten durch verschiedenste Charakteristika geprägt, was
eine eindeutige Auswahl des Modellierungsparadigmas unmöglich macht. Um eine bessere
Gesamtrepräsentation zu erhalten, ist es daher notwendig verschiedene Paradigmen ge-
meinsam zu verwenden. Diese Arbeit beschreibt eine Methode um domänenspezi�sche
Sprachen und feature-orierentierte Variabilitätsmodellierungsparadigmen, basierend auf
bestehenden Technologien, zu kombinieren.
Die vorgestellten Strategien werden am Beispiel von eingebetteter Software für Hybrid-
elektrofahrzeuge demonstriert. Aufgabe dieser Software ist es, verschiedene Antriebe zu
koordineren, den Fahrkomfort zu verbessern und den Fahrer zu unterstützen. Wesentliche
Beiträge dieser Arbeit sind eine Methode zur Unterstützung der Auswahl eines Modellie-
rungsparadigmas, ein Modellierungsansatz zur Darstellung von heterogenen Domänen und
ein Konzept um die Konsistenz zwischen verschiedenen Artifakten im Entwicklungsprozess
zu gewährleisten.
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Abstract

The importance and complexity of embedded software is growing evermore leading to the
demand for more advanced development strategies. The automotive domain for example,
changed and still changes its focus from mechanics towards electronics. Due to the high
diversity of variants (vehicle types, software supported functionality, etc.) in this domain,
along with the need for shorter development cycles, modern development, and reuse strate-
gies like generic software architectures and mass-customization are getting vital. Another
challenge is the heterogeneous nature of the domain. Various disciplines are involved in the
development of automotive systems resulting in a need for interrelated stakeholder views.

Software product lines are a viable approach to signi�cantly support systematic reuse of
a series of similar products. This corresponds to the understanding of �generic� as a set
of prede�ned products. The separation between a high-level variability description and
various coexisting, but consistently instantiated technical realizations raises the level of
abstraction. Additionally, it ensures consistency throughout all artifacts of the develop-
ment process. The central role assigned to the problem description requires an improved
representation to increase e�ciency and reduce errors. Investigating various domains re-
sults in assessable criteria, that serve as basis for the selection of an appropriate modeling
paradigm for a certain domain or domain view. Nevertheless, stakeholder views often imply
diverse characteristics, which favor di�erent paradigms. In order to achieve a better over-
all representation of the entire domain, this work proposes a combined representation of
domain-speci�c languages and feature-oriented modeling approaches to describe variability
based on existing technology.Implementations of variability mechanisms for key develop-
ment environments (e.g. Simulink) of automotive software can be used to consistently
control variability.
The proposed strategies are demonstrated using the example of automotive control soft-
ware for hybrid electric vehicles. This control software coordinates di�erent energy sources,
improves the driveability, and supports the driver. Variability is introduced by various driv-
etrain con�gurations, various vehicle types, various markets with di�erent legal constraints,
and so on. Signi�cant contributions include a method to support modeling paradigm se-
lection in order to improve the representation of the problem domain, a multi-paradigm
variability modeling approach to represent heterogeneous domains, and a concept to ensure
consistency over various artifacts in the development process.
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Extended Summary

The importance of automotive software and the number of embedded software functions is
growing continuously. More and more functionality is provided by software. As a result,
complexity raises and more advanced development strategies are required. An important
attribute is the potential for mass-customization in order to deliver customer-speci�c cars.
This also in�uences software since it requires a generic software solution which supports
the development of customer-speci�c control software variants. Generic in common sense
means to provide all possible variants. In a realistic scenario this is not feasible since it
would result in unmanageable complexity. The �rst step to reduce complexity is to restrict
the domain to a certain set of variants. Obviously, for complex systems as for example
automotive control software there is still a lot of variability even for a small number of
variants.

Software Product Line Engineering (SPLE) allows to systematically describe variability in
software and, as a result, to systematically reuse software components or modules. The
major concept is the distinction between two di�erent development processes. In Domain
Engineering, the generic platform containing variability is built. Variability is made ex-
plicit in terms of variation points, which indicate the existence of alternative realizations.
In Application Engineering, concrete products are derived from the platform by taking de-
cisions for each variation point. Besides systematic reuse, one major advantage of SPLE is
the possibility to control variability consistently over all artifacts in the development pro-
cess (single point of variability control). This is realized by the separation of the problem
description and di�erent technical solutions (requirements, design, implementation, tests,
documentation, etc.) as shown in Figure 1 and Section 6.5. This work mainly focuses on
domain engineering, and there in particular on the problem space. Technical realizations
from the automotive domain are used to show the applicability of the single point of vari-
ability control concept (see Section 6.8 and Section 6.9).

This work is part of a national funded project called HybConS (Hybrid Control Systems).
The proposed concepts are independent of a speci�c problem domain, but are subsequently
described for automotive control software. The objective of the overall project is the
development of a generic software architecture for control units of hybrid electric vehicles
(HEV). Hybrid electric vehicles basically consist of at least one electric motor and some
other kind of energy source, usually a combustion engine. The aim of the software is
to control the hybrid electric system. Due to the complexity of the overall system there
are many in�uencing factors for the software. Some examples are illustrated in Figure 2.
Di�erent strategies for an improved representation of the domain are required in order to
handle the complexity.

Within this thesis, di�erent domains have been analyzed (see Section 6.1 and Section 6.2)

ix



Domain-specific 
language(s)

Feature model(s)

Multi-paradigm modeling

Problem space Solution space
S

in
gl

e 
po

in
t o

f 
va

ri
ab

ili
ty

 c
on

tr
ol

Figure 1: Improved representation of the problem space through the use of multi-paradigm
modeling together with a separation of concerns in order to consistently control variability
in various development artifacts.
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Figure 2: Various interrelated domain views for embedded automotive software

in order to �nd a modeling paradigm resulting in a domain model with low complexity.
Two modeling paradigms have been identi�ed to be of practical relevance: Domain-Speci�c
Modeling (DSM) and Feature-Oriented Domain Modeling (FODM). The investigation of
domains revealed di�erent domain characteristics favoring di�erent modeling paradigms.
Analyzing the in�uence of the modeling paradigm on the representation complexity de-
pending on domain characteristics resulted in a method to support the decision making
process for an appropriate modeling paradigm (see Section 6.3). The evaluation of di�erent
domains further shows that complex domains often can be decomposed to several views
with diverse characteristics. These domains are here referred to as heterogeneous. The
main problem resulting from heterogeneous domains is the inability to �nd an appropri-
ate modeling paradigm for the entire domain. Despite the fact that there are proposals
towards new languages supporting or combining domain characteristics, there is no satis-
fying solution. The proposed multi-paradigm variability modeling approach (see Section
6.6) uses existing and proven technology wherever possible. The concept is based on the
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fact that modeling approaches consist of three main building parts: elements, connections
between elements and properties of elements. The most fundamental problem when com-
bining di�erent variability modeling paradigms is the de�nition of inter-model constraints
(e.g. element in a model depends on element in another model). In the proposed solution,
the constraints are restricted to the main building parts and are represented in a Common
Domain Model. Figure 3 illustrates the basic multi-paradigm modeling concept.

Elem 1

Elem 1
<<Ref>> 

Elem 2
<<Ref>>

Elem 2

Domain-specific language Feature model

Common domain model

constraints

Figure 3: Multi-paradigm modeling concept to de�ne inter-model constraints in a Common
Domain Model. The Common Domain Model only consists of references to original model
elements.

As a metric to evaluate the usefulness of the proposed approach, the domain representa-
tion complexity has been assessed. Representation complexity can be seen as an important
quality metric since the domain model is used for the derivation of many products. Fur-
thermore, the domain model has a long life cycle. Using a model with lower complexity
helps application engineers to work more e�cient and reduces the probability of errors in
the product derivation process. In order to measure the representation complexity, three
simple metrics have been de�ned (see Section 6.4). The metrics are again based on the
main building parts. Element complexity measures complexity on element level, interface
complexity the number of varying connections and, �nally, property complexity counts
the number of non-�xed properties. The sum of these single values results in an overall
representation complexity value. This value can be used to compare di�erent representa-
tions. An evaluation of di�erent domain representations shows that the multi-paradigm
variability modeling approach results in lower complexity, because the representation of
single views can be improved. Inter-model constraints in this case do not cause signi�cant
overhead.

In conclusion, the main objective of this thesis is an e�cient strategy for systematic reuse.
Improved domain representations, in particular of heterogeneous domains, are used to
reduce complexity. Signi�cant contributions include the complexity reduction of domain
representations, an improved approach to represent heterogeneous domains and a concept
to ensure consistency over the entire development process (see Figure 1).
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Glossary

Application engineering is the process of software product line engineering in which the ap-
plications of the product line are built by reusing domain artifacts and exploiting the product line
variability.

Binding time is the point in time when the decision upon selection of a variant must be made.

Domain engineering is the process of software product line engineering in which the common-
ality and the variability of the product line are de�ned and realized.

Domain model: de�nition of the functions, objects, data, and relationships in a domain.

Domain-speci�c language is a programming language or executable speci�cation language that
o�ers, through appropriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.

Domain-speci�c modeling use domain-speci�c languages for the speci�cation of domain con-
cepts.

Feature: prominent and distinctive user visible characteristic of a system.

Feature-oriented domain modeling uses features to describe commonalities and variabilities
of a domain usually in a feature diagram.

Generic architecture: Architecture supporting a de�ned set of solutions.

Heterogeneous domain: Di�erent dependent stakeholder views without one-to-one mapping be-
tween views.

Model con�guration binding time: bind variation points when a variant-rich model is in-
stantiated/con�gured to represent a single variant.

Multi-paradigm modeling enables the combined representation of a domain model by using
di�erent variability modeling paradigms.

Problem space is a more abstract representation of the problem domain (i.e. the terminology).

Single point of variability control: one point which consistently controls variability through-
out various artifacts.

Software Product Line: a set of software-intensive systems sharing a common, managed set
of features that satisfy the speci�c needs of a particular market segment or mission and that are



developed from a common set of core assets in a prescribed way.

Solution space describes all possible con�gurations of implementation components.

Variability describes di�erences between similar products.

Variation point: A variation point identi�es one or more locations at which the variation will
occur.



Chapter 1

Introduction

The focus of automotive systems changes from mechanics to embedded electronic systems
as illustrated in Figure 1.1. Hardware is not the main cost driver in automotive devel-
opment anymore, instead software and electronics are growing in importance. They are
the main source of innovations [7]. An enormous number of safety critical, real-time func-
tionality has to be developed for a complex, distributed environment. This requires more
e�cient and systematic development methods like reusability, generic architectures, code
generation, etc.

1.1 Motivation

Reduced time to market, high quality requirements, complexity of domains, the reduction
of development costs and obeying di�erent safety and quality standards are challenging
for many industries nowadays. Although applicable to various domains this work has a
strong focus on development of automotive control software. Especially the automotive
domain as a multi-disciplinary domain covering mechanics, E/E (electrical and electronic),
embedded software, thermodynamics, and many more has strong requirements on �exibility
in the system development process. The surrounding system has many dependencies on
the embedded control software. This increases complexity.

Di�erent development strategies are applied in practice. Although often used in literature,
single system development (developing each product from scratch) seems to have no prac-
tical relevance. Usually, a so called clone & own approach is used, which simply means that
an existing project is copied and adapted to the requirements of a new project [8]. This
can be reasonable for a small number of projects. With a growing number of projects this
strategy is getting very error-prone and ine�cient. Another major drawback is the fact
that the correction of bugs or other adaptation have to be done independently in di�erent
software projects often leading to inconsistencies.

In order to be competitive, strategies for systematic reuse and generic architecture design
should be included in the development process. One development strategy promoting these
characteristics is called Software Product Line Engineering (SPLE). The main idea is the
de�nition of a set of supported products (scoping) and the explicit description of variability
(di�erences between these products). Variability comes in two shapes: variability in time,
which describes the existence of di�erent versions of an artifact that are valid at di�erent

1



2 1. Problem description

Figure 1.1: Trend towards embedded software from 1995 to 2015 [1] showing the growing
share of embedded electronic systems (EES) in automotive systems development.

times and variability in space, which describes the existence of an artifact in di�erent
shapes at the same time [2]. This work focuses on variability in space. Current literature
on software product line engineering often considers software requirements as the main
drivers for platform development [2, 9, 10]. Therefore, software requirements are often
used as basis for the speci�cation of the problem description. This is legitimate for the
development of COTS software. Nevertheless, in recent years the requirements on software
have changed. Often software is embedded in a more complex technical device or in a
business or development process. In these cases, software requirements can not be used as
a single source to describe the problem domain, since the surrounding system or process,
respectively, has a huge in�uence on the resulting software system.

This work will be applied using the example of an embedded automotive control software.
The software is responsible for the control of the peripheral system. Thus, the system
in�uences software and vice versa. Following from this, di�erent domain views are part of
the problem. This results in a paradigm shift of thinking about basic activities like domain
analysis and domain modeling, which is illustrated in Figure 1.2. What exactly is part of
the problem description depends on the speci�c stakeholder structure. This means that
di�erent views as well as di�erent levels of abstraction may constitute the problem space.

1.2 Problem description

Section 1.1 reveals several existing challenges in automotive software development pro-
cesses:

• Software has to be mass-customizable in order to stay competitive.
Building each product from scratch is economically unreasonable. A clone & own
approach performs better for a very small number of products, but is very error-prone
and also ine�cient in the long term. The introduction of explicit variability in an
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Figure 1.2: Shift from current predominant view in literature [2] showing software require-
ments as problem description (left) vs. system requirements as problem description for
complex embedded systems (right).

inherently complex domain further increases complexity. This complexity has to be
handled in some way.

• Heterogeneous domain.
Various periphery views in�uence the software. This results in a series of domain
views with di�erent characteristics and di�erent stakeholders.

• A diverse tool landscape makes the consistent control of variability di�cult.
Common development processes use a series of di�erent tools. Often there is no
integration between the tools in order to exchange information.

The main objective of this work is to provide strategies and means for the development
process of generic system architectures. The explicit representation of variability increases
complexity, requiring strategies to keep complexity on a manageable level. Another chal-
lenge is the diversity of the tool landscape used across the entire development process.
Variability has to be handled consistently throughout various tools and artifacts.

1.3 Contribution and signi�cance

This section summarizes the main contributions:

1. Problem space description using multi-paradigm variability modeling for
heterogeneous domains.
Coupling of feature-oriented domain models and graphical domain-speci�c models.

(a) Reuse of existing technology.
Existing tools provide advanced constraint-checking mechanisms, that can be
used in this context.

2. Reduction of single-model paradigm representation complexity
The representation complexity depends on the selection of the modeling paradigm.

(a) Modeling paradigm selection
Approach to support the selection of an appropriate modeling paradigm.
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3. Ensure consistency over the entire development process.
Implementation of a single point of variability control.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 describes relevant related
work and basic terminology from software product line engineering, existing strategies
for the improvement of domain representations, and a comparision with similar projects.
Chapter 3 proposes an advanced development strategy for generic software development.
Chapter 4 applies the proposed concepts using the example of automotive control software.
Chapter 5 concludes this thesis and provides an outlook on possible future work.



Chapter 2

Related work

This section �rst introduces important terminology and provides de�nitions for concepts
which are used throughout this work. It gives a basic understanding on software product
line engineering and related concepts. The second part of this section summarizes some
related projects and identi�es the di�erences to the presented work.

Note: Discussing all relevant and related work from literature would go beyond the scope
of this work. This section makes no claim of being complete, but discusses a selection of
important work.

2.1 Software Product Lines

Modern software demands higher quality and shorter time-to-market cycles at lower costs,
making reuse more important than ever before. The idea of reuse is not new and has evolved
over time. The latest development attempts to make reuse of software more systematic.

One approach propagating systematic software reuse are software product lines (SPL). The
core idea is to build multiple products from a single infrastructure in a way that is aligned
to stated business goals. An often used de�nition from Northrop and Clements [3] describes
a software product line as �a set of software-intensive systems sharing a common, managed
set of features that satisfy the speci�c needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way.�

Basically, software product line development consists of two fundamentals:

• The di�erentiation of domain and application engineering and

• the separation of commonalities and variabilities in domain engineering.

Mass customization (the ability to e�ciently customize a product for speci�c customer
needs) is one main aim of software product lines. To realize this, variability has to be
made explicit and managed in an e�ective manner.

Product line adoption is still a challenge in practice. Existing strategies can be classi-
�ed into three groups [11]:

5
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Proactive
The product line is built from scratch with all possible products considered before
startup. This strategy causes high upfront investments.

Reactive
The product line grows incrementally with each new product. This approach causes
less upfront costs.

Extractive
The organization uses existing software systems and extracts the common and vari-
able parts. This approach is useful if the organization already o�ers products with
many similarities.

2.1.1 Essential activities

Software product line engineering can be summarized to 3 essential activities: Core Asset
Development (domain engineering), Product Development (application engineering) and
Management. Figure 2.1 illustrates these activities and the relationships between them.
The interdependent arrows indicate that they are all highly iterative. Core assets are used
to develop products and feedback from product development a�ects core asset development.

Figure 2.1: Essential activities in Software Product Line Engineering [3]

All of these activities are equally important. Overall success depends on the development
processes as well as on management support, which builds the organizational and strate-
gic frame [3] for the product line. For that purpose, the management has to develop a
Marketing and Product Plan [12], which requires the analysis of the market to thoroughly
scope the product line.

In the following, core asset development is referred to as domain engineering and product
development as application engineering.
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Domain engineering - Development for reuse

�Domain engineering is the process of software product line engineering in which the com-
monality and the variability of the product line are de�ned and realized� [2].

This de�nition distinguishes between domain de�nition and domain realization. One im-
portant task of the domain de�nition phase is domain scoping. Scoping identi�es and
de�nes the focus of development for reuse, which is of great importance from an econom-
ical point of view. A too narrow scope leads to ine�cient reuse and a wide scope may
result in a waste of resources [13]. In distinction to other reuse approaches, software assets
themselves contain explicit variability. Traceability links between these artifacts can be
used to facilitate systematic and consequent reuse. Ideally, they enable one to take e.g. a
requirement and identify all related implementation code and test cases [14].

Application engineering - development with reuse

�Application Engineering is the process of software product line engineering in which the
applications of the product line are built by reusing domain artifacts and exploiting the
product line variability� [2].

2.1.2 Domain modeling in detail

A domain model de�nes �the functions, objects, data, and relationships in a domain� [15].

Separation of problem and solution space

Czarnecki and Eisenecker [16] propose to di�erentiate between a problem and a solution
space. The problem space speci�es the problem from a more abstract point of view and
the solution space describes various technical realizations.

Variability

Variability is de�ned in terms of features, variation points and variants. Features are
described as �end-user-visible characteristics of a software system� [15]. �A variation point
identi�es one or more locations at which the variation will occur� [17]. Variants are the
possible alternatives de�ned for each variation point.

Variation points can be regarded as delayed design decisions [18] which may have di�erent
properties. First, a variation point can be implicit. This means, that the design decision is
not identi�ed, but is accidentally left open [19]. In other words, the decision has not been
deliberately left open [20]. If the design decision is identi�ed and intentionally left open,
it is said to be explicit. Other authors refer to explicit variation points as available [16].
This work always refers to explicit variation points.

Binding A variation point provides several possible variants which can be chosen for a
concrete product. At the moment a speci�c variant is selected, the variation point is said
to be bound. The binding time is de�ned as �the point in time when the decision upon
selection of a variant must be made� [14].
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The binding time has an important in�uence on the �exibility of a system. If a variation
point is bound too early, �exibility of the product line artifacts is lost. Late binding, on
the other hand, is costly.

Binding time There are many classi�cations for variability binding times in current
literature. The simplest is the classi�cation in compile-time, link-time, and start-up time
[14]. A similar approach is the division of the system con�guration into 3 main steps:
Compiling, linking, loading. Before, during, and after each of these steps variants can be
bound. Examples for binding mechanisms before compilation time are code generation,
aspect-oriented programming, and model-driven approaches. For con�guration at compile
time, precompiler macros and conditional compilation may be distinguished. Precompiler
macros are actually evaluated before compilation. In the case of conditional compilation,
commands are given via parameters.

Link time binding can, for example, be implemented by the use of a Make�le. De-
pending on the given parameter, certain compilations and linkages are performed. A
con�guration �le can represent all �les that have to be loaded together and, thus, realize
di�erent variants at load time. At runtime, components may register their interfaces and
access points in a central registry [2].

Krueger [21] gives a good summary and overview of di�erent binding times and their
corresponding mechanisms.

Another classi�cation, especially for automotive embedded systems, has been introduced
by Fritsch et al. [22]. The authors distinguish 4 di�erent binding times: Programming, In-
tegration, Assembly, and Run Time. Beuche and Weiland [23] introduce a binding time for
model-based development. Binding at ModelCon�gurationTime means to �bind variation
points when a variant-rich model is instantiated/con�gured to represent a single variant.�
This work mainly focuses on model con�guration binding time (ModelCon�gurationTime).

Domain modeling paradigms

Several paradigms have been proposed for domain modeling in practice. The most impor-
tant ones are described below.

Feature-oriented domain modeling In feature-oriented domain modeling, features
describe common and variable parts of a problem domain. One big advantage is the fact
that it can be understood by both, customers and developers [24].

Kang [15] �rst proposed the use of features to represent the problem domain with the
concept of Feature-Oriented Domain Analysis (FODA). A feature model consists of a hi-
erarchical representation called feature diagram and composition rules, such as mutual
exclusion (excludes) and mutual dependency (requires). Commonality can be described in
terms of mandatory features and variability in terms of optional and variant features [10].

Over the years, several extensions to this original approach have emerged. Basically, they
are used to simulate the modeling capabilities of domain-speci�c modeling. Cardinality-
based feature modeling [25], for example, supports the instantiation of features. In this
extension, a feature can be annotated with cardinality, which indicates the number of
possible clones of this feature in a product. It is also possible to combine features into
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feature groups and de�ne cardinalities for entire groups. Extensions are not considered in
this work.

Domain-speci�c modeling Domain-speci�c modeling uses domain-speci�c languages
for the speci�cation of domain concepts. �A domain-speci�c language (DSL) is a pro-
gramming language or executable speci�cation language that o�ers, through appropriate
notations and abstractions, expressive power focused on, and usually restricted to, a par-
ticular problem domain� [26].

Basically, two types of computer languages can be distinguished: domain-speci�c languages
and general-purpose languages. Domain-speci�c languages provide better solutions for a
smaller set of problems. Because of their narrower problem space, they provide higher
expressiveness [27] and can be used to generate products directly from these high level
speci�cations [28]. The problem is described using a language with domain-speci�c no-
tation. This notation is an important factor to improve productivity [29]. The idea of
domain-speci�c languages is not new. In fact, the �rst programming languages have been
application-speci�c. Research in this �eld has been intensi�ed in the last years [27].

Ontology-based domain engineering An ontology is generally de�ned as �an explicit
speci�cation of a conceptualization� [30]. The use of an ontology for knowledge representa-
tion has many advantages compared to prior approaches. First of all, it uses a formalized
representation of the common terminology of a domain. This overcomes the problem of
feature models, which mostly lack of formalism due to the absence of a strictly de�ned
meta-model [31].
Falbo et al. [32] state that an ontology can promote a common understanding among
developers. In their approach, they use the ontology in the domain analysis process. This
results in a domain model representing the problem space. Czarnecki et al. [33] investigate
the relationship between feature models and ontologies. In their opinion, feature models
are a semantical subset of ontologies, because ontologies have a higher descriptive power.
But again, these observations are restricted to the problem space. Matcha et al. [34] claim
the lack of semantics in current feature modeling approaches. They propose an ontological
approach by using Jena1 to build the ontology programmatically.
Ontologies are not covered in this work, because there seem to be little practical relevance.

Common variability language (CVL) Haugen et al. [35] describe a separated lan-
guage approach for specifying variability in domain-speci�c language models. They propose
a Common Variability Language (CVL) and corresponding variability resolution mecha-
nisms embedded in the OMG2 meta-model stack. This allows for the description of vari-
ability in potentially all MOF3(MetaObject Facility)-based languages, including UML, as
well as MOF- and UML pro�le-based domain-speci�c languages. Although this represents
a general-purpose, clean approach for handling variability, it is only applicable for MOF-
based artifacts. Contrary to this, the current work aims to develop an approach which is
applicable to or at least extensible to all kinds of artifacts.

1http://jena.sourceforge.net/ontology/ index.html
2http://omg.org/
3http://www.omg.org/mof/
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Decision modeling Following Czarnecki et al. [36], decision models can be traced back
to Synthesis, where they are de�ned as �a set of decisions that are adequate to distinguish
among members of an application engineering product family and to guide adaptation of
application engineering work products�.

Decision models can be represented as �a directed, connected graph, where each node rep-
resents a decision and an edge represents (one of) the next decisions to be made. The
direction of the edge de�nes the ordering of the decisions� [37]. To generate products, the
decision model must be mapped to the product line architecture [37].

One example for this approach is called DoplerVML and has been described in Dhungana
et al. [38]. Czarnecki et al. [36] compare decision modeling and feature-oriented approaches.
Decision models are an interesting concept, but are out of scope for this work.

2.2 Advanced domain modeling strategies

Recent literature includes a series of investigations towards improved domain represen-
tations. This section discusses the most important ones and the main di�erences to the
present thesis.

Elsner et al. [39] propose an approach for constraint checking across arbitrary con�guration
�le types. A constraint checking framework ensures consistency between various types of
models and �les. This work shows that consistency between di�erent development artifacts
is an important issue. Contrary to the present work, the consistency is de�ned on the level
of technical realization and not on a higher level of abstraction.

Holl et al. [40] describe an approach to de�ne con�guration dependencies for multi product
lines. Multi product lines are de�ned as �collections of self-contained and individually
developed product lines (PLs)�. The proposed approach and tool support can be used
to de�ne dependencies between heterogeneous systems. In contrast to the current work,
the term heterogeneous here refers to di�erent systems instead of di�erent stakeholder
views. Holl et al. further introduce a classi�cation of di�erent dependency types. They
distinguish between emerging (proposed by end-users) and established (de�ned in advance)
dependencies. Dependencies in this thesis are abstracted to a higher level in order to be
tool independent. Another distinguishing factor is the fact that the work by Holl et al. is
not based on existing and established concepts and technologies.

Rosenmüller et al. [41] propose a language for multi-dimensional variability modeling. It
enables the representation of variability at di�erent levels of detail from domain variability
to technical variability and allows the composition of separate variability dimensions. In
another work, Rosenmüller et al. [42] describe a method for the con�guration of multi
software product lines by the use of composition models. In [43], they de�ne a set of
dependency types between software product lines. In this case, they are used to describe
dependencies between di�erently con�gured instances of product lines whenever several
small software product lines are composed to a big one. Contrary to the current work, the
dependencies are more �ne-grained.

Friess et al. [44] describe a concept for model composition of various feature models. The
feature models can be created in di�erent tools using di�erent notations. The translation
between the di�erent notations is achieved by using an intermediate format. Contrary
to the current work, it is restricted to the use of di�erent feature models, but no other
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modeling paradigms.

Another approach, describing the connection between feature models and Ecore4-based
models, has been suggested by Heidenreich et al. [45]. The Ecore metamodel is based
on the Essential Meta-Object Facility standard and similar to OMG's MetaObject Facil-
ity standard. In their work, they describe the mapping between problem and solution
space. The solution space consists of Ecore-based models which are used to represent the
implementation in terms of model-based development.

In a follow-up work, Heidenreich et al. [46] compare the aforementioned approach to a
second mapping approach called VRL*. Both approaches describe a mapping which could
be used as an extension of the current work. The focus of both approaches is on the
mapping from problem to solution space, whereas the approach proposed in this thesis
focuses on the combination of di�erent representations mainly in the problem space. This
is why Ecore-based models in this thesis are mainly used for the de�nition of a domain-
speci�c language.

2.3 Related projects from the automotive domain

This section gives an overview of some important related projects from the automotive
domain which claim to improve reusability.

AUTOSAR The AUTOSAR5 (AUTomotive Open System ARchitecture) consortium
has developed a standardized automotive software architecture to handle various aspects
of complexity in the development of automotive systems. The main advantages of the
AUTOSAR approach are the separation of hardware dependent and hardware independent
software modules and as a result an improved reusability of software components. This
means, that it should be possible to exchange software components with OEMs and other
suppliers without revealing any implementation details [4]. The AUTOSAR architecture
(illustrated in Figure 2.2) is divided into 3 main parts:

• Basic Software layer:
Basic software is used to decouple Hardware and Application Software.

• AUTOSAR RunTime Environment (RTE):
The Runtime Environment provides interfaces and communication mechanisms to
decouple applications from the underlying hardware and Basic Software.

• Application Software layer:
Software components are independent from each other. They are also independent
from the allocation to di�erent electronic control units. Ports are used for the com-
munication with hardware and other software components. A direct communication
is not allowed.

4http://www.eclipse.org/modeling/emf/
5www.autosar.org/
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Figure 2.2: AUTOSAR architecture [4]

ATESST2 The Advanced Tra�c E�ciency and Safety through Software Technology,
Phase2 (ATESST2)6 project tries to �nd systematic approaches for information manage-
ment, architecture, variability, requirements and veri�cation. The result is EAST-ADL2,
an Architecture Description Language aligned to the needs of the automotive domain. In
further projects it has also been aligned to the AUTOSAR automotive standard.

EAST-ADL2 is organized in 4 abstraction layers as illustrated in Figure 2.3. The most ab-
stract layer is the VehicleLevel, represented by a TechnicalFeatureModel. This model is the
top-level view on the properties of a vehicle. The second layer is called AnalysisLevel. This
layer represents electronic functionality in an abstract manner. It captures the principal
interfaces and behavior of the vehicles' subsystems. This layer is represented in the Func-
tionalAnalysisArchitecture. The DesignLevel is divided in a FunctionalDesignArchitecture
and a HardwareDesignArchitecture. These models include the implementation-oriented as-
pects of software and hardware. On the lowest level, the ImplementationLevel, the software
architecture is de�ned by AUTOSAR (see Section 2.3) components.

An UML2 pro�le and a workbench for EAST-ADL2 are available. Special attention has
been given to safety, requirements, timing, and variability. Tool support for these features
has been implemented.

CESAR CESAR (Cost-e�cient methods and processes for safety relevant embedded
systems)7 is a European funded project from ARTEMIS JOINT UNDERTAKING (JU)
with about 60 partners from industry as well as scienti�c partners. It brings together
partners from Automotive, Rail, Avionics & Space, and Industrial Automation.

One goal was to provide a customizable systems engineering platform for industrial use
based on a common meta-model called MaxSysML. Three tools are used for variability
management, but they are not fully integrated until now. Dubois et al. [47] describes the

6www.atesst.org/
7http://www.cesarproject.eu/
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Figure 2.3: EAST-ADL abstraction levels [5]

use of the PLUM tool8, the CVL tool9 and pure::variants10 using the example of radio
management for avionics.

Moses & VEIA Two major studies at the Fraunhofer ISST by order of the BMW group
are engaged with the development of embedded automotive software. MOSES (German
acronym: Modellbasierte Systementwicklung) [48], the �rst project, aims to develop a
methodology for integrated model-based development of E/E systems in vehicles. There
is little support for variability in this project.

The follow-up project named VEIA11 (German acronym: Verteilte Entwicklung und Inte-
gration von Automotive-Produktlinien) focuses completely on product lines. The aim of
this project is the development of a methodology to support variability in the system devel-
opment process. First, a reference process [49] has been developed to show the requirements
of the industry for such a methodology. The following work packages propose modeling
approaches for requirements and architecture and resulted in a tool called aXBench12.
The major drawback of the VEIA project is the focus solely on the requirements and
architecture phase.

2.3.1 Comparing projects

Table 2.2 compares the aforementioned related projects with the current thesis based on
the following criteria. It has to be kept in mind that the focus is on variability for all

8http://www.tecnalia.com/plum
9http://www.omgwiki.org/variability/doku.php/doku.php?id=cvl_tool_from_sintef

10http://www.pure-systems.com/pure_variants.49.0.html
11http://veia.isst.fraunhofer.de
12http://www.axbench.de/
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criteria:

1. Variability management support:
In order to support the development of generic software architectures it is essential
to explicitly describe variability.

2. Tool support:
Projects often result in theoretical concepts or prototype implementations, but for
an industrial application mature tool support is essential. Furthermore, there are
well established tools available in many domains. Instead of replacing these tools it
is often more advisable to extend the existing tool landscape.

3. Methodical process integration:
Various development processes are used in practice. Is should be easily possible to
integrate the proposed concepts in this development process.

4. System focus/Various views:
Various stakeholder views in�uence the development of embedded control software.
All these views need to be part of the problem description.

5. Scalability:
The approach should work with a realistic number of variants in a complex domain.

6. Multi-domain approach:
An advantage of the current work is the independence of a speci�c problem domain.
Although it is described using the example of automotive control software, it can
easily be transferred to other domains. Many current solutions are very domain-
speci�c (e.g. ATESST2, VEIA, etc.).

7. Single point of variability control:
One central point (e.g. feature model) which is used to control variability consistently
across various development artifacts and tools.

2.4 Summary

The aim of this thesis is the introduction of advanced development strategies for generic
software architectures. Generic is here de�ned as a set of preplanned products. This
implies that variability between these products has to be described explicitly. This sec-
tion �rst introduced important concepts and terms from the �eld of software product line
engineering. This includes several domain modeling paradigms, which can be used for
an e�cient representation of variability. The remainder of this section discusses various
related projects and compares them to the current work following de�ned criteria. As men-
tioned before, variability management support is essential for the development of a generic
architecture. Therefore, it is a mandatory requirement in this context. Mature tool sup-
port will be provided by the use of existing and proven technology whenever possible to
ensure practical applicability with little development e�ort. Software development follows
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Tool support partly partly partly partly yes

Process integration
partly partly partly partly partly

(but extensible)

System focus/Various views no yes no yes yes

Scalability yes yes partly partly yes

Multi-domain approach no no no partly yes

Single point of variability control no partly no partly yes

Table 2.2: Results of the project comparison (yes - supported, partly - partly supported,
no - not supported)

a prede�ned process. Variability should be supported in various process steps. Further-
more, di�erent stakeholder views in�uence embedded software and need to be included in
a holistic domain model in order to ensure consistency. Many current approaches are very
domain speci�c. Especially in the context of variability management this does not need to
be the case, because it can be seen as an orthogonal issue.

Table 2.2 illustrates that none of the existing projects covers all of this criteria. The use of
existing approaches and ideas enhanced with new concepts results in an approach which
covers the de�ned criteria at least partly.

2.5 Contribution beyond state of the art

In order to face the current challenges, this work contributes beyond the state-of-the-art
as follows:

1. Problem space description using multi-paradigm variability modeling for
heterogeneous domains.
Especially for complex, heterogeneous domains the characteristics of the domain
are not uniquely �tting to one existing modeling paradigm. The main contribution
of this work is the combined representation (further referred to as multi-paradigm
modeling) of the two mainly used domain modeling paradigms in order to improve
the overall representation. The reduction of domain model complexity is important
in many ways. The domain model can be seen as a platform, which is used for the
development of many products. A complex domain model often results in error-prone
products or ine�cient product derivation. Another important aspect is the evolution
of the domain model. Typically, domain models grow over time (reactive product line
strategy), since not all possible or required variants are obvious from the beginning.
This can be caused by the development strategy or simply due to innovations in
technology. More details can be found in Section 6.6.
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(a) Reuse of existing technology.
One requirement of this work is the reuse of existing technologies with mature
tool support.

2. Reduction of single-model paradigm representation complexity
In order to enhance the representation of heterogeneous domains it is �rst required
to improve single-paradigm modeling. As a prerequisite, the characteristics of dif-
ferent domain modeling paradigms (described in Sections 6.1 and 6.2) have been
investigated.

(a) Modeling paradigm selection
The identi�cation of modeling paradigm characteristics resulted in a method to
support modeling paradigm selection. The proposal, described in Section 6.3, is
a �rst practical approach towards a more systematic decision making process.

3. Ensure consistency over the entire development process.
Variability occurs at di�erent stages of development and artifacts all over the develop-
ment process. As a consequence, various tools have to be capable of representing and
resolving variability. This is even more challenging since there are no standardized
variability mechanisms (see Sections 6.5, 6.8 and 6.9).



Chapter 3

Advanced development strategies for

generic software

The main objectives of this work are strategies to support the development of generic
software architectures. In a realistic scenario it is not feasible to provide all possible
solutions for a certain problem domain. Instead, the scope has to be restricted to a de�ned
set of solutions. This idea of �genericity� is supported by software product lines.

