
M.E. Anilloy Frank

A new Approach to the Identification of

Variability in Model-based Embedded Software

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades

”
Doktor der Technischen Wissenschaften“

(Dr. techn.)

durchgeführt am Institut für Technische Informatik
Vorstand: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Eugen Brenner

November 2012

“It is a thousand times harder to make simple things than complicated ones”

-Mikhail Kalashnikov

Abstract

Modern development of applications and products largely use Model Based Software

Engineering (MBSE) approaches. Large development environments with numerous groups

from several domains tend to repeatability in designing which necessitates a usually large

number of variants of components in different products and versions. Especially the au-

tomotive industry is one that can be characterized by numerous product variants, often

driven by embedded software. With the ever increasing complexity of embedded software,

the electrical/electronic models in automotive applications are getting enormously large

and thus unmanageable.

Software models are hugely hierarchical in nature with numerous composite compo-

nents deeply embedded within projects comprising typically of Simulink models, imple-

mentations in legacy C, and numerous other formats. Hence it is often necessary to define

a mechanism to identify reusable components embedded deep within this hierarchy.

The approach presented in this work is model-based middleware architecture, relying

on a platform independent definition of selectively targeting the component-feature CF

meta-model instead of a global search to improve the identification. We explore the com-

ponents and their features artifact in a model from an explicit definition of the component

node list and the feature node vector respectively.

The proposed approach has been evaluated on an industry use case – a project model

developed using the design tool ESCAPE built by the company Gigatronics. ESCAPE

is an authoring tool for graphical definition, manipulation, and analysis of functional

networks with the ability to manage a wide range of configurations.

Since the approach does not depend on the depth of the hierarchy of the components

or on its order, it serves well with all the scenarios, thereby exhibiting a generic nature.

Kurzfassung

Die Entwicklung der Anwendungen und Produkte folgt heute weitgehend den Mo-

del Based Software Engineering (MBSE) Ansätzen. Erforderliche Varianten von Kompo-

nenten in Produkten, deren Entwicklungsumgebungen aus zahlreichen Gruppen mehre-

rer Domänen bestehen neigen dazu, sich bei der Gestaltung häufig zu wiederholen. Die

Automobilindustrie ist eine solche, die durch zahlreiche Produktvarianten, die oft durch

Embedded-Software angetrieben werden, charakterisiert werden kann. Mit zunehmender

Komplexität von Embedded Software werden die elektrischen / elektronischen Modelle in

Automotive-Anwendungen enorm groß und dadurch praktisch unübersichtlich.

Moderne Modelle sind immer ihrer Natur nach hierarchisch mit zahlreichen Composite-

Bauteilen, tief in die Projekte eingebetteten Simulink-Modellen, häufig gemischten Imple-

mentierungen in Legacy-C und Matlab, sowie zahlreichen anderen Formaten. Daher ist es

oft notwendig, einen Mechanismus zu definieren, um wiederverwendbare Komponenten in

dieser tief eingebetteten Struktur zu identifizieren.

Der Ansatz, der in dieser Arbeit vorgestellt wird, ist eine Modell-basierte Middleware-

Architektur, die sich auf eine plattformunabhängige Definition des Component-Feature

Meta-Modells abstützt, statt auf eine globale Suche, was die Identifizierung deutlich ver-

beßert. Wir untersuchen die Komponenten und deren Eigenschaften in einem Modell, das

aus einer expliziten Definition der Komponenten-Knoten-Liste und des Merkmal-Knoten-

Vektors erstellt wird.

Der vorgeschlagene Ansatz wurde auf einem Industrie-Use-Case-Projekts evaluiert,

deßen Modell mit dem Design-Tool ESCAPE von der Firma Gigatronics erstellt wurde.

ESCAPE ein Authoring-Tool für grafische Definition, Manipulation und Analyse funktio-

neller Netzwerke mit der Fähigkeit, eine breite Palette von Konfigurationen zu verwalten.

Da der Ansatz weder auf die Tiefe der Hierarchie noch auf der Anordnung der Kompo-

nenten beruht, hängt die Anwendungsmöglichkeit nicht vom Szenario ab und zeigt damit

einen generischen Charakter.

i

Extended Abstract

Motivation

More and more platform specific embedded systems use Component Based Software
Engineering (CBSE) approaches for the development and deployment of applications on
specified target platforms. Increasing numbers of target platforms and new distributed
business processes require engineering approaches to specify an application in a platform
independent way, while supporting the deployment and dynamic configuration of these
application artifacts.

The automotive industry is one that can be characterized by numerous product vari-
ants, often driven by embedded software. With the ever increasing complexity of em-
bedded software, the electrical/electronic models in automotive applications are getting
enormously unmanageable.

Considering constantly changing requirements within the set of products, the variabil-
ity needs to evolve. Many embedded systems are implemented including a set of alternative
function variants to adapt to the changing requirements. Major challenges are in iden-
tifying the commonality of functionality, where the designs involve variability (ability to
customize). In addition to variants, versions/releases of functional blocks also play an
important role for the effective management over the entire product cycle.

The proposed architecture in this work can be applied to applications built of com-
ponents, which contain a formal specification of their spatial description (user interface),
function (behavior), and naming (user data). Because this configuration is based on the
meta-data model used by these software components, this approach exhibits feasibility in
migration between different platforms.

Related Work

Recent trends in development of automotive applications and products largely use
Model Based Software Engineering (MBSE), an industrially accepted approach. Model
Driven Software Development (MDSD) is typically realized in distributed environments.
While MDSD facilitates models for the abstract specification of system architectures,
their platform specific artifacts are often realized by applying Component Based Software
Engineering (CBSE) techniques.

The basic element in these approaches is a software component, which is an execu-
tion unit with well defined interfaces. Usage of software components is driven by the
requirements of improving reusability of developed software artifacts. The mapping of
software components on networked Electronic Control Unit (ECU) is a distinct shift from
CBSE. Software components are combined with the help of assembly descriptions. They
are specified in the development phase, and are resolved in the deployment phase of a
CBSE process.

ii

Most MDSD approaches follow the Model Driven Architecture (MDA) concept. In
this concept, beginning with the specification of a platform independent model, this is
then transformed to a platform specific model by applying several generators. The layered
Meta Object Facility (MOF) approach is used for creating these models. This approach
is also used as basis for the Unified Modeling Language.

Distributed systems are based on Service Oriented Architectures (SOA) and Grid Com-
puting. SOAs built on well defined interfaces deal with business processes, distributed over
existing and new heterogeneous systems, often from different vendors. While this aspect is
also targeted in CBSE, the loosely coupled SOA services are contradictory to the assemblies
used in CBSE. Grid Computing has evolved for the distribution of scientific computational
tasks, but is also used for distributed data access in heterogeneous networks.

Model-based software components in automotive domain

Here a model-based approach for the distributed business process, with several par-
ticipants realizing different functionalities in a multi-layered (or multi-tiered) architecture
is introduced. The approach addresses the identification process in the development and
deployment of components used in the realization of such distributed processes.

Model-based techniques are used to support the usage of platform independent code.
The abstract specification of the components is done by domain experts, and the task
for deploying these components on different platforms is handled separately by specific
platform developers. As a consequence the effort required for porting elements is reduced.

To enable the identification of variability for software components in a distributed
system within the automotive domain, we enlist the specifications below:

• Specification of components by compatibility

The product is tested using software functions of a certain variant and version.
These products may exhibit compatibility issues between functional blocks, whilst
using later version of the function may fail to perform as expected.

• Extract features, identify and specify

To enable parallel development, it is necessary to be able to extract features, and
to identify and specify the functional blocks in the repository based on architecture
and functionality.

• Usability and prevents inconsistencies

A process that tracks usability and prevents inconsistencies due to deprecate variants
and version from repository is required.

• Testing mechanism for validations

A testing mechanism for validations in order to maintain high quality for components
and its variants has to be established.

• Mechanism for simplified assistance

The developer has to be assisted by a process to intelligently determine whether a
functional block or its variant should exist in the data backbone, to avoid redesigning
of existing functions, thereby improving productivity.

iii

Implementation
A system to achieve the specification for model-based software components as described
in the previous section has been implemented, targeted for modeling automotive E/E
systems and networked embedded devices. Sharing of software resources across networked
ECU’s and the execution of third party components is eased by this approach. Tools for
deploying the runtime and for development of the components are described, and examples
of their usage are discussed.

Case study
The proposed approach has been evaluated on an industry use case, a project model
developed using the design tool ESCAPE built by the company Gigatronics; ESCAPE is an
authoring tool for graphical definition, manipulation, and analysis of functional networks
with the ability to manage a wide range of configurations. It provides diagnostic tools like
dependency analysis, fault back tracking, and support for mathlab/simulink simulation
models and various programming language implementations. Another application was to
apply our proposed solution to scattered projects that conform to AUTOSAR naming
conventions.

Both case studies outline the benefit of using multiple models for the functional spec-
ification resulting in a reduction of platform specific code. The results also demonstrate
the importance of good tooling support for creating the functional models and identify
the performance of the model interpreters as a key aspect required for the application of
this approach in industrial projects.

iv

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

v

Acknowledgments

This thesis was written at the Institute for Technical Informatics, Graz University of

Technology.

For his encouragement and scientific support I would like to thank my supervisor Eugen

Brenner, Ao. Univ.-Prof. Dipl.-Ing. Dr.techn. for his continuous support in my research

and valuable discussions on our research project

I also express special thanks to Christian Kreiner, Dipl.-Ing. Dr.techn, who has pro-

vided valuable insight and worth-while experiences.

I extend thanks to Christian Steger, Ass.Prof. Dipl.-Ing. Dr.techn. for his support.

I also thank Dr. Ramananda H.S, Asst. Prof. and HOD, SJEC, Mangalore, for his

expertise in helping me develop the mathematical model.

Additionally I would like to thank my colleagues at the Institute of Technical Infor-

matics.

Special thanks are due for Mr Pramod and Priyanka who has been a constant moral

support.

Finally I am extraordinarily thankful to my wife Vianny and children for their patience

and continuous support throughout the years of my studies.

Graz, 2012 Anilloy Frank

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation . 5

1.1.1 Software architecture . 6

1.1.2 Reusability through components . 7

1.1.3 Domain specific development with models 8

1.1.4 Evolution in Virtual Organizations 8

1.2 Summary . 9

1.2.1 Outline of thesis . 9

2 Related Work 11

2.1 Adding structure to unstructured text . 11

2.2 Semi-Formal approach to assist software design with reuse 12

2.3 Component mining and software product line techniques 14

2.3.1 Activities to mine reusable assets from legacy systems 15

2.3.2 Legacy code revitalization through the mining of assets 18

2.4 Software Product Lines Engineering . 19

2.4.1 Approaches for Software Product Line 21

2.4.2 SPL Framework . 21

2.4.2.1 Management . 23

2.4.2.2 Domain engineering . 24

2.4.2.3 Application engineering . 25

2.5 Variability . 26

2.5.1 Variability management process interaction with the Product Lines
(PL) development process . 27

2.6 ESCAPE R© architecture . 29

2.7 Summary . 33

3 Concept 34

3.1 Definition of the problem . 34

3.1.1 SPLE approach . 35

3.1.2 Analysis of project structure . 35

3.1.3 Extending variability management layer 37

vi

CONTENTS vii

3.1.4 Textual and graphical representation 39
3.1.5 Identifying commonalities in textual representations 40

3.2 Objectives of this thesis . 40
3.3 Contributions of this thesis . 42
3.4 Overview of the process . 42

3.4.1 Implementation for homogeneous systems 43
3.4.2 Concept extended to heterogeneous systems 44

3.5 Mathematical model . 45
3.6 Summary . 48

4 Implementation 49
4.1 Component list and feature vectors . 49

4.1.1 Component list . 49
4.1.2 Feature vector . 50
4.1.3 Naming convention . 50
4.1.4 Algorithm to identify components within projects 52

4.2 Lexicon . 53
4.3 Rules . 54
4.4 Transforming naming convention . 55

5 Evaluation and case study 56
5.1 Variability identification by selective targeting 56

5.1.1 Evaluation using a single element specification set 59
5.1.2 Evaluation using a multiple element specification set 61
5.1.3 Evaluation using different starting points for elements in specifica-

tion sets . 65
5.2 Identification through organized structuring 65
5.3 Summary . 65

6 Conclusion 67
6.1 Overview of the proposed framework . 67
6.2 Future work . 68

7 Publications 69
7.1 Model-based Variability Management for Complex Embedded Networks . . 70
7.2 Strategy for Modeling Variability in Configurable Software 75
7.3 A Generic Approach for the Identification of Variability 80
7.4 Variability Identification by Selective Targeting of Significant Nodes 86

A Glossary 92

Bibliography 94

List of Figures

1.1 Distributed system in automotive domain 2
1.2 Evolution of complexities [Ericsson and Erixon, 1999, p.2] 3
1.3 External components are a hindrance to variability management 4
1.4 Software reuse history [Northrop, 2007] . 5
1.5 Distributed system [Tanenbaum and van Steen, 2006], Typical Plat-

form [Atkinson and Kühne, 2005] . 6

2.1 Software design process reuse model . 13
2.2 Process model to mine reusable assets from legacy codes

[Ramos and Penteado, 2008] . 16
2.3 Connection Map (CMap) and its elements 16
2.4 Legacy code revitalization through the mining of assets

[Ramos and Penteado, 2008] . 18
2.5 Time to market single system Vs. SPLE [Clements and Northrop, 2007] . . 19
2.6 Development cost single products Vs. SPLE [Clements and Northrop, 2007] 20
2.7 Generic SPL engineering process [Ziadi, 2003] 22
2.8 SPLE framework SEI [Northrop, 2002] . 23
2.9 Core asset development [Northrop, 2002] . 24
2.10 Domain engineering [Frank van der Linden Klaus Pohl, 2005] 24
2.11 Product development [Northrop, 2002] . 25
2.12 Application engineering [Frank van der Linden Klaus Pohl, 2005] 26
2.13 Graphical notation for variability[Frank van der Linden Klaus Pohl, 2005] . 27
2.14 Example of graphical notation . 28
2.15 The variability management process and its interaction with the PL devel-

opment process[E. Oliveira and Maldonado, 2005] 29
2.16 Functional structure builder view . 30
2.17 Functional type builder view . 31
2.18 Hardware structure builder view . 32
2.19 Failure analysis . 32
2.20 Fault back tracking . 33

3.1 Variability managment layer in product lines 35
3.2 Example describing Variants, Versions and Products 36
3.3 Variability management layer . 37
3.4 Mapping textual and graphical representation 39
3.5 Textual representation of projects in XML 40

viii

LIST OF FIGURES ix

3.6 XML nodes which do not signify variability 41
3.7 Basic concept . 43
3.8 Concept extended to homogeneous systems 44
3.9 Concept extended to heterogeneous systems 45

5.1 Occurrence graph for a single element specification set (Sample set 1) . . . 59
5.2 Time graph for a single element specification set (Sample set 1) 59
5.3 Occurrence graph for a single element specification set (Sample set 2) . . . 60
5.4 Time graph for a single element specification set (Sample set 2) 60
5.5 Occurrence graph for multiple element specification set (Sample set 1) . . . 62
5.6 Time graph for a multiple element element specification set (Sample set 1) . 62
5.7 Occurrence graph for a multiple element specification set (Sample set 2) . . 63
5.8 Time graph for a multiple element specification set (Sample set 2) 63
5.9 Occurrence graph for different starting point of elements within specification

set . 64
5.10 Software components with nomenclature based on the naming conventions . 66

List of Tables

5.1 Summary of schema for the data set . 57
5.2 Summary of project data set of case studies 57
5.3 Component List and Feature Vector derived from Schema 58

x

Chapter 1

Introduction

Embedded systems are microcontroller-based systems built into technical equipment
mainly designed for a dedicated purpose. Communication with the outside world oc-
curs via sensors and actuators1. Although this definition implies that embedded systems
are used as isolated units, there is also a trend to construct distributed pervasive systems
by connecting several embedded devices as noted by Tanenbaum and van Steen2.

The current development trend in automotive software is to map software components on
networked Electronic control units (ECU), which includes the shift from an ECU based
approach to a function based approach. Also according to data presented by Ebert and
Jones3 up to 70 electronic units are used in a car containing embedded software, which is
responsible for the value creation of the car and consists of more than 100 million lines of
object code.

Reuse of automotive embedded software is difficult, as it is developed for a small ECU
that lacks both processing speed and memory of a general purpose machine. Moreover,
the complexity of the algorithms is dramatically increasing. In view of this complexity,
achieving the required reliability and performance is one of the most challenging problems4.

Ebert and Jones presents recent data about embedded software, stating that the volume
of embedded software is increasing between 10 and 20 percent per year as a consequence
of the increasing automation of devices and their application in real world scenarios.

Complexity management has become a vital factor in an organization. To save costs a
company needs to minimize internal complexities, where as it is necessary to satisfy the
range of customer requirements which determines external complexity. The dynamics
involved is due to three major factors

• Globalization: For companies to be present in all major markets and to be compet-
itive the requirements of customers with different cultural, technological, economic,
and legal backgrounds needs to be incorporated in products.

1 [Ebert and Salecker, 2009, p.14] ,
2 [Tanenbaum and van Steen, 2006] ,
3 [Ebert and Jones, 2009] ,
4 [Kum et al., 2008] ,

1

INTRODUCTION 2

Figure 1.1: Distributed system in automotive domain

• Evolving Technology: With a need to reduce the time-to-market, technology is evolv-
ing at an extremely fast pace. The trend to launch new products quickly in the mar-
ket is increasing, which necessitate for enhanced technology as well as convergence
of technologies5.

• Increasing market influence: The customers influence to determine a products fea-
tures and price is inducing the manufacturers to provide more and more product
variants.

Figure 1.1 depicts the automotive domain where the design and development of the ap-
plication is situated at different locations across the globe. Numerous groups working on
projects in various domains (e.g. body and comfort, chassis, powertrains, safety, etc.)
are distributed at these locations. Many of these groups work on closely related projects
where a tendency of repeatability of functional blocks is apparent.

5 [Bayus, 1994, p.306] , [Poole and Simon, 1997, p.240]

INTRODUCTION 3

Figure 1.2: Evolution of complexities [Ericsson and Erixon, 1999, p.2]

Figure 1.2 depicts numerous methods and tools introduced in the past to limit the im-
pact of rising external complexity onto internal complexity in manufacturing, information
management, and processes.

Usually the product governs processes, manufacturing and information. The product is an
interface between external and internal complexity. Dasegning modular products and ap-
plying module variants results in product families6. The interfaces between these modules
need to be clearly specified. To address modular product families from a holistic perspec-
tive it needs to be managed in development and realization across the entire lifecycle.

With so many modular product families now being in place, the following observations
however, indicate

• Unsuitable Methodologies: Modular products families are treated with the same
mechanisms as single products, which is unsuitable. Modular product families re-
quire a different approach to variant management than single products as interfaces
and interactions among modules is crucial.

• Increasing number of variants: The number of variants continues to rise and is
unmanagable in most companies. Due to cannibalization effects, new variants often
do not substantially increase sales but only lead to redistribution from standard to
special products. As a result, increased costs are not passed on to the selling price
and the profit margin decreases7.

• Insufficient decision basis: Many of the complexity effects cannot be captured us-
ing traditional accounting techniques, e.g. overhead calculation. The widely-used
method and lack of technical knowledge on the consequences can be misleading when
it comes to decisions in variant management.

Planning a standardized architecture within an organization may address a part of these
problems and facilitate reuse. With constantly changing requirements within the set of

6 [Simpson, 2004, p.5]
7 [P. Child and Wisniowski, 1991, p.5]

INTRODUCTION 4

products, the variability needs to evolve. Many embedded systems are implemented with
a set of alternative function variants to adapt to the changing requirements. Major chal-
lenges are in identifying the commonality of functionality, where the designs involve vari-
ability (ability to customize). In addition to variants, versions/releases of functional blocks
also play an important role for the effective management over the entire product cycle.

Figure 1.3: External components are a hindrance to variability management

Figure 1.3 depicts a scenario where well established software components tested for per-
formance, safety, and reliability procured from external sources and Original Equipment
Manufacturer’s (OEM) are causes for a hindrance in managing variability.

For achieving large-scale software reuse, reliability, performance, and rapid development
of new products, a software product-line (SPL) is an effective strategy. A SPL is a family
of products sharing the same assets allowing the derivation of distinct products within the
same application domain.

Enabling variability in software consists in delaying decisions at different software ab-
straction levels, ranging from requirements to runtime. The object-oriented approach to
implement variability is based on the development of a frameworks of reusable software
components described by a set of classes and by way instances of those classes collaborate.

MOTIVATION 5

Model Based Software Engineering (MBSE) is an industrially accepted approach in the au-
tomotive applications. Model-Driven Engineering (MDE) is the use of models as the main
artifacts during the software development and the maintenance process. Model Driven
Software Development (MDSD) is typically realized in a distributed system environment.

While MDSD facilitates models for the abstract specification of system architectures,
their platform specific artifacts are often realized by applying Component Based Software
Engineering (CBSE) techniques. Models become artifacts to be maintained along with
the code, by using model transformations and code generation.

MDE is related with the Object Management Group (OMG) initiatives, Model-Driven
Architecture (MDA) and Model-Driven Development (MDD), which argue that the use of
models as the main artifact on software development will bring benefits on software reuse,
documentation, maintenance, and development time.

Most MDSD approaches follow the Model Driven Architecture (MDA) concept. In this
concept beginning with the specification of a platform independent model, it is then trans-
formed to a platform specific model by applying several generators. The layered Meta
Object Facility (MOF) approach is used for creating the models. This approach is also
used as the basis for the Unified Modeling Language UML.

1.1 Motivation

In the 1960s reuse started with subroutines, followed by modules in 1970s, and objects
in 1980s. In 1990 components appeared followed by services in 2000. Software Product
lines are currently the state of the art in the reuse of software. Figure 1.4 shows a short
history of reuse in software development. The key idea of product lines is old and based
on Henry Fords mass customization to provide a effective way for cheap individual cars.
Today many different approaches exist to implement a Software Product line.

Figure 1.4: Software reuse history [Northrop, 2007]

MOTIVATION 6

1.1.1 Software architecture

A layered software architecture is considered8 for the proposed architecture as depicted
on the left side of Figure 1.5.

The definition of software architecture given in the ISO/IEC 42010 IEEE Std 1471-2000:
“The fundamental organization of a system embodied in its components, their relation-
ships to each other, and to the environment, and the principles guiding its design and
evolution.”9

Figure 1.5: Distributed system [Tanenbaum and van Steen, 2006], Typical Plat-
form [Atkinson and Kühne, 2005]

Figure 1.5 also depicts a comparison between proposed layered architecture, distributed
systems as proposed by Tanenbaum and van Steen, and the definition of the platform in
Model Driven Architectures (MDA) as specified by Atkinson and Kühner. It displays the
feasibility of mapping the corresponding artifacts and responsibilities for each layer.

Tanenbaum and van Steen define distributed systems as “A distributed system is a col-
lection of independent computers that appears to its users as a single coherent system.”10

The Kleppe summaries the definition of a platform as “A platform is the combination
of a language specification, predefined types, predefined instances, and patterns, which
are the additional concepts and rules needed to use the capabilities of the other three
elements.”11

8 [Buschmann et al., 1996]
9 [IEEE, 2007, p.3]

10 [Tanenbaum and van Steen, 2006, p.2]
11 [Kleppe, 2008, p.69]

MOTIVATION 7

Atkinson and Kühne specify the architecture of a generic platform in MDA12 as hardware
layer consists of hardware components (e.g. processor, memory, I/O devices), the oper-
ating system layer which are augmented services (like file systems, processes, threads),
a virtual machine layer for the isolation of operating system and hardware components,
a language runtime layer which contains language constructs expressed as templates
of low-level code, a library layer of these constructs, frameworks and applications in
the upper layers.