Software product line engineering comes with a lot of advantages often mentioned in lit-
erature (e.g. [50]), but has a lot of disadvantages as well. One major challenge is the
additional complexity due to the introduction of variability. This demands for strategies
to handle and possibly reduce this complexity. One fundamental concept is the separation
between problem and solution space. Following Czarnecki et al. [16], the problem space
is a more abstract representation of the problem domain (i.e. the terminology), whereas
the solution space describes possible technical realizations (i.e. possible con�guration of
implementation components). The concrete content of the two spaces is highly dependent
on the stakeholders. Depending on who the main stakeholders are, the problem description
can either be very abstract or very technical.

Raising abstraction from components in the solution space to a more high-level problem
description can be compared to raising the abstraction from Assembler to C, or later from
code to model-based system descriptions. Kelly et al. [28], for example, use this comparison
for domain-speci�c modeling. Figure 3.1 compares software product line engineering and
Model Driven Architecture1 (MDA) concepts. The problem space (either single-paradigm
or multi-paradigm) can be compared to a Platform-Independent Model (PIM). Both make
no assumptions on the underlying technical realization. The middle layer corresponds to
a Platform-Speci�c Model (PSM) in MDA and to a description of one or more technical
realizations (e.g. code generators) in software product line engineering. It can be seen as an
intermediate layer between the problem description and the concrete solution. This layer
is optional in domain engineering. The lowest layer corresponds to the implementation, in
this case the variability mechanisms in the speci�c tools or artifacts.

In contrast to the MDA layers, software product lines consist of another dimension in order
to re�ect the second development process - application engineering follows the same layers.
Each product is �rst speci�ed by a concrete problem description derived from the domain

1http://www.omg.org/mda/
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Figure 3.1: Comparison of the di�erent layers of model-driven architectures as de�ned by
the OMG (left) and the SPLE concept on the example of the HybConS project (see Section
6.7)

model. This description is then used to derive concrete products.
The higher abstraction of Model Driven Architectures improves productivity by decreasing
complexity. The same can be achieved with software product lines.
Another advantage of the separation between problem and solution space is the possibility
to implement a single-point-of-variability-control as shown in Section 6.5. This is especially
helpful for complex domains with a lot of cross-dependencies. Various development artifacts
have to provide variability mechanisms, which can be connected to the single-point-of-
variability-control. This makes variability consistently controllable.
A third advantage is the support of di�erent binding times. Section 2.1 mentions the
importance of binding times to increase �exibility. Separating variability control and vari-
ability representation facilitates the implementation of binding times.

Summarized, this leads to the following requirements:

• Raise level of abstraction,

• improve the high level representation, and

• ensure consistent variability control throughout the development process.

Figure 3.2 shows this thesis in the context of the Adoption Factory Pattern [6]. This pattern
has been chosen, because it is a convenient, high-level roadmap to illustrate product line
adoption from di�erent views and perspectives and it builds a valuable frame to categorize
di�erent parts of the current thesis. The focus here is on the �Establish context� part,
discussed in Section 3.2, and �Establish production capability� described in more detail in
Section 3.3. The �Operation of PL� is out of scope for this work.
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3.1 Hypotheses

Hypothesis 1: Choosing a �wrong� modeling paradigm results in high representation com-
plexity.

A variety of modeling paradigms has been developed in order to solve di�erent problems.
From this it follows that they are tailored to speci�c application scenarios. Nevertheless,
there are no explicit suggestions when to use which modeling paradigm. If one chooses
a paradigm which does not perfectly �t to the current problem, a higher representation
complexity can be assumed.

Hypothesis 2: The overall representation complexity of heterogeneous domains can be re-
duced by a combined representation in a multi-paradigm model enabling an improved de-
scription of various, independent domain views.

Usually, various stakeholders are concerned with the development of systems resulting in
multiple views which make up the problem description. It can be assumed that, especially
for complex domains, characteristics of these views are diverse justifying a combined repre-
sentation with di�erent, appropriate modeling paradigms. If the representations of single
views are improved, it can be assumed that the overall representation will be improved as
well.

Hypothesis 2.1: It is possible to use existing technology for the implementation of the multi-
paradigm framework.

There has been a lot of development e�ort in the �eld of software product line engineering
so far. Various tools and methods have been proposed in order to solve di�erent problems
(e.g. domain modeling paradigms, constraint de�nition and checking frameworks, etc.).
As a consequence, it should be possible to reuse and combine existing technologies in order
to get a solution for multi-paradigm variability modeling without inventing a completely
new language.

Hypothesis 3: Consistency, application domain independence and various binding times
can be supported by an abstraction of variability descriptions to a more high-level single
point of variability control.

Variability can either be included directly in the language or be described orthogonal to
the realization. One advantage of an orthogonal description is the possibility to con�gure
various technical realizations consistently. Furthermore, integrated variability solutions are
often very domain-speci�c. Providing a high-level, general variability description ensures
independence of a speci�c problem domain or tool. Binding times can be described easier,
if variability descriptions and technical realizations are separated.
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3.2 Establish context

This phase �paves the way for the product line adoption by determining the scope and associ-
ated business case, ensuring the necessary process capability, and performing the necessary
organizational management tasks� [3]. Two di�erent aspects are covered here. First, the
selection of a modeling paradigm and second, the representation of heterogeneous domains.

3.2.1 Selecting a variability modeling paradigm

Hypothesis 1: Choosing a �wrong� modeling paradigm results in high representation com-
plexity.

One output of the �Establish Context�-phase is a well-scoped domain model. Domain mod-
els are an integral part of a software product line, which makes the choice of a domain
modeling paradigm an important decision (see Section 6.3). This decision is often taken
implicitly without a systematic decision making process. Nevertheless, domain character-
istics are diverse by nature. Modeling paradigms support di�erent domain characteristics
and might be completely inapplicable for others. Problem descriptions of various product
lines have been investigated in the scope of this thesis resulting in distinguishing charac-
teristics. The product lines describe diverse domains (ERP system con�guration, �sh farm
automation, logistics automation) and are implemented with di�erent modeling paradigms.
The identi�ed characteristics are used to put the decision making on a more systematic
basis. Section 6.1 and Section 6.2 describe the investigated domains in more detail and
Section 6.3 introduces the resulting decision making support.

Identi�ed domain characteristics

The investigation of domains resulted in four distinguishing characteristics:

• Proportion of �xed and variable connections
In general, domains are described by elements and connections between these ele-
ments. Some connections are �xed, which means that they are part of each product.
More interesting are connections that vary between di�erent products. The propor-
tion of �xed and variable connections, as de�ned in Formula 3.1, can be used as one
distinguishing criteria.

|connectionsfixed| ≥ |connectionsvariable| (3.1)

• Several instances of elements
Instantiation of elements means that any number of instances from an element (e.g.
feature in a feature model with cardinality > 1) can be part of a concrete product.
This is trivial if all instances are equal. More di�cult is the description of di�erent
con�gurations for each element instance, i.e. if a feature has a cardinality greater
than 1 and each feature instance has to be con�gured independently. This is not sup-
ported by feature-oriented modeling without the use of special extensions. Czarnecki
et al. [25] describe an extension to represent instantiation in feature models. This
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extension has several disadvantages including the resulting high complexity. More-
over, the extension has only been implemented in a prototype tool. Instantiation
in domain-speci�c modeling is very natural, since language elements can be used in
di�erent contexts.

• Di�erent binding times/views
It seems to be easier to realize di�erent binding times in a feature-oriented approach,
because it is de�ned on a much higher level of abstraction (i.e. almost everything
can be de�ned as a feature). Di�erent views can easily be represented in one feature
model. As a consequence, dependencies between di�erent views can be described as
simple requires/excludes constraints in the feature model. Domain-speci�c languages
support multiple views as well, but usually this makes the language much more
complex than necessary.

• Target groups
The selection of a domain modeling paradigm also depends on the user of the domain
model. The expertise of the target group for the domain model has to be evaluated
in order to select the appropriate modeling paradigm.

Section 6.3 gives a more detailed description of these characteristics.

Selecting a modeling paradigm

Based on the identi�ed characteristics, the current work proposes a method to support
the modeling paradigm selection process. Multi-Attribute Domain Modeling Approach for
Paradigm Selection (MADMAPS) is an adaptation of the Multi-attribute utility theory
(MAUT), which allows decision �nding based on multiple attributes and goals. The orig-
inal MAUT approach consists of 5 steps: Identi�cation of alternatives, establishment of
assessment criteria, determination of criteria weighting factors, assessment of alternatives
and the calculation of utility values. These steps have been adapted for the MADMAPS
approach as described below. Step 1-3 are one-time tasks during MADMAPS development,
Step 4 and 5 are recurring tasks for each paradigm selection process.

Step 1: Identi�cation of alternatives. The two alternatives in this case are feature-
oriented domain modeling and domain-speci�c modeling.

Step 2: Establishment of assessment criteria. The domain characteristics identi-
�ed above constitute the assessment criteria.

Step 3: Assessment of alternatives. Contrarily to the original MAUT approach, the
assessment values are prede�ned in the MADMAPS approach (see Section 6.3). They
give a rating for each criteria on how well it is supported by the respective alternative.

Step 4: Determination of weighting factors. The weighting factors are based on a
questionnaire which has to be answered following a Likert scale. This is the only step
actually performed by the MADMAPS user.

Step 5: Calculate utility values. The last step describes the calculation of utility val-
ues. These values may give a recommendation for one modeling paradigm. If they
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do not, this is an indicator that the domain probably is heterogeneous. In this case,
the domain has to be split into various stakeholder views.

3.2.2 Coupling variability representations - Multi-paradigm modeling

Hypothesis 2: The overall representation complexity of heterogeneous domains can be re-
duced by a combined representation in a multi-paradigm model enabling an improved de-
scription of various, independent domain views.

Hypothesis 2.1: It is possible to use existing technology for the implementation of the multi-
paradigm framework.

Especially in embedded systems engineering, the problem domain incorporates various
views (�a view addresses one or more of the system concerns held by the system's stake-
holders�)2. Some examples are software, mechanics, ECU allocation, safety, supply chain,
legal constraints, and others. They are not only interrelated, some of them also have dif-
ferent development (e.g. software can usually be developed faster than mechanics) and
life cycles (e.g. mechanical parts as for example engines have a longer average durability
than electronic control units). A domain model covering various views helps to synchronize
cycle times.

It is also very likely that di�erent views have diverse characteristics. This is called a
heterogeneous domain here (see Section 6.6). Not all domains consisting of multiple views
are heterogeneous by nature. In some cases, views directly correspond to each other. An
investigation of two di�erent automation system projects showed that software (one view)
can be mapped to speci�c hardware elements (second view), i.e. if a speci�c sensor is part of
a product the corresponding software needs to be part as well. This means that the software
architecture is driven by the hardware architecture. In this case, one modeling paradigm
can be used to represent the entire domain, thus the domain is not heterogeneous. For
other domains, e.g. hybrid electric vehicles (see Chapter 4), there is no such correspondence
between software and mechanics. In order to improve the representation of heterogeneous
domains it is often advisable to split the domain and combine di�erent modeling paradigms.

This thesis introduces multi-paradigm modeling as an approach to represent heterogeneous
domains. As mentioned before, two modeling paradigms are considered here: Domain-
speci�c modeling (graphical) and feature-oriented domain modeling. The multi-paradigm
modeling concept abstracts the two modeling paradigms to their most essential parts:
elements, connections between elements and properties of these elements. From an abstract
point of view, these are the main building parts of domain-speci�c modeling and feature-
oriented domain modeling (and all other modeling concepts as well). Each language or
modeling paradigm following this abstract structural rule can be integrated in the multi-
paradigm modeling framework. The major challenge is the de�nition of constraints between
di�erent modeling paradigms. Section 6.6 identi�es three types of inter-model constraints:

hasElement constraint describes the dependence of an element in Model A on the ex-
istence of an element in Model B as illustrated in Figure 3.3.

2http://www.iso-architecture.org/ieee-1471/docs/ISO-IEC-FDIS-42010.pdf
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hasConnection constraint describes the dependence of an element in Model A on the
existence of a connection between two speci�c elements in Model B.

hasProperty constraint describes the dependence of an element in Model A on a speci�c
property value in Model B.

Model A Model B

Elem1 Elem2

requires

Figure 3.3: Example for a hasElement constraint to describe the dependence of elements
in di�erent models (see also Section 6.6).

Constraints are de�ned in a so called Common Domain Model (CDM). The Common
Domain Model (see Section 6.6) contains references to elements and connections, which
are part of an inter-model constraint. This enables the use of an existing tool providing
the required functionality (e.g. constraint checking) for the implementation of the multi-
paradigm modeling framework. The concept does not rely on a speci�c tool, but requires
the ability to describe elements, connections and properties and requires means to describe
and solve constraints. Pure::variants3 has been selected as the base tool for the multi-
paradigm modeling framework. It provides a powerful Prolog-based language to describe
constraints and elements and connections can easily be described as features. The tool is
shipped as an Eclipse plugin and thus, is easily extensible. Figure 3.4 illustrates the basic
concept, which is described in Section 6.6.

Applying multi-paradigm modeling

Below, the most important steps of the domain and application engineering process are
described. The domain engineering process consists of �ve basic steps:

Step 1: Domain analysis and scoping following approaches described in SPLE liter-
ature, e.g. [2].

Step 2: Paradigm selection for each view follows the MADMAPS approach described
in Section 3.2.1 and Section 6.3.

Step 3: Representation of each view with appropriate modeling paradigm. Each
identi�ed view is modeled with the appropriate single-paradigm modeling approach.

Step 4: Adding references of elements, connections and properties to the Common
Domain Model.

3http://www.pure-systems.com/pure_variants.49.0.html
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Figure 3.4: Technical realization of the multi-paradigm modeling concept consisting of the
multi-paradigm modeling framework implemented in pure::variants and various connectors
for the communication with various domain modeling environments (see also Section 6.6).

Step 5: De�nition of inter-model constraints as illustrated in Figure 3.5. As men-
tioned before, the Common Domain Model contains references to the original model
elements. Therefore, there is no need for an explicit common meta-model which
would probably lead to a loss of information in the transformation step.

Elem 1

Elem 1
<<Ref>> 

Elem 2
<<Ref>>

Elem 2

Domain-specific  language Feature model

Common domain model

constraints

constraints

Figure 3.5: Illustration of an inter-model constraint between an element in a domain-
speci�c language and an element in a feature model. The Common Domain Model contains
references to the model elements and their constraints.

The application engineering process in the context of multi-paradigm modeling consists of
three steps:

Step 1: Creation of application model. Application models can be derived from the
domain model as in single-paradigm modeling.
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Step 2: Connection of application model to domain model in order to automate
the constraint checking mechanism. Application models are de�ned based on a do-
main model. In this step, this relation has to be made explicit.

Step 3: Automated constraint checking works as follows: First, the application en-
gineering framework (Con�guration space + Variant Description Model)4 for the
Common Domain Model has to be created. This model is then processed automati-
cally:

The constraint checking mechanism iterates over all elements in the Common Domain
Model. For each element, it has to be looked up whether or not this element exists
in the external application model. If it does, the state of the element in the Variant
Description Model is set to selected and to unselected otherwise. If the element (in
the Common Domain Model) has an attribute, the value of this attribute has to be
looked up in the corresponding external application model as well and set in the
Variant Description Model.

For each connection in the variant description model it is evaluated if a connection
of this type with the corresponding connection source and target exists. If it does,
the state of the element in the Common Domain Model is set to selected and to
unselected otherwise. After processing the complete Variant Description Model, the
pure::variants constraint checker evaluates the resulting model for validity.

3.3 Establish production capability

Hypothesis 3: Consistency, application domain independence and various binding times
can be supported by an abstraction of variability descriptions to a more high-level single
point of variability control.

The �Establish production capability�-phase provides the production infrastructure for the
software product line. For this thesis does it mean the integration of variability mechanisms
in various tools and artifacts, respectively, and mechanisms to consistently control them.

The solution space describes one or more technical realizations of the platform. Usually,
there is a de�ned development process which has to be enhanced with variability mecha-
nisms.

Here, a V-model is used as a sample development process, because this is the predominant
process in the case study domain (see Chapter 4).

The main issues are the introduction of variability mechanisms at di�erent stages of the
development process (requirements, design, implementation, tests, documentation, etc.),
as described in Section 6.5, and to keep variability information for all artifacts consistent.
Zooming into Figure 3.2 (red dashed rectangular) reveals the single point of variability
control concept in Figure 3.6. As an example, Figure 3.6 shows variability mechanisms
using the example of Matlab/Simulink.

4http://www.pure-systems.com/�leadmin/downloads/pure-variants/doc/pv-user-manual.pdf
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Figure 3.6: Concept of a single point of variability control showing the problem description
(single-paradigm modeling or multi-paradigm modeling) on the left-hand side and the con-
sistency over the development process through the use of dedicated variability mechanisms
using the example of Matlab/Simulink on the right-hand.

3.4 Summary

This thesis is organized following the Adoption Factory Pattern described in literature [3].
It describes several strategies to reduce or handle the representation complexity arising
from variability in an innately complex domain. Not all of the strategies are new. Some
of them have been described before in di�erent contexts. The major contributions of the
present work are a systematic approach to select a modeling paradigm, means to represent
heterogeneous domains while reusing existing technology, and means to ensure consistency
over the entire development process.
Chapter 4 applies the strategies proposed in this Chapter.
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Chapter 4

Case study - Control software for

Hybrid Electric Vehicles

The motivation and case study for this work is an automotive project called HybConS1. The
overall aim of the project is the development of a generic software architecture for control
units of hybrid electric vehicles (HEV) [51]. A hybrid electric vehicle basically consists of
at least one electric motor and some other kind of energy source, usually a combustion
engine. The main advantages are signi�cant improvements in vehicle performance, energy
utilization e�ciency, and polluting emissions. Hybrid electric vehicles may vary in di�erent
drivetrain con�gurations (e.g. mild hybrid or full hybrid), di�erent mechanical components
(e.g. di�erent types of transmissions), di�erent software-supported functionalities (e.g.
pure electric drive), di�erent supported markets (di�erent legal constraints) and more.

4.1 Domain characteristics

An investigation of the domain results in the classi�cation as a heterogeneous domain. It
is therefore split in subdomains based on a stakeholder view identi�cation. Stakeholders
have di�erent interests and, therefore, di�erent views on the overall system.

The split process resulted in:

• a software view
which describes the control software functionality. Software can either be optional
or implemented in di�erent alternative variants.

• a mechanics view
which represents the mechanical system, here the system under control. Di�erent
drivetrain con�gurations or di�erent mechanical elements (e.g. di�erent electric mo-
tors, di�erent types of batteries, etc.) have to be re�ected in the control software.

• and a marketing view
Vehicles are sold on various markets, as various vehicle types, with di�erent legal
constraints and they have to ful�ll diverse customer requirements.

1http://www.iti.tugraz.at/hybcons
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Several other views, which are not part of this example, but are important in practice
are as follows: An electronic control unit view which describes the allocation of software
functions to control units. Another aspect is the fact that various control units may have
di�erent hardware architectures, which of course has an essential impact on the software;
e.g. electronic control units may have or have not a �oating point unit. Functional safety,
as de�ned in ISO 26262, is an important aspect for automotive control software and can
be re�ected in a safety view.

From now on, this work will focus on control software (as the main problem), mechanics
(the system under control) and partly marketing. The MADMAPS approach, described
in Section 6.3, suggests to represent software concerns in a feature model (see Figure 4.3)
and drivetrain con�gurations (mechanics) in a domain-speci�c language based on energy
�ows as illustrated in Figure 4.1 and Figure 4.2.

Figure 4.1: Domain-speci�c language to describe hybrid electric vehicle drivetrain con�gu-
rations based on energy �ows implemented in MetaEdit+. The language consists of several
objects, which are the main elements of a HEV drivetrain. Di�erent roles can be assigned
to each object. Relationships de�ne connections between objects. Figure 4.2 describes in
more detail how bindings can be used to specify valid con�gurations.

Four di�erent binding times have been de�ned for this domain:

1. Model con�guration binding time (mcbt) which results in concrete application
models for model-based development.

2. Code generation binding time: Variability is bound by the code generator.

3. Compilation binding time: Variability is resolved by the compiler.

4. Parametrization/Calibration binding time: Variability is bound by �ne-
tuning parameters, which are generally used in automotive embedded software.

This work mainly focuses on the �rst binding time.
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4.2 Application of concepts

This section describes the application of the strategies proposed in Chapter 3.

4.2.1 Establish context

Hypothesis 1: Choosing a �wrong� modeling paradigm results in high representation com-
plexity.

First, it has to be de�ned what representation complexity means and how it can be mea-
sured. Section 6.4 proposes di�erent metrics to evaluate the complexity of domain repre-
sentations. These metrics are intentionally kept simple and are mainly used to compare
di�erent representations. They again follow the main building parts of model-based devel-
opment (elements, connections, properties) as mentioned before.

Interface complexity evaluates the complexity of possible element combinations in the
domain model. An interface here is either a connection (Relationships in MetaEdit+
or variation points in feature modeling) or a requires/excludes constraint.

Element complexity indicates the number of variable elements.

Property complexity. Elements in both paradigms might have properties. If they are
not �xed, they can be used to adapt the resulting application.

Table 4.2 summarizes the respective formulas for domain-speci�c modeling (focus on MetaEdit+)
and feature-oriented domain modeling.

Complexity DSM Feature modeling

Interface complexity (Cif ) nRT + nconstraint V Palt + V Por + nconstraint

Element complexity (Celem) nelem V POpt

Property complexity (Cprop) nprop nprop

Overall complexity (Coverall) Cif + Celem + Cprop Cif + Celem + Cprop

Table 4.2: Overview of complexity metrics to evaluate the representation complexity of
domain-speci�c modeling and feature models (nRT - Number of Relationships, V Palt -
Number of alternative - exactly one of a group - variants , V Por - Number of or-related
- one or more of a group - variants, V POpt -Number of optional - one or none - variants,
nconstraint - Number of requires/excludes constraints).

These metrics have been used to investigate di�erent domain models. The results show
that the complexity performance of one modeling paradigm is always worse than the other.
Furthermore, these metrics have been used to evaluate the suggestion of the variability
modeling paradigm selection method (in Section 3.2.1). For the investigated domains the
suggested paradigm always results in a domain model with lower complexity.
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Hypothesis 2: The overall representation complexity of heterogeneous domains can be re-
duced by a combined representation in a multi-paradigm model enabling improved descrip-
tion of various, independent domain views.

Section 3.2.2 proposes a multi-paradigm modeling framework which enables a combined
representation of various views modeled with di�erent modeling paradigms in one domain
model. A simple example illustrates the use of the multi-paradigm model concept:

Step 1: Modeling paradigm selection
Table 4.3 shows the results of the modeling paradigm selection process. In a �rst
step, the entire domain, including control software and the system under control
(mechanics), has been assessed following the MADMAPS approach. The result gives
no clear recommendation for one modeling paradigm, since the di�erence between
the utility values is not signi�cant. Therefore, the domain has been split in a software
and a mechanics view and both parts have been assessed separately. Now, there is a
clear recommendation to use feature-oriented domain modeling for the software view
and domain-speci�c modeling for the mechanics view.

Domain DSM FODM Recommended

1 HEV CU (control unit) 55 49 -
2 HEV CU - Software -38 56 FODM
3 HEV CU - Mechanics 11 -24 DSM

Table 4.3: MADMAPS utility values for the HybConS domain. First, for the complete
domain, second for the software view only and third the mechanics view only (see Section
6.4).

Step 2: Development of independent domain models for each view using the
appropriate paradigm.
Based on the results from Step 1, a domain-speci�c language has been developed to
describe hybrid electric drivetrain con�gurations and a feature model represents a
simple distinction between two alternative features Mild hybrid and Full hybrid. A
more complete feature model is shown in Figure 4.3.

Step 3: Adding model element references to the Common Domain Model.
This example shows a simple constraint, which de�nes that the feature Mild hybrid
(Feature Model) is only valid if there is a direct connection MechanicalEnergyFlow
between the Objects ICE and EMotor (Domain Speci�c Language). Therefore, a
reference to the Mild hybrid feature and a reference to the connection MechanicalEn-
ergyFlow with connection source ICE and connection target EMotor have to be
added to the Common Domain Model.

Step 4: De�nition of constraints between di�erent modeling paradigms.
Figure 4.4 illustrates how the two models can be combined using the multi-paradigm
modeling approach.
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Domain-specific language

Simple feature model

Multi-paradigm modeling  - Combined representation

Figure 4.4: Common Domain Model combining a feature model and a domain-speci�c
language on domain level. Feature Mild hybrid requires a direct Relationship Mechani-
calEnergyFlow between the Objects ICE and EMotor.

The main tasks of the application engineering process are as follows:

Step 1: Creation of an application model for each view
Application models can be de�ned as in single-paradigm modeling. Figure 4.6 illus-
trates an example for domain-speci�c modeling as well as for feature modeling.

Step 2: Connection of each application model to corresponding domain model
The multi-paradigm modeling framework implementation requires a con�guration
for each application. Therefore, application models have to be explicitly related to
the domain model they are based on. Without this connection, it is not possible to
automatically check the validity of the product. Figure 4.5 illustrates the binding of
domain and application models.
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Connecting domain model to corresponding
application model

Figure 4.5: Con�guration of the multi-paradigm modeling framework for a concrete prod-
uct. Each application model has to be connected to a domain model. This example shows
the binding for pure::variants and MetaEdit+ models.

Step 3: Automated constraint checking

The automated constraint checking mechanism evaluates the validity of the overall
system as described in Section 3.2.2. If any constraint is violated, the corresponding
element will be marked as shown in Figure 4.6.

ICE Clutch EMotor

Figure 4.6: A constraint violation has occurred, because there is no direct MechanicalEn-
ergyFlow between the combustion engine (ICE) and the electric motor (EMotor), which
has been de�ned as a requirement for a mild hybrid con�guration in domain engineering.

Results Figure 4.7 compares the complexity values for 3 di�erent representations: Single-
paradigm modeling with domain-speci�c modeling for both views, single-paradigm mod-
eling with feature-oriented domain modeling for both views and multi-paradigm modeling
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(combining both). The chart compares the complexity values for four di�erent drivetrain
con�gurations. This scope is reasonable, because it enables a wide variety of vehicles.
Already for the third con�guration the representation complexity of the multi-paradigm
approach is lower than the single-paradigm representations. Section 6.4 discusses the re-
sults in more detail.
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Figure 4.7: Comparison of complexity values for four di�erent drivetrain con�gurations.
Both views (software, mechanics) modeled with single-paradigm modeling with DSM,
single-paradigm modeling with FODM, and multi-paradigm modeling (see Section 6.4).

4.2.2 Establish production capability

Hypothesis 3: Consistency, application domain independence and various binding times
can be supported by an abstraction of variability descriptions to a more high-level single
point of variability control.

Each tool in the development process has to provide variability mechanisms, which can
be controlled from an external problem description (single-paradigm or multi-paradigm
representation). In the following, the variability mechanisms and the connection to the
single point of variability control are described exemplary for the automotive development
process. Four concrete tools have been connected to pure::variants, the tool which enables
the single point of variability control (Common Domain Model) in this example.

Architecture description EAST-ADL2 and AUTOSAR, two standards for automotive
architecture description have already been introduced in Section 2.3. Since AUTOSAR is
used in practice more and more, and EAST-ADL2, intended as a systematic way to describe
the domain, may also be adopted at some point, both concepts should be regarded in the
design of the development process. Currently, there is an established development process
and especially EAST-ADL2 is not used in practice so far. These are the main reasons for
the evolutionary and lightweight approach as described in Section 6.8 and [52].
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First, the proposed lightweight introduction of EAST-ADL2 in the development process
requires a transformation from AUTOSAR to EAST-ADL2. EAST-ADL2 provides built-in
variability management, but tool support is not mature and not all stages of the devel-
opment process are covered. Therefore, EAST-ADL2 models are treated as any other
development artifact, which need to be connected to the single point of control. Basic
variability information can be automatically extracted in the transformation step. Fig-
ure 4.8 illustrates the lightweight introduction and Section 6.8 explains the details of the
implementation.
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Figure 4.8: Extended V-model development processes illustrating the lightweight intro-
duction of EAST-ADL2 (A) and the connection to a single point of variability control (B)
(see Section 6.8)

Implementation Matlab/Simulink is the predominant development environment for
model-based development of embedded automotive software. One main goal in the course
of this project is the implementation of mechanisms to realize model con�guration bind-
ing time [23]. This means that it should be possible to reduce a Matlab/Simulink model
containing variability to a concrete product model.

Prede�ned variability template blocks implement variability mechanisms based on existing
technology [23]. The pure::variants Connector for Simulink provides means to represent
variability and support compile time binding and code generation binding. The current
work extended this mechanisms to support model con�guration binding time as well.

Variation points are used to control variability mechanisms. The pure::variants Connector
for Simulink can be used to import variation points and to connect them to features
(domain engineering). In the transformation step (application engineering), the selected
variation point values are propagated back to the Simulink model and can there be used for
binding. Model con�guration binding is implemented as a Matlab script (*.m �le), which
removes variability information and disabled parts from the model (subtractive variability
approach) [53].

Testing in this case mainly refers to unit testing (testing one unit of composition). In
the case of Simulink, a unit under test is a concrete subsystem no matter on which level
of abstraction.
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If the implementation contains variability, tests have to provide variability as well. Of
course, both aspects need to be con�gured consistently. This has two implications: First,
all tests for a speci�c product can be selected consistent to the implementation. Second, it
enables automated testing for a de�ned set of products in speci�ed time periods in order
to ensure the correct functioning at all times [54].

Co-Simulation is a powerful approach for holistic simulations of heterogeneous systems.
Di�erent parts of the overall system can be modeled and simulated using an appropriate
domain-speci�c simulation tool. The co-simulation platform handles the coupling of sub-
systems realized in di�erent simulation tools. Coupling basically means the connection of
output and input values of di�erent models in order to exchange simulation results.

ICOS2 is an independent co-simulation environment developed at the Virtual Vehicle Com-
petence Center. It enables cross-domain co-simulation for a wide range of engineering dis-
ciplines in the �eld of automotive engineering. In concrete, simulations can be performed in
various simulation environments and exchange intermediate results via the ICOS platform.
Co-simulation supports the automotive development process, since di�erent aspects of the
overall system can be simulated in a holistic view in early development phases. The use of
co-simulation in a software product line context enables the simulation of the software in
a more holistic context. Especially in case of di�erent variants, the impact of changes on
the overall system are very useful.

Variability mechanisms in this tool environment are used to handle model variability (sub-
stitution of models), linking variability (coupling in- and output parameters), coupling vari-
ability (e.g. step size) and boundary condition variability (di�erent initialization values).
The sources of variability and the requirements for variability mechanisms are described
in more detail in Section 6.9.

For each variability type, a speci�c variation point has been provided. A domain model
de�ned in this tool environment can easily be imported in pure::variants and connected to
the problem description.

Illustrative example - single point of variability control

This example shows the single point of variability control concept on a simple real world
example. It demonstrates the consistent control of Simulink-based implementation and
co-simulation with ICOS. The Simulink model implements generic hybrid control unit
(HCU) software, which supports mild hybrid as well as full hybrid functionality. Figure
4.9 illustrates a schematic electronic control unit network showing the integrative role of
the hybrid control unit. Figure 4.10 outlines the implemented drivetrain topology, which
is available as a plant model in AVL Cruise3, a tool for vehicle system and driveline
analysis. The AVL Cruise plant model provides prede�ned routes which can be used for
the simulation of typical drive cycles. It can be con�gured to provide a separation clutch
(full hybrid) or have no separation clutch (mild hybrid). It is further possible to change
the type (two alternatives: LiIon, NiMH) and capacity of the battery.

The ICOS co-simulation environment couples the Simulink and the AVL Cruise model
in order to simulate the performance of di�erent operation strategies in typical driving

2http://vif.tugraz.at/en/products/icos/
3https://www.avl.com/cruise1/
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situations. Simulink as well as ICOS provide variability mechanisms, which are consistently
controlled by a feature-oriented representation. Of course, the multi-paradigm modeling
approach, described in Section 3.2.2, can be applied here, but for simplicity the example
focuses on the single point of variability concept solely.
Two possible scenarios show useful applications:

1. Alternative high voltage batteries
State-of-the-art technology is evolving evermore leading to the availability of various
high voltage battery technologies with diverse characteristics.

Purpose of scenario:
This scenario demonstrates the in�uence of the high-voltage battery type on di�er-
ent properties as for example fuel consumption. Lithium-ion batteries have a much
higher power density than nickel-metal hydride batteries. This means that for bat-
teries with the same weight, lithium-ion batteries provide more capacity. The overall
weight of the vehicle of course has a huge in�uence on the fuel consumption.

Variability description:
The generic design of the software easily enables the representation of di�erent bat-
tery types in the Simulink model by simply adapting global parameters. Global
parameters are de�ned in .m-�les which are represented in plain text. Existing vari-
ability mechanisms for textual representations can be used here. The AVL Cruise
model provides two alternative high voltage batteries. In our case, they are given by
two alternative plant models. These variants can be described by an ICOS model-
exchange variation point.

2. Switch between full- and mild hybrid implementation
Full hybrid describes a setting with the ability to drive purely electrical, whereas in
a mild hybrid setting the electric motor is used to support the combustion engine.

Purpose of scenario:
Instantiate software with corresponding simulation environment.

Variability description:
The software contains two optional modi which have to be deactivated in a mild
hybrid setting. A full hybrid topology provides EDrive and ELaunch functionality
which simply means to drive or launch purely electrical (without combustion engine).
In this example, we completely remove these modi from the Simulink model if they
are not required.

The plant model is con�gured with parameters which de�ne whether or not it is
possible to open the separation clutch, and de�ne the capacity of the battery by
providing di�erent initialization values.

Domain engineering - Building a platform Figure 4.11 illustrates the layout of the
product line following the layered structure shown in Figure 3.1. A feature model describes
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the problem space and controls two family models (description of variability mechanisms),
one for Simulink and one for ICOS. ICOS provides a variability extension called ICOSVM.
This extension can be used stand-alone. For the integration in a software product line
context, ICOSVM can be connected to pure::variants. The pure::variants family model
conforms to this ICOSVM model.
In case of a mild hybrid con�guration, two modi have to be removed from the HCU model
in Simulink. Two exchangeable AVL Cruise models realize di�erent battery types. The
boundary condition server (provides initialization values for co-simulation environment)
initializes the models according to the current variant selection.
Figure 4.12 illustrates the basic steps of the domain engineering process for Simulink mod-
els. It shows, that �rst Simulink-based variability mechanisms are used to introduce
variability in a Simulink model. This variability information can then be imported in
pure::variants and connected to a problem description. Figure 4.13 shows the same for
ICOS. Here, variability is �rst described with the ICOSVM extension, which can then also
be imported in pure::variants and connected to the same problem description.
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Figure 4.2: Meta-model describing the objects and bindings of the hybrid electric vehicle
drivetrain DSL. Bindings consist of a Relationship, which de�nes the type of a connection,
and Objects, which can be connected. Objects take over a role in order to de�ne semantics
of the Relationship. E.g. object ICE with role MechanicalSource can have a connection
MechanicalEnergyFlow with an object Alternator, which has the roleMechanicalConsumer.
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Figure 4.3: Feature model describing management (marketing) aspects on the left and the
software view on the right.
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Figure 4.9: Typical electronic control unit network showing the integrative role of hybrid
control units (HCU). Various mechanical components are connected to electronic control
units, which exchange signals via a CAN (controller area network) bus system. Vehicles
have several bus systems. This picture shows two of them (Powertrain-CAN and Hybrid-
CAN), which exchange information via the hybrid control unit.
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Figure 4.10: Drivetrain con�guration used in this example to demonstrate the single point
of variability control concept for model-based development with Simulink combined with
co-simulation in ICOS. This topology describes a full hybrid con�guration because there
is a separation clutch which enables decoupling of the two energy sources (ICE, EMotor).
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Figure 4.11: Illustrates the basic structure of the product line consisting of a pure::variants
and an ICOS/Simulink part. The pure::variants feature model controls variability from a
central point. Variability decisions are propagated via family models to the respective
technical realizations in ICOS and Simulink, respectively. Simulink models are con�g-
ured directly, for the co-simulation part only the ICOS environment is con�gured, not the
participating models directly.
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Figure 4.12: Illustration of the domain engineering process for the integration of Simulink variability.
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Figure 4.13: Schematic illustration of domain engineering for ICOS. ICOS and ICOSVM
are described in XML. To improve understandability, a schematic representation has been
chosen here. Variability is �rst described in an ICOS domain model, which can be imported
into pure::variants. Variants can then be connected to features (i.e. if this feature is
selected, the corresponding variant is activated.

Application engineering - Building concrete products Figure 4.14 illustrates a
product derivation scenario. The user selects variants in the feature model. The selection
is automatically propagated to the corresponding family models, which is then propagated
to the Simulink and ICOS environments, respectively. Due to the single point of variability
control concept, di�erent resulting HCU software models and ICOS environments can be
con�gured consistently.
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Figure 4.14: Feature selection (1) in the feature model and automatic propagation (2) to the technical realizations (family models).
Unused modi are removed from the Simulink model and the plant model is con�gured as illustrated in the schematic representation
(3).
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4.3 Summary

Table 4.5 summarizes the four implemented and described variability mechanisms. The de-
scribed development artifacts have been connected to a common problem description using
the multi-paradigm modeling approach. As a consequence, all artifacts can be con�gured
consistently from a concrete problem description. In the scope of this work, a single point
of variability control connector for EAST-ADL2, unit testing and co-simulation has been
implemented. Additionally, model con�guration binding time for Simulink, testing, and
co-simulation has been realized.

Dev. artifact Variability mechanism Binding time Product

EAST-ADL2 built-in mechanisms mcbt EAST-ADL model

Simulink
Optional subsystems mcbt Simulink model
Alternative subsystems code gen.

compile t.

Unit Testing Alternative subsystems mcbt Simulink model
(Simulink)

Co-Simulation Model-related variability mcbt ICOS project �le
Var. parameter connections

(ICOS) Environment variability
Coupling variability

Table 4.5: Overview of various development artifacts in an embedded automotive software
development process, their variability mechanisms, provided binding times and the product
resulting from variability binding.
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Chapter 5

Conclusions, Limitations, and Future

Work

This chapter concludes this thesis with a discussion on completeness and directions for
possible future work.

5.1 Concluding remarks

The strategies introduced in this work are not restricted to the automotive domain but are
applicable in many other domains as well.

The main contribution is the improvement of the problem space representation. It raises
the level of abstraction and is therefore an important means to reduce complexity and
increase productivity. In previous works, there has been no systematic selection method-
ology for modeling paradigms. This work suggests a simple, practically applicable method
to get at least a recommendation for a modeling paradigm. Especially for complex, hetero-
geneous domains, the description of the problem space can pose a problem. The proposed
multi-paradigm modeling approach provides a viable concept to overcome this problem.
Contrary to other approaches from literature which identi�ed the shortcomings of mod-
eling paradigms, no new representation language should be invented. Based on existing
technology, a multi-paradigm modeling framework has been proposed to describe inter-
model constraints. The problem space is important because it is used as a single point of
variability control.

The approach has been evaluated using the example of an automotive project.

5.2 Limitations and possible future research directions

The adoption of software product line engineering for practical use still poses a big problem.
Few success stories show the bene�ts of this approach. The present thesis addresses only a
subset of current challenges and, of course, has several limitations. This section discusses
current limitations and proposes ideas and directions for future work (see also Section 6.7).

Evaluation in other problem domains
So far, the proposed strategies have been applied on the automotive domain and on a
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rather small example only. It is challenging to get industry support to evaluate emerging
concepts, but at least parts could be shown on real world examples. To get more results
and a more in-depth evaluation of the proposed strategies, there should be a step-by-step
introduction in industry.

The generic description of concepts makes the strategies domain independent. Cross-
domain reusability can be shown by an application in several other domains.

More in-depth study of domain characteristics
Domain characteristics have been identi�ed only on a small set of domains. The main chal-
lenge, again, is the availability of industry data. Nevertheless, one investigated product line
produces commercial products. A second investigated product line has conceptually been
developed with a big company and is based on real world data. The derived methodology
is acceptable for a fast evaluation of domains. For a more scienti�c modeling paradigm
selection method, the criteria have to be evaluated in more detail.

Furthermore, the paradigm selection method gives only rough suggestions until now. Of
course, this is an improvement to the current situation where there is no systematic sup-
port at all. But, it is just a �rst step which has to be enhanced and evaluated in more
detail in order to get de�nitive propositions. One main limitation is the fact that there
is no real threshold to decide whether or not the di�erence between utility values is big
enough for a clear result.

Integration of decision models
Decision models are a promising approach to describe variability of systems. In future
research, it should be evaluated whether or not it is useful to extend the current investi-
gation for domain-speci�c modeling and feature-oriented modeling with decision modeling.

Multi-paradigm modeling

A limitation of the multi-paradigm modeling approach is the need for connectors to com-
municate with the respective models. Until now, parsers have to be implemented to re-
trieve the required information. Currently, there are parsers for ecore, pure::variants and
MetaEdit+ models. An idea for future work is a framework to generate these parsers based
on, for example, XML schemas.

Extension to the solution space
The current implementation mainly focuses on an improved representation of the problem
space. To further improve the entire domain model, an extension to the solution space
is required. Both, domain-speci�c modeling and feature-oriented domain modeling, have
to be investigated towards the abstraction of variability mechanisms to the main building
parts (element, connection, property). In case of pure::variants this is trivial, because fam-
ily models realize exactly this representation. In fact, all each model containing variation
points can easily be transformed into this representation. The main challenge are code
generators for domain-speci�c languages. Until now, there have been no investigations
of code generators in this context, but code generators are often implemented following
template based patterns [55]. Therefore, it can be assumed that they can be abstracted in
the same way.
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Evaluate applicability of the approach to support model integration
A common problem with model-based development in general is the integration of di�er-
ent models or model types throughout the development process. It should be investigated
whether or not it is possible to use the multi-paradigm modeling approach to improve
traceability between di�erent models in the development process.

Automated testing
Some of the proposed concepts could also be applied for the automation of tests. This
could be done in several contexts. For example, tests can be con�gured consistent to the
implementation. For a prede�ned set of products, tests can be performed automatically
whenever something has been changed e.g. in the code base. Another scenario is the
implementation of variable tests in order to verify a component in di�erent contexts with
con�gurable test cases. Some of these scenarios have been shown for co-simulation, but
they sould be applicable to e.g. unit testing as well.

Standardization of variability mechanisms
Until now, there is no standardized variability interface description. This makes it di�-
cult to control variability in di�erent artifacts with a common problem description and,
therefore, hinders the evolution of the main strength of a software product line engineering
approach - the consistent variability control for a de�ned set of products. One task for
future work is the de�nition of such a standardized interface for variability mechanisms.
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Abstract High development and maintenance costs and a
high error rate are the major problems in the development of
automation systems, which are mainly caused by bad com-
munication and inefficient reuse methods. To overcome these
problems, we propose a more systematic reuse approach.
Though systematic reuse approaches such as software prod-
uct lines are appealing, they tend to involve rather burden-
some development and management processes. This paper
focuses on small enterprises. Since such companies are often
unable to perform a “big bang” adoption of the software prod-
uct line, we suggest an incremental, more lightweight process
to transition from single-system development to software
product line development. Besides the components of the
transition process, this paper discusses tool selection, DSL
technology, stakeholder communication support, and busi-
ness considerations. Although based on problems from the
automation system domain, we believe the approach may be
general enough to be applicable in other domains as well. The
approach has proven successful in two case studies. First, we
applied it to a research project for the automation of a logis-
tics lab model, and in the second case (a real-life industry
case), we investigated the approaches suitability for fish farm
automation systems. Several metrics were collected through-
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out the evolution of each case, and this paper presents the
data for single system development, clone&own and soft-
ware product line development. The results and observable
effects are compared, discussed, and finally summarized in
a list of lessons learned.

Keywords Domain-specific modeling · Small enterprise
cost model · Automation system · Software product line ·
System development process

1 Motivation

It is quite usual to develop automation systems (AS) in a
traditional way as single-system projects. Approaches such
as model-driven development and code generation are rarely
applied in practice. This leads to problems throughout the
entire system lifecycle. One reason is that domain knowledge
is only implicitly available in the heads of project developers.
In small companies, there is normally no systematic process
in effect for securing domain knowledge, which instead has
to be acquired by each developer working on an AS in a
given domain. This in turn leads to high development efforts.
The maintenance of AS also quite often requires substantial
efforts. Interviews with companies working in the AS domain
have identified a broader range of challenges beyond pure
software development. These are typically related to stake-
holder communication and economic limitations in small
companies.

Software product lines (SPL) are a viable method for over-
coming some of these challenges, but they have the draw-
back of high upfront costs, which result from initial platform
development. This makes the adoption of the new approach a
crucial phase. Breivold et al. [4] described a transition process
from legacy systems, developed in individual projects, to an
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SPL. This approach is well suited for enterprises that have
several legacy systems and can cope with the high upfront
costs.

1.1 SPLE in small enterprises

Since the high initial investment excludes many small enter-
prises, there is a need for an incremental approach for the
adoption of an SPL [40]. In a small company, the upfront
development of an SPL would tie up all resources, which
means that it would not be possible to make any profit dur-
ing this time. Furthermore, such an introduction affects all
areas of a company, business strategy, technology, processes,
methods, tools and organization [39]. This again poses a
problem for small enterprises, where a limited number of
people have to take on expert roles in several or all of these
areas. In many cases, these topics receive less attention due
to a strong, exclusive focus on completing the customer
project. In particular, investments in reusability fall victim to
this mindset. Critical success factors [39] and recommenda-
tions [4] have been described for transition projects towards
SPLE in larger organizations. Our case studies revealed that,
as in larger enterprises, the minimum required success fac-
tors are SPLE and domain knowledge management, as well
as SPL orientation from the very beginning on. However,
these factors take on different forms in the small enterprise
context.

One main contribution of this work is the use of an adop-
tion strategy and an experience report that focus on small
enterprises. In small enterprises, employees usually have to
handle a relatively complete range of aspects, such as domain
understanding, stakeholder communication, business strat-
egy, technology, development efficiency, etc. Furthermore,
the combination of Domain-Specific Modeling (DSM) and
automated artifact generation can lead to increased pro-
ductivity, increased product quality, decreased development
costs, and decreased maintenance costs. The consistency of
models and other product parts (e.g. system documentation)
greatly improves stakeholder communication. In fact, com-
munication and liability issues between the AS developer
and the electrical contractor were an important motivation
for the SPL transition in Case Study II (Sect. 4.2). DSM also
helps to secure domain knowledge effectively. The following
sections describe some important characteristics of AS and
common problems.

1.2 Basic attributes of automation systems

Data concerning the development of AS was gathered via
interviews in AS companies. The interviews were based on
two questionnaires, one focusing on AS companies and the
other on electrical contractors [33]. The aims of the question-
naires were to get an overview of the current situation and

Fig. 1 Common stakeholder setting for automation systems

to gather information on the needs and requirements of these
two stakeholders. The most important results are summarized
below:

• One basic characteristic of an AS is the fact that hardware
considerations and electrical installation are at least as
important as software. Often, different companies or dif-
ferent departments within a company are responsible for
the development and installation of an AS. In a common
AS development scenario (Fig. 1), a customer orders the
AS from the AS company. The AS company develops
the system and subcontracts an electrical contractor to
carry out the electrical installation for the system. The
customer only communicates with the AS company.

• An AS company often specializes in a specific kind of AS
(e.g. automation of gravel pits, automation of fish farms,
logistics automation).

• In many cases, an AS is very domain specific. The domain
knowledge has to be acquired from the customer. Get-
ting the necessary knowledge is a difficult and time-
consuming task.

• The same employees often develop different products in
the same AS family. They build up a significant amount
of implicit knowledge about both the domain and the AS
family.

• Software errors turn up commonly in AS, especially dur-
ing installation and the first weeks of operation. This is
probably because only limited testing can be conducted
beforehand, as the real environment is often not avail-
able during software development. On-site testing and
debugging can involve additional risks because poten-
tially faulty software is controlling real, physical equip-
ment.

• The AS software often has to be changed due to the instal-
lation of new components.

• Often, a so-called “clone&own” approach is used. This
is a very basic reuse approach, whereby software is
copied from a similar project and adapted to fit the new
requirements.

1.3 Problems arising with traditional development
approaches

Most AS development environments do not provide fea-
tures like Unit Tests, variable scoping or object-oriented pro-
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gramming. According to [3,8], these features offer important
means for increasing software quality. This may be one rea-
son why automation software usually contains more errors
than pure software projects. Moreover, this seems to be
particularly true for the widely used IEC-61131 Program-
mable Logic Controller (PLC) languages. As mentioned
above, clone&own is often used in AS development. An
existing software is copied and adapted based on the
requirements of the new system in the same domain. Pro-
grammers often forget to adapt certain parameters or fail
to adapt the software consistently, which leads to many
errors. The experts interviewed agreed that this is a major
problem.

Another reason for faulty software and high maintenance
efforts is the high complexity due to distributed system instal-
lation. Insufficient stakeholder communication can easily
lead to misunderstandings, resulting in system integration
errors. Especially during on-site installation, many errors
occur due to a lack of communication between AS devel-
opers and electrical contractors. The additional complexity
further hinders maintenance tasks such as error identifica-
tion, which is already rather difficult in AS because errors
can be located in either software or hardware.

Automation systems are often very domain specific, and
automation developers have to obtain detailed domain knowl-
edge before designing and implementing the software. They
often only implicitly possess the domain knowledge used
in the construction of the software. Especially for a small
company, this can lead to a dangerous situation where a sin-
gle employee may possess most of the domain knowledge.
This knowledge is a valuable property which is lost if the
employee leaves the company. To facilitate the work of suc-
ceeding developers, it would be better to make the domain
knowledge explicit.

We propose an approach that can overcome the problems
described above. Section 3 describes the transition from sin-
gle system development to a product line approach. Before
starting the transition process, appropriate tool support has
to be selected, which is described in Sect. 2. Sections 4.1 and
4.2 describe two case studies that followed this approach: the
use of an AS product line for logistics and for a fish farm.
Next, Sect. 5 compares and discusses the results, and Sect. 6
summarizes some relevant related work. Finally, Sect. 7 pro-
vides a conclusion and an outlook for further work.

2 Tool selection criteria

The selection of tool support is an essential factor in Software
Product Line Engineering (SPLE). The use of an appropriate
tool is particularly essential for the development of a domain-
specific language and different code generators. We propose
the use of a multi-attribute utility theory (MAUT) analysis [1]

to evaluate and select different tools. We used a list of selec-
tion criteria in several SPLE projects [15,23,33]. In MAUT,
criteria are weighted according to their importance for the
domain.

2.1 Criteria for the selection of a DSM approach

Selecting a domain modeling paradigm is one of the first
decisions to be taken. In turn, this largely determines support-
ing tool decisions. In practice, three main domain engineer-
ing methods are currently in use: Domain-Specific Modeling
[22], Feature-oriented approaches (FODA [17], FORM [19]),
and Ontologies [13]. Ontologies are the least common
approach and currently there appears to be no mature tool
support for ontologically based domain modeling. Feature-
oriented approaches and the use of domain-specific lan-
guages have been used for a long time. The selection of one of
these two approaches is an important decision that does not
often receive proper consideration. However, depending on
the nature of the domain, this decision can have a significant
impact during the lifecycle of domain models [25].

Some characteristics would seem to require a DSM
approach:

• Few specialized meta model elements DSM seems to be
best suited for applications or domains that consist of
only a small number of different elements.

• Focus on architecture instead of functionality Describing
parts and their relations is more important than describ-
ing specific functionality, especially in terms of variabil-
ity. Figure 2 shows a more detailed representation. The
main point of this illustration is to show the different foci
of the approaches. In a feature-oriented approach, the
structure is fixed in a tree-like manner. The focus here is
on the features that are supported by a common system
architecture. For DSM, in contrast, the focus is on the
domain-specific system architecture, which is modeled

Feature tree

Domain Ontology
Modeling focus: Domain knowledge

Domain

Application architecture
Modeling focus:

Modeling
Domain SpecificFeature Oriented

Domain Analysis

Modeling focus:

Fig. 2 Domain modeling approaches and their main focus
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from elements and constraints defined in the DSL meta
model. The ontological approach poses no such restric-
tions on modeling (i.e. neither a domain-specific com-
mon architecture, nor a common meta model). The focus
is on the representation of domain knowledge in general.
Ontologies for domain modeling can be seen as a higher
abstraction. This approach is currently less popular.

• Several instances of components A DSM approach sup-
ports the use of several instances of a single component.

All these characteristics are valid for most automation sys-
tems. Therefore, we argue that a DSM approach is very likely
the right choice for domain engineering in the automation
system domain.

2.2 DSM tool requirements for AS

We identified several major requirements for DSM tools used
in the automation system domain.

The ability to draw a graphical model with the designed
DSL is essential for our approach. It makes it easier to specify
the location of the hardware components in the automation
system. This location information is used whenever it is nec-
essary to generate project-specific documentation. This doc-
umentation is needed, since multiple companies are often
involved in an automation project. A consistent documenta-
tion can serve as a good communication base for different
stakeholders.

Furthermore, the tool must allow for the specification of
connections between objects. In automation systems, there
are commonly multiple connections from and to an object.
For example, a sensor component can have more than one
output and may have to be connected to several other objects
in the model. A convenient concept that enables this kind of
modelling is needed.

Another requirement is to allow changes after software
generation. Since several parts of a specific PLC software
are not general enough to be considered in the DSM, little
adaptations or functions sometimes have to be implemented
manually. These manually implemented code snippets must
not be overwritten if a newer version of the PLC software is
generated from the model.

It is also important that any potential changes in the DSM
do not affect previously produced systems. Existing models
should still be fully functional after minor changes.

2.3 Developing DSMs with MetaEdit+

We conducted the tool selection MAUT analysis based on
given requirements. The analysis revealed that MetaEdit+
would be the best option for the two AS case studies cov-
ered below. The MetaEdit+ suite provides tools for develop-

ing domain-specific languages (DSLs) and using them in a
software product line. Two main parts of MetaEdit+ are the
Workbench and the Modeler. The Workbench can be used to
construct a DSL, which is then used with the Modeler to
construct specific system models. DSL elements and their
possible connections are defined with the Workbench using
a concept called GOPPRR (Graph-Object-Property-Port-
Role-Relationship), which is described in [38]. GOPPRR
defines the basic meta-types which can be used to construct
the DSL. Code generators for objects and their connections
can be developed using either the MERL script language or
alternative approaches accessing the model via SOAP. The
MERL language provides powerful features for navigating
through a model [42].

3 SPL transition process: considerations for a small
enterprise

3.1 Viewpoint architecture: typical AS project setting

Figure 3 illustrates the main stakeholders and their interests
in the AS context, based on the 4+1 architecture presented
by [20].

The customer requirements represent the logical view.
Common approaches for gathering requirements include reg-
ular meetings with the customer and checklists, such as those
proposed in [34]. These requirements can be used to construct
most of the use cases, which are basically scenario descrip-
tions.

Both the hardware components and the final AS software
are linked to the physical view. The main stakeholder for this
view is the electrical contractor, who is responsible for the
installation of the hardware. Research regarding the different
types of hardware that might be used in combination with the
AS must be conducted before the software is developed.

Fig. 3 Viewpoint-architecture for automation systems
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The software development approach is presented in the
development view. Frequently, many systems from the same
automation domain are produced. Therefore, we recommend
an SPLE approach (Sect. 3.3). The primary advantage of
SPLE is that the explicit storage of domain knowledge in a
meta-model enables the systematic reuse of this knowledge,
which leads to increased software quality [29].

The process view describes interactions between parallel
processes. The main stakeholders here are the AS company
and the electrical contractor. Both work on the same AS,
which makes it necessary to coordinate their efforts. To pre-
vent misunderstandings and to provide a common basis for
communication, we recommend the automatic creation of an
electrical installation plan for the AS (Sect. 3.3). This sup-
port minimizes the number of errors that might occur during
the hardware installation process.

3.2 Cost structure

Basically, one can distinguish between domain engineer-
ing (platform) costs and application engineering (project-
specific) costs. Figure 4 provides an overview of the different
types of costs and their classification.

• Domain engineering (DE) costs cover the development
of the framework for the SPL. This includes the effort
required to gather the domain knowledge, identify vari-
ability and create a DSL out of this information. It further
includes the effort required to develop the initial PLC
software template and a code generator for the specific
domain.
Domain engineering costs occur mainly at the beginning
of an SPL project and therefore lead to higher upfront
costs than other development approaches. If a certain
number of products are produced, the additional upfront

Fig. 4 Cost structure for software product line-oriented AS develop-
ment with systematic reuse

investments pay off very quickly. Of course, this is a very
rough estimation, since domain evolution costs occur dur-
ing the whole lifetime of the SPL.

• Application engineering (AE) costs include all expenses
for a new product that is derived from an existing SPL.
In general, this includes costs for the creation of a model
describing the concrete system. This model is used as
input for source code generation. In the proposed cost
model, software adaptations are one part of the vari-
able costs. These costs can also occur in the clone&own
approach, where software has to be adapted according to
new requirements. For AS, additional costs arise for the
on-site and electrical installation. Electrical installation
changes originate from misunderstandings and lack of
communication between the developers and the electrical
subcontractor. The goal is to keep these project-specific
costs low.

3.3 Domain-specific modeling

The SPL is the core aspect of the proposed architecture. It is
a very useful approach for achieving various business goals.
Development work time and the corresponding variable costs
are low for systems derived from an existing product line [2].

One approach to implement an SPL is based on domain-
specific modeling (DSM). DSM enables the description
of a system on a high level of abstraction through the
usage of a DSL [22]. For that, a DSL for a given domain
has to be designed, which then enables easy and efficient
development of application models for the domain. A code
generator is then used to generate source code from the
specific domain model. In the case of AS, in addition to the
automation source code, a consistent hardware installation
plan is generated. This leads to higher upfront investments
in terms of development work time for code generators, but
also reduces installation time and errors and improves stake-
holder communication. Figure 5 shows the different layers
of modeling, based on the OMG 4-layer architecture.

Fig. 5 Four meta model layers of domain-specific modeling
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Fig. 6 Initializing a product line for an automation system domain

3.4 The transition process in detail

We propose an approach for the adoption of an SPL approach
in small enterprises. The relevant literature makes it clear
that the introduction of an SPL is a risky task, especially for
a small enterprise. Although the proposed approach was ver-
ified in the automation systems domain, we believe it could
also be applied in any other domain with similar charac-
teristics. The proposed approach is deliberately lightweight
and therefore well suited for small enterprises, since small
enterprises could easily fail if they cannot afford the poten-
tially high upfront costs characteristic of general transition
approaches. Figure 6 illustrates the proposed concept. First of
all, the approach is divided into the well-known domain and
application engineering processes. Parallel with the domain
initialization phase, a first project is started. We suggest car-
rying out a customer project that can be used as a basis for
the domain. The project initiation comes from the customer,
who has specific requirements. In parallel, the AS company
has to decide if there is a potential market for the product.
The remainder of this section explains the approach in more
detail.

3.4.1 Project management

Compared to the management of single system projects, the
management of a software product line engineering (SPLE)
process is more complex. The management of an SPLE
project is positioned closer to the strategic level than the
management of a single system project.

This is even more true for SPLE in a small enterprise. Usu-
ally, a small enterprise serves a single specialized domain, as
opposed to many domains. Therefore, the introduction of
SPLE is a purely strategic decision in the context of a small

enterprise, which shows the importance of making a careful
decision.

The business goal is to produce high-quality end-products
and to develop a framework which enables the efficient
production of these products. The aim of the SPLE manage-
ment is to develop universally reusable components, which
can be used to assemble the product in an effective way.
Usually, a project is a temporary venture with a defined input
and output. In contrast, SPLE does not have a defined end
point. SPLE lasts as long as products are produced and main-
tained. One additional challenge is the fact that factors in the
project environment (e.g. technologies, competitors) have to
be taken into account for much longer lifetimes [9]. Another
reason why the term project management is a bit complicated
in SPLE is the fact that there are two types of development
processes, which run in parallel. In fact, there is one applica-
tion engineering project for each new customer or product to
be developed. However, these projects are not unrelated. The
possibilities provided by the domain engineering process are
used in application engineering, and feedback from applica-
tion engineering is used to improve the domain.

In the proposed approach, the domain engineering is based
on single system development. There we have a typical
project, but once again, it is accompanied by an initialization
and domain engineering phase. The separation of concerns
is again very difficult.

3.4.2 SPL initialization phase

The SPL initialization phase is a non-recurring process step.
In this phase, the early management cycle coordinates the
main activities. The initiation for this cycle is a customer idea
or request, and the aim is to describe a business case. This
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Fig. 7 “What to build” pattern [9]

business case is the base for the go/no-go decision, which is
made at the end of the SPL initialization phase.

Several activities provide the basis for this decision. As
mentioned before, for a small enterprise it is essential to base
decisions on a solid ground. This is of course true for other
enterprises as well, but for small enterprises, wrong deci-
sions can lead down the road to ruin. The “What to build”
pattern, illustrated in Fig. 7, gives a good overview of the most
important upfront decision making activities and their inter-
relations. The first important prerequisite is a proper under-
standing of the domain. To be successful, a small enterprise
may want to invest in a market niche. One characteristic of
a market niche is the fact that there are fewer or no com-
petitors, which makes it easier to gain market share. For this
market niche, an appropriate market analysis has to be per-
formed. Customer needs and potential competitors have to be
investigated. If there are competitors, reasons why the cus-
tomer needs are not satisfied have to be analyzed or improve-
ments and additional customer benefits have to be identified.
There is a floating transition to the scoping process, where
the boundaries of the domain are defined.

3.4.3 Domain scoping

The definition of the domain scope is the first important
preparation step for each domain engineering activity. Espe-
cially for a small enterprise, the definition of the domain
boundaries can be crucial. Too broad of a scope can lead to
financial ruin. On the other hand, a scope that is too limited
can hinder the development of new projects and thus again
lead to economic disaster. As mentioned before, one way to
be successful as a small enterprise is to fill a market niche.
In such cases, it is important to provide enough variability to
support as many projects as possible. This again is a question
of good scoping decisions. To make good scoping decisions,
the domain has to fulfill the market needs and the needs of
the different stakeholders. Therefore, once a market has been

found, the different stakeholders have to be identified. Each
stakeholder has a different view of the domain and thus needs
different kinds of information. Smaller enterprises usually
serve smaller domains. For these small domains, the use of
questionnaires is an appropriate domain analysis method.

3.4.4 Requirements

An SPL has a long lifecycle and is used to produce many dif-
ferent products. Therefore, it is even more important to con-
duct a thorough requirements analysis. This is particularly
true in the proposed approach, since product requirements
are reused as a base for SPL requirements. When performing
this analysis, it is important to keep a few recommendations
in mind. First, in addition to the functional requirements,
technological requirements have to be formulated. This task
is covered by the “Technology forecasting” point in Fig. 7.

For the customer, this requires no additional effort because
it is also of interest in single system development. The cus-
tomer has an interest in getting the best state-of-the art tech-
nology, which is particularly true if the product has a long life
cycle and/or contains special hardware. Especially if hard-
ware is involved, it is important to get spare parts, if neces-
sary. Another factor is the development of a modular, reusable
and maintainable design. These factors are mostly covered
by quality requirements. Of course, the requirements of the
first pilot project do not cover all aspects of the domain. As
illustrated in Fig. 6, the project requirements have to be car-
ried over to domain requirements. Domain requirements are
a generic description of system behavior. This means that
domain requirements include variability.

3.4.5 Domain engineering

The domain engineering process consists of two different
cycles. The later management cycle is a support cycle in
the domain engineering process. It includes the continuous
adaptation of the business case and the monitoring of market
dynamics, which is necessary to react to changing market
demands. The second cycle is the domain engineering cycle
often described in the literature.

3.4.6 Domain modeling phase

Using information gathered in previous process steps, it is
now possible to create a domain model. This meta-model
or DSL is a framework of reusable components. The aim of
domain modeling is to provide a platform allowing economi-
cal production of products via generative programming. One
important part of this framework is the elaboration of vari-
abilities. The development of a precise and complete domain
model is very important for the success of the SPL, as reengi-
neering of the domain model in a later development phase
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involves significant additional work. A domain model is a
representation of common and variable parts. Commonal-
ities are features that are the same for all products, while
variabilities are features which differ between products of
the SPL [28].

Variability can be seen as a delayed design decision. It is
specified in the form of variation points. Possible variants are
defined for each variation point.

One essential task in SPLE is to specify the granularity of
the variability. Fine-grained variability allows for the mod-
eling of most projects in a domain. However, the disadvan-
tages are the resulting complexity of the meta-model and the
increased difficulty of system modeling [16].

3.4.7 Core asset development

The code generator translates an application model to either
another model representation or to the corresponding source
code. In SPLE, this generator is often parameterized with
templates [44], which define the implementation for the
domain objects. Generators also check and optimize input
and sometimes even add missing information to the input.
From this revised input description, the output code is gen-
erated [7].

3.4.8 Application engineering

The AE process handles the actual generation of a product
with the help of the developed framework. The products are
matched to the specific customer requirements. The system is
modeled using the functionalities of the DSL which has been

established during the domain engineering process. Source
code is generated out of this model. Depending on the SPL
and the given domain, the produced product might have to
be altered. If too many parts of the code have to be changed,
the possibility of changing the domain model must be
considered. This can be the case if the domain was not well
understood during the engineering phase [29].

3.4.9 Software maintenance

This aspect is not explicitly represented in Fig. 6, since it is
not crucial for the SPL initialization. However, it is crucial
for the overall success of the project. Even more than in sin-
gle system development projects, it is important to keep the
maintenance costs low. First, the domain has to be maintain-
able with little effort. Domain maintenance is a recurring task,
so there is a lot of potential for improvements. As mentioned
in the previous sections, maintainability of automation sys-
tems is often a problem. A modular structure of the resulting
products can help to improve this aspect.

4 Case studies

4.1 Case study I: a PLC controlled inventory system

4.1.1 Domain description and aims

The domain of the first case study is a logistics system which
is built of conveyors, rotary tables, cranes and high bay rack-
ing components.

Fig. 8 MetaEdit+ model of an automated logistics system [15]
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Fig. 9 Small-scale inventory system lab model [15]

The result is an SPL platform which can be used to create
AS software, documentation, etc. for various assemblies of
these components. Figure 8 shows a sample graphical model
of the domain. An extensible set of language elements is
stored in some kind of reusable element pool, where each ele-
ment should be adaptable to customer needs. A graphically
specified logistics model gets transformed to complete, fully
functional PLC program source code and a consistent PLC
cabling documentation. Afterwards, the program is imported
into the SIMATIC® manager. This is a programming environ-
ment for the SIMATIC S7® PLC, which was to be supported
in this project. Application engineering contains the graphi-
cal assembly and configuration of the logistics system. After
the logistics system has been defined, the PLC code and a
documentation are generated.

4.1.2 Context, stakeholders, and project characterization

This project serves as a pilot project to investigate the suit-
ability of DSM for AS. During the project, we identified
several problems, which we sought to overcome in a second
case study. The differences and lessons learned are described
later on in this work. First, we will describe the setting of this
case study.

The study was conducted as an academic project in a hypo-
thetical small enterprise setting for an educational small-
scale lab model at our Institute (see Fig. 9). Although no
industry partner was directly involved, we applied realistic
requirements and used cases from industry. In particular, cus-
tomer (logistics expert), AS developer, and electric contractor
roles were assigned to simulate a real-life setting.

The initial AS functionality, PLC configuration, and
cabling were implemented by students as a single system
project. Although designing the AS software for reuse was
one initial goal, this ultimately had to be abandoned due to
time pressure, which is a typical scenario in industry practice
as well.

Domain engineering towards SPL development was per-
formed in a separate, subsequent student project. To start, it
was necessary to spend some time becoming familiar with
the domain. This phase was quite similar to the single sys-
tem development project described before. As it turned out,
it was necessary to rewrite substantial parts to make the AS
software components truly reusable. In particular, a domain-
wide handover protocol had to be devised that allows for free
assembly of any number of components. Some subtle prob-
lems had to be solved to make this general enough to work
correctly in an IEC-61131 compatible PLC. The challenge is
the change in behavior which occurs when the sequence of
function blocks is altered. This sequence, however, is deter-
mined by the DSM model and cannot be predicted in AS
component development. Compared to AS component and
generator development, designing a DSL was straightfor-
ward. Figure 8 gives an impression of the graphical logistics
DSL.

4.1.3 Domain modeling and generator architecture

Because there is no real customer for this project, system
requirements were provided as input for the student projects.
The domain scope was restricted by the functionality of the
lab model. There were a number of devices, such as a high
bay racking, a gantry crane, conveyors, a rotary table and
rack servicing units. All of them were modeled as language
elements of the domain. They can have several properties and
constraints, and there are certain rules about how the different
elements can be combined. In particular, we developed a gen-
eral synchronization protocol for all element interfaces that
deal with pallet handover and queuing. This is the primary
interface type and enables the free combination of logistics
components handling pallets. Other rules check the plausi-
bility of the topology and the property values modeled.

Figure 10 provides an overview of the implemented mod-
eling and generation architecture. The upper layer shows
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Fig. 10 Modeling and generator architecture of the implemented
inventory system [15]

the domain modeling process with all the components, rules
and relationships. Dashed frames identify the domain, while
black frames are application specific. On the second layer,
the application is assembled. The main parts are components,
which have to be instanced, parametrized and arranged as
needed. The management supervises both the domain mod-
eling and the graph modeling (application engineering).

Generators are based on the graph modeling layer.
They extract information required to generate the output.
As indicated, each generator requires different information
to prepare the output files. All generators are highly domain
specific. The database (i.e. the repository of MetaEdit+)
contains the models, rules and generators. The generators
are implemented using MERL, the MetaEdit+ scripting lan-
guage. A large amount of domain-specific knowledge is cap-
tured within the generators to produce the required output
artifacts. The PLC code generator is the most complex one
and creates all necessary program files for the PLC using
the IEC 61131-3 languages FBD (function block diagram)
and IL (instruction list). The program files are imported into
the PLC development system, translated, and deployed on
the PLC itself. On the generator level, error checks validate
different values (e.g. the limited size of the high bay racking
and the connections of the rack servicing unit, which must
fit within the given dimensions). In addition, the existence of
all important values is tested. Theoretically, this could also
be done while modeling using constraints that are checked
immediately. However, this would not be practical, as there
are often inconsistencies during the modeling process that
can only be resolved when the generator runs. Generator
warnings are produced for elements lacking neighbors. Also,
an error is flagged if there is no kill switch included in a con-
crete project, since this is mandatory in the logistics domain.

The documentation is dynamically created and organized
as a website. The documentation MERL script generates

*.HTML files with embedded Javascript functions and a cor-
responding style sheet. The advantage of a website is the
interactive behavior. Unlike in a text-based documentation,
it is possible to link corresponding elements. MetaEdit+
enables the export of an application model image using
Javascript commands. This image is shown on the main page
of the documentation. Clicking on an element shows detailed
information. There are different parts included in the gener-
ated documentation:

• Main document Gives an overview of the system.
• Pin binding Shows a wiring diagram.
• Generated files Lists all the generated files.
• Recommended tests Dynamically generates standard test

instructions.
• Available instructions Each new system has new com-

mands which are calculated dynamically. These com-
mands are presented on this page.

• Hardware suggestion XML-based hardware suggestions
for the generated system.

For a discussion of this project and a comparison to the
following “PISCAS” case study, see Sect. 5.

4.2 Case study II: PISCAS: a pisciculture automation
system

The second case study was performed as an industry project.
Since this project has more significance, we will take a closer
look at it. It involves the development of a fish farm AS.

This section describes the main project setting. Detailed
information can be found in [33]. Section 5 presents and
discusses the results of this case study.

4.2.1 Domain description and aims

The main functional requirements for a fish farm AS are
feeding and oxygen monitoring, including an alarm system.
In addition, water level monitoring, pH value measurement,
and standard functions like switching and light controls have
to be developed.

One main aim of the AS is to make the work of the fish farm
owner easier and to save resources. Therefore, we introduced
a fish growth model to keep track of the current fish weight
in a pond and to adjust the amount of food according to
that weight. Oxygen monitoring enables energy savings by
switching off the oxygen supply if the oxygen level of a
pond is high enough. The pH value and water level monitors
provide quick identification of critical pond states, which in
turn helps to take timely countermeasures.

The goal of the AS developing company (HOFERNET)
is to keep system development and maintenance efforts low
and thereby potentially open up a new market.
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Fig. 11 PISCAS stakeholders [33]

4.2.2 Context, stakeholders, and project history

The three main stakeholders are the companies Elektro
Tisch, HOFERNET, and Kärnten Fisch. HOFERNET is a
very small company that developed the SPL for the AS.
Elektro Tisch was responsible for on-site electrical and
AS hardware installation. The fish farm company Kärnten
Fisch was the customer ordering the AS from HOFER-
NET. Figure 11 provides an overview of this stakeholder
scenario.