The optional additional predefined functions in the used programming language are con-
tained in the library layer, but also middleware solutions are typically delivered as
libraries providing several language constructs in the form of an application programming
interface (API). In contrast the libraries elements in the framework layer contains active
control code in a generic way to be used by a family of applications.

Using this layered structure Atkinson and Kühne demonstrate that each layer defines a
platform on its own. As a consequence, a generic platform model is applied on every
organizational layer leading to a full platform definition with the combination of these
platform models.

1.1.2 Reusability through components

Platform evolution is characterized by changes on one or several platform layers of a device,
requiring that these changes should not affect the role of this device in the distributed
system. Several techniques have been proposed for supporting this evolution.

As the number of elements contained in the platform model of each platform layer needs
to be optimized as a consequence of the resource constraints, usage of component based
technologies targeting reuse and composition is an essential part of the platform and
application development for such devices. Additionally Liggesmeyer and Trapp have noted,
that domain specific development of embedded software requires efforts, which should be
paid off by the application of the developed framework or platform to related problem
domains13. This requirement for reuse is solved by component based software development,
allowing the composition of individual artifacts relying on well defined interfaces.

The following definition given by Szyperski is often used as the basis for a discussion of
CBSE aspects.

Software Component: “A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by third party”14.

Depending on the implementation for the execution environment of a chosen component
approach, the notion of a component framework is distinguished from a component plat-
form by Szyperski, with the former defined as a collection of rules and interfaces (contracts)
governing the interaction of components. In contrast to component platforms, which are

12 [Atkinson and Kühne, 2005, p.3]
13 [Liggesmeyer and Trapp, 2009]
14 [Szyperski, 2002, p.41]

MOTIVATION 8

the foundations for components to be installed and executed on, component frameworks
can also be organized hierarchically being components themselves. During platform evo-
lution this fact gets also very important for enabling the adaptation of the component
execution environment to changes in the lower platform layers (e.g. changed hardware or
operating systems or additionally available programming language constructs).

1.1.3 Domain specific development with models

As noted by Ebert and Salecker 15 embedded software is used for objectives requiring a long
lifetime of the system, thus heterogeneity of the underlying platform has to be considered
by the embedded software engineer. Also an ever-growing demand for new functionalities
and technologies is noted by Liggesmeyer and Trapp16, requiring efforts of raising the
level of abstraction for the development of mobile and embedded software. For embedded
systems this is accomplished by the usage of higher level programming languages like C
or C++ instead of assembler, and also by the help of Model Driven Development (MDD)
techniques.

In Model Driven Software Development (MDSD) models of the software are used as pri-
mary artifacts. There is no unique definition of a model, as reported by Muller et al.17,
while comparing several definitions of a model in the literature. But most definitions de-
scribe the use case of a model, which is applied to abstractly specify a distinct system.
According to Muller et al. the process of modeling also aims to establish representing
something by something else. Dealing with the abstraction introduced by such models is
provided by model transformators, which are applied at development time in the form of
code generators or at runtime in the form of model interpreters as reported by Stahl and
Völter in 18.

1.1.4 Evolution in Virtual Organizations

Virtual organizations as defined by Foster and Kesselman.

Virtual Organization: “A collaboration whose participants are both geographically and
organizationally distributed.”19

Each layer contains a number of artifacts, and the artifacts at the same layer are managed
by people. Multiple people are involved in the management operation of each layer,
as well as multiple artifacts. The state of the system defines the kind of management.
Management at development time is performed by designing and implementing the given
artifact of a layer in software or hardware. At runtime the administration and usage
of available instances of the defined artifacts by a (typically other) person has to be
considered.

15 [Ebert and Salecker, 2009, p.41]
16 [Liggesmeyer and Trapp, 2009]
17 [Muller et al., 2009],
18 [Stahl and Völter, 2006]
19 [Foster and Kesselman, 2004, p.672]

SUMMARY 9

Bird e .al. notes that “the original idea of a VO as a dynamic group of users with a
common goal coming together for a specific, short-lived collaborative venture and then
dissolving has never been realized owing to the complexity of deploying and authorizing
such a dynamic structure.”20. Each person and each artifact can be added, replaced
or removed at system runtime, constituting a multidimensional evolution leading to the
dynamic structure.

This fact is also important in the business domain of automotives. In a distributed system
of automotive application the involved people as well as the used artifacts are expected
to be organizationally and geographically distributed, which are key features of virtual
organizations as defined by Foster and Kesselman.

1.2 Summary

Inspite of all the hype there is a lack of an overall reasoning about variability management.

• SPL approach promotes the generation of specific products from a set of core assets,
in which products have well defined commonalities and variation points21.

• Although variability management is recognised as an important issue for the success
of SPLs, there are not many solutions available22 .

• However there are currently no commonly accepted approaches that deal with vari-
ability holistically at the architecture level23.

Previous sections focus on managing heterogeneity by the layered architecture. This pro-
posed work is used for the identification of their products and for the exchange of data,
which has been captured during the lifetime of these products.

1.2.1 Outline of thesis

This chapter introduces a layered architecture for discussing current trends in application
and middleware development in the form of Model-Based Development and Component
Based Engineering. Considering the fact, that automotive applications are designed in-
creasingly upon distributed systems, support for managing these systems is required. Such
support is provided by the concept of Virtual Organizations. Furthermore, the layered
architecture has been utilized for demonstrating the heterogeneous aspects in the software
development by outlining the various organizational roles and different artifacts.

Chapter 2 focuses on related work in respect of application development with model based
techniques, also the latest trends in component based software engineering that have a
deterministic role in the classification of commonality for variability identification like

20 [I. Bird and Kee., 2009, p.41]
21 [E. Oliveira and Maldonado, 2005, p.5]
22 [Heymans and Trigaux, 2003, p.5]
23 [Galster and Avgeriou, 2011, p.5]

SUMMARY 10

structured and unstructured text, semi formal approach for software reuse, component
mining, software product line engineering and variability are discussed. Further it also
cast an insight of a modeling platform that is used in the case study.

Chapter 3 begins by defining the problem and stating the specification of cases. Based on
the challenges discussed the objectives for this thesis are identified and the contributions
of the research are enumerated. It further presents an overview of the process and a formal
approach (mathematical model) for the process described.

Chapter 4 envisages several key aspects for the implementation of a generic methodology
targeting the objectives discussed in Chapter 3 to domain specific models. The proposed
work are discussed and associated with the publications presented in Chapter 7.

Chapter 5 summarize the evaluation carried out on the case studies and the results demon-
strates the support of the proposed approach for variability identification in the business
domain of automotive.

Chapter 6 provides a conclusion and gives an outlook on future work resulting from the
insights obtained in this thesis.

Chapter 7 enlists the publications presented at several international conferences during
different stage of the work that bears significance to the contribution of this thesis.

Chapter 2

Related Work

The discussion in this chapter envisages the various aspects for variability identification
relevant to software modeling tools in the automotive domain. The heterogeneous nature
of co-simulation supports cross-domain simulation of models. Each subsystem is modeled
and simulated using a domain-specific simulation tool, while the co-simulation platform
handles the coupling between these subsystems that enables the holistic simulation of a
system. The concept of variability management support suggests itself to be used for
different application scenarios. The aspects like structured and unstructured text, semi
formal approach for software reuse, component mining, software product line engineering
and variability are reviewed. In addition the authoring tool ESCAPE is discussed, which
covers one of the use cases.

Because software models are a central aspect in the proposed approach, their usage with
respect to the different phases in the lifecycle of a software project is shown. Also existing
component models and programming paradigms for embedded software are presented.

2.1 Adding structure to unstructured text

Jonathan I. Maletic and Michael L. Collard1 proposes that the maintenance and reverse
engineering of large legacy software systems is difficult as one has to deal with large num-
bers of text documents. These documents include source code files in various programming
languages, internal documentation, external system documentation (e.g., text, diagrams,
tables), and possibility user manuals, bug reports, and version histories.

These documents are all unstructured or semi-structured in nature and techniques for
querying, analyzing, and transforming documents with the explicit goal of recovering and
identifying metadata from unstructured and semi-structured text. The representation of
unstructured and semi-structured text, methods for parsing and translation from raw text
and tools for analysis and transformation is needed.

A general approach is to use XML technologies to support storage and extraction of
metadata. However, translating unstructured text into XML requires custom parsers

1 [Jonathan and Collard, 2005]

11

SEMI-FORMAL APPROACH TO ASSIST SOFTWARE DESIGN WITH REUSE 12

based on flexible grammar specifications that allows us to skip over uninteresting or ill
formed text, are very robust and extremely efficient applied to very large text bases.

For automated feature detection or concept location in raw text, information retrieval
methods, namely latent semantic indexing is used to cluster document parts and auto-
matically identify high-level concepts in large document bases.

Analysis begins with the extraction of lexical, structural, syntactical, and documentary
information from documents. A lexical approach such as regular expressions can be used.
However, robust and efficient regular expressions can be difficult to write especially when
determining the matching context. Current compiler technology can address this; however
existing compiler-centric parsers take a high level AST (Abstract Syntax Tree) view of a
program but ignore the preservation of the original (source-code) text especially with
regard to white space, comments, and preprocessor directives. In addition they are not
robust and cannot handle code that is either incomplete or has compilation problems.

2.2 Semi-Formal approach to assist software design with
reuse

Design with reuse has been accepted as a cost-effective way to software development.
Software reuse covers the process of identification, representation, retrieval, adaptation,
and integration of reusable software components2.

Software reuse includes reusing both the artifacts and process of previous software projects,
which can be classified as a building blocks approach and as a generative approach. Many
technologies are involved in software reuse, for example software libraries, application
generators, source code compilers, and generic software templates.

Software reuse deals with two major problems: the retrieval (component representation
and library construction) problem and the composition (adaptation and integration) prob-
lem.

Most existing approaches have focused on solving only parts of reuse problems. Some
works focus on the software components retrieval problem3 and many of them provide ef-
fective automated retrieval systems with reuse libraries. However, few have considered the
consistency checking of the retrieved and new components. Some works only deal with
software integration and adaptation problem. Some use special specification languages
for software component integration and are thus difficult to integrate with existing soft-
ware component retrieval techniques. Without an approach to assist the entire process of
software reuse, the effectiveness of software reuse is limited.

These technologies all involve abstracting, selecting, specializing, and integrating/adapting
software artifacts. Abstraction is concerned about what type of software artifacts are
reused and what abstractions are used to describe the artifacts. Selection deals with how
users can efficiently locate, understand, compare, and select the appropriate artifacts from

2 [H. Mili and Mili, 1995]
3 [E. Ostertag and Braun, 1992]

SEMI-FORMAL APPROACH TO ASSIST SOFTWARE DESIGN WITH REUSE 13

a collection. Specialization helps to tailor generic artifacts for reuse. Integration addresses
the problem of how reusable artifacts are integrated to create a complete software system.

Many programmers adopt an ad hoc approach to reuse software system designs and source
code through scavenging fragments from the existing software systems and use them as
parts of new software system. This approach is often called the design and code scavenging
approach. In practice, the overall effectiveness of design and code scavenging is severely
restricted by its informality.

Chu et al.4 proposes a semi-formal approach to software reuse, in which software com-
ponents are annotated with formal information. The formal information includes the
structural, behavioral, and environmental conditions of a reusable component.

The approach consists of the following major steps:

(1) software components are annotated with formal information,

(2) the software components are then translated into predicate transition nets, and

(3) consistency checking of the reusable and new components is carried out using the
reachability analysis technique of predicate transition (PrT) nets.

Figure 2.1: Software design process reuse model

A complex system is composed of a set of possibly semantically interrelated components.
A candidate component selected from the reuse library can affect the later selected com-
ponents that may interact with it. Because of the interrelationship among the reusable
components, the results from each phase in the reuse process can be used to improve the
performance and preciseness of the other reuse phases. Figure 2.1 depicts the detailed
operation as described below:

• Component Specification Phase: The specification of a candidate component is
either derived from the users requirement statements or collected from other related
components in the developed system. The collection of related predicates can be
automatically generated from later phases.

• Component Retrieving Phase: Based on the specified keywords and predicates,
appropriate components are retrieved from the reuse library.

• Component Interconnection Analysis Phase: The retrieved component is
transformed into a PrT net and then integrated with other components also rep-
resented in PrT nets. The integrated PrT net is used to check consistency among
the selected components. The consistency checking can be fully automated.

4 [William C. Chu and He, 2005]

COMPONENT MINING AND SOFTWARE PRODUCT LINE TECHNIQUES 14

• Verification and Adaptation Phase: The retrieved component is checked for
any necessary modification and modified accordingly. The needed modification may
be revealed during the analysis phase.

• Integration Phase: The retrieved or modified components are integrated.

2.3 Component mining and software product line tech-
niques

In the domain of embedded systems, hardware variabilities often happen in an unplanned
way. Old components are often substituted by more current ones, which are cheaper and
more efficient, thus producing improved versions of the original product. Possibly, some
components were not even in existence when the first version of the product was delivered.
Many companies of the embedded systems domain want the evolution of their software to
occur with the partial or full reuse of the artifacts of their succeeded applications in order
to create new ones with little or no maintenance5. In this context, it is the responsibility of
the software engineers to choose the most suitable development techniques and technologies
to achieve this goal in a given domain for a particular set of new requirements.

Leveson and Weiss6 mentions that many of the reports about success in software reuse
practices have been premature because most of the artifacts created are abandoned due
to their aging and degradation, even before a satisfactory return on investment is reached.
In order to minimize these effects, they warn that the creation of reusable artifacts must
be carried out carefully so as to enable easy and safe maintenance and also to expand the
functionality of the systems they are built in. The mining of generic components from
legacy codes and their subsequent reconnection to the original systems is a technique that
can support system revitalization by extending its functionalities. This can also allow the
production of a core of reusable assets to support the development of new similar products.
However, if legacy codes and components are developed through different paradigms, the
development of gateways is necessary7, i.e., interface adapters that enable functions of the
legacy code to easily access component interfaces.

Software reuse refers to the construction of systems from existing artifacts, rather than
developing them from scratch. Different techniques have been researched with the purpose
of increasing reuse to higher abstraction levels, for example: Components and Software
Product Lines.

Components are context-independent composition elements, implemented for a certain
specification, distributed in an autonomous way and that, through their interfaces, add
functionalities to the systems they integrate8.

However, in the domain of embedded systems, components are not usually autonomous
elements (run-time components), but codes written in high-level languages, that can be

5 [B. Graaf, 2003]
6 [N. Leveson, 2004]
7 [OBrien, 2005]
8 [Szyperski, 2002]

COMPONENT MINING AND SOFTWARE PRODUCT LINE TECHNIQUES 15

connected to the code of an application during the creation of system versions (build-time
components). Easily-adaptable generic components can support the creation of reusable
solutions for similar requirements in different domains. For such, they have to support the
commonalities and variabilities of the domains to which they are applied9.

The process of mining assets often refers to the non trivial activities of uncovering and
extracting potentially useful and reusable artifacts built into the legacy systems. Automa-
tion tools can be designed for this purpose, but handling such tools requires the work of
experienced software engineers to properly analyze the results and refine mining rules.

Features are properties of a domain, visible to the user, that enable the identification
of commonalities between related systems as well as their variabilities. With the pur-
pose of improving the identification of important or special properties of a domain during
the analysis phase10, introduced the feature model in their FODA method (Feature Ori-
ented Domain Analysis). In this model, the features are arranged hierarchically in a tree
structure where they are connected by structural relationships, forming groupings. Each
feature has its own specifier that defines it as mandatory, optional or alternative. Different
notations have been proposed to extend the representative aspect of the feature model in
relation to different types of structural relationships.

2.3.1 Activities to mine reusable assets from legacy systems

Usually technologies for traditional software development do not consider the specific needs
associated to the creation of embedded software and the usual constraints of this domain,
such as memory limitation, power consumption and hardware changes.

The framework of activities foresees the creation of software components from features
built into embedded legacy systems. The feature mining process is based on an adaptation
of the four steps11 as depicted in Figure 2.2. It considers the availability of legacy source
codes and also the minimal documentation of the existing hardware and software elements,
i.e., peripherals, operating system etc.

Step (1): The process begins with a meeting that brings together programmers, users, and
other people directly or indirectly involved with the legacy systems. The purpose of the
meeting is to identify the current deficiencies and the immediate and future requirements
of the systems.

Step (2): Through the information obtained and with customer support, it is possible
to come up with a preliminary analyses of the technical and economical feasibility of the
project to revitalize the systems, based on the previously identified requirements. These
requirements serve as a guide for outlining a suitable strategy for the development of the
project, as well as for the establishment of its scope, goals and priorities.

Step (3): This step starts with the creation of a group of technical people, that include
one or more domain specialists, to better understand the legacy systems and their doc-
umentation and to analyze, as best as possible, the specific concepts of the domain and

9 [Crnkovic, 2005], [J. Bergey and Smith, 2000]
10 [Kang et al., 1990]
11 [Ramos and Penteado, 2008]

COMPONENT MINING AND SOFTWARE PRODUCT LINE TECHNIQUES 16

Figure 2.2: Process model to mine reusable assets from legacy codes
[Ramos and Penteado, 2008]

its particularities. The priorities of the project help to define the set of knowledge to be
acquired initially, which can involve the entire system or just part of it, depending on
whether the mining is to be carried out fully or gradually.

Step (4): Based on the information acquired and documented up to this point, the mining
activities begin and may vary depending on the goal of the project and on the previously
established strategy.

In a gradual component mining process, the feature model of the domain can be simple
at first, just detailing the features that represent immediate requirements and current
deficiencies of the legacy systems. As the components are developed, refinements and
additions of new features can be made to the existing feature model. This process is
performed iteratively.

Figure 2.3: Connection Map (CMap) and its elements

The legacy code serves as a guide for the design of the generic interfaces of the mined com-
ponents, which must implement, at least, the actual system functionalities. Techniques
such as inheritance and configurable interfaces can be used to extend the system function-
alities through the support of domain variabilities. For every feature of the feature model,

COMPONENT MINING AND SOFTWARE PRODUCT LINE TECHNIQUES 17

an inspection in the legacy code must be carried out to identify all the functions directly
related to it.

Based on the properties of these functions, a Connection Map (CMap)12 is built and used
to back the design of the generic interfaces of the component related to the feature. When
there is a group of similar systems, CMap can map the connection of their codes with
the common feature in a unified manner. This increases the generality of the component
interface in development, widening the possibilities of its reuse in new products.

The format of the Connection Map (CMap) is presented in Figure 2.3 and the columns
refer to its elements.

Feature ID: Feature name in the feature model. In order to facilitate its location, an
optional extended ID can be supplied, which includes all the features that precede the
current one in the tree branch it belongs to. For example, the feature B child of feature
A, can be identified by AB;

Function: Function of the legacy code that fully or partially implements the related
feature;

Group ID: Unique number to identify distinct groups of functions. If similar function-
alities are performed by different functions in different applications, these functions must
be assigned to the same group ID when inserted into the CMap. The revitalized code
must provide a generic component interface that supports all variations documented in
the group;

Parameters: List of function parameters. The objective of each parameter should be
easily identified through its description, written in the form <name> | <data type> as in
the UML. For functions without parameters, None is used.

Return: Function return. It follows the same rule described above for Parameters;

Comments: It contains a brief description of the functionality implemented. It can also
contain relevant information to help in the feature mining of the legacy codes;

Applications: Each similar legacy application of the domain receives a unique ID at first.
Once a function is identified within one or more of these applications, the IDs of these
applications will appear in this column of the table. This fact frequently occurs when the
adopted reuse technique involves code sharing or duplication.

This list indicates if feature mining involves multiple applications;

Constraints: During feature mining, technical or functional limitations of any kind may
appear and should be documented in this section and taken to the domain specialists,
who will decide on the best solution for them. Specific meetings with experts can be
scheduled to analyze and solve potential issues; New Requirements: When the solution
for a particular feature limitation has to be addressed by the component, its description is
appended in this section and it will become a part of the requirements for the component
implementation.

12 [Ramos and Penteado, 2008]

COMPONENT MINING AND SOFTWARE PRODUCT LINE TECHNIQUES 18

Observations: Free text area to facilitate the communication of the team members who
are mining a common particular feature. This can include the current status of the task,
a list of pending issues etc.

The CMap creation enables a wider understanding of the legacy code through the accom-
plishment of code inspections, which evaluates the coupling level among the code and each
of the features to be mined, facilitating the performance of impact analyses.

2.3.2 Legacy code revitalization through the mining of assets

Figure 2.4: Legacy code revitalization through the mining of assets
[Ramos and Penteado, 2008]

The resulting artifacts of the asset mining process, described in the previous section, are:
a) a feature model, that models the domain features, b) a CMap, that documents the con-
nection of these features with the legacy systems belonging to the domain and c) a core
of reusable software components, whose generic interfaces implement, at least, the current
functionality of the legacy systems. Although the components can be used independently
to create new products, they also can, in the proper manner, be reconnected to the legacy
code to improve its structural organization and to aggregate new functionalities to the
application, extending the life of the original product. This revitalization approach con-
siders the implementation of gateways, as proposed by13, which enable the use of different
paradigms for designing components.

The CMap and the component interface documentation, produced by the asset mining
process, supply enough information to implement gateways that act as interface adapters.
In order to rebuild the original systems using the recently created artifacts, legacy func-
tions, now implemented as component methods, must be removed from the legacy code.
However, the original function calls, which will be redirected to the components by the
gateways, must be maintained.

In this manner, legacy systems revitalization is obtained without making any changes to
the code structure and without interfering in the daily activities of the maintainers of the

13 [OBrien, 2005]

SOFTWARE PRODUCT LINES ENGINEERING 19

systems. Figure 2.4 shows the process described, highlighting how the mined components
can extend original system functionalities or enable the creation of new similar products.

The revitalization, when performed gradually, can facilitate the execution of validation
tests of the rebuilt systems, since the changes are focused on isolated features and are
entirely implemented in the components. The same existing test cases for the legacy
system can be used for the revitalized one, to check if the functionality has actually been
maintained.

2.4 Software Product Lines Engineering

Software engineering aims to provide techniques for developing better software products
with less resources. Better software refers to several distinct desired characteristics such
as correctness, reliability, usability, robustness, comprehensibility, extensibility, and main-
tainability of software. On the other hand, less resources means less human activity.

A major goal of software engineering is effectiveness in software reuse, the capability
of using existing pieces of software in different contexts, bringing advantages on all the
characteristics stated above. The state of the art strategy for achieving large-scale reuse is
based on the adoption of software product-line (SPL) architectures14, describing product
families and capturing the variability within them. A key issue on SPLs is variability
management - the necessary mechanism for obtaining the several distinct products of an
SPL.

There are several key motivations for using software product line engineering15. The most
important are discussed in the following description.