4.2.2.1 Evolution history So far, HOFERNET has auto-
mated two fish farms (Radenthein and Feld /Austria). Both
consist of several ponds. All ponds are equipped with a feed-
ing automat, and some of them have oxygen level monitoring.
Hardware components (sensors and actors) already existed
before the installation of the PISCAS system. Feeding had
been triggered by a time switch, and the aerator supplying
oxygen had been operating continuously.

Initialization phase: Development started as a single sys-
tem project for one site. Getting the fish farm AS up and
running was clearly the primary goal. At HOFERNET, only
two persons were involved in this project: the CEO and one
of the authors.

However, as contracts for additional sites became a pos-
sibility, a vital interest arose in designing the AS (including
software, hardware, cabling, sensors, and actors) for reusabil-
ity. For the same reason, the potential of the fish farm AS
market was analyzed, and consideration of a business case
began.

Overall, the project was considered a success. Two obser-
vations, both of which concern external stakeholder commu-
nication, became the motivation for SPL transition:

• The most underestimated aspect was understanding the
fish farm domain, including its principles, rules, proce-
dures, and language (i.e. the communication with the fish
farmer).

• The communication with the electrical contractor turned
out to be an issue as well. Neither the abstraction level
nor the formal kind of specification was clearly defined.
When this was combined with a hands-on mentality, mis-
understandings ensued, which even made it necessary to
rework the cabling (including liability discussions).

Software product line transition phase: When starting with
a second project, we decided to organize future PISCAS
development as an SPL. Starting from the initial project’s
experience and substance, the same two persons carried out
the SPL transition. Two parallel threads of activity were
kicked off:

• First, we developed a “standard” PISCAS cabling con-
cept and standardized terminal blocks. We complemented
this environment with an also new catalog of PISCAS
supported sensors and actors. In this way, electrical con-
tractors should get enough guidance to deliver a perfect
installation without substantial rework.
The PLC software used in this activity was based on the
initial project and modified according to the new fish
farm.

• We started the PISCAS domain engineering activities
based on work done in the initial project. This was done
by the software developer of the initial project. In this
way, he was able to fully reuse his knowledge of the
domain, its requirements, and the AS software. The main
tasks were designing a DSL, writing AS code generators,
and creating generators for consistent documentation and
cabling plans.

4.2.3 PISCAS development

The approach proposed in Sect. 3 was used to develop an AS
SPL. We identified requirements for the specific domain dur-
ing meetings with the customer and with the help of VOLERE
checklists [34]. These requirements were then used to con-
struct use cases to enable checking of the functional project
results.

Meetings with the customer brought insight into the vari-
ability of the domain. In addition, scenarios for other known
fish farms were constructed.

These variants were used to construct a DSL with the tool
MetaEdit+ [41]. This tool enables the creation of graphi-
cal editors for modeling domain-specific systems and pro-
vides the ability to generate code from these models. The
MetaEdit+ model elements for the fish farm DSL can be
seen in Fig. 12 and are further described in [32].

As a base for the code generator, we developed a general
PLC software prototype for fish farm AS. Due to the modular
design, the functionality of the PLC software can easily be
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Fig. 12 Model elements for PISCAS fish farm software product line (MetaEdit+) [33]

enabled or disabled by setting parameters. In addition, this
PLC software is equipped with a test mode, which enables
easy testing of the installed hardware components. For exam-
ple, it includes an automated test of the emergency power
supply unit. With the help of this test mode, the electrician or
the AS developer can verify the correct function of hardware
components during on-site installation. These test functions
should also decrease maintenance effort, as they make it eas-
ier to locate hardware faults. The PLC software template is
used to generate the PISCAS software using the DSL appli-
cation model for the concrete system which is described in
more detail in [31].

In addition, to the PLC software, project documentation
for the fish farm system is automatically generated. Besides
a user manual for the AS, the documentation includes an
electrical installation plan, which serves as a basis for inter-
organizational communication between HOFERNET and
Elektro Tisch. Table 3 provides an overview of the generated
artifacts and a side-by-side comparison with Case Study I.

4.2.4 PISCAS implementation

Due to time pressure, we had to be put the AS into oper-
ation before the software generator was completed. At this
point, we had already finished the template and just had to
configure it to work with the specific fish farm in Radenthein
(Austria). This method is known as clone&own. During the
configuration of the software, many errors occurred, which
led to significant extra work. Nevertheless, this initial opera-
tion provided important data for the cost evaluation of differ-

ent development approaches. The same system in Radenthein
now runs with a software generated from a model.

The development of the second system in Feld (Austria)
started when modeling and code generation tools were fully
functional, and it was therefore possible to carry out this
project in an SPL manner using DSM.

Both PISCAS AS have been in operation since April 2010,
and no major software errors have occurred. Only minor
errors have needed to be corrected. Several updates have been
necessary, due to functional extensions. These maintenance
efforts are reflected in the cost analysis.

5 Discussion of results

This section shows real-life data based on the development of
the SPL and the installation of the fish farm systems in Raden-
thein and Feld (Austria). Since the automated systems are
about the same size, the results gathered during the installa-
tions of these two systems are comparable. Where available,
data from Case Study I is given as well.

The analysis is conducted for three different types of
development approaches.

• Single system development In this scenario, an individual
project is implemented for each AS. It is assumed that
there is no prior knowledge about the domain, and no
part of the software is reused for the development of a
new system. This is not a realistic scenario, since there
is always some kind of knowledge and code reuse, but it
serves as a good comparison base for the other methods.
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• clone&own This is the most common approach. It is often
used for the development of AS in practice. In this sce-
nario, existing software is copied and altered according
to the requirements of the new project.

• SPL This is the approach suggested in this paper. After
the domain analysis step, a DSL for the specific domain is
designed, and code generators are implemented. Specific
systems are modeled using the DSL. The code genera-
tors are used to generate code from the individual system
model.

5.1 Cost model

The cost model used here is based on the model proposed
in [10], which has been adapted to the needs of AS. Three
scenarios are important for our estimation:

1. Building n products with single system development

n∑

i=1

Cunique(pi ) + C prod(pi )

+Cinstall(pi ) + Cmaint (pi )

2. Building n products with clone&own

Ccab2() +
n∑

i=1

Cunique(pi ) + C prod(pi )

+Cinstall(pi ) + Cmaint (pi )

Remark: Ccab2() is used as a base for clone&own devel-
opment since both single system development and tem-
plate development have almost equal efforts.

3. Building an SPL with n products

CostDE = Corg()+Ccab1()+Ccab2() +
n∑

i=1

Cmaint (i)

CostAE (pi ) = Cunique(pi )+Creuse(pi )+Cinstall(pi )

CostsS P L = CostDE +
n∑

i=1

CostAE (i)

For our project we can assume the following:

• Corg Code generator development
• Ccab1 DSL development
• Ccab2 PLC template development
• Cunique Requirements analysis
• Creuse Creation of a product specific model
• C prod Manual development (without SPL)

This includes PLC Project SW development, SW changes
and electrical installation changes.

In addition, we introduce two more types of costs, which are
relevant for AS development:

• Cinstall Electrical and on-site installation
• Cmaint Maintenance (platform)

5.2 Cost analysis

We gathered data for the three different development meth-
ods during the development of the two case studies. Figure
4 illustrates the division of costs into domain engineering
and application engineering costs. Domain engineering costs
mainly arise from the first system developed in the domain
and also include domain analysis, DSL development, and
generator development for all kinds of artifacts needed. Sub-
sequent systems are instances of this platform and lead to
application engineering costs.

Table 1 shows the costs for all three scenarios: single
system development, clone&own and DSL-based SPLE.
We included efforts from Case Study I in Table 1 where
applicable and extrapolated efforts using the cost model from
Sect. 5.1 for several development scenarios. Figure 13 sum-
marizes the results.

5.3 Break-even point estimation

By comparing the extrapolated efforts from Fig. 13 for each
case study, we can identify break-even points for the differ-
ent scenarios. The break-even point indicates the number of
products for which the efforts for SPL-based and clone&own
development are equal. clone&own and SPL costs for a num-
ber of n products were extrapolated from the data we col-
lected during the case studies.

Table 2 shows the break-even estimation for several sce-
narios in both case studies side-by-side. Single system ver-
sus SPL development are compared, as well as SPL- versus
clone&own-based development. For Case Study I, we tried to
isolate several effort-generating effects (see Fig. 13a) in the
case of SPL to gain more insight into the process of initiating
an SPL.

A comparison of single system and SPL development
shows that an SPL pays off after very few derived appli-
cations. This observation confirms reports from the relevant
literature [30]. However, here we are mainly interested in the
break-even points of the SPL and the clone&own approaches,
as this is the most common practice.

Here, the results for Case Study II are better than expected.
Significant costs during on-site and electrical installation can
be saved with the SPL approach due to the much less error-
prone generation of PLC code and consistent documentation
for electrical installation, test, and system use. It also turned
out that the design of a DSL for the automation domain was
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Table 1 Summary of work efforts for alternative development approaches in both case studies described

Tasks Work efforts (hours)

Case Study I: Inventory Case Study II: PISCAS

Single Clone&own SPL Single Clone&own SPL

Var. Base Var. DE AE Var. Base Var. DE AE

DE (DSL dev.) Ccab1 225 29

PLC Project SW Dev C prod 430 430 430 187 171

PLC Template Dev Ccab2 450 187

Code Generator Dev Corg 225 115

Requirements Analysis Cunique 20 20 20

Product specific model Creuse 0.21 2

Software Adaptations C prod 8 est. 16

Electrical Installation Cinstall 40 40 40

Electr. Inst. Changes C prod 5 5

On-site Installation Cinstall 40 40 20

Maintenance Cmaint 17 17 5

Base development effort 430 1350 171 331

Effort per application 430 8 0.21 309 138 5 82

Fig. 13 Work efforts for different development approaches: single system development, clone&own, and SPL

not as difficult as expected. This may be due to the favorable
characteristics of the AS domain, as described in Sect. 2.1.

Case Study I looks much worse in this respect. When
compared to Case Study II, several factors apparently led
to that inferior outcome:

• We considered only PLC software, without additional
efforts (e.g. installation). Thus, the savings resulting from
systematic reuse are not that high.

• The logistics elements basically had only one com-
plex type of interface, with protocols facilitating the
handover of pallets and queuing. The development of
a generic solution for these functions required higher
upfront efforts than in Case Study II.

• There was no efficient domain knowledge transfer (doc-
uments only) between the initial implementation and
the SPL project. This resulted in an additional extended
domain analysis phase.

• Although developed for reuse, the original PLC software
framework turned out to be not very reusable in the con-
text of a DSL-controlled generator. Not surprisingly, the
main focus of this issue was on the interface protocol
mentioned above. Apparently, the initial reuse scenarios
were tacitly chosen more in a technical context than in
a domain context. A new PLC software framework had
to be devised for use in an SPL setting, which required
substantial extra effort. This is discussed in more detail
in Sect. 5.5.
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Table 2 Extrapolated
break-even numbers from Case
Studies I and II compared

Case Study I:
Inventory AS

Case Study II: Fish
farm AS

SPL versus single sys. projects ≥3 ≥2

SPL versus clone&own

Overall ≥4

PLC SW only ≥116

PLC SW only (w/o domain knowledge transfer) ≥87

PLC SW only (w/o redesign and knowledge transfer) ≥30 ≥8

Table 3 Artifacts generated in
the presented AS software
product lines

Case Study I Case Study II

Generated software

PLC code (IEC 61131) Full (FBD, IL) Full (ST)

User interface No, manual Full

Test mode Rudimentary Full

PLC

PLC brand SIMATIC S7 B&R

PLC config – Complete

Documentation

User doc Site overview, components Site overview, PISCAS docs,
hardware bill of materials,
variable reference

PLC cabling PLC I/O list Graphical PLC I/O & cabling

Design support

DSL Yes Yes

PLC hardware selection assistant Yes Modeled

To better understand and compare the consequences of
these effects, Fig. 13a depicts three sub-scenarios within the
SPL approach, which are then compared in Table 2:

• The measured Case Study I SPL introduction with
extended domain knowledge acquisition phase due to a
developer new to the domain and the re-development of
the PLC software framework that became necessary.

• A “what-if” scenario without additional domain knowl-
edge acquisition effort. This would be expected if the
same developer (team) did both the initial project and
SPL domain engineering.

• Another “what-if” scenario in which both the domain
knowledge acquisition effort described above and the
PLC software redesign are removed. This scenario is then
very similar to the concrete and more successful evolu-
tion in Case Study II (see Table 2).
Considering only software effects for Case Study II, tak-
ing into account the lower upfront costs and thus higher
relative savings per SPL-derived application, both cases
end up in a comparable range. Nevertheless, while it was
achieved in Case Study II, this shows the potential that
unfortunately was not realized in Case Study I.

5.4 Lessons learned

5.4.1 Similarities identified in the case studies

Even though the presented SPLs (Sects. 4.1, 4.2) have differ-
ent domains, both share characteristics typical for AS. They
also share the ramp-up scenario in Fig. 6. In addition, the
list of artifacts generated from an application model in the
respective DSL looks quite similar (see Table 3).

Applications are specified using the DSL. All PLC-
relevant artifacts are generated from this application model.
By separating the domain knowledge from the technical
realization, we become independent from specific hardware
vendors. In this way, switching the hardware vendor seems
within reach by simply exchanging the code generator(s).
This is especially interesting for small companies, as they
are most susceptible to vendor lock in.

5.4.2 Start SPLE lightweight and early

As can be seen in Fig. 13, starting a domain-specific AS
SPL can pay off after 3–4 application projects. This figure is
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reported in the literature as well. However, the upfront cost
can pose a problem, especially for small companies. We were
able to demonstrate that the use of the presented approach
makes this feasible for small AS companies as well. This is
particularly true when early revenue is gained from the initial
project.

5.4.3 Efficient knowledge transfer from single system
development to domain engineering

In Fig. 6, many arrows indicate knowledge flows from initial
project engineering to domain engineering. Domain under-
standing, requirements, solution architecture, and implemen-
tation artifacts all must be generalized to be usable in domain
engineering. Based on the two case studies, the best approach
seems to be that the developer of the initial project does this
her/himself. Especially in small enterprise contexts, this is
not only feasible, but seems to be necessary to achieve a rea-
sonably efficient domain development. In turn, this would
yield an attractive break-even point.

5.5 Knowledge transfer in the domain engineering process
of a small company

Knowledge transfer means the process of making implicit
domain knowledge explicit and thereby transforming the
existing documentation of a legacy system into a reusable
domain model. All interfaces described in Fig. 6 represent
knowledge transfer. Any time, when knowledge is transferred
from a single project setting to the domain, problems may
occur. There seem to be some common factors which enable
or hinder the knowledge extraction process.

One obstacle to knowledge extraction in a large domain
was identified in our previous work [24]. In this paper, we
identified the existence of a domain expert team: a manage-
ment expert responsible for scoping, and experts responsible
for providing methodical background, variant expertise, and
target platform expertise. These domain expert team roles
can certainly be taken over by one and the same person in a
“small” domain, given that this person has enough expertise
in all of the necessary fields. In a complex domain, there will
almost certainly be a team of several experts.

Another overview of roles in an SPL project presents a
more detailed listing of roles related to the three main SPL
activities (management, domain engineering, and application
engineering) [43]. Again, the number of project members
taking these roles depends on the complexity of the domain.

In a small AS developing enterprise, the domain will prob-
ably be relatively small, so the aforementioned domain expert
team could consist of one or maybe two individuals. For a
large domain, the problem is the coordination and coopera-
tion of this domain expert team. If this is lacking, it can hinder
the domain modeling process. Since this cooperation prob-

lem seems to be insignificant for a small company, there have
to be other problems, which are not obvious at first sight.

We investigated two different problems. Both case
studies are from the AS domain, comparable in size and arti-
facts needed to the system context. In each project, a sin-
gle person worked on the introduction of the SPL approach,
thereby becoming an expert in the domain, technology, and
DSL methods and tools. In one project [33], the domain mod-
eling process worked without problems. In the other project
[15], the domain modeling was a slow-moving process at
the beginning. Only after some time did it function without
major problems. The question is: what are the differences
between the two projects that can explain the relative levels
of success or failure?

Here are some observations which we believe make the
difference:

• Design for reusability In Case Study I (Sect. 4.1), the
initial project was originally designed by different devel-
opers who had reusability in mind, but without a concrete
idea about the reuse context. In Case Study II (Sect. 4.2),
the initial system was developed with the SPL approach
in mind.
SPLs use a predictive software reuse strategy. Oppor-
tunistic reuse, on the other hand, would involve building
a library of components that can be reused [21]. For us,
this is the main difference between the two approaches.
In the first approach, we developed the components with
reuse in mind, but it was not clear when and how the com-
ponents would be reused. Therefore, the reuse capability
was based on the capabilities of IEC 61131 languages,
and not on the explicit variability requirements from the
domain context. In the second approach, we defined vari-
ation points, perhaps not in the software itself, but in the
design of the software. This made the transition to the
SPL approach significantly easier.

• Implicit knowledge versus documentation In the more
successful fish farm case, domain knowledge was implic-
itly available from a domain expert. In the other project,
the knowledge had to be gained from documentation
and legacy software. This method of domain knowledge
acquisition required significantly more effort. Further-
more, documentation is often written from one specific
viewpoint. To get a proper understanding of the domain,
it is necessary to have different viewpoints.
Hidden design decisions were another issue. In docu-
mentation, the actual design of software is described,
but many design decisions are not explained in detail.
However, especially for reuse, knowledge about design
decisions is of great value.

• Coupled development projects For Case Study I (Sect. 4.1),
the single system development project was more or
less finished before the start of the domain engineering
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project. The domain engineering process was executed
completely independently from the individual project.
This also means that the developers were not available for
consultation. Thus, two parties had to familiarize them-
selves with the domain: the project developers and the
person who developed the domain. This involved dupli-
cate work, which is not really necessary.
In Case Study II, the domain engineering developer was
also heavily involved in the single system project. In this
way, domain understanding was already present to a large
extent.
We suggest two different scenarios to avoid this problem.
Either the two projects have to be really parallel, or one
person has to be involved in both projects.

5.6 Communication problems

An issue mentioned in Sect. 1 is the far-from-perfect com-
munication between the AS developers and the electrical
contractor responsible for electrical installation. Experience
from Case Study II (Sect. 4.2) showed that insufficient com-
munication leads to significant extra effort. Figure 14 illus-
trates the basic communication problem. In a single system
project, there is usually no defined communication between
the two parties. The introduction of an SPL approach pro-
vides the possibility to generate basic artifacts that support
stakeholder communication. This means that it is possible
to easily introduce a defined communication. Due to gener-
ation of documentation, cabling plans, and even test mode
PLC software, these artifacts are up-to-date and consistent
with the application model. Furthermore, they are available
at almost zero cost. This is an important factor, particularly
for small enterprises with limited engineering resources. The
case studies described here show that this is one way to reduce
errors and installation efforts.

6 Related work

SPLs have been suggested as a systematic reuse approach
for software-intensive systems [11]. The approach has been
proven a number of times (e.g. [12,36,39]. The SPL approach
involves two fundamental development cycles: domain engi-
neering (core asset development) and application engineer-
ing (product development) [11,30].

One of the most important issues is the SPL adoption strat-
egy. The organization, the processes and the methods have
to be adapted to the SPL concept [5]. The major question
is how an organization can make the move from developing
one-off products to SPLE without major interruptions in the
day-to-day-work. The different needs of organizations pre-
vent the description of a generic transition strategy, and each

AS developing company −

Artifact

Cabling plans
Documentation
AS testing mode

Generators

Appl. m
odel

AS developing company − Product line development

Individual project development

PLE
transition

generation

Electric installation

Electric installation
company

Project development

Domain engineering

Application engineering

companyplans
immature, rudimentary, outdated

Cabling
Documentation

Fig. 14 Improving and structuring AS developer to electrical contrac-
tor communication utilizing generated, consistent, up-to-date documen-
tation artifacts and AS test mode

organization must define its own action plan [26] because
they will vary in size, structure, product type, culture, reuse
potential, etc.

One agile systems’ engineering industry survey identified
the use of SPLs as one success factor for multi-discipline
domains (as AS) as well [37]. This approach helps to facilitate
quick, market-driven product variants. The same study also
identified efficient communication paths with customers and
partners in which their own language is used as another suc-
cess factor. The approach presented here incorporates both
aspects.

Gonzales and Benavides[14] propose an iterative process
built on incremental domain engineering based on iterative
application engineering. In this process, the domain is built
from a basic product and then iteratively refined through feed-
back from application engineering.

Other reference processes assume the determination of
stakeholders and the definition of business goals to be the
most important preparation step [5,35]. As mentioned before,
business goals are the major drivers of an SPL. The goals are
highly dependent on the different stakeholders. Therefore,
product-line goals have to be derived from different points
of view (e.g. financial, customer, people, process, infrastruc-
ture and innovation) [26]. According to [5], the realization
of the business case is defined in an adoption plan, which
defines the current state, the desired state and the strategies
for getting there. Many transition strategies are available. The
adoption plan must stipulate the most suitable strategy for the
current situation. Once an adoption plan has been chosen, the
SPL is launched. However, this alone is not enough for a suc-
cessful SPL. The SPL has to be institutionalized. This means
that the processes have to be perceived as stable [5]. One
important aspect is supporting the process with defined roles
and responsibilities. Without assigned roles, processes can
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become chaotic and useless [14,35]. Much more research has
been done on the issue of legacy code analysis and integration
of existing code into a core asset base than on organizational
transition [18].

Bekkers et al. [6] propose a software product manage-
ment competence model. It organizes focus areas within
four business functions and sets this model in context to
external and internal stakeholders. The business functions
and their product management focus areas are: Requirements
management (Requirements gathering, Requirements identi-
fication, Requirements organizing), Release planning
(Requirements prioritization, Release definition, Release
definition validation, Scope change management, Build val-
idation, Launch preparation), Product planning (Roadmap
intelligence, Product roadmapping, Core asset roadmap-
ping), and Portfolio management (Market analysis, Product
lifecycle management, Partnering and contracting). External
stakeholders are the market, customers, and partners. While
devised for larger organizations, this model also maps well
to activities, responsibilities, and stakeholders found in our
approach (cf. Fig. 6) for small enterprises.

Moser et al. [27] propose an ontology-based approach
called Engineering Knowledge Base to capture knowledge in
a multi-discipline engineering process. This is done to trans-
late and ensure correct communication and cross-discipline
joints, also for tools. This problem pattern shows up in an AS
setting both at the interface to the customer (domain expert)
and the electrical contractor.

7 Conclusion and future work

This paper presents a DSM-based transition process approach
to SPL for small AS developing companies. We applied this
approach for two AS development settings in the logistics
and fish farm domains. Qualitative and quantitative results
were given and discussed.

Compared to the traditional approach, some of the main
advantages of our approach are:

• Domain knowledge is made explicit in the meta-model
(DSL) and can therefore be reused by other developers.
This makes the enterprise more independent from spe-
cific developers.

• High-quality software is produced, since automatic code
generation reduces the number of errors.

• Lower setup time for the on-site installation is expected
due to the generated installation plan and the test mode
of the PLC software.

• Efficient development of applications from a product line
can be expected, since the systems are modeled on a
higher level of abstraction, and generators produce all
artifacts in consistent variants.

The lessons learned from our case studies show that some
common disadvantages reported in the literature can be over-
come by the present approach, especially in the context of
small enterprises:

• When starting with an initial customer project, this early
revenue can be used to fund domain engineering tasks.

• For AS, using a DSM workbench can make domain engi-
neering very efficient. This is one factor that makes the
approach profitable after only a few application projects
(see also Table 2).

• Knowledge transfer from the initial project to domain
engineering has to be very broadband and efficient. Ide-
ally, the same person performs both tasks, which again
makes domain engineering efficient.

7.1 Future work

Further investigation is needed to generalize the presented
approach to other AS domains. The observations stated in this
paper are based on interviews with companies and two SPL
introduction case studies. More interviews and SPL introduc-
tion projects must be analyzed to gain better understanding
of a generalized AS context.

Reference data for equal systems developed with and
without the proposed system architecture would be of great
interest. More systems developed with different approaches
or more applications derived from the same SPLs would
enable further validation of the cost model and break-even
estimates.

It would also be of interest to adapt an AS SPL for a dif-
ferent domain. This is of special interest for small enterprises
who want to expand into another domain. Information about
the similarities and variabilities of different AS DSLs would
be of interest. Research into this domain change would yield
desirable information about the efforts required to success-
fully make the transition. Another area of interest would be
to gather information about the efforts required to change
the PLC vendor. Variability differences for the software of
different PLC vendors would be of interest. It would also be
desirable to acquire data about product lines developed with
different PLC vendor hardware. This could lead to a rank-
ing of the vendors regarding their suitability for SPLE in the
automation sector.

Further study of inter-organizational processes in the
automation sector could yield interesting results. Currently,
the lack of efficient communication between stakeholders
leads to extra costs, mostly during AS installation. We sus-
pect that modeling these effects to enable quantitative analy-
sis could eventually lead to improved process quality and
repeatability.
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ABSTRACT

The concepts of Software Product Line Engineering (SPLE)
have been adapted and applied to enterprise IT systems, in
particular the ERP systems of a production company. Based
on a 2-layer feature model for the domain of the company’s
business processes, individual, albeit similar division’s ERP
system configurations can be derived by feature selection
forming a variant description model. It is indicated that
regular release upgrades can also benefit from the SPLE ap-
proach.

The customization capabilities of the ERP platform are
captured in another model; building up this model is auto-
mated according to information extracted online. As well,
customizing an ERP system – based on the models men-
tioned – is performed online with the help of a connector
developed in this project.

Quantitative analysis and lessons learned during the project
conclude this experience report.

Categories and Subject Descriptors

D.2.13 [Reusable Software]: Domain engineering

General Terms

MANAGEMENT, ECONOMICS

Keywords

Software product line engineering, IT management, Enter-
prise resource planning, experience report.

1. INTRODUCTION
Systematic, ”strategic”reuse as suggested by Software Prod-

uct Line Engineering (SPLE), promises the reconciliation of
business goals and flexibility – within a clearly focused do-
main [9]. Especially in the last decade, this approach has
been proved to be useful a number of times, especially by
producers of consumer and software products [16, 18, 14].
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In the pilot project reported here, we tried to apply the
SPL approach within a production company with several
autonomous divisions doing their business in different coun-
tries for a number of customers. In this case, IT is seen as
a supporting process helping to run the main operational
business processes that have nothing to do with software
production. However, reuse in their division’s IT landscape
is very much desirable, most prominently in their ERP solu-
tions. Due to the same nature of the division’s businesses, a
domain forms naturally. Equally well, business process vari-
ants will occur due to local peculiarities like local customer
mixes, laws, production facilities etc.

The paper is structured as follows. In Section 2, we first
introduce the business context and scenarios. We describe
the architecture and the technical realization of our SPL.
Section 3 describes the cost model we used to evaluate our
results. Section 4 finally interprets the results and gives an
overview on the lessons learned during this project. In Sec-
tion 5 we review related work about SPL engineering, the
influence of release updates on the system and its config-
uration, and the configuration of ERP systems in general.
Section 6 finally concludes our discussions.

2. A BUSINESS PROCESS ORIENTED SPL

2.1 Business context and scenarios
The target organizations for this project were the Euro-

pean divisions of a metal forming company. These divisions
are scattered over 6 countries. Each of the divisions typi-
cally employs a few hundred people. Internal organization
is business process oriented, with defined process owners for
several functional areas like production processes, purchas-
ing, logistics, shipping, finance, quality management, human
resource management, and IT processes.

There is one primarily used ERP system brand in this
company. Organizational structure and internal jargon of/for
processes are heavily influenced by this platform. While each
division has its own ERP system and IT services, massive
development of ERP or other systems is definitely out of
reach of the lean organized IT departments.

Prior to the start of the project, three coarse scenarios
described below have been compared in the company’s con-
text.

Isolated ERP solution development (1). Currently, de-
velopment of an isolated solution for each division is
the most common solution; possibly with the help of
consultants. For ERP systems, this task is often re-
ferred to as ”customizing”.
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Figure 1: Conceptual model showing the relations: problem – solution resp. domain – variant (based on [1]
with project extensions)

”Template”-based solutions (2). With the help of ad-
ditional tools, such customized configurations can be
managed, compared, copied and rolled out to several
systems.

Product line solutions (3). Based on a centrally main-
tained repository for the entire domain of company
business processes, the division’s solutions can be gen-
erated within the domain’s variability space. This sce-
nario is not supported by the ERP vendor.

The comparison criteria were: initial costs, maintenance
costs (regular release changes), support people needed, knowl-
edge reuse (availability of experts on company scale), and
process harmonization. The cost models used were based
on the quantitative SPLE cost model in [8].

Under these criteria the three scenario models were ex-
plored in 2 dimensions starting from the current number of
existing divisions: adding new divisions, and integrating a
certain number of existing divisions (obviously not relevant
for (1)). The results suggested the product line scenario (3)
best for the transition of 3 or more divisions’ ERPs to SPLE.

2.2 Business process SPL architecture
Fig. 1 shows the conceptual overview of the product line

set up. The figure’s structure largely follows the 4 quadrants
used by the product line modeling approach of pure::variants
[1], the tool we selected for this project:

The Feature Model captures all features and their rela-
tions in the domain as suggested by [7]. In our case the
features are a representative subset of the company’s
business processes features.

Business processes have been chosen for the represen-
tation of the so called ”‘problem space”’ because they
are used to describe the procedures in the company
and are generally the basis for the configuration of the
ERP system. Construction rules for internal (hierar-
chical) structure of this model have been developed. A
model validation plugin was developed to enforce the
correct structure while modeling.

In addition to the business process features, another
layer of abstraction has been introduced. Configura-
tion features for specific customers have been packaged
so that a customer specific feature collection becomes
selectable as a simple compound feature. The realiza-
tion follows conceptually the feature specialization de-
scribed in [5]. The ”packaged” features are represented
in the same feature model, but only have relations to
other features.

Each Variant Description Model below in the ”problem”
column records a concrete variant (concrete settings
and process description) for a certain division, based
on the variability defined in the Feature Model.

This means that the Variant Description Model de-
scribes the same structure as the Feature Model, but
with all variants resolved.

A Family Model contains a platform’s configuration op-
tions including its constraints, at least those aspects
necessarily known within the SPL tool. A Family
Model exists for every platform used, in our case the
customizing description for the ERP system, but also
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documentation. Mappings between the Feature Model
and each of the Family Models must exist before a con-
crete platform configuration can be calculated from a
Variant Description Model.

The introduction of an appropriate mapping strategy
between the Feature Model and the corresponding Fam-
ily Models is task for further work. In the current so-
lution, some ERP system specifics have been included
in the Feature Model, although the Feature Model
should be completely independent of concrete target
platforms. This simplifies the mapping in this first
version of our solution.

Variant Result Model is the term used for a concrete
platform configuration. When calculating this model,
all other model’s restrictions and constraints are taken
into account. It can be used by generators to control
a platform’s configuration. The existence of a mod-
ular representation of the result is the big advantage
of this approach. It enables the comparison of differ-
ent versions and configuration and makes the result
independent of different transformation engines.

2.3 Technical realization
Pure::variants, the tool we used, is shipped as an Eclipse

plugin and as such can easily be extended by further plugins.
In this project three plugins have been developed:

1. A model validation plugin enforces a domain specific in-
ternal structure of the Feature Model, as pointed out above.

2. In order to set up the ERP Family Model quickly and
error-free, an import plugin extracts the customization menu
items, its views and parameters from the ERP system (SAP),
and builds up the Family Model in an automated way (c.f.
”Automatic model extraction” in Fig. 1).

As a useful by-product, differences in the (large) sets of
customization points of different ERP system releases can
be found using pure::variants’ model compare function.

3. The actual SAP ERP system customization is accom-
plished by a transformation plugin, by setting the customiz-
ing parameters according to the Variant Result Model.

3. COST MODEL DEVELOPMENT
The development of our cost model has been based on

literature research. First it has to be mentioned that most
of the cost models (e.g. [3]) act on the assumption that
software has to be developed and will be reused in further
projects. Contrary to this assumption we do not develop
software, but configure a third party software and want to
reuse the configuration knowledge, which makes most of the
existing cost models applicable only partly.
Our cost model is based on the SIMPLE cost model in [2].
Three important scenarios for our estimations have been
taken and adapted to our specific needs. The SIMPLE
model can be adapted to fulfill the requirements for our use
case. For this project we assume:

Corg = SPL tool development time
Ccab = domain engineering activities
Cunique = domain analysis
Creuse = variant production
Cprod = manual configuration of the ERP system

In addition, we use an SPL completion factor CSPL (0 . . . 1)
that considers the reduced scope in our use case (see Sec.

4.1 for further discussions). With these assumptions we can
write the formulas mentioned above as follows:

For development with an SPL

n∑

i=1

(Ccab(pri) + Creuse(pri) + Cunique(pri))

CSPL

+ Corg(pri)

For individual system development

n∑

i=1

(Cunique(pri) + Cprod(pri))

CSPL

For an additional system

Corg(pri) + Ccab(pri) + Creuse(pri) + Cunique(pri)

CSPL

3.1 Definition of fine-grained cost model
We refine the above mentioned cost model to get more

detailed estimations. Therefore we have split up the defined
cost functions and have collected metrics during our ERP
SPL experiment (see Tab. 1). We use the maximum number
of features to get a worse case estimation. This results in
the following concrete formulas:

1. SPL setup and first product

TSPL−I ≤
Ccab(1) + (tF (1) ∗ max(nF ) + Cunique(1))

CSPL

+Corg

2. Lower bound for single system development (without
SPL)

min(TDev) =
(Cunique(1) + Cprod(1) ∗ max(nF ))

CSPL

(a) Lower bound for single system update (without
SPL)

min(TDev) =
Cprod(1) ∗ max(nF ))

CSPL

3. Additional product (with SPL)

TSPL−∆ ≤
Cunique(2) + Ccab(2) + tF (2) ∗ max(nF ))

CSPL

For the development without SPL it has to be mentioned
that a single system update can be seen as a special case of
the system development. Both tasks are equal except the
fact that we don’t need to do the domain analysis (Cunique)
again for system updates. Obviously there is no need for a
separate formula for the development of an additional prod-
uct in single system development.

The formula for additional product development has to be
discussed shortly. Also the gross cost function includes the
Corg it is not relevant in the detailed formula because the
tool development has to be done only once. Further steps
are automated through this tools, so that we can assume the
Corg term to be zero.

One formula seems to be missing here. We are assum-
ing the time to update the system with the SPL approach
to be approximately 1 hour. This approximation is based
on the average feature selection time and the average num-
ber of features selected. We further assumed the need for
additional time to execute the actual customizing, which re-
sults in the estimate of one hour for the automated system
update.
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4. EVALUATION
Three divisions’ processes were incorporated into the busi-

ness process oriented product line. Each of their ERP sys-
tems configurations was derived by selecting business pro-
cess features and entering parameters accordingly.

4.1 Quantitative Analysis
Besides others, the metrics in Tab. 1 have been collected

during the project. The following comments are necessary
here:

It has to be mentioned that there is no uniform measure-
ment unit in Tab. 1. This is only for a better overview
and readability and has to be regarded when calculating the
break even points.

To keep this trial project reasonably small, we deliber-
ately narrowed the business process scope and focused on
3 divisions only. The SPL completion status was estimated
approx. 15% by the domain expert team in contrast to full
completion.

This experiment was carried out iteratively on 3 operating
divisions’ ERP systems that we tried to integrate into our
business process oriented ERP product line. This aligns
to the ”integration of existing divisions” dimension in the
scenario analysis (Sec. 2.1). No new divisions were set up
during that time.

No serious quantitative data were available about manu-
ally customizing a single ERP system in the same scope as
this project (Sec. 2.1, scenario (1), Isolated development).
However, the SPL-derived configuration for a division was
entered manually into an ERP system yielding a productiv-
ity metric. In this way, comparisons of the two approaches
at least allow for a worst case estimate.

The ”template” approach – scenario (2) was not investi-
gated in this experiment, because it fell short in the scenario
analysis (Sec. 2.1); furthermore, necessary (expensive) ven-
dor tools were beyond reach.

Based on these metrics collected, cost drivers can be cal-
culated (cf. Sec. 3.1) for product line setup, derivation of an
additional ERP system, and following an ERP release up-
date (Tab. 2). These figures should not be mistaken with a
complete setup of an ERP system (release) within an orga-
nization, since that can involve a lot more, like preparation,
testing and possibly rolling back an ERP update, documen-
tation, training, and even organizational change.