Figure 2.5: Time to market single system Vs. SPLE [Clements and Northrop, 2007]

14 [Bosch, 2000], [M. Jazayeri and van der Linden, 2000]
15 [Frank van der Linden Klaus Pohl, 2005]

SOFTWARE PRODUCT LINES ENGINEERING 20

Figure 2.6: Development cost single products Vs. SPLE [Clements and Northrop, 2007]

Reduce development costs An essential reason to apply a new engineering practice
is the economical justification which means cost reduction. At the beginning of a
SPLE the costs are higher compared to a single system, because of the common
platform development and the reusable parts. The following products can be made
cheaper because of the commonalities in the product line. This means a company
has to make an investment to create the platform before it can reduce the costs per
product. Figure 2.6 shows this behavior. At the beginning the accumulated costs
are higher, but after the break-even point of approximately three different products,
the software product line is the better strategy.

The use of a common platform and the reuse of artifacts in numerous products leads
to the next point.

Increase quality The platform is reviewed many times and tested in several products,
so finding errors in a product increases quality in all products of the product line.

Reduce time to market This aspect is important in many business areas because re-
ducing the time to market can be a key motivation. Figure 2.5 shows the different
traces of time to market with both strategies. Similar to the costs (Figure 2.6) the
product line shows the advantage after a certain number of implementations.

Reduce maintenance effort As a result of the architecture the maintenance effort is
reduced, because there is only one common platform and the same artefacts for all
kind of products.

Coping with evolution and complexity Implementing one new artifact for the plat-
form gives the opportunity to put it in all other products of the SPL to set trends.
The reuse of parts reduces the complexity, because the development with higher
abstraction of already implemented parts is easier.

SOFTWARE PRODUCT LINES ENGINEERING 21

Benefits for the customer Last but not least, there are benefits for the customers who
get a product which is adapted to their needs with an adjusted price.

2.4.1 Approaches for Software Product Line

Basically there are three different approaches to start with a Software Product Line16.

Proactive In this case, the Domain Engineering Process is the first step. The develop-
ment process must take into account all feasible products of the Software Product
Line. The complete set of all artifacts is developed from scratch which is of course
a risk for the company. This needs predictive knowledge and a clear strategy. After
the SPL has been constructed, the new products will quick come to market with a
minimum of coding effort by exploring the variability.

Reactive The Reactive Approach starts with just one or few more products. These are
used for Domain Engineering and for further products. This leads to lower costs
at the beginning of a new project compared to the Proactive Approach, but the
architecture and the core artifacts must be robust, extensible and appropriate to
future needs.

Incremental / Extractive This approach starts with existing software products or sys-
tems. Then reusable artifacts were extracted to create a first version of a Software
Product Line. Next products extend the artifacts incrementally.

The choice of an appropriate approach depend on the strategy of the user or company and
there is no specific procedure to choose the right one.

2.4.2 SPL Framework

A popular method for implementing SPL variability is through the development of object-
oriented application frameworks, a collection of classes implementing the shared archi-
tecture and common functionality of a family of applications. Frameworks allow the
implementation of the application-specific parts of the different products of the product
family, using mechanisms such as aggregation/delegation, inheritance, parameterization,
object composition, etc.

The adoption of framework-based SPLs has demonstrated to be successful for mediumsized
product families i.e. families representing an application-domain of reasonable size. With
the increase of framework size, its learning and usage become naturally more complex. The
selection of the adequate parts of the framework for derivation of a specific product and
how to customize them becomes a difficult task for the framework user. Nevertheless, large
frameworks involve considerable efforts on production and maintenance of documentation
by the framework developers.

16 [Northrop, 2007], [Uira Kulesza and Borba, 2007]

SOFTWARE PRODUCT LINES ENGINEERING 22

Software Product Line (SPL) consists of a group or family of products that share a com-
mon architecture and belong to a particular domain. The purpose of SPLs is to increase
the efficiency of development processes by exploring the identification and reuse of com-
monalities and managing variabilities of related products17. Figure 2.7 shows a generic
SPL engineering process comprised of two main activities: Domain Engineering creates
the core of reusable assets and the SPL development infrastructure, and Application En-
gineering develops new products, family members, from the available resources18. The
core of reusable assets of a SPL contains its requirements, domain models, architecture,
software components etc.

Figure 2.7: Generic SPL engineering process [Ziadi, 2003]

The paradigm of software product line engineering differentiates between three processes19.
These processes are all iterative and partially parallel. Domain Engineering is the process
which is responsible for creating the platform, defining and realizing all the commonal-
ities as well as variabilities of the Software Product Line. The second process is called
Application Engineering where all the applications are built by using the domain artifacts
and exploiting the variability of the software product line. The management is the third
process dealing with the economic aspects of the Software Product Line. This part of the
development is handled as own process in the SEI framework as depicted in Figure 2.8
whereas it is a part of domain engineering in the other framework.

17 [Atkinson et al., 2001]
18 [Ziadi, 2003]
19 [Frank van der Linden Klaus Pohl, 2005]

SOFTWARE PRODUCT LINES ENGINEERING 23

Figure 2.8: SPLE framework SEI [Northrop, 2002]

2.4.2.1 Management

The management process involves economic aspects of the software product line. The
business strategy and the product portfolio are the main parts. The company goals are the
base for the so called product roadmap determining the ongoing and future set of product
types, the commonalities and the variabilities. The roadmap also defines a schedule of
market introduction. For software product line success the management must be closely
linked to the other processes20. This behaviour is illustrated in Figure 2.8
The management also controls the iteration between application and domain engineering
to stay on the roadmap. In traditional software engineering the management is responsible
for creating a single result in a defined amount of time, so product management in product
lines differs in some points from single systems:

• The goal is to generate a complete product portfolio (product variants / roadmap).

• The product variants are similarly.

• The platform for the product variants is crucial because it effects all products.

An often found definition for product management in software product line engineering
is: Product management is the sub-process of domain engineering for controlling the de-
velopment, production, and marketing of the software product line and its applications.21

The products must make the best use of the domain artefacts and variabilities and the
domain artefacts must be feasible for the products of the roadmap. Therefore the man-
agement is involved in the whole process of software product line engineering22.

20 [Frank van der Linden Klaus Pohl, 2005], [Northrop, 2002], [Paul C. Clements and McGregor, 2005]
21 [Frank van der Linden Klaus Pohl, 2005]
22 [Paul C. Clements and McGregor, 2005]

SOFTWARE PRODUCT LINES ENGINEERING 24

2.4.2.2 Domain engineering

Figure 2.9: Core asset development [Northrop, 2002]

Figure 2.10: Domain engineering [Frank van der Linden Klaus Pohl, 2005]

The process domain engineering defines the commonality and the variability of the soft-
ware product line. In cooperation with the management process the set of applications
will be selected. The reusable artifacts can be constructed to determine the variability.
Figure 2.10 and Figure 2.9 illustrate Domain Engineering and Core asset development
respectively23.

The input for Domain Requirements Engineering is the roadmap from the management
which causes reusable requirements as output. The format of this requirements is not
specified and may be textual or anything else. These requirements are not for special
applications, but for all possible applications of the product line. In this process, the

23 [Frank van der Linden Klaus Pohl, 2005], [Northrop, 2002]

SOFTWARE PRODUCT LINES ENGINEERING 25

chosen approach to start with a product line must put into practice. The Domain Design
sub process takes all requirements as input and creates a reference architecture. In this
stage technical reasons may influence the internal variability. After defining the reference
architecture Domain Realization is done. Reusable components can now be designed and
implemented. It is possible to test the implemented components against their specification
to reduce the later tests of the whole application. This sub process is called Domain
Testing. All discussed single sub processes are iterative.

Figure 2.9 shows the same processes in another way. The output are again reusable
artifacts, which the company uses to implement all products of the roadmap. Production
constraints influencing the development may be external or company specific standards
which must be applied to all products24.

2.4.2.3 Application engineering

Figure 2.11: Product development [Northrop, 2002]

The Application engineering process tries to achieve a high reuse of the domain artefacts
during creation of a new application25. Exploring the variabilities of the Product Line
should lead to many resulting applications. Figure 2.11 and Figure 2.12 illustrates the
two views on application engineering.

This process is also divided in sub processes as illustrated in Figure 2.12. Application
Requirements engineering is the first step to develop the specification of the application
requirements. Differences between the provided reusable domain artifacts and the needed
requirements can be found because the domain artifacts are the only input for this sub
process with the product roadmap kept in mind. The result of this sub process is a re-
quirement specification for an application. Modifying the reference architecture to fit the

24 [Northrop, 2002]
25 [Frank van der Linden Klaus Pohl, 2005], [Northrop, 2002]

VARIABILITY 26

Figure 2.12: Application engineering [Frank van der Linden Klaus Pohl, 2005]

needs for a specific application is done in Application Design. The reference architecture
and the specification are the input parameters and the output is a adjusted architecture
for a single application. Now the application is created in the sub process Application
Realization. Reusable components are selected and configured. It is also possible to im-
plement application specific parts. The result is a running application which will be tested
in the last sub process called Application Testing. Figure 2.12 illustrates the set of applica-
tions resulting of Application Engineering in the Software Product line. The Figure 2.11
gives another view on Application Engineering by taking again the domain artifacts in
respect to the roadmap to create customized products. Here an explicit connection to the
management is shown.

2.5 Variability

Frank van der Linden Klaus Pohl defines variability as26

“Documenting and managing variability is one of the two key properties characterizing
software product line engineering. The explicit definition and management of variability
distinguishes software product line engineering from both singles-system development and
software reuse.

Variability is defined during the Domain Engineering process where it is refined in all
subprocess illustrated in Figure 2.10. Variability describes the ability of domain artifacts
to be used in different applications of the product line roadmap27. Two important terms
are variability subject which is a variable item in the real world and variability object,
as a specific instance of the subject. Further abstractions which are interesting related
to variability in software Product Line Engineering are variation points and a variant.
This is the representation in a context of the variability subject (variation points) and the
variability object (variation point).

The variation points and the variants are used to define the variability of a Software
Product Line. When creating a SPL, first all variation subjects must be declared, then the

26 [Frank van der Linden Klaus Pohl, 2005]
27 [Bachmann, 2005], [Jan Bosch and Pohl, 2001], [Pohl et al., 2005]

VARIABILITY 27

variation points have to be worked out and finally the according variations. To document
the variability the following questions have to be answered28:

What varies? The mapping between the real world and the variation points should be
documented.

Why does it vary? The reason can be internal like technical constraints or external like
laws, standards or needs from stakeholders.

How does it vary? All possible variants should be documented and linked to the domain
model elements.

From whom is it documented? There is a difference between extern and intern. Some
documents are only for internal use and some are relevant for the stakeholder.

Figure 2.13 shows a graphical notation to model variability. It defines the variation points,
the variation and the dependencies between them. Dependencies are divided in variability
and constraint dependencies.

Figure 2.13: Graphical notation for variability[Frank van der Linden Klaus Pohl, 2005]

In big projects there are thousands of variation points and variations, so the organization
and optimization is a challenging research area. Variation management is a main-criteria
when selecting a tool for big Software Product Lines.

2.5.1 Variability management process interaction with the Product
Lines (PL) development process

Figure 2.15 presents the interaction between the core asset development process29, rep-
resented by the activities vertically aligned on the left, and the variability management

28 [Pohl et al., 2005]
29 [E. Oliveira and Maldonado, 2005]

VARIABILITY 28

Figure 2.14: Example of graphical notation

process, represented by the activities defined inside the right rectangle. The variability
management process activities are executed by the PL manager. It is an iterative and
incremental process that runs in parallel with the core asset development.

After the execution of each activity of the core asset development, the variability man-
agement process is executed, thus progressively taking as input the output artifacts of the
core asset development. As the activities are executed, the number of variabilities tends
to increase. As the process is iterative, variability updates are allowed from any activity
of the process. The input and output artifacts of the activities are defined as follows.
However, note that the input artifacts are made available according to the progress of the
core asset development activities. The proposed process consists of the following activities:

• Variability tracing definition, which takes the use case and the feature models as
input and generates the variability tracing model as output;

• Variability identification, which takes the use case, the static type, and the feature
models, plus the component model as input and generates the same artifacts with
the variabilities identified as output;

• Variability delimitation, which takes the use case, the static type and the feature
models, plus the component model as input and generates the same artifacts with
the variabilities limited as output; and

• Identification of mechanisms for variability implementation, which takes the static
type model and the component model as input and generates the variability imple-
mentation model as output.

In addition, the process is supported by a metadata model which describes the relationships
among the PL artifacts. The process consumes artifacts from the PL core asset as well as
producing information for it. They feed the variability management process and return
to the core asset the variabilities identified and limited. However, there are models such
as the variability tracing and implementation models that are originated in the variability
management process.

ESCAPE R© ARCHITECTURE 29

Figure 2.15: The variability management process and its interaction with the PL devel-
opment process[E. Oliveira and Maldonado, 2005]

2.6 ESCAPE R© architecture

ESCAPE is an authoring tool for graphical definition, manipulation and analysis of func-
tional networks with ability to manage a wide range of configurations. It provides diagnos-
tics tools like dependency analysis, fault back tracking, and support for mathlab/simulink
simulation models and various programming language implementations The modeling can
be performed without regard to their subsequent implementation in software (SW) and

ESCAPE R© ARCHITECTURE 30

hardware (HW)30.

ESCAPE provides modeling platform for design and analysis of distributed embedded
real time systems of any degree of complexity and size. From the mission level at which
functions and features can be defined, tested and documented by using an executable
specification via the solution level, where functional solutions can be reused and partitioned
to graphically defined architectures of buses and devices to the implementation level where
the final software is generated in todays existing environments as well as the electrical
schematics.

ESCAPE supports 3 different views:

• FSB (Functional structure builder) facilitates Functional Modeling to build the struc-
ture of the model,

• FTB (Function type builder) provides Solution Modeling defining hardware and
software types, and

• HSB (Hardware Structure Builder) is Architecture design modelling which allows
networking ECUs and mapping the software functions.

Figure 2.16: Functional structure builder view

30 [GIGATRONIK, 2009]

ESCAPE R© ARCHITECTURE 31

Figure 2.16 depicts the FSB view. The project is displayed in the form of a tree that
represents the product model structure. The left pane displays the hierarchy of compound
functions within a project. Groups or teams can work independently on a sub-tree for
the development of functional parts of the product model. The right pane displays the
schematic of the functional structure, and leafs of the hierarchy are the instances of the
hardware- and software-types defined in the FTB. These sub-trees can then be integrated
into a single large model in FSB. It also provides tools to trace the forward and backward
impact on the model.

Figure 2.17: Functional type builder view

Figure 2.17 depicts the FTB view. The left pane of the FTB view displays the hierarchy
of hardware types and software types. These types can have basic- and user-defined
subtypes. The user-defined hardware types can have subtypes like input hardware (e.g.
sensors, switches), output hardware (e.g. actuators), and control hardware which can be
further sub-typed to any depth grouped by similar hardware domain, hardware logic, and
actual hardware type. The right pane of the FTB view shows the definitions of these
types. Similarly the basic software types include integer, boolean, float, double, etc., and
the user defined software types can have subtypes to any depth grouped by domain related
user-defined software types based/derived from basic types, software parameters, etc.

Figure 2.18 depicts the HSB view for System architecture design and optimization. The
HSB view shows the hierarchy of networked ECUs interconnected by bus systems. It
provides a graphical design view to the technical architecture of a distributed embedded
system, the HSB (hardware structure builder). The HSB enables to create devices, buses,

ESCAPE R© ARCHITECTURE 32

Figure 2.18: Hardware structure builder view

messages and protocols. Existing message catalogs can be transformed into ESCAPE-
promessage types, in terms of AUTOSAR PDUs. Thus the back-annotation of messages
to logical functions can be achieved. The ECU structure view enables the user to look
inside an ECU and to configure it via drag & drop mechanisms. Functional elements
mapped to the ECU can be mapped to the real resources of an ECU just by dropping
into a graphical representation of the ECUs resource, e.g. a task or an input/output.
ESCAPEpros dependency analysis supports work on the logical design as well as on the
physical design. Signals are generated automatically by mapping functions and solution el-
ements to components in the HSB. Signals can be mapped into messages and ESCAPEpro
automatically carries out a bus load calculation. Protocols like SAE J-1939 are supported.
ESCAPEpro works independently from bus technologies. Support for buses like CAN, LIN
and FlexRay can be loaded as a plug-in at any time needed.

Figure 2.19: Failure analysis

SUMMARY 33

Failure effects analysis Figure 2.19 depicts the failure mode effects analysis. Any
logical element, sensor, actuator, HW-channel, SW-module, ECU, bus cable or signal can
be marked faulty. The result displays the analysis graphically across all hierarchies and
views. The left picture shows an analysis, where an ECU has been marked faulty, the
logical view marks red all elements mapped to that ECU and marks orange the elements
depending on information from that ECU (secondary faults).

Figure 2.20: Fault back tracking

Fault back tracking - model based diagnosis and remote debugging Figure 2.20
depicts a fault back tracking analysis. Any logical element, sensor, actuator, HW-channel,
SW-module, ECU, bus cable or signal can be marked faulty. It analyses the possible
causes for a fault and displays the result of the analysis graphically across all hierarchies
and views. The picture on the right shows an analysis, where a bulb has been marked
faulty. The information needed to carry out this analysis (dependencies) can be derived
automatically e.g. from existing Simulink models. It can upload actual process values
from a plant e.g. via TCP/IP and display the values in the functional model. If the
embedded system supports forcing, the user can force values into the plant directly out of
his logical architecture model view.

2.7 Summary

Aspects like structured and unstructured text, semi formal approach for software reuse,
component mining, software product line engineering and variability that form the basis
and are crucial in the specification and development of heterogeneous cross-domain sim-
ulation models were discussed in this chapter. These aspects have a deterministic role in
the classification of commonality for variability identification. The later section cast an
insight of a modeling platform that is used in the case study.

Chapter 3

Concept

A Model Driven Development approach for system development allows heterogeneity in the
target platform with the state-of-the-art code generation for the executable artifacts. This
approach lacks support for reconfiguration of these artifacts because the implementation
is bound to a target platform at the development time.

These models contain an abstract description of the software specification and therefore
foster reuse of the described software artifacts on multiple platforms. Hence it is often
necessary to define a mechanism to identify reusable components within the hierarchical
models with numerous composite components deeply embedded.

Models confirming to numerous tools like ESCAPE R©, EAST-ADL R©, UML R© tools,
SysML R© specifications, and AUTOSAR R© were considered, although this concept is not
limited to the automotive domain alone.

We start by analyzing the deficiencies of the tool to handle variants, the project struc-
ture and the textual representation of the model structure. Furthermore, we state the
specification of cases and form a concept to define commonalities to extract an element
list that facilitate the identification of variability. Based on the adaptation of a formal
mathematical model presented in this chapter is the implementation and evaluation of the
proposed strategy.

3.1 Definition of the problem

Referring to the description in Section 2.6, as the depth of hierarchy in FSB and FTB
grows, the probability for redesigning similar functions and user-defined types, which may
be variants of existing types increases, simply because the mechanism to manage variants
is lacking.

This tool displays inadequacy in handling variants. Therefore the need arises to develop
patterns (parameters and procedures) for extracting object features, and to develop a
mechanism to manage and support variability.

34

DEFINITION OF THE PROBLEM 35

3.1.1 SPLE approach

To achieve a variability management mechanism we apply the SPLE approach.

Figure 3.1: Variability managment layer in product lines

Figure 3.1 illustrates a basic SPLE mechanism that can be categorized into domain en-
gineering and application engineering. Domain engineering involves design, analysis, and
implementation of core objects, whereas application engineering is reusing these objects
for product development1.

A layer for variant management is introduced in between to achieve variability handling.
Activities on the variant management process involves variability identification, variability
specification, and variability realization2.

• A variability identification process will incorporate feature extraction and feature
modeling.

• A variability specification process is to derive a pattern.

• A variability realization process is a mechanism to allow variability.

3.1.2 Analysis of project structure

Figure 3.2 illustrates an example to demonstrate the development phase for two products
A and B. Both products reuse functions from a data backbone. The development phase

1 [Bachmann and Clements, 2005], [Bosch, 2000]
2 [Burgareli et al., 2009]

DEFINITION OF THE PROBLEM 36

Figure 3.2: Example describing Variants, Versions and Products

may also include the development of software functions in the repository itself, which may
have numerous versions. The software development for product A is tested with the Ver3
of functional block B and a variant of Ver4 of functional block A. Similarly product B also
uses different version and variants of functional blocks from the data backbone.

A certain version/release of a variant of a functional block suitable in a product may
exhibit an improper behavior, when a different version or variant is selected. Even a more
improved version of the same variant may not yield a reliable result.

When handling variants and versions we can state the following specification of cases:

Case 1: The product is tested using software functions of a certain variant and version.
These products may exhibit compatibility issues between functional blocks, whilst
using later version of the function may fail to perform as expected.

Case 2: To enable parallel development, it is necessary to be able to extract features and
to identify and specify the functional blocks in the repository based on architecture
and functionality.

Case 3: A process that tracks usability and prevents inconsistencies due to deprecate
variants and version from repository is required.

Case 4: A testing mechanism for validations in order to maintain high quality for com-
ponents and its variants has to be established.

DEFINITION OF THE PROBLEM 37

Case 5: The developer has to be assisted by a process to intelligently determine whether a
functional block or its variant should exist in the data backbone, to avoid redesigning
of existing functions, thereby improving productivity.

3.1.3 Extending variability management layer

Figure 3.3: Variability management layer

Extending the variability management layer described in Section 3.1.1. Decision points,
choices and constraint dependency rules describe variability. In the definition of variabil-
ity, we have both variability subjects and variability objects. Variability subject may be
understood as decision points, and variability objects as choices. Typically several thou-
sand decision points and choices are required. Constraint dependency rules are: requires
or excludes decision points, requires or excludes choices, and choice requires or excludes
decision points3.

Based on the specification of the cases broadly the decision points, choices, and constraint
dependency rules pattern for feature extraction to extract spatial, functional and name
are depicted in Figure 3.3.

The proposed method is to introduce a layer that provides the capability for variability
management as shown in Figure 3.3, which enhances both readability and clarity in repre-
sentation of variability. It offers the user an option for the configuration of all information

3 [Osman et al., 2010]

DEFINITION OF THE PROBLEM 38

related to variation points, insertion of variants, the definition of their types, and their
storage in a data base. All that information is made available so that the user can select
and create new variants.

A. Architectural features: Variability may only be in some spatial features of software
functions like a different parameter or a different data type for inputs or outputs,
etc. Thus in an interactive tool one of the techniques to identify software functions
can be based on the architectural features.
To enhance accessibility the architectural features supported are:

• Structural design rules, design convention, consistent ways: these could include
the number of inputs and outputs, their data types, and their default values,

• Parts in different sub trees which could be similar: a group of blocks having
same functionality,

• Brief description about the object, comments, description convention: meta
data, keywords and other textual description about the object.

B. Functionality of the objects: Though the spatial features may provide a certain
amount of accessibility, there can be numerous functions with different functional-
ity having the same or similar spatial features. Thus identifying software functions
based on spatial features alone is not sufficient and therefore identifying functionality
becomes essential. Also it can further narrow down the search. Defining architec-
tural features is a relatively simpler process than defining functionality. Describing
functionality is an extremely complex process with interrelation between numerous
parameters, logic tables, data types, states, etc.

To further narrow down the accessibility, functionality features supported are:

• Methods to identify identical blocks: based on functional use,

• Representing hierarchy in structure of variants: based on parameters,

• Possibility to map variants,

• Comparing and searching: rules for comparing functionality and search for the
functional block.