Tab. 3 finally shows the extrapolated break even points
comparing isolated development vs. SPL development for
three cases: 1 resp. 2 systems under product line control fol-
lowing ERP vendor release updates; for 4 or more systems,
the product line approach always is advantageous.

4.2 Lessons learned

Define/choose the domain focus. The domain focus –
the company’s business processes – was deliberately
chosen without much compromise to reflect a com-
mon ground of understanding and jargon accepted by
most of the company’s employees. Especially an addi-
tional feature model layer, the even higher abstracted
customer-specific process packages, is quite far abstracted
from the underlying ERP system’s way of configura-
tion. This strategy helped a lot in communication and
feature modeling.

Iterations
(divisions)

Metric In
it
ia
l
(1
)

2
n
d

3
rd

Domain analysis Cunique[hr] 28 3 1

Domain eng. & SPL setup Ccab = TDM + TSM

Domain modeling (Feature Model)
TDM [hr] 25 7 2

ERP platform modeling (Family M.)
TSM [hr] 2 1 1

SPL Tool development Corg = TTV + TTI + TTC

Tool/model valid. plugin TTV [hr] 15
Tool/FM import connector TTI [hr] 56
Tool/ERP cust. connector TTC [hr] 112

Variant production Creuse

Variant Description M. TV DM [min] 48 24 7
No. of features selected nF [F] 48 61 17
Avg. feat. selection time tF [sec/F] 60 24 24
run transform. + ERP cust. trun[hr] ≈ 1

Manual ERP cust. / Feat. Cprod[sec/F] 120

SPL completion reached in project
(estimated, see text) CSPL [%] 15%

Table 1: Metrics collected during ERP SPL experi-
ment

Cost Est. system development effort (61 Feat.)
drivers Isolated [hr] SPL oriented [hr]

Setup
+ first
system

min(TiDev) ≈ 200
TSPL−I ≈ 556

additional
system

TSPL−∆ ≈ 76

release up-
date

min(TiUpd) ≈ 13.4 Trun ≈ 1 (run
transformation)

Table 2: Cost drivers (calculated from Tab. 1)

Break even (SPL better) after no.
Systems migrated release updates

to product line (worst case)
1 ≤ 29
2 ≤ 18 (9 per system)

3.9 none

Table 3: Break even extrapolation: SPL vs. isolated
development scenarios (with figures from Tab. 2)
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Domain expert team. The term domain expert seemed
to be confusing in the early discussions of the devel-
opment process of our domain. Who is this domain
expert? Is there really one expert who is responsible
for the whole SPL development?

In our work we identified a team of four different expert
groups which have an influence on different aspects
of the domain and thus introduced the term domain
expert team.

We got access to company-internal ERP system ex-
perts, a business process (modeling) expert, and a per-
son covering the business and organizational goals. Prod-
uct line and methodical know-how was supplied exter-
nally.

This domain expert team reflects the different views on
the domain. The ERP system experts provide a tech-
nical view. The ERP system is very complex and built
from various modules. Due to its complexity there is
usually one expert for each module per system.

The business process expert introduces a process view.
Typically there are several process owners which have
detailed process knowledge. Process differences are
causes of variants and thus are very important in the
variability modeling process.

The management view specifies the scope of the do-
main, which is an essential task for the economic suc-
cess of the SPL approach [13].

To combine all this experience and information in a
structured way, methodical support is essential.

The existence and importance of this domain expert
team has to be kept in mind during the whole SPL
lifecycle to ensure the success.

However, the constitution of this team may vary from
domain to domain. For a more general formulation of
our findings four types of experts can be identified as
necessary parts in an SPL project. Depending on the
complexity of the domain one person can unite more
than just one expert role. On the other side it can be
useful to have a group of experts for each expert role
as in our example.

The definition of the SPL scope and goals, as well as
the alignment of these goals with the organization’s
business goals is part of the management expert. Fur-
ther, it is important to have experts to provide me-
thodical background, variant expertise, and target plat-
form expertise.

The project core team was serving the development of
all aspects within the Business-Architecture-Process-
Organization (BAPO) model [16, 11].

Variants in space and time. While the division’s config-
urations – existing in parallel – are a natural concept in
SPLE, migrating to an ERP release update can also be
seen as variant that can be controlled by SPL models
as they give rise to substantial effort, similar to set-
ting up a new variant. On the other hand, migrating
to a new release is typically not driven by functional
progress in the SPL domain context [12]. This implies,
that existing variant models can probably be applied
on the new platform release with little or no change at

all. Furthermore, a release migration should be pre-
pared centrally for the entire product line by setting up
a new platform description, namely the Family Model
(see Tab. 2).

Reuse and learning. The processes in the investigated di-
visions seemed to be similar. This assumption is backed
by the fact that only small changes became necessary
in the domain models when incorporating an addi-
tional division (taking into account the number of se-
lected features, Tab. 1).

Despite supporting similar processes, the existing re-
alizations in the ERP systems may differ to a high
degree. The incremental domain modeling approach
proved useful for comparing even these different im-
plementations systematically on the undisputed, com-
mon basis of a (the) common business process do-
main model structuring. This greatly helps to develop
a commonly accepted and clear understanding about
commonalities and variabilities across divisions, a pre-
requisite for a common company-standard ERP imple-
mentation.

Automation of modeling. Due to the sheer quantity of
customization parameters in the ERP system, import-
ing these properties to an SPL tool (pure::variant’s
Family Models) has to be automated. Fortunately,
the customizing parameters are already represented in
a tree structure in the ERP system. Hence the struc-
turing information can be imported from the source
platform as well, resulting in an equivalent represen-
tation both in the ERP system and the variant man-
agement tool. The effort is reduced to the one-time
implementation of the import plugin (see Tab. 1).

As a second side effect, the feature-relevant aspects of
different platform releases can be compared - as long as
the meta-model governing this import can accommo-
date the platform’s configuration options into a new
version’s family model.

Quantitative prediction models as described in Sec. 2.1
proved extremely helpful especially for company-internal
project marketing. Initially, the SPL idea, being in-
trinsically more complex than isolated development,
was hardly regarded realizable by many of the persons
involved.

No vendor support. The ERP system vendor, as well as
consultants we contacted, were reluctant to provide
support to this project. No clear reason was given; to
us, apparently there was no interest in such a reuse
approach.

5. RELATED WORK
Software Product Lines have been suggested as a system-

atic reuse approach for software intensive systems [9]. That
has been proven a number of times (e.g. [15, 6, 4]). For
further examples see the SPLC Hall of Fame website [14].

The product line approach to reuse comes along with
two fundamental development cycles: domain engineering
(core asset development) and application engineering (a.k.a.
product development) e.g. [10, 9]. As illustrated in [11] both
have different time constants. Due to a common long-lived
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(domain) architecture the artifacts developed in an iterative
domain engineering process can be reused for several appli-
cation developments. The iterative nature of domain engi-
neering allows for enrichments and corrections from product
life cycles, determined by the third key process, a manage-
ment process reflecting the business goals. However, a com-
parably stable and long-lived domain architecture and its
reusable artifacts remain key for reuse. In this way, mar-
ket needs, like economical product development constraints,
short time-to-market, presence on multiple markets, can be
met. Furthermore, the architecture can also evolve over
time, thus effectively postponing it’s expiry date, the so
called Klein horizon [17].

In our setting due to using a ”standard”third party (ERP)
product, still another cycle time comes on to stage: a more
or less regular ”release heartbeat” of these products.

According to a study among 317 german companies [12],
more than 50% follow their core system vendor’s recommen-
dations to regularly follow their product updates. For these
migrations, they spend a substantial share of their IT bud-
get: 44% of these companies spend more than a quarter
of their total IT budget, 52% more range between 10-25%
update costs. Even in the light of dramatically shrinking
IT budgets, 59% stated, they will probably not change this
policy in the future.

As far as we know until now there haven’t been any experi-
ences in using a Software Product Line or a similar approach
to configure a third party software and systematically reuse
configuration knowledge in various divisions. Therefore it is
hardly possible to compare our results to previous experi-
ences.

6. CONCLUSION
In this paper, the feasibility of applying Software Prod-

uct Line Engineering (SPLE) to a production company’s IT
systems was shown, most prominently and initially to their
(third-party) ERP systems. A domain model contains all
features and configuration constraints of the company spe-
cific business processes. A domain specific internal structure
is enforced by a SPL tool plugin. Within the feature model’s
limits, the ERP variants to be used in the company’s di-
visions can be defined by selecting possibly parameterized
features.

As for the ERP platform used here, its customization op-
tions are extracted automatically, and used to transform
a defined variant into a customized ERP system instance.
Equally well, consistent other products like documentation
can be assembled from the same variant description.

Quantitative analysis of the project extrapolates to a break-
even point at 4 systems or more. As ERP release updates
also benefit from the product line, the break-even point can
be even lower, dependent on the number of release upgrades
over a system’s lifetime. A number of qualitative lessons
learned is presented as well.
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MADMAPS - Simple and systematic assessment
of modeling concepts for software product line

engineering
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Abstract. Domain modeling is a key task in the development of a soft-
ware product line. We identified two popular modeling paradigms to
be predominantly used in practice: feature-oriented domain modeling
and domain specific modeling. The appropriate choice of the modeling
paradigm is a crucial decision for the development of an efficient and
easy to use domain model.
In order to take such a decision systematically, we propose MADMAPS,
a simple method to assess the nature of the domain.
MADMAPS is based on multi-attribute utility theory. The core part is a
set of four discriminating criteria describing the characteristics of a do-
main. The result is either a recommendation for one modeling paradigm,
or to split the domain in homogeneous subdomains.
Four use cases have been used to extract assessment criteria, as well as
to evaluate MADMAPS. The evaluation is based on the complexity of
the resulting domain model. It can be shown that the model complexity
with the proposed approach is always lower than the complexity of a
model represented by the other approach.

1 Introduction and motivation

Software product lines (SPLs) are a viable methodology to improve engineering
of software intensive systems. Northrop et al. [1] highlight the importance of a
well structured and documented domain model, since this is the central part of
an SPL. But what does this mean? What makes a domain model well structured?
We argue that a well structured representation of the domain model depends on
the nature of the domain, and further, that the choice of an appropriate modeling
paradigm is a first step towards a well structured domain model.

The first step before starting to model a domain is to select a modeling
paradigm. This decision is often taken implicitly. In some cases, even workarounds
become necessary just because the chosen paradigm is not well aligned with the
nature of the domain. Currently, the most common paradigms are Domain Spe-
cific Modeling (DSM) and Feature-Oriented Domain Modeling (FODM).

Problems in the domain modeling paradigm selection process during one of
our recent projects have been the motivation for this more systematic decision
making process. We have extracted several characteristics of domains and derived
criteria from them.
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Besides having a concise and easy to understand domain model, we aim at an
efficient way of product definition and derivation. This is worth striving for, as
this step is done hopefully many times in an SPL. Both, domain modeling and
product derivation, are heavily influenced by the modeling paradigm. Again, a
”fit” paradigm and language to describe variability and variations in a concise
manner helps to make this step more efficient.

The contribution of

DSM

recommendation?
Definitive

(scoped domain)
Start

Choose using
recommendation?

Partition
domain/view

multi−view
domain?

Large,

partial view
with every

with
MADMAPS

Assess domain/view

no

no yes

yes

FODM

Fig. 1. Proposed flow for domain modeling paradigm
selection with MADMAPS

this paper is a simple
method for systematic
evaluation of a domain
and decision support
for a specific model-
ing paradigm. Fig. 1
shows the basic flow
of the proposed deci-
sion making approach.
The input is a domain,
which has been bound
in a previous scoping
step and the result is
a recommendation for
one modeling paradigm.

Summarized, we

– take advantage of
past research ef-
forts.

– get a simple deci-
sion making sup-
port, which can be
used at an early
stage of develop-
ment.

– define simple criteria that still work fine for a general suggestion.

– use the original paradigm definitions without additional extensions to exploit
their advantages (e.g. the advantage of FODA is its simplicity) and to be
independent from specialized tool implementations.

Sec. 7 summarizes the most important related work. Sec. 2 gives some back-
ground information about the underlying concepts. Sec. 3 and Sec. 4 describe
the MADMAPS decision making method and underlying theory. Finally, Sec. 5
presents four case studies that have been part of the development process and
evaluation. Sec. 8 concludes our work.
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2 Background

This section introduces some theoretical background that serves as a base for
our approach.

2.1 Introduction to Multi-Attribute Utility Theory

Multi-attribute utility theory1 (MAUT) can be used as a decision aiding tech-
nology, if one alternative from many should be chosen depending on multiple
attributes. The most important steps are listed below [2]:

Identify alternatives which should be evaluated (further noted as alt).
Establish assessment criteria (attributes) that should be used in the evalua-

tion process. It is advisable to focus only on the most important and relevant
criteria.

Determine weighting factors wcrit. Each attribute is weighted by its impor-
tance. The weighting factors are determined by a pairwise comparison of
criteria.

Assessment of alternatives with respect to the defined criteria ccrit(alt). For
the assessment a scale has to be defined.

Calculate utility value. In this last step, the utility values u(alt) for all al-
ternatives alt are calculated:

u(alt) =
n∑

crit=1

(wcrit ∗ ccrit(alt))

Finally, a decision has to be taken. The resulting utility values serve as a
quantitative base for this decision.

2.2 Domain modeling paradigms

As mentioned before, we support the decision making for a specific domain
modeling paradigm. The alternatives are the two, in our opinion, main modeling
paradigms: domain specific modeling and feature-oriented domain modeling.

Domain specific modeling
Domain specific modeling (DSM) aims at the use of a higher level of abstraction
and the direct usage of concepts and rules from a specific problem domain. Do-
main specific languages (DSL) are used to model a system within that domain.
A key characteristic of DSLs is their focused expressive power [3], enabling the
generation of products directly from these high level specification [4]. We focus
on graphical DSLs in this paper because of the experience and results available
from our case studies.

Feature-oriented domain modeling
By feature-oriented domain modeling (FODM) we are mainly talking about

1 http://ddl.me.cmu.edu/ddwiki/index.php/Multiattribute_utility_theory
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feature-oriented domain analysis (FODA) proposed by Kang et al. [5]. This ap-
proach has become the basis of many other feature-oriented approaches (e.g.
FORM [6]).

”Features are the attributes of a system that directly affect end-users.” [5]

For the representation of features, a tree-structured feature model is defined
using consists-of relations. The relations are either marked as mandatory, al-
ternative, or optional. Further composition rules (e.g. ”requires” or ”mutually
exclusive”) are used to express relations between features that cannot be ex-
pressed in the tree structure itself [5].

Over the years, several extensions to the original FODA appeared (e.g. cardinality-
based feature modeling [7]). These extensions are not investigated here.

3 Multi-attribute domain modeling approach for
paradigm selection (MADMAPS)

This section describes a simple method aiding in systematic decision making on
which domain modeling approach to choose.

The input of our evaluation method is a well-scoped domain.

3.1 MADMAPS – overview

The setting in our evaluation is slightly different from the original MAUT ap-
proach. The investigated alternatives in MADMAPS are FODM and DSM. De-
fined criteria describe characteristics of domains. The resulting utility value in-
dicates how well the approach fits to the nature of a given domain. So we still
compare the alternatives – the domain modeling paradigms – according to a set
of criteria defined below.

In contrast to the original MAUT we assess the criteria for each new domain
to get a domain specific wcrit vector. This vector is then used to calculate the
utility values. The ccrit(alt) values remain constant as they describe the criteria
score of the paradigms.

Identification of alternatives We focus here on DSM and FODM as described
in Sec. 2.2.

Establishing assessment criteria The first step towards appropriate assess-
ment criteria is the identification and comparison of the main characteristics of
the two paradigms. We searched particularly for strong discriminating criteria
that are observable at an early stage of SPL setup. A training set of three do-
mains (described in Sec. 5 Case Studies 1 – 3) was used for criteria definition.
Tab. 1 lists the resulting MADMAPS criteria C1 – C4. A detailed description of
the foundation of this criteria extraction is given in Sec. 4.
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Criterion DSM FODA

C1 Fixed relations ≥ variable relations 4 17

C2 Several instances of elements 31 4

C3 Different binding times/views 8 15

C4 Domain model used by non expert 8 15

Table 1. Criteria C1 – C4 and assessments ccrit of domain modeling alternatives DSM
and FODA

Questionnaire for determining weight factors Following the criteria C1 –
C4 several questions have been formulated that we expect to be answerable in
very early domain understanding phases. The questions are listed below:

Q1 Are there more fixed relations than variable relations? (Formula 1 (see Sec.
4.1) evaluates to true.)

Q2 Should it be possible to use several instances of an element?

Q3 Should there be more than one binding time or more than one view in the
domain representation?

Q4 Should the domain model be used by a customer who is not a domain expert?
(for example: car configurator)

The questions are answered following the Likert scale2. Tab. 2 shows the
possible answers and the corresponding weight. This is later used to calculate
the utility values and, thus, assess the applicability of the domain modeling
paradigm to the specific domain.

Assessment of alternatives Tab. 3 shows the assessment schema used in
MADMAPS. These values are used to evaluate the alternatives (DSM and FODM)
in respect to the criteria C1 – C4. Tab. 1 finally lists the derived assessment val-
ues.

Strongly disagree -2

Disagree -1

Neither agree nor disagree 0

Agree 1

Strongly agree 2

Table 2. Likert scale for criteria weight-
ing factors wcrit

Poorly or not at all 0 - 2

Fair 3 - 5

Good or complete 6 - 8

Table 3. Assessment schema of criteria
fulfillment ccrit(alt)

2 http://www.socialresearchmethods.net/kb/scallik.php
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Calculate utility values and decision Sec. 2.1 describes the calculation of
utility values.

As mentioned before, the resulting utility value is only an indicator for a
representation paradigm. The final decision has to be taken by a domain expert,
but can be based on this systematic assessment of the domain.

4 MADMAPS - Assessment criteria rationale

This section links the chosen criteria to certain characteristics of DSM and
FODM, respectively. In the course of our investigations we were looking for
discriminating characteristics, which show a strong tendency towards one of the
two paradigms.

4.1 Ratio between fixed and variable relations (C1)

A domain model in general consists of elements and relations. Relations can fur-
ther be divided into fixed and variable relations. Fixed relations do not vary be-
tween different products. Variable relations are interesting in this context. Vari-
able relations mean relations that are either defined between two elements where
the kind of relation changes, or a relation where the target element changes. For
a very rough estimate we define the following indicator for high complexity and
variability:

|elements| ≤ |relationsvariable| (1)

A somewhat easier to grasp indicator for the nature of the domain is the
ratio of fixed and variable relations. If for a given domain the following is true,
this might be an indicator for a given structure common to all products:

|relationsfixed| ≥ |relationsvariable| (2)

4.2 Instantiation of elements (C2)

As stated in [8], domain objects are good candidates for abstraction. This is
an important guideline for the design of a DSL in practice. Generally, there is
not just one instance of such objects in the real world. Therefore, it should be
possible to instantiate objects in the domain representation as well. DSLs are
intentionally designed for instantiation, whereas FODM is not. In the original
definition of feature orientation [5] there is no such concept. As stated in Sec.
2.2, an extension to represent instantiation in feature models has been proposed
by [7]. This extension has several disadvantages. Moreover, the extension has
only been implemented by one prototype tool.
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4.3 Different binding times and views (C3)

The variability mechanisms are predefined in the FODM approach and derived
and implicitly codified in the language in DSM.

One important differentiating factor seems to be the time when flexibility
is useful and needed. This becomes especially important when one wants to
represent different abstraction levels or binding times in one domain model.
This can be accomplished easier with feature-oriented approaches.

Binding times are defined in the original FODA definition [5]. There are
three types: compile-time, load-time, and runtime features. In case of the FODM
approach it is easier to describe variability with different binding times, of course
only if the generic platform supports those. A DSL need not have an existing
code base. Instead, code is generated for each new product model. Therefore, it
is harder to introduce different binding times in a DSM approach.

4.4 Target group (Domain model used by non-expert, C4)

Features are end-user visible characteristics of a domain. This means they are
an important mean to support the communication between developers and cus-
tomers. This is another reason why a concise and easy to understand represen-
tation is essential. A DSL mostly requires a deeper technical understanding that
customers not always possess.

5 Investigated use cases

This section introduces and describes four different projects realized with an
SPL approach. Each of these projects addresses a unique domain. Thus, the
requirements of the projects are quite different.

5.1 Case 1: Configuration of an ERP system

The aim of this project was the systematic reuse of configuration knowledge
for Enterprise Resource Planning (ERP) systems of a group of companies [9].
Each of these companies acts in the same industry, they share similar customers
and they have similar business processes. The regarded ERP system has to be
configured according to the business process of the specific company. Due to
the complexity of this configuration process, systematic reuse of configuration
knowledge helps to reduce efforts in terms of money and time, and to improve
the quality of the ERP instances. Business processes form the SPL architecture.

5.2 Case 2: Fish farm automation

The aims of a fish farm automation system is to make the work of the fish
farm owner easier and to save resources. The main functional requirements for
a fish farm automation system are feeding and oxygen supervision including an
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alarm system. In addition, a water level supervision, pH-value measurement and
standard functions like switches and lights have to be realized.

An important characteristic of this domain is the existence of several in-
stances of elements. For example, a fish farm consists of a certain number of
ponds. The elements may be assembled in several ways. In fact, the focus is
much more on the assembly of elements than on supported functionality. Nor-
mally, no two fish farms look exactly the same. There may be several ponds where
each pond may or may not have different supervision and feeding systems.

5.3 Case 3: PLC controlled inventory system

The domain in this case is a logistics system which is built of conveyors, rotary
tables, cranes and high bay racking components. With this product line it should
be possible to generate automation system software, documentation, etc. for
various assemblies of these components.

The arrangement of elements is also more or less variable, which results in
a high number of variable relations. The number of elements is very low, since
there are only the aforementioned components available. However, these elements
may be instantiated several times. The selection of different functionality is not
required. Different binding times and abstraction levels are not important here
as well. Fig. 2 shows a sample application model.

Fig. 2. Sample application model for a PLC controlled inventory system (realized with
MetaEdit+ DSL)

5.4 Case 4: Control unit for an HEV

The target in this project3 is the development of a generic architecture for an
hybrid electrical vehicle (HEV) [10] control unit. Since this is an embedded

3 http://www.iti.tugraz.at/hybcons
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system, there are many connections to the environment (i.e. the overall system).
This makes the domain very complex.

In the domain analysis phase we faced the problem that many criteria seem to
be very important and necessary in some part of the domain, or another. There
is certainly a focus on functionality, since the control unit provides functionali-
ties. On the other hand there is also a focus on assembly, because the provided
functionality is dependent on the layout of the drivetrain (e.g. full electric drive
is only possible with a clutch between electric motor and combustion engine).

The result is not as clear as in the case studies above. Both utility values are
positive and there is no real indication which approach is appropriate. Following
the flow described in Fig. 1 we split domain into several subdomains, one for
each viewpoint. The viewpoint identification resulted in a software view, an ECU
view, a mechanics view and a safety view. In the next iteration step MADMAPS
was applied to each of the subviews.

We applied MADMAPS to the software view, and to the mechanics view
representing the drivetrain topology. Now, the situation looks quite different.
For the software there is no need for several instances of elements or different
assemblies of elements anymore and the drivetrain (mechanical view) can be
described in a graphical representation. Fig. 3 shows an example for both repre-
sentations. Due to the heterogeneity of subdomains a combined multi-modeling
representation has been proposed in [11].

Fig. 3. Sample application model for a hybrid electrical drivetrain (ecore-based DSL)
and a sample software feature model (pure::variants)

6 Lessons learned

Complexity. Previously [12], we defined metrics to evaluate the resulting do-
main model. One useful quality metric is the complexity of the resulting
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model. Keeping complexity as low as possible is important in several as-
pects. First of all, it improves the usability and maintainability of the domain
model. An investigation of the described domains show that the modeling
paradigm suggested by MADMAPS always results in lower complexity.

MADMAPS results. Tab. 4 shows an overview of the resulting utility val-
ues. Additionally, the resulting complexity values (CV) are given for both
paradigms in order to verify the results.
The utility values show that the approach gives a clear recommendation for
all our test domains. For Case 4 we interviewed experts working with this
domain models and asked them how well they are satisfied with the repre-
sentation and what they like best. An evaluation of this interview showed
that the experts agree and welcome the combination of the two different
representations. In particular the graphical representation for the mechanics
part seems to be much more suited than a feature oriented approach.

General considerations. Why should one use our approach. First, there is no
real overhead because all the information necessary to answer the question-
naire is gathered during domain analysis. Domain analysis is an integral part
of the domain engineering process and has to be performed anyway. Due to
the simple and abstract formulation of the questions, knowledge from do-
main analysis should be enough to answer them. One benefit is, that the
proposed criteria can be used during domain analysis to have a structured
guideline how to investigate the domain. The big advantage however is that
the decision is grounded on a systematic base.

C
a
s
e

Domain DSM FODM Recommended
CV (DSM/
FODM)

1 ERP system -62 11 FODM 257/167
2 Logistics system 46 -41 DSM 65/ -
3 Fish farm automation 38 -56 DSM 70/ -
4 HEV CU (control unit) 55 49 - 78/80

HEV CU - Software -38 56 FODM 30/25
HEV CU - Mechanics 11 -24 DSM 22/36

Table 4. MADMAPS utility values and complexity values (CV) for the case studies
described

7 Related work

The importance of the appropriate representation in DSML specifications is
mentioned in [13]: ”the correct representational paradigm depends on the audi-

ence, the data’s structure, and how users will work with the data”. We extend
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this statement to the next level and argue that not only the representation is
important, but also the paradigm to create this representation in an effective
way.

Some authors have investigated the differences between modeling approaches.
In [14] the feature-oriented domain analysis approach has been compared to Or-
ganization Domain Modeling (ODM). For the authors these seemed to be the
most important approaches. ODM is also based on features. The feature defini-
tion is more general than in FODA. One major difference is that ODM postulates
the need for a flexible architecture. It is stated that a generic architecture is not
suitable for domains with a high degree of variability. This statement is similar
to our observation that DSM is better suited for domains with many variable
relations, because of a flexible architecture.

Czarnecki [15] investigates the relation between feature models and ontolo-
gies. The major conclusion from his work is, that extensions of the original
feature oriented approach are used to bring it closer to the expressiveness and
formalism of ontologies. As stated before, these extensions are at the expense
of the simplicity, which is a major advantage of feature models. Furthermore,
the authors propose to combine FODM and DSM, which confirms our obser-
vations that it is sometimes not enough to model the entire domain with one
representation. In contrast to our research, they do not split domains. Instead,
two approaches are used to represent the same content in different views.

Haugen et. al [16] describe a separated language approach to specify variabil-
ity in DSL models. They propose a Common Variability Language (CVL) and
according variability resolution mechanisms embedded in the OMG metamodel
stack. This allows to describe variability in potentially all MOF-based languages,
including UML, as well as MOF- and UML-profile based DSLs. While being a
general and clean approach to handle variability, it does not seem directly ap-
plicable to feature abstraction hierarchies and their complex constraints.

8 Conclusion

This work introduces a simple approach for the systematic selection of an ap-
propriate domain modeling paradigm. Four criteria have been extracted from
characteristics of the methods investigated - feature oriented domain modeling
and domain specific modeling. We use these criteria to assess the nature of a
domain in respect to a systematic selection of a modeling approach.

The major advantage of the MADMAPS approach is a decision which is based
on a systematic method. As a result we can show that the use of the proposed
modeling paradigm always results in a domain model with lower complexity.
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Abstract—Software Product Lines (SPL) are a viable method
for systematic reuse. An essential part of an SPL is the domain
model. In order to be efficient the domain model should have
an as low as possible complexity. In this way the usability and
maintainability of the domain model can be improved. This is
important because of the long lifecycle and the hopefully high
number of derived products. One important influence factor for
the complexity is the choice of the domain modeling paradigm.
Another point is the design of the model. Various aspects can
be modeled in different ways resulting in different levels of
complexity.

To the best of our knowledge there is no simple metric
to measure and compare the complexity of different domain
representations. To make it clear we do not measure the
complexity of the domain itself, but of the representation. This
work suggests simple metrics to estimate interface, element and
property complexity, in our opinion the main building blocks of
domain models. These three values are simply summed up for
an overall complexity . In this way we compare the complexity
of different representations.

In order to be able to show that our metrics yield useful
values despite their simplicity we investigated several use
cases. We show the influence of the modeling paradigm and
various characteristics of the domain on the complexity of
the representation. Finally, we show a method to reduce the
complexity of complex, heterogeneous domains.

Keywords-Domain modeling, complexity metrics, modeling
paradigm, multimodeling

I. INTRODUCTION

Software product lines are a viable methodology to im-

prove engineering of software intensive systems. Northrop

et al. [14] suggest a collection of essential practice areas and

patterns for product line development and operation. They

further highlight the importance of a well structured and

documented domain model, since this is the central part of

an SPL.

The first step before starting the domain modeling process

is the selection of a modeling paradigm. Currently, common

choices are Domain Specific Modeling (DSM) and Feature-

Oriented Domain Modeling (FODM). The decision for one

of these two paradigms is often taken implicitly. In many

cases it is possible to represent the domain with either of

them. The resulting models will differ in their complexity

however.

Reducing complexity is important in several aspects. First

of all, it improves the usability of the domain model. This is

an important quality attribute, since the model is used for the

derivation of products hopefully many times. By improving

usability this process can be performed more efficient and

with a reduced amount of errors. Due to the long life

cycle, and the resulting continuous evolution of the domain

model, maintainability is another important aspect. We will

show some aspects how the complexity of domain models

influences their evolution. Considering this, the reduction of

complexity results in an improvement of overall quality.

In a previous work [11] we stated that it is sometimes not

advisable to use one domain modeling paradigm to represent

the entire domain. In particular, complex domains are often

heterogeneous. In order to build an efficient representation

of the whole domain it is sometimes necessary to split

the domain and build different view-based domain models,

which are connected via a multimodeling framework. Again,

the reason to do this is to reduce the overall complexity of

the domain representation.

In order to be able to evaluate the complexity of a domain

model and possibly to improve it, there has to be a metric

to estimate a representations’ complexity. This is even more

important if we are aware of the fact that models can be

designed in various ways. Depending on design decisions

a model will be more or less complex. With the existence

of metrics it is possible to compare and improve domain

models.

The main contribution of this work are simple metrics to

evaluate the complexity of domain model representations.

We intentionally chose simple metrics that can easily be

implemented. On several use cases we show the applicability

of the metrics.

II. BACKGROUND

An often used definition by Clements and Northrop [2]

describes a software product line as

”‘a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs

of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed

way.”’

Basically software product line development follows

two fundamentals ideas:
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Figure 1. Domain specific language representing the HybConS drivetrain
(Case 3) modeled with MetaEdit+

• differentiation of domain and application engineering

and

• separation of commonalities and variabilities in domain

engineering.

This works focuses on domain engineering and with it

on the separation of commonalities and variabilities. An

important result of the domain engineering process is the

domain model. DSM and FODM are the two modeling

paradigms used to create domain models for Software

Product Lines. They are described shortly below. To get a

better feeling for the two representations, we provide two

figures. Figure 1 shows the DSL definition of the HybConS

drivetrain domain described later (see Section V-C) and a

feature model showing the same domain in Figure 2.

A. Domain specific modeling

Domain specific modeling (DSM) aims at the use of a

higher level of abstraction and the direct usage of concepts

and rules from a specific problem domain. Domain specific

languages (DSL) are used to model a system within that

domain. The key characteristic of DSLs is their focused

expressive power [17]. Because of the narrow focus it is

possible to generate products directly from these high level

specification [9]. A DSL with a domain specific notation

is used to describe a problem. In this way that notation

becomes an important factor for modeling productivity [13].

In contrast to a general purpose language, DSLs are used

to solve much smaller sets of problems in a specialized,

deliberately narrowed area (the domain). Obviously, domain

specificity is a matter of degree [13].

We focus on graphical DSLs in this paper because of the

experience and results available from our case studies, but

the approach can be applied on textual DSLs as well.

B. Feature-oriented domain modeling

By feature-oriented domain modeling (FODM) we are

mainly talking about feature-oriented domain analysis

Figure 2. Feature model representing the HybConS drivetrain (Case 3)
modeled with pure::variants

(FODA) proposed by Kang et al. [7]. This approach has

become the basis of many other feature-oriented approaches

(e.g. FORM [8]).

”Features are the attributes of a system that directly affect

end-users. The end-users have to make decisions regarding

the availability of features in the system, and they have to

understand the meaning of the features in order to use the

system.” [7]

For the representation of features, a tree structured feature

model is defined using consists-of relations. The relations

are either marked as mandatory, alternative or optional.

Further composition rules (e.g. ”requires” or ”mutually

exclusive”) are used to express relations between features

that cannot be expressed in the tree structure itself [7].

C. Multimodeling

In a previous work [11] we identified the need for the

combination of the two mentioned domain representation

paradigms. For more complex domains it is often advisable

to split the domain and use different representations for the

resulting subdomains. Of course, these different represen-

tations have to be connected. This means that there has
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to be a possibility to define constraints between different

subdomains and different modeling paradigms, respectively.

Multimodeling can be used to reduce the complexity of

domain representations as will be shown in the remainder

of the paper. The main reason for the complexity reduction

is the possibility to optimize each of the subdomains. The

additional overhead for combining the subdomains is usually

much lower as the complexity of the representation with one

modeling paradigm.

III. RELATED WORK

Rossi et al. [15] introduce complexity metrics for models

based on the OPRR metamodel. They use the metrics to

evaluate the complexity of different object-oriented analysis

and design methods.

Lopez-Herrejon et al. [12] propose to measure the com-

plexity of Software Product Lines with variation point met-

rics. They state that variation points play a crucial role for

the feature configuration at product derivation time. This

is why they should be used for qualitative and quantitative

metrics. In this specific work the focus is on cyclomatic

complexity, which is a typical metric to indicate software

quality. This metric has been reformulated to consider vari-

ation points. Contrary to our work this metric only focuses

on feature representations.

Another kind of metrics has been proposed in [5]. There,

the focus is on variability in UML artifacts. The result is the

complexity of the product configuration. The focus here is

on solution space, whereas in our approach the focus is on

problem space.

Sprinkle [16] proposes an algorithm to analyze the com-

plexity of domain specific languages. His approach is based

on state models. In order to get insights into the complexity

of the modeling language, a state model is generated and

used to produce at least one instance of every model in

the metamodel. The goal is to show how difficult it is

to instantiate models from a metamodel. This approach

only focuses on domain specific languages, not on feature-

oriented modeling. Moreover it is not a simple, easy to use

approach as the metric proposed in our work.

A more detailed investigation of structural metrics for the

assessment of maintainability of feature models has been

performed in [1]. Another work providing different kinds of

metrics for product line architectures has been published in

[18].

IV. ANALYZING THE COMPLEXITY OF DOMAIN

REPRESENTATIONS

In domain engineering we can distinguish between prob-

lem space and solution space [3]. The problem space is an

abstract representation of the domain, independent of the

technical realization. In the solution space different technical

realizations are described. In the following we are focusing

on the problem space.
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Figure 3. Conceptual differences between the two modeling approaches:
feature-oriented and domain specific modeling

The main building blocks of both paradigms are elements,

and different kinds of relations used to connect these ele-

ments. In a feature-oriented representation the structure is

given by the use of features and a defined set of relations

between those features. For a tool implementation for DSM,

restrictions on the structure have to be given in some form

or another. But these restrictions always have to tell which

kinds of elements and relations are valid.

Figure 3 illustrates the conceptual similarities of FODM

and DSM on an abstract level.

As mentioned before, elements and relations are the main

building blocks. We extend this set with properties, which

can be used to specify elements and relations in more detail.

Based on this, we define 3 types of complexity metrics:

interface complexity, element complexity and property com-

plexity. For each type we developed a metric for DSM as

well as for FODM. Since the concrete concepts of the two

paradigms are different, the metrics differ as well. In the end,

each metric results in a complexity value. Because they are

based on the same concepts (interface, elements, property)

the resulting values are comparable.

To get the overall complexity the three values are summed

up and result in the domain representation complexity.

With these values it is possible to compare the complexity

of different domain representations. A prerequisite of course

is the existence of at least one domain model. In fact, for

most domains one domain model seems to be sufficient,

since estimations for the other modeling paradigm can be

derived from this domain model. The complexity formulas

for both, DSM and FODA, are described in more detail

below.

A. Interface complexity

The interface complexity is the most complex metric. It

can be used to evaluate the complexity of relationships in the

domain model. Relations are used to describe how different

elements can be combined.

Equation 1 compares the formula for DSLs (left) and

feature models (right). For DSLs the number of relations

(nRT ) and constraints in the domain model are counted

and summed up. Constraints (in both cases) are all kinds of

restrictions defined between two elements. This includes, for

example, mutual exclusion and mutual requires as defined in

[7]. The nRT in a Feature model is made up of alternative
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(”one of many”) and or (”at least one of many”) variation

points (VP). For a DSL only the different types of relations

have to be counted. In the special case of MetaEdit+ it is

also necessary to define Roles for different Objects. In this

case nRT consists of nRelationships + nRoles.

Cif = nRT + nconstraint ⇐⇒ V Palt + V Por + nconstraint

(1)

B. Element complexity

The element complexity indicates the number of variable

elements. In the case of a DSL (left) these are all elements

which are not fixed. In the case of a feature model (right)

these are all optional elements. The two formulas are sum-

marized in Equation 2.

Celem = nelem ⇐⇒ V POpt (2)

C. Property complexity

Elements in both paradigms might have properties. If

they are not fixed, they can be used to adapt the resulting

application. To estimate the complexity we count the not

fixed properties. The formula is the same for both modeling

paradigms as can be seen from Equation 3.

Cprop = nprop ⇐⇒ nprop (3)

D. Overall complexity

In order to get the overall complexity the three complexity

values are summed up as shown in Equation 4.

Coverall = Cif + Celem + Cprop (4)

V. USE CASES

In order to show that the metrics result in useful values

we analyze different domain models. First, we describe the

different domains and than we analyze their complexity.

A. Case 1: Fish farm automation

The main functional requirements for a fish farm automa-

tion system are feeding and oxygen supervision including

an alarm system. In addition, a water level supervision, pH-

value measurement and standard functions like switches and

lights have to be realized.

One main aim of the automation system is to make the

work of the fish farm owner easier and to save resources.

An important characteristic of this domain is the existence

of several instances of elements. For example, a fish farm

consists of a certain number of ponds. The elements may be

assembled in several ways. In fact, the focus is much more

on the assembly of elements than on supported functionality.

There may be several ponds where each pond may or

may not have different supervision and feeding systems.

Normally, no two fish farms look exactly the same.

B. Case 2: Configuration of an ERP system

The aim of this project [10] was the systematic reuse of

configuration knowledge for Enterprise Resource Planning

(ERP) systems of a group of companies. Each of these

companies acts in the same industry, they share similar

customers and they have similar business processes. The

regarded ERP system has to be configured according to

the business process of the specific company. Due to the

complexity of this configuration process, systematic reuse

of configuration knowledge helps to reduce efforts in terms

of money and time, and to improve the quality of the ERP

instances. Business processes form the SPL architecture. The

overall architecture is relatively stable since there is a high

potential for reuse across the different companies’ business

processes. Furthermore, the structure of the business process

itself is very stable. There is a fixed scheduling of process

steps. There is no need for component instantiation. Func-

tions are accessed in a service-oriented way.

For this case study we started to model the procurement

process for prototype processes. In the next step we evolved

the domain model to support series part development. In the

third step, the domain model is extended in order to support

the relocation of customer orders.

C. Case 3: Control unit for an HEV

The target in this project1 is the development of a generic

architecture for an hybrid electrical vehicle (HEV) [6] con-

trol unit. Since this is an embedded system, there are many

connections to the environment (i.e. the overall system). This

makes the domain very complex.

It is not only necessary to describe the software capabili-

ties of the product family, but also the corresponding drive-

train topology since it has a big influence on what is possible

in the software. Although there are several other subdomains

(e.g. safety), we are focusing on the description of the

software and the drivetrain here. The drivetrain consists of

an internal combustion engine, one or more electric motors,

one of various types of transmissions and starters and so on.

All these parts may be assembled in various ways depending

on the concrete drivetrain topology. The software consists of

several functions which are possible or not, depending on

the current drivetrain settings. As already proposed in [11]

we splitted the domain in subdomains (drivetrain subdomain

and software functionality subdomain). For the evaluation of

the domain we developed a drivetrain topology DSL and a

feature model representing different topologies. We started

with two very similar topologies which are representable

with both paradigms. In the following we have a third and

fourth topology added to the domain model. In this way we

simulate a typical evolution of the domain model and show

the gradient of the complexity.

1http://www.iti.tugraz.at/hybcons
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D. Case 4: PLC controlled inventory system

The domain in this case is a logistics system which is

built of conveyors, rotary tables, cranes and high bay racking

components. With the resulting product line it should be

possible to generate automation system software, documen-

tation, etc. for various assemblies of these components.

The arrangement of elements is also more or less vari-

able, which results in a high number of variable relations.

The number of elements is very low, since there are only

the aforementioned components available. However, these

elements may be instantiated several times. The selection of

different functionality is not required.

VI. RESULTS

A. Different modeling paradigms

For Case 1 (see Section V-A) we were only able to

describe the domain with a DSL. It seems to be hardly

possible to describe the fish farm automation domain in

a feature model. The reason might be that there is no

common architecture in the representation of the domain.

This means, that fish farms can be completely different.

Their only commonality are the parts, but the configuration

or assembly of parts varies. For a correct representation it

would be necessary to describe any number of ponds, each

with a different configuration.

Czarnecki et. al [4] introduced an extension for feature-

based modeling called cardinality-based feature modeling.

With this extension it is possible to define a cardinality for

features. The cardinality indicates the number of possible

clones for a feature. Cloning a feature means to copy the

feature and all of its subfeatures. The resulting subtrees

can be configured individually. Basically, this enables the

instantiation of features and in this case enables the de-

scription of the fish farm domain in a Feature model. The

main disadvantage of this approach is the resulting high

complexity. Defining constraints between features is much

more complex, since there may exist several instances of the

target feature. Another disadvantage is the poor tool support,

since there is only a prototype implementation.

Figure 4 compares the complexity of the two modeling

paradigms for the ERP configuration domain model. Rep-

resenting Case 2 (see Section V-B) with a domain specific

language results in a high number of elements. The reason

is the fact that there are many different process steps.

Representing them as individual elements in a language

seems to be unreasonable. As can be seen in the comparison

the DSL representation is much more complex. This means

that there has to be an exorbitant high number of different

derived products in order to get the DSL payed-off. For

business processes there exist a number of business process

modeling notations which are sometimes referred to as DSL.

The same is true for SW functions as in Case 3. They can

be described with means of model-based development, e.g.

Figure 4. Comparison of the complexity of domain representations for
ERP configuration (Case 2) with FODA and DSL during evolution.

Simulink. But, this is not what we call a DSL in the scope

of our work, since it is not used to restrict the domain to

a single company. Instead these languages can be used to

describe a whole bunch of processes or software functions,

respectively. In this work we use the DSL to describe a well

scoped domain model. This means that the language should

be restricted to a defined set of products.

Complexity is very high compared to other domains.

A detailed investigation shows that this is mainly caused

by element complexity. A high element complexity is an

indication that FODM suits better here.

B. Characteristics of different DSLs

The characteristics of the drivetrain subdomain in Case

3 (see Section V-C) and Case 4 seem to be similar to

Case 1. Again we have a small set of elements which can

be assembled in different ways. In Figure 5 we compare

different DSLs. The most important submetrics here are

the element and the interface complexity. The number of

properties is of course important for the overall complexity,

but has hardy any additional information for the analysis

of domain model characteristics. The element complexity

of the three sample cases is very similar, but there is

a big difference in the interface complexity. A detailed

investigation of the domain resulted in the assumption that

the PISCAS domain is much more detailed and, therefore,

has a higher interface complexity. More detailed in this case

means that the technical links are described in more detail.

This leads to the assumption that a more mature DSL usually

has a higher interface complexity.

C. Domain model evolution

Usually, the first version of a domain model represents

only few different variants. Over time, the model evolutes

and more variants are included. Following this, we started

with two topologies and added other topologies one after

the other. For this domain model evolution we measured the

increase of complexity.

In Figure 6 we again take a look at the HybConS driv-

etrain subdomain (see Case 3). We show the evolution for
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Figure 5. Comparing the complexity of the Piscas DSL (Case 1), the
HybConS drivetrain DSL (Case 3) and a Logistics DSL (Case 4)

DSM and FODM. What we can see is that FODM performs

better only for two different topologies. By including the

third topology the complexity raises. This means, if we are

able to restrict the scope to only a few products it is possible

to describe the drivetrain topology with a feature model.

D. Multimodeling - a complexity reduction strategy

Figure 7 shows the HybConS domain model including the

drivetrain topology and the software functions. The domain

model (containing both subdomains) has been implemented

as a DSL, as a feature model and with a multimodeling

approach. A DSL in this case always results in high com-

plexity. This is mainly caused by the software functionality,

which can not be naturally described in this DSL. For

each function there has to be a relation to the mechanical

description indicating whether or not the function is possible

with this configuration. The feature representation shows

an almost linear increase in complexity. After only a few

included topologies the complexity of the multimodel rep-

resentation is lower than the single paradigm representation.

One explanation for this behavior is the fact that the repre-

sentation of the different subdomains can be optimized. The

additional overhead for combining the two representations

is insignificant.

VII. FUTURE WORK AND CONCLUSION

This work proposes simple metrics to estimate interface,

element and property complexity of domain representations.

The complexity of the domain representation can be seen as

crucial because the domain model has a long life cycle and

is used for the derivation of many products. Summarized,

it can be said that, despite the fact that these metrics are

simple, they are effective and provide useful results. This

has been shown on the example of several case studies.

The findings in our case studies show that the complexity

estimation for only one representation is not a valuable base

for the selection of a paradigm. Complexities depend on the

number of elements in the domain. This may result in a

high complexity for both paradigms. Sometimes, this result

Figure 6. Comparison of the complexity of domain representations for
drivetrain topologies for hybrid electrical vehicles with FODA and DSL

Figure 7. Comparison of HybConS description with FODA, DSL and
Multimodeling

can be used as an indication that a feature-oriented approach

fits better. This is often the case especially for high element

complexities.

On the other side, it has been shown that the selection of

an appropriate representation also depends on the domain

scope. The investigation of domain evolution shows that

for a small scope the difference is often not that signifi-

cant. Often during domain evolution the complexity of one

modeling paradigm rises much faster as the other. The case

studies show further that different domain representations

result in different complexities and that the complexity is

also dependent on the characteristics of the domain. In the

last step we showed that multimodeling can be used as a

strategy to reduce the complexity of heterogeneous domain

representations.

The findings of this work can be used to analyze and

possibly improve the domain representation.

In future work it could be possible to automate the evalu-
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ation and comparison of different domains. If one succeeds

in extracting useful patterns it would also be possible to

automatically suggest improvements of the current domain

model. Another possible future work is a systematic decision

making support for the optimal domain modeling paradigm

depending on the characteristics of the domain.
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Abstract

Ever accelerating product cycles together with multi-
discipline engineering processes are typical for safety-
critical automotive embedded systems development. This
demands for both efficient and effective development and
reuse strategies.

A development process following the V-model incorporat-
ing model-driven prototyping and development, safety en-
gineering, and verification (unit testing, integration testing,
cosimulation, etc.) is commonly found.

Product line engineering enables fast and efficient product
configuration through systematic reuse. The V-model has
been extended by an integrated product line engineering
environment for automotive embedded systems. This en-
sures the consistent configuration across system architec-
ture description (EAST-ADL2), model driven development
(Matlab/Simulink), software component deployment on an
ECU network (AUTOSAR based), Simulink based software
unit testing, Simulink based software integration testing,
and co-simulation model variants. Using the automotive
architecture description language EAST-ADL2 enables the
integration of safety engineering aspects.

Index Terms

Variability management, Automotive software develop-
ment, Extended v-model

Abstrakt

Hohe Marktdynamik f̈uhrt zu immer schneller werdenden
Produktentwicklungszyklen automotiver eingebetteter Sys-
teme. Der multidisziplin̈are Charakter in der Entwicklung
derartiger sicherheitsgerichteter Systeme stellt hohe An-
forderungen an eine effiziente und effektive Wiederwen-
dungsstrategie.

Das V-Modell ist ein weitverbreiteter Entwicklungsprozess
in dieser Branche. Es beinhaltet typischerweise modell-
getriebene Entwicklung, Sicherheitstechnik und Verifikation
(Komponententest, Integrationstest, Cosimulation, etc.)

Produktlinienorientierte Entwicklung verspricht schnelle
und effiziente Produktentwicklung durch systematische

Wiederverwendung und gestattet konsistente Ansteuerung
aller Varianten.

In dieser Arbeit wird das V-Modell durch eine Produktlin-
ienumgebung für automotive eingebettete Systeme erweitert.
Damit wird die konsistente Konfiguration der Systemar-
chitekturbeschreibung (EAST-ADL2), der modellgetriebenen
Entwicklung (Matlab/Simulink), der Softwarekomponenten-
verteilung auf den Steuergeräten (AUTOSAR basierend), der
Simulink basierenden Komponenten- und Integrationstests
und der Cosimulationmodellvarianten sichergestellt.

Durch die Verwendung der Architekturbeschrei-
bungssprache EAST-ADL2 ist es möglich auch
sicherheitsrelevante Aspekte zu integrieren.

Index Terms

Variantenmanagement, Automotive Software Entwicklung,
Erweitertes V-Model

1. Introduction

Software in the automotive domain is highly complex,
multi-functional, distributed, real-time and safety-critical.
Further the domain profile is traditionally vertically orga-
nized. Mechanical engineers can work more or less indepen-
dently on their parts. With software this situation changes.
Traditionally unrelated parts get related by software and start
to interact [1]. Software is today the most crucial innovation
driver in modern cars [2].

The basic goal of our work is the support of variant
management for the development of a generic embedded
automotive software architecture. For a generic architecture
it is not useful to support all current and future variants ina
certain domain. Thus it is necessary to specify the supported
variants. This task is referred to as domain scoping. A too
wide domain scope would increase complexity and reduce
testability and thus reliability of specific software systems.

In the automotive domain it is not only necessary to
ensure consistency, but also to ensure the reliability of
the systems. The reliability of each system configuration
has to be guaranteed at each time. This affects all tasks
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in the software development process. One of the major
questions is how one can ensure both, the generic nature of
the architecture and the correctness of the specific systems
towards a given specification.

One major requirement, therefore, is to handle the domain
complexity. One possible mean is the support of different
views with a common data base. Due to the complexity of
the domain and the variability concerns, appropriate tool
support is essential.

To increase the flexibility and support distributed devel-
opment, the binding of a specific variant should be delayed
as long as possible and reasonable.

We give an example that illustrates how a single system
development approach can be changed into the systematic
implementation of a generic architecture. For the realization
of the generic architecture a Software Product Line (SPL)
approach will be applied.

One of the major problems in the introduction phase
of a SPL is the adaptation of existing processes. Often
the technology is available, but there is a lack of process
support. We suggest to overcome this problem with a min-
imal invasive method. This means that the currently used
processes and programming habits should be changed as less
as possible. Therefore, the current processes and methods
have to be analyzed and extended with means of variability
management.

Another important point is the reuse of safety artifacts.
Safety artifacts are outcomes of safety-related activities in
the development process such as safety analyses. The appli-
cation of these activities is required by the safety standard
ISO 26262 that is relevant to the automotive domain.

In Sec. 2.1 the basic concepts of variability and the
management of variants are introduced. The consequences
for the different phases in the development process are
described in Sec. 3. This includes not only architectural
aspects, implementation and verification, but also the sys-
tematic reuse of safety relevant artifacts.

2. Related work

There is no one-fits-all solution for product lines in
general, since solutions are often very domain and project
specific. Several works have proposed means and methods
to enable variant management in the automotive domain.
The architecture description language EAST-ADL2 provides
mature safety and variability mechanisms. In the latest ver-
sion of AUTOSAR, basic variability mechanisms have been
integrated as well. Several projects describing integrated tool
environments for the automotive domain can be found in
current literature. One of them is the EDONA1 [3] project,
which has been launched as a collaboration between French

1. http://www.edona.fr/

automotive manufacturers and suppliers, research laborato-
ries and software vendors. The aim of the project is an open
integration platform for automotive systems development
tools.

Requirements are the support of the AUTOSAR specifi-
cations and compliance to the safety standard ISO 26262.
The project tries to overcome the problem arising from
the multitude of different tools in the automotive system
development process nowadays. There is no support for
variability.

Two further projects have been carried out at the Fraun-
hofer ISST2. The first project was the MOSES [4] (German
acronym: Modellbasierte Systementwicklung) project. The
aim of this project is the development of a methodology
for integrated model based development of E/E systems
in vehicles. There is also little support for variability and
software product line engineering in this project.

The follow-up project named VEIA3 [5] (Distributed
Development and Integration of Automotive Product Lines)
is focused completely on product lines. Goal of the project
is the development of a methodology to support variability
in the system development process. The major drawback of
the VEIA project is the focus solely on the requirements
and architecture phase. One advantage of the approach is
the support of AUTOSAR.

In [6] a metamodel for the definition of safety assets
and a safety process for product lines has been introduced.
Further a safety assessment process for product lines has
been proposed.

2.1. Variant management with Software Product
Lines

In the past software has been mostly static and it was
acceptable that changes required much effort. As demands
on software changes are getting faster and more dynamic, it
is getting more important to delay design decisions to a later
point in the development process. Variability in common
language use is referred to as the ability or tendency to
change. The variability we are interested in does not occur
by chance but is brought about on purpose [7].

One approach is the use of Software Product Lines. SPLs
are a viable software paradigm for systematic software reuse.
The key idea is to build multiple products from a single
infrastructure in a way that is aligned to stated business goals
[8].

As identified in [9], it makes a difference if the regarded
system is an embedded system or not. Variability in em-
bedded systems is much more dependent on hardware than
non-embedded systems.

In the following some of the most important concerns
related to Software Product Lines are introduced.

2. http://www.isst.fraunhofer.de/
3. http://veia.isst.fraunhofer.de/
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2.1.1. Variability in time vs. Variability in space. Basi-
cally, two dimensions of variability can be distinguished:
variability in time and variability in space. The space di-
mension describes different behaviors of products and the
time dimension describes the evolution of an artifact over
time [10]. In other words, variability in time describes the
existence of different versions of an artifact that are valid
at different times. This is kind of variability can be handled
with version management systems. Variability in space on
the other hand describes different shapes of the same artifact
at the same time. This is a core issue in software product
line engineering [7].

2.1.2. Internal Variability vs. External Variability. Ex-
ternal variability is visible to customers, whereas internal
variability is hidden. For external variability customerscan
decide for each feature or functionality whether they need
it or not. So the specific needs of the customers are served
best. Another possible reason for external variability aree.g.
different markets, differences in law or specific standards.
To reduce complexity, the customer must not be confronted
with technical details. They are encapsulated in internal
variability [11].

2.1.3. Binding and binding time. Variability is made ex-
plicit in variation points. A variation point can be regarded as
a delayed design decision [10]. The binding time is defined
as the point in time when the decision upon selection of a
variant must be made [12].

In a software engineering process it describes the step
where fully or partially instantiated products are created
from software artifacts that contain variability [13].

The choice of the binding time has an important influence
on the flexibility of the system. If the variation point is bound
too early, flexibility of the product line artifacts is lost.On
the other hand, late binding is costly and if the point of
variant resolution is chosen too late this will unnecessarily
increase costs.

There are many classifications for variability binding
times in current literature. One classification especiallyfor
automotive embedded systems has been introduced by [14].
The authors distinguish 4 different binding times: Program-
ming, Integration, Assembly and Run Time. These times are
further divided.

In our project we decided to distinguish between 3 main
binding times: Domain definition time, precompile time and
parametrization time.

3. Integrating variability in the automotive SW
development process

The integration of variability in the automotive SW de-
velopment process will be proven on the example of the
HybConS project. This project is a cooperation of the Virtual

Vehicle Competence Center (ViF), AVL List GmbH, and
the Institute for Technical Informatics, Graz University of
Technology. Overall goal of the project is the development
of a generic control software for hybrid vehicles. Therefore,
different topologies for hybrid electrical vehicles [15] and
different levels of hybridization should be supported by a
common software base.

The goal for the variant management project part4 is to
provide a methodology to support variant management and
safety considerations over the whole software development
process. This means that development artifacts, including
safety artifacts, are systematically reused in different prod-
ucts. An overview of the approach is given in Fig. 1. The
individual steps are described in more detail in the following.

First we have to define the meaning of the term ”generic
architecture”. A generic architecture has a fixed topology
and fixed interfaces. In this fixed frame some alternatives
and extensions can be plugged in [16]. In our case, generic
does not mean to support all possible product variants, but
only a set of clearly defined products.

Just imagine there is one new project requirement - ”the
architecture should be generic”. What does this mean for
the development process and the different development steps
respectively? For the requirements, this means that they have
to be formulated in a generic way [17], [18].

In the architectural and detailed design phase variation
points have to be defined to introduce variability. How
this is realized depends on the tools and methods used
in the development process under consideration. In the
implementation phase components have to be implemented
in a way that allows their reuse in several situations. The
reusable components are stored in some kind of repository
and get reused systematically in predefined situations.

One of the most interesting parts of this approach is
the testing part. To guarantee the generic nature of the
architecture and the correctness of the software an automated
test environment has to be provided. Every time a new
component is added to the repository or a component is
changed it has to be ensured that all existing or relevant
variants are (re-)checked for correctness against the defined
specification. With this variant management architecture it
can be ensured that the software architecture is still generic
and valid after changing a software component.

One important issue is to ensure the consistency of
development artifacts throughout the whole development
process. With consistency we mean that changes in one
artifact have to be propagated to all related artifacts. E.g.
changing a requirement means to change implementation,
tests and documentation as well. This is even more difficult
in a setting with variability. If, for example, a clone-and-own
approach is used to develop different variants of a product,
a bug identified in the common part of the implementation

4. http://www.iti.tugraz.at/hybcons
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has to be fixed in all parts separately. This often leads to
subsequent errors. To ensure the consistency we propose a
single point of control for variability. In an SPL realization,
this is realized through a common domain model. A domain
model can be understood as a more abstract representation
of the commonalities and variabilities of the planned product
range.

3.1. Architecture description with EAST-ADL

EAST-ADL is an Architecture Description Language,
which has been initially defined in the ITEA EAST-EEA
project [19]. The ATESST25 (Advanced Traffic Efficiency
and Safety through Software Technology, Phase2) project
improves EAST-ADL with systematic approaches for in-
formation management, architecting, software product lines,
requirements, verification and safety. In further projectsit
has been aligned with the AUTOSAR6 (AUTomotive Open
System ARchitecture) automotive standard (see Sec. 3.2).
The concepts are similar, but there is no real standardized
mapping.

EAST-ADL provides means for describing variability and
safety considerations. In this project setting the architecture
description language was introduced in a lightweight way. In
day-to-day business, design and implementation are widely
realized in Simulink. It is not reasonable to introduce
another engineering tool. Anyway, it is important to keep
the engineering and documentation artifacts consistent auto-
matically. The approach we propose is to extract structural
informations from AUTOSAR and use this information
to automatically construct the EAST-ADL representation.
In this way we introduce EAST-ADL in the engineering
process, but use it only as a tool for documentation.

For our lightweight approach we first extract the structural
informations from the AUTOSAR description. These struc-
tural informations are mapped to corresponding concepts
in EAST-ADL. With this approach the EAST-ADL repre-
sentation can be extracted from the AUTOSAR description
automatically. The same can be achieved with variability
informations. Variability in AUTOSAR is described on the
component level. These informations can be used to con-
struct the compositional variability model in EAST-ADL.

3.2. Reusable automotive software components

In a common automotive software development setting,
Simulink is used as the main development environment. The
integration of Simulink components in the Product Line is
supported by a novel variability component model that is
aligned with the AUTOSAR component model. A special
variant block set [20] helps defining component-internal
variation points.

5. http://www.atesst.org
6. http://www.autosar.org/

Another approach to support reusability of components
is AUTOSAR. AUTOSAR has a much wider reuse scope
than the variant block set. The objective of the AUTOSAR
initiative is to establish an open industry standard for
the automotive software architecture between suppliers and
manufacturers. The main slogan of the consortium is defined
as ”Cooperate on standards, compete on implementation”
[21].

One major goal is the separation from software and
hardware in order to allow software reuse and smooth
evolutions while limiting re-development and validation.

The focus in the presented approach is on the upper
level of the AUTOSAR concept, the software component
descriptions.

The standardized design for reuse in AUTOSAR can be
used in the presented approach. One major drawback is the
fact that systematic variant handling is supported only partly.
AUTOSAR defines a mechanism to configure infrastructure
components and a mechanism to calibrate application level
components via interfaces. It does not define a mechanism to
reflect variability in application level components i.e. model
feature dependent behavior in a application level component.
That is why we employ a special component model resolving
this deficit.

3.3. Verification and variability

All the artifacts produced in the phases on the left side
of the V-model have to be verified in the corresponding
phases on the right side. As a result of multi-discipline
engineering necessary for automotive systems, verification
comes in several flavors. Even when only focusing on
testing automotive software, all kinds of configurations like
testing models (MiL), generated software (SiL), controllers
running this software (HiL) are relevant. In every case,
the environment behavior is simulated/emulated in order to
generate the test case stimuli and verify the unit under test.

When introducing variability, test cases on all levels, i.e.
unit tests, integration test, software system, etc. have to
support variability, just like the software components do.
Variation points have to be incorporated, that are consistently
controlled from the common variability model. This is
crucial as both the test and the component under test are
assembled for a test run.

To go one step further, verification cannot only be pro-
vided for software, but for the whole embedded system.
Therefore, new design and verification methodologies that
can handle different subsystems in the same environment
are necessary.

These subsystems are mainly designed for different pur-
poses to operate in different physical domains such as in me-
chanical, electrical and thermodynamic domains. They build
together a heterogeneous embedded system. Heterogeneity
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Figure 1. Improving the common V-model to support variability

is treated by means of multi-domain embedded systems
described using different description languages.

Cosimulation is one approach for functional verification
of heterogeneous system designs. In this solution, several
simulators are used to verify subsystems in one common
environment. Simulators are connected to each other by
specified scheme building a cosimulation network.

The developed application framework [22] allows a
schematic-based system design and automatic generation
of a cosimulation platform. It is a distributed, webbased
application, which allows system design using models pro-
vided by a library and automatic generation of verification
platforms.

Having test cases - i.e. executable requirements available,
it is possible to test several product variants by running
all test cases for each variant. Practically, this is only
feasible when using test automation. In this way however,
an entire spectrum of variants can be verified regularly.
These variants are built from a common generic architecture
and component pool. The automatic composition of variants
makes it possible to verify the generic nature of architecture
and components and further ensure the correct functioning
of all relevant variants.

In automotive industry practice, unit tests are used when
developing software components. In the current state of the
HybConS software, each of≈80 components is associated
with 10 executable unit tests on average. A full unit test run
takes around 20 minutes on a typical development laptop.

This approach is certainly susceptible to an exponential
scaling of test runs. However, in SPLE, only relevant variants
are in focus, not all possible variants. In practice, we can
expect a few tenths of variants (parameterization does not
lead to a new software variant). In this way, a comprehensive
re-test of all relevant variants is well within reach duringa
daily build procedure e.g.

3.4. Safety-related process artifacts

Automotive embedded systems do not only carry out
comfort functions and entertainment functions but also
highly safety-critical functions that control the behaviors
of automotive actuators such as brakes, transmissions, elec-
tric motors or engines. It is obvious that a failure of the
embedded system that controls these actuators can lead to
accidents caused by hazards such as the omission of braking
or the providing of positive torque by an electric motor or
an engine without intention of the driver.
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Due to their criticality these embedded systems are devel-
oped according to rigorous development processes such as
defined by the automotive safety standard ISO 26262 [23].
This standard imposes special requirements to process steps
such as requirements elicitation, design, implementation,
verification, validation and documentation. Moreover the ap-
plication of safety analyses such as preliminary hazard anal-
ysis, FTA (Fault Tree Analysis) and FMEA (Failure Modes
and Effects Analysis) [24] is required. The application of
safety-related process steps produces safety-related process
artifacts such as safety requirements, system architecture
models, implementation of safety integrity measures, fault
injection test results, hazard tables, fault trees and FMEA
tables.

It is obvious that these safety-related process artifacts are
subject to variability depending on the features, functions,
sensors and actuators of the vehicles in the product line
as well. A particular vehicle variant clearly leads to a
particular set of safety requirements, a particular system
architecture, particular safety integrity measures, a particular
fault injection test campaign, particular hazards, particular
faults and failures.

The adequate integration of these safety-related process
artifacts in a V-model that supports variability such as
described in Section 3 is a challenging and necessary issue
to achieve compliance to the automotive safety standard
ISO 26262. Management of safety-related process artifacts
in terms of variability is analog to that of other development
artifacts illustrated in Figure 1.

4. Conclusion

An integrated product line oriented development environ-
ment for automotive embedded systems has been described.
It extends the commonly used V-model by means of consis-
tent variability handling. The approach does not only include
the management of software artifacts, but also documenta-
tion, safety artifacts and various testing artifacts. Withthis
approach we can support the systematic development of a
generic software architecture. It was deliberately designed
for lightweight and evolutionary introduction in a typical
automotive development process and environment.
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ABSTRACT

Domain modeling is a key task in Software Product Line
(SPL) development. We identified two popular modeling
paradigms: Feature-Oriented Domain Modeling (FODM)
and Domain-Specific Modeling (DSM). The representation
of the domain model is crucial in SPL engineering, since
domain models have a long lifecycle and represent the ex-
ternalized organizational domain knowledge. For complex
and heterogeneous domains, such as embedded systems, dif-
ferent representation techniques can be useful to describe
different aspects of the system.
This paper describes a multi-paradigm modeling approach

which enables the combined representation of Feature mod-
els and Domain-Specific Languages (DSL). The main idea is
to reduce the complexity of the model and, thus, to improve
its usability and maintainability. The technical realization
of the multi-paradigm modeling approach uses 3 types of
constraints to connect different modeling paradigms. The
constraint checking mechanism reuses existing technology
in order to not re-invent the wheel.
A case study describes the applicability of the approach

in a real-life automotive project for hybrid electric vehicle
control software (HybConS) and shows the improvement of
this approach compared to single-paradigm modeling.

Categories and Subject Descriptors

D.2.13 [Reusable Software]: Domain engineering

General Terms

DESIGN , LANGUAGES

Keywords

Software product lines, Multi-paradigm modeling, Feature-
oriented domain modeling, Domain-specific modeling
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1. MOTIVATION
The motivation for this work and the example which will

be used throughout this paper is an automotive project
called HybConS1. The goal of this project is to develop a
generic software architecture for hybrid electric vehicle con-
trol units. Hybrid electric vehicles may vary in different
drivetrain configurations, different mechanical components
and different supported markets, which all influence the con-
trol software. An SPL approach is used to support all these
variants in a systematic way. All aforementioned aspects
should be part of the resulting problem description.

In this work, we focus on the problem space description.
The problem space contents are dependent on the involved
stakeholders. Various system factors affect the software and
variability of embedded systems. This means that differ-
ent stakeholder views need to be integrated in the resulting
problem description. If the various domain aspects have dif-
ferent characteristics, we are talking of a heterogeneous do-
main. A heterogeneous domain is characterized by various
dependent stakeholder views without one-to-one mapping.
In the automotive domain, there is no direct correspondence
between mechanical parts and software functionality result-
ing in two completely distinct architectures (mechanics and
software). In contrast, for automation system software there
is often a mapping to specific hardware elements (i.e. if a
sensor is part of a product the corresponding software needs
to be part as well). This domain is not considered heteroge-
neous.

Improved problem domain representations are important
for various reasons. Most importantly, it is a collection of
organizational domain knowledge and therefore a core asset
for any organization. Furthermore, a well-defined problem
space representation facilitates subsequent tasks (e.g. prod-
uct derivation).

The main contribution of this work is a combined and
improved representation of the problem domain by using
the advantages of existing modeling paradigms and tools.
This work is structured as follows: Section 2 summarizes
the most important related work and Section 3 gives some
background information. The following sections will high-
light the multi-paradigm modeling framework from different
perspectives. The concept perspective in Section 4 intro-
duces the principle design of the multi-modeling framework.

1http://www.iti.tugraz.at/hybcons
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Section 5 describes the details of the implementation per-
spective. Section 6 covers the process perspective on the
multi-modeling framework. In Section 7 the practical per-
spective is shown with a concrete example. Section 8 finally
concludes the paper.

2. RELATED WORK
Kelly et al. [10] highlight the importance of the appropri-

ate representation in DSML specifications. It is stated that
”the correct representational paradigm depends on the audi-
ence, the data’s structure, and how users will work with the
data”. We extend this statement to the next level and argue
that not only the representation is important, but also the
paradigm to provide this representation in an effective way.
The need for heterogeneous representation mechanisms

has previously been identified by different authors. Elsner
et al. [3] propose a framework to formulate constraints be-
tween different modeling artifacts. This framework seems
to be rather complex, because it is based on complex con-
straint definition languages. Bak et al. [1] on the other
side suggest a completely new language, which combines
the two approaches. The main contribution is the inte-
gration of capabilities of both modeling approaches, while
providing first-class support for feature modeling. This is
an improvement over previous works, where extensions to
the original feature-oriented modeling approach have been
suggested (e.g. cardinality-based feature modeling [2]). The
goal of these extensions is to emulate domain-specific or class
modeling properties in feature-oriented representations. In
contrast to this new language, we suggest to use existing
modeling techniques that have been proven useful over the
years.
Voelter et al. [21] describe the limitations of feature-oriented

domain modeling. They propose as a solution to combine
the feature-oriented approach with domain-specific languages
wherever the descriptive power of features is not enough.
Heidenreich et al. [6] propose a solution to map features

to any Ecore-based representation. In contrast to the cur-
rent approach, the mapping spans from the problem space
to the solution space and is not meant to realize different
representations in the problem space.
Haugen et al. [5] describe a separated language approach

to specify variability in DSL models. They propose a Com-
mon Variability Language (CVL), and variability resolution
mechanisms embedded in the OMG meta-model stack. This
allows to describe variability in potentially all MOF-based
languages, including UML, as well as MOF- and UML profile
based DSLs. While being a general and clean approach to
handle variability, it does not seem directly applicable to fea-
ture abstraction hierarchies and their complex constraints.

3. BACKGROUND
Basically, a domain model defines the functions, objects,

data, and relationships in a domain [7].
Traditionally, domains are described either by a domain-

specific language (DSL) or by a feature-oriented approach
(e.g. FODA [7], FORM [8]). Of course there are other pos-
sible approaches (e.g. [4]), which seem to be point solutions
with little practical relevance. In this work we concentrate
on feature models and graphical DSLs and their advan-
tages for the representation of a domain model. The two

paradigms are described in more detail below:

3.1 Feature-oriented modeling
A feature can be defined as ”a prominent and distinctive

user visible characteristic of a system” [12]. The big advan-
tage of this kind of abstraction is that it can be understood
by both, customers and developers [9].

Kang et al. [7] first proposed to use features to represent
the problem domain with the concept of Feature-Oriented
Domain Analysis (FODA). A feature model consists of a
hierarchical representation called feature diagram and com-
position rules, such as mutual exclusion (excludes) and mu-
tual dependency (requires). Commonality can be described
in terms of mandatory features and variability in terms of
optional or variant features [18].

Over the years several extensions to this original approach
have been introduced. Basically, they are used to simu-
late the modeling capabilities of domain-specific modeling.
Cardinality-based feature modeling [2] e.g. has been intro-
duced to support instantiation of features. Using this ex-
tension, a feature can be annotated with cardinality, which
indicates the number of possible clones of this feature in a
product. It is also possible to combine features into feature
groups and define cardinalities for entire groups. Addition-
ally, attributes with configurable values can be added to a
feature. To ensure tool independence, such extensions are
left out from our investigation.

3.2 Domain-specific modeling
The aim of domain-specific modeling (DSM) is to use a

higher level of abstraction and the direct usage of concepts
and rules from a specific problem domain. Domain-specific
languages (DSL) are used to model a system within that
domain. The key characteristic of DSLs is their focused ex-
pressive power [20]. Because of the narrow focus it is possible
to generate products directly from these high level specifi-
cations [11]. A DSL with domain-specific notation is used
to describe the problem. This notation is an important fac-
tor in the improvement of productivity [15]. In contrast to
general-purpose languages, DSLs are used to solve a much
smaller set of problems in a specialized, deliberately nar-
rowed area (the domain).

The higher expressiveness can be used to represent the
scope of a product family in a more natural way by using
the notation of the specific domain. The analysis of the
domain results in a DSL, that can be used to describe this
domain [19].