C. Naming conventions: Naming conventions of functional blocks, parameters,
etc., are usually long and cumbersome, which are not just difficult to remember
but also tedious to construct. Eg. a typical convention for naming defined as:
project group year functionalBlock type number looks like

BRGD CODCA 2010 FNRS USINT 14357

BRGD CODCA 2010 FNRS USINT 14486

BRGD CODCA 2010 FNRS USINT 14527

These names are neither user friendly nor meaningful. But to assist the user to iden-
tify, search, and construct these names, comfortably displaying them as hierarchy, as
well as having a procedure to navigate and simplify the construction of such names

DEFINITION OF THE PROBLEM 39

will enable the user to quickly build long names uniformly over the entire project.
Often used activities that are supported by our solution are:

• Building a local dictionary of all names used in the project, if they are not the
standard words,

• Using some characters as delimiters and displaying suggestions to the next level
in the hierarchy from the existing names, as the user types new names or edits
existing ones. In addition suggestions of thesaurus, synonyms, antonyms, etc.
are given,

• Automatically navigate through hierarchy levels as the corresponding sugges-
tions are selected, or build the names as one traverses through the hierarchy,

• Assigning weights depending on related names, most often used names, fre-
quently used names, etc.

3.1.4 Textual and graphical representation

Figure 3.4: Mapping textual and graphical representation

OBJECTIVES OF THIS THESIS 40

An analysis of the models exhibits a common architecture. Figure 3.4 depicts the tex-
tual representation that underlies every graphical models. The textual representation is
usually in XML format which strictly validates to a schema. A heterogeneous modeling
environment may consist of numerous design tools each with its own unique schema to
offer integrity and avoid inconsistencies. Projects developed have to strictly validate to
the schemas of these tools respectively.

3.1.5 Identifying commonalities in textual representations

Figure 3.5: Textual representation of projects in XML

Figure 3.5 illustrates a the textual representation of models mainly in XML format.

A closure examination of the nodes in the textual representation of models depicted in
Figure 3.6 reveals some interesting information. The nodes marked in red rectangles
provide important information regarding the identity, specification, physical attributes,
etc. of a component, but are insignificant from the variant perspective.

Based on the challenges discussed and the concluded related work presented, the following
objectives for this thesis can be derived.

3.2 Objectives of this thesis

Objective 1: Support heterogeneous models containing hierarchically embed-
ded software components containing the complete specification of specific func-
tionality to foster reuse.

OBJECTIVES OF THIS THESIS 41

Figure 3.6: XML nodes which do not signify variability

Breaking down the models into several components and logical clustering of components
of the modeled software is not targeted. In contrast the proposed methodology enables the
identification of commonalities of components in heterogeneous models. For deployment
and reuse purposes several partial models are treated as one artifact. Furthermore the
architecture should support reuse of these artifacts for the development of new function-
alities.

The challenge of the realized system of artifact heterogeneity should be based on existing
component technologies that provides mature techniques, that are a consequence of the
application independent and generic definition of the system specific components and
ensures the portability of the proposed system on other platforms.

Objective 2: Enable dynamic configuration.

To envisage each subsystem is modeled and simulated using a domain-specific simulation
tool, while the co-simulation platform handles the coupling between these subsystems that
enables holistic simulation of a system.

The challenge for identifying variability of software components validating to numerous
schemata of respective simulation tools and dynamically loading of plug-ins for specific set
of components adhering to respective schemata at execution time in model interpretation
architecture.

Objective 3: Enable shared usage of resources.

A scenario depicting the concept of virtual organization should have a clear method to
tackle resource access, validation and verification of specific models.

OVERVIEW OF THE PROCESS 42

3.3 Contributions of this thesis

The following contributions are claimed as outcomes of the research in this thesis regarding
the objectives presented in the previous section .All contributions have been evaluated by
prototypes during the case studies summarized in Chapter 5 as well as in the specific
papers presented in Chapter 7.

Contribution 1: Model-based Variability Management for Complex Embedded
Networks.

The concept of Model-based Variability Management is proposed in the publication avail-
able in Section 7.1, which contemplates on the definition of a problem and specification
of the cases. Furthermore the concept specified is used for feature extraction to extract
spatial, functional, and name for the realization of new functionality. These models has
been evaluated for data models in the publication in Section 7.4.

Contribution 2: A generic approach to envisage the identification of variability.

The primary mechanism for determining commonality, allowing dynamic extension in
the identification of variability of software components which are embedded in hierar-
chical model confirming to numerous tools like ESCAPE R©, EAST-ADL R©, UML R© tools,
SysML R© specifications, and AUTOSAR R©. The approach is based on the adaption of a
formal mathematical model presented in the publication in Section 7.3

Contribution 3: An approach to visualize, navigate and simplify the unintelli-
gible naming conventions.

Mapping highly indecipherable naming conventions and transposing to hierarchical struc-
tures using predetermined delimiters, to assist the user to identify, search, and construct
these names, comfortably displaying them as hierarchy, as well as having a procedure to
navigate and simplify the construction of such names.

3.4 Overview of the process

We propose a semi-automatic variant identification layer. A component list and feature
vector is derived manually from the schema of the project; a collection of elements that
represent components and their descriptive features that significantly contribute to the
identification of the component variant respectively. For projects developed using several
modeling tools and simulation tools numerous lists can be derived for each distinct schema.

The basic concept to identify variability is depicted in Figure 3.7. The left side is a set of
projects which have software components hierarchically embedded within. This projects
validate to the corresponding schema. The middle layer is an identification layer with three
functional blocks. A set of component list is derived from the node list in this schema.
Similarly a feature vector is derived from the schema that corresponds to components.
The second block is a customized parser that generates a relevant lexicon from the set of
software components within a project. The third block is a set of rules (viz. mandatory,
optional, exclude) to govern variability identification.

OVERVIEW OF THE PROCESS 43

Figure 3.7: Basic concept

3.4.1 Implementation for homogeneous systems

The higher level model is a collection of a hierarchical structure of sub-models. In a
distributed business process models are developed and simulated at functional level. Sim-
ulating distinct models is not enough as models are mostly interdependent. It necessitates
cross-domain modeling and simulation.

The basic concept can be extended to obtain a working model for identification. The work
flow is depicted in Figure 3.8. The top layer represents the domain or core assets.

The middle layer is a semi-automatic variant identification layer. A component list and
feature vector is derived manually from the schema of the project; a collection of elements
that represent components and their descriptive features that significantly contribute to
the identification of the component variant respectively. A lexicon is generated fully
automatic by processing the elements within the project files that match the component-
feature list along with weights based on the frequency of the words. The rules govern the
process of variant identification, when the model is explored in the application layer and
returns a set of components which may be variants, have semblance or are in some way
associated to the expected component.

OVERVIEW OF THE PROCESS 44

Figure 3.8: Concept extended to homogeneous systems

3.4.2 Concept extended to heterogeneous systems

The work-flow of the concept can be further extended to adapt a heterogeneous envi-
ronment which consist of projects developed using several modeling tools and simulation
tools.

Numerous projects developed using different modeling tools and simulation tools having
different schemas to illustrate the components, features and other information. In such
scenario the identification layer may be partitioned as illustrated in Figure 3.9. A separate
component list and feature vector is derived from each distinct schema.

MATHEMATICAL MODEL 45

Figure 3.9: Concept extended to heterogeneous systems

3.5 Mathematical model

The formal representation of such a model is complex. The software model is composed
of a set of functions, which further contain sub-functions and so exhibiting a hierarchical
structure. The software models can be defined as

P = {E,Γ} (3.1)

MATHEMATICAL MODEL 46

P = {p1, p2, ...pn} is a finite set of models consisting of elements that form the functional
modeling (the abstract specification of the components), solution modeling (the imple-
mentation of the components), and architecture design (deploying and mapping these
components on different platforms). In addition it also contains elements that are general
rationale and do not signify any of these functionalities.

E = {e1, e2, ...em} is a finite set of elements that constitutes elements providing general
information (viz., id, time stamp, date, owner, etc.), elements that form components,
elements within the components that represent features. Some of these elements may be
categorized as elements that describe variability or that contribute to signify variants.

Γ = {γ1, γ2, ...γo} is a finite set of elements which describes complex relationships that
reflect information relationships, inheritance flow, and message exchanges.

Each of these models validate to a schema; and there is an isomorphic mapping relationship
between the elements of the schema and the models.

We define a schema S as a set of formulas that specify integrity and constraints

S = {N,C} (3.2)

The schema defines the structure, entities, attributes, relationships, views, indexes, pack-
ages, procedures, triggers, types, sequences, synonyms and other elements.

N = {n1, n2, ...nk} denotes a finite set of nodes or elements in a schema that describes
integrity, whereas C = {c1, c2, ...cj} denotes a finite set of elements in a schema that
describes constraints, and further to adapt a heterogeneous environment which consists of
projects developed using several modeling and simulation tools.

S = {s1, s2, ...si} is a finite set of schemata each representing a modeling or simulation
tools.

At user reconfiguration level, the software model is represented in an abstract form, con-
sisting of modules, functions, relationship, information, inherited flow, and message flow.
Subdividing the set of nodes N and the set of constraints C into general elements and
elements that signify

N = {n, η} (3.3)

C = {c, υ} (3.4)

η = {η1, η2, ...ηp} and υ = {υ1, υ2, ...υq} are a finite set of nodes and constraints respec-
tively that signify components, features, functions, relations, whereas, n = {n1, n2, ...nr}
and c = {c1, c2, ...cs} are a finite set of nodes and constraints respectively that signify all
other nodes.

Targeting all nodes in the model that are isomorphically mapped to η and υ leads to a set
of nodes that can be viewed as a Significant Node (SN). As the functions are hierarchical
the software model may be viewed as a Significant Node Mesh (SNM).

MATHEMATICAL MODEL 47

SN can be defined as

SN = {Cm, Fc, Nc, R} (3.5)

where Cm = {Cm1, Cm2, ...Cmn} is a finite set of all components defined on the set P ,
∀ Cmi ⊂ Cm and i = 1, ...m, Cmi is a finite set including all components of pi, and is
a subset of Cm. Fc = {Fc1, Fc2, ...Fco} is a finite set of all features defined on the set P ,
∀ Fcj ⊂ Fc and j = 1, ...o, Fcj is a finite set including all features of pi, and is a subset of
Fc. Nc and R denotes the set of naming conventions and the set of relations respectively.

Let SN denote the nodes in model P and M denotes the nodes in schema S. Then there
is a map (function) τ from SN into M , defined such that τ(n) is the definition (or rule)
of n ∈ SN in M .

τ : SN → M (3.6)

Let Sc be an element of S representing a component c. Let EC be the subset of the schema
S which is extracted manually such that each element represents a variant component.

EC = {Sc ∈ S : c represent a component} (3.7)

Let EF be the subset of a S which is extracted manually such that each element represents
a feature of the component c.

EF = {EFc ∈ S : EFc represents a feature

of the component c} (3.8)

EF (i, c) denotes the ith element of EF of a component c.

Let C1 be the subset of C such that all elements of C1 are represented in EC .

C1 = {c ∈ C : τ(c) ∈ EC} (3.9)

Let F ′c be the subset of Fc such that element of F ′c are represented in EF .

F ′c = {f ∈ Fc : τ(f) ∈ EF } (3.10)

Let F ′(i, c) be the ith element of F ′c, where i is an integer.

Let V be the specification set. Then the proposed method will return a result set Rsn

Rsn =

 ⋃

c∈C1

(
c

(⋃

i

F ′(i, c)

))
⋂V (3.11)

SUMMARY 48

and the absolute number of elements in the resultant set Rsn is

|Rsn| =

∣∣∣∣∣∣

 ⋃

c∈C1

(
c

(⋃

i

F ′(i, c)

))
⋂V

∣∣∣∣∣∣
(3.12)

On the other hand, the result set Rg obtained by global search is

|Rg| = |N ∩ V | (3.13)

where N is the set of nodes in the project.

The general search depicted by Equation 3.13 is a set that contains all nodes which match
the specification set irrespective of whether they exhibit relevance to the components or
not, resulting in a large set. On the other hand the approach of selective targeting of
significant nodes will match only with the nodes that are components and the features
that describe variability, thereby returning a closely matched result set depicted by Equa-
tion 3.12.

Comparing Equation 3.13 and Equation 3.12

|N ∩ V | ≥

∣∣∣∣∣∣

 ⋃

c∈C1

(
c

(⋃

i

F ′(i, c)

))
⋂V

∣∣∣∣∣∣
(3.14)

Hence we conclude an improved result set using the proposed approach as depicted by
Equation 3.14.

3.6 Summary

The approach presented peeks into the structure of the models and the specification of
cases are stated based on the reasoning. The objectives for this thesis are identified from
the challenges discussed and the contributions of the research are enumerated.

Further an overview of the process is presented, which is extended to homogeneous and
heterogeneous systems.

An adaptation of a mathematical model that describes the formal approach of the process
is formed to envisage the problem and prove theoretically the proposed strategy.

The proposed approach has been evaluated on an industry use case project model devel-
oped using the design tool ESCAPE built by the company Gigatroniks.

Chapter 4

Implementation

In this chapter several key aspects of the implementation are discussed. The focus is to
describe the architecture of the identification layer, which forms the intermediate layer for
adapting the core assets from domain engineering into application engineering.

The related approaches put on view a need for a generic methodology in identification of
software components developed using several design tools.

4.1 Component list and feature vectors

As the project structure for each tool is well defined and strictly validate with corre-
sponding schemata, these schemata can be the basis for deriving the list that can identify
components.

4.1.1 Component list

An example of the list of elements that characterize components derived manually from
the schemata for design tool ESCAPE is

“CompoundFunction HWFunction SWFunction Parameter” + “ StructureEle-
ment SWBubbleType ParameterType ParameterTypeTerminal IntDataType Float-
DataType TimeDataType AliasDataType VariantDataType HWFunctionType
TypeInterface FunctionTypeTerminal HWTypeTerminal” + “ StructureElement De-
viceMapping DeviceType BusCAN BusSegment MappedFunction”

The list is a delimited string with space or any other delimiter.

A tool supporting multi-functional structures like ESCAPE which has three views FSB,
FTB and HSB. Each view can have an independent list

• Component list for FSB

“CompoundFunction HWFunction SWFunction Parameter”

49

COMPONENT LIST AND FEATURE VECTORS 50

• Component list for FTB

“StructureElement SWBubbleType ParameterType ParameterTypeTerminal Int-
DataType FloatDataType TimeDataType AliasDataType VariantDataType HW-
FunctionType TypeInterface FunctionTypeTerminal HWTypeTerminal”

• Component list for HSB

“StructureElement DeviceMapping DeviceType BusCAN BusSegment Mapped-
Function”

Similarly, in a heterogeneous modeling environment each modeling tool will have its own
schemata, and a corresponding list may be derived for each tool.

4.1.2 Feature vector

Similarly, the elements that characterize features of the software components are also
derived manually from the schemata, which forms the feature vector and are enlisted
below

“Name LongName DEScription ConnectionSegment SourceTerminal SinkTerminal
Interface CompoundTerminal HWTerminal SWTerminal Input DataType”

4.1.3 Naming convention

Moreover, the naming convention within an organization also lead to ambiguity in identi-
fication of components when the number is large.

A list for a naming convention for distributed business process is illustrated below

“WorkSpace DOMain GRouP PRoJect FunctionBlock PartNo VARiant”

A sample of Names confirming to AUTOSAR in an organizational setup is illustrated
below (text in bold are the names specified in AUTOSAR), There are more then 10,000
such definitions in AUTOSAR1.

FV BodyAndComfort Access P7834 ATWSLHFD AS45781.0003,
Description: Anti Theft Warning System, Left hand front Door

FV BodyAndComfort Access P7834 ATWSRHFD AS45782.0003,
Description: Anti Theft Warning System, Right hand front Door

FV BodyAndComfort Access P7834 ATWSLHRD AS45783.0004,
Description: Anti Theft Warning System, Left hand Rear Door

1 [Autosar, 2011]

COMPONENT LIST AND FEATURE VECTORS 51

FV BodyAndComfort Access P7834 ATWSRHRD AS45784.0004,
Description: Anti Theft Warning System, Right hand Rear Door

FV BodyAndComfort Access P7838 CLDLRB CL45785.0002,
Description: Central Locking, Door Lock Rearlid and Backlite

FV BodyAndComfort Access P7838 CLDLRB CL45785.0003,
Description: Central Locking, Door Lock Rearlid and Backlite

FV BodyAndComfort Access P7838 CLKPM CL45786.0002,
Description: Central Locking, KeyPad Manager

FV BodyAndComfort Access P7838 CLTF CL45787.0001,
Description: Central Locking, Tank Flap

FV BodyAndComfort Visibility P7834 ELBLM BL45788.0003,
Description: Exterior Lights, Brake Light manager

FV Chassis ESC P7847 ABSEBD ESC45792.0004,
Description: ElectronicStabilityControl, Antilock Braking System, Electronic Brake
force Distribution

FV Chassis ESC P7847 ABSCBC ESC45793.0003,
Description: ElectronicStabilityControl, Antilock Braking System, Cornering Brake
Control

FV Chassis ESC P7847 TCS ESC45794.0002,
Description: ElectronicStabilityControl, Traction Control System

FV Chassis ESC P7834 YRC ESC45795.0003,
Description: ElectronicStabilityControl, Yaw Rate Control

FV Chassis ESC P7842 BAS ESC45797.0003,
Description: ElectronicStabilityControl, Brake Assist

FV Chassis Susp P7844 BRHC SUSP45801.0004,
Description: Suspension, Body Ride Height Control

FV Chassis Susp P7844 RCWFC SUSP45804.0004,
Description: Suspension, Ride Control and Wheel force Control

If the names in the above sample are transformed to a hierarchical structure by splitting
with “ ” as delimiter, they are more perceptible.

FV
BodyAndComfort

Access
P7834

ATWSLHFD
AS45781.0003,

COMPONENT LIST AND FEATURE VECTORS 52

ATWSRHFD
AS45782.0003,

ATWSLHRD
AS45783.0004,

ATWSRHRD
AS45784.0004,

P7838
CLDLRB

CL45785.0002,
CL45785.0003,

CLKPM
CL45786.0002,

CLTF
CL45787.0001,

Visibility
P7834

ELBLM
BL45788.0003,

Chassis
ESC

P7847
ABSEBD

ESC45792.0004,
ABSCBC

ESC45793.0003,
TCS

ESC45794.0002,
P7834

YRC
ESC45795.0003,

P7842
BAS

ESC45797.0003,
Susp

P7844
BRHC

SUSP45801.0004,
RCWFC

SUSP45804.0004,

4.1.4 Algorithm to identify components within projects

Using the string described in Section 4.1.1 that characterize the software components
nodes list within a project, the following algorithm can be devised.

componentListString ← string described in Section 4.1.1;

LEXICON 53

Nodes ← doc.GetElementsByTagName(”*”);

for each Node in the Nodes (Length(Ln) ≥ 1), do

if Node.name in componentListString, then

componentList ← Node.name;

The order O for matching the software components is 1.

The prototype dataset used for evaluation of this algorithm contained a total of 32909
nodes, of which only 1583 matches were the software components.

Similarly, using the string described in Section 4.1.2 that characterize the features within
software components, the following algorithm can be devised.

featureVectorString ← string described in Section 4.1.2;

Nodes ← componentList;

for each Node in the Nodes (Length(Lc) ≥ 1), do

if Node.name in featureVectorString, then

featureList ← Node.name;

The order O for determining the corresponding features within the software components
is 1.

From the prototype dataset a total of 13353 nodes matches to the feature vector were
found.

The results are summarized in Table 5.2 in Section 5.1.

4.2 Lexicon

A simple customized parser has been devised which automatically extracts words from
the text within the software components and features that match the component list and
feature vector respectively.

lexiconList ← NULL;

Nodes ← componentList ∪ featureList;

for each Node in the Nodes (Length(Lcf) ≥ 1), do

wordList ← split(Node.innerText, delimiter) ;

for each word in the wordList (Length(Lw) ≥ 1), do

RULES 54

if word not in lexiconList, then

lexiconList ← word;

lexiconList.frequency ← 1;

else

lexiconList.frequency ← lexiconList.frequency+1;

End For;

A more sophisticated parser that discards non-words will further improve the Lexicon.

The Lexicon assists the user to choose from a set of relevant words along with their
frequencies thereby improving user experience.

4.3 Rules

In every case a full match of software components to specification sets is not desired,
but in many instances specification sets contain elements that are mandatory (contains
all), optional (one or more) and exclude (omit). Providing rules to execute these features
enhances performance in the identification process.

ruleContainAll ← Specification subset with Contain-all elements ;

ruleOptional ← Specification subset with Optional elements ;

ruleExclude ← Specification subset with Exclude elements ;

Nodes ← componentList ∪ featureList;

for each Node in the Nodes (Length(Lcf) ≥ 1), do

wordList ← split(Node.innerText, delimiter) ;

for each word in the wordList (Length(Lw) ≥ 1), do

if word not in ruleExclude, then

if word in ruleContainAll, then

variantList ← word;

elseif word in ruleOptional, then

variantList ← word;

End For;

Using the rules enables to narrow down to a more realistic list of variants that matches
the specification set.

TRANSFORMING NAMING CONVENTION 55

4.4 Transforming naming convention

Using the string described in Section 4.1.3 that characterize the naming convention within
an organization, The scattered software components can be organized by splitting the
names along a delimiter and transformed into a hierarchically structure, the following
algorithm can be devised.

nameConv ← List described in Section 4.1.3;

SWcompNameList ← doc.readCompName(”*”);

for each SWcompNameConv in SWcompNameList (Length(Lnc) ≥ 1), do

SWcompNameSplit ← split(SWcompNameConv.name, delimiter) ;

for each SWcompNamePart in SWcompNameSplit (Length(Lsn) ≥ 1),
do

if not exist SWcompNamePart0, then

RootElementNode ← SWcompNamePart;

else

ParentElementNode ← RootElementNode;

for each SWcompNamePart in ParentElementN-
ode.ChildNodes (Length(Lcn) ≥ 1), do

if not exist SWcompNamePart, then

ParentElementNode.addChildNode ←
SWcompNamePart;

else

ParentElementNode← ParentElementNode.ChildNodes;

End For;

This algorithm can be further extended to assist the user to identify, search and construct
these names comfortably displaying them as hierarchy and a procedure to navigate and
to simplify the construction of such names, that will enable the user to quickly build long
names uniformly over the entire project.

Chapter 5

Evaluation and case study

A prototype of the architecture presented has been implemented. The implementation
was evaluated on different case studies of models in the automotive domain. Case studies
targeted the design of model-based software components on an industry use case project
model developed using the design tool ESCAPE and a second case study targeted the
execution of specific paradigm based on the naming convention of AUTOSAR R©.

Two case studies were done for use cases in the development stage of the E/E software
models of the automotive domain. One case study was conducted on an industrial pro-
totype, which consisted of an application assisting developer to identify variants. The
second case study considered the stakeholders of a Virtual Organization and its external
suppliers.

Both case studies were based on the same domain model (containing the automotive spe-
cific data structures). The first one realized a workflow for determining variants resembling
the specification set. The second case study implemented a workflow to amalgamate the
distinct components.

5.1 Variability identification by selective targeting

The first case study was realized in the model development stage of the automotive do-
main. The tool ESCAPE is used for supporting the various key functions of modeling
(authoring tool for graphical definition, manipulation and analysis of functional networks
for a wide range of configurations, diagnostics tools like dependency analysis, fault back
tracking and support for mathlab/simulink simulation models and various programming
language implementations) The hierarchal nature of models camouflages visibility of the
deeply embedded software components thereby impeding their reuse. Many component
variants remain disregarded and the identification of such components would greatly en-
hance development.