3.3 Combined domain representation
For the preparation of a combined representation it is

first important to be aware of the structural commonalities
of FODM and DSM. Figure 1 shows that both approaches
share the same structure from an abstract point of view.
They only differ in the concrete representation of the do-
main.

The basic building blocks of both approaches are elements,
different kinds of connections between these elements, and
element properties. The structure of a feature-oriented rep-
resentation is given by the use of features and a defined set of
relations (connections) between these features. For a DSM
tool implementation, restrictions on the structure have to
be given in some form or another (e.g. GOPPRR2). These

2http://www.metacase.com/support/45/manuals/mwb/Mw-
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Figure 1: Conceptual differences between the two
modeling approaches: feature-oriented and domain-
specific modeling
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Figure 2: Conceptual realization of the multi-
paradigm modeling framework

restrictions define which kinds of elements and connections
are valid. Properties for a detailed specification of elements
are usually available in both approaches.

4. MULTI-PARADIGM MODELING FRAME-

WORK ARCHITECTURE
This work describes the detailed concept of our multi-

paradigm modeling approach for problem descriptions in
SPLs based on our previous work [13]. The details of the
domain and application engineering process in the context
of multi-paradigm modeling are described below.

4.1 Domain engineering
The major problem for the implementation of a combined

solution is the definition of constraints between elements
from different models as illustrated in Figure 4. This means
that there has to be some kind of model interface allowing
to describe these dependencies.
Figure 3 shows a meta-model defining the main build-

ing parts of the multi-paradigm modeling framework. Fig-
ure 2 illustrates the basic concept of the multi-paradigm
modeling framework. The core part is a Common Domain
Model (CDM), which is used to represent inter-model (differ-
ent domain aspects or different representations) constraints.
Intra-model constraints are described in the specific tool or
language. This enables an efficient representation of the dif-
ferent domain aspects. The basic design concept is the use
of element references in the CDM. The advantage of this
design is the avoidance of transformations following a com-
mon meta-model which would probably result in a loss of
information. We identified 3 basic inter-model constraints,
based on the main building parts. This makes them appli-
cable with different modeling languages and paradigms:

• hasElement
The ”hasElement” constraint is used to check whether

1 1 1.html

Figure 4: Illustrating the hasElement constraint
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Figure 5: Overview of the technical realization of
the multi-paradigm modeling framework

or not an element exists in a model. This means that
an element depends on the existence of an element in
another model.

• hasAttributeValue
The ”hasAttributeValue” constraint defines the depen-
dency of an element on a specific value of an attribute
in another model.

• hasConnection
The ”hasConnection”constraint is used to check whether
or not a connection between two elements exists. It can
be used to make an element dependent on this connec-
tion.

These three types of constraints must be represented in
the CDM and have to be evaluated by the constraint check-
ing mechanism. They are intentionally kept simple, which
has to be kept in mind during domain design.

4.2 Application engineering
A constraint checking mechanism should ensure consis-

tency in the application engineering process. The mecha-
nism must be able to check the existence of elements, con-
nections and properties in various models.

5. MULTI-PARADIGM MODELING FRAME-

WORK IMPLEMENTATION
Various tools could be used for the realization of the CDM,

because it only needs to represent elements (references to
original model element), connections (inter-model constraints),
and properties. Our multi-paradigm modeling framework
prototype is built on pure::variants3, which provides a con-
straint checking engine. The existence of this constraint
checking engine was the main reason to choose this tool en-
vironment. Furthermore, feature models provide an easy
way to represent the required information.

3http://www.pure-systems.com/pure variants.49.0.html
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Figure 3: Metamodel for the multi-paradigm modeling concept and their relations to FODM and MetaEdit+

Table 1: Mapping between CDM concepts and dif-
ferent technical representations

CDM pure::variants MetaEdit+
(Fig. 3) FODM DSL

Element Element (ps:feature) Object
Connection Element (ps:connection) Relationship
Property Property Property

ConfigSpace Variant Description Graph
(Fig. 5) Model

5.1 The Common Domain Model
Internally, a pure::variants Feature model is used to repre-

sent the CDM. Elements from the different models are rep-
resented as features. The required information are: the ele-
ment name in the source model, and the path to the source
model. The latter is stored as a pure::variants Property.

5.2 Inter-model communication
Generally, there needs to be an interface to communicate

with other models. For our prototype we implemented con-
nectors for Ecore4 and MetaEdit+5. Basically, these connec-
tors are parsers which are able to read the respective domain
and application models. The mapping of different concepts
is described in Table 1.
A special case of tool connection is required by the MetaEdit+

tool. For correct communication, the meta-model has to be
exported as a MetaEdit+ XML (.mxt) file. Examining the
application model can then be done via a SOAP interface.
For Ecore, both models should be available as a file.

4http://www.eclipse.org/modeling/emf/?project=emf
5http://www.metacase.com/

5.3 The multi-paradigm modeling plugin
The multi-paradigm modeling framework is implemented

as an Eclipse plugin, and consists of a UI and a logic part.
The UI enables the user to define and check constraints.
Required inputs are the current CDM, the element to de-
fine the restriction on (and the corresponding model), and
the target element, property value or connection (and the
corresponding model), respectively.

The plugin uses the tool connectors described in Section
5.2. Once the path to a domain model is given, possible
values are retrieved and presented to the user. After finish-
ing the input form the CDM gets updated. Elements are
simply represented as pure::variants Feature. Properties are
added as pure::variants Property to the respective element.
Connections are features with type ps:connection and two
properties: a connection source and a connection target. A
pure::variants restriction corresponding to the constraint is
added to the target element.

5.4 Application engineering
In application engineering, concrete products are derived

using the various tools independently. Consistency between
them is ensured by checking inter-model constraints via the
CDM. Using a pure::variants Feature model to represent the
CDM enables the use of the tools internal Prolog engine for
constraint checking and solving. The right-hand side of Fig-
ure 5 illustrates the two important parts of the application
engineering phase in the context of multi-paradigm model-
ing. They are described in detail below.

5.4.1 Configuration space

The first step in application engineering is the creation of
a pure::variants Configuration Space [16] containing only the
CDM. The Configuration Space is used to combine models
for configuration purposes. This step results in a
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pure::variants Variant Description Model (VDM), which is
normally used to define a concrete product by feature selec-
tion. In the case of multi-paradigm modeling it is processed
automatically by the constraint checker described below.

5.4.2 Configuration of multi-paradigm modeling ap-
plication project

A central part for the configuration of a concrete applica-
tion is the app config file. It stores the mapping between ap-
plication models and their respective domain models. This is
straightforward for pure::variants and Ecore-based domain
models. Pure::variants Feature models (*.xfm) are mapped
to Variant Description Models (*.vdm), and Ecore models
(*.ecore) are mapped to any type of Ecore application model.
For MetaEdit+, the domain model is mapped to a concrete
graph within a MetaEdit+ project. With this information,
access via the SOAP interface can be established.

constraint checking

disable element in
VDM

get attribute value

from external

model

set attribute value

in VDM

get Target and

Source of

connection from

external model

complete vdm

enable element in

VDM

disable

connection in

VDM

enable

connection in

VDM

does not exist in external model

does  exist in external model

has attribute

check element

Variant Description Model

has no more attributes

either target or source element or 

both are not part of connection

 is a connection

 is not a connection

connection has 

source and target element

has no next element

generate

 Common domain model

has next element

Figure 6: Constraint checking mechanism to ensure
consistency in application engineering

5.4.3 Constraint checking process

Figure 6 shows the basic principle of the multi-paradigm
modeling constraint checking mechanism. This mechanism
is performed automatically. The constraint checking process
iterates over each element in the VDM in the multi-paradigm
modeling configuration space mentioned before (see Figure
5). This model is derived from the CDM and contains the

constraint list

Variant Description Model

evaluate

constraint

get graphs

from ME

validate graph

with constraints

display graph

has next graphpart of MM constraint

has next element

no next element

not part of constraint

graph not valid

graph valid

Figure 7: Process of getting all valid MetaEdit+
(ME) Graphs for a given Variant Description Model
in pure::variants

path to the connected origin domain models. This informa-
tion is used to retrieve the corresponding application model
from the app config file. Now, all the information required
to perform the actual checking is available.

For elements of type ps:feature it has to be checked if
this element exists in the external application model. If it
does, the selected state of the element in the VDM is set to
true, otherwise to false. If the element (in the VDM) has an
attribute, the value of this attribute has to be looked up in
the corresponding external application model. The value is
then set in the VDM.

For elements of type ps:connection it is checked if a con-
nection of this type exists with the connection source and
target denoted in the CDM. If such a connection exists,
the selected state of the element in the CDM is set to true
and to false otherwise. Once all the elements in the VDM
are evaluated, there is a concrete product description in
pure::variants. The pure::variants constraint checker finally
checks the resulting model for validity.

5.5 Additional functionality
Two additional functions improve the usability of the multi-

paradigm modeling approach. They are available for
pure::variants and MetaEdit+ so far, but are not restricted
to these tools. The implementation serves as a base for
the description of the concepts here. The major advantage
of these add-ons is the fact that one can start with either
a graphical domain representation or a feature selection.
Based on this first selection, the remaining possibilities of
the other representations are calculated automatically. ”Au-
toSelection” starts with the creation of a MetaEdit+ graph.
The calculation of valid graphs provides the possibility to
start with a feature selection.

5.5.1 AutoSelection

The AutoSelection mechanism takes a MetaEdit+ Graph
as input. Based on the constraints defined in the CDM, valid
feature selections for this Graph are automatically selected
in the Feature model. Therefore, we first need to analyze the
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Figure 8: Process of automatically generat-
ing a reconfigured Variant Description Model
(pure::variants) based on a given MetaEdit+ (ME)
Graph

MetaEdit+ Graph. In the next step, we extract parts of the
graph which are part of the CDM (this means they are part
of an inter-model constraint). If such a constraint exists,
it gets evaluated and the selection of the corresponding ele-
ment in the particular model is done. The major advantage
of this function is the possibility to start with the description
of a graphical MetaEdit+ representation (e.g. the drivetrain
configuration in our case), and do a first preselection of the
remaining possibilities in the Feature model (the software
functions in our case). This ensures consistency right from
the beginning.

5.5.2 Calculate valid graphs

The second functionality based on multi-paradigm model-
ing can be used to determine all MetaEdit+ Graphs from an
existing set of Graphs that are valid for a particular feature
selection. Here, we want to start with the selection of fea-
tures, the software functions in our example. Based on the
constraints in the CDM, it is now possible to get all (remain-
ing) valid graphs in MetaEdit+. In this case we would get
a collection of valid drivetrain configurations (application
models) for the currently selected software functions. In the
prototype this is implemented as follows: First, the feature
selection gets parsed, and the parts relevant for the multi-
paradigm modeling context are extracted (selected features
that are part of a constraint in the CDM). The result is a list
of constraints that have to hold true in a graph in order to be
considered as valid. All graphs from the current project are
then imported from MetaEdit+ and checked against these
constraints. Graphs for which all constraints hold true are

DE_process

Create variant

project

Create multi- 

 paradigm modeling

framework

(Re-) Define 

Feature Model

Define

constraints

(Re-) Define DSL(s)

Figure 9: Multi-paradigm modeling activities in the
domain engineering process

Figure 10: Multi-paradigm modeling activities dia-
gram in the application engineering process

displayed as the result set.

6. DOMAIN MULTI-PARADIGM MODEL-

ING PROCESS VIEW
The multi-paradigm modeling process follows the engi-

neering processes defined for software product line engineer-
ing. In domain engineering, constraints between different
representations have to be defined, and in application en-
gineering the validity of the application models has to be
ensured by checking the constraints.

6.1 Domain engineering activities
Figure 9 shows the basic tasks in domain engineering for

multi-paradigmmodeling. The first step is to create a pure::-
variants variant project. In the next step, the multi-modeling
framework and the different domain representations are cre-
ated. After these first steps the constraints can be defined.

6.2 Application engineering activities
Figure 10 illustrates the required steps to prepare the

multi-paradigm modeling framework for the derivation of a
concrete product. First, the application models are derived
from the domain models in their respective environments (as
in single-paradigm modeling). Next, each application model
has to be linked to its corresponding domain model. Fi-
nally, a pure::variants Configuration Space containing only
the CDM is created. After these preparation steps the con-
straints are checked as described in Section 5.4.3.

7. CASE STUDY
A practical case shows the applicability of our approach.

We applied the multi-paradigm modeling framework within
the scope of the HybConS project, described in Section 1.
The domain has been divided into two domain aspects: con-
trol software and drivetrain configuration (system under con-
trol). Figure 11 shows a sample multi-paradigm model con-
necting the MildHybrid Feature to a MechanicalEnergyFlow
connection in a drivetrain DSL. A direct mechanical con-
nection (without clutch) excludes full hybrid functionality.
This a very central concept, because many software aspects
depend on the distinction between full and mild hybrid con-
figuration.
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Simple feature model

Multi-paradigm modeling  - Combined representation

Domain-specific language

Figure 11: Multi-paradigm model combining a Feature model and a Domain-specific language on domain
level. A full hybrid configuration has no direct mechanical energy flow between electric motor and ICE.

Representation complexity can be seen as an important
quality metric for domain models. The improvement of do-
main models has several advantages: domain models have a
long life-cycle in software product lines. They are used for
the derivation of many products. Simpler representations
reduce errors and improve productivity.
In a previous work [14] we introduced some simple metrics

to compare the complexity of different domain representa-
tions. The metrics assess the interface, element, and prop-
erty complexity – and, if summed up, the overall complexity.
Figure 12 shows a comparison of the results when using the
multi-paradigm modeling approach compared to the single-
paradigm approaches. We modeled the domain, consisting
of drivetrain configurations and corresponding control soft-
ware functions with a FODM approach, a DSM approach
and, the multi-paradigm modeling approach. The complex-
ity of the DSL is very high compared to the other represen-
tations. This is due to the fact that vehicle software func-
tionality is hard to describe in a DSL. The representation
is very ”unnatural”, making it very complex. The FODM
approach performs very well for a single drivetrain topol-
ogy, but model complexity is increasing fast as the domain
evolves. Already for a small number of topologies FODM
complexity is higher than with the other approaches. The
multi-paradigm modeling approach seems to unite the ad-
vantages of FODM and DSM in terms of complexity. In
particular the additional modeling effort due to having two
models in combination is not significant.
Summarized, this means that for four different drivetrain

configurations which is a realistic practical scope the multi-
paradigm modeling approach is the optimal solution.
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Figure 12: Complexities of HybConS domain de-
scription with FODM, DSL, and Multi-paradigm
modeling compared

8. CONCLUSION
Embedded software is highly dependent on its peripheral

system, which often results in heterogeneous domains. This
work proposes a domain multi-paradigm modeling frame-
work to allow the combined representation of heterogeneous
domains using different paradigms. Our multi-paradigm
modeling approach is also applicable to compositional vari-
ability models as defined in [17], because the different ele-
ments can be treated in the same way as traditional feature
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model elements.
The domain multi-modeling framework concept has been

described as well as a prototype implementation. Detailed
information on how to link multiple subdomain models via
a Common Domain Model is given. Constraint checking
mechanisms and usability enhancements for application en-
gineering are described. Further, the necessary domain multi-
paradigmmodeling activities during domain engineering and
application engineering are explained.
Of course there are some drawbacks of this approach. Due

to the simplicity of the constraints the domain has to be
designed in a way that these constraints are sufficient. Nev-
ertheless, constraints between domain aspects can often be
described on a high level of abstraction.
As a proof of concept, a case study was presented. In

a hybrid electric vehicle control unit project, the domain
has been modeled with single-paradigm approaches, as well
as with the described multi-paradigm modeling framework.
Using simple complexity metrics, we could show that the
proposed multi-paradigm modeling approach leads to re-
duced complexity of the domain representation.
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Abstract

The quality of the domain model is an important
success factor in Software Product Line Engineering
(SPLE). We identify Feature-Oriented Domain Model-
ing (FODM) and Domain-Specific Modeling (DSM) as
the most important modeling approaches in practice.
Especially for the representation of complex, heteroge-
neous domains the choice of an appropriate modeling
paradigm is crucial.

Often, one modeling approach is not sufficient to
develop an efficient domain model. Previously [1], we
suggested an approach for the combined represen-
tation of the problem space with different modeling
approaches. This combined solution has two main
advantages: First, different groups of stakeholders can
use their familiar terminology and modeling notation.
Second, the complexity of the domain model represen-
tation can be reduced.

Here, we give ideas and pose research questions for
the extension of this multi-modeling approach to the
solution space. First, it has to be investigated whether
or not it is possible to abstract different notations of
the solution space in the same way as in the problem
space. Second, the possibility to use this framework as
a base for model integration has to be investigated and
third, the impact of this extension on the representation
complexity, an important quality metric, has to be
evaluated.

We believe that this is desirable because different
challenges of SPLE as well as MBD can be addressed
with the proposed approach.

1. Heterogeneous domains

One major way to reduce complexity in Software
Product Line Engineering (SPLE) is the separation of
problem and solution space as suggested by Czarnecki
and Eisenecker [2]. In their definition the problem

space consists of the ”terminology used to specify
family members”. The implementation forms the so-
lution space. This is a very general definition. It only
states that the problem space is a more or less abstract
description of the products in the specified domain
scope.

One challenge in SPLE is the understanding what a
software system is. Most literature concerning SPLE
deals with a software-only view not keeping in mind
that nowadays nearly all software is somehow embed-
ded. When talking about embedded software this is
not only restricted to the development of traditional
embedded systems. Almost everywhere software is
also embedded in a process, which influences software
design.

In our experience the two main domain modeling
paradigms for SPLE are Feature-Oriented Domain
Modeling (FODM) [3] and Domain Specific Mod-
eling (DSM) [4]. FODM uses features, prominent
user-visible characteristics of a system, to describe
commonalities and variabilities of a system in a tree-
structured feature model. DSM raises the level of
abstraction to a domain specific language which repre-
sents domain objects. Different domain characteristics
have different requirements on the modeling paradigm.
Considering that the problem domain is a complex
system it is very likely that different parts of the
domain have different characteristics and, therefore,
require different modeling paradigms. In this case we
are talking of a heterogeneous domain.

For a better understanding we provide a practical
example from the automotive domain here. The project
is called HybConS1 and it aims to develop a generic
software architecture for control units of hybrid elec-
trical vehicles (HEV). The characteristic of a HEV
is the existence of different energy sources. Hybrid
electrical vehicles may vary in drivetrain configuration,

1. http://www.iti.tugraz.at/hybcons
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mechanical components, software functionalities and
different supported markets. Since the drivetrain con-
figuration influences the software, both aspects have to
be described in the domain model. For the description
of software aspects a feature model is suitable.

Representing the drivetrain in a feature-oriented way
leads to several problems:

• One major problem is the dependence on the
assembly of different mechanical components,
which is hard to describe in a feature model. For
example, a direct mechanical connection between
the internal combustion engine and the electrical
motor means that the electrical motor can not be
actuated independently. If a separation clutch be-
tween the two energy sources exist, it is possible
to propel the vehicle with electrical energy only.
This is the basic difference between a mild and a
full hybrid. Both are completely different vehicle
types and, therefore, support very distinct possible
software functionalities (e.g. full hybrid supports
pure electrical drive, while mild hybrid does not).

• In an example topology with the electrical motor
located at the wheels there are four instances of
the component ”electrical motor”. This instantia-
tion of several components is hard to describe in
a feature model without specific extensions.

• Describing such compositions of mechanical
components results in an extraordinary high num-
ber of relations and constraints, if possible at all.
A correct and intuitive representation is hardly
possible in a feature model.

On the other side, the representation of software func-
tionality in a DSM approach is hardly feasible.

Summarized, this indicates a heterogeneous domain
which requires different modeling paradigms.

2. Technical background

In case of a heterogeneous domain it can be useful to
combine different representation mechanisms in order
to optimize the overall representation of the problem
domain. To create a multi-model representation we
need to split the domain into several subdomains. For
each of these subdomains an appropriate representation
has to be found. In [1], we propose a solution to com-
bine both modeling approaches based on established
and well-known technology instead of introducing a
new language.

The proposed solution is based on the fact that
elements, different kinds of relations used to connect
these elements, and properties to define elements or
relations in more detail, are the basic building blocks
of both paradigms.

Figure 1. Conceptual realization of a multi-
modeling environment

A major problem for the implementation of a com-
bined solution is the definition of restrictions and
dependencies from an element in one model to an
element in another model. This means that there has
to be some kind of model interface, that allows to
describe these restrictions.

We propose a multi-modeling approach which uses
a Common Domain Model (CDM) to represent inter-
model restrictions. These restrictions can be defined on
the basic building parts: elements, relations, and prop-
erties. Figure 1 illustrates the basic concept, described
in [1], in more detail. Not all elements of all models
need to be included in the CDM. Intra-tool constraints
are described in the specific tool or language. Until
now however, the multi-modeling approach is limited
to the problem space.

2.1. Benefits of domain multi-modeling

In order to assess the benefits of our multi-modeling
approach we tried to define metrics to evaluate the
resulting domain model [5]. One useful quality metric
is the representation complexity of the resulting do-
main model. Keeping complexity as low as possible
is important in several aspects. First of all, it im-
proves the usability and maintainability of the domain
model. This is especially important, since the model
is intended to have a long life cycle and is used
for the derivation of products hopefully many times.
Considering this, reduction of complexity results in an
improvement of overall quality.

Another benefit is the support of individual rep-
resentations and notations for different stakeholder
views, thus improving stakeholder communication and
individual understanding.
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3. Problem statement

”Optimized domain model representation for
problem and solution space”

Until now, the optimization of the domain model
representation is restricted to the problem space [1].
For future research it would be interesting to investi-
gate the questions posed below in order to evaluate the
extension of this approach to the solution space. Figure
2 describes the basic concept. Table 1 summarizes the
research questions and corresponding hypotheses.

3.1. Research Question 1:

”Is it possible to find a common abstraction for the
solution space representation of FODM and DSM?”

Figure 3 illustrates the basic idea and compares
the concepts to Model Driven Architecture (MDA). It
separates the solution space into an abstract (middle-
layer) and a concrete part. The concrete part can take
several forms. Actually, the basic building parts of
this middle-layer are elements, relations and properties
used to abstractly describe the solution space.

Recalling that the combination of different modeling
approaches for the representation of the problem space
is possible because the investigated paradigms can be
abstracted to elements, relations and properties. If an
abstraction to these basic building parts is possible for
the solution space as well, the CDM can be used for
the combination of all parts of the domain (problem
and solution space).

For example, pure::variants2, a tool we use for
FODM, uses an abstract model-based description of
the solution space in order to configure different tech-
nical realizations. This description can be seen as
a middle-layer between the problem space and the

2. http://www.pure-systems.com/

technical realization in the concrete tools or artifacts.
In [6] we describe a concrete design using this layer
of abstraction.

Basically, the same should be true for domain spe-
cific languages and code generators as well. Code
generators are often implemented following template
based patterns [7]. This description can be used to build
the same kind of middle-layer representation.

As a result we can formulate the following
hypothesis:

Hypothesis 1: Each code generator (DSM) and
variability realization mechanism (FODM) can be
abstracted to a representation that consists only of
elements, relations and properties.

3.2. Research Question 2:

”Is it possible to use the Common Domain Model
to improve traceability between different models in
the development process?”

Here we have to investigate whether it is possible
to link models in different development stages or
different layers of abstraction via the Common
Domain Model. Since the Common Domain Model is
used to describe dependencies between different types
of models it can potentially be used to support model
integration.

Hypothesis 2: The CDM can at least support model
integration.

3.3. Research Question 3:

”How does the combined representation of the
entire domain affect the overall complexity?”

Section 2.1 discusses some implications of the
multi-modeling approach for the complexity of
the problem space representation. We show that
the combined representation positively influences
the complexity. For the extension of the combined
representation on the solution space, the basic question
is whether this extension has an additional positive
influence or if it raises the complexity.

Hypothesis 3: The extension of the combined repre-
sentation on the solution space has no special influence
on the complexity.
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Research Question Hypothesis

1 ”Is it possible to find a common abstraction for the solution space
representation of FODM and DSM?”

Each code generator (DSM) and variability realization mechanism
(FODM) can be abstracted to a representation that consists only
of elements, relations and properties.

2 ”Is it possible to use the Common Domain Model to improve
traceability between different models in the development process?”

The CDM can at least support model integration.

3 ”How does the combined representation of the entire domain affect
the overall complexity?”

The extension of the combined representation on the solution space
has no special influence on the complexity.

Table 1. Research questions and corresponding hypotheses
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4. Related work

The need for heterogeneous representation mech-
anisms has previously been identified by different
authors. In Elsner’s work [8], a constraint-language
has been introduced, that can be used to formulate
constraints between different modeling artifacts. Bak
[9], on the other side, proposes a completely new lan-
guage, which integrates aspects from both approaches.
The main contribution is the integration of the two
modeling approaches, while providing first-class sup-
port for feature modeling. This is an improvement
of previous works, where extensions to the original
feature-oriented modeling approach have been sug-
gested (e.g. cardinality-based feature modeling [10],
staged configuration [11]). The goal of these extensions
is the emulation of domain specific or class modeling
properties in feature-oriented representations. In con-
trast, we suggest to use existing modeling techniques
that have been proven useful over the years.

Voelter et al. [12] describe the limitations of feature-
oriented domain modeling. They propose the combi-

nation of the feature-oriented approach with domain
specific languages wherever the descriptive power of
features are not enough.

Heidenreich et al. [13] propose a solution for
mapping of features to any Ecore-based representation
of the technical realization. In contrast to the approach
proposed in this paper, the mapping spans from the
problem space to the solution space and is not meant to
realize different representations in the problem space.

Haugen et al. [14] describe a separated language ap-
proach to specify variability in DSL models. They pro-
pose a Common Variability Language (CVL) together
with variability resolution mechanisms embedded in
the OMG metamodel stack. This allows to describe
variability in potentially all MOF-based languages, in-
cluding UML, as well as MOF- and UML profile based
DSLs. While being a general and clean approach to
handle variability, it does not seem directly applicable
to feature abstraction hierarchies and their complex
constraints.
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5. Future work

In future work, we need to implement and evaluate
the proposed research directives. For RQ 1, different
code generators have to be investigated first. In a
next step, the code generator representation has to be
converted to a more abstract representation, as shown
in Figure 3. If this is possible, the current multi-
modeling implementation can be extended to support
the solution space as well. For the evaluation of RQ 2
the framework has to be used for model integration. In
the last step the resulting domain model (consisting of
problem and solution space) has to be evaluated using
the metrics defined in [5].

6. Conclusion

Nowadays many domains are heterogeneous by na-
ture. We identify the challenge that different subdo-
mains require the use of different modeling paradigms.
Previously, we proposed a multi-modeling solution
for the problem space. We believe that the extension
of the approach to the solution space is desirable,
because it enables the combination of different realiza-
tion mechanisms (code generator, ... ). Additionally, it
would be possible to define dependencies or constraints
in different combinations (problem space - problem
space, problem space - solution space, solution space
- solution space).
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Abstract

This paper describes the technical aspects of the transition
to a software product line approach in the automotive
domain. One major challenge is the current existence of two
different emerging standards for this domain, AUTOSAR and
EAST-ADL2. These potential standards should be borne in
mind during the software product line introduction because
they may someday become mandatory. In addition, the
existing development process should be changed as little as
possible, and one final important requirement for the soft-
ware product line is the implementation of a single point of
control to ensure consistency between various development
artifacts.

To this end, we propose a lightweight introduction of
EAST-ADL2 as a documentation tool only as an initial
step. This is achieved by extracting structural information
from AUTOSAR models and automatically generating the
corresponding EAST-ADL2 representation. The automatic
generation ensures consistency between AUTOSAR and
EAST-ADL2 models. As an important side effect, variability
information can be extracted in this transformation step
and used to build an EAST-ADL2 compositional variability
model. This model can then be mapped to the central domain
model and used to configure the EAST-ADL2 documentation
to the other development artifacts consistently.

In this way, we can accomplish the lightweight intro-
duction of EAST-ADL2 in the development process through
the automatic generation and use the generated variability
information for configuration from a single control point.

1. Introduction

This paper describes one important research outcome of
our current project. The goal of the HybConS1 project is
to generate a generic software architecture for the electronic
control unit (ECU) of Hybrid Electrical Vehicles (HEV) [1].
One part of this project is concerned with the introduction of
a variability management environment in terms of a software
product line (SPL) [2] for the development of automotive
control software. A major requirement is to create a “single
point of control” for various development artifacts. In this

1. http://www.iti.tugraz.at/hybcons

context, “single point of control” means one point from
which all variability can be controlled consistently across
the various development artifacts.

To better understand the challenges, it is important to get
an overview of the development and context. In the auto-
motive domain, model-based development with MATLAB
Simulink is very common. The predominant development
process is the V-model, as shown in Fig. 1 (left). To improve
standardization and interoperability on the software level,
the AUTOSAR consortium has developed the AUTOSAR
standard [3]. Similar efforts have been made on the design
level, which have resulted in EAST-ADL2 [4], an architec-
ture description language for the automotive domain. The
two concepts are described in more detail below.

The EAST-ADL2 metamodel provides a sophisticated
variability package. With this package, it is possible to
describe variability at different levels of detail and to derive
concrete products. At the beginning of our project we
evaluated the applicability of EAST-ADL2 as an SPL envi-
ronment. We eventually decided to choose another approach,
for reasons discussed below.

Our motivation is the need for a software product line
approach in the current development process. As mentioned
above, one goal is to develop a generic software architecture.
Therefore, it is essential to describe variability systemati-
cally. To date, a single system development approach has
been used. Variants are often built from existing products by
copying and adapting existing code. This is an error-prone
approach that should be changed.

Since we know that AUTOSAR is becoming a standard,
and EAST-ADL2, intended as a systematic way to describe
the domain, may also be adopted at some point, we want
to include these concepts in our adoption process from the
beginning. Currently, we are dealing with an established
development process, so it is not possible to make major
changes to the process during production. This is the main
reason for the evolutionary and lightweight approach.

1.1. Motivation

In order to implement a single point of control it is not
only necessary to describe variability, but also to controlall
kinds of development artifacts consistently. This means that
variability mechanisms have to be integrated into all of the
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Figure 1. Lightweight and objective integration of EAST-ADL2 in the development process

relevant development stages and tools. This includes not only
system description, but also support for implementation,
tests, requirements and safety considerations. The lowest
level of EAST-ADL2 has been aligned to the AUTOSAR
metamodel. This makes it possible to describe AUTOSAR
templates within the EAST-ADL2 model. UML and inte-
grated behavior notation only partially enable the direct rep-
resentation of behavior [5]. Other behavior descriptions,for
example in MATLAB Simulink, can be linked to behavior
representation elements of the EAST-ADL2 metamodel [4].

To use EAST-ADL2 and the corresponding tool environ-
ment as an integrated engineering environment, we have to
link the currently used MATLAB Simulink models to the
EAST-ADL2 description. This means that every time an
interface in the Simulink description changes (e.g. adding
a signal), the EAST-ADL2 description has to be changed as
well. In a realistic development scenario, the consistency
between the models would eventually be lost. Another
problem that stems from the link to behavior is the loss
of a single point of control. If the behavioral description
is not part of the EAST-ADL2 model, it is also impossible
to include the variability mechanisms provided by EAST-
ADL2 in this respect. On the other side, variability support
for the MATLAB Simulink tool chain exists. The variant
management tool pure:variants2 provides the means to de-
scribe variability in both MATLAB Simulink and TargetLink
models [6].

In this paper, we propose a lightweight approach for
the integration of EAST-ADL2 in the automotive software
development process, as shown in Fig. 1. On the left side, the
implementation of our lightweight introduction is illustrated
in the dashed area. It is an extension to the current devel-
opment process. The long-term objective is to completely
integrate EAST-ADL2 in the development process, as shown
on the right side. The initial strategy in this scenario is the
use of EAST-ADL2 as a documentation tool. We achieve

2. http://www.pure-systems.com/

this by extracting both structural and variability information
from an AUTOSAR model. Software components described
with AUTOSAR are then transformed into an EAST-ADL2
Functional Design Architecture (FDA) model. This strategy
can also be used as a starting point for the automatic
extraction of variability information from legacy systems.
Currently, this is only possible if the variability information
is present in the AUTOSAR description. Variability mech-
anisms have been supported in AUTOSAR since version
4. This variability information can be used to integrate the
EAST-ADL2 model into an existing product line project as
one type of development artifact.

In summary, this proposal has two main contributions:

1) The lightweight introduction of EAST-ADL2 in the
development process requires a transformation from
AUTOSAR to EAST-ADL2. The detailed mapping is
described in the following sections.

2) The implementation of a single point of control with
respect to variability. Since EAST-ADL2 does not
cover all of the steps of the current development
process, we treat the EAST-ADL2 model as a develop-
ment artifact. This means that we integrate variability
mechanisms, but control them from one central model.
Basic variability information can be automatically
extracted in the transformation step.

Sec. 2 provides a short introduction to the concepts of
EAST-ADL2 and AUTOSAR and summarizes related work.
Sec. 3 describes the concepts of the two major parts of
this proposal: Sec. 3.1 describes the basic mapping strategy
used for the transformation, and Sec. 3.2 describes the
integration of the model in an SPL. Finally, Sec. 4 describes
the implementation of the two parts, and Sec. 5 evaluates the
results of our transformation approach.
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Figure 2. EAST-ADL2 domain structure [4]

2. Related Work

2.1. EAST-ADL2 overview

The Electronics Architecture and Software Technology
- Architecture Description Language (EAST-ADL) is an
architecture description language for the automotive domain.
It has been developed within the scope of the EAST-
EEA (EAST - Embedded Electronic Architecture), ATESST
and ATESST23 (Advancing Traffic Efficiency and Safety
through Software Technology) projects. Its primary goal is
to provide a detailed description of the entire system and to
improve communication in the development environment.
This is achieved through the representation of a system on
different layers of abstraction (see Sec. 2.1.1) combined with
additional modeling aspects, such as variability, require-
ments modeling, feature modeling, environment modeling,
and system level analysis [4].

2.1.1. Structure. As illustrated in Fig. 2, an EAST-ADL2
system model consists of four layers.

On the vehicle level, an abstract description of the entire
system in terms of features (as defined in [7]) is provided.
This abstract representation serves as a basis for commu-
nication with stakeholders (e.g. customers). On the next
level, the analysis level, abstract functions are defined by
breaking down the requirements and features. This abstract
functional description corresponds to a domain concept. For
example, it can describe an environment model, devices
interacting with an environment, or functions [8]. In the next
level, components are further divided into either hardware
(e.g. sensors, actuators) or software components. In addition,
middleware is modeled to connect device-specific functions
to design functions. Design functions form theFunctional
Design Architecture(FDA), which is the model that this
paper focuses on. An abstract description of the hardware is
captured in theHardware Design Architecture. The imple-
mentation level is not explicitly defined in the EAST-ADL2

3. http://www.atesst.org

Figure 3. AUTOSAR architecture overview [10]

metamodel. Instead, some of the concepts have been aligned
to the AUTOSAR specification.

2.2. AUTOSAR overview

AUTomotive Open System ARchitecture (AUTOSAR4)
represents a standardized, open automotive software archi-
tecture developed by a group of more than 150 companies,
consisting of automotive manufacturers and suppliers. The
demand stems from the growing complexity in automotive
software development due to extensive innovations in E/E
systems [9].

The main advantages of the AUTOSAR approach are
the separation of hardware and software and the resulting
reusability of components. The promotional slogan is“Co-
operate on standards - compete on implementation”. This
means that it should become possible for OEMs and other
suppliers to exchange components without revealing any im-
plementation details [10]. The basic AUTOSAR architecture
is shown in Fig. 3.

2.2.1. ECU Software Architecture. One essential design
concept of AUTOSAR is the separation between ECU-
specific and ECU-independent software, i.e. basic software
and application software, respectively. An intermediate layer,
the virtual function bus, acts as an abstract representation
of the communication infrastructure for all software com-
ponents. Since the communication specification is ECU-
independent, high levels of modularity, scalability, exchange-
ability and reusability are achieved [11]. All this is located
at the system level of the AUTOSAR methodology. The

4. http://www.autosar.org
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implementation of the virtual function bus is provided by
the runtime environment (RTE), which is the core of the
AUTOSAR architecture [3].

2.3. General literature

Since EAST-ADL2 and AUTOSAR are two relatively new
concepts, few attempts for transformations and mappings
have been described in the literature. Only one approach
has described a possible mapping strategy at the imple-
mentation level. In [12] and [13], the project EDONA is
introduced. The aim of this project is to integrate hetero-
geneous tools into one platform in order to support the
cooperative development of embedded automotive systems.
The most interesting part of this project in the present
context is the transformation block calledARGateway. It
transforms the software design described in EAST-ADL2
into the AUTOSAR software component description. Since
the target in this case is the implementation level, both
structural and behavioral information are necessary. This
requires a detailed mapping strategy.