A traditional method may be restricted to a specific case and not deliver a generic iden-
tification. Recent trends should support different stakeholders. For an analysis of these
stakeholders different levels of interests are defined.

56

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 57

Schema

Description Count

Total elements collection 171

Components list 23

Features vector 12

Table 5.1: Summary of schema for the data set

Project

Description Count Category

Total elements 32909 all

Components 1583 23

Features within components 13353 12

Table 5.2: Summary of project data set of case studies

Projects: People working in a group are assisted by the same tools for the development
of models. All of these projects have same schema and with guaranteed quality of
service.

Domains: Groups working with projects of different domains using the same or different
development tools, e.g. EAST-ADL (Architecture Description Language), ATESST
(Advanced Traffic Efficiency and Safety through Software Technology) AUTOSAR
(AUTomotive Open System ARchitecture), etc. Here determining commonality gets
more important. Another use case of targeting this level of interest is the developer’s
knowledge of information.

Virtual Organization: External OEM’s supplying software artifacts which are well
proven and tested over a period of time. These software IPs can be black boxes
and using them can be crucial at the same time it is an important requirement (e.g.
for scheduling the deliverables).

The concept supports a two phases strategy. The component list and feature vector are
selected manually from respective schemas of projects. These lists form the basis for
matching the specification set. Although the model based interpretation was considered,
because of the missing basic framework the user interface was realized using a traditional
programming approach. Nevertheless the design of the user interface components was
standardized by the application of Object-oriented design techniques.

A prototypical application was realized using the C# .Net framework. A dialog for entering
specification set related information, thus allowing the input of specific information.

The summary of the schema for the project data set is depicted in Table 5.1 and Table 5.2
respectively. The Components List is a subset of the elements within a schema which
describe components. A sample component list is illustrated in Table 5.3a. A similar
subset of elements which describes the features within the components forms the Feature
Vector illustrated in Table 5.3b is also derived from the schema. Elements which do not
contribute to describe variability are ignored.

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 58

Component List

Description Count

CompoundFunction 58

HWFunction 182

SWFunction 46

Parameter 6

StructureElement 50

SWBubbleType 130

ParameterType 5

ParameterTypeTerminal 8

IntDataType 14

FloatDataType 2

TimeDataType 1

AliasDataType 1

VariantDataType 4

HWFunctionType 46

TypeInterface 181

FunctionTypeTerminal 580

HWTypeTerminal 91

StructureElement 50

DeviceMapping 10

DeviceType 4

BusCAN 3

BusSegment 3

MappedFunction 108

1583

(a) Component List

Feature Vector

Description Count

Name 7500

LongName 0

Description 0

ConnectionSegment 537

SourceTerminal 538

SinkTerminal 538

Interface 292

CompoundTerminal 269

HWTerminal 292

SWTerminal 302

Input 1543

DataType 1542

13353

(b) Feature Vector

Table 5.3: Component List and Feature Vector derived from Schema

Every Project that validates to the schema refers to the same Component List and Feature
Vector derived from the schema to identify components and features.

The specific project data set which was used to verify the implementation is depicted in
Table 5.2. The project consisted of a total of 32909 elements. Of these elements a total
of 1583 elements signify components which were categorized into 23 categories as enlisted
with the component list. A total of 13353 elements signify features which were categorized
into 12 categories.

The experimentation has been carried out over a large sample of data, as the results
established were similar, only a few are illustrated here.

Three different approaches were adopted to determine the performance with respect to
the matches and the time.

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 59

Figure 5.1: Occurrence graph for a single element specification set (Sample set 1)

Figure 5.2: Time graph for a single element specification set (Sample set 1)

5.1.1 Evaluation using a single element specification set

The first experiment was conducted using a single element specification set. A group of ten
sets were input to determine the result set in comprehensive search and selective search.
Figure 5.1 and Figure 5.3 are two such sets illustrated here.

The global search results match all occurrences of the set whether they are components
or not. The relevant search results match all occurrences within a component even if

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 60

Figure 5.3: Occurrence graph for a single element specification set (Sample set 2)

Figure 5.4: Time graph for a single element specification set (Sample set 2)

they occur multiple times in a component. Searches with “Component only” match if the
elements are components. Searches result with “Features” match components even if some
features match.

In all cases the pattern of result set displayed similar behavior.

Observations

• The comprehensive (global) search yields a result set that contains every occurrences

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 61

of the specification set even if these nodes do not characterize a component.

• The nodes representing components yields a result set which is somewhat realistic.
Though these do not epitomize the complete set desired. This is often observed
when the component nodes do not match, but their features collectively match the
specification set.

• Whereas these nodes along with the features set yields a more elaborate result set.
A match contained by any node in a set of features would result in representing the
component within which it belongs.

Figure 5.2 and Figure 5.4 depicts the time taken for the specification set illustrated in
Figure 5.1 and Figure 5.3 respectively. The time graph depicts the aggregate time required
for global and selective search for a set of ten specification sets.

Observations

• It is evident from these figures that the time required for comprehensive search
exceeds the selective search (method proposed in this thesis) by almost a factor of 5
and may be a dominant factor for large specification sets.

5.1.2 Evaluation using a multiple element specification set

Similar to the first the second experiment was conducted using incrementing from one to
seven element specification sets as a group. Figure 5.5 and Figure 5.7 are two such sets
illustrated here which depicts the result set in comprehensive search and selective search.

The “Global search” results match all occurrences of the set whether they are components
or not. This search is only within the boundary of the element. Searches with “Component
only” match if the elements are components. Here too the search is within the boundary of
the element. Searches result with “Features” is across the boundary of features i.e. parts of
the specification set occurs in different features elements within a component. The features
behave collectively to match the specification set and identify a single component.

Observations

• The comprehensive search often yielded a large result set as it searches in individual
node which it treats as atomic.

• The behavior exhibited is similar with varying sizes of the specification sets. As ob-
served in Figure 5.5, the selective component-feature search result set demonstrates
a value when the size of specification set exceeds 3, because in this case the matches
take place across the boundary of the feature within the component. On the other
hand the other methods return a null result set as the search is only within the
boundary of the element.

• For any given size of specification sets, the selective component-feature search returns
a much smaller result set and is more precise.

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 62

Figure 5.5: Occurrence graph for multiple element specification set (Sample set 1)

Figure 5.6: Time graph for a multiple element element specification set (Sample set 1)

• Convergence is optimal with a specification set of size 3. A size too large of the
specification set may result in a null set for both methods as shown in Figure 5.7.

Figure 5.6 and Figure 5.8 depicts the time taken for the specification set illustrated in

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 63

Figure 5.7: Occurrence graph for a multiple element specification set (Sample set 2)

Figure 5.8: Time graph for a multiple element specification set (Sample set 2)

Figure 5.5 and Figure 5.7 respectively. The time graph depicts the aggregate time required
for global and selective search for a set of ten specification sets.

Observations

• Here too it is evident from these figures that the time required for comprehensive
search exceeds the selective search (method proposed in this thesis) by almost a
factor of 5 and may be a dominant factor for large specification sets.

VARIABILITY IDENTIFICATION BY SELECTIVE TARGETING 64

Figure 5.9: Occurrence graph for different starting point of elements within specification
set

• Only a small increase in time is observed for single and multiple element selection
sets. This does not have any major impact with the increasing size of the specification
set.

SUMMARY 65

5.1.3 Evaluation using different starting points for elements in specifi-
cation sets

The third experiment was conducted using different starting points of elements within the
specification sets. Figure 5.9 depicts the result set in comprehensive search and selective
search.

To determine the effect of different starting points, the multiple element specification set
was used and the orders of the elements within were changed to obtain five sets.

The result set for this had the same pattern as the two experiments above.

5.2 Identification through organized structuring

These names which adhere to the naming conventions usually have little relevance to
describe the software components and do not contribute to the identification of their
variant. The hierarchal ordering can facilitate easy identification as similar components
or variants will position together.

In this case study the behavioral description of the naming conventions using hierarchical
state machine models was implemented. The client application was realized using the C#
.NET framework and applied the behavioral model and the data model for generative
purposes, while the user interface model was specified and was refined and implemented.

Figure 5.10a depicts a sample set of scattered software components, the nomenclature
based on the naming conventions of AUTOSAR R© used by the organization for the speci-
fication of process related information, which is based on a compatible data model.

Figure 5.10b depicts a transformed set of the sample set in Figure 5.10a using hierarchical
state machine models to position similar components or variants together. The red eclipses
highlight variants and their versions.

5.3 Summary

The case studies have demonstrated the feasibility for using models to define application
parts in a structured and reusable way. The results demonstrate the performance im-
provements for the models compared to the traditional methods. On the other side the
drawbacks of the multi-layered model hierarchy could be reduced by the application of
programming languages with a lower abstraction for coding the framework (like C) and
the usage of more static structures for managing the model elements.

SUMMARY 66

(a) Sample set (b) Transformed set

Figure 5.10: Software components with nomenclature based on the naming conventions

Chapter 6

Conclusion

A system for executing identification of model-based software components has been pre-
sented in this work, that targets to provide improved support for distributed application
development of embedded software. A three-layered architecture has been introduced con-
sisting of application layer, identification layer that forms the middle layer, and resource
layer. This architecture has been used for illustrating the heterogeneity of the artifacts
contained in each layer and their different roles. The proposed system is targeted for
distributed systems of embedded software in automotive application.

6.1 Overview of the proposed framework

Managing variants is of utmost importance in today’s large software bases as they reflect
legal constraints, marketing decisions, and development cycles. As these software bases
often grew from different sources and were developed by different teams using different
tools it is in many cases very complicated if not nearly impossible to find artifacts that
might be variants, both for historical reasons as for development purposes.

Related works presents various aspects of model-based techniques and form a basis, gov-
erning the software component models of embedded devices. The related approaches put
on view a need for a generic methodology in the identification of software components
developed using several design tools.

The deployment of a variability management process is considered, as it increases the
possibility to derive more products. However, the management process must be formed
by activities well suited to the production of the assets.

Searching algorithms have to reflect both the capability to match keywords and to reflect
the structure that characterizes a component. Our proposed method is capable of both
aspects and therefore helps the developer to find matches even in large and heterogeneous
databases. In addition to that not only the required time for the search is a lot shorter,
but also the accuracy of the retrieved set of candidates is highly improved.

The proposed approach has been evaluated in several case studies for enabling application
specific functionality, while respecting the constraints of the distributed system and its

67

FUTURE WORK 68

members. As a consequence, while the application specific solution is specified in different
models, each supporting the best suited modeling technique, this architecture can be used
to manage the heterogeneity with the usage of general purpose programming languages
and corresponding component.

The proposed objective does not ensure a perfect solution, but offers a variability mecha-
nism alternative.

6.2 Future work

The proposed framework is targeting the characteristic challenges for identification of
platform specific software components in distributed pervasive systems.

While the issue of heterogeneity of software models is targeted, the issue of determining the
accuracy of the approach in platform specific implementation needs further investigation.

Another issue requires further research in understanding the integration of model-based
techniques for analyzing the behavior of the application.

Another field of future work is the specification and realization of additional models to
foster the invisibility of an application as well as to consider the further abstraction of the
user interface.

Chapter 7

Publications

This chapter provides the publications written during this thesis ordered after the sig-
nificance to the contributions as discussed in Section 3.3 and depicted in the layered
architecture in Figure 3.9.

The concept of Model-based Variability Management is described in Section 7.1, which has
been presented at the Fifth International Multi-conference on Computing in the Global In-
formation Technology Valencia, Spain in September 2010. It intends to facilitate reusable
software solution. Analyzing the user requirements by specifying the cases. Based on these
cases the spatial, functional and name features are extracted to facilitate the identifica-
tion and implementation of variability. This paper also presents the usage of the proposed
strategy in the design tool ESCAPE.

The issues of interactive restructuring strategies to identify commonality based on architec-
ture, functionality and naming conventions in identification, specification and realization
of variants within a product development is discussed in Section 7.2. This paper has
been presented in October 2010 at the 10th IFAC Workshop on Programmable Devices
and Embedded Systems in Poland and is based on a scenario developed in the ESCAPE
design tool.

An adaptation of a formal mathematical model to envisage the problem and prove theo-
retically the proposed strategy is described in Section 7.3. The paper has been presented
at the Seventh International Conference on Evaluation of Novel Approaches to Software
Engineering, Wrocaw, Poland in June 2012.

The overview of the process to the identification of variability, its implementation and
evaluation results is described in Section 7.4. The paper has been presented at the Sev-
enth International Multi-conference on Computing in the Global Information Technology
Venice, Italy in June 2012.

The paper “Variability Identification by Selective Targeting of Significant Nodes” has
been selected by the editors of IARIA Board and invited to submit an extended version
of ICCGI 2012 paper to the International Journal On Advances in Networks and Services,
Vol. 6 No. 1&2 2013.

69

Model-based Variability Management for Complex Embedded Networks

Anilloy Frank
Institute of Technical Informatics,
Graz University of Technology

Inffeldgasse 16, 8010 Graz, Austria
Email: anilloy.frank@student.tugraz.at

Eugen Brenner
Institute of Technical Informatics,
Graz University of Technology

Inffeldgasse 16, 8010 Graz, Austria
Email: brenner@tugraz.at

Abstract—An environment involving large scale development
has a tendency to repeatedly designing functional blocks
amongst different groups from several domains. To avoid at
least a part of these problems a general architecture can be
planned within an organization to facilitate reuse. This offers
benefits such as cost savings, lower redundancy, improved
productivity and quality. Complexity increases significantly
with use or reuse of external blocks, as they may not adhere to
the internal architecture. Major challenges are in identifying
the commonality of functionality, where the designs involve
variability (ability to customize) within these blocks. The
concept of a Software Product Line (SPL) largely addresses this
issue. But in addition to variants, their versions/releases also
play an important role for effective management over the entire
product cycle from concept, design, development, test up to
after sales maintenance. Moreover, to reduce the development
time, processes to assist team members when choosing a
component from the core assets is essential. Our proposal
is based on the work with the industrial design tool named
ESCAPE. It addresses the issues to identify commonality
based on architecture, functionality and naming conventions in
identification, specification and realization of variants within
a product development as well as to assist the development
team. As this tool in the discussed aspect follows the practices
commonly used in industry, it can be seen as an example
without limiting the general validity of the proposed process
for variability management.

Keywords-Embedded Systems; Software Configuration; Vari-
ability Management

I. INTRODUCTION

Reuse of automotive embedded software is difficult as it
is developed for a small ECU (Electronic control unit) that
lacks both processing speed and memory of general purpose
machines. Moreover, the complexity of the algorithms is dra-
matically increasing. Also the trend is emerging to integrate
different ECUs and map the software functions onto these.
In view of this complexity achieving the required reliability
and performance is one of the most challenging problem [8].

Variants of embedded software functions are vital in
customizing the software for different regions (Europe, Asia,
etc.), in particular to meet regulations of the respective
regions. Also different sensors/actuators, different device
drivers and the distribution of functionality to different ECUs
necessitate variants. Managing variability involves extremely

complex and challenging tasks, which must be supported by
effective methods, techniques, and tools [4].

Most major companies have focused on trying to develop
both tools and specific ECUs to enable the reuse of the
software. When developing automotive software legacy code
would normally be a starting point. A type of standardized
software architecture may be a solution to handle such
complexity as reusability may be improved and time and
costs can be saved.

The proposed strategy is to introduce a variability man-
agement layer. It intends to facilitate reusable software
solution. We start by analyzing the user requirements by
specifying the cases. Based on these cases the spatial,
functional and name features are extracted to facilitate the
identification and implementation of variability. Usage of
the proposed strategy is shown applying it to design tool
ESCAPE as an example.

II. STATE-OF-THE-ART

A. Variability

The term variability generally refers to the ability to
change. Variability does not occur by chance, but is brought
about on purpose alternatively ways to represent choices.
Pohl suggests three questions to define variability [10].

What does vary? Identifying precisely the variable
item or property of the real world. This leads us to the
definition of the term variability subject. A variability
subject is a variable item of the real world or a variable
property of such an item.
Why does it vary? There are different reasons for an
item or property to vary: different stakeholder needs,
different laws, technical reasons, etc. Moreover, in the
case of interdependent items, the reason for an item to
vary can be the variation of another item.
How does it vary? This deals with the different
shapes a variability subject can take. To identify the
different shapes of a variability subject we define
the term variability object (a particular instance of a
variability subject).

2010 Fifth International Multi-conference on Computing in the Global Information Technology

978-0-7695-4181-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCGI.2010.37

306

2010 Fifth International Multi-conference on Computing in the Global Information Technology

978-0-7695-4181-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCGI.2010.37

305

7.1 Publication 1 - ICCGI 2010 70

Decision points, choices and constraint dependency rules
describe variability. In definition of variability, we have
variability subjects and variability objects. Variability subject
may be suggested as a decision points, and the choices
as variability objects. Several thousand decision points and
choices are required. Constraint dependency rules are: re-
quires or excludes decision points, requires or excludes
choices, and choice requires or excludes decision points [9].

B. Variability management
Variability management (VM) is a fundamental Software

Product Line Engineering (SPLE) activity that explicitly
represents software artifact variations for managing depen-
dencies among variants and supporting their instantiations
throughout the SPL life cycle [4].

An SPL is a set of software-intensive systems that share
a common set of features for satisfying the needs of a par-
ticular market. SPLs can reduce development costs, shorten
time-to-market, and improve the product quality by reusing
core assets for project-specific customizations [4].

Figure 1. Variability management in product lines

To enable reuse on a large scale, SPLE identifies and
manages commonalities and variations across a set of system
artifacts such as requirements, architectures, code compo-
nents, and test cases.

SPLE can be categorized into domain engineering and
application engineering (see Fig. 1). Domain engineering
involves design, analysis and implementation of core objects,
whereas application engineering is reusing these objects for
product development [1], [2].

Activities on the variant management process involves
Variability identification, Variability specification and
Variability realization [3].

• A Variability Identification process will incorporate
feature extraction and feature modeling.

• A Variability Specification process is to derive a pattern.
• A Variability realization process is a mechanism to

allow variability.

III. ESCAPE

ESCAPE is an authoring tool for graphical definition,
manipulation and analysis of functional networks with
ability to manage a wide range of configurations.
The modelling can be performed without regard to
their subsequent implementation in software (SW) and
hardware (HW). In addition it provides diagnostics tools
like dependency analysis, fault back tracking, support
for mathlab/simulink simulation models and various
programming language implementations [13].

There are 3 views,

Figure 2. Escape: FSB View (screenshot)

• FSB (Functional structure builder) (see Fig. 2) facil-
itates to build the structure of the model. In the FSB
view a project is displayed in the form of a tree that
represents the product model structure. The left pane
displays the hierarchy of compound functions within a
project. The right pane displays the schematic of the
functional structure.

Figure 3. Escape: FTB View (screenshot)

• FTB (Function type builder) (see Fig. 3) provides
defining hardware and software types. The left pane of
the FTB view displays the hierarchy of hardware types
and software types. The right pane of the FTB view
shows the definitions of these types.These types can
have basic- and user-defined subtypes.

• HSB (Hardware Structure Builder) (see Fig. 4)
which allows networking ECUs and mapping the
software functions. The HSB view shows the hierarchy
of networked ECUs interconnected by bus systems.
Various Buses and ECUs can be instantiated. The
compound functions designed in the FSB view can be

307306

7.1 Publication 1 - ICCGI 2010 71

mapped on these ECUs in this view.

Figure 4. Escape: HSB View (screenshot)

As the depth of hierarchy in FSB and FTB grows, pos-
sibilities of redesigning similar functions and user-defined
types which may be variants of existing types increases, sim-
ply because the mechanism to manage variants is lacking.

This tool displays inadequacy in handling variants.
Therefore a need arises to develop patterns (parameters and
procedures) for extracting object features, and to develop a
mechanism to manage and support variability.

Example: The problem may be best explained by citing
an example.

Broadly the domains in an automotive industry are Body
and Comforts, Powertrains, Chassis, Safety and Multimedia
and Telematics. Numerous technical and administrative
groups are involved in the development of each domain.

These domains further have subsets
Body and comforts
• Central Locking
• Wiper/Washer
• Anti Theft Warning System
• Window Control

:
Powertrains
• Transmission System
• Combustion Engine
• Engine torque and mode management

:
Chassis
• Vehicle Longitudinal Control
• Electronic Parking Brake

• Adaptive Cruise Control
• Steering System

:

Current trends in automotive software development is
mapping of software components on networked ECUs, a
shift from an ECU based approach to a function based
approach. System configuration is possible on the basis
of description of software component, ECU resources and
constraints in system description.

Figure 5. Exchangeability of software components

Software components are either developed internally using
a standardized naming convention, or obtained from various
OEMs. The use of standardized application interfaces in-
creases the quality on exchange with suppliers and improves
the software integration from the system standpoint. OEMs
are applying AUTOSAR naming conventions; and there
are more than 10,000 interfaces and calibrations data for
industrial purposes based on these specifications of naming
convention [14].

This tends to severely affect the development cycle.
Variability management becomes crucial in such scenarios.
Managing complexity by exchangeability (see Fig. 5) and
reuse of software components, integration of functional mod-
ules from multiple suppliers, scalability to different vehicle
and platform variants, standardization of basic system func-
tions, software updates over vehicle lifetime, maintainability

308307

7.1 Publication 1 - ICCGI 2010 72

throughout the whole product life cycle, meet the non func-
tional legal requirements, resources efficiency, redundancy
and many others factors play an important role in the process
and need to be handled properly.

IV. PROPOSED PATTERN FOR VARIABILITY
MANAGEMENT

The proposed method is to introduce a layer that provides
the capability for variability management (see Fig. 6), which
enhances both readability and clarity in representation of
variability. It offers the user an option for the configuration
of all information related to variation points, insertion of
variants, the definition of their types and their storage in a
data base. All that information is made available so that the
user can select and create new variants. Thus, depending
on the user’s selection, objects are created with appropriate
type, properties, and method information previously regis-
tered during the configuration within the database.

Figure 6. Variant management layer

A. Specification of the Cases

The example (see Fig. 7), displays the development phase
for two products A and B. Both products reuse functions
from a data backbone. The development phase may also
include the development of software functions in the repos-
itory themselves, which may have numerous versions. The
software development for product A is tested with the ver-3
of functional block B and a variant of ver-4 of functional
block A. Similarly product B also uses different version and
variants of functional blocks from the data backbone.

A certain version/release of a variant of a functional
block suitable in a product may exhibit an improper
behavior, when a different version or variant is selected.
Even a more improved version of the same variant may not
yield a reliable results.

Figure 7. Figure describing the variants, versions and products

Case 1: The product is tested using software functions
of a certain variant and version. These products may
exhibit compatibility issues between functional blocks
whilst using later version of the function and may fail
to perform as expected.

Case 2: To enable parallel development, extracting fea-
tures to identify and specify the functional blocks based
on architecture, functionality in the repository.

Case 3: A process that tracks usability and prevent
inconsistencies due to deprecating variants and version
from repository.

Case 4: Establishing a testing mechanism for valida-
tions to maintain high quality for components and it
variants.

Case 5: To assist the developer, a process to intelli-
gently determine whether a functional block or its
variant exist in the data backbone, to avoid redesigning
of existing functions, thereby improving productivity.