Two design patterns for tool integration are presented in
[14]. One pattern describes the integration via a data model,
whereas the other integrates the process flow. Our approach
is based on the ideas of the second pattern. We implemented
tool adapters for Papyrus and AUTOSAR, as well as a
semantic translator (Mapping API). Since there are only two
tools and two languages involved in the transformation, a
tool backplane is not necessary here.

In [15], a method for transformations between different
model formats is presented. One of the two use cases
describes the transformation from MATLAB Simulink to
EAST-ADL2. The mapping is described in a so-called struc-
tural bridge, which preserves the semantics of the original
model. A technical space bridge is used to access the original
model data. In contrast to our approach, it is not possible to
realize variability representations.

In [16], the transformation between different AUTOSAR
metamodel versions is described. This is necessary to ensure
interoperability.

A summary of common Model-to-Text and Model-to-
Model transformation approaches is provided in [17]. The
transformation implementation in this work is achieved as a
Direct-Manipulation Approach.

In [18], three fundamental aspects of transformation
mechanisms are introduced:scope, direction, and stages.
The scope restricts which parts of the program are affected
by the transformation. In our case, these are the model
elements which should be contained in the target model.
The direction of a transformation determines whether the
structure of the source or the target program drives the
transformation process. In our case, the target model (EAST-
ADL2) is the driving part, since only structural and vari-
ability information is required there. The stage aspect of a

transformation determines the necessary iterations. In our
case, two iterations are necessary. This is due to multiple
structural dependencies.

A good overview of the terminologies and technologies
used for model transformations is given in [19]. Our ap-
proach can be classified as bothReverse engineeringand
Migration.

Domain modeling based on legacy systems is a common
approach. Manual modeling using guidelines (e.g. [20]),
or semi-automated knowledge extraction (e.g. [21]) can be
used. Another interesting approach can be found in [22].
Here, an existing software framework serves as a basis for
domain description in the solution space. The metamodel
for a consistent problem-space DSL is extracted from this
description. This in turn guarantees that there is a generator
that can execute all concrete product descriptions using the
original framework.

Haugen et. al. [23] describe a separated language ap-
proach for specifying variability in domain-specific language
models. They propose a Common Variability Language
(CVL) and corresponding variability resolution mechanisms
embedded in the OMG metamodel stack. This allows for
the description of variability in potentially all MOF-based
languages, including UML, as well as MOF- and UML
profile-based domain-specific languages. Although this rep-
resents a general purpose, clean approach for handling
variability and providing a single point of control, it is not
applicable for the representation of variability in Simulink-
based implementations.

3. Design considerations

As mentioned before, our approach consists of two major
parts. The first step is the transformation from the AU-
TOSAR component description to higher level description in
EAST-ADL2. Sec. 3.1 provides a detailed description of this
transformation step. Second, the EAST-ADL2 representation
should be used as a development artifact, which can be
controlled from one single point. Sec. 3.2.1 describes the
extraction of variability information and the connection to
the common domain model.

3.1. AUTOSAR to EAST-ADL2 Mapping

Our mapping strategy defines how elements from AU-
TOSAR are transformed into the EAST-ADL2 Functional
Design Architecture. The FDA does not describe the soft-
ware architecture from an implementation point of view, but
rather from the design perspective. Since the two models
describe software on different levels of abstraction, it is
necessary to analyze different mapping strategies in order
to generate a correct model (documentation) and to reduce
losses in the transformation process.
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project parts: A) Extraction of an initial EAST-ADL2
model from existing software B) Introduction of a single
point of control for variability

The EAST-ADL2 documentation suggests two types of
mappings:

Detailed mapping is used if behavioral information from
the target model is required. In this case, the function
corresponds to AUTOSARrunnable.

Black-box mapping is adequate if only structural informa-
tion is required. In this case, the function is mapped
to an atomic or composite software component in
AUTOSAR.

3.1.1. Mapping strategy definition. A mapping proposal
in [8] defines the FDA as a functionality of the applica-
tion software architecture in AUTOSAR. It also gives very
important and helpful suggestions about how to execute
structure and behavior mapping in detail. However, it is
necessary to first decide which of the two mapping con-
cepts proposed in EAST-ADL2 to use. Since, in this case,
structural information is more important than behavioral,the
black-box solution is chosen. This level of detail excludes
the mapping of runnable entities and reduces the effort
required to implement the transformation. To the best of our
knowledge, no detailed mapping strategy between EAST-
ADL2 and AUTOSAR has been described. Nevertheless,
there is sufficient information about similarities between
models and possible mapping solutions, which can be used
to define a detailed mapping strategy.

Next, we need a detailed specification that describes how
elements and their properties are mapped. Starting with the
description of a complete information flow from a hardware
sensor to its software representation, the most important (or
all) groups of different software components are present and
can be analyzed.

Fig. 5 shows a sample information flow which captures the
vehicle’s velocity. The lower layer shows the software repre-
sentation, and the upper layer represents the corresponding
hardware description.

The physical value of the velocity is captured by the
sensor and converted here tocurrent. Typically, this signal
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Figure 5. Information flow in AUTOSAR, modified [24]

is converted to a microcontroller input type (e.g. voltage)by
the ECU Electronicscomponent. The signal is then handed
over to the standardizedHardware Abstraction Layer Driver
and is thereafter available in the software. The next steps
describe the reverse conversions on the software layer. The
ECU Abstractiontransforms the value received from the
Hardware Abstraction Layer Driverto current and delivers
it to the software representation of the sensor. The sensor
software component then transformscurrent to the software
representation of the physical value of the velocity [24].

We used the documentation of metamodel elements in
combination with use cases, such as the one described
above, to find analogies to EAST-ADL2 model elements.
The detailed mapping specification is also based on material
collected from [8], [24], [12], and [13].

3.2. Single point of variability control

As mentioned before, not all parts of the development
process can be represented in EAST-ADL2. In particular,
the representation of variability in the implementation is
currently not possible in a scenario with EAST-ADL2 as
the software product line core. In our scenario, the EAST-
ADL2 model is used as a development artifact similar to
implementation and test, which are controlled from one
single point, as shown in Fig. 4B. This single point of control
is a feature model represented in pure::variants. To control
variability from this common domain model, a connector
between Papyrus (EAST-ADL2) and pure::variants has to
be implemented. The implementation is described in further
detail in Sec. 4.2.1. EAST-ADL2 variability concepts are
described below.

3.2.1. Extracting variability information. We first assume
that it is not important to document why variability occurs.
Therefore, all variants are handled as internal variants. For
further propagation towards the analysis block, the developer
must decide what will be visible to the customer.

The variability part of the EAST-ADL2 metamodel con-
tains two types of traces. First, domain assets are traced
to variation points on the artifact level, which is known
as artifact-level variability. Different options of thesevari-
ation points are handled by special metamodel elements,
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Figure 6. Single point of variability control concept

called variable elements, which have direct traces to domain
assets. Second, domain assets are traced to features and
feature models. These feature models are orthogonal to the
assets model and only have references to them. In EAST-
ADL2, feature models are composed in a hierarchical order,
whereby the root feature model is called the technical feature
model. It is configured by a single-vehicle-level feature
model. The combination of both levels of variability makes
it possible to define the product line and to configure the
system in EAST-ADL2.

To extract variability information, the variable elements
in the target model must first be identified. There is a
predefined set of prototypes in the FDA which may vary
[25]:

• FunctionPrototype
• FunctionPort
• FunctionConnector
• HardwareComponentPrototype
• HardwarePort
• ClampConnector

Combining these prototypes makes it possible to define vari-
ability at various levels of granularity, such as subsystems,
software components, cross-cutting characteristics, special-
izations and functionality. In an initial proof-of-concept only
the first two options have been implemented.

3.2.2. Connecting variability representations.Fig. 6 il-
lustrates the separation of variability concerns. The figure
is aligned to the concept of pure::variants, which consists
of four major parts. In the problem space, the domain is
abstractly defined in a feature model. There, the commonali-
ties and variabilities of different products are described, and
the domain knowledge is made explicit. Concrete product
descriptions are derived from this feature model. In the
solution space, technical realizations are described in so-

called family models. There is one family model for each
type of artifact or tool under variability control. These
models are consistently controlled from the feature model.
In our scenario, we generate a vehicle-level feature model
in EAST-ADL2, which is used as the family model for
the configuration of the software architecture described in
EAST-ADL2. Since the two representations have a similar
structure, the import functionality is straightforward. The
remaining manual task is the mapping between the problem
and the solution space in pure::variants, which introduces
the links for the configuration.

4. Implementation

4.1. Implementation of the transformation process

Fig. 7 depicts the transformation process.
The implementation consists of three basic components:

a SAX5 Parser, an AUTOSAR Model Builderand aTrans-
formation engine. The following sections describe these
components in greater detail.

4.1.1. Parser. The transformation process starts with the
selection of a parser. For each AUTOSAR schema version
there is a SAX parser, which is internally selected. The
model parsing process results in an element table, which is
used as a temporary storage for the calculated absolute path
for each component and the references of this component.
First, path information is necessary to identify the references
between elements.

Resolving Paths. Component paths are stored as rela-
tive paths in the AUTOSAR model. For further processing,
absolute paths have to be recovered.

The absolute path in AUTOSAR is built by concatenat-
ing all package names from the top to the corresponding
element. This is the first information stored in the element
table.

Resolving References. In the next step, references
for each component have to be resolved. References in
AUTOSAR can be expressed in two ways: (1) with absolute
paths and (2) with relative paths. Absolute paths always start
with a ’/’ followed by the root package. They are used as
a unique identifier for a package. Capturing absolute refer-
ences does not require any post-processing effort. Relative
references in AUTOSAR are the same as those found in
typical file systems. They represent the “outer right excerpt”
of an absolute reference and are related to the containing
package. To identify the target element, this path needs to
be converted into an absolute path. For this calculation,
the schema elementReferenceBaseis used. There are four
possible contents of theReferenceBase. In the best case, it
contains the left part of the absolute path. In the worst case,
it contains a reference to some other reference base.

5. http://sax.sourceforge.net/
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4.1.2. AUTOSAR Model Builder. The AUTOSAR Model
Builder takes the element table as its input and builds a
version-independent intermediate model. In this way, there
is more flexibility in the implementation of the source model,
although it causes minor, insignificant performance losses.

4.1.3. Transformation Engine. In the last step, theTrans-
formation Enginebuilds the EAST-ADL2 model according
to a defined mapping strategy. For this purpose, a Mapping
API has been implemented in Java to represent the mapping
strategy.

The mapping has to follow a specific sequence, since
some mappings depend on previous information. Types are
mapped first. An example of a type is a composite software
component containing prototypes. It is typically referenced
by a prototype which is typed by this composite. Therefore,
types have to be readily available at the time prototypes are
mapped.

In the next step, prototypes are mapped. Since AUTOSAR
provides constructs to express references to the root software
components explicitly, these references are mapped as root
prototypes within the Functional Design Architecture, i.e.
they are first-level functions in the FDA. Ports and port
interfaces are mapped when all software components already
exist in EAST-ADL2. Connectors must also be mapped at
the end of the mapping process, since they refer to ports.

4.2. On single point of control implementation

4.2.1. Variability extraction. The first step towards a single
point of control is the extraction of variability information.
AUTOSAR provides four different mechanisms to describe
variation points [3]: aggregations, associations, attribute val-
ues and property sets.

For our prototype implementation, the aggregation pattern
suffices to enable variability in sub-systems and components.
The main challenge in this sub-process is the generation
of variability logic for the captured common and variable
model assets. Metamodel elements from the EAST-ADL2
variability package are generated and interrelated to each
other. The process generates artifact-level and vehicle-level
elements. The vehicle level provides the interface for the
system configuration. Artifact-level variability, on the other
hand, is used for the internal configuration. EAST-ADL2
uses a so-called Compositional Variability Model [25]. After
completing the model transformation, the root component
is identified, and the variability extension is created by
traversing the component tree in top-down order.

The first activity in the process takes an element and
checks whether it is an elementary or a composite software
component. If it is elementary, it has to be checked to see if
it “varies”. If it does, a constructVariableElementis created
within a variability extension and referenced to this model
asset. Variability is not represented directly in the model,
but rather in an orthogonal way. This makes the model and
the variability representation independent from each other.

As shown in Fig. 8, for each composite, the following
parts are created:

• a public feature model, which contains features that
reference the content of a composite,

• an internal binding , which specifies the rules for how
a variable content element is affected by selecting fea-
tures from the public feature model, i.e. configuration
decisions.

The public feature model is only visible for the composite
container, i.e. for the composite in the next highest level
of the hierarchy. The composite’s internal binding defines
how this public feature model is configured. This is how the
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configuration is propagated over the whole hierarchy. For
each feature of a public feature model, one configuration
decision corresponding to the concept of transfer functions is
created. A collection of these configuration decisions related
to one public feature model is thereby packaged into one
internal binding. The internal binding and public feature
model are the most important constructs, since they contain
the whole logic for the system configuration for a specific
composite software component.

If a composite contains other composite software compo-
nents, they need to be processed recursively. The process-
ing of a composite software component is done after the
generation of the variability extension for all its elementary
and composite parts. Finally, both the internal binding and
public feature model must be packaged into a configurable
container. This construct is created and referenced to the
composite software component.

The last two activities of the process are part of vehicle-
level variability. Here, the vehicle-level feature model and
a bridge connecting the vehicle level and artifact level in
EAST-ADL2 are generated.

In our case, the vehicle-level feature model is generated
by simply cloning the root technical feature model. With this
simplification, the step can be automated. Further conceptual
abstraction would require manual intervention. Still, as a
pragmatic approach, it propagates variability not only to
the technical feature model, but also up to the vehicle-
level feature model. The only difference between the two
abstraction layers in our case is that features inside the
vehicle-level feature model are represented by an element
VehicleFeature, which is a specialization of an element
Feature. It is extended for attributes such ascardinality,

pure::variants
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Figure 9. HybConS variability connector plugin struc-
ture

isOptional, etc. The bridge to the artifact level is created by
mapping these vehicle-level features to the features of the
root feature model. In fact, they are identical, but the feature
model on artifact level is not visible for the configuration.

4.2.2. Variability connector. The single point of control
is achieved with Eclipse plugins. This is easily done, since
both pure::variants and Papyrus are Eclipse-based tools. Fig.
9 shows the structure of the variability connector architec-
ture. TheHybConS Architecture Generatorrepresents the
transformation engine described above. TheArchitecture
plug-in is used to import the EAST-ADL2 vehicle-level
feature model into the pure::variants solution space and to
configure the system from the common domain model in
pure::variants. Reading from and writing to EAST-ADL2
models in Papyrus is performed with a built-in plugin that
provides this functionality.

The EAST-ADL2 vehicle-level feature model is config-
ured from the pure::variants feature model. The detailed
configuration of the composite variability representationin
EAST-ADL2 is performed using the built-in configuration
capabilities of Papyrus.

5. Evaluation

The prototype does not cover the whole set of AUTOSAR
and EAST-ADL2 metamodel elements. Approximately 14%
of the AUTOSAR metamodel and 64% of the EAST-ADL2
metamodel have been implemented for this prototype. The
relatively limited coverage of the AUTOSAR metamodel in
this first version can be explained by the fact that only basic
structural elements are necessary in our project scenario.

First, we wanted to evaluate the accuracy of the transfor-
mation. It is not easy to automate this test, since this would
require a second independent mapping process. Therefore,
the accuracy of the generated EAST-ADL2 representation
was assessed manually. Some UML tools can generate
diagram information for a graphical representation of given
model information. This feature was used to visualize the
generated model. These graphical representations were com-
pared manually.

As a second evaluation criterion, we measured the perfor-
mance of transformations. Tab. 1 gives an overview of the
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Model sizes [# model elements]
Types 9 34 59 109 209 409 310
Prototypes 6 56 106 206 406 806 518
Ports 12 112 212 412 812 1612 5410
Connectors 14 114 214 414 814 1614 4806
File s. [KB] 29 136 242 456 882 1736 12783

Process Run time [s]
SAX Parser 0.14 0.21 0.27 0.40 0.67 1.29 3.95
Model Build 0.03 0.03 0.06 0.06 0.07 0.10 0.87
Transform. 1.11 1.74 2.16 3.50 6.13 10.97 29.34
Total 1.29 2.00 2.50 3.97 6.88 12.37 34.16
Variability 0.26 1.56 2.30 5.43 16.82 76.54 69.53

Table 1. Transformation performance metrics

results for seven different use cases. For runtime estimation
the following configuration was used: CPU Intel RT2400,
1.83GHz, 2.00 GB RAM, Windows 7 32-bit, JDK 1.6.

The use cases differ in size, as shown in the first part of
the table. It shows both the number of model elements and
model sizes. The parts of the transformations are types, pro-
totypes, ports and connectors. The last parameter describes
the file size.

The lower part of Tab. 1 shows the runtimes for the 3 main
processing steps. The total shows that the transformation
process is completed within an acceptable amount of time
for an average sized model. The third part of the table
shows the time required to extract variability information.
This process is the slowest, but it has to be perfomed only
once.

The last part of the evaluation shows the automation
capabilities provided by this approach. Fig. 10 gives an
overview of the automatic and manual tasks. The implemen-
tation of automotive software is still a manual task. Some
tools can generate AUTOSAR description automatically. The
description serves as input for our transformation engine.
The transformation step is performed automatically.

For the implementation of a single point of control, the
user has to add variability information to the AUTOSAR
description. If variability information exists, it can be ex-
tracted automatically to build a compositional variability
model in EAST-ADL2. The import of the generated EAST-
ADL2 vehicle-level feature model as a pure::variants family
model can be automated as well. The last step, the mapping
between the pure::variants feature model and the family
model that represents the EAST-ADL2 configuration, must
be performed manually.

With this approach, the variability of existing products
can be extracted and propagated to a higher level, thereby
serving as a base for the domain modeling process. Of
course, a higher level of abstraction requires manual work.

In the application engineering process, the configuration
for a concrete product is described in pure::variants. The
bridge between pure::variants and EAST-ADL2/Papyrus en-
ables the automatic propagation of the configuration through
all levels.

Implementation

Extract variability

information into EAST-

ADL2 representation

Import feature model as

pure::variants family

model
Manual task

Automated task

Legend:

Figure 10. Evaluation flow

6. Conclusion

This paper focuses strongly on the automotive domain.
For this setting, we suggest adopting a software product
line approach, while bearing in mind that a new standard
for architecture description is evolving in this domain. This
future standard has its own variability modeling capabilities,
which are not used here due to the lack of single point of
control mechanisms.

We suggest an initial transformation from AUTOSAR
to an EAST-ADL2 Functional Design Architecture, which
enables a lightweight introduction of EAST-ADL2 in a
standard automotive software development process. With
this approach, the existing development process does not
change. Software implemented with MATLAB Simulink
can be transformed into an AUTOSAR description. This
information is used by our transformation engine to automat-
ically generate a documentation in EAST-ADL2. We have
defined a mapping strategy and implemented this strategy in
a transformation engine.

The second part of this paper described the use of this
transformation to extract variability information. We used
the gathered variability information to automatically build
a compositional variability model in EAST-ADL2 notation.
The extracted information can be used in the same way as
other development artifacts, thereby enabling a single point
of control.

To date, a prototype showing the basic functionality has
been implemented. In future development, this prototype
should be enhanced to support the full range of elements.
In our opinion, it is not possible to automate the variability
extraction process further because some kind of variability
information has to be provided at some point in time. We
believe that the current implementation is a good starting
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point. A more advanced approach would be to compare
existing implementations and analysis to extract potential
variability. This logic could easily be integrated into our
approach.
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ABSTRACT

Co-simulation is a powerful approach to verify a system
design and to support concept decisions early in the
automotive development process. Due to the heteroge-
neous nature of the co-simulation framework there is a
lot of potential for variability requiring the systematic
handling of it.
We identified two main scenarios for variability man-

agement techniques in a co-simulation environment. Vari-
ability management capabilities can be included in the
co-simulation tool itself or provide variability mecha-
nisms to configure the co-simulation externally from a
software product line. Depending on the context, one
or even both scenarios can be applied.
This work addresses different types of variability in an

independent co-simulation framework (ICOS) and de-
fines requirements for a realization concept.

Categories and Subject Descriptors

D.2.13 [Reusable Software]: Domain engineering

General Terms

DESIGN

Keywords

Software product line engineering, Co-Simulation, Vari-
ability management,

1. MOTIVATION
Software in the automotive domain is highly com-

plex, multi-functional, distributed, real-time and safety-
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critical. Further, the domain profile is traditionally ver-
tically organized, resulting in individually developed parts.
To integrate different parts in an early development
stage, different models should be simulated within a
holistic model of the system. The need for co-simulation
is, for example, stated in [1].

Hardung et al. [2] highlight the importance for reuse
in the automotive development process. Dager [3] shows
a successful experience for the development of a software
product line architecture for real-time embedded diesel
engine controls.

Following this, co-simulation and the support of reusabil-
ity seem to be two integral aspects in the automotive de-
velopment process. Therefore, we try to combine both
strategies.

We motivate the explicit use of variability manage-
ment techniques with different application scenarios iden-
tified in practice.

1.1 Application scenarios
The main goals of introducing variability management

in co-simulation environments is to elevate systematic
reuse of existing models and co-simulations and to make
variability explicit.

We identified two different application scenarios:

1.1.1 Standalone variability management in co-
simulation

Variability management capabilities can be standalone
in the co-simulation environment in order to provide dif-
ferent scenarios.

• Co-Simulation of different vehicle variants
The following examples show different sources of
variability in a co-simulation project. First, vari-
ability can be caused by alternative mechanical
components. If, for instance, a hybrid electric ve-
hicle is sold with two different types of electric
motors, both motors are represented in two dis-
tinct models. This means, that depending on the
vehicle variant the proper choice of electric motor
model has to be used for simulation. Another issue
resulting in the same solution is the provision of
models for the same component but with different
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levels of granularity.

Second, the environment varies due to different
markets. For instance, the simulation of the heat
flow of a car that is sold on the Russian market
might need to be simulated with completely dif-
ferent ambient temperatures than one that is only
sold in Australia. This means that different mod-
els in the co-simulation project have to be initi-
ated with different values. Additionally, a vehicle’s
thermo dynamical energy flow heavily depends on
the engine [4]. Consequences of different engines
(like in the example above) can be evaluated using
co-simulation.

• Optimization of co-simulation settings
Finding a step size that is a good trade-off between
accuracy and simulation time is crucial for the suc-
cess of co-simulation. If no appropriate step size is
known in advance, trial-error or optimization can
be done by varying the step size and evaluating
the results.

1.1.2 Integration in an automotive software prod-
uct line (SPL)

Co-simulation can also be used as part of an auto-
motive software product line. A possible scenario is
shown in [5]. Variability has to be handled in different
development phases and artifacts (requirements, imple-
mentation, tests, etc.), respectively. The co-simulation
project and all corresponding models can be seen as one
such development artifact.

Depending on the context one of the application sce-
narios or maybe both are desirable. This paper mo-
tivates the introduction of variability management ca-
pabilities in a co-simulation environment. The remain-
der of the paper is organized as follows: Section 2 de-
scribes the technical background, especially the concept
of co-simulation. Section 3 describes different types of
variability occurring in such an environment. Section 4
defines the most important requirements for variability
support in co-simulation. Section 5 lists current related
literature and Section 7 finally concludes the paper.

2. TECHNICAL BACKGROUND
Simulation is a well-known approach to support the

development of complex systems. Development time
and costs can be saved if a model of the system is simu-
lated before the real system is actually built. Simulation
“enables the study, analysis and evaluation of situations
that would not be otherwise possible” [6].
The increased interdependence of engineering disci-

plines led to the demand for the integration of several
domain-specific models into a single simulation. This
demand can be satisfied by the application of co-simulation
[1].
The main task of co-simulation is the holistic simula-

tion of an overall system to determine the global char-
acteristics of the system. The overall system consists of
several subsystems which are simulated in their domain-
specific simulation tools. Thus, the co-simulation plat-
form is responsible for assembling the subsystems by

connecting their inputs and output and for ensuring the
interaction of the subsystems [7]. Another application
of co-simulation is the geographically distributed simu-
lation as described in [8].

The different models in the co-simulation project are
treated as black boxes. The only information known
about the models are their interfaces (the names and
data types of the input and output parameters).

2.1 ICOS
ICOS1 is an independent co-simulation environment

developed at the virtual vehicle competence center2. It
enables cross-domain co-simulation for a wide range of
engineering disciplines in the field of automotive engi-
neering.

In the automotive industry many specific simulation
tools have been used in the past. Most of these tools
specialize on a single area or discipline of automotive
engineering. Hence, there is very little support for a
heterogeneous simulation environment which is inherent
to the automotive industry.

Typical co-simulation platforms try to overcome this
limitation by supporting coupling of various simulation
tools.

ICOS supports the coupling of existing domain/area-
specific simulation tools and models that were developed
using these tools [7].

One of ICOS’ main design goals was to create a de-
sign which separates the co-simulation platform and its
coupling algorithms from the simulation tools that are
part of the co-simulation environment. In other words,
the co-simulation platform must be independent from
the simulation tools it uses [4].

2.1.1 Parameter connections

Parameter connection information is required to ex-
change data between models. This information has to
be provided by the user by connecting input and output
parameters. Obviously two connected parameters need
to have the same data type. Further is it possible to
connect one output parameter to more than one input
parameter [9].

2.1.2 The boundary condition server

The boundary condition server (BCS) is a compo-
nent of the ICOS co-simulation platform that provides
boundary conditions and initialization values for other
simulation models [9]. For example a temperature model
in KULI3 might require the ambient temperature as in-
put. The initial temperature as well as the change of the
temperature in time can be provided using the BCS.

The BCS does only have output parameters. Thus,
the values of these output parameters have to be con-
figured before the co-simulation is started and the BCS
cannot react on the output of any other model.

1http://vif.tugraz.at/en/products/icos/
2http://www.v2c2.at
3http://www.kuli.at/
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Per definition every ICOS project contains exactly one
boundary condition server. This does not imply any
constraints as the number of output parameters for this
unique instance is unlimited [9].

3. VARIABILITY IN A CO-SIMULATION

ENVIRONMENT
For a better overview, we classify the types of vari-

ability of a co-simulation environment into:

• Model-Related Variability

• Linking Variability

• Environment Variability

• Coupling Variability

3.1 Model-Related Variability
As already stated in Section 1.1 there are two cases

which require model-related variability. First, we men-
tioned the case of two different electric motors. Both
can be part of some distinct variant of a hybrid elec-
trical vehicle. Variability is introduced in order to be
enable to simulate every variant of the hybrid electrical
vehicle with the appropriate model of the electric mo-
tor. The second motivating example consists of different
levels of modeling granularity. For some co-simulation
scenarios it might be sufficient to have a rather high level
model (faster) of a subsystem, while others need a more
detailed (but slower) model of the same subsystem.
How can this kind of variability be established in a

co-simulation environment:

• Model substitution: If both electric motors are
represented in two distinct models, these models
must be made substitutable. Obviously, in order
for two or more models to be substitutable, their
interfaces need to be compatible, i.e. the num-
ber of input and output parameter and their data
types must match.

• Model and simulation tool substitution: In case
the two electric motors are modeled in different
simulation tools, the simulation tool has to be
substitutable too. Independent co-simulation ab-
stracts the use of different co-simulation tools, en-
abling the substitution of models including its sim-
ulation tool in a similar way as the substitution of
models described before.

• Variable models: Models might exploit some kind
of variability. This variability can be used to change
the behavior of a model in the co-simulation. As
we stated before, the models are black boxes but
may provide some kind of configuration port to
bind internal variability.

3.2 Parameter Connection Variability
Model input and output parameters have to be con-

nected in some way. This connection between input and
output models can be variable as well. This is particu-
larly true if substitutable models do not provide equal

interfaces (same number of parameters and matching
data types). With parameter connection variability, the
changes in the parameters of substitutable models can
be handled.

Even in the absence of model substitution, variable
links can be used to make the co-simulation variable.
Take a single-input single-output (SISO) as an exam-
ple: The SISO performs a calculation based on a single
input value and provides the result of the calculation
as output. There might be configurations of the co-
simulation where the conversion is not desired. In this
case the linking can be changed to skip this conversion/-
calculation.

3.3 Environment Variability
An example for environment variability has also been

provided in Section 1.1. This example requires the use of
different ambient temperatures for different co-simulation
scenarios.

For a realization, initialization values or boundary
conditions can be used as input parameters for mod-
els. This kind of variability does not change the model
itself.

3.4 Coupling Variability
Coupling is the process of simulation tool integration.

It handles the data exchange between simulation tools,
or more precisely between the subsystems that are sim-
ulated in these tools [10]. Apparently this is not a trivial
task, especially if little or no knowledge about the cou-
pled subsystems is available. When introducing vari-
ability to a co-simulation, it might be desirable to make
settings, like the macro time steps or the coupling mode,
variable. We identified two motivations for this case:

1. variability of the coupling settings can be used to
adapt the resulting co-simulation (the product).
For instance, some simulation tools might require
sequential simulation. Therefore, all resulting co-
simulations that include models for these simula-
tion tools, need to run sequentially.

2. variability of coupling settings can be used to opti-
mize these settings or to find an appropriate value.

4. REQUIREMENTS
Although most of the requirements are independent of

any co-simulation platform, we also include ICOS spe-
cific requirements. This is motivated by the fact that
some variability types relate to specifics of this tool. In
the following the main requirements for the introduction
of variability management in the ICOS co-simulation
platform are discussed.

4.1 Independent Co-Simulation
ICOS is an independent co-simulation tool, i.e. the

co-simulation platform is independent from the used
simulation tools. We require variability management
in ICOS to be independent too. The co-simulation and
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its models can exist on its own without the presence of
the variability model. This makes the approach usable
for other co-simulation platforms as well.

Requirement 1. (Independence): The variability model
has to be independent from the simulation tools that are
used within the co-simulation.

4.2 Decoupled Variability Model
The variability model describes the variability of a

co-simulation. Obviously, this description depends on
the co-simulation and its models. Contrarily, the co-
simulation and its subsystem models are required to be
decoupled from the variability model. Therefore, refer-
ences from the co-simulation project to the variability
model must not exist. Furthermore, the co-simulation
and its models may exist on their own without the pres-
ence of the variability model.

Requirement 2. (Decoupled Variability Model): The
co-simulation project and all its affiliated models are in-
dependent from the co-simulation variability model.

4.3 Modifiers
A variant may have several impacts on a co-simulation

project. To describe the different impacts we introduce
the concept of modifiers. A variant consists of one or
more modifiers. Each modifier describes exactly how a
core co-simulation project is modified when a variant is
selected. Thereby a modifier defines a single modifica-
tion of the co-simulation project.
For instance, a variant ”substitute model A”may con-

sist of two modifiers. While the first modifier actually
substitutes a model, as described in Section 4.3.1, the
second modifier adapts a boundary condition value ac-
cording to the specification of the substituted model.
In the following all types of modifiers are described in

detail. Furthermore their relationship to the variability
types of Section 3 (model-related, linking, coupling and
environment variability) will be explored.

4.3.1 Model Substitution Modifier

Models which are part of a variable co-simulation
should be substitutable. Thus, a model can be replaced
by another compatible model (see Model-Related Vari-
ability Sec. 3.1).

Requirement 3. (Model substitution): A model that
is part of the variable co-simulation project can be sub-
stituted with another model that is either simulated in
the same simulation tool or in another simulation tool.

4.3.2 Parameter Connection Modifiers

An ICOS co-simulation project is only valid, if all
input parameters are linked to exactly one output pa-
rameter. However, an output parameter can be linked
to several input parameters. This constraint has to be
fulfilled for each generated product.

Requirement 4. (Variable Linking): Links between
input and output parameters can be variable. Their vari-
ability has to be bound in a way that in every product
each input parameter is linked to exactly one output pa-
rameter.

4.3.3 Parameter Modifiers

Parameter names in the simulation tool and in ICOS
are distinct. Considering the substitution of models, we
need means to map differing model-internal parameter
names to a single parameter name in ICOS.

Requirement 5. (Mapping parameter names): In-
ternal model parameter names need to be variable in
order to be mapped to different names in substitutable
models.

4.3.4 Boundary Condition Modifiers

The BCS offers boundary conditions (e.g. the ambi-
ent temperature) over output parameters. An easy way
to make boundary conditions variable is to offer different
values on different output parameters and change the
linking of those output parameters. However, this does
not comply with Requirement 2, as the co-simulation
project has be adapted to the variability model.

As a solution boundary condition modifiers are intro-
duced. With the help of boundary condition modifiers
the value of a boundary condition can vary in two ways:

• Single value: the boundary condition parameter
takes a single, constant value

• Multiple values: the boundary condition param-
eter takes multiple, variable values

• Range of values: This is a special case of multiple
values, where a start and an end value as well as
a step size is defined. E.g. from 1 to 3 (step 0.5)
results in 1, 1.5, 2, 2.5 and 3.

Requirement 6. (Variable boundary conditions): Bound-
ary conditions can be variable by changing its value to a
single or multiple values without change of the parame-
ter linking.

The boundary condition modifier is connected to the
model-related as well as the environment variation points.

4.4 Extensibility
There is a huge amount of possible parameters, prop-

erties or items that one might want to make variable.
Any group of variation points might include some sce-
narios that are not covered by the requirements stated
so far. Some examples:

• different model initialization files for different vari-
ants (model-related variation point)

• variable step sizes (coupling variation points)

• varying coupling mechanism (coupling variation
points)
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Requirement 7. (Extensibility): The effort to im-
plement new types of modifiers has to be relatively small
and the skills needed should not require extensive train-
ing.

5. RELATED WORK
Thiel et al. [11] list different challenges in automotive

systems engineering and how software product lines can
help to overcome these challenges. Another example of
automotive software product lines is given in [12]. Co-
simulation is another important means to handle a se-
rious of challenges in automotive systems development.
To the best of our knowledge there is no related lit-
erature introducing explicit variability management in
co-simulation environments. Pretschner et al. [13] to
not explicitly highlight the need for an integration of
co-simulation and variability. Nevertheless, they state
that there is a high number of tools involved in an au-
tomotive development process due to the heterogeneity
of the domain, but there is a lack of continuous tool
integration. Co-Simulation can be seen as one possi-
ble solution for this problem. On the other hand the
authors also mention the demand for explicit variabil-
ity management due to the need for mass customization
and the different lifecycles of software, mechanical com-
ponents and ECUs.
Karner et al. [14] describe runtime switching for mod-

els with various levels of detail in a HW/SW co-simulation
environment. Nevertheless, these works only focus on
switching alternative implementations, which is only one
small aspect of our work. Furthermore, this solution
cannot be used independent from the co-simulation en-
vironment. Zeller et al. [15] describe an approach for us-
ing co-simulation to simulate dynamic reconfiguration,
namely reallocation of software functions to ECUs and
activation/deactivation of specific functionalities. This
can be used for example for optimization of allocation.

6. FUTURE WORK
In future work we will provide an implementation for

the variability mechanisms identified in this work. They
should be designed in a way that enables two scenarios.
First, the binding of variability in a standalone version
directly in the co-simulation tool environment and sec-
ond, the connection to a feature model in a software
product line context.
For the standalone implementation the variability of

a co-simulation project can be described by means of a
variability model in domain engineering. The variability
information is used in application engineering to derive
concrete co-simulation projects.
For the integration in a product line context, a con-

nector for pure::variants4 will be provided. In concrete,
it should be possible to import the co-simulation vari-
ability model as a pure::variants Family Model which
can be connected and controlled with a Feature Model.
The variability mechanisms will be validated on the

example of a practical application.

4http://www.pure-systems.com/pure variants.49.0.html

7. CONCLUSION
This work motivates the introduction of variability

management capabilities in a co-simulation environment.
There are two main scenarios justifying this work. First,
variability management techniques can be used stan-
dalone in the co-simulation environment in order to sim-
ulate different scenarios or to optimize various configu-
ration settings. Second, the co-simulation environment
can be integrated in an automotive software product
line. The main contribution of this work are variabil-
ity scenarios and requirements for the implementation of
variability mechanisms in a co-simulation environment.
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[1] M. Geimer, T. Krüger, and P. Linsel,
“Co-Simulation, gekoppelte Simulation oder
Simulatorkopplung? Ein Versuch der
Begriffsvereinheitlichung ,” in O+P Zeitschrift für
Fluidtechnik (50), Wiesbaden, Germany, 2006, pp.
572–576.

[2] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of
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