V. FEATURE EXTRACTION

Based on the specification of the cases broadly the deci-
sion points, choices and constraint dependency rules pattern
for feature extraction to extract spatial, functional, and name
are described (see Fig. 8).

A. Architectural features

• Structural design rules, design convention, consistent
ways: these could include the number of inputs and
outputs, their data types, and their default values,

• Parts in different sub tree which could be similar: a
group of blocks having same functionality,

• Brief description about the object, comments, descrip-
tion convention: meta data, keywords and other textual
description about the object.

309308

7.1 Publication 1 - ICCGI 2010 73

Figure 8. Feature extraction: Spatial, Functional and Name

B. Functionality of the objects

• Methods to identify identical blocks: based on func-
tional use,

• Representing hierarchy in structure of variants: based
on parameters,

• Possibility to map variants,
• Comparing and searching; rules for comparing func-

tionality and search for the functional block.

C. Naming conventions

In order to maintain uniformity in names of func-
tional blocks, parameters, etc., usually long and cum-
bersome naming conventions are used, which are not
just difficult to remember but also tedious to con-
struct. Eg. a typical convention for naming defined
as project group year functionalBlock type number could
look like

BRGD CODCA 2010 FNRS USINT 14357
BRGD CODCA 2010 FNRS USINT 14486
BRGD CODCA 2010 FNRS USINT 14332
These names are neither user friendly nor meaningful.

But to assist the user to identify, search and construct
these names comfortably displaying them as hierarchy and
a procedure to navigate and to simplify the construction of
such names will enable the user to quickly build long names
uniformly over the entire project.

• Building a local dictionary of all names used in the
project if they are not the standard words,

• Using some characters as delimiters and displaying
suggestions to the next level in the hierarchy from
the existing names, as the user types new names or
edits existing ones. In addition suggestions of thesaurus,
synonyms, antonyms, etc.,

• Automatically navigate through the levels of hierarchy
as the corresponding suggestions are selected or build
the names as one traverses through the hierarchy,

• Assigning weights depending on related names, most
often used, frequently used, etc.

VI. CONCLUSION

The deployment of a variability management process is
considered as it increases the possibility to derive more

products. However, the management process must be formed
by activities well suited to the production of the assets.

The proposed objective does not ensure a perfect solu-
tion, but offers a variability mechanism alternative. Feed-
back from developers on parts of features included in the
prototype indicate positive on preliminary results without
stressable data as they can include variability management in
their development cycle. Although no research results exist
about the necessary overhead, here we actually see benefits
because it increases significantly the reusability, reliability
and hence the productivity. It also cuts cost by avoiding
repeatability of redesigning existing functions and time to
deliver.

REFERENCES

[1] F. Bachmann and P.C. Clements, ”Variability in software prod-
uct lines,” Technical Report -CMU/SEI-2005-TR-012, 2005.

[2] J. Bosch, ”Design and use of software architectures: Adopting
and evolving a product-line approach,” Addison-Wesley, 2000

[3] L.A. Burgareli, Selma, S.S. Melnikoff, and G.V. Mauricio
Ferreira, ”A variation mechanism based on adaptive object
model for software product line of brazilian satellite launcher,”
First IEEE Eastern European Conference on the Engineering
of Computer Based Systems, 2009, pp. 24-31

[4] P. Clements and L. Northrop, ”Software product lines: Prac-
tices and patterns,” Addison-Wesley, 2007

[5] H. Gomaa, ”Designing software product lines with UML
2.0: from use cases to pattern-based software architectures,”
Addison-Wesley, 2005

[6] H. Gomaa and D.L. Webber, ”Modeling adaptive and evolv-
able software product lines using the variation point model,”
Proceedings of the 37th Hawaii international Conference on
System Sciences, Washington, Jan 2004, 10 pp.

[7] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,
”FORM: A feature-oriented reuse method with domain specific
reference architectures,” Annual Software Engineering-5, 1998,
pp. 143-168

[8] D. Kum, G. Park, S. Lee, and W. Jung, ”AUTOSAR migration
from existing automotive software,” International Conference
on Control, Automation and Systems , Oct 2008, pp. 558-562

[9] A.O. Elfaki, S. Muthaiyah, H.M. Ibrahim, S. Amnuaisuk, and
Chin Kuan Ho, ”Defining variability in DSS: An intelligent
method for knowledge representation and validation,” Proceed-
ings of the 43rd Hawaii International Conference on System
Sciences, Jan 2010, pp. 1-9

[10] K. Pohl, G. Bäckle, and F.J. Linden, ”Software product line
engineering: Foundations, principles and techniques,” Springer-
Verlag, New York, 2005

[11] J. Weiland and D. Chrysler, ”Configuring variant-rich auto-
motive software architecture models,” published by the IEE,
Michael Faraday House, Mar 2007, pp. 73-80

[12] J.W. Yoder, F. Balaguer, and R. Johnson, ”Architecture and
design of adaptive object-models,” ACM Sigplan Notices. Vol.
36, Fasc. 12, 2001, pp. 50-60

[13] ESCAPE ”http://www.gigatronik2.de/index.php?seite=escape
produktinfos de&navigation=3019&root=192&kanal=html”

[14] AUTOSAR ”http://www.autosar.org/download/conferencedocs
/03 AUTOSAR Tutorial.pdf”

310309

7.1 Publication 1 - ICCGI 2010 74

Strategy for Modeling Variability in
Configurable Software

Anilloy A. Frank ∗ Eugen Brenner ∗∗

∗ Institute of Technical Informatics, Graz University of Technology,
Inffeldgasse 16, 8010 Graz, Austria (e-mail:

anilloy.frank@student.tugraz.at).
∗∗ Institute of Technical Informatics, Graz University of Technology,

Inffeldgasse 16, 8010 Graz, Austria (e-mail: brenner@tugraz.at)

Abstract: Large development environments with numerous groups from several domains tend
to repeatability in designing functional blocks. With constantly changing requirements within
the set of products derived from these functional blocks, the variability needs to evolve. Many
embedded systems are implemented with a set of alternative function variants to adapt to the
changing requirements. The ever growing number of variable features and variants makes the
problem more and more unmanageable. Typically, obsolete features are not removed and add
to the chaos. Planning a standardized architecture within an organization may address a part
of these problems and facilitate reuse. Major challenges are in identifying the commonality of
functionality, where the designs involve variability (ability to customize) within these blocks. In
addition to variants, versions/releases of functional blocks also play an important role for the
effective management over the entire product cycle. Moreover, to reduce the development time,
interactive processes to assist team members when choosing a component from the core assets
are essential.
Our proposal addresses the issues of interactive restructuring strategies to identify commonality
based on architecture, functionality and naming conventions in identification, specification and
realization of variants within a product development as well as to assist the development team.
Though based on use of the industrial design tool named ESCAPE, the discussed aspects follow
the practices commonly used in industry. It therefore can be seen as examples without limiting
the general validity of the proposed process for variability management.

Keywords: Design Tool, Embedded Systems, Software configuration,Variability management.

1. INTRODUCTION

The current development trend in automotive software
is mapping of software components on networked ECU’s
(Electronic control unit), which includes shift from an
ECU based approach to a function based approach. Reuse
of automotive embedded software is difficult, as it is de-
veloped for a small ECU that lacks both processing speed
and memory of general purpose machines. Moreover, the
complexity of the algorithms is dramatically increasing. In
view of this complexity, achieving the required reliability
and performance is one of the most challenging problems
Kum et al. (2008).

Variants of embedded software functions are vital in cus-
tomizing the software for different regions (Europe, Asia,
etc.), in particular it is necessary to meet legal regulations
of the respective regions. Also different sensors/actuators,
different device drivers and the distribution of functional-
ity to different ECUs necessitate variants. Managing vari-
ability involves extremely complex and challenging tasks,
which must be supported by effective methods, techniques,
and tools Clements and Northrop (2007).

Most major companies have focused on trying to develop
both tools and specific ECUs to enable the reuse of the

software. A type of standardized software architecture may
be a solution to handle such complexity, as reusability may
be improved, and time and costs can be saved.

The proposed strategy intends to facilitate automated and
interactive strategies for reusable software solutions. We
start by analyzing the user requirements by specifying
the cases. Based on these cases the spatial, functional,
and name features are extracted to facilitate the identi-
fication and implementation of variability. The usage of
the proposed strategy is shown applying it to design tool
ESCAPE as an example.

2. VARIABILITY MANAGEMENT

Variability management (VM) is a fundamental activity in
Software Product Line Engineering (SPLE), that explicitly
represents software artifact variations for managing depen-
dencies among variants and supporting their instantiations
throughout the Software Product Line (SPL) life cycle
Clements and Northrop (2007).

A SPL is a set of software-intensive systems that share
a common set of features for satisfying the needs of a
particular market. SPLs can reduce development costs,

7.2 Publication 2 - PDES 2010 75

shorten time-to-market, and improve the product quality
by reusing core assets for project-specific customizations
Clements and Northrop (2007); Gomaa (2005).

Fig. 1. Variability management in product lines

To enable reuse on a large scale, SPLE identifies and
manages commonalities and variations across a set of
system artifacts such as requirements, architectures, code
components, and test cases.

SPLE can be categorized into domain engineering and
application engineering (see Fig. 1). Domain engineer-
ing involves design, analysis, and implementation of core
objects, whereas application engineering is reusing these
objects for product development Bachmann and Clements
(2005); Bosch (2000).

Activities on the variant management process involves
variability identification, variability specification, and vari-
ability realization Burgareli et al. (2009).

• A variability identification process will incorporate
feature extraction and feature modeling.

• A variability specification process is to derive a pat-
tern.

• A variability realization process is a mechanism to
allow variability.

3. ESCAPE

ESCAPE is an authoring tool for graphical definition,
manipulation, and analysis of functional networks with
ability to manage a wide range of configurations. The mod-
eling can be performed without regard to their subsequent
implementation in software (SW) and hardware (HW). In
addition it provides diagnostics tools like dependency anal-
ysis, fault back tracking, support for mathlab/simulink
simulation models, and various programming language
implementations GIGATRONIK (2009).

ESCAPE supports 3 different views (refer Fig. 2):

• FSB (Functional structure builder) facilitates to build
the structure of the model,

• FTB (Function type builder) provides defining hard-
ware and software types, and

• HSB (Hardware Structure Builder) which allows net-
working ECUs and mapping the software functions.

Fig. 2. Escape: FSB, FTB, and HSB View

In the FSB view a project is displayed in the form of a
tree that represents the product model structure. The left
pane displays the hierarchy of compound functions within
a project. Groups or teams can work independently on
a sub-tree for the development of functional parts of the
product model. The right pane displays the schematic of
the functional structure, and leafs of the hierarchy are the
instances of the hardware- and software-types defined in
the FTB. These sub-trees can then be integrated into a
single large model in FSB. It also provides tools to trace
the forward and backward impact on the model.

The left pane of the FTB view displays the hierarchy
of hardware types and software types. These types can
have basic- and user-defined subtypes. The user-defined
hardware types can have subtypes like input hardware
(e.g. sensors, switches), output hardware (e.g. actuators),
and control hardware which can be further sub-typed to
any depth grouped by similar hardware domain, hardware
logic, and actual hardware type. The right pane of the
FTB view shows the definitions of these types. Similarly
the basic software types include integer, boolean, float,
double, etc., and the user defined software types can have
subtypes to any depth grouped by domain related user-
defined software types based/derived from basic types,
software parameters, etc.

The HSB view shows the hierarchy of networked ECUs
interconnected by bus systems. Various buses and ECUs
can be instantiated. The compound functions designed in
the FSB view can be mapped on these ECUs in this view.

As the depth of hierarchy in FSB and FTB grows, the
probability for redesigning similar functions and user-
defined types, which may be variants of existing types in-
creases, simply because the mechanism to manage variants
is lacking.

7.2 Publication 2 - PDES 2010 76

This tool displays inadequacy in handling variants. There-
fore the need arises to develop patterns (parameters and
procedures) for extracting object features, and to develop
a mechanism to manage and support variability.

4. SPECIFICATION OF THE CASES

Our example (see Fig. 3) displays the development phase
for two products A and B. Both products reuse func-
tions from a data backbone. The development phase may
also include the development of software functions in the
repository itself, which may have numerous versions. The
software development for product A is tested with the ver-
3 of functional block B and a variant of ver-4 of functional
block A. Similarly product B also uses different version
and variants of functional blocks from the data backbone.

Fig. 3. Example describing variants, versions, and products

A certain version/release of a variant of a functional block
suitable in a product may exhibit an improper behavior,
when a different version or variant is selected. Even a
more improved version of the same variant may not yield
a reliable results.

When handling variants and versions we can state the
following problems:

Case 1: The product is tested using software functions
of a certain variant and version. These products
may exhibit compatibility issues between functional
blocks, whilst using later version of the function may
fail to perform as expected.

Case 2: To enable parallel development, it is necessary
to be able to extract features and to identify and
specify the functional blocks in the repository based
on architecture and functionality.

Case 3: A process that tracks usability and prevents
inconsistencies due to deprecate variants and version
from repository is required.

Case 4: A testing mechanism for validations in order to
maintain high quality for components and its variants
has to be established.

Case 5: The developer has to be assisted by a process to
intelligently determine whether a functional block or
its variant should exist in the data backbone, to avoid
redesigning of existing functions, thereby improving
productivity.

5. PROPOSED PATTERN FOR VARIABILITY
MANAGEMENT

The term variability generally refers to the ability to
change. Variability does not occur by chance, but is
brought about on purpose, showing alternative ways which
represent choices. Pohl suggests three questions to define
variability Pohl et al. (2005); Gomaa and Webber (2004).

What does vary? Identifying precisely the variable
item or property of the real world. This leads us
to the definition of the term variability subject. A
variability subject is a variable item of the real world
or a variable property of such an item.

Why does it vary? There are different reasons for
an item or property to vary: different stakeholder
needs, different laws, technical reasons, etc. Moreover,
in the case of interdependent items, the reason for an
item to vary can be the variation of another item.

How does it vary? This deals with the different
shapes a variability subject can take. To identify the
different shapes of a variability subject we define the
term variability object (a particular instance of a
variability subject).

Decision points, choices and constraint dependency rules
describe variability. In the definition of variability, we have
both variability subjects and variability objects. Variabil-
ity subject may be understood as decision points, and
variability objects as choices. Typically several thousand
decision points and choices are required. Constraint depen-
dency rules are: requires or excludes decision points, re-
quires or excludes choices, and choice requires or excludes
decision points Osman et al. (2010).

Fig. 4. Variant management layer

7.2 Publication 2 - PDES 2010 77

The proposed method is to introduce a layer that provides
the capability for variability management (see Fig. 4),
which enhances both readability and clarity in repre-
sentation of variability. It offers the user an option for
the configuration of all information related to variation
points, insertion of variants, the definition of their types
and their storage in a data base. All that information is
made available so that the user can select and create new
variants. Thus, depending on the user’s selection, objects
are created with appropriate type, properties, and method
information previously registered within the database dur-
ing the configuration Weiland and D. Chrysler (2007);
Yoder et al. (2001).

6. FEATURE EXTRACTION

Broadly the decision points, choices and constraint de-
pendency rules pattern for feature extraction to extract
spatial, functional, and name are described.

The feature extraction of Software components may be
summed up as

E = {A,F,N,R} (1)

where E denotes the set of features extracted, A denotes
the set of architectural features, F denotes the set of func-
tional features, N denotes the set of naming conventions,
and R denotes the set of relations.

Extracting features is a structuring concept and does
not define functionality. Naming convention are solely
for interactive solutions. Both non-variant and variant
features are included in the set. This enables for a closer
approximation to determine the Software component.

In addition some parameters of Software components also
contribute to variants. These parameters are represented
as

P = {N,V, T} (2)

where P denotes the set of parameters, N denotes the set
of naming conventions, V denotes the set of values, and T
denotes the set of data types of these parameters.

Parameters which are constant are non-variants.

6.1 Architectural features

With standardized naming convention as a rule, software
functions tend to have names which are a combination of
project, group, year, numbers, etc. These name convention
described later (see subsection 6.3) are not helpful to the
developer in identifying functional blocks from the core
assets. Variability may only be in some spatial features of
software functions like a different parameter or a different
data type for inputs or outputs, etc. Thus in an interactive
tool one of the techniques to identify software functions
can be based on the architectural features.
To enhance accessibility the architectural features sup-
ported are:

• Structural design rules, design convention, consistent
ways: these could include the number of inputs and
outputs, their data types, and their default values,

• Parts in different sub tree which could be similar: a
group of blocks having same functionality,

• Brief description about the object, comments, de-
scription convention: meta data, keywords and other
textual description about the object.

The architectural features are represented as

A = {I,O,D, S} (3)

where A denotes the set of architectural features, I denotes
the set of inputs, O denotes the set of outputs, D denotes
the set of description, keyword or meta-data of these
components, and S denotes the subtree.

Inputs and outputs can be represented as

I = {V, T} (4)

O = {V, T} (5)

where I denotes the set of inputs, O denotes the set of
outputs, V denotes the set of values, and T denotes the
set of data types.

Inputs and outputs must match exactly to reasonably
support exchangeable components.

For any set of objects E ⊆ E , the set of common attributes
is defined as

σ(E) = {a ∈ A | ∀e ∈ E : (e, a) ∈ R} (6)

Similarly for any set of attributes A ⊆ A, the set of
common objects is defined as

τ(A) = {e ∈ E | ∀a ∈ A : (e, a) ∈ R} (7)

The maximum collection of objects with common set of
attributes, if A = σ(E) and E = τ(A)

6.2 Functionality of the objects

Though the spatial features may provide a certain amount
of accessibility, there can be numerous functions with
different functionality having the same or similar spatial
features. Thus identifying software functions based on
spatial features alone is not sufficient and therefore iden-
tifying functionality becomes essential. Also it can further
narrow down the search. Defining architectural features
is a relatively simpler process than defining functionality.
Describing functionality is an extremely complex process
with interrelation between numerous parameters, logic ta-
bles, data types, states, etc.

To further narrow down the accessibility, functionality
features supported are:

• Methods to identify identical blocks: based on func-
tional use,

• Representing hierarchy in structure of variants: based
on parameters,

• Possibility to map variants,

• Comparing and searching: rules for comparing func-
tionality and search for the functional block.

7.2 Publication 2 - PDES 2010 78

The functionality features are represented as

F = {D,Γ,M} (8)

where F denotes the set of functionality, D denotes the
set of descriptions, keywords or meta-data, Γ denotes the
set of tables describing functionality, and M denotes the
set of map variants.

For any set of objects E ⊆ E , the set of common
functionality is defined as

ρ(E) = {f ∈ F | ∀e ∈ E : (e, f) ∈ R} (9)

Similarly for any set of functionality F ⊆ F , the set of
common objects is defined as

δ(F) = {e ∈ E | ∀f ∈ F : (e, f) ∈ R} (10)

The maximum collection of objects with a common set of
functionality is obtained when F = ρ(E) and E = δ(F)

6.3 Naming conventions

Naming conventions of functional blocks, parameters,
etc., are usually long and cumbersome, which are not
just difficult to remember but also tedious to con-
struct. Eg. a typical convention for naming defined
as: project group year functionalBlock type number looks
like

BRGD CODCA 2010 FNRS USINT 14357

BRGD CODCA 2010 FNRS USINT 14486

BRGD CODCA 2010 FNRS USINT 14527

These names are neither user friendly nor meaningful.
But to assist the user to identify, search, and construct
these names, comfortably displaying them as hierarchy, as
well as having a procedure to navigate and simplify the
construction of such names will enable the user to quickly
build long names uniformly over the entire project. Often
used activities that are supported by our solution are:

• Building a local dictionary of all names used in the
project, if they are not the standard words,

• Using some characters as delimiters and displaying
suggestions to the next level in the hierarchy from the
existing names, as the user types new names or edits
existing ones. In addition suggestions of thesaurus,
synonyms, antonyms, etc. are given,

• Automatically navigate through hierarchy levels as
the corresponding suggestions are selected, or build
the names as one traverses through the hierarchy,

• Assigning weights depending on related names, most
often used names, frequently used names, etc.

The naming convention are represented as

N = {L,Ψ, µ,W} (11)

where N denotes the set of naming convention, L de-
notes the set of custom local dictionary with non-standard
words, Ψ denotes the delimiter, µ denotes the functionality
to traverse hierarchy and W denotes the set of weights.

7. CONCLUSION

The deployment of a variability management process is
considered, as it increases the possibility to derive more
products. However, the management process must be
formed by activities well suited to the production of the
assets.

The proposed objective does not ensure a perfect solution,
but offers a variability mechanism alternative, helps to
reduce redundancy, enhances the speed of development,
and restricts the user’s handling errors, thereby facilitating
a better management of variants. Including variability
management in the development process therefore not
only improves the quality of the delivered software under
reduced costs, but in the long run it makes larger solutions
with individualization of software for specific targets pos-
sible.

REFERENCES

Bachmann, F. and Clements, P.C. (2005). Variability in
software product lines. Technical Report -CMU/SEI-
2005-TR-012.

Bosch, J. (2000). Design and Use of Software Architec-
tures: Adopting and Evolving a Product-Line Approach.
Addison-Wesley.

Burgareli, L., Selma, S.S., Melnikoff, and Ferreira, G.V.M.
(2009). A variation mechanism based on adaptive object
model for software product line of brazilian satellite
launcher. First IEEE Eastern European Conference on
the Engineering of Computer Based Systems.

Clements, P. and Northrop, L. (2007). Software product
lines: Practices and patterns.

GIGATRONIK (2009). Escape. http://www.gigatronik
2.de/index.php?seite=escape produktinfos de
&navigation=3019&root=192&kanal=html.

Gomaa, H. (2005). Designing Software Product Lines with
UML 2.0: From Use Cases to Pattern-Based Software
Architectures. Addison-Wesley.

Gomaa, H. and Webber, D. (2004). Modeling adaptive
and evolvable software product lines using the variation
point model. Proceedings of the 37th Hawaii interna-
tional Conference on System Sciences, Washington.

Kum, D., Park, G., Lee, S., and Jung, W. (2008). Autosar
migration from existing automotive software. Interna-
tional Conference on Control, Automation and Systems,
558–562.

Osman, A., Muthaiyah, S., Ibrahim, H.M., Amnuaisuk,
S., and Ho, C.K. (2010). Defining variability in dss:
An intelligent method for knowledge representation and
validation. Proceedings of the 43rd Hawaii International
Conference on System Sciences.

Pohl, K., Backle, G., and Linden, F.J. (2005). Software
Product LineEngineering: Foundations, Principles and
Techniques. Springer-Verlag, New York.

Weiland, J. and D. Chrysler, A. (2007). Configuring
variant-rich automotive software architecture models.
published by the IEE, Michael Faraday House.

Yoder, J.W., Balaguer, F., and Johnson, R. (2001). Ar-
chitecture and design of adaptive object-models. ACM
Sigplan Notices, 36, 50–60.

7.2 Publication 2 - PDES 2010 79

A GENERIC APPROACH FOR THE IDENTIFICATION OF
VARIABILITY

Anilloy Frank1 and Eugen Brenner1

1Institute of Technical Informatics, Technische Universitt, Inffeldgasse 16, 8010 Graz, Austria
anilloy.frank@student.tugraz.at, brenner@tugraz.at

Keywords: Design Tools; Embedded Systems; Feature Extraction; Software Reusability; Variability Management;

Abstract: The automotive electrical/electronics (E/E) embedded software development largely uses Model Based Soft-
ware Engineering (MBSE), an industrially accepted approach. With an ever increasing complexity of embed-
ded software, the E/E models in automotive applications are getting enormously unmanageable. The heteroge-
neous nature of projects developed using several modeling and simulation tools, and the hierarchical structure
with numerous composite components deeply embedded within, tends to repeatability. Hence it is often nec-
essary to define a mechanism to identify reusable components from these that are embedded deep within. The
proposed approach addresses the identification process in the development and deployment of software com-
ponents used in the realization of such distributed processes, by selectively targeting the component-feature
model (CF) instead of a comprehensive search to improve the identification. It addresses the issues to identify
commonality of variants within a product development. The results obtained are faster and are more accurate
compared to other methods.

1 INTRODUCTION

The current development trend in automotive soft-
ware is to map embedded software components on
networked Electronic Control Units (ECU) (Kum
et al., 2008).

Variants of embedded software functions are in-
evitable in customizing for different regions (Europe,
Asia, etc.), to meet regulations of the respective re-
gions. Also different sensors / actuators, different de-
vice drivers, and distribution of functionality on dif-
ferent ECUs necessitate variants (Frank and Brenner,
2010a); (Frank and Brenner, 2010b).

Often it is apparent to procure well established
software components tested for performance, safety
and reliability from external sources or Original
Equipment Manufacturers (OEM), illustrated in Fig-
ure 1. The black box characteristics of such software
components, when integrated in models, further add
to the complexity, and work as hindrance in manag-
ing variability.

Managing variability involves extremely complex
and challenging tasks, which must be supported by ef-
fective methods, techniques, and tools (Clements and
Northrop, 2007). In view of this complexity, achiev-
ing the required reliability and performance is one of
the most challenging problems (Bosch, 2000).

The proposed strategy is a model-based approach
for the distributed business process. The approach
intends to facilitate automated and interactive strate-
gies to addresses the identification process in the de-
velopment and deployment of software components.
We start by analyzing the textual representation of the
model structure and form a concept to extract an el-
ement list to facilitate the identification of variabil-
ity. Based on the adaptation of a formal mathematical
model presented in this paper is the implementation
and evaluation of the proposed strategy.

2 RELATED WORK
For achieving large-scale software reuse, reliabil-

ity, performance and rapid development of new prod-
ucts, Software Product-Line Engineering(SPLE) is an
effective strategy. SPLE can be categorized into do-
main engineering and application engineering (Bach-
mann and Clements, 2005); (Bosch, 2000). Domain
engineering involves design, analysis and implemen-
tation of core objects, whereas application engineer-
ing is reusing these objects for product development.

Model Driven Software Development (MDSD) is
typically realized in a distributed system environment
for the development of automotive applications and
products (Kulesza et al., 2007). Model-based tech-

7.3 Publication 4 - ENASE 2012 80

niques are used to support the usage of platform inde-
pendent code. The abstract specification of the com-
ponents is done by domain experts, and the task for
deploying these components on different platforms is
handled separately by specific platform developers.
As a consequence the effort required for porting el-
ements is reduced (Gomaa and Webber, 2004).

Figure 1: External components as a hindrance to variability
management.

The Software Product-Line (SPL) approach pro-
motes the generation of specific products from a set
of core assets, domains in which products have well
defined commonalities and variation points (Oliveira
et al., 2005).

One of the fundamental activity in SPLE is Vari-
ability management (VM). Throughout the SPL life
cycle VM explicitly represents variations of soft-
ware artifacts, managing dependencies among vari-
ants and supporting their instantiations (Clements and
Northrop, 2007).

Activities on the variant management process in-
volves variability identification, variability specifica-
tion and variability realization.

• The Variability Identification Process will incor-
porate feature extraction and feature modeling.

• The Variability Specification Process is to derive
a pattern.

• The Variability Realization Process is a mecha-
nism to allow variability.

One of the basic element in these approaches is
a software component, which is an execution unit
with well defined interfaces (Szyperski, 2002). The
usage of software components is driven by the re-
quirements of improving the reusability of developed
software artifacts. Mapping of software components

on networked ECU is a distinct shift from Compo-
nent Based Software Engineering (CBSE). Software
components are combined with the help of assembly
descriptions. They are specified in the development
phase and are resolved in the deployment phase of a
CBSE process (Crnkovic, 2005).

Despite of all the hype there is a lack of an overall
reasoning about variability management.

Although variability management is recognized as
an important issue for the success of SPLs, there are
not many solutions available (Heymans and Trigaux,
2003). However, there are currently no commonly
accepted approaches that deal with variability holis-
tically at architectural level (Galster and Avgeriou,
2011).

3 PROPOSED APPROACH
Models confirming to numerous tools like

ESCAPE R©, EAST-ADL R©, UML R© tools, SysML R©

specifications, and AUTOSAR R© were considered, al-
though this concept is not limited to the automotive
domain alone.

3.1 Problem Analysis

• Textual representation: An analysis of the mod-
els exhibits a common architecture. Figure 2 de-
picts the textual representation that underlies the
graphical model. The textual representation usu-
ally is given in XML, which strictly validates to a
schema.
The schema defines elements transformed into an
explicit mapping that specify integrity constraints
modeled as real world entities in the project.

• Significant nodes: Examination of the nodes in
the textual representation of models depicted in
Figure 3 reveals some interesting information.
The nodes outlined in rectangles provide impor-
tant information regarding the identity, specifica-
tion, physical attributes, etc. of a component, but
are insignificant from the perspective of variant.
The CF model is derived manually from the set of
elements in the schema that signify components
are clustered to obtain a component list; and ele-
ments within these which characterize features as
a feature vector.

• Heterogeneous modeling environment: A hetero-
geneous modeling environment may consist of
numerous design tools, each with its own unique
schemata, to offer integrity and avoid inconsisten-
cies. Developed projects have to be strictly vali-
dated to the schemata of these tools.

7.3 Publication 4 - ENASE 2012 81

Figure 2: Mapping textual and graphical representations.

Figure 3: XML Nodes that are not significant for variability.

3.2 Concept and Approach

The work flow of the concept is depicted in Figure 4.
The top layer here represents the domain or core

assets. Sets of projects confirming to respective
schemata of several modeling tools are depicted.
Models are hugely hierarchical in nature with numer-
ous composite components deeply embedded within
projects.

The middle layer is a semi-automatic variability
identification layer, subdivided into two parts. The
left part depicts sets of distinct component lists and

corresponding feature vectors derived manually from
the schemata for each modeling tool; a collection of
elements that represent components and their descrip-
tive features that significantly contribute to the identi-
fication of the component’s variant. To assist the se-
lection the right part is a customized parser that gen-
erates a relevant lexicon from the set of software com-
ponents within a project and set of rules (viz., manda-
tory, optional, exclude) to govern the identification of
variability.

The lower layer is an application layer where the
application developer provides the specification set
and based on the rules the result set is returned.

Figure 4: Work flow for semi-automated identification of
variants.

Algorithm

1. Obtain a subset of nodes from within the schema
that signifies importance and description of the
whole, or part components to a component list.

2. Components themselves may further be com-
prised of sub nodes (components and features).
Not all sub nodes of the components in the com-
ponent list may be essential to describe variability.

3. Therefore for each element within the component
list further obtain a subset of the sub nodes from
the schema, which describes features of the com-
ponents to a feature vector.

4. Using the component list and the feature vector
generate a dictionary of keywords from within the

7.3 Publication 4 - ENASE 2012 82

project, along with the frequency to determine the
weight or significance of the keywords.

5. Apply rules (like contains all, one or more, and
does not contain) to search the specification set to
obtain an intersection set, union set, and differ-
ence set to identify the components.

3.3 Mathematical Model
The formal representation of such a model is com-
plex. The software model is composed of a set of
functions, which further contain sub-functions and so
exhibiting a hierarchical structure. The software mod-
els can be defined as

P = {E,Γ} (1)

P = {p1, p2, ...pn} is a finite set of models con-
sisting of elements that forms the functional model-
ing (the abstract specification of the components), so-
lution modeling (the implementation of the compo-
nents), and architecture design (deploying and map-
ping these components on different platforms). In ad-
dition it also contains elements that are general ratio-
nale and do not signify any of these functionality.

E = {e1,e2, ...em} is a finite set of elements that
constitutes elements providing general information
(viz., id, time stamp, date, owner, etc.), elements that
form components, elements within the components
that represent features. Some of these elements may
be categorized as elements that describe variability or
that contribute to signify variants.

Γ = {γ1,γ2, ...γo} is a finite set of elements which
describes complex relationships that reflect informa-
tion relationships, inheritance flow, and message ex-
changes.

Each of these models validate to a schema; and
there is an isomorphic mapping relationship between
the elements of the schema and the models.

We define a schema S as a set of formulas that
specify integrity and constraints

S = {N,C} (2)

The schema defines the structure, entities, at-
tributes, relationships, views, indexes, packages, pro-
cedures, triggers, types, sequences, synonyms and
other elements.

N = {n1,n2, ...nk} denotes a finite set of nodes or
elements in a schema that describes integrity, whereas
C = {c1,c2, ...c j} denotes a finite set of elements in
a schema that describes constraints, and further to
adapt a heterogeneous environment which consists of
projects developed using several modeling and simu-
lation tools.

S = {s1,s2, ...si} is a finite set of schemata each
representing a modeling or simulation tools.

At user reconfiguration level, the software model
is represented in an abstract form, consisting of mod-
ules, functions, relationship, information, inherited
flow, and message flow. Subdividing the set of nodes
N and the set of constraints C into general elements
and elements that signify

N = {n,η}
C = {c,υ} (3)

η = {η1,η2, ...ηp} and υ = {υ1,υ2, ...υq} are a
finite set of nodes and constraints respectively that
signify components, features, functions, relations,
whereas, n = {n1,n2, ...nr} and c = {c1,c2, ...cs} are
a finite set of nodes and constraints respectively that
signify all other nodes.

Targeting all nodes in the model that are isomor-
phically mapped to η and υ leads to a set of nodes
that can be viewed as a Significant Nodes (SN). As
the functions are hierarchical the software model may
be viewed as a Significant Node Mesh (SNM).

SN can be defined as
SN = {Cm,Fc,Nc,R} (4)

where Cm = {Cm1,Cm2, ...Cmn} is a finite set of all
components defined on the set P, ∀Cmi ⊂Cm and i =
1, ...m, Cmi is a finite set including all components of
pi, and is a subset of Cm. Fc = {Fc1,Fc2, ...Fco} is a
finite set of all features defined on the set P, ∀ Fc j ⊂
Fc and j = 1, ...o, Fc j is a finite set including all
features of pi, and is a subset of Fc. Nc and R denotes
the set of naming conventions and the set of relations
respectively.

Let SN denote the nodes in model P and M denotes
the nodes in schema S. Then there is a map (function)
τ from SN into M, defined such that τ(n) is the defini-
tion (or rule) of n ∈ SN in M.

τ : SN → M (5)

Let Sc be an element of S representing a compo-
nent c. Let EC be the subset of the schema S which is
extracted manually such that each element represents
a variant component.

EC = {Sc ∈ S : c represent a component} (6)

Let EF be the subset of a S which is extracted man-
ually such that each element represents a feature of
the component c.

EF = {EFc ∈ S : EFc represents a feature
of the component c} (7)

EF(i,c) denotes the ith element of EF of a component
c.

Let C1 be the subset of C such that all elements of
C1 are represented in EC.

C1 = {c ∈C : τ(c) ∈ EC} (8)

7.3 Publication 4 - ENASE 2012 83

Let F ′c be the subset of Fc such that element of F ′c
are represented in EF .

F ′c = { f ∈ Fc : τ(f) ∈ EF} (9)

Let F ′(i,c) be the ith element of F ′c , where i is an
integer.

Let V be the specification set. Then

R =

[
⋃

c∈C1

(
c

(
⋃

i

F ′(i,c)

))]
⋂

V (10)

In this method the number of elements in the re-
sultant set R is

|R|=
∣∣∣∣∣

[
⋃

c∈C1

(
c

(
⋃

i

F ′(i,c)

))]
⋂

V

∣∣∣∣∣ (11)

On the other hand, in global search we get
|R|= |V ∩N| (12)

where N is the set of nodes in the project.
Clearly

|V ∩N| ≥
∣∣∣∣∣

[
⋃

c∈C1

(
c

(
⋃

i

F ′(i,c)

))]
⋂

V

∣∣∣∣∣ (13)

Hence we conclude an improved result set using
this approach.

3.4 Evaluation
The case studies targeted the design of model-based
software components firstly in an industrial use case
where the project model was developed using the
design tool ESCAPE R© (Gigatronik, 2009), and sec-
ondly in a case study targeting the execution of spe-
cific paradigms based on the naming convention of
AUTOSAR R©.

The specific project data set, which was used to
verify the implementation, consisted of a total of
32909 elements. A total of 1583 of these elements
signify components; these were categorized into 23
categories when enlisted in the component list. A to-
tal of 13353 elements signified features that were as-
signed into 12 categories.

Three different approaches were adopted to eval-
uate and determine the performance with respect to
comprehensive search. The notion of comprehen-
sive search is used, when scanning all occurrences
of the specification set within projects, irrespective
of whether they are components or features of those
components. This may return a result set that contains
false matches.

• The evaluation using a single element specifica-
tion set is illustrated in Figure 5.

• The evaluation using multiple element specifica-
tion set, up to seven elements as a group is illus-
trated in Figure 6.

• The evaluation using different starting points for
elements in specification sets is shown in Fig-
ure 7.

Figure 5: Occurrence graph for a single element specifica-
tion set.

Figure 6: Occurrence graph for multiple element specifica-
tion sets.

Observations
• The comprehensive search often yielded large re-

sult sets, as it searches in individual nodes that
are treated as atomic.The result set contains every
occurrence of the specification set, even if these
nodes do not characterize a component.

• The exhibited behavior is similar to the varying
size of the specification set. As observed in Fig-
ure 6, the selective component-feature search re-
sult set delivers a value when the size of the spec-
ification set exceeds 3, because in this case the
matches take place across the boundary of the fea-
ture within the component. On the other hand

7.3 Publication 4 - ENASE 2012 84

Figure 7: Occurrence graph for different starting points.

the other methods returns a null result set as the
search is only within the boundary of the element.

• The nodes representing components yield a result
set which is somewhat realistic, though these do
not epitomize the complete set desired.

• These nodes along with the feature set yield a
more elaborate result set. A match contained by
any node in a set of features would result in rep-
resenting the component to which it belongs.

• For any given size of the specification set, the se-
lective component-feature search returns a much
smaller result set and is more precise.

• Convergence is optimal with a specification set of
size 3. If the size of the specification is too large
the result may be null for both methods as shown
in Figure 6.

• To determine the effect of different starting points,
a multiple-element specification set was used,
where the orders of the elements were changed to
obtain five sets. The result set for this exhibits the
same pattern as the two experiments above.

4 CONCLUSION
An approach that can significantly improve the

identification of variant is proposed by targeting sig-
nificant nodes instead of comprehensive search. The
approach reflect both the capability to match key-
words and to reflect the structure that character-
izes a component enabling the identification in large

distributed and heterogeneous development environ-
ment. The developed prototype is itself independent
of a specific tool as it works on textual descriptions
that typically are available in XML. Although the ac-
curacy of the retrieved set of candidates is highly im-
proved. The future work may comprise to extend the
concept to specify and verify reusable components.

REFERENCES

Bachmann, F. and Clements, P. C. (2005). Variability in
software product lines. Technical Report -CMU/SEI-
2005-TR-012.

Bosch, J. (2000). Design and Use of Software Architec-
tures: Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley.

Clements, P. and Northrop, L. (2007). Software Product
Lines: Practices and Patterns. Addison-Wesley.

Crnkovic, I. (2005). Component-based software engineer-
ing for embedded systems. Software Engineering,
ICSE 2005. Proceedings. 27th International Confer-
ence, pages 712–713.

Frank, A. and Brenner, E. (2010a). Model-based variability
management for complex embedded networks. 2010
Fifth International Multi-conference on Computing in
the Global Information Technology, pages 305–309.

Frank, A. and Brenner, E. (2010b). Strategy for modeling
variability in configurable software. Programmable
Devices and Embedded Systems PDES 2010.

Galster, M. and Avgeriou, P. (2011). Handling variability
in software architecture: Problem and implications.
2011 Ninth Working IEEE/IFIP Confernce on Soft-
ware Architecture, pages 171–180.

Gigatronik (2009). Escape. http://www.gigatronik
2.de/index.php?seite=escape produktinfos de &nav-

igation=3019&root=192&kanal.html.
Gomaa, H. and Webber, D. (2004). Modeling adaptive and

evolvable software product lines using the variation
point model. Proceedings of the 37th Hawaii interna-
tional Conference on System Sciences, Washington.

Heymans, P. and Trigaux, J. (2003). Software product line:
state of the art. Technical report for PLENTY project,
Institut d’Informatique FUNDP, Namur.

Kulesza, U., Alves, V., Garcia, A., Neto, A. C., Cirilo1,
E., de Lucena, C. J. P., and Borba, P. (2007). Map-
ping features to aspects: A model-based generative
approach. Current Challenges and Future Directions,
Lecture Notes in Computer Science, pages 155–174.

Kum, D., Park, G., Lee, S., and Jung, W. (2008). Autosar
migration from existing automotive software. Inter-
national Conference on Control, Automation and Sys-
tems, pages 558–562.

Oliveira, E., Gimenes, I., Huzita, E., and Maldonado, J.
(2005). A variability management process for soft-
ware product lines. CASCON 05, pages 225 – 241.

Szyperski, C. (2002). Component software: Beyond object-
oriented programming. 2nd Edition, Addison-Wesley,
USA.

7.3 Publication 4 - ENASE 2012 85

Variability Identification by Selective Targeting of Significant Nodes

Anilloy Frank
Institute of Technical Informatics,

Technische Universitt
Inffeldgasse 16, 8010 Graz, Austria

Email: anilloy.frank@student.tugraz.at

Eugen Brenner
Institute of Technical Informatics,

Technische Universitt
Inffeldgasse 16, 8010 Graz, Austria

Email: brenner@tugraz.at

Abstract—The automotive industry is characterized by nu-
merous product variants, often driven by embedded software.
With ever increasing complexity of embedded software, the
electrical/electronic models in automotive applications are get-
ting enormously unmanageable. Significant concepts for model-
ing and management of variability in the software architecture
are under development. Models are hugely hierarchical in
nature with numerous composite components deeply embedded
within projects comprising of Simulink models, implementa-
tions in legacy C, and other formats. Hence, it is often necessary
to define a mechanism to identify reusable components from
these that are embedded deep within. The proposed approach
is selectively targeting the component-feature model (CF)
instead of an inclusive search to improve the identification. We
explore the components and their features from a predefined
component node list and the features node vector respectively.
It addresses the issues to identify commonality in identification,
specification and realization of variants within a product
development. Since the approach does not depend on the depth
of the components or on its order, it serves well with all
the scenarios, thereby exhibiting a generic nature. The results
obtained are faster and more accurate compared to other
methods.

Keywords-Design Tools; Embedded Systems; Feature Extrac-
tion; Software Reusability; Variability Management.

I. INTRODUCTION

Embedded systems are microcontroller-based systems
built into technical equipment mainly designed for a dedi-
cated purpose, where communication with the outside world
occurs via sensors and actuators [1]. Although this definition
implies that embedded systems are used as isolated units,
there is also a trend to construct distributed pervasive sys-
tems by connecting several embedded devices, as noted by
Tanenbaum and van Steen [2].

The current development trend in automotive software
is to map software components on networked Electronic
Control Units (ECU), which includes the shift from an
ECU based approach to a function based approach. Also,
according to data presented by Ebert and Jones, up to 70
electronic units are used in a car containing embedded
software consisting of more than 100 million lines of object
code, which is mainly responsible for the value creation of
the car.

Variants of embedded software functions are vital in

customizing for different regions (Europe, Asia, etc.), to
meet regulations of the respective regions. Also different
sensors / actuators, different device drivers, and distribution
of functionality on different ECUs necessitate variants. Man-
aging variability involves extremely complex and challeng-
ing tasks, which must be supported by effective methods,
techniques, and tools [3].

Ebert and Jones present recent data about embedded soft-
ware in [4], stating that the volume of embedded software
is increasing between 10 and 20 percent per year as a
consequence of the increasing automation of devices and
their application in real world scenarios.

The proposed strategy is to introduce a variability iden-
tification layer. It intends to facilitate a reusable software
solution. We start by analyzing the textual representation of
the model structure. Based on this we form a concept to
extract an element list to facilitate the identification of vari-
ability. Both implementation and evaluation of the proposed
strategy is based on a technically advanced adaptation of a
formal mathematical model, which is beyond the scope of
this paper.

II. SOFTWARE REUSE

In the 1960s, reuse of software started with subroutines,
followed by modules in the 1970s and objects in the 1980s.
About 1990 components appeared, followed by services at
about 2000. Currently, Software Product Lines (SPL) are
state of the art in the reuse of software.

Figure 1. Software reuse history.

Figure 1 shows a short history of the usage of reuse in
software development. The key idea of Product Lines is
very old; it is based on Henry Ford’s mass customization
to provide a effective way for cheap individual cars. Today,

7.4 Publication 3 - ICCGI 2012 86

many different approaches exist to the implementation of
Software Product Lines.

A SPL is a set of software-intensive systems that share
a common set of features for satisfying a particular market
segment’s needs. SPL can reduce development costs, shorten
time-to-market, and improve product quality by reusing core
assets for project-specific customizations [3][5].

Despite of all the hype, there is a lack of an overall
reasoning about variability management.

The SPL approach promotes the generation of specific
products from a set of core assets, domains in which
products have well defined communalities and variation
points[6].

Although variability management is recognized as an
important issue for the success of SPLs, there are not many
solutions available [7]. However, there are currently no
commonly accepted approaches that deal with variability
holistically at architectural level [8].

III. VARIABILITY MANAGEMENT

One of the fundamental activity in Software Product
Line Engineering (SPLE) is Variability management (VM).
Throughout the SPL life cycle, VM explicitly represents
variations of software artifacts, managing dependencies
among variants and supporting their instantiations [3].

Figure 2. Variability management in product lines.

To enable reuse on a large scale, SPLE identifies and
manages commonalities and variations across a set of system
artifacts such as requirements, architectures, code compo-
nents, and test cases. As seen in the Product Line Hall of
Fame [9], many companies have adopted this development
approach.

SPLE as depicted in Figure 2 can be categorized into
domain engineering and application engineering [10][11].
Domain engineering involves design, analysis and imple-
mentation of core objects, whereas application engineering
is reusing these objects for product development.

Activities on the variant management process involves
variability identification, variability specification and vari-
ability realization [12].

• The Variability Identification Process will incorporate
feature extraction and feature modeling.

• The Variability Specification Process is to derive a
pattern.

• The Variability Realization Process is a mechanism to
allow variability.

IV. SOFTWARE ARCHITECTURE

Figure 3 depicts a layered software architecture that is
considered in the proposed architecture. It shows a compar-
ison of distributed systems and platform with the proposed
layered architecture and the feasibility of mapping the cor-
responding artifacts and responsibilities for each layer.

Figure 3. Comparison of architecture, system, and platform.

The definition of software architecture given in the
ISO/IEC 42010 IEEE Std 1471-2000: “The fundamental
organization of a system embodied in its components, their
relationships to each other, and to the environment, and the
principles guiding its design and evolution [13].”

In the middle illustrates a distributed system. Tanenbaum
and van Steen define distributed systems as “A distributed
system is a collection of independent computers that appears
to its users as a single coherent system [2].”

Similarly to the right side is depicted a typical platform
as specified by Atkinson and Kühner in Model Driven
Architectures (MDA) [14].

V. SPECIFICATION OF THE CASES

To enable identification of variability for software compo-
nents in a distributed system within the automotive domain
[15][16], we enlist the specifications below:

• Specification of components by compatibility
The product is tested using software functions of a
certain variant and version. These products may exhibit
compatibility issues between functional blocks, whilst

7.4 Publication 3 - ICCGI 2012 87

using later version of the function may fail to perform
as expected.

• Extract, identify, and specify features
To enable parallel development, it is necessary to be
able to extract features, and to identify and specify the
functional blocks in the repository based on architecture
and functionality.

• Usability and prevention of inconsistencies
A process that tracks usability and prevents inconsis-
tencies due to deprecate variants and versions in the
repository is required.

• Testing mechanism for validations
A testing mechanism for validations in order to main-
tain high quality for components and its variants has to
be established.

• Mechanism for simplified assistance
The developer has to be assisted by a process to
intelligently determine whether a functional block or
its variant should exist in the data backbone to avoid
redesign of existing functions, thereby improving pro-
ductivity.

VI. PROPOSED APPROACH FOR VARIABILITY
IDENTIFICATION

Models confirming to numerous tools like ESCAPE R©,
EAST-ADL R©, UML R© tools, SysML R© specifications and
AUTOSAR R© were considered. Although this concept is not
limited to automotive domain alone.

A. Project analysis

An analysis of the models exhibits a common architecture.
Figure 4 depicts the textual representation that underlies
several graphical model. The textual representation usually
is given in XML, which strictly validates to a schema.
A heterogeneous modeling environment may consist of
numerous design tools, each with its own unique schema, to
offer integrity and avoid inconsistencies. Developed projects
have to be strictly validated to the schemas of these tools.

A closure examination of the nodes in the textual repre-
sentation of models depicted in Figure 5 reveals some inter-
esting information. The nodes outlined in rectangles provide
important information regarding the identity, specification,
physical attributes, etc. of a component, but are insignificant
from the perspective of variant.

B. Concept and approach

The basic concept to identify variability is depicted in
Figure 6.

The left side is a set of projects that have software compo-
nents hierarchically embedded. These projects validate to the
corresponding schemas. The middle layer is an identification
layer with three functional blocks. A set of component lists is
derived from the node list in the schema. Similarly a feature
vector is derived from it that corresponds to components.

Figure 4. Mapping textual and graphical representations.

Figure 5. XML Nodes that are not significant for variability.

The second block is a customized parser that generates a
relevant lexicon from the set of software components within
a project. The third block is a set of rules (viz., mandatory,
optional, exclude) to govern the identification of variability.

The basic concept can be extended to obtain a working
model for the identification of variants. The work flow is
depicted in Figure 7. The top layer here represents the
domain or core assets. The middle layer is a semi-automatic
identification layer for variants. A component list and a

7.4 Publication 3 - ICCGI 2012 88

Figure 6. Basic Concept.

feature vector is derived manually from the schema of the
project; a collection of elements that represent components
and their descriptive features that significantly contribute to
the identification of the component’s variant.

Figure 7. Work flow of the identification process.

The workflow can be further extended to adapt a hetero-
geneous environment which consist of projects developed
using several modeling and simulation tools. The identifica-
tion layer is separated into two parts. Numerous component
lists and feature vectors can be derived for each distinct
schema as depicted in Figure 8, whereas a common lexicon
and common rules govern the identification process.

C. Evaluation

A prototype of the architecture presented here has been
implemented. These case studies targeted the design of
model-based software components firstly in an industrial use

Figure 8. Work flow of the identification process for heterogeneous
systems.

case where the project model was developed using the design
tool ESCAPE R© [17], and secondly in a case study targeting
the execution of specific paradigms based on the naming
convention of AUTOSAR R© [18].

The specific project data set depicted in Figure 9, which
was used to verify the implementation, consisted of a total
of 32909 elements. Of these elements a total of 1583
elements signify components, these were categorized into
23 categories when enlisted in the component list. A total
of 13353 elements signified features that were assigned into
12 categories.

Figure 9. Dataset summary of project using ESCAPE design tool.

7.4 Publication 3 - ICCGI 2012 89

Three different approaches were adopted to evaluate and
determine the performance with respect to matches and time.

• Evaluation using a single element specification set
The first experiment was conducted on a single element
specification set. A group of ten sets formed the input to
determine the result set in both comprehensive (global)
search and selective search as illustrated in Figure 10.
The notion of comprehensive search is used, when
scanning all occurrences of the specification set within
projects, irrespective of whether they are components or
features of those components. This can return a result
set that contains false matches.

Figure 10. Occurrence graph for a single element specification set.

Figure 11. Time graph for a single element specification set.

The pattern of the results displayed similar behavior.
Observations

– The comprehensive search yields a result set that
contains every occurrence of the specification set,
even if these nodes do not characterize a compo-
nent.

– The nodes representing components yield a result
set which is somewhat realistic, though these do
not epitomize the complete set desired. This is
often observed when the component nodes do not
match, but their features collectively match the
specification set.

– These nodes along with the feature set yield a more
elaborate result set. A match contained by any node
in a set of features would result in representing the
component to which it belongs.

Figure 11 depicts the time taken to obtain the specifica-
tion set illustrated in Figure 10. The time graph depicts
the aggregate time required for global and selective
search for a set of ten specification sets.
Observations

– It is evident from these figures that the time
required for comprehensive search exceeds the
selective search - which is the method proposed
in this article - by almost a factor of 5; this may
be a dominant factor for large specification sets.

• Evaluation using multiple element specification set
The second experiment was conducted using one up to
seven element specification sets as a group illustrated
in Figure 12.

Figure 12. Occurrence graph for multiple element specification sets.

Observations
– The comprehensive search often yielded large re-

sult sets, as it searches in individual nodes that are
treated as atomic.

– The exhibited behavior is similar to the vary-
ing size of the specification set. As observed in
Figure 12, the selective component-feature search
result set demonstrates a value when the size of
specification set exceeds 3, because in this case
the matches take place across the boundary of
the feature within the component. On the other
hand the other methods return null result set as the
search is only within the boundary of the element.

– For any given size of specification set, the selective
component-feature search returns a much smaller
result set and is more precise.

– Convergence is optimal with a specification set of
size 3. If the size of the specification is too large
the result may be null for both methods as shown
in Figure 12.

• Evaluation using different starting points for ele-
ments in specification sets

7.4 Publication 3 - ICCGI 2012 90

Figure 13. Occurrence graph for different starting points.

The third experiment was conducted searching for ele-
ments within specification sets using different starting
points. Figure 13 depicts the result sets in comprehen-
sive search and selective search.
To determine the effect of different starting points, a
multiple-element specification set was used, where the
orders of the elements were changed to obtain five sets.
The result set for this exhibits the same pattern as the
two experiments above.

VII. CONCLUSION

Managing variants is of utmost importance in today’s
large software bases as they reflect legal constraints, mar-
keting decisions, and development cycles. As these software
bases often grew from different sources and were developed
by different teams using different tools it is in many cases
very complicated if not nearly impossible to find artefacts
that might be variants, both for historical reasons as for
development purposes.

Searching algorithms have to reflect both the capability to
match keywords and to reflect the structure that characterizes
a component. Our proposed method is capable of both
aspects and therefore helps the developer to find matches
even in large and heterogeneous databases. In addition to
that not only the required time for the search is a lot shorter,
but also accuracy of the retrieved set of candidates is highly
improved.

The developed prototype is itself independent of a specific
tool as it works on textual descriptions that typically are
available in XML.

REFERENCES

[1] Ebert, C. and Salecker, J.; Guest editors’ introduction: Embed-
ded software technologies and trends. Software, IEEE, Vol
26(3): pp. 14-18, 2009

[2] Tanenbaum, A.S. and van Steen, M.; Distributed Systems:
Principles and Paradigms (2nd Edition). Prentice Hall, 2006

[3] Clements, P. and Northrop, L.; Software Product Lines: Prac-
tices and Patterns, Addison-Wesley, 2007

[4] Ebert, C. and Jones, C.; Embedded software: Facts, figures,
and future. Computer, IEEE Vol 42(4): pp. 42-52, 2009

[5] Gomaa, H. and Webber, D.L.; Modeling Adaptive and Evolv-
able Software Product Lines Using the Variation Point Model.
The Proceedings of the 37th Hawaii international Conference
on System Sciences, 2004

[6] Oliveira, E., Gimenes, I., and Maldonado, J.; A variability
management process for software product lines. CASCON
2005, The conference of the Centre for Advanced Studies on
Collaborative research: pp. 225 - 241

[7] Heymans, P. and Trigaux, J.; Software product line: state
of the art. Technical report for PLENTY project, Institut
d’Informatique FUNDP, Namur, 2003

[8] Galster, M. and Avgeriou, P.; Handling variability in software
architecture: Problem and implications. WICSA 2011, Ninth
Working IEEE/IFIP Confernce on Software Architecture: pp.
171-180

[9] PRODUCT LINE HALL OF FAME;
”http://splc.net/fame.html”. retrieved: 04,2012

[10] Bachmann, F. and Clements, P. C.; Variability in Software
Product Lines, Technical Report -CMU/SEI-2005-TR-012,
2005.

[11] Bosch, J.; Design and Use of Software Architectures: Adopt-
ing and Evolving a Product-Line Approach, Addison-Wesley,
2000

[12] Burgareli, L.A., Selma, Melnikoff, S.S., and Mauricio Fer-
reira, G. V.; A Variation Mechanism Based on Adaptive Ob-
ject Model for Software Product Line of Brazilian Satellite
Launcher, ECBS-EERC 2009, First IEEE Eastern European
Conference on the Engineering of Computer Based Systems:
pp. 24-31

[13] IEEE; Iso/iec standard for systems and software engineer-
ing - Rrecommended practice for architectural description of
software-intensive systems. Technical report, IEEE, 2000

[14] Atkinson, C. and Kühne, T.; A generalized notion of platforms
for model-driven development. Model-Driven Software
Development, Springer-Verlag, Berlin: pp. 119–136, 2005

[15] Frank, A.A. and Brenner, E.; Model-based Variability Man-
agement for Complex Embedded Networks. ICCGI 2010,
The Fifth International Multi-conference on Computing in the
Global Information Technology: pp. 305-309

[16] Frank, A.A. and Brenner, E.; Strategy for modeling variability
in configurable software. PDES 2010, The 10th IFAC
workshop on Programmable Devices and Embedded Systems

[17] ESCAPE; ”http://www.gigatronik2.de/index.php?seite=escape
produktinfos de&navigation=3019&root=192&kanal=html”.

retrieved: 04,2012

[18] AUTOSAR; ”http://www.autosar.org/download/conferencedocs
/03 AUTOSAR Tutorial.pdf”. retrieved: 04,2012

7.4 Publication 3 - ICCGI 2012 91

Appendix A

Glossary

Distributed system: “A distributed system is a collection of indepen-
dent computers that appears to its users as a single coherent sys-
tem.” [Tanenbaum and van Steen, 2006, p.2]

Embedded system: “Embedded systems are microcontroller-based systems built into
technical equipment. They’re designed for a dedicated purpose and usually
don’t allow different applications to be loaded and new peripherals to be con-
nected. Communication with the outside world occurs via sensors and actua-
tors; if applicable, embedded systems provide a human interface for dedicated
actions.”.[Ebert and Salecker, 2009, p.14]

Entity: “An object fundamentally defined not by its attributes, but by a thread of con-
tinuity and identity” [Evans, 2003, p.512]

Environment: “The environment, or context, determines the setting and circumstances
of developmental, operational, political, and other influences upon that system. The
environment can include other systems that interact with the system of interest,
either directly via interfaces or indirectly in other ways. The environment deter-
mines the boundaries that define the scope of the system of interest relative to other
systems.” [IEEE, 2007, p.4]

Metamodeling: Kleppe [Kleppe, 2008] provides a definition of a model, which is rested
upon a combination of a type graph and a set of constraints at various types of this
graph. A type graph is defined as a combination of

• a set of nodes which may include data types

• a set of edges

• a source function from edges to nodes, which gives the source node of an edge

• a target function from edges to nodes, which gives the target node of an edge

• An inheritance relationship between nodes (a reflexive partial ordering)

The concept of a labeled graph is also applied in the representation of a class diagram,
which is usually made use of for the presentation of elements in the M3 and M2 layer

92

GLOSSARY 93

of the OMG four-level meta-model hierarchy. Having motivated the usage of graphs
for the definition of a model Kleppe also defines an instance of a model M as a labeled
graph that can be typed over the type graph of M and satisfies all the constraints
in M’s constraint set.

Platform: “A platform is the combination of a language specification, predefined types,
predefined instances, and patterns, which are the additional concepts and rules
needed to use the capabilities of the other three elements.” [Kleppe, 2008, p.69]

Software Architecture: “The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.” [IEEE, 2007]

Software Component: “A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by third
party.” [Szyperski, 2002, p.41]

Software-intensive system: “A software-intensive system is any system where software
contributes essential influences to the design, construction, deployment, and evolu-
tion of the system as a whole.” [IEEE, 2007, p.1]

Software product line: “Software product line engineering is a paradigm to develop
software applications (software-intensive systems and software products) using plat-
forms and mass customisations.” [Pohl et al., 2005, p.14]

System: A collection of components organized to accomplish a specific function or a set
of functions. [IEEE, 2007, p.3]

Value objects: “An object that describes some characteristic or attribute but carries no
concept of identity.” [Evans, 2003]

Virtual Organization: “A collaboration whose participants are both geographically and
organizationally distributed.“ [Foster and Kesselman, 2004, p.672]

Bibliography

[Atkinson et al., 2001] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua,
R., Muthig, D., Paech, B., Wust, J., and Zettel, J. (2001). Component-Based Product Line
Engineering with UML. Addison-Wesley Professional, 1st edition.

[Atkinson and Kühne, 2005] Atkinson, C. and Kühne, T. (2005). A generalized notion of platforms
for model-driven development. In Beydeda, S., Book, M., and Gruhn, V., editors, Model-Driven
Software Development, chapter 6, pages 119–136. Springer-Verlag, Berlin/Heidelberg.

[Autosar, 2011] Autosar (2011). Autosar. http://www.autosar.org/download/

conferencedocs/03_AUTOSAR_Tutorial.pdf.

[B. Graaf, 2003] B. Graaf, M. Lormans, H. T. (2003). Embedded software engineering: The state
of the practice. IEEE Software, v. 20, pages 61–69.

[Bachmann and Clements, 2005] Bachmann, F. and Clements, P. C. (2005). Variability in software
product lines. Technical Report -CMU/SEI-2005-TR-012.

[Bachmann, 2005] Bachmann, P. C. C. F. (2005). Variability in software product lines. Technical
report, Software Engineering Institute,.

[Bayus, 1994] Bayus, B. (1994). Are product life cycles really getting shorter? Journal of Product
Innovation Management, Vol. 11 (4), pages 300–308.

[Bosch, 2000] Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. Addison-Wesley.

[Burgareli et al., 2009] Burgareli, L., Selma, S. S., Melnikoff, and Ferreira, G. V. M. (2009). A
variation mechanism based on adaptive object model for software product line of brazilian
satellite launcher. First IEEE Eastern European Conference on the Engineering of Computer
Based Systems.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
(1996). Pattern-Oriented Software Architecture Volume 1: A System of Patterns. Wiley, 1
edition.

[Clements and Northrop, 2007] Clements, P. and Northrop, L. (2007). Software product lines:
Practices and patterns.

[Crnkovic, 2005] Crnkovic, I. (2005). Component-based software engineering for embedded sys-
tems. Proceedings of the 27th International Conference on Software engineering, pages 712–713.

[E. Oliveira and Maldonado, 2005] E. Oliveira, I. Gimenes, E. H. and Maldonado, J. (2005). A
variability management process for software product lines.

[E. Ostertag and Braun, 1992] E. Ostertag, J. Hendler, R. P.-D. and Braun, C. (1992). Computing
similarity in a reuse library system: An aibased approach. ACM Trans. on Software Engineering
and Methodology 1(3), pages 205–228.

94

BIBLIOGRAPHY 95

[Ebert and Jones, 2009] Ebert, C. and Jones, C. (2009). Embedded software: Facts, figures, and
future. Computer, 42(4):42–52.

[Ebert and Salecker, 2009] Ebert, C. and Salecker, J. (2009). Guest editors’ introduction: Embed-
ded software technologies and trends. Software, IEEE, 26(3):14–18.

[Ericsson and Erixon, 1999] Ericsson, A. and Erixon, G. (1999). Controlling design variants mod-
ular product platforms. Society of Manufacturing Engineers, Dearborn, MI.

[Evans, 2003] Evans, E. J. (2003). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Longman, Amsterdam, 1. a. edition.

[Foster and Kesselman, 2004] Foster, I. and Kesselman, C., editors (2004). The Grid: Blueprint
for a New Computing Infrastructure (Elsevier Series in Grid Computing). Morgan Kaufmann,
second edition.

[Frank van der Linden Klaus Pohl, 2005] Frank van der Linden Klaus Pohl, G. B. (2005). Software
product line engineering. Springer, pages 5–20.

[Galster and Avgeriou, 2011] Galster, M. and Avgeriou, P. (2011). Handling variability in software
architecture: Problem and implications. 2011 Ninth Working IEEE/IFIP Confernce on Software
Architecture, pages 171–180.

[GIGATRONIK, 2009] GIGATRONIK (2009). Escape. http://www.gigatronik_2.de/index.

php?seite=escape_produktinfos_de\&navigation=3019\&root=192\&kanal=html.

[H. Mili and Mili, 1995] H. Mili, F. M. and Mili, A. (1995). Reusing software: Issues and research
directions. IEEE Transaction on Software Engineering 21(6), pages 528–562.

[Heymans and Trigaux, 2003] Heymans, P. and Trigaux, J. (2003). Software product line: state
of the art. Technical report for PLENTY project, Institut d’Informatique FUNDP, Namur.

[I. Bird and Kee., 2009] I. Bird, B. J. and Kee., K. F. (2009). The organization and management
of grid infrastructures. Computer, 42(1), pages 36–46.

[IEEE, 2007] IEEE (2007). Iso/iec standard for systems and software engineering - recommended
practice for architectural description of software-intensive systems. Technical report, IEEE.

[J. Bergey and Smith, 2000] J. Bergey, L. O. and Smith, D. (2000). Mining existing assets for
software product lines. Technical Note, CMU/SEI-2000-TN-008, SEI, USA.

[Jan Bosch and Pohl, 2001] Jan Bosch, Gert Florijn, D. G. J. K. J. H. O. and Pohl, K. (2001).
Variability issues in software product lines. In van der Linden, page 1321.

[Jonathan and Collard, 2005] Jonathan, I. M. and Collard, M. (2005). Adding structure to un-
structured text.

[Kang et al., 1990] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S. (1990). Feature-
oriented domain analysis (foda): Feasibility study. CMU/SEI-90-TR-21, SEI, USA.

[Kleppe, 2008] Kleppe, A. (2008). Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley Professional, 1 edition.

[Kum et al., 2008] Kum, D., Park, G., Lee, S., and Jung, W. (2008). Autosar migration from
existing automotive software. International Conference on Control, Automation and Systems,
pages 558–562.

[Liggesmeyer and Trapp, 2009] Liggesmeyer, P. and Trapp, M. (2009). Trends in embedded soft-
ware engineering. Software, IEEE, 26(3):19–25.

BIBLIOGRAPHY 96

[M. Jazayeri and van der Linden, 2000] M. Jazayeri, A. R. and van der Linden, F. (2000). Software
architecture for product families: principles and practice. Addison-Wesley Longman Publishing
Co., Inc.

[Muller et al., 2009] Muller, P.-A., Fondement, F., and Baudry, B. (2009). Modeling modeling.
In Model Driven Engineering Languages and Systems, chapter 2, pages 2–16. Springer Berlin /
Heidelberg.

[N. Leveson, 2004] N. Leveson, K. W. (2004). Making embedded software reuse practical and safe.
Proceedings of the 12th International Symposium on Foundations of Software Engineering, ACM
SIGSOFT ’04/FSE-12, v. 29.

[Northrop, 2002] Northrop, L. (2002). Sei’s software product line tenets.

[Northrop, 2007] Northrop, L. (2007). Fourth product line practice workshop report. Technical
report, Software Engineering Institute. Carnegie Mellon University, pages 3–20.

[OBrien, 2005] OBrien, L. (2005). Reengineering. Carnegie Mellon University Pittsburgh, USA.
¡http://www.cs.cmu.edu/ aldrich/courses/654-sp05/handouts/MSE-Reeng-05.pdf¿.

[Osman et al., 2010] Osman, A., Muthaiyah, S., Ibrahim, H. M., Amnuaisuk, S., and Ho, C. K.
(2010). Defining variability in dss: An intelligent method for knowledge representation and
validation. Proceedings of the 43rd Hawaii International Conference on System Sciences.

[P. Child and Wisniowski, 1991] P. Child, R. Diederichs, F. S. and Wisniowski, S. (1991). The
management of complexity. Sloan Management Review, Vol. 33 (1), pages 73–80.

[Paul C. Clements and McGregor, 2005] Paul C. Clements, Lawrence G. Jones, L. M. N. and Mc-
Gregor, J. D. (2005). Project management in a software product line organization. IEEE
Software, 22(5), page 5462.

[Pohl et al., 2005] Pohl, K., Backle, G., and Linden, F. J. (2005). Software Product LineEngineer-
ing: Foundations, Principles and Techniques. Springer-Verlag, New York.

[Poole and Simon, 1997] Poole, S. and Simon, M. (1997). Technological trends, product design
and the environment. Design Studies, Vol. 18 (3), pages 237–248.

[Ramos and Penteado, 2008] Ramos, M. and Penteado, R. (2008). Embedded software revital-
ization through component mining and software product line techniques. Journal of Universal
Computer Science, vol. 14, no. 8, pages 1207–1227.

[Simpson, 2004] Simpson, T. (2004). Product platform design and customization: Status and
promise. Artificial Intelligencefor Engineering Design, Analysis and Manufacturing, Vol.18 (1),
pages 3–20.

[Stahl and Völter, 2006] Stahl, T. and Völter, M. (2006). Model-driven Software Development:
Technology, Engineering, Management. Wiley.

[Szyperski, 2002] Szyperski, C. (2002). Component software: Beyond object-oriented program-
ming. 2nd Edition, Addison-Wesley, USA.

[Tanenbaum and van Steen, 2006] Tanenbaum, A. S. and van Steen, M. (2006). Distributed Sys-
tems: Principles and Paradigms (2nd Edition). Prentice Hall.

[Uira Kulesza and Borba, 2007] Uira Kulesza, Vander Alves, A. G. A. C. N. E. C. C. J. P. d. L.
and Borba, P. (2007). Mapping features to aspects: A model-based generative approach. Current
Challenges and Future Directions, Lecture Notes in Computer Science, pages 155–174.

[William C. Chu and He, 2005] William C. Chu, C. P. Hsu, C. L. and He, X. (2005). A semi-formal
approach to assist software design with reuse.

[Ziadi, 2003] Ziadi, T.; Jzquel, J.-M. F. F. (2003). Product line derivation with uml. In Proceedings
Software Variability Management Workshop, University of Groningen.

